
Refining Expression DAGs in
Exact-Decisions Number Types

Dissertation zur Erlangung des akademischen Grades Doktoringenieur (Dr.-Ing.),
angenommen durch die Fakultät für Informatik der Otto-von-Guericke Universität

Magdeburg von

Martin Wilhelm
geb. am 10.01.1991 in Suhl

Gutachter
Prof. Dr. Stefan Schirra
Dr. Joris van der Hoeven

Dr. Monique Teillaud

Magdeburg, den 4. Februar 2020

Zusammenfassung

Exakte Zahlentypen spielen eine zentrale Rolle bei der Entwicklung von robusten Algorith-
men in dem Gebiet der Algorithmischen Geometrie, in welchem kombinatorische Entschei-
dungen auf der Grundlage von numerischen Berechnungen erfolgen. Das „Exact Com-
putation Paradigm“ besagt, dass Robustheit erlangt werden kann, indem sichergestellt
wird, dass alle Entscheidungen, die während der Ausführung eines Algorithmus getroffen
werden, korrekt sind. In einem Exakte-Entscheidungen-Zahlentyp wird die Berechnung
eines Programms in einem gerichteten azyklischen Graphen, einem so genannten arithme-
tischen Ausdrucksgraphen, abgespeichert. Während eines Entscheidungsprozesses werden
alle Operationen in dem Ausdrucksgraphen so lange mit sich erhöhender Genauigkeit
ausgewertet, bis eine exakte Entscheidung garantiert werden kann.
In der vorliegenden Arbeit wird die Auswertung eines Ausdrucksgraphen für Berech-

nungen mit großen Graphen oder großer Genauigkeit verbessert. Ausdrucksgraphen mit
schlechter Struktur können einen quadratischen Anstieg in der Laufzeit zur Folge haben,
wenn die Berechnungen groß werden. Diese Effekte können durch Methoden zum Balan-
cieren von sowohl der verwendeten Fehlerverteilung als auch der Struktur des Graphen
abgemildert werden. In beiden Fällen werden optimale Strategien vorgestellt, bewiesen
und experimentell ausgewertet. Das Balancieren von Fehlerschranken ist sehr vielseitig
einsetzbar und kann einen großen Teil der Kosten, die mit der unbalancierten Struktur
verknüpft sind, verringern. Das Anwendungsfeld für die Methode der Neustrukturierung
ist eingeschränkter. Wenn sie eingesetzt werden kann, führt dies jedoch häufig zu starken
Verbesserungen der Laufzeit. Sowohl Situationen, in denen Neustrukturieren vorteilhaft
ist, als auch Situationen, in denen Neustrukturierung nachteilig ist, werden in der Arbeit
beschrieben. Sobald eine hohe Genauigkeit erforderlich ist, kann die Laufzeit durch die
Parallelisierung der arithmetischen Operationen in dem Ausdrucksgraphen verringert
werden. Methoden für eine effektive Parallelisierung werden beschrieben, analysiert
und experimentell ausgewertet. Eine Neustrukturierung kann dazu benutzt werden,
die Parallelisierbarkeit eines Ausdrucksgraphens zu erhöhen. Beide Balanciermethoden
werden im Hinblick auf eine parallele Umgebung ausgewertet.

3

Abstract

Exact number types play a central role in the development of robust algorithms in the
field of computational geometry, where combinatorial decisions are made on the basis of
numerical computations. The Exact Computation Paradigm states that for achieving
robustness it is sufficient to guarantee that all decisions made during the execution of
an algorithm are correct. In an exact-decisions number type, the computation history
of a program is stored in a directed acyclic graph, a so-called arithmetic expression
dag. During a decision process, all operations in the expression dag are evaluated with
increasing accuracy until an exact decision can be guaranteed.

In this work, the evaluation process of an expression dag is improved for computations
with large expression dags or high accuracy. Badly structured expression dags can lead
to a quadratic increase in the evaluation time if computations get large. These effects
are mitigated by balancing methods for both the error distribution appearing during an
evaluation and the graph structure itself. In both cases, optimal strategies are proposed,
proven and experimentally evaluated. Error bound balancing is very versatile and can
reduce a large amount of the cost associated with unbalanced structures. The field of
application for restructuring is more narrow, but when it can be used it often leads to
strong improvements on the running time. Both situations in which restructuring is
beneficial and situations in which restructuring can be detrimental to the running time
are described in this work. If a high accuracy is required, the evaluation time can be
reduced by a parallelization of the arithmetic operations in the expression dag. Methods
for an effective parallelization are described, analyzed and experimentally evaluated.
Restructuring can be employed to increase the parallelizability of an expression dag.
Both balancing methods are evaluated with respect to a parallel environment.

5

Contents

1 Introduction 9
1.1 The Real RAM Model . 9
1.2 The Robustness Problem in Computational Geometry 10

2 Concepts 13
2.1 Multiple-Precision Number Types . 13

2.1.1 Accuracy and Precision . 14
2.1.2 Operation Complexity . 14
2.1.3 Multiple-Precision Libraries . 17

2.2 Exact Number Types . 18
2.2.1 The Exact Computation Paradigm 18
2.2.2 Rational Exact Computation . 18
2.2.3 Floating-Point Filters . 19
2.2.4 Arithmetic Expression DAGs . 21
2.2.5 Separation Bounds . 23
2.2.6 Accuracy-Driven Evaluation . 26

2.3 Effective Number Types . 29

3 A Configurable Expression DAG Policy for Real_algebraic 33
3.1 The Number Type Real_algebraic . 33

3.1.1 LocalPolicy . 33
3.1.2 FilterPolicy . 34
3.1.3 ApproximationPolicy . 34
3.1.4 SeparationBound . 35
3.1.5 ExpressionDagPolicy . 35

3.2 The Class configurable_dag_node . 35
3.2.1 Preprocessing . 36
3.2.2 Evaluation . 36
3.2.3 Separation Bound Computation . 38
3.2.4 Error Handling . 40

4 Optimizing Expression DAGs for Large-Scale Computations 43
4.1 The Cost of Evaluating Expression DAGs 44

4.1.1 Accuracy Propagation . 46
4.1.2 The Cost Function . 50
4.1.3 Cost and Structure . 54

7

Contents

4.2 Error Bound Balancing . 57
4.2.1 The Path Weight Error Distribution 57
4.2.2 Implementation . 67
4.2.3 Weight Heuristics . 69

4.3 Restructuring . 72
4.3.1 Preliminaries . 73
4.3.2 Non-Invasive Restructuring Methods 75
4.3.3 Brent Restructuring . 81
4.3.4 Restructuring with Weighted Operands 102

4.4 Experiments . 109
4.4.1 Experimental Setup . 109
4.4.2 Fixed-Accuracy Computation . 110
4.4.3 Exact Computation . 121

5 Exact Decisions in a Parallel Environment 131
5.1 Parallel Evaluation Strategies . 131

5.1.1 Parallel Evaluation Cost . 131
5.1.2 Implementation . 132
5.1.3 Experimental Evaluation . 135

5.2 Dependency Reduction . 139
5.2.1 Restructuring in a Parallel Context 139
5.2.2 Error Distributions for Multithreading 142

6 Error Bounds and Floating-Point Numbers 151
6.1 Error Bound Representation . 151

6.1.1 Conversion Between Representations 152
6.1.2 Exponent Representations for Fixed-Precision Computation 154
6.1.3 Floating-Point Exponents . 155

6.2 Rounding Floating-Point Operations . 157
6.2.1 Basic Arithmetic Operations . 157
6.2.2 Logarithm and Power . 158

7 Conclusion 161

8

1 Introduction

The importance of information technology in the modern society leads to an ever-
rising demand on efficient algorithms. Many new algorithms are proposed each year
by computer science researchers in order to catch up to this demand. Alas, a rocky
road lies between the development of a theoretical algorithm and its final application in
practice. The theoretical focus on asymptotic worst-case analysis for abstract machines
leads to gaps between theory and practice. Sometimes, theoretically optimal algorithms
are outperformed by algorithms deemed inefficient when confronted with real-world data.
In other cases, correct implementations cause undefined behavior when assumptions
made for the abstract machine model do not transfer to real processors. In the last
twenty years, the field of algorithm engineering emerged as an increasing number of
researchers developed techniques to transfer theoretical results into practice. Algorithm
engineering aims to define standard methodologies and realistic assumptions for the
analysis of algorithms and to develop practically efficient algorithms by following a
strict empirical design cycle [DFI03; San09]. This cycle encompasses the entire design
process, including the modeling of both the problem and the target machine, the design
and analysis of algorithms, the actual implementation of the algorithms and the design
and implementation of meaningful experiments. Relevant aspects for each design step
are the time and space used by the final program, but also the simplicity, scalability
and, naturally, the correctness of the implementation [MS10]. An important aspect for
achieving correctness is the robustness of an algorithm with respect to computation errors,
i.e., with respect to deviations of the actual computed values to the values predicted
by the machine model. A common cause for such deviations is the implementation of
operations on real numbers through floating-point arithmetic in algorithms that are based
on the so-called real RAM model.

1.1 The Real RAM Model

Most of modern algorithm designs are based on the random access machine (RAM) RAM
model introduced in 1973 by Stephen Cook and Robert Reckhow [CR73]. The model
allows any integer number to be arbitrarily stored and read in time linear to the size of
its binary representation without any additional access cost. Likewise, additions of two
integers can be performed in time linear to the sum of their representation sizes. The
RAM model exists in many different variations. Notably, with the unit cost RAM and
the word RAM, machine models were introduced that allow basic access operations as
well as basic arithmetic operations on integers at unit cost [AHU74; FW93b]. While
reasonably powerful for the analysis of discrete algorithms, the applicability of these

9

1 Introduction

RAM models is limited when used in a continuous environment. The lack of operations
on real numbers makes it hard to derive meaningful asymptotic bounds or even to prove
the correctness of the respective algorithms.

Non-integral operations, such as divisions or square roots, occur frequently if algorithms
are designed to work on lines, circles or other geometric objects. Geometric algorithms
play a fundamental role in many fields of computer science. The study of geometric
problems from a computational point of view, including the design and analysis of
geometric algorithms, is subsumed under the term computational geometry. Applications
of computational geometry range from fundamental problems in computer graphics,
robotics and geographic information systems to use cases in statistics, biology and
physics [GO04]. In order to cope with the special requirements of a continuous setting,
Michael Shamos extended the RAM model of computation by allowing the representation
of real numbers as well as an exact computation of all analytical functions at unit cost.
The resulting machine model is called the real RAM model of computation [Sha78]. Toreal RAM
date, virtually all geometric algorithms rely on the real RAM for both their correctness
and their complexity analysis.

1.2 The Robustness Problem in Computational Geometry

The real RAM is an exceptionally powerful machine model. In actual computers, real
numbers cannot be represented exactly. They are therefore usually approximated by
floating-point numbers with a fixed size. Consequently, operations on these numbers
introduce errors to the computation. For a reliable implementation, it is crucial that
such errors do not substantially change the expected output. This property is expressed
by the principles of robustness and stability. An algorithm is called robust if its resultrobust
is the correct result for some perturbation of the input. An algorithm is called stable ifstable
moreover said perturbation is small with respect to an appropriate metric [For89]. While
not necessarily optimal, a stable algorithm is guaranteed to always produce meaningful
results, despite the presence of rounding errors.

Unfortunately, geometric algorithms based on the real RAM model are not guaranteed
to be stable. To make things worse, they are not even guaranteed to be robust. Algo-
rithms may fail, produce wrong output or no output at all if confronted with rounding
errors [Sch00]. The reason for this undesirable outcome lies in the interdependence
between numerical and combinatorial computations that is present in most geometrical
settings. Although a wide variety of numerical methods exist to control the maximum
error induced by the computation, these methods by themselves do not help in the context
of combinatorial decisions. When confronted with combinatorial algorithms, even the
slightest deviation from the correct result of any computation during the algorithm may
lead to decisions that are wrong or, in the worst case, contradict previously established
properties. There is a variety of examples for strikingly wrong output created as a
consequence of inconsistencies caused by rounding errors, including algorithms for convex
hulls, Delaunay triangulations and boundary representations of solid objects [She97;
Hof01; Ket+08; Mör15b]. An example for a failed iterative construction of a convex hull

10

1.2 The Robustness Problem in Computational Geometry

a6

a4
a5

a3 a1

a2

Figure 1.1: The output of an iterative convex hull algorithm that made one wrong decision
as described by Kettner et al. [Ket+08]. During the algorithm, the points a1, ..., a6 are added
iteratively to the convex hull. If a point lies outside, the algorithm removes a visible edge and
all neighboring visible edges. By falsely deciding that a5 lies left of a4a2, the property that for
each point all visible edges form a polygonal chain is violated. When inserting a6, the algorithm
removes a5a2 and falsely decides that there are no further visible edges.

is shown in Figure 1.1.
Designing algorithms that cannot lead to inconsistencies is difficult. Steven Fortune

introduces the notion of a parsimonious algorithm, which exclusively performs tests if
their outcome cannot be derived from previous tests [For89]. While such algorithms
are not necessarily robust, they provide a weak form of robustness, where a result is
guaranteed to be numerically close to the correct result for the given input [Knu92].
Only few examples for parsimonious algorithms can be found in literature [Sch91; Knu92;
ZFB93]. A technique called the topological-oriented approach achieves parsimoniousness
by altering the input to fit the decisions made by the algorithm [SI89; Sug+00]. In general,
determining whether a statement is a logical consequence of the previous statements is as
hard as the existential theory of reals [Mnë88; For89], which, in turn, lies in PSPACE and
is shown to be NP-hard [Can88]. Consequently, several techniques have been developed to
obtain robust or even stable algorithms by capitalizing on characteristics of floating-point
arithmetic, thereby avoiding the necessity of parsimoniousness. They usually involve a
perturbation of the input (e.g. [Mil88; For89; GSS89; HHK89; FB91]) or a relaxation of
the conditions imposed on the used geometrical objects (e.g. [Mil88; FM91; Che+01]).
Several geometric problems are shown to be robustly solvable in reasonable times by
applying such techniques [Sch00; CWK02].

Robust algorithms are hard to design and differ significantly from their counterparts in
the real RAM model. Designing robust algorithms with respect to floating-point numbers
effectively equates to designing algorithms for the standard RAM model, thereby negating
all benefits introduced through the real RAM. By shifting the focus away from the robust
design of algorithms to the design of exact number types, the real RAM model can be

11

1 Introduction

retained without giving up on robustness [Yap97]. If the underlying number types are
exact, algorithms that are designed for the real RAM maintain their correctness when
they are implemented on a real machine. Exact number types have been established in
several geometric libraries [MN89; MRS10; Yap98; Yu+10]. Although extremely powerful,
their generality comes at a high cost. In practice, using exact computation can make
computations arbitrarily slow, especially if the complexity of the computations increases
with the problem size [Liu+16]. In a slightly less general approach, instead of basic
arithmetic operations, exact predicates, such as an orientation test and an incircle test,
are implemented exactly. Implementing these predicates directly is potentially much
faster than the usage of a general-purpose number type. Therefore, several authors have
focussed on building libraries for these predicates [She97; Lév16; QYZ19].
In this work, we follow the more general approach. Predicate libraries reach their

limit if computations get more complex. Nevertheless, in their current state, exact
number types are designed primarily for small expressions and may behave suboptimally
if expressions get large. This can be the case as soon as objects are the result of several
iterations, such as in the computation of minimum link paths in a polygon [KS99]. Aside
from computational geometry, efficient handling of large expressions may open up new
applications in automated reasoning or even symbolic computation [DMM05; Bod+03].
In the next chapter, we review basic concepts of multiple-precision and exact number
types. Chapter 3 introduces a new extension for the exact number type Real_algebraic,
which allows us to easily exchange and combine various parts of the implementation.
The extension forms the basis for experiments presented in the subsequent chapters. In
Chapter 4, we explore two strategies for increasing the evaluation performance of large
expressions. Both strategies aim for a reduction of the total amount of precision needed
during the computation. The first strategy, based on work by Joris van der Hoeven,
balances error bounds used during the evaluation of the underlying graph structure.
In the second strategy, the graph is instead restructured, mostly based on work by
Richard Brent. Chapter 5 both introduces a parallel evaluation strategy for exact number
types and examines the behavior of restructuring and error bound balancing on the
parallelizability of the evaluation. Finally, in Chapter 6, we compare the impact of various
error representations on the evaluation time.

12

2 Concepts

Every programming language contains primitive integer and floating-point number types.
These number types have a small fixed size, depending on the programming language and
the processor architecture, and operations with these number types are usually highly
optimized through a direct representation in hardware. While very fast, primitive types
have a bounded capacity and operations on these types can lead to overflow, underflow
or rounding errors. In order to accurately simulate a real RAM, computations with these
primitives must be replaced by more elaborate number types, which, to some degree, allow
for “exact” computations. In this chapter, we review the concepts of multiple-precision
and exact number types. Furthermore, we briefly examine the related concept of effective
numbers and describe the differences between the methods developed in the field of
computational geometry and the methods developed in the field of computable analysis.

2.1 Multiple-Precision Number Types

The concept of multiple-precision number types builds on, and extends the concept of
fixed-precision primitives. A multiple-precision number type is a number type that stores multiple-precision

number typevalues in a format with arbitrary finite size and provides basic arithmetic operations on
these values. In contrast to a primitive type, its size is not defined by the system, but
can be chosen and adjusted by the program. A multiple-precision integer type (bigint) bigint
stores integer values in a binary format and supports negation, addition, subtraction,
multiplication and integer division. Since these operations always produce integers, they
can in principle be exactly represented by a bigint. For operations on large numbers,
however, the number type might overflow. We call the maximum number of bits in the
binary representation of a representable number the size of a bigint.
A multiple-precision floating-point type (bigfloat) represents floating-point values by bigfloat

storing a mantissa m in a bigint and an exponent e in a large integer primitive. Note
that storing the exponent in a primitive type sets a theoretical limit to the range of
numbers a bigfloat can represent. Depending on its usage, it may be argued that numbers
exceeding the range defined by a primitive exponent cannot be created in any realistic
scenario. Otherwise, a bigint can be used for the representation of the exponent as
well. In this work, we assume the former definition. Bigfloat number types support all
basic arithmetic operations as well as roots to an arbitrary degree d ∈ N. Operations on
bigfloats simulate operations over the real numbers. Since only few real numbers can
actually be represented by a finite floating-point representation, operations usually return
approximations to the actual result. The quality of these approximations and, more
generally, of the available operations is described by the terms accuracy and precision.

13

2 Concepts

2.1.1 Accuracy and Precision

Fundamentally, a series of approximations to a value is said to be accurate if its maximum
deviation from the approximated value is small and precise if its variance is small. Before
describing these concepts in more detail, we clarify the usage of the terms size and
magnitude in this work.

Definition 2.1. Let r ∈ R be a real number. Then we call the absolute value |r| the
size of r and we call the binary logarithm of its size, log(|r|) the magnitude of r.size, magnitude

Remark 2.2. In this work, we use the term absolute to contrast the meaning of relative
in various situations. To refer to the absolute value norm of a number, we use the term
size instead. This definition is not to be confused with the size of a number type, which
relates to the number of bits needed to save the data.

In numerical analysis, the accuracy of an approximation describes how close theaccuracy
approximation is to the actual value. The error of an approximation describes theerror
deviation of the approximation to the approximated value. Errors can be represented as
absolute differences or relative to the size of the approximated value or the approximation.
For our purpose, it is more convenient to define a relative error relative to the size of the
approximation.

Definition 2.3. Let z ∈ R be a number and let z̃ be an approximation to z. Then
ε = |z̃ − z| is called the (absolute) error of the approximation. For z̃ 6= 0 the relativeabsolute error

relative error error of the approximation is defined as ξ = ε
|z̃| .

We define the (absolute) accuracy and relative accuracy of an approximation to referabsolute accuracy
relative accuracy to its absolute and relative error.

Remark 2.4. Note that, while accuracy and error are mathematically described by the
same value, the concept of accuracy is reciprocal to the concept of error. So when the
accuracy is increased, the value representing the accuracy is decreased and vice versa.
Likewise, the term high accuracy is used to refer to a small error value while low accuracy
refers to a large error value.

The precision of a bigint is defined as its size, i.e., the maximum number of bits usedprecision
for a representation. The precision of a bigfloat is the size of its mantissa. We say that
an operation on a bigfloat is correctly rounded with respect to a given rounding mode,correctly rounded
if it always returns the correct result or the nearest representable number according to
the rounding direction. If a bigfloat operation is correctly rounded, the precision of the
number type yields an upper bound to the relative error of the result.

2.1.2 Operation Complexity

The computation time for basic arithmetic operations on primitive integer or floating-
point number types is a small constant, which is mostly dependent on the hardware

14

2.1 Multiple-Precision Number Types

implementation. Nevertheless, there are measurable differences between different oper-
ations. Table 2.1 shows running times of all basic operations and root operations for
the floating-point primitive double in C++ (for a description of the test environment
see Section 4.4.1). Negations are very fast. Additions, subtractions and multiplications
take nearly the same running time. Divisions, however, are significantly slower, even
slower than square root operations. The root of degree three is not natively implemented.
Simulating it with help of the library function pow makes it much slower than the square
root.

Operation neg add sub mul div sqrt root3
Time (seconds) 0.08 0.50 0.49 0.54 1.38 1.05 15.69

Table 2.1: Running times of the execution of various operations on random double numbers in
C++. Each operation is executed 3 · 108 times. The results of the operations are assigned, added
and multiplied to other floating-point numbers to avoid pipelining effects and the measured time
is adjusted by a baseline. The root of degree 3 is determined by computing the 1/3-th power.

Multiple-precision number types must rely on software implementations for the basic
operations. On both bigints and bigfloats, comparisons can be done in linear time with
respect to the size of the number type. The running time of an arithmetic operation
depends on the precision of the number type in which the result should be stored. We
call this precision the precision of the operation. In particular, if implemented carefully,
the running time is not negatively influenced by the precision of the operands, except
for catastrophic cancellation in the case of additions. Negations take constant time.
Additions and subtractions with precision p can be performed in linear time on integers
by a bitwise addition. For floating-point numbers a linear time can be achieved as well
by an addition of the mantissas after shifting the mantissa of the operand that is smaller
in size by the exponent difference. Note that for large differences in the exponents, the
number of bitwise additions can be reduced or a bitwise addition might not be necessary
at all. If the numbers are equal or nearly equal in size and of opposite sign, the running
time depends on the precision of the operands. Obviously, the asymptotic running time
for additions is optimal.

Remark 2.5. In an actual implementation, operations are not performed on single
bits but on primitives, which are fused together into a multiple-precision number type.
Nevertheless, the general principles transfer naturally from a bitwise analysis.

The multiplication of two bigfloat numbers can be performed by multiplying their
mantissas and adding their exponents. Since obviously integer multiplication reduces
to floating-point multiplication, their running time is asymptotically equal. Classical
long (“schoolbook”) multiplication takes quadratic time. Karatsuba was the first to show
that multiplication could be done in subquadratic time [KO62]. His divide and conquer
approach was later shown to be a special case of a more general algorithm invented
by Toom [Too63] and improved by Cook [Coo66]. Schönhage and Strassen introduced
the first quasilinear algorithm based on fast fourier transformation, running in time

15

2 Concepts

Θ(n logn log logn) [SS71]. The optimal asymptotic running time of multiplication is not
known by today. While Ω(n logn) is conjectured to be a lower bound, non-trivial lower
bounds are only known for a special kind of Turing machines [CA69; Che74; PFM74].
The algorithm of Schönhage and Strassen misses the conjectured lower bound by a factor
of log logn. Many years later, Fürer was able to show that this factor can be further
reduced [Für09]. Recently, Harvey and van der Hoeven claimed to have found a way
to eliminate the additional factor, achieving the conjectured optimal running time of
O(n logn) [HH19]. An overview of the asymptotic running times of these multiplication
algorithms is presented in Table 2.2.

Long Multiplication Karatsuba Toom-Cook
Θ(n2) Θ(nlog 3) Θ(n1+ε)

Schönhage-Strassen Fürer Harvey-van der Hoeven
Θ(n logn log logn) n logn 2O(log∗(n)) Θ(n logn)

Table 2.2: Asymptotic running times of various multiplication algorithms.

Having an efficient multiplication algorithm is central for an efficient multiple-precision
number type since both division and d-th roots can be reduced to multiplication. Many
different approaches exist for division algorithms [OF97]. By computing the reciprocal of
the divisor with the Newton method (also referred to as Newton-Raphson method [Deu12]),
a division can be performed in time Θ(M(n)), where M(n) is the time needed for
multiplication [Fly70]. Burnikel and Ziegler introduced a divide-and-conquer division
algorithm which runs in O(M(n) logn). It produces an overhead of logn for the known
efficient multiplication algorithms, but is very fast in practice [BZ98; Has97]. The
square root of a number can be reduced to multiplication with Newton’s method as well,
achieving O(M(n)) running time [Alt79]. Using the same approach, roots of arbitrary
degree d can be computed in time O(M(n) log d).

Operation neg add sub mul div sqrt root3
Time (seconds) 0.01 0.03 0.03 2.71 5.78 3.87 8.18

Table 2.3: Running times of the execution of various operations on random numbers between 1
and 2 of type mpfr_t with precision 105. Each operation is executed 104 times.

In Table 2.3 the running times for the basic operations as well as for square and cubic
roots are shown for an efficient bigfloat number type. In comparison to Table 2.1, there
is a larger gap between the running times for negation, addition and subtraction and the
running times of the remaining operations. In particular, additions and multiplications
differ significantly in running time. Note that the running time for negations includes
the running time for an assignment operation and therefore is non-zero with respect to
the displayed precision.

16

2.1 Multiple-Precision Number Types

2.1.3 Multiple-Precision Libraries

There is a wide variety of software implementations for multiple-precision number types.
Most major programming languages provide bigint types in their standard libraries,
including compiled languages such as Go, C# and Java [Go19; CS18; Jav19], as well
as interpreted languages such as JavaScript, PHP and Perl [JS19; PHP19; Prl19]. In
Python and Ruby, all integer types are of arbitrary precision by default [Pyt19; Rub19].
A native support of bigfloat types is less prevalent. In many languages they are added
through third-party libraries instead. The standard libraries of C and C++ do not support
multiple-precision arithmetic. A large number of third-party packages for both integer
and floating-point types is available. Multiple-precision integers are heavily used in
cryptography. Consequently, many popular cryptographic libraries, such as Libgcrypt,
LibTomMath, mbed TLS and OpenSSL, provide native bigint implementations [GPG19;
LTM19; Mbed19; OSSL19]. Multiple-precision floating-point types are mostly found
in geometric libraries. Both the CGAL library and the GeometricTools library provide
implementations of multiple-precision integers, rationals and floats, but with the latter
limited to additions and multiplications [CGAL19; Dav19]. On top of integers and
rationals, the LEDA library as well as the CORE library provide bigfloat data types
supporting all basic arithmetic operations and roots of arbitrary degree [MN99; Yu+10].
Beside these libraries, there are various stand-alone bigfloat implementations. However,
few of these implementations appear to be sufficiently curated. Better maintained projects
include the boost multiprecision library, the Class Library for Numbers (CLN), the bigz
library and the LibBF library [MK19; HK14; SVH89; Bel19].
Perhaps the most notable stand-alone library providing multiple-precision arithmetic

is the GNU Multiple Precision Arithmetic Library (GMP) [GMP16]. The library offers
highly optimized operations on multiple-precision integer, rational and floating-point
types. For multiplication, GMP uses a variety of different algorithms depending on the
size of the operands and the required precision. Starting with long multiplication for
small precisions, it utilizes Karatsuba’s algorithm and several modified versions of the
Toom-Cook algorithm up to the Schönhage-Strassen multiplication. Likewise, various
division algorithms are employed, depending on the operand sizes. Beside long division,
the Burnikel-Ziegler division and a variant of Newton’s method based on Barret reduction
([Bar86]) are used for large operands. In addition, several special cases are identified in
which even faster algorithms can be used, such as cases in which the result or one of
the operands is very small or cases in which the result can be represented exactly. Root
operations of any degree are reduced to multiplication by (variants of) Newton’s method.

Several other implementations of bigint and bigfloat arithmetic exist that are based on
GMP. The MPIR library provides optimized multiple-precision number types with a special
focus on parallelizability based on GMP [Gla+17]. The MPFR library provides an adaptation
of the bigfloat implementation of GMP, which satisfies most properties demanded by the
IEEE 754 floating-point standard [Fou+07]. Among other improvements, this includes
correct rounding of the results of an expression with respect to any of four freely selectable
rounding modes [IE754]. Due to its high efficiency and its inherent error guarantees,
MPFR is well-suited as a basis for the development of exact number types.

17

2 Concepts

2.2 Exact Number Types
Multiple-precision number types make it possible to arbitrarily increase the precision
at which a result is computed. If numerical inaccuracies are expected that may lead to
problems, a higher precision for the number type can be chosen to avoid them. This
approach is called the Fixed Precision Paradigm. For solving the robustness problem in
computational geometry, increasing the precision of the underlying number types is by
itself not sufficient (cf. Section 1.2). Operations like divisions and roots lead to numbers
that are not representable by a floating-point number type of any precision. In general,
even without these operations, it is impossible to choose a fixed precision that is high
enough to avoid all potential errors. In this section, we give an overview on various
techniques that have been developed in order to create efficient number types that are
able to guarantee exact decisions.

2.2.1 The Exact Computation Paradigm

In the early 1990s, Chee Yap and Thomas Dubé introduced the Exact Computation
Paradigm, contrasting the previously predominant Fixed Precision Paradigm. [DY93;
YD95]. An exact number type is characterized by two properties:exact number type

1. Each number that can be constructed through its operations must have an exact
representation in the number type.

2. All decisions made by the number type must be correct.

By using the term decision we refer to any test on whether a number a representeddecision
by the number type is less than, greater than, or equal to another number b. Note
that this is equivalent to determining the sign of a− b, hence it is sufficient to correctly
determine the sign of a represented number. The main insight of Yap and Dubé is that
making exact decisions is sufficient to solve the robustness problem in computational
geometry. Each choice of an algorithm is based on a decision problem. If all decisions
are correct and the input data is not already inconsistent, the algorithm will never make
inconsistent choices. Bigfloat number types, as introduced in Section 2.1, cannot fulfill
the first (and therefore the second) criterion as soon as division operations are involved.
Quotients like 1

10 (decimal) would need an infinite number of bits in the mantissa to be
represented exactly by a binary floating-point number. Rational numbers can, however,
be represented exactly as a combination of two integers.

2.2.2 Rational Exact Computation

Binary representations of an integer are always finite. Integer numbers can therefore
be represented exactly by multiple-precision number types. If we allow the precision of
a bigint to grow during an operation, integer operations such as addition, subtraction,
multiplication and integer division can be performed exactly in accordance with the Exact
Computation Paradigm. Rational numbers can be created by storing the numerator and

18

2.2 Exact Number Types

denominator in separate bigints. In this form, there is no need for exact divisions on
integer or floating-point values since they can be performed through a multiplication by
the inverse. Multiplications, however, are naturally performed by multiplying numerators
and denominators. Additions and subtractions are executed on the numerators after
expanding the fractions to a common denominator.
In contrast to integer or floating-point number types, comparing the values of two

exact rational number types requires a little more effort. In a naive way it can be done by
temporarily expanding the stored fractions to a common denominator and comparing the
numerators. This method requires two integer multiplications. The cost of an equality
test can be reduced by maintaining the rationals in a normalized form, i.e. in a form
where the greatest common divisor of the numerator and the denominator is one. The
normalization can be done either after every operation or whenever a comparison is
requested. It requires a reduction of the fraction by the greatest common divisor of
numerator and denominator and therefore the computation of the greatest common
divisor as well as two integer divisions. While expensive, normalization reduces the
size of the number type and simplifies equality tests. If two fractions are normalized,
they are equal if and only if both the numerators and the denominators are equal. It
is, however, questionable, whether the benefits of normalization outweigh the additional
cost associated with it [KLN91]. Furthermore, normalization is not sufficient to establish
an order relation. Nevertheless, if two rationals are known to be unequal, the running
time of their comparison can sometimes be improved by a stepwise computation and
comparison of their continued fractions representations.

Since exact rational arithmetic is a fairly natural extension of exact integer arithmetic,
many libraries mentioned in Section 2.1.3 provide implementations of exact rational
arithmetic as well. Nevertheless, only few libraries implement non-trivial strategies to
reduce its complexity. The rational numbers in GMP are always normalized. Other libraries,
such as LEDA, leave the choice to normalize to the programmer. The rational type in
boost normalizes the representation and additionally uses continued fractions to speed
up comparisons [Moo19]. Despite these efforts, the increase in operand size as well as the
high cost of comparisons make rational exact computation slow. Various studies report a
running time increase by a factor of about 104 if primitive floating-point numbers are
replaced by exact rationals in geometric algorithms without further optimization [KLN91;
FW93a; Jai93]. In practice, rational arithmetic is therefore commonly used in combination
with filter algorithms based on fixed-precision computations.

2.2.3 Floating-Point Filters
In general, through the usage of fixed-precision arithmetic the exactness of a result cannot
be guaranteed. As described in Section 1.2, there are cases where inexact computation
leads to wrong decisions and therefore to combinatorically incorrect results. In many
cases, however, decisions taken on the basis of fixed-precision computations are still
correct. Instead of directly computing the exact value of an expression, we can compute
an upper and a lower bound to the value using a fixed precision number type. If zero
is not part of the interval defined by these bounds, we can determine the sign of an

19

2 Concepts

expression without the need for exact computation. This technique is called arithmetic
filtering. Upper and lower bounds for the value of an expression are obtained naturally
through the use of interval arithmetic, where, instead of single approximations, a range ofinterval arithmetic
possible values is maintained and returned. This range is commonly represented by either
two boundary points or a midpoint and a radius. The midpoint-radius representation has
the advantage that only one value must be known at high precision (cf. Figure 2.4). An
early usage of arithmetic filters is presented in the work of Michael Karasick, Derek Lieber
and Lee Nackmann. In order to speed up their algorithm based on rational arithmetic,
they use fixed-precision integer intervals to approximate the integers occurring during a
sign computation [KLN91]. If an integer interval is not sufficient to make a decision, the
interval would be recomputed at a higher precision. This process terminates at the latest
when the used precision is sufficient to represent all values exactly.

55− 2−1005− 3 · 2−100 5 + 2−99

2−100

Figure 2.4: The endpoint representation (blue, left) and the midpoint-radius representation (red,
right) demonstrated on two same-sized intervals near 5. For the endpoint representation, two
multiple-precision numbers are needed to represent the boundaries. For the midpoint-radius
representation, a single multiple-precision number is needed for the midpoint. The radius can be
reasonably approximated by a power of two for small intervals.

An especially effective arithmetic filter can be constructed if interval boundaries are
computed with fixed-precision floating-point number types. First proposed by Steven
Fortune and Christopher van Wyk, floating-point filters are highly successful in reducingfloating-point filter
the need of exact computation [FW93a; DP98; BBP01]. Even with primitive floating-
point types, most decisions occurring in geometric algorithms can be made exactly if the
data is not seriously degenerated. Since operations on primitives are much faster than
operations on multiple-precision number types (cf. Table 2.1, page 15), this property
makes the application of floating-point filters very efficient.
Similar to arithmetic filters based on integers, if the interval obtained through a

floating-point filter does not contain zero, the sign of an expression can be determined
without further computations. On the other hand, it cannot be decided whether the value
of the expression is exactly zero in the opposite case. To guarantee exact computation,
a fallback strategy, such as exact computation with rationals, is needed if the result of
the filter is not decisive. As an intermediate step, if the precision of primitive types is
not sufficient, bigfloats can be employed to successively increase the precision until a
decision can be made or a certain threshold is reached. This concept is called a cascadingcascading filter
filter . While primitive data types are almost guaranteed to produce negligible overhead,

20

2.2 Exact Number Types

filters based on multiple-precision arithmetic must be used with caution. A reasonable
progression is achieved if the precision used for the interval arithmetic is doubled after
each attempt. Since all operations have at least linear cost, this strategy ensures that the
total cost of the filter mechanic does not exceed two times the cost of the computation
at the highest precision, which in turn is at most twice as much precision as needed
if a decision can be made through the filtering mechanism. It can be shown that this
strategy is optimal if all implemented operations can be done in near-linear time [KR06].
For complex operations, however, a doubling of the expected computation time would
be more appropriate [Hoe06c]. There are many libraries providing interval arithmetic
that can be utilized for the implementation of a floating-point filter. Among others,
both the boost and the LEDA library implement interval arithmetic on floating-point
primitives [MPB19; Uhr17]. Interval arithmetic on multiple-precision floating-point types
is provided by the MPFI library based on the bigfloat implementation in MPFR [RR05].

Remark 2.6. A technique related to floating-point filters is the zero rewriting approach
of Kiyoshi Shirayanagi and Hiroshi Sekigawa [SS09]. In its basic version, zero rewriting
uses interval arithmetic to decide whether a value is non-zero but, in contrast to classical
filters, assumes that otherwise the value of the (sub-)expression is zero. Instead of
verifying the result of the computation, it aims to verify the output of the algorithm
and restarts the algorithm if the result is wrong. Correct zero rewriting on the other
hand verifies each rewriting step separately by an exact computation. If the rewriting
was incorrect, it determines a precision that is sufficiently high to solve the conflict and
restarts the computation from scratch. However, zero rewriting techniques have not
yet shown to be competitive compared to techniques based on classical floating-point
filters [SW17].

For both simple and cascading filters, the program must be able to rerun the com-
putation at least once. Karasick et al. require the host code to manually rerun the
computation. Fortune & van Wyk do the same, but provide a pre-compiler that automat-
ically inserts the necessary recomputation loops. A more comprehensive and ultimately
more powerful strategy is based on the utilization of arithmetic expression dags.

2.2.4 Arithmetic Expression DAGs
Exact number types must at all times provide an exact representation to the number
they currently represent (cf. Section 2.2.1). Exact rationals, as defined in Section 2.2.2,
do this by managing two integer types with steadily increasing precisions. Therefore,
the running time of each additional operation usually increases with the number of
previous operations. However, in principle it is not necessary to compute the value of an
operation in the moment where the operation is called. Instead, computing values is only
necessary when a decision must be made. Delaying the actual computation up to this
point yields several advantages since then the whole expression is known and algorithms
can make an informed choice on what exactly has to be computed. This is called the
lazy approach on evaluation. It is realized by storing the computation history in a graph lazy
structure [Ben+93a].

21

2 Concepts

Definition 2.7. An (arithmetic) expression dag is an ordered directed acyclic graphexpression dag
where each node either represents a number and has no children or represents an operation
and has n (not necessarily disjoint) children, where n is the operation’s arity. The nodes
containing numbers are called the leaves or the operands of an expression dag.leaf, operand

Remark 2.8. While DAG is technically an acronym, we write terms like “expression
dag” in lower case throughout this work in order to increase readability.

/

8128 1729

Figure 2.5: A rational num-
ber formed by two integers,
depicted as an expression dag.

With an expression dag, computations can be saved in
the dag representation as a new operator node pointing
to the respective operands. Operator nodes can contain
any operator that is defined on the number type. A leaf
in an expression dag represents any number that is exactly
representable in a chosen format. During an evaluation,
parts of an expression dag may be converted to a single leaf
if a more suitable exact representation is found. Figure 2.5
shows a very simple expression dag representing a rational
number. Note that an exact rational number type can be
interpreted as an expression dag with only one division node as operator where after
each operation the expression dag is compressed.
Remark 2.9. If not specified otherwise, we always assume that an expression dag is
rooted, i.e., that it contains a distinguished root node from which all other nodes in
the expression dag are reachable. Although in general an expression dag built during
an algorithm is not necessarily rooted, a decision is always requested for a rooted
subgraph. Hence, for most of this work we adhere to this local view of an expression
dag. Furthermore, we do not strongly distinguish between the concept of an arithmetic
expression and the concept of a rooted arithmetic expression dag. This is justified by
the fact that there is a natural bijection between these concepts. Nevertheless, we still
aim to use the most adequate term in a specific situation whenever readability is not
negatively affected by the distinction.

Expression dags allow for the whole computation history to be stored in the number type.
The actual evaluation of the operations can then be delayed up to the point where an exact
decision is requested. A lazy evaluation opens the door for several optimization algorithms
that require knowledge about the final expression. Most prominently, arithmetic filtering
strategies can easily be realized on the generated graph structure. The first number type
that implemented a floating-point filter based on lazy evaluation is the number type LEA.
It builds an expression dag and uses a single floating-point filter on primitives before
falling back to rational exact computation [Ben+93b]. Since then, implementations that
require exact rational computation frequently delay the exact computation through the
construction of an arithmetic expression dag in favor of filtering techniques [FNS04;
ZXY16]. The class lazy_exact_nt of the geometrical algorithms library CGAL acts as a
wrapper for arbitrary exact number types. It builds an expression dag and uses interval
arithmetic on primitives to make decisions before a computation with the underlying
number type is invoked [PF11].

22

2.2 Exact Number Types

2.2.5 Separation Bounds
When pairing a lazy evaluation with cascading floating-point filters one needs to decide
at which point an exact computation should be used because increasing the precision
of the number type is unlikely to lead to better results. This process requires a fair
amount of (more or less) educated guessing. A more reliable approach can be pursued by
computing a lower bound to the smallest value unequal to zero that is attained by any
expression with similar structural properties.

Definition 2.10. Let E be an expression and let value(E) be the true value of E. Then
a separation bound sep(E) 6= 0 is a number, such that separation bound

| value(E)| < sep(E)⇔ value(E) = 0

Finding a separation bound for an expression not only answers the question at which
point increasing the precision is no longer useful, but it eliminates the need for a separate
exact computation entirely. As soon as the computed error interval falls into the interval
described by a separation bound, the value of the expression can only be zero (cf.
Figure 2.6). Number types relying on separation bounds to make exact decisions are
called exact-decisions number types. exact-decisions nt.

a1

a2 a3b2 b3

b1

= 06= 0

sep(E)− sep(E)

0

x

Figure 2.6: The three stages of a computation with cascading filters. The red lines represent
a separation bound. The interval [a1, b1] contains zero and values whose size is larger than
the separation bound. In this case, it cannot be decided whether the value is zero and further
iterations are needed. If the result of an iteration yields [a2, b2], the interval does not contain zero
and therefore value(E) < 0. If the iteration yields [a3, b3], each possible value for the expression
is smaller than the separation bound and therefore value(E) = 0.

Obviously, the optimal value for a separation bound is the value of the expression itself,
or infinity if the value of the expression is zero. Computing this value is equivalent to
an exact computation. Nevertheless, for many expressions a reasonably large separation
bound can be computed much faster than an exact value. Furthermore, separation
bounds can be found for values that are not exactly representable in floating-point or

23

2 Concepts

rational arithmetic at all. Most notably, all real algebraic numbers admit an efficient
separation bound computation algorithm, although the resulting separation bound is not
necessarily large enough to be of practical use. Separation bounds that admit an effective
computation are called constructive separation bounds. Several efficient algorithms forconstructive
the computation of separation bounds have been found [Sch09]. The best currently
known bounds are based either on the computation of a bound for the Mahler measure
of an algebraic number (cf. [Mah62]) or on the representation of an algebraic number
as a quotient of two algebraic integers. We introduce two notations, which can be used
to describe the set of operations that is covered by a constructive separation bound
(cf. [Bur+09; LPY05]).

Definition 2.11. For n ≥ 0 let α0, ..., αd be algebraic numbers. Then the diamond
operation �(j, αd, ..., α0) returns the j-th real root of the polynomial

P (X) =
d∑
i=0

αiX
i

Definition 2.12. Let u− refer to a negation, let A refer to the set of all algebraic numbers
and let

Ω = { u−,+,−, ·, /} ∪ { d√• | d ∈ N}
Ω∗ = Ω ∪ {�(j, •d, ..., •0) | j, d ∈ N}

For S ⊆ A we call the set of expressions consisting exclusively of numbers x ∈ S and
operators from Ω the radical expressions over S. Furthermore, we say that a number isradical
a radical number if it is the value of a radical expression over Z. Likewise, we call the
expressions over S with operators from Ω∗ the real algebraic expressions over S and thereal algebraic
numbers created by algebraic expressions over Z the real algebraic numbers.

In literature, the radical expressions over Z are sometimes referred to as “constructible”
expressions. However, the radical numbers form a proper superset of all (compass
and straightedge) constructible numbers, which, for example, are not closed under the
application of third roots. In order to avoid misunderstandings, we use the term radical
instead. Note furthermore that the real algebraic numbers indeed form the set of all
algebraic numbers in R.

Measure-Based Separation Bounds

In his work on the identification of algebraic numbers, Maurice Mignotte describes a
separation bound based on the “size” of an algebraic number and suggests that the Mahler
measure of an algebraic number could be a viable choice for a size function [Mig82].
Several years later, Christoph Burnikel, Rudolf Fleischer, Kurt Mehlhorn and Stefan
Schirra show that the described bound admits an efficient computation. They call the
resulting constructive separation bound the degree-measure bound [Bur+00]. Let α 6= 0

24

2.2 Exact Number Types

be an algebraic number, let deg(α) be the algebraic degree of α and let M(α) be the
Mahler measure of α. Then the size of α is bounded as

|α| ≥ 1
M(α)

Now assume α is the value of the expression represented by an expression dag E, then the
degree-measure bound algorithm inductively computes an upper bound onM(α) together
with an upper bound on deg(α) by computing appropriate bounds for the leaves of E
and maintaining them for the subexpressions while applying operations. The algorithm
provides induction steps for all operations ◦ ∈ Ω, hence a separation bound can be found
for all radical expressions. The bound for M(α) was later improved by Chen Li and Chee
Yap [LY01]. Another, conceptually different, improvement on the measure was proposed
by Hiroshi Sekigawa [Sek04]. We call the bound resulting from Sekigawa’s improvement
the Sekigawa bound. In their paper, Li and Yap additionally introduce a new separation
bound algorithm involving the computation of both degree and measure bounds, but
based on another inequality. For an algebraic number α 6= 0 let µ(α) be the maximum
size of a conjugate of α and lead(α) be the size of the leading coefficient of the minimal
polynomial of α. Then

|α| ≥ 1
µ(α)deg(α)−1 lead(α)

(2.1)

The separation bound resulting from this inequality is known as the conjugate bound or
the LY bound. Both the improved degree-measure bound and the LY bound support
radical expressions over real algebraic numbers, given by a polynomial, as input. In
2006, Sylvain Pion and Chee Yap introduced a so-called generic k-ary method, which
improves basically any constructive separation bound by taking advantage on a k-ary
input format. In particular, they apply their technique on the (improved) degree-measure
bound algorithm, calling the resulting separation bound the k-ary measure bound [PY06].

Quotient-Based Separation Bounds

Alongside a precise description of the degree-measure bound, Burnikel et al. introduce
their own separation bound algorithm [Bur+00]. Their algorithm can loosely be described
as bounding the size and the algebraic degrees of (the conjugates of) the algebraic integers
α1, α2 occurring in an equivalent “algebraic rational” expression, i.e., an expression of the
form α1

α2
. Considering α2 ≤ µ(α2) and lead(α1) = 1, a separation bound for the algebraic

number α = α1
α2

can then be obtained similarly to (2.1) by

|α| ≥ 1
µ(α2)µ(α1)deg(α1)−1

The associated algorithm provided in the paper can be applied to any radical expression.
Its resulting separation bound is called the BFMS bound. The bound was later improved
in a paper of Christoph Burnikel, Stefan Funke, Kurt Mehlhorn, Stefan Schirra and

25

2 Concepts

Susanne Schmitt, who observe that the algebraic degree bound of α1 is quadratic in
the algebraic degree bound of α and adjust the iteration such that the degree bounds
match [Bur+09]. Furthermore, they extend the original algorithm by the diamond
operator, thereby supporting all real algebraic expressions. The resulting separation
bound is called the BFMSS bound.

Beside their improvement of the degree-measure bound, Pion and Yap apply the k-ary
method on the BFMSS bound and call the result the BFMSS[k] bound [PY06]. The
induction step for the diamond operator in the k-ary bound was later improved by
Susanne Schmitt [Sch04]. The rules of the BFMSS[2] bound for radical expressions are
depicted in Table 2.7. The improved degree-measure bound, the LY bound and the
BFMSS bound are principally incomparable, i.e., for either of them there are expressions
where they lead to the best separation bound. Apart from that, the BFMSS bound
dominates most other separation bounds, both theoretically and practically [Mör15a].

Expression E v u l

n2m (n,m ∈ Z) m |n| 1
−E1 v1 u1 l1

E1 ± E2 min(v1, v2) 2v1−vu1l2 + 2v2−vu2l1 l1l2
E1 · E2 v1 + v2 u1u2 l1l2
E1/E2 v1 + v2 u1l2 l1u2

d
√
E1 (2v1u1 ≥ l1) bv1/dc0 d

√
2v1−dvu1l

d−1
1 l1

d
√
E1 (2v1u1 < l1) bv1/dc0 u1

d

√
2v1−dvud−1

1 l1

Table 2.7: The iteration steps for the parameters v, u, l of the BFMSS[2] bound. The operation
b c0 used in the root cases indicates rounding toward zero. The parameters u and l denote upper
bounds for µ(α1) and µ(α2), where α = 2v α1

α2 is the value of E. For v = 0, the iteration steps for
u and l yield the BFMSS bound. A separation bound is given as |α| ≥ 2v

udeg(α)−1l
. A bound to the

algebraic degree deg(α) is usually computed separately as the product of the degrees of all root
operations occurring in E.

