

Measuring and Improving Code Quality in Highly Configurable
Software Systems

D I S S E R T A T I O N

zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

angenommen durch die Fakultät für Informatik
der Otto-von-Guericke-Universität Magdeburg

von Dipl. Inf. Wolfram Fenske

geb. am 02.10.1981 in Staßfurt

Gutachterinnen/Gutachter

Prof. Dr. Gunter Saake
Prof. Dr. Sven Apel
Prof. Dr. Ina Schaefer

Eingereicht: 
Magdeburg, den 16.03.2020

Verteidigt: 
Magdeburg, den 06.07.2020

D I SSERTAT ION

zur Erlangung des akademischen Grades

vorgelegt der Fakultät für Informatik
der Otto-von-Guericke-Universität Magdeburg

von

geb. am in

Magdeburg, den

Fenske, Wolfram:
Measuring and Improving Code Quality in Highly Configurable Software Systems
Dissertation, University of Magdeburg, 2020.

Abstract

Highly configurable software systems (also known as software product lines) are
software systems that can be configured to fulfill multiple sets of requirements. To
achieve this configurability, the code base of highly configurable software systems
must be variable, so that well-defined pieces of the implementation can be selectively
compiled into a given product or left out of it.

In this thesis, I have investigated how variability at the implementation level af-
fects the quality of the code base. Specifically, I argue that variability adds new
design challenges that assessments of internal quality should take into account. To
this end, I propose variability-aware code smells, an adaptation of the well-known
code smell idea that treats variability as a first class concept. I show that such
smells exist in the wild and present evidence that they negatively affect software
development. Moreover, I propose a concept and tool support to detect variability-
aware code smells in C programs that use preprocessor directives (a. k. a. #ifdefs)
as the variability mechanism. Preprocessor-based variability is widely used but also
often criticized as a cause for hard-to-understand code and subtle bugs. For this
reason, I analyzed the impact of preprocessor-based variability, finding that it has
no systematic effect on maintainability in terms of the frequency or extent of code
changes.

In addition to studying the effect of variability on code smells, this thesis also ad-
dresses the effect of variability on a closely related topic, refactoring. To this end,
I created a taxonomy of reengineering activities for highly configurable software sys-
tems and classified existing work according to this taxonomy. Moreover, I propose
two variant-preserving refactorings for reducing code replication in highly config-
urable software systems, and embed these refactorings in a novel process to migrate
product families that were created through clone-and-own to a software product line.

In summary, this thesis contributes new insights into the impact of variability at
the implementation level. It demonstrates how different design choices for imple-
menting variability can have either positive or negative effects on important aspects
of software development, such as understandability or maintainability. Moreover, it
presents novel evidence that static source code configurability based on C prepro-
cessor directives does not increase code change proneness. Finally, this thesis adds
clarity to future discussions about refactoring techniques for highly configurable
software systems and contributes new refactorings to improve the code quality such
systems.

Inhaltsangabe

Hoch-konfigurierbare Software-Systeme (auch bekannt als Software-Produktlinien)
sind Software-Systeme, die konfiguriert werden können, um unterschiedlichen An-
forderungen gerecht zu werden. Um diese Konfigurierbarkeit zu erreichen muss die
Code-Basis hoch-konfigurierbarer Software-Systeme variabel sein, sodass beim Kom-
pilieren eines gegebenen Produkts wohldefinierte Teile der Implementierung selektiv
ein- oder ausgeschlossen werden können.

