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Abstract

Mathematical modeling of biological systems together with quantitative biochemical
and cell biological analyses allow deep insights into the often complex molecular inter-
connections within a biological system. Furthermore, mathematical models allow to
design and test new patient-specific intervention strategies for medical treatments.
The development of mathematical models is not trivial. Usually, not all interactions

within a biological network are known or understood resulting in competing model can-
didates. These candidates have then to be tested whether they can represent available
measurement data. In case a model cannot represent the data, it is deemed invalid.
However, as measurement data are mostly uncertain this model discrimination task
is challenging. In addition, model parameters are typically unknown and have to be
calibrated for reliable model predictions. Finally, biological processes can span differ-
ent time scales ranging from seconds to days. The combination and the integration
of data from different time scales is challenging, however, needs to be considered for
model predictions that allow insights into biology and eventually pathophysiological
processes. For model analyses and parameter estimation, we apply and extend a set-
based model analysis approach. Set-based estimation methods allow to tackle some of
the mentioned challenges by considering bounded uncertainties in parameters, states
and measurement data.
This thesis presents extensions to set-based estimation. First, we develop a method

to estimate inner approximations of parameter sets. The inner approximation ap-
proach is based on an inversion of the problem for deriving outer approximations using
mixed-integer linear programming. Second, we present a bilevel set-based experimen-
tal design approach which allows for guaranteed model invalidation when the available
measurement data is not sufficient to discriminate between the different model candi-
dates. Third, we tackle the problem of set-based combination of different time scales
within one model using a phenomenological and a classification approach, respectively.
We apply the developed extensions to Interleukin-6-induced signal transduction.

Interleukin-6 is a pleiotropic cytokine that is involved in a number of cellular func-
tions. In particular, Interleukin-6 induces cellular growth, apoptosis and differentia-
tion. Interleukin-6 mediates inflammatory effects, such as fever by stimulating the
acute phase protein synthesis. Under certain conditions inflammatory effects can
become uncontrolled and get out of control and chronic. We study Interleukin-6-
induced signaling aiming to obtain deeper insights into its (patho-)physiology and
finally, present a large application example showing that differences in Interleukin-
6-induced signaling are only mediated by differences in the number of cell surface
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receptors. Our results open a door for the design of new drug intervention strategies
for the treatment of deregulated Interleukin-6-induced signaling and related chronic
inflammatory responses.
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Deutsche Kurzfassung

Die mathematische Modellierung and Untersuchung biologischer Systeme zusammen
mit quantitativen biochemischen und zellbiologischen Analysen erlauben tiefe Einbli-
cke in komplexe molekularer Zusammenhänge innerhalb eines biologischen Systems.
Mathematische Modelle werden vermehrt für die Entwicklung neuer, patientenspezifi-
scher Interventionsstrategien genutzt.
Die Erstellung mathematischer Modelle zur Untersuchung komplexer molekularer

Mechanismen birgt zahlreiche Herausforderungen. Oftmals sind nur limitierende In-
formationen über die molekularen Mechanismen vorhanden. Dies führt dazu, dass ei-
ne Vielzahl an Hypothesen existieren, welche anhand experimenteller Daten validiert
werden müssen. Dies ist oftmals nicht einfach, da experimentelle Daten häufig große
Fehlerabweichungen aufweisen. Des Weiteren sind die zugrundeliegenden kinetischen
Parameter, welche die Reaktionsgeschwindigkeiten der betrachteten Mechanismen be-
schreiben, meistens unbekannt, so dass oftmals nur Unsicherheitsintervalle angegeben
werden können. Die Prädiktionsmöglichkeiten eines mathematischen Modells hängen
stark von diesen unsicheren und unbekannten Parametern ab. Schließlich spannen die
zu untersuchenden biologischen Prozesse oftmals mehrere Zeitskalen, von Sekunden
über Minuten zu Tagen. Diese Mehrskaligkeit erfordert, dass verschiedene Datensätze
innerhalb eines Modells miteinander verbunden und interpretiert werden müssen. Wir
verwenden in dieser Arbeit einen mengenbasierten Ansatz. Mengenbasierte Schätz-
methoden erlauben es, einige der genannten Herausforderungen zu bewältigen, da sie
endliche, unsichere Mengen der Parameter, Zustände und Messdaten betrachten.
Wir präsentieren zunächst Erweiterungen des verwendeten mengenbasierten Ansat-

zes. Wir entwickeln eine Methode für die Schätzung innerer Parametermengen, welche
auf der Invertierung des Problems für die Schätzung äußerer Parametermengen besteht
unter Verwendung einer gemischt-ganzzahligen linearen Programmierung. Danach stel-
len wir einen auf Bilevel-Optimierung gestützten, mengenbasierter Ansatz vor. Dieser
erlaubt eine garantierte Diskriminierung konkurrierender Modelle. Schließlich widmen
wir uns dem Problem der Mehrskaligkeit biologischer Prozesse und stellen einen men-
genbasierten, phenomenologischen Ansatz vor. Dieser Ansatz erlaubt, schnelle Prozesse
auf der Kurzzeitskala mit langsameren Prozessen auf der Langzeitskala zu verknüpfen.
Des Weiteren beschäftigen wir uns damit, inwiefern mengenbasierte Ansätze mit Klas-
sifizierungsmethoden verknüpft werden können. Die Idee ist hierbei, Informationen der
Langzeitskala dazu zu verwenden, um Patientenkohorte in verschiedene Klassen (z. B.:
Grad der Erkrankung) einzugruppieren.
Die entwickelten Ansätze werden für die Modellierung und Analyse der Interleukin-
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Deutsche Kurzfassung

6-induzierten Signaltransduktion exemplarisch verwendet. Interleukin-6 ist ein pleio-
tropes Zytokin, welches in einer Vielzahl von zellulären Prozessen involviert ist. So
vermittelt Interleukin-6 zum Beispiel inflammatorische Effekte wie Fieber durch die
Stimulation der Synthese von Proteinen der akuten Phase. Unter bestimmten Be-
dingungen können inflammatorische Effekte außer Kontrolle geraten und chronisch
werden. Die Analyse der Interleukin-6-induzierten Signaltransduktion erlaubt einen
tieferen Einblick in die (Patho-)Physiologie von derselben. Unsere Ergebnisse zeigen,
dass Unterschiede in der Interleukin-6-induzierten Signaltransduktion einzig von der
Expression membrangebundenener Rezeptoren abhängt. Diese Ergebnisse liefern einen
wichtigen Beitrag für das Design neuer personalisierter Interventionstrategien bezüg-
lich der Behandlung inflammatorischer Erkrankungen.
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Glossary

Biological terms

classic-signaling activation of signal transduction by binding of IL-6 to
membrane-bound IL-6Rα; mediates anti-inflammatory activ-
ities

cytokines tissue hormones that bind to receptors and initiate intracel-
lular signal transduction

dephosphorylation the removal of a phosphate group from post-translationally
modified proteins by a protein phosphatase

dissociation constant KD; describes the dissociation of two components in a com-
plex, e. g. an antibody and its antigen; KD = koff

kon

ERK extracellular signal-regulated kinase; MAPK that is involved
in, e. g. the activation/phosphorylation of transcription fac-
tors regulating cellular growth

FACS fluorescence-activated cell sorting by Flow Cytometry

Flow cytometry a laser-based technology employed for the analysis of intra-
cellular and membrane-bound proteins in single cells

gp130 glycoprotein 130; a transmembrane signal-transducing recep-
tor subunit that binds to IL-6:IL-6Rα and Hyper-IL-6

Grb2 growth factor receptor-bound protein 2; adaptor protein that
is constitutively associated with SOS; mediates binding of
SOS to, e. g. SHP2; part of the MAPK signaling pathway

Hyper-IL-6 designer fusion protein in which IL-6 is connected to sIL-6Rα
by a flexible peptide linker; induces trans-signaling
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Glossary

IL-6 interleukin-6; a cytokine with pro- and anti-inflammatory ac-
tivities; involved in immune and inflammatory responses, but
also in the regulation of metabolic, regenerative, and neural
processes

IL-6Rα interleukin-6 receptor α; transmembrane receptor expressed
on the surface of specific cell types; induces classic-signaling

IL-6:IL-6Rα dimeric protein complex consisting of IL-6 and IL-6Rα

Jak janus kinase; a family of intracellular, non-receptor tyrosine
kinases; constitutively bound to gp130; transduces cytokine-
mediated signals

Jak/STAT pathway signal transduction pathway; regulates cell functions (cell
growth) and the acute phase response; initiated by a wide
variety of growth factors and cytokines, such as IL-6

kinase an enzyme that catalyzes protein phosphorylation

MAPK mitogen-activated protein kinase, e. g. ERK; serine-threonine
kinase

MAPK pathway signal transduction pathway; regulates cell functions, such as
growth, differentiation, mitosis and cell survival/apoptosis

Mek threonine-tyrosine kinase; phophorylates ERK; part of the
MAPK signaling pathway

phosphatase an enzyme that catalyzes protein dephosphorylation

phosphorylation the addition of a covalently bound phosphate to proteins by
a protein kinase

mRNA messenger ribonucleic acid; subtype of RNA conveying ge-
netic information from DNA to the ribosome

(p)Rcomplex phosphorylated active receptor complex
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(p)STAT phosphorylated STAT; phosphorylated by Jaks, dimerizes
and acts as transcription factor to induce the expression
of, e. g. SOCS3 protein and proteins regulating cellular re-
sponses, such as cell growth

patient stratification in the framework of this theses: the classification of a pa-
tient cohort into subcategories of risk levels for developing
inflammatory diseases

qRT-PCR quantitative real-time polymerase chain reaction; technique
to monitor amplification of complementary DNA in real-time

Raf rapidely acclerated fibrosacroma; a serine-threonine kinase
that activates Mek; part of the MAPK signaling pathway

Ras a small G-protein that activates Raf; part of the MAPK sig-
naling pathway

Rcomplex active receptor complex; consists of 2×IL-6:IL-6Rα and
2×gp130 in classic-signaling and of 2×IL-6:sIL-6Rα and
2×gp130 in trans-signaling

RT-PCR reverse transcription polymerase chain reaction; a nucleic
acid amplification technique in which RNA molecules are
converted into their complementary DNA to measure their
expression

SDS sodium dodecyl sulfat; used to denature proteins within a
cellular lysate

SDS-PAGE SDS-polyacrylamide gel electrophoresis; used to separate pro-
teins according their size by electrophoresis

SHP2 SH2-containing protein tyrosine phosphatase 2; a signaling
enzyme that contains two tandem Src homology-2 (SH2) do-
mains that function as phospho-tyrosine binding domains;
interacts with a variety of signaling intermediates such as
Grb2
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Glossary

signal transduction a process where a biochemical signal is passed through a cas-
cade of biological entities (proteins, metabolites, lipids, neu-
cleotides) to achieve a certain biological response (protein
production, cell growth, cell death)

sIL-6Rα soluble interleukin-6 receptor α; recognizes and binds to IL-6
inducing the trans-signaling pathway

SOCS3 mRNA suppressor of cytokine signaling 3 mRNA

SOCS3 expressed during Jak/STAT signaling; negative feedback in-
hibitor that inhibits the activity of Jaks

SOS son of sevenless; guanine nucleotide exchange factor; an en-
zyme that activates the small G-protein Ras

STAT signal transducer and activator of transcription; transcription
factor that resides in the cytoplasm until its activation via
Jak

transcription biochemical process by which a particular segment of DNA
is transcribed into messenger RNA (mRNA)

transcription factor binds to specific regulatory DNA sequences and controls the
rate of transcription from DNA to mRNA

translation biochemical process by which mRNA is decoded to synthesize
proteins

trans-signaling activation of signal transduction by binding of IL-6 to sIL-
6Rα; mediates pro-inflammatory activities and is related to
diseases, such as multiple sclerosis, rheumatoid arthritis and
cancer

Western Blotting transfer of proteins from a gel to a membrane; part of the
protein detection and quantification process
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Technical terms

bisectioning algorithm that is used to explore the feasible parameter space
by dividing the space into partitions

bilevel optimization optimization problem consisting of two embedded problems,
i. e. the upper-level optimization task, and the lower-level
optimization task

convex optimization optimization of convex functions over convex sets

experiment design in the context of this thesis: the design of a biological stim-
ulus allowing for the discrimination of competing model hy-
potheses

false positive solu-
tion

a solution of the (MI)SDP or (MI)LP for which the original
(MI)FP is not capable to represent the data

inner approximation estimation approach for model parameters; contains only fea-
sible solutions, but possibly not all

integrality constraint constraint in a mixed-integer problem which can only take
whole numbers, such as 0 or 1

Lagrangian multipli-
ers

a strategy for finding the local maxima and minima of a func-
tion subject to equality constraints

Lagrange duality a method to solve an optimization problem under given con-
straints; obtained by forming the Lagrangian using nonneg-
ative Lagrangian multipliers to add the constraints to the
objective function; it is used for solving of some primal vari-
able values (i. e. variable values in the (MI)FP) that minimize
the Lagrangian; the solution to the dual problem provides a
lower bound to the solution of the primal problem (i. e. the
(MI)FP)

mixed-integer prob-
lem

a problem in which some of the variables are constrained to
be integer (i. e. whole-numbered, such as 0 and 1) at the
optimal solution
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(MI)FP (mixed-integer) feasibility problem; a mathematical problem
that aims to determine feasible solutions that fulfill the given
(integrality) constraints; a nonconvex problem

(MI)SDP (mixed-integer) semidefinite program; a relaxed and convex-
ified form of the (MI)FP; a problem of optimizing a linear
objective function over the intersection of the cone of posi-
tive semidefinite matrices

(MI)LP (mixed-integer) linear program; a relaxed form of the
(MI)SDP; a problem of optimizing a linear objective function,
subject to linear equality and linear inequality constraints

model calibration the process of parametrizing a mathematical model

model discrimination the process of separating models according to their outputs

model invalidation the falsification of a model, i. e. proving that a model is not
capable to represent measurement data

multi-scale model a model that describes the system behaviour over several
magnitudes of physical (space, time), biological (cells, tissues,
organs) or logical entities (levels of details); in the context of
this thesis: a model that describes processes from different
time scales (i. e. from seconds to days)

objective function an equation to be optimized (i. e. minimized or maximized)
under given constraints

ODE ordinary differential equation; a method to calculate the
propagation of dynamical variables (here: over time)

optimization prob-
lem

a problem of finding the best solution from all feasible solu-
tions

outer approximation estimation approach for model parameters; encloses all feasi-
ble and possibly also false positive solutions

outer-bounding algorithm to derive an upper and an lower bound of the fea-
sible set of an (MI)FP, such as the model parameters
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QP quadratic program; a problem of optimizing a quadratic func-
tion of several variables subject to linear constraints on these
variables

relaxation a technique for transforming a problem with hard constraints,
that is difficult to solve into one with weaker constraints, that
is easier to solve
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1 Introduction

Model-based approaches using systems theoretical methods are the foundation for the
development of quantitative and predictive models that allow in-depth insights into
biological systems and signaling.
The devising of mathematical models faces several challenges. Firstly, limited infor-

mation on the mechanisms of biological processes are usually available. This limitation
leads often to a variety of competing model hypotheses requiring to discriminate
between those that are capable to represent measurement data and those that cannot.
As measurement data are usually uncertain the discrimination of different models is
not trivial. Furthermore, even if a model describing the molecular mechanisms under
study was established, the underlying dynamics of the biochemical reactions are often
not precisely known. This leaves the kinetic parameters largely undetermined
and restricts the predictive power of the generated models. Finally, biological pro-
cesses can span several time scales from seconds over minutes to days, making it
necessary to connect and interpret uncertain data on different time scales. This prob-
lem of temporal integration is often aggravated by the fact that quantitative data with
high temporal resolution can only be obtained for short-term processes (e. g. biochem-
ical kinetics). In contrast, only sparse data (e. g. on cell growth of tumor growth) or
categorical data (e. g. on survival/death, stage of inflammation) and qualitative data
are available for long-term processes.
To address these challenges, this thesis tackles the following issues (cf. Fig 1.1):

a) estimation of unknown model parameters for reliable and robust predictions

b) design of optimal experiments for model discrimination and selection

c) combination of processes acting on different time scales and the integration
of uncertain data obtained at these time scales.

Throughout this work we focus on the analysis of signal transduction pathways as
one important part in the field of systems biology. In particular, we use IL-6-induced
signaling as a running example demonstrating applicability of the developed methods
and aiming to obtain a deeper understanding of IL-6-induced (patho-)physiological
processes (cf. Chapter 2). IL-6-induced signal transduction plays a crucial role dur-
ing inflammatory processes by regulating the expression of a variety of target genes.
These target genes can, for instance, initiate the acute phase response [73], which
is important for initiating tissue repair. While under physiological conditions, IL-6-
induced inflammatory processes are tightly regulated, a pathological misbalance in

1



1 Introduction

(a)

û ü

(b) (c)

Figure 1.1: Illustration of the topics addressed in this thesis. (a) For the anal-
ysis and understanding of biochemical processes reliable parameter estimates and
model predictions (green trajectories) are needed and false estimates leading to
invalid predictions (red trajectories) have to be identified . (b) For established
models the experimental design, e. g. of the sampling time t or the model input
u allows us to further discriminate between valid (green check mark) and invalid
models (red cross). (c) Valid models allow to describe and predict appropriate
process trajectories (orange corridor) on the long-term time scale (right panel)
based on processes on the short-term time scale (left panel).

inflammation-related effector proteins can cause the development of chronic and au-
toimmune diseases, such as rheumatoid arthritis, multiple sclerosis and Crohn’s Disease
[39, 54, 77, 109]. Furthermore, deregulated inflammation plays a crucial role in cancer
progression [42]. To this end, we present a large application example for

d) model estimation and analysis of IL-6-induced signaling pathways that
allow future design of new patient-specific intervention strategies.

Specifically, we apply and extend a set-based modeling framework. The set-based
approach allows to consider uncertainties in model parameters and measurement data
for guaranteed model invalidation, parameter estimation, and experimental design.
While for the example of IL-6-induced inflammatory signaling several computational

studies have been performed [49, 106, 148, 150], none of these approaches considered
set-based uncertainties and therefore, cannot give any guarantees for model invalidity
and parameter estimation.

1.1 Overview on research topics
A large number of modeling frameworks are available for the estimation and analysis of
biological processes including ordinary differential equations, Boolean or Petri networks
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or stochastic approaches. Independent of the approach one has to keep in mind that
measurement data are usually subject to (large) noise and model parameters as well
as some of the model state variables are typically unknown and have to be inferred
from the measurement data. Consequently, frameworks for modeling, estimation, and
analysis of biological processes need to account for uncertainties in measurement data,
model parameters, and states.
In the following, we review systems theoretic approaches that are frequently used for

the analysis and estimation of uncertain biological processes and that are considered
in this thesis.

Model discrimination and selection
The lack of precise biological information (e. g. limited knowledge about the underlying
processes and/or noisy measurement data) leads often to competing model hypothe-
ses which need to be compared against each other according to their capability to
represent measurement data. The comparison of models based on their capability to
represent measurement data is also denoted as model discrimination task. This task
describes the discrimination between models that cannot represent the data (incon-
sistent, deemed as invalid), and those that allow to represent the data (consistent,
deemed as possibly valid). To select models according to their capability to represent
measurement data different measures exist allowing an assessment and subsequent
ranking of competing model hypotheses. The so-called minimum chi-square estima-
tion method, for example, is based on the chi-squared test (χ2 test) whose statistic
describes the goodness-of-fit of the data to the model [124]. In particular, minimum
chi-square estimation sums up the squared distance of the data and model prediction
weighted with the standard measurement error. The χ2 test thereby aims to make the
χ2 test statistic as small as possible [18]. Another approach is the Akaike informa-
tion criterion assesses models by comparing the relative quality of statistical models
against each other for a given set of data [3]. The Akaike information criterion value is
computed by the sum of the natural logarithm of the likelihood (i. e. log−likelihood -
a measure for the model fit) and the number of parameters, i. e. −2log(L)+Kp. In the
previous equation, L is the likelihood function, p is the number of parameters in the
model, and K is a regularization factor. Thereby, the regularization factor K penalizes
the amount of parameters p and thus model complexity. In principal, models with a
low Akaike information criterion value are more capable to represent the measurement
data than models with a high Akaike information criterion value. In addition to that,
the Bayesian information criterion is a function estimate of the posterior probability
of a model being capable to represent measurement data under a certain Bayesian
setup [21]. In comparison to Akaike information criterion, Bayesian information crite-
rion penalizes model complexity more heavily than Akaike information criterion. The
Bayesian information criterion is computed similar to Akaike information criterion,
whereby the regularization factor K is set to log(N) with N denoting the sample size
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[126].
Although for all proposed criteria the model hypothesis with the lowest value of the

respective criterion is suggested to be the most likely one, the described criteria are
rather subjective [114]. This is due to the subjective choice of the threshold at which
a model hypothesis is deemed as invalid (see e. g. [128]). In addition, the underlying
statistic assumptions for each criterion (e. g. large sample size, prior distributions)
are usually not met. Furthermore, the above scores only provide a probabilty of the
validity of a model hypothesis. To definitely demonstrate validity of a model hypoth-
esis, an infinite number of experiments need to be considered [5]. Therefore, model
estimation, validation and selection methods restrain their efforts to demonstrate
model invalidity in lieu of validity. Thereby, model invalidity refers to the fact that
under all constraints and assumptions made, the model is not capable to represent the
measurement data. As such methods for model invalidation, stochastic approaches to
minimize the risk of false hypothesis acceptance, such as the Neyman-Pearson Lemma,
have been developed and were discussed in [111]. Alternatively, the work presented in
[127] provides a method for the (in)validation of continuous-time nonlinear models.
The approach is based on so-called barrier-certificates that are functions of state,
parameter and time. Such certificates allow guaranteed invalidation of models if the
model trajectories do not intersect with the ranges of allowed measurement data.
However, deriving such certificates is not trivial and their existence is not guaranteed.

Parameter estimation
Determination of a model that represents the data best, typically depends on the
choice of the usually unknown model parameters. To this end, we give in the following
an overview about parameter estimation and discuss systems theoretical approaches
that are frequently used to infer these unknown model parameters.
Computational models for signal transduction processes are typically modeled using

ordinary differential equations (ODEs) that describe the change of model states over
time. Typically, these model states represent concentrations of chemical entities, such
as proteins. For formulating equations that describe the considered system, widely
accepted kinetic laws are applied, such as the law of mass action. As a consequence,
the derived equations depend on kinetic parameters that describe the velocity of a
reaction, e. g. the production or decay of proteins. Some of these parameters might be
determined experimentally. However, most of the parameters are unknown and there-
fore, are usually determined by model calibration which is the process to parametrize
a mathematical model.
The choice of an optimal model parametrization such that a model fits the mea-

surement data best is a central challenge in mathematical modeling. The problem of
parameter estimation can be seen as inverse problem which, in this context, means that
model parameters have to be determined from experiments [161]. Inverse problems
can be well- and ill-posed. A well-posed problem is characterized by three properties: a

4



1.1 Overview on research topics

solution exists, the solution is unique, and the behavior of the solution depends contin-
uously on data and parameters. The problem of parametrizing mathematical models
in biology is, that these criteria are rarely fulfilled (i. e. ill-posed problems) due to
nonlinearities in the model equations, sparse data sets and large data uncertainties.
Typical approaches for estimating parameters of ill-posed problems are based on

recasting the initial problem into an optimization problem of the following form:

minimize f0(x)
subject to gi(x) ≤ 0, i = 1, ..., nin

hj(x) = 0, j = 1, ..., neq.
(1.1)

In problem (1.1), the vector x=(x1, ..., xn) describes the optimization variable, f0(x):
Rn → R is the objective function to be minimized (or dependent on the problem
formulation also maximized), gi(x) and hj(x) are inequality and equality constraints,
respectively. In the field of systems biology (including parameter estimation for signal
transduction pathways), f0(x) describes a measure for the model misfit between the
measurement data and the model predictions. Furthermore, (in-)equality constraints
represent the dynamics of the considered systems as well as prior knowledge about the
system, such as kinetic parameters requiring to be non-negative.
For solving optimization problems as depicted in (1.1), different approaches and

algorithms exist. The effectiveness of these approaches depends on many factors, such
as the number of variables and constraints, or the structure of the problem (sparsity,
linearity). Notably, problem (1.1) is in general difficult to solve [29].
When modeling biological processes, the resulting system becomes typically nonlin-

ear as biochemical complexes are often of higher order (e. g. due to the assembly of
multimeric protein complexes) and, therefore, products of the order of two or even
higher appear. Furthermore, often complex kinetics, such as the Michaelis-Menten
law are used. Due to these nonlinearities, the resulting optimization problem (1.1)
becomes nonconvex. Consequently, the determination of parametrizations for which a
model can represent measurement data is not trivial and crucially depends on several
assumptions. These assumptions include initial concentrations of model variables or
initial guesses for the parameters [174]. Nonconvexity of the optimization problem
usually causes the convergence to local solutions (local minima). A local solution of
an optimization problem is a solution that is only optimal within a neighborhood of
candidate solutions. When it comes to model-based predictions, for instance, the pre-
diction of unmeasurable model states, local solutions can lead to wrong conclusions as
the determined parameters estimates may not be optimal.
To avoid the limitations of local optimization methods, global optimization ap-

proaches have been developed, for an overview see [103]. They allow the exploration
of the whole parameter space, although a conversion of the solution to the global
minimum of the optimization function in (1.1) is not guaranteed [63]. In principle,
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methods for global optimization can be classified into deterministic and stochastic
strategies. Determinstic approaches provide theoretical guarantees for reaching the
global minimum within some defined tolerance [52, 68, 123]. Stochastic approaches
[4, 163] are used more frequently and employ clustering methods, simulated-annealing
or evolutionary algorithms, [9, 83, 85]. In contrast to determinstic methods, stochastic
approaches have only weak theoretical guarantees of convergence to the global solu-
tion. Notably, also hybrid global optimization strategies exist. Hybrid methods are
based on a combination of approaches for local and global optimization methods. In
more detail, hybrid approaches apply global search strategies to approach the global
solution and in the proximity of the global solution, the optimizer is switched from
the global stochastic to a local deterministic search method. An example of such an
approach can be comprehended in [11].
To increase the probability of finding the best parametrization, methods for local

and global optimization are frequently combined with sampling-based approaches,
such as Monte Carlo or bootstrapping. To do so, different combinations of initial con-
ditions and parametrizations are tested for their capability of fitting the measurement
data. For an overview refer to [99]. However, it may happen that important valid
parametrizations are missed due to the stochastic character of the methods.

Optimal experimental design
Very often, available measurement data is not sufficient to clearly select a model or to
infer the model parameters. Then, new experiments have to be planned (including e. g.
the measurement time and stimulus administration) providing additional information
about the system under study. The process of predicting the right measurement time
and stimulus administration in an experiment is denotend as ’experimental design’. In
the following, we review and discuss such model-based approaches for the purpose of
model discrimination and parameter estimation.
The design of optimal experiments, or in other words the design of experiments that

provide most valuable information helps to discriminate between competing model
hypotheses and to identify the unknown kinetic parameters. In general, the more
measurement data are available, the more invalid model hypotheses can be identified
and the better model parameters can be estimated. However, experiments are typically
time-consuming and expensive. Thus, their execution has to be planned carefully.
When planning experiments three relevant aspects should be taken into account:

(i) which variables should be measured or manipulated, (ii) when should the mea-
surement be performed, and (iii) which stimulus should be chosen in order to provide
maximal information for further model invalidation and parameter estimation. To
decipher which species should be measured and when this measurement should be
taken (bullets (i)+(ii)) several approaches exist [89]. As one of the most prominent,
the Fisher Information Matrix (FIM), determines the amount of information that a
variable has about an unknown parameter [57]. Using the Fisher Information Matrix,
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the measurement content can be evaluated by different measures. The D-optimality
criterion, for instance, is calculated by maximizing the determinant of the covariance
matrix (i. e. FIM−1) and is used for the minimization of parameter variances. The
E-optimality criterion is used for the minimization of the largest parameter variance
by minimizing the largest eigenvalue of the covariance matrix FIM−1. For alternative
optimality criteria refer to [7, 8]. Depending on the problem, the computation and
application of the measures has to be appropriately chosen. A prominent example
for employing the Fisher Information Matrix for experimental design is given in [91].
There, the sampling time is optimized by minimizing the variance of the parameter
estimation error. To do so, the authors define the Fisher Information Matrix and
compute the covariance matrix of the parameter vector. To measure the accuracy
of the parameter estimates, they compute the determinant of the Fisher Information
Matrix which gives a scalar relating to the volume of the multidimensional simplex.
The authors in [53] calculated and compared D-, E- and modified E-optimality criteria
for optimal experimental design of the Mitogen-activated protein kinase (MAPK) sig-
naling pathway. Application and computation of the E- and D-optimal experimental
designs yielded the best results. Other applications using optimality criteria can be
found in [48, 53, 61].
In biological systems, an important and independent variable is the stimulus to

initiate a biological process, such as applying cytokines or administrating drugs.
This external pertubation is considered as model input and can be easily modified
in experiments (bullet (iii)). By applying different pertubation patterns, such as
constant or pulse-like inputs in experiments, it can be studied whether or not the
model is capable to represent such patterns in the corresponding data, or can be ruled
out in the negative case. The design of optimal inputs has been studied, for example,
in [40, 149] for model discrimination and in [10, 12, 129] for parameter estimation.

Multi-scale modeling and data integration
In the previous sections, we reviewed basic concepts that are used for model discrimi-
nation, parameter estimation and experimental design in systems biology. An aspect
which was not discussed so far is the modeling and analysis of biological processes
that act on different time scales, i. e. short- and long-term time scales. To this end,
we provide in the following an overview about multi-scale modeling approaches and
applications within the field of systems biology.
Complex biological processes typically span several time scales from second over

minutes to days. Therefore, experimental analyses and measurements take into account
rapid changes in phosphorylation levels (changing within seconds or minutes) as well
as slower changes such as protein production or cell growth (changing from hours to
days). Besides this, also the aspect of different data quality on different time scales
needs to be considered and integrated into models. Typically, high frequency data for
processes on the short-term time scale can be obtained. However, only sparse data
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for processes on the long-term time scale are usually provided since it would be too
expensive to measure the species of interest with the same frequency as on the short-
term time scale. Furthermore, multi-scale modeling approaches have to consider a
trade-off between model accuracy and manageable complexity considering the aspects
of uncertainties in data, model parameters and state variables.
To devise a predictive mathematical model that represents data for multiple biolog-

ical phenomena both, short- and long-term time scales need to be taken into account.
However, modeling processes with different time scales and performing modeling and
parameter estimation for all possible variables and reactions, can lead to an explo-
sion of the problem size and, therefore, often becomes intractable and inapplicable.
The choice of suitable methods for tackling such multi-scale modeling depends on the
problem at hand. Several methods for multi-scale modeling have been developed over
the last decades. Approaches range from the equation-free multiscale method over
the multi-grid method to agent-based modeling and Cellular Automata [44]. Notably,
also hybrid methods exist combining, for instance, agent-based modeling and Cellular
Automata or partial differential equation methods [19].
In [119] and [169], 3-dimensional models for simulating tumor growth using agent-

based modeling and cellular automata, respectively were developed. Notably, both
approaches needed high computational efforts to solve the underlying models. Ad-
ditionally, only unrealistic tumor sizes could be computed. Thus, the up-scaling of
biological processes and the bridging of time scales is a limiting factor in multi-scale
modeling.
The mentioned approaches consider highly complex processes, e. g. tumor growth

and tumor vascularization. To understand the complexity how an extracellular signal
is translated into the cell causing a certain decision (such as to grow, to shrink, to
form vessels) on the long-term time scale, it is initially important to interpret how
these signals are encoded during signal transduction on the short-term time scale. To
this end, we present a phenomenological modeling approach that is tailored to signal
transduction and related cellular responses.