2.2.6 Accuracy-Driven Evaluation
When evaluating an expression, number types like LEA choose a certain precision for the
underlying floating-point type and compute an approximation together with an error
bound. If the error bound is not sufficient to determine the sign of the expression, they
switch to a (rational) exact computation. Through the use of separation bounds, an
upper bound to the accuracy needed to determine the sign of an expression is known.
Hence, with a cascading floating-point filter the precision can be gradually increased until
a decision can be made (cf. Section 2.2.3). We call this strategy an adaptive precision
evaluation. However, this approach does not take into account that at different nodes
a precision increase contributes differently to the overall error bound. If, for example,
two numbers with very different sizes are added, an increase in relative accuracy for the
smaller number does not have much effect on the accuracy of the result, if any effect at

26

2.2 Exact Number Types

requested accuracy

operator precision

required accuracy required accuracy

Figure 2.8: A basic depiction of the accuracy propagation step during an accuracy-driven evaluation
for a binary operator node. An incoming requested accuracy is split into three required accuracy
bounds. The accuracy bound for the operation at the given node is translated into an operator
precision (cf. Section 2.1.1). The child nodes are evaluated recursively before performing the
operation.

all. Therefore, the precision of operations forming the bigger value should be much higher
than the precision of operations forming the smaller value. Following a lazy evaluation
approach, we can compute the precision that is required at each node to guarantee a
certain overall error bound before an actual evaluation takes place. To determine those
precisions, at each node we choose an operator precision and accuracies for the child
nodes such that the target accuracy for this node is guaranteed if both the errors at the
child nodes can be bounded accordingly and the operation is performed at the chosen
precision (cf. Figure 2.8). By recursively evaluating the child nodes before computing
the actual operation, the node is evaluated to the requested accuracy. This strategy is
called accuracy-driven evaluation. accuracy-driven

Remark 2.13. The concept of accuracy-driven evaluation was first described by Thomas
Dubé and Chee Yap. In their work they coined the term “precision-driven computation”
for this strategy [DY93]. In the opinion of the author, the usage of this term is misleading
since the main advantage of the new strategy is that the precision of a number type is
determined by variable accuracy requests. The process is therefore driven by the choice
of accuracies. In fact, one might argue that the term “precision-driven” is more suitable
for the adaptive precision strategy described above since in this case the computation
is driven by the choice of precisions, i.e., the resulting accuracy is predetermined by
the initially chosen precision. Consequently, in this work, we exclusively use the term
“accuracy-driven” to refer to the strategy of Dubé and Yap.

To compute the required accuracies at the child nodes, a lower and an upper bound
for their size must be known. For this, performing a fixed-precision computation with
low precision is sufficient, except for two situations. First, the denominator of a division
must always be non-zero. Second, the operand of a root operation must always be
non-negative. In these cases the sign of the respective operands must be computed
recursively before the main evaluation starts. Aside from the initial fixed-precision
evaluation, a cascading floating-point filter can and should be implemented together with
accuracy-driven evaluation. Separation bounds can get very small, especially when root

27

2 Concepts

F
lo

at
in

g-
p

oi
n
t

fi
lt

er

set initial
accuracy

evaluation separation bound
E

| app(E)| > err(E)

increase accuracy

| app(E)|+ err(E) < sep(E)

v(E) 6= 0 v(E) = 0

Accuracy-driven

| app(E)| > err(E)

initialize
approximations

Figure 2.9: The principal stages of a decision process as implemented in exact-decisions number
types. The current approximation and the current error bound for an expression E are denoted
as app(E) and err(E). The actual value of E is denoted as v(E). Before any data is initialized,
a floating-point filter on primitives is used. If the initial filter is insufficient, a cascading filter
mechanism based on accuracy-driven evaluation is executed until a decision can be made, either
directly or by hitting a separation bound.

operations are present. If the value of an expression is non-zero, in most cases its size is
much larger than the separation bound associated with the expression. Similarly to the
strategy described in Section 2.2.3, we can start by requesting a low accuracy and increase
the requested accuracy until we can separate the value from zero or reach the separation
bound. In contrast to an adaptive precision evaluation, we do not increase the precision
of the computation but the accuracy of the result. The basic design of an accuracy-driven
number type is shown in Figure 2.9. Note that, although not depicted, the initialization
may require several calls to the complete decision process for subexpressions.
The number type real from the LEDA library and the number type Expr from CORE

were the first to use accuracy-driven evaluation to make exact decisions. While different
at the time of their creation, newer versions of these number types are largely identical
and differ only with respect to minor design choices. We briefly describe both libraries.

The LEDA Library

The Library of Efficient Data Types and Algorithms (LEDA) is a collection of algorithms
and data types for combinatorial and geometrical computing. It is in development
since the late 1980s with the goal of making complex efficient algorithms available for
widespread practical application [MN89; MN99]. For exact computation, LEDA defines
number types for integers, rationals and floating-point numbers. The most powerful
number type in LEDA for exact computation, the number type real, facilitates accuracy-

28

2.3 Effective Number Types

driven evaluation to guarantee exact decisions for arbitrary radical numbers [Bur+95;
BMS96]. The original version of the data type used the degree-measure bound together
with a cascading floating-point filter. Newer versions employ the BFMSS[2] bound and
extend the implementation to include the diamond operator and therefore to support all
real algebraic numbers [Bur+04; Sch05].

The CORE Library

The main purpose of CORE is to provide a library that can be included in standard C++

programs to make all decisions in the program more precise or even exact. Initially
proposed in 1998, a first version of the library was introduced one year later [Yap98;
Kar+99]. In contrast to LEDA, the CORE library does not provide additional algorithms
or data structures but consists exclusively of various number types. It defines four levels
of accuracy. At the first level, only primitive number types are used. The second level
replaces those primitives by multiple-precision number types (cf. Section 2.1). The third
level guarantees exact computation. Finally, the fourth level allows for a mixture of those
accuracy levels. For the third level, a number type called Expr, based on the number type
RealExpr by Kouchi Ouchi, is used [DOY94; Ouc97]. In its first version, Expr supported
rational arithmetic as well as square root operations, based on the so-called degree-length
bound, an early constructive separation bound that can be shown to be inferior to the
degree-measure bound [LY01]. Later versions of CORE add a floating-point filter, use the
BFMSS[2] bound and extend the range of supported expressions to all real algebraic
expressions [Yu+10]. Furthermore, they employ a partly modularized implementation
scheme, which can be utilized to add further operations or exchange the separation bound
algorithm.

2.3 Effective Number Types

Largely independently of exact number types, the theory of effective number types
has evolved. It dates back to the notion of effective calculability of functions, which
describes those functions that are “intuitively” computable. In the 1930s, three different
computational models were proposed in order to formalize the concept of effective
calculability. Kurt Gödel developed the notion of recursive functions based on a suggestion
of Jacques Herbrand and refined by Stephen Kleene, whereas Alonzo Church introduced
the λ-calculus and Alan Turing his Turing machines. All of these models were proven
to be equivalent [Chu36; Tur37; Ros39]. It is widely assumed that the set of functions
over natural numbers that are effectively calculable is equal to the set of functions
that can be described by Turing machines or, equivalently, any of the other models.
This assumption is known as the Church-Turing thesis. The definition of computability
through Turing machines is equivalent to computability in the RAM machine model.
In the real RAM model, the definition of computability is extended to real numbers
by allowing the application of analytic functions as well as comparisons on arbitrary
real numbers (cf. Section 1.1). While this model allows a very intuitive development of

29

2 Concepts

theoretical algorithms, it is not immediately clear if and how the postulated operations
can be implemented on a real machine, which produces a gap that is partly filled by
the development of exact number types. Alan Turing calls a real number computable ifcomputable
it admits an effective approximation algorithm, i.e, an algorithm on natural numbers,
realized by a Turing machine, that computes an arbitrarily good (rational) approximation
for said number [Tur37]. Many authors proposed machine models that extend the concept
of computability based on Turing’s definition in order to enable the use of analytical
methods while preserving the general notion of effectiveness [Grz55; Maz63; Kus84; PR89;
Ko91; Gia99]. A comparison of these, mostly similar, models, paired with a rather
intuitive machine model is given by Klaus Weihrauch [Wei00]. The field born from these
efforts is known as computable analysis.
Weihrauch allows the representation of a real number r by a sequence (In)n∈N of

shrinking intervals with rational endpoints and r = ⋃∞
n=1 In. He calls a function com-

putable if there is a multi-tape Turing machine that from time to time produces a new
interval of an interval sequence representation for the result while reading the interval
representations of its parameters. This theory is called the “Type-2 Theory of Effectivity”
(TTE) in order to distinguish it from “Type-1” computability. Following the definition of
Weihrauch, we say that a real number r is called effective if it is TTE-computable. Aneffective
effective number type, consequentially, is a number type that provides representations for
the effective (real) numbers and supports basic TTE-computable functions. Effective
numbers contain the (real) algebraic numbers and important transcendental numbers,
such as π and e. Furthermore, they are closed under the application of all elementary
functions, such as sin, cos, exp and the natural logarithm.
TTE-computable functions are fundamentally incomparable to the functions that

can be computed following the real RAM model. Due to the inclusion of all algebraic
numbers, effective numbers are, however, more general than the numbers representable
by the exact number types introduced in the previous section. It was shown that a
large subset of the effective numbers can be compared to zero if Schanuel’s conjecture
is true [Ric97]. Nevertheless, in general it is not possible to decide whether an effective
number is zero [Hoe06c]. So, while authors commonly refer to their implementations of
effective number types as using “exact arithmetic”, they are not exact in the sense of
the Exact Computation Paradigm (cf. Section 2.2.1), although some of them demand at
least the weaker property that the number type is able to correctly identify the order of
every two distinct effective numbers. Nevertheless, similar techniques were developed for
effective number types as they were developed for exact number types. Effective number
types are usually based on expression dags, which are evaluated either top-down/a priori
(accuracy-driven) or bottom-up/a posteriori (with adaptive precision) [Bla02]. Note that
the accuracy-driven approach comes naturally to effective number types since it reflects
the definition of effectiveness. In an attempt to enable zero-testing, witness conjectures
are proposed, which, if true, would result in separation bounds [Hoe97; Ric00; Hoe01;
RE03]. Although some of the conjectures have been disproven, others remain open
problems [Hoe06b; RE06]. Joris van der Hoeven and John Shackell were able to prove a
doubly-exponential separation bound for power series [HS06].

30

2.3 Effective Number Types

A large amount of implementations of effective number types are described in literature.
Virtually all of them are based on the definition of Weihrauch or an equivalent one.
Especially in the early days of computable analysis, several functional implementations
were proposed [BC90; BES02]. In contrast to later implementations, they did not
explicitly use expression dags as they could be replaced by backtracking in the functional
structure. Similarly, a package designed by Norbert Müller employs long jumps in order
to do recomputations at higher precisions [Mül00]. Müller’s package is unique in the
sense that it claims to simulate a real RAM. It uses bottom-up evaluation and filter
mechanisms to gradually increase the precision up to a certain limit. Although described
as using exact arithmetic, neither equality nor inequality tests can be performed exactly.
Aside from the functional approach, several other representations of effective numbers
exist [GL00]. David Berthelot and Marc Daumas represent numbers by a sequence
of floating-point intervals [BD97]. Starting with their work, most subsequent effective
number types employ interval arithmetic paired with expression dags, albeit Berthelot
and Daumas themselves still used backtracking to increase the precision.

Keith Briggs was the first to implement and to demand that exact arithmetic must be
able to handle inequality tests correctly if they are positive [Bri06]. At least up to this
point it can be argued that all previous effective number types are closer to multiple-
precision number types than to exact number types. Branimir Lambov implements a
number type supporting the computation of limits and comparisons which are guaranteed
to be correct but may not return [Lam07]. Lambov implements both a bottom-up and
a top-down strategy and switches between them to increase the performance. Various
implementation choices are discussed in Joris van der Hoeven’s number type, albeit
leaving open the final decision on how to implement comparisons [Hoe06c]. In 2010,
Yong Li and Jun-Hai Yong presented a very limited number type with an attempt to a
balanced top-down evaluation but without mentioning comparisons [LY07].

31

3 A Configurable Expression DAG Policy
for Real_algebraic

Various experiments are performed throughout this work in order to assess the practical
behavior of the proposed algorithms. All of these experiments use the exact-decisions
number type Real_algebraic, which is perfectly suited for scientific testing due to its
generic nature. In this chapter, we introduce an extension to Real_algebraic that
modularizes the node data type of the underlying expression dag, one of its central
components. In Section 3.1, we briefly describe the general concept and important
mechanics of Real_algebraic. In Section 3.2, we describe the new modular node type
and provide an overview on its modules.

3.1 The Number Type Real_algebraic
The number type Real_algebraic was introduced in 2010 by Marc Mörig, Ivo Rössling
and Stefan Schirra [MRS10; RA15]. Real_algebraic is an exact-decisions number type
based on leda::real. It implements accuracy-driven evaluation on an expression
dag using the same basic strategies as leda::real, but it makes each component
interchangeable by the use of generic programming. Parts that are largely independent,
such as floating-point filters or the bigfloat number type used during the evaluation, can
be exchanged easily by the user. For each component, an abstract concept is defined, concept
which describes the purpose and the interface for a component. A class that satisfies
the conditions imposed by a concept is called a model of the concept. These models model
may again define new concepts that must be provided by the user. A number type
is then defined by a collection of models. We call such a collection a configuration of configuration
Real_algebraic.
There are five main concepts constituting Real_algebraic. To emphasize the fact

that they describe a behavioral aspect of a larger type, they are called policies. We give policy
a brief description for each of those policies.

3.1.1 LocalPolicy
Building an expression dag is expensive compared to a simple floating-point calculation
with primitives. Sometimes operations on primitives lead to the exact result. Sterbenz’
lemma, for instance, states that additions and subtractions on floating-point numbers
a and b are always exact if 0.5 ≤ a

b ≤ 2 can be guaranteed [Ste73]. Furthermore,
for additions, subtractions and multiplications, it is easy to check whether the result
is exact since the error of a floating-point operation can be represented exactly with

33

3 A Configurable Expression DAG Policy for Real_algebraic

another same-sized floating-point number type [Dek71]. With the same techniques,
expressions consisting exclusively of these operations can be represented exactly as a sum
of floating-point numbers with or without overlapping significant bits [She97; MS07]. If
the significant bits do not overlap, i.e., the least significant bit of a larger floating-point
number is always more significant than the most significant bit of a smaller floating-
point number, the sign of the sum can be read off directly from the representation.
Otherwise, it can be computed in reasonable time [RR99; MS07]. If implemented in
an exact-decisions number type, these techniques can be utilized to delay or completely
avoid the construction of an expression dag [Mör10].
The LocalPolicy permits the usage of alternative sign-determining methods while

falling back to the creation of an expression dag if the sign computation fails. Albeit
useful in an appropriate context, using an unsuitable local policy may have a negative
impact on the performance of the number type. To avoid inconsistencies, we do not use
a local policy in this work.

3.1.2 FilterPolicy

In Real_algebraic, an exchangeable floating-point-filter, designed to work with interval
arithmetic on primitive types, is used (cf. Section 2.2.3). The details on the underlying
interval arithmetic are specified by its FilterPolicy. During the construction of the
expression dag, an interval for the value of the expression is determined. When a sign
should be computed, the floating-point-filter is checked before initializing the bigfloat
data. The interval computed by the floating-point filter interacts with the subsequent
accuracy-driven evaluation in both directions. Initial approximations, needed for the
computation of error bounds and separation bounds, are obtained from the filter if a
finite interval representation exists. Conversely, approximations computed during the
evaluation are used to adjust the floating-point interval. Real_algebraic currently
supports the usage of either boost or LEDA interval arithmetic as floating-point filter.

3.1.3 ApproximationPolicy

During an accuracy-driven evaluation, approximations are computed (and stored) for each
subexpression, i.e., for the expression at each node of the underlying expression dag. The
ApproximationPolicy defines which bigfloat number type is used in Real_algebraic.
Furthermore, it defines the standard type used for representing the exponent of a bigfloat.
Contrary to its name, the ApproximationPolicy not only influences the computation
of approximations, but also the computation of error bounds, which are, depending
on the context, represented by bigfloats or by their exponents. Currently, models are
provided for two different bigfloat number types, for the type mpfr_t based on the
GNU multiple-precision library and for the bigfloat type from the LEDA library (cf.
Section 2.1.3).

34

3.2 The Class configurable_dag_node

3.1.4 SeparationBound

Real_algebraic can be used with several different separation bound strategies by
changing the respective policy. A model of the SeparationBound policy must provide
a method returning a zero separation bound for the subexpression at any node in the
expression dag when given an upper bound to the algebraic degree of the subexpression’s
value. For this, the method may rely on parameters that are computed inductively during
the initialization. In particular, the model must provide methods for each implemented
operation that are called whenever a node is initialized and that are given the separation
bound data stored at the operands. Models are given for the degree-measure bound, the
Sekigawa bound, the LY bound and the BFMSS bound with and without the extension
for k-ary inputs (cf. Section 2.2.5). As a side product of this work, a generic model for a
simultaneous use of any combination of the other models is available, which returns the
largest separation bound that can be found by any of the chosen strategies.

3.1.5 ExpressionDagPolicy

The ExpressionDagPolicy provides the expression dag itself as well as the accuracy-
driven evaluation. A valid ExpressionDagPolicy must provide methods to process all
basic arithmetic operations, to compute the value of an expression to a given accuracy and
to determine the sign of an expression. It is supposed to do so by creating an expression
dag and performing accuracy-driven evaluation on it, using the concepts defined in
the FilterPolicy, the ApproximationPolicy and the SeparationBound. While the
underlying concept of the ExpressionDagPolicy enables a global evaluation process, all
provided models operate locally. In these models, the main functionality is encompassed
in a node class, representing a single node of the expression dag. Implementations of a
basic dag node, called sdag_node, and a dag node copying the evaluation strategy used
in LEDA are available. However, the two node types differ only with respect to minor
implementation details.

3.2 The Class configurable_dag_node

The ExpressionDagPolicy in Real_algebraic allows for an exchange of the evaluation
strategy as a whole. However, different evaluation strategies often require only a small
change in the implementation. Furthermore, most changes are conceptually indepen-
dent, leading to an exponential number of possible combinations. Consequently, we
aim to create a new generic model of the ExpressionDagPolicy, which allows for an
independent application of these changes. Central to the standard implementation of an
ExpressionDagPolicy is the underlying node class, which both represents the root node
of an expression dag and contains the evaluation mechanism. We propose a new node
class called configurable_dag_node based on a set of new policies, enabling a more
modular configuration of the evaluation process. The new node class is designed with
three goals in mind:

35

3 A Configurable Expression DAG Policy for Real_algebraic

1. The configurable node class must resemble the class sdag_node as closely as possible
if the base set of policies is chosen. In particular, making a part of it generic must
not have a negative effect on the performance of the base configuration.

2. Policies should be based on an intuitive concept. It should be intuitively clear for
both the user and the developer which part of the node is affected by which policy.

3. Policies should be as independent as possible. The choice for one policy should not
depend on the choice made for another policy.

Those three goals are to some degree in conflict with each other. If a conflict arises,
they are prioritized top-down. Being able to closely simulate the sdag_node is vital
for experimental results to be meaningful. An intuitive concept and independence of
modules are important to make the code maintainable as well as extendable in the future.
Those goals, however, must often be sacrificed in order to keep the exact structure of the
reference class intact. In future versions of Real_algebraic the first criterion might be
loosened, resulting in a more polished version with respect to maintainability.
There are four main aspects for which exchangeability is established by the new

node class, namely preprocessing, evaluation, separation bound computation and error
bound handling. In the following sections, we give an overview on the relevant concepts
associated with each of these aspects.

3.2.1 Preprocessing

During the instantiation of a node class, usually only the structural information and
the floating-point filter is initialized. The structural information of the expression dag
can be exploited to optimize the evaluation process by implementing preprocessing
strategies, which are executed right before the expression dag is evaluated. If cost-heavy
member data, such as the bigfloats needed for the approximation, are not initialized
before the node is evaluated for the first time, those strategies can make changes in the
structure of the expression dag at low cost. The development of good preprocessing
strategies is a key component in the handling of large expression dags. We establish
a new concept called the RestructuringPolicy. Classes fulfilling this concept must
provide a restructure method, which is called at every node, right before its first
evaluation. The classes available for preprocessing are shown in orange in Figure 3.1. In
Chapter 4, the algorithms behind the depicted restructuring strategies, except for the
obvious No_restructuring, are described in detail.

3.2.2 Evaluation

At the core of Real_algebraic lies an accuracy-driven evaluation scheme as described
in Section 2.2.6. A natural way of implementing accuracy-driven evaluation at a dag
node is to compute error bounds for its children, recursively evaluate the children and,
after that, execute the operation at the node using the approximations computed at the
child nodes. We call this the recursive evaluation strategy.recursive evaluation

36

3.2 The Class configurable_dag_node

configurable dag node

EvaluationPolicy

Recursive evaluation

Topological evaluation

OperationComputationPolicy

Default operation computation

Parallel operation computation

TaskManagementPolicy

First in first out task policy

Depth prioritized task policy

ReferenceCounterPolicy

Default reference counter

Mt safe reference counter

RestructuringPolicy

No restructuring

Balance same operation

Brent restructuring

BalancingCondition

Balance addition

BrentSplitCondition

Balance multiplication

Balance addition and multiplication

Split unit weight

Split leaf weight

Split tree weight

SeparationBoundEvaluationPolicy

Basic sepbd evaluation

Timestamped sepbd evaluation

Timestamped fully cached evaluation

Faithful fully cached evaluation

SepBdRecursion

Strict recursion

Faithful recursion

ErrorRepresentationPolicy

Default error representation

Error representation by exponent

Error representation by double exponent

Balanced error representation

Custom error representation

ErrorDistributionPolicy

Path weight distribution

Tree weight distribution

Depth weight distribution

First in first out task policy

Depth prioritized task policy

ErrorStoragePolicy

ErrorFixedPrecisionPolicy

ErrorPropagationPolicy

∨

A requires concept B A requires model B

∗

∗

∗ ∗

∗

∗mandatory

Figure 3.1: An overview on the concepts contained in the definition of configurable_dag_node
as well as on the implemented models of these concepts. The concepts can roughly be categorized
into preprocessing (orange), evaluation (blue), separation bound computation (purple) and error
handling (red). Five of the concepts must be defined when using configurable_dag_node, the
remaining concepts are only needed for specific models.

Although natural, the recursive evaluation strategy may lead to unexpected runtime
behavior [MS15]. If the expression dag contains common subexpressions, the running
time of the evaluation heavily depends on the evaluation order of the dag nodes. If
the evaluation order is unfortunate, already evaluated subexpressions may need to be
re-evaluated later with a higher requested accuracy. In the worst case, this leads to a
quadratic number of re-evaluations.

Definition 3.1. Let G be a directed acyclic graph. A topological sorting of G is a total topological sorting
ordering of the nodes in G, such that for two nodes u, v where v lies in the subgraph of u
it follows that u < v.

37

3 A Configurable Expression DAG Policy for Real_algebraic

To preclude inconsistencies caused by the evaluation order, a topological sorting of
all nodes in the expression can be computed [MS15]. With a topologically sorted list of
nodes, the highest accuracy needed at each node can be efficiently determined before
any evaluation takes place. By this, it is guaranteed that each node is evaluated at most
once. We call this approach the topological evaluation strategy.topological

evaluation In the configurable_dag_node, the evaluation strategy is made interchangeable
through the use of the EvaluationPolicy concept. The concept requires a class to
implement a method called guarantee_error_bound, which computes the value of a
given node v up to a certain requested accuracy. It is expected that the relevant error
bounds are retrieved through methods provided by the ErrorPropagationPolicy, which
is described in detail in Section 3.2.4. Classes fulfilling the specifications are provided for
both recursive and topological evaluation. In the class Topological_evaluation, the
above-mentioned method starts by computing a topologically ascending list of all nodes
in the subexpression rooted at v and afterwards operates exclusively on the acquired
list without any further recursions. In a first step, the necessary error bounds for all
nodes are computed by traversing the list backwards. After that, the operations are
computed according to a concept called OperationComputationPolicy. Computing the
highest required accuracy at each node before computing the new approximations is
not only useful to guarantee consistency, but it also enables a parallel computation of
the associated bigfloat operations. The operations can be computed either in the preset
order of the list or they can be processed such that topologically independent nodes
are computed in parallel. The OperationComputationPolicy reflects this choice by
providing a method that, given the topologically sorted list, calls the evaluation function
on each node according to their topological order. In order to guarantee multithread-
safety, modifications with respect to the representation of the reference counter and the
separation bound computation strategy are required. Furthermore, different strategies
on task prioritization may be employed for the parallel operation computation. The
implementation of parallelization is described in more detail in Chapter 5. The associated
concepts and classes are depicted in blue in Figure 3.1.

3.2.3 Separation Bound Computation
To determine the sign of an expression, a separation bound is computed during the
evaluation (cf. Section 3.1.4). The algebraic degree of a number x is the smallest degreealgebraic degree
of a polynomial that evaluates to zero at x. To get a separation bound for an expression
that may contain root operations, an upper bound to the algebraic degree of the value
of the expression must be found. The algebraic degree can be bounded by the product
of the degrees of all root operations occurring in the expression. When a separation
bound is needed for a subexpression, the default version of Real_algebraic traverses all
nodes in the subexpression and multiplies their degree. This traversal can get expensive.
If separation bounds need to be computed for all nodes during an evaluation, a linear
traversal of each subexpression leads to a quadratic running time. Moreover, due to the
access to the child nodes during the traversal, evaluating nodes is not multithread-safe.
Although the access to the degrees of the nodes is read-only, guarding flags must be set

38

3.2 The Class configurable_dag_node

at each node during the traversal to prevent common subexpressions from being visited
more than once. Those flags may then be corrupted during a parallel evaluation.
Despite the obvious downside of continued traversals, it is not obvious how to avoid

them. If the degree bounds are computed in a simple bottom-up manner from the
bounds of its children, the resulting degree bound can be higher than with a traversal if
nodes with high degree appear in more than one subexpression. A slightly higher degree
bound, however, can already induce a considerably worse separation bound. In the class
configurable_dag_node, the methods that are used to compute the algebraic degree
bound and to trigger update procedures of the SeparationBound class are summarized
in a concept called SeparationBoundEvaluationPolicy. A class modeling this concept
must contain a method to get a separation bound for a given node and several methods to
update the necessary parameters at certain occasions, for example when an operator node
is converted to a bigfloat during the evaluation. The separation bound is expected to be
retrieved by computing an algebraic degree bound for the node and calling the respective
method of the given SeparationBound class. Four different strategies for computing
the algebraic degree are implemented, as shown in purple in Figure 3.1. Although only
one of these strategies is used for the experiments in this work, we briefly examine all
four methods. The Basic_sepd_evaluation class implements the default behavior of
Real_algebraic, i.e., it computes an algebraic degree bound using a depth-first traversal
of the respective subexpression whenever a separation bound is requested. The class
Timestamped_sepd_evaluation is similar to the previous one with the exception that
once computed bounds are cached with a timestamp. If a separation bound is requested
multiple times for the same node, the cached value can be returned as long as there have
not been any changes to the expression dag that might have changed the degree bound.

For the Timestamped_fully_cached_evaluation, a bottom-up computation scheme
for the algebraic degree bound is established. While the number of common subexpressions
in an expression dag might be large, we can expect the dag to contain only a small
number of radical nodes, i.e., nodes representing a root operation. Otherwise, the resulting
separation bound is too small to achieve a feasible running time anyway. Building on this
observation, for each node v all radical nodes in the subexpression rooted at v can be
stored in a list at v. If the number of radical nodes is bounded by a small constant, storing
them at each node does not have a significant impact on the running time. Now the list of
radical nodes at v can be acquired from its children by merging their lists of radical nodes
while removing duplicates and adding v itself if it contains a root operation. The list of
radical nodes can be further reduced by listing only those nodes who have more than
one parent as determined by their reference counter. In this case, each node additionally
needs to store a degree factor that is unique to their subexpression. Consequently, in this
case, all nodes with a unique degree larger than one must be treated like radical nodes.

With the bottom-up, fully-cached strategy, each node is traversed at most once as long
as there are no changes to the expression dag. A degree bound can easily be computed
for each node by multiplying the degrees of the listed nodes with the unique degree of the
node itself. If the expression dag changes in a way that influences the degree bound, the
stored parameters at each node must be recomputed. This can be done in two ways. With

39

3 A Configurable Expression DAG Policy for Real_algebraic

a Strict_recursion, similar to the previous strategies, all descendants are traversed and
recomputed. The class Faithful_recursion on the other hand expects that all child
nodes have already been recomputed if the data is invalidated and therefore performs
only a local recomputation of its parameters, using the parameters at its direct children.
The second strategy can only be used in combination with a Topological_evaluation.
In contrast to the other strategies, however, it is guaranteed to be multithread-safe.
The final strategy, called Faithful_fully_cached_evaluation, is the one used in

this work. It behaves similar to the previous strategy with faithful recursion, with
the exception that it does not store a timestamp and therefore data is never globally
invalidated. Instead, it relies on a computation order that will never require the cache to
be reset. As Faithful_recursion, this class is multithread-safe, but can only be used
with Topological_evaluation. A faithful evaluation is required for the experiments in
Chapter 5. For consistency, we use the class Faithful_fully_cached_evaluation in
all experiments in this work.

3.2.4 Error Handling

ErrorRepresentationPolicy

Default error representation

Error representation by exponent Error representation by double exponent

Balanced error representation Custom error representation

ErrorStoragePolicy

Error storage by bigfloat

Error storage by exponent

ErrorStorageType

ErrorFixedPrecisionPolicy

Error fp computation by bigfloat

Error fp computation by exponent

FPIntegerExponent FPDoubleExponent

ErrorPropagationPolicy

Balanced error propagation

int double

ErrorPropagationType

int double

Error propagation by exponent

ErrorDistributionPolicy Path weight distribution Tree weight distribution Depth weight distribution

FPExponentPolicy

A contains model BA requires model BA requires concept B

Figure 3.2: The concepts used for models of the ErrorRepresentationPolicy. The policy is
subdivided into fixed precision computation (blue), error storage (purple) and accuracy-driven
propagation (dark red). Each model of the error representation is a collection of models of
sub-concepts as indicated by the respective top-down lines. The custom error representation
allows the user to choose the models for the sub-concepts manually (not indicated in the figure).

During the evaluation process, error bounds for the current approximation are main-
tained. The ErrorRepresentationPolicy defines which representation is used for the
error bounds and how error bounds are computed at different stages throughout the
evaluation. The policy divides into three main aspects, namely the storage, the ini-
tial error bound computation at fixed precision and the error propagation during the

40

3.2 The Class configurable_dag_node

accuracy-driven evaluation. In each of the three stages, the representation used can be
chosen independently, with the exception of a bigfloat fixed-precision computation, which
requires a bigfloat storage type. Choosing a representation has various consequences on
the methods used for determining error bounds and, hence, their size. Different methods
for the accuracy propagation play a main role in Chapter 4. The class Balanced_error_
propagation reflects the strategies introduced in Section 4.2. The different types of
representations for error bounds are explained in more detail in Chapter 6.

In the ErrorRepresentationPolicy concept, the three different aspects of error rep-
resentation are subsumed in order to make error representation more accessable. Four
different classes are defined to be used as a comprehensive error representation policy.
The policy combinations for each of the four classes is shown in Figure 3.2. The default
representation and the exponent representations can be used directly without further con-
siderations. If the class Balanced_error_representation is used, additionally defining
an ErrorDistributionPolicy is required (cf. Figure 3.1). A converter template, not
depicted in any of the figures, is used to convert any error representation into any of
the others. The class CustomErrorRepresentation may be used if the three subpolicies
should be assigned manually by the user.

41

4 Optimizing Expression DAGs for
Large-Scale Computations

Exact number types are currently designed to efficiently handle small computations. This
is justified by the fact that in many geometric algorithms the numerical computation
is restricted to the evaluation of small predicates, such as the orientation predicate or
the incircle predicate. Nevertheless, there are several reasons why it is worthwhile to
consider large-scale computations as well:

1. The data on which geometric algorithms operate is usually expected to be exact or
at least not to be contradictory. This may not always be the case if the data itself
is generated by an algorithm and the output is rounded to primitive number types.
A loss of exactness can be avoided if the data itself is saved as an exact number
type. In this case, expression dags can grow considerably over several iterations.

2. Some geometric algorithms process the same data over many iteration steps where
the newly generated data is computed from the previous data and therefore, similar
to before, the size of the involved expressions increases with each iteration.

3. The usage of exact computation in other algorithmic contexts is currently inhibited
by the low performance of exact number types. Increasing the performance for
large computations is a step toward a more general usage of exact number types,
for example in the context of automated reasoning.

In the first section of this chapter, we discuss the cost associated with the evaluation of
an expression dag and show how it is affected by a bad structure. In particular, we show
that an unbalanced graph structure leads to a substantial increase in evaluation cost.
Unbalanced structures occur naturally in algorithms. Whenever a simple loop construct
is used, this usually leads to an unbalanced expression. While in theory the programmer
can adjust their implementation, building a balanced expression demands considerable
effort and usually requires to save intermediate results. In an online setting, the full
expression might not even be known in advance. It is natural to rely on mechanisms
provided by a general purpose number type instead. Moreover, an exact-decisions number
type already maintains the computation history and is therefore well-suited to tackle
these problems. In Section 4.2, we show how the effects of an unbalanced expression dag
can be mitigated by adjusting the evaluation process to fit its structure. In Section 4.3,
we discuss in what situations the overall structure of the graph can be restructured by
the number type before an evaluation is started. In Section 4.4, we provide experiments
to validate and to evaluate the theoretical results.

43

4 Optimizing Expression DAGs for Large-Scale Computations

4.1 The Cost of Evaluating Expression DAGs
The concept of an expression dag, as described in Section 2.2.4, is central to exact number
types based on accuracy-driven evaluation. If floating-point filters or similar methods
fail to determine the sign of an expression, high-precision approximations are computed
for each node in an expression dag to get a more accurate value for the expression. We
refer to this process as the evaluation of the expression dag. In this section, we develop a
cost model that is used in the subsequent analysis of the evaluation process. Expression
dags in this work are always expected to operate on floating-point numbers and to
support all radical expressions, i.e., all operators in Ω = { u−,+,−, ·, /} ∪ { d√• | d ∈ N}
(cf. Section 2.2.5). Furthermore, our notion of accuracy always refers to an absolute error
bound if not specified otherwise. We start with the definition of some basic concepts.

Definition 4.1. Let E be an expression dag. Then we denote the set of operator nodes
of E as V(E) and the set of edges leading to an operator node as E(E). We furthermoreV(E), E(E)
denote the set of all nodes of E as V0(E) and the set of all edges of E as E0(E).V0(E), E0(E)

When an expression dag is evaluated accuracy-driven, a requested accuracy is associatedrequested accuracy
with each of its nodes (cf. Section 2.2.6). In order to guarantee the requested accuracy,
at each operator node required accuracies for the associated operation and for each of itsrequired accuracy
edges are computed. The required accuracy for the operation is then translated into the
node’s operator precision and the required accuracies for the edges lead to a requestedoperator precision
accuracy at their target. These concepts are formalized by the definition of an error
distribution.

Definition 4.2. Let E be an expression dag. A (partial) function

q : {E} ∪V(E) ∪E(E)→ R

is called a (partial) error distribution for E.error distribution

Semantically, an error distribution formalizes the notion of required accuracy for the
elements of an expression dag. In the context of an error distribution, we generally
represent accuracies by their magnitude as this representation more naturally transfers to
a meaningful cost model. Consequently, for an expression dag E with error distribution q,
we say that the required accuracy for a node v ∈ V(E) is q(v) if we require the absoluteq(v)
operation error at v to be less or equal to 2q(v). Similarly, we say the required accuracy
for an edge e = (u, v) ∈ E(E) is q(e) if we require the error of the approximation of theq(e)
subexpression at v to be less or equal to 2q(e). Finally, we say that an accuracy of q(E)q(E)
is required for E if the absolute error of the approximation for the value of E is required
to be less or equal to 2q(E).
A partial error distribution, and therefore the notion of required accuracies, can

naturally be extended to all nodes in an expression dag.

Definition 4.3. Let E be an expression dag and let q be a partial error distribution for
E. Then we call the function

q̂ : {E} ∪V0(E) ∪E0(E)→ R ∪ {−∞,∞}

44

4.1 The Cost of Evaluating Expression DAGs

r(v) = min(q(e1), q(e2))

q(e2)

q(v)

q(el) q(er)

q(e1)

p(v)

Figure 4.1: The basic accuracy propagation process. The requested accuracy r(v) at an operator
node v is determined by the required accuracies of the two incoming edges e1 = (u1, v), e2 = (u2, v).
The requested accuracy is then split into the required accuracy at the node and the required
accuracies at the two outgoing edges el, er. The precision for the operation at v is derived from
the required accuracy at v.

with

q̂(x) =

q(x), if q is defined for x
−∞, if x ∈ (V0(E)−V(E)) ∪ (E0(E)−E(E))
∞, otherwise

the natural extension of q. natural extension

A leaf in an expression dag is always represented exactly and therefore infinitely
accurate. If an error distribution does not specify the required accuracy of a non-leaf
element of the expression dag, its value is not important for the respective evaluation step
and therefore any accuracy is sufficient. In the following, we always assume a natural
extension of an error distribution if a value would not be defined otherwise.
The requested accuracy at a node v ∈ V0(E) represents the maximum accuracy

necessary to fulfill all requirements of predecessors in the expression dag. It therefore
depends on the required accuracies of all of its incoming edges. For an expression dag E
with root v0 and an error distribution q we set

r(v) r(v)=
{
q(E), if v = v0

min(u,v)∈E0(E) q((u, v)), otherwise
(4.1)

and use r(v) to denote the requested accuracy at v. We call r(v0) = q(E) the target target accuracy
accuracy of the evaluation. Figure 4.1 shows the basic accuracy propagation process.
Both the computation of the required accuracies from the requested accuracy and the
computation of the operator precision p(v) from the accuracy required for the operation

45

4 Optimizing Expression DAGs for Large-Scale Computations

are dependent on the node’s operator. In the following section, we describe how these
values are determined.

4.1.1 Accuracy Propagation
With a meaningful error distribution, the requested accuracy at a node v ∈ V(E) is
guaranteed if the required accuracies at v and at its outgoing edges are guaranteed. In
order to arrive at a definition for a meaningful error distribution, we have to specify how
a requested error can be distributed among the operation error and the errors in the
operands.

Notation 4.4. Let v be a node in an expression dag with value z. Then we denote the
approximation for z stored at v by z̃. If v is an operator node with operator ◦, we denotez̃

the inexact operator that performs the operation at a certain operator precision by },}

i.e., we draw a circle around the operator.

Let v be an operator node in an expression dag E with value z and operator ◦. Let
σ be the absolute error caused by the operation at v. If ◦ is a unary operator, v has
exactly one child. Let x be the value at the child node of v. Then the absolute error χ of
the approximation z̃ is bounded by

χ = |z̃ − z| = |}(x̃)− ◦(x)| ≤ σ + |◦(x̃)− ◦(x)|

Likewise, if ◦ is binary, then v has two children with values x, y and the absolute error
of z̃ is bounded by

χ = |z̃ − z| = |x̃} ỹ − x ◦ y| ≤ σ + |x̃ ◦ ỹ − x ◦ y|

Thereby, the operation error can always be isolated from the errors in the operands.
For some operators, there are error bound models which are able to capitalize on the
operation error by not separating it from the error caused by the child approximations.
In order to obtain a standardized format, we do not follow these approaches. Instead we
determine so-called operator constants cl, cr for each operator ◦ ∈ Ω such that we get anoperator constant
inequality of the form

χ ≤ σ + clε+ crδ (4.2)

where ε and δ denote the errors at the left and the right child. For unary nodes, we
have only a left child and therefore set cr = δ = 0. While the operator constants are
not necessarily actual constants, they can be considered constant with respect to some
aspects of the evaluation. We elaborate on this observation in Section 4.1.2. For the
operator node itself, the error is bounded by the precision at which the operation is
performed. We determine a correction addend γ(v) such that the operator precision at vcorrection addend
is given as

p(v)p(v) = −q(v) + γ(v) (4.3)

46

4.1 The Cost of Evaluating Expression DAGs

For a correctly rounded operation, the operator precision can be directly translated into
an upper bound to the relative operation error. If we guarantee γ(v) ≥ log(|z̃|), then the
absolute operation error is bounded by

σ ≤ |z̃| · 2−p(v) ≤ |z̃| · 2q(v) · 2− log(|z̃|) ≤ 2q(v) (4.4)

Note that the actual precision applied to an operation must necessarily be positive and
integral. If the operator precision is negative or, in an actual implementation, smaller
than the precision of a primitive operation, then the operation is evaluated at a fixed
minimum precision. If the value of the operator precision is not integral, the rounded up
precision is used for the actual computation.

Negation

For a negation only the sign bit of the approximation is changed. Therefore, negations
do not affect the accuracy of the approximation as long as the resulting bigfloat can
hold the same number of bits as the approximation of the child node. So we have χ = ε
and take over the precision from the child operation. Throughout this work, we usually
ignore negations in the analysis since they neither affect the accuracy needed in the
subexpression nor have a significant effect on the running time.

Addition and Subtraction

Additions and subtractions behave similar in terms of error analysis. Since a subtraction is
equivalent to an addition with a negated second operand, we generally do not distinguish
between these two operations. In both cases, absolute errors in the operands simply add
up to an absolute error in the result.

χ ≤ σ + |x̃± ỹ − (x± y)|
≤ σ + |(x+ ε)± (y ± δ)− (x± y) |
= σ + |(x± y) + ε+ δ − (x± y)|
≤ σ + ε+ δ

For additions, the size of the resulting approximation is at most twice the size of its
operands. With (4.4) it is therefore sufficient to set the operator precision to

p(v) = −q(v) + max(log(|x̃|), log(|ỹ|)) + 1 ≥ −q(v) + log(|z̃|)

Multiplication

In multiplication nodes, an error in the child node approximations is magnified by the
size of the factors. To bound this error, we must obtain an upper bound on the size of x.
Let xhigh = |x̃|+ ε. Then |x| ≤ xhigh and we get

47

4 Optimizing Expression DAGs for Large-Scale Computations

χ ≤ σ + |x̃ · ỹ − x · y|
≤ σ + | ((x+ ε) · ỹ)− (x · y) |
= σ + |x · ỹ + εỹ − (x · y)|
≤ σ + |x · (y + δ) + εỹ − (x · y)|
= σ + |x · y + εỹ + xδ − (x · y)|
≤ σ + |ỹ|ε+ xhighδ

Note that the resulting term seems surprisingly asymmetric. The reason for this
asymmetry is the incorporation of an error of size εδ caused by the multiplication of
the error terms. With a similar argument we can bound χ by σ + yhighε + |x̃|δ with
yhigh = |ỹ|+ δ. In Real_algebraic, a symmetry is established by using both xhigh and
yhigh in order to bound |x| and |ỹ|, respectively. While certainly not the optimal strategy,
we do not change this behavior for this work. The magnitude of the approximation after
a multiplication is bounded by the product of the magnitudes of the operands. Therefore,
the required accuracy at a node v translates into the operator precision as

p(v) = −q(v) + log(|x̃|) + log(|ỹ|) ≥ −q(v) + log(|z̃|)

and the operation error is bounded as in (4.4). Note that the magnitude of the approxi-
mation is always smaller or equal to the product of the magnitudes of the operands if
the operation is rounded toward zero. If the magnitudes are rounded to the next largest
integer, the validity of the statement does not depend on the rounding mode of the
operation anymore.

Division

Let xhigh = |x̃|+ ε and ylow = |ỹ| − δ and assume ylow > 0. Then the error at a division
node is bounded by

χ ≤ σ +
∣∣∣∣ x̃ỹ − x

y

∣∣∣∣
≤ σ +

∣∣∣∣(x+ ε)y − x(y − δ)
ỹy

∣∣∣∣
= σ +

∣∣∣∣1ỹ ε+ x

ỹy
δ

∣∣∣∣
≤ σ + 1

|ỹ|ε+ xhigh
|ỹ|ylow

δ

Since |ỹ| ≥ ylow, we can always use ylow in the denominator, which may save one
bigfloat operation, depending on the implementation. Note that for computing this bound
it is not sufficient to guarantee y > 0, but instead we must make sure that ylow > 0 before

48

4.1 The Cost of Evaluating Expression DAGs

starting the evaluation. Similarly to multiplication, the magnitude of the approximation
is bounded by the product of the magnitude of the numerator and the magnitude of the
inverted denominator. We set the operator precision to

p(v) = −q(v) + log(|x̃|)− log(|ỹ|)

and get a bound to the absolute operation error as in (4.4).

Root of Degree d

Let xlow = |x̃| − ε and assume xlow > 0. For a function f with monotonically decreasing
slope, we can bound the value of f(a+ b) from above by f(a) + b ddtf(t)|a. The error for
a root operation of degree d is therefore bounded by

χ ≤ σ + | d
√
x̃− d
√
x|

≤ σ + | d
√
x+ ε− d

√
x|

≤ σ + | d√x+ ε ddt
d
√
t |x − d

√
x|

= σ + |1dx
1
d
−1ε|

≤ σ + 1
dx

1−d
d

low ε

For determining the operator precision, an upper bound on the magnitude of the
resulting approximation must be computed. When applying the logarithm, computing
the d-th root becomes a division by d. The operator precision is set to

p(v) = −q(v) + log(|x̃|)/d

and a bound to the operation error follows with (4.4).

Summary

The operator constants are summarized in Table 4.2. The occurrences of the value of the
approximation have been replaced by the upper or lower bounds of the intervals in order
to simplify the equations. Note that we can assign the operator constants at each node to
its outgoing edges by assigning cl to the left outgoing edge and, if the node is binary, cr

negation add./sub. multipl. division d-th root

cl 1 1 yhigh
1

ylow
1
d(xlow) 1−d

d

cr 0 1 xhigh
xhigh
y2
low

0

Table 4.2: Operation-dependent constants cl and cr for an accuracy-driven evaluation in
Real_algebraic with xhigh, yhigh upper bounds and xlow, ylow lower bounds on the child values.

49

4 Optimizing Expression DAGs for Large-Scale Computations

to the right outgoing edge. For an expression dag E and an edge e ∈ E0(E), we denote
the operation constant along this edge as c(e). The correction addends are displayed inc(e)
Table 4.3. For negations, the operation error is always zero if the precision is set to the
precision of the child node. Hence, it is not determined by the required accuracy of the
node and the concept of correction addends is not applicable. Note that, in contrast to
the operator constants, the correction addends are defined in a logarithmic context.

γ(v)

add./sub. max(log(|x̃|), log(|ỹ|)) + 1
multiplication log(|x̃|) + log(|ỹ|)
division log(|x̃|)− log(|ỹ|)
d-th root log(|x̃|)/d

Table 4.3: Operation-dependent correction addend γ(v) for an accuracy-driven evaluation in
Real_algebraic.

4.1.2 The Cost Function

In this section, we develop a simple but meaningful model for the “cost” of an accuracy-
driven evaluation. Empirically, most of the running time of an exact number type such as
Real_algebraic is reserved for the underlying bigfloat arithmetic unless the computation
can be avoided through early filter mechanisms. As long as other algorithms, that are
executed during the evaluation and use only primitive types, are reasonably fast (linear
up to small-constant quadratic running time), they can be expected to have little impact
on the overall running time. For this reason, we choose to focus exclusively on the cost
caused by bigfloat operations. Let p be the precision at which a bigfloat operation should
be executed. As described in Section 2.1, all standard bigfloat operations can be done in
O(p log p). In efficient bigfloat libraries, such as MPFR, all operations are implemented
with algorithms that guarantee a running time of O(p(log p)k) for a small k ∈ N. We
therefore can expect an almost linear behavior , i.e., if we execute n operations withalmost linear
precision p, the running time is nT (p) ∼ T (np).
During one evaluation of an expression dag, the error distribution may change. We

assign an evaluation event to each bigfloat operation that is executed during the evaluationevaluation event
process. We denote the set of all evaluation events occurring during a certain evaluation
of an expression dag E by H(E). For an evaluation event h ∈ H(E) we denote the errorH(E)
distribution at this event by qh. Likewise, we denote the requested accuracy at a nodeqh

v ∈ V(E) during h by rh(v) and the operator precision at this node by ph(v). We canrh(v), ph(v)
now define the cost of evaluating an expression dag as the sum of the precision needed
for all bigfloat operations.

Definition 4.5. Let H(E) be the set of bigfloat evaluation events occurring during
one accuracy-driven evaluation of an expression dag E. Let h ∈ H(E) be a single

50

4.1 The Cost of Evaluating Expression DAGs

evaluation event and let v ∈ V(E) be the node that is evaluated during h. Then the true true cost
cost of h is defined as costt(h) = ph(v). Furthermore, we define the true cost of E as
costt(E) = ∑

h∈H(E) costt(h).

