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Prediction-Based Search for Autonomous Game-Playing

Abstract

Simulation-based search algorithms have been widely applied in the context of
autonomous game-playing. Their flexibility allows for the rapid development of
agents that are able to achieve satisfying performance in many problem domains.
However, these algorithms share two requirements, namely, access to a forward
model and full knowledge of the environment’s state. In this thesis, simulation-
based search algorithms will be adapted to tasks in which either the forward model
or the state of the environment is unknown.

To play a game without a forward model, methods for learning the environ-
ment’s model from recent interactions between the agent and the environment are
proposed. These forward model learning techniques allow the agent to predict the
outcome of its actions, and therefore, enable a prediction-based search process. An
analysis of environment models shows how they can be represented and learned
in the form of an end-to-end forward model. Based on this general approach,
three methods are proposed which reduce the number of possible models and,
thus, the training time required. The proposed forward model learning techniques
are evaluated according to their applicability to general game-learning tasks and
validated based on a wide variety of games. The results show the applicabil-
ity of prediction-based search agents for games where the forward model is not
accessible.

In case the environment’s state cannot be fully observed by the agent and the
number of possible states is low, state determinisation methods, which uniformly
sample possible states have shown to perform well. However, if the number of
states is high, the uniform state sampling approach performs worse than non-
determinising search methods due to the search process spending too much time on
unlikely states. In this thesis, two methods for predictive state determinisation are
proposed. These sample probable states based on the agent’s partial observation
of the current state and a database of previously played games, which allows
the agent to focus its search process on likely states. Proposed algorithms are
evaluated in terms of their prediction accuracy and game-playing performance
in the context of the collectible card game Hearthstone. Results show that the
implemented agent outperforms other state-of-the-art agents in case the replay
database is representative for the state distribution.
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Zusammenfassung

Simulationsbasierte Suchalgorithmen sind im Rahmen autonom spielender
Agenten weit verbreitet. Ihre Flexibilität ermöglicht die schnelle Entwicklung von
Agenten, welche in der Lage sind, in vielen Problembereichen eine zufriedenstellen-
de Leistung zu erzielen. Allerdings teilen diese Algorithmen zwei Anforderungen:
den Zugang zu einem forward model, welches die Zustandsveränderungen der
Umgebung bezüglich der Aktionen des Agenten beschreibt, und die vollständige
Kenntnis des Umgebungszustands. In dieser Arbeit werden prädikionsbasierte
Suchalgorithmen entwickelt, welche ohne die Kenntnis eines forward models oder
den Zustand der Umgebung verwendet werden können.

Um Spiele ohne die Kenntnis eines forward models zu spielen, werden Methoden
zum Erlernen des Modells aus den bisherigen Interaktionen zwischen dem Agenten
und der Umgebung entwickelt. Diese forward model learning Methoden ermöglichen
es dem Agenten einen prädiktionsbasierten Suchprozess durchzuführen. Eine
Analyse dieser Modelle zeigt, wie sie in Form eines End-to-End-Forward-Modells
dargestellt und erlernt werden können. Basierend auf diesem allgemeinen Ansatz
werden drei weitere Methoden vorgeschlagen, die die Anzahl der möglichen Modelle
und damit die benötigte Trainingszeit reduzieren. Im folgenden, werden diese
Lernmodelle hinsichtlich ihrer Anwendbarkeit auf general game-learning Probleme
bewertet und auf der Grundlage einer Vielzahl von Spielen validiert. Die Ergebnisse
zeigen die Anwendbarkeit der prädiktionsbasierten Suche für Spiele, bei denen
das forward model nicht zugänglich ist.

Falls der Agent den Zustand seiner Umgebung nicht vollständig beobachten
kann und die Anzahl der möglichen Zustände gering ist, haben sich Zustands-
determinierungsverfahren bewährt. Mit Hilfe dieser, werden statt eines einzigen
Zustands mehrerere mögliche Zustände betrachtet und darauf basierend eine ge-
eignete Aktion gewählt. Ist die Anzahl der Zustände jedoch hoch, schneiden existie-
rende Zustandsdeterminierungsverfahren schlechter ab als nicht-determinierende
Suchmethoden, da erstere unwahrscheinlichen Zuständen zu viel Gewicht beimes-
sen. In dieser Arbeit werden zwei Methoden zur prädiktiven Zustandsbestimmung
vorgeschlagen. Diese prognostizieren den aktuellen Zustand basierend auf dem bis-
herigen Spielverlauf und einer Datenbank früherer Spielverläufe. Dies ermöglicht
es dem Agenten, seinen Suchprozess auf wahrscheinliche Zustände zu konzen-
trieren. Die vorgeschlagenen Algorithmen werden im Rahmen des Sammelkar-
tenspiels Hearthstone hinsichtlich ihrer Vorhersagegenauigkeit und Spielleistung
bewertet. Die Ergebnisse zeigen, dass der implementierte Agent andere State-of-
the-Art-Methoden übertrifft, falls die verwendete Datenbank repräsentativ für die
tatsächliche Wahrscheinlichkeitsverteilung auftretender Zustände ist.
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1
Introduction

1.1 Background and Research Topic

The development of artificial general intelligence is one of the key long term
goals in artificial intelligence (AI) research. This includes the development
of intelligent algorithms that can handle a variety of problems. While AI
methods have produced many successful applications in recent years, the
capabilities of AI agents are often limited to very specific problem scenarios.
Observing how the human brain is capable of complex reasoning and adapt-
ing to new contexts, tasks, and environments, research in AI is still falling
behind in developing similarly behaving computer agents.

The research in artificial general intelligence can be divided into the
model-oriented and the application-oriented view. In the model-oriented
view, the capabilities of the human brain are analysed and partly reverse
engineered. Projects such as the Human Brain Project [105] try to reconstruct
the entirety of neuronal connections in the human brain. Another approach
is the model-based reverse engineering of the brain’s capabilities as it is
the case with e.g. the COG architecture [70–72] or MicroPsi [9, 10]. These
architectures are rooted in a psychological theory of motivation and problem-
solving. They have become increasingly complex in recent years, but their
applications still seem to be very limited. Evaluating the capabilities of these
frameworks is hard due to their promised generality. In contrast, in the
application-oriented view, solutions are created by analyzing increasingly
complex problems. While each of these solutions is often restricted to a
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2 CHAPTER 1. INTRODUCTION

specific application, the applications have become more advanced throughout
the years. The natural advantage of this approach is the comparability of
developed frameworks based on the task at hand.

Games, especially digital games, can be useful tools in the development
and assessment of artificial general intelligence. Not only do they often have
clear and quantifiable goals, but also require complex reasoning processes.
Digital games additionally have the advantage to be fully accessible to com-
puters, letting us configure their in- and output without much engineering
overhead. Since games are also played by human players, they allow for
interesting human-computer-interactions as well as provide us with large
data sets of human playing behaviour.

One of the most popular examples of artificial intelligence in games is
the development of Chess AI agents. In the early ages of AI research, it was
widely believed that playing Chess on a competitive level will be a sufficient
feature of general AI. As such, for many years research in computational
intelligence in games focused on the development of game AI, which is
capable of playing one specific game.

In 1997 IBM developed Deep Blue [31], the first Chess-playing computer
agent capable of beating Garry Kasparov, the reigning Chess world champion
at that time. Deep Blue combined the knowledge of multiple Chess experts
with the computational power of a computer that can search through millions
of positions per second. While at this time it was generally accepted that
playing Chess is a good way of measuring the capabilities of AI techniques,
the proposed solution was more a feat of human engineering than a proof of
strong AI. Nevertheless, it remains one of the great milestones in the history
of computational intelligence in games.

What began with Chess was continued with the analysis of a wide variety
of games. The next major goal became the development of an agent playing
the board game Go on a competitive level [25]. While storing the whole
game-tree is infeasible with today’s memory capacities, the recent success
of AlphaGo over the world-champion Lee Seedol proved that computers can
still successfully play the game on a human expert level and beyond [158].
The development of AlphaZero [159, 160] further proved that similar game-
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playing performance can be reached without access to any human player
data. More importantly, AlphaZero’s learning generalised well to Chess and
Shogi.

Developing a single agent that is capable of playing multiple games
became known as general game-playing AI, which seems to be a promising
next step in enhancing the capabilities of AI agents [96]. In the study of
general games, the agent receives a description of the game in the form
of its state and action space as well as the game’s ruleset. During the
agent development phase, this information is unknown such that the agent
itself needs to learn how to play these games effectively. This task requires
the agent to combine knowledge representation, learning, reasoning, and
decision-making [68], thereby shifting the necessary expertise for playing
the game away from the agent’s engineer to the agent itself.

The study of general game-learning takes this task one step further by
also omitting the ruleset from the description of the game being played. This
minor change in the task description has a drastic effect on the agent’s
learning task. In general game-playing, the agent can use the known ruleset
for simulating the outcome of its actions and, therefore, search for suitable
actions by analyzing their results. However, general game-learning demands
the agent to also figure out the meaning of its actions and the objective of
the game while playing it [60].

In summary, the differences of single game-playing AI, general game-
playing AI, and general game-learning AI lie in the input given to the agent.
Single game AI assumes to have a perfect representation and understanding
of the rules at the time of development. In general game-playing AI, the
agent’s learning task is generalised across multiple games without knowing
the meaning of each game’s representation. General game-learning AI further
removes the knowledge of the rules.

1.1.1 Artificial Intelligence in Games

The current research is dominated by two algorithm classes, namely rein-
forcement learning and simulation-based search algorithms. Using either
in game-based scenarios resulted in many successful applications in board
and digital games, including traditional 2-player board games such as Chess,
Go, and Shogi [159, 160], partial information games such as Poker [147],
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Doppelkopf [49, 157], and Hearthstone [167], and complex strategy video
games such as the Civilization [11, 26] and the Total War series [35]. De-
spite their vastly different concepts, both algorithm classes have resulted in
top-performing AI agents. In the following, a short overview will be provided
to better understand their differences and their resulting strengths and
weaknesses.

Reinforcement Learning Reinforcement learning is a machine learning
strategy inspired by behavioural psychology. Its name draws from the
concept of reinforcing good actions by providing a reward or teaching to avoid
bad actions by punishments. The centre of this framework is a permanent
interaction loop between the agent and the environment. With each executed
action the environment updates its state and the agent receives some reward.
Through continuous interaction, the agent should be enabled to maximise
the expected reward by choosing promising actions based on its current
context.

Even though the learning strategies for estimating the expected reward
vary from algorithm to algorithm, the results have surpassed human expert
levels in many applications [115]. However, the training process can be
lengthy and requires huge amounts of simulation time and/or computational
power. Yet, the training procedure of many reinforcement methods converges
to the optimal value function. The necessary time for decision-making is
often marginal and only dependent on the number of actions that need to be
checked.

Simulation-based Search Simulation-based search algorithms, also known
as planning algorithms, do not need to be trained. In contrast to reinforce-
ment learning methods, they estimate the value of each action at run-time.
This is done by using the game’s ruleset to simulate the outcome of each
action. Subsequently, they are ranked by applying a scoring function to
their resulting state. The simulation process can be continued similarly
until a terminal state has been reached and the scoring function is based
on the outcome of each simulated game. Finally, the best-ranked action is
applied by the agent.
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Similar to reinforcement learning, simulation-based search agents were
widely applied in industrial and research contexts. As long as the agent has
access to the current state and a simulation method, the so-called forward
model, planning algorithms can yield a high performance without a lengthy
training process. Still, some of them are proven to converge to the optimal
action selection when enough decision-time is available.

Recent Studies on General Game-Playing and -Learning

Simulation-based search algorithms have the common advantage to perform
well without training. While reinforcement learning algorithms need time
to be trained, which needs to be repeated for every change in the game,
simulation-based search algorithms can be applied out-of-the-box. Therefore,
they are especially powerful throughout the development phase of a game,
during which parameters are bound to change due to balance adjustments.

Because of their flexibility, simulation-based search methods are also
known to excel in general game-playing [136]. The General Video Game
AI (GVGAI) competition [137] offers a framework for testing and comparing
agents on a variety of games. While playing a game in the GVGAI framework,
the agent can access its respective forward model. However, the agent is
restricted to respond to the current game state in not more than 40ms.
Submitted agents are rated based on their average performance in playing
each of 5 levels per game 10 times. The low number of trials as well as the
short time for decision-making makes it nearly impossible to train an agent
during the evaluation.

All the top-performing submissions were based on simulation-based
search methods, e.g. Monte Carlo Tree Search [84, 181], Open Loop Search
(OLS) [131] as well as the Rolling Horizon Evolutionary Algorithm [62, 63].
Additionally, a recent analysis of the agents’ robustness showed that these
simulation-based search algorithms tend to cope better with the introduction
of noise than planning algorithms such as A∗ [135].

The application of these algorithms, however, requires the mandatory
availability of two components, namely, a simulation method and a full
observation of the current state. To get a better understanding of the impact
of these components, scenarios, where either of these is not fulfilled, will be
discussed in the following.
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Game-Playing in Absence of a Forward Model

As previously discussed, general game-playing without knowing the ruleset,
and therefore not having access to a forward model, is also known as general
game-learning. In 2017 the GVGAI competition [136] introduced a general
game-learning track to compare agents based on how quickly they learn to
play simple arcade-like games. Without the provision of a forward model, the
agent is allowed to play the first 3 levels of a game for 5 minutes of training
time. After this initial training phase, the agents were evaluated based on
their performance on two previously unseen levels. Therefore, agents are
required to learn how to play a game in a very limited time frame just based
on a pixel- or object-based state representation.

Submissions of the game-playing track have shown that simulation-
based search algorithms can efficiently be used to play these games. monte
carlo tree search (MCTS), rolling horizon evolutionary algorithm and breadth-
first search have resulted in a good performance in deterministic games.
Due to the inclusion of non-deterministic games, the application of monte
carlo tree search variants such as open loop MCTS (OLMCTS) were studied
in multiple works (see a summary of agents in [131]). OLMCTS and other
tree searching algorithms such as open loop expectimax tree search are able
to quickly sample possible action sequences and evaluate their outcome.

The overall performance of agents in the game-playing track is already
good in terms of the agents’ win-rate and in some cases comparable to the
performance of human players. Despite being confronted with a previously
unknown game, the agents are often able to win a game or at least find
action sequences, which yield a high score. Due to the short training time,
the application of reinforcement learning algorithms has not been successful.
While these may be able to choose actions much quicker than search-based
agents, they also need to be extensively trained before being applied.

Results of the learning track indicate that none of the agents in the past
three years of the competition were able to play significantly better than a
random agent. Even if it is known that reinforcement learning can learn how
to play similarly complex games well (cf. [114, 115]), the short training time
makes it nearly impossible to effectively train model parameters based on
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the limited data available. Also, the application of simulation-based search
methods is restricted to algorithms that try to model the game’s features by
observation rather than using the forward model.

Despite the good results in the fields of single and general game-playing,
submissions to the single-player learning track of the GVGAI competition still
lack competitiveness. While algorithms like AlphaZero have shown to be able
to play multiple games on an expert level, these deep reinforcement learning-
based agents still require enormous amounts of processing power and
training time [160]. Results of the single-player learning track have shown
that none of the submitted agents is able to outperform a random agent when
being limited to just a few minutes of training time. Besides, simulation-
based search models that have proven capable of playing unknown games
without training time cannot currently be applied without a forward model.
Since reinforcement learning methods have already shown that it is possible
to learn an approximation of the environment’s reward function, it is a
promising research direction to do the same regarding the forward model.
Learning to replicate the environment’s forward model or approximating
its result may enable the agent to use simulation-based search algorithms
or provide a safe training environment for the training of reinforcement
learning-based agents.

Game-Playing in Absence of Complete Information on the Current State

Next to the problem of studying perfect information games, imperfect infor-
mation games pose additional unique requirements for the application of
simulation-based search methods. In a perfect information game, the agent
has the information on the initial setup of the environment and all previous
events as well as how they changed the environment’s state. Imperfect
information games, however, hide information from the agent [126], e.g. the
distribution of cards in a card game in which the agent does not know
its opponent’s cards. Since the agent does not know the complete state
of the environment it is missing critical information for the application of
simulation-based search algorithms.

In such a scenario the agent is forced to determine the current state based
on the available information. In this process, called “determinisation”, a
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hypothetical fully observable state is created in which all unknown variables
of the state description are determined by the agent. The generated state can
further be used for the application of simulation-based search methods [32].

The algorithm information set UCT [191] uses determinisation to fix
several complete information states and runs simulations on each of them.
Compatible simulations are combined throughout the simulation phase and
a final action is determined by aggregating the results of all simulations.
Experiments have shown that information set UCT is unable to outperform
determinised UCT in the general domain. Nevertheless, information set
UCT excelled in cases where access to hidden information has the greatest
impact on determining the results of the game [191]. Another example of
determinisation in simulation-based search is ensemble-UCT [157]. Here, the
agent determines several complete information games and runs a separate
search on each of them. Similar to information set UCT, the agent’s action
is selected according to the aggregation of each search process. Results
of ensemble-UCT have shown to outperform single state-determinisation
in case the number of possible states remains low. Experiments on the
German card game Doppelkopf showed a significant performance increase
in comparison to normal UCT.

A concept that is comparable to determinisation of the current state
is the inclusion of chance nodes to handle the determinisation of visited
states during the simulation. Here, the current state is assumed to be
known and the follow-up state to be determined by a probabilistic process.
Tree selection methods such as sparse UCT [20] and UCT+ [28] handle the
uncertainty by considering multiple child nodes or inserting chance nodes
in case the outcome of a decision is yet unknown. A promising but yet only
rarely researched aspect is the inclusion of background knowledge, such
as information on the probability distribution of states, in the game state
determinisation process. This idea was proposed by Ponsen et al. [141] who
used an opponent model for guiding the simulation to nodes with higher
probability.

The previously proposed solutions allow the application of simulation-
based search to imperfect information games. Both, the inclusion of chance
nodes and the ensemble approach, have already shown to benefit the game-
playing performance. Nevertheless, the discussed problem domains are
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low in complexity in comparison to perfect information games currently
being worked on. While the proposed tree selection methods allow the
consideration of multiple outcomes, they can also considerably increase
the breadth of the search tree in case many options exist. Additionally,
reviewing the sampling process shows that a uniform sampling during the
state determinisation often results in many simulations being spent on
unlikely states. Aggregating the results of multiple unlikely states can result
in bad decisions.

As an alternative, background knowledge may be used in accordance with
Bayesian inference to derive the current game state based on a database of
previously played games and the opponent’s previous actions. Studying new
methods for incorporating background knowledge, while also considering
multiple outcomes to reduce the risk of the decision-maker will be an
interesting research direction for improving the applicability of simulation-
based search.

1.2 Problem Definition and Research Questions

As previously discussed, simulation-based search algorithms can only be
applied in case the environment’s forward model and the current state is
known to the agent. This work aims to extend the applicability of simulation-
based search to scenarios that involve incomplete information on the game
state or its rules. The focus of this thesis will be to analyse applications in
which either of these two cannot be provided to an autonomous agent and
how available information can be used to optimise the agent’s behaviour.
Throughout this work, predictive models will be used to either learn an
approximation of the environment’s forward model or to provide a non-
uniform state determinisation sampling. These frameworks will be evaluated
on a set of real-world problems to test their applicability and study their
possible limits. This work will consist of three parts, which will be introduced
in the following paragraphs.

Review of Computational Intelligence in Games

In the first part of this work, the state-of-the-art in computational intelligence
in games will be reviewed. This review examines the possibilities and
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limitations of each method in the context of game-playing AI. Particular
attention is paid to a method’s restrictions in case the agent cannot access
the game’s forward model or fully observe its current state. Similarly, it
will be reviewed how existing methods and their extensions handle these
scenarios. This overview aims to answer the following research question:

Q1 Which methods exist and are applicable in case the agent cannot

access a game’s forward model or fully observe its current state?

Forward Model Learning

The forward model learning framework will deal with the problem of applying
a simulation-based search method without the provision of a forward model.
This task was introduced in the context of general game-learning. Here,
existing agents were not able to achieve an acceptable game-playing perfor-
mance in case the forward model cannot be accessed and the training time
is limited to a few attempts. In the past, neither simulation-based search
agents nor reinforcement learning-based agents were able to significantly
outperform a randomly acting baseline agent.

This work will explore the applicability of simulation-based search meth-
ods, which are known to perform well out-of-the-box in case access to a
forward model can be assured. For this purpose, predictive models will be
used to approximate the missing forward model based on the observation of
previous interactions between the agent and its environment.

To approach this problem, first, the basic characteristics of forward mod-
els will be studied. Furthermore, requirements for forward model learning
methods and the application of learned models in the context of a simulation-
based search will be discussed. This will allow to qualitatively compare
proposed forward model learning frameworks based on their characteristics.
The first question that is going to be answered is:

Q2.1 Which characteristics can be used to compare forward model

learning processes and their results?

Furthermore, this work will concentrate on the applicability of machine
learning methods to learn to approximate an environment’s forward model
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based on observation. To make this process feasible in the context of general
game-learning it will be necessary to discuss how models can be represented
and learned efficiently. Therefore, the second question is going to be:

Q2.2 How can a forward model be learned by observation of the agent’s

interaction with its environment, and how can the model be represented

and learned efficiently? To which degree do the proposed models fulfil these

criteria?

Finally, the proposed approaches need to be evaluated in the context of
general game-learning. How this comparison shall be done will be discussed
in the final research question of the forward model learning chapter:

Q2.3 How can the accuracy of forward model learning approaches and

their resulting game-playing performance be evaluated? Which of the pro-

posed models performs best?

State Determinisation

In the last part of this thesis, it will be examined how action-selection in
the case of a partial state observation can be improved. Therefore, the
applicability of predictive models will be studied. Here, it will be assumed
that a forward model is available, but the agent only has partial information
on the current state of the environment.

Algorithms like information set UCT and ensemble-UCT are basic meth-
ods that allow the application of simulation-based search. However, their
assumption of a uniform state distribution results in many simulations being
spent on analysing unlikely search paths. By improving the state deter-
minisation, simulations could be spent on more likely paths and, therefore,
improve the result of the search process.

It was already discussed how the incorporation of chance nodes can
benefit the search in non-deterministic scenarios. Thus, it may be beneficial
to take the probability of each determinisation into account. For this reason,
the first question that is going to be answered is:

Q3.1 How can the probability of each state be determined and how

should a state be sampled?



12 CHAPTER 1. INTRODUCTION

Multiple predictive models will be discussed and compared based on
their prediction accuracy. This will be done in the context of the online card
game Hearthstone, which offers a large database of game-play data. Using
this data-set the following question will be answered:

Q3.2 Can the performance of state determinisation-based search meth-

ods be improved by the application of predictive models?

Finally, the best performing model will be used for state determinisation in
an ensemble-UCT based agent. The proposed agent will be compared in terms
of game-playing performance against a set of state-of-the-art Hearthstone
agents to answer the final question:

Q3.3 How does the resulting agent’s performance compare to the state-

of-the-art?

The result of this work will be a profound analysis of how simulation-
based search can benefit from the application of predictive models. Both,
the prediction of the current and future states based on a data set of
previous interactions, will be analysed in the context of game-playing AI.
Resulting methods will increase the applicability of simulation-based search
algorithms to a wider range of problems and, e.g. offer game designers
powerful tools for the development of AI agents without requiring large
amounts of training data.

1.3 Structure of this Thesis

In Chapter 2 the basic terminology of research in autonomous game-playing
will be introduced. Thereafter, state-of-the-art algorithms will be reviewed
(Chapter 3). The third chapter ends with a comparison of these algorithms
with respect to their capabilities and restrictions in case either the environ-
ment’s forward model or a complete state observation is not provided for the
agent. In Chapter 4 and 5, new algorithms for playing games under either of
these constraints will be proposed. First, algorithms for autonomous game-
playing in absence of a forward model will be adressed in Chapter 4. For
this purpose, the properties of environment models are studied to show how
an agent can learn to predict the results of its actions and the corresponding
changes in its environment. On this basis, the forward model learning
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framework and with it four types of forward model representations will be
introduced. Chapter 5 begins with an overview of existing algorithms for
playing games with a partial state observation. Subsequently, the predictive
state determinisation framework will be introduced to specifically address
weaknesses. Implementations of both frameworks are evaluated according
to their prediction accuracy and game-playing performance at the end of
their respective chapters. Chapter 6 presents the answers to the addressed
research questions and, thereby, summarises the results of this work. At
last, an overview of open research questions and opportunities for future
work will be given.
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2
Basics of Autonomous

Game-Playing

In this section, basic definitions used in autonomous game-playing will be
introduced. The chapter starts with a comprehensive description of the agent-
environment interface in Section 2.1 which is commonly used to describe an
agent’s task. This section is followed by an examination of the individual
components of the interface, namely, the environment model, the agent
model, and strategies for action selection in the Subsections 2.1.1-2.1.3.
Furthermore, several tasks in the field of autonomous game-playing will be
distinguished in Section 2.2.

2.1 The Agent-Environment Interface

In this section, the agent-environment interface will be introduced. It offers a
universal description of an agent’s learning environment in which the agent
interacts with its environment to achieve a specified goal [166].

It consists of five components, which are briefly described below:

• Agent: The agent is tasked to achieve a predefined goal. It consists of a
learning and a decision-making component that aims to select actions
such that the agent maximises its chances of achieving said goal.

15
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• Environment: Everything that the agent can interact with belongs to
the environment. The environment itself can include multiple compo-
nents which may be observed by the agent. In case multiple agents
exist, an agent can perceive another agent as part of its environment.

• States: The state of the environment is denoted by S ∈ S, where
S refers to the state space. A state can consist of multiple values
S = (S(1), . . . , S(n)) which may be observable by the agent. At each
point in time t the environment is in a state St .

• Actions: In this framework the agent can interact with its environment
by executing an action A ∈ A where A describes the agent’s set of
actions. Applicable actions may be restricted by the current state
such that the actual action set in state S is denoted by A(S) ⊆ A. In
reaction to the agent’s action the environment can change its state
and provide the agent with a numerical reward.

• Rewards: The reward r ∈ R is a performance signal that the agent
receives as part of the environment’s response.

2.1.1 Environment Model

When performing a task the agent continuously interacts with its environ-
ment by applying an action At to the current state St, observing the future
state St+1 of the environment, and potentially receiving a reward Rt+1. In
general, actions do not need to have a deterministic result. For this purpose,
the environment’s response (observed state transition and reward) will be
described as a stochastic process P over the upcoming response given all
previous interactions. This series of interactions can be described as a
sequence of states and actions for timepoints 0 to t.

P(St+1, Rt+1 | S0, A0, . . . , St , At) (2.1)

Alternatively, state and reward can be modelled separately:

P(St+1 | S0, A0, S1, A1, . . . , St , At)

P(Rt+1 | S0, A0, S1, A1, . . . , St , At)
(2.2)
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In the context of this work, the agent-environment interface will be used
to describe games and players. Here, the game will serve as the environment
and the player will be represented as the agent. Problematic for the analysis
of the environment model is its growing complexity over time since the whole
series of previous interactions can be considered. Fortunately, many games
exist in which the complexity of their stochastic process is limited due to the
environment model’s independency of previous interactions. In this case, a
game’s model satisfies the Markov property [187], meaning:
Definition 2.1 (Markov Property)

Let P(St+1 | S0, . . . , St) be the conditional probability distribution of a
stochastic process. The process is said to satisfy the first-order Markov
property, if and only if the future state St+1 is independent of all states but
the present state St . Specifically, the conditional probability distribution
for the upcoming state is equal to:

P(St+1 | S0, S1, . . . , St) = P(St+1 | St) ∀St+1, St ∈ S (2.3)

Similarly, the process satisties the n-th order Markov property, in case
the future state St+1 is independent St to St−n+1

An environment model that satisfies the Markov property can be consid-
ered to be a Markov decision process, which is defined by
Definition 2.2 (Markov Decision Process (MDP))

A Markov decision process (MDP) models sequential decision processes,
in which at any point in time the decision-maker observes a state S and
is asked to provide an action A. By performing the action, the system is
put into a new state and can provide a reward to the agent. The MDP
is defined by a 4-tuple (S,A, P, R), of which S is the set of observable
states, A the set of available actions, P a transition model, and R a
reward function. The transition model and the reward function of an
MDP need to satisfy the Markov property.

If the game’s transition model and reward function fulfil the Markov
property, a game can be considered to be a Markov decision process, in
which case the environment’s dynamics can be described by

P(St+1 | S0, A0, . . . , St , At) = P(St+1 | St , At)

P(Rt+1 | S0, A0, . . . , St , At) = P(Rt+1 | St , At)
(2.4)
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2.1.2 Agent Model

When interacting with the environment the agent’s goal is to maximise its
reward over time. For this purpose, the agent needs to choose an action
depending on the current state of the environment. The agent’s action
selection will further be referred to as its policy π, which will be defined by
Definition 2.3 ((Agent’s) Policy)

At each time step t, the agent implements a mapping from the current
state St to probabilities of selecting each possible action A ∈ A. This
mapping is called the agent’s policy π. The term π(A|S) describes the
probability that the agent executes action A when observing state S.

Executing an action at time step t advances the environment and yields
state St+1. The state transitions of an MDP can be denoted by a state
transition graph in which each node represents a state of the environment.
Edges mark the transition from one state to another and are annoted with
the agent’s action and, in case of a non-deterministic environment, by an
additional probability of the state transition.

The complexity of a game can be measured by its state-space and its
game-tree complexity. The former is measured by the number of states
that are reachable from the initial state of the state transition graph. The
latter counts the number of paths starting in the initial state and yielding
any terminal state. Since this number can be hard to estimate for complex
games, the average branching factor (number of edges per node) and the
average number of transactions per game (path length from initial to terminal
state) can be used to estimate the game-tree complexity.

The performance of an agent largely depends on its policy. In case
the whole state transtition graph is known the optimal decision can be
determined. However, computing the state transition graph of complex
games may be infeasible with current computational ressources. Therefore,
strategies for continuously optimizing an agent’s policy for a specific MDP
are discussed in the following subsection.

2.1.3 Action Selection

One of the main tasks, when studying or interacting with a Markov decision
process, is the selection of the best possible action during the current
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state to maximise the expected reward over time. Training an agent to
do so can either be done in a supervised setting by providing a list of
correct actions for each state, or an unsupervised one, in which the agent
needs to evaluate an action’s value itself. Unsupervised scenarios are often
called reinforcement learning tasks since the agent is continuously choosing
actions while reevaluating their value given the environment’s response. In
these, the agent only receives evaluative feedback about the quality of a
chosen action, but not about any other available action. Supervised learning
tasks provide instructive feedback indicating the best possible action for the
current situation. Thus, instructive feedback is independent of the action
taken [166].

In the literature reinforcement learning tasks are categorised in associa-
tive and non-associative tasks. In a non-associative setting, the agent must
find a single optimal action independent of the state of the environment. In
comparison, an associative setting is more complex and demands the agent
to map every possible input to an output, thus, learning the best possible
action for each state. Games that will be studied in the context of this work
will be represented as associative reinforcement learning tasks. However, a
closer look at how the value of an action can be derived from evaluative feed-
back in a non-associative environment will allow the introduction of basic
action selection strategies. Modified forms of those are commonly used in
autonomous game-playing algorithms for associative settings (cf. Chapter 3).

An example of a non-associative scenario commonly studied in the field
of reinforcement learning is the Multi-armed bandit problem [69]. Consider a
casino with n slot machines that reflect various reward distributions. The
agent needs to decide which of the slot machines it should play without
knowing the distributions at first. Repeatedly playing the same slot machine
provides the agent with information on its reward distribution but does not
change the state of the slot machine.

Definition 2.4 (Multi-armed Bandit Problem (adapted from [177]))

Let a multi-armed bandit have n levers. Given a set of reward distribu-
tions B = {R1, . . . , Rn] each being associated with an action Ai , i = 1, . . . , n.
Choosing an action Ai is equal to pulling the lever i resulting in a reward
value being sampled from its associated reward distribution Ri. The
agent’s objective is to maximise the accumulative reward over time.
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The Multi-armed Bandit Problem is equivalent to a one-state Markov
decision process. Since the state of the bandit does not change over time
and is independent of all previous actions, each action is directly associated
with its reward distribution. Based on the evaluative feedback after each
action selection, the agent needs to reevaluate the quality of the executed
action. The quality of an action can be estimated by

Definition 2.5 (Action-Value)

Consider a non-associative task and let r1, . . . , rt be the observed rewards
of the reward distribution R after executing action a for t times. The
quality estimate Qt(A) of an action A at time t can be estimated by

Qt(A) =
1
t

t∑
i=1

rt = E(r | A) (2.5)

With an increasing number of selecting and reevaluating the same action
the agent’s estimate of this action’s value should converge to its true
quality Q∗(A) which is equal to the expected value of its associated reward
distribution R.

lim
t→∞

Qt(A) = Q∗(A) = E(R) (2.6)

Maximizing the accumulated reward over time results in a trade-off
between exploration and exploitation. If the agent maintains its current
estimates of each action’s value, then at any time there is at least one
action whose estimated value is greatest (argmaxA∈AQ(A)). This process is
called a greedy action selection and focuses on exploiting the agent’s current
knowledge of the actions’ values. If the agent selects one of the non-greedy
actions, it is called an exploring action which improves the agent’s estimate
of the action’s value. Based on this, the following basic action selection
strategies can be derived:

• Constant ε-greedy: With P(ε) pick an action uniformly at random.
Otherwise, pick the action with the highest expected reward [166].
The constant ε-greedy action-selection represents a trade-off between
exploration and exploitation. A proportion of moves is spent to refine
the expected values of actions that are otherwise not chosen by the
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greedy agent, thus, ensuring that all Qt(a) converge to Q∗(a). This can
help to identify changes in the environment but comes at the cost of
regret each time another option is chosen.