Multi-scale modeling tailored to signal transduction
In general, phenomenological modeling is an approach for creating models, which de-
scribe the correlation of certain phenomena and which are difficult to model by first
principles. To be more specific, we refer to phenomenological model as a mathematical
model, which describes the relationship between signal transduction on the short-term
time scale and cell fate decisions on the long-term time scale without having a detailed
knowledge of the processes bridging the time scales.
For example, the authors in [143] used phenomenological modeling to study whether

signal properties (i. e. the dynamics of protein activation/phosphorylation) of the
MAPK isoforms ERK1/2 that can be used to predict cell fate decisions. They hy-
pothesized that the strength of cell growth is encoded in the integrated response of
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ERK phosphorylation, which was experimentally measured. They showed that ERK
signaling contributes to cell growth in a dose-dependent and isoform-specific manner.
Notably, since the processes between the time scales, such as gene transcription and
translation were not modeled in detail, the approach in [143] is computationally low-
demanding and thus, applicable to a large number of signal transduction networks,
including also IL-6-induced signaling.
In [144], further approaches were proposed for linking short-term signal transduction

and long-term cellular responses. As example, also the maximum peak height of a
signal or the duration of a signal can be used to link both time scales, short- and
long-term events.

Short summary
In the previous section, we reviewed approaches, that are frequently used for model
invalidation, parameter estimation, and experimental design in systems biology. How-
ever, their application is limited due to several reasons. First, mathematical models
describing biological processes are typically nonlinear resulting in noncovex optimiza-
tion problems. Solving these nonconvex optimization problems is not trivial as usually
only local parametrizations are obtained. Such local parameter estimates may not be
optimal and potentially lead to wrong model predictions and conclusions. Further-
more, model parameters are usually unknown spanning several orders of magnitude
and measurement data for inferring these parameters can be sparse, noisy and of dif-
ferent types, e. g. qualitative or categorical. For addressing the point of uncertainties
in model parameters and data, often stochastic approaches are applied. These ap-
proaches require normally distributed noise as underlying assumption. However, this
assumption is typically often not met for real data. As a remedy to these drawbacks,
we apply set-based estimation methods in this thesis. The set-based framework allows
us to incorporate uncertainties in parameters and measurement data via so-called
unknown-but-bounded variables. In addition, the method allows to directly include
qualitative data/information via a mixed-integer approach. By applying convex relax-
ations, we can estimate ranges for the unknown model parameters and proof model
invalidity globally and with guarantees. To this end, we introduce in the following
set-based methods and point out the main differences between classical systems theo-
retical approaches for model invalidation and parameter estimation and the set-based
framework. Furthermore, we give an overview about existing set-based approaches.

1.2 Set-based model estimation and analysis
Two of the most important aspects during modeling and analysis of biological processes
are the determination of valid paramterizations and the discrimination between model
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hypotheses with respect to whether or not they are capable to represent measurement
data. This is not trivial due to the mentioned challenges.
Set-based methods can overcome some of these challenges. Such approaches have

been in the focus for the analysis, estimation and control of (non-)linear systems over
the last years in several technical fields, [35]. Notably, the application of set-based
methods in the context of multi-scale modeling has not been in the focus, yet.

1.2.1 Comparison of classical and set-based estimation methods

As reviewed in the previous section, many of the existing parameter estimation meth-
ods are based on fitting a model to measurement data, and hence, can be reformulated
as mathematical optimization problems. The goal of optimization problems is to find
the optimal solution out of all valid solutions. Depending on the obtained optimal
parametrizations, different scores can be computed to rank competing model hypothe-
ses accordingly to these scores to determine the most likely hypothesis. However, since
model equations describing biological problems are typically nonlinear and the solu-
tion sets are usually nonconvex, optimal parametrizations are very hard to determine.
It may happen that a local optimum is found leading in a first sight to a good model
fit, while further analyses could lead to wrong conclusions regarding the validity of the
biological system.
In contrast to classical parameter estimation and model discrimination methods, the

goal of set-based approaches is not to find the optimal solution. Instead, their purpose
is to determine any solution, such that the model is capable to represent the uncertain
measurement data [135, 136]. Set-based approaches have been applied in different
contexts. Notably examples are parameter estimation, hypothesis invalidation and
state estimation [26, 34], fault diagnosis and isolation [118, 140], and the analysis of
data outliers [25, 153].
For set-based methods, measurement uncertainties, uncertainties in state variables

and parameters are described as unknown-but-bounded variables which means they
belong to sets (characterized by lower and upper bounds) [95]. To approximate the set
of all feasible solutions, relaxation techniques are applied resulting in convex problems
that can then be solved using, for instance, Cplex, Gurobi or Sedumi [24] – commercial
optimization solvers for integer, quadratic and linear programming. The exploration
of the complete parameter space, therefore, allows conclusive statements about the
invalidity of model hypotheses while guaranteeing that no valid solution is lost. In
particular, if the sets of a model are found to be empty, it can be guaranteed that no
solutions exist that are consistent with the measurement data. In this case, the model
can be deemed as guaranteed invalid.
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1.2.2 Set-based methods for estimation

Set-based approaches for linear dynamic systems have been, for instance, considered
in [65] where ellipsoids for determining an enclosure of the model states were derived
based on the work presented in [145] and [172]. Thereby, the estimated sets were
obtained by applying linear programming algorithms [101]. For estimating nonlin-
ear dynamic systems using set-based methods, approaches such as interval-analysis
are often applied [80]. Interval analysis methods were initially developed to analyze
and control numerical errors in mathematical computations [105]. Later, they were
extended to parameter and state estimation. To do so, model variables and parame-
ters are described via sets for which interval arithmetics can be applied. By checking
whether subintervals can be related to the measurement data, enclosures of the vari-
ables and/or parameters can be derived guaranteeing that no solutions are lost. For
applications see e. g. [80, 104].
The authors in [127] introduced a barrier-certificate set-based method for nonlinear

model validation using convex optimization. The method is based on functions of
state-parameter-time that are termed as barrier certificates. These barrier certificates
are evocative of Lyapunov functions and allow for model (in)validation in the presence
of parameter uncertainties in case the predicted model trajectories do not intersect
with ranges of measurement data. Further set-based approaches for nonlinear models
have been established for the purpose of system identification (i. e. the extraction of
a mathematical model from measurement data) in [102], [17], and [55].
An alternative approach for set-based estimation was considered in [90]. Here, the

parameter space was divided into valid and invalid regions based on semidefinite pro-
gramming (see e. g. [116]). The approach was applied to a model with nonlinear mass
action kinetics at steady state and consistent steady-state concentrations could be
identified. The method has been extended to global steady-state sensitivity analyses
for biochemical reaction networks [166]. As in some applications, however, it is not
sufficient to only investigate the steady-state behavior of a system, Rumschinski et
al. [136] extended the work presented in [90]. The authors demonstrated that their
approach can be used for guaranteed model invalidation and parameter estimation of
nonlinear dynamical models using convex relaxations.

1.2.3 Convex optimization and relaxation

In general, biological processes are highly nonlinear resulting in nonconvex problems
for which the solution set is difficult to obtain. To circumvent this, convex optimization
can be applied. In general, convex optimization problems are of the form [29]:

minimize f0(x)
subject to gi(x) ≤ 0, i = 1, ..., nin

hj(x) = αTj x− bj, j = 1, ..., neq.
(1.2)
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Compared with the general problem (1.1), a convex problem (1.2) must fulfill the
following:

• the objective function f0(x) must be convex,

• the inequality constraint functions gi(x) must be convex, and

• the equality constraint functions hj(x) must be affine, where a function h : Rn →
Rm is affine, if it is a sum of a linear funtion plus a constant, i. e. h(x) = Ax+ b,
where A ∈ Rm×m and b ∈ Rm.

An important property of a convex optimization is, that the resulting feasible set
(i. e. the solution space which contains all possible values) is also convex [29]. Thus,
in a convex optimization problem, a convex objective function is minimized over
a convex set. As a result it follows, that a determined local solution is also a global one.

The philosophy behind the applied set-based methods is to derive the set of all valid
solutions by constructing a so-called feasibility problem (FP). A FP is a special case
of (1.1) with the objective funtion f0(x) = 0 [29] and can be denoted as

find x

subject to gi(x) ≤ 0, i = 1, ..., nin
hj(x) = 0, j = 1, ..., neq,

(1.3)

where x ∈ Rn. Due to its nonconvexity properties, a solution for problem (1.3) is hard
to derive. One can circumvent this by relaxing (1.3) into a semidefinite program (SDP).
Semidefinite programming is a subfield of convex optimization, where a linear objective
function is optimized over the intersection of the cone of positive semidefinite matrices
with an affine space, denoted as a spectrahedron [116]. For applying SDP, a quadratic
(or polynomial) representation of the original set of equalities and inequalities in (1.3)
is required (for details see Chapter 4), which then allows a reformulation/relaxation
in terms of symmetric matrices [165]:

minimize tr(CX)
subject to tr(QiX) ≤ 0, i = 1, ..., nin,SDP ,

tr(RjX) = 0, j = 1, ..., neq,SDP ,
X � 0.

(1.4)

In (1.4), X ∈ Sn and C,Qi, Rj ∈ Sm, where Sm denotes the set of real symmetricm×m
matrices. The operator � denotes a generalized inequality, i. e. among the matrices
Q1 � Q2 implies Q1−Q2 ∈ Sm+ with Sm+ representing the set of real symmetric positive
semidefinite matrices [29, 117].
The obtained SDP problems are still convex, however restricted to the set of positive

semidefinite matrices [116]. Due to the availability of efficient solvers, such as SeDuMi,
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Gurobi and Cplex, problem (1.4) can be solved for a wide class of problems [1, 69, 158].
Yet, the size of the SDP is restricted by the numerical costs of these solvers.
The approach for relaxing problem (1.3) into a SDP and deriving a solution for the

SDP can be computationally expensive. Thus, a further relaxation step is necessary.
This step relaxes the SDP into a linear program (LP) capable to include much more
variables and constraints [135, 152]. Linear programming is a method aiming to opti-
mize the outcome in a mathematical model requiring linear dependencies in the model.
To this end, LP optimizes a linear objective function subject to linear equality and
inequality constraints. To relax problem (1.4) into a LP, one has to substitute X � 0
with the weaker constraint X ≥ 0 [93].
To sum up, the basic idea of a relaxation-based approach is to substitute nonlinear-

ities with simpler expressions deriving the feasible solution set of an initial nonconvex
problem. The substitution of constraints leads to an increase of additional (false
positive) solutions. However, it can be guaranteed that any feasible point in (1.3)
is also feasible for (1.4) and for the LP, but not vice versa (i.e. no false negative
parametrizations). For a detailed description of the relaxation steps for the therein
applied set-based methods, we refer to Chapter 4.

1.2.4 Outer and inner approximation of feasible sets

Besides model invalidation (i. e. to determine models that are not capable to repre-
sent data) using a relaxation approach, set-based methods also aim to determine an
approximation of unknown feasible solution sets (including parameters and state vari-
ables) for possibly valid models. To this end, we introduce in the following the concept
for outer and inner approximations of these feasible solution sets.
The set-based approach can be used to approximate the unknown parameters and/or

state variables. In particular, so-called outer and inner approximations of feasible
solution sets can be derived. In both approaches, the set over which a function is to
be optimized is approximated in this work by polyhedra. In an outer approximation
the polyhedra enclose the feasible set, while in an inner approximation the polyhedra
are fully contained in the inner set. As a consequence, outer approximations describe
an enclosure of all feasible solutions, but possibly also false positive samples. This
might be advantageous for checking model invalidity. However, as not all samples are
feasible ones, the approach for deriving outer approximations has to be combined with
stochastic routines, such as Monte Carlo sampling. Thereby, the goal is to obtain valid
samples, such that the model is capable to represent measurement data. Much more
of an advantage are inner approximations for which it is guaranteed that only feasible
solutions are contained, but most likely not all.
Inner and outer set approximations have been considered, for instance, in [79] in

the context of bounded-error estimation using set inversion and interval analysis. The
approach allows to characterize the feasible set for parameters by enclosing it between
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internal and external unions of boxes. The estimation of inner approximations has
been considered in [88] using occupation measures. These measures allow replacing
the dynamics with linear (in-)equalities in an optimization problem over an infinite
function space, which is then solved by a hierarchy of semidefinite programs.

1.2.5 Bilevel optimization

In this thesis, we also apply the concept of bilevel optimization, which is introduced
next.
Bilevel optimization denotes a special kind of optimization problems, where one

problem is embedded within another [38]. Bilevel optimization was initially consid-
ered for problems dealing with applications in the military field [30] as well as in
production and marketing decision making [31]. Within the field of systems biology,
bilevel optimization was, for instance, applied for identifying gene knockout strate-
gies [32], optimization of metabolic pathways under stability considerations [37], and
optimal profiles of genetic alterations in metabolic engineering [60]. One reason for
using bilevel optimization in systems biology is, that the approach is especially suited
when more than one decision has to be made in a hierarchical manner. As an exam-
ple, in [32] bilevel optimization was used to suggest optimal gene deletion strategies
(first problem/decision), such that an overproduction of succinate and fructose (second
problem/decision) in Escherichia coli could be achieved.
We consider a bilevel problem which can be formulated as

minimize
x,y

F0(x, y)
subject to G(x, y) ≤ 0

minimize
y

f0(x, y)
subject to g(x, y) ≤ 0,

(1.5)

where x ∈ Rn1 and y ∈ Rn2. The variables of problem (1.5) can be divided into
two classes, the upper-level variables x and the lower-level variables y. Akin to that,
the functions F0 : Rn1 × Rn2 → R and f0 : Rn1 × Rn2 → R are the upper- and
lower-level objective functions, respectively. Furthermore, the vector-valued functions
G : Rn1 × Rn2 → Rm1, and g : Rn1 × Rn2 → Rm2 are called the upper- and lower-level
constraints, respectively [14]. Notably, upper-level constraints involve variables from
both levels.
Similar to problem (1.1), the embedded optimization problems in (1.5) can be non-

convex. As a consequence, for both problems in (1.5) only local solutions are most
likely achievable. As remedy, bilevel optimization can be combined with convex relax-
ations. Due to the convexification of, e. g. the lower-level of the bilevel optimization
problem, a certain behavior of the model can be globally guaranteed. As such it may
be possible to make conclusive statements about the feasibility of a model to satisfy
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given constraints, i. e. g(x, y) ≤ 0. For methods and solution approaches of convex
bilevel optimization problems, refer to [47, 108, 138].

1.3 Research contributions
This thesis uses and expands the results of Rumschinski et al. [135, 136] and Borchers
et al. [24, 27] in which a set-based analysis framework was presented. It provides the
following major contributions:

i) Chapter 5 - Set-based estimation of inner parameter sets
We develop a method for deriving inner approximations of feasible parameter sets
applying mixed-integer programming. We present two algorithms to determine
inner approximations and apply these algorithms to two biological examples.
The approach allows robust and guaranteed predictions under uncertainties. The
results of this chapter were published in [156].

ii) Chapter 6 - Set-based experimental design for model discrimination
and selection
We extend the set-based framework by an experimental design approach based
on bilevel optimization. The method allows for guaranteed model discrimination
of valid and invalid models under uncertainties by designing an optimal input.
The results appeared in [134].

iii) Chapter 7 - Set-based multi-scale modeling and data integration
We present approaches for combining biological processes that act on different
time scales as well as the integration of uncertain data obtained at these time
scales using the set-based framework. We aim to predict long-term processes
based on data and processes from the short-term time scale. We further combine
the set-based framework with classification methods, which allows to stratify a
patient cohort into risk categroies for developing inflammatory diseases based on
data from the short-term time scale. The results of this chapter appeared in [133]
and [132].

iv) Chapter 8 - Data-driven set-based parameter estimation of IL-6-
induced classic- and trans-signaling
We study the responsiveness of IL-6-induced classic- and trans-signaling. To
this end, we implement set-based models describing classic- and trans-signaling.
These models are tested with respect to their capability of reproducing available
measurement data. Additionally, we derive guaranteed outer estimates for the
unknown model parameters and study the impact of the cell surface receptors
gp130 and IL-6Rα on the responsiveness of classic- and trans-signaling. Our re-
sults lay the basis for potential approaches targeting IL-6-induced deregulated
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signaling and related inflammatory diseases. The results of this study were pub-
lished in [130].

.

1.4 Thesis outline
This thesis is structured as follows:

Chapter 3 introduces the tasks of modeling and parameter estimation for biological
systems under uncertainties.
In Chapter 4, the set-based analysis framework that is essential for the following

chapters is presented. We review how the tasks for guaranteed model invalidation and
parameter estimation can be addressed by relaxation of a feasibility problem.
Chapter 5 proposes a method for estimation of inner parameter sets within the

set-based framework. To do so, we show how to reformulate the feasibility problem
from Chapter 4 using binary variables and combinations thereof. The performance of
the developed algorithms for estimating inner parameter sets are studied using two
examples.
Chapter 6 presents a set-based experimental design approach for guaranteed dis-

crimination of valid and invalid models. We develop a bilevel optimization approach
allowing for the selection of competing model hypotheses under uncertainties.
Chapter 7 introduces the problem of multi-scale modeling and data integration

under uncertainties. We apply a phenomenological approach to combine processes
from the short- and long-term time scale using the set-based framework. Furthermore,
we introduce an unified framework that allows for the stratification of patients into
risk categories for developing inflammatory diseases by combining set-based methods
with classification approaches.
In Chapter 8, we present a large pathopyhsiological example describing IL-6-

induced classic- and trans-signaling. The example demonstrates applicability of the
set-based framework. Moreover, new biological insights in IL-6-induced signaling and
a possible intervention strategy for targeting deregulated IL-6-induced classic- and
trans-signaling are provided.
Finally, Chapter 9 summarizes and concludes this thesis. The chapter further

includes an outlook on possible research topics related to this thesis.
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2 Running Example: IL-6-induced Signal
Transduction

Throughout this thesis, we apply the developed set-based methods to IL-6-induced
signaling. We focus on the Janus kinase/Signal Transducers and Activators of Tran-
scription (Jak/STAT) and the Mitogen-Activated Protein Kinase (MAPK) pathways,
which are introduced and explained next. For a comprehensive review of IL-6-induced
signaling see [72].

IL-6-induced Jak/STAT signaling
Interleukin-6 (IL-6) is a pleiotropic cytokine which is involved in many cellular func-
tions such as cell growth, apoptosis and differentiation [82]. Additionally, IL-6 is re-
sponsible for the stimulation of the acute phase protein (APP) synthesis [175], which
is part of the innate immune response. APPs play an important role in mediating
systemic inflammatory effects, such as fever and leukocytosis, which is an increase in
the number of white blood cells. Increased expression of IL-6 and dysregulation of IL-
6-induced signaling can lead to numerous pathological states including inflammatory
diseases, such as rheumatoid arthritis and multiple sclerosis [39, 54].
Initiation of IL-6 signaling occurs through two different pathways, [131] (cf.

Fig. 2.1). During classic-signaling, IL-6 binds in a first step to the membrane-bound
receptor subunit gp80 (IL-6Rα) followed by the recruitment of the signal-transducing
receptor subunit glycoprotein 130 (gp130). Thereby, a hexameric receptor complex
(Rcomplex) containing two molecules of each IL-6, IL-6Rα and gp130 is formed [28].
Also a soluble form of IL-6Rα, denoted as sIL-6Rα, exists [107]. SIL-6Rα can also
form active hexameric receptor complexes by binding to IL-6 and gp130, thereby
initiating trans-signaling. Both pathways, classic- and trans-signaling are considered
to converge in the activation of the Jak/STAT pathway. The formation of one of the
active receptor complexes induces activation of receptor-associated Jak and subsequent
phosphorylation of tyrosine residues (i. e. the addition of a phosphate group) within
the cytoplasmatic part of gp130. The phosphorylated tyrosine residues

(
represented

as (p)Rcomplex, light orange stars Fig. 2.1
)

serve as docking sides for molecules
with SH2-domains, such as STAT. Upon recruitment to the receptor, monomeric
STAT proteins become phosphorylated by Jaks. Subsequently, phosphorylated STAT
proteins dimerize (not shown in Fig. 2.1) and translocate into the nucleus. There,
they induce the transcription of pre-messenger ribonucleic acids (pre-mRNAs), which
convey the genetic information from a particular section of the deoxyribonucleic acid
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2 Running Example: IL-6-induced Signal Transduction

Figure 2.1: Schematic representation of the IL-6-induced Jak/STAT signal-
ing pathway. During classic- and trans-signaling, IL-6 binds to the correspond-
ing receptors causing receptor complex formation and activation (light orange
stars). Receptor activation induces activation of Jak/STAT signaling and subse-
quent transcription of target genes.

(DNA) to the ribosom for protein synthesis. As such target protein suppressor of
cytokine signaling 3 (SOCS3) is produced. SOCS3 is known as feedback inhibitor of
Jak proteins [51]. This negative feedback leads, together with dephosphorylation of
the active receptor complex via phosphatases, to a switch-off of Jak/STAT activation,
resulting in a transient activation of Jak/STAT signaling. Notably, above we have
only described processes of IL-6-induced pathway activation and translation of
proteins (e. g. SOCS3) acting on the short-term time scale, i. e. within approximately
1.5 hours. However, IL-6 stimulation induces also the transcription of genes, that
code for long-term processes, such as growth, differentiation or angiogenesis ranging
from hours to days. Different long-term responses of both pathways, classic- and
trans-signaling, have been described. It is well studied that while classic-signaling acts
mainly anti-inflammatory [142, 160], trans-signaling has pro-inflammatory activities
and is associated with inflammatory diseases [15, 96].

IL-6-induced MAPK signaling
Another major pathway of IL-6-induced signaling is the MAPK signaling cascade.
MAPKs are protein kinases that specifically phosphorylate side chains of the amino
acids serine and threonine. Several MAPK pathways exist. One of the most prominent
is the Ras-Raf-Mek-ERK cascade [146]. Ras-Raf-Mek-ERK signaling is induced by
various growth factors and cytokines including IL-6. Canonical activation of the Ras-
Raf-Mek-ERK cascade can be described as follows (cf. Fig. 2.2):
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Figure 2.2: Schematic representation of the
IL-6-induced Ras-Raf-Mek-ERK cas-
cade via the adaptor protein SHP2 and
the Grb2/SOS complex.

Due to the activation of Jaks and the
subsequent phosphorylation of gp130
akin to above Jak/STAT signaling, the
SH2-containing protein tyrosine phos-
phatase 2 (SHP2) is recruited to phos-
phorylated tyrosine residues within the
cytoplasmatic part of gp130. Sub-
sequently, SHP2 is phosphorylated(
(p)SHP2

)
acting as an adaptor protein

for several proteins, including Growth
factor receptor-bound protein 2 (Grb2).
Grb2 is constitutive associated with
SOS (Son Of Sevenless), which is a gua-
nine nucleotide exchange factor activat-
ing the small G-protein Ras. Small
G-proteins can be seen as signaling
switches with ’active’ and ’inactive’
states. In the ’inactive’ state Ras is bound to the nucleotide guanosine diphosphate
(GDP), while in the ’active’ state, Ras is bound to guanosine triphosphate (GTP).
SOS forces Ras to release GDP. Subsequently, Ras binds to GTP resulting in Ras
activation (Ras∗). Ras∗ interacts with, and stimulates downstream signaling effec-
tors, including Raf (Rapidly acclerated fibrosarcoma). Raf is activated to Raf∗ and
phosphorylates Mek (Mitogen-activated protein kinase kinase), which is subsequently
activated to Mek∗. Mek∗ in turn phosphorylates ERK (Extracellular signal-regulated
kinase) to ERK∗. ERK∗ activates a number of transcription factors on the short-term
time scale. Additionally, activated and phosphorylated ERK is known to be involved in
the regulation of IL-6 synthesis [20] and its deregulation was associated with long-term
joint damage [43].

2.1 Challenges and research contributions
IL-6 is a key regulator of inflammatory processes and has been identified as a therapeu-
tic target, e. g. [113]. However, current strategies to block misbalanced IL-6-induced
signaling, e. g. by monoclonal antibodies, such as sarilumab and siltuximab, that are
directed against IL-6 itself or tocilizumab, that is specific to block IL-6Rα, can have
many negative side effects for patients [62, 92]. This is because these antibodies block
both, classic- and trans-signaling, and thus, also important physiological processes
[33, 112]. Due to the negative side effects of existing therapeutic approaches, more
suitable and targeted intervention strategies are needed. However, the development
of such strategies is not trivial due to the complex underlying molecular signaling
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2 Running Example: IL-6-induced Signal Transduction

processes whose misregulations in diseases are not yet fully understood. This work
contributes to a deeper understanding of IL-6-induced signaling and deregulations on
a systems level. Using set-based modeling and estimation together with biochemical
analyses, this thesis aims to:

a) derive quantitative and predictive models of IL-6-induced pathway activa-
tion, receptor assembly and downstream signaling in classic- and trans-signaling.

b) estimate unknown model parameters that describe the dynamics of pro-
cesses responsible for deregulated signaling.

c) analyze differences in the responsiveness of IL-6-induced classic- and trans-
signaling.

The obtained results lay the basis for the development of novel and model-guided
intervention strategies that are tailored to IL-6-induced misbalanced signaling and
associated inflammatory diseases.
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3 Modeling, Analysis and Parameter Estimation
under Uncertainties

In this work we aim to derive a quantitative understanding of biological processes. Bio-
chemical reaction networks in general and signal transduction pathways in particular
are commonly modeled using mass action kinetics.
In the following, we provide the background for modeling such reaction networks.

Moreover, we introduce the uncertainty description to account for errorneous data as
well as the notation of competing model hypotheses and uncertain parameters.

3.1 Modeling biological systems
Typically, a reaction network consists of different state variables (denoted as ’species’)
X1, ..., Xnx, for instance proteins, metabolites or nucleic acids. The interactions among
these species are denoted as reactions. Such reactions may result in the phosphoryla-
tion of proteins, the formation of protein or nucleic acid complexes, the degradation
of species and many more [86]. Notably, model species are characterized in terms of
concentrations, i. e. [xi] for i ∈ {1, ..., nx}. For simplicity, we write

x = ([x1], ...., [xnx])T ∈ Rnx (3.1)

comprising the concentration of the species [xi] that vary in time.
In the following, we assume the concentrations of the model species to be sufficiently

large such that stochastic effects can be neglected. Additionally, we consider the species
Xi to be equally distributed assuming the absence of a spatial concentration gradient.
Let us consider nx species interacting with each other. The species are converted by
chemical reactions of the form

α1jX1 + α2jX2 + ...+ αnxjXnx

r+
j−⇀↽−
r−
j

β1jX1 + β2jX2 + ...+ βnxjXnx. (3.2)

Here, αij and βij for i ∈ {1, ..., nx} are the non-negative stoichiometric coefficients and
j ∈ {1, ..., nr} is the reaction index. Furthermore, r+

j denotes the forward and r−j the
backward reaction rate for reaction j. For modeling reaction rates, several underlying
kinetic laws are assumed (e. g. Michelis-Menten, Hill kinetics, for an overview see
[41]). One simple and common approach to model reaction rates is to apply the law
of mass action, where the reaction rate is assumed to be proportional to the substrate
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3 Modeling, Analysis and Parameter Estimation under Uncertainties

concentrations, i. e.

rj(t) = p+
j

nx∏
i=1

x
αij
i (t)− p−j

nx∏
i=1

x
βij
i (t). (3.3)

In Eq. (3.3), p+
j and p−j denote the forward and backward reaction constants.

With this notation, the biochemical reaction network can be written in a compact
form as

ẋ(t) = Nr(t), (3.4)

where ẋ(t) denotes the change of concentration of a species with time. Furthermore,
all reaction rates are collected into the vector r(t) = (r1(t), ..., rnr(t)). The matrix
N ∈ Rnx×nr is the so called stoichimetric matrix given by

Nij = βij − αij, i ∈ {1, ..., nx}, j ∈ {1, ..., nr}. (3.5)

Besides the time-dependent model states x(t), we can furthermore include time-
dependent inputs u(t). In a biological context, they may represent external stimuli,
such as application of cytokines and/or drugs, potentially with time-varying concen-
trations, such as applying a transient stimulus.
With the variables and definitions given, the overall dynamics are given by a system

of ordinary differential equations, i. e.

ẋ(t) = Nr(t) = f(x(t), u(t), p). (3.6)

In Eq. (3.6), x(t) ∈ Rnx, u(t) ∈ Rnu, and p ∈ Rnp denotes the time-independent
parameter vector collecting all rate constants p+

j and p−j . Throughout this work, we
assume that x(t) belongs to the set X ⊆ Rnx, u(t) to U ⊆ Rnu, and p to P ⊆
Rnp, which means that x(t), u(t) and p are bounded. Furthermore, in Eq. (3.6),
f : Rnx × Rnu × Rnp → R is a nonlinear vector function.
It is noteworthy, that often not all model species can be measured experimentally.