In the definition of the true cost, we do not take performance differences between
operations into account. While in practice there are significant differences in the constants
associated with the different algorithms (cf. Table 2.3, page 16), we choose to ignore them
in the cost model in order to make expression dags with mixed operations analyzable.
Since the true cost is based on the precision of the operations, it evolves around the
relative accuracies present in the subexpressions. In the context of an accuracy-driven
evaluation, however, we mostly deal with absolute instead of relative accuracies. For
the analysis, it is therefore more convenient to have a model that is based on absolute
accuracy.

Definition 4.6. Let H(E) be the set of bigfloat evaluation events occurring during one
accuracy-driven evaluation of an expression dag E and let h ∈ H(E) be an evaluation
event occurring at v ∈ V(E). Then the absolute cost of h is defined as cost(h) = −qh(v). absolute cost
Furthermore, we define the absolute cost of E as cost(E) = ∑

h∈H(E) cost(h).

In the previous section, it was shown how the operator precision can be computed
from the absolute accuracy required for the operation. Let γ(h) be the correction addend
at the evaluated node v as described in Table 4.3. Then the true cost of an evaluation is
equal to the sum of the absolute cost of the evaluation and the addends, i.e.,

costt(E) = cost(E) +
∑

h∈H(E)
γ(h)

The correction addends depend on the sizes of the respective approximations. These sizes
can vary heavily depending on the actual values in the leaves and the structure of the
expression dag. Knowing these sizes in advance is in general equivalent to the knowledge
about the sign of the (sub-)expression. At the same time, the choices we make during
the evaluation usually do not lead to a drastic change in their magnitude. If applied
carefully, the absolute cost is therefore a good indicator for the behavior of the true cost.
In the following, we always refer to the absolute cost if not specified otherwise.
The requested accuracy at a node and, consequently, the required accuracy for its

operation depend on the required accuracies from its parent nodes (cf. Equation 4.1).
Since the same applies to the parents, the required accuracy at a node depends on all of its
predecessors in the expression dag. The concept of a root path is therefore fundamental
for the analysis of the evaluation cost.

Definition 4.7. Let E be an expression dag. For k ∈ N0 let {v0, ..., vk, v} ⊆ V0(E)
be a set of nodes in E and let {e0, ..., ek} ⊆ E0(E) be a set of edges in E, such that
ei = (vi, vi+1) for 0 ≤ i < k and ek = (vk, v). Then we call the (2k + 1)-tuple

P = (v0, e0, ..., vk, ek, v)

a path between v0 and v in E. If v0 is the root of E, then we call P a root path of v. We path, root path

51

4 Optimizing Expression DAGs for Large-Scale Computations

denote the set of root paths for a node v by P(v). As for expression dags, we denote theP(v)
set of nodes in P as V(P) and the set of edges along P as E(P).V(P), E(P)

In an error distribution, at each edge along a path in E the required accuracy may
change. The following definition formalizes the total change in accuracy along a path
in E.

Definition 4.8. Let e = (u, v) ∈ E0(E) be an edge in an expression dag E with error
distribution q. We call i(e) = q(e) − r(u) the accuracy increase along e. For a nodei(e)
v ∈ V0(E) we call i(v) = q(v) − r(v) the accuracy increase at v. Finally, for a pathi(v)
P = (v0, e0, ..., ek, vk+1) we call

i(P)i(P) =
k∑
i=0

i(ei) + i(vk+1)

the accuracy increase along P .

The requested accuracy at a node is defined by the maximum accuracy required along
all of its root paths. So, naturally, some paths in an expression dag are especially relevant
for the evaluation.

Definition 4.9. Let E be an expression dag with error distribution q, let u, v ∈ V(E)
and let P be a path between u and v in E. Then the path P is called a defining path ifdefining path
i(P) = q(v)− r(u).

Observation 4.10. Let E be an expression dag with error distribution q whose value
should be determined with target accuracy q(E) = z. If for a node v ∈ V(E) a root path
P ∈ P(v) is defining, the required accuracy for the node’s operation is given by

q(v) = z + i(P)

Remark 4.11. Throughout this work, we use z to denote the absolute accuracy that
should be guaranteed for the final approximation by the accuracy-driven evaluation.
Since in a reasonable error distribution q(E) = z, we use the term target accuracy for
this value as well (cf. page 45).

If a path P is defining, then all subpaths of P must be defining as well. In particular,
the edges along the path are the edges that define the requested accuracy of their target
nodes. Conversely, a path consisting of these edges is always defining.

Lemma 4.12. Let P = (v0, e0, ..., ek, vk+1) be a path in an expression dag with error
distribution q. Then P is defining if and only if q(ei) = r(vi+1) for all 0 ≤ i ≤ k.

Proof. If q(ei) = r(vi+1) for all edges then

i(P) =
k∑
i=0

i(ei) + i(vk+1)

52

4.1 The Cost of Evaluating Expression DAGs

=
k∑
i=0

(q(ei)− r(vi)) + q(vk+1)− r(vk+1)

=
k∑
i=0

(r(vi+1)− r(vi)) + q(vk+1)− r(vk+1)

= q(vk+1)− r(v0)

and therefore P is defining. If, on the other hand, P is defining, then we must have

k∑
i=0

q(ei) =
k∑
i=0

r(vi+1)

Since the requested accuracy at a node is the highest of the required accuracies of
all incoming edges (cf. Equation 4.1), we have q(ei) ≥ r(vi+1) for all i and therefore
q(ei) = r(vi+1) for all edges.

Corollary 4.13. Let E be an expression dag with an error distribution q. Then for each
v ∈ V(E) at least one path in P(v) is defining.

Proof. The requested accuracy at a node is the minimum of the required accuracies of all,
finitely many, incoming edges. For each node v′ in the expression dag there is at least one
incoming edge e, such that r(v′) = q(e). Let P be a root path of v created by traveling
toward the root using only such edges. Then, with Lemma 4.12, P is defining.

During a recursive evaluation, whenever an accuracy is required at a node that is
higher than the current accuracy of the approximation, the bigfloat operation at the
node is re-evaluated. In the worst case, for each node v ∈ V(E) each path P ∈ P(v)
requires a different accuracy and each of those paths becomes defining at one point of
the algorithm (cf. [MS15]). Then the total cost of an evaluation to accuracy z is given as

cost(E) = −
∑

v∈V(E)

∑
P∈P(v)

(z + i(P))

In a topological evaluation the highest requested accuracy for each node is computed
before any evaluation event occurs. Afterwards, each node is evaluated exactly once,
assuming that there are no pre-evaluated nodes. Therefore, the total cost is guaranteed
to be

cost(E) = −
∑

v∈V(E)
min

P∈P(v)
(z + i(P)) = −nz −

∑
v∈V(E)

min
P∈P(v)

i(P) (4.5)

where n denotes the number of operator nodes in E. For the rest of this work, we always
assume topological evaluation if not explicitly stated otherwise. We generally assume
that, in any expression dag, no node has been evaluated before. By using a topological
approach we can then refrain from using evaluation events to define costs. Instead, we
assign a cost to each operator node.

53

4 Optimizing Expression DAGs for Large-Scale Computations

Definition 4.14. Let E be an expression dag with error distribution q. For an operator
node v ∈ V(E) we set the true cost of v to costt(v) = p(v) and the absolute cost of v tocostt(v)
cost(v) = −q(v).cost(v)

Now, the total cost of an evaluation can be represented directly as the sum of the cost
of all operator nodes.

Observation 4.15. For a topological evaluation without pre-evaluated nodes, we have
costt(E) = ∑

v∈V(E) costt(v) and cost(E) = ∑
v∈V(E) cost(v).

With the observation and (4.5), we get a relation between the cost of a node and the
cost increase along the paths in an expression dag.

Corollary 4.16. ∑v∈V(E) cost(v) = −nz −∑v∈V(E) minP∈P(v) i(P)

4.1.3 Cost and Structure
In Section 4.1.1, we described how the total error χ at a node v is bounded by the
operation error and the errors at the child nodes. Let ρ = 2−q(v) be the error requested
at a node v. We know how to compute constants cl, cr, such that

χ ≤ σ + clε+ crδ

where σ is the operation error and ε, δ are the errors at the left and the right child (cf.
Section 4.1.1). If the right side is bounded by ρ, the requested accuracy is guaranteed.
For distributing the requested error among the three error terms at the right hand side
of the inequality, it is important to note when one or both of the child nodes are exact.

Definition 4.17. For an expression dag E, an operator node v ∈ V(E) is called a
quasi-leaf if all of its children are leaves. Furthermore, we call v quasi-unary if it hasquasi-leaf

quasi-unary exactly one child node that is not a leaf and fully binary if it is binary and both children
fully binary are operator nodes.

Leaves are always exact and therefore do not introduce errors. If v is a quasi-leaf,
requiring σ ≤ ρ is therefore sufficient to guarantee χ ≤ ρ. Otherwise, the error must be
distributed among the operation and the children. Real_algebraic chooses the required
error bounds such that

σ ≤ 1
2ρ and clε ≤

1
4ρ and crδ ≤

1
4ρ (4.6)

if v is fully binary and

σ ≤ 1
2ρ and clε ≤

1
2ρ (4.7)

if v is quasi-unary. While this choice of an error distribution is arbitrary to some degree,
using powers of two as fractions leads to an integral shift in the exponent. If accuracies
are represented by their exponent, rounded to the next integer, this error distribution
makes maximum use out of the inevitable rounding.

54

4.1 The Cost of Evaluating Expression DAGs

Definition 4.18. Let E be an expression dag and let z be the target accuracy to which
E should be evaluated. Let q be the error distribution where q(E) = z, the required
accuracy at a node v ∈ V(E) is computed from the requested accuracy as

q(v) =
{
r(v), if v is a quasi-leaf
r(v)− 1, else

and the required accuracy at an edge e = (u, v) ∈ E(E) is computed as

q(e) =
{
r(u)− 1− dlog(c(e))e, if u is quasi-unary
r(u)− 2− dlog(c(e))e, if u is fully binary

Then we call q the standard error distribution (for E and z). standard error dist.

The standard error distribution makes the performance of the evaluation process
vulnerable to bad structure. In particular, it leads to high cost if the expression dag has
a great depth.

Definition 4.19. Let E be an expression dag and let v ∈ V0(E). Then the root distance root distance
of v in E is the maximum number of edges along a path from the root of E to v, i.e.,

distE(v) distE(v)= max
P∈P(v)

|E(P)|

The set of nodes with root distance j is called the j-th level of E. The depth of E is the level
maximum distance from the root to any of its leaves, i.e.,

depth(E) depth(E)= max
v∈V0(E)

distE(v)

Furthermore, let Ev be the subexpression rooted at a node v ∈ V0(E), then we call
depth(v) = depth(Ev) the depth of v. depth(v)

We call an expression dag an (arithmetic) expression tree if its operator nodes form expression tree
a tree. Let Elist be a list-like expression dag with n binary operator nodes, i.e., an list-like
expression tree where the subgraph formed by the operator nodes is a linear list (cf.
Figure 4.4). For simplicity, assume that all operations in Elist are additions and therefore
for each edge e we have c(e) = 1. All operator nodes of Elist are quasi-unary, except for
the node on the largest level, which is a quasi-leaf. Let P (v) be the unique root path of
a node v ∈ V(Elist). Then the cost of evaluating Elist to accuracy z is

cost(Elist) = −nz −
∑

v∈V(Elist)
min

P∈P(v)
i(P)

= −nz −
∑

v∈V(Elist)

 ∑
e∈E(P (v))

i(e) + i(v)

= −nz +

n−2∑
i=0

(i+ 1) + (n− 1)

55

4 Optimizing Expression DAGs for Large-Scale Computations

+

+

+

+

+

a

f

e

d

c

b

+

+

+ +

+

a

fe

dcb

-1

-1

-1

-1

-2 -2

-2 -2

Figure 4.4: Depictions of a list-like (left) and a balanced (right) expression dag where all operations
are additions. In the list-like expression dag the required accuracy of a node is on average affected
by a linear number of accuracy increases. In the balanced case, nodes are only affected by a
logarithmic number of accuracy increases.

= −nz + n(n+ 1)
2 − 1

We call an expression dag balanced if its operator nodes form a perfectly balanced tree.balanced
Let Ebal be a balanced expression dag with n = 2k − 1 binary operator nodes. As before,
assume that all operations in Ebal are additions and let P (v) be the unique root path of
a node v ∈ V(Ebal). On the j-th level of Ebal there are 2j nodes. Each operator node on
the largest level is a quasi-leaf, while the other operator nodes are fully binary. The cost
of evaluating Ebal to accuracy z is

cost(Ebal) = −nz −
∑

v∈V(Ebal)
min

P∈P(v)
i(P)

= −nz −
∑

v∈V(Ebal)

 ∑
e∈E(P (v))

i(e) + i(v)

= −nz +

k−2∑
i=0

2i(2i+ 1) + 2k−12(k − 1)

= −nz + 2
k−1∑
i=0

2ii+ n+ 1
2 − 1

= −nz + 2(2k(k − 2) + 2) + n+ 1
2 − 1

= −nz + 2(n+ 1) log(n+ 1)− 3.5n− 0.5

So the cost caused by the increases is of order n2 for Elist and of order n logn for
Ebal. Each increase in accuracy along an edge (u, v) leads to an increase in accuracy at

56

4.2 Error Bound Balancing

all nodes in the subexpression rooted at v. Due to the list structure of Elist, such an
increase affects on average Θ(n) nodes, whereas in the balanced case at most O(logn)
nodes are affected. If operations other than additions are involved, this effect is magnified
by the operator constants. In general, a more balanced structure leads to much lower
cost than a structure containing long list-like subgraphs. In the following sections we
discuss possible solutions to this problem.

4.2 Error Bound Balancing

In Section 4.1.3, a general connection between the structure of an expression dag and the
cost of its evaluation is demonstrated. It is shown that the standard error distribution
leads to an increased evaluation cost for unbalanced expressions. In this section, we
show how to decrease the impact of structure on the evaluation cost by adaptively
redistributing error bounds with respect to the graph structure. We call this method
error bound balancing [GW19]. The options on how to distribute errors are limited error bound bal.
by the representation of the error bound. In order to have significant impact on the
evaluation cost, we must be able to define more precise error bounds than with an
integer exponent representation. Since using bigfloats is very expensive, we choose to
represent the accuracies propagated during the evaluation by their exponent using a
primitive floating-point number type, namely a double. Advantages and limitations
of this choice are discussed in Chapter 6. An error bound balancing strategy has not
been implemented in any exact number type before this work. In 2006, Joris van der
Hoeven theoretically described the concept of error bound balancing in the context of
effective numbers [Hoe06a]. Although an implementation for effective numbers has been
planned [Hoe06c], to the author’s knowledge, it was never completed and/or published.
In a paper by Yong Li and Jun-Hai Yong, heuristic balancing strategies for additions and
multiplications are described, but without a thorough analysis and without the ambition
of providing exact computation [LY07].
In Section 4.2.1, we define a new error distribution based on a so-called path weight.

We show various properties of this new distribution and, in the main theorem of this
section, we show that this error distribution is uniquely optimal among all valid error
distributions for an expression dag. In Section 4.2.2 we give a brief description of the
implementation of the error distribution. In Section 4.2.3, we introduce two alternative
weight functions which are in some cases easier to compute than the path weight. One of
these heuristics is largely identical to the error distribution described by van der Hoeven.

4.2.1 The Path Weight Error Distribution

Let E be an expression dag with error distribution q and let v ∈ V(E) be a node in
E with outgoing edges el, er. Let ρ = 2r(v) be the requested error bound at v and let
σ ≤ 2q(v), ε ≤ 2q(el) and δ ≤ 2q(er) be the absolute errors that are expected with respect
to the required accuracies at the operation, the left outgoing edge and the right outgoing
edge of v. Finally, let cl, cr be the operation constants for v from Table 4.2. We want to

57

4 Optimizing Expression DAGs for Large-Scale Computations

choose the required accuracies such that the overall cost is minimized while satisfying

σ + clε+ crδ ≤ ρ ⇐ 2q(v) + cl2q(el) + cr2q(er) ≤ 2r(v)

⇔ 2r(v)+i(v) + cl2r(v)+i(el) + cr2r(v)+i(er) ≤ 2r(v)

⇔ 2i(v) + cl2i(el) + cr2i(er) ≤ 1 (4.8)

We call (4.8) the balancing constraint.balancing constraint

Remark 4.20. If either of the edges does not exist or leads to a leaf, the balancing
constraint must be adjusted accordingly. In order to simplify the notation we sloppily
assume that cr = 0 if er does not exist (but i(er) is defined) and that i(e) = −∞ and
therefore 2i(e) = 0 if e leads to a leaf.

If an error distribution always fulfills the balancing constraint, a computation according
to this error distribution is guaranteed to yield correct error bounds. Using this property,
we can specify when we consider an error distribution meaningful.

Definition 4.21. Let E be an expression dag. An error distribution q for E is called
valid if for each v ∈ V(E) it fulfills the balancing constraint.valid

With the derivation in Section 4.1.3, we have:

Observation 4.22. For each expression dag E and each target accuracy z, the standard
error distribution for E and z is a valid error distribution.

In our further analysis, we assume that the size of the operator-dependent factors cl, cr
is independent of the choice of the required accuracies, although in practice this may not
be the case. If the value of a node is close to or exactly zero, a higher accuracy tendentially
leads to a decrease in the size of the approximation. Furthermore, an approximation
may be identified as exact which can lead to converting the whole subexpression to a
single bigfloat node. These effects, however, are out of scope for our level of analysis and
therefore ignored. Consequently, the correction addends for converting the operation
accuracy to the operator precision are considered constant as well. We therefore can
focus on the absolute cost of an evaluation and expect an optimal error distribution to
be optimal with respect to true cost as well (cf. Section 4.1.2).

Notation 4.23. For an expression dag E and an error distribution q for E, we denote
the (absolute) cost of E with respect to q as cost(E, q) if the relation to q would otherwise
not be obvious from the context.

Definition 4.24. Let E be an expression dag. Then a valid error distribution q in E
is called optimal if cost(E, q) ≤ cost(E, q̂) for all valid error distributions q̂ in E withoptimal error

distribution q(E) = q̂(E).

A path P in E influences the total cost only if it is a root path and P is defining. We
first show that in an optimal error distribution, every path is a defining path.

58

4.2 Error Bound Balancing

Lemma 4.25. Let E be an expression dag with an optimal error distribution q and let
v ∈ V(E) with outgoing edges el, er. Then 2i(v) + cl2i(el) + cr2i(er) = 1.

Proof. For each valid error distribution, the left side is less or equal to 1 due to the
balancing constraint (4.8). Assume the left side is less than one. Then there is an ε > 0
such that we can increase q(v) by ε without violating the constraint. It follows that with
the new value for q(v) the total cost

cost(E) = −
∑

v′∈V(E)
q(v′)

decreases by ε, contradicting the optimality of the parameter choice.

Lemma 4.26. Let E be an expression dag with an optimal error distribution and let P
be a path in E leading to a node v ∈ V(E). Then P is defining.

Proof. Assume P is not defining. Then there exists an edge e = (u, v) ∈ E(P) where
q(e) > r(v). We can therefore decrease q(e) by q(e) − r(v) > 0 without changing the
cost of E, leading to another optimal error distribution. Since this implies a decrease in
i(e) = q(e)− r(u), the balancing constraint at u is not fulfilled by equality in the new
error distribution. This is a contradiction to Lemma 4.25. Hence, P is defining.

In order to find an optimal error distribution we associate a weight w(e) with each
edge e ∈ E0(E). The weight can be loosely understood as the impact that a change in
q(e) has to the total cost of the expression dag. It is dependent on the operator constants
along a path

Definition 4.27. Let E be an expression dag and let P be a path in E. We call

costf(P) costf(P)=
∑

e∈E(P)
log(c(e))

the fixed cost of P . fixed cost

Definition 4.28. Let E be an expression dag. For v ∈ V0(E) and e ∈ E0(E) let

cf (v), cf (v, e)cf (v) =
∑

P∈P(v)
2costf(P) and cf (v, e) =

∑
P∈P(v) | e∈E(P)

2costf(P)

Then the path weight of a node v is defined as path weight

w(v) w(v)=

0 if v is a leaf
1 + w(el) if v is a unary operator with outgoing edge el
1 + w(el) + w(er) if v is a binary operator with outgoing edges el, er

and the path weight of an edge e = (u, v) is defined as

w(e) w(e)= cf (v, e)
cf (v) w(v) =

∑
P∈P(v) | e∈E(P) 2costf(P)∑

P∈P(v) 2costf(P) w(v)

59

4 Optimizing Expression DAGs for Large-Scale Computations

el er

Gb Gr

Gm

w(el) = |V(Gb)|+ f · |V(Gm)| w(er) = |V(Gr)|+ (1− f) · |V(Gm)|

Figure 4.5: A simplified depiction of the path weight. The weight describes the number of operator
nodes in the respective subexpression, whereas the weight of common subexpressions is shared
among all parents. For a single common subexpression Gm with root v, this is described by a
factor f = cf (v,el)

cf (v) .

The path weight basically counts the number of operator nodes in the subexpression
rooted at the target node of an edge (cf. Figure 4.5). If a node possesses more than
one root path, the path weight distributes the impact of the node among those paths
according to their fixed costs. This property is expressed by the following lemma.

Lemma 4.29. For the path weight of an edge e in an expression dag E we have

w(e) =
∑

v∈V(E)

cf (v, e)
cf (v) (4.9)

Proof. We prove this equivalence by induction. If e = (v0, v1) leads to a leaf, then
w(e) = w(v1) = 0. Since no operator node is reachable through e, we have cf (v, e) = 0
for all v ∈ V(E) and therefore (4.9) holds. If v1 is a unary operator node with outgoing
edge el, then by applying the induction hypothesis we get

w(e) = cf (v1, e)
cf (v1) w(v1) = cf (v1, e)

cf (v1) + cf (v1, e)
cf (v1)

∑
v∈V(E)

cf (v, el)
cf (v) (4.10)

For two nodes u, v let P(u, v) be the set of paths from u to v in E. Each root path
containing el must contain v1 as well, therefore these paths can be split into a root path
of v1 and a path starting from v1 with edge el (cf. Figure 4.6). Furthermore, since v1 is
unary, each root path to a node v 6= v1 that contains e must contain el, so these paths
can be constructed by combining the root paths to v1 containing e with the outgoing
paths from v1. It follows that

cf (v1, e)cf (v, el) =

 ∑
P0∈P(v1) |
e∈E(P0)

2costf(P0)

 ∑
P∈P(v) |
el∈E(P)

2costf(P)

60

4.2 Error Bound Balancing

=
∑

P0∈P(v1) |
e∈E(P0)

∑
P∈P(v) |
el∈E(P)

2costf(P0)+costf(P)

=
∑

P0∈P(v1) |
e∈E(P0)

∑
P1∈P(v1)

∑
P2∈P(v1,v)

2costf(P0)+costf(P1)+costf(P2)

=

 ∑
P0∈P(v1) |
e∈E(P0)

∑
P2∈P(v1,v)

2costf(P0)+costf(P2)

 ∑
P1∈P(v1)

2costf(P1)

= cf (v, e)cf (v1)

Since cf (v1, el) = 0, substituting this equation into (4.10) leads directly to

w(e) = cf (v1, e)
cf (v1) +

∑
v∈V(E),v 6=v1

cf (v, e)
cf (v) =

∑
v∈V(E)

cf (v, e)
cf (v)

If v1 is a binary operator node with outgoing edges el, er, the proof is similar to the
unary case. Analogously, we show that

cf (v1, e)(cf (v, el) + cf (v, er)) = cf (v, e)cf (v1)

holds for all nodes v 6= v1. Since now a path to v that contains e must contain either el
or er, the sum cf (v, e) consists of both the paths through el and the paths through er.

el

v1

v

v0
e

P(v1)

P(v1, v)

P(v)

{
{ }

Figure 4.6: The sets P(v1), P(v1, v) and P(v) with respect to the edges e, el as they appear in
the unary case in the proof of Lemma 4.29.

61

4 Optimizing Expression DAGs for Large-Scale Computations

We refrain from explicitly stating the details of this continued equality. Similar to (4.10)
the definition of the path weight for binary operator nodes leads to

w(e) = cf (v1, e)
cf (v1) + cf (v1, e)

cf (v1)
∑

v∈V(E)

cf (v, el) + cf (v, er)
cf (v) =

∑
v∈V(E)

cf (v, e)
cf (v)

completing the induction.

Based on the path weight, we define an error distribution in which the required
accuracies are distributed according to the weight of the respective nodes and edges.
Note that the effective weight distributed to each operation is one.

Definition 4.30. Let E be an expression dag that should be evaluated with target
accuracy z. Let q be the error distribution in E where q(E) = z and for each node
v ∈ V(E) and each edge e = (u, v) ∈ E(E) we set

q(v) = r(v)− log(w(v))
q(e) = r(u) + log(w(e))− log(w(u))− log(c(e))

We call q the path weight error distribution (for E and z).path weight error
distribution

The resulting error distribution fulfills the necessary requirement for an optimal error
distribution that is stated in Lemma 4.26.

Lemma 4.31. Let E be an expression dag with the path weight error distribution. Then
each path in E leading to a node v ∈ V(E) is defining.

Proof. Let P = (v0, e0, ..., vk, ek, vk+1) be a path in E. Since

cf (vi+1, ei) =
∑

Pi∈P(vi)
2costf(Pi)+log(c(ei))

= c(ei)
∑

Pi∈P(vi)
2costf(Pi)

= c(ei)cf (vi) (4.11)

the accuracy increase due to P is given as

i(P) =
k∑
i=0

i(ei) + i(vk+1)

=
k∑
i=0

(
log(w(ei))− log(w(vi))− log(c(ei))

)
− log(w(vk+1))

=
k∑
i=0

(
log(w(ei))− log(w(vi+1))− log(c(ei))

)
− log(w(v0))

=
k∑
i=0

(
log(cf (vi+1, ei))− log(cf (vi+1))− log(c(ei))

)
− log(w(v0))

62

4.2 Error Bound Balancing

=
k∑
i=0

(
log(cf (vi))− log(cf (vi+1))

)
− log(w(v0))

= log(cf (v0))− log(cf (vk+1))− log(w(v0)) (4.12)

Since i(P) only depends on v0 and vk+1, the accuracy increase along each root path to
vk+1 is the same. For each node there is at least one defining root path (cf. Corollary 4.13),
therefore each root path in E is defining. Each edge e = (u, v) ∈ E(E) lies on at least
one root path to v. With Lemma 4.12 it follows that q(e) = r(v) and therefore each path
in E is defining.

Before we show that the path weight error distribution is indeed optimal, we show
that the distribution adequately reflects the weight function. In particular, a change
in the required accuracy at a node requires a change in the accuracies of the outgoing
edges according to their weights if the balancing constraint should be kept equal (cf.
Figure 4.7).

Lemma 4.32. Let E be an expression dag and let e = (u, v) be an edge in E(E).
For an error distribution fulfilling the balancing constraint (4.8) at u with equality, let
fu : (−∞, 0)→ (−∞, 0) describe the accuracy increase at u as a function of the accuracy
increase at e while keeping the balancing constraint equal. Then for the path weight
error distribution, d

d xfu(x) |i(e) = −w(e).

Proof. Let ce = c(e) denote the operator constant at e. If u is unary, then the balancing
constraint leads to

d

d x
fu(x) = d

d x
log(1− ce2x) = −ce2x

1− ce2x

By the definition of the path weight error distribution we have

ce2i(e) = ce2log(w(e))−log(w(u))−log(ce) = w(e)
w(u) (4.13)

Substituting (4.13) into the derivative and applying the definition w(u) = 1 + w(e) of
the path weight for unary operator nodes results in

d

d x
fu(i(e)) = −ce2i(e)

1− ce2i(e)
=
−w(e)
w(u)

1− w(e)
w(u)

= −w(e)
w(u)− w(e) = −w(e)

If u is binary with outgoing edges e, ê ∈ E(E), then the increase at u depends on both
the increase at e and the increase at ê. Let cê = c(ê) and let f̂u be the respective function
for the increase at u. We get

∂

∂ x
f̂u(x, y) = ∂

∂ x
log(1− ce2x − cê2y) = −ce2x

1− ce2x − cê2y

63

4 Optimizing Expression DAGs for Large-Scale Computations

For fu we assume that y = i(ê) is kept constant and therefore fu(x) = f̂u(x, i(ê)). As in
the unary case, by substituting (4.13) and considering w(u) = 1 +w(e) +w(ê), it follows
that

d

d x
fu(i(e)) = −ce2i(e)

1− ce2i(e) − cê2i(ê)
=

−w(e)
w(u)

1− w(e)
w(u) −

w(ê)
w(u)

= −w(e)
w(u)− w(e)− w(ê) = −w(e)

-1

-1

-w(e)

i(e)
fu(x)

x

i(u)

Figure 4.7: The relation of i(u) and i(e) for a unary node u with outgoing edge e ∈ E(E) and
c(e) = 1. The values below the function fulfill the balancing constraint. The path weight error
distribution ensures that the slope at the chosen value is equal to the negative path weight of e.
Since the slope is monotonically decreasing, an increase by ε in i(e) equates to a decrease of more
than w(e) · ε in i(u) and vice versa.

The path weight error distribution fulfills the balancing constraint with equality. In
particular, i(u) = fu(i(e)). If i(u) increases, the required accuracies at its outgoing edges
must compensate for the change in order to fulfill the balancing constraint. Since the
slope of fu is strictly decreasing, the change at each outgoing edge e is at least w(e)
times as expensive as the change in i(u) that it compensates. If, on the other hand,
i(u) decreases, then the potential increase of the required accuracies at the edges is
bounded by the balancing constraint and thereby bounded by w(e) times the change in
i(u) for an outgoing edge e. With this observation, we can show that the path weight
error distribution is optimal. For the proof, we show that the path weight accurately
reflects the impact that a change in accuracy at a given edge has on the total cost of
the evaluation by showing that the total cost difference for any change of the error
distribution is positive.

Theorem 4.33. Let E be an expression dag. The path weight error distribution is the
uniquely optimal error distribution in E for each target accuracy z.

Proof. Let q denote the path weight error distribution for E and z and let q∗ be
another error distribution for E with q∗(E) = q(E). For v ∈ V(E) and e ∈ E(E)

64

4.2 Error Bound Balancing

let δ(v) = i∗(v)− i(v) and δ(e) = i∗(e)− i(e) be the differences in the accuracy increases
between q∗ and q. Due to Lemma 4.32, the difference in the required accuracy for the
operation can be bounded by the differences in the required accuracies of its outgoing
edges. We have δ(v) ≤ 0 if v is a quasi-leaf and

δ(v) ≤
{
−w(el)δ(e) if v is quasi-unary with outgoing edge el ∈ E(E)
−w(el)δ(el)− w(er)δ(er) if v is fully binary with outgoing edges el, er

In particular, since each edge has exactly one origin, we get
∑

v∈V(E)
δ(v) ≤ −

∑
e∈E(E)

w(e)δ(e) (4.14)

The total cost difference between the two error distributions can be characterized by
the root paths as in (4.5). For a path P in E, denote the difference in cost between q∗
and q by δ(P) = i∗(P)− i(P). Since each path in E is defining for a path weight error
distribution, the cost difference between q∗ and q is given as

∆ cost(E) = −
∑

v∈V(E)

(
min

P∈P(v)
i∗(P)− min

P∈P(v)
i(P)

)

= −
∑

v∈V(E)
min

P∈P(v)
δ(P)

By applying the definition of i(P) together with (4.14) and Lemma 4.29, we get

∆ cost(E) = −
∑

v∈V(E)
min

P∈P(v)
δ(P)

= −
∑

v∈V(E)
min

P∈P(v)

 ∑
e∈E(P)

δ(e) + δ(v)

= −

∑
v∈V(E)

min
P∈P(v)

∑
e∈E(P)

δ(e)−
∑

v∈V(E)
δ(v)

≥ −
∑

v∈V(E)
min

P∈P(v)

∑
e∈E(P)

δ(e) +
∑

e∈E(E)
w(e)δ(e)

= −
∑

v∈V(E)
min

P∈P(v)

∑
e∈E(P)

δ(e) +
∑

e∈E(E)
δ(e)

∑
v∈V(E)

cf (v, e)
cf (v)

The sum of cf (v, e) over all edges is the same as the sum of 2costf(P) over the edges of
all paths leading to v (cf. Figure 4.8). By interchanging sums, by bounding the cost
difference caused by accuracy increases along the edges of a path from below and with
the definitions of cf (v, e) and cf (v), we finally get

65

4 Optimizing Expression DAGs for Large-Scale Computations

e1

e2

e3
e4

e5

P1

P2

P3

(P1 + P2)
+ P1

+ P2

+ P3

+ (P1 + P2 + P3)

= 3P1 + 3P2 + 2P3

Figure 4.8: Schematic depiction of the equivalence between the sum over all paths through all
edges and the sum over all edges in all paths.

∆ cost(E) ≥ −
∑

v∈V(E)
min

P∈P(v)

∑
e∈E(P)

δ(e) +
∑

e∈E(E)
δ(e)

∑
v∈V(E)

cf (v, e)
cf (v)

= −
∑

v∈V(E)
min

P∈P(v)

∑
e∈E(P)

δ(e) +
∑

v∈V(E)

∑
e∈E(E)

δ(e)
∑

P∈P(v) | e∈E(P)

2costf(P)

cf (v)

= −
∑

v∈V(E)
min

P∈P(v)

∑
e∈E(P)

δ(e) +
∑

v∈V(E)

∑
P∈P(v)

∑
e∈E(P)

δ(e)2costf(P)

cf (v)

≥ −
∑

v∈V(E)
min

P∈P(v)

∑
e∈E(P)

δ(e) +
∑

v∈V(E)

 min
P∈P(v)

∑
e∈E(P)

δ(e)

 ∑
P∈P(v)

2costf(P)

cf (v)

= −
∑

v∈V(E)
min

P∈P(v)

∑
e∈E(P)

δ(e) +
∑

v∈V(E)
min

P∈P(v)

∑
e∈E(P)

δ(e) = 0

and therefore q is optimal. Since (4.14) is equal only if δ(e) = 0 for all e, the path weight
error distribution is the unique optimal error distribution for E.

Corollary 4.34. The cost of evaluating an expression dag E with n operator nodes and
an optimal error distribution to accuracy z ≤ 0 is

cost(E) = n logn+
∑

v∈V(E)
log

 ∑
P∈P(v)

2costf(P)

− nz

Proof. If v0 is the root of E, then cf (v0) = 1 and w(v0) = n. Since the path weight error
distribution is optimal, the desired result follows directly from (4.5) and (4.12) as

cost(E) = −nz −
∑

v∈V(E)
min

P∈P(v)
i(P) = −nz −

∑
v∈V(E)

(− log(cf (v))− logn)

66

4.2 Error Bound Balancing

4.2.2 Implementation

In an implementation of an exact-decisions number type using the standard error distri-
bution (Definition 4.18, page 55), the required accuracies at each node can be computed
on the fly during the evaluation. If a path weight error distribution (Definition 4.30,
page 62) is used, a preprocessing step is required. In practice, the required and requested
accuracies are computed during the evaluation and only the requested accuracies, in
case of a topological evaluation strategy, or no accuracies at all, in case of a recursive
evaluation strategy, are stored at a node (cf. Section 3.2.2). In order to focus on the error

Algorithm 1: Algorithm for computing the requested accuracies for each node
during the evaluation of an expression dag E with target accuracy z, given that
the increase values for each node and each edge are known and the requested
accuracies are initialized with ∞.

1 Function compute_requested_accuracies(E,z):
2 V [1..n] = top_sort(V(E));
3 r(v1) = z;
4 for j = 1 to n do
5 q(vj) = r(vj) + i(vj);
6 forall e = (vj , vk) ∈ E(E) do
7 q(e) = r(vj) + i(e);
8 r(vk) = min(r(vk), q(e));
9 end

10 end

Algorithm 2: Algorithm for computing the standard error distribution for an
expression dag E in the form of increase values for each node and each edge.

1 Function compute_standard_error_distribution(E):
2 forall v ∈ V(E) do
3 i(v) = −1;
4 if v is a quasi-leaf then
5 i(v) = 0
6 else if v is quasi-unary then
7 e← outgoing edge of v in E(E);
8 i(e) = −1− dlog(c(e))e;
9 else

10 el, er ← outgoing edges of v;
11 i(el) = −2− dlog(cl)e;
12 i(er) = −2− dlog(cr)e;
13 end
14 end

67

4 Optimizing Expression DAGs for Large-Scale Computations

distribution, we describe the necessary steps for computing the increase values at each
node in a separate algorithm. The requested and required accuracies at each node can
then be computed using a topological sorting as depicted in Algorithm 1. The increase
values for the standard error distribution can be computed in a straightforward manner.
Algorithm 2 shows an exemplary implementation. Each increase value in this distribution
has an integral value and therefore both the increase values and the resulting error bounds
can be stored in an integer data type. For the path weight error distribution, a topological
sorting of the operator nodes is required. As shown in Algorithm 3, we compute the
values for cf (vk, e) and cf (vk), the weights w(vk) and the increase values at vk separately
for each node vk and edge e = (vj , vk). The values of cf (vk, e) and cf (vk) are computed
by traversing the operator nodes top-down. Equation (4.11) on page 62 provides us with
an inductive formula to compute cf (vk, e). Furthermore, from its definition we can easily

Algorithm 3: Algorithm for computing the path weight error distribution for
an expression dag E in the form of increase values for each node and each edge.
The algorithm first computes the values cf (v) and cf (v, e) for each node and each
incoming edge top-down. Afterwards it computes the path weight and the increase
values for each node and each edge bottom-up.

1 Function compute_path_weight_error_distribution(E):
2 V [1..n] = top_sort(V(E));
3 forall v ∈ V do
4 cf (v) = 0; w(v) = 1;
5 end
6 cf (v1) = 1;
7 for j = 1 to n do
8 forall e = (vj , vk) ∈ E(E) do
9 cf (vk, e) = cf (vj)c(e);

10 cf (vk) = cf (vk) + cf (vk, e)
11 end
12 end
13 for j = n downto 1 do
14 forall e = (vj , vk) ∈ E(E) do
15 w(e) = cf (vk,e)

cf (vk) w(vk);
16 w(vj) = w(vj) + w(e);
17 end
18 i(vj) = − log(w(vj));
19 forall e = (vj , vk) ∈ E(E) do
20 i(e) = log

(
w(e)

c(e)w(vj)

)
;

21 end
22 end

68

4.2 Error Bound Balancing

deduce that cf (vk) is given as the sum of cf (vk, e) over all of its incoming edges. After
computing cf (v) and cf (v, e) for each node and each of its incoming edges, both the
weights of the nodes and edges and their increase values are computed according to their
respective definition by traversing the operator nodes bottom-up. All values appearing in
the algorithm for the path weight error distribution are rational numbers that are usually
non-integral. Unlike before, floating-point number types must be used to represent these
values, introducing rounding errors. The resulting error distribution is guaranteed to be
valid as long as the weight of a node is at least as large as the sum of the weights of
its outgoing edges plus one. This can be guaranteed if we ensure that the addition in
line 16 is always rounded up and the computations of the increase values in line 18 and
line 20 are (in total) always rounded down. The values of cf (vk, e) and cf (vk) can get
very large if many common subexpressions and therefore many paths exist. Therefore,
they should be evaluated and stored logarithmically. In consequence, the weight values
should be stored logarithmically as well. While this decreases the susceptibility to errors
for multiplications and divisions, precautionary measures need to be taken to compute
the additions in line 10 and line 16. We address this issue in Section 6.1.

4.2.3 Weight Heuristics
The path weights of the edges and nodes in an expression dag E depend on the operator
constants of the edges. Since the values of those constants can differ greatly in magnitude,
rounding errors can have a significant influence on their computation. This raises
the question whether the weight function can be replaced by a heuristic that can be
computed faster and is less prone to rounding errors. We first observe that we can
apply the construction from the definition of the path weight error distribution (cf.
Definition 4.30) to almost every weight function to get a valid error distribution.

Observation 4.35. Let E be an expression dag and let w be a function mapping
each edge e ∈ E(E) to a weight w(e) > 0 and each node v ∈ V(E) to a weight
w(v) ≥ 1 +∑

(v,v′)∈E(E)w((v, v′)). Then for any target accuracy z the error distribution
q defined by q(E) = z and

q(v) = r(v)− log(w(v))
q(e) = r(v) + log(w(e))− log(w(v))− log(c(e))

(4.15)

for v ∈ V(E) and e = (u, v) ∈ E(E) is valid.

The computation of the path weight error distribution simplifies if the expression dag
E has few common subexpressions. If E is a tree, the path weight of a node is equivalent
to the number of operator nodes in its subexpression.

Definition 4.36. For an expression dag E, we call |V(E)| the operator number of E
and denote it by |E|◦. |E|◦

Lemma 4.37. Let T be an expression tree. Let e = (u, v) ∈ E0(T) with u, v ∈ V0(T)
and let Tv be the subexpression rooted at v. Then the path weight of e and v is given

69

4 Optimizing Expression DAGs for Large-Scale Computations

as w(e) = w(v) = |Tv|◦ and the cost of the evaluation of T with the path weight error
distribution to accuracy z is

cost(T) = n logn+
∑

v∈V(T)
costf(path(v))− nz

where path(v) denotes the unique path in P(v).

Proof. Since T does not contain common subexpressions, there is only one root path,
called path(v), leading to a node v ∈ V0(T). By the definition of the path weight, we get

cf (v, e) =
{
cf (v) if e ∈ E(path(v))
0 otherwise

for all edges e ∈ E0(T) and w(ev) = w(v) for ev = (u, v). With Lemma 4.29 (page 60) it
follows that w(v) = w(ev) = |V(Tv)|. The cost for the evaluation follows directly from
the general cost formula in Corollary 4.34 with

log

 ∑
P∈P(v)

2costf(P)

 = log
(
2costf(path(v))

)
= costf(path(v))

Building on these observations, we define a weight function with regard to the number
of operator nodes in a node’s subexpression.

Definition 4.38. Let E be an expression dag and let Ev be the subexpression of E
rooted at v ∈ V0(E). Let w(v) = |Ev|◦ and for an edge e = (u, v) ∈ E0(E) let

w(e) =
{
w(v), if u is unary
w(v)+w(u)−1−w(v′)

2 , if u is binary with outgoing edges e and e′ = (u, v′)

Then w is called the operator weight of v and e.operator weight

In a binary node, the operator weight of an edge counts the number of operator nodes
in the subexpression of its associated child, except for nodes that appear in both child
expressions. These nodes contribute half of their weight to each edge. Lemma 4.37
suggests that for tree-like expression dags, using the operator weight instead of the path
weight to determine an error distribution leads to a reasonable heuristic with respect to
the cost of the evaluation. All weight values of w are integral or end with .5 and are
smaller than the size of the expression dag. Therefore they can be represented exactly.
Unfortunately, computing the exact number of descendants for each node in a dag is
hard. The weights can be found in slightly less than quadratic time by computing the
transitive closure of the dag [BVW08]. Nevertheless, a computation in time O(m2−ε),
where m is the number of edges in the dag, is not possible if the strong exponential time
hypothesis is true [Bor16]. Using this weight function in an evaluation is therefore not
feasible if the operator number is not already known.

70

4.2 Error Bound Balancing

If no common subexpressions are present, the operator weight of a node can be
computed by simply adding one to the sum of the operator weights of its children.
Instead of computing the actual operator weights of a dag, we can virtually expand the
dag into a tree and use the operator weights of this tree expansion.

Definition 4.39. Let E be an expression dag. For a node v ∈ V(E) and an edge
e = (u, v) ∈ E(E) let w(e) = w(v) = 1 +∑

(v,v′)∈E(E)w((v, v′)). Then we call w the tree tree weight
weight of v and e.

The tree weight is similar to the weight function used in the work of van der Hoeven.
For a node v, it is equivalent to the number of paths from v to all operator nodes in
its subexpression. In contrast to the operator weight, it can be computed with an easy
inductive formula. Furthermore, all values of the tree weight are integral. However,
similar to the parameters used during the path weight computation, the tree weight
can grow exponentially in the size of the expression dag. In Algorithm 4, a possible
implementation is sketched. In line 6, a check can be inserted on whether the result still
fits into the underlying integer type. Otherwise, as for the path weight error distribution,
we can switch to an inexact logarithmic representation. With this additional step, the tree
weight can be represented exactly for expression dags with few common subexpressions.

Algorithm 4: Algorithm for computing an error distribution for E based on
the tree weight in the form of increase values for each node and each edge. The
weights and increase values are computed in a single bottom-up loop.

1 Function compute_tree_weight_error_distribution(E):
2 V [1..n] = top_sort(V(E));
3 for j = n downto 1 do
4 w(vj) = 1;
5 forall e = (vj , vk) ∈ E(E) do
6 w(vj) = w(vj) + w(vk);
7 end
8 i(vj) = − log(w(vj));
9 forall e = (vj , vk) ∈ E(E) do

10 i(e) = log
(

w(vk)
c(e)w(vj)

)
;

11 end
12 end

For an expression tree, the path weight, the operator weight and the tree weight are
identical. Otherwise, an error distribution based on the operator weight usually leads to
a lower evaluation cost than an error distribution based on the tree weight. In Figure 4.9,
the behavior of the three error distributions is shown for a simple example. The tree
weight leads to the same required accuracy at each operator node, overestimating the
impact of an accuracy increase along the edges on the total cost of the evaluation. The
operator weight still overestimates the impact of the edges but can partly compensate
for multiple references inside a subexpression. In consequence, it computes the correct

71

4 Optimizing Expression DAGs for Large-Scale Computations

+

+
i(v) = i(el) = i(er) = 0

i(el)
-log(9)

i(v)
log(3/5)

+

i(el)
-log(5)

i(v)
-log(3)

i(er)
-log(5)

-1.59

-1.59

-3.17

i(er)
log(5/9)

+

+

+i(el)
-log(5)

i(el)
-log(3)

i(v)
-log(5)

i(er)
-log(3)

i(er)
log(3/5)

-2.33

-2.33

-2.33

+

+
i(v) = i(el) = i(er) = 0

+i(el)
-log(6)

i(v)
-1

i(el)
-2

i(v)
-log(3)

i(er)
-2

i(er)
-1

-1.59

-2

-3

Path weight Operator weight

i(v) = i(el) = i(er) = 0

i(v)
-log(3)

Tree weight
Figure 4.9: A comparison of the three weight functions for error bound balancing. For each node,
the increase values at the node and at the two outgoing edges are stated. The total required
accuracy at a node is shown in blue (for q(E) = 0). The path weight leads to the minimum
total cost of 6.35. The operator weight and the tree weight lead to a total cost of 6.59 and 6.99,
respectively.

increase value for the root node. However, it fails to recognize dependencies outside the
subexpression as well as differences in the strength of a dependency inside a subexpression.
Nevertheless, all strategies reduce the cost compared to the total cost of 8 induced by
the standard error distribution. If the number of common subexpressions is low, it may
therefore be worthwhile to employ one of the heuristic approaches instead of the more
complicated path weight.

4.3 Restructuring
In the previous section, it was shown how error bounds in an accuracy-driven evaluation
process can be distributed to mitigate the impact of badly balanced expression dags.
With error bound balancing, the variable increase in error can be made independent of
the structure. However, the operator constants associated with the accuracy increase
still lead to an increased evaluation cost for unbalanced expression dags.
In this section we aim to restructure the expression dag to facilitate an efficient

evaluation. In the first subsection, the general framework for restructuring is described.
We classify restructuring algorithms by their invasiveness. In Section 4.3.2, a simple
non-invasive restructuring algorithm is introduced and it is shown that this algorithm
can effectively reduce the cost of large sums and large products. Furthermore, various
concepts for semi-invasive restructuring methods are discussed. In Section 4.3.3, a
powerful restructuring strategy, based on an algorithm by Richard Brent, is introduced.
This strategy is classified as invasive. In the main theorem of this section, we show that
Brent Restructuring has a degree of invasiveness of 4. In Section 4.3.4, the previously

72

4.3 Restructuring

introduced restructuring methods are made responsive to weights associated with the
nodes in an expression dag. Afterwards, we show that these weighted methods can
improve on the previous restructuring algorithms if nodes that inhibit the restructuring
process, so-called blocking nodes, are present in the expression dag.

4.3.1 Preliminaries

Restructuring expression dags for exact computation was proposed by Chee Yap in 1997
as a side note on possible improvements for number types implementing accuracy-driven
evaluation [Yap97]. While present for a long time, there have been no publications
regarding this topic prior to this work. One reason for that might be that the effect for
small computations seems not worth the effort. Furthermore, aside from the fundamental
requirement that an evaluation must store the computation history in the form of an
expression dag, restructuring demands fairly strong properties for the expression dag. In
this section, we define the scope for the restructuring algorithms presented in this work.

Pre-Evaluated Nodes

In general, meaningful implementations of restructuring strategies depend on the lazy
evaluation approach, which is inherent to accuracy-driven evaluation. If the expression
dag has not been evaluated before, internal data such as bigfloat approximations have not
been computed. Consequently, changing the structure of such an expression dag comes
at low cost. If (a part of) the expression dag has already been evaluated, approximation
data and error bounds have been computed that are usually worthless after restructuring.
Furthermore, internal states that might have been set during the initialization of the
bigfloat data are invalidated. Restructuring already evaluated parts of an expression
dag might be worthwhile if we can guarantee that most of the existing bigfloat data
must be recomputed anyway and that the evaluation significantly benefits from a new
structure. For this work, however, we focus on an analysis of the fundamental properties
of restructuring methods and therefore refrain from restructuring parts of an expression
dag that have been evaluated before.