π(S) =

random action from A, if ψ < ε

argmaxA∈AQ(A) otherwise
(2.7)

where ψ is a uniform random number in the range of [0,1].

• Decaying ε-greedy: This method is motivated by the shrinking impor-
tance of exploration over the length of the game. At the beginning of a
game, the agent has no knowledge of each action’s associated reward
distribution and needs to repeatedly play each action to explore its
value. Over time the agent’s estimates will improve and the importance
of exploration shrinks. This is represented by reducing the value of
ε over time while using a ε-greedy to select the next action leading to
more exploitation moves over time.

• Softmax: The softmax function chooses an action in proportion to its
expected value. In its simplest case, the probability is equal to the
ratio of the action’s quality and the sum of all actions’ quality values.

P(A) =
E(R | A)∑

A′∈A E(R | A′)
=

Q(A)∑
A′∈AQ(A′)

(2.8)

A more sophisticated approach uses a Boltzmann distribution to weight
differences in estimated quality values:

P(A) =
eE(R | A)T−1

e
∑
A′∈A E(R | A)T−1 =

eQ(A)T−1

e
∑
A′∈A Q(A′)T−1 (2.9)

where T is the computational temperature that can be used to balance
the trade-off between exploration and exploitation over time.

The presented action selection strategies base their decision on the
agent’s current estimates of the reward distributions. Non-optimal actions
are chosen in favour of exploration. To measure the influence of these
non-optimal selections the resulting regret, also called lost opportunity of a
selection, can be measured.
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Definition 2.6 ((Total) Regret)

Given the action-value Q(A) and the optimal value V ∗ the regret lt is the
opportunity loss of a single decision

lt = E[V ∗ − Q(At)] (2.10)

The total regret Lt measures the accumulated regret of the whole episode.

Lt = E

 T∑
t=1

V ∗ − Q(At)

 (2.11)

Maximising the cumulative reward is equal to minimising the total regret.

Action selection strategies can be compared according to the regret of
past decisions and how this number develops over time. If a strategy’s
average regret per round tends towards 0 with a probability of 1 it is called a
zero-regret strategy. These strategies always converge to an optimal action if
enough rounds are played. Of the aforementioned action selection strategies
only the decaying ε-greedy method is a zero-regret strategy. Applying a decay
factor to the softmax functions temperature parameter (cf. Equation (2.9) on
the preceding page) can yield a zero-regret strategy.

Being uncertain about an action’s value should yield further exploration of
this action for improving the agent’s estimate of the action’s value. Otherwise
the agent might regret ignoring this action on the long run. The success of
previously discussed action selection strategies depends on an appropriate
initialisation. Once the correct action values are known, the greedy action
selection produces a total regret of 0. In case an action’s value is unknown
to the agent or its estimate is inaccurate, the agent needs to choose between
exploiting the best known action or exploring the expected reward of other
actions.

Upper Confidence Bounds (UCB) is an action selection method that
represents this trade-off between exploration and exploitation. At time step
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t the agent’s action is selected according to the weighted sum of an action’s
estimated quality and the agent’s confidence in this estimate.

At = argmax
A∈A

Qt(A)︸︷︷︸
Exploitation

+ Ût(A)︸︷︷︸
Exploration

(2.12)

Here, the agent’s confidence in its quality estimate of action A is represented
by Ût(A). The confidence is high in case an action has been selected many
times since more samples of the action’s association reward distribution
have been observed. The most popular variant of the UCB method is UCB1:

At = argmax
A∈A

Qt(A) + C

√
lnN(St)
N(St , A)

(2.13)

in which N(St) describes the number of times the environment has been in
state St and N(St , A) the number of times action A has been selected while
the environment was in state St . In a multi-armed bandit scenario the state
of the system remains unchanged, therefore, N(St) is equal to t − 1.

The presented action selection methods seem simple, but they form
the basis of many algorithms for autonomous game-playing. Before these
methods will be reviewed, the different tasks in autonomous game-playing
will be described in the following section.

2.2 A Taxonomy of Autonomous Game-playing

Autonomous game-playing addresses the problem of creating an agent that
is capable of playing a game with satisfying performance. How the agent’s
performance is to be measured and at which threshold the agent is fulfiling
this goal will be dependent on the task at hand.

A common evaluation is to compare an agent’s performance with the
performance of human expert players. However, comparisons can also be
made between agents to create a ranking. In research on autonomous
game-playing agents it is often the goal to achieve optimal performance. This
does not need to be a desirable use-case for the gaming industry [187], but
it is certainly useful when applying the same algorithms to other contexts.
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Research on the topic of computational intelligence in games focuses
on developing either an agent that is capable of playing a specific game
or describing general techniques for learning to play any game. In the
remainder of this work, the tasks single game-playing, general game-playing,
and general game-learning will be differentiated. For this purpose these
terms will be defined and discussed in the following subsections.

2.2.1 Single Game-Playing

Single game-playing is the most traditional task in computational intelligence
in games.

Definition 2.7 (Single Game-Playing)

In single game-playing an agent is tasked to play one specific game with
satisfying performance. Single game-playing tasks provide a description
of the game and its complete ruleset. Depending on the game, the agent
tries to optimise its final score or its chances of winning a game.

Much of the research in the field of computational intelligence in games
focusses on well-known games such as Chess. Such games were often
described as a cognitive task with varying complexity and it was widely
believed that solving a game as complex as Chess is an important indicator
for the performance of AI agents. Even if proposed solutions of many Chess
agents are far from the complexity of human thinking, the research in this
field has often strengthened the understanding of the game and the applied
methods.

Milestones of single game-playing AI mostly refer to board games, but in
recent years many new applications have been seen in digital games. The first
program to defeat a world champion in any board game is the backgammon
AI BKG 9.8 in 1979 which was written by Hans Berliner [17]. The first agent
to win the world champion title in a competition against a human was the
draughts agent Chinook. Later the authors had completely solved the game
by calculating the best action for all possible game-states [151] and therefore
proven that the best achieveable result against Chinook remains a draw.
In the meantime, Deep Blue [31] has defeated the chess world champion
in 1997. Since then Chess agents have become increasingly stronger. The
recent success of AlphaGo [158] and its successor AlphaZero [160] has
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shown that a single algorithm can be used to play complex games such as
Go, Chess, and Shogi on human expert level and beyond, which marks the
transition to general game-playing.

2.2.2 General Game-Playing

As a next step in the direction of general artificial intelligence, it is re-
searched how autonomous game-playing techniques for a single game can
be adapted to play any game. Hence, in contrast to training an agent to play
a single game, general game-playing focusses on the development of agents,
which can learn to play a diverse set of games. To ease the development
of such agents the various games are often represented using a unified
representation.

Definition 2.8 (General Game-Playing)

In general game-playing the agent is tasked to play multiple games with
satisfying performance across all games. This task aims at ignoring
the actual representation of a game, and therefore, concentrating on a
general learning mechanism for playing said games. In general game-
playing scenarios the agent can access a description of a game’s rules, in
the form of a forward model.

Early research on this topic was based on the Stanford General Game-
Playing framework [68], in which agents competed in various games that
were unknown prior to the agents’ submission. Games are descibed using
a game description language which consts of logical rules to define state-
transitions, actions, and the number of players. Games were often derived
The games provided by the framework were often derived from existing board
games.

Due to the popularity of video games, similar frameworks have been
developed for the study of digital games. One of these frameworks is the
general video game AI (GVGAI) framework [132] developed in 2014. Here,
games are defined using the Video Game Definition Language [152] which
allows the description of 2-dimensional arcade-like video games. At time of
writing this work, the framework already provides access to more than 100
games. Since the games were developed especially for this framework, no
data from human players is available.
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In the related competition, agents are compared on the basis of their
performance in several games. Agents can either read the graphical or
logical output of the game and provide actions in the form of controller input.
Furthermore, the planning track allows agents to access a forward model,
which can be used for simulating the outcome of planned action sequences.

Implementing agents to play any game is a complex task. Nevertheless,
the agents submitted to the competition have performed well in recent years.
With an average victory rate of 50%, the best agents have already shown that
it is possible to perform adequately in numerous games. Studying games in
which these agents perform bad may uncover open problems and allow for
optimisations of applied planning methods.

2.2.3 General Game-Learning

The general game-learning task describes another challenge for the develop-
ment of autonomous game-playing agents. Similar to general game-playing
the agent is tasked to play multiple games. However, the forward model is
not provided while doing so. This rather small change in the task drastically
limits the agent’s options in learning how to play the game and ensures
that this needs to be done solely based on its interactions with the game
environment.

Definition 2.9 (General Game Learning)

General Game Learning tasks demand the agent to play multiple games
with satisfying performance without further knowledge of the game or
its representation. The agent is tasked to learn how to play the game
solely based on its continuous interaction with the game and observing
the result of its actions.

Game-playing benchmarks can easily be converted to game-learning
benchmarks by restricting the agent’s access to background information on
the game. At the same time, this allows for a comparison of the performance
of game-playing and game-learning agents.

Due to the recent emergence of this field of research, only a small amount
of works were published yet. Current research projects often focus on the
benchmark problems provided by the Arcade Learning Environment (ALE)
and the GVGAI framework. Since 2017 the GVGAI competition includes the
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single-player learning track. During the first two years the training time per
game was limited to five minutes after which the agent was evaluated by
playing two previously unknown levels of the same game. In 2019 agents
were allowed to be pre-trained on a set of training games and were evaluated
on previously unknown games. While the first variant of this track focused
on the agent’s ability to perform the same task under varying conditions, the
second variant demands the agent to transfer its knowledge gained in the
training environments to new environments. As mentioned in the motivation,
none of the agents submitted in the past three years of the competition were
able to play significantly better than a random agent.

In the following chapter, current algorithms of computational intelligence
in games and their relation to the three presented tasks are examined. Since
these algorithms, especially simulation-based search methods, do not seem
to be suitable for the given problem, it is described why they are currently
not applicable and how their applicability can be increased by predictive
models.
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3
Algorithms for Autonomous

Game-Playing
In the following sections, state-of-the-art algorithms for autonomous game-
playing will be reviewed and discussed. The Sections 3.1 - 3.6 each introduce
a common algorithm class. Special attention will be given to planning and
simulation-based search algorithms in Section 3.5 which form the basis
of this dissertation’s remaining chapters. This chapter concludes with
a discussion about the suitability of presented algorithms for scenarios
in which either the forward model is not known or the status cannot be
completely observed (Section 3.8).

3.1 Heuristics

A heuristic is an approximate solution to a most often much more difficult
problem. In the context of computational intelligence in games, agents can
make use of heuristics in all kinds of decision-making problems [111].

In this sense, a heuristic is most often applied as a state-value or
state-action-value function, which tries to approximate the game’s true
value function. Using the heuristic the agent can rate all possible actions
and choose the action with the most promising value. Nevertheless, other
action-selection methods can be applied as well.

Heuristics have previously been used to guide search processes in general
game-playing and -learning. An early work by J. Clune [38] showed the
value of heuristic evaluation functions in general game-playing in which an

29
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abstract model was created to represent parts of the original game, namely
payoff, control, and termination. Based on these the agent was able to play
traditional board games with comparatively low performance. Better results
have been achieved by Santos and Bernardino [150] by combining avatar-
related information, encouraging spatial exploration, and using obtained
knowledge during the agent’s game-play to enhance the evaluation of game
states. The Yolobot agent [87] for general game-playing and -learning uses a
targeting heuristic to guide the search and movement of the agent. Yolobot
was ranked as one of the best-performing agents in the General Video Game
AI’s single-player planning track [136]. However, it did not succeed in
achieving a similar performance if there was no forward model, as shown by
the results of the GVGAI competition’s learning track.

The term hyperheuristics describes a series of heuristics from which
the agent can choose at runtime. They have recently been proposed in the
context of general game-playing to choose which game-playing algorithm
should be applied based on observable game features [109]. The applied
hyper-heuristic showed promising results in comparison to the use of a
single algorithm.

Heuristics and hyper-heuristics are often baselines for planning, simula-
tion-based search, and reinforcement learning models. In this thesis, these
baseline heuristics are considered to be designed by an expert. Methods for
learning or optimising heuristics will be discussed in Section 3.3.

3.2 Knowledge-based Systems

A knowledge-based system mimics human decision-making by being pro-
vided with a large training set of expert decisions. Supervised-learning
algorithms learn to map the input of instances in the training set to recorded
decisions made by experts. In the context of game-playing, these training
data sets are generated by recording games of expert players. In many
cases, it is not possible to generate a training sample for every possible
game state. For this purpose, the goal of the supervised-learning algo-
rithm is to build a model that replicates expert moves in known game
states and generalises well to unknown game states. Classification al-
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gorithms, such as Decision Trees [143], Artificial Neural Networks [73, 88],
Support Vector Machines [128], Bayesian Networks [23],, have proven use-
ful in learning to represent and replicate expert moves in games.

This technique is frequently applied to games that offer a large set of game-
play records, such as the traditional board games Chess [36] and Go [117].
Nevertheless, due to the large success of digital games and many efforts
of their respective communities, data sets of player data can be found for
plenty of digital games, e.g. for Hearthstone1, Dota 22, and Starcraft3. Based
on such data sets expert knowledge can be extracted to predict multiple
game characteristics, e.g. expert action policies [49], likely winners [180], or
upcoming deaths [89]. Since such data sets are specific to a single game,
learning knowledge-based systems based on human gameplay has not been
done in the general game-playing area.

Next to using a knowledge-based system for single game-playing, analysing
learned models may also uncover new patterns that were unknown to the
experts that trained the agents model. Hence, generating an interpretable
model can be useful for human-computer interaction as well. Learning
association rules to describe unknown games has shown to be a useful
technique for communicating a game’s ruleset and termination conditions
to human observers [54]. Similar systems can be applied in the context of
general game-learning for describing either the game or the behaviour of an
agent based on replay data.

3.3 Optimisation / Evolutionary Computation

Optimisation schemes can be applied to a wide area of tasks. Most popular
in the context of game AI is the optimisation of action policies or scoring
functions, which both can be represented in the form of heuristics.

The simplest class of optimisation algorithms is local search. Here, an
objective function is optimised by constantly adapting and reevaluating
a single candidate solution. Optimised methods such as hill climbing or
simulated annealing can speed up the optimisation process and reduce the
chance of getting trapped in a local optimum [92].

1http://www.hearthscry.com/CollectOBot
2https://archive.ics.uci.edu/ml/datasets/Dota2+Games+Results
3http://archive.ics.uci.edu/ml/datasets/skillcraft1+master+table+dataset
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Particle swarm optimisation generalises this concept by optimising mul-
tiple candidate solutions (called particles) at the same time. Each of these
particles is adapted according to its position and velocity, but can also take
into account the best solution found by other particles. Due to this, the
particles are expected to quickly move to the best solutions and search for
optimised parameters in promising areas of the solution space. A compre-
hensive survey of recent trends in particle swarm optimisation was written
by Zhang et al. [190].

Recent examples of particle swarm optimisation in agent development
include the optimisation of neuro-controllers for playing Snake [176] and the
collective behaviour design of non-player characters in first-person shooter
games [44]. A survey by Jithesh et al. further summarises the role of particle
swarm optimisation in games on a broader scale [86].

Another popular type of optimisation algorithms is the class of evolu-
tionary algorithms. Similar to particle swarm optimisation, evolutionary
algorithms optimise a set of candidate solutions. This is done by adapting
single individuals through mutation operators and recombining multiple
individuals using crossover operators. A comprehensive summary of evolu-
tionary algorithms can be found in [92].

Next to optimising heuristics, evolutionary algorithms are also frequently
used in the form of genetic programming. In the context of game-playing
agents, this can involve the generation of action plans [66] or action se-
quences [106].

Evolutionary algorithms and genetic programming have played an im-
portant part in the development of game AI. Studies have shown that these
techniques can be used to create micro [5, 97, 170] and macro strategies [12],
game state evaluation functions [121], as well as complex bot behaviour
[1, 116, 192] for single game-playing. The latter has been achieved using
genetic programming for generating complex action plans. Similar experi-
ments have been conducted on the evolution of simple controllers for playing
Atari games [192]. Finally, the evolution of hyper-heuristics for general
game-playing was proposed in a work by Azaria et al. [8]. Next to the de-
velopment of AI agents, genetic programming has also seen applications in
level generation [118], which in turn can be used to generate a diverse set of
training levels.
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3.4 Reinforcement Learning

During reinforcement learning the agent is taught to pick actions for maxi-
mizing a cumulative reward. Given a policy π the state-value function vπ(s)
describes the objective value of a state s and is defined by its expected
return:

vπ(s) = Eπ[Gt |St = s] = Eπ

 ∞∑
k=0

γkRt+k+1

∣∣∣∣∣∣∣ St = s
 (3.1)

The action-value function q(s, a)π for policy π, is the expected return
starting from s taking the action a and further following the policy π:

qπ(s, a) = Eπ [Gt |St = s, At = a] = Eπ

 ∞∑
k=0

γkRt+k+1

∣∣∣∣∣∣∣ St = s, At = a
 (3.2)

Both functions can be estimated based on the observed reward signal
during the agent’s interaction with its environment. While Temporal Differ-
ence Learning [165] updates the agent’s value function after every observed
reward, the Monte Carlo method [148] updates according to the result of
each finished episode. A variant of Temporal Difference Learning, namely
Q-learning [182], operates on the agent’s state-action-value function based
on recent interactions. These techniques are called model-free since they
do not try to build a model of their environment. In contrast, Dynamic
Programming [83] uses the game’s model to update the expected return
based on the weighted average of all successor states’ values.

Due to its generality, reinforcement learning is a promising framework in
terms of general game-playing. However, it can be quite limited regarding the
number of feasible states and actions. During learning it is recommended to
visit each state several times to test out the various actions [111], therefore,
being dependent on the size of the state and action spaces. In case the
number of states or actions is high, this process can take many iterations
to get an appropriate estimate of the value function. This is especially
troublesome in case of a continuous state or action space. Here, first
an internal state representation needs to be created by discretizing these
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spaces and perform the training mechanism on the internal representation.
Such internal state representations often include hand-crafted features
to enhance the performance of the algorithm [187]. Changing the state
representation may influence the time needed for training as well as the
training’s outcome [101].

Reinforcement learning algorithms allow their application in an offline
learning setting, i.e. once a model is trained, it can be deployed to other
machines. Even if the learning process can take a very long time to converge,
the time taken for applying the learned model is often negligible. Therefore,
the complex models can be trained using large-scale machines, while the
final model can be used on less powerful systems.

A remaining limitation can be the memory requirement of these methods.
Since the estimated value of each state or state-action pair needs to be
stored, the methods seem inapplicable for complex state spaces. This seems
to make it impossible to apply reinforcement learning to games such as
Go, which state space is roughly 10170. Storing all state-values seems to
be impossible4. In terms of general game-playing, this could be especially
problematic in complex state representations such as the video output of
the game. Nevertheless, both have been shown to be approachable with
reinforcement learning, using a technique called deep reinforcement learning.

In contrast to simple Q-learning, which is storing the q-value of each
state-action pair, deep reinforcement learning is using a neural network to
approximate the q-value based on the input, thus drastically decreasing
the storage used for the model [187]. In past years deep reinforcement
learning (also known as Deep Q-Learning) received special attention for its
ability in surpassing human experts in Atari 2600 video games provided
by the ALE environment [15]. The team of DeepMind Technologies showed
that their agent is capable of learning to play Atari 2600 games by repeated
play only using the pixel output of an Atari emulator [114, 115]. Here, a
neural network is trained to estimate the Q-values of each action given the
preprocessed image. Similar techniques have been applied to games with
more complex state representations. In the game Doom (a 3D first-person
shooter) deep reinforcement learning was used to execute various tasks using

4compared to the estimated number of atoms in the universe, which is
about 1078 to 1082 according to https://www.universetoday.com/36302/
atoms-in-the-universe/

https://www.universetoday.com/36302/atoms-in-the-universe/
https://www.universetoday.com/36302/atoms-in-the-universe/
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a visual state observation [57]. Deep reinforcement learning has further
been applied to games of the GVGAI framework [171]. Here, the results
differed a lot in between tested games. In general, planning agents seemed
to outperform deep reinforcement learning agents as long as they had access
to the games’ forward models.

3.5 Simulation-based Search

Autonomous game-playing can be achieved through a variety of algorithm
classes, of which the class of simulation-based search algorithms has been
one of the most successful in recent applications. Since simulation-based
search algorithms will form the basis of later chapters, they will be described
in more detail.

Simulation-based search algorithms use the environment’s forward model
to simulate the outcome of hypothetical action sequences. Simulating a
single action sequence is called rollout. Aggregating the result of multiple
rollouts can be used to estimate the value of an action at runtime. Therefore,
these algorithms require knowledge of the current state and the game’s
model as an input and return the action with the highest expected value
regarding the current state.

The value of an action can either be the expected chance of winning
the game or the number of points scored after applying the action to the
current state. Starting at the current state the search method performs
multiple rollouts. Once a terminal game state has been found, its result is
backpropagated along the simulation path, such that the expected value of
each applied action at its current state is updated according to the result.
Thus, the expected value of each action can be determined according to the
result of performed simulations.

3.5.1 Exhaustive Search Methods

Search methods differ in the way they analyse the game tree and aggregate the
result of performed simulations. The most basic algorithm is an exhaustive
search [166] in which each possible sequence of actions leading to terminal
states is simulated. Therefore, analysing the whole game-tree. A popular
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variant for two-player zero-sum games [138] is the minimax algorithm [107]
in which both players try to maximise their chances of winning the game.
Pruning methods, such as alpha-beta pruning [166], can be applied to
reduce the number of game tree nodes to be explored. This algorithm has
been proven to be optimal for trees and randomly assigned leaf values in
terms of expected run time [127].

Minimax search in conjunction with alpha-beta pruning was successfully
applied to games with a large number of states such as chess [42]. However,
the performance declines if the number of states is further increased. A pop-
ular use case is the board game Go. Here, an exhaustive search is infeasible,
due to the size of Go’s state space (≈ 10170 states [172]). As a result classical
tree search methods were outperformed by heuristic tree searches [117].

3.5.2 Flat Monte Carlo

In contrast to exhaustive search, heuristic search methods do not explore
the whole game tree, but only sample parts of the game-tree to determine
an approximation of each action’s value. This concept is reflected in the
flat monte carlo algorithm. For each action, it determines the conditional
probability of winning the game by simulating a set of action sequences
starting with said action [29]. The average score or the agent’s win-rate
per action serves as an approximation of an action’s value. Similar to the
analysis of probability distributions, the confidence in the estimated value
can be improved by continuing the sampling process.

Using a large number of rollouts the agent may be able to estimate
each action’s value with sufficient accuracy even if parts of the game-tree
remain unexplored. However, a uniform number of simulated episodes per
action may not be the most efficient way to identify the best action. Let
us assume an action whose approximated value is inferior to other actions’
values. Simulating further episodes starting with the inferior action may
waste computational resources, which may have better been spent to further
differentiate the other actions [90].

Similar to the discussed action strategies a minimisation of regret can
be achieved by analysing the trade-off between exploration and exploitation.
Instead of simulating the same number of episodes for every action, an
action selection strategy can be used to determine the next action to be
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simulated. The application of the zero-regret strategy UCB results in a faster
convergence than other techniques. The resulting algorithm, called Flat-
UCB, is much better in computational efficiency, but can still be improved
by reusing results of its simulations more effectively.

3.5.3 Monte Carlo Tree Search (MCTS)

An apparent problem of Flat Monte Carlo and Flat UCB is that executed
rollouts only increase our confidence in the first actions’ values. At the same
time, the result could have been used to estimate the value of each state
visited during the rollout. However, storing all these values can exhaust our
memory capacity in case the game tree is very large.

The monte carlo tree search algorithm handles the trade-off between
storing information on visited nodes and minimizing the required storage by
implementing a two-phase search process. For this purpose, a search tree is
built in which each node represents a state of the environment. Tree nodes
store the number of rollouts which included this node and the approximated
value of its represented state. To built the tree, a tree policy is used to
choose a node for expansion. The tree policy balances exploration and
exploitation by taking the number of simulations started from each node and
their resulting approximated value into account. Consecutively, the default
policy is used to perform one or multiple rollouts and update the tree nodes’
estimated value. During the rollout, actions are often randomly picked to
maximise the number of simulations. Information on nodes visited during
the rollout is not stored, but the result of each rollout is backpropagated
along paths visited during the tree policies selection process. This way,
MCTS increases the confidence of actions represented in the first layers of
the tree while keeping the memory consumption low.

The MCTS algorithm can be structured in 4 steps which are visualised
in Figure 3.1 and explained in the following:

1. Tree Selection: The tree policy is used to find an expansion node.
Similar to Flat-UCB, the MCTS algorithm tries to minimise the potential
regret of our action selection while maximizing our confidence in the
value of each tree node. The combination of MCTS using upper
confidence bounds as a tree selection policy is also called the Upper
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Selection Expansion Rollout Backpropagation

Figure 3.1: Steps of the monte carlo tree search algorithm. Adapted from [29]

Confidence Bounds applied to Trees (UCT) algorithm [90]. It gained
a lot of attention due to its great performance and its theoretical
convergence to the minimax algorithm [163].

2. Expansion: After selecting a node using the tree policy, the node is
expanded by adding a new child node to the agent’s search tree. To
initialise the value estimate of the newly added tree node the search
continuous by performing a given number of simulations in step 3.

3. Monte Carlo Simulation/Rollout: During the simulation the default
policy is continuously applied for quickly choosing the next action
until a terminal state has been reached. In its simplest case, a uniform
random selection of moves can be used to quickly choose actions.
Nodes visited during the simulation are neither stored in the search
tree nor evaluated.

4. Backpropagation: After a terminal state has been reached, its result
is used to update the value estimate Q(s, a) and number of performed
simulations N(s) for every node visited during steps 1 and 2.

Similar to flat monte carlo, monte carlo tree search is an anytime algo-
rithm, meaning it can be stopped after every simulation and provide the
agent with the action that is currently believed to be the best choice. MCTS
can be applied without a scoring function since the return calculation can
be based on the result of the simulated episode. In its most basic form, it is
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based on the ratio of wins and losses that occurred during the simulations.
For games with deep game-trees, MCTS can be used in conjunction with a
scoring function to stop simulations early and rate intermediate game-states.

Another method that has attracted a lot of attention is the development
of improved default policies. This has shown to reach similar or better
playing performance, while considerably reducing the number of necessary
simulations. Nevertheless, it introduces another trade-off between the quality
and the speed of performed simulations [124]. A comprehensive review of
MCTS and its many extensions can be found in [29].

In deterministic applications, nodes of the search tree represent states of
the environment. The edges in between nodes describe actions that lead to a
state transition from the source to the target node. This is especially useful
while traversing the tree during the tree policy stage since the evaluation
of an action sequence may already be stored in the tree and does not
need additional calls of the forward model. Nevertheless, non-deterministic
processes can yield different results for the same action sequences. As a
result, storing the state in the node cannot assure that the sampled state is
representative of all possible results of the same action sequence.

The Open Loop Search (OLS) [131] algorithm solves this by not storing
the resulting state of an action sequence in its node, but only the statistics
of all its simulation results. Therefore, the open loop case stores statistics
on action sequences and not on state-action pairs (known as a closed loop).

3.6 Hybrid Models

While the previous sections presented basic algorithmic frameworks for
game-playing, the following paragraphs shortly discuss hybrid approaches
commonly found in the literature.

3.6.1 Evolutionary Algorithms and Search

Evolutionary algorithms have frequently been used in conjunction with plan-
ning and search algorithms. Here, three common approaches exist, namely,
evolving a scoring function, online-optimisation of search parameters, and



40 CHAPTER 3. ALGORITHMS FOR AUTONOMOUS GAME-PLAYING

generating action sequences using an evolutionary algorithm. The latter
has resulted in the rolling horizon evolutionary algorithm (RHEA), which is
shortly discussed below.

Rolling horizon methods are search processes with limited search depth.
They produce a set of action sequences of the same length (called horizon)
and apply a forward model to calculate and score their resulting state using
a heuristic function. At the end of the search process, the first action of
the most promising action sequence is applied. Research on rolling horizon
methods is motivated by the increasing focus on real-time aspects of games
and other applications. These applications require the agent to converge
fast without much computational overhead.

This general concept of the rolling horizon was applied in multiple re-
search works. Their common baseline is the rolling horizon random search
algorithm which randomly generates action sequences for evaluation. This
scheme was improved by the application of evolutionary strategies for gener-
ating new action sequences. In general game-playing, the RHEA is known to
produce good results on the GVGAI benchmark [62, 63].

The evolutionary generation of action sequences has also been used
in conjunction with monte carlo tree search [99, 130, 139]. Specifically,
applying uniformly random rollouts has been considered to be uninformative,
since many rollouts are wasted on unlikely search paths. Here, an evolu-
tionary algorithm was used to produce rollouts of higher quality, resulting
in increased efficiency of the search process. Other boosts in efficiency have
been achieved by online-optimisation of the search parameters [161, 162],
and the evolution of game-specific heuristics in single [2] as well as general
game-playing [16].

3.6.2 Reinforcement Learning and Search

The combination of reinforcement learning and search algorithms has re-
cently gained a lot of attention due to the success of AlphaGo [158]. The
algorithm used in AlphaGo combines deep reinforcement learning with a
guided search to avoid weaknesses of both method classes. Here, two
neural networks were trained, a first network to predict likely moves of
expert players to guide the search process and a second network to rate a
board position to allow for early stopping. The system was further adjusted
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through repeated self-play. The final version of AlphaGo was able to defeat
world champion Lee Sedol. It was later shown, that the self-play training
mechanism is in itself able to produce similar results without making use of
any expert player data [159, 160]. The resulting game-playing agent called
AlphaZero was able to beat state-of-the-art agents in chess, shogi, and go.

Reinforcement learning has further been used for the optimisation of
rollout policies of MCTS [84]. Given enough training time, this process may
be able to uncover useful macro actions and therefore speed-up the search
considerably. However, the agent was not able to outperform a random
agent, which is likely due to the tight training time limits of the GVGAI
competition’s learning track, on which this agent has been tested on.

In another concept, reinforcement learning has been used to identify
a set of valuable options per state. These options can further be used to
guide the succeeding search process. Similar to policy learning, the agent
has shown to be able to identify useful actions depending on its current
state [140]. After training the agent for thousands of matches it was able to
beat other agents in the context of a fighting game. However, methods for
faster adaptation seem to be necessary to create more competitive fighting
AIs [140].

3.6.3 Ensembles

The basic principle of the ensemble methods is summarised in Condorcet’s
jury sentence. It states that the combination of independent predictors
achieves a higher prediction accuracy than their individual predictions.
Ensemble machine learning has seen many applications [189] and is known
to improve the precision over the use of single action-selection algorithms.

This idea has been applied in single-game AI through the combination of
multiple knowledge-based systems, e.g. an ensemble of neural networks [168]
or Bayesian regressors [175]. Fern and Lewis have shown that monte carlo
tree search also benefits from an ensemble approach [59], due to better
parallelisation on multi-core machines.

Using ensembles in general games were studied by Bontrager et al. while
trying to match games with specialised algorithms [22]. Here, the idea is
to create a meta-algorithm that identifies a game’s type (e.g. puzzle, racing,
shooter) and chooses an appropriate algorithm accordingly. The no-free-
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lunch-theorem comes to mind here, which states that for the entirety of all
problems there cannot be a universal method that solves them best [184].
Therefore, it would always be possible to construct a game in which a specific
meta-algorithm fails to find an appropriate match. This problem has recently
been studied in the context of the general video game AI framework [7]. The
authors suggest that the generality criterion of the no-free-lunch-theorem
may not be fulfilled in the context of games since many games that can
be theoretically constructed would be of no interest to a human player.
Finally, the implementation of such an ensemble system has been shown to
result in a better game-playing performance than the application of single
algorithms [4, 7].

3.7 Other Models

Aforementioned algorithms have been widely applied in research on com-
putational intelligence in games. However, other methods exist which are
part of the game designers toolbox and, for the sake of completeness, will
be described in the following paragraphs. These techniques are frequently
applied in the industry to describe the behaviour of non-player characters.
While they can be efficient in simulating intelligent behaviour they cannot
be considered AI methods since they lack any kind of learning and freedom
during the decision-making process of the agent.

3.7.1 Finite State Machines

Finite state machines consist of a set of agent states and a set of actions.
Actions are selected according to the state of the agent and its environment.
As a results the agent’s state can be changed according to external inputs.