In der vorliegenden Doktorarbeit habe ich untersucht, wie Variabilität auf der Imple-
mentierungsebene die Qualität der Code-Basis beeinflusst. Im Speziellen behaupte
ich, dass Variabilität neue Herausforderungen für den Entwurf mit sich bringt, die
bei der Bewertung der internen Qualität berücksichtigt werden sollten. Zu diesem
Zweck schlage ich variabilitätsgewahre Code Smells vor, eine Adaptierung der bekan-
nten Code-Smell-Idee, welche Variabilität in den Mittelpunkt der Betrachtung rückt.
Ich zeige, dass derartige Smells in realen Software-Projekten vorkommen und bringe
Belege dafür vor, dass sie die Software-Entwicklung negativ beeinflussen. Des Weit-
eren stelle ich ein Konzept und Werkzeugunterstützung vor, um variabilitätsgewahre
Code-Smells in C-Programmen, die Präprozessordirektiven (sogenannte #ifdefs)
als Variabilitätsmechanismus nutzen, zu detektieren. Präprozessor-basierte Varia-
bilität ist weit verbreitet, wird aber auch häufig als Ursache schwer verständlichen
Codes und subtiler Bugs kritisiert. Aus diesem Grund habe ich die Auswirkung
von Präprozessor-basierter Variabilität untersucht, mit dem Ergebnis, dass keine
systematischen Auswirkungen auf die Wartbarkeit im Sinne von häufigeren oder
umfangreicheren Änderungen vorliegen.

Zuzüglich zur Untersuchung der Auswirkungen von Variabilität auf Code-Smells
adressiert diese Doktorarbeit die Auswirkungen von Variabilität auf ein eng ver-
wandtes Thema, Refactoring. Zu diesem Zweck habe ich eine Taxonomie von
Reengineering-Aktivitäten für hoch-konfigurierbare Software-Systeme erstellt und
bestehende Arbeiten gemäß dieser Taxonomie klassifiziert. Weiterhin schlage ich
variantentreue Refactorings zur Reduktion von Code-Replikation vor und bette diese
Refactorings in einen neuartigen Prozess ein, mit dessen Hilfe Produktfamilien, die
durch Clone-and-Own entstanden sind, in eine Software-Produktlinie überführt wer-
den.

Zusammenfassend liefert diese Doktorarbeit neue Erkenntnisse zum Einfluss von
Variabilität auf die Implementierungsebene. Sie zeigt, wie unterschiedliche Entschei-
dungen bei der Implementierung von Variabilität sowohl positive als auch negative
Auswirkungen auf wichtige Aspekte der Software-Entwicklung, wie zum Beispiel
Verständlichkeit oder Wartbarkeit, haben können. Zusätzlich liefert sie neue Belege,

vi

dass statische Quellcode-Konfigurierbarkeit basierend auf C-Präprozessordirektiven
die Änderungsanfälligkeit nicht erhöht. Abschließend erleichtert diese Doktorar-
beit zukünftige Diskussionen über Refactoring-Techniken für hoch-konfigurierbare
Software-Systeme und steuert neue Refactorings bei, um die Code-Qualität solcher
Systeme zu verbessern.

Contents

List of Figures xii

List of Tables xiv

List of Listings xvi

List of Acronyms xvii

1 Introduction 1
1.1 Research Questions . 2
1.2 Contributions . 3
1.3 Structure of the Thesis . 4

2 Code Smells 5
2.1 Defining Code Smells . 5
2.2 A Code Smell Example: Long Method 9
2.3 Negative Effects of Code Smells . 10

2.3.1 Change and Fault Proneness 11
2.3.2 Program Comprehension . 12
2.3.3 Maintenance Effort . 12
2.3.4 Subjective Perception of Developers 13
2.3.5 Biases in Surveyed Studies . 13
2.3.6 Summary . 14

2.4 Detecting Code Smells . 14
2.4.1 Detection with Object-Oriented Metrics 15
2.4.2 Machine Learning . 17
2.4.3 Additional Sources of Information 17
2.4.4 Visually Aided Detection . 17
2.4.5 Summary . 18

2.5 Refactoring . 18
2.5.1 A Refactoring Example . 18
2.5.2 Ensuring Behavior Preservation 20
2.5.3 Tool Support . 22

2.6 Summary . 22

3 Highly Configurable Software Systems 25
3.1 Software Product Line Engineering 26
3.2 Domain and Application Engineering 27

viii Contents

3.3 Modeling Variability . 30
3.4 Implementing Variability . 32

3.4.1 Composition-Based Mechanisms 32
3.4.2 Annotation-Based Mechanisms 36
3.4.3 How Variability Mechanisms Affect the Shape of Feature Code 38

3.5 Clone & Own Variant Development 40
3.5.1 Reasons for Clone & Own . 40
3.5.2 Technical Realization . 42
3.5.3 Negative Effects of Clone & Own 45
3.5.4 Summary . 47