Therefore, we distinguish between model states x(t) that can be not measured and
model outputs y(t) ∈ Rny that can be measured. For simplification, all outputs (mea-
surements) are aggregated into the nonlinear vector function g, i. e.

y(t) = g(x(t), u(t), p) (3.7)

where g : Rnx × Rnu × Rnp → R.
Summarizing Eq. (3.6) and Eq. (3.7), one obtains the following overall system

h :
 ẋ(t) = f(x(t), u(t), p)
y(t) = g(x(t), u(t), p), (3.8)
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where h stands for hypothesis.
For many biological processes the law of mass conservation applies, which means

that the mass of a closed system does not change over time if no external supplies and
losses are present. Mass conservation can be expressed by

xTj =
nx∑
i=1

γijxi, j = 1, ..., nc, (3.9)

where xTj denotes the total, conserved amount of a model species xi and γij are non-
negative coefficients. Conserved moieties can be used for expressing the model state
variables xi by linear algebraic equations. These algebraic equations can then be
inserted into the ODE system lowering its dimension by reducing the system’s order
from initial nx to nx-nc state variables.
In the following, we exemplify the above described concepts for modeling biological

processes by means of the MAPK pathway.

3.1.1 Example: IL-6-induced MAPK pathway

We consider in the following the MAPK pathway as described in Chapter 2. Thereby,
a signal is transduced from the activated IL-6 receptor into the cytoplasm of a cell and
eventually into its nucleus. This process is executed by enzymes, denoted as kinases
and phosphatases leading either to the target proteins’ activation or deactivation.
A simplified version of the Ras-Raf-Mek-ERK reaction network (i. e. without a de-

tailed description of receptor assembly) can be described as

u+Ras
r1−⇀↽−
r2
Ras∗

Ras∗ +Raf
r3−⇀↽−
r4
Raf∗

Raf∗ +Mek
r5−⇀↽−
r6
Mek∗

Mek∗ + ERK
r7−⇀↽−
r8
ERK∗,

(3.10)

where u describes the input to the system, i. e. IL-6.
The reaction network dynamics above can then be modeled as

˙[Ras] = r2 − r1
˙[Ras∗] = r1 − r2 − r3
˙[Raf ] = r4 − r3
˙[Raf∗] = r3 − r4 − r5
˙[Mek] = r6 − r5
˙[Mek∗] = r5 − r6 − r7
˙[ERK] = r8 − r7
˙[ERK∗] = r7 − r8.

(3.11)
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3 Modeling, Analysis and Parameter Estimation under Uncertainties

The states of the system are given by

x =
(
[Ras], [Ras∗], [Raf ], [Raf∗], [Mek], [Mek∗], [ERK], [ERK∗]

)T
∈ R8

and the reaction rates are rj, j = {1, ..., 8}. Assuming an equal distribution of the
proteins and by neglecting concentration gradients, one can apply the law of mass
action, leading to the reaction rates:

r1 = p1uRas, r2 = p2Ras
∗, r3 = p3Ras

∗Raf, r4 = p4Raf
∗,

r5 = p5Raf
∗Mek, r6 = p6Mek∗, r7 = p7Mek∗ERK, r8 = p8ERK

∗,

where pj, j = {1, ..., 8} are the reaction constants. Under the assumption that no
species of the system (3.10) is added or removed, the following relations for the con-
served moieties hold:

RasT = Ras+Ras∗, RafT = Raf +Raf∗,

MekT = Mek +Mek∗, ERKT = ERK + ERK∗.
(3.12)

Using (3.12) the state vector x can be reduced to

xr =
(
[Ras∗], [Raf∗], [Mek∗], [ERK∗]

)T
∈ R4.

We assume that the activity of all kinases and the small G-protein Ras∗ can be mea-
sured experimentally, the system outputs are given by

y =
(
[Ras∗], [Raf∗], [Mek∗], [ERK∗]

)
.

Having modeled the biological signal transduction process it is of interest if this
model allows to describe the reality. This is based on measurement data. Thus, we
describe in the following the data that are used to show (in-)validity of a mathematical
model and to infer the usually unknown model parameters.

3.2 Uncertain data, models and parameters
When modeling and analyzing biological processes two major questions need to be
addressed. Specifically, we ask for the possibility to distinguish between valid and
invalid models and to determine parameter estimates for reliable and robust predic-
tions. Answering these two questions is challenging due to the fact that the structure
of the model itself can be uncertain (e. g. a species is mistakenly neglected or taken
into account) or data that are used to infer biological models and parameters can be
errorneous [94].
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3.2.1 Measurement data and error description

In general, variation within measurement data is generated by technical and biological
variations. Technical variations are due to uncertainties in measurement processes.
These uncertainties can arise, for instance, from the imprecision of the measurement
techniques and the fact that experiments cannot be repeated sufficiently often since
they are time-consuming and expensive [136].
Biological variation occurs due to all factors in an experiment determined by the

biochemistry in a living system under study. Due to, e. g. the stochasticity of transla-
tion/transcription which causes cell to cell variability, the results for replicated exper-
iments can have large variations. These variations are also denoted as inherent noise.
Notably, measurement errors can become very large due to the superposition of both,
technical and biological variations.
Provided knowledge about the used measurement devices and there characteristics,

technical errors can be modeled as follows.

Absolute errors: An absolute error is a measure for the distance between a measurement
ȳi(tm) and the real value yi(tm). It is resembled by adding a disturbance κa ∈ R+ to
the measurement ỹi(tm) leading to an uncertainty interval of

yi(tm) := [ỹi(tm)− κa, ỹi(tm) + κa], (3.13)

where tm = {0, 1, ..., nt} describes the vector of time-points where measurements are
taken. Note, the choice of κa is problem specific.

Relative errors: A relative error is an error where the uncertainty grows with the
measured value itself. It can be modeled by a disturbance κr ∈ R+ satisfying 0 ≤
κr ≤ 1. The respective uncertainty interval is then given by

yi(tm) := [(1− κr)ỹi(tm), (1 + κr)ỹi(tm)]. (3.14)

For demonstrating the usefulness of our methodological results, we use simulated
measurement data with artificial relative errors within the framework of this thesis. In
addition to that, we also use real data obtained by Western Blotting, flow cytometry
and growth assays to compare the results. Usually, for all experimental readings, we
give the mean value ± standard deviation at all time points tm to derive the 1-sigma
confidence interval [176]. Hence, the measurement errors can be represented by lower
bounds y

i
and upper bounds yi and we use the notation

yi(tm) := [y
i
(tm), yi(tm)]. (3.15)

Eq. (3.15) gives a so-called worst-case uncertainty description which includes technical
errors and biological noise.
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3.2.2 Structural uncertainties and hypotheses

In a biological system it is often uncertain if any species have been missed that play
an essential role during signaling. Furthermore, it is likely that the network structure
does not resemble the structure of the biological system correctly. Therefore, usually
several model hypotheses exist [136], which are given by:

h[i] :
 ẋ[i](t) = f [i](x[i](t), u(t), p[i])
y[i](t) = g[i](x[i](t), u(t), p[i]), (3.16)

where the superscript [i] with i ∈ I := {1, . . . , nh} is used as an index of the different
model hypotheses H := {h[1], h[2], ..., h[nh]}. The different model hypotheses h[i] have
then to be tested whether they are able to represent the measurement data or not.

3.2.3 Parameter uncertainties

To test whether a model hypothesis h[i] is (in-)valid, it is necessary to estimate the
unknown parameters. Parameter uncertainties can be very large, since often limited
or no knowledge about the real values is available [87]. We will use interval/set-based
bounds for describing parameter uncertainties:

pj := [p
j
, pj], (3.17)

where j ∈ J := {1, ..., np}, and pj and pj describe the lower and upper bounds for the
j−th parameter.
Usually in biology, some a priori knowledge about the processes and the corre-

sponding reaction kinetics is available. As an example, phosphorylation of proteins
are generally fast reactions as they occur within seconds to minutes [49, 76]. Hence,
the a priori uncertainty interval from (3.17) can be reduced to smaller intervals.

3.3 Summary
We here described the background for modeling biological processes and exemplified
the concepts by means of the MAPK pathway. Furthermore, uncertainty descriptions
to account for errorneous measurement data and unknown parameters as well as the
notation of competing model hypotheses were introduced.
In the following chapters, we present methods to tackle the questions of parameter

estimation and model discrimination using set-based estimation methods. To do so,
the employed set-based approach for model analysis and estimation is introduced in
the next chapter.
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4 Set-based Model Analysis and Estimation

In this chapter, we give an overview about the applied set-based estimation approach.
The basic idea consists of a reformulation of the considered problem into a feasibility
problem. The feasibility problem aims to determine feasible solutions that fulfill the
given constraints including constraints for model parameters and measurement data.
Usually, the feasibility problem is nonlinear and nonconvex, and thus hard to solve. To
overcome this problem, the feasibility problem is relaxed into a semidefinite or linear
program, which can be solved efficiently using state-of-the art solvers. The presented
approach lies the foundation for our further methodological analyses and extensions
which will be applied to IL-6-induced signaling.
The chapter is structured as follows. First, we describe the formulation of the model

invalidation and parameter estimation problems in terms of a feasibility problem. Sec-
ond, we review the relaxation steps to transfer the nonlinear and nonconvex feasibility
problem into a convex semidefinite (or linear) program. After that, the problem for
model invalidity and outer approximation of parameters is discussed. Before conclud-
ing the chapter, we give an example for application of set-based approaches in model-
ing of stepwise receptor assembly and activation – a common motif for initializing cell
signaling pathways in biological systems.

4.1 Introduction
One of the most challenging issues during the modeling and estimation process of
biological systems is the discrimination of mathematical models that are consistent
from the ones that are inconsistent with the given uncertain measurement data. In
addition, for models that are consistent with measurement data, the model parameters
are often not experimentally determinable and have to be estimated from the uncertain
data. Model invalidation and parameter estimation are crucial tasks for reliable model-
based predictions. For example, robust solutions of valid models leading to reliable
predictions are indispensable for generating new hypotheses. New hypotheses allow the
discovery of molecular target and thus, allow the design of potentially new intervention
strategies.
The goal in a set-based framework is not to find the best solution (e. g. parameters),

but rather to determine any solution and, if solutions exist, to determine all of them. In
this context, variables (e. g. model parameters and states) are described as unknwon-
but-bounded.
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Rumschinski et al. [136] introduced a set-based approach for dynamical systems,
which we expand and use. By reformulating the model invalidation and parameter
estimation task in terms of a feasibilty problem, the approach allows for conclusive
statements about the invalidity of models. Furthermore, if a model is not proven to be
invalid, the approach allows an efficient outer approximation of the feasible parameter
space using a recursive bisectioning and a sequentially outer-bounding algorithm.
In the following, the set-based approach for model invalidation and parameter/state

estimation from [136] is introduced and explained in more detail.

4.2 Feasibility problem formulation
Checking if a mathematical model is consistent with measurement data requires to test
if there exists any solution leading to a consistent system behavior. Here consistent
system behavior means that the model is capable to represent the measurement data,
which in the context of this thesis means that it cannot be invalidated. To do so,
in a first step we derive a discrete-time approximation of the considered model as in
(3.8). This can be achieved by standard integration methods such as Euler or Runge-
Kutta discretizations. Nevertheless, selecting an appropriate discretization scheme
is very challenging as it introduces discretization errors and may result in numerical
instability. As in depth consideration of this issue is out of the scope of this thesis, we
refer to [157] and [136] and assume in the following that a model is given in its implicit
formulation:

h :
 f(x(k+1), x(k), u(k), p) = 0,
g(y(k), x(k), u(k), p) = 0. (4.1)

Thereby, x(k), u(k), y(k) and p denote the model states, inputs, outputs and param-
eters. These variables are equivalent to the continuous-time system, but bounded by
semialgebraic sets instead of continuous equality and inequality constraints. Further-
more k ∈ N denotes the discrete-time index, and f and g are polynomials.
To formulate the model invalidation and estimation task, all the information is

gathered into a FP (cf. problem (1.3)):

FP :



find ξ

subject to f(x(k+1), x(k), u(k), p) = 0,
g(y(k), x(k), u(k), p) = 0,
x(k) ∈ X , k ∈ T ,
u(k) ∈ U , k ∈ T ,
y(k) ∈M(tk), k ∈ T ,
p ∈ P ,

(4.2)

where ξ ∈ Rnξ is a vector containing all time-dependent and time-independent variables
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in the problem, i. e. ξ = f(x, u, p) and whereM(tk) denotes the measurement data at
time point k.
The general idea is now to check whether the FP admits a solution or not, which

reflects the capability of model (4.1) to satisfy the given constraints and thus the
measurements. In the following, we refer to the theorem for checking inconsistenty of
FP as given in [24]:

Theorem 1 (FP inconsistency certificate).
If the FP admits no solution, then there exists no p ∈ P and x(k) ∈ X such that
y(k) ∈M(tk) and u(k) ∈ U , k ∈ T .

Until now, we focused on a quantitative description of measurement data for stating
the FP and checking inconsistency of a model. Nevertheless, often also qualitative in-
formation exist that need to be integrated into the FP. To do so, special reformulations
of the measurement setM(tk) are necessary. These reformulations were presented in
[135] and are shortly reviewed next.

4.2.1 Formulation of qualitative information

Often, only qualitative information on data are available. Such data might be given by
if-then observations or statements, such as ”if the input is applied, then the concentra-
tion of protein A increases”. In classical parameter estimation and model invalidation
approaches, the inclusion of such qualitative information is challenging. Nevertheless,
theses types of data might be beneficial to obtain a valid model of the system under
study and therefore, need to be taken into account.
The inclusion of qualitative information into the FP can be done by additional binary

variables φ ∈ {0, 1} [135]. To then check if data represented by unknown-but-bounded
variables y(k) at time points tk of measurements are fulfilled, we have to formulate
a constraint such that φ equals 1 if and only if y(k) ∈ M(tk). This relation can be
formulated as

(φ = 1)⇔ y(k) ∈M(tk). (4.3)

To be able to add (4.3) to the FP from the previous section, further reformulations
of the above constraint are necessary. These reformulations depend on the definition
of the set M(tk). In case M(tk) is a halfspace (with any c ∈ Rny), one obtains
M(tk) = {α, y(k) ∈ Rny : αTy(k) ≥ c}. Consequently, (4.3) can be formulated as:

φ ≥ αTy(k)− c
M

,

φ ≤ αTy(k)− c
M

+ 1,
(4.4)
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4 Set-based Model Analysis and Estimation

with M > |maxy(k)∈M(tk) α
Ty(k) − c| describing a suffiently large number. Notably,

on the boundary φ can be either 0 or 1. This so-called ambiguity can be avoided by
introducing further scaling factors [84, 135].
The equality constraint from (4.3) and the inequality constraints in (4.4) can be

added to the FP enforcing that αTy(k) ≥ c holds. The above introduced constraints
φ are denoted as integrality constraints taking either 0 or 1 as values. Due to these
integrality constraints that allow to include qualitative information by binary variables,
the FP is denoted as a mixed-integer FP (MIFP).
Also much more complicated sets, such as sets restricted by polytopes which are

defined as the interesection of halfspaces, can be considered. We refer to [135] for
more details.

Problem (4.2) (and thus, also the MIFP) is typically nonconvex. This is due to the
nonlinearity of the equality constraint functions f and g and the possible nonconvex
sets X , U ,M and P . Hence, it is difficult to derive a solution for the FP (and also the
MIFP). However, (4.2) can be convexified by relaxing the FP into a SDP and LP, as
explained next. Note, in the following we focus on the FP, yet, the same steps apply
for relaxation of the MIFP.

4.3 Problem relaxation and infeasibility certificates
In general, the convexification and relaxation of optimization problems, such as in
(4.2) requires several steps, which we detail in the following.
The approach for relaxing problem (4.2) into a SDP is derived from a relaxation

method proposed in [90]. To this end, the first step consists of deriving a quadratic
representation of (4.2) using quadrification, i. e. a quadratic reformulation of the
constraints in (4.2) [147].

Quadratic reformulation
The basic idea for quadrification is to express every equation of the functions f and g in
(4.2) in a quadratic form. The conditions for f and g are then written as ξTQiξ = 0 and
ξTRjξ = 0, respectively, with i ∈ {1, ..., nf} and j ∈ {1, ..., ng} by means of appropriate
symmetric matrices Qi, Rj ∈ Snξ . Moreover, bounds on the variables x(k) ∈ X ,
u(k) ∈ U , y(k) ∈M(tk), and p ∈ P can be easily expressed using a set of linear (non-
negative) constraints Bξ ≥ 0, for a suitable matrix B. As a consequence, in a quadratic
representation, monomials are defined as products of lower degree monomials, i. e.
ξTDjξ = 0, j = {1, ..., nd} with nd being the number of such dependencies.
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Now, the FP can be rewritten in a quadratic manner of the form:

QP :



find ξ

subject to ξTQiξ = 0,
ξTRjξ = 0,
ξTDjξ = 0,
ξ1 = 1,
Bξ ≥ 0.

(4.5)

Together with the equality constraint ξ1 = 1 (4.5) leads to a quadratic, yet still
nonconvex problem.

Semidefinite relaxation
As the QP in (4.5) is still nonconvex, the goal is to find suitable reformulations, such
that QP can be convexified. By reformulating the constraints in (4.2) in terms of a
symmetric matrix X = ξξT with X ∈ Snξ , QP can be relaxed into a SDP. Thereby,
the matrix Snξ is composed of monomials needed to represent the inequalities and
with the rank condition one. Further, the relation ξTQiξ = tr(Qiξξ

T ) is used and the
conditions rank(X) = 1 and tr(X) ≥ 1 are replaced by the weaker constraint X � 0.
Consequently, problem (4.5) can be reformulated into a SDP:

SDP :



find X

subject to tr(QiX) = 0,
tr(RjX) = 0, ,
tr(DjX) = 0,
tr(e1e1X) = 1,
BXe1 ≥ 0,
BXBT ≥ 0,
X � 0,

(4.6)

where e1 = (1,0,...,0)T ∈ Rnξ are the unity base vectors. Problem (4.6) is a relaxation
of (4.5) due to the weaker, but now convex constraints introduced [116].

It is noteworthy, that the relaxation from problem (4.2) into (4.6) leads to an
increase of the space of feasible solutions. This means that in the case of parameter
estimation, additional (false positive) parametrizations are introduced, potentially
leading to wrong model-based predictions. However, it is always guaranteed that
– if there exist feasible parametrizations – none of them are lost (no false negative
parameter sets). One way to tighten the increased space of feasible solutions, which
means to reduce the number of false positive solutions, is to introduce redundancy
constraints BXBT ≥ 0 (see (4.6)) [90].
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4 Set-based Model Analysis and Estimation

Lagrange duality and infeasibility certificates
A semidefinite program can be solved very efficiently using appropriate solvers. How-
ever, the problem sizes that might be considered can lead to computational challenges.
A more tractable approach can be obtained by solving the Lagrangian dual of the SDP
by standard-dual interior-point methods [110].
The key idea is to define a Lagrange function that includes the constraints of problem

(4.2) into the cost function. Subsequently, the Lagrangian dual formulation for the
SDP in (4.6) can be expressed by:

LD :



maximize ω

subject to
nf∑
i=1

νiQi +
ng∑
j=1

νjRj+

+
nd∑
j=1

φjDj + ωe1e
T
1 + e1λ

T
1A+

+ATλ1e
T
1 + ATλ2A+ λ3 = 0,

λ1 ≥ 0, λ2 ≥ 0, λ3 � 0.

(4.7)

Thereby, λi, νj, ω and φj are the Lagrangian multipliers corresponding to the equal-
ity constraints in the SDP, and λ1, λ2 ∈ R2nξ , λ3 ∈ Snξ those corresponding to the
remaining (i. e. inequality) constraints. The Lagrangian weak-duality theorem guar-
antees that, if the Lagrangian dual LD is unbounded (i. e. ω > 0 ), the SDP admits
no solution. Then, as consequence of the relaxation process, also the FP admits no so-
lutions. Thus, the Lagrangian weak-duality theorem provides an efficient infeasibility
certificate for model (4.1) (taken from [24, 136]):

Theorem 2 (Unboundedness of the Lagrangian dual).
If the Lagrangian dual LD is unbounded, then there exists no p ∈ P and x(k) ∈ X such
that y(k) ∈M(tk) and u(k) ∈ U , k ∈ T .

The unboundedness of the Lagrangian dual provides a certificate for model invalida-
tion, which means that a model is guaranteed to be inconsistent with the measurement
data. If the Lagrangian dual is not unbounded then the unknown solution space
can be further explored to estimate the unknown constraint set (including sets
for model parameters and state variables). One way is to estimate so-called outer
approximations of the model variable sets. To do so, the constraint set is divided
into partitions and a (possibly nonconvex) outer approximation of the solution space
of the FP is derived by excluding those partitions for which the LD is unbounded.
Detailed explanations of algorithms to do so are outlined in the following.

Comment to linear relaxation: To handle very large problems up to several thou-
sands variables, linear programs are very useful. To obtain such a linear program, the
SDP in (4.6) can be relaxed into a LP, in which the constraint X � 0 is replaced by
the weaker constraint X ≥ 0. The introduced constraint for the linear relaxation still
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leads to a valid constraint as the polynomial inequalities describing the compact sets,
i. e. BXe1 ≥ 0 already guarantee that the variables are positive [93]. Notably, the
substitution of the constraints lead to a further increase of additional (false positive)
solutions.

4.4 Outer approximations of feasible solution sets
The above relaxation approach can be employed to tackle the set-based estimation
problem allowing us to check infeasibility of a model and to approximate the feasible
solution sets (including parameters and state variables). In the following, two different
algorithms are presented to derive such approximations (cf. [24, 136, 152]).

Outer-bounding algorithm
The first algorithm performs an outer approximation of the solution sets by sequentially
and iteratively tightening the lower and upper bounds on single parameters or state
variables [136] (cf. Fig. 4.1 exemplary for parameters). In more detail, such outer
approximations can be obtained, when the feasibility problem (4.2) is replaced by an
optimization problem in which the single parameters or state variables are minimized
or maximized. By formulating

infimum ξi
subject to f(x(k+1), x(k), u(k), p) = 0,

g(y(k), x(k), u(k), p) = 0,
x(k) ∈ X , k ∈ T ,
u(k) ∈ U , k ∈ T ,
y(k) ∈M, k ∈ T ,
p ∈ P ,

(4.8)

a tighter lower bound on variable ξi can be determined. Thus, after applying relax-
ations as described above to problem (4.8), a boxed-shaped outer approximation, i. e.
lower and upper bounds on parameters and state variables can be determined. These
bounds, however, include no information about the shape of the feasible solution sets.
Knowing the shape of feasible solution sets would, however, be very beneficial as these
shapes can provide knowledge about the correlation of individual parameters or state
variables. The following bisectioning algorithm provides means to do so.
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Figure 4.1: Outer approximation of parameter sets using outer-bounding.
Left: Relationship between the initial parameter space P , the consistent parame-
ter set Pc and an outer approximation Po. Right: Outer-bounding of parameters
pj and pi. The algorithm allows to estimate tight lower (pestim

j
, pestim

i
) and upper

(pestim
j , pestim

i ) bounds for the consistent parameter set Pc (dashed rectangle and
red lines) by sequentially and iteratively tightening the initial parameter bounds
(black arrows and black rectangle).

Bisectioning algorithm
The bisectioning approach is a 2n-sectioning procedure, where n denotes the total
number of the variables of interest to be investigated. The initial solution space P is

p
j

p
i

P
c

P

Figure 4.2: Outer approximation of
parameter sets using bisection-
ing. Dark gray boxes describe a box-
shaped outer approximation of the
consistent parameter set Pc.

divided into partitions. In each iteration,
the partition is checked for invalidity. If
the partition is found to be invalid (i. e.
LD is unbounded) it is not further con-
sidered. In contrast, if the partition is
found to be not invalid (i. e. LD is not
unbounded), it is divided into halves (cf.
Fig. 4.2). The bisectioning algorithm can
be implemented as a recursive procedure
and ensures an outer approximation for
the feasible regions with a desired preci-
sion.
Notably, the computational cost of the

bisectioning algorithm depends exponen-
tially on the desired level of precision,
and on the number of variables to be
investigated [136].

In the following, we apply the presented approach to approximate feasible solution
sets by bisectioning and demonstrate its usefulness for model invalidation and outer
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4.5 Example: Stepwise receptor assembly

approximation of feasible parameter sets. All model implementations and analyses
within the framework of this thesis were performed using the Matlab-based toolbox
ADMIT (Analysis, Design, and Model Invalidation Toolbox) [152]. In ADMIT, the
formulation of feasibility problems, the involved relaxation steps, and the presented
algorithms for deriving a solution of the problems by outer approximations are im-
plemented. We note in addition that throughout this thesis all computations are
conducted on a standard 2.4 GHz Intel desktop with 4 GB RAM.

4.5 Example: Stepwise receptor assembly
In this example, we consider IL-6-induced receptor assembly and activation during
classic-signaling. Please refer to Chapter 2 for biological details on IL-6-induced re-
ceptor assembly and activation.
We develop and compare two model hypotheses, namely stepwise versus simplified

receptor assembly and activation. The biological motivation as well as the models and
results are published in [133]. In this study, we aimed to obtain a deeper understanding
of IL-6-induced receptor assembly and activation as well as to identify possible model
simplifications applying the set-based approach.

4.5.1 Model hypotheses and setup

To demonstrate the above set-based model invalidation and parameter estimation ap-
proach, we discuss in the following two competing model hypotheses describing IL-6-
induced receptor assembly and activation. (cf. Fig. 4.3). We use model hypothesis 1
(i. e. h[1], described below) as a reference model. This reference model is compared
with a more simplified version, i. e. hypothesis 2 (h[2]) according their capability to
represent the simulated measurement data within chosen parameter ranges.

Model hypothesis 1: The first model hypothesis depicts stepwise receptor assembly
(cf. Fig. 4.3 upper panel). Thereby, IL-6 binds first to IL-6Rα forming the complex
IL-6:IL-6Rα. In the following, two molecules of gp130 are recruited to two complexes
of IL-6:IL-6Rα [28] (cf. Chapter 2). Receptor and ligand association leads to a forma-
tion of an active receptor complex Rcomplex. Formation of the active receptor complex
induces activation of receptor-associated Jaks and subsequent phosphorylation of ty-
rosine residues in the cytoplasmatic domain of gp130

(
represented as (p)Rcomplex, light

orange stars Fig. 4.3
)
.

Note, for model simplification we not explicitely considered Jaks, which were in-
stead assumed to be represented as part of the gp130 species. This is an appropriate
assumption as Jaks are constitutively associated with gp130 and the phosphorylation
kinetics were shown to be identical [49].
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4 Set-based Model Analysis and Estimation

Figure 4.3: Two competing model hypotheses for IL-6-induced receptor as-
sembly in cells. Model hypothesis 1 (h[1]) describes a stepwise receptor assembly
where in a first step IL-6 binds to receptor subunit IL-6Rα and in a second step
gp130 is recruited. Subsequently, formation of the active hexameric receptor com-
plex (Rcomplex) leads to its phosphorylation ((p)Rcomplex, light orange star). In
model hypothesis 2 (h[2]), the active hexameric receptor complex is immediately
formed in the presence of IL-6, IL-6Rα and gp130 resulting in receptor complex
phosphorylation.

The reaction mechanisms for model hypothesis 1 can be described as follows:

h[1] :



x1(k+1) = x1(k) + ∆t
(
p1x4(k)u− p2x1(k)− 2p3x2(k)2x1(k)2 + 2p4x5(k)

)
x2(k+1) = x2(k) + ∆t

(
2p3x2(k)2x1(k)2 − 2p4x5(k)− p5x5(k) + p6x3(k)

)
x3(k+1) = x3(k) + ∆t

(
p5x5(k)− p6x3(k)

)
y(k) = x3(k),

(4.9)
where ∆t results from time discretization and pj ∈ {1, 2, 3, 4, 5, 6} are the rate con-
stants. Furthermore, the variables x1(k), x2(k), x3(k), and u denote IL-6:IL-6Rα,
Rcomplex, (p)Rcomplex and IL-6, respectively. Moreover, x4(k) and x5(k) denote IL-6Rα
and gp130 which can be calculated from the following conservation laws:

IL−6RαTotal = IL−6Rα + IL−6:IL−6Rα + 2Rcomplex + 2(p)Rcomplex (4.10a)
gp130Total = gp130 + 2Rcomplex + 2(p)Rcomplex. (4.10b)

To show applicability of the set-based approach, we simulated the model describing
h[1] with a time step of ∆t=1 min. All parameters were set to the nominal value
0.3. Further, a constant ligand concentration of IL-6=1 , total concentrations
of IL-6Rα and gp130, IL-6RαTotal=1 and gp130Total=1, and initial conditions of
[IL-6:IL-6Rα(0),Rcomplex(0),(p)Rcomplex(0)]=[0,0,0]. were assumed. We also assumed
the phosphorylated receptor (p)Rcomplex as observable model output, i. e. y(k) and
simulated measurement data with a relative error of 10% as given by the black dots
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4.5 Example: Stepwise receptor assembly

and bars in Fig. 4.4(b).

Model hypothesis 2: The second model hypothesis describes a simplification of IL-
6-induced receptor assembly (cf. Fig. 4.3 lower panel). Typically, stepwise assembly
of the active receptor complex as described above is not measurable experimentally in
vitro. Hence, it is appropriate to assume that the hexameric receptor complex Rcomplex
is immediately formed in the presence of IL-6, IL-6Rα and gp130. Thus, we aggregate
binding of IL-6 to IL-6Rα and binding of 2 molecules of IL-6:IL-6Rα to two molecules
gp130 into one step.
The reaction mechanisms for model hypothesis 2 can then be described as follows:

h[2] :


x1(k+1) = x1(k) + ∆t

(
p1x3(k)2x4(k)2u2 − (p2 + p5)x1(k) + p6x2(k)

)
x2(k+1) = x2(k) + ∆t

(
p5x1(k)− p6x2(k)

)
y(k) = x2(k),

(4.11)
where x1(k) and x2(k) denote Rcomplex and (p)Rcomplex, respectively. Additionally, the
variables x3(k) and x4(k) describe IL-6Rα and gp130 and can be extracted from the
conservation laws:

IL−6RαTotal = IL−6Rα + 2Rcomplex + 2(p)Rcomplex (4.12a)
gp130Total = gp130 + 2Rcomplex + 2(p)Rcomplex (4.12b)

For model simulations, the input concentration for IL-6, simulated measurement
data for the phosphorylated receptor (p)Rcomplex, initial conditions and time step ∆t
were chosen according to hypothesis 1.

4.5.2 Set-based hypothesis invalidation

For the set-based analyses we assume all model parameters within the uncertainty
interval [0.03,3], which is equivalent to assumed half-life times of biomolecular reactions
within seconds to minutes (according to the equation for the half-life time t 1

2
with

t 1
2 ,i

= ln 2
pi
, i = {1, 2, 3, 4, 5, 6} [41]).