Usually a graph-like representation is used to design and visualise finite
state machines. This makes it a simple yet powerful tool in the hands of
a game designer. Nevertheless, state machines can yield predictable and
static behaviour which will remain unchanged after their design is finished.
To overcome these drawbacks, pre-conditions and action descriptions can
be extended by, e.g. fuzzy-logic [142] and probability theory [187].
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3.7.2 Behaviour Trees

Behaviour trees [33, 34, 85], which are frequently used in industry, cannot
perfectly be ordered into the previously named categories. While their
application can yield complex and seemingly intelligent behaviour, behaviour
trees do usually not change over time, resulting in predictable behaviour.
However, they remain a typical choice in the field of game design, due to
their flexibility and interpretativeness.

While often being designed by hand, behaviour trees have also been
optimised through machine learning methods. The application of learning
behaviour trees has resulted in dynamic behaviour and more reactiveness
to the human player [169]. Evolutionary approaches have further been
used to automatically optimise pre-constructed behaviour trees for certain
navigation tasks [123]. Finally, behaviour trees have been created using
genetic programming to play previously unknown levels of jump and run
games [39]. Resulting trees were rather low in complexity, but still able to
learn to navigate through levels of varying difficulty in a reasonable time.

In the context of commercial video games more complex agent models
have been developed using planning systems [122]. Here, a planner describes
a high level instance that sets a goal and creates a plan how to reach that goal
given the observation of its current environment. A frequent re-evaluation
of the current plan allows the agent to keep reactive to its environment.
The created plan is later performed using a low-level component such as
finite-state machines or behavior trees. The combination of planning and
execution has been successfully used within several game-related research
frameworks, e.g. microRTS [120] and Fighting Game AI [119].

3.8 Comparison of Algorithms

The presented algorithms are compared with regard to their training methods
and their suitability in scenarios which either do not provide a forward model
or only a partial state observation.

The first comparison focusses on the training and evaluation process of
presented algorithms. Reinforcement learning algorithms represent an eager
learning process which means that the training process results in a final
estimate of each state’s value. Similarly, knowledge-based systems build
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a model which replicates human actions without evaluating the action’s
value. Therefore, in eager learning processes, further evaluations become
unnecessary once the model has been built. Nevertheless, the training time
can be long for complex games.

In contrast, simulation-based search algorithms represent a lazy eval-
uation approach which does not require any training. Instead, the agent
evaluates each action’s value by analysing their possible results at run-time.
The time needed for this evaluation depends on the size of the game-tree
and the desired accuracy of the estimate. This can become a limiting factor
in the agent’s performance if the time for action selection is limited.

Hybrid models, in which reinforcement learning and simulation-based
search algorithms are combined, represent a mix of eager learning and
lazy evaluation. This becomes especially useful in case the eager learning
process would require too much training time and the lazy evaluation would
be inaccurate due to the number of explorable game-states. This can be
done by using reinforcement learning to continuously adapt the default
policy for improving the efficiency of the search process.

The second comparison is based on the algorithm’s knowledge of the
environment. Given the agent’s action and the current state, the environment
will produce two outputs: the next state and the reward. Both can be encoded
in a separate model, namely the forward model producing the next state and
the reward model which in turn provides the agent with a reward. However,
since the accumulated reward (also known as return) is much more useful
for the agent’s action-selection process, the following comparison will use
the agent’s knowledge of the return. Therefore, agents will be reviewed
according to the two dimensions, being aware of the game’s forward model
and knowing the return value of each state.

Reinforcement learning and simulation-based search methods once again
represent the extreme ends of this comparison. The eager learning process
of reinforcement learning methods results in a return model. While temporal
difference learning and the Monte Carlo method do this without needing
knowledge about the forward model, the computations done in dynamic
programming need the forward model for its iterative update routine. Deep
reinforcement learning replaces the need for storing the expected return for
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every state by learning a network that approximates the return function. The
reduction in complexity can arguably be achieved through an understanding
of the game’s state-space.

In contrast, simulation-based search methods do not need to store the
expected return of each state, since they approximate at run-time using the
forward model. The rolling horizon evolutionary algorithm seems to be a
slight exception to this, since it is also making use of a heuristic function,
which approximates the value of a state. This heuristic function is being
used to rate a rollout’s outcome and, in the best case, approximates the
expected return.

One approach that will be proposed in the context of this thesis is
called forward model learning (see Chapter 4). Its goal is to allow the
application of simulation-based search in scenarios in which the forward
model is inaccessible. This should be achieved by learning a forward model
by observation, which can then be used as a replacement for the missing
original model. Since in the original model, the reward and the following
state are often connected, the applied techniques may also be able to capture
knowledge about the reward distribution.

This process can be compared to recent experiments on world mod-
elling [74] and imagination-based deep reinforcement learning [183]. In
these, the agent uses a deep or recurrent neural network structure which
handles the selection of the agent’s actions according to predicted future
states. Agents using these model-based deep reinforcement learning ap-
proaches have shown to be capable of playing games based on their visual
state representation [80]. Similarly, they achieved improved performance
in several visual control tasks in comparison to model-free reinforcement
learning agents [75]. However, the sheer number of parameters to be tuned
and the eager learning of the state’s value function results in the agent
requiring lots of training data, e.g. 1 · 108 training steps for learning to play
the game Sokoban [183]. The amount of required iterations makes this
process infeasible in case the model’s training time is limited. In contrast, a
prediction-based search can be implemented which determines an action’s
value according to simulations of the trained forward model. Furthermore,
reductions of the feasible model space could be achieved by assuming inde-
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Figure 3.2: Comparison of general game-playing and -learning techniques
based on knowledge of the return function and the game’s model.

pendencies among observed sensor values. Both, a prediction-based search
agent and methods for the efficient representation of forward models, will be
proposed in Chapter 4.

Figure 3.2 presents a summary of the discussed methods, based on the
two dimensions: knowledge of expected return and knowledge of the game
model.

The second problem scenario that this thesis will focus on is the agent’s ac-
tion selection based on a partial state observation. Heuristics and knowledge-
based systems are hardly affected by this limitation, since the agent’s devel-
opers need to handle this restriction. However, more efficient heuristics may
be implemented in case of a complete state observation.

Similarly, reinforcement learning agents can learn to estimate the ex-
pected return based on a partial state observation [79]. However, a state’s
true value can be dependent on hidden components of the state observation.
As a results, the esimate of the partial information state’s value needs to
take possible values of hidden state components into account.
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Simulation-based search algorithms use the information on the current
state and the forward model to simulate the outcome of an action. In case
the future state is dependent on information that remains hidden due to the
partial observation, no simulation can be performed. State determinisation
algorithms sample a hypothetical complete information state which can
further be used during the search process. These have shown to perform
better than non-determinising search processes in case the number of
possible states remains low [50, 191]. How this approach can be extended
to cope with larger state spaces will be discussed in (Chapter 5).
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Forward Model Learning

The absence of a forward model drastically changes the way in which
computational intelligence agents can approach problems. This becomes
evident when comparing agents that have access to such a model to agents
that are not able to simulate future steps. Such a comparison can be
made for agents that competed in the GVGAI competition’s single-player
planning track and agent’s that entered the single-player learning track
(cf. section 1.1.1). The competition results of the years 2017-2019 show
drastic performance differences between agents of the two competition tracks.
Agents of the learning track often failed to learn how the game can be played
and were incapable of winning most games. Furthermore, their performance
is often comparable to or worse than the performance of an agent acting at
random. This is reflected in the random agent becoming the second-best
performing agent in the 2017 instance of the GVGAI competition’s learning
track [133].

Until recently, the absence of a forward model required the agent to use
a model-free learning approach (e.g. reinforcement learning in Section 3.4).
Using this type of methods the agent learns to estimate the value of each
action in a specific situation. When being confronted with an unknown
situation, the agent either does not know the value of its actions (TDL or
MCM) or the agent’s approximated value function may be wrong due to over-
or underfitting (Deep Reinforcement Learning). Experiments have shown that
these methods can produce human competitive results when given enough
training time. However, such an eager learning approach has shown to not

49
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do well in case the training time is restricted. This is reflected in the minor
performance gains over a random agent in the reinforcement learning-based
agents of the 2018 and 2019 GVGAI competitions’ learning-track [133].

In this work, an alternative method will be proposed which is based
on the idea of learning to predict changes in the environment instead of
approximating their expected return function. Under the assumption that
the outcome of observed interactions can be a predictor for the result of
future interactions, learning a forward model may enable an agent to make
predictions of the environment’s future state. The outcome of this may
allow the agent to apply simulation-based search methods and result in
faster performance gains than reinforcement learning methods can offer.
The resulting lazy evaluation of action sequences may allow the agent to
act in unknown environments without collecting an excessive amount of
training examples to approximate the environment’s return function.

The following section (Section 4.1) presents a general analysis of forward
model characteristics in the context of games. Specific implementations of
forward model learning will be proposed in subsequent sections. The end-to-
end forward model (Section 4.2) presents a general framework for forward
model learning. The following, more specific models will be introduced in
Sections 4.3-4.5. These aim to reduce the learning effort by restricting
the model’s hypothesis space based on assumptions on the underlying
state representation. A qualitative comparison of proposed models will
be presented in Section 4.6 after which the forward model learning-based
agent model will be introduced in Section 4.7. Section 4.8 will present
a summary of forward model learning experiments scattered throughout
previous work. In this work, specifically, the applicability of forward model
learning techniques in the context of general game-learning will be evaluated.
The evaluation setting is introduced in Section 4.9 which consists of a
diverse selection of games of the GVGAI framework. Proposed methods will
be evaluated according to their prediction accuracy (Section 4.10) and their
game-playing performance (Section 4.11).
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4.1 Defining Forward Model Learning

A forward model fm (also called environment model) maps the history of
previous interactions between the agent and the environment to the next
state of the environment. In case the environment is a first-order Markov
process, the upcoming state only depends on the latest interaction. Such
Markovian forward models form an interesting subset and can be frequently
observed in the context of games. For the sake of simplicity, only Markovian
forward models will be considered in the following sections. How the pro-
posed methods can be extended to Markov processes of higher-order will be
discussed in Subsection 4.2.2.

Proposed forward model learning methods will be based on the following
definition of a forward model of 1st order Markov processes:

Definition 4.1

Given an environments state St at time t and the agent’s action At a
forward model fm describes the mapping:

fm : (S ×A)→ S (St , At) 7−→ St+1 (4.1)

The task of learning or approximating a forward model can be considered
a supervised-learning task. Its goal is to learn a model which can predict
the upcoming state St+1 ∈ S given a history of previous interactions. Each of
these interactions is a 3-tuple (Si , Ai , Si+1).

The following requirements can be placed on the model-learning process
and its resulting model to ensure its applicability in assisting an agent
during its decision-making process:

• Accuracy: First and foremost, forward models need to be accurate
in their prediction of future states. This does not necessarily mean
that the predicted future state needs to be correct, but that elements
of the state necessary for the success of the current task need to
be predicted as accurately as possible. This requirement will be the
focus of evaluating the success of the learning process. For this
purpose, statistical evaluation measures can be used. For example,
predictions of deterministic processes can be evaluated using (weighted)
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accuracy [110] or nondeterministic processes using Kullback-Leibler
divergence [93]. How these measures will be adopted regarding the
characteristics of evaluated models will be discussed in Section 4.10.

• Processing Speed: Keeping the computation time of the learned model
as short as possible ensures that it can be applied multiple times
during the simulation-based search procedure. Especially, in real-
time scenarios, in which the reaction time of the agent is limited to a
fixed time-span, a fast model is required to run a sufficient amount of
simulations. Previous studies have shown that increasing the number
of simulations has a positive impact on the agent’s performance [49],
especially UCT has proven to be converging to an optimal action-
selection [163]. For this reason, when comparing two models with the
same accuracy the model with the shorter processing time should be
chosen to assure a higher number of rollouts. Similarly, the principle
of Occam’s razor may be applied to choose the simplest model among
the models with the highest prediction accuracy.

• Generalisation: Two types of generalisation are considered. First
and foremost, proposed forward model learning techniques should be
applicable to a wide range of environments. Secondly, models trained
to predict transitions of a specific environment should not only be
able to predict already observed interactions with high accuracy, but
also generalise well to unseen samples. This is especially important in
case the training environment is not the same as the test environment.
Here, the agent may face previously unseen situations to which it
needs to respond appropriately. Machine learning problems such as
overfitting and underfitting can apply here and need to be checked for
by, e.g. cross-validation or the usage of a train-validation-test split [18].

• Learning Speed: Due to restrictions on the agent’s response time, it
may be necessary to learn or update forward models quickly. Even with
a pre-trained model the agent may need to update its forward model in
case newly observed interactions deviate too often from their predicted
results. Especially, in the case of a dynamic environment, frequent
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updates of the learned forward model seem inevitable. For this reason,
keeping the training time of a forward model low ensures that the
agent can frequently retrain its forward model of the environment.

• Interpretability: Not a strong requirement, but an interesting character-
istic of forward models is their interpretability. A humanly interpretable
forward model may be used to explain the agent’s action-selection.
In contrast to reinforcement learning-based systems, the agent does
not only provide an expected value of a state (in form of the learned
expected return) but may provide access to the search process and a
sequence of hypothesised states. Comparing the expected outcome to
the real outcome may explain why the agent chose a certain action.
Furthermore, using an interpretable model allows users to compare the
agent’s learned forward model with their knowledge of the environment.
This can help to improve the model building process.

4.2 End-to-End Forward Model

The end-to-end forward model represents the most basic class of forward
models to be learned. Next to the introduction of this forward model type,
comparisons of forward model learning and reinforcement learning will
be made. The end-to-end forward model requires the agent to be able to
differentiate observed states by a unique state id. The same applies to the
agent’s actions. While in reinforcement learning algorithms the agent learns
a direct mapping of possible state-action pairs to the expected return, the
latter is being replaced by the expected successor states.

The following subsections will provide a mathematical definition of end-
to-end forward models (Subsection 4.2.1) and several extensions to take care
of its apparent problems (Subsection 4.2.2).

4.2.1 Model Definition

During the learning phase, the agent needs to update its learned forward
model based on previously observed transactions. In case the environment
is deterministic, a transaction is identified by its state-action pair (St , At)
and gets assigned the resulting state (St+1). In non-deterministic games, the
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frequency of observed successor states needs to be stored to approximate
the environment’s probability distribution they are sampled from. The same
process can be applied in case of deterministic games with a noisy state
observation in which the element with the highest frequency is the most
likely successor state.

When asked to make predictions about the result of a given state-action
pair, the agent can query the database to see if similar situations occurred
in the past. For this purpose, the database can be used as a lookup table.
In case of a deterministic environment, the agent can report the results of
previously observed interactions of the same state-action pair, or in a non-
deterministic environment, it can sample from the set of all observed results
by considering their frequency of occurrence. Therefore, the probability of a
successor state St+1 can be determined by

P(St+1 | St , At) =
#(St , At , St+1)∑
S′∈S #(St , At , S′t+1)

(4.2)

in which #(St , At , St+1) is the number of previous interactions in which
applying action At in state St yielded state St+1.

This process works in case the lookup table contains all relevant entries.
However, if no such interaction has been observed, the agent still needs to
be able to predict upcoming states with sufficient accuracy. A simplistic
extension to Equation 4.2 would be to calculate the marginal probability of
each state:

P(St+1) =
∑
S∈S,A∈A #(S, A, St+1)∑
S,S′∈S,A∈A #(S, A, S′)

(4.3)

Nevertheless, this prediction is very broad and assumes that the probability
of the upcoming state is independent of the current state and the agent’s
action.

This estimation can be improved by the application of classification
algorithms. Due to their ability to find frequently occurring patterns in a
given training data set, they can be used to infer the outcome of new data
points. The result is an approximation of the environment’s model, which
can be used to predict upcoming states. In the case of nondeterministic
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games, probabilistic classifiers can be used. In contrast to deterministic
classifiers, they estimate the probability of the current instance yielding any
of the possible outputs.

4.2.2 Model Extensions

The previously described process of storing all observed interactions exhibits
the same drawbacks as reinforcement learning algorithms. Depending on
the size of the state and action space storing the resulting interaction table
can become infeasible. While this approach suffices to model simple games
(according to the size of their state and action space) this approach does not
scale well with an increasing number of possible states or actions.

Instead of storing the result of each interaction individually, the content
of the described interaction table can be compressed. If the number of
states is known in advance, the complexity of the storage can be reduced
by forcing a total order on the state space and storing the resulting state at
its associated index. Nevertheless, these compression methods are limited
in the reduction that they can achieve. Further compressions may be
achievable due to exploitable dependencies in the transition function. For
this reason, learning an end-to-end forward model can be feasible in case
a large compression of the transition function is possible, e.g. the state
transition function of Go or Chess can be explained by just a few rules
despite the high complexity of both games’ state spaces. Furthermore, the
model size may be considerably smaller in case the agent does not learn the
true model but only an approximation of it.

When applying forward model learning to games it will be the case that the
agent can continuously add new observations to its training set. The problem
with many classifiers is that they cannot adapt their current model to newly
added instances. Instead, they need to be retrained using the updated
training data set. As a result, the training data must be stored until the
model is sufficiently trained. However, this process can take many iterations
during which the training data set is continuously growing and may exceed
memory limits. In this case, the application of online machine learning
algorithms [61], also known as streaming machine learning algorithms, can
help to overcome this problem. These can be updated with every newly
observed data sample and do not need to store the whole training data set.
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Even when storing all the previous interactions some of them may become
outdated due to dynamic changes in the environment. Classifiers can cope
with this scenario by using a dynamic weighting scheme. This way, new
observations can be weighted higher than older ones. Likewise, a decay
factor can be used to change the weight of training examples over time and
allow the agent to remove training examples whose weight falls below a
certain threshold. Similarly, the agent should approach new scenarios with
quick rates of change in its forward model. This can be achieved by fixing
a high learning rate which can be reduced as soon as the agent is able to
sufficiently predict its environment. From there on, reducing the learning
rate can make the agent’s model resilient against noise in the observation of
its environment.

As introduced in Section 4.1 the proposed forward model learning tech-
niques require the environment to be a 1-st order Markov process. However,
this requirement can be lifted by extending the models input from the current
state and action to a sequence of previous states and actions. Given such a
sequence of the n-previous states and actions, the model would theoretically
be enabled to represent n-th order Markov processes.

n-th order fm :
(
(St−n+1, . . . , St), (At−n+1, . . . , At)

)
7−→ St+1 (4.4)

At the same time, this results in a drastic increase of the model’s input and
hypothesis space.

The size of the hypothesis space is what makes the extension to n-th
order Markov processes infeasible in the context of the end-to-end forward
model. Even for a 1-st order Markov process the number of possible models
for a deterministic environment of n states and m actions is equal to nnm.
In the case of Chess which has a state-space complexity of ≈ 1047 and an
estimated average branching factor of 35 this would result in:

10(1048·35) ≈ 101051
= 10510

While every new observation has the potential to drastically reduce the
number of feasible models it is of high interest to analyse any potential of
reducing the size of the hypothesis space.
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4.3 Decomposed Forward Models

In the following, it will be shown how the forward model learning process
can be improved by breaking down the overall learning task into a set of
independent sub-problems. Since the end-to-end forward model does not
make any assumptions on the state space, a model needs to be learned which
maps to an arbitrary state-id. In case there is no inherent structure in the id
assignment, this process becomes similar to brute-forcing the environment’s
forward model. More efficient compression of the model can be achieved in
case there is an underlying structure of the target variable. While this may
not be achievable for the state-id, it may be an inherent property of observed
sensor values. Especially the observation of physical properties of the
environment may uncover exploitable structures. For example, the change
of an object’s position is quite limited. At any given time, its next position is
strongly dependent on the object’s current position, its velocity, and applied
forces by other objects. In case a state is defined by the observation of
multiple sensor values, it may prove beneficial to predict changes of every
sensor value independently and aggregating these predictions to infer the
overall state. Reductions in complexity can be achieved since each sensor’s
model has a smaller hypothesis space and the observed values of a sensor
may exhibit an exploitable structure.

A perfect decomposition becomes possible in case the change in a sensor’s
value is conditionally independent of changes in other sensor values when
given knowledge of the current state and action:

∀i, j ∈ 1..n : i , j ⇒ S(i)
t+1⊥⊥ S

(j)
t+1 | St , At (4.5)

If this property is satisfied, the forward model can be split into multiple
independent submodels fmi each modelling the transitions of a single sensor
value based on the current state and the agent’s action:

fmi : (S ×A)→ S (St , At) 7−→ S(i)
t+1 (4.6)
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Figure 4.1: Screenshot of Paku Paku1, a free MS-DOS Pac-Man clone.

The original forward model can then be replaced by the aggregation of all
submodels:

fm(St , At) = (fm1(St , At), fm2(St , At), . . . , fmn(St , At))

= (S(1)
t+1, S

(2)
t+1, . . . , S

(n)
t+1) = St+1

(4.7)

The following is a brief example to illustrate the proposed model’s un-
derlying principle and its impact on the model building process. Consider
the game Pac-Man (see Figure 4.1). To be successful, the agent (yellow
character) needs to traverse the maze while avoiding all ghosts (the pink,
blue, orange, and red characters). While the agent’s movement is only
dependent on the chosen action, the behaviour of each ghost is dependent
on its current position and its distance to the agent. Modelling the whole
state transition means modelling the joint movement of all characters. Since
each character can move into one out of four directions, a total of 45 state
transitions are possible during every single state transition. By dividing the
forward model into five submodels (one for the agent and one per ghost), the
movement of each character can be modelled independently. In contrast to
the original forward model, each submodel only needs to consider 4 possible
outcomes. Combining the individual results yields the same state prediction
while learning multiple submodels with reduced complexity in comparison
to the overall forward model.
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4.3.1 Automated Model Decomposition

A problem of the decomposed forward model can be its assumption of
full independence among the predicted variables given knowledge of the
current state and the agent’s action. Since this assumption may be too
strict, it is of interest to check which dependencies and independencies hold
given a dataset of observed interactions. Detecting independencies among
variables would enable the agent to filter irrelevant attributes before the
forward model building process. Therefore, based on detected dependencies
a conditionalised database can be constructed for each sensor value only
containing attributes on which the future sensor value is dependent on.

The dependency analysis can be considered a structure-learning problem
of a Bayesian belief net [51]. Let a Bayesian belief net be a directed acyclic
graph denoted by G that encodes the dependence structure of a given
probability distribution [23, 92]. The probability distribution P(St , AtSt+1)
describes the likelihood of choosing action At in state St would lead to state
St+1 and is approximated given the history of previous interactions. Given a
set of n observable sensor values the graph will consist of 2n + 1 nodes in
which n nodes represent the current state of each sensor, n nodes represent
the future state of each sensor, and one node represents the agent’s action.
The graph’s edges are used to encode dependencies and independencies of
nodes in the graph.

Structure-learning algorithms try to identify a graph structure that
matches the given probability distribution. While a complete graph can
be used to encode any given probability distribution, structure-learning
algorithms try to find independencies among observed variables to simplify
the graph. Three categories of structure-learning algorithms can be identified,
namely, score-based, constraint-based, and hybrid approaches [156].

Scoring-based Algorithms: Scoring-based approaches first generate a selec-
tion of candidate structures and select the most suitable based on a quality
criterion. This quality criterion, e.g. the Bayesian information criterion [154],
describes the correspondence between the implicit probability distribution
of the structure and the underlying data set.

Since the number of possible structures super-exponentially depends on
the number of nodes of the graph, a complete search can only be performed
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in few cases. Therefore, the generation of candidate structures is usually
limited to a local search. For example, the Hill-Climbing (hc) algorithm [40,
65] optimises an initial candidate structure step by step by adding, reversing,
or removing edges. The best-rated structure will be further optimised during
the next iteration until the search converges. An alternative search method
is the tabu search (tabu), which maintains a list of previous changes [24].
In the course of the search, these can be undone to avoid local optima.

Constraint-based Algorithms: Constraint-based approaches use condi-
tional independence tests to learn the dependency structure of attributes
from the observed sample. The Grow Shrink (gs) algorithm [104] uses Markov
blankets [103] to first determine an undirected graph structure. Thereafter,
a directed graph is formed, by aligning edges, removing existing cycles, and
propagating directions to undirected edges.

The semi-interleaved Hiton Parents and Children (si-hiton-pc) algorithm [3]
first identifies local causal and markov-blanket relationships. Their combi-
nation results in an undirected candidate structure for the Bayesian belief
graph. Similarly, the Max-Min Parents and Children (mmpc) algorithm [173]
first generates an undirected graph structure by identifying all possible
parents and children per node. Subsequently, scoring-based approaches
can be used to determine the orientation of each edge. Both mmpc and
si-hiton-pc should be particularly suitable for mapping the dependencies of
large attribute sets due to their multi-level optimisation of the undirected
graph structure. Therefore, these two algorithms could be particularly useful
for complex state representations.

Hybrid Algorithms: Hybrid algorithms combine the two approaches pre-
sented above in a 2-phase procedure to efficiently find directional graph
structures that fit a given data set. During the restriction phase, constraint-
based algorithms are used to reduce the number of possible undirected
candidate structures. Afterwards, edges are aligned using score-based al-
gorithms in the subsequent maximisation phase. This general procedure
is described in the rsmax2 algorithm, in which the user can select any
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a) simple level b) hard level

Figure 4.2: Two levels of the game Sokoban

combination of constraint-based and score-based algorithms [155, 156].
A representative of these algorithms is the Max-Min Hill Climbing (mmhc)
algorithm [174] which combines the mmpc algorithm with the hc algorithm.

Structure-Learning for Games

The structure-learning process will be exemplified based on data retrieved
from the game Sokoban. Sokoban is a classic grid-based puzzle game in
which the player must push crates into designated locations. The player
can move in four directions (up, down, left, and right). Moving into a box
pushes it in the direction of movement, except the target position is blocked
by either a wall or another box. However, the agent is not able to pull boxes.
Therefore, pushing boxes into a corner yields a state in which the agent is
unable to solve a level. Figure 4.2 shows two example levels of Sokoban with
varying complexity.

Here, the agent perceives a game-state as a grid of tiles in which each
tile uniquely describes if it contains either the player, a box, a wall, a target
position, or if it is empty. Depending on the level’s size the number of
perceivable states can be quite high. An end-to-end forward model approach
will not be efficient since there is no natural state-id assignment. For a grid
of width w and height h, the agent can observe wh sensor values. Using a
decomposed forward model a separate model needs to be learned for each of
these sensors. Since the input of the model is quite complex, a pre-selection
of the model’s input can be recommended.
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A data set of game interactions is built by letting a random agent play
the simple level shown in Figure 4.2 for 5000 game steps. To get a diverse
data set the level is reset after a maximum of 100 ticks or in case the agent
finishes the level early. The data set consist of each tile’s state before and
after the interaction and the agent’s action.

In the following, algorithms for learning the structure of directed belief
graphs are compared, including the score-based algorithms hc and tabu,
and the hybrid algorithms rsmax2 for any pair of the constraint-based
algorithms gc, mmpc, and si-hiton-pc with any of the two scoring-based
algorithms. During this process, multiple dependencies are blacklisted by
providing a list of edges that cannot be included in the final belief net. Each
edge starting at node u and pointing to node v that applies to one of the
following rules is excluded:

• u and v both reference a tile’s state before the interaction

• u and v both reference a tile’s state after the interaction

• u references a tile’s state after the interaction and v a tile’s state before
the interaction

The first two rules ensure the independence assumption of the decomposed
forward model, while the third rule ensures that each dependency follows
the chronological order.

A visual comparison of the resulting belief nets is shown in Figure 4.3.
For easier visualisation, the nodes of the graph are shown at the position
they indicate. Each tile is represented by a single node and edges from one
state to the other indicate a dependency of the starting node’s previous state
and the target node’s next state. Additionally, summary statistics of the
structure-learning algorithms and their resulting graphs are presented in
Table 4.1.

Resulting belief nets are compared based on their number of edges,
number of structure evaluations during the optimisation process, and their
final network score. For the latter, the Bayesian information criterion (BIC)
is used.

The evaluation shows that the scoring-based algorithms performed better
in terms of BIC, but also tended to report a larger number of edges. While
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Table 4.1: Summary of learned structures for the game Sokoban; #E: number
of edges, #T: number of network tests during the learning process (hc/tabu),
BIC: Bayesian information criterion

algorithm simple level
#E #T BIC

hc 43 4301 -56034.66
tabu 43 1309 -56044.29

rsmax2 (gs, hc/tabu) 9 1652/1674 -76649.20
rsmax2 (mmpc, hc/tabu) 32 9183/9705 -57818.19
rsmax2 (si-hiton-pc, hc/tabu) 30 4508/4557 -57989.35

the hill-climbing algorithm resulted in a slightly better BIC, the tabu search
needed less than a third of the evaluations. Both, the hill-climbing and the
tabu search optimisation of edge directions resulted in the same graph for
all hybrid algorithms but needed a different amount of graph evaluations.
In contrast to only applying the scoring-based algorithms, the tabu search
needed more evaluations than the hill-climbing algorithm. Learning the
belief net’s structure using the grow-shrink algorithm resulted in the worst
performance among tested algorithms. Most nodes were considered to be
independent, which may be due to the rarity of changes in the data set. Both,
the mmpc and the si-hiton-pc algorithm performed better than the grow-
shrink algorithm in terms of BIC. While the mmpc algorithm performed best
among the hybrid-algorithms, it needed more than double the evaluations of
the si-hiton-pc algorihm. Nevertheless, their results were slightly subpar to
the results of the pure scoring-based algorithms.

An interesting property of the reported graphs is that the strongest
dependencies are reported among nodes that are close to each other. This
perfectly represents the local dependence of Sokoban’s forward model. Here,
the character’s and the boxes’ movement can perfectly be described by taking
neighbouring tiles into account.
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a) Hill Climbing b) Tabu Search

c) Grow-Shrink + Hill
Climbing/Tabu Search

d) Max Min Parent and
Children + Hill Climb-
ing/Tabu Search

e) Semi-interleaved Hiton
Parents and Children + Hill
Climbing/Tabu Search

Figure 4.3: Comparison of learned dependence structures. The position
of each node encodes the state of each moveable tile in the simple level
(cf. Figure 4.2a). A directed edge from node u → v, u , v indicates a
dependence of their associated sensor values Sut and Svt+1. Edges of type
Sut → Sut+1 and At → Sut+1 are ommitted for a clearer presentation.
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4.4 Local Forward Models

In the previous sections, it was demonstrated how a model can be de-
composed into multiple sub-models. To reduce the computational effort a
pre-filtering of features can be applied before each model’s building process.
However, the detection of sensor dependencies requires a large dataset of
previous interactions to be accurate and needs to be separately done for
each sensor value. This section will show how the computational complexity
of the model building and the feature selection process can be reduced in
case the agent is aware of a semantic arrangement of sensor values.

Such a semantic arrangement can be observed in the visual output of
a game. Here, the agent can observe the colour value of each pixel and
its position. Pixels that are closer to each other often correspond to the
representation of the same object. Moving the object results in a position
change of all corresponding pixels. However, the meaning of these pixels
does not change when moved to another position since they still represent
the same object. Similarly, grid-based games such as Chess or Sokoban let
the agent observe every cell of the board. Moving a piece from one cell to
another changes the observed value of associated grid cells, but does not
change the meaning of the piece itself. Its possible action space remains the
same despite the position change.

In the presented experimental evaluation of structure-learning algorithms,
it was observed that the transition of a single grid cell can often be modelled
without knowledge of the whole state. Instead, in the case of the analysed
grid-like structures, it was observed that a small distance between objects
is a strong indicator of dependence. The observed local dependence among
objects and the unchanged meaning of repositioned sensor values form the
main motivation of local forward models.

In the following, two main assumptions need to be satisfied for the
applicability of local forward models. First, it is assumed that sensor values
are arranged in a graph-like structure on which a neighbourhood relation
among sensor values can be defined. This will allow differentiating local and
global interactions between objects. Local interactions describe dependencies
between two neighbouring objects’ sensor values, whereas global interactions
describe dependencies between any two non-neighbouring objects’ sensor
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values. Local forward models focus on the former by only modelling local
interactions and ignoring global interactions. The second assumption of
local forward models is that changes of each sensor value can be described
independently of its global position by only taking its current value, the
value of neighbouring sensors, and the player’s action into account.

In the following Subsection 4.4.1, local neighbourhoods will be defined.
The process for learning local transition functions will be described in
Subsection 4.4.2.

4.4.1 Local Neighbourhoods

A local forward model describes the changes in each sensor value by

fmi : (S ×A)→ S
(
N(S(i)

t ), At
)
7−→ S(i)

t+1 (4.8)

whereas N(S(i)
t ) is the local neighbourhood of sensor value i at time t. Given

a distance threshold ε and a distance metric d(x, y) the local neighbourhood
is given by

N(S(i)
t ) =

{
S(j)
t | d(S(i)

t , S
(j)
t ) ≤ ε, j ∈ 1, . . . , n

}
(4.9)

Therefore, it includes all sensor values that are closer than a given threshold.
However, the definition of this neighbourhood largely depends on the given
structure and its associated distance metric.

For simplicity, it will be assumed that all sensor values of a state’s
representation are arranged in a grid-like structure, e.g. grid-based and
pixel-based state representations. Hence, a state can be represented as a
set of tiles or pixels arranged in a grid in which T (x, y) specifies the tile at
position (x, y) on a grid in euclidean space. For each cell, a model will be
built which can predict the future state of the cell based on its current state
and its local neighbourhood.