3.6 Code Clones . 47
3.6.1 Types of Code Clones . 48
3.6.2 Code Clone Detection . 49
3.6.3 Effects of Cloning . 50
3.6.4 Dealing with Code Clones . 50

3.7 Summary . 53

4 Variability-Aware Code Smells 55
4.1 Derivation Methodology . 56
4.2 A Catalog of Variability-Aware Code Smells 57

4.2.1 Inter-Feature Code Clones . 57
4.2.2 Annotation Bundle . 58
4.2.3 Long Refinement Chain . 60
4.2.4 Latently Unused Parameter 61
4.2.5 Large Feature . 63
4.2.6 Switch Statements with Optional Cases 64

4.3 Validation of the Catalog . 67
4.3.1 Objectives . 67
4.3.2 Setup . 68
4.3.3 Results . 69
4.3.4 Discussion . 70

4.4 Detection Concept . 71
4.4.1 Metrics . 72
4.4.2 Parameterization and Thresholds 75

4.5 Implementation . 76
4.6 Case Study of Detecting Annotation Bundles 78

4.6.1 Research Questions . 78
4.6.2 Subject Systems . 78
4.6.3 Methodology . 79
4.6.4 Results . 82
4.6.5 Qualitative Analysis . 83

4.7 Related Work . 88
4.8 Conclusion . 91

5 How Preprocessor Annotations (Do Not) Affect Maintainability 93
5.1 Research Questions . 94
5.2 Methodology . 95

5.2.1 Measuring Maintainability . 95

Contents ix

5.2.2 Variables . 96
5.2.3 Null Hypotheses . 97
5.2.4 Subject Systems . 100
5.2.5 Data Collection . 101

5.3 Statistical Analyses . 110
5.3.1 Answering RQ 1: Binary Classification with Binary and Met-

ric Outcomes . 111
5.3.2 Answering RQ 2: Relation between Preprocessor Use and Func-

tion Size . 111
5.3.3 Answering RQ 3: Different Extents of Preprocessor Use in

Context . 112
5.4 Quantitative Results . 115

5.4.1 Descriptive Statistics . 115
5.4.2 RQ 1, H0 1.1: Relationship between Binary Properties of Pre-

processor Use and the Likelihood of Changes 119
5.4.3 RQ 1, H0 1.2 and H0 1.3: Relationship between Binary Prop-

erties of Preprocessor Use and the Frequency and Extent of
Changes . 121

5.4.4 RQ 2: Relationship between Different Extents of Preprocessor
Use and Function Size . 124

5.4.5 RQ 3, H0 3.1: Relationship between Different Extents of Pre-
processor Use and the Likelihood of Changes 127

5.4.6 RQ 3, H0 3.2: Relationship between Different Extents of Pre-
processor Use and the Frequency of Changes 132

5.4.7 RQ 3, H0 3.3: Relationship between Different Extents of Pre-
processor Use and the Extent of Changes 136

5.5 Qualitative Analysis . 139
5.5.1 Short Functions with Heavy cpp Use 140
5.5.2 Long Functions with Heavy cpp Use 141
5.5.3 Short Functions with Light cpp Use 142
5.5.4 Long Functions with Light cpp Use 143
5.5.5 Summary of Qualitative Findings 143

5.6 Threats to Validity . 144
5.6.1 Internal Validity . 144
5.6.2 External Validity . 145

5.7 Discussion . 146
5.8 Related Work . 148
5.9 Conclusion . 149

6 Variant-Preserving Refactoring to Migrate Cloned Product Vari-
ants 151
6.1 Dimensions of Software Product Line Reengineering 152

6.1.1 Quality . 153
6.1.2 Variability Mechanism . 153
6.1.3 Legacy to SPL . 153

6.2 A Taxonomy of Software Product Line Reengineering 154
6.2.1 Literature Selection . 155

x Contents

6.2.2 Variant-Preserving Migration 156
6.2.3 Variant-Preserving Refactoring 159
6.2.4 Variant-Preserving Transcoding 161
6.2.5 Summary . 163

6.3 Open Challenges in Variant-Preserving Refactoring and Migration . . 164
6.4 Refactorings to Remove Inter-Feature Code Clones 165