Common Subexpressions

An expression dag may contain common subexpressions, i.e., subexpressions whose root
node has more than two parents. Including those nodes in a restructuring process implies
that the associated subexpressions must be copied. There are few cases in which this can
be considered a sensible choice. The benefit of the improved restructuring has to be larger
than the cost of an additional evaluation. This can be the case if one parent needs to
evaluate the subexpression often and with much higher accuracy than the other parent or
if a node prevents large parts of the expression to be represented exactly. The potential
effect of relocating such nodes is demonstrated in Section 4.4.3. Careless copying of
subexpressions, on the other hand, may lead to an exponential increase of the number of

73

4 Optimizing Expression DAGs for Large-Scale Computations

⇒

Figure 4.10: The tree expansion of an expression dag with a high number of common subexpressions.
Resolving multiple references by copying the respective subexpressions leads to an exponential
increase in the number of operator nodes.

nodes as shown in Figure 4.10. In this work we do not follow this path and therefore do
not use nodes with more than one parent for restructuring.

Remark 4.40. In contrast to Section 4.2, we cannot unconditionally assume that
the expression dag in question is rooted since the existence of multiple parents is not
restricted to the local evaluation (cf. Remark 2.9, page 22). For now, we avoid lengthy
reformulations of various definitions by assuming that these nodes are marked as not
eligible for restructuring and that an actual implementation will handle them correctly.
Nevertheless, in Section 4.4 we exploit these external references as a simple way to create
“blocking” nodes for an experiment. We elaborate on the handling of external references
and, more generally, blocking nodes in Section 4.3.4.

Neglecting nodes with multiple parents for restructuring implies that we are limited to
restructure expression trees. With the introduction of the concept of operator trees, we
can focus our restructuring efforts on independent parts of a larger expression dag.

Operator Trees

We start by identifying parts of an expression dag that consist exclusively of operations.

Definition 4.41. Let E be an expression dag and let X be a rooted connected subgraph
of E where every node is an operator node. Then we call X an operator dag (in E).operator dag

Let X be an operator dag with k outgoing edges in E. By imposing an order on the
edges, X can be interpreted as a k-ary operation, which is independent of E. We denote
the expression dag created by applying X to expression dags E1, ..., Ek as X(E1, ..., Ek).
We call E1, ..., Ek the operands of X and denote their number by |X|l. If the operandsoperands, |X|l
of an operator dag are not specified explicitly, we associate an ordered set of virtual
operands with it. The operation defined by the operator dag is then applied by identifying
the actual operands with the virtual ones. With this we can define the concept of a
restructuring algorithm.

74

4.3 Restructuring

Definition 4.42. Let D be a set of operator dags. Let R be a function that maps each
operator dag X ∈ D with |X|l = k to an operator dag R(X) with the same number of
operands. Then we call R a restructuring algorithm if for all expression dags E1, ..., Ek it restructuring alg.
follows that

value(R(X)(E1, ..., Ek)) = value(X(E1, ..., Ek))
The set D is called the domain of R. domain

At the start of this section, we specified what parts of an expression dag are eligible
for restructuring. For simplicity, we assume that all expression dags appearing in this
section do not contain pre-evaluated nodes. Furthermore, we only consider restructuring
algorithms that work on trees.
Definition 4.43. Let E be an expression dag and let T be an operator dag in E. We
call T an operator tree in E if every node in T , except for its root, has exactly one parent operator tree
in E (and no external references).
With this property, an operator tree cannot contain any cycles. Since each operator

dag is connected, it follows:
Observation 4.44. Each operator tree in an expression dag E is a tree.

All of the restructuring strategies that we describe in this section operate on (maximal)
operator trees inside an expression dag. Obviously, this implies that there are unbalanced
expression dags that cannot be restructured by these methods. The extraction of operator
trees from an expression dag as well as the interaction between the local restructuring
methods and the overall expression dag are addressed in Section 4.3.4. For now, we
assume that we work on already extracted operator trees.

4.3.2 Non-Invasive Restructuring Methods
Restructuring an expression dag should not lead to an increase in running time. Rear-
ranging a formula may increase the number of operations needed to arrive at its value. If
the number of operations is increased considerably, the evaluation of the restructured
expression may perform significantly worse, even if it is more balanced than the original.
This leads to the definition of invasiveness.
Definition 4.45. Let R be a restructuring algorithm with domain D. We call R non- non-invasive
invasive if for each X ∈ D the resulting operator dag R(X) contains the same operators
as X (including their respective number). We call R semi-invasive if |X|◦ ≤ |R(X)|◦, i.e., semi-invasive
if restructuring does not lead to an increase in the number of operator nodes. Otherwise,
we call R invasive. invasive

An invasive restructuring algorithm increases the total number of bigfloat operations
necessary for the evaluation. If the target accuracy is high, the cost of the evaluation
increases through restructuring. For semi-invasive restructuring algorithms, the difference
in cost is never negatively affected by a high target accuracy. With a non-invasive
restructuring algorithm it can furthermore be expected that there is no increase in
running time due to the nature of the bigfloat operations.

75

4 Optimizing Expression DAGs for Large-Scale Computations

AM-Balancing

A simple approach on a non-invasive restructuring algorithm is to exploit associativity in
additions and multiplications. Large operator trees consisting of only additions or only
multiplications can be replaced by balanced versions of these trees [Wil17]. We call this
method AM-Balancing.AM-Balancing

Algorithm 5: The main steps in AM-Balancing.
Precondition: T contains only nodes with operator ◦ ∈ {+, ·}

1 Function AM_Balance(T):
2 X[1..n] = get_operands(T);
3 for i = 1 to 2n− 3 by 2 do
4 X[n+ i+1

2] = make_node(X[i],X[i+ 1],◦);
5 end
6 return X[2n− 1];

Algorithm 5 shows an exemplary implementation of AM-Balancing. Operator trees are
restructured by discarding all operators and building a new, balanced, operator tree with
the same number of operations. Let E be an expression dag consisting of n additions over
floating-point numbers. In Section 4.1.3, it was shown that this restructuring strategy
always leads to an absolute cost of order n logn− nz if E is evaluated with the standard
error distribution and target accuracy z. More generally, let

costv(E)costv(E) = −
∑

v∈V(E)
min

P∈P(v)
(i(P) + costf(P))

be the variable cost of an expression dag E with error distribution q, i.e., the cost causedvariable cost
by the accuracy increase along its edges that is not inflicted by the operator constants.
Then AM-Balancing reduces the variable cost of eligible expression trees to a minimum.
More formally, denote AM-Balancing by AM and let D be the domain of AM . Let
T ∈ D with |T |l = k and let x1, ..., xk ∈ R. Then with the standard error distribution,

costv(AM(T)(x1, ..., xk)) ≤ costv(T (x1, ..., xk))

Instead of a, rather technical, proof, we give a short intuition. All perfectly balanced
expression trees have the same cost. Let T be an unbalanced expression tree and let X
be one of the smallest subexpressions for which the maximum depth of the left side is
larger than the minimum depth of the right side plus one (otherwise we switch sides).
Then by attaching one of the lowest nodes on the left side to the right side we can reduce
the variable cost at this node by at least one and the total cost difference is smaller or
equal to zero. Repeating this step, we can construct a balanced expression dag with the
same or smaller variable cost.
In Section 4.1.2, we introduced two cost functions, the true cost and the absolute

cost. In Section 4.2.1, we argued that we can use the absolute cost for our analysis
since the correction addends for converting between the required accuracy at a node

76

4.3 Restructuring

and the operator precision are not influenced by the balancing method. Furthermore,
we considered the operator-dependent factors in the error distribution to be constant
with respect to the balancing method. These assumptions are not applicable anymore
if the structure of an expression dag changes. For same sized operands, the maximum
size of a subexpression is influenced by the number of nodes in that subexpression
and can therefore be affected by restructuring. Consequently, we analyze the effects of
AM-Balancing with respect to the true cost. AM-Balancing always generates a perfectly
balanced tree. Given a number of same-sized operands, we determine the true cost of
a balanced operator tree and the true cost of an operator tree forming a linear list (cf.
Figure 4.4, page 56). While not a thorough analysis of all possible operator trees, we can
expect the basic findings to transfer naturally to intermediate cases.

Lemma 4.46. Let Tlist be a list-like expression tree and let Tbal be a balanced expression
tree, both consisting of n additions and n+1 operands. Letm be the maximum magnitude
of the operands of Tlist and Tbal. Then the true cost of evaluating these expression trees
to accuracy z with the standard error distribution is given as

costt(Tlist) = Θ(−nz + n2 + nm) and costt(Tbal) = Θ(−nz + n logn+ nm)

Proof. In the standard error distribution, we have i(v) = 0 for each quasi-leaf, and
i(v) = −1 for each quasi-unary or fully binary node v ∈ V(E). For an edge e ∈ E(E)
we have i(e) = −1 if it originates in a quasi-unary addition node and i(e) = −2 if it
originates in a fully binary addition node.
For 0 ≤ j ≤ n − 1, let vj denote the operator node on the j-th level in Tlist. Each

operator node in Tlist except for vn−1 is quasi-unary. The required accuracy at vj is then
given as q(vj) = z − j − 1 for 0 ≤ j ≤ n− 2 and as q(vn−1) = z − (n− 1) otherwise. The
maximum magnitude of the value of a sum increases logarithmically with the number of
(same-sized) summands, therefore the maximum magnitude at vj is m+ dlog(n− j + 1)e.
The correction addend for an addition is defined as the maximum of the magnitudes of
its operands plus one (cf. Table 4.3). Altogether, the precision at vj is given as

p(vj) ≤ −q(vj) + max(m+ dlog(n− j)e,m) + 1
≤ −z + j + 1 +m+ dlog(n− j)e+ 1

The true cost of an expression dag is defined as the sum of all operator precisions, hence

costt(Tlist) =
n−1∑
j=0

p(vj)

≤
n−1∑
j=0

(−z + j + 1 +m+ dlog(n− j)e+ 1)

= −nz + n(n+ 1)
2 + nm+O(n logn)

77

4 Optimizing Expression DAGs for Large-Scale Computations

and therefore costt(Tlist) = O(−nz + n2 + nm). If each summand has maximum value,
this bound is strict.

For Tbal, each predecessor of an operator node vj on the j-th level, except for the last
level, must be fully binary and therefore

z − 2j − 1 ≤ q(vj) ≤ z − 2(j − 1)− 1

Let k = dlog(n+ 1)e be the number of levels in Tbal. In the subtree rooted at vj , there
are between 2k−j−1 and 2k−j operands. Therefore, an upper bound to the maximum
magnitude at vj is given as m+ k − j. Since on each level there are at most 2j operator
nodes, we get

costt(Tbal) =
∑

v∈V(Tbal)
p(v)

≤
k−1∑
j=0

2j (−z + 2j + 1 +m+ k − j)

= O (−nz + n logn+ nm)

We get a matching lower bound by assuming that each summand has maximum value,
using the lower bounds in the respective estimates and ignoring the (k − 1)-th level.

The above lemma shows that balancing a summation asymptotically reduces the true
cost of the expression if the additions previously formed a linear list. With a little more
thought, it becomes evident that this bound is optimal among all possible summation
strategies. For multiplication, the true cost is generally dominated by the increase in the
operator constants.

Lemma 4.47. Let Tlist be a list-like expression tree and let Tbal be a balanced expression
tree, both consisting of n multiplications. Let m be the maximum magnitude of the
operands of Tlist and Tbal. Then the true cost of evaluating Elist or Ebal to accuracy z
with the standard error distribution is given as

costt(Tlist) = Θ(−nz + n2m) = costt(Tbal)

Proof. As for additions, we have i(v) = 0 for each quasi-leaf, and i(v) = −1 for each quasi-
unary or fully binary node v ∈ V(E). For an edge e ∈ E(E), we have i(e) = −1−log(c(e))
if it originates in a quasi-unary node and i(e) = −2− log(c(e)) if it originates in a fully
binary node. Furthermore, the maximum magnitude of a product increases linearly in
the number of factors.
As before, let vj denote the operator node in Tlist on the j-th level. The maximum

magnitude at a node vj for 0 ≤ j ≤ n− 1 is then given as (n− j + 1)m. The operator
constant at an edge e ∈ E(E) is an upper bound to the size of the second operand, which,

78

4.3 Restructuring

in this case, is always a leaf. Therefore, log(c(e)) ≤ m. The correction addend of a
multiplication is bounded by the size of the resulting approximation, therefore

p(vj) ≤ −q(vj) + (n− j + 1)m
≤ −z + j (1 +m) + 1 + (n− j + 1)m
= −z + j + 1 + (n+ 1)m

Consequently, the true cost is bounded by

costt(Tlist) ≤
n−1∑
j=0

(−z + j + 1 + (n+ 1)m)

= −nz + n(n+ 1)
2 + n(n+ 1)m

For Tbal, with k = dlog(n + 1)e, the maximum magnitude of a node vj on level j is
bounded from above by 2k−jm and, if all operands have maximum magnitude, from
below by 2k−j−1m. The operator precision of vj is therefore bounded by

p(vj) ≤ −q(vj) + 2k−jm

≤ −z +
j−1∑
i=0

(
2 + 2k−im

)
+ 1 + 2k−jm

= −z + 2(j − 1) +
(
2k+1 − 2k−j+1 + 2k−j

)
m

= −z + 2(j − 1) +
(
2k+1 − 2k−j

)
m

For the true cost of Tbal it follows that

costt(Tbal) ≤
k−1∑
j=0

2j
(
−z + 2(j − 1) +

(
2k+1 − 2k−j

)
m
)

= O
(
−nz + n2m

)
This yields an asymptotic upper bound for costt(Tbal). As before, matching lower bounds
are shown by assuming that all operands have maximum magnitude.

The consequences of Lemma 4.47 are somewhat disappointing. Asymptotically, the
running time for a large product cannot be reduced by balancing the expression dag.
However, if the maximum magnitude can be expected to stay reasonably small, then an
improvement is possible.

Lemma 4.48. Let Tlist be a list-like expression tree and let Tbal be a balanced expression
tree, both consisting of n multiplications. Let m̂ be the maximum exponent occurring
during the evaluation of Tlist and Tbal. Then the true cost of evaluating Elist or Ebal to
accuracy z with the standard error distribution is given as

costt(Tlist) = Θ(−nz + n2m̂) and costt(Tbal) = Θ(−nz + n log(n)m̂)

79

4 Optimizing Expression DAGs for Large-Scale Computations

Proof. The required accuracy for a node vj on layer j is bounded by −j (1 + m̂)− 1 in
the list-like case and by −j (2 + m̂) − 1 in the balanced case. Similar to the proof of
Lemma 4.47, we get

costt(Tlist) ≤
n−1∑
j=0

(−z + j (1 + m̂) + 1 + m̂) = O(−nz + n2m̂) (4.16)

for the list-like operator tree and, with k = dlog(n+ 1)e,

costt(Tbal) ≤
k−1∑
j=0

2j (−z + j (2 + m̂) + 1 + m̂) = O(−nz + n log(n)m̂)

for the balanced version, as well as matching lower bounds.

Note that the quadratic term in (4.16) is not caused by the variable cost of the
expression dag and therefore does not depend on the error distribution. By balancing
error bounds as in Section 4.2, this term cannot be reduced. On the contrary, AM-Ba-
lancing is able to significantly reduce the true cost of the evaluation. Its applicability,
however, is very limited. It can be extended by allowing semi-invasive operations.

Semi-Invasive Restructuring Methods

While asymptotically similar, the actual running time of the individual bigfloat operations
differs significantly. Divisions are more expensive than square roots, square roots are
more expensive than multiplications, and multiplications are far more expensive than
additions or subtractions (cf. Table 2.3, page 16). Semi-invasive restructuring methods
can be expected to improve the running time if they improve the structure and the
restructured operator tree uses the same or less expensive operations than the original one.
Furthermore, the running time can be improved by reducing the number of operations.
Potential techniques for semi-invasive restructuring methods include:

Eliminating subsequent negations Whenever two subsequent negations occur inside an
operator tree, they can be completely eliminated. The cost of the negation itself is
negligible, but for each negation node an additional copy of the approximation must
be maintained. Furthermore, eliminating negations potentially creates a structure
that is better suited for other restructuring methods such as AM-Balancing.

Rising negations In multiplications or divisions, a negation of one of the operands can
be eliminated by negating the result. A subsequent application of this rule can lead
to subsequent negations which then can be eliminated. Rising negations may also
improve the results of other restructuring methods if restructurable subtrees are
separated by negations.

Replacing Subtractions Subtractions can be replaced by an addition and a negation
with the benefit of increased associativity. The created addition node can then be

80

4.3 Restructuring

used in methods like AM-Balancing. If negations are further propagated to the
leaves, subsequent subtractions can be transformed into subsequent additions. Note
that this method is not necessarily semi-invasive by definition, since additional
negations are created. We list the method as semi-invasive because negations are
cheap enough to be compensated by even a small improvement in structure.

Replacing subsequent divisions Subsequent divisions can be transformed into a series
of multiplications followed by a single division. Since multiplications are cheaper
than divisions, this usually leads to an improved running time. Afterwards the
multiplications can be balanced through AM-Balancing, leading to an improvement
in structure. This method also applies if there is a mixture of divisions and
multiplications.

Combining subsequent roots Subsequent root operations can be replaced by a single
root operation of higher degree. While computing a root of higher degree is more
expensive than computing a root of small degree, the additional cost is compensated
by the reduction in the number of operator nodes.

The proposed semi-invasive techniques can be expected to work reasonably well in their
specific context, similar to AM-Balancing. If these strategies are combined, they can be
applied to many special cases during an evaluation. Nevertheless, they still cover only a
very small fraction of all existing expressions. For a more general approach, accepting a
certain degree of invasiveness is inevitable.

4.3.3 Brent Restructuring
If the number of operations that need to be executed is allowed to increase, more general
expressions can be effectively restructured. Richard Brent has shown that there is a
restructuring algorithm achieving logarithmic depth for each operator tree consisting of
all basic operations except for roots [Bre74]. We call this method Brent Restructuring. Brent Restructuring
In contrast to the previous methods, Brent Restructuring is invasive. In this section we
give a basic description of the algorithm and a short proof that it indeed always leads
to logarithmic depth. Afterwards, we quantify the impact of its invasiveness. We first
construct a sequence of operator trees, where Brent Restructuring always increases the
size of the trees by factor four. Afterwards we prove, partly computer-assisted, that this
factor is maximal.

The Basic Algorithm

As before, we use the concepts of an expression and an expression dag interchangeably
(cf. Remark 2.9). In this section, we extensively abuse this convention in order to reduce
the technicalities and in the hope of creating more intuitively understandable statements.
In particular, we use statements of the form E = E1 ◦ E2 to express that E is an
expression dag with operator ◦ (in its root node) and two children E1 and E2. The
restructuring algorithm recursively creates normalized subexpressions with logarithmic
depth, as specified in the following definition.

81

4 Optimizing Expression DAGs for Large-Scale Computations

Definition 4.49. Let A,B,C,D, F,G be division-free expressions, letX be an expression
and let E,EX be expressions of the form

E = F

G
and EX = AX +B

CX +D

Then we call E a Divide-Structure and we call EX a Divide-Add-Multiply (DAM)-StructureDivide-Structure
DAM-Structure for X. The subexpressions A,B,C,D, F,G are called the components of E and EX ,

components respectively. We call E or EX balanced if all of their components have a logarithmic
balanced depth.

The definition of a balanced Divide- or DAM-Structure is deliberately held a little
vague since the actual constants involved differ slightly depending on the context. The
introduced structures are used as containers for their respective components. Conse-
quently, whenever we operate on either of these structures, we are primarily interested in
the properties of their components. We introduce notations for their depth and their
number of operators.

Definition 4.50. We denote the set of all Divide-Structures as DS and for an expressionDS
X we denote the set of DAM-Structures for X as DAM(X). Let E be a Divide-Struc-DAM(X)
ture with components C(E) = {F,G} or a DAM-Structure with components C(E) =
{A,B,C,D}. We set

depthc(E), |E|• depthc(E) = max
K∈C(E)

(depth(K)) as well as |E|• =
∑

K∈C(E)
|K|◦

The number |E|• represents the number of operators of (the components of) E. We call
depthc(E) the component depth or, if clear from the context, the depth of E.component depth

In addition to the previous definition, we extend the notation for the number of
operands of an operator dag to Divide- and DAM-Structures and denote the number of
operands in the components of a respective structure E by |E|l. If we use this notation,|E|l
we generally ignore components of value zero or one that do not contain any nodes. These
components are exclusively used for intermediate steps during the algorithm and never
lead to an increase in the number of operands of the final result. Note that, while the
number of operands of a Divide-Structure is equal to the number of operands of the
underlying expression dag, the notation excludes the number of operands of X for a
DAM-Structure E ∈ DAM(X).
The basic idea behind Brent’s restructuring algorithm is to split the operator tree at

half of its size into three parts, balance those parts recursively and put them together
afterwards such that the bottom part of the expression has only a constant distance to
the root (cf. Figure 4.11). The core of the restructuring algorithm is formed by the two
functions compress and raise shown in Algorithm 6. The function compress takes an
arbitrary operator tree T and returns a balanced Divide-Structure. The function raise
takes an expression T and a subexpression X and returns a balanced DAM-Structure for
X. It therefore effectively raises X up to a constant distance to the root of T . Note that

82

4.3 Restructuring

∗

+

/

f

d

c

/ g

+

e

∗

∗

+

/

+

f

e

∗

d

c

/

∗

+

+

eg

∗ d

c

∗

∗

∗
f

/

∗

⇒ ⇒
split

compress
make DS

raise
+make DAM

a a

a

g

b

b

b

Figure 4.11: The basic recursive steps in Brent Restructuring. An expression is split into three
parts with at most half of its size. The lower parts are recursively balanced and the split node
is risen toward the root of the expression, thereby converting the expression to a balanced
DAM-Structure for the subexpression at the split node. Afterwards, the three parts are combined
into a balanced Divide-Structure.

Algorithm 6: The functions compress and raise.
1 Function compress(T):
2 if |T |l > 1 then
3 X = split(T ,1

2 |T |l);
4 let X1, X2 be the children of X;
5 X1 = compress(X1); X2 = compress(X2); TX = raise(T ,X);
6 return make_DS(TX ,X);
7 end
8
9 Function raise(T ,X):

10 if T 6= X then
11 Y = split(T ,1

2(|T |l + |X|l));
12 let Y1, Y2 be the children of Y , such that Y1 contains X;
13 Y1 = raise(Y1,X); Y2 = compress(Y2); TY = raise(T ,Y);
14 return make_DAM(TY ,Y ,X);
15 end

the result of compress is not necessarily a tree anymore but may introduce new operator
nodes on common subexpressions. The split function used in line 3 and line 11 returns
the minimal subexpression that contains at least half of the operands in T and is not an
operand by itself. Its conceptual implementation is shown in Algorithm 7.
In both compress and raise, the three parts of the expression created by the split

83

4 Optimizing Expression DAGs for Large-Scale Computations

Algorithm 7: The split function.
1 Function split(X,w):
2 let X1, X2 be the children of X with |X1|l ≥ |X2|l;
3 if X1 is not an operand and |X1|l ≥ w then
4 return split(X1,w);
5 else
6 return X;
7 end

are fused together at the end into a single Divide-Structure or a single DAM-Structure,
respectively. In line 6 of Algorithm 6, the main part of the expression is a DAM-Structure
of the form EX = (AX + B)/(CX + D), while X is of the form F1/G1 ◦ F2/G2. The
function make_DS creates an expression FX/GX for X according to Table 4.12 and then
substitutes X into EX , creating a new Divide-Structure F/G by setting F = AFX +BGX
and G = CFX +DGX .

X1 +X2 X1 −X2 X1 ·X2 X1/X2

FX F1G2 + F2G1 F1G2 − F2G1 F1F2 F1G2
GX G1G2 G1G2 G1G2 G1F2

Table 4.12: The components of the Divide-Structure FX/GX for X created by make_DS if
X = X1 ◦X2 = F1/G1 ◦ F2/G2 with operator ◦ ∈ {+,−, ·, /}.

The substitution function make_DAM used in raise in line 14 is more complicated. It
creates a DAM-Structure for X by substituting Y , which is an expression of the form

Y = YX ◦ YC or Y = YC ◦ YX
with the operands

YX = AXX +BX
CXX +DX

and YC = F

G

into the existing DAM-Structure

EY = AY Y +BY
CY Y +DY

The structure of the new components A,B,C,D depends on the operator ◦ and on the
order of the operands YX , YC . In Table 4.13, the structure of the components is shown
for the case in which ◦ is an addition or a multiplication. Subtraction and division can be
reduced to addition and multiplication by negating or, respectively, inverting the second
operand. Since both addition and multiplication are associative, the order of YX , YC can
then be changed to match the order assumed in Table 4.13.
Brent shows in his work that the depth of the expression after restructuring is loga-

rithmic in the number of operands. We use a simplified variant of his proof to show that
our implementation results in logarithmic depth.

84

4.3 Restructuring

Y = YX + YC Y = YX · YC
A AY (AXG+ CXF) +BY (CXG) AY (AXF) +BY (CXG)
B AY (BXG+DXF) +BY (DXG) AY (BXF) +BY (DXG)
C CY (AXG+ CXF) +DY (CXG) CY (AXF) +DY (CXG)
D CY (BXG+DXF) +DY (DXG) CY (BXF) +DY (DXG)

Table 4.13: The components of the DAM-Structure (AX+B)/(CX+D) created with the function
make_DAM by substituting Y into the DAM-Structure EY .

Theorem 4.51 (Based on [Bre74]). Let T be an operator tree and T ′ be the operator
tree created through Brent Restructuring. Then the depth of T ′ is at most 4dlog(|T |l)e.
Proof. We prove by induction that for each Divide-Structure E ∈ DS with |E|l ≥ 2 and
DAM-Structure EX ∈ DAM(X) with |EX |l ≥ 2 created during the algorithm we have

depthc(E) ≤ 4dlog(|E|l)e − 3 and depthc(EX) ≤ 4dlog(|EX |l)e − 3

If |E|l = 1, then depthc(E) = 0. If |E|l = 2, then we need at most one operation to
compute its components, so depthc(E) ≤ 1 = 4 log(|E|l)− 3. Similarly, if |EX |l = 0 or
|EX |l = 1, then depthc(EX) = 0 and if |EX |l = 2, then depthc(EX) ≤ 1 = 4 log(|EX |l)−3.
For the induction step, let EX ∈ DAM(X) with |EX |l = k ≥ 3. Then there are
expressions EY , Y , YX and YC such that

1. EX = make_DAM(EY , Y,X)

2. EY ∈ DAM(Y) with Y = YX ◦ YC or Y = YC ◦ YX and |EY |l ≤ k
2

3. YX ∈ DAM(X) with |YX |l < k
2

4. YC ∈ DS with |YC |l < k
2

Since each expression for the components of EX has a depth of at most 4 in the components
of EY , YX , YC (cf. Table 4.13), we get

depthc(EX) ≤ max(depthc(EY),depthc(YX), depthc(YC)) + 4
≤ 4dlog(k/2)e − 3 + 4
= 4dlog(k)e − 3

Now let E ∈ DS with |E|l = k ≥ 3. Then there are EY , Y1 and Y2 with |EY |l, |Y1|l, |Y2|l ≤
k/2 such that E = make_DS(EY , Y) as well as EY ∈ DAM(Y) with Y = Y1 ◦ Y2 and
Y1, Y2 ∈ DS. As before, each of the components of E has a depth of at most 4 in the
components of E, Y1, Y2. Therefore,

depthc(E) ≤ max(depthc(EY), depthc(Y1),depthc(Y2)) + 4
≤ 4dlog(k/2)e − 3 + 4
= 4dlog(k)e − 3

Finally, there is a Divide-Structure ET ∈ DS with ET = compress(T) and |ET |l = |T |l.
Therefore, depth(T ′) = depthc(ET) + 1 ≤ 4dlog(|T |l)e.

85

4 Optimizing Expression DAGs for Large-Scale Computations

Invasiveness of Brent Restructuring

+

+

+

+

/

/

/

//

Z2

Z3

Zk−1

Zk

Figure 4.14: The
graph Ek

div.

Brent Restructuring is guaranteed to reach a near-optimal expression
depth for significantly more general expressions than AM-Balancing.
Nevertheless it can lead to significantly worse structures. We define
an expression dag as shown in Figure 4.14. Let Ekdiv be an expression
dag with n = 2k operands x1, ..., x2k defined by

Ekdiv =
{
x1
x2

if k = 1
Ek−1
div + x2k−1

x2k
else

(4.17)

Then AM-Balancing leads to an optimal expression dag of height
dlog(n)e by balancing the tree of additions on top of all the division
nodes. Brent Restructuring, on the other hand, incorporates the
divisions in the leaves and, in this process, creates several additional
multiplication nodes.

Lemma 4.52. Let k = 2m − 1 with m ≥ 3, let T be the unique
maximal operator tree of Ekdiv and let T ′ be the operator tree created
from T by Brent Restructuring. Then the number of operators used
in the new operator dag is |T ′|◦ = 2.5(|T |◦ − 1)− 2 log(|T |◦ + 3).

Proof. First note that whenever a split operation happens, the split node is an addition
node. Therefore, raise is always called on addition nodes. Furthermore, each compress
operation on a division node returns the same division in form of a Divide-Structure with
operator number zero. For EX = make_DAM(EY , Y,X), only two possible cases occur
during the restructuring.
Case 1: EY = Y and Y = YX + YC and YX = X and YC = F/G

Case 2: EY = (AY +B)/D and Y = YX +YC and YX = (aX+b)/d and YC = F/G

Both cases result in a DAM-Structure EX ∈ DAM(X) of the form (AX + B)/D. In
Case 1, we do not need any operations to calculate the components of EX . In Case 2,
we need 10 operations for their calculation (cf. Table 4.13). Let Z2, ..., Zk = Ekdiv be
the subexpressions of Ekdiv rooted at the addition nodes, starting from the leaves. A
call to R0 = raise(Zj+1, Zj) results in Case 1. A call to R = raise(Zj+2m−1, Zj) with
m ≥ 2 consists of one call to compress for the division node at Zj+2m−1 as well as calls
to R1 = raise(Zj+2m−1,Zj+2m−1) and R2 = raise(Zj+2m−1−1, Zj). By induction, it
follows that Case 2 applies and since |R0|• = 10(20 − 1) = 0, the number of operators in
the resulting DAM-Structure R ∈ DAM(Zj) is given as

|R|• = |R1|• + |R2|• + 10 = 10(2m−2 − 1) + 10(2m−2 − 1) + 10 = 10(2m−1 − 1)

For make_DS we get only one case, leading to a Divide-Structure C = F/G.
Case A: E = (AX +B)/D and X = X1 +X2 and X1 = F1/G1 and X2 = F2/G2

Calling compress on Z3 requires a call to raise(Z3, Z2) and two calls to compress

86

4.3 Restructuring

for the children of Z2. This results in Case A in which we need |C|• = 8 operators
to represent its components (cf. Table 4.12). A call to C = compress(Z2m−1) with
m ≥ 3 consists of calls to R = raise(Z2m−1, Z2m−1), to C1 = compress(Z2m−1−1) and
to compress for the division node at Z2m−1 . As mentioned before, for m = 2 we have
|C|• = 8 = 10(2m−1 − 1) − 2(m − 1). For each m ≥ 3, we are in Case A as well. By
induction we get

|C|• = |R|•+|C1|•+8 = 10(2m−2−1)+10(2m−2−1)−2(m−2)+8 = 10(2m−1−1)−2(m−1)

In order to restructure T , compress is called and the result is combined by applying one
division on the resulting Divide-Structure. Therefore, |T ′|◦ = 5(k − 1)− 2 log(k + 1) + 3.
Since |T |◦ = 2k − 1, we have proven the lemma.

Lemma 4.52 proves its bound only for k = 2m− 1,m ≥ 3. With a bit more effort it can
be shown, that for all k ≥ 1 we need 5k −O(log k) operators. Since both AM-Balancing
and Brent Restructuring lead to a logarithmic depth for Ekdiv, we can expect the cost of
the evaluation after Brent Restructuring to be at least 2.5 times the cost of the evaluation
with the non-invasive method. We formalize this concept in the following definition:

Definition 4.53. Let R be a restructuring algorithm with domain D and let S be the
set of all sequences (Tn)n∈N of operator trees Tn ∈ D such that |Tn+k|l > |Tn|l for all
k > 0 and |R(Tn)|◦/|Tn|◦ converges in R ∪ {∞} for n→∞. Then

α = sup
{

lim
n→∞

|R(Tn)|◦
|Tn|◦

∣∣∣∣ (Tn)n∈N ∈ S
}

is called the degree of invasiveness of R. degree of invasive-
ness

Note that the degree of invasiveness is always defined since for every sequence of trees
the range of |R(Tn)|◦/|Tn|◦ is bounded by [0,∞] and therefore, by the Bolzano-Weierstraß
theorem, it contains a converging subsequence.

A Lower Bound on the Degree

Obviously, α = 1 for non-invasive and semi-invasive restructuring methods. Let αB be
the degree of invasiveness of Brent Restructuring. From Lemma 4.52 we already know
that αB ≥ 2.5. In Brent’s original work, he shows that αB ≤ 10. In this work, we show
that Brent Restructuring has a degree of invasiveness of αB = 4. We split the proof of
this statement into several parts. First, we give a construction for the lower bound. Let
Ekmax be an expression dag with n = 5k + 1 operands x0, ..., x5k defined by

Ekmax =

x0 if k = 0
x5k−1
x5k

+
(
x5k−2 + x5k−3

x5k−4+Ek−1
max

)
else

(4.18)

The path from the root to x0 consists of k blocks of two additions, one division and
another addition. We denote subtrees rooted at the 4k operator nodes along this path

87

4 Optimizing Expression DAGs for Large-Scale Computations

from top to bottom as Z4k, ..., Z1. So the root of Zi contains a division node for i = 4j−2,
1 ≤ j ≤ k and an addition node otherwise (cf. Figure 4.15). We first deduce a property
that helps us to control where the splits of compress and raise happen during the
algorithm.

+

+

+

/

/

x5x4

x3

x2

x1 x0

Z4 = E1
max Ek

max

Figure 4.15: The expression dag Ek
max, formed by k equally structured building blocks.

Lemma 4.54. Letm ≥ 3 and consider Ekmax for k ≥ 2. Then each call to compress(Z2m)
and each call to compress(Z2m−1) splits at Z2m−1 . Furthermore, for j ≥ 0 each call to
raise(Z4j+2m , Z4j) and each call to raise(Z4j+2m−1, Z4j) splits at Z4j+2m−1 .

Proof. Each of the basic building blocks of Ekmax, except for the first one, consists of five
operands. The respective numbers of operands in the subexpressions Z1, ..., Z4k are given
as

|Zi|l =
⌊5i

4

⌋
+ 1 (4.19)

Note that for every fourth subexpression, the number of operands increases by two due
to the additional division. The split of compress(E) happens at the lowest node in
E at which the number of operands is at least half of |E|l (cf. line 3 of Algorithm 6).
For compress, we have |Z2m |l = 5 · 2m−2 + 1 and |Z2m−1|l = 5 · 2m−2 − 1. Since
|Z2m−1 |l = 5 · 2m−3 + 1, whereas its child nodes have at most 5 · 2m−3 − 1 operands, in
both cases Z2m−1 is the split node of the compress operation. The split of raise(E,X)
happens at the lowest node in the subexpression where the number of operands is at least
half the number of operands of E and X combined (cf. line 11 in Algorithm 6). Since⌈ |Z4j+2m |l + |Z4j |l

2

⌉
= 5j + 5 · 2m−3 + 1 and

⌈ |Z4j+2m−1|l + |Z4j |l
2

⌉
= 5j + 5 · 2m−3

in both cases the split happens at Z4j+2m−1 with |Z4j+2m−1 |l = 5j + 5 · 2m−3 + 1.

88

4.3 Restructuring

With Lemma 4.54, we know where splits happen if we choose powers of two for the
number of building blocks. The functions make_DS and make_DAM generate a maximum
amount of additional operator nodes when all components of the respective substructures
are relevant for the creation of the new structure.

Definition 4.55. Let EX ∈ DAM(X) be a DAM-Structure of the form

EX = AX +B

CX +D

with |A|l, |B|l, |C|l, |D|l ≥ 1. Then EX is called complete. Likewise, we call a Divide- complete
Structure E ∈ DS with E = F/G complete, if |F |l ≥ 1 and |G|l ≥ 1.

Each call to make_DAM produces 20 operators if the involved substructures are complete.
We show that two building blocks are sufficient to generate a complete DAM-Structure
and that during a call to raise where the raised node is a power of two buildings blocks
away from its destination, on average, each building block generates 20 operators. Note
that each building block contributes 22 operator nodes to the longest path.

Lemma 4.56. For the expression dag Ekmax with k ≥ 2 let E1, E2 ∈ DAM(Z4j) be
DAM-Structures created by E1 = raise(Z4j+2m−1, Z4j) and E2 = raise(Z4j+2m , Z4j)
for m ≥ 3 and j ≥ 0. Then the following two statements hold:

1. E1 is complete and |E1|• = 20(2m−2 − 1).

2. E2 is complete and |E2|• = 20(2m−2 − 1) + 8.

Proof. All calls to compress needed for the creation of E1 and E2 operate either on a
single operand or on a division between two operands, leading to Divide-Structures of the
form F or F/G where all components are operands and therefore the number of required
operators is 0. For raise, we get ten different non-trivial cases. The seven base cases are
depicted in Table 4.16. Case 8 and Case 9 are depicted in Figure 4.17 and described in
the following. In the tenth case, each substructure is complete and the operation at the
split node is an addition, leading to 20 additional operations (cf. Table 4.13). We first
show that raise(Z4j+2m−1, Z4j) with m ≥ 3 leads to a complete DAM-Structure with
20(2m−2−1) operators. Due to Lemma 4.54, the split occurs at the root of Z4j+2m−1 . Let
m = 3, then we are in Case 9 as depicted in Figure 4.17 and both subsequent recursive
calls eventually land in Case 6. For computing make_DAM(Z4j+7, Z4j+4, Z4j) we then get

EY = AY +B

Y +D
, Y = F

G
+ YX , YX = aX + b

X + d

and therefore

EX = (A(aG+ F) +BG)X + (A(bG+ dF) +B(dG))
((aG+ F) +DG)X + ((bG+ dF) +D(dG))

This step produces 16 operators. To compute the number of operators required for the
components, only the final cases are relevant, adding another 4 operators. Therefore, EX

89

4 Optimizing Expression DAGs for Large-Scale Computations

EY YC ◦ YX EX |EX |•
Case 1 Y F + X X + F 0 + |F |◦
Case 2 Y F / X F/X 0 + |F |◦
Case 3 Y F/G + X (GX + F)/G 0 + |F,G|◦
Case 4 B/Y F + X B/(X + F) 0 + |B,F |◦
Case 5 Y +B F / X (BX + F)/X 0 + |B,F |◦
Case 6 Y +B F / X + b BX+(F+Bb)

X+b 2 + |B,F, b|◦
Case 7 AY+B

D F + b
X+d

(AF+b)X+(A(b+dF)+Bd)
DX+Dd 8 + |A,B,D, F, b, d|◦

Table 4.16: Substitution cases for the recursive raise calls in Lemma 4.56, where EX =
make_DAM(EY , Y,X) with EY ∈ DAM(Y) and Y = YC ◦ YX . The notation |σ1, σ2|◦ is used as
equivalent to |σ1|◦ + |σ2|◦.

++ / + ++ / +

Case 3

E Y X

E
Case 7

XY XE Y

X

Case 2

Case 4 Case 1

Case 6

E X E X

E X

E X E Y

++ / + ++ / + +

E Y X

E XY XE Y

E X E XE X E X

Z4jZ4j+23−1Z4j+24

Case 8 Case 9
Case 1 Case 1 Case 1 Case 1 Case 1

Case 6 Case 6

Figure 4.17: Case 8 and Case 9 and their subcases as they occur during calls to raise(Z4j1+23 , Z4j1)
and raise(Z4j2+23−1, Z4j2), respectively. For each (sub-)case the expression at the target node
(E), the expression at the raised node (X) and the expression at the split node (Y) are marked.
If no split node is marked, then E = Y .

is a complete DAM-Structure with |EX |• = 20. For m ≥ 4, by induction, the subsequent
calls to raise(Z4j+2m−1, Z4j+2m−1) and raise(Z4j+2m−1 , Z4j) result in complete DAM-
Structures with 20(2m−3 − 1) operators. Since the second child node of Z4j+2m−1 is a
division, we get

EY = AY +B

CY +D
, Y = F

G
+ YX , YX = aX + b

cX + d

and therefore

EX = (A(aG+ cF) +B(cG))X + (A(bG+ dF) +B(dG))
(C(aG+ cF) +D(cG))X + (C(bG+ dF) +D(dG))

Since this step produces 20 operators, we get

|EX |• = 20(2m−3 − 1) + 20(2m−3 − 1) + 20 = 20(2m−2 − 1)

We now show that raise(Z4j+2m , Z4j) with m ≥ 3 leads to a complete DAM-Structure
with 20(2m−2 − 1) + 8 operators. Again with Lemma 4.54, the root of Z4j+2m−1 is the

90

4.3 Restructuring

split node of the raise operation. For m = 3, the subsequent recursive calls eventually
land in Case 7 and Case 6. This is depicted as Case 8 in Figure 4.17. For computing
make_DAM(Z4j+8, Z4j+4, Z4j) we get

EY = AY +B

CY +D
, Y = F

G
+ YX , YX = aX + b

X + d

and therefore

EX = (A(aG+ F) +BG)X + (A(bG+ dF) +B(dG))
(C(aG+ F) +DG)X + (C(bG+ dF) +D(dG))

Obviously, the resulting DAM-Structure is complete. This step produces 18 operators.
Another 10 operators are added to compute the components, resulting in |EX |• = 28.
Now, for m ≥ 4 the subsequent calls are of the form raise(Z4j+2m , Z4j+2m−1) and
raise(Z4j+2m−1 , Z4j). By induction and by the first statement of the lemma, both
resulting structures are complete and, as before, we need 20 operators to represent the
components of the result. Therefore,

|EX |• = 20(2m−3 − 1) + 8 + 20(2m−3 − 1) + 20 = 20(2m−2 − 1) + 8

With the results for raise, we can now show that each building block generates on
average 20 operators during a call to compress if the number of building blocks is a
power of two.

Lemma 4.57. For the expression dag Ekmax with k ≥ 2 let E ∈ DS be created by
E = compress(Z2m) for m ≥ 5. Then E is complete and the number of operators
required to compute its components is |E|• = 20(2m−2 − 1)− 10(m− 2)− 4.

Proof. We first show that E = compress(Z2m−1) leads to a complete Divide-Structure
of size 20(2m−2 − 1)− 10(m− 2) + 4. Let m = 4. Then by Lemma 4.54, compress(Z15)
splits at Z8. With Lemma 4.56, raise(Z15, Z8) returns a complete DAM-Structure with
20 operators. We get three non-trivial cases A, B and C for compress, which are listed
in Table 4.18. The computation for compress(Z7) is shown in Figure 4.19. It returns a
complete Divide-Structure with 14 operators. Since the second child of Z8 is a division
node, all three substructures are complete and make_DAM(Z15) is in Case C. It follows that

EX X1 ◦ X2 E operators
Case A AX+B

X F1 + F2
A(F1+F2)+B

F1+F2
3

Case B AX+B
X+D F1/G1 + F2/G2

A(F1G2+F2G1)+B(G1G2)
(F1G2+F2G1)+D(G1G2) 9

Case C AX+B
CX+D F1/G1 + F2/G2

A(F1G2+F2G1)+B(G1G2)
C(F1G2+F2G1)+D(G1G2) 10

Table 4.18: Substitution cases for recursive compress calls in an evaluation of Ek
max, where

E = make_DS(EX , X) with EX ∈ DAM(X) and X = X1 ◦X2. The last column lists the number
of operators needed to create the components of E from the components of EX , X1 and X2.

91

4 Optimizing Expression DAGs for Large-Scale Computations

++ / +

E X

E
Case 6

XY XE
Case A

XEE X E XY

E X
Case 1 Case 1 Case 5

Case 1

Case B

Z8

++ / +

Z4

Z0

Figure 4.19: The cases occurring during a call to compress(Z7). The two non-trivial compress
calls are shown in blue. The expression at the target node is marked as E and the expression at
the split node is marked as X. Subsequent raise cases are displayed as in Figure 4.17.

|E|• = 20 + 14 + 10 = 44 = 20(2m−2 − 1)− 10(m− 2) + 4. For m ≥ 5 the recursive calls
are raise(Z2m−1, Z2m−1) and compress(2m−1 − 1). By induction and by Lemma 4.56,
both resulting structures are complete and we are again in Case C, therefore the number
of operators for E = make_DS(Z2m−1, Z2m−1) is given as

|E|• = 20(2m−3− 1) + 20(2m−3− 1)− 10(m− 3)− 4 + 10 = 20(2m−2− 1)− 10(m− 2) + 4

Now, for E = compress(Z2m) with m ≥ 5 we get recursive calls to raise(Z2m , Z2m−1)
and compress(2m−1−1). With the above result and Lemma 4.56, we are again in Case C
and we get

|E|• = 20(2m−3−1)+8+20(2m−3−1)−10(m−3)−4+10 = 20(2m−2−1)−10(m−2)−4

Theorem 4.58. The degree of invasiveness of Brent Restructuring is at least 4.

Proof. Let (Tn)n∈N be the sequence of operator trees with Tn being the unique maximal
operator tree of Ekmax with k = 2n. With Lemma 4.57, the number of operator nodes
of Tn after restructuring is 20k − O(log k) for n ≥ 5. Since Tn consists of 5k operator
nodes, the theorem follows.

An Upper Bound on the Degree

To prove the upper bound we show that for large numbers of operands n each call
to raise leads to a DAM-Structure with at most 4n − 12 operators and each call to
compress leads to a Divide-Structure with at most 4n− 8 operators. We first show that
these bounds lead to a valid induction step.

Lemma 4.59. Let EY ∈ DAM(Y) and YX ∈ DAM(X) and let Y1, Y2 ∈ DS, such that

|EY |• ≤ 4|EY |l − 12 and |YX |• ≤ 4|YX |l − 12

92

4.3 Restructuring

as well as
|Y1|• ≤ 4|Y1|l − 8 and |Y2|• ≤ 4|Y2|l − 8

Then for EX = make_DAM(EY , Y,X) with Y = YX ◦ Y1 or Y = Y1 ◦ YX and for E =
make_DS(EY , Y) with Y = Y1 ◦ Y2 we get

|EX |• ≤ 4|EX |l − 12 and |E|• ≤ 4|E|l − 8 (4.20)

Proof. As depicted in Table 4.13, the components of EX are represented by the compo-
nents of the substructures with at most 20 operators. Therefore, we get

|EX |• ≤ |EY |• + |YX |• + |Y1|• + 20
≤ 4|EY |l − 12 + 4|YX |l − 12 + 4|Y1|l − 8 + 20
= 4(|EY |l + |YX |l + |Y1|l)− 12

For representing the components of E, at most 10 operators are needed. This number
splits into 4 operators for representing the components of Y (cf. Table 4.12) and 6
operators for representing AY +B and CY +D. Therefore, the total number of operators
is given as

|E|• ≤ |EY |• + |Y1|• + |Y2|• + 10
≤ 4|EY |l − 12 + 4|Y1|l − 8 + 4|Y2|l − 8 + 10
< 4(|EY |l + |Y1|l + |Y2|l)− 8

We call (4.20) the operator bound property for a Divide- or DAM-Structure. We op. bound property
prove the base case of the induction with a computer-assisted approach. For small
numbers of operands, exhaustive search is applied to determine the maximum number of
operator nodes after restructuring. We give a sketch to the tree generation algorithm.
Every ordered binary tree with n leaves is isomorphic to a sequence of natural numbers

Algorithm 8: Algorithm for generating a unique expression tree with addi-
tions, multiplications and divisions from each sequence of n− 1 natural numbers
a0, .., an−2 with 0 ≤ ai ≤ 3(n− i)− 1.

1 Function generate_tree([a0, ..., an−2]):
2 let [x0, .., xn−1] be operands;
3 for i = 0 to n− 2 do
4 j = bi/3c; k = i mod 3;
5 laj = make_node (laj ,laj+1,◦k);
6 remove laj+1;
7 end
8 return l1

93

4 Optimizing Expression DAGs for Large-Scale Computations

a0, ..., an−2 with 0 ≤ ai ≤ n− i− 1. A tree can be generated by such a sequence by
starting with n ordered leaves and subsequently contracting the ai-th node with its
neighbor. For generating all possible operator trees, we additionally incorporate the
number of different operations for each node into the sequence. We use every combination
of additions, multiplications and divisions. We do not use subtractions, since they lead
to the same structure as additions aside from occasionally adding a negation, and we
ignore roots, since they cannot be processed by Brent Restructuring. The operations are
encoded by extending the range of each ai to 0 ≤ ai ≤ 3(n − i) − 1 and then treating
every first, second and third node as addition, multiplication or division as depicted in
Algorithm 8. We use exhaustive search to find the maximum number of operator nodes

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8
compress − 0 1 2 4 6 9 11 14

raise 0 0 1 3 5 8 12 16 20

Table 4.20: Maximum number of operators for a Divide-Structure generated by compress(E) and
a DAM-Structure generated by raise(E,X) depending on the number of operands n = |E|l and
n = |EX |l, respectively. The numbers were determined by an exhaustive search over all trees
containing additions, multiplications and divisions.

after executing both compress and raise. In the case of raise, we generate trees over
n+ 1 operands and repeat the process n+ 1 times while marking one of the operands as
the node that should be raised. Table 4.20 shows the maximum number of operators a
Divide-Structure generated by compress and a DAM-Structure generated by raise can
have for n ≤ 8 operands (not counting the marked node in the case of raise). For each
case, exemplary operator trees for which a maximum number of new operator nodes are
generated are shown in Figure 4.21 and Figure 4.22.