For h[2] no parametrizations within the chosen uncertainty sets were determined for
which the model was capable to explain the simulated measurement data. Therefore,
h[2] is deemed as an invalid hypothesis. We then checked (in)validity of h[1]. To this
end, we performed in a first step an outer approximation for p4, p5 and p6 applying
the bisectioning algorithm (blue boxes in Fig. 4.4(a)). Notably, the parameter set was
found to be non-empty and thus, h[1] is possibly a valid hypothesis.
As we only considered simulated measurement data for the dynamics of (p)Rcomplex

(Fig. 4.4(b), black bars), the outer approximation of the parameters did not yield
very tight parameter ranges. However, parameter regions could be determined that
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are guaranteed invalid (light gray boxes in Fig. 4.4(a)). Furthermore, we determined
parametrizations (red crosses in Fig. 4.4(a)) using Monte Carlo sampling for which
the boundaries of measurement data were fulfilled (red bold trajectories Fig. 4.4(b)).
Note, not all parametrizations derived from the outer approximation led to consistent
solutions. Still invalid samples were obtained that led to inconsistent model-based
predictions (cf. Fig. 4.4(a), blue crosses and Fig. 4.4(b), blue trajectories). This is due
to the relaxation processes that lead to false positive parameters as described before.
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Figure 4.4: Results for model invalidation and outer approximations of pa-
rameters for model hypothesis h[1]. (a) The parameters p4, p5 and p6 were
approximated using the bisectioning algorithm. While blue boxes denote the outer
approximation, light gray boxes are guaranteed invalid regions. The cloud of red
crosses describes valid parametrizations obtained by Monte Carlo sampling and
blue crosses denote invalid samples leading to wrong predictions. (b) Valid (red
trajectories) vs. invalid (blue trajectories) predictions based on the determined
parametrizations in (a). Black bars describe the simulated measurement data
assumed to have 10% relative error.

This example demonstrated the possibility to discriminate between different models
for IL-6-induced receptor assembly and activation using the set-based approach. We
wondered whether a simplified model for IL-6-induced receptor assembly and activa-
tion is also capable to explain simulated measurement data which were obtained by
simulating the model for stepwise receptor assembly and activation with nominal val-
ues for parameters and initial conditions. As a result, model hypothesis 2 seems to be
too simple for describing IL-6-induced receptor assembly and activation in an appro-
priate manner. Randomly determined parameter samples for model hypothesis 2 (not
depicted) showed that the phosphorylation of the receptor complex is much quicker
than receptor phosphorylation in model hypothesis 1.
Notably, one drawback of the presented set-based approach is that within the es-

timated outer approximation of the model parameters describing stepwise receptor
assembly and activation also inconsistent parametrizations were obtained. Since it
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cannot be guaranteed that every parametrization from the outer approximation is a
valid solution, sampling routines, such as Monte Carlo sampling have to be imple-
mented. One way to circumvent this ambiguity caused by false positive parameters
resulting from relaxations are so-called inner approximations. Inner approximations
obtain only valid parametrizations, thus, leading always to consistent model-based
predictions. A set-based approach for deriving inner approximations of parameter sets
are explained and exemplified in the following chapter.

4.6 Summary
In this chapter, we introduced the set-based estimation approach for discrete-time
systems. The approach allows the inclusion of uncertainties in state variables, pa-
rameters and measurement data, and is based on formulating the task for checking
model invalidity in terms of a nonlinear and nonconvex feasibility problem. As the
feasibility problem cannot be solved directly, it is relaxed into a semidefinite or linear
program. This relaxation of the feasibility problem into a semidefinite (and linear)
program is conservative, nevertheless it can be used to draw guaranteed statements
about model invalidity of the considered problem. For model hypotheses that could
not be invalidated, outer approximations of model parameters were obtained including
all consistent solutions.
We demonstrated applicability of the set-based methods by implementing model hy-

potheses for IL-6-induced receptor assembly. We were able to invalidate the hypothesis
for a model decribing simplified receptor assembly. Furthermore, for the hypothesis
describing a stepwise receptor assembly determine, outer bounds for the model pa-
rameters were estimated. We determined valid parametrizations by applying Monte
Carlo sampling routines. For these parameter samples, the model was consistent with
the simulated data. However, we also noted that false positive parametrizations were
obtained that lead to inconsistent model predictions. This is due to the fact that
during problem relaxations the size of the feasible solution space increases. Thus, also
false positive parametrizations are obtained.
As a remedy, inner approximations of parameter sets can be derived. Inner ap-

proximations yield always consistent solutions and therefore, guarantee accurate and
robust model predictions. For this reason, we extend in the following the introduced
set-based approach for deriving inner approximations.
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Reliable Model Predictions

In the previous chapter, we reviewed how infeasibility certificates can be used to de-
rive outer approximations of parameter sets. As it cannot be guaranteed that each
parametrization from these sets lead to reliable predictions, we derive in this chapter
inner approximations of parameter sets that include only consistent parametrizations.
This chapter is structured as follows. First, we show how to reformulate quanti-

tative measurement data using binary variables and logical operators. Second, we
present the derivation of inner approximations of parameter sets by an inversion of the
reformulated measurement constraints. Finally, two algorithms for estimating inner
approximations are described. Before concluding the chapter, we present two exam-
ples.
The chapter is based on our work presented in [156].

5.1 Introduction
The presented set-based framework allows us to derive outer approximations of pa-
rameters considering uncertainties. Outer approximations can be very useful to de-
termine sets of possible feasible parameters. However, as the relaxations (described
in Chapter 4) lead to an increase in the problem size, they also contain inconsistent
parametrizations. While the inconsistency might be less relevant when building mod-
els, it becomes relevant for model-based predictions and intervention strategies. As a
remedy, we propose inner approximations of parameter sets which only contain such
parameters that lead to solutions consistent with experiments (denoted as consistent
solutions or consistent parameters in further). The goal for estimating inner approx-
imation is to determine those parameter sets that always lead to consistent solutions
and thus, reliable and robust predictions.
The estimation of inner approximations has been considered before. In [16], inner

and outer approximations of convex polytopes in any finite dimension were computed.
The authors determined two collections, i. e. an inner and an outer approximation for
a given polytope P that can be described by a system of linear inequalities. The idea is
to determine the collections of inner and outer approximations with non-overlapping
interiors, such that all boxes in the inner approximation are contained in the poly-
tope P (i. e. an inner approximation) and to approximate the union of all boxes in
the outer approximation containing the polytope P (i. e. an outer approximation).
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Thereby, the authors consider two objectives, i. e. (i) to minimize the box volume er-
ror, and (ii) to minmize the total number of generated boxes and aim to obtain the
best trade-off between both. To this end, a collection of algorithms is introduced and
the computational costs of the algorithms are compared against each other. Notably,
the performance of the algorithms rapidly decreases as the dimension of the problem
grows.
In [79], inner approximations in the context of bounded-error estimation were derived

for nonlinear models. The problem of nonlinear bounded-error estimation is considered
as one of set inversion. Set inversion describes the problem of characterizing sets such
as S={p|f(p) ∈ Y}, or alternatively S=f−1(Y). To this end, in [79] the algorithm
SIVIA (Set Inversion Via Interval Analysis) was presented, which makes it possible
to approximate the feasible solution set S by enclosing it between inner and outer
sets of boxes. The algorithm has been applied, for instance, for guaranteed parameter
estimation [79], and robust stability analysis [168].
Henrion and co-workers developed methods for outer and inner approximations of

consistent parameter sets and their regions of attraction of continuous-time systems
[88, 155]. They thereby introduced so-called occupation measures which are used
to cast the (nonlinear) dynamics of a equation system into a system with linear
(in-)equalities in an optimization problem over an infinite function space. The
problem is then solved by a hierarchy of semidefinite or linear programs. In particular,
[155] exploited the approach of occupation measures to determine inner and outer
approximations of the set containing all consistent initial conditions/parametrizations
for nonlinear (polynomial) continuous-time systems. The authors incorporated
unknown-but-bounded and pointwise-in-time state and output constraints into their
problem formulation. Thereby, the problem was solved by a hierarchy of LMI (linear
matrix inequality) relaxations that provide certificates in case no consistent initial
condition/parametrization exists.

In this chapter, we present an extension of the set-based framework fom Rumschinski
et al. [136] for deriving inner approximations of consistent parameter sets for nonlin-
ear discrete-time systems. These set-based methods are particularly suited for proving
infeasibility of models with guarantees. To demonstrate feasibility of a model, so far
further approaches are needed, such as Monte Carlo sampling, as outer approxima-
tions might contain invalid (i. e. false positive) parametrizations due to the relaxations
presented. Therefore, we propose an approach that allows us inverting the problem for
deriving outer approximation, to determine solutions of the inner approximations. To
this end, quantitative measurement data are reformulated using binary variables and
combinations thereof. By an inversion of the measurement constraints and by proving
infeasibility for the inverted problem we can guarantee that no constraints are violated
which provides the inner approximation.
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5.2 Mixed-integer reformulation of quantitative constraints
To derive inner approximations of parameter sets, the constraints representing un-
certain quantitative measurement data need to be reformulated; cf. Chapter 4, Sec-
tion 4.2, where we have assumed a collection of quantitative data at time instances nt
to be given, i. e. y(k) ∈M(tk) for k ∈ T :={0, 1, ..., nt − 1}.
Typically, measurements of state variables are uncertain and are assumed to lie

within uncertainty intervals. In biological experiments, such uncertainty intervals can
be derived by computing, e. g. the mean value ± standard deviation, which gives the
uncertainty sets yi(k) := [y

i
(k), yi(k)] for i = 1, 2, ..., ny (Chapter 3, Section 3.2.1).

Let in the following my=[y1(0), ..., y1(nt − 1), ..., yny(0), ..., yny(nt − 1)] ∈ Rnynt be a
vector containing the measurements y at time instances nt. With this notation, we
can reformulate the initial measurement setM(tk) in the following form

M :=
{
my : qy,i(my) ≥ 0, i = 1, 2, . . . , cm

}
⊂ Y . (5.1)

In Eq. (5.1), qyi(my) are polynomial inequality constraints that correspond to the
upper and lower bounds for yi(k), i. e. yi(k) and y

i
(k), respectively. Furthermore, cm

denotes the number of inequalities.
The key idea is to express the inequality constraints (5.1) using logical relationships

by additionally introduced binary variables φi ∈ {0, 1}, i = 1, 2, . . . , ny as reviewed
in the previous chapter, Section 4.2.1. Briefly, the variable φi indicates whether the
constraint qy,i(my) is satisfied (φi = 1) or not (φi = 0). To be able to add this to the
FP, we introduce additional constraints such that φi takes the desired value. This can
be achieved by replacing αTy(k)− c in Eq. (4.4) with qy,i(my), yielding:

φi ≥
qy,i(my)
Mi

,

φi ≤
qy,i(my)
Mi

+ 1, i = 1, 2, . . . , cm,
(5.2)

where Mi > |max∀y∈M qy,i(my)|.
As we consider multiple sets M (i. e. at different time points tk) described by cm

inequalities, all binary variables φi need to be equal to 1, implying that all of the
above equations for all variables φi are fulfilled. In other words, the model is capable to
represent the measurement data if φi=1, ∀i. The above requirement that all constraints
φi are fulfilled can then be expressed by

cm∑
i=1

φi = cm. (5.3)

The derived constraint corresponds to a conjunction, which is a logical and-
combination of the binary variables. As can be seen, if any φi is 0 (i. e. a measurement
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constraint is not fulfilled), (5.3) is not satisfied.
To derive a solution for a problem including the mixed-integer reformulation from

above, we first have to pose the corresponding feasibility problem.

5.3 Mixed-integer feasibility problem formulation and
relaxation

The constraints (5.2) and (5.3) can be added to the FP (Eq. (4.2)), which is then
denoted as a mixed-integer FP (MIFP) due to the inclusion of above integrality con-
straints.
Assuming that our goal is to derive inner approximations for the model parameter

p, then the MIFP has the following form:

MIFP :



find p

s.t. f(x(k+1), x(k), u(k), p) = 0,
g(y(k), x(k), u(k), p) = 0,
x(k) ∈ X ,∀k ∈ T ,
u(k) ∈ U ,∀k ∈ T ,
p ∈ P ,
φi ≥ qy,i(my)

Mi
,

φi ≤ qy,i(my)
Mi

+ 1,
cm∑
i=1

φi = cm.

(5.4)

With (5.4), one can state:

Lemma 1 (Equivalence of FP and MIFP).
The solution sets of FP and MIFP are equal, i. e. PFP = PMIFP.

Proof: The proof is obvious and follows from the conversion of the FP into a MIFP.
In [24], a theorem was presented which gives inconsistency certifiates for the FP (see

also Chapter 4). Using Lemma 1 and the theorem from [24] we can now state (without
the need of a formal proof):

Theorem 3 (MIFP inconsistency certificate).
If the MIFP does not admit a solution, then there exists no p ∈ P and x(k) ∈ X such
that y(k) ∈M(tk) and u(k) ∈ U , ∀k ∈ T .

To solve the derived MIFP it can be, similarly to the FP, relaxed into a mixed-
integer semidefinite problem (MISDP), which is a convexified form of the MIFP. To
efficiently solve this MISDP it is further relaxed into a mixed-integer linear problem
(MILP). A solution for the MILP can then be derived using appropriate solvers, such
as Cplex.
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5 Approximation of Inner Parameter Sets for Reliable Model Predictions

As during the relaxation process the solution space of the MILP increases, it is likely
to happen that, akin to outer approximations, also inconsistent (i. e. false positive)
parametrizations are obtained. Consequently, constraint (5.3) cannot be proven with
guarantees.
To avoid this, we present in the following a solution approach based on a constraint

inversion of (5.3), which allows to derive guaranteed inner approximations of parameter
sets.

5.4 Constraint inversion
Due to the convex relaxations of the MIFP into the MILP, it may occur that inconsis-
tent solutions also for the inner approximations are obtained. Mathematically, there
may exist parametrizations such that

cm∑
i=1

φi ≤ cm − 1 (5.5)

holds. In more detail, if (5.5) is fulfilled, then y(k) /∈ M(tk) holds for at least one k,
and thus, the model is not capable to explain the measurement data.
Using the presented set-based approach, we can show infeasibility of a model with

guarantees. However, due to the relaxation process, the same does not hold for
proving feasibility. Therefore, the crucial idea for deriving inner approximations is
to formulate the inversion of (5.3), which is expressed by (5.5). As a consequence it
follows that if we can prove infeasibility of (5.5), then feasibility of (5.3) is confirmed.
Feasibility of (5.3) refers to the model’s capability to explain the measurement data
at all time instances and, hence, an inner approximation Pi of the initial parameter
set P is obtained.

In the following, the inverted constraint (5.5) is added to the MIFP instead of (5.3)
which leads to:

M̂IFP :



find p

s.t. f(x(k+1), x(k), u(k), p) = 0,
g(y(k), x(k), u(k), p) = 0,
x(k) ∈ X , ∀k ∈ T ,
u(k) ∈ U ,∀k ∈ T ,
p ∈ P ,
φi ≥ qy,i(my)

Mi
,

φi ≤ qy,i(my)
Mi

+ 1,
cm∑
i=1

φi ≤ cm − 1.

(5.6)
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5.4 Constraint inversion

Consequently, if the M̂IFP in (5.6) admits no solution, we can guarantee that
parametrizations p ∈ P exist, such that Eq. (5.3) holds and thus, y(k) ∈ M(tk),
∀k.
To state the corresponding theorem, two assumptions have to be made:

Assumption 1 (Existence of solutions).
For every p ∈ P there exists a solution x(0), x(1), . . . , x(nt − 1) and
y(0), y(1), . . . , y(nt − 1).

Many systems fulfill this assumptions. In particular polynomial systems given in the
explicit form x(k + 1) = F̃ (x(k), p).
In addition, we have:

Assumption 2 (Bounds on solutions).
For all p ∈ P, it holds that x0 ∈ X0 and x(k) ∈ X , ∀k ∈ T .

This assumption requires known guaranteed enclosures on the initial conditions and
states on the time interval T . This assumption is appropriate, as large uncertainty
bounds can be chosen for X0 and X . In addition, these bounds can be derived from
system insight, such as from known relations on mass conservation as described in
Chapter 3.
The main purpose of Assumption 2 is to reduce the number of constraints that have

to be tested for validity. Then, one only needs to check and invert constraints for
measurement data qy,i(my) and does not have to consider constraints for the initial
conditions and model states. This implies the reduction of computational costs.
With Assumption 1 and 2 we can state the following theorem:

Theorem 4 (Consistency certificate)
If the Lagrangian-dual of the M̂ILP is unbounded, then it is guaranteed that there exists
p ∈ P, such that y(k) ∈M(tk) ∀k ∈ T .

Proof: The weak-duality theorem and the relaxation process guarantee that if the dual
M̂ILP is unbounded, then the M̂IFP does not admit a solution. Due to Assumptions 1
and 2 it follows that (5.5) is not satisfied, hence (5.3) is satisfied for all p ∈ P .

Note on the increase of the problem size: The reformulation of the original
problem FP into a MIFP results in an increased problem size in terms of the number
of variables and constraints. To be more specific, there are cm additional binary
variables φi, 2cm additional nonlinear constraints (5.2), and one additional constraint
representing the combination of all binary variables (5.5). However, an increase of
the problem size does not restrict the numerical solvability of our analyses due to the
existence of efficient and parallel implementations of branch-and-bound algorithms in
mixed-integer solvers, such as Cplex.
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5 Approximation of Inner Parameter Sets for Reliable Model Predictions

By reformulating constraints for measurement data and their inversion, we are able
to estimate inner approximations of parameters in the set-based context. In the fol-
lowing two algorithms for implementing Theorem 4 and for estimating inner approxi-
mations of parameter sets are presented.

5.5 Algorithms for determining inner parameter sets
This section outlines two algorithms to determine inner approximations of parameter
sets Pi based on Theorem 4. Since the theorem builds on infeasibility, i. e. exclud-
ing infeasible regions, the method proceeds that entire parameter regions are either
recursively (Algorithm 1) or incrementally (Algorithm 2) proven to be an inner ap-
proximation. Both algorithms terminate in finite time. A graphical illustration of the
relationship between inner and outer approximations and the employed algorithms are
given in Fig. 5.1 and 5.2.

5.5.1 Recursive inner approximation

The following algorithm assumes that the initial parameter set P is given as denoted in
Eq. (3.17), which corresponds to a hyperrectangular description of the parameter space.
An inner approximation Pi (cf. Fig. 5.1(a)) can then be determined by systematically
exploring subregions of the initial parameter space P . Algorithm 1 uses a bisectioning
procedure and tests whether a defined hyperrectangle is an inner approximation or
not. If the hyperrectangle is found to be no inner approximation, it is split into
two parts along a heuristically or randomly chosen direction and the two obtained
hyperrectangles are tested again. The recursion terminates either if a hyperrectangle
is proved to be an inner approximation, or if a predefined recursion depth Nmax is
reached. The algorithm is initially called with the parameter index set I := {1, ..., np},
a set of np counters Nj which are all set to 1, and the initial uncertain parameter
description as given in (3.17). The recursion depth Nmax and the dimension of P
determine the number of hyperrectangles to be tested for invalidity and thereby define
the accuracy of the inner approximation. Notably, the overall cost for Algorithm 1
grows exponentially with the number of hyperrectangles.
The algorithm is suited to explore the parameter space for inner approximations.

However, it is computationally more demanding to prove a region to be an inner
approximation than to check the same region whether it contains no solutions at all,
by using cetrificates for outer approximations. It is therefore beneficial to combine
both outer and inner approximations by, (i) using certficates for outer approximations
up to a certain recursion depth and, (ii) checking the remaining boxes whether they are
valid inner approximations or not (cf. Fig. 5.1(b)). Note, if an inner approximation Pi
could be determined using Algorithm 1, a sampling-based routine (e. g. Monte Carlo
sampling) can be used to determine guaranteed consistent parametrizations.
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Figure 5.1: Inner approximation of parameter sets. (a) Relationship between the
initial parameter set P , the consistent parameter set Pc, an outer approximation
Po and an inner approximation Pi. (b) Determination of an inner approximation
for parameters pi and pj using the bisectioning Algorithm 1. While the dashed box
describes a hyperrectangular outer approximation, the dark and light gray boxes
show an outer and inner approximation of the initial parameter set P , respectively.

Algorithm 1. (Recursive Inner Approximation).

Input: index set I
counters Nj ∀ j ∈ I
hyperrectangular bounds P

IF Lagrangian-dual of M̂ILP is unbounded
ECHO ‘P is an inner approximation’
RETURN

END IF
WHILE I 6= ∅

PICK index j corresponding to
largest interval width pj − pj

in P
IF Nj ≤ Nmax:

SET Nj ← Nj + 1
STORE and SET p

j
← p

j
+ 1

2 · (pj − pj
)

CALL Algorithm 1 with Njs, I and modified P
RESET p

j

STORE and SET pj ← pj − 1
2 · (pj − pj

)
CALL Algorithm 1 with Njs, I and modified P
RESET pj

ELSE
SET I ← I \ j
ECHO ‘P is not considered an inner approximation’

END IF
END WHILE
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5 Approximation of Inner Parameter Sets for Reliable Model Predictions

An alternative to Algorithm 1 is presented next.

5.5.2 Incremental polytopic expansion

Often, parameter samples leading to consistent model-based predic-
tions are available in advance, e. g. by applying Monte Carlo sam-
pling routines or by local nonlinear optimization (red cross in Fig. 5.2).

p
j

p
i

P
c

P

Figure 5.2: Algorithm for incremental
polytopic sample expansion. De-
termination of an inner approximation
for parameters pi and pj using Algo-
rithm 2.

The following algorithm uses such param-
eter samples to determine a polytopic in-
ner approximation. The basic idea is to
test whether a parameter set, which is de-
fined by the polytoic convex hull of the
samples, describes an inner approxima-
tion or not. If it does, the algorithm in-
crementally moves the facets of the poly-
tope outwards until an inner approxima-
tion cannot be guaranteed anymore. In
other words, Algorithm 2 increases the hy-
pervolume of the polytope step by step
(cf. Fig. 5.2 gray arrows).
We assume in the following that a poly-

topic convex hull of a series of parameter
samples is given:

P :=
{
p : aTj p ≥ bj, ‖aj‖2 = 1, j = 1, 2, . . . , cf

}
, (5.7)

where aj are (outwards-facing) unit normal vectors of the cf facets of the polytope.
Additionally, assume that P is bounded and represents a polytope of full dimension
in Rnp.
Note that Algorithm 2 terminates after a finite number of steps if the consistent

parameter set is bounded. Due to the random choice of the next facets and the step
size ν, the obtained polytopic description of the inner approximation is not unique and
might not be the optimum in terms of maximal volume. However, the advantage of the
algorithm is that, once an inner approximation has been found (based on a consistent
sample), then no further sampling is required as it has been proved that the polytope
describes an inner approximation using Algorithm 2.
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5.6 Example: Michaelis-Menten kinetics

Algorithm 2. (Incremental Polytopic Expansion).

Input: index set I = 1, 2, . . . , cf

incremental step-size ν
polytopic uncertainty description P

IF Lagrangian-dual of M̂ILP is NOT unbounded
ECHO ‘P is not considered an inner approximation’
RETURN

END IF
WHILE I 6= ∅

PICK random j from I
STORE AND REPLACE jth equation

in P by aT
j p ≥ bj + ν

IF Lagrangian-dual of M̂ILP is NOT unbounded
RESET jth equation
SET I = I \ j

END IF
END WHILE

5.6 Example: Michaelis-Menten kinetics
To show applicability of the presented framework and algorithms, we consider in the
following two examples for determining inner approximations.
We consider an enzyme-catalyzed reaction network of the form

S1 + E
p1−⇀↽−
p2
C1

p3→ P + E

S2 + E
p4−⇀↽−
p5
C2.

(5.8)

This describes that an enzyme E and a substrate S1 reversibly form a complex C1, in
which the substrate is converted into the product P . The enzyme is bound by a second
substrate S2 forming the inhibitory complex C2. The parameters p1, p2, . . . , p5 denote
the unknown rate constants for which we aim to determine inner approximations.

Model and setup: The reaction mechanism (5.8) can be modeled as:

x1(k+1) = x1(k) + ∆t
(
p1x4(k)x5(k)− (p2 + p3)x1(k)

)
x2(k+1) = x2(k) + ∆t

(
p4x5(k)x6(k)− p5x2(k)

)
(5.9a)

x3(k+1) = x3(k) + ∆t
(
p3x1(k)

)
y(k) = (x1(k), x2(k), x3(k)), (5.9b)
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5 Approximation of Inner Parameter Sets for Reliable Model Predictions

where x1(k), x2(k), x3(k), x4(k), x5(k) and x6(k) represent the concentrations C1, C2,
P , S1, E and S2, respectively, and ∆t is the discretization time, which is set to 0.1 h.
We further assume that the following conservation relationships hold:

1 = x4(k) + x1(k) + x3(k)
1 = x5(k) + x1(k) + x2(k) (5.10a)
1 = x6(k) + x2(k).

To obtain outer and inner approximations of the model parameters, we used artificial
measurement data for the model states, i. e. x1, x2 and x3 (cf. Eq. (5.9b)). The
artifical data were obtained simulating the system with the nominal initial condition
[x1(0), x2(0), x3(0)]T = [0.05, 0.05, 0.05]T. Parameter values pi were set to 2 for
i = 1, 2, 4, 5 and to 5 for i = 3. To simulate data uncertainties, a random error of
5% was added to each simulated data point (black bars Fig. 5.3(d)). For set-based
analyses, the initial parameter uncertainties were set to the interval pi=[0.1,10], i=1,
. . . , 5, which is equivalent to assume half-life times for the biomolecular reactions
within seconds to minutes. For computational reasons, we express only the bounds
for x3(k) using binary variables and inverted them as described before.

Results: Fig. 5.3 depicts the obtained results applying Algorithms 1 and 2. We first
performed an outer approximation of the model parameters p1-p5 from the original
problem (i. e. without mixed-integer formulations) using the proposed outer-bounding
algorithm from [136] (cf. Fig. 5.3(a)). The obtained bounds were then used as in-
puts to the mixed-integer problem, reducing the parameter space that is tested for
inner approximations. In Fig. 5.3(b) the results for Algorithm 1 are depicted. While
blue boxes describe an outer approximation of the MIFP (cf. Eq. (5.4)), light red
boxes describe the obtained inner approximation of parameters p1 and p2 for M̂IFP
(cf. Eq. (5.6)) using Algorithm 1. To prove that the determined inner approximation
is valid, we additionally performed a Monte Carlo sampling (green dots Fig. 5.3(b)).
The results show a tight inner approximation for parameters p1 and p2 covering 82%
of the valid Monte Carlo samples. Notably, to improve 82% coverage of the inner ap-
proximation, the recursion depth Nmax could be altered allowing for an enlargement of
the inner approximation. The black rectangle shows the obtained polytopic inner ap-
proximation obtained with Algorithm 2 by expanding the boundaries of the consistent
parametrization [2.06;2.26;4.9;1.9;1.8] (red cross, ν=0.02) that was obtained by Monte
Carlo sampling. The results for Algorithm 2 are additionally shown in Fig. 5.3(c) for
the parameters p1, p2 and p3. Finally, we depicted the obtained trajectories based on
samples from the outer and the polytopic inner approximation. While in Fig. 5.3(d)
not all samples from the outer approximation yield consistent model predictions (solid,
light blue), samples from the obtained polytopic inner approximation (dashed, light
red) are always consistent with the data (black bars).
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Figure 5.3: Results for outer and inner approximations of parameter sets.
(a) Estimated outer bounds (blue bars) for the model parameters using an
outer-bounding algorithm. The black dots show the nominal parameter sample
[2;2;5;2;2]. (b) Estimation of the consistent parameter set Pc using bisectioning
and Algorithm 1. An outer and an inner approximation are given by the blue
and light red boxes, respectively. Green dots correspond to valid Monte Carlo
samples. The black rectangle shows the obtained hyperrectangular inner approx-
imation using Algorithm 2 (see also (c)) projected onto (p1-p2)-space starting
with the valid sample [2.06;2.26;4.9;1.9;1.8] (red cross). (c) A polytopic expan-
sion using Algorithm 2 plotted in (p1-p2-p3)-space starting with the valid sample
[2.06;2.26;4.9;1.9;1.8] (red cross) leads to the inner approximating hyperrectangle
(gray box) [2.02;2.10]×[2.2;2.3]×[4.7;5.1]×[1.7;2.2]×[1.5;2.3]. (d) Model simula-
tions using parameter samples from the outer (solid, blue) and inner approxima-
tions (dashed, light red). Black bars denote the simulated, uncertain measurement
data obtained with the nominal sample from (a).

5.7 Example: Interleukin-6-induced trans-signaling
In constrast to the simulated data in the previous example, real measurement data
are often sparse. Furthermore, usually not all model states are measurable due to,
for example, methodological restrictions. The following example demonstrates how
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5 Approximation of Inner Parameter Sets for Reliable Model Predictions

the proposed framework performs if not all model species are observable and if the
measurement data are subject to large noise and different frequency.

Model for early IL-6-induced trans-signaling: In the following we focus on a
model for IL-6-induced trans-signaling and activation of Jak/STAT3 signal transduc-
tion. To derive a mathematical model for the biological mechanisms described in
Chapter 2, we make the following assumptions:

• Jak kinases are represented by gp130 species.

• STATs are phosphorylated by the active and phosphorylated receptor complex
(p)Rcomplex (consisting of Jak and gp130).

• To mimic trans-signaling in experiments, Hyper-IL-6 was used as stimulus. As
a consequence, binding of IL-6 to its soluble receptor sIL-6Rα is not considered
and, hence, the corresponding kinetic parameters p1 and p2 are set to 0.