6.4.1 Pull Up To Common Feature 166
6.4.2 Rename . 170

6.5 A Feature-Oriented Migration Process 172
6.6 Tool Support . 174
6.7 Feasibility Study . 175

6.7.1 Subject Systems . 176
6.7.2 Methodology . 177
6.7.3 Results . 177
6.7.4 Discussion . 178
6.7.5 Threats to Validity . 179

6.8 Related Work . 180
6.9 Conclusion . 184

7 Conclusion and Future Work 187
7.1 Conclusion . 187
7.2 Future Work . 188

A Appendix 191

Bibliography 193

List of Figures

2.1 Detection of a God Class . 16

3.1 Overview of a software product line engineering process 28

3.2 FODA feature model of the GraphLibrary product line 31

3.3 Comparison of product line engineering with single-product develop-
ment and clone & own . 42

3.4 Branching and merging in single-product development 43

3.5 Branching and merging for variant development 44

4.1 Long Refinement Chain in GUIDSL 61

4.2 Survey results on the occurrence of variability-aware code smells . . . 69

4.3 Survey results on the negative impact of variability-aware code smells 70

4.4 Variability-aware code smell detection architecture 77

5.1 Illustration of the data collection process 103

5.2 Distribution of the mean values of all variables in all subjects 116

5.3 Histograms of selected variables without applying transformations
(data from BusyBox) . 117

5.4 Histograms of all variables after applying transformations (data from
BusyBox) . 118

5.5 Between-group differences regarding the likelihood of changes 120

5.6 Between-group differences regarding the frequency of changes 123

5.7 Between-group differences regarding the profundity of changes 124

5.8 Distribution of function sizes for different extents of preprocessor use
in BusyBox . 125

5.9 Summary of the regression results for change likelihood 128

5.10 Summary of the regression results for change likelihood using stan-
dardized variables . 131

xii List of Figures

5.11 Summary of the regression results for change frequency 133

5.12 Summary of the regression results for change profundity 137

6.1 Main branches of SPL reengineering 155

6.2 Relationship of variant-preserving SPL reengineering activities 155

6.3 Variant-preserving migration . 157

6.4 Variant-preserving refactoring . 159

6.5 Variant-preserving transcoding . 162

6.6 Feature-model perspective of my variant-preserving migration process 172

6.7 Inter-feature code clone detection with CPD 175

6.8 Wizard for Pull Up To Common Feature 176

6.9 Reduction in lines of code during feasibility study 178

A.1 Full taxonomy of SPL reengineering techniques 192

List of Tables

4.1 Atomic metrics to capture the Annotation Bundle code smell . . 73

4.2 Atomic metrics to capture the Large Feature code smell 74

4.3 Overview of subject systems used in evaluation 79

4.4 Detection results for Annotation Bundle smell 83

5.1 Independent and dependent variables 96

5.2 Control variables . 97

5.3 Subject systems: Development periods and domains 101

5.4 Subject systems: Sizes and extents of configurability 102

5.5 Preprocessor metrics . 104

5.6 Change metrics extracted for each function 105

5.7 Function locations in manage.c extracted for the diff in Listing 5.1 . . 108

5.8 Function changes extracted from the diff in Listing 5.1 109

5.9 Between-group differences regarding the likelihood of changes 119

5.10 Between-group differences regarding the frequency and profundity of
changes . 122

5.11 Correlations between extent of cpp use and function size 126

5.12 Average odds ratios in the regression models for change likelihood . . 129

5.13 Minimum and maximum odds ratios in the regression models for
change likelihood . 129

5.14 Average odds ratios in the regression models for change likelihood
using standardized independent variables 131

5.15 Average effect sizes in the regression models for change frequency . . 134

5.16 Minimum and maximum effect sizes in the regression models for
change frequency . 134

5.17 Average effect sizes in the regression models for change profundity . . 137

xiv List of Tables

5.18 Minimum and maximum effect sizes in the regression models for
change profundity . 138

6.1 SPL reengineering dimensions . 154

6.2 Classified work on variant-preserving migration 158

6.3 Classified work on variant-preserving refactoring 160

6.4 Classified work on variant-preserving transcoding 163