+

+

+

+

∗
+

∗
+

+

/

+

/

+

+

/

+

/

+

+

/

+

+

/

+

+

/

+

/
n = 2n = 1

n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

Figure 4.21: Operator trees with n ≤ 8 operands for which compress creates a maximum number
of new operator nodes.

The operator bound property (4.20) is fulfilled for n ≥ 3 for compress and for n ≥ 5
for raise. Smaller values of n must be addressed separately in the induction step. For
this, we use the fact that the maximal structures for small n are usually not complete
and therefore do not lead to a maximum increase in the number of operators.

94

4.3 Restructuring

+ +

+

+

∗
∗

+

∗

∗
+

+

+

+

/ /

/

+

∗
+

+

/

+

+

+

/ /

/

+

+

+

+

/

/

/

+

/

n = 2n = 1 n = 3 n = 4

n = 5 n = 6 n = 7 n = 8

n = 0

Figure 4.22: Segments of operator trees with n ≤ 8 operands for which raise creates a maximum
number of new operator nodes. The node containing the subexpression that should be raised is
depicted as an empty circle.

Definition 4.60. For EY ∈ DAM(Y), YX ∈ DAM(X) and YC ∈ DS let

Y = {YX ◦ YC , YC ◦ YX | ◦ ∈ {+,−, ·, /}}

be the set of all possible expressions at a respective split node. Then for EX(Y) =
make_DAM(EY , Y,X) we call

δ◦(EY , YX , YC) = max
Y ∈Y

(|EX(Y)|•)− |EY |• − |YX |• − |YC |•

the operator increase of make_DAM for EY , YX and YC .

As a first step, we prove that the operator bound property holds for any Divide-Struc-
ture or DAM-Structure if at most one of the substructures is too small to fulfill the
operator bound property.

Lemma 4.61. Let EY ∈ DAM(Y), YX ∈ DAM(X) and YC ∈ DS and let EX =
make_DAM(EY , Y,X) with Y = YX ◦ YC or Y = YC ◦ YX . Then EX fulfills the operator
bound property (4.20) for either |EY |l ≤ 4 or |YX |l ≤ 4 or |YC |l ≤ 2 if the other two
substructures fulfill the operator bound property.

Proof. First assume that either E∗ = EY or E∗ = YX has nr ≤ 4 operands. Let
δ◦ = δ◦(EY , YX , YC) be the number of additional operators introduced by make_DAM.
Then the number of operators of EX is bounded by

|EX |• ≤ 4|EX |l − 12− 8 + (|E∗|• − 4nr) + δ◦

95

4 Optimizing Expression DAGs for Large-Scale Computations

Therefore, the operator bound property is fulfilled if

δ◦ ≤ 4nr − |E∗|• + 8 (4.21)

We prove that this inequality is fulfilled by identifying properties of the DAM-Structure
E∗ depending on the number of operands and the number of operators of E∗. We
guarantee these properties by an exhaustive search of all possible tree structures using
Algorithm 8. For this, we compute the maximum number of operator nodes that can be
created by restructuring a tree of size nr where the resulting DAM-Structure does not
fulfill the respective properties. In Table 4.23 the properties for each case and the resulting
increase in operators for E∗ = EY and E∗ = YX are listed. By a simple calculation we
verify that the condition in (4.21) and therefore the operator bound property is fulfilled
in each of these cases.

Case |E∗|• Properties δ◦Y δ◦X

nr = 4 5 C = 0 16 13
≤ 4 None 20 20

nr = 3

3 C = 0 or D = 0 16 13
2 C ∈ {0, 1} or D = 0 18 18
1 One of A,B,C,D is in {0, 1} 18 19
0 None 20 20

nr = 2 1
C = 0 and (A or D is in {0, 1}) or
D = 0 and (A or C is in {0, 1}) or
A = 0, C = 1, D = 1

15 15

0 C = 0 or D = 0 or (C = 1 and A = 0) 16 16

nr = 1 0 D = 1, B = C = 0 or A = D = 1, C = 0 or
A = 1, B = D = 0 or A = D = 0, C = 1 12 10

nr = 0 0 A = D = 1 and B = C = 0 7 8

Table 4.23: The properties of a DAM-Structure E∗ that have been computationally verified for
the small cases (nr ≤ 4) of raise and the resulting bounds for the number of operators in a
DAM-Structure created by make_DAM(EY , Y,X) for E∗ = EY or E∗ = YX . A component is
declared as zero or one if it does not contain operands and represents this value in the structure.

If YC has nc ≤ 2 operands, we get |EX |• ≤ 4|EX |l − 12− 12 + (|YC |• − 4nc) + δ◦ and
therefore

δ◦ ≤ 4nc − |YC |• + 12 (4.22)

For nc = 2 we can only achieve a complete Divide-Structure if the unique operator is a
division. In this case, |YC |• = 0 and (4.22) is fulfilled. Otherwise, F = 1 or G = 1 and
δ◦ ≤ 18. For nc = 1, there are no operations and therefore G = 1 and δ◦ ≤ 16. Therefore,
in each case the operator bound property is fulfilled and the lemma is proven.

For compress the inductive bound is less tight, which makes the argument much
simpler.

96

4.3 Restructuring

Lemma 4.62. Let EX ∈ DAM(X) and X1, X2 ∈ DS and let E = make_DS(EX , X)
with X = X1 ◦X2. Then E fulfills the operator bound property for either |EX |l ≤ 4 or
|X1|l ≤ 2 or |X2|l ≤ 2 if the other two substructures fulfill the operator bound property,
respectively.

Proof. Let EX have nr ≤ 4 operands. For nr ≥ 1 we observe from Table 4.20 that
|EX |• ≤ 4nr − 4. Therefore, we get

|E|• ≤ 4|E|l − 8− 8− 4 + 10 ≤ 4|E|l − 8

Now let nr = 0. Then |EX |• = 0 and the number of additional operators introduced by
make_DS is ≤ 4, resulting in

|E|• ≤ 4|E|l − 8− 8 + 4 ≤ 4|E|l − 8

For X∗ = X1 or X∗ = X2 with 1 ≤ nc ≤ 2 operands we observe that |X∗|• ≤ 4nc − 4.
Therefore,

|E|• ≤ 4|E|l − 12− 8− 4 + 10 ≤ 4|E|l − 8
and the lemma is proven.

For n ≥ 8 in the case of compress and for n ≥ 12 in the case of raise we can show that
at most one of the substructures violates the operator bound property. By exhaustive
search we were able to show that the operator bound property holds for 3 ≤ n ≤ 8
and 5 ≤ n ≤ 8, respectively. Results for n > 8 are not achievable in a reasonable time
with the hardware used. It remains to show that for raise the operator number after
restructuring is at most 4n− 12 for 9 ≤ n ≤ 11. For this, we first show that we almost
always save operators if we generate an incomplete DAM-Structure instead of a complete
one.

Lemma 4.63. For EY , ÊY , R1 ∈ DAM(Y), YX , ŶX , R2 ∈ DAM(X) and YC , ŶC , C1 ∈
DS let EY and YX be DAM-Structures of the form (AZ +B)/D with Z ∈ {X,Y } and
let YC be a Divide-Structure of the form YC = F . Let furthermore ÊY , ŶX and ŶC be
complete. Then

1. δ◦(EY , R2, C1) ≤ max(δ◦(ÊY , R2, C1)− 1, 3)

2. δ◦(R1, YX , C1) ≤ max(δ◦(R1, ŶX , C1)− 1, 4)

3. δ◦(R1, R2, YC) ≤ max(δ◦(R1, R2, ŶC)− 1, 4)

Proof. We first show various properties of any Divide- and DAM-Structures created
during restructuring, which we use afterwards to show that the number of additional
operators created during make_DAM must decrease for both EX and E. We say that a
component is zero or one if its number of operands is zero and its value in the context of
the structure is zero or one. Consider a DAM-Structure and a Divide-Structure of the
form

AX +B

CX +D
and F

G

97

4 Optimizing Expression DAGs for Large-Scale Computations

First, note that the denominator of either structure can never be zero, therefore (1a) C 6= 0
or D 6= 0 and (1b) G 6= 0. Since inversions are only possible in the context of a division,
the numerator can never be zero or one. This yields (2a) A 6= 0 or B 6= 0 as well as
(2b) B 6= 1 and, consequently, (2c) |F |l > 0. Since X is retained during the operations,
we have always (3) A 6= 0 or C 6= 0. If C is not zero, then at one point during its
creation, a DAM-Structure for X was on the right hand side of a division. Since in the
previous structure there was B 6= 1, we get (4) C 6= 0 ⇒ D 6= 1. Finally, creating a
DAM-Structure with both A 6= 0 and C 6= 0 requires an addition in a state where C 6= 0,
which may happen directly or during a substitution. This addition always leads to a factor
in front of X and retains the value of B in the numerator, therefore (5a) C 6= 0⇒ A 6= 1
as well as (5b) B 6= 0 or D 6= 0.

Y = ŶX + ŶC Y = ŶX · ŶC Y = ŶX/ŶC Y = ŶC/ŶX
A∗ A(aG+ cF) +B(cG) A(aF) +B(cG) A(aG) +B(cF) A(cF) +B(aG)
B∗ A(bG+ dF) +B(dG) A(bF) +B(dG) A(bG) +B(dF) A(dF) +B(bG)
C∗ C(aG+ cF) +D(cG) C(aF) +D(cG) C(aG) +D(cF) C(cF) +D(aG)
D∗ C(bG+ dF) +D(dG) C(bF) +D(dG) C(bG) +D(dF) C(dF) +D(bG)

Table 4.24: The components of the DAM-Structure (A∗X +B∗)/(C∗X +D∗) created by calling
make_DAM(ÊY , Y,X) for additions, multiplications and divisions.

In Table 4.24, the rules for the construction of a DAM-Structure by make_DAM depicted
in Table 4.13 are revisited and extended by the rules for divisions. With the three
statements from the lemma and the four possible constructions, we get a total of 12
cases that must be treated. We state the main idea for each of these cases. We denote
the components of the DAM-Structure for Y as A,B,C,D and the components of the
DAM-Structure for X as a, b, c, d. We say that we save an operation if it is present in
the result for the complete structure but not for the incomplete structure. For the first
statement of the lemma, we have C = 0. For Y = R2 + C1 and Y = C1/R2 we save at
least one multiplication since with (1a) and (2c) either cF or dF contains an operand.
Similarly, we save one multiplication for Y = R2 ·C1 with (2a) and (2c). For Y = R2/C1,
we save a multiplication if |G|l > 0 due to (2a). We furthermore save a multiplication
if |a|l > 1 or b 6= 0 due to (1b) and (2b). Lastly, with (1b), (2a) and (2c), we save an
addition if c 6= 0. If neither of these statements is true, we are in Case A as listed in
Table 4.25 and, hence, the operator increase is at most 3.

The proof of the other two statements is similar to first one. We briefly list the relevant
steps. For the second statement, c = 0 and we save one multiplication for Y = YX + C1
and Y = C1/YX due to (1a) and (2c). For Y = YX/C1, we save one multiplication
with (2c) and (5b). For Y = YX · C1, we either save a multiplication or an addition or
with (1b), (2b), (2c), (4) and (5b) we are in Case B of Table 4.25. By that, the second
statement is proven. For the third statement, we always end up in one of the small
cases. For additions, we reach Case C and for multiplications (a subcase of) Case B. For
divisions of the form Y = R1/YC we reach either Case D or Case E and for divisions of
the form Y = YC/R1 we get (a subcase of) Case A. For each operation, nearly all of the
proven properties are required for the derivation.

98

4.3 Restructuring

EY Y1 ◦ Y2 EX δ◦

Case A AY+B
D F / X

d
AX+B(dF)
D(dF) 3

Case B AY aX+b
d ∗ F A(aF)X+A(bF)

d 4
Case C Y X + F X + F 0

Case D Y+B
D

X
d / F X+B(dF)

D(dF) 3

Case E B
Y+D

X
d / F B(dF)

X+D(dF) 3

Table 4.25: The small cases for make_DAM occurring in the proof of Lemma 4.63 in which no
operations can be saved compared to a complete structure.

Lemma 4.63 enables us to treat the cases n = 4 for raise and n = 2 for compress
as if they would fulfill the operator bound property. For n = 4, raise leads to at most
4n− 11 operators. Since the maximal case requires C = 0 (cf. Table 4.23), the number of
operators added by make_DAM is reduced by at least one if at least four new operators
are produced. The same applies to compress, which, in the case of n = 2, leads to at
most 4n− 7 operators with the maximal case resulting in a Divide-Structure with G = 1.
For the inductions for raise in the proof of Lemma 4.59 and Lemma 4.61, an operator
increase of at least 7 is assumed. Let EX be a DAM-Structure with n = 4 and let E
be a Divide-Structure with n = 2. If EX or E is used in any of the inductive steps,
then either EX and E fulfill the operator bound property or an additional decrease in
the number of operators of at least one is achieved, compensating for the additional
operator in the structure. Since δ◦ ≥ 7 in all of these cases, this stays true even if all
structures appearing in the inductive step are replaced. Consequently, EX and E behave
equivalently to fulfilling the operator bound property. For compress, EX and E can be
used at will as well since neither of the bounds in Lemma 4.59 and Lemma 4.62 is tight,
missing the required upper bound by 10, 2, 4 and 6 operators, respectively.
Before we prove that the operator bound property holds for raise with 9 ≤ n ≤ 11,

we show for two combinations of small structures that in these cases the operator bound
property is retained even if both DAM-Structures in the inductive step do not fulfill the
operator bound property.

Lemma 4.64. Let EY ∈ DAM(Y) with nr = |EY |l ∈ {2, 3}, let YX ∈ DAM(X)
with |YX |l = 3 and let YC ∈ DS fulfill the operator bound property. Then EX =
make_DAM(EY , Y,X) with Y = YX ◦ YC or Y = YC ◦ YX fulfills the operator bound
property.

Proof. Let δ◦ = δ◦(EY , YX , YC) be the number of additional operators introduced by
make_DAM. In Table 4.26, all possible cases are listed together with computationally
verified properties of the respective structures and a resulting upper bound on δ◦. In
each of those cases we have

|EY |• + |YX |• + δ◦ ≤ 4nr + 8

99

4 Optimizing Expression DAGs for Large-Scale Computations

Case |EY |• |YX |• Properties for EY Properties for YX δ◦

nr ≤ 3 ≤ 3 3 Not complete C = 0 or D = 0 12

nr = 3

3 ≤ 2 C = 0 or D = 0 Not complete 15
2 2 C ∈ {0, 1} or D = 0 C ∈ {0, 1} or D = 0 16
≤ 1 2 Not complete C ∈ {0, 1} or D = 0 17
2 ≤ 1 C ∈ {0, 1} or D = 0 Not complete 17

nr = 2
1 ≤ 2 Z1 = 0, Z2 ∈ {0, 1} Not complete 13
0 2 Z1 = 0 C ∈ {0, 1} or D = 0 14
0 ≤ 1 Z1 = 0 Not complete 15

Table 4.26: The properties that have been computationally verified for DAM-Structures EY

with two or three and YX with three operands, depending on the number of operators in their
components. Depending on these properties, the maximum number of operators generated by
make_DAM with EY , YX and YC ∈ DS is determined and listed in the last column (cf. Table 4.24).

Therefore, the number of operators in EX is bounded as follows.

|EX |• ≤ |EY |• + |YX |• + |YC |• + δ◦

≤ 4nr + 8 + 4|YC |l − 8
= 4(nr + |YX |l + |YC |l)− 12

Lemma 4.65. Let T be an operator tree and let X be a subtree in T with n = |T |l−|X|l
and 9 ≤ n ≤ 11. Then for TX = raise(T,X) it follows that |TX |• ≤ 4n− 12.

Proof. Let Y be the split node resulting from raise(T,X), let EY ∈ DAM(Y) be the
DAM-Structure for Y and let YX ∈ DAM(X) and YC ∈ DS be the children of Y created
by the subroutines of raise. If at most one of EY , YX , YC does not fulfill the operator
bound property, then the desired property is guaranteed by Lemma 4.59 and Lemma 4.61.
Let |Y |l = |YX |l + |YC |l. Due to the property of the split node we have |Y |l ≥ 5 and
|YX |l, |YC |l ≤ 4 for n = 9 and n = 10. There are 10 cases for n = 9 and 6 cases for
n = 10 in which at least two nodes do not fulfill the operator bound property, as listed
in Table 4.27.

n = 9 n = 10
|EY |l 4 4 4 4 3 3 3 2 2 1 5 5 4 3 3 2
|YX |l 4 3 2 1 4 3 2 4 3 4 4 3 4 4 3 4
|YC |l 1 2 3 4 2 3 4 3 4 4 1 2 2 3 4 4

Table 4.27: Possible distributions of n = 9 or n = 10 operands during make_DAM such that at least
two of the substructures do not fulfill the operator bound property.

By Lemma 4.63, we can treat cases in which |EY |l = 4, |YX |l = 4 or |YC |l = 2 as
if the respective substructure would fulfill the operator bound property. In all three
remaining cases, |YX |l = 3 and |EY |l is either 2 or 3. By Lemma 4.64, they fulfill the
operator bound property. For n = 11 the property of the split node requires |Y |l ≥ 6
and |YX |l, |YC |l ≤ 5 leading to the 8 cases shown in Table 4.28.

100

4.3 Restructuring

n = 11
|EY |l 5 4 4 4 4 3 3 2
|YX |l 4 5 4 3 2 4 3 4
|YC |l 2 2 3 4 5 4 5 5

Table 4.28: Possible distributions of n = 11 operands during make_DAM such that at least two of
the substructures do not fulfill the operator bound property.

As before, there is only one case that cannot be handled by Lemma 4.63, in which
|EY |l = |YX |l = 3. Again with Lemma 4.64, the operator bound property is fulfilled and
therefore the lemma is proven.

Combining our previous results, we can prove an upper bound on the number of
operators in a Divide-Structure created by compress.

Theorem 4.66. Let T be an operator tree with |T |l ≥ 3 and let T ′ be the operator dag
created from T by Brent Restructuring. Then |T ′|◦ ≤ 4|T |◦.

Proof. Let E be a Divide-Structure created by compress with |E|l ≥ 3 and let EX be a
DAM-Structure created by raise with |EX |l ≥ 5. We show that E and EX fulfill the
operator bound property (4.20). For 3 ≤ |E|l ≤ 8 and 5 ≤ |EX |l ≤ 11, this is shown by
the computationally derived results in Table 4.20 and by Lemma 4.65.
Let |EX |l ≥ 12 and let EX = raise(EY , Y,X). Then Y has at least six operands

and its children YX , YC have at most five operands. If EY , YX , YC all fulfill the operator
bound property, then the desired result follows from Lemma 4.59. If at most one of
them does not fulfill the property, then the result follows from Lemma 4.61. Otherwise,
if |EY |l ≤ 3, then |Y |l ≥ 9 and both |YX |l and |YC |l have at least 9 − 5 = 4 operands.
Additionally, if |YX |l ≤ 3, then |YC |l ≥ 3 and vice versa. Therefore, there is at most one
DAM-Structure with less than four, or one Divide-Structure with less than two operands
among EY , YX , YC and, with Lemma 4.63, EX fulfills the operator bound property.
Now let |E|l ≥ 9 and let E = compress(EX , X). Then X has at least five, and its

children X1, X2 have at most four operands. From |EX |l ≤ 3 it follows that X1, X2 have
at least 9− 3− 4 = 2 operands and from |X1|l = 1 it follows |X2|l ≥ 4 and vice versa.
Due to the Lemmata 4.59, 4.62 and 4.63, E fulfills the operator bound property.
Since |T |◦ = |T |l − 1 and T ′ is created from the result of compress(T) with at most

one division, it follows that

|T ′|◦ ≤ 4|T ′|l − 7 ≤ 4(|T |◦ + 1)− 7 ≤ 4|T |◦

With Theorem 4.58 we have found a lower bound for the degree of invasiveness of
Brent Restructuring and with Theorem 4.66 we have found a matching upper bound. In
summary:

Corollary 4.67. The degree of invasiveness of Brent Restructuring is 4.

101

4 Optimizing Expression DAGs for Large-Scale Computations

4.3.4 Restructuring with Weighted Operands
In the previous sections, we introduced algorithms that operate locally on tree structures.
In this section, we analyze the effect of a (local) restructuring algorithm on the overall
expression dag. Restructuring an expression dag consists of splitting the expression dag
into maximal subtrees and using the restructuring algorithms on these trees without
knowledge about the underlying dag structure. This strategy produces fairly good results,
especially if the number of subtrees is small compared to the total number of nodes in the
expression dag. For a domain D, we call a node in an expression dag blocking if it cannotblocking node
be incorporated into the operator tree of its parents with respect to D. Blocking nodes
are all nodes that have been evaluated before or have more than one parent, including
references that are external with respect to the current evaluation (cf. Section 4.3.1).
Furthermore, depending on the restructuring algorithm, all operator nodes that cannot
be used to extend a superior operator tree within the given domain are blocking nodes.
For Brent Restructuring all nodes containing a root operation are blocking nodes while
for (naive) AM-Balancing all nodes containing a subtraction, root or division are blocking
nodes as well as all addition or multiplication nodes for which their parent does not
contain the same operation. With the definition of blocking nodes, we can now specify
which operator trees inside an expression dag are eligible for restructuring.

Definition 4.68. For a domain D, we call an operator tree in an expression dag E
maximal in E if it does not contain blocking nodes, except for its root, and there is nomaximal
set of nodes in E that can be added to the operator tree without violating this property.

Note that with this definition we allow blocking nodes that cannot be part of any
operator tree in a given domain to form single-node maximal operator trees. We assume
that a restructuring algorithm on a single-node operator tree is always defined and returns
the node itself. The depth of an expression dag in which all maximal operator trees have
been restructured depends on the number of blocking nodes as well as on the maximum
indegree in the original graph.

Definition 4.69. Let E be an expression dag. The number of incoming edges for a node
v ∈ V0(E) is called the indegree of v.indegree

We denote the set of operands in an operator tree T as Vl(T). The indegree boundsVl(T)
the number of edges in an expression dag and therefore relates the number of operands
in an operator tree to the number of leaves of the associated expression dag.

Observation 4.70. Let E be an expression dag with n leaves and maximum indegree
µ. Then the maximum number of operands in an operator tree T in E is bounded as
|Vl(T)| ≤ nµ. Moreover, since the outgoing edges of two maximal operator trees in an
expression dag are always disjoint, the sum of the numbers of operands of all maximal
operator trees in E is bounded by nµ as well.

If a restructuring algorithm is locally optimal, i.e., leads to a logarithmic depth of the
operator tree, then the depth of a restructured expression dag can be bounded by the
number of its leaves, its maximum indegree and the number of blocking nodes.

102

4.3 Restructuring

Lemma 4.71. Let R be a restructuring algorithm such that depth(R(T)) = Θ(log(|T |l))
for each operator tree T in its domain. Let E be an expression dag with n leaves, k ≥ 1
blocking nodes and maximum indegree µ and let R(E) be the result of restructuring E
by applying R on each maximal operator tree in E. Then

depth(R(E)) = Θ
(
k log n

k
+ k logµ+ k

)

Proof. The root of every maximal operator tree in E is either the root of E or a blocking
node. Therefore, there are at most k + 1 maximal operator trees T0, ..., Tk in E. After
restructuring, for each 1 ≤ j ≤ k, the tree Tj has depth O(log |Tk|l). Since the logarithm
is concave, a convex combination for numbers a0, ..., ak ∈ N yields

k∑
i=0

log ai ≤ (k + 1) log
(∑k

i=0 ai
k + 1

)

Since furthermore the total number of operands in all operator trees is at most n+ µk
and since log(a+ b) ≤ log a+ log b+ 1 for a, b ≥ 1, we get

depth(R(E)) = O

(
k∑
i=0

log |Ti|l
)

= O

(
k log

(
n+ µk

k

))
= O

(
k log n

k
+ k logµ+ k

)
For the lower bound, we construct an expression dag E∗ by concatenating two expression
dags E1, E2 where depth(E1) = Ω(k log(n/k)) and depth(E2) = Ω(k log(µ)). Let Tm be
an operator tree with m operands. Then there is at least one operand xm in Tm, which
has a depth of at least dlog(m)e in R(Tm). For k1,m1 ≥ 1 let E1 be the expression
dag constructed from Tm1 by identifying xm1 with the root of a copy of Tm1 , marking
xm1 as blocking and repeating this step k1 − 1 times. Now for k2,m2 ≥ 1 let E2 be the
expression dag constructed from k2 copys of Tm2 by identifying all operands of one copy
with the root of the next copy and identifying all operands of the last copy with a single
leaf. In E2, the final leaf and all root nodes, except for the first one, are blocking and
each of these nodes has indegree m2.
Finally, let E∗ be the expression dag constructed by identifying the node in E1 that

has the largest depth in R(E1) with the root of E2. Then E∗ has n = (k1 + 1)(m1−1) + 1
operands, k = k1 + k2 blocking nodes and maximum indegree µ = m2. Let k1 = k2, then
the depth of E∗ is given as

depth(E∗) ≥ (k1 + 1)dlog(m1)e+ k2dlog(m2)e+ k1 + k2 − 1 = Ω
(
k log n

k
+ k logµ

)
Note that the connections between the trees count toward the depth. Since m1,m2, k1, k2
can be chosen arbitrarily, this proves the lower bound.

This bound can be improved by associating weights with each operand of an operator
tree, reflecting the size of the subexpression at the respective operand.

103

4 Optimizing Expression DAGs for Large-Scale Computations

Definition 4.72. Let X be an operator dag with |X|l = k and let W ∈ Rk be a k-tuple
of weights greater or equal to one. Then the tuple (X,W) is called a weighted operator
dag or, if X is a tree, a weighted operator tree. Let D be a set of operator dags. Aweighted op. tree
function R, mapping each weighted operator dag (X,W) with X ∈ D to an operator dag
R(X) is called a weighted restructuring algorithm with domain D if for all expressionweighted rest. alg.
dags E1, ..., Ek it follows that

value(R(X)(E1, ..., Ek)) = value(X(E1, ..., Ek))

While a weighted restructuring algorithm has more information on its operands, it still
operates exclusively on an operator tree. Therefore, the notion of depth introduced in
Definition 4.19 (page 55) does not adequately reflect the quality of a weighted restructuring
algorithm. Consequently, we introduce a weighted depth for a weighted operator tree.

Definition 4.73. Let (T̂ ,W) be a weighted operator tree with W = (W1, ...,Wk). For
the j-th operand xj of T̂ we call w(xj) = Wj the weight of xj and for a subtree T in T̂w(xj)
we call

w(T)w(T) =
∑

x∈Vl(T)
w(x)

the weight of T . For a constant t ∈ N we call

deptht
w (T)deptht

w (T) = max
x∈Vl(T)

(distT (x) + tdlog(w(x))e)

the t-weighted depth of T .t-weighted depth

With this definition, we can equivalently represent a weighted operator tree (T,W)
by (T,w). If the weight adequately measures the size of an operand, the t-weighted
depth roughly represents the expected depth of the underlying expression dag if all of
its maximal operator trees are restructured by the same algorithm. Consequently, a
weighted restructuring algorithm should aim to create an operator dag such that the
t-weighted depth of an the operator tree is minimized. With this intuition, we define
what we consider an optimal restructuring strategy.

Definition 4.74. Let R be a weighted restructuring algorithm. If there is a constant t
such that for each weighted operator tree (T,w) we have

deptht
w (R(T)) ≤ t(dlog(w(T))e+ 1) (4.23)

then R is called optimal.optimal

Both AM-Balancing and Brent Restructuring can be easily adjusted to produce an
optimal weighted restructuring algorithm. In the case of AM-Balancing, fusing the
subtrees in ascending order according to their summed-up weight is sufficient to fulfill
the condition in (4.23). This can be achieved by replacing the array X in Algorithm 5
(page 76) by a priority queue and repeatedly using make_node on the two smallest
elements in X. Algorithm 9 shows the result of these changes.

104

4.3 Restructuring

Algorithm 9: Weighted AM-Balancing.
Precondition: T contains only nodes with operator ◦ ∈ {+, ·}

1 Function AM_Balance(T ,w):
2 X ← priority queue
3 for x ∈ Vl(T) do
4 X.insert(x,w(x))
5 end
6 while |X| ≥ 2 do
7 (x1, w1) = X.pop(); (x2, w2) = X.pop();
8 X.insert(make_node(x1,x2,◦), w1 + w2);
9 end

10 return X.top();

Lemma 4.75. Weighted AM-Balancing is an optimal weighted restructuring algorithm.

Proof. Let (T,w) be a weighted operator tree and let T ′ be the operator tree resulting
from restructuring. We show by induction that depth1

w (T ′) ≤ dlog(w(T))e+ 1. If T is a
single operand, w(T) ≥ 1 and depth1

w (T ′) = dlog(w(T))e. If T has two or more operands,
then T ′ is of the form X1 ◦X2 with ◦ ∈ {+, ·}. Due to the construction, w(X1) ≤ w(X2)
andX2 is either a single operand or an expression of the formX3◦X4 with w(X3) ≤ w(X1)
and w(X4) ≤ w(X1). If X2 is a single operand, then the 1-weighted depth of X2 is at
most dlog(w(T))e. Otherwise, the weight of each of the three subexpressions X1, X3 and
X4 is at most half of w(T ′) = w(T). By induction, we get

depth1
w
(
T ′
) ≤ max

(
dlog(w(T))e+ 1,

⌈
log

(
w(T)

2

)⌉
+ 2

)
= dlog (w(T))e+ 1

For Brent Restructuring, the split conditions must be adjusted to refer to the total
weight of the subtree instead of the number of operands. Replacing |Z|l by w(Z) for
each expression Z in Algorithm 6 and Algorithm 7 (page 83) leads to the desired result.

Lemma 4.76. Weighted Brent Restructuring is an optimal weighted restructuring
algorithm.

Proof. The proof is a combination of the proofs for Theorem 4.51 and Lemma 4.75. We
give an overview on the main substeps of the proof. We show that for each Divide- or
DAM-Structure E created during restructuring, the 5-weighted depth of the components
of E is at most 5dlog(w(E))e+ 4.

If there is only one operand, the 5-weighted depth of the components of E is at most
5dlog(w(E))e. For the induction step, let EX , X1, X2 be the three resulting structures at
the split node of compress or raise such that w(X1) ≥ w(X2). All components of E
have a depth of at most 4 in the components of the substructures (cf. Table 4.12 and
Table 4.13, page 84 f.). If X1 is not a single operand, all three structures have at most

105

4 Optimizing Expression DAGs for Large-Scale Computations

half the weight of E and, by induction, the weighted depth of the resulting components
is at most

5
⌈
log

(
w(E)

2

)⌉
+ 4 + 4 = 5 dlog (w(E))e+ 3

Otherwise, EX and X2 have at most half the weight of E and the weighted depth of the
resulting components is at most

max
(

5 dlog (w(E))e , 5
⌈
log

(
w(E)

2

)⌉
+ 4

)
+ 4 = 5 dlog (w(E))e+ 4

It follows that depth5
w (E) ≤ 5dlog(w(E))e+5 and therefore weighted Brent Restructuring

is optimal.

Note that both Weighted AM-Balancing and Weighted Brent Restructuring reduce to
their local variants if all operands have the same weight. Therefore, we also call the local
variants the unit weight restructuring algorithms. Now, let E be an expression dag andunit weight
let T be an operator tree in E. A natural choice for the weight of an operand x ∈ Vl(T)
is the number of leaves in the subexpression of E rooted at x.

Definition 4.77. Let E be an expression dag and let Ev be the subexpression rooted at
v ∈ V0(E). Then the leaf weight w of v is the number of leaves in the subexpression ofleaf weight
v, that is, w(v) = |V0(Ev)| − |V(Ev)|.

For an expression dag E, let TE be the maximal operator tree in E containing the root
of E. Note that if E has n leaves and maximum indegree µ, then the leaf weight of TE
is bounded by µ · n (cf. Observation 4.70). With this property, we can now show that,
if the maximum indegree of the nodes in an expression dag is bounded by a constant,
an optimal restructuring algorithm paired with the leaf weight leads to an asymptotic
improvement compared to the unit weight (cf. Lemma 4.71).

Theorem 4.78. Let R be an optimal weighted restructuring algorithm. Let E be an
expression dag with n leaves, k ≥ 0 blocking nodes and with maximum indegree µ and
let R(E) be the result of restructuring E by applying R on each maximal operator tree
T in R, where the operands of T are weighted with the leaf weight in E. Then

depth(R(E)) = Θ (k + logn+ k logµ)

Proof. Since R is optimal, there is a constant t, such that for each operator tree T

deptht
w (R(T)) ≤ t(dlog(w(T))e+ 1)

Let TE denote the maximal operator tree in E containing the root of E. We show by
induction that

depth(R(E)) ≤ t(dlog(w(TE))e+ (k + 1)(dlogµe+ 1))

106

4.3 Restructuring

If k = 0, then E is a tree and all operands have weight 1. Therefore,

depth(R(E)) = deptht
w (R(TE)) ≤ t(dlog(w(TE))e+ 1)

Let k ≥ 1. For a node x let Ex denote the expression rooted at x and let kx denote the
number of blocking nodes in Ex. Since the leaf weight of TEx is bounded by µ · w(x), we
get by induction:

depth(R(E)) = max
x∈Vl(TE)

(distR(E)(x) + depth(Ex))

≤ max
x∈Vl(TE)

(distR(E)(x) + t(dlog(w(TEx))e+ (kx + 1)(dlogµe+ 1)))

≤ max
x∈Vl(TE)

(distR(E)(x) + t(dlog(µ · w(x))e+ k(dlogµe+ 1)))

≤ max
x∈Vl(TE)

(distR(E)(x) + tdlog(w(x))e) + t(dlogµe+ k(dlogµe+ 1))

= deptht
w (R(TE)) + t(dlogµe+ k(dlogµe+ 1))

Since R is optimal, we have deptht
w (R(TE)) ≤ t(dlog(w(TE))e+ 1) and therefore

depth(R(E)) ≤ t(dlog(w(TE))e+ 1) + t(dlogµe+ k(dlogµe+ 1))

≤ t(dlog(w(TE))e+ (k + 1)(dlogµe+ 1))

The leaf weight of TE can be bounded as w(TE) ≤ µ · n. Consequently,

depth(R(E)) = O (k(logµ+ 1) + logn)

For the lower bound let Tm be an operator tree with m operands for each m ∈ N. For
k,m1,m2 ≥ 1 let E∗ be the expression dag created by identifying all operands of Tm1

with the root of a copy of Tm1 , repeating this step k − 2 times and finally identifying all
operands of the last added copy of Tm1 with the root of Tm2 . Then each root node in E∗,
except for the topmost one, is blocking and in each maximal operator tree all operands
have the same weight. The expression dag E∗ has n = m2 operands, k blocking nodes,
maximum indegree µ = m1, and after restructuring we get

depth(R(E∗)) ≥ kdlogµe+ k − 1 + dlogne = Ω (k + logn+ k logµ)

Again, note that each of the k− 1 connections between the trees counts toward the depth.
By that, the theorem is proven.

With Theorem 4.78 we have shown how the depth of an expression dag can effectively
be reduced if blocking nodes are present. Unfortunately, the leaf weight of a node is
closely related to the operator weight introduced in Section 4.2.3 on page 70.

Lemma 4.79. Let A be an algorithm that finds the leaf weight for each node of a binary
expression dag E of size n in polynomial time T (n). Then the operator weight for each
node of E can be found in time O(n+ T (n)).

107

4 Optimizing Expression DAGs for Large-Scale Computations

Proof. Let u1, ..., um be the operator nodes of E. We construct an expression dag E′
containing operator nodes v1, ..., vm such that the operator weight of ui in E is equal to
the leaf weight of vi in E′. An exemplary construction is shown in Figure 4.29. First, we
create nodes x1, ..., xm, that act as the leaves of E′. Then, for all 1 ≤ i ≤ m let vi be

1. a unary node leading to xi, if ui does not have children in V(E).

2. a binary node leading to xi and vj , if ui has one child uj ∈ V(E).

3. a binary node leading to xi and v′i, where v′i is a binary node leading to vj and vk,
if ui has two children uj , uk ∈ V(E).

Finally, we build a binary tree over all nodes vi. Creating E′ takes linear time. The
resulting graph has at most 3m operator nodes and m leaves. Since the leaf xi is
contained in the subexpression rooted at vj in E′ if and only if ui is an operator node
in the subexpression rooted at uj in E, the operator weight of each node in E can be
computed in time O(n + T (4n)). Since T is a polynomial, T (3n) = O(T (n)) and the
lemma is proven.

xi vi v′i

E E ′

Figure 4.29: Example for the expression dag E′ as created in the proof of Lemma 4.79 without
the binary tree structure connecting the nodes vi.

Since the operator weight presumably cannot be computed in subquadratic time, we
can expect the computation of the leaf weight to be slow as well. As in Section 4.2.3,
instead of computing the leaf weights directly, we can compute the leaf weights of the
tree expansion of the expression dag.

Definition 4.80. Let E be an expression dag. For a node v ∈ V0(E) let w(v) = 1 if v is
a leaf and w(v) = ∑

(v,v′)∈E0(E)w(v′) otherwise. Then we call w the tree leaf weight of v.tree leaf weight

If clear from the context, the tree leaf weight is shortly called the tree weight. Note that
the tree weight does not fulfill the bounding property of the leaf weight. In particular, it
may exponentially overestimate the actual number of leaves in the expression dag. This
makes it hard to store the tree weight in a primitive number type and may, in some

108

4.4 Experiments

pathological cases, lead to adverse behavior. Nevertheless, for a moderate amount of
blocking nodes using the information provided by the tree weight may prove beneficial
compared to purely local restructuring methods.

4.4 Experiments

In the previous sections, we introduced two conceptually different approaches to reduce the
running time for the evaluation of expression-dag-based number types. Both approaches
lead to asymptotic improvements. We can therefore expect large expression dags to
benefit from the application of these methods to a greater extent than small expression
dags. In this section, we experimentally evaluate error bound balancing and restructuring
for expression dags with different structures and of different sizes and thereby compare
the advantages and disadvantages of both methods.

4.4.1 Experimental Setup

All experiments in this work are performed on an Intel i7-4700MQ with 16GB RAM
under Ubuntu 18.04, using g++ 7.4.0 with flags O3 and frounding_math, boost 1.62.0
and MPFR 4.0.1. We use Real_algebraic with the configurable node type introduced in
Chapter 3 as a representative example for graph-based exact-decisions number types.
While there are differences between the existing number type implementations, the general
behavior is similar and we expect the results from this section to be largely transferable
to other number types. A comparison between Real_algebraic and other exact number
types can be found in the dissertation of Marc Mörig [Mör15a].

The configuration of Real_algebraic we use as a reference is depicted in Figure 4.30.
We use the interval arithmetic from boost as a floating-point filter and the bigfloat number
type mpfr_t for the bigfloat approximations during the accuracy-driven evaluation. As
separation bound we choose the bound by Burnikel et al. with the improvements by
Pion and Yap (cf. Table 2.7 in Section 2.2.5). Experiments with the degree-measure
bound variants of Li and Yap or with simultaneous use of all these bounds have not lead
to any improvement on the presented running times. In fact, measure-based bounds
sometimes cause underflows in the primitives used for the representation. Therefore,
the mixed strategy requires special precautions to ensure correctness, which are avoided
when the BFMSS[2] bound is used individually. For our experiments we always use
the topological evaluation strategy to make the results more comparable and avoid
uncontrollable side effects [MS15; Wil17]. For the same reason we use a cached separation
bound computation strategy (cf. Section 3.2.3). Instead of the default error representation
policy of Real_algebraic, we employ a logarithmic error representation for each stage
of the evaluation. Since an error representation by a floating-point exponent is used
for error bound balancing, this choice makes the results more consistent. We call the
resulting configuration the default configuration of Real_algebraic and denote it by def. default config.
Further configurations in this work are defined with respect to the default configuration
by highlighting the policies that differ.

109

4 Optimizing Expression DAGs for Large-Scale Computations

Default Configuration (def)

LocalPolicy: No_local_data
FilterPolicy: Boost_interval_filter_policy
ApproximationPolicy: Mpfr_approximation_policy
SeparationBound: Bfmss2_separation_bound
ExpressionDagPolicy: Configurable_expression_dags
RestructuringPolicy: No_restructuring
EvaluationPolicy: Topological_evaluation
OperationComputationPolicy: Default_operation_computation
ReferenceCounterPolicy: Default_reference_counter
SeparationBoundEvaluationPolicy: Faithful_fully_cached_evaluation
ErrorRepresentationPolicy: Error_representation_by_exponent

Figure 4.30: The default configuration for the experiments.

All data points presented in the experimental data are obtained as the average over
twenty runs on different expression dags if not specified otherwise. Line charts are
generated with around 50 equidistant data points where every tenth data point is marked
on the line. Bar charts are generated by eight equidistant data points. Most of the shown
data sets start at x = 1000 and end at the indicated maximum value. If the range of the
results for one data point is not mentioned explicitly, it can be considered small (less
than about 5% of the size of the result).

4.4.2 Fixed-Accuracy Computation
The purpose of exact-decisions number types like Real_algebraic is to compute a
verified approximation interval for the value of an expression that is small enough to
decide whether or not it is zero. Consequently, they are able to compute the value of
a given expression up to an arbitrarily chosen accuracy. In contrast to an exact sign
computation, a fixed-accuracy computation produces well-behaved examples, which are
more suitable to observe general tendencies in an experimental context. In this section,
we analyze error bound balancing and restructuring strategies for evaluations up to a
fixed accuracy using partly or fully randomly generated expression dags.

Fixed-Accuracy Setup

Dividing two arbitrary floating-point numbers usually results in a number that is not
representable by a single bigfloat. If rationals are used as operands for the expression dag,
side effects caused by bigfloat conversions of exact intermediate results can largely be
avoided. For this reason, the experimental results presented in this section are exclusively
based on expression dags over random non-zero rationals. Each of these operands is
represented as an expression dag itself, consisting of one division node and two floating-
point numbers. To prevent the operands from being changed during restructuring, each
division node is provided with an additional parent node, which is external with respect

110

4.4 Experiments

to the evaluated part of the expression dag. The underlying floating-point numbers are
generated using an exponential distribution around λ = 1. With this distribution, the
expected value after applying a series of multiplications and divisions is 1 and therefore
we can expect the magnitude of the result to stay roughly the same.

The operators used during the experiments are usually chosen randomly and with equal
probability from additions, multiplications and divisions. We do not use subtractions,
negations or root operations. Subtractions behave similar to additions in each aspect
that is relevant to our scenarios and negations do not have any relevant effect on the
performance or on the used methods at all. Both operations, however, may cause zeros
and therefore errors caused by a division by zero. Root operations cause the separation
bound to shrink very quickly and to potentially underflow. While we do not explicitly
use exact computation in this section, the denominators of divisions must be guaranteed
to be unequal to zero. This mechanism could be deactivated for our purposes. However,
incorporating root operations does not add much explanatory power to the experiments.
For error bound balancing methods, the influence of a node containing a root operation
is comparable to the influence of other operator nodes, while for restructuring methods
the function as blocking node can be simulated by adding an additional reference to a
node of any other type.

Error Bound Balancing

Consider a list-like expression dag Elist with randomly chosen additions, multiplications
and divisions (cf. Figure 4.4, page 56). Error bound balancing significantly reduces
the absolute cost induced by its unfavorable structure. We compare the standard error
distribution with the path weight error distribution (pwebb) and the error distribution
resulting from the generic error distribution in (4.15) using the tree weight (twebb).
Figure 4.31 shows the configurations associated with these two error bound balancing
strategies by highlighting their respective differences to the default configuration.

pwebb : def

ErrorDistributionPolicy:
Path_weight_distribution

ErrorRepresentationPolicy:
Balanced_error_representation

twebb : def

ErrorDistributionPolicy:
Tree_weight_distribution

ErrorRepresentationPolicy:
Balanced_error_representation

Figure 4.31: Configurations for number types with error bound balancing, either with the path
weight error distribution (pwebb) or with the error distribution based on the tree weight (twebb).

Figure 4.32 shows the average time needed for the evaluation of a list-like expression dag
to accuracy z = −1000 depending on the number of operator nodes. The evaluation time
with the standard error distribution shows a distinct quadratic growth, while both error
bound balancing strategies display an almost linear behavior. The tree weight method is
about 1–3 % faster than the path weight method, presumably due to a reduced overhead.
However, compared to the total cost reduction, this difference is barely noticeable. For

111

4 Optimizing Expression DAGs for Large-Scale Computations

0 10,000 20,000 30,000 40,000 50,000
0

5

10

Number of operator nodes

T
im

e
(s

ec
on

ds
)

def
pwebb
twebb

Figure 4.32: Running times of error bound balancing methods for the evaluation of a list-like
expression dag with random operators to a target accuracy of z = −1000. Both error bound
balancing methods lead to a significant decrease in evaluation time.

0 10,000 20,000 30,000 40,000 50,000
0

10

20

30

Number of operator nodes

T
im

e
(s

ec
on

ds
)

def
pwebb
twebb

Figure 4.33: Running times of error bound balancing strategies for the evaluation of a random
list-like expression dag with random operators and target accuracy z = −100000. Error bound
balancing achieves a considerable reduction in evaluation time, although relatively less than for a
lower target accuracy. No significant differences between the two error bound balancing strategies
are present in the data.

small numbers of operator nodes (up to around n = 1000), the evaluation times for all
distributions are similar. The cost induced by the target accuracy at the root node is not
affected by the choice of the error distribution (cf. Corollary 4.34, page 66). Therefore,
the relative performance gain due to error bound balancing diminishes if the target
accuracy is high compared to the number of operator nodes. Figure 4.33 shows the
evaluation times of the same experiment as before with a 100 times higher target accuracy.
While the general behavior is still similar, the relative gain is reduced from over 80 %
to around 40 % for 50000 operator nodes. If the list-like expression dag is replaced by a
balanced expression dag, the standard error distribution already leads to near-optimal

112

4.4 Experiments

0 10,000 20,000 30,000 40,000 50,000
0

0.1

0.2

Number of operator nodes

T
im

e
(s

ec
on

ds
)

def
pwebb
twebb

Figure 4.34: Running times of error bound balancing strategies for the evaluation of a balanced
expression tree with random operators with target accuracy z = −1000. Both error bound
balancing method increase the running time due to the induced overhead.

0 10,000 20,000 30,000 40,000 50,000
0

0.1

0.2

0.3

Number of operator nodes

T
im

e
(s

ec
on

ds
)

def
pwebb
twebb

Figure 4.35: Running times for evaluating Elps to accuracy z = −1000 with different error bound
balancing strategies. The error distribution based on the tree weight behaves identically to the
standard error distribution. The path weight error bound balancing reduces the running time by
up to 30 % for large numbers of operator nodes.

cost. In this case, the computation of a balanced error distribution does not have much
impact, but adds an overhead to the computation. If the target accuracy is small, the
overhead becomes significant relative to the total cost of the evaluation. In Figure 4.34,
the evaluation times of balanced expression dags for a target accuracy of z = −1000 are
shown. The standard error distribution is preferable in this case. Computing the tree
weight adds an overhead of around 30 % to the computation. The computation of the
path weight error distribution is more expensive than the heuristic approach, producing
an overhead of up to 40 % for the displayed values.
The main difference between the path weight and the tree weight heuristic becomes

evident if the expression dag contains common subexpressions. Let Elps be an expression

113

4 Optimizing Expression DAGs for Large-Scale Computations

dag consisting of one single operand and n additions, such that both summands of the
k-th addition refer to the node containing the (k−1)-th addition (cf. Figure 4.10, page 74).
When evaluating Elps, we observe that the error distribution based on the tree weight
heuristic leads to similar running times as the standard error distribution, whereas the
path weight distribution can significantly reduce the running time (Figure 4.35). The tree
weight virtually expands the expression dag into a tree before counting the operator nodes.
Thereby, it exponentially overestimates the impact on the total evaluation cost of nodes
the closer they are to the root. Randomly created expression dags tend to be almost
balanced. Experiments on random expression trees without common subexpressions
therefore reproduce the results from Figure 4.34. If common subexpressions are introduced
into the randomly generated graphs, the balanced error distributions start to slightly
outperform the standard error distribution. With similar conditions as in the previous
experiments, error bound balancing reduces the running time by about 5 %. Surprisingly,
due to the balanced nature of randomly generated dags, even for a very high rate of
common subexpressions the tree weight leads to similar results as the path weight.

