Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/116068
Title: Inferring heavy tails of flood distributions through hydrograph recession analysis
Author(s): Wang, Hsing-JuiLook up in the Integrated Authority File of the German National Library
Merz, RalfLook up in the Integrated Authority File of the German National Library
Yang, Soohyun
Basso, StefanoLook up in the Integrated Authority File of the German National Library
Issue Date: 2023
Type: Article
Language: English
Abstract: Floods are often disastrous due to underestimation of the magnitude of rare events. Underestimation commonly happens when the magnitudes of floods follow a heavy-tailed distribution, but this behavior is not recognized and thus neglected for flood hazard assessment. In fact, identifying heavy-tailed flood behavior is challenging because of limited data records and the lack of physical support for currently used indices. We address these issues by deriving a new index of heavy-tailed flood behavior from a physically based description of streamflow dynamics. The proposed index, which is embodied by the hydrograph recession exponent, enables inferring heavy-tailed flood behavior from daily flow records, even of short length. We test the index in a large set of case studies across Germany encompassing a variety of climatic and physiographic settings. Our findings demonstrate that the new index enables reliable identification of cases with either heavy- or non-heavy-tailed flood behavior from daily flow records. Additionally, the index suitably estimates the severity of tail heaviness and ranks it across cases, achieving robust results even with short data records. The new index addresses the main limitations of currently used metrics, which lack physical support and require long data records to correctly identify tail behaviors, and provides valuable information on the tail behavior of flood distributions and the related flood hazard in river basins using commonly available discharge data.
URI: https://opendata.uni-halle.de//handle/1981185920/118024
http://dx.doi.org/10.25673/116068
Open Access: Open access publication
License: (CC BY 4.0) Creative Commons Attribution 4.0(CC BY 4.0) Creative Commons Attribution 4.0
Journal Title: Hydrology and earth system sciences
Publisher: EGU
Publisher Place: Munich
Volume: 27
Original Publication: 10.5194/hess-27-4369-2023
Page Start: 4369
Page End: 4384
Appears in Collections:Open Access Publikationen der MLU

Files in This Item:
File Description SizeFormat 
hess-27-4369-2023.pdf3.08 MBAdobe PDFThumbnail
View/Open