6.5 Statistics on the subject systems . 177

List of Listings

2.1 Example of a Long Method . 10

2.2 Long Method example after refactoring 11

2.3 Example of an Extract Superclass refactoring 19

3.1 FOP-based implementation of the GraphLibrary product line 33

3.2 Composition of two feature modules of the GraphLibrary product line 35

3.3 Effects of different of composition orders in FOP 35

3.4 A “Hello world” program with annotation-based variability 37

3.5 Annotation-based implementation of the GraphLibrary product line . 38

3.6 Examples of different types of code clones 48

3.7 A Form Template Method refactoring to consolidate code clones 52

4.1 Inter-Feature Code Clones in the GPL 58

4.2 Annotation Bundle in MySQL 59

4.3 Latently Unused Parameter using annotations 62

4.4 Latently Unused Parameter in FOP 63

4.5 Switch Statements with Optional Cases using annotations . . 65

4.6 Switch Statements with Optional Cases in FOP 66

4.7 Test code for optional functionality in Libxml2 84

4.8 Repetitive feature code in Vim . 86

4.9 Optional Feature Stub in Emacs 88

5.1 Excerpt of the diff of commit 984cf003 in OpenVPN 107

5.2 A short, change-prone function from OpenLDAP making heavy use
of cpp directives for configurability 140

5.3 A short, stable function from MPV making heavy use of cpp direc-
tives for configurability . 141

xvi List of Listings

6.1 An OOP Rename refactoring producing wrong results on FOP code 165

6.2 Application of Pull Up To Common Feature 167

6.3 Naming differences that prevent code clone consolidation 170

List of Acronyms

AOP Aspect-Oriented Programming
API Application Programmer Interface
AST Abstract Syntax Tree

DOP Delta-Oriented Programming

FM feature model
FOP Feature-Oriented Programming
FOR Feature-Oriented Refactoring
FOSD Feature-Oriented Software Development

LOC non-blank, non-comment lines of code

OOP Object-Oriented Programming
OR odds ratio

PDG Program Dependence Graph

SPL Software Product Line
SPLE Software Product Line Engineering

UML Unified Modeling Language

VCS Version Control System
VSoC Virtual Separation of Concerns

xviii List of Acronyms

1. Introduction

Refactoring is the act of changing the internal structure of software without chang-
ing its external behavior [107]. It is an important technique in software engineering,
especially in object-oriented programming. Refactoring has two major use cases:
First, refactoring is used as a maintenance technique to improve the internal quality
of a software system. In this context, code smells help identify pieces of code that
suffer from poor structure and would benefit from refactoring [107]. Second, refac-
toring supports major reengineering activities, such as adapting an existing piece of
software to a new architecture. In this second context, refactoring ensures that code
retains its original behavior even though it undergoes major changes.

Refactoring has been researched in depth and corresponding tool support is standard
in current IDEs [249]. Moreover, research has addressed the detection and correction
of code smells (e. g., [227, 88, 196, 256, 258, 257]) and extensively investigated their
negative impact on software development (e. g., [169, 1, 170, 338, 380, 124]). Yet
despite the maturity of refactoring and code smell research, the state of the art
falls short when dealing with the variability of highly configurable software systems.
A highly configurable software system represents not just a single program but
a set of related programs – a program family [61, 53, 13]. The commonalities and
differences of the members of such a program family are communicated in terms of
features, that is, increments in functionality that are important to some stakeholder.
When an individual product of the product family is compiled, only the code that
belongs to the product’s features is included whereas other code, which belongs to
unwanted features, is excluded. The possibility to selectively include or exclude
feature code (i. e., code that implements a particular feature) requires a variability
mechanism. By combining a variability mechanism, such as conditional compilation,
a plug-in architecture or Feature-Oriented Programming (FOP) [13], with a standard
programming language, parts of the code base come variable. For example, pieces
of feature code can mutually exclude each other.