Local Restructuring

We compare the default configuration of Real_algebraic with configurations supporting
AM-Balancing and Brent Restructuring with unit weights as shown in Figure 4.36.
Similar to error bound balancing, the impact of restructuring is higher if the size of

amb : def

BalancingCondition:
Balance_addition_and_multiplication

RestructuringPolicy:
Balance_same_operation

uwbre : def

BrentSplitCondition:
Split_unit_weight

RestructuringPolicy:
Brent_restructuring

Figure 4.36: Configurations for the default number type with additional restructuring methods,
implementing either AM-Balancing (amb) or (unit weight) Brent Restructuring (uwbre).

the expression dag increases. Furthermore, the cost induced by the target accuracy is
usually not positively affected by restructuring and therefore the improvement might
be overshadowed if a high overall accuracy is required. In contrast to error bound
balancing, each node in an expression dag can at most once be part of a restructuring
process. Repeated accuracy requests on the same expression dag, as performed during
the cascaded filtering process in exact-decisions number types, reduce the relative impact
of the overhead caused by restructuring.

AM-Balancing can only be useful if there are large subtrees in the expression dag that
consist exclusively of additions or exclusively of multiplications. If large parts of the
expression dag have this property, we can expect it to produce a near-optimal result.
Figure 4.37 shows the evaluation time of list-like expression dags consisting exclusively
of multiplications. Both AM-Balancing and Brent Restructuring significantly improve
on the evaluation time of the default configuration. Although not visible in the data,

114

4.4 Experiments

0 10,000 20,000 30,000 40,000 50,000
0

5

10

Number of operator nodes

T
im

e
(s

ec
on

ds
)

def
amb

uwbre

Figure 4.37: Running times with AM-Balancing and Brent Restructuring for the evaluation to
accuracy z = −1000 of a list-like expression dag consisting exclusively of multiplications. Both
restructuring strategies reduce the running times by up to 98 %.

0 10,000 20,000 30,000 40,000 50,000
0

5

10

Number of operator nodes

T
im

e
(s

ec
on

ds
)

def
amb

uwbre

Figure 4.38: Running times with AM-Balancing and Brent Restructuring for the evaluation to
accuracy z = −1000 of a list-like expression dag with random operators. Brent Restructuring
strongly reduces the running time for large numbers of operator nodes. AM-Balancing has a
small positive effect for large numbers of operator nodes, resulting in a maximum improvement of
about 7 %. For 1000 operator nodes, Brent Restructuring does not improve, and AM-Balancing
slightly worsens the running time due to the additional overhead.

the restructuring time for AM-Balancing is significantly lower (by about 50 %) than the
restructuring time for Brent Restructuring. As soon as long sequences of nodes with the
same operator are interrupted by nodes with other operators, AM-Balancing is rendered
nearly useless. When the operators are chosen randomly from additions, multiplications
and divisions, only Brent Restructuring still leads to a significant improvement as shown
in Figure 4.38. Due to the more complicated structure, Brent Restructuring adds several
additional operator nodes to the expression dag. The total number of operator nodes
after restructuring is usually more than twice as high as in the original graph. Compared
to the previous scenario, the running time is almost doubled, reducing the gain for a large

115

4 Optimizing Expression DAGs for Large-Scale Computations

0 10,000 20,000 30,000 40,000 50,000
0

0.1

0.2

Number of operator nodes

T
im

e
(s

ec
on

ds
)

def
amb

uwbre

Figure 4.39: Running times with AM-Balancing and Brent Restructuring for the evaluation to
accuracy z = −1000 of a balanced expression dag with random operators. Both restructuring
strategies increase the running time. For large numbers of operator nodes, the running time is
increased by about 13 % for AM-Balancing and 25 % for Brent Restructuring.

0 10,000 20,000 30,000 40,000 50,000
0

0.5

1

1.5

Target accuracy (size)

T
im

e
(s

ec
on

ds
)

def
uwbre

Figure 4.40: Running times with Brent Restructuring for the evaluation of a list-like expression dag
with 10000 operator nodes, random operators and different target accuracies. Brent Restructuring
performs worse if the minimum cost per node is increased. While for low target accuracy Brent
Restructuring reduces the running time by over 80 %, the running time is increased by 10 % for
z = −50000.

number of operator nodes from over 98 % to about 97 %. At the same time, for small
numbers of operands the running time is slightly worsened by Brent Restructuring.

If the expression dag is already balanced, neither of the restructuring methods improves
on the evaluation time. Figure 4.39 shows the evaluation times for balanced expression
dags with uniformly distributed additions, multiplications and divisions. By balancing
subtrees of additions or multiplications while ignoring the size of their operands, AM-
Balancing can slightly worsen the depth of the overall expression. Brent Restructuring
leads to a significant increase in evaluation time by creating DAM-Structures and thereby

116

4.4 Experiments

increasing the number of operator nodes by about 20 %. Unnecessary restructuring of
already balanced parts of the expression dag can be easily avoided with the introduction
of a restructuring threshold, which prevents subtrees to be restructured if the depth of
the expression dag is already almost logarithmic in its size. Unfortunately, due to the
increase in the number of operator nodes, Brent Restructuring can lead to a significantly
worse result than the default configuration even if restructuring is useful in general. A
larger initial requested accuracy results in an increase in the fixed cost of the evaluation
of an operator node. If the target accuracy for the evaluation is high compared to
the number of operator nodes, applying Brent Restructuring can be detrimental to the
running time. In Figure 4.40, the evaluation time of a list-like expression dag with 10000
random operator nodes is shown for different target accuracies. The increase in evaluation
time is roughly linear in both cases with the slope for restructuring being about 1.25
times the slope for the default configuration. Note that this difference is remarkably
low, considering that Brent Restructuring leads to twice the number of operator nodes.
During restructuring, expensive divisions are replaced by less expensive multiplications,
reducing the evaluation cost of these operations (cf. Section 2.1.2).

0 10,000 20,000 30,000 40,000 50,000
0

0.2

0.4

0.6

Number of additions (k)

T
im

e
(s

ec
on

ds
)

amb
uwbre

Figure 4.41: Running times for the evaluation of Ek
div to accuracy z = −1000 with AM-Balancing

and Brent Restructuring. AM-Balancing is almost twice as fast as Brent Restructuring since
Brent Restructuring incorporates the division nodes into the restructuring process and thereby
creates a large amount of additional operator nodes.

In Lemma 4.52 in Section 4.3.3 (page 86), it was made evident that in some cases Brent
Restructuring may lead to significantly worse results than AM-Balancing, regardless of
the target accuracy. Figure 4.41 shows the results for the evaluation of an expression
dag Ekdiv, which consists of a linear list of additions over k divisions of two operands. In
consistence with Lemma 4.52, Brent Restructuring creates 2.5 as many operator nodes
as AM-Balancing. The relative difference in the evaluation time between both methods
grows as the number of operands gets bigger. For a small requested accuracy and a small
number of operands, the additional evaluation cost caused by the additional operator
nodes is overshadowed by the maintenance cost of the data structure. With either of the
two factors increasing, the evaluation time with Brent Restructuring eventually settles at
twice the time of the evaluation with AM-Balancing.

117

4 Optimizing Expression DAGs for Large-Scale Computations

Weighted Restructuring

Weighted restructuring methods as introduced in Section 4.3.4 can in theory produce a
better structure than restructuring methods with only local information. We compare
Brent Restructuring with unit weights with Weighted Brent Restructuring methods using
the leaf weight and the tree (leaf) weight (Figure 4.42). The consequences of switching to
a weighted adaptation for AM-Balancing can be expected to be similar to the respective
consequences for Brent Restructuring.

lwbre : def

BrentSplitCondition:
Split_leaf_weight

RestructuringPolicy:
Brent_restructuring

twbre : def

BrentSplitCondition:
Split_tree_weight

RestructuringPolicy:
Brent_restructuring

Figure 4.42: Configurations for the default number type with weighted restructuring methods,
implementing Weighted Brent Restructuring with the leaf weight (lwbre) and the tree (operand)
weight (twbre).

0 10,000 20,000 30,000 40,000 50,000
0

10

20

30

Number of operator nodes

T
im

e
(s

ec
on

ds
)

def
uwbre
lwbre
twbre

Figure 4.43: Running times for different Weighted Brent Restructuring implementations for the
evaluation of a list-like expression dag with random operators and 5 % blocking nodes to target
accuracy z = −1000. The computation of the leaf weight strongly increases the running time.
Both the unit weight approach and the tree weight approach reduce the running time. For large
numbers of operator nodes, the configuration based on the tree weight needs less than half the
time of the configuration based on the unit weight.

Blocking nodes in an expression dag can be simulated by adding an additional external
reference to the respective node just as we do for the division nodes in the operands.
Figure 4.43 shows the results of an evaluation of list-like expression dags with uniformly
distributed operations and with 5 % of the operator nodes randomly marked as blocking
nodes. Computing the leaf weight in a naive way by a depth-first traversion of each
subexpression at a blocking node turns out to be far from a feasible solution. Even for a

118

4.4 Experiments

small number of blocking nodes, the time needed for the weight computation exceeds
the gain from switching to a weighted method. For large numbers of operands, even the
gain from restructuring in general is negated. The tree weight heuristic on the other
hand can improve on the unit weight method. Without common subexpressions, the tree
weight is identical to the leaf weight and its size is bounded by the size of the expression
dag. Therefore approximate computations are not necessary. With increasing numbers
of operands, the weighted restructuring method based on the tree weight reduces the
running time by more than 50 % compared to the unit weight approach. Nevertheless,
the running time for twbre is still 20 times as high as the running time for uwbre in the
case where no blocking nodes are present (cf. Figure 4.38).

0 10,000 20,000 30,000 40,000 50,000
0

2

4

6

8

Number of operator nodes

T
im

e
(s

ec
on

ds
)

def
uwbre
twbre

Figure 4.44: Running times for Weighted Brent Restructuring implementations for the evaluation
of a list-like expression dag with random operators and 10 % loops to target accuracy z = −1000.
Both the unit weight and the tree weight approach reduce the running time considerably. The
configuration with the tree weight is up to 35 % faster than the configuration with the unit weight.

For a small number of common subexpressions, the tree weight heuristic still performs
reasonably well. In Figure 4.44, evaluation times are shown for a list-like graph where
10 % of the nodes are loops, i.e., have both children point to the same subexpression. The
standard operators are distributed uniformly along the graph with the exception of the
loop nodes, which are exclusively additions to prevent the expression from degenerating
as well as to avoid an exponential increase or decrease in the size of the approximations.
Using the tree weight is beneficial in this case compared to the unit weight. While
overall far too slow and therefore left out from the figure, the leaf weight leads to a more
balanced structure than the tree weight and improves the bigfloat evaluation time by an
additional 5–10 %.

Internal Versus External Balancing

We briefly compare error bound balancing to restructuring methods in their effectiveness
of dealing with bad structure. Error bound balancing can be understood as “internal”
with respect to the evaluation process, whereas restructuring methods are “external” in
this regard. In consequence, error bound balancing can improve even on very complicated

119

4 Optimizing Expression DAGs for Large-Scale Computations

or already evaluated structures. Restructuring, on the other hand, is able to improve the
structure on a more fundamental level and therefore may lead to larger performance gains.

cmb : def

ErrorDistributionPolicy:
Path_weight_distribution

ErrorRepresentationPolicy:
Balanced_error_representation

BrentSplitCondition:
Split_unit_weight

RestructuringPolicy:
Brent_restructuring

Figure 4.45: Configuration for a number type
implementing both path weight error bound
balancing and unit weight Brent Restructuring.

In a list-like expression dag with random op-
erators, both methods significantly improve
on the default configuration (cf. Figure 4.32
and Figure 4.38). In Figure 4.46, a compari-
son is depicted between the evaluation times
for a configuration using the path weight
error distribution and a configuration us-
ing Brent Restructuring with unit weights.
While error bound balancing leads to an op-
timal distribution of the variable cost, re-
structuring balances the cost increase due
to the operator constants as well and there-
fore leads to a better evaluation time. Using
a combined configuration cmb that utilizes
both error bound balancing and restructur-
ing as shown in Figure 4.45 does not improve further on the evaluation time obtained
by restructuring. Since restructuring already leads to a largely balanced expression dag,
error bound balancing is mostly useless, but adds additional overhead (cf. Figure 4.34).
If, however, blocking nodes are present, the relation between error bound balancing and
restructuring is reversed. Figure 4.47 shows the results for the evaluation of a list-like
expression dag with 10 % loops as previously used for the comparison of restructuring
methods (cf. Figure 4.44). Error bound balancing is not affected by the additional

0 10,000 20,000 30,000 40,000 50,000
0

0.5

1

1.5

Number of operator nodes

T
im

e
(s

ec
on

ds
)

pwebb
uwbre
cmb

Figure 4.46: A comparison between the running times of error bound balancing and Brent
Restructuring on list-like expression dags with random operators and target accuracy z = −1000.
Brent Restructuring is up to 85 % faster than error bound balancing due to the fixed cost increase.
Combining both strategies does not improve on the running time of Brent Restructuring, but
performs worse. For large numbers of operands, the combined strategy is about 30 % slower than
pure restructuring.

120

4.4 Experiments

blocking nodes. Restructuring methods, on the other hand, are less effective in creating
a balanced graph structure. Combining both methods leads to a significant improvement
compared to the individual application of either strategy. While restructuring reduces
the impact of operator constants in the maximal subtrees, error bound balancing reduces
the overall variable cost to a minimum. Through the use of weighted restructuring, the
evaluation time can be further reduced.

0 10,000 20,000 30,000 40,000 50,000
0

1

2

3

Number of operator nodes

T
im

e
(s

ec
on

ds
)

pwebb
uwbre
cmb

Figure 4.47: A comparison between the running times of error bound balancing and Brent
Restructuring on list-like expression dags with random operators, 10 % loops and target accuracy
z = −1000. The configuration with error bound balancing takes less than half the time of the
configuration with restructuring for each data point. Combining both strategies leads to an
additional reduction in the running time. The combined configuration is around 40 % faster than
pwebb and more than 70 % faster than uwbre.

4.4.3 Exact Computation
While fixed accuracy scenarios are well-suited for experiments, the actual purpose of
exact-decisions number types lies, as the name suggests, in making exact decisions. The
running time in this case depends not only on the running time of a single evaluation
but also on the maximum accuracy needed to make the decision and the behavior of
the number type over a sequence of evaluations with progressively increasing target
accuracies. The process of making decisions always reduces to computing the sign of an
expression (cf. Section 2.2.1). The expression is then evaluated with increasing target
accuracy until the value can either be separated from zero or a separation bound is hit
(cf. Section 2.2.6). The impact of balancing methods is expected to be very different
depending on whether or not the actual value of the expression is equal to zero. If the
value is not zero, generally, a small number of iterations is sufficient to make a decision.
In this case the impact of bad structure in the expression is high compared to the impact
of the target accuracy. Otherwise, the target accuracy grows until it eventually hits the
separation bound, which in turn shrinks considerably with the number of nodes. With
increasing target accuracy, the impact of structure and therefore the impact of balancing
methods diminishes. In this section, we exclusively perform experiments where the sign

121

4 Optimizing Expression DAGs for Large-Scale Computations

of the evaluated expression dag is zero. We create expression dags in the same way as for
the fixed-accuracy experiments, except for the choice of the operands. Instead of rational
numbers, we use simple exponentially distributed primitive floating-point numbers in
order to create a more realistic setting. From an arbitrary expression dag E we obtain
an expression dag E0 with sign zero by creating an exact copy of E and comparing both
expression dags for equality. In the following, descriptions are always given with respect
to the expression dag E, whereas the experiments are performed on E0.

5,000 6,000 7,000 8,000 9,000 10,000

20

40

60

Number of operator nodes per copy

T
im

e
(s

ec
on

ds
)

def
pwebb

Figure 4.48: Running times with and without error bound balancing for the comparison of two
identical list-like expression dags with random operators. Error bound balancing slightly reduces
the running time. At around 9000 nodes per copy, a jump in running time happens where an
additional iteration of the floating-point filter is executed before the error interval is sufficiently
small to fall below the separation bound.

While seldom disadvantageous, error bound balancing has little effect on the overall
running time of a decision-making process if the resulting sign is zero. The running
time for a list-like expression dag with random operators is improved by about 5 % on
average as shown in Figure 4.48. For already balanced expression dags, a small increase
in running time by about 1 % can be noted. For 10000 nodes, the accuracy increase
along the edges only accounts for about 0.2 seconds of the running time of a single
evaluation (cf. Figure 4.32). Error bound balancing reliably reduces this cost, which
sums up to about two seconds. However, since most of the running time is caused by
final target accuracy at the separation bound, the relative improvement is still mediocre.
On the contrary, restructuring leads to a surprisingly strong improvement for list-like
expression dags as shown in Figure 4.49. While a computation with the default strategy
quickly becomes infeasible when the size of the expression dag grows, the running time
after applying Brent Restructuring shows only a very mild increase. The reason for this
effect lies in an improved order of the operator nodes. Brent Restructuring replaces all
divisions by multiplications, save for one final division in the root node. Aside from being
more expensive than multiplications, divisions frequently lead to values that cannot be
represented as a floating-point number. In the restructured graph, all subexpressions are
eventually representable by bigfloats. As soon as the required precision is reached, bigfloat
conversions take place, which significantly reduce the complexity of the expression dag.

122

4.4 Experiments

0 10,000 20,000 30,000 40,000 50,000
0

10

20

30

40

Number of operator nodes per copy

T
im

e
(s

ec
on

ds
)

def
uwbre

Figure 4.49: Running times with and without Brent Restructuring for the comparison of two
identical list-like expression dags with random operators. Restructuring drastically reduces the
running time. For 10000 operands per copy, uwbre needs less than 0.5 % of the running time of
the default strategy. The running time of Brent Restructuring increases from on average 0.008 s
for 1000 operands to 1.552 s for 50000 operands.

0 10,000 20,000 30,000 40,000 50,000
0

10

20

30

40

Number of operator nodes per copy

T
im

e
(s

ec
on

ds
)

def
uwbre

Figure 4.50: Running times with and without Brent Restructuring for the comparison of two
identical random expression dags with random operators. As for the list-like expression dag, a
drastic reduction in running time through restructuring is shown. The running times are around
30–40 % lower than in the unbalanced case for both strategies.

Note that this process does not require a separation bound since bigfloat types can decide
whether an executed operation was exact. Creating a balanced structure additionally
reduces the size of the floating-point representations of most subexpressions and therefore
accelerates this process. Still, the same effect can be observed for already balanced
expression trees. Figure 4.50 shows the running times for random expression dags, which
usually are mostly balanced. The running time for both the default configuration and the
configuration with restructuring is up to one third smaller than for a list-like expression
tree, leading to the same general behavior. Note that in all cases the final separation

123

4 Optimizing Expression DAGs for Large-Scale Computations

bound and therefore the maximum target accuracy is similar to the separation bound
for the default configuration. For a list-like expression dag with 10000 operator nodes,
the size of the magnitude of a typical separation bound is only decreased by about 1 %.
Therefore, the improvement is not primarily caused by an improved separation bound.

100 120 140 160 180 200
10−3

10−2

10−1

100

101

102

Number of operator nodes per copy

T
im

e
(s

ec
on

ds
)

def
uwbre

Figure 4.51: Running times with and without Brent Restructuring for the comparison of two
identical list-like expression dags with random operators and 5 % nodes with an additional external
reference. Each marker represents a single data point. The results for uwbre vary widely (note
the logarithmic scale) and almost always increase the running time considerably.

The positive effect of restructuring can be dramatically reversed as soon as blocking
nodes are present. Figure 4.51 shows running times for a set of list-like expression
trees with 5 % blocking nodes each. The running times after restructuring differ widely,
from times comparable to the running time of the default configuration up to running
times which are five decimal orders of magnitude higher. Brent Restructuring introduces
common subexpressions to the expression dag. While in general a multiple usage of a
subexpression does not increase the running time of a single evaluation, it can cause the
separation bound to shrink very fast if the subexpression contains both additions and
divisions. The adverse side effects of restructuring in the presence of blocking nodes can
be mitigated by a weighted restructuring method. By isolating the blocking nodes, the
number of nodes affected by them decreases and, as in the balanced case, more bigfloat
conversions happen. Nevertheless, the separation bound may still shrink considerably,
although it is generally larger than for standard Brent Restructuring. Results for Weighted
Brent Restructuring on a list-like expression dag with 5 % blocking nodes are shown in
Figure 4.52. Note that the maximum size of the trees in the presented data points is
higher than in Figure 4.51. In contrast to unit weight restructuring, exact decisions for
expression dags with up to 200 nodes can still be computed in a reasonable time (< 0.5 s).
For a slightly higher number of nodes, however, the evaluation becomes infeasible as well.
If the expression dag is already balanced and contains blocking nodes, restructuring

again reliably improves the running time as shown in Figure 4.53. While still decreased
when compared to the standard configuration, the separation bound turns out to be
much larger overall. At the same time, the structure of the expression dag allows for

124

4.4 Experiments

more bigfloat conversions since a single blocking node prevents at most a logarithmic
number of other nodes from having an exact floating-point representation. These effects
lead to the somewhat paradoxical situation that restructuring is more useful the more
balanced the expression dag already is, especially if blocking nodes are present.

100 150 200 250 300 350 400
10−3

10−1

101

103

Number of operator nodes per copy

T
im

e
(s

ec
on

ds
)

def
twbre

Figure 4.52: Running times with and without Weighted Brent Restructuring for the comparison
of two identical list-like expression dags with random operators and 5 % nodes with an additional
external reference. Each marker represents a single data point. The results for twbre vary widely
and almost always increase the running time. It takes about twice as many operands as for uwbre
to arrive at a similar running time distribution.

0 2,000 4,000 6,000 8,000 10,000
0

5

10

15

20

Number of operator nodes per copy

T
im

e
(s

ec
on

ds
)

def
uwbre

Figure 4.53: Running times with and without Brent Restructuring for the comparison of two
identical balanced expression dags with random operators and 5 % nodes with an additional
external reference. Restructuring reduces the running time by 70–87 %.

At the end of this section, we have a look at two examples, which are slightly more
realistic in the sense that the structure, the occurring values and the distribution of the
operations are closer to what one might expect in a real application. In the first example
we compute the n-th Fibonacci number Fn in two different ways, once by its recursive

125

4 Optimizing Expression DAGs for Large-Scale Computations

definition and once by its closed form

Fn = ϕn − ψn√
5

, where ϕ = 1− ψ = 1 +
√

5
2

Afterwards, we compare both results. In the second example, we verify the binomial
theorem

(x+ y)n =
n∑
k=0

(
n

k

)
xn−kyk

for x =
√

13 and y =
√

17. In both cases, several design choices can be made by the
programmer, which influence both the general efficiency and the impact of balancing
strategies. We use the most straightforward approach for both cases and disregard more
elaborate approaches such as exponentiation by repeated squaring. The source code for
both tests is displayed in Figure 4.54.

template <c l a s s NT>
void fibonacci (const i n t n) {

NT sqrt5 = sqrt (NT (5)) ;
NT phi = (NT (1) + sqrt5) / NT (2) ;
NT psi = (NT (1) − sqrt5) / NT (2) ;

NT phiN = phi ; NT psiN = psi ;
NT fib0 = 0 ; NT fib1 = 1 ; NT tmp ;
f o r (i n t i = 1 ; i < n ; ++i) {

tmp = fib1 ;
fib1 += fib0 ; fib0 = tmp ;
phiN ∗= phi ; psiN ∗= psi ;

}

NT res = NT (1) / sqrt5 ∗ (phiN−psiN) ;
RA_ASSERT (fib1 == res) ;

}

(a) Computation of the Fibonacci numbers

template <c l a s s NT>
void binomial_theorem (const i n t n) {

NT x = sqrt (NT (13)) ;
NT y = sqrt (NT (17)) ;
NT xpy = x+y ; NT xpyn = 1 ;

NT ∗xi = new NT [n +1] ; xi [0] = 1 ;
f o r (i n t i = 1 ; i <= n ; ++i) {

xpyn ∗= xpy ; xi [i] = xi [i−1] ∗ x ;
}
NT yi = 1 ; NT nchsi = 1 ;
NT res = xi [n] ;
f o r (i n t i = 1 ; i <= n ; ++i) {

nchsi ∗= NT (n−i+1)/NT (i) ;
yi ∗= y ; res += nchsi∗xi [n−i]∗ yi ;

}
RA_ASSERT (xpyn == res) ; d e l e t e [] xi ;

}

(b) Computation of the binomial theorem

Figure 4.54: Source code in C++ for the Fibonacci test and the binomial theorem test. The
template parameter NT specifies the used number type. The function RA_ASSERT verifies the
passed boolean expression. Additional statements used for testing purposes in the original code
are omitted.

Both tests lead to expression dags with interesting properties. The structure in each
case is largely unbalanced due to the computation by the loops. At the same time, the
expression dags contain a large number of blocking nodes. In the binomial theorem test,
the expression for

(n
i

)
is largely composed of divisions. On the contrary, all operands

occurring in the iterative formula for the Fibonacci numbers are integers.
The results for the Fibonacci test are shown in Figure 4.55. Both error bound balancing

and restructuring reduce the running time of the computation. The largest differences,
however, occur when either of the methods is able to preclude another iteration of the
floating-point filter. As evident from the performance of AM-Balancing, the biggest part

126

4.4 Experiments

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000
10−2

10−1

100

101

Number of operator nodes

T
im

e
(s

ec
on

ds
)

def
pwebb
amb

uwbre

Figure 4.55: Running times of the Fibonacci test (logarithmic). At several points, the running
time jumps when requiring an additional evaluation step. Aside from these jumps, error bound
balancing reduces the running time by 5–22 % and Brent Restructuring by 12–55 %. AM-Balan-
cing is more effective than the other strategies with a total reduction of 20–58 %. Near the jumps,
improvements of up to 80 % can be observed.

of the running time improvement, including the decrease in the number of iterations,
stems from the balancing of the large products used in the computations of φn and
ψn. The reduction in the number of iteration steps is not caused by an improvement
in the accuracy-driven evaluation, but by an improvement in the initial approximation
and therefore by a shift of the starting point for the floating-point filter iteration.
Somewhat counterintuitively, the configuration for the error bound balancing reduces
the initial approximation as well, although error bound balancing is not active during
the initialization step. This is a side effect of the more precise error representation used
for error bound balancing. In Chapter 6, we elaborate on this effect. As we will see, the
reduction of the initial accuracy is less an accomplishment of the balancing strategies
than a hint on a suboptimal filter strategy in Real_algebraic.

Running times for the binomial theorem test are shown in Figure 4.56. Similar to the
previously discussed experiments shown in Figure 4.49 and 4.50, Brent Restructuring
strongly reduces the running time of the evaluation. Note that AM-Balancing only
mildly reduces the running time, therefore the impact of balancing the computation of
(x+ y)n is small. In contrast to the previous experiments, however, Brent Restructuring
not only leads to more bigfloat conversions but also improves the overall separation
bound significantly, leading to a lower number of iterations of the floating-point filter.
The divisions used for computing

(n
i

)
have small integer operands. If the numerator is

enlarged, the probability increases that the result of the division is an integer or, at
least, exactly representable by a floating-point number. By pushing divisions to the top,
some of the denominators cancel out and thereby the size of the separation bound’s
magnitude is reduced. Paradoxically, whether this leads to a noticeable improvement
largely depends on the size of x and y. In our example, x and y are of the form x =

√
x′

and y =
√
y′. If the operands inside the roots are smaller than 0.5, then the separation

127

4 Optimizing Expression DAGs for Large-Scale Computations

40 80 120 160 200
0

0.5

1

1.5

Number of operator nodes

T
im

e
(s

ec
on

ds
)

def
pwebb
amb

uwbre

Figure 4.56: Running times of the binomial theorem test. Except for Brent Restructuring, the
modified strategies show a mild decrease in running time ranging from around 1 % with error
bound balancing to around 7 % with AM-Balancing. Brent Restructuring drastically reduces the
running time. For n = 200, uwbre is about three decimal orders of magnitude faster than the
default configuration.

bound improvement diminishes. Table 4.57 shows running times and separation bounds
for various values of x′ and y′. When one or both of the operands are decreased from
0.5 to 0.49 the separation bound suddenly becomes very small and, in consequence, the
running times experience a steep increase. At a value of 0.5, the BFMSS[2] separation
bound algorithm changes the strategy how it treats the root operation. Let v, u, l denote
the values from the algorithm as shown in Table 2.7 (page 26). For 0.5, we have 2vu = 1
after the initialization. For smaller values, 2vu < 1 = l. Consequently, if one of x′, y′ is
smaller than 0.5, the associated root operation yields a value for l that is larger than one,
which leads to a fast growth of the parameters. The condition 2vu ≥ l, which determines
when to switch between the two root cases, originates in the BFMSS bound where an

x′, y′ 13/17 0.5/0.5 0.49/0.5 0.49/0.49

def Time (s) 0.134 0.293 2.199 4.090
Bound (log) −83739 −123739 −649139 −1164139

uwbre Time (s) 0.001 0.040 2.046 3.713
Bound (log) −1224 −41224 −566624 −1081624

def∗ Time (s) 0.134 0.113 0.136 0.121
Bound (log) −83739 −83239 −93239 −93239

uwbre∗ Time (s) 0.001 0.001 0.008 0.007
Bound (log) −1224 −724 −10724 −10724

Table 4.57: Running times and final separation bounds (magnitude) for the binomial theorem test
with n = 100 with respect to different choices of x =

√
x′ and y =

√
y′. Data points are given for

the default configuration and for the configuration with Brent Restructuring when used with the
original and the modified BFMSS[2] separation bound (marked by a star).

128

4.4 Experiments

equivalent condition U ≥ L is imposed on the algorithm (cf. [PY06]). To the author’s
knowledge, all current implementations use this condition [Bur+04; PY06; Mör15a].
Nevertheless, the choice of the condition is arbitrary in the sense, that both cases are
always sufficient to ensure correctness. While in the BFMSS bound the parameters U and
L are exponentiated in the respective cases, in the BFMSS[2] bound the exponentiation
is applied to u and l. It might therefore be worthwhile to use the condition u ≥ l instead.
In the lower half of Table 4.57, the running times and separation bounds for the binomial
theorem test are shown with the modified separation bound. For these configurations,
the paradoxical effect almost completely vanishes.
While still somewhat artificial, the Fibonacci test and the binomial theorem test

demonstrate how bad structure can emerge in intuitively written programs. While the
unbalanced product in the code for the Fibonacci numbers is relatively easy to spot for an
experienced programmer, recognizing optimizations like the one achieved by restructuring
in the binomial theorem test is much harder and requires deep knowledge of the underlying
number type. Embedding optimization mechanisms into the evaluation process enables
the programmer to write code more intuitively and moves exact number types one step
closer to the ideal of an easily exchangeable general purpose number type.

129

5 Exact Decisions in a Parallel Environment

If separation bounds get small in complicated or large expressions, a high accuracy is
needed to decide that a value is zero. The techniques presented in the previous chapter
are designed to reduce the cost increase due to bad structure but they cannot reduce
the cost below the base cost inflicted by the target accuracy, except for occasional
bigfloat conversions. If the operations generally have high cost, parallelization turns
out to be a viable technique to complement the balancing strategies [Wil18c]. In this
chapter, we introduce and evaluate techniques to parallelize the evaluation of an exact-
decisions number type on multiple processors. The first section of the chapter extends
the theoretical framework of Section 4.1 to a parallel environment and describes basic
paralellization strategies. In particular, it discusses how a limited number of processors
should be assigned to evaluation tasks in an arithmetic expression dag in order to use
them to their full potential. In Section 5.2, the techniques from the previous chapter are
evaluated with respect to the parallelizability and partly adjusted to the new setting.

5.1 Parallel Evaluation Strategies

The evaluation of an expression dag can be divided into three parts: the initialization,
the error propagation and the bigfloat evaluation. In the initialization phase, the initial
approximations are computed and restructuring algorithms can be applied. During
the error propagation, an error distribution is computed and requested accuracies are
assigned to each node. Finally, in the last phase, a bigfloat approximation for each
node is computed, such that the requested accuracy bound is satisfied. Technically,
in each of those phases parallelization is possible. However, most of the time needed
for the evaluation can be attributed to the bigfloat evaluation. Therefore, we consider
multithreading only for the third phase. In a recursive evaluation scheme, the error
propagation and the bigfloat evaluation phases intertwine in a way that is not suitable for
parallelization (cf. Section 3.2.2). Consequently, as a starting point for parallel evaluation
strategies we require the number type to use topological evaluation.

5.1.1 Parallel Evaluation Cost

Let E be an expression dag with n operator nodes. The evaluation of an operator node
is dependent on the evaluation of its child nodes. If we assign one (virtual) processor to
each operator node, the computation of the approximation can be started as soon as the
computation at its child nodes is finished. The total evaluation time then depends on
the most expensive path in E.

131

5 Exact Decisions in a Parallel Environment

Definition 5.1. Let E be an expression dag with error distribution q. We denote the
set of all root paths to all operator nodes in E as P(E)P(E) = ⋃

v∈V(E) P(v). For a path
P ∈ P(E), we call

costt(P)costt(P) =
∑

v∈V(E)
p(v) (5.1)

the true cost of P , where p(v) denotes the operator precision at v. We call a pathtrue cost
Pc ∈ P(E) with maximum true cost among the paths in P(E) a critical path in E.critical path

For an arbitrary number of processors, the evaluation time of E directly depends on
the true cost of the critical path in E. This is reflected in the following definition.

Definition 5.2. Let E be an expression dag with error distribution q. Then we call

costp(E)costp(E) = max
P∈P(E)

costt(P)

the parallel cost of E.parallel cost

With the standard error distribution, it is reasonable to assume that the critical path
is one of the longest paths in E. The required accuracy and therefore the operator
precision at a node tendentially increase with a higher depth of the respective node in E.
Consequently, a higher number of summands in (5.1) tendentially leads to a larger sum
and a longer path tendentially has higher true cost than a shorter one. Meanwhile, the
cost of a path grows linearly in the target accuracy with a factor depending on its number
of nodes. If a path is longer than another one, then with increasing target accuracy the
cost of the longer path eventually surpasses the cost of the shorter one.

Observation 5.3. Let E be an expression dag with an error distribution q for which the
accuracy increase i(P) along any path P in E does not depend on the target accuracy
q(E). Then there is a threshold t ∈ R, such that q(E) ≤ t implies that each critical path
in E is a longest path in E.

The observation is an indication that in order to estimate the parallel evaluation cost
it is reasonable to focus on the highest cost among the longest paths in E. In particular,
it signifies the importance of the depth of an expression dag for parallel evaluation.

5.1.2 Implementation

In this section, we briefly highlight the main aspects for a parallel adaptation of exact-
decisions number types. The descriptions are based on Real_algebraic, but can be
expected to transfer to other number types as well. Details regarding the implementation
of multithreading in Real_algebraic can be found in [Wil18a].

132

5.1 Parallel Evaluation Strategies

Shared Data

In order to preclude data corruption, access to shared data between threads must be
protected or made unnecessary. Potential sources for shared data are the separation
bound computation and the reference management, which may both be triggered after
an evaluation. If the computed approximation is close to zero, a separation bound is
computed to check whether it can be verified that the value is exactly zero. For the
computation, an upper bound to the algebraic degree of the node’s subexpression is
determined by recursively traversing its descendants. To ensure that each descendant is
visited at most once, a shared flag is used. Finally, if the value of the subexpression is
zero, the node gets converted into a single bigfloat node, thereby deleting the references
to its child nodes. In order to minimize the overhead of the parallelization, lock states
associated with semaphores should be avoided whenever possible. For the reference
counter management, atomic operations can be used instead, which take advantage of
processor-level locks. The computation of the algebraic degree bound on the other hand
can be changed to an iterative computation as described in Section 3.2.3, eliminating the
need for write access to the child node data.

Dependency Management

For the parallelization, we assign an evaluation task to each node in the expression dag.
The evaluation of an operator node must wait until the child tasks are completed. Using a
semaphore-based notification system leads to a significant overhead, overshadowing most
of the gains from the parallelization. Instead, we use a lock-free approach, where each
node knows, and takes responsibility for, its parents. Each node gets assigned an atomic
dependency counter initialized with the number of its child nodes. When the evaluation
of a node is finished, the node reduces the number of dependencies of all of its parents
by one. If a parent’s dependency counter reaches zero, it starts the evaluation task for
the parent. With this strategy, each task can in principal be executed immediately after
it is created and therefore waiting states are avoided entirely. Note that this strategy
requires shared access to the dependency counter for all child nodes. However, with a
careful implementation it is sufficient to rely completely on the atomic operations of the
dependency counter (cf. [Wil18a]).

Task and Thread Management

For the execution of evaluation tasks, each task must be assigned a thread. In customary
multi-core processors, the number of simultaneously executable threads is currently in
the single digit up to low double digit range. Creating more threads than supported by
the processor leads to performance loss due to repeated context switches by the scheduler.
The usage of a thread pool is a natural choice to limit the number of threads that can be
active simultaneously. We use a simple thread pool based on a task queue. When a task is
ready to start, we insert it into a queue. As long as the number of active threads is below
a certain threshold and the number of remaining tasks in the queue is above a certain

133

5 Exact Decisions in a Parallel Environment

threshold, a new thread is created. Afterwards, each thread takes tasks from the queue
until it is empty, at which point the thread gets terminated. The boost library provides
a lockfree queue, which can be utilized for the task management under the condition
that the the main algorithm is adjusted to fulfill certain properties. Most importantly,
with a lockfree implementation there is no safe way to determine the current size of the
queue. Therefore, the main evaluation algorithm must be able to decide locally whether
its computation has finished, i.e., whether all nodes have been evaluated. Since each
node knows its parents, this can be determined by a check whether the current node does
not have any parents and therefore is the root node of the expression dag.

Depth Prioritization

In Section 5.1.1, it was observed that the running time of a parallel evaluation with
arbitrary many processors depends on the critical path in an expression dag. If the
number of processors is limited, the evaluation time is bounded from below by n/p, where
n is the total (true) cost of the evaluation and p is the number of processors available. In
this case, the evaluation time may depend on the order in which tasks are processed.
Assume that for an expression dag E each operation takes exactly the same time. If

a first-in, first-out queue is used for task management, the operations at the nodes are
processed in a bottom-up, breadth-first manner. That is, if the subexpression at a node
u has a smaller depth than the subexpression at a node v, then u is evaluated before v.
This behavior may lead to a suboptimal use of the available processors if shallow parts of
the expression dag are evaluated before long paths and the remaining structure does not
allow a parallel evaluation.

{dlog(p− 1)e

{dlog(m+ 1)e }m } mmm

Figure 5.1: Schematic depiction of the expression dag Em,p for p = 4.

For m, p ∈ N let Em,p be an expression dag, such that (cf. Figure 5.1)Em,p

1. the left child of the root is a balanced expression dag T0 with p− 1 operands, each
of which is a balanced expression dag Ti, 1 ≤ i ≤ p− 1, with m operator nodes, and

2. the right child of the root is a list-like expression dag Tlist with m operator nodes.

134

5.1 Parallel Evaluation Strategies

For simplicity, assume that the evaluation of any operator node in E takes time 1. Then
Em,p can be evaluated in time m+ dlog(p− 1)e+ 1 with p processors by employing the
following task order:

• During the first m steps, assign one processor each to T1, ..., Tp−1 and one processor
to Tlist.

• During the remaining steps, assign all processors to the evaluation of T0 and the
root node.

Evaluating Em,p with a first-in, first-out task order takes almost twice the time as
the above evaluation strategy for large p. The balanced trees T1, ..., Tp−1 have depth
dlog(m+ 1)e. Due to the bottom-up, breadth-first processing order, they are evaluated
first, together with the bottom dlog(m+ 1)e nodes of Tlist. This evaluation takes time⌈

m(p− 1) + dlog(m+ 1)e
p

⌉
≥ m−

⌈
m

p

⌉
Afterwards, T0 and the remaining part of Tlist is evaluated together with the root node.
From this point on, at each time at most p tasks are simultaneously ready. Since Tlist
must be evaluated in sequence, the evaluation takes time m−dlog(m+1)e+1. Altogether,
the total evaluation time is at least

m−
⌈
m

p

⌉
+m− dlog(m+ 1)e+ 1 ≥ 2m−

⌈
m

p

⌉
− dlog(m+ 1)e (5.2)

The task order can be improved by adding priorities to the evaluation tasks. A simple
but effective prioritization is achieved by considering the depth of a node. If a higher
maximum distance to the root leads to faster processing, an optimal usage of the available
processors is guaranteed for the evaluation of Em,p. This generalizes to every evaluation in
which a longer path is at least as expensive as a shorter one, which, for example, is always
the case for high target accuracies (cf. Observation 5.3). We call this task evaluation
strategy depth prioritization. Implementing a task manager with depth prioritization depth prioritization
naturally requires replacing the simple queue used in the first-in, first-out approach
with a priority queue. For the implementation of the priority queue, we fall back to a
lock-based approach. While efficient algorithms for lock-free priority queues have been
proposed [ST05], there are no available implementations in standard libraries. Due to
the relative complexity of implementing such a queue, a lock-based implementation is
deemed to be sufficient.

5.1.3 Experimental Evaluation
We compare two configurations that extend the default configuration (Figure 4.30,
page 110) by a multithreaded evaluation with and without depth-prioritized task man-
agement. The two configurations are depicted in Figure 5.2. Our experimental setup
is identical to the one presented in Section 4.4.1. Note that the processor of the test
machine contains four cores with eight threads. Hence, a speedup of four is the maximum

135

5 Exact Decisions in a Parallel Environment

defm : def

TaskPolicy:
First_in_first_out_task_policy

OperationComputationPolicy:
Parallel_operation_computation

ReferenceCounterPolicy:
Mt_safe_reference_counter

defmp : def

TaskPolicy:
Depth_prioritized_task_policy

OperationComputationPolicy:
Parallel_operation_computation

ReferenceCounterPolicy:
Mt_safe_reference_counter

Figure 5.2: Configurations for the default number type with a multithreaded evaluation. Tasks are
prioritized either first-in, first-out with a lockfree queue (defm) or prioritized by depth (defmp).

speedup achievable through multithreading. For both task managers we use at most four
threads and a minimum number of five waiting tasks before a new thread is created.

Multithreading has the highest impact if the expression dag is balanced. Furthermore,
it is more useful if the individual bigfloat operations are more expensive. In a balanced
or almost balanced expression dag, the depth is logarithmic in the size of the dag and
therefore the evaluation cost of single nodes grows at most logarithmically along their
root paths. Therefore, a higher number of operator nodes does not have a significant
impact on the achieved speedup. Instead, the target accuracy for the evaluation is of
high relevance since a higher target accuracy equally affects the cost of each operation.
Figure 5.3 shows the evaluation cost of a balanced expression dag with 20000 operator
nodes with uniformly randomly distributed operators as in Section 4.4 with respect to
the requested target accuracy. For low target accuracies up to z = −2000, multithreading

0 10,000 20,000 30,000 40,000 50,000
0

1

2

Target accuracy (negated)

T
im

e
(s

ec
on

ds
)

def
defm
defmp

Figure 5.3: Running times for multithreading strategies for balanced expression dags with 20000
operator nodes and random operators. Data points are shown for a total accuracy of z = −1000 to
z = −50000 in steps of −7000. For a high target accuracy, multithreading on a quadcore processor
achieves a speedup of 3.3. For low target accuracies, the running time is slightly increased. A
change from the first-in, first-out strategy to depth prioritization shows no improvement.

136

5.1 Parallel Evaluation Strategies

is more expensive than a single-threaded evaluation. If the target accuracy is high, a
speedup of 3.3 is achieved. Since for perfectly balanced expression trees the first-in,
first-out task prioritization already leads to a perfect evaluation order, depth prioritization
is useless and leads to a small overhead of about 5 % compared to the unprioritized task
management.

0 10,000 20,000 30,000 40,000 50,000

0.2

0.4

0.6

Target accuracy (negated)

T
im

e
(s

ec
on

ds
)

defm
defmp

Figure 5.4: Running times for multithreading strategies for random expression dags with 20000
operator nodes and random operators. Prioritizing the tasks by their depth slightly improves the
overall running time.

If a randomly created expression tree is used instead of a perfectly balanced one, depth
prioritization gets a small advantage. Since randomly generated trees usually resemble
balanced variants, the speedup compared to single-threading is similar to before. However,
occasional long runs can lead to an unfortunate evaluation order. By prioritizing the tasks
by their depth, the full potential of multithreading can be used up until the last few nodes.
In Figure 5.4 we can observe that, on average, depth prioritization makes the evaluation
of randomly generated trees about 4 % faster, except for low target accuracies where
the evaluation order is largely irrelevant since multithreading does not improve on the
singlethreaded running time. A larger difference between the task management policies
can be expected when evaluating the expression dag Em,p introduced in Section 5.1.2,
consisting of p− 1 balanced trees and a list-like expression dag with m operator nodes
each. Figure 5.5 shows the running time for m = 5000 and p = 4 with random operators.
It is evident that the depth prioritization leads to a significantly faster evaluation, taking
roughly 65 % of the time of the first-in, first-out approach for large target accuracies.
For larger accuracies it can be shown that this proportion goes down to about 60 %,
as we would expect from the estimate in (5.2). If the structure of the expression dag
leads to a high number of dependencies, the performance difference between single- and
multithreaded evaluation vanishes. In a list-like expression dag, each node must be
evaluated in sequence, therefore there is no benefit in having more than one thread. In
fact, the task manager destroys threads that do not have a task assigned and therefore
ensures that only one thread is active during the evaluation of a list of operator nodes.
In Figure 5.6, the running times for a list-like expression dag are shown. A small gain

137

5 Exact Decisions in a Parallel Environment

0 10,000 20,000 30,000 40,000 50,000
0

1

2

Target accuracy (negated)

T
im

e
(s

ec
on

ds
)

def
defm
defmp

Figure 5.5: Running times for multithreading strategies for the expression dag Em,p withm = 5000,
p = 4 and random operators. For high target accuracies, depth prioritization increases the speedup
from 2.0 to 3.0 compared to the first-in, first-out approach.

0 10,000 20,000 30,000 40,000 50,000
1

2

3

4

Target accuracy (negated)

T
im

e
(s

ec
on

ds
)

def
defm
defmp

Figure 5.6: Running times for multithreading strategies for list-like expression dags with 20000
operator nodes and random operators. Multithreading shows almost no effect. Prioritizing the
tasks by their depth improves the overall running time by about 1 %.

in running time can be observed due to a parallel evaluation of the divisions used in
the operands. Depth prioritization leads to a slight improvement by assigning priority
to the critical path, whereas the first-in, first-out evaluation does not start to evaluate
the operator nodes in the list at all until all operator nodes in the operands have been
evaluated.

138

5.2 Dependency Reduction

5.2 Dependency Reduction
In the previous section, it was shown that parallelization is a viable strategy to reduce the
running time of exact-decisions number types if there is low dependence between the nodes
in the underlying graph structure. In this section, we evaluate how the parallelizability
of an expression dag can be improved using the techniques established in Chapter 4.

5.2.1 Restructuring in a Parallel Context
Reducing the depth of an expression dag generally leads to a reduction on the number of
dependencies. In Section 5.1.1, a cost model based on critical paths has been established.
The restructuring methods from Section 4.3 can be applied to reduce the parallel cost
by reducing the depth of an expression dag. In fact, Brent’s restructuring method was
originally developed for improving arithmetic expressions for a parallel evaluation. In this
section, we experimentally evaluate the impact of restructuring on the parallelizability of
an expression dag. For that, we use configurations with depth-prioritized multithreading
as shown in Figure 5.7, which additionally implement either Brent Restructuring with
unit weights or Brent Restructuring with the tree weight heuristic.

uwbrem : defmp

BrentSplitCondition:
Split_unit_weight

RestructuringPolicy:
Brent_restructuring

twbrem : defmp

BrentSplitCondition:
Split_tree_weight

RestructuringPolicy:
Brent_restructuring

Figure 5.7: Configurations for a multithreaded number type with restructuring strategies, imple-
menting either unit weight (uwbrem) or tree weight (twbrem) Brent Restructuring.

The increase in parallelizability through restructuring is demonstrated for a list-like
expression dag in Figure 5.8. As shown before, making use of multiple processors without
additional effort is not possible in this case. With restructuring, in addition to the
reduction in single-threaded running time, parallelization provides a speedup of 3.35,
which is comparable to the speedup achieved for a perfectly balanced expression tree
(cf. Figure 5.3). However, a speedup increase through restructuring is only possible if
there are large parts of the expression dag where less nodes are ready for an evaluation
than processors are available. For a small number of processors, this usually requires
one large list-like subgraph, which either contains most of the operator nodes or fully
separates one part of the expression dag from another. Let E(k)

list be an expression dag
consisting of k equally sized list-like expression dags, put together by a balanced operator
tree. Figure 5.9 shows the parallelization speedups for the default configuration and
the configuration using Brent Restructuring during the evaluation of E(k)

list with 20000
operands for 1 ≤ k ≤ 4. Since restructuring always leads to the same speedup, it is only
depicted once. For less than four lists, restructuring can improve the parallelizability of
the structure. After that, restructuring slightly decreases the speedup. Note that for

139

5 Exact Decisions in a Parallel Environment

0 10,000 20,000 30,000 40,000 50,000
0

2

4

Target accuracy (negated)

T
im

e
(s

ec
on

ds
)

def
defmp
uwbre
uwbrem

Figure 5.8: Parallel evaluation times with and without Brent Restructuring for a list-like expression
dag with 20000 operator nodes and random operators. For def, multithreading shows no effect.
After restructuring, the parallel evaluation time is decreased by 75–88 %. The relative gain
decreases slightly with increasing target accuracy.