Note, the third assumption allows us to reduce the model for IL-6-induced trans-
signaling by one dynamic equation.
For complexity reduction, we consider only the first 15 minutes of IL-6-induced

Jak/STAT3 signaling. Consequently, the transcription of SOCS3 mRNA and the
translation of SOCS3 protein due to the activation of STAT3 is disregarded. A suit-
able model for the dynamic processes of IL-6-induced trans-signaling and activation of
Jak/STAT3 signal transduction can then be described by:

x1(k+1) = x1(k) + ∆t
(
2p4x4(k)− 2p3x1(k)2u2

)
x2(k+1) = x2(k) + ∆t

(
p5x4(k)− p6x2(k)

)
(5.11a)

x3(k+1) = x3(k) + ∆t
(
p7x5(k)x2(k)− p8x3(k)

)
y(k) = x3(k). (5.11b)

In Model (5.11), the variables x1(k), x2(k), x3(k), x4(k), and x5(k) describe the
species gp130, (p)Rcomplex, phosphorylated STAT3 (i. e. (p)STAT3), Rcomplex, and
STAT3, respectively. Furthermore, u is the constant model stimulus, i. e. Hyper-IL-6
and x3(k) is the model output (cf. (5.11b)).
Note that the variables x4(k) (Rcomplex) and x5(k) (STAT3) can be derived from the

following conserved moeties:

gp130Total = gp130 + 2Rcomplex + 2(p)Rcomplex (5.12a)
STAT3Total = STAT3 + (p)STAT3. (5.12b)
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5.7 Example: Interleukin-6-induced trans-signaling

Measurement data: To derive inner approximations for the unknown model
parameters pi, i = {3, ..., 8}, quantitative experiments in HepG2 cells were performed
(cf. [130] and Appendix A). The absolute amount of STAT3 phosphorylation for a
constant Hyper-IL-6 stimulation of 0.17 nM was measured over a time horizon of
15 minutes using methods presented in Appendix A. According to Fig. 5.4(a) the
phosphorylation of STAT3 steadily increases up to 15 minutes. In addition to that,
the total concentrations of gp130 and STAT3 amounted to 16.8±3.1 nM (16198±2965
molecules per cell, n=4 assuming a cell volume of Vcell=1.6×10−12 L) and 958±445
nM (921000±428000 molecules per cell, n=7), respectively (cf. Fig. 5.4(b)).
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Figure 5.4: Measurement data for determining inner approximations of pa-
rameter sets. (a) Absolute quantification of STAT3 phosphorylation over a time
horizon of 15 minutes. Diamonds correspond to the mean values and bars denote
the determined standard deviations for n=6 independent replicates. (b) Absolute
quantification of total amounts for gp130 and STAT3. Bars denote the determined
standard deviations for n=4 and n=7 independent replicates, respectively.

Model setup: For set-based model simulations, the boundaries for gp130Total and
STAT3Total are set to the uncertainty intervals of [13.7,19.9] and [513,1403], respec-
tively. Furthermore, ranges for the model parameters pi, i = {3, ..., 8} were set to
[10−3,101] equivalent to assumed half-times for biomolecular reactions within seconds
to minutes (t 1

2 ,i
= ln 2

pi
). Additionally, the IL-6 input concentration u was fixed to 0.17

and the time discretization constant ∆t was set to 1 min.
To obtain inner approximation of parameters pi the measurement data

y(k)=(p)STAT3 were expressed using binary variables and inverted as described in
Sections 5.2 and 5.4.

Results: We aimed to estimate an inner approximation for the parameters p7 and
p8 as they describe the velocity of STAT3 phosphorylation and dephosphporylation,
respectively. Using Algorithm 1, which allows for bisectioning of the parameter space,
no inner approximation was determined. Then, we applied Algorithm 2 starting from
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a valid parameter sample that was determined by a local optimization routine using
the Matlab inbuild function fmincon. Briefly, we generated different initial parameter
samples using the Matlab inbuild function rand and performed least square fitting.
Finally, we stored the obtained parametrization which gave the minimum distance
between the model simulation and the data. The procedure was repeated three times.
The obtained parametrizations were used as starting point for Algorithm 2. To this
end, parameter ν which defines the step-sizes for moving the facets outwards, was
set to 0.001. Fig. 5.5 depicts the results for outer approximations and the polytopic
sample expansion algorithm for three valid parametrizations. Note that the results
for parameter estimation are depicted on a logarithmic scale. As can be seen the
polytopic sample expansion algorithm partly yielded very small inner approximations
(see e. g. Fig. 5.5(a) and (b), yellow and green samples as well as Fig. 5.5(c), red and
green samples). These results indicate that, depending on the valid parameter sample,
the system is very sensitive with respect to small changes in the parameter values.
Additionally and as already mentioned, no inner approximations could be determined
using the bisectioning algorithm (Algorithm 1). The reason might be, other than
for the example of an enzyme-catalyzed reaction that there exist no connected inner
approximation. Indeed, the recursion depthNmax in Algorithm 1 could be defined, such
that the determined hyperrectangular inner approximations depicted in Fig. 5.5(a),
(b), and (c) are met. However, this is not in relation to the computational effort
needed to determine this inner approximation.
Fig. 5.5(d) depicts 40 model trajectories (red bold lines) obtained by

sampling within the determined hyperrectangular inner approximation
[0.54;1.18]×[0.32;0.82]×[0.22;0.37]×[0.30;0.57]×[0.024;0.032]×[0.012;0.019] (black
rectangles Fig. 5.5(a)-(c)). This hyperrectangular inner approximation was obtained
by expanding the valid sample s1 (red crosses Fig. 5.5(a)-(c)) using Algorithm 2. All
trajectories satisfy the boundaries for the model output (p)STAT3. Thus, Algorithm 2
allows to determine an inner approximation at least in the surrounding area of valid
parametrizations. Indeed, these polytopic inner approximations may not be unique
and of maximum volume. However, they allow for consistent and reliable model
predictions. Notably, further studies about the identifiability of the determined
polytopic inner approximations would be beneficial.
It is sometimes intricate to estimate inner approximations for real applications such

as IL-6-induced signaling. One important reason is that the algorithms used to de-
termine inner (and outer) approximations are numerically very high-demanding. As
an example, when using biscetioning, the overall cost grows exponentially with the
number of hyperrectangles. Therefore, the number of parameters for which an inner
approximations can be derived, need to be considered carefully. Nevertheless, often it
is sufficient to determine inner approximations for a subset of the model parameters,
such as the most sensitive ones. Then, the computational effort can be reduced to this
subset.
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5.7 Example: Interleukin-6-induced trans-signaling
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Figure 5.5: Results for parameter estimation. Outer approximations (blue
boxes) for parameters (a) p3 and p4, (b) p5 and p6, as well as (c) p7 and
p8. Gray boxes denote guaranteed invalid parameter ranges, black rectan-
gles show the obtained hyperrectangular inner approximations using Algo-
rithm 2 starting with the valid samples s1=[0.78;0.50;0.28;0.37;0.028;0.015]
(red crosses), s2=[0.16;0.98;0.01;0.62;2.18;0.02] (yellow crosses), and
s3=[0.33;0.98;0.01;0.02;1.15;0.35] (green crosses). (d) 40 model simulations
(red trajectories) using parameter samples from the hyperrectangular inner
approximations for p3-p8 obtained with the valid sample s1 (red crosses in
(a)-(c)).

The presented approach leads to a problem that scales linearly with the number of
measurement constraints with respect to which an inner approximation is searched for.
As a consequence, it might lead to an intractable problem if the number of constraints
is large. As a remedy, the inner approximation can be refined and possibly enlarged
by considering new or additional measurement constraints in a recursive manner.
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5 Approximation of Inner Parameter Sets for Reliable Model Predictions

5.8 Summary
In this chapter, we proposed an extension of the set-based estimation approach by
determining inner approximations of parameter sets. To this end, quantitative mea-
surement data were reformulated using binary variables. As these binary variables
indicate whether the measurement constraints are simultanously fulfilled or violated,
they were combined via a logical and-combination. Since the relaxation processes
entail an increase of the solution space (i. e. obtaining false positive solutions), our
crucial idea consisted in inverting the measurement constraints. If, in such case, the
inverted problem admitted no solution, we could guarantee that an inner approxima-
tion was determined. Furthermore, we proposed two algorithms that implement the
presented approach.
We demonstrated applicability of the method by means of two examples, i. e. an

enzyme-catalyzed reaction and early IL-6-induced trans-signaling and activation of
Jak/STAT3 signal transduction. For the first example, we were able to determine
tiny inner approximations of the model parameters, possibly due the assumption that
measurement data for all species are available. However, the second example showed
that an inner approximation may not be a largly connected area, rather only a small
range around different valid parametrizations that are obtained by local optimization.
So far, we discussed set-based methods for parameter estimation and model inval-

idation. However, it is likely to happen that several hypotheses for the considered
system under study exist, that cannot be discriminated by means of the available ex-
perimental data. Then, the modeler needs to propose meaningful experiments that
allow to distinguish invalid hypotheses from the probably valid ones. To this end, we
propose in the following an approach to tackle the problem of experimental design
under uncertainties.
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6 Optimal Experimental Design for Model
Discrimination and Selection

Usually, when considering biological systems not all interactions of the underlying
molecular mechanisms are fully understood and known. As a consequence, several
competing model hypotheses are developed and need to be evaluated for (in-)validity.
We provided in the previous chapters means how set-based methods and infeasibility
certificates can be used to check whether models are capable to explain measurement
data or not. In case a model cannot represent given measurement data, it is deemed to
be invalid and can be ruled out with guarantees. The model discrimination, however,
might be inconclusive as model parameters are uncertain or even unknown and mea-
surement data are possibly very noisy. Thus, it may not be possible to discriminate
between valid and invalid models. Consequently, more informative experiments are
needed to select a potentially valid model.
In this chapter, we propose a set-based experimental design approach for guaran-

teed discrimination of competing models. It is based on bilevel optimization. In the
outer program an input that minimizes a given norm and satisfies input constraints
is determined. In turn, the inner program certifies that the reachable output sets of
the models are non-overlapping for at least one time point for the determined input.
This allows model discrimination by separation of the variable sets facilitates the task
of model selection
The chapter is structured as follows. First, the problem of model discrimination

and selection is introduced. Second, the proposed bilevel optimization approach is
explained. An illustrative example is presented considering IL-6-induced receptor for-
mation as shown in Chapter 4.
The results presented in this chapter are based on our work in [134].

6.1 Motivation - Design of Experiments
The design of experiments builds an important bridge between mathematical model-
ing and experimental analysis allowing a deeper understanding of the system under
study. In particular, when designing new experiments one of the major question is,
how to perturb a system, such that the most valuable information, e. g. for model
discrimination can be obtained.
Several approaches for experimental design in the field of control theory have been

developed and applied to biological problems. A noteworthy approach for model dis-
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6 Optimal Experimental Design for Model Discrimination and Selection

crimination and selection was presented in [6]. The method allows for the design of a
stimulus (i. e. the model input) to facilitate model discrimination for signaling. Sep-
cifically, the authors presented two formulations of a model-based controller that is
used to design a dynamic stimulus. In this context, a controller is a model that mon-
itors a certain process (e. g. a dynamical model) to drive a certain output behavior.
In [6], for example, the designed input signals were applied to the model candidates
driving the model output to a target trajectory. Such a target trajectory can be the
time-dependent change of a measured state variable, such as the dynamic phosphory-
lation of STAT3. The quality of a model candidate is assessed by the ability of the
corresponding controller to drive the system to follow the specific target trajectory.
The model discrimination task is generally difficult to solve due to the uncertainties

in parameters and/or state variables. In the past, experimental design methods for
model discrimination under uncertainties were proposed. For example, in [154] uncer-
tainties of the parameters and state variables are taken into account using a polynomial
chaos approach. Polynomial chaos is a non-sampling-based method to determine the
propagation of uncertainty in a dynamical system. The method is used in [154] to
approximate the probability density functions of the model outputs. To discriminate
between the uncertain nonlinear models, a measure based on the Bhattacharyya coef-
ficient is introduced. The Bhattacharyya coefficient describes a measure of the amount
of overlap between two statistical samples or populations [22]. The approach is applied
to an example considering the Michaelis-Menten and Henri mechanisms as two model
hypotheses for an enzyme-catalyzed reaction. The approach presented in [58] fur-
thermore allows model discrimination under experimental uncertainties. The authors
account for such uncertainities by introducing an optimal control-based approach and
applying the sigma-point method [81] to reduce parameter uncertainties. As a measure
for model discrimination, the overlapping areas of the expected response probability
distribution functions (PDFs) are computed.
Another approach for model discrimination and experimental design was presented

in [129]. By applying a profile likelihood approach, the model information is maxi-
mized for robust parameter identification. Also Bayesian approaches for the design
of experiments are frequently applied [36]. Bayesian experimental design is based
on Bayesian inference, in which Bayes’ law (i. e. the probability of an event based
on prior knowledge) is used to update the probability for a hypothesis as more data
becomes available. Notably, stochastic approaches require data which follow a normal
distribution. However, this is rarely fulfilled.

In this chapter, we devise a novel approach for optimal experimental design for
the purpose of guaranteed model discrimination using set-based methods and bilevel
optimization. In particular, our approach determines a model input to discriminate
between competing model hypotheses. The approach consists of two programs, i. e.
an inner and an outer program. Thereby, we aim to determine a locally optimal input
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6.2 Bilevel optimization for model discrimination

(outer program) such that two competing model hypotheses can be globally discrim-
inated (inner program), whereby ’globally’ means with guarantees and considering
uncertainities in parameters and model state variables.
Notably, the determination of optimal time points at which the output sets can be

separated and at which measurements shall be taken, is not directly in the focus of
this chapter. However, in general the approaches for both, the design of an optimal
stimulus and optimal measurement time points cannot be clearly separated and can
be easily integrated in the approach.

6.2 Bilevel optimization for model discrimination
In the following, we present the proposed solution approach, and the inner and outer
programs allowing for model discrimination under uncertainties.
We consider nh competing discrete-time models as described in (4.1) and similar to

(3.16):

h[i] :
 f [i](x[i](k+1), x[i](k), u(k), p[i]) = 0,
g[i](y[i](k), x[i](k), u(k), p[i]) = 0. (6.1)

The model hypotheses h[i] differ in their functions f [i] and/or g[i]. Furthermore, each
model has its own set of variables x[i](k), y[i](k) and p[i]. Notably, however, all models
have the same input u(k), which should be designed. In the following, we do not
consider measurement dataM(tk), but rather the reachable sets for the model outputs
y(k), i. e. y(k) ∈ Y(k) ⊆ Rny .
The general problem of set-based experimental design and the derived solution ap-

proach are illustrated in Fig. 6.1: Let in the following the set of competing models be
H := {h[1], h[2]}. Then, Y [1](k) and Y [2](k) for k ∈ T denote the corresponding output
sets (cf. Fig. 6.1(a), dark and light gray bars, respectively). Uncertainties in the out-
put sets result basically from i) uncertainties in model parameters and/or model states
that have to be propagated through the system, and ii) the applied input sequence
u := {u(0), . . . , u(nt − 1)} belonging to the uncertainty set U(k). As can be seen,
both output sets Y [1](4) and Y [2](4) overlap for the time point of interest, i. e. k=4
(cf. Fig. 6.1(a), rectangle with rounded corners, left and right panel). Consequently,
data at non-overlapping area would be needed to discriminate between both hypothe-
ses and to allow guaranteed invalidation of at least one model. Therefore, one needs
to design a new input sequence û := {û(0), ..., û(nt−1)}, such that the output sets do
not overlap at least at one time point (cf. Fig. 6.1(b), rectangle with rounded corners,
left and right panel). If then a single measurement would be taken at the considered
time point, it is guaranteed that at least one of the models can be invalidated if the
taken measurement does not fall into one of the output sets.
Notably, since it would be too restrictive or even infeasible to demand output set
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6 Optimal Experimental Design for Model Discrimination and Selection
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Figure 6.1: Solution approach for set-based optimal experimental design for
model hypotheses 1 and 2. Left panel: temporal trajectories for both models
and the uncertain model output sets Y [1] and Y [2]. Right panel: Reachable output
sets in state space obtained for each model using the dedicated parameter set.
(a) Overlapping output sets Y [1] and Y [2] at time point k=4 (red rectangle with
rounded corners, left panel) for an initial applied input u. (b) Non-overlapping
output sets Ŷ [1] and Ŷ [2] at k=4 (red rectangle with rounded corners, left panel)
for a newly designed input û.

separation for all time points k, it is sufficient to consider only a subset or even a single
time point.
To realize the described approach, we apply the set-based methods introduced

in Chapter 4 combined with bilevel optimization. Therefore, we introduce in the
following an inner and an outer program. While the goal of the inner program is
to check output set separation for defined time points, the outer program is used
to design an input (sequence) for model discrimination. The designed input is
steadily supplied to the inner program until output set separation can be guaranteed
for the considered time point. Please note that we consider in the following two
competing model hypotheses for simplicity of notation and presentation of the optimal
experimental design approach. The approach, however, is valid for more than two
model hypotheses to be considered.

Output set separation – Inner program: The inner program aims to check
output set separation for a considered time point (or several time points). To this
end, we introduce the variable τ ∈ T describing those time points for which output
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6.2 Bilevel optimization for model discrimination

set separation shall be reached.
Let Ŷ [1](k) and Ŷ [2](k), k ∈ T denote the output sets for hypothesis 1 and 2 resulting
from the applied input sequence û and uncertainties. Then, the distance δ̂ of the
model output sets can be defined into an optimization problem of the form:

δ̂ := min
(
ŷ[1](τ)− ŷ[2](τ)

)2

s.t. ŷ[1](τ) ∈ Ŷ [1](τ)
ŷ[2](τ) ∈ Ŷ [2](τ).

(6.2)

For guaranteed model discrimination, δ̂ > 0 is required, which is the condition for
output set separation at time point(s) τ . The output sets Ŷ [1](k) and Ŷ [2](k) are not
known explicitely. Therefore, we reformulate in the following the optimization problem
(6.2) using the model equations (6.1) and the uncertainty descriptions of both models
h[1] and h[2] according to Chapter 3, Section 3.1:

δ̂ := min
(
ŷ[1](τ)− ŷ[2](τ)

)2

s.t. model equations and uncertainties for h[1] :
f [1](x̂[1](k+1), x̂[1](k), p[1], û(k)) = 0
g[1](ŷ[1](k), x̂[1](k), p[1], û(k)) = 0
ŷ[1](k) ∈ Ŷ [1](k),∀k ∈ T ,
x̂[1](k) ∈ X̂ [1](k), ∀k ∈ T ,
p[1] ∈ P [1]

û(k) ∈ U(k),∀k ∈ T
model equations and uncertainties for h[2] :
f [2](x̂[2](k+1), x̂[2](k), p[2], û(k)) = 0
g[2](ŷ[2](k), x̂[2](k), p[2], û(k)) = 0
ŷ[2](k) ∈ Ŷ [2](k),∀k ∈ T ,
x̂[2](k) ∈ X̂ [2](k), ∀k ∈ T ,
p[2] ∈ P [2],

û(k) ∈ U(k),∀k ∈ T .

(6.3)

Again, we have defined, the dynamical model equations f [1], g[1] and f [2], g[2], the state
variables x̂[1](k) and x̂[2](k), the model outputs ŷ[1](k) and ŷ[2](k), the model parameters
p[1] and p[2], for both models 1 and 2, and the common input û(k), respectively.
Problem (6.3) is in general a nonlinear and nonconvex optimization problem.

Since it is difficult to derive a solution, (6.3) is relaxed into a convex semidefinite
optimization problem as described in Chapter 4. The solution that is obtained by
relaxing and solving (6.3) is denoted as δ̂relax which satisfies the relation δ̂ ≥ δ̂relax.
Thus, if the output sets Ŷ [1](τ) and Ŷ [2](τ) do not overlap, i. e. δ̂ > 0, then the
convex relaxation approach guarantees output set separation due to the relations
δ̂ ≥ δ̂relax > 0.
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6 Optimal Experimental Design for Model Discrimination and Selection

Determining a separating input – Outer program: The outer program is used
to determine an input sequence û of minimum norm that satisfies input constraints
and for which output set separation can be certified by the relaxed inner program, i. e.
δ̂relax > 0. The resulting bilevel optimization problem is given by

min
nt−1∑
k=0
‖û(k)‖

s.t. û(k) ∈ U(k),∀k ∈ T
δ̂relax > 0.

(6.4)

The basic idea is now to solve the (nonconvex) outer program using a deterministic
local nonlinear solver. The obtained input sequence û is subsequently supplied to
the relaxed inner program. The procedure is repeated until a (locally) optimal input
sequence is obtained.

6.3 Example: Stepwise receptor assembly
In the following, we illustrate the proposed approach considering IL-6-induced receptor
assembly and activation as shown in Chapter 4, Section 4.5. We considered two hy-
potheses, which describe simplified versus stepwise receptor assembly and activation.
Measurement data were generated by simulating the model describing stepwise recep-
tor assembly with nominal values. Thereby, we were able to demonstrate invalidity of
the model describing a simplified receptor assembly.
We here assume that no (simulated) measurement data for (p)Rcomplex are available.

Using the presented approach, we aim to design an optimal experiment that allows to
discriminate between both hypotheses. In particular, one aims to design an optimal
IL-6 stimulus concentration to separate the output sets for (p)Rcomplex for both
hypotheses with guarantees.

Model setup: The model and the setup for optimal experimental design is akin to
the setup described in Chapter 4, Section 4.5. Notably, it is assumed that all model
parameters lie within the uncertainty intervals pj=[0.1,1], j = {1, ..., 6}.
By applying the set-based experimental design approach an input û=ÎL−6 is

designed, such that both model hypotheses can be clearly discriminated. Notably, for
output set separation, a constant IL-6 input, i. e. IL-6=u(0) = . . . = u(nt − 1) within
the uncertainty range IL-6=[0,1] is used. Notably, the inner program is implemented
and solved using the set-based approach and ADMIT. As a consequence, model
discrimination can be globally guaranteed. In contrast to that, the outer program
is computed locally using the Matlab inbuild optimization routine fmincon, which is
based on the Nelder-Mead algorithm.
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6.3 Example: Stepwise receptor assembly

Results: The results for experimental design are depicted in Fig. 6.2. For an initial
input concentration of IL-6=1, the output sets for (p)R[1]

complex (cf. Fig. 6.2(a), blue
bars) and (p)R[2]

complex (cf. Fig. 6.2(a), red bars) overlapped for all time instances k.
Overlapping for all time instances indicates that no model discrimination is possible
for these conditions. After application of the proposed framework, a new IL-6 input
concentration was determined that allows a clear separation of the output sets at τ1=2
min and τ2=3 min (cf. Fig. 6.2(b), inlet). The designed IL-6 input was determined to
one fifth of the initial IL-6 concentration, i. e. ÎL−6=0.2.
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Figure 6.2: Results for set-based experimental design. (a) Outer approximation
of overlapping model output sets (p)Rcomplex for hypothesis 1 and 2 (blue and red
bars, respectively) for an initial input IL-6 = 1. (b) Outer approximation of non-
overlapping model output sets ̂(p)Rcomplex for hypothesis 1 and 2 (blue and red
bars, respectively) for a designed input ÎL−6 = 0.2. Output set separation was
achieved for time points τ1 = 2 min and τ2 = 3 min (inlet, see non-overlapping
area).

The results for set separation strongly depend on the intital chosen parameter un-
certainties. Separation of the output sets (p)R[1]

complex and (p)R[2]
complex would not have

been possible for larger uncertainty intervals as assumed. Consequently, for the given
example, the approach requires good initial knowledge of the parameter ranges. This,
however, is often non-restrictive as usually initial experiments allow an outer or even
an inner approximation of the underlying parameters. Hence, the initial uncertainty
ranges can be reduced to a reasonable interval and then, the experimental design
approach can be applied.
In the example, the time points at which both output sets ̂(p)R[1]

complex (cf. Fig. 6.2(b),

blue bars) and ̂(p)R[2]
complex (cf. Fig. 6.2(b), red bars) could be clearly separated were

determined to be τ1=2 min and τ2=3 min. Receptor assembly and activation due
to IL-6 stimulation describes very fast processes and hence, occurs within the first
minutes of signaling. Intuitively, if certain time points are important to decipher
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6 Optimal Experimental Design for Model Discrimination and Selection

valuable information about receptor assembly, they must be temporarily close after
start of IL-6 stimulation.
To underpin that especially early time points after IL-6 stimulation contain the most

valuable information to discriminate between two model hypotheses describing IL-6-
induced receptor assembly and activation, we compute in the following the FIM (Fisher
Information Matrix), cf. Chapter 1: The FIM determines the amount of information
that a measurement contains about an unknown parameter. In general, if the FIM
has large values, then the information content is high. In contrast, if only small values
are obtained for the FIM, then the information content is low.
To this end, we first determined the sensitivities S for the (theoretical) measurable

model species (p)Rcomplex at each time point tj, j = {0, ..., 20} with respect to the
model parameters pi, i = {1, ..., 6}. The sensitivity matrix for the considered system
was obtained by computing:

S =


∂(p)Rcomplex

∂p1
(t0) . . . ∂(p)Rcomplex

∂p6
(t0)

... . . .
...

∂(p)Rcomplex
∂p1

(t20) . . . ∂(p)Rcomplex
∂p6

(t20)

 .

Then, the FIM was calculated by

FIM =
20∑

j=0
SST.

Fig. 6.3 depicts the obtained results.
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Figure 6.3: Computation of the FIM (black bold line) for optimal experiment
design. The FIM reaches its maximum at t = 3 min indicating that early time
points contain the most valuable information to discriminate between two model
hypotheses describing IL-6-induced receptor assembly and activation.

The FIM increases at t=1 min and reaches its maximum at t=3 min. After that,
the FIM decreases and reaches a minimum after 20 minutes. Consequently, early
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6.4 Summary

time points, i. e. at 2, 3 and 4 min have the most valuable impact on the design of
experiments that allow for model discrimination between simplified versus stepwise
receptor assembly and activation. These findings are in line with our results for
set-based experimental design.

The presented set-based approach does not directly consider the determination of
optimal time points for which the most meaningful information can be obtained. We
note that the time points τ for which output set separation shall be reached, have
to be chosen carefully dependent on the biological system under study. Otherwise,
the method could fail. As an example, model discrimination for receptor assembly
and activation would not have been possible considering measurement time points
τ greater than 10 minutes. Therefore, computing first the FIM to determine the
information content of a measurement over time, followed by the proposed bilevel
approach is beneficial to decipher an optimal stimulus concentration allowing for
successful model discrimination.

Currently, the model for IL-6-induced receptor assembly and activation contains
(p)Rcomplex as model output. The experimental quantification of (p)Rcomplex is chal-
lenging. As potential remedy and to validate our results for simplified versus stepwise
receptor assembly and activation, one could analyse phosphorylated Jak (i. e. (p)Jak,
which can be detected by Western Blotting) as a surrogate for (p)Rcomplex. One im-
portant assumption would then be that (p)Jak serves as an indicator for receptor
activation and phosphorylation. We refer the interested reader to [49] for the corre-
sponding experimental setup.

6.4 Summary
In this chapter, we presented a set-based experimental design approach which allowed
for guaranteed model discrimination and selection under uncertainties. The method is
based on bilevel optimization and consists of an inner and an outer program. The inner
program fosters the output set separation by combining competing model hypotheses
into one optimization problem. As it is difficult to directly derive a solution (e. g. due
to model nonlinearities), the optimization problem was reformulated and subsequently
relaxed into a semidefinite convex optimization problem. For the convexified optimiza-
tion problem output set separation was checked and could be guaranteed globally using
appropriate convex solvers. In the outer program, we formulated a nonconvex opti-
mization problem which aimed to determine new model inputs. These inputs were
steadily supplied to the convex inner program checking whether or not the model
output sets for the determined inputs overlap.
This method was applied to two model hypotheses for IL-6-induced receptor assem-

65



6 Optimal Experimental Design for Model Discrimination and Selection

bly and activation. The model hypotheses described simplified receptor assembly and
activation and stepwise receptor assembly and activation, respectively. The output
sets for both hypotheses were considered to be the phosphorylated and activated
receptor complex. Notably, for an IL-6 input concentration of 1 both output sets
overlapped initially. After having designed an optimal IL-6 input concentration of
0.2 the output sets for both hypotheses were clearly separated. In particular, the
study indicated that especially early time points of IL-6-induced receptor assembly
and activation are important for experimental design and model separation as they
contain the most information. Thus, our results allow in further to plan experiments
accordingly gaining new insights into IL-6-induced receptor assembly and activation.

The outlined approaches allow an in-depth study of signal transduction pathways
on the short-term time scale, i. e. biological processes ranging from minutes to approx-
imately one hour. For a deeper understanding of IL-6-induced (patho-)physiological
processes also processes acting on the long-term time scale (i. e. over days) have to be
taken into account. Set-based methods are restricted with respect to the problem size,
which scales directly with the sampling time and the time horizon. Further approaches
are needed to consider both, the short- and the long-term time scale at the same time.
Therefore, we present in the following chapter methods allowing for the combination
of short-term signaling with long-term processes using the set-based framework.
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7 Set-based Multi-scale Modeling and Data
Integration

The modeling and estimation of biological processes acting on different time scales as
well as the integration of data along these temporal scales is a key challenge in systems
biology and systems medicine. The combination of both, short- and long-term time
scale, is indispensable to understand the development of diseases based on molecular
deregulations on the short-term time scale.
We present and apply a framework that allows to combine processes and data on the

short- and long-term time scale within one model preserving biological functionality
under uncertainties. In addition, we expand the approach with an unified framework
that allows for the stratification of a patient cohort into subcatgeories of high, medium
and low risk. In more detail, the unified patient stratification framework is based on a
fusion of the set-based multi-scale modeling framework with classification approaches.
The fusion of set-based methods with classification approaches inaugurates a new
field for possible applications of set-based methods and the usage of the information
obtained by set-based estimation.
The chapter is structured as follows. First, we review a phenomenological approach

to combine short-term signaling events with long-term cellular responses. We apply
this approach considering the influence of IL-6-induced Jak/STAT3 signaling on cell
growth. Second, we derive a framework for patient stratification. The approach is
applied to models that describe IL-6-induced Jak/STAT3 and MAPK trans-signaling
and their influence on inflammation.
The chapter is based on our results presented in [133] and [132].

7.1 Introduction
Biological processes often possess subprocesses of different temporal dynamics [46, 167].
The understanding of all processes from different time scales, such as short-term sig-
naling as well as long-term cellular responses, is important when it comes to the
model-guided development and design of new intervention strategies. However, the
integration of short-term signaling events and long-term cellular responses into math-
ematical models is challenging due to the multiple biological factors that influence this
integration. These factors are often not yet well characterized and understood and
thereby cannot be modeled in detail. Furthermore, even if all biological factors are
known, the modeling of biological processes from both time scales leads to computa-
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7 Set-based Multi-scale Modeling and Data Integration

tionally demanding problems with a large number of model states and parameters to
be estimated. The introduced set-based approach is restricted in the problem size that
can be considered [136]. Consequently, for the set-based framework and for the therein
presented methodological extensions often only medium-size models can be considered.
The termmedium-size cannot be clearly defined and is problem-dependent. For model-
ing, estimating and analyzing IL-6-induced signaling an alternative approach is needed
to understand the resulting (patho-)physiological long-term effects.
In this chapter, we first outline a so-called phenomenological approach towards multi-

scale modeling. This approach allows to combine short-term signaling events with
long-term responses using the set-based framework. We use the set-based phenomeno-
logical approach for analyzing and fusing it with classification approaches. In more
detail, we demonstrate how set-based information, such as lower and upper bounds on
short-term model parameters can be used to stratify a patient cohort into risk subcat-
egories for developing inflammatory diseases on the long-term time scale. The specific
stratification problem considered in this work is based on individual short-term sig-
naling profiles of phophorylated STAT3 acting as an inflammatory upstream marker
and its integrated response which serves as the long-term outcome.