Variability in the code base creates two important design challenges, and in this the-
sis, I argue that if these challenges are not handled appropriately, the code quality
of highly configurable software systems is at risk. First, the use of variability mech-

2 1. Introduction

anisms has to be structured in the same way that classes and methods in a standard
programming language have to be structured. However, it is unclear which structures
are good and which ones are bad because corresponding research and experience is
still lacking. In particular, existing code smells are not helpful because they are
oblivious to variability. Thus, even if developers of highly configurable software sys-
tems wanted to refactor, they would not know what to refactor. Second, variability
at the code level causes existing refactorings to fail and introduce behavior-altering
changes. This problem has been recognized in the literature [330] and some progress
has been made [328, 329, 205, 174, 175]. Nevertheless, the design and automation
of refactorings for highly configurable software systems remains a challenge. Thus,
even if developers of highly configurable software systems knew what to refactor,
they would not know how. The goal of my thesis is to address both of these chal-
lenges and thereby advance the state of refactoring for highly configurable systems.
To this end, I formulated two research questions.

1.1 Research Questions

My objective is to investigate how variability in the code base affects code smells
and refactoring. I formulate two research questions and accompanying sub-questions
to guide me toward this objective. To distinguish these research questions, which
overarch the whole thesis, from subordinate research questions, which are specific
to an individual chapter, the chapter-specific research questions are referred to as
RQ 1, RQ 2, and so on, whereas the thesis-wide research questions are referred to as
RQT 1 and RQT 2, where T stands for thesis. In particular, this thesis addresses the
following questions:

RQT 1. How do variability mechanisms affect the code smell concept? This question
targets the what? of refactoring for highly configurable software systems. In par-
ticular, I want to identify patterns of encoding variability that lead to maintenance
problems. Knowledge about harmful patterns enables developers to avoid them in
the future and write more reliable and understandable code. Moreover, this knowl-
edge can serve as a guide for research into corresponding corrective refactorings. To
achieve this goal, I address the following sub-questions.

RQT 1.1 How do established code smells change when variability is involved?
RQT 1.2 Are there styles of encoding variability that have negative effects on code

comprehension or maintenance?
RQT 1.3 How can these harmful styles of encoding variability be detected automat-

ically?

My second research question targets the how? of refactoring for highly configurable
software systems. This question is difficult to formulate since the what? of refac-
toring is also the subject of my investigations. To overcome this difficulty, I focus
on a known use case of large-scale refactoring: the migration of a clone-and-own
product family into a highly configurable software system. It is common practice
in the industry to create new variants of a software product by copying an existing
product and adapting it to fit a new set of requirements [91, 245, 79, 317, 349]. This
practice, known as clone-and-own, is cheap and easy at first, but it incurs excessive
maintenance costs in the long run because code is replicated at a massive scale.

1.2. Contributions 3

A possible way to reduce these costs is to migrate the product family, that is, to
reengineer all products in such a way that code replication is reduced and system-
atic reuse is increased. During migration, it is crucial to preserve the behavior of
every product in the product family, which makes migration an ideal use case for
refactoring. Several migration approaches have been proposed in the literature (e. g.,
[6, 211, 368]), but the details of refactoring the actual source code remain unclear.
Therefore, I study refactoring for highly configurable software systems in the context
of migration. This way, I address not only the what? of refactoring but also the
how?, and make sure that the refactorings I explore serve a relevant use case. To
this end, I formulate the following research question.

RQT 2. How can clone-and-own product families be migrated in a variant-preserving
manner? My goal with this question is to explore new refactorings that can be
used to increase systematic reuse in a highly configurable software system in a safe,
behavior-preserving manner. In particular, I ask the following sub-questions.

RQT 2.1 Which refactorings for highly configurable software systems have been pro-
posed in the literature?

RQT 2.2 How can code replication in clone-and-own product families be reduced in
a variant-preserving manner?

RQT 2.3 What are the limitations of a refactoring-based migration approach?

In answering these research questions, this thesis makes a number of contributions.
I outline these contributions next.

1.2 Contributions

This thesis contributes to the research on highly configurable software systems in
four important ways: The first contribution is a catalog of variability-aware code
smells, which are code smells that explicitly take variability into account. I describe
how the appearance of these smells changes depending on the variability mechanism
and propose a metrics-based approach and tool support to detect them. Moreover,
I provide initial evidence that certain variability-aware code smells occur frequently
in real-world systems and negatively affect code comprehension. Complementing
these negative patterns, I additionally provide examples of helpful implementation
patterns, that is, patterns for encoding variability that reduce the complexity in
a highly configurable software system. These patterns, both negative and postive,
open up new directions for future studies. Moreover, they raise awareness to the im-
plications of different solutions to variability-related problems and help practitioners
increase internal software quality.