0 10,000 20,000 30,000 40,000 50,000

1

2

3

Target accuracy (negated)

Sp
ee

du
p

def (1 list) def (2 lists) def (3 lists) def (4 lists) uwbre

Figure 5.9: Speedups through multithreading for the evaluation of expression dags with 20000
operator nodes and random operators, consisting of one to four equally sized list-like expression
dags. The maximum speedup of the default configuration is 1.0, 1.9, 2.7 and 3.4, respectively.
After restructuring a maximum speedup of 3.35 is achieved for each of these expression dags with
a nearly identical progression.

small target accuracies the costs of single bigfloat operations are too low to achieve a
large speedup. For the default configuration, there is still a significant speedup due to
the cost increase caused by the bad structure. A high target accuracy on the other hand
negatively affects the relative performance of configurations using Brent Restructuring by
increasing the impact of the additional operations (cf. Figure 4.40, page 116). For E(4)

list,
these effects lead to a net increase in parallel evaluation time when Brent Restructuring

140

5.2 Dependency Reduction

0 10,000 20,000 30,000 40,000 50,000
10−1

100

Target accuracy (negated)

T
im

e
(s

ec
on

ds
)

def
defmp
uwbre
uwbrem

Figure 5.10: Parallel evaluation times before and after the application of Brent Restructuring
for an expression dag consisting of four list-like expression dags with 5000 operator nodes each
and random operators. Between a target accuracy of −2000 and −7000, the configuration using
restructuring is around 5 % faster than the default configuration if multithreading is enabled. For
z = −1000 it is slightly slower. For the displayed data points with z ≤ −8000, uwbrem is 3–35 %
slower than defmp (note the logarithmic scale).

0 10,000 20,000 30,000 40,000 50,000
0

2

4

Target accuracy (negated)

T
im

e
(s

ec
on

ds
)

def
defmp
uwbre
uwbrem
twbre
twbrem

Figure 5.11: Parallel evaluation times for Brent Restructuring with and without weights for a
list-like expression dag with 20000 operator nodes, random operators and 10 % nodes with an
additional external reference. The sequential running times after restructuring are similar for
unit weights and for tree weights. The parallel evaluation time after restructuring is 30 % lower if
tree weights are used instead of unit weights.

is enabled for both small and large target accuracies as shown in Figure 5.10.
If blocking nodes are present, Brent Restructuring cannot create an optimal structure.

Still, for a small number of blocking nodes, the full speedup can be maintained. Figure 5.11
shows evaluation times for a list-like expression dag with random operators and 10 %
blocking nodes. Both with unit weights and with the weighted approach based on the
tree weight, restructuring significantly improves on the parallel evaluation time. By

141

5 Exact Decisions in a Parallel Environment

weighting operands, the speedup can be increased from about 2.4 to the presumably
optimal speedup of 3.4 for the highest target accuracy. Weighted Brent Restructuring
is able to largely isolate the blocking nodes and balance the rest of the expression dag
(cf. Theorem 4.78). If p processors are available, they can be fully utilized if, after
restructuring, the total evaluation cost of the list of blocking nodes is equal to at most
p− 1 times the evaluation cost of the then balanced rest of the expression dag. If the
evaluation cost of each node would be equal, this would imply that an optimal speedup
can be achieved if at most an 1/p-th of the operator nodes are blocking. Since in our
experimental setup we have p = 4, this equates to 25 % blocking nodes.

0 20 40 60 80 100

1

2

3

Amount of blocking nodes (in percent)

Sp
ee

du
p

twbrem

Figure 5.12: Speedup after Weighted Brent Restructuring with the tree weight for the evaluation
to z = −50000 of a list-like expression dag with 20000 operator nodes, random operators and
varying degrees of blocking nodes. With up to 10 % blocking nodes, the maximum speedup is
achieved. Starting from around 15 % blocking nodes, the speedup drops rapidly.

Figure 5.12 shows the speedup on a list-like expression dag with varying numbers of
blocking nodes that was restructured by Weighted Brent Restructuring. We can observe
a harsh drop starting at a rate of about 15 % blocking nodes. Although, in this case,
less than a sixth of the original nodes are blocking, the longest path in the restructured
graph consistently covers 26–29 % of its operator nodes. Beside the blocking nodes, the
longest path usually contains more than twice as many additional nodes that are used
to create Divide-Structures. Hence, the optimal speedup declines faster than expected
through the previous estimation. With a close examination of the procedure make_DS,
one comes to the conclusion that the longest path must always be at least twice as long
as the number of blocking nodes.

5.2.2 Error Distributions for Multithreading

Error bound balancing, as introduced in Section 4.2, is condemned to have at most a
minor impact on the parallelizability of an expression dag. Since dependencies cannot
be changed by a modified error distribution, list-like expression dags cannot be made
parallelizable through error bound balancing. Otherwise, if large parts of the structure are

142

5.2 Dependency Reduction

already balanced, the error distribution is already mostly balanced as well. Nevertheless,
a carefully chosen error distribution may enhance the results achieved by restructuring
in situations where a perfectly balanced structure cannot be accomplished.

The path weight error distribution minimizes the absolute cost of the evaluation of an
expression dag, as proven in Theorem 4.33. If an expression dag is only partly balanced
or not balanced at all, using this distribution can significantly reduce the single-threaded
evaluation time. The optimality, however, does not transfer to a parallel environment.
The path weight favors shallow large parts of an expression dag over deep parts with few
nodes. The absolute cost of the deep parts is increased in order to decrease the absolute
cost of the large parts, thereby increasing the total parallel cost. Furthermore, even
for balanced expression dags, the impact of an accuracy increase at an inner node on
the parallel evaluation cost is underrated since it is weighed against all operator nodes
in its subexpression while the parallel evaluation cost increases only in proportion to
the number of nodes on one (the critical) path. Consider an expression tree T with n
operator nodes and depth k. For simplicity, assume that each operation is an addition
and therefore each operator constant is equal to one. Furthermore, assume that the
correction addend for converting a required accuracy to an operator precision is always
equal to γ. Then with equation (4.12) from Lemma 4.31 (page 62), the accuracy increase
along each root path is − logn and therefore the required accuracy at each operator node
is equal to z − logn, where z refers to the target accuracy of the evaluation. The critical
path of T is therefore one of the longest paths in T and the parallel evaluation cost of T
is k logn− kz + kγ. However, the minimum true cost required for evaluating a list-like
expression dag with k nodes is only of the order of k log k + k(γ − z). This difference
leaves room for improvement.

Lemma 5.4. For m, p ∈ N let Em,p be an expression tree consisting of p− 1 balanced
trees and one list-like expression tree, each of size m as defined in Section 5.1.2. Let all
operations be additions and all correction addends be equal to γ. Then for each ε > 0,
there is a valid error distribution such that

costp(Em,p) = (m+ 1) log(m+ 1) + ε+ (m+ 1)(γ − z)

if m or γ − z is sufficiently large.

Proof. Let v0 be the root node of Em,p with outgoing edges el, er. Let q be an error
distribution with

i(v0) = − log(m+ 1)− ε
i(el) = − log(m+ 1) + log(1− 2−ε)

i(er) = log
(

m

m+ 1

)
(5.3)

that is otherwise identical to the path weight error distribution. The required accuracies
for the root node fulfill the balancing constraint (4.8) and therefore q is valid. Let Pl
be a path with the highest true cost in Em,p among the paths using el and let Pr be

143

5 Exact Decisions in a Parallel Environment

a path with the highest true cost in Em,p among the paths using er. Then Pl contains
k = 1 + dlog(p− 1)e+ dlog(m+ 1)e operator nodes and, since the left subexpression of
Em,p contains r = m(p− 1) + p− 2 operator nodes, it has true cost

costt(Pl) = k log r + k log(m+ 1)− (k − 1) log(1− 2−ε) + ε+ k(γ − z)

On the other hand, Pr contains m+ 1 operator nodes and its true cost is given as

costt(Pr) = m logm−m log
(

m

m+ 1

)
+ log(m+ 1) + ε+ (m+ 1)(γ − z)

= (m+ 1) log(m+ 1) + ε+ (m+ 1)(γ − z)

For large m or, as long as m+ 1 > k, for large γ − z, the cost of evaluating Pr is higher
than the cost of evaluating Pl. Therefore, costp(Em,p) = costt(Pr) and the lemma is
proven.

Lemma 5.4 suggests that there are situations in which the parallel cost can be reduced
by a significant amount when using an alternate error distribution. In an optimal error
distribution for parallel evaluation, each path in the expression dag must be a critical
path. Otherwise, we can use a similar argument as in Lemma 4.26 to show that we can
reduce the cost of the other critical paths. Finding such an error distribution requires
solving equations of the form

axb + cx− 1 = 0

with arbitrary a, b, c ∈ Q (see [GW19] for details). In general, a solution for the root of
polynomials of arbitrary degree is not representable in a closed form. Therefore, one
must fall back to heuristics or numerical methods when following this approach.
As described in Section 5.1.1, it is reasonable to assume that the critical path in an

expression dag turns out to be one of its longest paths. For a heuristic, we can therefore
focus on minimizing the cost of the longest paths. The distribution in (5.3), used for the
root node in the proof of Lemma 5.4, provides some insight on how subexpressions with
differing depths can be handled. By distributing the cost increase equally among both
outgoing edges if both subexpressions of an operation have the same depth, we arrive at
the following error distribution.

Definition 5.5. Let E be an expression dag. For a quasi-unary node u ∈ V(E) let e be
its outgoing edge in E(E) and let d be the depth of the subexpression at the target node
of e. For a fully binary node v ∈ V(E) let el, er be its outgoing edges and let dl, dr be the
depth of the left and right subexpression of v. We define an error distribution q for any
target accuracy z. Let q(E) = z and let i(u0) = 0 for each quasi-leaf u0. Furthermore,
for each quasi-unary node u let

i(u) = − log(d+ 1)

i(e) = log
(

d

d+ 1

)
− log(c(e))

144

5.2 Dependency Reduction

and for each fully binary node v with dl > dr (vice versa for dr > dl) let

i(v) = − log(dl + 1)− 1

i(el) = log
(

dl
dl + 1

)
− log cl

i(er) = − log(dl + 1)− 1− log cr

Finally, for each fully binary node v with dl = dr let

i(v) = − log(dl + 1)

i(el) = log
(

dl
2(dl + 1)

)
− log cl

i(er) = log
(

dl
2(dl + 1)

)
− log cr

Then we call the error distribution q resulting from this definition the depth weight error depth weight error
distributiondistribution for E and z.

Observation 5.6. The depth weight error distribution is a valid error distribution.

In order to test the impact of error bound balancing on the parallelizability exper-
imentally, in Figure 5.13 we introduce configurations using the path weight and the
depth weight error distribution together with multithreading. As a reference point,
we furthermore define a configuration with the depth weight error distribution but
without multithreading. Let Em,p be an expression tree as in Lemma 5.4 with p = 4
and m = 20000. The standard distribution leads to a parallel evaluation cost that is

dwebb : def

ErrorDistributionPolicy:
Depth_weight_distribution

ErrorRepresentationPolicy:
Balanced_error_representation

pwebbm : defmp

ErrorDistributionPolicy:
Path_weight_distribution

ErrorRepresentationPolicy:
Balanced_error_representation

dwebbm : defmp

ErrorDistributionPolicy:
Depth_weight_distribution

ErrorRepresentationPolicy:
Balanced_error_representation

Figure 5.13: Configurations for a multithreaded number type with the path weight error distribu-
tion (pwebbm) and for both a single- and a multithreaded number type with the depth weight
error distribution (dwebb, dwebbm).

145

5 Exact Decisions in a Parallel Environment

0 10,000 20,000 30,000 40,000 50,000
0

5

10

Target accuracy (negated)

T
im

e
(s

ec
on

ds
)

def
defmp
pwebb
pwebbm
dwebb
dwebbm

Figure 5.14: Parallel evaluation times of the expression dag Em,p with p = 4, m = 20000 and
random operators for the path weight and depth weight error distributions. Both error bound
balancing strategies reduce the parallel evaluation time by 30–60 % with a higher relative reduction
for low target accuracies. Between the two strategies there is no significant difference.

0 10,000 20,000 30,000 40,000 50,000

1

2

3

Target accuracy (negated)

Sp
ee

du
p

def
pwebb
dwebb

Figure 5.15: Speedup for the path weight and depth weight error distributions regarding the
parallel evaluation of the expression dag Em,p with p = 4, m = 20000 and random operators.
Starting from |z| = 8000, both error bound balancing increase the achieved speedup. The depth
weight error distribution consistently leads to slightly higher speedups than the path weight error
distribution.

quadratic in m. We could therefore expect an increase in parallelizability due to error
bound balancing. Figure 5.14 compares the parallel evaluation time of Em,p with random
operators with and without error bound balancing methods. Both error bound balancing
methods decrease the running time of the evaluation. They lead to both a moderate
decrease in single-threaded running time and an increased speedup (Figure 5.15). The
depth heuristic achieves a slightly higher speedup than the path weight. A difference in
the total evaluation time, however, is barely noticeable. Since p = 4, compared to the
path weight error distribution, the size of the required accuracy along the longest path in

146

5.2 Dependency Reduction

Em,p is decreased by two per node in the depth weight error distribution and therefore
the parallel evaluation cost is reduced in total by 2m. In relation to the cost induced
by the operation constants and the target accuracy, this difference is insignificant. If
the disparity between the number of nodes in the longest path and the total number
of nodes grows, the difference in the parallel cost increases. For a small number of
processors, however, the gain through the depth weight heuristic is always outweighed by
the difference in the absolute cost between the two error distributions.

For a perfectly balanced tree, both subexpressions at each node have the same depth.
Hence, there are no disparities between siblings that can be exploited by the depth
heuristic. Nevertheless, the parallel evaluation cost of the tree is reduced by a shift in
weight from the nodes to the edges.

Lemma 5.7. For m ≥ 1 let Embal be a perfectly balanced expression tree with 2m − 1
operator nodes. Let all operations be additions and all correction addends be equal to
γ. Then the parallel cost for evaluating Embal to accuracy z using the depth weight error
distribution is

costp(Embal) = m logm+ m(m− 1)
2 +m(γ − z) (5.4)

Proof. We prove the claim by induction on m. For m = 1, the single node is evaluated
directly up to accuracy z, therefore the parallel cost is γ − z. For m > 1 let v0
be the root node of Embal with outgoing edges el, er. Since both of its children have
depth m − 1, we are in the third case of Definition 5.5. Then i(v0) = − log(m) and
i(el) = i(er) = log(m− 1)− log(2m) and with the induction hypothesis we have

costp(Embal) = costp(Em−1
bal)− (m− 1) log

(
m− 1

2m

)
+ log(m) + γ − z

= (m− 1) log(m− 1) + (m− 1)(m− 2)
2 + (m− 1)(γ − z)

− (m− 1) log
(
m− 1

2m

)
+ log(m) + γ − z

= (m− 1)(logm+ 1) + (m− 1)(m− 2)
2 + log(m) +m(γ − z)

= m logm+ m(m− 1)
2 +m(γ − z)

It can be shown that the cost increase at each step of the induction is the smallest
increase possible and therefore the parallel cost in (5.4) is the smallest parallel cost
achievable through the choice of a valid error distribution. Assume q is a valid error
distribution leading to the optimal parallel cost of Embal. Let δ(v0), δ(el), δ(er) be the
differences in the accuracy increases between q and the depth weight error distribution.
Due to the symmetry, the cost increase at both child nodes must be the same in an
optimal distribution, therefore δ(el) = δ(er). With a similar argument as used in the
proof of Lemma 4.32 on page 63 we can then conclude that

δ(v0) ≤ −m− 1
2 δ(el)−

m− 1
2 δ(er) = −(m− 1)δ(el) (5.5)

147

5 Exact Decisions in a Parallel Environment

Since an increase of el affects (m − 1) nodes, (5.5) must be an equality, which is only
possible if δ(v0) = δ(el) = 0. Hence, the depth heuristic leads to the optimal parallel
cost for Embal. With the path weight error distribution, the parallel evaluation cost of
this expression tree is given as m log(2m − 1) +m(γ − z), therefore the variable part of
the cost is cut almost to half by the depth heuristic. Figure 5.16 shows the speedups

0 10,000 20,000 30,000 40,000 50,000
3.1

3.2

3.3

3.4

3.5

Number of operator nodes

Sp
ee

du
p

def
pwebb
dwebb

Figure 5.16: Speedup for various error distributions regarding the parallel evaluation of balanced
expression dags with random operators to total accuracy −50000. The standard error distribution
usually leads to the highest speedup. The speedups for the depth weight error distribution are
slightly higher than for the path weight error distribution.

for evaluating a perfectly balanced tree with different numbers of operator nodes to
accuracy −50000. There is no significant difference between the two error bound balancing
methods. Interestingly, the standard error distribution consistently leads to a slightly
higher speedup than the other two configurations. One possible explanation for this
behavior might be that in the standard error distribution much weight is shifted toward
the leaves where a high number of nodes can be evaluated simultaneously. Regarding
the evaluation time, all three strategies perform remarkably similar with a maximum
difference of 6 % of the smallest value for both single- and multithreaded evaluation time
for all but one data points.
At the end of Section 4.4.2, it was shown that error bound balancing can be used to

assist restructuring methods if blocking nodes are present (cf. Figure 4.47, page 121). In
addition to a general performance increase, the parallelizability of partly restructured
expressions may be increased by error bound balancing as well. In order to test for the
speedup, we introduce four new configurations, combining the tree weight approach for
Weighted Brent Restructuring with either the path weight or the depth weight error
distribution for both serial and parallel evaluation (Figure 5.17). Running times for the
combined methods in relation to pure Weighted Brent Restructuring in the presence of
various percentages of blocking nodes are depicted in Figure 5.18. As expected from the
previous experiments, error bound balancing reduces both the serial and the parallel
running time after restructuring when blocking nodes are present. In contrast to the
previous tests, the depth heuristic performs significantly worse than the path weight for a

148

5.2 Dependency Reduction

ptcmb : def

ErrorDistributionPolicy:
Path_weight_distribution

ErrorRepresentationPolicy:
Balanced_error_representation

BrentSplitCondition:
Split_tree_weight

RestructuringPolicy:
Brent_restructuring

dtcmb : def

ErrorDistributionPolicy:
Depth_weight_distribution

ErrorRepresentationPolicy:
Balanced_error_representation

BrentSplitCondition:
Split_tree_weight

RestructuringPolicy:
Brent_restructuring

ptcmbm : defmp

ErrorDistributionPolicy:
Path_weight_distribution

ErrorRepresentationPolicy:
Balanced_error_representation

BrentSplitCondition:
Split_tree_weight

RestructuringPolicy:
Brent_restructuring

dtcmbm : defmp

ErrorDistributionPolicy:
Depth_weight_distribution

ErrorRepresentationPolicy:
Balanced_error_representation

BrentSplitCondition:
Split_tree_weight

RestructuringPolicy:
Brent_restructuring

Figure 5.17: Configurations for both single- and multithreaded number types with Weighted Brent
Restructuring and error bound balancing. For error bound balancing either the path weight error
distribution (ptcmb, ptcmbm) or the depth weight error distribution (dtcmb, dtcmbm) is used.

medium amount of blocking nodes. As is, the depth heuristic does not handle the common
subexpressions that are introduced by the restructuring algorithm correctly. If the paths
between a common subexpression and the lowest common ancestor of its parents differ
in length, the heuristic falsely decides that the smaller paths do not contribute to the
parallel cost and strongly increases their required accuracies and therefore the requested
accuracy at the common subexpression. Consequently, it increases not only the absolute,
but also the parallel cost of the evaluation. The speedups for restructuring with and
without error balancing methods are depicted in Figure 5.19. We observe that, as for
the balanced tree, the speedup for the standard error distribution is higher than both
balancing speedups (cf. Figure 5.16). In contrast to the previous results, the speedup for
the depth weight error distribution is consistently higher than the speedup for the path
weight error distribution. While this may in part be attributed to higher overall errors
for the leaf nodes, the difference does not fully disappear for small numbers of blocking
nodes where both error bound balancing methods lead to similar running times.

The definition of the depth weight error distribution leaves room for improvement. The
impact of common subexpressions on the cost of the critical path is not handled properly
and may even lead to an increase in parallel evaluation cost compared to the path weight
error distribution. Furthermore, paths of the same length are currently treated to be

149

5 Exact Decisions in a Parallel Environment

0 20 40 60 80 100
1

2

3

4

Blocking nodes (%)

T
im

e
(s

ec
on

ds
)

twbre
twbrem
ptcmb
ptcmbm
dtcmb
dtcmbm

Figure 5.18: Parallel evaluation times for combined strategies on a list-like expression dag with
20000 operator nodes, random operators, target accuracy z = −50000 and various percentages of
blocking nodes. For restructuring without error bound balancing, the running time increases fast
as soon as blocking nodes are present. If error bound balancing is added to the restructuring, the
effect is weakened. The path weight generally leads to a better running time and, in consequence,
dominates the depth weight for the parallel evaluation as well.

0 20 40 60 80 100
1

2

3

Blocking nodes (%)

Sp
ee

du
p

twbre
ptcmb
dtcmb

Figure 5.19: Speedup for combined strategies regarding the parallel evaluation of a list-like
expression dag with 20000 operator nodes, random operators, target accuracy z = −50000 and
various percentages of blocking nodes. The speedup for all strategies is similar. Introducing error
bound balancing reduces the speedup slightly for a small number of blocking nodes.

equally likely to be the critical path, although their actual cost may differ widely due to
operation constants and the size of their siblings. Nevertheless, further improvements are
unlikely to make the depth heuristic competitive to the path weight unless the number
of available processors increases significantly.

150

6 Error Bounds and Floating-Point
Numbers

For the definition of error bound balancing and restructuring methods, we assumed that
the error bounds and weights that occur in the respective algorithms are adequately
representable in an implementation. In this chapter, we elaborate on the details regarding
the error and weight representations and address some of the practical problems that
arise in an implementation. In Section 6.1, we compare different methods for the represen-
tation of error bounds in an exact-decisions number type and thereby describe the error
representation strategies that are provided for the configurable node type introduced in
Chapter 3. In Section 6.2, we describe rounding issues that occur when a logarithmic
representation based on floating-point primitives is used for very large or very small
numbers. We then propose strategies for the correct rounding of the relevant arithmetic
operations.

6.1 Error Bound Representation

Managing error bounds is a central part of any exact number type that is based on
accuracy-driven evaluation. Typically, aside from a potential preceding floating-point
filter, there are three situations in which error bound management takes place. First,
approximations computed during the evaluation are stored together with error bounds in
order to form intervals containing the actual values of the subexpressions. Second, in
order to compute the operation constants for accuracy-driven evaluation, initial upper and
lower bounds for each subexpression value must be present (cf. Section 4.1.1). Whenever
possible, these initial bounds are acquired directly from a floating-point filter based on
primitives. Otherwise, if the filter does not produce meaningful bounds, a computation
at a higher precision takes place. Finally, during the main part of the evaluation, the
required and requested accuracies for each node are computed and propagated to its
subexpressions. Note that this algorithm might also be used as a subroutine during
fixed-precision computation if invalid operations, such as a division by zero, must be
ruled out. In summary, the error bound management includes

1. Error bound storage

2. Error bound computation during fixed-precision computation

3. Error bound propagation during accuracy-driven computation

151

6 Error Bounds and Floating-Point Numbers

For both the storage and the fixed-precision computation, bigfloat types are used in
leda::real and the default version of Real_algebraic (not to be confused with the
default configuration we used in the previous sections). The error bound propagation on
the other hand is carried out with an integer exponent representation, using only the,
appropriately rounded, logarithm of an error bound for the necessary computations. In
each of the three cases a midpoint-radius representation of the error interval is used. The
number type Core::Expr takes a similar approach for the error propagation, but uses
logarithmic upper and lower bounds for an initial fixed-precision estimate. It stores both
representations at each operator node.

6.1.1 Conversion Between Representations
Using different types of error representations for different parts of the evaluation requires
constantly converting the representations to each other. In the standard version of
Real_algebraic, the error bounds established during an accuracy-driven evaluation
must be converted to bigfloat types when stored in the node. Conversely, established
error bounds must be set into a logarithmic format in order to determine whether a
requested accuracy is already guaranteed by a previously computed approximation. These
conversions may be costly or have costly side effects. Converting an integer exponent
representation to a bigfloat can be done exactly in a straightforward manner. In the
opposite direction, creating an integer exponent representation from a bigfloat involves
design choices that potentially have a negative impact on the running time.

mpfr_exp_t ceil_log2 (const mpfr_t& a)
{

re turn mpfr_get_exp (a) ;
}

(a) Inexact conversion

mpfr_exp_t ceil_log2 (const mpfr_t& a)
{

mpfr_exp_t e = mpfr_get_exp (a) ;
mpfr_t rop ; mpfr_init (rop) ;
mpfr_div_2si (rop , a , e , MPFR_RNDA) ;
i f (mpfr_cmp_d (rop , 0 . 5) == 0) −−e ;
mpfr_clear (rop) ;
r e turn e ;

}

(b) Exact conversion

Figure 6.1: Implementations for the ceil_log2 function converting a bigfloat error representation
into an integer exponent representation when using a mpfr_t bigfloat. Checking whether the
stored number is a power of two involves an extraction of the mantissa and therefore a copy of
the mantissa to a new bigfloat.

In general, a conversion from a bigfloat type to an integer exponent cannot be done
exactly. We want the result of the conversion to represent an upper bound to the value
stored in the bigfloat in order to never underestimate the actual error. Since bigfloats are
usually stored internally by a mantissa m and an exponent e with m ≤ 1, it is tempting
to just use e as the value for the integer exponent representation. This conversion method
is used in both leda::real and Real_algebraic. For m ≤ 1 it always leads to a correct
upper bound and for m ∈ (0.5, 1] it leads to the closest possible correct integer value.

152

6.1 Error Bound Representation

Due to the nature of floating-point representations, bigfloat number types such as mpfr_t
and leda::bigfloat (if normalized) guarantee m ∈ [0.5, 1) instead. The conversion
method therefore overestimates the best possible conversion by one if the stored value is
a power of two. One consequence of the described behavior is that the conversion from
an integer exponent to a bigfloat and back to an integer exponent is never error-free,
although in theory this should always be the case. This can have dramatic consequences
on the running time if a (sub-)expression must be re-evaluated to the same accuracy. Due
to the conversion, it cannot be detected that the computed result is already sufficient
and the approximations in the whole subexpression are recomputed. When a recursive
evaluation strategy is used, this may happen multiple times during a single evaluation of
the expression dag. The problem occurs as well if the same decision is requested more
than once by the user, which in theory should be a fast operation.

bfl : def

ErrorRepresentationPolicy:
Default_error_representation

Figure 6.2: Configuration for the default num-
ber type with a bigfloat error representation
for storage and fixed-precision computation.

We call a conversion exact if it returns exact conversion
the closest possible upper bound for the con-
verted value in the new format. Correcting
for the conversion error is generally possi-
ble, but inefficient if conversions happen fre-
quently. Checking whether the value of a
bigfloat is a power of two is expensive. In the
case of MPFR, it changes a simple read instruc-
tion on a member variable to a more elab-
orate method. Figure 6.1 shows the imple-
mentation of the method for the Mpfr_approximation_policy class in Real_algebraic.
The exact implementation must access the mantissa in order to compare it with 0.5. For
this, a new temporary bigfloat is created. We demonstrate the impact of this change
experimentally. Figure 6.2 shows a configuration using the default error representation
of Real_algebraic, i.e., a bigfloat representation for both storage and fixed-precision
computation. Note that the default configuration for the previous experiments, as de-
fined in Figure 4.30 (page 110), does not use the original error representation policy
of Real_algebraic. Changing the behavior of the conversion method requires various
modifications throughout the number type depending on the used approximation policy.
Creating an explicit policy to support such a change is unnecessarily complicated, there-
fore we perform it manually. We call the configuration resulting from bfl by replacing
each conversion by an exact variant bflx.

We compare the exact and the inexact implementation of the conversion on a randomly
generated expression tree with random operators and exponentially (λ = 1) distributed
double values as operands. Figure 6.3 shows the time needed for evaluating such trees to
accuracy z = −1000. We can observe that changing the conversion function has a large
impact on the overall running time. The loss of performance introduced by treating the
above-mentioned special case seems to be disproportionally high. Similar experiments
show that, especially for small expression dags, this difference can become even larger,
doubling the running time needed for the evaluation [Wil18b]. Changing the conversion
function in the proposed way is therefore not advisable. The exact conversion can be

153

6 Error Bounds and Floating-Point Numbers

0 10,000 20,000 30,000 40,000 50,000
0

5 · 10−2

0.1

Number of operator nodes

T
im

e
(s

ec
on

ds
)

bfl
bflx

Figure 6.3: Evaluation times for a random expression tree with random operators to accuracy
z = −1000, using the bigfloat error configuration with (bflx) and without (bfl) exact error
conversion. If the representations are converted exactly, the running time increases by 40–50 %.

made more efficient by implementing it directly in the bigfloat number type. Alternatively,
conversions can be made superfluous by switching to another error representation.

6.1.2 Exponent Representations for Fixed-Precision Computation

Error bound conversions can be avoided completely by using the same representation at
each stage of the evaluation. Using a bigfloat representation for the error propagation
would be very expensive and therefore does not seem to be a reasonable approach.
Instead, integer exponents can be used for storing the error bound and, consequentially,
for the fixed-precision computation. Storing and processing primitive integers is much
faster than storing and processing bigfloats. During an accuracy-driven evaluation we
do not lose any accuracy by using this representation since all occurring error bounds
are represented as exponent anyway. Yet, the error bounds achieved by the initial fixed-
precision computation can become much worse. While not too different for multiplications,
divisions or roots, the increase in the error bound can be exponentially higher than with
bigfloat representation for a series of additions.
The impact that a change in the error representation for the initial fixed-precision

computation has on exact computation is shown exemplarily in Figure 6.4 for the
computation of the Fibonacci numbers (cf. Figure 4.54, page 126). The running time for
both configurations jumps whenever an additional iteration must be started in order to
match the separation bound. The default configuration, which utilizes a pure exponent-
based error representation, leads to a considerably lower initial accuracy than the bigfloat
representation. However, the initial error bound is far less important than the final
target accuracy. The target accuracy for an iteration is computed as the sum of the
initial (absolute) accuracy and a steadily increasing relative accuracy. Since the relative
accuracy is doubled during each iteration, one of the configurations might hit an accuracy
close to the separation bound, whereas the other one closely misses the bound and starts

154

6.1 Error Bound Representation

0 1,000 2,000 3,000 4,000 5,000
0

0.5

1

1.5

Number of operator nodes

T
im

e
(s

ec
on

ds
)

def
bfl

Figure 6.4: Evaluation times of the Fibonacci test for different error representations. With a
bigfloat representation of the error, the initial accuracy is higher. Therefore, jumps caused by an
additional iteration of the floating-point filter happen later.

a computation at almost twice the necessary accuracy. Hence, the configuration using
exponents might still turn out to be faster than the configuration using bigfloats. This
effect can be weakened by setting the target accuracy directly to the magnitude of the
separation bound when it is sufficiently small or by defining a fixed number of iterations
until the separation bound must be reached. Nevertheless, for each of those strategies
there are cases in which a worse initial accuracy leads to a better running time. While
this does not imply that the initial accuracy is irrelevant, the example demonstrates that
chance plays a much larger role for the final running time than the initial error bound
as long as the difference in magnitude of the initial error bounds is of the size of the
final requested accuracy, i.e., the size of the magnitude of the separation bound if the
result is zero. If the final accuracy needed for the evaluation is low, the reduction in the
number of bigfloat operations caused by the change of the error representation usually
compensates for the increase in the initial error bound.

6.1.3 Floating-Point Exponents

A compromise between the representations based on integer exponents and bigfloats
can be found by employing floating-point primitives for an exponent representation.
Operations on floating-point primitives such as double are generally much faster than
on bigfloats. At the same time, they offer a more nuanced expression of the error bound
than an integer exponent. With an integer representation, every increase in the error
bound results in an increase by at least one order of magnitude. When using a double,
the increase is possibly more fine-grained, although it eventually hits a minimum increase
cap as well. A configuration for a number type using double exponent representations
is depicted in Figure 6.5. Figure 6.6 shows the initial accuracy obtained by the fixed-
precision computation for various error representation strategies. Up until about 1500
operator nodes, the error bound can be extracted from the filter policy. As soon as the

155

6 Error Bounds and Floating-Point Numbers

dbl : def

ErrorRepresentationPolicy:
Error_representation_by_double_exponent

Figure 6.5: Configuration based on def with a floating-point exponent error representation.

error bound does not fit into a double anymore, a fixed-precision computation is started
and the three strategies lead to different initial accuracies. Each strategy shows a linear
increase in magnitude, i.e., an exponential increase of the initial error bound. Note that
all accuracy values in this case are positive and therefore all error bounds are larger
than one. The error representation policy relying on floating-point exponents ranges in
between the other two representations.

0 1,000 2,000 3,000 4,000 5,000
0

0.5

1

·104

Number of operator nodes

In
iti

al
ac

cu
ra

cy

def
bfl
dbl

Figure 6.6: Initial accuracies determined by the fixed-precision computation during the evaluation
of the Fibonacci test for different error representations. For small numbers of operands, the initial
approximations are acquired from the floating-point filter and therefore are identical for all error
representations. For 5000 operands, the bigfloat, double and integer representations lead to initial
error bounds of 23430, 28035 and 211564, respectively.

While having useful properties for the initial fixed-precision computation, the usage of
floating-point exponents for error bound representations is especially relevant during the
error propagation of an accuracy-driven evaluation since it enables error bound balancing
as introduced in Section 4.2. As for the other representations, special measures must be
taken in order to ensure correct rounding when handling these error bounds. In contrast
to the other representations, doing so with minimal overhead is rather complicated. For
the experiments performed in the previous chapters we mostly did not ensure correct
rounding for double exponents in the interest of not distorting the results. While, in
all likelihood, the operations where incorrect rounding may occur will never cause an
incorrect decision, they should be adjusted before used in practice. In the next section,
we have a closer look on how correct rounding can be achieved for the relevant use cases.

156

6.2 Rounding Floating-Point Operations

6.2 Rounding Floating-Point Operations

Error bounds used in an exact number type must always be guaranteed to be an upper
bound to the actual error. When error bounds are represented as floating-point exponents,
each operation on the error bound must be guaranteed to maintain this property. In
particular, various arithmetic operations on floating-point numbers must be guaranteed
to be rounded in the correct direction. For a correct handling of error bounds, all
basic arithmetic operations must be available for the represented value, both rounded
toward and away from infinity. This includes addition and subtraction, multiplication and
division as well as p-th powers and d-th roots. If the error bound values are represented by
their exponent, i.e., by their logarithm, multiplication and division translate to addition
and subtraction and powers and roots translate to multiplication and division. Performing
an addition or an subtraction with a representation based on the exponent requires more
sophisticated methods since it involves computing base-2 powers and logarithms.

6.2.1 Basic Arithmetic Operations

All basic operations on floating-point primitives are guaranteed to be rounded correctly
if the target processor and the compiler follow the IEEE 754 standard [IE754]. The
standard defines four different rounding modes:

1. Round to nearest:
Always round to the nearest representable floating-point number, with different
strategies for tie-breaking.

2. Round toward zero:
Always round to the value with smaller size.

3. Round toward infinity:
Always round to the larger value.

4. Round toward negative infinity:
Always round to the smaller value.

The first rounding mode, round to nearest, is the default rounding mode for g++.
Unfortunately, this rounding mode is largely useless if an upper bound for the result is
needed. Manually replacing the result by the next largest representable floating-point
number is costly and unnecessarily introduces errors if the original result would have
been exact. Hence, switching the rounding mode is crucial. A change of the rounding
mode is expensive and should be used sparingly. Having a single change affect a large
number of operations without simultaneously interfering with other parts of the evaluation
requires carefully designed code. Most of the time rounding toward infinity is needed.
For operations that must be rounded away from infinity, it can be avoided to switch the
rounding mode by rearranging the respective arithmetic expressions. For example, if the
term a+ b needs to be rounded down, the expression −(−a− b) can be computed instead.

157

6 Error Bounds and Floating-Point Numbers

To nearest Nextafter Always Up Once Up Restructured
Time (ms) 0.09 0.555 1.305 0.089 0.148

Table 6.7: Running times of 105 subsequent additions with various rounding methods. Always Up
signifies that the rounding mode is changed to round toward infinity before each addition. Once
up signifies that the rounding mode is changed only once.

Table 6.7 shows the running times for additions with different rounding methods.
Manually jumping to the next largest floating-point number as well as switching the
rounding mode for every operation is too expensive to be used in an implementation.
If the new rounding mode is once set, however, the running time of the operations is
similar to the running time of the operations with the default rounding mode enabled.
Restructuring the expression to simulate rounding down while rounding toward infinity
is enabled costs less than twice as much as the original operation. If used with caution,
this technique can help to reduce the induced overhead.

6.2.2 Logarithm and Power
Error bounds must be added frequently during the evaluation, both for the initial fixed-
precision computation and for the accuracy propagation phase. When two error bounds
are represented by their exponents a and b, this equates to computing the value of

addl(a, b) = log(2a + 2b)

Being able to perform this operation with appropriate rounding is not only important for
error bound management. If error bound balancing or weighted restructuring is used,
weights are often represented logarithmically and computing the weight of a node usually
requires adding the weights of its subexpressions. In this case, the values of 2a and 2b may
not be representable by a primitive. An upper bound to the logarithm can be computed
through repeated squaring [ML73]. If the difference between a and b is large, however,
this process becomes numerically unstable. We pursue a different approach. Without
loss of generality, assume that a ≥ b. Then addl(a, b) = a+ log(1 + x) with x = 2b−a ≤ 1
and x > 0. Since the slope of the logarithm is monotonically decreasing, we can bound
the second term by

log(1 + x) ≤ log(1) + x
d

dz
log(1 + z)

∣∣∣
z=0

= x

ln 2 (6.1)

The factor 1
ln 2 ≈ 1.44 can be represented as an appropriately rounded constant. The value

of x can be computed by a small product of values from a lookup table by considering
the floating-point representation of b− a. Let b− a = −m · 2e with m ∈ [1, 2). Assuming
double values, let k = 52, then the mantissa can be expressed as m = ∑k

i=0 βi2−i with
β0 = 1 and βi ∈ {0, 1} for all 1 ≤ i ≤ k. We get

x = 2b−a = 2(−
∑k

i=0 βi2
e−i) =

k∏
i=0

(
2−2e−i

)βi

158

6.2 Rounding Floating-Point Operations

The range of values taken by e − i can be bounded to get a finite number of entries
for a lookup table. If e < −1, then b − a > −0.5 and therefore x > 1√

2 > ln 2. In this
case the approximation in (6.1) would produce a value larger than one, although we
know that log(1 + x) ≤ 1. Therefore, we can set addl(a, b) = a+ 1 without any further
computations.
Conversely, if e ≥ log(k + 1), then b − a ≤ −(k + 1) and x

ln 2 < 2−k. If |a| ≥ 1, then
the sum a + x

ln 2 is smaller than the next largest representable floating-point number
from a and we can set addl(a, b) = nextafter(a). Now assume |a| < 1. If a represents an
error bound, the error bound is close to 1. In this case we just set addl(a, b) = a+ 1 ≥ 1
without further computation. Having a slightly worse error bound for one special value
does not notably affect the overall computation. For the tree weight or the tree operand
weight, a logarithmic representation is used exclusively for large weights, hence |a| � 1.
If a logarithmic representation is used for the path weight, we may scale up the weight
function, such that each node has a weight of at least 2 (instead of 1) and therefore
|a| ≥ 1 for all operations.

159

7 Conclusion

Exact computation on large expressions gets slow for two reasons:

1. The cost for the evaluation of an operator node increases with the depth of the
node in the expression dag.

2. The separation bound shrinks with the size of the expression and therefore the
maximum target accuracy for an evaluation increases.

The cost increase along the edges of an expression dag dominates the evaluation cost
if the value of the expression is non-zero, but close to zero. In Chapter 4, we have shown
how the cost increase can be effectively reduced if the expression dag is unbalanced.
Error bound balancing is a very reliable method to decrease the variable cost. It is
nearly unaffected by the actual structure of the expression dag. Neither the choice of
operators nor the presence of common subexpressions leads to unexpected behavior.
The overhead caused by the computation of the weight is usually compensated by the
increase in performance, except for small and already balanced expression dags. The path
weight error distribution has shown to be generally superior to the proposed heuristics.
Despite its more complicated definition, it was shown to admit a reasonably easy and
efficient computation. All error bound balancing methods require a change in the error
representation as well as the implementation of special measures to deal with rounding
errors in the underlying floating-point primitives. In Chapter 6, it was shown that this
can be realized without a significant loss in efficiency.
Restructuring bears an even larger potential than error bound balancing in reducing

the cost of an evaluation, but it also bears a higher risk of worsening the performance. If
applicable, restructuring almost completely eliminates the structure-related cost increase
by not only reducing the variable cost but at the same time reducing the cost induced
by the operator constants. It significantly increases parallelizability and there is reason
to believe that a well-chosen restructuring method leads to a better ordering of the
operator nodes, which, in turn, increases the chance on bigfloat conversions. However,
the consequences of reordering are hard to predict and might as well have a negative
impact on the evaluation. Blocking nodes reduce the benefits of restructuring. In general,
Brent Restructuring paired with the tree weight heuristic is the method of choice. While
AM-Balancing is reasonably safe to use, its use cases are too specific for a general purpose
number type and it should be seen more as a proof of concept on the future development
of non- or semi-invasive restructuring strategies. Weighted Brent Restructuring with
a reasonable heuristic behaves identically to unit weight Brent Restructuring if the
expression dag is a tree and proves to be superior if blocking nodes are present.

161

7 Conclusion

The cost increase due to the structure becomes less important if the value of the
expression is zero. In this case, the expression must be evaluated at the maximum
target accuracy as defined by the separation bound. In Chapter 5, we have shown that,
for a high target accuracy and a sufficiently balanced expression dag, multithreading
significantly reduces the evaluation time. A reduction in evaluation time takes place
even for fairly unbalanced structures. In extremely unbalanced structures, executing a
restructuring algorithm before the execution considerably increases the parallelizability
of the expression. Furthermore, a depth-prioritization strategy for the task assignment
in the thread pool produces a small but consistent advantage compared to a first-in,
first-out task assignment.
In summary, path weight error bound balancing can safely be implemented as the

default in a general purpose number type if paired with adequate, empirically determined
bounds for a minimum number of nodes and a minimum deviation from the optimal
depth. Likewise, depth-prioritized multithreading paired with bounds for a minimum
number of nodes and a minimum target accuracy is a sensible addition to a number
type. Weighted Brent Restructuring should be considered for large expression dags if the
constructed graph is expected to be a tree or at least tree-like. In an adequate setting, it
can greatly improve the running time. For a default implementation in a general purpose
number type, further research on the relevant conditions is necessary. If a high number
of processors is available, restructuring is a valuable tool to increase the parallelizability
and, hence, the overall performance of the evaluation.

162

References

[AHU74] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. “Models of Compu-
tation”. In: The Design and Analysis of Computer Algorithms. First edition.
Reading, Massachusetts: Addison-Wesley Publishing Company, 1974, pp. 2–
41.

[Alt79] Helmut Alt. “Square rooting is as difficult as multiplication”. In: Computing
21.3 (1979), pp. 221–232. doi: 10.1007/BF02253055.

[Bar86] Paul Barrett. “Implementing the Rivest Shamir and Adleman Public Key
Encryption Algorithm on a Standard Digital Signal Processor”. In: Ad-
vances in Cryptology - CRYPTO ’86, Santa Barbara, California, USA, 1986,
Proceedings. 1986, pp. 311–323. doi: 10.1007/3-540-47721-7_24.

[BBP01] Hervé Brönnimann, Christoph Burnikel, and Sylvain Pion. “Interval arith-
metic yields efficient dynamic filters for computational geometry”. In: Dis-
crete Applied Mathematics 109.1-2 (2001), pp. 25–47. doi: 10.1016/S0166-
218X(00)00231-6.

[BC90] Hans Boehm and Robert Cartwright. “Research Topics in Functional Pro-
gramming”. In: ed. by David A. Turner. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1990. Chap. Exact Real Arithmetic Formu-
lating Real Numbers As Functions, pp. 43–64. isbn: 0-201-17236-4.

[BD97] David Berthelot and Marc Daumas. “Computing on sequences of embedded
intervals”. In: Reliable Computing 3.3 (1997), pp. 219–227.

[Bel19] Fabrice Bellard. The LibBF library. Feb. 10, 2019. url: https://bellard.
org/libbf/.

[Ben+93a] Mohand O. Benouamer, Philippe Jaillon, Dominique Michelucci, and Jean-
Michel Moreau. “A lazy exact arithmetic”. In: 11th Symposium on Computer
Arithmetic, 29 June - 2 July 1993, Windsor, Canada, Proceedings. Aug.
1993, pp. 242–249. doi: 10.1109/ARITH.1993.378086.

[Ben+93b] Mohand O. Benouamer, Philippe Jaillon, Dominique Michelucci, and Jean-
Michel Moreau. “A lazy solution to imprecision in computational geometry”.
In: Proceedings of the 5th Canadian Conference on Computational Geometry,
Waterloo, Ontario, Canada, August 1993. 1993, pp. 73–78.

163

https://doi.org/10.1007/BF02253055
https://doi.org/10.1007/3-540-47721-7_24
https://doi.org/10.1016/S0166-218X(00)00231-6
https://doi.org/10.1016/S0166-218X(00)00231-6
https://bellard.org/libbf/
https://bellard.org/libbf/
https://doi.org/10.1109/ARITH.1993.378086

References

[BES02] Andrej Bauer, Martín Hötzel Escardó, and Alex K. Simpson. “Comparing
Functional Paradigms for Exact Real-Number Computation”. In: Automata,
Languages and Programming, 29th International Colloquium, ICALP 2002,
Malaga, Spain, July 8-13, 2002, Proceedings. 2002, pp. 488–500. doi: 10.
1007/3-540-45465-9_42.

[Bla02] Jens Blanck. General purpose exact real arithmetic. Tech. rep. CSR 21-200.
2002.

[BMS96] Christoph Burnikel, Kurt Mehlhorn, and Stefan Schirra. The LEDA class
real number. Report MPI-I-1996-1-001. Saarbrücken, Germany: Max-Planck-
Institut für Informatik, 1996.

[Bod+03] Gábor Bodnár, Barbara Kaltenbacher, Petru Pau, and Josef Schicho. “Exact
Real Computation in Computer Algebra”. In: Symbolic and Numerical
Scientific Computation. Ed. by Franz Winkler and Ulrich Langer. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2003, pp. 279–292. isbn: 978-3-540-
45084-9. doi: 10.1007/3-540-45084-X_14.

[Bor16] Michele Borassi. “A note on the complexity of computing the number of
reachable vertices in a digraph”. In: Information Processing Letters 116.10
(2016), pp. 628–630. doi: 10.1016/j.ipl.2016.05.002.

[Bre74] Richard P. Brent. “The Parallel Evaluation of General Arithmetic Expres-
sions”. In: Journal of the ACM 21.2 (1974), pp. 201–206. doi: 10.1145/
321812.321815.

[Bri06] Keith Briggs. “Implementing exact real arithmetic in python, C++ and C”.
In: Theoretical Computer Science 351.1 (2006), pp. 74–81. doi: 10.1016/j.
tcs.2005.09.058.

[Bur+00] Christoph Burnikel, Rudolf Fleischer, Kurt Mehlhorn, and Stefan Schirra. “A
Strong and Easily Computable Separation Bound for Arithmetic Expressions
Involving Radicals”. In: Algorithmica 27.1 (2000), pp. 87–99. doi: 10.1007/
s004530010005.

[Bur+04] Christoph Burnikel, Rudolf Fleischer, Kurt Mehlhorn, Stefan Schirra, and
Susanne Schmitt. The LEDA class real number – extended version. Tech.
rep. ECG-TR-363110-01. Max-Planck Institut für Informatik, Saarbrücken,
Germany, 2004. url: https://people.mpi-inf.mpg.de/~sschmitt/EXT.
html.

[Bur+09] Christoph Burnikel, Stefan Funke, Kurt Mehlhorn, Stefan Schirra, and
Susanne Schmitt. “A Separation Bound for Real Algebraic Expressions”. In:
Algorithmica 55.1 (2009), pp. 14–28. doi: 10.1007/s00453-007-9132-4.

[Bur+95] Christoph Burnikel, Jochen Könemann, Kurt Mehlhorn, Stefan Näher, Stefan
Schirra, and Christian Uhrig. “Exact geometric computation in LEDA”. In:
Proceedings of the eleventh annual symposium on Computational geometry.
ACM. 1995, pp. 418–419.