Let the local state transition function fx,y be given by

fmx,y :
(
N(x, y)t , At

)
7−→ T (x, y)t+1 (4.10)

for which N(x, y)t describes the local neighbourhood of cell (x, y) at time t
and At the agent’s current action. The Minkowski distance[149] can be used
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a) limp→0 b) p = 0.5 c) p = 1.0

d) p = 2.0 e) p = 5.0 f) limp→∞

Figure 4.4: Unit circles (blue lines) of the Minkowski distance for varying
values of p.

to measure the distance of two points in euclidean space X = (x1, . . . , xn)
and Y = (y1, . . . , yn) ∈ Nn, which is defined by

D(X, Y ) =
( n∑
i=1

|xi , yi |
p

) 1
p

(4.11)

for p ≥ 1. The Minkowski distance with p = 1 corresponds to the Manhatten
distance, p = 2 to the Euclidean distance, and the limiting case of p reaching
infinity to the Chebyshev distance. For 0 ≤ p < 1 the Minkowski distance
does not fulfil the triangle inequality, and therefore, is not a distance metric.
Nevertheless, it can still be used to define the local neighbourhood of a
cell since the neighbourhood relation does not need to be transitive in this
application. The resulting shape of a cell’s local neighbourhood is shown in
Figure 4.4 for various values of p.

4.4.2 Learning Local Transition Functions

Given the definition of a local neighbourhood, the local transition function
can be learned based on previously observed cell transitions. Similar to
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a) Current state b) Extracted patterns
per tile

c) Predicted tile per pat-
tern for action left

Figure 4.5: Visualising steps of the local forward model’s prediction process.

previously discussed forward model learning techniques, learning the local
transition function is equal to learning a classifier, which can predict the
upcoming sensor values.

When assuming that the semantic of a sensor value is independent of
its represented position in the grid, it suffices to learn a single model that
applies to all grid cells. Additionally, the data collection process becomes
more efficient since instead of recording a single game-state transition per
game tick, a separate transition can be recorded for each cell in the grid.
Depending on the grid size this can result in a massive amount of training
samples by just observing a single game-tick. Hence, this technique might
be able to considerably lower the number of interactions to be observed
during the training process. The extraction process for local neighbourhood
patterns is shown in Figure 4.5.

While in an end-to-end forward model, the model is called only once to
predict the next game-state, a local forward model needs to be applied to
each cell separately. However, this process can be completely parallelised
since the upcoming cell states are assumed to be independent of each other.
To do so, the agent extracts the local neighbourhoods per cell and applies
the learned local forward model to predict each cell’s next value. In case the
trained classifier allows the use of batch-processing this can further speed
up the prediction process considerably.
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4.5 Object-Based Forward Models

Previously discussed forward models were either based on the state-id or the
analysis of a state’s sensor values. Such low-level based modelling allows
the learning procedure to be applied to a wide range of scenarios. However,
incorporating background information on the state description may allow
to further improve the model learning process. Such high-level information
could be provided in the form of, e.g. entity-based sensor groupings, object
types, collision events, etc. In the following, an object-based forward model
learning procedure will be proposed, which can incorporate such high-level
information in the prediction of future states. Specifically, it will be discussed
how an object-based representation of the environment can be used to reduce
the number of models to be learned and, therefore, speed-up the learning
process.

The object-based forward model is motivated by the object-based state
representation of the GVGAI framework. For each visible sprite in the current
game-state, the GVGAI framework provides the agent information on the
sprite’s current position, rotation, orientation, and multiple other attributes.
An important aspect of this representation is that each sprite has a unique id
which can be used for tracking the sprite over multiple time steps to allow the
deduction of its movement over time. Newly spawned objects or destroyed
objects can be detected by their id. While such high-level information in
the state representation may not be provided by the environment, the agent
may be able to construct its own representation by preprocessing a visual
representation of its environment. Techniques for doing so will be discussed
in Subsection 4.5.1.

In the following, it will be assumed that next to the state description in the
form of its sensor values, the agent is aware of an entity-based partitioning
of these sensors. A partition may describe the sets of sensor values 1, . . . , m
that belong to a common object in the environment such as, e.g. the agent’s
avatar or a non-player character.

S = (S(1), S(2), . . . , S(n))

= (S(1,1), . . . , S(1,i)︸             ︷︷             ︸
Object 1

, S(2,1), . . . , S(2,j)︸             ︷︷             ︸
Object 2

, . . . , S(m,1), . . . , S(m,k)︸               ︷︷               ︸
Object m

) (4.12)
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This information can either be provided by the environment itself or
may be extracted by the agent from the state observation. Similar to a
decomposed forward model, the object-based forward model assumes that
the behaviour of each object can be modelled independently of other objects.
Therefore, the forward model will be split into multiple submodels fmi,
whereas each submodel describes changes of object i ’s associated sensor
values (S(i,1)

t+1 , . . . , S
(i,k)
t+1 ):

fmi :
(
(S(i,1)
t , . . . , S(i,k)

t ), At
)
7−→ (S(i,1)

t+1 , . . . , S
(i,k)
t+1 ) (4.13)

This object-submodel may further be decomposed into multiple forward
models, whereas each sensor-model fmi,j predicts changes of the j-th sensor
value S(i,j) of object i:

fmi,j :
(
(S(i,1)
t , . . . , S(i,k)

t ), At
)
7−→ S(i,j)

t+1 (4.14)

The original forward model can then be replaced by the aggregation of all
objects submodels or their sensor submodels:

fm(St , At) = (fm1(St , At), . . . , fmn(St , At))

= ((fm1,1((S(1,1)
t , . . . , S(1,k)

t ), At), . . . , fmm,k((S(m,1)
t , . . . , S(m,k′)

t ), At)))

= (S(1)
t+1, S

(2)
t+1, . . . , S

(n)
t+1) = St+1

(4.15)

Further reductions of the total model size can be achieved in case
objects share similar forward models. This could happen in case each
object belongs to a certain object type. Each object type can further have
multiple instances, e.g. groups of enemies that behave the same. In case
the environment provides us with information on an object’s type or the
agent is able to recognise the object’s type based on its associated sensor
values or its behaviour, object-based models of similar object types can be
merged. This reduces the number of models to be learned. At the same time,
it increases the number of training examples per model, since each instance
provides unique observations for the forward model’s training data set.

The feasibility of this approach will shortly be explained based on the
game “alien” provided by the GVGAI-framework (see Figure 4.6). Here, the
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Figure 4.6: Gamestate of the game “aliens” from the GVGAI framework. Four
types of entities: top: alien spaceships, middle: player shot and boulders,
bottom: player spaceship
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Figure 4.7: Comparison of forward model architectures: (left) end-to-end
forward model; (middle) object-based forward model consisting of one sub-
model for each object of the environment; (right) object-based forward model
consisting of one sub-model for each type of objects

player controls a spaceship at the bottom of the screen, which can fly left
and right and shoot a bullet upwards. The agent’s task is to destroy alien
spaceships which spawn at the top of the screen and traverse the screen
from left to right. When they reached the end of a row they get down on the
next one and reverse their horizontal direction. The player loses the game in
case an alien reaches the down-most row.

Overall, the game consists of three moving object types: the player’s
avatar, shot bullets, and alien spaceships. Learning a separate model for
each of the alien spaceships or each of the player’s bullets will result in an
unnecessary amount of models since the behaviour of instances of the same
object type will be the same. In return, this means observations of all aliens
can be used to train the agent’s model of an alien spaceship. Therefore,
during each tick, every alien provides a separate training example. The final
model architecture is shown in Figure 4.7.
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In the proposed model architecture it was assumed that each object
can be modelled independently of other objects. In case objects are able
to influence each other an object’s model will need to access the sensor
values of the object being modelled as well as the sensor values of other
objects. Since the number of objects may change while playing the game
the number of inputs per model would change as well. This can be avoided
by not providing the object model with the sensor values of other objects
but with calculated summary statistics. These may include the number
of observed objects, their type, or even higher-level information like their
average distance. This feature creation process may be adapted for the task
at hand to ease the agent’s learning process.

Similar to local forward models the object-based forward model has
two major benefits. First, the proposed forward model is independent of
the number of instances per object which means that the total number
of observed sensor values can vary with each game tick as long as every
object type is represented in at least one forward model. Second, multiple
instances per object type can be used to train the same model which yields
more training examples per model than training a separate model per object.

4.5.1 Generating Object-based State Representations

In the previous example, it was assumed that the segmentation of the state
into multiple objects is provided by the state representation. Since this
does not need to be the case, it will shortly be discussed how object-type
information may be extracted from a visual state representation. This
subsection aims to be a short overview of computer vision algorithms and
how they can benefit this process.

For the purpose of creating an object-based representation, supervised
and unsupervised algorithms can be used. Supervised object detection
algorithms need a set of labelled examples to either train a model which
identifies an object by its typical features, or to compute the similarity
between extracted image patches and known labelled examples. In contrast,
unsupervised algorithms may extract and cluster image patches to identify
frequently occurring patterns. In both cases, the screen representation can
later be replaced by the set of identified objects or the closest matching
pattern per patch.
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In case an object’s representation is known, template matching can be
an efficient method for the detection of objects. Since many 2-dimensional
games are based on sprite sheets (e.g., character animations) and tilesets
(e.g., non-moving objects), this information may be available during the
development of an agent. In this case, template matching algorithms allow
the agent to detect objects in the visual scene and describe them by their
position, their bounding box, and assign a unique object id. Classical
template-matching algorithms determine the difference between an image
patch and a given template. This process can be improved by instead using a
feature-based representation of provided templates [13, 179]. Depending on
the used features, given templates can be reliably detected despite differences
in background graphics, rotation, and colour variances. In deep learning-
based template matching, these features are learned from labelled training
examples. Deep-learning based approaches have proven to be effective in
a wide range of image-classification tasks [91, 145]. Those pre-trained
object detection networks may be applicable to the game’s graphical output
in case real-world objects are represented in the environment. For this
purpose, the network weights of a pre-trained network are tuned for the
current classification task by providing new training examples. Given a set
of input images that represent similar content such as multiple frames of a
game scene, co-segmentation algorithms can be used to extract commonly
occurring templates. Hence, 2-dimensional or 3-dimensional scenes can be
processed to detect fore- and background objects.

Object tracking algorithms can further be used to track these instances
over time [188]. This becomes necessary to record each object’s change in
position or orientation and use this information for training a forward model.
Furthermore, overlapping boundary boxes can be used to report collision
among objects for a more feature-rich representation.

An unsupervised object-detection algorithm has been used by Chen et
al. [37] to cluster game objects in the visual state representation. Their
proposed algorithm is restricted to tile-based games in which observed tiles
are extracted and clustered. After an initial learning phase newly observed
tiles are assigned to the cluster with the most similar instances. The con-
structed object-based representation has shown to benefit the reinforcement
learning-based agent in terms of a reduced learning time and model size.
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4.6 Comparison of Proposed Learning Methods

In this section, the four proposed forward model learning methods will
be compared based on the properties described Section 4.1. A schematic
overview of the proposed methods is shown in Figure 4.8. and results of this
comparison are summarised in Table 4.2.

The most general model in terms of applicability is the end-to-end forward
model. This model can be applied in all scenarios in which the agent can
identify a state based on its observable properties. This general applicability,
however, leads to problems regarding the size of the hypothesis space and its
associated number of necessary training examples. Hence, the flexibility of
this approach comes with the drawback of slow learning speed, high memory
consumption, and almost no generalisability regarding previously unseen
examples.

The other methods try to overcome these problems by introducing as-
sumptions on the state-space to reduce the size of the hypothesis space.
The decomposed model framework and the proposed automated model de-
composition can both be applied without assumptions on the underlying
state representation. In contrast, the local forward model approach is based
on semantic relationships of neighbouring sensor values. The object-based
forward model requires the agent to be aware of independently acting compo-
nents in the state-representation. The process becomes more efficient in case
these components share common properties. Both methods considerably
reduce the number of input variables per model and the overall number of
submodels to be learned. However, they also make strong assumptions on
the state representation which may not be fulfilled in the given environment
but could be fulfilled by preprocessing a phase.

Similar to the generalisability of the learning process to unknown envi-
ronments, the transfer of an existing model to previously unobserved states
is an interesting characteristic of forward models in the context of general
game learning. In this form of transfer learning, the agent can be confronted
with new situations such as an increased level size or new components in
the environment. In such a case, it would be desirable to adopt knowledge
from previously observed levels to shorten the time it takes the agent to
adapt to the new situation.
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Both, end-to-end forward models and decomposed forward models, would
need to be retrained in case the environment introduces new states or a
differing number of sensor values. In contrast, the local forward model
and the object-based forward model can reuse the knowledge of previously
observed transactions if the new level uses a state representation analogous
to the levels at which the agent was trained. The transition function learned
by local forward models is independent of a tile’s absolute position. Because
of this, the transition function can be applied to every tile in the state
representation even if the total number of tiles varies in the newly observed
state. Similarly, the object-based forward model can be applied as long as
objects of new levels are similar to previously observed objects. The use of
summary statistics as inputs of each model allows the model to be applied
in case of a varying number of objects in the environment.

The interpretability of the model depends on the model’s structure, the
classifier being used, and the complexity of the environment. While the
latter cannot be influenced by the agent, the first two directly depend on the
developer’s choices during the modelling process. As discussed above, the
complexity of the end-to-end forward model is the highest since it needs to
cover all possible state transitions in a single model. The other models are
likely to be more interpretable since they are each focusing on a single aspect
of the state representation. While the decomposed forward model offers a
submodel for each sensor value, the object-based forward model describes
updates of a whole object. The latter can be beneficial in cases in which
an object’s sensor values are dependent on each other. In case the model
is able to distinguish groups of similar objects, the resulting reduction of
models to be trained can enhance the interpretability of the overall forward
model. Similarly, the reduction in the number of submodels for the local
forward model, which applies the same model to each observable tile, can
lead to an easily interpretable forward model.

Next to the structure of the forward model, the choice of the classifier
has a direct influence on the model’s interpretability. Especially classifiers
that are represented in the form of rules or simple decision trees have often
proven to be humanly interpretable [19]. Prototype-based classifiers such
as k-nearest neighbour justify the decision based on previously observed
examples. Depending on the similarity measure being used and the number
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Table 4.2: Qualitative comparison of proposed forward models architectures;
(+) well suited, (~) neutral, (—) poorly suited

Forward Model #Models Model Interpret- Transfer
Complexity ability across levels

End-To-End + — — —
Decomposed — ~ ~ —
Local + + + +
Object-based ~ ~ + +

of considered neighbours these classifiers can be interpretable by humans
to some degree. Similarly, ensemble-based methods can become hard to
interpret in case they are aggregating the results of many classifiers.

The usage of black-box classifiers such as neural networks or support
vector machines can be more problematic. Since the internal representation
of these classifiers does not allow direct interpretation, reverse engineer-
ing methods need to be used for the extraction of interpretable knowledge.
Model-specific techniques such as the extraction of rules for deep neural
networks [76] and the visualisations of neural network layers [125] have
both proven useful in getting insights into the neural network’s classifica-
tion process. On the contrary, model-agnostic frameworks measure the
influence of input parameter on the outcome of the classifier, e.g. sensitivity
analysis [41] or feature importance [81].

Even if the classification process cannot be regarded as humanly in-
terpretable, analysing the output of the forward model can be valuable in
verifying the accuracy of the model. The visualisation of the result can prove
useful in understanding the predictions made by the forward model. Since
the local forward model is directly associated with tiles that may have a
known graphical representation, a visualisation of the state becomes possi-
ble. The same applies to the other models in case it is known how predicted
parameters relate to the graphical output of the game. Especially, in case an
object-based forward model was trained using data of visual pre-processing
techniques, the visual representation of an object may be known. Finally,
the end-to-end forward model directly maps to the agent’s state observation.
Therefore, the model’s result can be visually inspected in case the model
was trained on a visual state observation.
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Figure 4.8: Visual comparison of proposed forward model architectures
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4.7 Agent Model

Simulation-based search agents make use of the environment’s true forward
model to analyse the outcome of an action. Since a trained forward model
serves as a replacement for the environment’s true forward model, a similar
process can be applied. To differentiate the use of these different forward
models, a search using a trained forward model will be called a prediction-
based search.

In case the trained forward model should remain unchanged over time,
the search process resembles a simulation-based search. Measuring the
model’s accuracy would allow for the application of more specialised search
methods which compensate for the agent’s confidence in the predictions.

If the agent is allowed to update the trained forward model, it needs to
keep track of its recent interactions with the environment. Every observed
interaction could consist of previously unobserved patterns which can be
added to the model’s training data. Retraining the forward model would
be done by updating the classifier. To keep track of the model’s accuracy,
the agent can compare past predictions with the observed outcome after
executing an action. It is recommended to update the classifier after an
error has been observed to avoid repeating the same mistake. This feedback
loop is key to continuously improving the agent’s model of its environment
and is shown in Figure 4.9.

The trained forward model allows the agent to predict upcoming states
and, therefore, the outcome of the agent’s actions. Given a task description
the agent would be able to detect states in which the task is completed, thus,
searching for appropriate action sequences becomes possible.

In case the search process requires an evaluation of the value of in-
termediate game states, it can be beneficial to also learn a reward model.
The reward can be incorporated in previously proposed forward models by
representing it as an additional sensor value. Alternatively, reinforcement
learning algorithms can be used to learn the value of a state while the agent
is playing the game. Therefore, prediction-based search algorithms do not
need to replace reinforcement learning approaches but can be used in con-
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Figure 4.9: Prediction-based search including continuous model updates.

junction with them. This also creates the possibility of using a reinforcement
learning algorithm in a simulated environment that is updated according to
the agent’s forward model, which allows for a safe learning environment.

In the context of this thesis, a simple score model will be used to predict
the reward of a state transition. This score model will be implemented using
a linear regression which maps the differences of the current state and the
upcoming state to a reward value. The difference vector contains entries for
every observable tile or object type in the state representation and consists of
their number of occurrences, the number of destroyed individuals, and the
number of newly created individuals per tile or object type. This model was
chosen since it can be used for all proposed forward models and requires
minimal additions to the prediction-based search.
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4.8 Results of Previous Work

A preliminary version of the decomposed forward model was proposed by
Daan Appeldoorn and I in the paper called “Forward Model Approximation
for General Video Game Learning” [47]. In this study, the agent was tasked
to play games of the GVGAI framework without having access to the envi-
ronment’s forward model. Instead, the agent needs to base its decisions
on predictions of the avatar’s movement, scored points, and the game’s
termination conditions. These predictions were made using hierarchical
knowledge bases [6] that were trained to predict the upcoming state based
on one minute game-play of a random agent. After the training phase, the
agent analyses the current state and applies the most specific association
rule to predict the next state. The proposed agent used either BFS or MCTS
to play 10 different games. In the evaluation the agent’s game-playing per-
formance was compared to agents of the 2017 competition’s learning track.
The proposed agent was able to overall outperform these agents and was
the best performing agent in 5 out of 10 games. Nevertheless, the model’s
prediction capabilities were still limited.

The aim of improving the model’s prediction accuracy and extending its
applicability to all game elements lead to the development of the decomposed
forward model. A more flexible prediction framework based on an ensemble
of complementary decision trees was proposed in the follow-up paper [56].
Here, the changes in each sensor value were predicted independently using
a decision tree classifier. The proposed technique resulted in prediction
accuracies between 60 and 90 % per game. However, the number of models
to be trained was dependent on the number of observable sensor values and
has shown to be infeasible for games with larger game-states.

To reduce the number of input parameters per model the application
of a dependency analysis was first studied in my paper “Detecting Sensor
Dependencies for Building Complementary Model Ensembles” [51]. A qual-
itative analysis on the two games “aliens” and “butterflies” of the GVGAI
framework has shown that stochastic independencies among variables can
often be detected after just a few interactions (~100-1000). Results of this
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evaluation suggested that in structured state observations, such as a grid of
observed tiles, the next state of a tile can often be predicted based on the
current state of neighbouring tiles.

The local forward model was first used in our paper “A Local Approach to
Forward Model Learning - Results on the Game of Life Game” [98]. Here, the
model has been tested in the context of Conway’s Game of Life, a simulated
2-dimensional grid world based on a cellular automaton. In the beginning,
each cell of the grid is randomly initialised so that it is either alive or dead. A
simple set of rules determines the future state of each cell depending on the
current state of a cell and the number of living cells in its vicinity. Despite
its name, Conway’s Game of Life is not a game in the conventional sense,
since the player cannot interact with the environment after the simulation
has been started. In our version of the Game of Life, the agent could activate
or deactivate one cell per tick. The reward of the agent was determined
depending on the number of living cells per tick. Both, the grid-based state
representation and the update rule, clearly fulfil all assumptions of the local
forward model. Thanks to the simplicity of the Game of Life’s forward model,
it is possible to determine all local patterns and their results. The evaluation
showed that, after a small number of observed patterns, the model was
able to generalise its prediction well to unobserved patterns. Since the
observation of a single interaction results in a large number of observed
patterns, the agent quickly learned a suitable model to keep large parts of
the population alive, as opposed to a random agent for which the population
died out quickly. This work also attempted to apply the local forward model
to games of the GVGAI framework without much success.

In addition to our experiments on the Game of Life, the local forward
model has also been tested in the context of the game Sokoban [52]. Sokoban
(published by Thinking Rabbit in 1982) is a classic grid-based puzzle game in
which the player must push a determined number of crates into designated
locations to complete each level. The player can move in four directions
(up, down, left, and right) and push boxes in the direction of travel. In
contrast, pulling boxes is not possible. Experiments have shown that the
agent is able to learn how to play a single level after just a few attempts.
Additionally, the agent’s ability of transfer learning across multiple levels
has been tested by training the model on 10 levels and evaluated the agent’s
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game-playing performance on 10 new levels. Despite being confronted by
previously unseen game-states the agent was able to predict the outcome of
its actions well enough to outperform non-learning algorithms.

Next to the prediction of the upcoming state, it has also been tested
if it is possible to predict the agent’s reward and the game’s termination
criteria. For this purpose, the use of association rule mining algorithms has
been proposed in the paper “Association Rule Mining for Unknown Video
Games” [54]. This process performed well when predicting common state
transitions but failed to represent rare events. Especially association rules
describing the termination condition often failed to reach the minimum
support threshold. Lowering the threshold until these rules are reported
has shown to be infeasible due to a large number of uninteresting rules
being reported as well. This problem was solved by the proposal of a 2-step
process. First, association rules that predict the game’s termination were
extracted based on a data set only containing the final state transition of
each attempt. Secondly, association rules that were incorrectly activated
in any of the previously observed interactions were filtered. The proposed
algorithm was tested on games of the GVGAI framework and showed to be
capable of returning correct and humanly interpretable rules.

4.9 Evaluation Setting

The GVGAI framework provides a unified interface for more than 100 games.
The following experiments will be based on the Python client2 of the GVGAI
single-player learning track. This client allows the agent to access a visual
representation or a grid-based representation of the current game-state.
Access to the object-based state representation sent by the server was
assured through slight modifications of the framework. In the following, the
grid-based representation, as well as the object-based representation, will
be used to train respective forward models.

Many of the GVGAI games use grid-based physics. However, the grid
resolution used in the environment model does not always match the grid
resolution of the state observation. This can lead to game components being
reported in multiple cells at the same time. In the following evaluation, only

2https://github.com/rubenrtorrado/GVGAI_GYM

https://github.com/rubenrtorrado/GVGAI_GYM
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games in which each game object is only represented once per time step
will be used. Additionally, these games will be required to offer at least 5
levels to assure that the agent is able to observe a diverse set of game-states
per game. The following paragraphs shortly introduce three of these games
which are shown in Figure 4.10. Descriptions and visualisations of the
remaining games can be found in Section A.1.

chipschallenge: Each level includes up to four coloured blocks which can-
not be passed unless the agent collected a potion of the same colour. The
agent can increase its score by collecting coins. A door, which is blocking the
path to the final exit, is destroyed in case the agent collected at least 11 coins
when touching the door. The game is won in case the agent reaches the final
exit and lost in case the agent walks on a fire or water tile. However, dying
can be avoided by first collecting boots of the same colour. Chipschallenge
is one of the more complex games using larger levels and requiring the agent
to manage multiple resources.

labyrinthdual: The agent represented by the small man in the bottom left
corner needs to traverse the labyrinth to reach the goalpost. In case the agent
touches the blue or the red house, the agent’s colour changes accordingly
allowing him to pass blocks of the same colour. Later levels allow the agent
to get stuck in case it changes its colour in an inescapable position.

realsokoban: This game mimics the original Sokoban game in which the
agent is tasked to push all the boxes on the tiles marked by a circle. However,
boxes cannot be pulled. This can hinder the agent from finishing a level
since the box may not be movable from any direction.

a) chipschallenge b) labyrinthdual c) realsokoban

Figure 4.10: Three games of the GVGAI framework
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4.10 Evaluation of the Prediction Accuracy

In this first evaluation, the trained forward models’ accuracy of predicting
an upcoming state or its components will be tested. Since the prediction
target of the local forward model differs from the object-based forward model
both methods will be evaluated separately in the following subsections.

4.10.1 Accuracy of Local Forward Models

In this evaluation, it will be tested if the proposed local forward model
approach is able to learn an accurate model of the environment. The
influence of multiple parameters will be studied and it will be discussed how
the best model can be identified.

In this work, three types of local neighbourhoods will be considered,
namely the cross, the diamond, and the square pattern (cf. 4.11).

Ncross(x, y) =
{
T (x + i, y)

∣∣∣ 0 ≤ |i | ≤ span
}
∪{

T (x, y + j)
∣∣∣ 0 ≤ |j| ≤ span

} (4.16)

Ndiamond(x, y) =
{
T (x + i, y + j)

∣∣∣ 0 ≤ |i | ≤ span, 0 ≤ |j| ≤ span

|i | + |j| <= span
} (4.17)

Nsquare(x, y) =
{
T (x + i, y + j)

∣∣∣ 0 ≤ |i | ≤ span, 0 ≤ |j| ≤ span
}

(4.18)

Various spans will be tested to investigate the influence of the number of
input variables and unique training examples on the classifier’s training
process and result.

For the evaluation of local forward model learning the first step will be
to find suitable classification algorithms and their parameter settings. For
this purpose, a replay data set of a randomly playing agent will be generated.
Here, all 5 levels were played 10 times for 200 ticks each while recording the
observed state in each time-step. Note, that some replays are shorter since
the agent loses the game before the tick threshold is reached.

In the following, the influence of the neighbourhood shape, its radius, the
choice of the classification algorithm, and the algorithms’ parameter settings
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a) Cross pattern b) Diamond pattern c) Square pattern

Figure 4.11: Local neighbourhood patterns encoding the local neighbourhood
of the centre tile for span sizes 1 and 3

will be studied. Similar to the previous evaluation 3 neighbourhood shapes
are tested. For each of these shapes the neighbourhood radii 1, 2 and 3 are
compared regarding the obtained accuracy of trained models. To do so, for
each combination of shape and radius a separate data set containing all
unique observed neighbourhood patterns is extracted from the replay data
set, resulting in a total of 9 data sets. The classification algorithms k-Nearest
Neighbour [112], Decision Tree [143], Random Forest [27], AdaBoost [78],
and Naïve Bayes [18] are trained for each of the 9 data sets. To ensure a fair
comparison a grid-search is used to optimise the parameter settings of each
classifier. Stable results are achieved by using 10-fold cross-validation to
evaluate the accuracy of each configuration.

The evaluation covers 30 games, 9 data sets, 5 classifiers and a varying
number of parameter combinations. Details of the performed grid search can
be found in Section A.2. The complete source code and detailed results of this
process can be found in the public git-repository [45]. Here, the aggregated
results will be shown to discuss the suitability of included algorithms and
data sets.

Figure 4.12 shows the accuracy distribution per algorithm and the
accuracy distribution per data set on the aggregated results of all games.
Results per game are reported in Section A.3. The evaluation shows that
the overall best-performing classification algorithm is the Decision Tree. In
comparison to both decision-tree based ensemble classifiers, namely the
Random Forest and the AdaBoost classifier, the simple decision tree achieves
its best results when not being pruned while the ensemble-based classifiers
use pruning strategies to avoid overfitting of the training data. However,
overfitting can be beneficial in this setting since the training data set is likely
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Figure 4.12: Aggregated accuracy values measured on all of the evaluation
games: (left) performance distribution per algorithm (right) performance
distribution per data set

to cover a large portion of observable patterns. Being able to completely
replicate the training data means that the agent would be able to correctly
predict every previously observed pattern. Which in return means, that
predicting a pattern wrong occurs at most once per pattern.

At the same time, the trained classifiers performed better when using
patterns with a larger radius. This is the case because increasing the neigh-
bourhood radius also increases the number of uniquely observable patterns,
therefore, providing more training examples to the training process for the
same number of observed transitions. Nevertheless, this also increases the
number of input variables for the classifier, and therefore, slows down the
training process and may result in overfitting. This results in a trade-off,
which should be considered when choosing the neighbourhood radius.

Table A.2 further shows the best-performing combination of data set,
algorithm, and its parameters per game. The results show that the combina-
tion of an unpruned decision tree and the square neighbourhood pattern
with a radius of 3 achieves the highest performance in most games. The
following evaluation will focus on the agent’s game-playing performance
when using a pre-trained model. Therefore it is acceptable to achieve an
increase in the model quality at the expense of the training time.

4.10.2 Accuracy of Object-based Forward Models

The GVGAI framework provides access to a wide range of variables per object.
Each object receives a unique id which allows it to be tracked over the course
of the game. Additionally, the object is assigned an object type. Elements of
equal object type share the same underlying model, and therefore, exhibit a
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similar behaviour. While the object id allows to detect the creation, update,
and destruction of objects, the object type will be used to group instances of
the same type into separate training data sets.

When applying the model, a two-fold prediction process is applied to
each object. First, it will be predicted if the object remains in the next state
or will be destroyed. In case of the former, the object’s changes in position
will be predicted. If the object at hand is the agent’s avatar, changes to the
avatar’s object type are also taken into account. Non-player objects usually
do not change the type, but are replaced by a new object of a different
type. Since the new object receives a new id, it is not possible to track
these changes without an overview of recent collision events, which is not
accessible in the GVGAI learning track. Hence, predicting the creation of new
objects is currently not considered in this implementation of the object-based
forward model.

Both, the parameterisation of classifiers and the choice of input variables
of an object-based forward model, have previously been studied in context
of the GVGAI framework [56]. Similar to local forward models, unpruned
decision trees have proven to perform well in the prediction of upcoming
states. Table 4.3 summarises tracked attributes per object. Measuring the
model’s accuracy by the percentage of objects that were correctly predicted
yielded an accuracy of 61.4 − 99.8% depending on the game being played.
Hence, the accuracy of object-based forward models seems to be comparable
to the accuracy of local forward models.

Table 4.3: Tracked attributes per object instance. Attributes marked with a
(*) are only considered for instances of the agent’s avatar.

Instance Attributes Data Type

grid-position N2

type of left-/right-/up-/bottom-neighbour N
player action {left, right, up, down, use}
distance to avatar N2

Target Attributes Data Type

changed position N2

has object been destroyed {True, False}
has object changed its type∗ {True, False}
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4.11 Evaluation of the Game-Playing Performance

During the following experiments, the agent’s game-playing performance will
be evaluated. For this purpose, three training setups will be differentiated.

In the first setting, a model will be trained before the evaluation starts.
This model will remain constant during the evaluation of the agent. Therefore,
the agent will not be able to adapt the model according to new observations.
In case of a prediction error, the agent will repeat the error until the end
of the evaluation. The detailed evaluation of the constant model will be
presented in Subsection 4.11.1.

The second setting consists of an agent that is continuously updating
its model of the environment according to newly observed interactions.
At the beginning of this evaluation, the agent starts with no model of its
environment and needs to build such a model during the evaluation. Over
time the agent should be able to adapt to its new environment, improve
the accuracy of its learned forward model, and in return, play the game
better over time. The evaluation of the continuously training agent will be
presented in Subsection 4.11.2.

In the third setting, the agent will be allowed to train a forward model
on a subset of levels. However, during the evaluation, the agent will be
tested on previously unseen levels of the same game. This setup requires
the agent to learn a model which generalises well on unseen examples, and
therefore, the agent’s ability to transfer its knowledge to new levels. Details
about the transfer learning evaluation and its results will be presented in
Subsection 4.11.3.

4.11.1 Constant Model

In the first evaluation setting, the game-playing performance of agents which
use a pre-trained forward model will be compared. The search algorithms
breadth-first search (BFS), rolling horizon evolutionary algorithm (RHEA),
and monte carlo tree search (MCTS) will each be combined with either the
local forward model (LFM) or the object-based forward model (OBFM) which
results in six prediction-based search agents. Additionally, the random
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agent is included as a baseline, since it has shown to be one of the best
performing agent models in previous years of the GVGAI competition’s
learning track [133].

First, the respective models are trained for each game by observing the
interactions of a random agent. Here, the random agent is playing each level
for 2000 ticks each, while the level is restarted after the game has been won
or lost, or in case the first 300 interactions have not resulted in either of
these two outcomes. Restarting after a fixed amount of ticks increases the
diversity of the data set since many games allow the agent to get stuck in
unsolvable situations.