7.2 Combining short-term signaling events with long-term
cellular responses

The following sections built upon the work presented in [143]. The approach proposed
to combine early short-term signaling events with long-term cellular responses using a
linear correlation of shape properties of activated signaling molecules, e. g. the maxi-
mum peak height or the integral of a signal, with the strength of long term responses
(cf. Fig. 7.1). In the following, we apply these ideas using the set-based framework.

7.2.1 Decoding approaches

We extend the model for IL-6-induced short-term signaling using the approaches de-
scribed in [143] and as illustrated in Fig 7.1. One approach for combining short-term
signaling events with long-term cellular responses is to correlate the integral of the
trajectory of a time-dependent signal S(t) linearily with the strength of the long-term
response Lint:

Lint = α ·
∫ tend

t0
S(t) dt. (7.1)

Here, α is an uncertain parameter describing the linear dependency of the integral and
the strength of the long-term response, and t0 as well as tend are the initial and final
time points for computing the integral.
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Figure 7.1: Schematic representation of the approaches for decoding a short-
term signal S into a long-term response L. Left panel: The black bold and
the dotted red line represent two time-dependent kinetics for a time-dependent
short-term signal S. Further depicted are the integrals for the corresponding upper
(intub) and lower (intlb) trajectory as well as the maximum peak heights (hmax) for
the corresponding upper (hmax,ub) and lower (hmax,lb) trajectory (dashed light blue
lines and light blue box). Right panel: By computing the corresponding parame-
ters from the left panel our goal is to combine the short- and long-term time scale
to estimate, predict and understand uncertain long-term (patho-)physiological re-
sponses Lint and Lmax (black crosses within orange corridor).

Another approach is to correlate the maximum peak height of a signal S(t) linearily
with the strength of the long-term response Lmax:

Lmax = β · hmax. (7.2)

In Eq. (7.2), β is an uncertain parameter describing the linear dependency of the
maximum signal peak height and the strength of the long-term response.
In the following, we integrate Eq. (7.1) and (7.2) into the set-based framework using

IL-6-induced STAT3 phosphorylation as the short-term outcome S(t) and IL-6-induced
cell growth as the long-term responses Lint and Lmax, respectively.

7.2.2 Example

We apply the approach to unravel the influence of IL-6-induced short-term Jak/STAT3
classic-signaling on IL-6-induced long-term cell growth. First, we describe the model
as well as measurement data and the set-based problem setup.

Model for IL-6-induced Jak/STAT3 classic-signaling and cell growth: We
adapt the model as depicted in (4.9). In addition, we consider SOCS3 mRNA tran-
scription and the translation to SOCS3 protein. Furthermore, we include the ideas
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given by Eq. (7.1) and (7.2) leading to:

x1(k+1) = x1(k) + ∆t
(
p1ux7(k)− p2x1(k)

− 2p3x2(k)2x1(k)2 + 2p4x8(k)
)

x2(k+1) = x2(k) + ∆t
(
2p4x8(k)− 2p3x2(k)2x1(k)2

)
x3(k+1) = x3(k) + ∆t

( p5x8(k)
1 + p13x6(k) − p6x3(k)

)
(7.3a)

x4(k+1) = x4(k) + ∆t
(
p7x9(k)x3(k)− p8x4(k)

)
x5(k+1) = x5(k) + ∆t

(
p9x4(k)− p10x5(k)

)
x6(k+1) = x6(k) + ∆t

(
p11x5(k)− p12x6(k)

)
ys(k) = x4(k) (7.3b)

Gint = α

2 ·
kend∑
k=0

(
x4(k+1) + x4(k)

)
·∆t

Gmax = β ·max
(
x4(k)

) (7.3c)

yl =
(
Gint, Gmax

)
. (7.3d)

Here the variables x1(k), x2(k), x3(k), x4(k), x5(k), x6(k), and u denote the species
IL-6:IL-6Rα, gp130, (p)Rcomplex, (p)STAT3, SOCS3 mRNA, SOCS3 protein as well as
the constant model stimulus, i. e. IL-6. Note, that the variables x7(k) (IL-6Rα), x8(k)
(Rcomplex) and x9(k) (STAT3) can be derived from the following conserved moeties:

IL−6RαTotal = IL−6Rα + IL−6:IL−6Rα + 2Rcomplex + 2(p)Rcomplex (7.4a)
gp130Total = gp130 + 2Rcomplex + 2(p)Rcomplex (7.4b)

STAT3Total = STAT3 + (p)STAT3. (7.4c)

Negative feedback inhibition through SOCS3 is modeled by a rational term (cf. (7.3a)).
In (7.3c), the variable Gint denotes cell growth obtained by calculating the integral of

(p)STAT3 over the considered time horizon by applying the trapezoidal method. Gmax
describes cell growth obtained by determining the maximum peak height of (p)STAT3.
On the short-term time scale (cf. (7.3a)) the parameters are denoted by pi, i =
{1, ..., 13} . Additionally, we assume x4(k) as model output (i. e. ys(k), cf. (7.3b)). On
the long-term time scale, the parameters are denoted by α and β (cf. (7.3c)), and Gint
as well as Gmax are the corresponding long-term model outputs (i. e. yl(k), cf. (7.3d)).

Measurement data: Stimulation of HepG2 cells with IL-6 induces no cell growth.
Therefore, Ba/F3 (murine pro B) cells were used instead to obtain measurement data
on the short- and long-term time scale. Ba/F3 cells were cultivated and stimulated with
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four different IL-6 concentrations, i. e. IL-6={0.004, 0.04, 0.2, 0.4} nM over a time hori-
zon of 45 minutes. The dynamics for STAT3 phosphorylation were quantified for the
time points tmeas = {0, 15, 30, 45} min (cf. Fig. 7.2(a), daten taken from [59]). Accord-
ing to Fig. 7.2(a), STAT3 becomes phosphorylated in an IL-6 concentration-dependent
manner. After 30 minutes, the amount of STAT3 phosphorylation decreases due to the
negative SOCS3 feedback inhibition and dephosphorylation of phosphorylated STAT3
by phosphatases. We note, that the depicted data on STAT3 phosphorylation was
normalized to the maximum phosphorylation, i. e. at t=15 min and IL-6=0.4 nM.
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Figure 7.2: Measurement data for IL-6-induced signaling in Ba/F3-gp130-
IL-6Rα cells. (a) The cells were stimulated with four different concentration
of IL-6 and STAT3 phosphorylation was measured for the time points 0, 15, 30
and 45 minutes (data taken from [59]). Diamonds correspond to the mean values
and bars denote the determined standard deviations for n=2 (0.004 nM), n=3
(0.04 nM), n=3 (0.4 nM) and n=6 (0.4 nM) independent replicates. (b) The
cells were stimulated with seven different IL-6 concentrations and cell growth
was measured after 48 hours (data taken from [100]). Diamonds correspond to
the mean values and bars denote the determined standard deviations for n=3
independent replicates, respectively. (c) Absolute quantification for the expression
of gp130 and IL-6Rα. Bars denote the determined standard deviations for n=4
independent replicates, respectively.
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To obtain data for cell growth on the long-term time scale, the cells were stimulated
with seven different IL-6 concentrations, i. e. IL-6={0.004, 0.04, 0.2, 0.4, 2, 4, 8}
nM and cultivated for 48 hours. Cell growth was quantified using the CellTiter-Blue
Cell Viability Assay reagent as described in Appendix A (cf. Fig. 7.2(b), data taken
from [100]). According to Fig. 7.2(b), the relative amount of cell growth (normalized to
maximal cell growth, i. e. at IL-6=8 nM) increases with increasing IL-6 concentrations.
In addition to the above data, the total concentrations for the receptors gp130 and

IL-6Rα were quantified (cf. Appendix A for experimental methods) and amounted to
1.2±0.7 nM (378±224 molecules per cell, assuming a cell volume of Vcell=0.5×10−12

L) and 49.2±12.04 nM (15568±3809 molecules per cell), respectively (Fig. 7.2(c)).

Problem setup: For the following set-based analyses, we used a sampling time
of ∆t=1 min, pi=[0.01,1] for i = {1, ..., 13} (equivalent to assumed half-times for
biomolecular reactions within seconds to minutes), and α, β=[10−4,104]. Furthermore,
the intitial conditions for the variables form the short-term time scale are fixed to
x0=(0,gp130Total,0,0,0,0)T.
Note, to decode (p)STAT3 into cell growth using the approach in Eq. (7.1), we

use the Matlab-based function trapz. The function trapz computes the approximate
integral of the corresponding upper and lower bounds on x4(k) ((p)STAT3) for k1=0
and kend=45 via the trapezoidal method.

Results and discussion: The short- and long-term experimental results for con-
centrations of IL-6={0.004, 0.04, 0.2, 0.4} nM (green, purple, red and blue bars in
Fig. 7.2(a) and (b)) were used to calibrate the model. In particular, we aimed to
estimate tighter ranges for the model parameters pi as well as α and β, such that the
the model is capable to represent the available measurement data on both time scales.
The remaining long-term data for the concentrations of IL-6={2, 4, 8} nM (brown,
black and yellow bars in Fig. 7.2(a) and (b)) were subsequently used for validation of
the obtained results.
The results for the prediction of short-term STAT3 phosphorylation are depicted in

Fig. 7.3(a). We first estimated the short-term parameters pi using the outer-bounding
algorithm as presented in Chapter 3. Then, we performed Monte Carlo sampling to
obtain valid parametrizations within the outer boundaries, such that the model is
capable to represent the available short-term data for STAT3 phosphorylation. We
determined 200 valid parametrizations leading to the depicted colored corridors in
Fig. 7.3(a). As can be seen, the setup model together with the assumed parameter
ranges is capable to represent IL-6-induced short-term STAT3 phosphorylation for the
different IL-6 concentrations.
We next computed the integrals as well as the maximum peak heights for those

trajectories that describe the outer margin of the colored corridors in Fig. 7.3(a) aiming
to derive an outer approximation of the long-term parameters α and β. As a result that
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Figure 7.3: Results for decoding short-term STAT3 phosphorylation into
long-term cell growth. (a) Dynamic short-term STAT3 phosphorylation for
four different IL-6 concentrations. Colored lines depict the obtained model tra-
jectories for the corresponding IL-6 concentration by simulating the model with
200 determined parameter samples. Colored bars and diamonds denote the corre-
sponding uncertain short-term measurement data. (b) IL-6-induced cell growth.
The dark gray area depicts the obtained outer approximations for cell growth us-
ing the integral for (p)STAT3 as decoding parameter. Colored bars and diamonds
denote uncertain long-term data for cell growth. (c) The light gray area depicts
the obtained outer approximations for cell growth using the maximum peak height
of (p)STAT3 as decoding parameter.

the long-term parameters were estimated to α=[0.01,0.31] and β=[0.37,1.18] leading
to an outer approximation of long-term cellular growth, depicted as dark and light
gray corridors in Fig. 7.3(b) and (c), respectively. We were capable to represent the
available long-term data for the corresponding concentrations of IL-6={0.004, 0.04, 0.2,
0.4} nM. While Fig. 7.3(b) depicts the obtained results for correlating the integral of
the (p)STAT3 signal with cell growth Gint, Fig. 7.3(c) shows the results for correlating
the maximum peak height of the (p)STAT3 signal with cell growth Gmax.
At this point, we assumed to have determined a calibrated model. Next, we used the

determined 200 parametrizations to predict STAT3 phosphorylation for the remaining
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IL-6 concentrations, i. e. IL-6={2, 4, 8} nM (trajectories not shown). Based on these
predictions, we calculated the corresponding integrals and maximum peak heights as
before and aimed to predict experimentally determined cell growth. As can be seen in
Fig. 7.3(b) and (c), the long-term data could be predicted for both approaches very
well, i. e. the data lie within the determined outer approximations (dark and light gray
corridors Fig. 7.3(b) and (c)).

7.2.3 Summary

In the previous sections, we presented how biological processes from the fast, short-
term time scale can be combined with cellular responses on the slow, long-term time
scale. Typically, biological processes from signaling over gene expression to cell growth
are very complex and cannot be modeled in detail. The combination of short- and long-
term processes reduces these complexities by describing the main phenomena with only
few equations and parameters. In particular, we here employed approaches for corre-
lating specific shape properties of the kinetics of IL-6-induced STAT3 phosphorylation
with cell growth considering processes such as transcription, translation, and growth
as a black box. We showed that both approaches, i. e. a linear dependency of the
maximum peak height of STAT3 phosphorylation as well as a linear dependency of
the integral of the STAT3 phosphorylation signal with cell growth can be used to
combine short- and long-term time scales within the set-based estimation approach.
We note, that the adapted approaches for combining short-term STAT3 phosphory-

lation with long-term cell growth are very specific approaches which need additional
experimental validation. Nevertheless, we showed that it is possible to combine dif-
ferent time scales within the set-based framework avoiding a disproportional increase
in the model size and the number of unknown parameters to be estimated. Prospec-
tively, the combination of short- and long-term time scales deepens our understanding
of how cells integrate signals, such as IL-6-induced STAT3 phosphorylation into dis-
tinct (patho-)physiological cell decisions, such as IL-6-induced cell growth.
An improved knowledge about the development of pathophysiological processes lay

the foundation for the establishment of new medical treatments concerning, e. g. IL-
6-induced misbalanced signaling and related inflammatory diseases. The selection of
appropriate medical treatments concerning misbalanced IL-6-induced signaling is not
trivial and its success depends on individual, patient-specific characteristics (such as
genetic background). Therefore, so-called stratification approaches are often applied by
classifying patients into different subcategories aiming to design the optimal patient’s
treatment.
In the following, we present a new and unified framework that works towards the

stratification of patients for individual medical treatments.
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7.3 Model-supported patient stratification using set-based
information

Stratification describes the identification of groups with common characteristics, such
as age, gender, social, ethnical or medical background [71]. In medicine, stratification
of patients aims to assess potential risk for which certain diseases propagate or develop.
To this end, risk factors are collected and associated, for instance, with clinical disease-
specific symptoms [45, 78, 115]. Based on this stratification, physicians can decide
upon personalized intervention strategies in an optimal manner [171].
In the following, we approach the task of patient stratification by combining set-

based estimation methods for short-term molecular pathways with classification ap-
proaches of long-term disease development. In particular, we propose an unified frame-
work that allows for the stratification of patients into subcategories of high, medium
and low risk levels for developing inflammatory diseases. The framework is demon-
strated by means of IL-6-induced Jak/STAT3 and MAPK trans-signaling and corre-
sponding long-term responses.

7.3.1 Main idea and algorithms

Our approach combines the set-based estimation framework presented in [136] for data
on the fast, short-term time scale with classification methods for patient stratification
using data on the slow, long-term time scale as detailed in Figure 7.4. In a first step,
we assume the availability of short-term data obtained from biochemical surrogates
of patients (such as cells extracted from biopsies or blood serum). These surrogates
are probed by biochemical stimulation (e. g. excitation of a certain pathway) and
point us to changes in proteins or genes indicative of disease status within seconds
to minutes (upper, left-hand box). We apply the set-based estimation framework to
obtain parameter sets that can describe the biochemical data (lower, left-hand box).
These parameter sets are subsequently transformed (piped) through a classification
algorithm (e. g. an artificial neural network, support vector machines, etc.), resulting
in a set of transformed parameters (in our example: weights and thresholds in a neural
network; lower blue box) to match the long-term response. Long-term responses can
be seen as the physiologcial patient outcome (e. g. cell growth) and may describe the
disease status over days (upper, right-hand box). In the second step of the framework,
we aim to predict the long-term outcome based on model parameters determined
in the first step. The physiological patient outcome can be either experimentally
determined or may be obtained by integrating the short-term patient outcome as
illustrated in the previous sections. To predict the long-term patient outcome, we
arrange the sequence of long-term data into ordered tupels for each patient. The thus
obtained tupels are associated to classes of long-term patient responses and serve as
output categories for the classification approach. If the long-term data only consists
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Figure 7.4: Proposed workflow for combining uncertain biochemical pro-
cesses on the short-term time scale with uncertain physiological re-
sponses on the long-term time scale and patient stratification. The
short-term time scale data often describe the patient diagnosis over longer time
and may be seen as a means for patient strata for disease development (e. g. low,
medium and high risk). For the stratification of patient cohorts into different
subcategories, algorithms such as Artificial Neural Networks (ANN) or Support
Vector Machines (SVM) can be used.

of a single endpoint (as in our example), its value are directly associated with a group
such as providing a stratification for low, medium or high risk based on predefined
thresholds for the respective data (lower, right-hand box). For stratification, the
patients are split into groups for training, validation and test which is in line with
standard procedures of classification approaches [50]. The analysis is performed for
each patient of each group separately.

The presented workflow can be systematically formalized in Algorithms 1 and 2. The
first algorithm is used to obtain a trained classifier based on the short-term patient
data and the corresponding strata thresholds for high, medium, and low risk. Once
Algorithm 1 has produced a classifier that performs satisfyingly, the obtained result
is applied in a second step to stratify new patients according their long-term profiles
using Algorithm 2.
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Algorithm 1 Set-based classifier training
Input:

Short- and long-term time scale data for each patient;
A dynamical model representing the data on the short-term time scale;
Threshold values defining each risk group;
An untrained classifier;

Output:
A trained classifier;

1: Perform set-based parameter estimation using the short-term time scale data and
the dynamical model

2: Process the data for each time instance on the long-term time scale into the risk
subcategories

3: Stratify the patients into the corresponding risk subcategories
4: Arrange the corresponding parameter bounds of each patient to the corresponding

risk subcategory for each long-term time instance
5: Split patients into groups for training, validation and test
6: Train the chosen classifier
7: Verify the quality of the classifier and if needed adjust and re-train the classifier

Algorithm 2 Patient stratification
Input:

Short-term time scale data for each patient;
The same dynamical model representing the short-term time scale data as in Al-
gorithm 1;
The trained classifier from Algorithm 1;

Output:
A prediction of the patient-specific risk category;

1: Perform set-based parameter estimation using the short-term time scale data and
the dynamical model

2: Input the set-based parameter estimation results into the trained classifier
3: Obtain the stratification results

7.3.2 Example

To demonstrate applicability of the presented framework and algorithms, we use
simulated measurements for the short- and long-term time scale for a group of 50
patients. Simulated short-term data consists of a biochemical data set, assumed to
be provided by biochemically testing the response of extracted patient tissue to a
certain stimulation. In particular, we assume to avail of protein changes of patient
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tissue associated with two important signaling pathways, IL-6-induced Jak/STAT3
and MAPK trans-signaling. As long-term response, we assume the availability of
a single endpoint at a later time point for each patient, which we associate to low,
medium and high risk for developing an IL-6-induced inflammatory disease.

Model for Jak/STAT3 trans-signaling: The reaction mechanisms for the
Jak/STAT3 pathway are described as:

x1(k + 1) = x1(k) + ∆t
(
p1x7(k)u− p2x1(k)

− 2p3x2(k)2x1(k)2 + 2p4x8(k)
)

x2(k + 1) = x2(k) + ∆t
(
2p4x8(k)− 2p3x2(k)2x1(k)2

)
x3(k + 1) = x2(k) + ∆t

( p5x8(k)
1 + p13x6(k) − p6x3(k)

)
x4(k + 1) = x4(k) + ∆t

(
p7x3(k)x9(k)− p8x4(k)

)
x5(k + 1) = x5(k) + ∆t

(
p9x4(k)− p10x5(k)

)
x6(k + 1) = x6(k) + ∆t

(
p11x5(k)− p12x6(k)

)
.

(7.5)

Thereby, the variables x1(k), x2(k), x3(k), x4(k), x5(k), x6(k) and u denote IL-6:sIL-
6Rα, gp130, (p)Rcomplex, (p)STAT3, SOCS3 mRNA, SOCS3, and IL-6. Furthermore
x7(k), x8(k), x9(k) describe the entities sIL-6Rα, Rcomplex and STAT3, respectively
which can be extracted from the following conservation laws:

sIL−6RαTotal = sIL−6Rα + IL−6:sIL−6Rα + 2Rcomplex + 2pRcomplex

gp130Total = gp130 + 2Rcomplex + 2pRcomplex

STAT3Total = STAT3 + pSTAT3.
(7.6)

Notably, for implementing Model (7.5) we assume, apart from the mentioned as-
sumptions in Chapter 5 that STAT3 activation represents both, phosphorylation and
dimerization of STAT3 proteins.

Model for MAPK trans-signaling: The reaction mechanisms for the MAPK path-
way are described as:
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x1(k + 1) = x1(k) + ∆t
(
p1x7(k)u− p2x1(k)

− 2p3x2(k)2x1(k)2 + 2p4x8(k)
)

x2(k + 1) = x2(k) + ∆t
(
2p4x8(k)− 2p3x2(k)2x1(k)2

)
x3(k + 1) = x2(k) + ∆t

(
p5x8(k)− p6x3(k)

)
x4(k + 1) = x4(k) + ∆t

(
p7x3(k)x8(k)− p8x4(k)

)
x5(k + 1) = x5(k) + ∆t

(
p9x4(k)x9(k)− p10x5(k)

)
,

x6(k + 1) = x6(k) + ∆t
(
p11x5(k)x10(k)− p12x6(k)

)
x7(k + 1) = x7(k) + ∆t

(
p13x6(k)x11(k)− p14x7(k)

)
.

(7.7)

In (7.7), the variables x1(k), x2(k) and x3(k) are similar to (7.5), whereby the same
conserved moieties hold for sIL-6Rα and Rcomplex. Moreover, the variables x4(k), x5(k),
x6(k), and x7(k) denote Ras∗, Raf∗, Mek∗ and ERK∗, respectively. The inactive forms
Ras, Raf, Mek and ERK denoted as x8(k), x9(k), x10(k), and x11(k) can be extracted
from the conservation laws:

RasTotal = Ras + Ras∗

RafTotal = Raf + Raf∗

MekTotal = Mek + Mek∗

ERKTotal = ERK + ERK∗.

(7.8)

We note that Grb2 was not explicitly modelled but considered as an integral part of
the phosphorylated receptor.

Simulated short- and long-term patient data: We assume a cohort of 50 pa-
tients and simulate measurement data for the proteins (p)STAT3 and ERK∗, acting
as upstream surrogates for inflammatory diseases. For generating data on (p)STAT3,
the input IL-6 was fixed to 0.2 and STAT3Total was set to 10. Furthermore, we fixed
the kinetic parameters pJak/STAT3

i with i := {1, . . . , 13} to the nominal values

p
Jak/STAT3
i = (0.075, 0.056, 0.01, 0.00015, 0.25, 0.09, 1.5, 0.01, 0.1, 0.1, 1, 0.1, 5)T

and the initial conditions were set to

xJak/STAT3(0) = (0, gp130Total, 0, 0, 0, 0, 0).

Values for the total concentrations of gp130Total and IL-6RαTotal were randomly gener-
ated within bounds of gp130Total=[1,5] and sIL-6RαTotal=[0.5,2] obtaining 50 patient-
specific profiles on (p)STAT3.
For data generation on ERK∗, we fixed IL-6 to 0.2, gp130Total to 5 and IL-6RαTotal
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7 Set-based Multi-scale Modeling and Data Integration

to 2. The kinetic parameters pMAPK
i with i := {1, . . . , 14} were set to the nominal

values

pMAPK
i = (0.075, 0.056, 0.01, 0.00015, 0.25, 0.09, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1)T

and the initial conditions were set to

xMAPK(0) = (0, gp130Total, 0, 0, 0, 0, 0).

Values for the total concentrations of RasTotal, RafTotal, MekTotal, and ERKTotal were
randomly generated within the bounds [1,10] obtaining 50 patient-specific profiles on
ERK∗.
As long-term patient outcome, we assumed the integrated response of the activation

of both pathways as a disease surrogate. We therefore first calculated the integrals of
the (p)STAT3 and ERK∗ trajectories for each patient for a time horizon of 60 minutes.
Then, both integrals were multiplied to assess a collective effect for inflammation on
the long-term time scale. These results were then grouped over the patient cohort to
classify them into patients with values lower than 25%-quantile “low risk patients”,
such between 25%- and 75%-quantiles “medium risk patients” and such with higher
than the 75%-quantile “high risk patients”.
Note, that the simulated short- ((p)STAT3 and ERK∗) and long-term time scale

data (corresponding integrals) together with the patient stratification that is used for
classification are shown exemplary for 10 patients in Fig. 7.5.

Set-based problem setup: The set-based approach was used to remodel the
short-term time scale data under the given initial conditions for each pathway in
order to render a set of outer-bounded parameters for each patient and pathway. For
solving the feasibility problem of the dynamical system, the time discretization ∆t
was set to 2 minutes for a time horizon of 60 minutes. To account for experimental
uncertainties, errors of ±10% were added to the parameter vectors pJak/STAT3

i and
pMAPK
i as well as to the simulated short-term data for (p)STAT3 and ERK∗. Based

on this generated short-term data, the patient-specific parameters gp130Total and
sIL-6RαTotal in the Jak/STAT3 pathway and RasTotal, RafTotal, MekTotal, and ERKTotal

in the MAPK pathway were estimated for each patient using the outer-bounding
approach as described in Chapter 4.

Structure of the network and setup of the classifier: For the classification
part of our method, several approaches can be used (cf. [50, 97]). To demonstrate
the proposed framework, we opted to use Artificial Neural Networks (ANN), see e. g.
[50, 121] and Fig. 7.6 for a schematic representation. Yet, also Support Vector Ma-
chines [2] or boosting methods [141] can be used. An ANN is based on a collection of
nodes (colored circles Fig. 7.6). The different neurons are connected to one another

80
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Figure 7.5: Simulated patient data exemplarily depicted for 10 patients. (a)
Dynamic (p)STAT3 profiles, red trajectories. (b) Dynamic ERK∗ profiles, blue
trajectories. (c) Integrated response of (p)STAT3 and ERK∗ as a disease surrogate.
Horizontal black lines denote the thresholds of the patient cohort grouped into the
corresponding risk categories.

(simulating a simplified version of a synapse, black arrows Fig. 7.6) allowing the neu-
rons to transmit a signal from one to another. Notbaly, during the transmission, the
signal is processed (strengthened, weakened). In ANN implementations, the signal
at a connection between neurons is a real number, and the output of each neuron is
calculated by a nonlinear function of the sum of its inputs. Neurons and connections
typically have a weight that adjusts as learning proceeds. The weight increases or
decreases the strength of the signal at a connection. Neurons may have a threshold
such that the signal is sent only if the aggregate signal crosses that particular thresh-
old. Typically, neurons are organized in layers that may perform different kinds of
transformations on their inputs. Signals travel from the input (first) layer via one or
several hidden layers to the output (last) layer, possibly after traversing the layers
multiple times.
In our example, the chosen ANN consisted of one hidden layer with 10 artificial

neurons, to which the patient-specific set-based input information are fed (Fig. 7.6
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Figure 7.6: Schematic representation of an Artificial Neural Network as used
in this work. Artificial Neural Networks consist of an input, hidden and output
layer, in which neurons (colorored circles) are connected to one another (arrows).
Patient-specific parameters (e. g. IL-6RαTotal) are used as inputs to the network,
while the output layer describes three different categories.

input layer, red circles). Furthermore, the ANN consisted of one output layer, which
provides the stratification results (Fig. 7.6 output layer, green circles). All neurons
in the hidden layer have sigmoid activation functions, in contrast to the output layer
having softmax activation functions [159]. The use of softmax neurons normalizes the
outcome such that all outcomes add to 1, and hence the patient category as outcome
can be interpreted as probability function [67].

7.3.3 Results and discussion

First, we estimated the corresponding parameters (total receptor and kinase amounts)
for each patient and pathway using the set-based approach. In Table 7.1 the outer-
bounding results for 4 simulated patients (cf. Fig. 7.5, patients 1-4) are presented. As
can be seen, the parameters could be approximated to tight ranges with respect to the
initial chosen uncertainty ranges.
The estimated outer bounds for the considered parameters serve subsequently as

inputs to the neural network. The inputs are vectors of 4 inputs per patient for the
Jak/STAT3 pathway comprising the upper and lower boundary value (reflecting the
uncertainty of the data) of the parameters sIL-6RαTotal and gp130Total. In addition,
for the MAPK pathway we have vectors of 8 inputs per patient comprising again the
upper and lower boundary value of the parameters RasTotal, RafTotal, MekTotal and
ERKTotal, respectively. Thus, in total we have a vector of 12 inputs per patient to the
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7.4 Summary

network. We note, that all guarantees obtained by set estimation of the patient-specific
parameters are lost when piping through the ANN.

Table 7.1: Exemplary outer-bounding results for 4 patients for the Jak/STAT3 (cf.
Fig. 7.5(a)) and the MAPK signaling pathway (cf. Fig. 7.5(b)).

Jak/STAT3 pathway MAPK pathway
patient # sIL-6RαTotal gp130Total RasTotal RafTotal MekTotal ERKTotal

1 [1.2,1.8] [3.7,4.9] [7.6,9.3] [6.7,9.2] [7.2,9.8] [8.3,9.6]
2 [0.9,1.6] [3.2,4.3] [6.8,9.2] [6.0,9.0] [6.4,9.6] [7.4,8.5]
3 [0.7,1.1] [2.7,3.6] [5.9,8.0] [5.2,8.7] [5.6,8.4] [6.5,7.4]
4 [1.4,2.0] [4.1,5.0] [3.9,5.3] [3.2,5.4] [5.7,8.5] [5.9,6.8]

For stratification, the simulated patients were splitted into a training, validation, and
test group according a split of 60%, 20% and 20%, respectively. The resulting confusion
matrices are presented in Fig. 7.7. The results demonstrate a 83.3% correct classifica-
tion of the training set (Fig. 7.7(a)), 90% of the cross-validation set (Fig. 7.7(b)), 80%
of the test set (Fig. 7.7(c)) and an overall correctness of 84% (Fig. 7.7(d)).
To ensure reproducibility of the results different runs were carried out. The inte-

grated random algorithm that was used for choosing which patient falls in which group
(i. e. for training, validation and testing, repectively), demonstrated that the results
could only improve. Furthermore, the different runs showed that the results are inde-
pendent of the grouping choice. Also an increase in the size of the hidden layer did
not lead to an improvement of the stratification results.