164

https://doi.org/10.1007/3-540-45465-9_42
https://doi.org/10.1007/3-540-45465-9_42
https://doi.org/10.1007/3-540-45084-X_14
https://doi.org/10.1016/j.ipl.2016.05.002
https://doi.org/10.1145/321812.321815
https://doi.org/10.1145/321812.321815
https://doi.org/10.1016/j.tcs.2005.09.058
https://doi.org/10.1016/j.tcs.2005.09.058
https://doi.org/10.1007/s004530010005
https://doi.org/10.1007/s004530010005
https://people.mpi-inf.mpg.de/~sschmitt/EXT.html
https://people.mpi-inf.mpg.de/~sschmitt/EXT.html
https://doi.org/10.1007/s00453-007-9132-4

References

[BVW08] Guy E. Blelloch, Virginia Vassilevska, and Ryan Williams. “A New Combina-
torial Approach for Sparse Graph Problems”. In: Automata, Languages and
Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Ice-
land, July 7-11, 2008, Proceedings, Part I: Tack A: Algorithms, Automata,
Complexity, and Games. 2008, pp. 108–120. doi: 10.1007/978-3-540-
70575-8_10.

[BZ98] Christoph Burnikel and Joachim Ziegler. Fast Recursive Division. Report
MPI-I-98-1-022. Saarbrücken, Germany: Max-Planck-Institut für Informatik,
1998.

[CA69] Stephen A. Cook and Stål O. Aanderaa. “On the minimum computation
time of functions”. In: Transactions of the American Mathematical Society
142 (1969), pp. 291–314. doi: 10.2307/1995359.

[Can88] John F. Canny. “Some Algebraic and Geometric Computations in PSPACE”.
In: Proceedings of the 20th Annual ACM Symposium on Theory of Computing,
May 2-4, 1988, Chicago, Illinois, USA. 1988, pp. 460–467. doi: 10.1145/
62212.62257.

[CGAL19] The CGAL Project. Number type documentation. CGAL. Version 4.14.
Mar. 29, 2019. url: https://doc.cgal.org/4.14/Number_types/.

[Che+01] Wei Chen, Xiaowen Deng, Koichi Wada, and Kimio Kawaguchi. “Construct-
ing a Strongly Convex Superhull of Points”. In: International Journal of
Computational Geometry & Applications 11.5 (2001), pp. 487–502. doi:
10.1142/S0218195901000614.

[Che74] David R. Cheriton. “An extension to on-line multiplication lower bound
results”. In: ACM SIGACT News 6.4 (1974), pp. 24–31. doi: 10.1145/
1008318.1008321.

[Chu36] Alonzo Church. “An unsolvable problem of elementary number theory”. In:
American journal of mathematics 58.2 (1936), pp. 345–363. doi: 10.2307/
2371045.

[Coo66] Stephen A. Cook. “On the minimum computation time of functions”. PhD
thesis. Harvard University, 1966.

[CR73] Stephen A. Cook and Robert A. Reckhow. “Time Bounded Random Access
Machines”. In: Journal of Computer and System Sciences 7.4 (1973), pp. 354–
375. doi: 10.1016/S0022-0000(73)80029-7.

[CS18] Microsoft Corporation. Documentation of the BigInteger struct. C#. Ver-
sion 7.3. May 7, 2018. url: https://docs.microsoft.com/de-de/dotnet/
api/system.numerics.biginteger.

[CWK02] Wei Chen, Koichi Wada, and Kimio Kawaguchi. “Robust algorithms for
constructing strongly convex hulls in parallel”. In: Theoretical Computer
Science 289.1 (2002), pp. 277–295. doi: 10.1016/S0304-3975(01)00274-2.

165

https://doi.org/10.1007/978-3-540-70575-8_10
https://doi.org/10.1007/978-3-540-70575-8_10
https://doi.org/10.2307/1995359
https://doi.org/10.1145/62212.62257
https://doi.org/10.1145/62212.62257
https://doc.cgal.org/4.14/Number_types/
https://doi.org/10.1142/S0218195901000614
https://doi.org/10.1145/1008318.1008321
https://doi.org/10.1145/1008318.1008321
https://doi.org/10.2307/2371045
https://doi.org/10.2307/2371045
https://doi.org/10.1016/S0022-0000(73)80029-7
https://docs.microsoft.com/de-de/dotnet/api/system.numerics.biginteger
https://docs.microsoft.com/de-de/dotnet/api/system.numerics.biginteger
https://doi.org/10.1016/S0304-3975(01)00274-2

References

[Dav19] David Eberly. Documentation on the arithmetic classes. GeometricTools.
Version 3.28. Aug. 29, 2019. url: https://www.geometrictools.com/
Source/Arithmetic.html.

[Dek71] Theodorus J. Dekker. “A floating-point technique for extending the available
precision”. In: Numerische Mathematik 18.3 (1971), pp. 224–242. doi: 10.
1007/BF01397083.

[Deu12] Peter Deuflhard. “A short history of Newton’s method”. In: Documenta
Mathematica, Optimization stories (2012), pp. 25–30.

[DFI03] Camil Demetrescu, Irene Finocchi, and Giuseppe F. Italiano. “Algorithm
engineering, Algorithmics Column”. In: Bulletin of the EATCS 79 (2003),
pp. 48–63. doi: 10.1142/9789812562494_0006.

[DMM05] Marc Daumas, Guillaume Melquiond, and César A. Muñoz. “Guaranteed
Proofs Using Interval Arithmetic”. In: 17th IEEE Symposium on Computer
Arithmetic (ARITH-17 2005), 27-29 June 2005, Cape Cod, MA, USA. 2005,
pp. 188–195. doi: 10.1109/ARITH.2005.25.

[DOY94] Thomas Dube, Kouchi Ouchi, and Chee-Keng Yap. “Real/Expr: A precision-
driven expression package”. In: 4th MSI Workshop on Computational Geom-
etry. Mathematical Sciences Institute, Cornell University. Oct 14-15, 1994.
1994.

[DP98] Olivier Devillers and Franco P. Preparata. “A Probabilistic Analysis of the
Power of Arithmetic Filters”. In: Discrete & Computational Geometry 20.4
(1998), pp. 523–547. doi: 10.1007/PL00009400.

[DY93] Thomas Dubé and Chee-Keng Yap. A Basis for Implementing Exact Geo-
metric Algorithms. Extended Abstract. 1993.

[FB91] Shiaofen Fang and Beat D. Brüderlin. “Robustness in Geometric Model-
ing - Tolerance-Based Methods”. In: Computational Geometry - Methods,
Algorithms and Applications, International Workshop on Computational
Geometry CG’91, Bern, Switzerland, March 21-22, 1991. 1991, pp. 85–101.
doi: 10.1007/3-540-54891-2_7.

[Fly70] Michael J. Flynn. “On Division by Functional Iteration”. In: IEEE Trans-
actions on Computers 19.8 (1970), pp. 702–706. doi: 10.1109/T-C.1970.
223019.

[FM91] Steven Fortune and Victor Milenkovic. “Numerical Stability of Algorithms
for Line Arrangements”. In: Proceedings of the Seventh Annual Symposium
on Computational Geometry, North Conway, NH, USA, June 10-12, 1991.
1991, pp. 334–341. doi: 10.1145/109648.109685.

166

https://www.geometrictools.com/Source/Arithmetic.html
https://www.geometrictools.com/Source/Arithmetic.html
https://doi.org/10.1007/BF01397083
https://doi.org/10.1007/BF01397083
https://doi.org/10.1142/9789812562494_0006
https://doi.org/10.1109/ARITH.2005.25
https://doi.org/10.1007/PL00009400
https://doi.org/10.1007/3-540-54891-2_7
https://doi.org/10.1109/T-C.1970.223019
https://doi.org/10.1109/T-C.1970.223019
https://doi.org/10.1145/109648.109685

References

[FNS04] Andras Frankel, Doron Nussbaum, and Jörg-Rüdiger Sack. “Floating-Point
Filter for the Line Intersection Algorithm”. In: Geographic Information
Science, Third International Conference, GIScience 2004, Adelphi, MD,
USA, October 20-23, 2004, Proceedings. 2004, pp. 94–105. doi: 10.1007/978-
3-540-30231-5_7.

[For89] Steven Fortune. “Stable Maintenance of Point Set Triangulations in Two
Dimensions”. In: 30th Annual Symposium on Foundations of Computer
Science, Research Triangle Park, North Carolina, USA, 30 October - 1
November 1989. 1989, pp. 494–499. doi: 10.1109/SFCS.1989.63524.

[Fou+07] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, and
Paul Zimmermann. “MPFR: A multiple-precision binary floating-point
library with correct rounding”. In: ACM Transactions on Mathematical
Software 33.2 (2007), p. 13. doi: 10.1145/1236463.1236468. url: https:
//www.mpfr.org/.

[Für09] Martin Fürer. “Faster Integer Multiplication”. In: SIAM Journal on Com-
puting 39.3 (2009), pp. 979–1005. doi: 10.1137/070711761.

[FW93a] Steven Fortune and Christopher J. Van Wyk. “Efficient Exact Arithmetic for
Computational Geometry”. In: Proceedings of the Ninth Annual Symposium
on Computational GeometrySan Diego, CA, USA, May 19-21, 1993. 1993,
pp. 163–172. doi: 10.1145/160985.161015.

[FW93b] Michael L. Fredman and Dan E. Willard. “Surpassing the Information
Theoretic Bound with Fusion Trees”. In: Journal of Computer and System
Sciences 47.3 (1993), pp. 424–436. doi: 10.1016/0022-0000(93)90040-4.

[Gia99] Pietro Di Gianantonio. “An Abstract Data Type for Real Numbers”. In:
Theoretical Computer Science 221.1-2 (1999), pp. 295–326. doi: 10.1016/
S0304-3975(99)00036-5.

[GL00] Paul Gowland and David R. Lester. “A Survey of Exact Arithmetic Imple-
mentations”. In: Computability and Complexity in Analysis, 4th International
Workshop, CCA 2000, Swansea, UK, September 17-19, 2000, Selected Papers.
2000, pp. 30–47. doi: 10.1007/3-540-45335-0_3.

[Gla+17] Brian Gladman, William Hart, Jason Moxham, and the MPIR development
team.MPIR: Multiple Precision Integers and Rationals. Version 3.0.0. Mar. 1,
2017. url: http://mpir.org/.

[GMP16] Torbjörn Granlund and the GMP development team. GNU MP Multiple
precision arithmetic library. Version 6.1.2. Dec. 16, 2016. url: http://
gmplib.org/.

[GO04] “Applications of Discrete and Computational Geometry”. In: Handbook
of Discrete and Computational Geometry. Ed. by Jacob E. Goodman and
Joseph O’Rourke. Second edition. New York: Chapman & Hall/CRC Press,
2004. Chap. 45–63.

167

https://doi.org/10.1007/978-3-540-30231-5_7
https://doi.org/10.1007/978-3-540-30231-5_7
https://doi.org/10.1109/SFCS.1989.63524
https://doi.org/10.1145/1236463.1236468
https://www.mpfr.org/
https://www.mpfr.org/
https://doi.org/10.1137/070711761
https://doi.org/10.1145/160985.161015
https://doi.org/10.1016/0022-0000(93)90040-4
https://doi.org/10.1016/S0304-3975(99)00036-5
https://doi.org/10.1016/S0304-3975(99)00036-5
https://doi.org/10.1007/3-540-45335-0_3
http://mpir.org/
http://gmplib.org/
http://gmplib.org/

References

[Go19] Go Development Team. Documentation of the big package. Go. Version 1.12.7.
July 8, 2019. url: https://golang.org/pkg/math/big/.

[GPG19] The GnuPG Project. The Libgcrypt library on the website of the GNU
Privacy Guard (GnuPG). Version 1.8.5. Aug. 29, 2019. url: https://
gnupg.org/software/libgcrypt/.

[Grz55] Andrzej Grzegorczyk. “Computable functionals”. In: Fundamenta Mathe-
maticae 42 (1955), pp. 168–202.

[GSS89] Leonidas J. Guibas, David Salesin, and Jorge Stolfi. “Epsilon Geometry:
Building Robust Algorithms from Imprecise Computations”. In: Proceedings
of the Fifth Annual Symposium on Computational Geometry, Saarbrücken,
Germany, June 5-7, 1989. 1989, pp. 208–217. doi: 10.1145/73833.73857.

[GW19] Hanna Geppert and Martin Wilhelm. “Internal versus external balancing in
the evaluation of graph-based number types”. In: Special Event on Analysis of
Experimental Algorithms, SEA 2̂ 2019, June 24-29, 2019, Kalamata, Greece.
2019.

[Has97] Karl Hasselström. “Fast Division of Large Integers”. MA thesis. Stockholm,
Sweden: KTH Royal Institute of Technology, 1997.

[HH19] David Harvey and Joris van der Hoeven. “Integer multiplication in time O(n
log n)”. Preprint <hal-02070778>. Mar. 2019. url: https://hal.archives-
ouvertes.fr/hal-02070778.

[HHK89] Christoph M. Hoffmann, John E. Hopcroft, and Michael Karasick. “Robust
set operations on polyhedral solids”. In: IEEE Computer Graphics and
Applications 9.6 (1989), pp. 50–59. doi: 10.1109/38.41469.

[HK14] Bruno Haible and Richard B. Kreckel. The Class Library for Numbers.
Version 1.3.4. Oct. 16, 2014. url: https://ginac.de/CLN/.

[Hoe01] Joris van der Hoeven. Zero-testing, witness conjectures and differential
diophantine approximation. Tech. rep. 2001-62. 2001.

[Hoe06a] Joris van der Hoeven. “Computations with effective real numbers”. In:
Theoretical Computer Science 351.1 (2006), pp. 52–60. doi: 10.1016/j.tcs.
2005.09.060.

[Hoe06b] Joris van der Hoeven. “Counterexamples to witness conjectures”. In: Journal
of Symbolic Computation 41.9 (2006), pp. 959–963. doi: 10.1016/j.jsc.
2006.04.008.

[Hoe06c] Joris van der Hoeven. “Effective real numbers in Mmxlib”. In: Symbolic and
Algebraic Computation, International Symposium, ISSAC 2006, Genoa, Italy,
July 9-12, 2006, Proceedings. 2006, pp. 138–145. doi: 10.1145/1145768.
1145795.

[Hoe97] Joris van der Hoeven. “Asymptotique automatique”. PhD thesis. École
polytechnique, France, 1997, pp. 177–179.

168

https://golang.org/pkg/math/big/
https://gnupg.org/software/libgcrypt/
https://gnupg.org/software/libgcrypt/
https://doi.org/10.1145/73833.73857
https://hal.archives-ouvertes.fr/hal-02070778
https://hal.archives-ouvertes.fr/hal-02070778
https://doi.org/10.1109/38.41469
https://ginac.de/CLN/
https://doi.org/10.1016/j.tcs.2005.09.060
https://doi.org/10.1016/j.tcs.2005.09.060
https://doi.org/10.1016/j.jsc.2006.04.008
https://doi.org/10.1016/j.jsc.2006.04.008
https://doi.org/10.1145/1145768.1145795
https://doi.org/10.1145/1145768.1145795

References

[Hof01] Christoph M. Hoffmann. “Robustness in Geometric Computations”. In:
Journal of Computing and Information Science in Engineering 1.2 (2001),
pp. 143–155. doi: 10.1115/1.1375815.

[HS06] Joris van der Hoeven and John Shackell. “Complexity bounds for zero-test
algorithms”. In: Journal of Symbolic Computation 41.9 (2006), pp. 1004–
1020. doi: 10.1016/j.jsc.2006.06.001.

[IE754] “IEEE Standard for Floating-Point Arithmetic”. In: IEEE Std 754-2008
(Aug. 2008), pp. 1–70. doi: 10.1109/IEEESTD.2008.4610935.

[Jai93] Philippe Jaillon. “Proposition d’une arithmétique rationnelle paresseuse et
d’un outil d’aide à la saisie d’objets en synthèse d’images. (Proposal for a
Lazy Rational Arithmetic and a Tool for the Simplification of the input of
Objects in Computer Graphics)”. PhD thesis. École nationale supérieure
des mines de Saint-Étienne, France, 1993. url: https://tel.archives-
ouvertes.fr/tel-00822902.

[Jav19] Oracle Corporation. Documentation of the class BigInteger. Java. Version 12.
Mar. 25, 2019. url: https://docs.oracle.com/javase/7/docs/api/
java/math/BigInteger.html.

[JS19] Mozilla Foundation. Documentation of the BigInt object in JavaScript.
Aug. 26, 2019. url: https://developer.mozilla.org/en- US/docs/
Web/JavaScript/Reference/Global_Objects/BigInt.

[Kar+99] Vijay Karamcheti, Chen Li, Igor Pechtchanski, and Chee-Keng Yap. “A Core
Library for Robust Numeric and Geometric Computation”. In: Proceedings
of the Fifteenth Annual Symposium on Computational Geometry, Miami
Beach, Florida, USA, June 13-16, 1999. 1999, pp. 351–359. doi: 10.1145/
304893.304989.

[Ket+08] Lutz Kettner, Kurt Mehlhorn, Sylvain Pion, Stefan Schirra, and Chee-Keng
Yap. “Classroom examples of robustness problems in geometric computa-
tions”. In: Computational Geometry 40.1 (2008), pp. 61–78. doi: 10.1016/
j.comgeo.2007.06.003.

[KLN91] Michael S. Karasick, Derek Lieber, and Lee R. Nackman. “Efficient Delaunay
Triangulation using Rational Arithmetic”. In: ACM Trans. Graph. 10.1
(1991), pp. 71–91. doi: 10.1145/99902.99905.

[Knu92] Donald E. Knuth. “Parsimonious algorithms”. In: Axioms and Hulls. Vol. 606.
Lecture Notes in Computer Science. Springer, 1992, pp. 61–67. isbn: 3-540-
55611-7. doi: 10.1007/3-540-55611-7.

[KO62] Anatolii Alexeevich Karatsuba and Yuri Petrovich Ofman. “Multiplication
of many-digital numbers by automatic computers”. In: Doklady Akademii
Nauk. Vol. 145. 2. Russian Academy of Sciences. 1962, pp. 293–294.

[Ko91] Ker-I Ko. Complexity Theory of Real Functions. Birkhäuser / Springer, 1991.
isbn: 978-1-4684-6802-1. doi: 10.1007/978-1-4684-6802-1.

169

https://doi.org/10.1115/1.1375815
https://doi.org/10.1016/j.jsc.2006.06.001
https://doi.org/10.1109/IEEESTD.2008.4610935
https://tel.archives-ouvertes.fr/tel-00822902
https://tel.archives-ouvertes.fr/tel-00822902
https://docs.oracle.com/javase/7/docs/api/java/math/BigInteger.html
https://docs.oracle.com/javase/7/docs/api/java/math/BigInteger.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt
https://doi.org/10.1145/304893.304989
https://doi.org/10.1145/304893.304989
https://doi.org/10.1016/j.comgeo.2007.06.003
https://doi.org/10.1016/j.comgeo.2007.06.003
https://doi.org/10.1145/99902.99905
https://doi.org/10.1007/3-540-55611-7
https://doi.org/10.1007/978-1-4684-6802-1

References

[KR06] Vladik Kreinovich and Siegfried M. Rump. “Towards Optimal Use of Multi-
Precision Arithmetic: A Remark”. In: Reliable Computing 12.5 (2006),
pp. 365–369. doi: 10.1007/s11155-006-9007-4.

[KS99] Simon Kahan and Jack Snoeyink. “On the bit complexity of minimum link
paths: Superquadratic algorithms for problem solvable in linear time”. In:
Computational Geometry 12.1-2 (1999), pp. 33–44. doi: 10.1016/S0925-
7721(98)00041-8.

[Kus84] Boris Abramovich Kushner. Lectures on constructive mathematical analysis.
Vol. 60. Providence, Rhode Island: American Mathematical Society, 1984.

[Lam07] Branimir Lambov. “RealLib: An efficient implementation of exact real
arithmetic”. In: Mathematical Structures in Computer Science 17.1 (2007),
pp. 81–98. doi: 10.1017/S0960129506005822.

[Lév16] Bruno Lévy. “Robustness and efficiency of geometric programs: The Predi-
cate Construction Kit (PCK)”. In: Computer-Aided Design 72 (2016), pp. 3–
12. doi: 10.1016/j.cad.2015.10.004.

[Liu+16] Yong-Jin Liu, Cheng-Chi Yu, Minjing Yu, Kai Tang, and Deok-Soo Kim.
“A Robust Divide and Conquer Algorithm for Progressive Medial Axes of
Planar Shapes”. In: IEEE Transactions on Visualization and Computer
Graphics 22.12 (2016), pp. 2522–2536. doi: 10.1109/TVCG.2015.2511739.

[LPY05] Chen Li, Sylvain Pion, and Chee-Keng Yap. “Recent progress in exact geo-
metric computation”. In: The Journal of Logic and Algebraic Programming
64.1 (2005), pp. 85–111. doi: 10.1016/j.jlap.2004.07.006.

[LTM19] Team libtom. The LibTomMath library. Version 1.1.0. Jan. 28, 2019. url:
https://www.libtom.net/LibTomMath/.

[LY01] Chen Li and Chee-Keng Yap. “A new constructive root bound for algebraic
expressions”. In: Proceedings of the Twelfth Annual Symposium on Discrete
Algorithms, January 7-9, 2001, Washington, DC, USA. 2001, pp. 496–505.

[LY07] Yong Li and Jun-Hai Yong. “Efficient Exact Arithmetic over Construc-
tive Reals”. In: Theory and Applications of Models of Computation, 4th
International Conference, TAMC 2007, Shanghai, China, May 22-25, 2007,
Proceedings. 2007, pp. 440–449. doi: 10.1007/978-3-540-72504-6_40.

[Mah62] Kurt Mahler. “On some inequalities for polynomials in several variables”.
In: Journal of the London Mathematical Society 37.1 (1962), pp. 341–344.

[Maz63] Stanisław Mazur. Computable analysis. Vol. 33. Rozprawy Matematyczne.
Warsaw, 1963.

[Mbed19] ARM Limited. The mbed TLS library. Version 2.16.2. June 11, 2019. url:
https://tls.mbed.org/.

[Mig82] Maurice Mignotte. “Identification of Algebraic Numbers”. In: Journal of
Algorithms 3.3 (1982), pp. 197–204. doi: 10.1016/0196-6774(82)90019-0.

170

https://doi.org/10.1007/s11155-006-9007-4
https://doi.org/10.1016/S0925-7721(98)00041-8
https://doi.org/10.1016/S0925-7721(98)00041-8
https://doi.org/10.1017/S0960129506005822
https://doi.org/10.1016/j.cad.2015.10.004
https://doi.org/10.1109/TVCG.2015.2511739
https://doi.org/10.1016/j.jlap.2004.07.006
https://www.libtom.net/LibTomMath/
https://doi.org/10.1007/978-3-540-72504-6_40
https://tls.mbed.org/
https://doi.org/10.1016/0196-6774(82)90019-0

References

[Mil88] Victor Milenkovic. “Verifiable Implementations of Geometric Algorithms
Using Finite Precision Arithmetic”. In: Artificial Intelligence 37.1-3 (1988),
pp. 377–401. doi: 10.1016/0004-3702(88)90061-6.

[MK19] John Maddock and Christopher Kormanyos. Boost.Multiprecision Library
Documentation. Boost. Version 1.71.0. Apr. 12, 2019. url: https://www.
boost.org/doc/libs/1_71_0/libs/multiprecision/.

[ML73] Jayanti C. Majithia and D. Levan. “A note on base-2 logarithm compu-
tations”. In: Proceedings of the IEEE 61.10 (1973), pp. 1519–1520. doi:
10.1109/PROC.1973.9318.

[MN89] Kurt Mehlhorn and Stefan Näher. “LEDA: A Library of Efficient Data
Types and Algorithms”. In: Mathematical Foundations of Computer Science
1989, MFCS’89, Porabka-Kozubnik, Poland, August 28 - September 1, 1989,
Proceedings. 1989, pp. 88–106. doi: 10.1007/3-540-51486-4_58.

[MN99] Kurt Mehlhorn and Stefan Näher. LEDA: A Platform for Combinatorial and
Geometric Computing. Cambridge University Press, 1999. isbn: 0-521-56329-
1. url: https://people.mpi-inf.mpg.de/~mehlhorn/LEDAbook.html.

[Mnë88] Nikolai E. Mnëv. “The universality theorems on the classification problem
of configuration varieties and convex polytopes varieties”. In: Topology and
geometry - Rohlin seminar. Ed. by Oleg Yanovich Viro and Anatoly Moisee-
vich Vershik. Vol. 1346. Lecture Notes in Mathematics. Berlin, Heidelberg,
1988, pp. 527–543.

[Moo19] Paul Moore. Boost.Rational Library Documentation. Boost. Version 1.71.0.
Apr. 12, 2019. url: https://www.boost.org/doc/libs/1_71_0/libs/
rational/.

[Mör10] Marc Mörig. “Deferring Dag Construction by Storing Sums of Floats Speeds-
Up Exact Decision Computations Based on Expression Dags”. In: Mathemat-
ical Software - ICMS 2010, Third International Congress on Mathematical
Software, Kobe, Japan, September 13-17, 2010. Proceedings. 2010, pp. 109–
120. doi: 10.1007/978-3-642-15582-6_23.

[Mör15a] Marc Mörig. “Algorithm Engineering for Expression Dag Based Number
Types”. PhD thesis. Otto-von-Guericke Universität Magdeburg, 2015. url:
http://dx.doi.org/10.25673/4246.

[Mör15b] Marc Mörig. “Another Classroom Example of Robustness Problems in
Planar Convex Hull Computation”. In: Mathematical Aspects of Computer
and Information Sciences - 6th International Conference, MACIS 2015,
Berlin, Germany, November 11-13, 2015, Revised Selected Papers. 2015,
pp. 446–450. doi: 10.1007/978-3-319-32859-1_38.

[MPB19] Guillaume Melquiond, Sylvain Pion, and Hervé Brönnimann. Boost Interval
Arithmetic Library Documentation. Boost. Version 1.71.0. Apr. 12, 2019. url:
https://www.boost.org/doc/libs/1_71_0/libs/numeric/interval/.

171

https://doi.org/10.1016/0004-3702(88)90061-6
https://www.boost.org/doc/libs/1_71_0/libs/multiprecision/
https://www.boost.org/doc/libs/1_71_0/libs/multiprecision/
https://doi.org/10.1109/PROC.1973.9318
https://doi.org/10.1007/3-540-51486-4_58
https://people.mpi-inf.mpg.de/~mehlhorn/LEDAbook.html
https://www.boost.org/doc/libs/1_71_0/libs/rational/
https://www.boost.org/doc/libs/1_71_0/libs/rational/
https://doi.org/10.1007/978-3-642-15582-6_23
http://dx.doi.org/10.25673/4246
https://doi.org/10.1007/978-3-319-32859-1_38
https://www.boost.org/doc/libs/1_71_0/libs/numeric/interval/

References

[MRS10] Marc Mörig, Ivo Rössling, and Stefan Schirra. “On Design and Implementa-
tion of a Generic Number Type for Real Algebraic Number Computations
Based on Expression Dags”. In:Mathematics in Computer Science 4.4 (2010),
pp. 539–556. doi: 10.1007/s11786-011-0086-1.

[MS07] Marc Mörig and Stefan Schirra. “On the Design and Performance of Reliable
Geometric Predicates using Error-free Transformations and Exact Sign of
Sum Algorithms”. In: Proceedings of the 19th Annual Canadian Conference
on Computational Geometry, CCCG 2007, August 20-22, 2007, Carleton
University, Ottawa, Canada. 2007, pp. 45–48.

[MS10] Matthias Müller-Hannemann and Stefan Schirra, eds. Algorithm Engineering:
Bridging the Gap between Algorithm Theory and Practice. Vol. 5971. Lecture
Notes in Computer Science. Springer, 2010. isbn: 978-3-642-14865-1. doi:
10.1007/978-3-642-14866-8.

[MS15] Marc Mörig and Stefan Schirra. “Precision-Driven Computation in the
Evaluation of Expression-Dags with Common Subexpressions: Problems
and Solutions”. In: 6th International Conference on Mathematical Aspects
of Computer and Information Sciences, MACIS. 2015, pp. 451–465. doi:
10.1007/978-3-319-32859-1_39.

[Mül00] Norbert Th. Müller. “The iRRAM: Exact Arithmetic in C++”. In: Com-
putability and Complexity in Analysis, 4th International Workshop, CCA
2000, Swansea, UK, September 17-19, 2000, Selected Papers. 2000, pp. 222–
252. doi: 10.1007/3-540-45335-0_14.

[OF97] Stuart F. Oberman and Michael J. Flynn. “Division Algorithms and Imple-
mentations”. In: IEEE Transactions on Computers 46.8 (1997), pp. 833–854.
doi: 10.1109/12.609274.

[OSSL19] OpenSSL Software Foundation. The OpenSSL Toolkit. Version 1.1.1. May 28,
2019. url: https://www.openssl.org/.

[Ouc97] Kouji Ouchi. “Real/Expr: Implementation of an exact computation package”.
MA thesis. New York University, Department of Computer Science, Courant
Institute, 1997.

[PF11] Sylvain Pion and Andreas Fabri. “A generic lazy evaluation scheme for
exact geometric computations”. In: Science of Computer Programming 76.4
(2011), pp. 307–323. doi: 10.1016/j.scico.2010.09.003.

[PFM74] Michael S. Paterson, Michael J. Fischer, and Albert R. Meyer. An Improved
Overlap Argument for On-Line Multiplication. Tech. rep. Massachusetts
Institute of Technology, 1974.

[PHP19] The PHP group. BCMath Arbitrary Precision Mathematics. PHP. Ver-
sion 7.3.9. Aug. 29, 2019. url: https://www.php.net/manual/en/book.
bc.php.

172

https://doi.org/10.1007/s11786-011-0086-1
https://doi.org/10.1007/978-3-642-14866-8
https://doi.org/10.1007/978-3-319-32859-1_39
https://doi.org/10.1007/3-540-45335-0_14
https://doi.org/10.1109/12.609274
https://www.openssl.org/
https://doi.org/10.1016/j.scico.2010.09.003
https://www.php.net/manual/en/book.bc.php
https://www.php.net/manual/en/book.bc.php

References

[PR89] Marian Boykan Pour-El and Jonathan Ian Richards. Computability in anal-
ysis and physics. Perspectives in Mathematical Logic. Springer, 1989. isbn:
978-3-540-50035-3.

[Prl19] Perl 5 Porters. Documentation of the bigint pragma. Perl. Version 5.30.0.
May 22, 2019. url: https://perldoc.perl.org/bigint.html.

[PY06] Sylvain Pion and Chee-Keng Yap. “Constructive root bound for k-ary
rational input numbers”. In: Theoretical Computer Science 369.1-3 (2006),
pp. 361–376. doi: 10.1016/j.tcs.2006.09.010.

[Pyt19] Python Software Foundation. Documentation of the numeric types in Python.
Python. Version 3.7.4. July 8, 2019. url: https://docs.python.org/3/
library/stdtypes.html#typesnumeric.

[QYZ19] Meng Qi, Ke Yan, and Yuanjie Zheng. “GPredicates: GPU Implementation
of Robust and Adaptive Floating-Point Predicates for Computational Geom-
etry”. In: IEEE Access 7 (2019), pp. 60868–60876. doi: 10.1109/ACCESS.
2019.2911641.

[RA15] Marc Mörig and Stefan Schirra. RealAlgebraic - a number type for exact
geometric computation. Nov. 30, 2015. url: http://www.isg.cs.uni-
magdeburg.de/ag/RealAlgebraic/.

[RE03] Daniel Richardson and Ahmed El-Sonbaty. “Use of algebraically independent
numbers for zero recognition of polynomial terms”. In: Journal of Complexity
19.5 (2003), pp. 631–637. doi: 10.1016/S0885-064X(03)00047-5.

[RE06] Daniel Richardson and Ahmed El-Sonbaty. “Counterexamples to the uni-
formity conjecture”. In: Computational Geometry 33.1-2 (2006), pp. 58–64.
doi: 10.1016/j.comgeo.2004.02.005.

[Ric00] Daniel Richardson. “The Uniformity Conjecture”. In: Computability and
Complexity in Analysis, 4th International Workshop, CCA 2000, Swansea,
UK, September 17-19, 2000, Selected Papers. 2000, pp. 253–272. doi: 10.
1007/3-540-45335-0_15.

[Ric97] Daniel Richardson. “How to Recognize Zero”. In: Journal of Symbolic Com-
putation 24.6 (1997), pp. 627–645. doi: 10.1006/jsco.1997.0157.

[Ros39] John Barkley Rosser Sr. “An Informal Exposition of Proofs of Gödel’s
Theorems and Church’s Theorem”. In: J. Symb. Log. 4.2 (1939), pp. 53–60.
doi: 10.2307/2269059.

[RR05] Nathalie Revol and Fabrice Rouillier. “Motivations for an Arbitrary Precision
Interval Arithmetic and the MPFI Library”. In: Reliable Computing 11.4
(2005), pp. 275–290. doi: 10.1007/s11155-005-6891-y.

[RR99] Helmut Ratschek and Jon G. Rokne. “Exact computation of the sign of
a finite sum”. In: Applied Mathematics and Computation 99.2-3 (1999),
pp. 99–127. doi: 10.1016/S0096-3003(98)00010-1.

173

https://perldoc.perl.org/bigint.html
https://doi.org/10.1016/j.tcs.2006.09.010
https://docs.python.org/3/library/stdtypes.html#typesnumeric
https://docs.python.org/3/library/stdtypes.html#typesnumeric
https://doi.org/10.1109/ACCESS.2019.2911641
https://doi.org/10.1109/ACCESS.2019.2911641
http://www.isg.cs.uni-magdeburg.de/ag/RealAlgebraic/
http://www.isg.cs.uni-magdeburg.de/ag/RealAlgebraic/
https://doi.org/10.1016/S0885-064X(03)00047-5
https://doi.org/10.1016/j.comgeo.2004.02.005
https://doi.org/10.1007/3-540-45335-0_15
https://doi.org/10.1007/3-540-45335-0_15
https://doi.org/10.1006/jsco.1997.0157
https://doi.org/10.2307/2269059
https://doi.org/10.1007/s11155-005-6891-y
https://doi.org/10.1016/S0096-3003(98)00010-1

References

[Rub19] Ruby Development Team. Documentation of the Integer object. Ruby. Ver-
sion 2.6.3. Apr. 17, 2019. url: https://ruby-doc.org/core-2.6.4/
Integer.html.

[San09] Peter Sanders. “Algorithm Engineering - An Attempt at a Definition”. In:
Efficient Algorithms, Essays Dedicated to Kurt Mehlhorn on the Occasion
of His 60th Birthday. 2009, pp. 321–340. doi: 10.1007/978-3-642-03456-
5_22.

[Sch00] Stefan Schirra. “Robustness and Precision Issues in Geometric Computation”.
In: Handbook of Computational Geometry. Elsevier, 2000, pp. 597–632.

[Sch04] Susanne Schmitt. Improved separation bounds for the diamond operator. Re-
port ECG-TR-363108-01. Sophia Antipolis, France: Effective Computational
Geometry for Curves and Surfaces, 2004.

[Sch05] Susanne Schmitt. “The Diamond Operator - Implementation of Exact Real
Algebraic Numbers”. In: Computer Algebra in Scientific Computing, 8th
International Workshop, CASC 2005, Kalamata, Greece, September 12-16,
2005, Proceedings. 2005, pp. 355–366. doi: 10.1007/11555964_30.

[Sch09] Stefan Schirra. “Much Ado about Zero”. In: Efficient Algorithms, Essays
Dedicated to Kurt Mehlhorn on the Occasion of His 60th Birthday. 2009,
pp. 408–421. doi: 10.1007/978-3-642-03456-5_27.

[Sch91] Peter Schorn. “Robust algorithms in a program library for geometric com-
putation”. PhD thesis. Swiss Federal Institute of Technology Zürich, 1991.
doi: 10.3929/ethz-a-000604568.

[Sek04] Hiroshi Sekigawa. “Zero determination of algebraic numbers using approxi-
mate computation and its application to algorithms in computer algebra”.
PhD thesis. PhD thesis, University of Tokyo, 2004.

[Sha78] Michael Ian Shamos. “Computational Geometry”. PhD thesis. Yale Univer-
sity, 1978.

[She97] Jonathan Richard Shewchuk. “Adaptive Precision Floating-Point Arithmetic
and Fast Robust Geometric Predicates”. In: Discrete & Computational
Geometry 18.3 (1997), pp. 305–368. doi: 10.1007/PL00009321.

[SI89] Kokichi Sugihara and Masao Iri. “Two design principles of geometric algo-
rithms in finite-precision arithmetic”. In: Applied Mathematics Letters 2.2
(1989), pp. 203–206. doi: 10.1016/0893-9659(89)90022-0.

[SS09] Kiyoshi Shirayanagi and Hiroshi Sekigawa. “Reducing exact computations
to obtain exact results based on stabilization techniques”. In: Symbolic
Numeric Computation, SNC ’09, Kyoto, Japan - August 03 - 05, 2009. 2009,
pp. 191–198. doi: 10.1145/1577190.1577219.

[SS71] Arnold Schönhage and Volker Strassen. “Schnelle Multiplikation großer
Zahlen”. In: Computing 7.3-4 (1971), pp. 281–292. doi: 10.1007/BF02242355.

174

https://ruby-doc.org/core-2.6.4/Integer.html
https://ruby-doc.org/core-2.6.4/Integer.html
https://doi.org/10.1007/978-3-642-03456-5_22
https://doi.org/10.1007/978-3-642-03456-5_22
https://doi.org/10.1007/11555964_30
https://doi.org/10.1007/978-3-642-03456-5_27
https://doi.org/10.3929/ethz-a-000604568
https://doi.org/10.1007/PL00009321
https://doi.org/10.1016/0893-9659(89)90022-0
https://doi.org/10.1145/1577190.1577219
https://doi.org/10.1007/BF02242355

References

[ST05] Håkan Sundell and Philippas Tsigas. “Fast and lock-free concurrent priority
queues for multi-thread systems”. In: Journal of Parallel and Distributed
Computing 65.5 (2005), pp. 609–627. doi: 10.1016/j.jpdc.2004.12.005.

[Ste73] Pat H Sterbenz. Floating-point computation. Englewood Cliffs, New Jersey:
Prentice-Hall, 1973.

[Sug+00] Kokichi Sugihara, Masao Iri, Hiroshi Inagaki, and Toshiyuki Imai. “Topology-
Oriented Implementation - An Approach to Robust Geometric Algorithms”.
In: Algorithmica 27.1 (2000), pp. 5–20. doi: 10.1007/s004530010002.

[SVH89] Bernard Serpette, Jean Vuillemin, and Jean-Claude Hervé. BigNum: A
Portable and Efficient Package for Arbitrary-Precision Arithmetic. Tech. rep.
2. 1989. url: https://sourceforge.net/projects/bigz/.

[SW17] Stefan Schirra and Martin Wilhelm. “On Interval Methods with Zero Rewrit-
ing and Exact Geometric Computation”. In: Mathematical Aspects of Com-
puter and Information Sciences - 7th International Conference, MACIS
2017, Vienna, Austria, November 15-17, 2017, Proceedings. 2017, pp. 211–
226. doi: 10.1007/978-3-319-72453-9_15.

[Too63] Andrei Leonovich Toom. “The complexity of a scheme of functional elements
realizing the multiplication of integers”. In: Soviet Mathematics Doklady.
Vol. 3. 4. 1963, pp. 714–716.

[Tur37] Alan Mathison Turing. “On computable numbers, with an application to
the Entscheidungsproblem”. In: Proceedings of the London mathematical
society 2.1 (1937), pp. 230–265. doi: 10.1112/plms/s2-42.1.230.

[Uhr17] Christian Uhrig. The LEDA User Manual. Version 6.5. Apr. 7, 2017. url:
http://www.algorithmic-solutions.info/leda_manual/MANUAL.html.

[Wei00] Klaus Weihrauch. Computable Analysis - An Introduction. Texts in Theoret-
ical Computer Science. An EATCS Series. Springer, 2000. isbn: 978-3-540-
66817-6. doi: 10.1007/978-3-642-56999-9.

[Wil17] Martin Wilhelm. “Balancing Expression Dags for More Efficient Lazy Adap-
tive Evaluation”. In: Mathematical Aspects of Computer and Information
Sciences - 7th International Conference, MACIS 2017, Vienna, Austria,
November 15-17, 2017, Proceedings. 2017, pp. 19–33. doi: 10.1007/978-3-
319-72453-9_2.

[Wil18a] Martin Wilhelm. Multithreading for the expression-dag-based number type
Real_algebraic. Tech. rep. FIN-001-2018. Otto-von-Guericke-Universität
Magdeburg, 2018.

[Wil18b] Martin Wilhelm. “On error representation in exact-decisions number types”.
In: Proceedings of the 30th Canadian Conference on Computational Geom-
etry, CCCG 2018, August 8-10, 2018, University of Manitoba, Winnipeg,
Manitoba, Canada. 2018, pp. 367–373.

175

https://doi.org/10.1016/j.jpdc.2004.12.005
https://doi.org/10.1007/s004530010002
https://sourceforge.net/projects/bigz/
https://doi.org/10.1007/978-3-319-72453-9_15
https://doi.org/10.1112/plms/s2-42.1.230
http://www.algorithmic-solutions.info/leda_manual/MANUAL.html
https://doi.org/10.1007/978-3-642-56999-9
https://doi.org/10.1007/978-3-319-72453-9_2
https://doi.org/10.1007/978-3-319-72453-9_2

References

[Wil18c] Martin Wilhelm. “Restructuring Expression Dags for Efficient Paralleliza-
tion”. In: 17th International Symposium on Experimental Algorithms, SEA
2018, June 27-29, 2018, L’Aquila, Italy. 2018, 20:1–20:13. doi: 10.4230/
LIPIcs.SEA.2018.20.

[Yap97] Chee-Keng Yap. “Towards Exact Geometric Computation”. In: Computa-
tional Geometry 7 (1997), pp. 3–23. doi: 10.1016/0925-7721(95)00040-2.

[Yap98] Chee-Keng Yap. “A new number core for robust numerical and geomet-
ric libraries”. In: 3rd CGC Workshop on Geometric Computing, Brown
University, Rhode Island, USA, Oct 11-12, 1998. Invited Talk. 1998.

[YD95] Chee-Keng Yap and Thomas Dubé. “The exact computation paradigm”. In:
Computing in Euclidean Geometry. World Scientific, 1995, pp. 452–492. doi:
10.1142/9789812831699_0011.

[Yu+10] Jihun Yu, Chee-Keng Yap, Zilin Du, Sylvain Pion, and Hervé Brönnimann.
“The Design of Core 2: A Library for Exact Numeric Computation in
Geometry and Algebra”. In: Proceedings of the Third International Congress
on Mathematical Software, ICMS. 2010, pp. 121–141. doi: 10.1007/978-3-
642-15582-6_24.

[ZFB93] Xiaohong Zhu, Shiaofen Fang, and Beat D. Brüderlin. “Obtaining robust
Boolean set operations for manifold solids by avoiding and eliminating
redundancy”. In: ACM Symposium on Solid Modeling Foundations and
CAD/CAM Applications, Montreal, Canada, May 19-21, 1993. 1993, pp. 147–
154. doi: 10.1145/164360.164413.

[ZXY16] Yinhe Zheng, Lu Xia, and Qingchun Yu. “Identifying rock blocks based on
exact arithmetic”. In: International Journal of Rock Mechanics and Mining
Sciences 86 (2016), pp. 80–90. doi: 10.1016/j.ijrmms.2016.03.020.

176

https://doi.org/10.4230/LIPIcs.SEA.2018.20
https://doi.org/10.4230/LIPIcs.SEA.2018.20
https://doi.org/10.1016/0925-7721(95)00040-2
https://doi.org/10.1142/9789812831699_0011
https://doi.org/10.1007/978-3-642-15582-6_24
https://doi.org/10.1007/978-3-642-15582-6_24
https://doi.org/10.1145/164360.164413
https://doi.org/10.1016/j.ijrmms.2016.03.020

Index

}, 46
|E|◦, 69
|E|•, 82
|X|l, 74
|E|l, 82
z̃, 46

absolute accuracy, 14
absolute cost

expression dag, 51
node, 54

absolute error, 14
accuracy, 14
accuracy increase, 52
accuracy-driven, 27
adaptive precision evaluation, 26
algebraic degree, 38
almost linear, 50
AM-Balancing, 76
arithmetic filtering, 20

balanced
Divide- or DAM-Structure, 82
expression dag, 56

balancing constraint, 58
BFMSS bound, 26
bigfloat, 13
bigint, 13
blocking node, 102
Brent Restructuring, 81

c(e), 50
cf (v), 59
cf (v, e), 59
cascading filter, 20

complete, 89
component depth, 82
components, 82
computable, 30
computable analysis, 30
computational geometry, 10
concept, 33
configuration, 33
constructive, 24
correction addend, 46
correctly rounded, 14
cost(v), 54
costf(P), 59
costp(E), 132
costt(P), 132
costt(v), 54
costv(E), 76
critical path, 132

DAM-Structure, 82
DAM(X), 82
decision, 18
default configuration, 109
defining path, 52
degree of invasiveness, 87
degree-measure bound, 24
depth(E), 55
depth(v), 55
depthc(E), 82
deptht

w (T), 104
depth prioritization, 135
depth weight error distribution, 145
Divide-Structure, 82
diamond operation, 24
distE(v), 55

177

Index

domain, 75
DS, 82

E(E), 44
E0(E), 44
E(P), 52
Em,p, 134
effective, 30
error, 14
error bound balancing, 57
error distribution, 44
evaluation event, 50
Exact Computation Paradigm, 18
exact conversion, 153
exact number type, 18
exact-decisions number type, 23
expression dag, 22
expression tree, 55

fixed cost, 59
Fixed Precision Paradigm, 18
floating-point filter, 20
fully binary, 54

H(E), 50

i(e), 52
i(P), 52
i(v), 52
indegree, 102
interval arithmetic, 20
invasive, 75

lazy, 21
leaf, 22
leaf weight, 106
level, 55
list-like, 55
LY bound, 25

magnitude, 14
maximal, 102
model, 33
multiple-precision number type, 13

natural extension, 45

non-invasive, 75

operand, 22
operands, 74
operator bound property, 93
operator constant, 46
operator dag, 74
operator increase, 95
operator number, 69
operator precision, 27, 44
operator tree, 75
operator weight, 70
optimal, 104
optimal error distribution, 58

P(E), 132
P(v), 52
p(v), 46
ph(v), 50
parallel cost, 132
path, 51
path weight, 59
path weight error distribution, 62
policy, 33
precision

number type, 14
operation, 15

q(E), 44
q(e), 44
q(v), 44
qh, 50
quasi-leaf, 54
quasi-unary, 54

r(v), 45
rh(v), 50
radical, 24
radical node, 39
RAM, 9
real algebraic, 24
real RAM, 10
recursive evaluation, 36
relative accuracy, 14
relative error, 14

178

Index

requested accuracy, 27, 44
required accuracy, 27, 44
restructuring algorithm, 75
robust, 10
root distance, 55
root path, 51

Sekigawa bound, 25
semi-invasive, 75
separation bound, 23
size, 14
stable, 10
standard error distribution, 55

t-weighted depth, 104
target accuracy, 52
target accuracy, 45
topological evaluation, 38
topological sorting, 37
tree leaf weight, 108
tree weight, 71
true cost

expression dag, 51
node, 54
path, 132

unit weight, 106

V(E), 44
V0(E), 44
V(P), 52
Vl(T), 102
valid, 58
variable cost, 76

w(e), 59
w(T), 104
w(v), 59
w(xj), 104
weighted operator dag, 104
weighted operator tree, 104
weighted restructuring algorithm, 104

z, 52

179

	Introduction
	The Real RAM Model
	The Robustness Problem in Computational Geometry

	Concepts
	Multiple-Precision Number Types
	Accuracy and Precision
	Operation Complexity
	Multiple-Precision Libraries

	Exact Number Types
	The Exact Computation Paradigm
	Rational Exact Computation
	Floating-Point Filters
	Arithmetic Expression DAGs
	Separation Bounds
	Accuracy-Driven Evaluation

	Effective Number Types

	A Configurable Expression DAG Policy for Real_algebraic
	The Number Type Real_algebraic
	LocalPolicy
	FilterPolicy
	ApproximationPolicy
	SeparationBound
	ExpressionDagPolicy

	The Class configurable_dag_node
	Preprocessing
	Evaluation
	Separation Bound Computation
	Error Handling

	Optimizing Expression DAGs for Large-Scale Computations
	The Cost of Evaluating Expression DAGs
	Accuracy Propagation
	The Cost Function
	Cost and Structure

	Error Bound Balancing
	The Path Weight Error Distribution
	Implementation
	Weight Heuristics

	Restructuring
	Preliminaries
	Non-Invasive Restructuring Methods
	Brent Restructuring
	Restructuring with Weighted Operands

	Experiments
	Experimental Setup
	Fixed-Accuracy Computation
	Exact Computation

	Exact Decisions in a Parallel Environment
	Parallel Evaluation Strategies
	Parallel Evaluation Cost
	Implementation
	Experimental Evaluation

	Dependency Reduction
	Restructuring in a Parallel Context
	Error Distributions for Multithreading

	Error Bounds and Floating-Point Numbers
	Error Bound Representation
	Conversion Between Representations
	Exponent Representations for Fixed-Precision Computation
	Floating-Point Exponents

	Rounding Floating-Point Operations
	Basic Arithmetic Operations
	Logarithm and Power

	Conclusion