After this initial training phase, an agent’s game-playing performance
will be evaluated by letting it play each of the five levels per game for ten
times. Similar to the evaluation of the GVGAI competition’s learning track,
the agents’ performance will be measured based on their average win-rate,
their average score, and their average number of ticks until a level has been
won or lost. Based on these metrics agents will be ranked according to their
average win-rate which should be maximised. In case a total order of the
agents cannot be determined this way, a tie-breaker rule is applied. To break
such ties, the average score will be used as a second criterion. The third
criterion will be the average number of ticks until a level has been won and
the final tie-breaker is the average number of ticks until a level has been lost.
Agents should maximise their score, minimise the number of ticks until they
win, and maximise the number of ticks until they lose. The latter is used
to differentiate the agents’ game-playing performance in games that can be
lost quickly. Avoiding an early loss often indicates that the agent is able to
recognise dangerous game-states. If this process does not yield a unique
ranking, each of the tied agents will share the same rank.

A summary of achieved ranks per agent is shown in Table 4.4. As in the
GVGAI competition, the Formula 1 scoring system is used to aggregate the
results. Hence, the best agent receives 25 points, the second-best 18 points
and the following ranks 15, 12, 10, 8, and 6 points. This scoring system
highly rewards the best player per game, but also requires agents to score
well on multiple games to achieve a high score.

The aggregated results show that all agents using a trained forward
model overall outperformed the random agent. The best-performing agent
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Table 4.4: Aggregated ranks over all tested games and final score per agent

Agents Rank Formula-1
1st 2nd 3rd 4th 5th 6th 7th Score

Random 4 0 1 3 3 4 15 303

LFM
BFS 10 5 4 4 2 2 3 502

RHEA 3 3 3 8 3 10 0 380
MCTS 5 3 8 4 2 4 4 423

OBFM
BFS 6 8 2 4 4 1 5 450

RHEA 3 5 6 2 10 4 0 411
MCTS 5 7 4 3 5 4 2 441

was the BFS agent using a local forward model, closely followed by the BFS
using an object-based forward model. Together they ranked first in 16 out
of 30 games. The MCTS-based agents performed slightly worse but often
ranked second or third. Of the set of prediction-based agents, the RHEA
agent performed worst but was still able to outperform the random agent in
many games. Overall, the random agent proved to be the best agent in 3 out
of 30 games and was the worst agent in half of the tested games.

Ranking the agents of the same forward model type yields the same
ranking order. For both forward models, the BFS agent achieved the highest
score, the MCTS agent the second place, and the RHEA agent was third.
This can either indicate the general suitability of the algorithms for tested
games or be the result of the parameterisation of the individual algorithms.

Reviewing the set of evaluation games indicates that 25 out of 30 games
are deterministic3. In previous evaluations of the GVGAI competition’s single-
player planning track, BFS has shown to perform well for deterministic
games, e.g. the agent “Yolobot”, winner of the 2014 competition, used BFS
for deterministic games and MCTS for non-deterministic games [136]. Since
most of the tested games are deterministic, the BFS agent may have an
advantage in this evaluation.

The heuristic search methods RHEA and MCTS were configured to use
the same number of forward model calls. While the RHEA agent uses a fixed
horizon which limits its search depth, the MCTS agent used the same search
depth for its rollouts. However, rollouts of MCTS can reach deeper levels of

3Non-deterministic games: chase, deceptizelda, fireman, shipwreck, and whackamole
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Figure 4.13: Agent comparison by rank per game.

the game-tree since they are not limited to start at the root node. The BFS
agent was configured to use a smaller number of forward model call but was
allowed to prune similar states. This process can result in a higher search
depth in case multiple action sequences yield the same result which is often
the case in maze-like games.

A more fine-grained analysis can be achieved by analysing the agents’
ranking per game which is shown in Figures 4.13 and 4.14. Details on each
agent’s performance per game can be found in Section A.4. To support the
following analysis a hierarchical clustering using complete linkage has been
performed. Based on the clustering shown in Figure 4.15 several subgroups
of games, in which tested agents ranked similarly, were identified.

In games such as “iceandfire”, “labyrinth”, and “labyrinthdual”, the
agent traverses mazes of differing difficulty. The simplest of these games
is “labyrinth” in which the agent tries to reach the goal as fast as possible.
Apart from the player character, all game components remain unchanged by
the agent’s actions. In case the player’s movement can be predicted correctly
by the forward model, the search depth becomes the only limiting factor.
As soon as the agent’s search range reaches the goal, the agent will walk
the shortest possible path. Since the paths in the maze often allow the BFS
search to prune states in which no change occurs (walking into a wall), the
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Figure 4.14: Agent comparison by rank per game.

fixed number of expansions resulted in the highest search depth. Both, the
RHEA and the MCTS agent randomly walk around the maze until the goal
gets in the range of the agent’s search depth. From this point on they run
directly towards the target. In these games, the random agent is sometimes
able to reach the goal by randomly walking around the maze. However, it is
less often successful and requires more time than tested prediction-based
search agents.

Agents using an LFM have strictly been better than their competitors
in the games “colourescape”, “decepticoins”, “labyrinthdual”, and “painter”.
The games decepticoins and painter includes elements that appear during
the course of the game which need to be predicted to be successful in playing
this game. Since the implemented OBFM does not predict the creation of
new objects, agents using this model were outperformed by agents using a
local forward model. Overall, the orange cluster indicates games in which
agents using an LFM performed better than agents using an OBFM.

In contrast, agents using an OBFM outperformed LFM-based agents in
the games “realsokoban”, “run”, and “sokoban”. In the game “run”, the agent
needs to run away from a flood of water. Since the OBFM has information on
which object represents the agent’s avatar it can better prioritise to keep the
avatar alive. The other two Sokoban-like games require the agent to push
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Figure 4.15: Hierarchical agglomerative clustering of each game’s ranking
vector using complete linkage. The horizontal cut was chosen such that
identified clusters can still be interpreted.

blocks on a target tile. Here, previous experiments have shown that a LFM
requires a special encoding in case the game is non-Markovian [52]. Since
moving blocks obstruct the underlying tiles, the agent cannot predict which
tiles will be exposed after moving the block. Changing the encoding of the
game-state can help to overcome this problem, but has not been done here
for a fair comparison of both forward model types. On average, OBFM agents
performed better in games of the green cluster. The games “chase” and
“doorkoban” require the agent to be aware of global dependencies between
the objects, e.g. the switches in doorkoban change the state of a certain door
but there is no local dependency between a switch and a door.

Studying the results of the game “chipschallenge” allows for another
interesting comparison. Here, agents using a RHEA-based search were
outperforming other agents and the random agent became the third-best
agent. In this game, the agent is tasked to collect coins and coloured potions.
Collecting a potion adds it as a resource to the agent’s inventory and allows
the agent to destroy blocks of the same colour. Since the implementations
of both forward models did not take the agent’s resources into account, it
was not possible to predict the destruction of these blocks. Therefore, the
agent believes to be trapped. The RHEA agent included enough randomness
to destroy coloured blocks by randomly walking into them, but was still
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more efficient than the random agent when coins could be collected. On
average the light blue cluster includes games in which the agent benefits
from random actions. In contrast, the dark blue cluster indicates games
in which randomness hinders the agent from playing the level effectively,
e.g. the agent loses the game when touching a water tile in the games
“islands” and “catapults”.

Overall, all the proposed agents were able to outperform the random agent
in most games. Exceptions are the games “surround”, “tercio”, “thecitadel”,
and “thesnowman” in which the random agent reached either the first or
second rank. In case of the game “tercio”, all agents performed similarly
bad by neither winning the game nor scoring any points. While trained
forward models were able to predict the next state with high accuracy
(cf. Section 4.10), the random agent was never able to score a point during
the models’ training phase. Therefore, the trained scoring models were not
able to learn to predict which actions yield a reward. Used simulation-based
search agents chose actions based on their expected discounted return.
Since the reward of every action was always predicted to be 0, all of the
actions were equally good resulting in the agent acting randomly. Similar
problems were observed in games that only provide a sparse reward and
are hard to win for a random agent, e.g. “surround”, “thecitadel”, and
“thesnowman”. Due to the sparse reward scheme, the scoring model did not
learn to predict future rewards with high accuracy. This resulted in mostly
random behaviour for all the tested agents.

The games “chase”, “garbagecollector”, “fireman”, and “whackamole”
confront the agent with the trade-off of maximising its reward as fast as
possible and keeping itself alive. By maximising the expected discounted
return, the multi-objective problem is turned into a single-objective problem.
Instead, a multi-objective search could be used to optimise the agent’s
actions according to the multi-objective problem and may yield further
improvements in game-playing performance. Multi-objective MCTS has
shown to outperform single-objective search algorithms in games of the
GVGAI framework [134] and multi-objective physical travelling salesman
problems [129].
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4.11.2 Continuously Trained Model

Since the previous evaluation has shown that tested games can be played
with a pre-trained model, the second evaluation will provide further insights
into the agents’ model learning process. Therefore, a forward model will
continuously be trained while the agent is playing the game. To assure that
a useful model can be learned, this evaluation will mainly consider games in
which the pre-trained model has already was shown to be useful.

In this evaluation, the agent will start without a forward model. While
playing each of the 5 levels ten times, the agent can observe the results of its
interactions and update its forward model accordingly. Levels will be played
in cyclic order to increase the diversity of observed patterns. Playing each
level once will be called an epoch. To keep the number of learning processes
low, the model will only be updated every 100 ticks and at the end of each
level. Until the first forward model has been trained, the agent will choose
actions at random.

To measure the change in the agents’ game-playing performance, the
average win-rate, the average score, and the average number of ticks for
winning or losing a level will be measured for each epoch. Detailed results
of this measurement can be found in Section A.5. Furthermore, agents are
ranked according to their overall performance per level. Figure 4.16 shows
the agents’ ranking per game in the continuous learning evaluation. An
overview of achieved ranks per agent is shown in Table 4.5. Despite training
the forward model during the evaluation, the local forward model yielded
the best results. The object-based forward model achieved the second-best
performance and the random agent came in last.

Comparing the results of the continuous learning process with the pre-
trained model setting indicates that most rankings are the same. However,

Table 4.5: Aggregated ranks over all tested games and final score per agent

Agents Rank Formula-1
1st 2nd 3rd Score

Random 1 5 9 250

LFM BFS 9 4 2 327
OBFM BFS 5 6 4 293
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Figure 4.16: Ranking of the agents’ performance in a continuous learning
setup. During the evaluation, the forward model learning agents update
their model every 100 ticks or in case a level has ended.

some differences exist which will be shortly discussed to understand why
they occur. When continuously updating the forward model, the object-
based forward model performed worse than other approaches while playing
the games “bait” and “labyrinth”. In the game “bait”, the agent needs to
collect a key and reach the goal, either of these two actions yields a small
reward. Until the agent collected any key, the forward model is not able to
predict any changes in the score. A similar problem occurred in the game
“labyrinth” in which the agent needs to reach the goal to get a point.

The evaluation results indicate that the agent using an object-based
forward model did not receive any reward during its first attempts of playing
these games, thus, hindering the agent to find any differences in an action’s
expected score. This indicates the importance of a representative training
data set. In case certain events that can occur in the environment are not
represented in the training data, the insufficiently trained forward model will
stop the agent from performing certain actions since their predicted result
seems inferior to other actions. Measuring the confidence in a prediction
may allow the agent to select exploring actions for improving the forward
model more efficiently.

In the game “chipschallenge” the random agent still performed better than
the other two algorithms. Since collected resources cannot be appropriately
modelled, the forward model agents will consider doors to remain closed
when touching them. Since the BFS agent does not include any randomness
in its action selection, the agent will be trapped.
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4.11.3 Transfer Learning

In the third evaluation setting, the agent’s ability to transfer a model trained
on a selection of training levels to a set of evaluation levels will be tested.
This evaluation will be done using the same 15 games of the continuous
learning setting to assure that a useful model can be learned when being
able to train on all five levels.

Here, the agents’ training will be restricted to the first three levels in
which a random agent is used for a total of 5000 ticks each to generate a
training set. To create a diverse set of interactions, the game will be reset
after the game has been won or lost, or in case the first 300 interactions
have not resulted in either of these two outcomes. After the three training
levels have been played, the agent trains a model based on all previously
observed interactions. During evaluation the agent will play two previously
unseen levels of the same game for ten repetitions each during which the
model will remain unchanged.

Both, the local forward model and the object-based forward model, can
be used for transfer learning since learned models are independent of
the number of observable components. Using a local forward model the
same local transition function will be applied to every tile in the game-state.
Changing the level’s layout or size does not influence the local forward model’s
applicability. However, in case the evaluation levels include neighbourhood
patterns or tiles that were not observed during the training levels, the model’s
prediction of the next-state may be inaccurate. The object-based forward
model predicts the next game-state by predicting changes of every observed
game component in the environment. In case a previously unobserved object
type is observed, the object’s associated sensor values are predicted to stay
constant since no model was trained.

Table 4.6: Aggregated ranks over all tested games and final score per agent

Agents Rank Formula-1
1st 2nd 3rd Score

Random 2 5 8 260

LFM BFS 4 6 5 283
OBFM BFS 9 4 2 327
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Figure 4.17: Ranking of the agents’ performance in a transfer learning setup.

The random agent’s performance will be compared to a BFS using either
the generated local forward model (LFM BFS) or the object-based forward
model (OBFM BFS). Figure 4.17 shows the agents’ ranking per game and a
summary of achieved ranks per agent is shown in Table 4.6.

Results show that a prediction-based search using either the local forward
model or the object-based forward model is able to outperform the random
agent. In contrast to previous evaluations, the agent using an object-based
agent performed better than an agent using a local forward model.

Once again, both forward model learning agents were beaten by the
random agent when playing the games “bait” and “chipschallenge”.

In summary, the results of evaluating the agents’ game-playing perfor-
mance indicate that the proposed agent model can be used to handle games
that do not provide access to a forward model. The proposed prediction-
based search has shown to predict upcoming states with high accuracy,
and therefore, allow the agent to play a variety of games effectively. Agents
using a pre-trained model have been successful in playing multiple games
of the GVGAI framework. Tests using agents which continuously update
their model of the environment have shown that the agent is quickly able to
improve in terms of game-playing performance in case the environment fea-
tures a dense reward distribution. Testing the agents’ capabilities of transfer
learning has shown that the agents’ performance is overall better than a
random agent. Nevertheless, the agents’ game-playing performance seems
to be quite limited in case the trained forward model does not generalise
well to new levels of the same game, which highlights the importance of a
representative training set.
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5
Predictive State Determinisation

Simulation-based search methods have previously been applied to partial
information games with mixed success. Methods such as information set
MCTS and ensemble UCT handle the uncertainty in the distribution of
cards by analysing multiple completions of the partial information game
state. To do this, both methods are keeping track of all states that are still
possible and perform simulations on those. Nevertheless, the performance
has been shown to be dependent on the influence of hidden values in the
state observation [191].

A common constraint of these two algorithms is the assumption that
new information in the partial observation suffices to render certain states
impossible. At the start of the search process, a complete information
state is determined by uniformly sampling from the set of states that still
comply with observed values. In games where the remaining states are good
approximations of the true game state or the number of remaining states
is small enough to allow for a thorough exploration of all of them, these
algorithms have shown to perform better than standard MCTS and UCT.

This has shown to be the case for the trick-taking card game Doppelkopf1.
Here, a player’s action can reveal additional information on one’s remaining
hand cards, due to certain restrictions in the action set. Similar to the
well-known card game Uno2 the player can be forced to play cards of the
same suit. If this is not possible for a Doppelkopf player, the trick is lost

1tournament rules of the ”Deutscher Doppelkopf-Verband e.V.“ http://www.
doko-verband.de/Regeln__Ordnungen.html

2https://www.letsplayuno.com/
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and any card can be played. Hence, in case the agent observes that its
opponent is not able to play a certain suit, a large amount of the state space
can be rendered impossible. In fact, all card distributions that include the
opponent to have any card of the suit can be removed from consideration.
Due to this, the agent can be very successful in the end-game, when only
a small amount of card distributions are still possible. In comparison to
expert players, the agent seems to be missing opportunities for refining its
estimation of the remaining state space. However, this does not deviate too
much from a uniform sampling such that the general assumption of the
applied algorithms seems to be fulfilled to such degree that the performance
is not noticeably affected. Hence, they are well-suited for this kind of game.

In the following, a type of game in which the assumptions of information
set MCTS and ensemble UCT seem to fail, namely deck-building games, will
be discussed. These games consist of many unique cards, of which the
players select a subset to build their decks. Two players can use their decks
to play against each other allowing for an enormous variety of combinations.
Magic: The Gathering3 and Hearthstone4, are popular instances of collectible
card games and are played by millions of players world-wide5. The great
appeal of these games is their constantly growing collection of cards6, which
steadily increases the complexity and variety of these games.

Although each deck-building game is unique, further explanations in
this thesis will be based on the game Hearthstone. As of 2016 Hearthstone
is the leading digital collectable card game with yearly revenue of 395 million
US dollars [164]. Due to its digital nature, many data sets are available. The
following section will shortly summarise the game’s ruleset as well as its
challenges to the development of a Hearthstone playing AI.

3https://magic.wizards.com
4https://playhearthstone.com
5according to the Guinness World Record: https://www.guinnessworldrecords.

com/world-records/most-played-trading-card-game
6e.g. Magic the Gathering has about 24000 cards and Hearthstone about 2000 cards

(as of 1st of October 2019)

https://magic.wizards.com
https://playhearthstone.com
https://www.guinnessworldrecords.com/world-records/most-played-trading-card-game
https://www.guinnessworldrecords.com/world-records/most-played-trading-card-game
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Figure 5.1: Elements of the Hearthstone game board (bottom: player,
top: opponent): (1) weapon (2) hero (3) opponent’s minions, (4) player’s
minions, (5) hero power, (6) hand cards, (7) mana, (8) decks, (9) history of
recent events

5.1 Hearthstone: Heroes of Warcraft

Hearthstone is a turn-based digital collectible card game developed and
published by Blizzard Entertainment. Players compete in one versus one
duels using self-constructed decks, each belonging to one hero out of nine
available hero-classes. In those matches, players try to beat their opponents
by reducing their starting health from 30 to 0. This can be achieved by
playing cards from the hand onto the game board at the cost of mana. Played
cards can be used to inflict damage to the opponent’s hero or to destroy
cards on his side of the game board. At the start of the game, the player
who goes first draws three cards and the player who goes second draws four
cards. To further balance the game the second player is given a special
card called “The Coin”, which increases the mana by one for a single turn.
The amount of mana available to the player increases every turn (up to a
maximum of 10). More mana gives access to increasingly powerful cards
and increases the complexity of turns while the game progresses. At the
beginning of each turn, the player draws a new card except for the case
that their deck is empty, in which case they receive a step-wise increasing
amount of fatigue-damage. The standard game board is shown in Figure 5.1.

Players need to construct decks of 30 cards, which can be chosen out
of the 2150 currently obtainable cards [21]. Cards can be included once or
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Figure 5.2: Examples of general card types. Cards include (1)
mana cost, (2) attack damage, (3) health/durability, (4) special effects,
(5) and minion type.

twice depending on their rarity. However, these cards need to be unlocked
by aquiring card packs, which can either be earned while playing the game
or bought in the ingame store. New cards are frequently added in game
updates. The time between two of these updates is referred to as a patch
period. Each card bears unique effects, which the players can use to their
advantage. Additionally, each player chooses a hero, which gives access to a
class-specific pool of cards and its associated hero power. This power can
be played once per turn for the cost of 2 mana.

Cards can be of the type minion, spell, or weapon. Figure 5.2 shows
one example of each card type. Minion cards assist and fight on behalf of
the player. They usually have an attack, health, and mana cost-value, as
well as a short ability description. Furthermore, minions can belong to a
special minion type, which is the basis for many synergy effects. One turn
after they have been played, they can attack the enemy’s side of the board
to inflict damage on either the opponent’s minions or hero. Attacking a
target also reduces the attacker’s health by the target’s attack value. In
case any minion’s health drops to zero or below, it is removed from the
board and put into the player’s graveyard. Spell cards can be cast at the
cost of mana to activate various abilities and are discarded after use. They
can have a wide range of effects, e.g. boosting the attack of your minions.
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Secrets, which are a special kind of spells, can be played without immediately
activating their effect. After a trigger condition was fulfilled, the secret will
be activated. Once activated, the secret is removed from the board. Weapon
cards are directly equipped to the player’s hero and enable him to attack.
Their durability value limits the number of attacks until the weapon breaks.
Only one weapon can be equipped at the same time.

Hearthstone decks are often created around a common theme. Multiple
cards that positively influence each other can create strong synergies and
increase the value of each card in the deck’s context. For this reason, the
value of a single card highly depends on the player’s hand cards, current
elements on the board, and the deck in general. Common examples are
minion cards of the same type, e.g. “Murloc”, which give each other addi-
tional advantages, e.g. “Your other Murlocs have +1 Attack”. Each of these
minions is comparatively weak, but their value increases when they are
played together. Generated decks can be categorised into three major cate-
gories: aggro, control, and mid-range. Aggro decks build on purely offensive
strategies, which often include a lot of minions. Control decks try to win
in the long run by preventing the opponent’s strategy and dominating the
game situation. The playing style of mid-range decks is between aggro and
control. They try to counter early attacks to dominate the game board with
high-cost minions in the middle of the game. Game length and branching
factor can be dependent on the player’s decks in the current game. Some
decks try to play single high-cost cards, whereas others build on versatile
combinations. The complexity of each turn and the uncertainty faced during
the game makes Hearthstone a challenging problem for AI research.

Hearthstone’s AI was designed by a small team of developers and focusses
on a fun and engaging experience [153]. In its current state, it is unable to
compete with expert players. A recent paper discussed the many challenges
for developing a Hearthstone AI [82]. Key problems mentioned in this
paper include the hidden information on the opponent’s hand and deck
cards, the stochasticity of the initial shuffling and the card draw, as well
as the randomness of certain card effects. Especially the prediction of the
opponent’s cards will be a necessary requirement to increase the search
depth of AI agents. These are currently limited to optimising the agent’s
turn, but cannot effectively go beyond that. Predicting the opponent’s deck
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is a challenge in itself since the deck building process in Hearthstone allows
players to choose nearly any set of cards as long as they can be played
by the chosen hero. Observing a card to be played does, therefore, not
allow to infer anything on the other cards’ possibility. In this case, the
pruning of impossible states by information set MCTS’s remains ineffective.
Nevertheless, expert players have shown to reach win-rates above average,
partly due to their ability to guess what their opponent is planning. Therefore,
detectable and exploitable patterns seem to exist.

In the following, it will be explained how exploitable patterns can emerge.
In Hearthstone two-game phases can be distinguished. The classic game-
playing phase consists of two players playing a match against each other. At
this stage, both players already selected their deck’s, which remain unknown
to their upcoming opponent. While the average win-rate of a deck against
another deck can be estimated by taking a history of previous games into
account, the outcome of this match will be determined to a large degree
by the players’ skill and the luck of the draw. Therefore, the game-playing
phase is about how two players play. Nevertheless, another game phase,
the meta-game phase, is “played” before the actual game-playing phase.
The meta-game describes a game of deck selection against the entirety of
possible opponents. Due to the fact, that the average win-rates of any two
decks playing against each other diverges from 50%, some decks could exist
that exhibit a win-rate above average. Thus, selecting these decks for play
becomes more attractive to players. This results in an evolutionary dynamic
in which certain decks are picked more often than others. Therefore, the
meta-game is about what is being played. While being separated in time,
both phases strongly influence each other.

In a work by Burszstein [30] the meta-game is considered to provide us
with the hints about likely game states, due to the following reasons:

• Card power: Some cards are inferior versions of other cards. Therefore,
they are less interesting to be included in a player’s deck.

• Card synergies: It is more likely to observe decks that exploit card
synergies since they will be more successful than decks that do not
exploit them. Rational players will tend to play successful decks.



5.1. HEARTHSTONE: HEROES OF WARCRAFT 105

Figure 5.3: 2D-embedding obtained by Multi Dimensional Scaling of the
deck space of the Hunter hero class. Points of similar colour belong to decks
of the same archetype.

• Deck archetypes: The meta-game quickly converges to a small set of
deck archetypes. A deck archetype is an abstract representation of a
set of similar decks. These similarities occur since successful decks
are often copied by other players. Copied decks can include minor
variations since players may not possess all the necessary cards.

Especially relevant seems to be the emergence of deck archetypes. These
popular deck prototypes are often describing a general strategy. They include
essential cards, called core cards, and variant-cards that may be replaced for
adapting to the player’s style. The success of these deck archetypes results
in a highly clustered deck space. Figure 5.3 shows a 2D-embedding of the
deck space of the Hunter hero class. Only a few outliers can be detected,
which may be due to errors in the human labeling process.

In the following, two methods for predicting the opponent’s cards based on
previously observed cards will be proposed. The first method is a heuristic
based on the concept of card synergies and exploits their frequent co-
occurrence in decks and game-traces (see Section 5.2). The second method
adds a layer of abstraction to the card prediction process by not modelling
upcoming cards, but predicting the current deck archetype in play (see
Section 5.3). The agent model utilising either of these two prediction models
will be presented in Section 5.4 after which the evaluation is described in
Section 5.5.
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5.2 Card Sequence Models

Predicting upcoming cards can be done by correctly estimating the probability
of each card to be observed in the upcoming turns. Without further knowl-
edge, it needs to be assumed that every possible card (see deck-building
restrictions) can appear with the same probability during the next turn.
Such a uniform distribution is far from the reality since characteristics
like the popularity of cards or deck archetypes and all previously observed
actions can influence this probability distribution. In this section, it will be
discussed why the problem is too complex to be solved by estimating the
true probability distribution of upcoming cards and how a heuristic solution
can overcome this problem.

The complexity of Hearthstone’s probability distribution is enormous.
This should be exemplified using a simplified probabilistic model, which
is based on the sequential nature of card-games but ignores the influence
factors of the opponent or the meta-game. For this purpose, it is assumed
that the probability of observing a card ct at time t is dependent on the
sequence of previously observed cards (c1, c2, . . . , ct−1). Hence, it is neces-
sary to estimate and store the parameters of the conditional probability
distribution denoted by P(ct | ct−1, . . . , c1). The dependent structure of this
distribution can be justified by card synergies, which influence the strength
of other cards.

The number of parameters to store this distribution only for the last card
to be played (ignoring card effects that allow playing additional cards) is
about 200030 ≈ 1.07 · 1099. Including previously ignored influence factors
would make this problem even more complex, therefore, further increasing
the number of parameters. Since the number of parameters in this simplified
model already exceeds the number of atoms in the universe7 storing or pro-
cessing this probability distribution becomes infeasible. Hence, a heuristic
approach is chosen to approximate the likelihood of upcoming cards.

For this purpose, it will be assumed that each card of the sequence of
previously observed cards provides independent information on the next
card to be played. The general heuristic to be implemented is that cards that
appear frequently together will do the same in the future. The idea of using

7estimated number of atoms in the universe ≈ 1086 [178]
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this card co-occurrence scheme is motivated by a work by Elie Bursztein [30].
Here, replay data is analysed to count the co-occurrence of cards in play
traces of a single player. Information on the other player does not influence
the counting and the succeeding prediction.

In this work, five different counting schemes will be analysed regarding
their prediction accuracy of upcoming cards. Each of the counting schemes
will be shortly introduced:

Isolated Turn (isolated) The isolated turn bigram counting scheme (further
referred to as isolated) will increase the co-occurrence counter for all card
pairs that were played during the same turn. This will be relevant to detect
and predict card combinations that are frequently played together in the
same turn. One example is the coin-card in Hearthstone, which adds 1
mana to the player’s mana pool. Since it will be known that the card remains
on the opponent’s hand, the isolated bigram counting may be especially
relevant to predict these scenarios.

Successive Turn (successive) As the name of the successive turn bigram
counting suggests, card combinations that occur in successive turns will be
counted. In contrast to the isolated bigram counting, the successive bigram
counting is not symmetric. The counter for (a, b) will be increased by one if
and only if card a was played one turn before card b. This may be especially
accurate during the first turns in which players try to play on curve, meaning
in each turn they try to play cards that cost the maximal amount of mana
they could currently spend.

Combined This bigram counting scheme combines the two previous schemes
by adding their results. Since both previous methods are quite limited in the
number of co-occurrences counted per game it may be beneficial to combine
their results to not just represent both concepts in a single bigram database,
but also be more efficient in the number of games to be analysed.

Game Sequence To further boost the number of analysed bigrams per
game, the game sequence bigram counting scheme will increase the counter
of all pairs (a, b) for which the card a was played before card b.
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Whole Game Finally, the whole game counting scheme adds one to all pairs
of cards that were played in the same game by the same player independent
of their order of play. This way a large number of co-occurrences can be
stored per game such that the replay data can be used more effectively. The
whole game bigram counting scheme may be able to detect deck archetypes
by checking for cards that frequently co-occurred with all previously observed
cards. Therefore, it may be more effective during the late-game. This bigram
counting scheme is similar to the one used by Elie Burszstein [30].

Based on the way the bigram counting schemes were defined the following
principle holds for all pairs of cards ci , cj ∈ X :

fisolated(ci , cj) + fsucceeding(ci , cj) = fcombined(ci , cj)

fcombined(ci , cj) ≤ fgame_sequence(ci , cj) ≤ fwhole_game(ci , cj)
(5.1)

whereas fmethod(ci , cj) ∈ N describes the number of co-occurences of the
chosen bigram counting scheme. Note, that depending on the used bigram
counting scheme the value of f (ci , cj) does not need to be equal to f (cj, ci).
Only the isolated as well as the whole game bigram counting schemes satisfy
symmetry of co-occurrence values.

The following example will be used to better differentiate the results of
each bigram counting scheme. Consider a game of three turns in which the
cards a, b, c, and d were played by the same player in the following order:

a︸︷︷︸
turn 1

⇒ b, c︸︷︷︸
turn 2

⇒ d︸︷︷︸
turn 3

(5.2)

The proposed counting schemes result in the following bigrams:

Table 5.1: Exemplary results of proposed counting schemes.

counting scheme resulting bigrams

isolated a:{} b:{c:1} c:{b:1} d:{}
successive a:{b:1, c:1} b:{d:1} c:{d:1} d:{}
combined a:{b:1, c:1} b:{c:1, d:1} c:{b:1, d:1} d:{}
game sequence a:{b:1, c:1, d:1} b:{c:1, d:1} c:{b:1, d:1} d:{}
whole game a:{b:1, c:1, d:1} b:{a:1, c:1, d:1} c:{a:1, b:1, d:1} d:{a:1, b:1, c:1}
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5.2.1 Prediction of Upcoming Cards

The prediction of upcoming cards will be done by combining the bigram
co-occurrence values of the given card and each of the previously observed
cards. Hence, the total co-occurrence value f (c) of a card c ∈ X given a
sequence of cards (c1, c2, . . . , ct) can be determined by

f (c) =
t∑
i=1

f (ci , c) (5.3)

All cards can be ranked by their total co-occurrence value. Thereafter,
the top-k ranked cards can be predicted to be the most likely cards to be
observed.

Alternatively, let the probability P(c) of a card to appear in the upcoming
turns be given by

P(c) =
f (c)∑

c′∈X f (c′)
(5.4)

The resulting probability distribution can be used to sample upcoming cards.
Nevertheless, this would allow a card to be included multiple times. Since
players are only allowed to include each card twice in a deck, the second
method could yield predicted game-states that are impossible. This problem
can be resolved by either repeating the sampling process in case a card was
sampled more than 2 times or excluding each card that was sampled twice
and recalculating the probability distribution.

Since the proposed method includes drastic simplifications on the com-
plexity of the underlying probability distribution, predicted cards are like
to diverge from the true probability distribution. This estimate could be
improved by the introduction of tri- or n-grams. Nevertheless, due to the in-
creasing number of possible tri- and n-grams estimating their co-occurrence
counts will need a larger amount of data and storing them a much higher
amount of memory. An evaluation by Elie Burszstein [30] has shown that
using tri-grams instead of bigrams resulted in reduced prediction accuracy
when using the same amount of training samples.
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5.3 Clustering-based Meta-game Analysis

As discussed previously, modeling the probability of an upcoming card,
based on all previously observed cards is infeasible, due to the possible
combination of any card. The resulting probability distribution is too fine-
grained to be stored, learned, and processed efficiently. Adding a layer of
abstraction could solve this problem. This abstraction will be based on
the idea of a clustered deck-space, in which frequently observed decks are
similar to each other. Due to the convergence of the meta-game, observed
cards can be used to predict the deck or deck archetype in play, instead of
predicting upcoming cards. Knowing the deck archetype may allow us to
predict the opponent’s hand cards with reasonable accuracy.

Since the set of viable decks changes with every update of the game, a
reliable method for extracting deck clusters from game-play data needs to be
found. Closely following my work in [55], this process will be based on fuzzy
multisets, which are introduced in the following Subsection 5.3.1. These
fuzzy multisets will be used to represent decks, deck clusters, and their
deck representatives. Necessary components of the clustering process, such
as applied distance functions and exemplary clustering algorithms, will be
described in Subsection 5.3.2. Subsequently, a method for generating a
cluster prototype is proposed in Subsection 5.3.3. This section ends with
a description of the prediction process for upcoming cards based on the
extracted cluster prototypes.