7.4 Summary
We presented a modeling framework that allows for combining processes and data on
the short- and long-term time scale under the umbrella of the set-based approach.
The combination of both time scales together with the application of classification
methods allowed in particular the model-guided stratification of patients into risk
categories for high, medium or low risk for developing inflammatory diseases. The
stratification of patients is based on dynamic processes and parameters on the short-
term time scale, however, does not demand a deeper knowledge about processes on
the long-term time scale. Thus, an advantage of the therein proposed framework is
that only one model for the short-term time scale is needed. The presented framework
can be seen as an extension of methods that provide a feasibility set for measurement
data with inherent uncertainties. The sets obtained for a fast, short-term and often
pathway-based description of the disease process are transformed by piping it through
a classification algorithm to provide a prediction of long-term time scale data. With
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Figure 7.7: Results for classification of a simulated patient cohort into sub-
categories of risk levels for developing inflammatory diseases. Results for
(a) training, (b) validation, and (c) testing of the classifier over the three patient
categories, i. e. 1: high, 2: medium, and 3: low risk. Red and green highlighted
areas correspond to a wrong and correct classification, respectively. Dark gray
highlighted areas show the classification results for the corresponding category 1,
2, and 3, while blue highlighted areas describe the overall result comprising all
three categories. (d) Overall conclusion comprising the results from (a), (b) and
(c).

this, we aimed to provide a shift in reasoning over feasibility sets to define them as a
super-class for explaining data under uncertainty, while covering a process of detailed
dynamical modeling and more abstract stratification approaches at the same time.
By stratifying patients into risk categories, physicians are able to select optimal

treatments and intervention strategies tailored to the individual patient. Tailoring
of medical treatment to the individual characteristics of each patient (i. e. precision
medicine) has been a part of healthcare for many years. Model-guided stratification
approaches can help to support physicians in their decisions reducing, for example,
complications during medical treatments.

In the previous Chapters 4-7 we showed how the set-based estimation framework
[136] can be used and extended for parameter estimation, experimental design and the
combination of different time scales. We applied the approaches using IL-6-induced
signaling for obtaining a deeper understanding about the underlying complex molecular
processes and relating deregulations. In the next chapter, we consider both, IL-6-
induced classic- and trans-signaling aiming to gain new insights into differences of
the two pathways. To achieve our goals, we apply the set-based estimation method
together with quantitative biochemcial analyses.
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8 Fusing Experimental Insights and Dynamic
Modeling: Response to IL-6 Trans- and
Classic-signaling is Determined by the Ratio of
the IL-6Rα to gp130 Expression

In this chapter, we present a comprehensive application example for set-based model
invalidation and parameter estimation considering IL-6-induced classic- and trans-
signaling. Notably, for the first time the set-based approach is applied to a realistic-
sized pathophysiological problem. The chapter is based on our work presented in [130].
We note, that measurement data used to study classic- and trans-signaling were gener-
ated specifically by M. Sc. Heike Reeh and M. Sc. Ulrike Billing (group of Prof. Fred
Schaper and Dr. Anna Dittrich, Department of Systems Biology, Magdeburg). We fo-
cus on the modeling and set-based estimation, details on experimental methodologies
can be found in Appendix A.

8.1 Introduction
IL-6 is, among many other processes, involved in the regulation of inflammatory
responses. It is well studied that dysregulated IL-6-induced signaling is associated
with the development of immunological and proliferative diseases, such as rheumatoid
arthritis, inflammatory bowel disease and colon cancer [39, 42, 54, 77, 109]. Initiation of
IL-6-signaling occurs through two different pathways, i. e. classic- and trans-signaling.
While classic-signaling induces regenerative and protective responses, trans-signaling
is related to pro-inflammatory responses [142] and is thus, associated with the devel-
opment of inflammatory diseases.
In order to analyse trans-signaling independently of classic-signaling the fusion pro-

tein Hy-IL-6 was developed. In HepG2 cells, Hy-IL-6 induces maximal expression of
acute-phase proteins at molar concentrations substantially lower than those needed
for IL-6 [56]. In mouse models, injection of Hy-IL-6 results in a significantly stronger
induction of acute-phase proteins than IL-6 [120]. These observations led to the conclu-
sion that trans-signaling is a stronger activator of Jak/STAT3 signaling than classic-
signaling. However, the molecular basis for this hypothesis has not been identified
yet. In this chapter, we use set-based mathematical modeling as well as biochemi-
cal and cell biological analyses to study the differences between IL-6-induced classic-
and trans-siganling. Notably, although several computer models of the JaK/STAT3
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pathway have already been published ([23, 49, 128, 148, 162, 173]), they focus on
classic-signaling. Differences between IL-6 classic- and trans-signaling have not yet
been addressed and systematically modeled.
The basic question of interest is how close or different the signaling machinery of

both pathways is. Our results show that the differences between IL-6-induced classic-
and trans-signaling are only mediated by differences in the expression and molar ratios
of receptor components whereas canonical intracellular signaling is indifferent in both
pathways. Our computational study lays the basis for potential intervention strategies
targeting IL-6-induced misbalanced signaling at the receptor level.

8.2 Measurement data
To study differences between IL-6-induced trans- and classic-signaling we make use of
the specific trans-signaling inducer Hy-IL-6. We first verified the applicability of Hy-IL-
6 to induce trans-signaling in lieu of IL-6 and sIL-6Rα. Using the law of mass action
and considering the dissociation constant KD=0.5 nM of the IL-6:IL-6Rα complex
[177], we calculated how much IL-6:sIL-6Rα complex is formed for given amounts of
IL-6 and sIL-6Rα. Next, we compared the strength of trans-signaling induced by
either IL-6:sIL-6Rα complex or an equimolar amount of Hy-IL-6. Exemplary, HepG2
expressing both gp130 and membrane-bound IL-6Rα are stimulated with either 0.17
nM IL-6 + 100 nM sIL-6Rα, forming 0.17 nM IL-6:sIL-6Rα complex, or 0.17 nM
Hy-IL-6. After 15 min of stimulation phosphorylation of STAT3 was analysed by
intracellular flow cytometry in stimulated and unstimulated HepG2 cells as control.
As result, no obvious difference in STAT3 activation in response to trans-signaling
induced by Hy-IL-6 or by the IL-6:sIL-6Rα complex exists (Appendix B, Fig. B.1).
Hence, Hy-IL-6 can be used as specific stimulus for trans-signaling.
To investigate whether the strength of IL-6-induced classic-signaling is different to

trans-signaling we compared next the kinetics of STAT3 phosphorylation, as well as
SOCS3 mRNA and SOCS3 protein expression in HepG2 cells stimulated with either
0.17 nM (Fig. 8.1(a)) or 0.08 nM (Fig. 8.1(b)) of IL-6 to induce classic-signaling or Hy-
IL-6 to induce trans-signaling. As result, IL-6-induced classic- and trans-signaling re-
sult in transient phosphorylation of STAT3. However, trans-signaling-induced STAT3
activation (red) is more pronounced than classic-signaling-induced STAT3 phospho-
rylation (blue). SOCS3 mRNA and protein expression follow the peak of STAT3
phosphorylation. Both SOCS3 mRNA and protein induction are higher in response
to trans-signaling than to classic-signaling. Data normalization was performed as de-
scribed in Appendix B. In addition to the data presented, the number of total IL-6Rα
and gp130 receptor proteins on the cell surface was determined by a bead-based FACS
assay as 2.2 ± 0.3 nM (2099 ± 347 receptors/cell) and 16.8 ± 3.1 nM (16198 ± 2965
receptors/cell), respectively (Fig. 8.1(c)). The number of total STAT3 in HepG2 cells
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was measured by quantitative Western blotting and amounted 958 ± 445 nM (9.2·105

± 4.2·105 molecules/cell).
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Figure 8.1: Measurement data for IL-6-induced classic- and trans-signaling
in HepG2 cells (blue and red, respectively). (a) HepG2 cells were stimulated
with 0.17 nM IL-6 (classic) and Hy-IL-6 (trans), respectively. STAT3 phospho-
rylation, SOCS3 mRNA and SOCS3 protein expression were analysed. Data are
given as mean±STD from n=3-4 experiments. (b) HepG2 cells were stimulated
with 0.08 nM IL-6 (classic) and Hy-IL-6 (trans), respectively. (c) The expression of
gp130 and IL-6Rα of HepG2 cells was quantified by flow cytometry. Mean±STD
from n=4 independent experiments is shown. Activation and expression of STAT3
in HepG2 cells were quantified using recombinant calibrator proteins. Mean±STD
from n=7 independent experiments is shown.
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8.3 Models for IL-6-induced classic- and trans-signaling
So far, it is unknown whether the observed differences between classic- and trans-
signaling (Fig. 8.1(a) and (b)) are caused by different strength of receptor activation or
by different signaling mechanisms as well as kinetics downstream to receptor activation.
To test these alternative hypotheses we use set-based modeling. To this end, we
consider three different models. While the first model describes a combination of
classic- and trans-signaling (Fig. 8.2(a)), the second and third models describe classic-
and trans-signaling by two separated sub-models (Fig. 8.2(b) and (c)). The detailed
model assumptions can be found in Appendix C.
Note, we model classic-signaling by considering that IL-6 first binds to IL-6Rα fol-

lowed by binding of the IL-6:IL-6Rα complex to gp130. In case of trans-signaling
Hy-IL-6 associates directly with gp130.
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Figure 8.2: Assumed network topologies. Initial models describing (a) both,
classic- and trans-signaling and (b) trans-signaling, only and (c) classic-signaling,
only. Classic-signaling is induced by binding of IL-6 to membrane-bound IL-6Rα.
The complex associates with gp130. Trans-signaling is induced by binding of Hy-
IL-6 to gp130. The active receptor complex initiates Jak/STAT3 signaling and
SOCS3 expression.

Based on the modeling assumptions (Appendix C) and the topology given in
Fig. 8.2(b), the differential equations describing Hy-IL-6-induced trans-signaling are
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given by:

d[gp130]
dt = 2v4b − 2v3b

d[actRcomplex]
dt = v5 − v6

d[(p)STAT3]
dt = v7 − v8

d[SOCS3 mRNA_1]
dt = v9 − v10

d[SOCS3 mRNA_2]
dt = v10 − v11

d[SOCS3 mRNA]
dt = v11 − v12

d[SOCS3_1]
dt = v13 − v14

d[SOCS3_2]
dt = v14 − v15

d[SOCS3]
dt = v15 − v16.

(8.1)

Additonally, the differential equations describing IL-6-induced classic-signaling are
given as:

d[IL−6:IL−6Rα]
dt = v1 − v2 − 2v3a + 2v4a

d[gp130]
dt = 2v4a − 2v3a

d[actRcomplex]
dt = v5 − v6

d[(p)STAT3]
dt = v7 − v8

d[SOCS3 mRNA_1]
dt = v9 − v10

d[SOCS3 mRNA_2]
dt = v10 − v11

d[SOCS3 mRNA]
dt = v11 − v12

d[SOCS3_1]
dt = v13 − v14

d[SOCS3_2]
dt = v14 − v15

d[SOCS3]
dt = v15 − v16.

(8.2)
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Notably, to obtain the model describing both, classic- and trans-signaling (topology
given in Fig. 8.2(a)), (8.1) and (8.2) are combined into one system.
Descriptions of the flux expressions vi are given in Appendix D, Table D.1. Con-

centrations for the quantities [IL-6:IL-6Rα], [Rcomplex] and [STAT3] can be derived
from the following algebraic equations:

[IL−6αTotal] = [IL−6Rα] + [IL−6:IL−6Rα] + 2[Rcomplex] + 2[actRcomplex]
[gp130Total] = [gp130] + 2[Rcomplex] + 2[actRcomplex] (8.3)

[STAT3Total] = [STAT3] + [(p)STAT3],

In (8.3), the total amounts of the receptors and protein are set according the experi-
mentally determined values (see Fig. 8.1(c)).
Note, a comprehensive description of the single model state variables, parameters

and initial conditions are given in Appendix D, Tables D.2 and D.3.

8.4 Overall workflow for development of calibrated models
and invalidity test for hypothesis

Our goal is to develop a model that is in line with the hypothesis for identical topolo-
gies and kinetics downstream of receptor activation in trans- and classic-signaling-
induced Jak/STAT3 signaling. To achieve this goal we developed the following work-
flow (Fig. 8.3). First, parameter estimation is performed for the initial models (see
topologies as given in Fig. 8.2). Subsequently, these results serve as inputs to reduced
models lacking SOCS3 synthesis and negative feedback. The aim of this second step
is to further confine the initial parameter ranges using again set-based parameter esti-
mation. Next, the results of both set-based parameter estimation rounds are merged
which results in calibrated models with reduced parameter ranges. To finally test
whether our calibrated model cannot be invalidated and hence supports our initial
hypothesis a yes/no workflow is applied. Notably, the results of the yes/no workflow
applied in this study are depicted in bold black arrows in Fig. 8.3, while alternative
workflows are given by dotted arrows. We first ask whether the obtained parameter
ranges for the three calibrated models (Fig. 8.3 box 1) overlap. In case the ranges are
disjoint, the initial hypothesis is deemed invalid. In case the ranges overlap, we next
ask whether the model combining both, trans- and classic-signaling yields the smallest
and the same ranges as at least one of the models describing trans-signaling only and
classic-signaling only (box 2). If this question is neglected, a Monte Carlo sampling
analysis is subsequently performed for all three models to check whether individual
parametrizations can be found that overlap between all thre models (boxes 2a and
b). In case the individual parameter sets are disjoint, we can state that our initial
hypothesis is invalid. If in contrast, the obtained clouds of samples overlap, we deem
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8.4 Overall workflow for development of calibrated models and invalidity test for
hypothesis
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8 Fusing Experimental Insights and Dynamic Modeling: Response to IL-6 Trans-
and Classic-signaling is Determined by the Ratio of the IL-6Rα to gp130 Expression

this hypothesis as not invalid.
We above ask whether the model combining both, trans- and classic-signaling yields

the smallest and same parameter ranges as at least one of the models describing trans-
signaling only and classic-signaling only. If this applies, we can state that the model
which combines both, trans- and classic-signaling constrains parameter ranges best
(Fig. 8.3 box 3) and can be used for further Monte Carlo sampling analyses (box
3a). If finally parametrizations are determined, such that the model is capable to
represent all measurement data (box 3b), we cannot invalidate the hypothesis that
trans- and classic-signaling-induced Jak/STAT3 signaling employ the same pathway
topology downstream of receptor activation (box 3c). Subsequently, the developed
and not invalid model can be used for further analyses, while in negative case, the
hypothesis is deemed invalid and is rejected.

8.5 Set-based modeling and parameter estimation
For set-based analyses of IL-6-induced classic-signaling and Hy-IL-6-induced trans-
signaling, a discrete-time approximation of the models is derived applying a first order
Euler discretisation scheme. We use a step size of 2 min for the first 30 minutes
of stimulation and a step size of 2.5 min for the remaining time horizon, i. e. 30 to
90 minutes as these time points show less dynamic changes compared to the first 30
minutes.
As constraints, we employ the measurement data presented in Fig. 8.1 and initial

boundaries of the 17 parameters (15 for classic-signaling and 13 for trans-signaling)
are specified in a global range of 10−9-103 covering all biologically-justified parameter
values. We further consider the range of 0.5-50 nM for the dissociation constant of the
IL-6:IL-6Rα complex (KD1=p2

p1
) [13, 74, 75, 122, 170] and the range of 0.01-0.05 nM

for both, the IL-6:IL-6Rα:gp130 complex (KD2=pcl4
pcl3
) and the Hy-IL6:gp130 complex

(KD3=ptr4
ptr3

) [74, 122] (Fig. 8.2).

Set-based estimation: Based on these constraints, we applied the set-based
approach and the outer-bounding algorithm to estimate the unknown parameter sets.
Notably, empty parameter sets (i. e. no parametrizations exist that can represent
measurement data) refer to an invalidity of our initial hypothesis that trans- and
classic-signaling-induced Jak/STAT3 signaling employ the same pathway topology
downstream of receptor activation. We started with the initial model that combines
both, classic- and trans-signaling. The first round of set-based parameter estimation
provided restrictions on the model parameters ptr3 , ptr4 , and p7-p12, while other
parameters cannot (p5, p6 and p13) or only marginally be restricted (p1, p2, pcl3 and
pcl4 ) (Fig. 8.4 dark gray bars compared to initial parameter intervals in black and
Table D.4, second column). Thus, parameter sets were found to be non-empty.
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8.5 Set-based modeling and parameter estimation
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Figure 8.4: Results for outer-bounding of model parameters for initial mod-
els. Initial parameter bounds (green bar) range from 10−9 (lower bound, lb) to 103

(upper bound, ub). Dark gray, red and blue bars depict ranges for the parameters
after set-based analysis of the initial models.

Including both, classic- and trans-signaling simultaneously in a single model may
constrain the parameter boundaries in comparison to specific models on classic- or
trans-signaling. Thus, in a second step of our analyses, we tested whether separated
implementation of models describing either classic- or trans-signaling reveals the same
or different results for parameter estimation compared to those derived from a single
model describing both, classic- and trans-signaling. We casted classic- and trans-
signaling induced Jak/STAT3 signaling into two separated models. The results for
set-based parameter estimation of these two models are depicted in Fig. 8.4 (red for
trans-signaling only; blue for classic-signaling only) and Tables D.5 and D.6, second
columns, respectively.
Our initial hypothesis that classic- and trans-signaling-induced Jak/STAT3 signal-

ing employ the same pathway topology downstream of receptor activation therefore
cannot be deemed invalid as also for separated implementation of models describing
either trans- or classic-signaling parameter sets were found to be non-empty. We could
restrict 14 (p1, p2, pcl3 , pcl4 , ptr3 , ptr4 , p7, p8, p9, pdelay1, p10, p11, pdelay2, p12) out of 17
model parameter ranges to at least one boundary. However, for the remaining three
parameters (p5, p6 and p13) no further restrictions could be made (Fig. 8.4). In sum-
mary the first round of set-based parameter estimation did not render our models
invalid and enabled us to restrict most of the unknown parameters. This result counts
for all three initial models.
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8.6 Decoupling of fast and slow processes for improved
parameter estimation

The so far unrestricted or only marginally restricted parameters are important to de-
scribe the initial and fast activation of the pathway. Thus, we analyzed these model
parameters in the reduced models that decouple the early and fast receptor activa-
tion from the subsequent slow reactions including synthesis of SOCS3 protein and
the SOCS3-dependent negative feedback. We used the estimated parameter bounds
obtained by analyzing the initial models (Fig. 8.4) as inputs to the reduced models.
Thereby we exploited the fact that biochemical parameters of interacting proteins are
independent from the network topology. As before, one model describes classic- and
trans-signaling (Fig. 8.5(a)) and two additional reduced models describe either trans-
(Fig. 8.5(b)) or classic-signaling (Fig. 8.5(c)). By setting the parameters p11, pdelay2,
p12 and p13 to zero we assumed the production of SOCS3 protein - and hence the
resulting negative feedback - to be blocked.
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combining trans- and classic-signaling. (b) Model for trans-signaling. (c) Model
for classic-signaling.
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8.6 Decoupling of fast and slow processes for improved parameter estimation

Refined measurement data: To match the above assumptions experimentally, we
analysed the kinetics of Jak/STAT3 signaling in HepG2 cells stimulated with either
0.08 nM or 0.17 nM IL-6 and Hy-IL-6, respectively while blocking the synthesis of
SOCS3 protein with cycloheximide (CHX) (Fig. B.2 in the appendix). In the presence
of CHX, both IL-6 and Hy-IL-6-induced SOCS3 protein expression was blocked and
consequently cytokine-induced STAT3 phosphorylation was strongly increased. Conse-
quently, IL-6 and Hy-IL-6-induced phosphorylation of STAT3 was not transient in the
presence of CHX but reached a plateau after 60 min of stimulation. Cytokine-induced
expression of SOCS3 mRNA rose continuously until the end of the experiment. No-
tably, trans-signaling is stronger than classic-signaling also in the presence of CHX.
These additional measurement data is used for parameter estimation based on the
reduced models as described.
Compared to the analyses of the initial models, ranges of parameters p1, p2, pcl3 , pcl4 ,

p7 and p8 could be further reduced for all three models lacking the SOCS3 feedback
loop (Fig. 8.6, compare light colours (w/o SOCS3 feedback) with the corresponding
dark colours (including SOCS3 feedback); Table D.4, D.5 and D.6 fourth columns,
respectively). Notably, ranges for parameters p5, p6 and p13 could not be restricted,
neither using the initial models and corresponding data, nor using the reduced models
with the additional data.
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Figure 8.6: Results for outer-bounding of model parameters for initial and
reduced models. Initial parameter bounds (green bar) range from 10−9 (lower
bound, lb) to 103 (upper bound, ub). Dark gray, blue and red bars depict pa-
rameter ranges for the individual parameters after set-based analysis of the initial
models. Light gray, light blue and light red bars depict parameter ranges after
parameter estimation of the reduced models neglecting SOCS3 mediated feedback.

We next merged the results from first and second set-based parameter estimation
rounds by choosing the smallest obtained parameter ranges from both rounds (com-
pare workflow Fig. 8.3) and thereby obtained calibrated models (Tables D.4, D.5 and
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D.6, fourth columns, respectively). Subsequently, we followed the flow chart as given
in Fig. 8.3 to test (non-)invalidity of our initial hypothesis that signaling mechanisms
downstream of receptor activation do not differ between trans- and classic-signaling-
induced Jak/STAT3 signaling. Our analyses showed that the obtained parameter sets
for the models describing both, trans- and classic-signaling, trans-signaling only and
classic-signaling only, overlap (Fig. 8.3 box 1). Furthermore, the parameter ranges
estimated from the model describing specifically trans-signaling correspond to those
ranges estimated from the model describing both, trans- and classic-signaling (com-
pare dark and light gray and red bars in Fig. 8.6) (Fig. 8.3 box 2). Parameter ranges
estimated from the model describing specifically classic-signaling were less restricted
compared to the model describing trans-signaling. Obviously, the model which com-
bines both, trans- and classic-signaling constrains the parameter ranges best (Fig. 8.3
box 3).

8.7 Monte Carlo sampling and set-based refinements of
parameter ranges

Using the set-based approach parameter ranges were tightened, which led to fewer
false positive solutions. However, to achieve our goal for developing a feasible model
which supports our hypothesis that trans- and classic-signaling-induced Jak/STAT3
signaling employ the same pathway topology downstream of receptor activation,
verification of the parameter sets within the given boundaries (Fig. 8.6) was required.
We therefore applied Monte Carlo sampling using the calibrated model that describes
both, trans- and classic-signaling (Fig. 8.3 box 3a). Out of 150,000 parametrizations,
we derived the 150 parametrizations within the estimated parameter ranges (Fig. 8.6;
light and dark gray bars), (Table D.4 fourth column) with lowest square deviation
between our model predictions and the measurement data (exemplary magenta plus
signs Fig. 8.7(a)). These 150 parametrizations allowed predictions, which are in line
with the measurement data (Fig. 8.3 box 3b; Fig. 8.7(b)). Specifically, in Fig. 8.7(b)
model predictions for the kinetics of trans- and classic-signaling-induced STAT3
phosphorylation, SOCS3 mRNA expression, and SOCS3 protein expression for up to
90 min are depicted in dark and light gray corridors, respectively. These corridors
result from simulations of the model with the determined 150 parametrizations.
Measurement data are given in red for trans-signaling and blue for classic-signaling.
As the model was capable to represent all measurement data using the obtained
parametrizations, we could not invalidate our initial hypothesis that signaling
mechanisms downstream of receptor activation do not differ between trans- and
classic-signaling as we wanted to show (Fig. 8.3 box 3c).

For most of the parameters the derived parametrizations did not cover the complete
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8.7 Monte Carlo sampling and set-based refinements of parameter ranges
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estimated ranges (Fig. 8.7(a)). This, however, is no proof for the non-existence of
valid solutions within these regions where no samples could be determined. Due to
computational limits, it was not possible to exhaustively examine the parameter ranges
for valid parametrizations using Monte Carlo sampling. In the following, we confirmed
our results from Monte Carlo sampling. Specifically, we aimed to demonstrate that
regions where no samples were determined, are invalid ones. We provided an iterative
procedure that is built upon successive refinements of the lower and upper parameter
bounds (Table D.4 fourth column) to tighten the overall parameter ranges. Starting
with parameter p1, we moved the previously estimated lower and upper bounds of
p1 inwards, while testing at each step if the model is deemed invalid. By this, we
obtained refined and tightened parameter bounds for p1. Remarkably, boundaries for
p2 were automatically restricted after refining p1 as the ratio of p1 to p2 represent the
dissociation constant of the IL-6:IL-6Rα complex. We proceeded with parameter p3

cl

similar as to p1. As result, also parameter p4
cl could be further restricted. The procedure

was repeated for the remaining parameters resulting in a further refinement of the
estimated parameter ranges depicted as black horizontal lines in Fig. 8.7(a) (Table D.4
fifth column). These refined ranges comprised all determined parametrizations. Thus,
our results from Monte Carlo sampling could be confirmed.
As summary, Monte Carlo sampling and a subsequent refinement of parameter

ranges allowed us to develop a mathematical model with tight and valid parameter
ranges.

Predictive capacity of the model: We finally challenged the predictive capacity
of our model and therefore, calculated the dose-dependent phosphorylation of STAT3
expected after 30 min of stimulation with either IL-6 or Hy-IL-6. For experimental
validation, we stimulated HepG2 cells with 13 different equimolar concentrations of
Hy-IL-6 and IL-6 for 30 min and monitored STAT3 phosphorylation by intracellular
flow cytometry. Both classic- and trans-signaling induced phosphorylation of STAT3
dose-dependently. The experimental conditions used in Fig. 8.7(b) (stimulation with
0.08 nM and 0.17 nM cytokine for 30 min) were included and again resulted in stronger
STAT3 phosphorylation in response to trans-signaling than in response to classic-
signaling. Notably, trans-signaling was stronger than classic-signaling for all cytokine
concentrations tested (Fig. 8.8).
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8.8 Model prediction reveals that differences between classic- and trans-signaling are
caused by the ratio of gp130 to IL-6Rα on the cell surface

0

200

400

600

800

0.260.02 0.04 0.08 0.17 0.34 0.42 0.63 0.84 1.26 2.1 4.2

cytokine [nM]

trans
HepG2

classic
prediction trans
prediction classic

(p
)S

T
A

T
3

 [
n

M
]

0

Figure 8.8: Predictive capability of the model. Model predictions of classic-
(dark gray) and trans-signaling (light gray) for dose-dependent phosphorylation
of STAT3 after 30 min stimulation with either IL-6 (blue bars) or Hy-IL-6 (red
bars) using the 150 Monte Carlo samples from Fig. 8.7.

8.8 Model prediction reveals that differences between
classic- and trans-signaling are caused by the ratio of
gp130 to IL-6Rα on the cell surface

As we could not invalidate the hypothesis that topology and kinetics of Jak/STAT3
signaling downstream to the receptor activation are the same for classic- and trans-
signaling, we next asked which components of the pathways are responsible for the
observed differences in STAT3 activation in response to classic- and trans-signaling. To
analyse whether the amount of receptors on the cell surface affects the ratio of classic-
to trans-signaling, we varied the start values of gp130 and membrane-bound IL-6Rα.
With these input variables, we performed model predictions using the obtained 150
Monte Carlo parameter samples. We predicted the ratio of trans- to classic-signaling-
induced STAT3 phosphorylation after 30 minutes of cytokine stimulation. A ratio of 1
means that both signaling modes are equally strong activated (red bold line Fig. 8.9),
whereas a ratio > 1 means that trans-signaling is stronger than classic-signaling.
First, we fixed IL-6RαTotal and STAT3Total to their determined mean concentration

values 2.2 nM and 958 nM (Fig. 8.1(c)), respectively, and varied the mean value of
gp130Total = 16.8 nM ± one order of magnitude. Notably, for endogenous gp130
concentrations (white area) the model rendered well the high ratio of trans- to classic-
signaling (Fig. 8.9(a)). For increasing amounts of gp130 the ratio of trans- to classic-
signaling further increased, whereas, for lower amounts of gp130 the ratio of trans-
to classic-signaling decreased. Next we varied the amount of IL-6RαTotal ± one order
of magnitude, i. e. ranging the IL-6RαTotal concentration from 0.22 nM to 22 nM
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Figure 8.9: Model predictions for the ratio of STAT3 phosphorylation in
classic- and trans-signaling after 30 min cytokine stimulation with 0.17
nM using the obtained parametrizations from Fig. 8.7. (a) The amount of
gp130Total was changed from 1.68 nM to 168 nM while expression of IL-6RαTotal

(2.2 nM) and STAT3Total (958 nM) were fixed. (b) The amount of IL-6RαTotal

was changed from 0.22 nM to 22.2 nM while expression of gp130Total (16.8 nM)
and STAT3Total (958 nM) were fixed. (c) The amount of STAT3Total was changed
from 95.8 nM to 9580 nM while expression of gp130Total (16.8 nM) and IL-6RαTotal

(2.2 nM) were fixed. Gray corridors correspond to model predictions. Red line
depicts equal strength of classic- and trans-signaling. The white areas describe
the receptor as well as protein amounts in HepG2 cells as presented in Fig. 8.1(c).
The blue areas describe the receptor as well as protein amounts in HepG2-IL-6Rα
cells as presented in Fig. 8.10.

(Fig. 8.9(b)) while keeping the concentration of gp130Total and STAT3Total constant.
The white area depicts the concentration ± STD of endogenous IL-6Rα at which trans-
signaling is two to three times stronger than classic-signaling. Interestingly, for higher
concentrations of IL-6RαTotal the difference between STAT3 phosphorylation during
trans- and classic-signaling was completely ablated (Fig. 8.9(b)).
From these observations we conclude that the ratio of IL-6Rα to gp130 on the cell

surface crucially determines the strength of classic- and trans-signaling. When IL-6Rα
is expressed at lower numbers than gp130, trans-signaling allows formation of more
active receptor complexes than classic-signaling and hence trans-signaling is stronger
than classic-signaling. When, in contrast, gp130 is expressed at lower numbers than IL-
6Rα, gp130 acts as a bottleneck and trans-signaling cannot surpass classic-signaling.
In line with this hypothesis HepG2 cells express more gp130 than IL-6Rα (Fig. 8.1(c)).

The results from set-based modeling do not argue for classic- or trans-signaling-
specific signal transduction downstream of the respective activated receptor complex.
To substantiate this hypothesis we applied our model to predict the influence of the
extent of STAT3 expression on the ratio of trans- to classic-signaling-induced STAT3
activation. We predicted STAT3 phosphorylation for changing amounts of STAT3Total

ranging from 95.8 to 9580 nM (Fig. 8.9(c)) and fixed expression for IL-6RαTotal and
gp130Total. For low concentrations of STAT3Total trans-signaling-induced STAT3
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8.9 Summary and conclusion

phosphorylation was in average three time stronger than classic-signaling. With
increasing amounts of STAT3Total the difference between trans- and classic-signaling
decreased. However, STAT3 phosphorylation in trans-signaling was still more than
two times higher than in classic-signaling at an concentration of 9580 nM STAT3Total.
This supports our hypothesis that intracellular signaling is not causative for the
differences between classic- and trans-signaling. As result of our model predictions,
we hypothesize that the ratio of gp130 to IL-6Rα determines differences between
classic- and trans-signaling.