5.3.1 Representing Deck Archetypes using Fuzzy Multisets

A deck is a collection of multiple cards, of which each of these cards can
be represented multiple times. Multisets (also called bags) can be used
as mathematical representations of decks. In the following, the notation
introduced by Miyamoto [113] and Yager [186] will be used.

Let a multiset M be denoted by

M = {CM (x)/x : x ∈ X } (5.5)
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in which X is the set of elements x that can be included and CM a function
that maps each object xi to its number of copies ni in M:

CM : X → N CM (xi) = ni (5.6)

For comparing two multisets L and M, inclusion is defined by

L ⊆ M iff CL(x) ≤ CM (x) holds ∀x ∈ X (5.7)

and (as a consequence) equality is given by

L = M iff CL(x) = CM (x) holds ∀x ∈ X (5.8)

Union, intersection, and addition are defined pointwise for all x ∈ X by

CL∪M (x) = maxCL(x), CM (x) (5.9)

CL∩M (x) = minCL(x), CM (x) (5.10)

CL⊕M (x) = CL(x) + CM (x) (5.11)

While a specific deck is always a crisp multiset, this concept seems to
fail in case of representing a deck’s archetype. Here, it would be desirable to
be able to differentiate between the essential core cards and cards that are
included due to the player’s preferences. Since a deck archetype is a mixture
of multiple decks a fuzzy multiset seems to be a good representation for it.

A fuzzy extension of multisets was first introduced by Yager (using the
term fuzzy bags) [186]. Here, the sample fuzzy multiset

A =
{
(x,0.5), (x,0.3), (y,1), (y,0.5), (y,0.2)

}
denotes the occurrence of each object and its membership degree. Specifi-
cally, the object x is included twice, once with a membership degree of 0.5
and a second time with a degree of 0.3. For simplicity, objects of the same
kind and their membership degrees will be grouped, as demonstrated in:

A = {(0.5,0.3)/x, (1,0.5,0.2)/y}
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in which the memberships {0.5,0.3} and {1,0.5,0.2} correspond to the
objects x and y, respectively. Therefore, in fuzzy multisets CA(x) is a finite
multiset of the unit interval [186].

For each object x the membership sequence will be defined to be a
decreasingly-ordered sequence of elements in CA(x). The standard form
introduced by Miyamoto [113] will be used:

(µ1
A(x), . . . , µpA(x)), µ1

A(x) ≥ · · · ≥ µpA(x) (5.12)

Let L(x;A) be the length of the membership sequence (µ1
A(x), . . . , µpA(x)) of

multiset A denoted by

L(x;A) =

max{j : µjA(x) , 0} if x ∈ A

0 otherwise
(5.13)

Any operation between two multisets A and B requires the membership
sequences of each object to be of equal length. When comparing two fuzzy
multisets of different lengths, the remaining membership degree’s will be
assumed to be zero. For the sake of simplicity, let

µiA(x) = 0; ∀i with L(x;A) < i ≤ L(x;A, B) (5.14)

in case the object x is included less than L(x;A, B) times in the multiset
A (likewise for B). Let the length L(x;A, B) of the resulting membership
sequence be defined by

L(x;A, B) = max{L(x;A), L(x;B)} (5.15)

Similar to crisp multisets inclusion, equality, union, and intersection
can be defined based on the membership sequences of each element. Let A
and B be two fuzzy multisets.

A ⊆ B iff µjA(x) ≤ µjB(x) holds for j = 1,2, . . . , L(x;A, B), ∀x ∈ X
(5.16)

A = B iff µjA(x) = µjB(x) holds for j = 1,2, . . . , L(x;A, B), ∀x ∈ X
(5.17)
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Similarly, union and intersection are defined pointwise for all x ∈ X by

µjA∪B = µ
j
A(x) ∨ µjB(x) j = 1,2, . . . , L(x;A, B) (5.18)

µjA∩B = µ
j
A(x) ∧ µjB(x) j = 1,2, . . . , L(x;A, B) (5.19)

The following short example should be reviewed to clarify the notation.
Consider the two fuzzy multisets A and B over the set of objects {x, y, z}:

A = {(0.5, 0.2)/x, (1.0, 0.5, 0.2)/y}

B = {(1.0)/x, (0.7, 0.6)/y, (0.9,0.5)/z}

The length per object is:

L(x;A, B) = 2; L(y;A, B) = 3; L(z;A, B) = 2

For simplicity the membership sequences for both multisets will be extended
according to the maximal observed length:

A = {(0.5, 0.2)/x, (1.0, 0.5, 0.2)/y, (0.0,0.0)/z}

B = {(1.0, 0.0)/x, (0.7, 0.6, 0.0)/y, (0.9,0.5)/z}

Union and intersection of both multisets can be determined based on the
extended membership sequences:

A ∪ B = {(1.0, 0.2)/x, (1.0, 0.6, 0.2)/y, (0.9,0.5)/z}

A ∩ B = {(0.5)/x, (0.7, 0.5)/y}

5.3.2 Clustering of Decks

To create an abstract representation of the meta-game, a cluster analysis
to extract clusters of similar decks will be performed. As discussed in the
previous section each deck will be represented as a multiset of cards. In
turn, a mixture of decks or a cluster can be represented as a fuzzy multiset
of cards. Each cluster should contain decks that are similar to each other
but different from decks of other clusters. For doing so, distance functions
need to be defined for measuring the differences between two decks.
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Distance Functions

To measure the distance of two multisets L and M their Euclidean distance
will be defined by

deuclid(L,M) =

∑
x∈X

(
CL(x) − CM (x)

)2
1
2

(5.20)

and transfer the definition to be applied to fuzzy multisets A and B:

deuclid(A, B) =

∑
x∈X

L(x;A,B)∑
i=1

(
µiA(x) − µiB(x)

)2
1
2

(5.21)

In this work,results based on the Euclidean distance will be compared to
results obtained from applying the Jaccard distance measure. The Jaccard
distance can be used to measure the difference between two sets [95].

djaccard(x, y) = 1 −
|x ∩ y|

|x ∪ y|
= 1 −

∑
i min(xi , yi)∑
i max(xi , yi)

(5.22)

Here, the definition is extended to also apply to two multisets L and M :

djaccard(L,M) = 1 −
∑
x∈X min(CL(x), CM (x))∑
x∈X max(CL(x), CM (x))

(5.23)

Similar to the Euclidean distance the equation to measure the distance of
two fuzzy multisets A and B will be transferred:

djaccard(A, B) = 1 −

∑
x∈X

∑L(x;A,B)
j=1 µjA∩B∑

x∈X
∑L(x;A,B)
j=1 µjA∪B

(5.24)

The distance functions proposed in this work fulfil all the requirements
of a metric. Nevertheless, it is unclear if the humanly perceived difference
of two decks does the same. Non-negativity and similarity may be easy to
satisfy. However, human judgment could fail the concept of identity in case
two alternative cards would have equal effects in the context of the remaining
cards of a deck. Such a context-driven weighting could result in two deck
variants being perceived as more similar to each other than two decks with
the same number of card changes. Additionally, the required judging process
is especially hard due to the high dimensionality of the deck space. Therefore,
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it is in question if the application of a metric distance function is a strong
requirement. The application of Pseudo- and Semimetrics may result in
clusters that better match human perception. However, designing distance
functions for this specific context may require more knowledge of the human
judgment process, which is currently not available.

Clustering Algorithms

The process of clustering a set of input patterns X = {x1, . . . , xj, . . . , xN }, in
which each pattern xj = (xj1, xj2, . . . , xjd) ∈ Rd is defined by its features xji
(also referred to as dimensions), results in their partitioning into a clustering
C = {C1, . . . , CK} with K ≤ N , such that elements of the same cluster are
similar to each other and different from elements of other clusters. In case
of a hard partitional clustering, the resulting clusters C1 to CK should be
non-empty, pairwise disjunct, and their union should be equal to the original
dataset X [185]. Handl et al. [77] identified three fundamental properties of
desired cluster outcomes, namely compactness, connectedness, and spatial
separation, that often guide the design of clustering algorithms. In the
following, three clustering algorithms that each represent a different concept
of clustering will be introduced.

k-means: The clustering algorithm k-means [100] is the most common
representative of partitional clustering algorithms. During initialisation,
k cluster prototypes are randomly generated or selected from the set of
available data points. The cluster prototypes are iteratively updated to
better represent and partition the points in the data set. For this purpose,
each data point is assigned to its closest prototype. In a second step, the
prototypes are moved to the center of all assigned points to minimise the
sum of squared errors between a prototype and all its assigned data points.

SSE(C) =
K∑
k=1

∑
xi∈Ck

|xick |
2, (5.25)

such that ck represents the centroid of cluster Ck. Due to its scoring function,
k-means favors clusters that are compact and well separated.

K-means is known to quickly converge to a local optimum. However,
its result very much depends on the initial placement of cluster prototypes.
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Since the global optimisation of its scoring function is known to be NP-
hard [102], k-means is often repeated with different initialisations and the
result with minimal SSE is kept.

Hierarchical Agglomerative Clustering: In contrast to the flat result of a par-
titioning algorithm like k-Means, hierarchical clustering algorithms produce
a hierarchy of clusters. Agglomerative (bottom-up) clustering algorithms
start by assigning each point to an individual cluster. Consecutively, the
two closest clusters are merged until all objects belong to a single cluster.
Alternatively, the clustering process can be stopped in case the Jaccard
distance of all cluster pairs is 1.0 during a single merge step. In the latter,
none of the current clusters have any object in common. Analysing the
resulting hierarchy can provide us with hints on the number of clusters.

The linkage criterion describes how the distance between two clusters
is measured. Two popular linkage criteria are single and complete linkage.
Single linkage [108] uses the minimum pairwise distance in between elements
of the two clusters and can be used to find connected structures. In contrast,
complete linkage [94] optimises for compact structures by merging the two
clusters with the smallest maximum pairwise distance in between their
contained elements.

single linkage dsingle(Ci , Cj) = min
a∈Ci ,b∈Cj

d(a, b) (5.26)

complete linkage dcomplete(Ci , Cj) = max
a∈Ci ,b∈Cj

d(a, b) (5.27)

Density-based Clustering: Density-Based Spatial Clustering of Applica-
tions with Noise (DBSCAN) is a clustering algorithm proposed by Ester
et al. [58]. Here, a cluster represents a dense region in space. The ε-
neighbourhood of a point consists of all points with a maximal distance of ε:

Nε(p) = {q ∈ X | d(p, q) ≤ ε} (5.28)

The region around a point is considered to be dense in case the number of
points in its ε−neighbourhood exceeds the threshold mPts. Points that satisfy
this condition are called core points. A point q is directly density-reachable
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from point p, if q ∈ Nε(p) and p is a core-point. The transitive closure
of directly density-reachable points is called density-reachable. Finally,
two points are density-connected when a point exists from which both are
density-reachable. A cluster is described by the maximal set of points that
are density-connected to each other.

5.3.3 Modelling Deck Archetypes

In the following, a deck archetype is going to be modelled as a prototypical
representation of a deck cluster. Such a deck archetype consists of core and
variant cards. In the following, it will be shown that these two card types
cannot be distinguished in crisp multisets, but when using fuzzy multisets.

Let us consider two crisp decks D1 and D2 over the set of elements
X = {a, c, d, e, f } of the form:

D1 = {1/a, , 2/b, 1/c, 0/d, 2/e}

D2 = {1/a, , 2/b, 0/c, 2/d, 1/e}

The intersection MD1∩D2 of these two decks is the multiset:

MD1∩D2 = {1/a, 2/b, 0/c, 0/d, 1/e}

The resulting set describes the core of these two decks. The information
on possible variants is lost when using the intersection of these decks. A
similar problem occurs if when generating the union MD1∪D2 of both decks:

MD1∪D2 = {1/a, 2/b, 1/c, 2/d, 2/e}

The result of the union operator preserves information on the inclusion of d
and e. However, this misleadingly represents the occurrence counts of these
variants, i.e. based on its count inMD1∪D2 variant object c is indistinguishable
from the core object a (similar observations can be made for the objects b
and d). Hence, objects with different inclusion patterns in D1 and D2 are
equally represented in the merged multiset.
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For the crisp multiset the average multiset M〈L,M〉 of two multisets L and
M will be defined to include the average number of occurrences per object in
these multisets and denote it by

C〈L,M〉(x) =
CL(x) + CM (x)

2
, ∀x ∈ X (5.29)

Hence, the average of clusters D1 and D2 is:

M〈D1,D2〉 = {1/a, 2/b, 0.5/c, 1/d, 1.5/e}

Applying the average operator allows us to clearly distinguish the inclu-
sion patterns for a and c. However, similar results for objects with varying
numbers of inclusion, e.g. a and d can still be observed. Extending the
representation to fuzzy multisets can help to solve this problem.

For this purpose, average operator for crisp multisets will be transferred
to fuzzy multisets by calculating the average of every element of an object’s
membership sequence. Thus, the average operator for two fuzzy multisets A
and B can be denoted by

µi
〈A,B〉(x) =

µiA(x) + µiB(x)
2

, i = 1, . . . , p, ∀x ∈ X (5.30)

Representing both decks as fuzzy multisets results in the following
centroid:

D1 = {(1)/a, (1,1)/b, (1)/c, (0)/d, (1,1)/e}

D2 = {(1)/a, (1,1)/b, (0)/c, (1,1)/d, (1)/e}

M〈D1,D2〉 = {(1)/a, (1,1)/b, (0.5)/c, (0.5,0.5)/d, (1.0,0.5)/e}

Since the result of merging multiple multisets should be independent
of their merging order, the definition of the (fuzzy) multiset centroid will be
adjusted to satisfy associativity. Specifically, the following properties to be
fulfilled should be fulfilled:

C〈〈D1,D2〉,D3〉(x) = C〈D1,〈D2,D3〉〉(x), ∀x ∈ X

M〈〈D1,D2〉,D3〉 = M〈D1,〈D2,D3〉〉

(5.31)
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Let a cluster C be a multiset over the set {M1, . . . , Mn} of multisets over
the set of objects X . The centroid 〈c〉 of cluster C, which itself is a multiset
over the set of objects X , should be independent of the order of inclusion
of said multisets, thus being an associative operation. First, the pairwise
average of two multisets will be replaced with the arithmetic mean over all
included multisets. Additionally, the number of inclusions per multiset will
be taken into account:

C〈c〉(x) =
∑
Mi∈C

(
CMi (x) · CC(Mi)

)∑
j CC(Mj)

, ∀x ∈ X (5.32)

The same can be done for a cluster of fuzzy multisets:

µk
〈c〉(x) =

∑
Mi∈C

(µkMi
(x) · CC(Mi))∑

j CC(Mj)
, k = 1, . . . , p, ∀x ∈ X (5.33)

The cluster centroid will be used to represent the cluster and all its
contained decks in a single fuzzy multiset. This way the deck archetype
preserves information on core and variant cards as well as taking the times
each deck has been played into account. Therefore, it serves as a layer of
abstraction of the current meta-game.

5.3.4 Predicting Upcoming Cards

In the previous section, it was explained how a data set of recently played
decks can be reduced to a small number of clusters and their representatives.
The following prediction method will search for the representative that is
most similar to all previously observed cards and use it to predict further
cards. Knowing the cluster centroids, a prediction of the opponent’s cards
can be made using the following multi-step process:

1. Construct a fuzzy multiset of observed cards: At the beginning of the
game the agent starts with an empty fuzzy multiset. During the oppo-
nent’s turn, the agent keeps track of all the opponent’s actions. Each
card played is added to the Fuzzy Multiset with a membership grade
of 1.0. In case the card has previously been played the membership
sequence of this card is extended by another entry of 1.0.
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2. Determine the most likely deck archetype: During the agent’s turn,
the agent first needs to determine the most-likely deck archetype. This
can be done by calculating the pair-wise distance between the fuzzy
multiset of observed cards and all deck archetype representatives
that are themselves fuzzy multisets. The closest centroid is assumed
to be the most likely deck archetype and further considered for the
card prediction. It is also possible to select a deck archetype based
on each centroids distance value. For this purpose, all distances
d(ci , obs) between the observation obs and the fuzzy centroids 〈c〉 are
first transformed into a similarity value by

sim(〈ci〉, obs) = 1 −
d(ci , obs)

maxi(d(ci , obs))
(5.34)

The resulting similarity values are further transformed into a probabil-
ity distribution by

P(〈ci〉) =
sim(〈ci〉)∑K
j=1 sim(〈cj〉)

(5.35)

Instead of choosing the closest centroid, the resulting probability
distribution can be used to sample a deck archetype. Only the most
probable deck archetype will be considered in the upcoming evaluation
of the prediction accuracy. However, during the agent’s search it may
be advantageous to extract cards from a variety of possible archetypes.

3. Sample cards: Finally, cards can be sampled based on the selected
deck archetype. For this purpose, the agent first removes previously
observed cards from the centroids membership sequence. For each
observed card, the agent removes the highest value from the cen-
troids membership sequence of this card. The remaining entries in
the centroid are ranked according to the sum of their membership
sequence. Similar to the bigram-based prediction each card can receive
a probability based on the determined sum. The resulting probability
distribution can be used to sample cards based on their likelihood to
appear in the remaining cluster. For each sampled card the removal
process can be repeated to assure that cards are not overrepresented
in the resulting prediction set.
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5.4 Agent Model

The proposed agent model combines the idea of multiple independent state
determinisations of ensemble MCTS [49, 157] with the predictive models
proposed in the previous sections. When starting a turn the partially-
observable state is used as the root node of the search process. Actions
represent transitions to other nodes and are simulated using the game’s
model. The quality of each node is determined by a simple scoring function
that takes the number of cards and minions as well as the health pool of
both players into account. This scoring function is a weighted combination
of scoring functions for rating aggressive and defensive play, which were
initially proposed in the Metastone-framework8. A greedy agent is used for
fast rollouts during the simulation phase. This agent uses the same scoring
function to select its actions.

During the search, the agent implements a 3-phase search process. In
the first phase, the actions of the player’s turn are optimised using a normal
UCT search. Since the cards of the player are unknown at this moment in
time, the search is focused on optimising the agent’s action sequence until
it would be ending its turn. After a fixed number of simulations, the best
end-turn nodes are selected for further consideration in the second phase.

At the start of the second phase, the agent utilises one of the proposed
card prediction methods to sample the opponent’s deck and hand cards
according to all previously observed cards. Predicting the opponent’s hand
cards allows the agent to continue the search process for the opponent’s turn.
Similar to ensemble MCTS, the search process is split into separate paths of
which each path is continued using an independent state determinisation.
These are made using a predictive model that can predict likely states based
on previously observed cards. In turn, every card observed during the
opponent’s turn is used to feed the model with new information on the
current game-state and improve its prediction accuracy.

After fixing the opponent’s turn, the agent is once more trying to optimise
the action sequence of its next turn. This step is important to detect actions
that should be postponed to the next turn. A simple example is a spell card

8https://github.com/demilich1/metastone

https://github.com/demilich1/metastone
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that kills all the opponent’s minions. This card will receive a high ranking
when played during the first turn but could be more useful when used after
the opponent played additional minions.

Results of all three phases will be back-propagated along their action-
sequences. Finally, the best-rated action will be applied to the game-state.
Figure 5.4 depicts the search process of the proposed agent model.

The process is stopped after the third simulation phase. Otherwise,
errors in the prediction of the second phase could influence the prediction
of upcoming opponent phases. This has shown to reduce the performance
of the agent in preliminary evaluations.

5.5 Evaluation of the Prediction Accuracy

Before evaluating the game-playing performance of the developed agent
model, the proposed bigram and clustering approaches will be analysed
regarding their prediction accuracy. This will be done using public deck data
sets of the HSReplay website9 and replay data of the Collect-O-Bot website10.
Both sites are part of community services where players contribute their
game-playing information to collect and access it centrally.

The deck data set consists of a list of decks being played on the days
5 February 2019 to 20 February 2019. Each record consists of the deck’s
cards, the number of times the deck has been played, its average win-rate,
and its archetype label. The latter is assigned by human experts and will be
used for evaluating the results of the proposed fuzzy multiset deck clustering.

The replay data consists of detailed information on recorded matches and
is compiled into monthly data sets. Each record includes all observed cards
that have been played per match but does not contain any information on the
remaining cards of both players’ decks. Data of the time-frame 5 February
2019 to 20 February 2019 will be used for training proposed bigram methods.
Furthermore, remaining records of the same patch period (21 February 2019
to 3 April 2019) will be used for evaluating the proposed methods’ prediction
performance. Used data sets, the source code for the following evaluations,
and the raw results can be found in the public git-repository [46].

9https://hsreplay.net/decks/
10http://www.hearthscry.com/CollectOBot

https://hsreplay.net/decks/
http://www.hearthscry.com/CollectOBot


5.5. EVALUATION OF THE PREDICTION ACCURACY 123

run MCTS to determine 

best move sequence

get current 

game board

backpropagate final 

score on all paths, 

return best action 

sequence 

play best 

action sequence

predict opponent’s deck 

and hand cards

for each path separately

(state determinisation)

end-turn

game-state
high ranked 

end-turn game-state

path 1 path 2 path 3

observe 

opponent’s turn

Phase 1: 
determine action 

sequence candidates 
for the agent’s turn

Phase 2: 
optimise opponent’s 
action sequence for 

each of the predicted 
hand-cards

Phase 3: 
optimise the action 

sequence of the 
following agent’s turn

refine 

model

intermediate 

game-state

Figure 5.4: 3-phase action-selection using predictive models for state deter-
minisation. During the opponent’s turn, the predictive model is updated
according to observed actions.
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Table 5.2: General contingency matrix

C1 C2 · · · CK ′
∑

P1 n11 n12 · · · n1K ′ n1·
P2 n21 n22 · · · n2K ′ n2·
...

...
...

. . .
...

...
PK nK1 nK2 · · · nKK ′ nK ·∑

n·1 n·2 · · · n·K ′ n

5.5.1 Evaluating the Fuzzy Multiset Clustering

Each of the described clustering algorithms offers a set of parameters that
needs to be tuned for optimal results. Since labeled data is available, external
validation measures will be used to rate the outcome of each clustering
process. External validation measures rate the outcome of the clustering
process using external information. Specifically, a set of true labels will be
used for comparison with the resulting labels of the clustering process. For
this purpose, the measures homogeneity, completeness, and the v-measure
will be used in this work.

External Cluster Validation Given a dataset X containing n objects, ex-
ternal validation indices compare the object assignments in the true par-
tition P = {P1, P2, . . . , PK} with the assignments of the clustered partition
C = {C1, C2, . . . , CK ′}. A contingency matrix counts the number of occur-
rences nij, where a point was labeled as cluster Cj and lies in the true
partition Pi. Table 5.2 represents a general contingency matrix of the clus-
tering C and the true partition P. For the calculation of external validation
measures the probabilities derived from the occurrence counts will be used:

pij =
nij
n

; pi =
n·i
n

; pj =
nj·
n

(5.36)

Homogeneity (Hom(C,P)) measures the extent to which every cluster contains
elements of a single class.

Hom(C,P) =


MI(C,P)
E(P,P) ,E(P, P) > 0

1.0 , else
(5.37)
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Entropy (E(P,P)) has a range of [0, logK ′] and Mutual Information
(MI(C,P)) ranges from (0, logK ′]. Entropy values close or equal to 0 de-
scribe an approximately perfect clustering. The maximal value states that
points of a cluster Ci are equiprobable to be in any true partition Pj. Mu-
tual information measures the degree in which two random variables are
mutually dependent [14].

E(C,P) = −
∑
i

pi

∑
j

pij
pi

log
pij
pi

 (5.38)

MI(C,P) =
∑
i

∑
j

pij log
(
pij
pipj

)
(5.39)

In contrast to Homogeneity, Completeness (Compl(C,P)) measures the extent
to which all elements of a given class were sorted into the same cluster.

Compl(C,P) =


MI(C,P)
E(C,C) ,E(C,C) > 0

1.0 , else
(5.40)

The V-measure represents the trade-off between Homogeneity and Complete-
ness, by calculating their harmonic mean [146].

V(C,P) =
2 · Hom(C,P) · Compl(C,P)
Hom(C,P) + Compl(C,P)

(5.41)

The scores of all three external validation measure fall into the range of [0, 1],
whereas 1 represents a perfect clustering result.

Clustering Results The labeled deck data includes 956 deck entries of 72
archetypes recorded during a single patch period. For the clustering process,
each deck is represented as (fuzzy) multisets. The distance matrices using
Euclidean distance and Jaccard distance are shown in Figure 5.5. Note
that the Jaccard distance is bound to the range [0,1] while the Euclidean
distance is non-limited. Comparing the two partial orders implied by these
decision matrices reveals that they are the same despite differences in relative
values. For this reason, the following experiments will be done using Jaccard
distance.
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Figure 5.5: Distance matrices for the deck dataset

To compensate for the initialisation problem of k-means, the algorithm
is repeated 10 times with varying initialisations for each value of k. The
clustering with the best SSE (cf. Equation 5.25) will be reported as the
final clustering result. The hierarchical clustering algorithm using single
or complete linkage produces a partition hierarchy of which each level
represents a clustering of varying sizes. For the algorithms k-means and
HAC using either single or complete linkage clusterings for k = 10 . . . ,250
clusters are reported. In the case of DBSCAN an initial grid-search is
performed to find a suitable parameterisation (see Figure 5.6). It turned out
that small values of mPts are favourable. Furthermore, mPtsDBSCAN [48]
will be used to quickly generate a hierarchy of clusters for all relevant
parameterisations of the ε-radius. This hierarchy is used to extract the
clustering with the most labeled points per number of clusters. The results
for mPts ∈ {2,5,10} are reported.

All clusterings are rated using the external validation measures homo-
geneity, completeness, and the v-measure. Figure 5.7 shows the development
of these measures according to the number of clusters. All algorithms quickly
increase in completeness during the first merges. In case of DBSCAN using
mPts ∈ {5, 10}, discontinuities in the curve can be observed. These can occur
when two promising clusters are merged.

The parameters yielding the highest v-measure are summarised in Ta-
ble 5.3. Reported v-measure values of 0.9 and higher are very promising
results. They indicate that the implemented clustering based on fuzzy mul-
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Figure 5.6: Grid-search results for the optimisation of DBSCAN parameters.

tisets is able to retrieve clusters that match the human expert labels to a
large degree. The best performing parameter configurations will be used in
the following evaluations of the card prediction accuracy.

Table 5.3: Best performing parameter configuration per clustering algorithm

Algorithm Parameters Max V-Measure

HAC single linkage k = 120 0.949
HAC complete linkage k = 90 0.945
k-means k = 50 0.919
mPtsDBSCAN mPts = 2 ε = 0.422 0.923
mPtsDBSCAN mPts = 5 ε = 0.500 0.905
mPtsDBSCAN mPts = 10 ε = 0.571 0.870
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Figure 5.7: Comparison of clustering results based on external validation
measures homogeneity, completeness, and the v-measure

5.5.2 Card Prediction Remaining Game

In this first evaluation, the accuracy of predicting upcoming cards of the
remaining game will be measured. Since the number of observed cards and
the complexity of turns changes over time, results will be reported bucketed
by turn. Each algorithm is used to predict the 10 most likely cards after
each of the first 10 turns. To assure that the prediction of the last turns can
be tested, only games that lasted at least 15 turns have been selected for
this evaluation, which results in a total of 3062 games.
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Figure 5.8 and Figure 5.10 show the prediction accuracy of proposed
methods. The 10 cards which were predicted to be the most likely to
appear were evaluated. The highest ranked card is marked green, while
the tenth most likely card is marked red and the average accuracy of the
ten highest ranked predictions is marked by a blue line. Most curves show
that this ranking remains intact throughout the game. However, DBSCAN
clustering-based predictions show that cards with a lower rank appear
disproportionately often during the first turns. Since this effect vanishes
as soon as more cards have been observed (cf. DBSCAN mPts = 10 turns
5-10), these prediction methods seem to require more data. Despite the
lack of information, bigram prediction methods perform comparatively well
during the first turns with an average prediction accuracy of about 0.5,
which is the result of common opening strategies. In contrast, clustering-
based prediction methods perform worst in the second turn but increase in
accuracy as soon as more cards are observed. Over time, the accumulated
knowledge of observed cards suffices to correctly predict the opponent’s deck
and thus enable the agent to predict upcoming cards with high accuracy.
From the sixth turn onwards, all methods show a steady decline in their
prediction accuracy which is probably due to the decreasing number turns
until the end of the game.

For estimating the opponent’s hand cards, a whole set of cards needs to
be predicted. Figure 5.9 and Figure 5.11 show the aggregated accuracy of
predicted cards. Here, the aggregated accuracy describes the chance that
any of the top-k ranked cards will be played. The graphs show the aggregated
accuracy of the top-2, top-5, and top-10 predicted cards. Additionally, the
prediction accuracy of the highest-ranked card is shown as a baseline. All the
proposed methods show a rapid increase in aggregated prediction accuracy
when taking multiple predictions into account. This increase becomes
smaller when the number of cards to consider is increased, indicating that
the highest ranked cards provide the highest value for the prediction. When
considering any of the top 10 predicted cards to be correct, the bigram-
based prediction methods nearly reach an accuracy of 1.0. Clustering-based
prediction methods perform worse during the first turns but increase in
accuracy after the second turn. After the fifth turn, every method correctly
predicts remaining cards with an accuracy of 0.8 or better.



130 CHAPTER 5. PREDICTIVE STATE DETERMINISATION

1 2 3 4 5 6 7 8 9 10
Turn

0.00

0.25

0.50

0.75

1.00

Pr
ed

ict
io

n 
Ac

cu
ra

cy

Rank 1
Average Rank 1 - 10
Rank 10

a) Isolated

1 2 3 4 5 6 7 8 9 10
Turn

0.00

0.25

0.50

0.75

1.00

Pr
ed

ict
io

n 
Ac

cu
ra

cy

Rank 1
Average Rank 1 - 10
Rank 10

b) Succeeding

1 2 3 4 5 6 7 8 9 10
Turn

0.00

0.25

0.50

0.75

1.00

Pr
ed

ict
io

n 
Ac

cu
ra

cy

Rank 1
Average Rank 1 - 10
Rank 10

c) Combined

1 2 3 4 5 6 7 8 9 10
Turn

0.00

0.25

0.50

0.75

1.00

Pr
ed

ict
io

n 
Ac

cu
ra

cy

Rank 1
Average Rank 1 - 10
Rank 10

d) Whole Game
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Figure 5.8: Accuracy for predicting cards that may appear in the remaining
turns of the game bucketed by turn. Each model a)-e) ranks cards according
to their estimated probability of appearance. The validation set is used to
determine the accuracy of each prediction for every rank. The highest-ranked
card is marked in green, while the prediction of the 10th ranked is shown in
red. The average accuracy of all ten ranks is shown in blue.
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Figure 5.9: Accuracy for the aggregated prediction of cards that may appear
in the remaining turns of the game bucketed by turn. Each model a)-e)
ranks cards according to their estimated probability of appearance. The
validation set is used to determine the accuracy in case the ranks 1-k are
considered. Values describe the accuracy of the top k ranked being correctly
predicted.
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e) DBSCAN mPts = 5
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Figure 5.10: Accuracy for the prediction of cards that may appear in the
remaining turns of the game bucketed by turn. Subfigures a)-f) show
the prediction results based on the clustering result achieved using each
algorithm’s best performing parameters. The highest ranked card is marked
in green while the prediction of the 10th ranked is shown in red. The average
accuracy of all ten ranks is shown in blue.
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Figure 5.11: Accuracy for the aggregated prediction of cards that may appear
in the remaining turns of the game bucketed by turn. Subfigures a)-f)
show the prediction results based on the clustering result achieved using
each algorithm’s best performing parameters. Reported values describe the
accuracy of any of the top k ranked cards being correct.
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5.5.3 Card Prediction Next Turn

Predicting upcoming cards of the remaining game is useful in case an
unlimited search depth is viable. However, due to the many random effects
and the variability of decks, the breadth of Hearthstone’s game tree is
enourmous. Since it is not viable to consider all possible events that
can appear till the end of the game, the proposed agent focusses on the
optimisation of the next three turns. This is a complex task in itself, since a
turn does not consist of a single action but of a sequence of actions. The
result of any action sequence depends on the chosen order of actions. After
an action sequence has been applied and the opponent’s turn has been
observed, new information will be available to improve the prediction of the
following turns. This second evaluation focuses on the accuracy of predicting
upcoming cards of the next turn. For better comparability, the same replay
data is used as in the previous evaluation.

Figure 5.12 and Figure 5.14 show the prediction accuracy of proposed
methods per rank. Green markers show the prediction accuracy of the
highest-ranked card to appear during the next turn. The prediction accuracy
of the card ranked tenth is marked in red and the blue line indicates
the average prediction accuracy of the first ten ranks. As shown in the
diagrams, the accuracy of predicting cards of the next turn is much lower
than predicting cards of the remaining game. This is due to the lower
number of cards to be observed in the next turn than in the remaining
game. Nevertheless, all bigram-based prediction methods (except for the
isolated bigram counting) show a promising accuracy of about 25% correct
predictions for the highest-ranked card.

In contrast, the clustering-based prediction methods largely fail in pre-
dicting cards of the next turn. On average, each of the ten highest ranked
predictions reach an accuracy of 10% or lower. Despite their good results in
predicting cards of the remaining game, their ranking mechanism cannot
effectively be used to predict cards of the upcoming turn. Therefore, these
methods may be used to detect the deck of the opponent, but in their current
form should not be used to generate a state determinisation in the context
of the proposed Hearthstone agent.
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Table 5.4: Comparison of the methods’ average prediction accuracy in
discussed evaluation scenarios.

Algorithm Single Prediction 1st Rank Aggregated Top-10
full game next turn full game next turn

Isolated 0.515 0.13 0.932 0.506
Succeeding 0.638 0.285 0.951 0.588
Combined 0.637 0.274 0.950 0.571
Whole Game 0.622 0.276 0.951 0.554
Game sequence 0.633 0.261 0.948 0.543

k-means 0.402 0.045 0.799 0.328
single linkage 0.358 0.044 0.810 0.347
complete linkage 0.362 0.044 0.806 0.349
DBSCAN mPts = 2 0.401 0.050 0.818 0.344
DBSCAN mPts = 5 0.355 0.045 0.788 0.310
DBSCAN mPts = 10 0.330 0.035 0.800 0.294

Similar to the previous evalution, Figure 5.13 and Figure 5.15 show the
aggregated prediction accuracy for predicting any of the top-k ranked cards
correctly. Once again, the bigram-based prediction methods outperform
clustering-based predictions. All bigram-based predictions reach a predic-
tion accuracy of 50% when considering the top 10 ranked cards. This can be
very useful when predicting hand card sets of the opponent since the correct
card is likely to be included in half of the considered cases. Clustering-based
prediction methods steadily improve in accuracy over time. Therefore, cards
observed during the first turns seem to be useful in predicting the deck, but
not necessarily the upcoming cards of the next turn.

Table 5.4 shows the average accuracy of tested algorithms in all four
evaluation scenarios. Overall, cluster-based prediction methods are out-
performed by card sequence models. The latter are able to predict cards
of the next turn and the remaining game with high accuracy. Among the
bigram-based prediction methods the isolated bigram counting performed
worse than the other alternatives. The succeeding bigram-counting resulted
in the best performance in all four tested scenarios. For this reason, the
following evaluation of the proposed agent’s game-playing performance will
be based on predictions of the succeeding-turn card sequence model.
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Figure 5.12: Accuracy for predicting cards that may appear in the remaining
turns of the game bucketed by the turn the prediction has been made.
Each model a)-e) ranks cards according to their estimated probability of
appearance. The validation set is used to determine the accuracy of each
prediction for every rank. The highest-ranked card is marked in green, while
the prediction of the 10th ranked is shown in red. The average accuracy of
all ten ranks is shown in blue.
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Figure 5.13: Accuracy for the aggregated prediction of cards that may be
played by the opponent during its next turn bucketed by the turn the
prediction has been made. Each model a)-e) ranks cards according to their
estimated probability of appearance. The validation set is used to determine
the accuracy in case the ranks 1-k are considered. Values describe the
accuracy of the top k ranked being correctly predicted.
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d) DBSCAN mPts = 2
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e) DBSCAN mPts = 5
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Figure 5.14: Accuracy for predicting cards that may appear in the remaining
turns of the game bucketed by turn. Each model a)-f) ranks cards according
to their estimated probability of appearance. The validation set is used to
determine the accuracy of each prediction for every rank. The highest-ranked
card is marked in green, while the prediction of the 10th ranked is shown in
red. The average accuracy of all ten ranks is shown in blue.
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b) single linkage
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c) complete linkage
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f) DBSCAN mPts = 10

Figure 5.15: Accuracy for the aggregated prediction of cards that may be
played by the opponent during its next turn bucketed by the turn the
prediction has been made. Each model a)-f) ranks cards according to their
estimated probability of appearance. The validation set is used to determine
the accuracy in case the ranks 1-k are considered. Values describe the
accuracy of the top k ranked being correctly predicted.
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5.6 Evaluation of the Game-Playing Performance

It is difficult to compare the proposed agent with other Hearthstone agents
found in the literature because they are spread over several frameworks.
To overcome this problem, I designed the Hearthstone AI competition [53],
an international research competition, based on the community-driven
simulator Sabberstone [43]. This competition was part of the 2ß18 IEEE
Conference on Computational Intelligence and Games (CIG) and the 2019
IEEE Conference on Games (COG). This framework is written in C# and
the competition extends the original framework by multiple helper classes
which provide simple means of accessing the current game state limited to
variables that would have been observable to a human player.

The agent is given a partially observable representation of the current
game-state that is matching the human player’s perception. It consists of
information about all legally observable parts of the game, namely the game
board, the set of remaining cards in the agent’s deck, the agent’s hand cards,
the number of cards in their opponents’ hand and a history of all previous
events. Each agent is ensured 60 seconds of computation time per turn and
the agent can perform multiple actions during a single turn. In case the
turn was not ended by the agent, each returned action will be processed
irreversibly and an updated game-state will be forwarded to the agent. For
this reason, the agent can continuously observe the outcome of executed
actions to adjust its next actions. Actions of both players are applied until a
winner can be determined or a maximum number of turns (default = 50) is
exceeded. In the latter, the game ends with a draw and is restarted until
either of the two agents wins. The number of wins, draws, and losses as well
as the total and average response times per agent are tracked and reported
at the end of a simulation session.

During the first two years, the competition received a total of 80 submis-
sions distributed into two tracks. The pre-made deck playing track consists
of a set of known and unknown decks. Submitted agents will be playing
against each other. Unknown decks are included such that agents need to
be able to adjust to decks they were previously not trained with. In contrast,
the user-created deck-playing track allows agents to define the deck they will
use during the evaluation. It turned out that the user-created deck playing
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track involves a bit of luck when choosing the deck. Since the outcome
of a game is not only dependent on the agents’ skill, but also their deck
choices, an agent that may play better on average can still perform badly in
this competition track. For ensuring comparability in-between agents the
pre-made deck playing track’s competition mode will be used.

5.6.1 Evaluation Setting

The proposed agent will compete against a variety of top-performing agents of
the 2018 and 2019 competition. Agents were selected based on performance
in their respective competitions and the algorithm they represent. Note
that an early version of the proposed agent scored first place in the 2018’s
competition and should, therefore, not be considered as an opponent in this
evaluation. Additionally, the second place of the 2018’s competition was
resubmitted in an extended version in 2019 such that only the updated
version will be considered.

The set of agents includes the following bots:

• Tyche Agent (MCTS) by Kai Bornemann: the agent uses monte carlo
tree search to optimise the action sequence of its current and upcoming
turns. The opponent’s turn is not considered during the search process.
The agent uses a different scoring heuristic for each deck. It ranked
third place in the 2018’s competition.

• Tyche Agent (One-Step Lookahead) by Kai Bornemann: the agent is
similar to its MCTS version but does only search for the optimal action
sequence of its turn. The agent ranked fourth place in the 2018’s
competition

• Alpha-Beta Pruning Agent by Hans-Martin Wulfmeyer: the alpha-beta
pruning agent optimises the action sequence by considering its own
and its opponent’s turn. It ranked fifth place in the 2018’s competition.

• Greedy Agent by Ivan Prymak and Milena Malysheva: this greedy agent
utilises a hand-tuned scoring function and focuses on optimising the
order of attacks. For this reason, the agent is very efficient in playing
aggro decks. The agent ranked sixth place in the 2018’s competition.
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• Pruned Breadth-First Search by Tom Heimbrodt: the best performing
agent in the 2019’s competition utilised a pruned breadth-first search
with a custom heuristic and variable search depth. The heuristic
strongly favours retaining control over the board by keeping the number
of minions and attack points of the opponent’s minions as small as
possible. It was the result of an evolutionary optimisation process on
all hero classes including the three publick decks and other popular
decks of past patch periods.

• Álvaro Agent (MCTS) by Álvaro de Marcos Alés: the agent combines
MCTS with an evolutionarily optimised scoring function [67]. It ranked
second place in the 2019’s competition.

• Beam Search Agent by Daniel Bokelmann and Malte Unkrig: beam
search [144] is a heuristic search algorithm that only expands the
most promising nodes at each layer. The agent reached the fourth
place in an internal evaluation, but barely missed the final round in
2019’s international competition.

• Greedy Agent by Lars Wagner: this is an updated version of the 2018’s
Jade Druid agent by Lars Wagner, which was the winning entry of the
User-Created Deck Playing track. It features an evolutionary optimised
scoring function and implements expert rules in its greedy decision
function.

The following evaluation will make use of the same six decks as in the
competition of 2019. At the time of development, only the first three decks
were publicly announced. These three decks were also used in the 2018’s
competition. The remaining decks were unknown at the time of submission.
Each of these decks uses another hero and requires a different play-style:

• Aggro Pirate Warrior: this aggressive deck lets the agent play many
minions and weapons to defeat the opponent as fast as possible. The
synergies among pirate minions allow for a fast-paced playstyle but
the deck is missing stronger options in late turns.

• Midrange Jade Shaman: the midrange jade shaman makes frequent
use of the jade golem mechanic, which spawns increasingly stronger
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minions over time. Therefore, this deck may struggle against aggressive
decks during the early-game but can provide the player with very strong
options during the late-game.

• Reno Kazakus Mage: this control deck consists of many spell cards
that allow the removal of smaller minions from the board. Later options
include strong minions and damage spells to defeat the opponent in
the late-game.

• Midrange Buff Paladin: this deck allows agents to play many weak
minions and use a variety of spells to increase their health and at-
tack power. The deck concentrates on efficient minion attacks while
constantly keeping control over the board.

• Miracle Pirate Rogue: the miracle pirate rogue plays similar to aggro
pirate warrior during the early-game. However, the combo mechanic
of the Rogue-hero allows the agent to chain multiple cards in the same
turn to increase their efficiency. This unique mechanic requires the
agent to plan multiple steps ahead for detecting each card’s potential.

• Zoo Discard Warlock: this deck is built to make frequent use of the
Warlock’s hero power, which allows the player to draw a card at the
cost of 2 mana and 2 life points. In combination with unique minion
effects, this can allow the player to quickly draw cards, play minions,
and gain control over the board. Nevertheless, investing life for drawing
cards can be a risky, but also rewarding strategy.

The proposed agent competes against the eight aforementioned agents in
a round-robin tournament. A match-up between two agents consists of 360
games. In these, each combination of decks is played 10 times, whereas in
half of these games the first agent will be the starting player. The proposed
agent is configured to use the succeeding bigram counting scheme since
it represents a trade-off between high-quality predictions and low memory
consumption. Its scoring function is optimised for the first four decks to
validate the influence of the scoring function on the agent’s game-playing
performance.
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Figure 5.16: Win-rate for each match-up after 360 simulated games. The
cell (i,j) indicates the win-rate of agent i against agent j. The average win-rate
per agent is shown on the right.

5.6.2 Results

Figure 5.16 shows the average win-rate of each match-up and the average
win-rate per agent. The proposed agent is able to win on average against all
agents except for the pruned BFS by Tom Heimbrodt, which is the agent with
the highest average win-rate. The MCTS agent by Àlvaro performed similarly
to the proposed agent. Both Tyche agent variants and the Beam search
agent win nearly the same amount of games as they lose. In contrast, both
greedy agents, as well as the Alpha-Beta Pruning agent, performed worst in
the evaluation with an average win-rate below 40%. Detailed results of the
proposed agent against each of the other agents are shows in Figure 5.19.

When designing the scoring function of the proposed agent, only the
first four decks were considered. However, the Miracle Pirate Rogue and
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Figure 5.17: Average win-rate per combination of decks. Each cell (i, j)
describes the win-rate of the deck in row i against the deck in column j.
Average win-rates for playing a deck and playing against a deck are shown
on the right and the bottom of each figure.

the Zoo Discard Warlock decks both include unique mechanics that may be
misrepresented in the trained scoring function. Win-rates of the proposed
agent per deck were calculated to test if the combination of decks and the
trained scoring function resulted in reduced performance. Figure 5.17a
shows the win-rate of the proposed agent playing against all other agents
for each combination of decks. The average win-rates per deck show that
the two decks that were not considered during the training of the scoring
function resulted in the lowest win-rate per deck.

In comparison, Figure 5.17b shows the average win-rate of all agents
per combination of decks. Based on this win-rate it is possible to identify
advantageous deck match-ups and the general strength of decks based
on their average win-rate. The midrange buff paladin deck, the miracle
pirate rogue deck as well as the zoo discard warlock underperform in this
evaluation setting. Nevertheless, the proposed agent’s win-rate using these
decks is higher than the average win-rate of all agents. This result shows
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Figure 5.18: Matrix showing the win-rate for each match-up when only
considering decks the proposed agent was trained for. The inclusion of
the first four decks results in a total of 160 simulated per match-up. The
average win-rate per agent is shown on the right.

that the search scheme can still enable the proposed agent to outperform
other agents, despite the non-optimal scoring function. Further comparing
the agent’s win-rate per deck with the average win-rate per deck also reveals
some deck combinations in which the agent performs worse than the average.
The biggest performance difference can be seen when the proposed agent
plays the Miracle Pirate Rogue deck against the Aggro Pirate Warrior deck.
This could be attributed to the scoring function.

To see if the proposed agent’s performance increases when only consid-
ering decks to which the scoring function was optimised, the match results
were filtered for matches that only consisted of the first four decks on which
the agent was trained on. Figure 5.18 shows the averaged results for each
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match-up when only considering this subset of decks. Here, the proposed
agent is the best performing among all tested agents with an average win-rate
of 67%. Now, the pruned BFS is the second-best performing agent with an
average win-rate of 65% closely followed by the Àlvaro agent with a win-rate
of 64%. In general, the average win-rate of other agents’ seem to be changing
by only 1-2%.

The inclusion of multiple MCTS-based agents allows for a comparison of
their differences. The Tyche agent is using a standard metastone scoring
function and implements no further search optimisations. In contrast,
the Àlvaro agent uses an optimised scoring function for all hero classes
but does not include further search optimisations. The proposed agent
incorporates an optimised search scheme by predicting the opponent’s
moves and allowing for an increased search depth. Additionally, it features a
scoring function optimised for some of the evaluation decks. While the Tyche
agent performed worst among these agents, the results of the Àlvaro agent as
well the proposed agent show that an increase of the search depth, as well as
the optimisation of a scoring function, can improve the overall quality of the
agent. The experiments have shown that implementing a predictive scheme
for state determinisation or optimising the scoring function can result in a
similar performance. Nevertheless, an agent that is implementing both, as
seen with the proposed agent in the filtered result table, shows that further
improvements in game-playing performance can be achieved.

In a preliminary study [56], we focused on the evaluation of the predictive
performance of the proposed agent and its influences on its game-playing
performance. Results have shown that the proposed agent outperforms
MCTS agents using a random state determinisation with an average win-rate
of 55-68%. Additionally, the agent was able to achieve a 46-51% average
win-rate against an MCTS agent that was aware of its opponent’s cards.
Further improving the accuracy of the prediction may push this closer to an
average win-rate of 50%.

In summary, the results of these experiments indicate that the proposed
agent model can be used to handle imperfect information states. The
proposed methods for predictive state determinisation can predict upcoming
cards with high accuracy and, therefore, allow the agent to increase its
search depth.
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Figure 5.19: Proposed agent’s average win-rate per deck while playing
against a single opponent.
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Figure 5.19: Proposed agent’s average win-rate per deck while playing
against a single opponent.
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6
Conclusion and Future Work

In this thesis, two variants of prediction-based search processes were pro-
posed, namely forward model learning and predictive state determinisation.
The forward model learning framework covers scenarios in which the forward
model is unknown by learning a substitute model, which can further be
used during action-selection. In contrast, predictive state determinisation
improves the way in which games can be played in case the state cannot be
fully observed by predicting a subset of likely game-states. Both methods
require a training process in order to adapt the prediction models to the re-
spective task. Proposed frameworks were tested on recent game benchmarks
in which they have shown to outperform state-of-the-art algorithms.

The forward model learning framework was evaluated by testing the
agent’s game-playing performance in 30 games of the GVGAI framework.
In case a pre-trained model is used, both, the local and the object-based
forward model, have shown to outperform a random agent in most of the
tested games. Scenarios in which the trained models were inaccurate did
not perform well since the agent is not able to recognise good actions based
on the predicted state. This limits the agent in a transfer-learning scenario,
where played levels include previously unseen scenarios. However, tests
with continuous learning have shown that the agent is able to quickly adapt
to these scenarios by updating the model accordingly.

The predictive state deterministation method was evaluated using the
card game Hearthstone. By comparing the proposed agent to agents submit-
ted to the Hearthstone AI competition it was shown that a search based on
predictive state determinisation yields better game-playing performance.
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6.1 Discussion and Research Questions

To summarise this thesis, I will shortly discuss its results with respect to
the research questions initially posed.

Review of the State-of-the-Art

Q1 Which methods exist and are applicable in case the agent cannot

access a game’s forward model or fully observe its current state?

In Chapter 3 state-of-the-art algorithms for implementing autonomous
game-playing agents have been reviewed. In case the agent cannot
access a forward model it is limited to the analysis of the current state.
Heuristics, either implemented by the agent’s developers or generated
by an evolutionary approach, can be used to play any game. However,
their results have been overshadowed by reinforcement learning and
search-based approaches. While the former can be used in the absence
of a forward model, they require a large number of training examples
to reach satisfying performance. In contrast, search-based approaches
are known to perform well without any training, but strictly require
the environment’s forward model. Since the success of reinforcement
learning algorithms has already show that it is possible to learn the
reward of an action, the same could be done for predicting its result.
This idea became the main motivation of prediction-based search
approaches, which were implemented with proposed forward model
learning techniques in Chapter 4.

If the state cannot be fully observed, heuristics are still applicable, but
are limited to the processing of the partial state observation. The same
applies to reinforcement learning algorithms, which have shown to be
successful in learning games such as Poker, but require long training
times. The two simulation-based search algorithms, ensemble-UCT
and information set MCTS, have been implemented to handle similar
situations. However, due to their uniform state sampling, they have
been shown to perform worse than non-determinising algorithms in
case of large state spaces. To overcome this problem the predictive
state determinisation method has been proposed in Chapter 5.
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Forward Model Learning

Q2.1 Which characteristics can be used to compare forward model learning

processes and their results?

A general analysis of forward models has been presented in Section 4.1.
Here, the similarity of forward models and classifiers have been high-
lighted. Several characteristics for the evaluation of forward model
learning algorithms have been presented and include accuracy, pro-
cessing speed, generalisability, learning speed, and interpretability.

Q2.2 How can a forward model be learned by observation of the agent’s in-

teraction with its environment, and how can the model be represented

and learned efficiently? To which degree do the proposed models fulfil

these criteria?

Four forward model types have been presented in this thesis, namely
the end-to-end forward model, the decomposed forward model, the
local forward model and the object-based forward model. The end-to-
end forward model represents the direct mapping of the current state
and action to the upcoming state. The decomposed forward model
introduces independence assumptions for observed sensor values to
model each transition independently. In case each sensor shares the
same semantics and the state is represented in a grid-like structure,
the local forward model can be applied. It introduces the concept of
local neighbourhoods to define the input of local transition functions,
which can be applied to any sensor. In contrast, the object-based
forward model makes use of additional high-level knowledge on the
state representation to further compress the learned forward model.

A qualitative comparison based on the introduced criteria shows that
the local forward model and the object-based forward model are suited
best for the task of forward model learning in case their requirements
are met (cf. Section 4.6). Otherwise, the decomposed forward model
can be efficient in representing an environment’s forward model but
requires the agent to train a separate model per observable sensor
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value. In case these three forward model types are inapplicable, the
end-to-end forward model could be used, but this comes at the cost of
reduced interpretability and generalisability.

Q2.3 How can the accuracy of forward model learning approaches and their

resulting game-playing performance be evaluated? Which of the pro-

posed models performs best?

The proposed methods have partly been evaluated in previous studies,
in which it was shown that they are able to replicate environment mod-
els. Nevertheless, the suitability of the end-to-end and the decomposed
forward models are limited to less complex environments due to their
large hypothesis spaces. Since the local and the object-based forward
models have already proven their worth in more complex problems,
they are further evaluated in the context of this thesis.

For this purpose, a prediction-based search was implemented using one
of the search algorithms BFS, RHEA, or UCT and combining it with the
trained forward models. The model’s accuracy and the agent’s game-
playing performance have been evaluated in a general game-learning
task including 30 games of the GVGAI framework. Three training
setups have been compared, namely training a constant model, con-
tinuously updating a model, and transfer learning. Results show that
all of the prediction-based search agents overall outperform a random
agent when using a pre-trained model. In the few exceptions, either the
training data set has not been sufficient or critical components have
not been represented in the model’s input. Continuously updating
the model has shown to quickly increase its accuracy over time while
allowing the agent to improve its game-playing performance in just
a few trials. The transfer learning evaluation has shown that agents
may struggle in case their forward model is not representative for the
validation levels. This raises the question of how suitable training level
sets can be arranged to support the agent’s learning process.

Overall, the local forward model performed best in the pre-trained
model and the continuously learning evaluation. Therefore, the model
seems to be able to represent an environment’s model well enough to
play a range of games with good game-playing performance in case the
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training data set is representative. In a transfer learning setting agents’
using a local forward model were outperformed by agents’ using an
object-based forward model. This may indicate that the latter is more
robust in previously unseen situations.

State Determinisation

Q3.1 How can the probability of each state be determined and how should

a state be sampled?

The analysis at the beginning of Chapter 5 has shown that it is im-
practical to store the probability of each state in large state spaces. In
particular, the deck construction of deck building games leads to very
large state spaces, which would require a database of even more games
to appropriately estimate the probability of each state. However, the
task can be simplified by focussing on the subset of probable states
which are most relevant for the agent’s subsequent search. This was
done by analysing the current meta-game and exploiting the clus-
tered deck space. For this purpose, two methods have been proposed,
namely the card sequence model (Section 5.2) and a clustering-based
model (Section 5.3). The former aggregates the information gained by
the sequence of previously observed cards to predict the next card of
this sequence. The second method uses a fuzzy multiset clustering to
add a layer of abstraction to the prediction process. Here, the agent
first predicts the probability of each deck to further sample card sets of
the most probable decks. To maximise the accuracy of this approach,
parameters of used clustering algorithms have been tuned to match
human expert labels.

Q3.2 Can the performance of state determinisation-based search methods

be improved by the application of predictive models?

The card sequence model and the cluster-based model have been
compared with respect to their prediction accuracy for upcoming
cards (Section 5.5). Both methods have shown that they are able to
predict cards of the next turn and cards of the remaining game with
high accuracy. Since these models can be used to predict a deck of
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cards, the aggregated prediction accuracy over the highest ranked
cards was used as a second performance indicator. Results show
that the proposed methods increase in accuracy over time, despite
the increasing complexity of the players’ turns. The sampling process
based on the proposed card sequence models resulted in the highest
accuracy for predicting the opponent’s next card and was further used
in testing its influence on the agent’s game-playing performance.

Q3.3 How does the resulting agent’s performance compare to the state-of-

the-art?

The proposed agent has been compared against eight of the best-
performing submissions of the Hearthstone AI competition (Section 5.6).
This competition has been created to build a representative collection
of state-of-the-art algorithms for simulation-based search in collectible
card games.

Comparing the agents’ average win-rate shows that the proposed agent
performed second-best in the evaluation. However, reviewing the
proposed agent’s average win-rate per matchup shows that it performs
worst when playing against decks that were not represented in the card
sequence model’s training data set. When considering all match-ups
for which the training data set can be considered representative, the
agent performed better than all other tested agents.

By comparing tested agents and their used search schemes, it becomes
evident that the proposed predictive state deterministation yields fur-
ther performance increases over other simulation-based search agents.
Comparing the performance of predictive state deterministation against
a uniform sampling approach has shown that the former outperforms
the latter with an average win-rate of 55%-68%, depending on the
current combination of decks.

6.2 Future Work

Proposed frameworks for prediction-based search provide many interesting
opportunities for further improvements of the prediction accuracy and the
agent’s game-playing performance. Since these methods strictly divide
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the model into two building blocks, namely the prediction algorithm and
the search algorithm, further performance increases may be achievable
by replacing common algorithms used in this work with more optimised
alternatives. The main focus of this thesis was the design of this two-part
process which has shown great performance in chosen evaluation settings.
Based on the insights of these experiments, further improvements may be
achievable by studying the following topics:

Forward Model Ensembles and Forward Model Fusion Even if the proposed
methods for forward model learning have been evaluated independently,
agents may also train multiple models at the same time. By keeping track of
each model’s accuracy, the agent could decide which model to apply in the
given situation. Alternatively, a forward model ensemble could be created
by aggregating the predictions of each model. In contrast, data fusion
approaches could be used to build more powerful models by the inclusion of
different data sources, such as visual and object-based information.

Curriculum Learning The evaluation of the trained forward model’s transfer
learning abilities has shown that they are limited in case the training levels
were not representative of future test scenarios. Studying which aspects
need to be represented in the training data may allow game designers to
gain further insights into the game’s design process. Furthermore, creating
a series of increasingly difficult levels may ease the learning process of both
the player and the forward model learning agent.

Active Learning The proposed forward model learning framework would be
an excellent application for active learning. In the context of games, this
would require the agent to query scenarios that have not been sufficiently
represented in the training data. In case the devised prediction model is able
to estimate the confidence of its prediction, the agent could favour scenarios
in which the model’s confidence is still low. This could reduce the training
time while increasing the model’s confidence.

Risk Evaluation Evaluating the risk of the agent’s action selection can also
be based on the idea of measuring the agent’s confidence in its prediction of
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the next state. Considering the likelihood of alternative outcomes may allow
the agent to identify risky actions which should be avoided until the agent’s
confidence in its forward model has increased.

Transfer learning across games While generalisability has already been
discussed as one qualitative criterion of forward models, the generalisation
across multiple games has not been focused on yet. In her work “Project
Thyia: A Forever Gameplayer”, Gaina has proposed an agent that continu-
ously learns to play games [64]. The continuous learning aspect has already
been discussed in this thesis. However, the current model representation
would need to be adjusted to generalise models across multiple games. Train-
ing models that would apply to a whole genre of games, e.g. by modelling
typical behaviours of characters and objects, will be an interesting next step
in forward model learning.

Other applications In this thesis, it was shown that the agent’s performance
can benefit from prediction-based search in the context of games. Due
to the generality of the forward model learning and the predictive state
determinisation frameworks, it would be possible to transfer them to other
applications. In terms of forward model learning, the field of robotics would
be an interesting application area. Here, robots are often provided with a
physics model to plan how a certain position can be reached or an object can
be grasped. However, the model often fails to represent objects of the robot’s
environment. By using forward model learning the robot may be enabled to
model other objects and how their state is influenced by the robot’s actions.
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A.1 Games of the GVGAI Framework

bait: The agent controls a small knight, which is trapped in a dungeon. To
escape it, he needs to collect the key and get out through the door. Grey
boxes that block the path to the key need to be pushed away but pushing
them into the key will destroy it. Later levels include holes that can be filled
by pushing a block into them and mushrooms that award bonus points
upon collection.

catapults: The agent needs to reach the portal without touching any water
tiles. Moving on a grey block sends the agent flying in the indicated direction
until an object blocks its path. Reaching the final door requires the agent to
plan a lot of steps, since landing on the wrong island may trap him.

chainreaction: The agent controls a beast that tries to push boxes into
goalposts to score points. Once the red box is pushed into a direction, it will
continue until it hits something else. Grey blocks of the same shape can be
moved by the agent but do not continue in the same direction. The agent
dies in case he walks into a black hole.

chase The agent tries to catch birds, which are always moving directly
away from him. Birds can be trapped in corners and dead-ends. When
catching a bird, a worm is dropped in the same position. In case any other
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bird touches a worm it will turn into a raven. The raven will fly to the agent
using the shortest path. As soon as the raven touches the agent the game is
lost.

chipschallenge: Each level includes up to four coloured blocks which can-
not be passed unless the agent collected a potion of the same colour. The
agent can increase its score by collecting coins. A door, which is blocking the
path to the final exit, is destroyed in case the agent collected at least 11 coins
before touching the door. The game is won in case the agent reaches the final
exit and lost in case the agent walks on a fire or water tile. However, dying
can be avoided by first collecting boots of the same colour. Chipschallenge
is one of the more complex games using larger levels and requiring the agent
to manage multiple resources.

clusters: The agent controls a knight which is trying to group blocks of
the same colour. Blocks marked with a grey square can be pushed into any
direction as long as the next tile is empty. Solid blocks cannot be pushed.
The agent wins as soon as all blue and all red blocks form a single group
and loses in case he touches any of the spikes.

colourescape: In this game, the agent’s goal is to reach the door. While
walking around the grid, the player can push grey blocks in any direction
unless the target tile is blocked by another object. Touching a blue or red
tile changes the agent’s colours and allows him to push blocks of the same
colour. Touching any of the spikes kills the agent and loses the game.

decepticoins: The agent needs to traverse a maze to reach the target posi-
tion at the bottom right corner while collecting as many coins as possible.
Two paths are available. While taking the left one will provide the agent with
a small reward, choosing the longer path will reward more points. Walking
past the first corner will spawn a block that blocks the agent’s path, such
that it is impossible to collect the coins on both paths. The game is won as
soon as the agent reaches the block in the bottom right corner.

deceptizelda: In deceptizelda, the agent needs to escape a dungeon through
one of the two available doors. While one of the doors is open from the start,



A.1. GAMES OF THE GVGAI FRAMEWORK 187

the other one needs to be unlocked using a key. Escaping through the closed
door yields more points. However, the key is guarded by multiple enemies
which can damage and kill the agent. To kill the enemies, the agent can use
the action button to strike its sword in the direction he is currently facing.
Killing an enemy awards additional points which makes this a high risk and
high reward strategy.

doorkoban: The agent’s goal is to reach the final portal. Doors can be
opened by moving boxes on switches. However, it is unknown which switch
opens which door.

escape: The agent steers a mouse through a maze and tries to reach the
cheese. Boxes can be pushed to open new paths. The game does only
provide a point when reaching the goal. Most levels require the agent to plan
since a single mistake can ultimately block the way to the goal.

fireman: The agent controls a fireman which is tasked to put out burning
houses throughout the level. Therefore, it first needs to collect water at a
hydrant. Extinguishing a fire yields 2 points and the game is won as soon
as all fires have been extinguished. However, getting close to a building that
is on fire drains the agent’s health and possibly kills him.

garbagecollector: The agent’s goal is to collect all black objects that are
spread throughout the map. Every time the agent moves to another tile
leaves a deadly block on its old position. Collecting the objects in a way that
does not hinder the agent to collect remaining objects is key to winning this
game.

hungrybirds: The agent controls a bird, which tries to reach the goal in a
limited amount of steps. The number of remaining steps can be reset by
eating a worm which is hidden within the level. Therefore, the agent needs to
decide if it is possible to reach the goal without eating the worm. Exceeding
the step limit loses the game.
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iceandfire: The agent needs to traverse the forest to reach a doorway.
Meanwhile, the agent can collect coins to score points. Fire or ice tiles are
deadly until the agent collected the correct shoes. Nevertheless, walking on
a spike will always kill the agent.

islands: The agent starts on an island surrounded by water. While standing
on sand tiles, it can dig to remove the sand and receive one block of dirt.
Walking on a water tile while holding a dirt block turns it into a dirt tile
while leaving the agent unharmed. Reaching the gate wins the game. Since
the agent cannot swim it is crucial to use dirt blocks efficiently. Otherwise,
the agent will get stuck on an island without any more dirt blocks to collect.

labyrinth: The agent represented by the small man in the bottom left corner
needs to traverse the labyrinth to reach the goalpost. Walking on a spike
will kill the agent.

labyrinthdual: Similar to the game labyrinth with the addition of coloured
blocks. In case the agent touches the blue or the red house, the agent’s
colour changes accordingly allowing him to pass blocks of the same colour.
Later levels allow the agent to get stuck in case it changes its colour in an
inescapable position.

painter: The game consists of tiles that are either coloured or white. Every
time the agent leaves a tile, its state is switched. The agent’s goal is to colour
all the tiles. When colouring a tile the agent receives one point. Later levels
include darkened tiles, which can be passed but do not change the state.
These do not count into the winning condition but can enable faster paths
to solve the level.

realsokoban: This game mimics the original Sokoban game in which the
agent is tasked to push all the boxes on the tiles marked by a circle. However,
boxes cannot be pulled. This can hinder the agent from finishing a level
since the box may not be movable from any direction.
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run: The agent tries to escape the flood by walking to the gate. Water is
fastly spreading from its initial position. While trying to escape the agent
needs to avoid dead-ends and collect keys to open doors. Points are only
rewarded in case the agent reaches the goal.

shipwreck: The agent controls a ship which needs to stay away from
tornados. Every few game-steps a collectable spawns in the sea, which can
be collected. When bringing these to a harbour the agent receives a reward.

sokoban: Similar to “realsokoban” the agent needs to push boxes onto the
target goals. However, when doing so the boxes disappear in this version of
sokoban. The game is won as soon as all boxes are removed from the game
board.