Experimental validation of model predictions: To challenge the validity of the
above predictions we generated HepG2 cells that stably overexpress IL-6Rα (HepG2-
IL-6Rα). Surface expression of IL-6Rα and gp130 was quantified by FACS analysis
(Fig. 8.10(a)). In contrast to HepG2 cells that express approximately 8 times more
gp130 than IL-6Rα, HepG2-IL-6Rα cells express approximately 10 times more IL-6Rα
than gp130. HepG2-IL-6Rα cells therefore reflect a situation in which regarding to our
mathematical simulation classic- and trans-signaling do not differ (Fig. 8.9 blue area).
We next measured the dynamics of STAT3 phosphorylation, SOCS3 mRNA as well
as SOCS3 protein expression for 0.17 nM IL-6- and Hy-IL-6 in HepG2-IL-6Rα cells
(Fig. 8.10(b)). Furthermore, the dose-dependent phosphorylation of STAT3 after 30
min of stimulation with 13 different concentrations of Hy-IL-6 and IL-6 was monitored
(Fig. 8.10(c)). As shown by our model predictions, classic- and trans-signaling resulted
in equal activation of Jak/STAT3 signaling in all analysed cases in HepG2-IL-6Rα cells.

8.9 Summary and conclusion
We employed the set-based estimation framework for studying a large biochemical
problem, i. e. signaling mechnanisms during IL-6-induced classic- and trans-signaling.
To this end, we developed three different set-based models, i. e. one, which combines
both, classic- and trans-signaling; one, which describes trans-signaling only; one, which
describes classic-signaling only and analyzed these models according their capability
of reproducing measurement data. As main assumption on all three models, we de-
fined that intracellular processes and corresponding kinetics are the same in classic-
and trans-signaling. As a result, none of the three models could be invalidated. We
further derived outer-bounds for the unknown kinetic parameters. We noticed that the
model which combines both, classic- and trans-signaling yields the same outer-bounds
compared to the model, which describes trans-signaling only. The outer parameter
bounds determined using the model which describes classic-signaling only were found
to be larger compared to the remaining two models. Notably, the estimated parameter
ranges were all overlapping and thus, our intitial hypothesis for common downstream
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Figure 8.10: High IL-6Rα/gp130 receptor ratio in HepG2-IL-6Rα cell lines
ablates difference between classic- and trans-signaling. (a) Absolute quan-
tification of total amounts of IL-6Rα and gp130 expression in HepG2-IL-6Rα cells.
Bars denote the determined standard deviation for n=4 independent replicates,
respectively. (b) HepG2-IL-6Rα cells were stimulated with 0.17 nM IL-6 and Hy-
IL-6, respectively. STAT3 phosphorylation, SOCS3 mRNA and SOCS3 protein
expression were analysed. Data are given as mean±STD from n=4 experiments.
(c) HepG2-IL-6Rα cells were stimulated with indicated concentrations of IL-6 or
Hy-IL-6, respectively. STAT3 phosphorylation was evaluated. Data are given as
mean±STD from n=3 experiments.

signaling mechanisms during classic- and trans-signaling could not be invalidated.
Set-based analyses showed that ranges from 14 out of 17 parameters could be

restricted to at least one boundary. Ranges of three remaining parameters could be
not restricted at all. We proposed an iterative refinement of the obtained parameter
ranges based on Monte Carlo sampling. By this, we could further tighten the
parameter ranges improving predictibility of our model.

Our model-guided predictions together with biochemical experiments showed for
the first time that differences in the responsiveness of IL-6-induced classic- and trans-
signaling are only caused by the ratio of the IL-6-receptor subunits on the cell surface
of the responding cell but not by intracellular differences. When the amount of gp130
exceeds the amount of IL-6Rα trans-signaling is stronger than classic-signaling. In
contrast, when IL-6Rα exceeds gp130 both pathways are equally strong. Our results
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8.9 Summary and conclusion

call for intervention strategies that directly interfere with receptor activation instead
of intracellular signaling to specifically block pro-inflammatory trans-signaling.
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9 Conclusions and Outlook

To understand and unravel the complexity of biological systems with the objective
to identify and design promising intervention strategies, model-guided analyses and
predicitons are an important tool. The development and parametrization of mathe-
matical models, however, is not trivial. Usually, kinetic parameters are unknown and
have to inferred from the data. These data are typically subject to (large) noise. Noisy
data makes it hard to decide whether a model reproduces the data or not. As result,
often several competing model candidates exist due to several biological hypotheses,
that need to be invalidated against each other. Moreover, biological processes often
span several time scales, which need to be considered and their interrelation need to
be unraveled for a deeper understanding of the underlying molecular interactions.

9.1 Summary
The present thesis expands the set-based estimation framework presented in [135, 136]
and [24, 27] towards reliable parameter estimation, experimental design and multi-scale
modeling. The used set-based framework enables to directly consider uncertainites in
data, parameters and initial conditions and therefore, allows to provide guarantees.
Throughout the thesis, we applied the developed methods to understand IL-6-

induced receptor assembly and activation as well as downstream signaling. IL-6
stimulates inflammatory and auto-immune processes in a number of diseases, such as
rheumatoid arthritis, multiple sclerosis and Crohn’s Diseases. Due to the involvement
of IL-6 in the development of inflammatory diseases, there is a great interest in the
development of anti-IL-6 therapies. We applied our methods to model and understand
IL-6-induced signaling in order to obtain deeper insights into its (patho-)physiology
and to present possible approaches targeting IL-6-induced misbalanced signaling.
After a review of the research topics, an introduction of the running example and an

overview about the concepts for modeling biological systems (Chapters 1-3), we in-
troduced the set-based estimation framework and two approaches for the estimation of
unknown parameter sets in Chapter 4. The framework is based on a nonconvex feasi-
bility problem that includes all information and equations of the underlying biological
problem. To allow for conclusive statements about model invalidity, the nonconvex
problem is relaxed into a convex semidefinte (or linear) program. These programs can
be solved efficiently due to the availability of state-of-the art solvers. As example, we
considered IL-6-induced receptor assembly and activation during classic-signaling. In
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particular, we considered two competing model candidates, i. e. one model, which de-
scribed stepwise receptor assembly and activation and another model, which described
simplified receptor assembly and activation. Using simulated uncertain measurement
data and initial parameter ranges, we demonstrated that the simplified model candi-
date is not capable to reproduce the data. Thus, this model candidate was deemed
invalid. We were further able to derive an outer approximation of the valid parameter
set for the model candidate that describes stepwise receptor assembly and activation.
Our results underpin the current perception of IL-6-induced receptor activation [72],
i. e. IL-6 forms in a first step a complex with the receptor subunit IL-6Rα and in a
second step, the receptor subunit gp130 binds to the complex of IL-6 and IL-6Rα.
Outer approximations still include invalid parametrizations due to the relaxation

processes. As remedy, we derived so-called inner approximations of parameter sets in
Chapter 5. The derivation of inner approximations is built upon a reformulation of
available quantitative measurement data using binary variables and logical operators.
An inversion of the reformulated measurement constraints allowed the estimation of
inner approximations by proving invalidity of the inverted problem. We proposed two
algorithms, i. e. a recursive algorithm and an incremental polytopic sample expansion
algorithm. We demonstrated applicability considering two examples. For the first ex-
ample, an enzyme-catalyzed reaction, tiny inner approximations were derived. For the
second example describing early IL-6-induced trans-signaling, the recursive algorithm
did not lead to an inner approximation. However, we derived valid parameter samples
by local optimization and applied the polytopic sample expansion algorithm.
Chapter 6 dealt with the design of experiments for the discrimination of valid

and invalid models under uncertainties. We developed an approach based on bilevel
optimization. In the inner program the different models were captured into one opti-
mization problem. A constraint was formulated calculating the distance between the
model output sets. As the inner program was nonconvex and thus, difficult to solve,
the crucial idea consisted in the relaxation of the inner program using convex solvers.
In the outer program - a nonconvex optimization problem - an input (sequence) was
generated und subsequently supplied to the inner program checking whether or not the
derived input leads to output sets, which do not overlap. While, the nonconvex inner
program was convexified and solved using the set-based method, the outer program
was solved using fmincon. We applied the proposed bilevel approach to two compet-
ing models describing IL-6-induced receptor assembly and activation. We designed an
optimal IL-6 concentration for which the output sets of both model were separated.
Our results call for additional biochemical experiments that allow for a deeper study
of model candidates describing IL-6-induced receptor assembly and activation.
In Chapter 7 approaches for the combination of biological processes that act on

different time scales as well as the integration of uncertain data obtained at these time
scales were presented. In the first part of the chapter, we introduced and applied a
phenomenological approach for the combination of short-term signaling events (i. e.
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dynamic phosphorylation of proteins) with long-term responses (i. e. cell growth).
In particular, we correlated specific shape properties of short-term signals with cell
growth using the set-based framework. We applied the approach to IL-6-induced
classic-signaling and correlated the shape properties of the kinetics of IL-6-induced
STAT3 phosphorylation with IL-6-induced cellular growth. We computed the maxi-
mum peakt height as well the the integrated response of the STAT3 phosphorylation
signal and mapped the obtained results with cell growth. Our results showed that spe-
cific shape properties from the short-term time scale can be used to predict long-term
cellular responses. Although this approach is very specific and needs further experi-
mental validation, we showed that phenomenological approaches are very useful when
computing time is a limiting factor and the size of the models needs to be kept small.
In the second part of the chapter, we proposed an approach which combines the

set-based framework with classification methods. The main goal for combining both
frameworks is the stratification of patients into different categories for the long-term
risk of developing a certain disease based on uncertain data from the short-term time
scale. To this end, we simulated a cohort of 50 patients and short-term profiles for
IL-6-induced STAT3 and ERK phosphorylation. Both proteins, STAT3 and ERK, can
be seen as upstream markers for developing inflammatory diseases. The corresponding
patient- and pathways-specific parameters served as inputs to the neural network and
as result, 84% of the patients were stratified correctly into the corresponding categories.
In Chapters 4-7 we applied our developed extensions for the set-based approach to

rather small/medium-sized models describing IL-6-induced signaling. In Chapter 8,
the set-based framework was applied to a large pathophysiological problem describing
IL-6-induced receptor activation, Jak/STAT3 signaling and negative feedback inhi-
bition by SOCS3 during classic- and trans-signaling. We studied differences in IL-
6-induced classic- and trans-signaling using set-based parameter estimation together
with model-guided predictions and biochemical analyses. We showed, that differences
in IL-6-induced classic- and trans-signaling are only mediated by differences in the
expression of the receptors of the responding cell.

9.2 Outlook
The topics addressed in this thesis lay the basis for a series of research directions. The
most limiting factor using the set-based methods is the computational demand for
composing and solving the semidefinite and linear programs. Especially, in the appli-
cation example (Chapter 8) we reached computational limits solving the model which
combines both, classic- and trans-signaling. A reason for that is, that the set-based
framework exponentially depends on both, the problem size and the length of the con-
sidered time horizon. A possible solution approach for the reduction of computational
costs is the exploitation of certain system properties, such as symmetry [137, 164]. This
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allows the decomposition of large semidefinite programs into smaller subproblems. The
application of the concept of symmetry is, however, problem-dependent and may not
be applied directly due to the problem structure in biological examples. Additional
concepts for complexity reduction within the set-based framework were proposed in
[139] and showed promising results for a multiple tank system.
We presented set-based approaches for the estimation of inner parameter sets, the

design of experiments and the combination of processes acting on different time scales.
All approaches were applied to the example of IL-6-induced signaling. Further re-
search should focus on validation of the obtained results. As an example, additional
measurement data will allow an invalidation of one of the proposed model candidates
(Chapter 6) and will deepen our knowledge about IL-6-induced pathway activation and
receptor assembly. Additional future research should also focus on the combination of
conventional methods, such as the set-based framework with classification approaches.
The stratification of patient cohorts becomes more and more important as the de-
mand of new intervention strategies increases. Furthermore, the heterogeneity in the
data landscape (e. g. quantitative, sparse data versus qualitative, densed data) need
to be considered. Model-guided analyses (including pathway modeling but also ma-
chine learning strategies) as well as the combination of the different approaches allow
the extraction of helpful information for physicians to design personalized intervention
strategies [66].
We worked towards the goal for the design of new personalized intervention strate-

gies by developing and analyzing set-based models that describe IL-6-induced signaling
pathways. Future research should focus on further validation of our results, that dif-
ferences in the responsiveness of IL-6-induced classic- and trans-signaling are only
mediated by the membrane-bound receptor subunits IL-6Rα and gp130. Our model-
guided analyses lay the basis for the development of new individualized intervention
strategies by taking into account patient-specific ratios of IL-6Rα and gp130. So far,
approved antibodies, such as tocilizumab, have many negative side effects. A main
reason for that is, that a therapy with tocilizumab also blocks IL-6 classic-signaling,
which in turn leads to a reduced capability of the body to cope with bacterial infec-
tions. Based on our knowledge that differences in the responsiveness of IL-6 classic-
and trans-siganling are only caused by differences in the receptor ratios, we will be
able to design new and improved targeted treatments of inflammatory diseases caused
by trans-signaling. At the same time partially or complete blockade of IL-6 classic-
signaling can be prevented. Thus, improving the quality of life for patients.
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Appendix

A Generation of measurement data
All data presented were generated by M. Sc. Heike Reeh and M. Sc. Ulrike Billing
(group of Prof. Fred Schaper and Dr. Anna Dittrich, Department of Systems Biology,
Magdeburg). To obtain measurement data, a human liver cancer cell line (HepG2)
and a mouse pro B cell line (Ba/F3) were used. To induce classic- and trans-signaling,
the cells were stimulated with equimolar concentrations of IL-6 and Hyper-IL-6,
respectively. Hyper-IL-6 is an artificially generated fusion protein of IL-6 and sIL-6Rα
which is used to mimic trans-signaling [56] (cf. Fig.B.1 for experimental validation).

Relative quantification of protein phosphorylation: For quantifications of
cellular proteins, such as SOCS3 and (phosphorylated) STAT3, Western Blotting was
performed. Western Blotting is a technique where proteins within cellular lysates are
denaturated in the presence of sodium dodecyl sulfate (SDS) and loaded on a gel.
The gel is then used to separate the proteins according their size by electrophoresis
(SDS-PAGE). Subsequently, the proteins are transferred on PVDF (polyvinylidene
fluoride) membranes and stained with specific antibodies against the protein of interest.

Absolute quantification of intracellular proteins: Absolute amounts of STAT3
and phosphorylated STAT3 per cell were analysed by quantitative immunoprecipi-
tation (IP). Briefly, STAT3 and phosphorylated STAT3 were isolated from cellular
lysates by immunoprecipitation, a technique to pull out all factors binding to a protein
by using a specific antibody to the respective protein. Isolated proteins together
with known amounts of a recombinant STAT3 calibrator protein were analyzed by
SDS-PAGE and Western Blotting followed by detection with an anti-STAT3 antibody
specific for an epitope present in STAT3, phosphorylated STAT3 and recombinant
STAT3.

Absolute quantification of membrane proteins: To determine total numbers
of the receptors IL-6Rα and gp130 on the cell membrane, a flow cytometry assay
was used. Flow cytometry is a laser-based technology employed to detect cell surface
antigens. The amount of gp130 and IL-6Rα on the cell surface was analysed using the
bead-based flow cytometry assay QIFIKIT [125] according to manufacturer’s protocol.

mRNA quantification: For relative quantification of mRNA, quantitative RT-PCR
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(real-time polymerase chain reaction, qRT-PCR) was performed. Briefly, RNA (or
mRNA) molecules are converted into their complementary DNA (cDNA) sequences
by reverse transcriptase. Reverse transcription is followed by a RT-PCR to quantify
the amount of input RNA.

Growth assays: Cell growth was measured using the CellTiter-Blue Cell Viability
Assay reagent (Promega, Karlsruhe, Germany). To this end, the cells are stimulated
and cultivated for 48 hours. Then, cell growth is quantified by measuring the
extinction of the cells which determines the number of viable cells in a sample.

For details on the experimental methods, we refer the reader to [130] and references
therein.

B Measurement data

B.1 IL-6 versus Hy-IL-6 stimulation
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Figure B.1: HepG2 cells were stimulated with 0.17 nM Hy-IL-6 or a mixture of 0.17
nM IL-6 and 100 nM sIL-6Rα. STAT3 phosphorylation was evaluated by intracel-
lular flow cytometry using specific fluorescent antibodies against STAT3 (p)Y705.
For independent experiments mean fluorescence of 10000 cells per time point was
calculated and maximal mean fluorescence was normalized to 100%. Data are
given as mean±STD from n=3 independent experiments.
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B.2 Treatment of cells with cycloheximid
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Figure B.2: HepG2 cells were stimulated with (a) 0.08 nM IL-6 (blue lines) and Hy-
IL-6 (red lines), respectively and (b) 0.17 nM IL-6 (blue lines) and Hy-IL-6 (red
lines), respectively. STAT3 phosphorylation and SOCS3 proetin expression were
evaluated by Western Blotting. The expression of SOCS3 mRNA was analysed
using qRT-PCR. Data are given as mean±STD from n= experiments.

B.3 Data normalization

Proteins: All experiments were performed in a minimum of three independent biolog-
ical replicates. For time series, numerical values obtained by quantification of Western
Blots of the respective proteins were divided by those of the loading controls at each
time point. Resulting values for each individual experiment were normalized to the
value at time point t = 30 min (analysis of STAT3 phosphorylation) or t = 60 min
(analysis of SOCS3 expression) Hy-IL-6 (HepG2) or IL-6 (HepG2-IL-6Rα) or to the
value of either IL-6 or Hy-IL-6 (Ba/F3-gp130-IL-6Rα), respectively. Subsequently, the
resulting value at time point t = 0 min was subtracted from the values at each other
time point within an individual experiment. Mean values and standard deviation over
all biological replicates were calculated.
For analysis of STAT3 activation resulting mean values were then normalized to

absolute amounts of (p)STAT3. First, the concentration dependency of STAT3 phos-
phorylation was determined. To do so, the strength of STAT3 phosphorylation after
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stimulation of HepG2 cells for 30 min with 0.08 nM, 0.17 nM, and 0.42 nM Hy-IL-
6 (n = 3 each) was determined by Western Blotting. Second, the resulting mean
value of STAT3 phosphorylation induced by 0.42 nM Hy-IL-6 was equated with the
absolute amount of (p)STAT3 obtained by quantitative immunoprecipitation. Abso-
lute amounts of phosphorylated STAT3 after stimulation with 0.08 nM and 0.17 nM
Hy-IL-6 were adapted according to the determined dose-dependency.
To normalize relative STAT3 activation to absolute numbers in HepG2-IL-6Rα cells

and Ba/F3-gp130-IL-6Rα cells these cells were stimulated with 0.08 nM, 0.17 nM, and
0.42 nM IL-6 and calculations were performed as described for HepG2 cells.
To analyse concentration dependency of SOCS3 protein expression HepG2 cells were

stimulated for 60 min with 0.08 nM and 0.17 nM Hy-IL-6 and SOCS3 expression was
analysed by Western Blotting (n = 3 each). The ratio of SOCS3 expression induced
by these different amounts of Hy-IL-6, i. e. rSOCS3 = SOCS3(0.17nM)

SOCS3(0.08nM) was subsequently
calculated for the mean of three independent replicates. The resulting ratio was used
to normalize kinetics of SOCS3 protein expression.

mRNA: qRT-PCR results were normalized to time point t = 60 min Hy-IL-6 + CHX
treatment for HepG2 cells and to time point t = 60 min IL-6 + CHX treatment for
HepG2-IL-6Rα cells. Subsequently, the value at t = 0 min was subtracted from all
other time points. Mean value and standard deviation of the resulting values over all
biological replicates were calculated.
To obtain the concentration dependency of SOCS3 mRNA expression, the cells were

pretreated with CHX and stimulated for 60 min with 0.08 nM and 0.17 nM Hy-
IL-6 (HepG2) and IL-6 (HepG2-IL-6Rα), respectively (n = 3 each). The ratio of
SOCS3 mRNA expression induced by these different amounts of Hy-IL-6 or IL-6, i. e.
rSOCS3mRNA = SOCS3mRNA(0.17nM)

SOCS3mRNA(0.08nM) was subsequently calculated for the mean of three
independent experiments. The resulting ratio was used to normalize kinetics of SOCS3
mRNA expression.

C Model assumptions
To cast IL-6-induced classic- and trans-signaling into ODE-based models (Chapter 8,
we had to make the following modeling assumptions:

i) The system is well mixed. Because of the large number of initial cells we neglect
stochastic effects.

ii) Since no obvious difference in STAT3 activation in response to trans-signaling
induced by Hy-IL-6 or by the IL-6:sIL-6Rα complex exists (Fig. B.1 in the Ap-
pendix), we did not incorporate binding of IL-6 to soluble IL-6Rα during trans-
signaling in our model.
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iii) IL-6 and Hy-IL-6 are assumed as constant model inputs as no change in the
amount of cytokine in the supernatant was observed experimentally during the
considered time horizon of 90 minutes (data not shown).

iv) The hexameric receptor complex (IL-6:IL-6Rα:gp130)2 formed during classic-
signaling and the hexameric receptor complex (Hy-IL-6:gp130)2 formed during
trans-signaling are considered as active receptor complexes (actRcomplex), [28].

v) Formation of the active receptor complex induces activation of receptor-
associated Jaks [98, 151] and subsequent phosphorylation of tyrosine residues
in the cytoplasmatic domain of gp130 [70]. However, as the interaction of Jaks
and gp130 is very tight [64], we do not explicitely consider Jaks in our model.
Rather, we assume Jaks to be represented as part of the gp130 state variable.

vi) STATs are phosphorylated by the active receptor complex. The activated receptor
complexes represent activated Jaks [151].

vii) To describe nonlinear dynamcis of SOCS3 mRNA transcription, we add a positive
feedback to (p)STAT3-induced SOCS3 mRNA transcription [49].

viii) Negative feedback inhibition via SOCS3 (58) is modeled by a rational term to
allow for an inhibition of the receptor activity [150].

ix) The species SOCS3 mRNA_1, SOCS3 mRNA_2, SOCS3_1 and SOCS3_2 are
modelled to simulate the delay caused by SOCS3 mRNA transcription, mRNA
processing and translation, respectively. To this end, we apply a linear chain,
where the delays are distributed in two steps each with the kinetic rates pdelay1
and pdelay2, respectively [150].

D Description of models and parameters

D.1 Model fluxes

Considered model fluxes are given in the table:
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Table D.1: Expression and description of considered model fluxes.

Flux Equation Description

v1 p1 · [IL-6] · [IL-6Rα] Association of IL-6 to IL-6Rα
v2 p2 · [IL-6:IL-6Rα] Dissociation of IL-6:IL-6Rα
v3 Association of hexameric

receptor complex
v3a pcl3 · [IL-6:IL-6Rα]2 · [gp130]2 classic (IL-6:IL-6Rα:gp130)2
v3b ptr3 · [Hy-IL-6]2 · [gp130]2 trans (Hy-IL-6:gp130)2
v4 Dissociation of hexameric

receptor complex
v4a pcl4 · [Rcomplex] classic
v4b ptr4 · [Rcomplex] trans
v5

p5·[Rcomplex]
1+p13·[SOCS3] Receptor complex activation

and negative feedback
inhibition by SOCS3

v6 p6 · [actRcomplex] Receptor complex deactivation
v7 p7 · [actRcomplex] · [STAT3] STAT3 phosphorylation
v8 p8 · [(p)STAT3] STAT3 dephosphorylation
v9 p9 · [(p)STAT3]2 · (1nM+[(p)STAT3]) Initiation of SOCS3 mRNA

transcription

v10 pdelay1 · [SOCS3 mRNA_1] Transcriptional delay
v11 pdelay1 · [SOCS3 mRNA_2] Transcriptional delay
v12 p10 · [SOCS3 mRNA] SOCS3 mRNA degradation
v13 p11 · [SOCS3 mRNA] Initiation of SOCS3 protein

synthesis
v14 pdelay2 · [SOCS3_1] SOCS3 protein synthesis delay
v15 pdelay2 · [SOCS3_2] SOCS3 protein synthesis delay
v16 p12 · [SOCS3] SOCS3 protein degradation

D.2 Description of state variables and initial conditions

A description of all model state variables including initial conditions for set-based
analyses can be taken from Table D.2.
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D.3 Set-based parameter estimation results

To identify the unknown parameters within the set-based framework the ODE-systems
(8.1), (8.2) and the combination of both were discretized using a first order Euler
scheme and subsequently implemented in ADMIT. In total, the FP describing classic-
and trans-signaling in one model consisted of 41 time steps, 17 unknown parameters,
10 state variables for classic-signaling, 9 state variables for trans-signaling and the size
of the problem was about 1335 variables large. For a separated analysis of classic- and
trans-signaling, each FP consisted of 41 time steps, 15 unknown parameters for classic-
signaling, 13 unknown parameters for trans-signaling and the size of the problem was
about 720 variables for classic-signaling and 635 variables for trans-signaling.
Table D.3, Table D.4 as well as Tables D.5 and Table D.6 depict a description of all

model parameters and the obtained outer-bounding results for the considered models,
respectively.

Table D.3: Description of model parameters.

Parameter Unit Description
p1 nM−1min−1 Association of IL-6:IL-6Rα complex
p2 min−1 Dissociation of IL-6:IL-6Rα complex
pcl3 nM−3min−1 Association of (IL-6:IL-6Rα:gp130)2
ptr3 nM−3min−1 and (Hy-IL-6:gp130)2 complexes
pcl4 min−1 Dissociation of (IL-6:IL-6Rα:gp130)2
ptr4 min−1 and (Hy-IL-6:gp130)2 complexes
p5 min−1 Activation of the receptor complex
p6 min−1 Deactivation of the receptor complex
p7 nM−1min−1 Phosphorylation of STAT3
p8 min−1 Dephosphorylation of STAT3
p9 µM−3min−1 Transcription of SOCS3 mRNA
pdelay1 min−1 Transcriptional delay
p10 min−1 Degradation of SOCS3 mRNA
p11 min−1 Translation of SOCS3 protein
pdelay2 min−1 Translational delay
p12 min−1 Degradation of SOCS3 protein
p13 a.u.−1 Negative feedback inhibition
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Table D.5: Set-based estimation results for models describing trans-
signaling. pi and pi indicate the estimated lower and upper bounds for the
individual parameters using an outer-bounding algorithm. The first column de-
scribes the corresponding parameter name. The second, third and fourth columns
depict the set-based parameter estimation results for the initial (Fig. 8.2(b)), the
reduced (Fig. 8.5(b)), and the calibrated model.

[pi,pi] [pi,pi] [pi,pi]
Parameter initial model reduced model calibrated model
ptr3 [8.3·10−2,5.5·10−1] [8.3·10−2,5.5·10−1] [8.3·10−2,5.5·10−1]
ptr4 [9.9·10−4,10−2] [9.9·10−4,10−2] [9.9·10−4,10−2]
p5 [10−9,103] [10−9,103] [10−9,103]
p6 [10−9,103] [10−9,103] [10−9,103]
p7 [2·10−3,9.9·102] [3.5·10−1,5.5·102] [3.5·10−1,5.5·102]
p8 [4·10−4,9.9·102] [2.6·10−3,5.5·102] [2.6·10−3,5.5·102]
p9 [1.9·10−2,3.5·10−1] no improvement [1.9·10−2,3.5·10−1]
pdelay1 [4·10−2,3·10−1] no improvement [4·10−2,3·10−1]
p10 [0.12·101,1.4·101] no improvement [0.12· 101,1.4·101]
p11 [4.5·10−1,101] - [4.5·10−1,101]
pdelay2 [8·10−2,8·10−1] - [8·10−2,8·10−1]
p12 [6·10−2,5.64] - [6·10−2,5.64]
p13 [10−9,103] - [10−9,103]
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Table D.6: Set-based estimation results for models describing classic-
signaling. pi and pi indicate the estimated lower and upper bounds for the
individual parameters using an outer-bounding algorithm. The first column de-
scribes the corresponding parameter name. The second, third and fourth columns
depict the set-based parameter estimation results for the initial (Fig. 8.2(c)), the
reduced (Fig. 8.5(c)), and the calibrated model.

[pi,pi] [pi,pi] [pi,pi]
Parameter initial model reduced model calibrated model
p1 [10−7,9.9·102] [10−6,2.7·102] [10−6,2.7·102]
p2 [10−7,9.9·102] [10−6,2.7· 102] [10−6,2.7·102]
pcl3 [10−7,5·101] [10−6,3.5·101] [10−6,3.5·101]
pcl4 [10−7,5·101] [10−6,3.5·101] [10−6,3.5·101]
p5 [10−9,103] [10−9,103] [10−9,103]
p6 [10−9,103] [10−9,103] [10−9,103]
p7 [1.1·10−4,103] [2·10−3,9.9·102] [2·10−3,9.9·102]
p8 [2·10−5,103] [8·10−5,9.9·102] [8·10−5,9.9·102]
p9 [1.3·10−2,101] no improvement [1.3·10−2,101]
pdelay1 [10−3,1.1·101] no improvement [10−3,1.1·101]
p10 [7·10−3,20.3·101] no improvement [7·10−3,20.3·101]
p11 [6.4· 10−3,6.7·101] - [6.4· 10−3,6.7·101]
pdelay2 [8·10−4,5.3·101] - [8·10−4,5.3·101]
p12 [10−3,4.4·101] - [10−3,4.4·101]
p13 [10−9,103] - [10−9,103]

D.4 Determining valid parameters using Monte Carlo sampling

Due to relaxations, set-based outer approximations still include false positive
parametrizations that lead to wrong model predictions. Therefore, we applied Monte
Carlo sampling to obtain parameter samples that can reasonable represent the exper-
imental data. To do so, we determined random parametrizations of 150 000 samples
within the estimated outer bounds of all parameters using the MATLAB-based func-
tion random and a log2-uniform distribution. Furthermore, values for IL-6RαTotal,
gp130Total and STAT3Total were randomly determined within their experimentally mea-
sured uncertainty ranges, i. e. mean±STD. The obtained parametrizations were then
tested whether they can represent the measurement data or not using the continuous-
time models. 150 simulations that are in line with the data and that result in the
lowest achievable quadratic distance between simulations and data were bundled into
corridors for the quantities [(p)STAT3], [SOCS3 mRNA] and [SOCS3].
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