surround: Here, the agent controls the yeti and plays against one or
multiple wolves. Every time the yeti moves, the underlying tile will change
the colour to green. Tiles touched by a wolve will be coloured in brown. The
agent’s goal is to colour as many tiles as possible before choosing to stop the
game. However, the agent loses the game when touching any of the brown
tiles or stopping the game too late.

tercio: In this game, the agent needs to push a tree to a hole in the ground.
The game consists of the ground tiles water, snow, earth, and dark earth.
While the tree can be pushed to any neighbouring tile, the agent can only
move in between pre-defined pairs of tiles. Specifically, the agent can walk
back and forth between water and earth, earth and dark earth, and earth
and snow.

thecitadel: In this game, the agent needs to reach the door to finish the
level. Once again the agent is able to push boxes by walking into them. In
contrast to previous games, multiple boxes can be pushed as long as the
field behind these boxes is empty.

thesnowman: The agent needs to build a snowman by pushing the snow-
balls of increasing size into each other. While the first level consists of an
open field, more advances levels have maze-like structures.
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vortex: In this game, the agent needs to reach the door to win the game.
Touching water will make the agent lose control and pull him towards the
vortex in the middle of the level. New ground tiles can be created by pushing
any of the grey blocks into the water. When doing so, the agent receives 1
point. Additionally, the agent receives 10 points when collecting the chest.

watergame: The agent needs to reach the door to escape the dungeon.
Water tiles can only be passed in case the agent previously collected any
of the blue potions. Walking on a water tile removes the potion from the
agent’s inventory.

whackamole: From time to time a mole comes out of its molehill for a short
time. The agent tries to touch as many of them as possible while avoiding to
touch the randomly moving cat. The game is won in case the agent survives
2000 game steps. Every time a mole is touched the agent receives a point.
Next to surviving, the agent’s performance will be rated by the number of
points gained.

a) bait b) catapults
c) chainreation

d) chase

e) chipschallenge f) clusters

Figure A.1: Games of the GVGAI framework used for the evaluation of
forward model learning.
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g) colourescape h) decepticoins

i) deceptizelda

j) doorkoban
k) escape

l) fireman

m) garbagecollector
n) hungrybirds

o) iceandfire

p) islands
q) labyrinth r) labyrinthdual
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s) painter
t) realsokoban

u) run

v) shipwreck
w) sokoban

x) surround

y) tercio
z) thecitadel

aa) thesnowman

ab) vortex
ac) watergame

ad) whackamole
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A.2 Grid-Search for Tuning Local Forward Models

Table A.1: Classifier parameters and grid-search options

a) k-Nearest Neighbour parameters

Parameter Parameter Options

number of neighbours {1,5,10}
metric minkowski distance

b) Decision Tree parameters

Parameter Parameter Options

max depth {1,5,10}
min samples split 2
min samples leaf 1
split criterion {random splits, best gini gain}

c) Random Forest parameters

Parameter Parameter Options

max depth {1,5,10}
min samples split 2
number of estimators {5,10,100}
split criterion {random splits, best gini gain}

d) AdaBoost parameters

Parameter Parameter Options

number of estimators {5,10,100}
learning rate 1.0
algorithm SAMME.R [78]

e) Naïve Bayes parameters

Parameter Parameter Options

no parameters to tune
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A.3 Local Forward Model Accuracy per Game
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a) local forward model accuracy - “bait”
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b) local forward model accuracy - “catapults”
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c) local forward model accuracy - “chainreaction”
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d) local forward model accuracy - “chase”

Figure A.2: Aggregated accuracy values measured per game: (left) perfor-
mance distribution per algorithm (right) performance distribution per data
set
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e) local forward model accuracy - “chipschallenge”
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f) local forward model accuracy - “clusters”
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g) local forward model accuracy - “colourescape”
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h) local forward model accuracy - “decepticoins”
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i) local forward model accuracy - “deceptizelda”
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j) local forward model accuracy - “doorkoban”
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k) local forward model accuracy - “escape”
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l) local forward model accuracy - “fireman”
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m) local forward model accuracy - “garbagecollector”
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n) local forward model accuracy - “hungrybirds”
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o) local forward model accuracy - “iceandfire”
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p) local forward model accuracy - “islands”
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q) local forward model accuracy - “labyrinth”
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r) local forward model accuracy - “labyrinthdual”
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s) local forward model accuracy - “painter”
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t) local forward model accuracy - “realsokoban”
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u) local forward model accuracy - “run”
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v) local forward model accuracy - “shipwreck”
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w) local forward model accuracy - “sokoban”

Nea
res

t

Neig
hb

ors
Deci

sio
n

Tre
e

Ran
do

m

For
est

Ada
Boo

st
Naiv

e

Bay
es

0.0

0.2

0.4

0.6

0.8

1.0

Cros
s

Pa
tte

rn 
1 Cros

s

Pa
tte

rn 
2 Cros

s

Pa
tte

rn 
3

Sq
ua

re

Pa
tte

rn 
1

Sq
ua

re

Pa
tte

rn 
2

Sq
ua

re

Pa
tte

rn 
3

Diam
on

d

Pa
tte

rn 
1

Diam
on

d

Pa
tte

rn 
2

Diam
on

d

Pa
tte

rn 
3

0.0

0.2

0.4

0.6

0.8

1.0

x) local forward model accuracy - “surround”
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y) local forward model accuracy - “tercio”
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z) local forward model accuracy - “thecitadel”
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aa) local forward model accuracy - “thesnowman”
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ab) local forward model accuracy - “vortex”
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ac) local forward model accuracy - “watergame”
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ad) local forward model accuracy - “whackamole”
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Table A.2: Best performing combination of algorithm, parameters, and data
sets per game for learning a local forward model.

Game Classifier Parameters Data Set Mean
max depth split Accuracy

bait DT None best Square 3 0.99
catapults DT 10 best Square 3 0.99
chainreaction DT None best Square 3 1.0
chase DT 10 best Square 3 0.98
chipschallenge DT None best Square 3 1.0

clusters DT None best Square 3 0.99
colourescape DT None best Square 3 0.99
decepticoins DT 10 best Square 3 0.99
deceptizelda DT 10 random Square 3 0.97
doorkoban DT None best Square 3 1.0

escape DT None best Diamond 3 0.99
fireman DT 5 best Square 3 0.98
garbagecollector DT 10 best Square 3 1.0
hungrybirds DT None best Square 3 1.0
iceandfire DT None best Square 3 1.0

islands DT 5 best Square 3 0.98
labyrinth DT None best Cross 3 1.0
labyrinthdual DT None best Square 3 1.0
painter DT 5 random Square 3 0.89
realsokoban DT None best Square 3 0.99

run DT 10 best Square 3 0.98
shipwreck DT None best Square 3 1.0
sokoban DT None best Square 3 1.0
surround DT 5 best Square 3 0.99
tercio DT None best Square 3 0.99

thecitadel DT None best Square 3 1.0
thesnowman DT None best Square 3 1.0
vortex DT 10 best Square 3 0.98
watergame DT None best Square 3 0.99
whackamole DT 10 best Square 3 0.97
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A.4 Constant Model Game-Playing Performance

Table A.3: Constant model performance - bait

Agents average average average ticks Rankwin-rate score won lost

Random 0.06 1.28 111.33 427.3 7th

LFM
BFS 0.2 2.18 33.7 561.3 3rd

RHEA 0.12 1.52 73.33 337.3 6th

MCTS 0.18 1.98 76.33 317.05 4th

OBFM
BFS 0.2 2.52 9.2 1566.58 1st

RHEA 0.12 2.12 117.83 656.91 5th

MCTS 0.2 2.44 15.0 1998.0 2nd

Table A.4: Constant model performance - catapults

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 0.38 — 10.9 7th

LFM
BFS 0.0 1.12 — 383.66 3rd

RHEA 0.0 0.76 — 14.26 6th

MCTS 0.0 1.12 — 15.12 4th

OBFM
BFS 0.0 1.44 — 776.68 1st

RHEA 0.0 1.2 — 217.08 2nd

MCTS 0.0 0.76 — 1544.68 5th

Table A.5: Constant model performance - chainreaction

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 -9.8 — 308.78 7th

LFM
BFS 0.0 -3.28 — 1114.74 4th

RHEA 0.0 -7.36 — 770.2 6th

MCTS 0.0 -3.16 — 1203.52 3rd

OBFM
BFS 0.0 0.0 — 1498.0 1st

RHEA 0.0 -4.8 — 1075.74 5th

MCTS 0.0 -2.72 — 1192.02 2nd
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Table A.6: Constant model performance - chase

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 0.58 — 1697.04 6th

LFM
BFS 0.0 0.38 — 1745.24 7th

RHEA 0.0 0.72 — 1837.72 4th

MCTS 0.0 0.88 — 1896.9 3rd

OBFM
BFS 0.0 1.12 — 991.32 2nd

RHEA 0.0 0.68 — 1769.32 5th

MCTS 0.02 0.94 1608.0 1439.49 1st

Table A.7: Constant model performance - chipschallenge

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 4.22 — 418.9 3rd

LFM
BFS 0.0 2.12 — 854.1 6th

RHEA 0.0 5.36 — 422.74 2nd

MCTS 0.0 1.64 — 501.1 7th

OBFM
BFS 0.0 2.44 — 1736.66 4th

RHEA 0.0 6.26 — 1121.48 1st

MCTS 0.0 2.2 — 1998.0 5th

Table A.8: Constant model performance - clusters

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 -0.86 — 58.15 7th

LFM
BFS 0.0 0.2 — 1175.72 2nd

RHEA 0.0 -0.24 — 357.42 6th

MCTS 0.0 0.18 — 1198.38 3rd

OBFM
BFS 0.0 0.14 — 567.04 4th

RHEA 0.0 0.12 — 389.12 5th

MCTS 0.0 0.4 — 1468.14 1st
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Table A.9: Constant model performance - colourescape

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 -0.7 — 604.56 7th

LFM
BFS 0.0 -0.06 — 1419.42 2nd

RHEA 0.06 -0.58 896.0 789.72 1st

MCTS 0.0 -0.16 — 1385.38 3rd

OBFM
BFS 0.0 -0.38 — 1057.02 5th

RHEA 0.0 -0.64 — 845.14 6th

MCTS 0.0 -0.16 — 1314.48 4th

Table A.10: Constant model performance - decepticoins

Agents average average average ticks Rankwin-rate score won lost

Random 0.54 1.8 667.78 326.65 4th

LFM
BFS 0.66 2.8 23.15 684.82 1st

RHEA 0.58 2.68 607.55 327.81 2nd

MCTS 0.54 3.28 366.81 507.52 3rd

OBFM
BFS 0.2 1.64 52.1 1634.4 7th

RHEA 0.38 2.2 90.79 1349.0 6th

MCTS 0.4 1.58 43.0 1630.33 5th

Table A.11: Constant model performance - deceptizelda

Agents average average average ticks Rankwin-rate score won lost

Random 0.52 1.08 745.15 1666.42 4th

LFM
BFS 0.76 1.72 583.16 1458.83 1st

RHEA 0.48 0.88 483.5 1243.27 6th

MCTS 0.58 1.44 722.55 1692.71 2nd

OBFM
BFS 0.0 -0.66 — 1082.46 7th

RHEA 0.54 1.16 755.59 1418.39 3rd

MCTS 0.5 1.14 579.52 1527.88 5th
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Table A.12: Constant model performance - doorkoban

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 0.24 — 998.0 6th

LFM
BFS 0.0 0.04 — 998.0 7th

RHEA 0.0 0.46 — 998.0 4th

MCTS 0.0 0.48 — 998.0 3rd

OBFM
BFS 0.0 0.7 — 998.0 1st

RHEA 0.0 0.36 — 998.0 5th

MCTS 0.0 0.5 — 998.0 2nd

Table A.13: Constant model performance - escape

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 -1.0 — 117.96 7th

LFM
BFS 0.04 -0.44 199.5 533.29 3rd

RHEA 0.1 -0.72 302.6 370.62 1st

MCTS 0.0 -0.34 — 762.92 6th

OBFM
BFS 0.0 -0.26 — 864.2 5th

RHEA 0.06 -0.76 515.33 425.49 2nd

MCTS 0.0 0.0 — 998.0 4th

Table A.14: Constant model performance - fireman

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 -13.9 — 977.6 5th

LFM
BFS 0.0 -12.54 — 859.3 2nd

RHEA 0.0 -13.88 — 973.32 4th

MCTS 0.0 -14.64 — 954.6 7th

OBFM
BFS 0.0 -14.34 — 1141.78 6th

RHEA 0.0 -10.04 — 568.24 1st

MCTS 0.0 -12.94 — 894.26 3rd
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Table A.15: Constant model performance - garbagecollector

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 -1.0 — 14.72 7th

LFM
BFS 0.0 0.6 — 42.16 2nd

RHEA 0.0 -0.44 — 32.58 4th

MCTS 0.0 1.2 — 86.42 1st

OBFM
BFS 0.0 -0.44 — 24.08 5th

RHEA 0.0 -0.48 — 30.6 6th

MCTS 0.0 0.16 — 52.52 3rd

Table A.16: Constant model performance - hungrybirds

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 0.8 — 356.5 5th

LFM
BFS 0.96 96.0 65.79 523.0 1st

RHEA 0.0 0.8 — 329.5 6th

MCTS 0.02 2.0 292.0 325.55 4th

OBFM
BFS 0.42 42.0 166.9 367.83 2nd

RHEA 0.02 3.6 228.0 357.69 3rd

MCTS 0.0 0.0 — 343.0 7th

Table A.17: Constant model performance - iceandfire

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 1.5 — 230.78 7th

LFM
BFS 0.0 5.72 — 204.52 1st

RHEA 0.0 3.38 — 236.04 4th

MCTS 0.0 4.6 — 295.82 3rd

OBFM
BFS 0.0 4.92 — 370.68 2nd

RHEA 0.0 3.34 — 359.62 5th

MCTS 0.0 3.26 — 443.56 6th
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Table A.18: Constant model performance - islands

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 0.0 — 23.1 7th

LFM
BFS 0.0 0.0 — 84.48 3rd

RHEA 0.0 0.0 — 35.12 6th

MCTS 0.0 2.0 — 36.04 1st

OBFM
BFS 0.0 0.0 — 85.38 2nd

RHEA 0.0 0.0 — 63.1 4th

MCTS 0.0 0.0 — 49.6 5th

Table A.19: Constant model performance - labyrinth

Agents average average average ticks Rankwin-rate score won lost

Random 0.02 -0.62 462.0 565.31 7th

LFM
BFS 0.3 -0.26 362.33 341.17 1st

RHEA 0.04 -0.2 483.5 875.44 4th

MCTS 0.08 -0.18 572.5 878.11 3rd

OBFM
BFS 0.2 -0.5 277.6 399.3 2nd

RHEA 0.04 -0.38 927.5 775.44 5th

MCTS 0.02 -0.32 933.0 854.27 6th

Table A.20: Constant model performance - labyrinthdual

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 0.32 — 364.16 5th

LFM
BFS 0.0 2.46 — 998.0 1st

RHEA 0.0 1.22 — 715.9 3rd

MCTS 0.0 2.38 — 952.84 2nd

OBFM
BFS 0.0 0.68 — 495.12 4th

RHEA 0.0 0.2 — 681.38 6th

MCTS 0.0 0.02 — 827.7 7th
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Table A.21: Constant model performance - painter

Agents average average average ticks Rankwin-rate score won lost

Random 0.22 447.72 245.64 1998.0 4th

LFM
BFS 0.96 146.98 222.29 1998.0 2nd

RHEA 0.48 423.8 397.17 1998.0 3rd

MCTS 1.0 150.54 305.08 — 1st

OBFM
BFS 0.0 7.34 — 1998.0 7th

RHEA 0.22 420.16 471.64 1998.0 5th

MCTS 0.0 51.48 — 1998.0 6th

Table A.22: Constant model performance - realsokoban

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 0.06 — 1998.0 7th

LFM
BFS 0.0 0.64 — 1998.0 4th

RHEA 0.0 0.1 — 1998.0 6th

MCTS 0.0 0.54 — 1998.0 5th

OBFM
BFS 0.0 1.06 — 1998.0 2nd

RHEA 0.0 1.0 — 1998.0 3rd

MCTS 0.0 1.16 — 1998.0 1st

Table A.23: Constant model performance - run

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 0.0 — 72.8 6th

LFM
BFS 0.0 0.0 — 75.04 5th

RHEA 0.0 0.0 — 76.02 4th

MCTS 0.0 0.0 — 71.06 7th

OBFM
BFS 0.04 0.04 379.0 128.62 1st

RHEA 0.0 0.0 — 94.18 3rd

MCTS 0.02 0.02 294.0 142.63 2nd
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Table A.24: Constant model performance - shipwreck

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 -9.7 — 139.7 7th

LFM
BFS 0.96 6.98 998.0 261.0 4th

RHEA 0.56 2.02 998.0 658.0 6th

MCTS 1.0 8.04 998.0 — 1st

OBFM
BFS 0.98 0.22 998.0 25.0 3rd

RHEA 0.76 2.76 998.0 388.83 5th

MCTS 1.0 4.56 998.0 — 2nd

Table A.25: Constant model performance - sokoban

Agents average average average ticks Rankwin-rate score won lost

Random 0.04 0.54 515.5 1998.0 6th

LFM
BFS 0.0 0.3 — 1998.0 7th

RHEA 0.08 0.7 260.25 1998.0 5th

MCTS 0.1 0.68 631.8 1998.0 4th

OBFM
BFS 0.2 0.6 7.0 1998.0 2nd

RHEA 0.12 0.76 402.67 1998.0 3rd

MCTS 0.22 0.86 205.82 1998.0 1st

Table A.26: Constant model performance - surround

Agents average average average ticks Rankwin-rate score won lost

Random 1.0 1.06 6.68 — 1st

LFM
BFS 1.0 0.3 1.14 — 4th

RHEA 1.0 0.66 2.88 — 3rd

MCTS 1.0 0.24 1.44 — 5th

OBFM
BFS 0.92 4.22 11.91 757.25 7th

RHEA 1.0 0.86 4.88 — 2nd

MCTS 0.96 4.92 18.77 24.0 6th
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Table A.27: Constant model performance - tercio

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 0.0 — 998.0 1st

LFM
BFS 0.0 0.0 — 998.0 1st

RHEA 0.0 0.0 — 998.0 1st

MCTS 0.0 0.0 — 998.0 1st

OBFM
BFS 0.0 0.0 — 998.0 1st

RHEA 0.0 0.0 — 998.0 1st

MCTS 0.0 0.0 — 998.0 1st

Table A.28: Constant model performance - thecitadel

Agents average average average ticks Rankwin-rate score won lost

Random 0.1 1.12 675.8 1998.0 1st

LFM
BFS 0.0 0.2 — 1998.0 6th

RHEA 0.04 0.72 596.0 1998.0 4th

MCTS 0.0 0.16 — 1998.0 7th

OBFM
BFS 0.0 0.4 — 1998.0 5th

RHEA 0.08 1.14 357.0 1998.0 2nd

MCTS 0.06 0.74 452.0 1998.0 3rd

Table A.29: Constant model performance - thesnowman

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 0.54 — 1878.72 1st

LFM
BFS 0.0 0.48 — 1697.46 5th

RHEA 0.0 0.44 — 1776.9 6th

MCTS 0.0 0.52 — 1893.82 2nd

OBFM
BFS 0.0 0.32 — 1546.0 7th

RHEA 0.0 0.5 — 1890.14 3rd

MCTS 0.0 0.5 — 1854.3 4th
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Table A.30: Constant model performance - vortex

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 0.14 — 998.0 7th

LFM
BFS 0.0 0.24 — 998.0 1st

RHEA 0.0 0.2 — 998.0 2nd

MCTS 0.0 0.16 — 998.0 6th

OBFM
BFS 0.0 0.2 — 998.0 2nd

RHEA 0.0 0.18 — 998.0 5th

MCTS 0.0 0.2 — 998.0 2nd

Table A.31: Constant model performance - watergame

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 0.0 — 38.62 7th

LFM
BFS 0.06 0.0 43.67 661.43 1st

RHEA 0.0 0.0 — 66.58 5th

MCTS 0.0 0.0 — 51.28 6th

OBFM
BFS 0.0 0.0 — 1382.64 3rd

RHEA 0.0 0.0 — 620.62 4th

MCTS 0.0 0.0 — 1998.0 2nd

Table A.32: Constant model performance - whackamole

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 1.76 — 201.37 7th

LFM
BFS 0.3 6.3 498.0 145.57 1st

RHEA 0.22 3.5 498.0 125.72 5th

MCTS 0.2 5.7 498.0 131.72 6th

OBFM
BFS 0.24 1.68 498.0 108.89 4th

RHEA 0.28 6.06 498.0 125.94 2nd

MCTS 0.28 5.42 498.0 204.69 3rd
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A.5 Continuous Learning Game-Playing

Performance

Table A.33: Continuous learning performance - bait

Agents average average average ticks Rankwin-rate score won lost

Random 0.06 1.28 111.33 427.3 2nd

LFM BFS 0.16 2.64 19.88 149.69 1st

OBFM BFS 0.0 1.0 — 716.22 3rd

Table A.34: Continuous learning performance - catapults

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 0.38 — 10.9 3rd

LFM BFS 0.0 0.74 — 9.91 2nd

OBFM BFS 0.0 1.02 — 178.75 1st

Table A.35: Continuous learning performance - chipschallenge

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 4.22 — 418.9 1st

LFM BFS 0.0 2.27 — 436.54 3rd

OBFM BFS 0.0 2.86 — 1060.39 2nd

Table A.36: Continuous learning performance - clusters

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 -0.86 — 58.15 3rd

LFM BFS 0.0 -0.52 — 120.5 2nd

OBFM BFS 0.0 -0.42 — 100.8 1st
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Table A.37: Continuous learning performance - decepticoins

Agents average average average ticks Rankwin-rate score won lost

Random 0.54 1.8 667.78 326.65 2nd

LFM BFS 0.6 4.76 72.23 76.05 1st

OBFM BFS 0.0 1.98 — 1225.92 3rd

Table A.38: Continuous learning performance - escape

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 -1.0 — 117.96 3rd

LFM BFS 0.04 -0.92 31.0 107.4 1st

OBFM BFS 0.0 -0.22 — 861.56 2nd

Table A.39: Continuous learning performance - garbagecollector

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 -1.0 — 14.72 3rd

LFM BFS 0.0 -1.0 — 54.42 2nd

OBFM BFS 0.0 -0.96 — 15.98 1st

Table A.40: Continuous learning performance - hungrybirds

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 0.8 — 356.5 3rd

LFM BFS 0.94 94.0 76.43 448.0 1st

OBFM BFS 0.0 76.4 — 515.38 2nd
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Table A.41: Continuous learning performance - iceandfire

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 1.5 — 230.78 3rd

LFM BFS 0.06 6.3 208.0 70.04 1st

OBFM BFS 0.0 6.33 — 307.06 2nd

Table A.42: Continuous learning performance - islands

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 0.0 — 23.1 3rd

LFM BFS 0.0 0.0 — 133.0 2nd

OBFM BFS 0.0 0.0 — 245.56 1st

Table A.43: Continuous learning performance - labyrinth

Agents average average average ticks Rankwin-rate score won lost

Random 0.02 -0.62 462.0 565.31 2nd

LFM BFS 0.72 0.44 101.31 100.64 1st

OBFM BFS 0.0 0.72 — 110.46 3rd

Table A.44: Continuous learning performance - labyrinthdual

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 0.32 — 364.16 3rd

LFM BFS 0.28 4.32 138.21 377.72 1st

OBFM BFS 0.0 2.36 — 480.3 2nd
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Table A.45: Continuous learning performance - painter

Agents average average average ticks Rankwin-rate score won lost

Random 0.22 447.72 245.64 1998.0 2nd

LFM BFS 1.0 80.1 156.14 — 1st

OBFM BFS 0.0 23.08 — 1998.0 3rd

Table A.46: Continuous learning performance - run

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 0.0 — 72.8 3rd

LFM BFS 0.0 0.0 — 92.78 1st

OBFM BFS 0.0 0.0 — 90.16 2nd

Table A.47: Continuous learning performance - watergame

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 0.0 — 38.62 2nd

LFM BFS 0.0 0.0 — 25.26 3rd

OBFM BFS 0.0 0.0 — 1041.7 1st
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Figure A.3: Average performance per epoch in the continuous learning
evaluation.



A.5. CONTINUOUS LEARNING GAME-PLAYING PERFORMANCE 217

1 2 3 4 5 6 7 8 9 10
epoch

0.00

0.05

0.10

0.15

0.20

ga
m

e
w

on

Random LFM-BFS OBFM-BFS

1 2 3 4 5 6 7 8 9 10
epoch

−1.00

−0.75

−0.50

−0.25

0.00

sc
or

e

1 2 3 4 5 6 7 8 9 10
epoch

0

250

500

750

1000

tic
ks

1 2 3 4 5 6 7 8 9 10
epoch

−0.20

−0.15

−0.10

−0.05

0.00

sc
or

e
/

tic
ks

f) escape

1 2 3 4 5 6 7 8 9 10
epoch

−0.050

−0.025

0.000

0.025

0.050

ga
m

e
w

on

Random LFM-BFS OBFM-BFS

1 2 3 4 5 6 7 8 9 10
epoch

−1.0

−0.9

−0.8

−0.7

−0.6

sc
or

e

1 2 3 4 5 6 7 8 9 10
epoch

20

40

60

80

tic
ks

1 2 3 4 5 6 7 8 9 10
epoch

−0.20

−0.15

−0.10

−0.05

sc
or

e
/

tic
ks

g) garbagecollector

1 2 3 4 5 6 7 8 9 10
epoch

0.00

0.25

0.50

0.75

1.00

ga
m

e
w

on

Random LFM-BFS OBFM-BFS

1 2 3 4 5 6 7 8 9 10
epoch

0

25

50

75

100

sc
or

e

1 2 3 4 5 6 7 8 9 10
epoch

200

400

600

tic
ks

1 2 3 4 5 6 7 8 9 10
epoch

0

1

2

sc
or

e
/

tic
ks

h) hungrybirds

1 2 3 4 5 6 7 8 9 10
epoch

0.00

0.05

0.10

0.15

0.20

ga
m

e
w

on

Random LFM-BFS OBFM-BFS

1 2 3 4 5 6 7 8 9 10
epoch

2.5

5.0

7.5

10.0

sc
or

e

1 2 3 4 5 6 7 8 9 10
epoch

200

400

tic
ks

1 2 3 4 5 6 7 8 9 10
epoch

−0.1

0.0

0.1

sc
or

e
/

tic
ks

i) iceandfire

1 2 3 4 5 6 7 8 9 10
epoch

−0.050

−0.025

0.000

0.025

0.050

ga
m

e
w

on

Random LFM-BFS OBFM-BFS

1 2 3 4 5 6 7 8 9 10
epoch

−0.050

−0.025

0.000

0.025

0.050

sc
or

e

1 2 3 4 5 6 7 8 9 10
epoch

0

200

400

600

tic
ks

1 2 3 4 5 6 7 8 9 10
epoch

−0.050

−0.025

0.000

0.025

0.050

sc
or

e
/

tic
ks

j) islands



218 APPENDIX A. APPENDIX

1 2 3 4 5 6 7 8 9 10
epoch

0.00

0.25

0.50

0.75

1.00

ga
m

e
w

on

Random LFM-BFS OBFM-BFS

1 2 3 4 5 6 7 8 9 10
epoch

−1.0

−0.5

0.0

0.5

1.0

sc
or

e

1 2 3 4 5 6 7 8 9 10
epoch

200

400

600

tic
ks

1 2 3 4 5 6 7 8 9 10
epoch

−0.10

−0.05

0.00

sc
or

e
/

tic
ks

k) labyrinth

1 2 3 4 5 6 7 8 9 10
epoch

0.0

0.1

0.2

0.3

0.4

ga
m

e
w

on

Random LFM-BFS OBFM-BFS

1 2 3 4 5 6 7 8 9 10
epoch

0

2

4

sc
or

e

1 2 3 4 5 6 7 8 9 10
epoch

200

400

600

tic
ks

1 2 3 4 5 6 7 8 9 10
epoch

−0.10

−0.05

0.00

0.05

sc
or

e
/

tic
ks

l) labyrinthdual

1 2 3 4 5 6 7 8 9 10
epoch

0.00

0.25

0.50

0.75

1.00

ga
m

e
w

on

Random LFM-BFS OBFM-BFS

1 2 3 4 5 6 7 8 9 10
epoch

0

200

400

sc
or

e

1 2 3 4 5 6 7 8 9 10
epoch

0

500

1000

1500

2000

tic
ks

1 2 3 4 5 6 7 8 9 10
epoch

0.0

0.2

0.4

0.6

sc
or

e
/

tic
ks

m) painter

1 2 3 4 5 6 7 8 9 10
epoch

−0.050

−0.025

0.000

0.025

0.050

ga
m

e
w

on

Random LFM-BFS OBFM-BFS

1 2 3 4 5 6 7 8 9 10
epoch

−0.050

−0.025

0.000

0.025

0.050

sc
or

e

1 2 3 4 5 6 7 8 9 10
epoch

50

75

100

125

tic
ks

1 2 3 4 5 6 7 8 9 10
epoch

−0.050

−0.025

0.000

0.025

0.050

sc
or

e
/

tic
ks

n) run

1 2 3 4 5 6 7 8 9 10
epoch

−0.050

−0.025

0.000

0.025

0.050

ga
m

e
w

on

Random LFM-BFS OBFM-BFS

1 2 3 4 5 6 7 8 9 10
epoch

−0.050

−0.025

0.000

0.025

0.050

sc
or

e

1 2 3 4 5 6 7 8 9 10
epoch

0

500

1000

tic
ks

1 2 3 4 5 6 7 8 9 10
epoch

−0.050

−0.025

0.000

0.025

0.050

sc
or

e
/

tic
ks

o) watergame



A.6. TRANSFER LEARNING GAME-PLAYING PERFORMANCE 219

A.6 Transfer Learning Game-Playing Performance

Table A.48: Transfer learning performance - bait

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 2.25 111.33 427.3 1st

LFM BFS 0.0 1.0 — 1201.65 3rd

OBFM BFS 0.0 1.5 — 1118.35 2nd

Table A.49: Transfer learning performance - catapults

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 0.25 — 10.9 3rd

LFM BFS 0.0 0.5 — 219.75 1st

OBFM BFS 0.0 0.45 — 1199.85 2nd

Table A.50: Transfer learning performance - chipschallenge

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 0.5 — 418.9 1st

LFM BFS 0.0 0.0 — 669.85 3rd

OBFM BFS 0.0 0.0 — 1250.65 2nd

Table A.51: Transfer learning performance - clusters

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 -0.78 — 58.15 3rd

LFM BFS 0.0 -0.2 — 982.6 2nd

OBFM BFS 0.0 0.0 — 749.5 1st
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Table A.52: Transfer learning performance - decepticoins

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 1.5 667.78 326.65 3rd

LFM BFS 0.05 1.05 206.0 84.63 2nd

OBFM BFS 0.5 0.5 58.1 9.0 1st

Table A.53: Transfer learning performance - escape

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 -1.0 — 117.96 3rd

LFM BFS 0.0 -0.4 — 737.55 2nd

OBFM BFS 0.0 0.0 — 998.0 1st

Table A.54: Transfer learning performance - garbagecollector

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 -1.0 — 14.72 2nd

LFM BFS 0.0 -1.0 — 5.4 3rd

OBFM BFS 0.0 -0.5 — 30.65 1st

Table A.55: Transfer learning performance - hungrybirds

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 2.0 — 356.5 3rd

LFM BFS 1.0 100.0 100.2 — 1st

OBFM BFS 0.25 25.0 115.6 298.0 2nd
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Table A.56: Transfer learning performance - iceandfire

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 0.55 — 230.78 3rd

LFM BFS 0.0 2.45 — 329.55 1st

OBFM BFS 0.0 1.45 — 498.0 2nd

Table A.57: Transfer learning performance - islands

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 0.0 — 23.1 2nd

LFM BFS 0.0 0.0 — 14.9 3rd

OBFM BFS 0.0 0.0 — 503.45 1st

Table A.58: Transfer learning performance - labyrinth

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 -0.85 462.0 565.31 3rd

LFM BFS 0.0 -0.05 — 948.7 2nd

OBFM BFS 0.05 -0.9 172.0 99.42 1st

Table A.59: Transfer learning performance - labyrinthdual

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 -0.65 — 364.16 2nd

LFM BFS 0.0 -0.1 — 601.85 1st

OBFM BFS 0.0 -1.0 — 18.35 3rd
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Table A.60: Transfer learning performance - painter

Agents average average average ticks Rankwin-rate score won lost

Random 0.5 244.85 245.64 1998.0 2nd

LFM BFS 0.25 256.05 227.0 1998.0 3rd

OBFM BFS 0.5 285.7 469.3 1998.0 1st

Table A.61: Transfer learning performance - run

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 0.0 — 72.8 2nd

LFM BFS 0.0 0.0 — 69.55 3rd

OBFM BFS 0.0 0.0 — 93.65 1st

Table A.62: Transfer learning performance - watergame

Agents average average average ticks Rankwin-rate score won lost

Random 0.0 0.0 — 38.62 3rd

LFM BFS 0.0 0.0 — 116.2 2nd

OBFM BFS 0.0 0.0 — 609.2 1st
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