The second contribution of this thesis is an in-depth study of the relationship be-
tween C preprocessor (cpp) directives and maintainability. This contribution is
especially relevant since preprocessors in general, and the cpp in particular, are
a commonly used variability mechanism in industry [13]. I provide evidence that
using cpp directives as a means to implement fine-grained static source code con-
figurability has little to no negative effects regarding the frequency or extent of
changes to the code base. These results partly explain the continued, wide-spread

4 1. Introduction

use of cpp-based variability in practice. Moreover, these findings challenge the fre-
quent critique of the cpp and emphasize the importance of unbiased, evidence-based
software engineering research.

The third contribution of this thesis is a taxonomy of reengineering approaches that
target highly configurable software systems. This taxonomy brings clarity to discus-
sions about refactoring and other kinds of reengineering techniques for configurable
software. In particular, both practitioners and researchers will find it easier to name
the exact reengineering problem they need to solve and match it to the available
solutions.

Finally, the fourth contribution of this thesis is a process based on clone detection
and variability-aware refactorings for migrating clone-and-own product families to
a highly configurable software system. The methodology and refactorings I propose
will help practitioners make the difficult transition from clone-and-own development
to a systematic reuse approach. In addition to their use in a migration context, my
refactorings are also applicable in other settings where code replication is a problem.
Thus, they will be useful for a wide range of maintenance tasks in highly configurable
software systems.

1.3 Structure of the Thesis
Apart from this introductory chapter, my thesis consists of two background chapters,
three chapters comprising the main contributions, and a final chapter discussing the
conclusion and future work. In detail, the structure is as follows:

• Chapter 2 provides background knowledge on code smells and refactoring for
traditional (non-configurable) software systems.

• Chapter 3 contains the background on highly configurable software systems
and clone-and-own, which are two alternative paradigms for developing soft-
ware program families. Moreover, Chapter 3 provides the fundamentals on
code clones that will be necessary to follow my migration approach.

• In Chapter 4, I introduce the concept of variability-aware code smells, present
a corresponding detection approach, and discuss the results of a survey and
a case study that validate the concept of variability-aware code smells.

• Building on the variability-aware code smell concept, Chapter 5 reports on
an empirical study of the relationship between preprocessor-based variability
and maintainability. The corresponding data was mined from twenty open-
source software systems written in C and was examined both quantitatively
as well as qualitatively.

• In Chapter 6, the topic switches from code smells to refactoring. In par-
ticular, I present a taxonomy of reengineering and refactoring approaches for
highly configurable software systems. Moreover, I discuss two novel refactor-
ings for highly configurable software systems and present a migration approach
for clone-and-own product families that is based on these refactorings.

• Chapter 7 concludes the thesis and discusses ideas for future work.

2. Code Smells

Martin Fowler and Kent Beck introduced code smells in their much-cited refactoring
book as a way to describe structural weaknesses in the source code of object-oriented
software systems (Fowler et al. [107], p. 75). My concept of variability-aware code
smells, which I present in Chapter 4, is based on their idea. Moreover, this the-
sis presents an approach to detect variability-aware code smells automatically (see
Chapter 4) and to remove them with the help of refactoring (see Chapter 6). In this
chapter, I present the necessary foundations of code smells, code smell detection,
and refactoring.

2.1 Defining Code Smells

Code smells are intricately connected to software refactoring, which makes it im-
possible to explain one without the other. Hence, I start with Fowler’s definition of
refactoring before continuing to explain what code smells are:

Refactoring is a change made to the internal structure of software to
make it easier to understand and cheaper to modify without changing
its observable behavior. (Fowler et al. [107], p. 53)

Unfortunately, there is no equally succinct definition of “code smells” as there is for
refactoring. Instead, Fowler et al. describe code smells rather vaguely, for example
as “certain structures in the code that suggest (sometimes they scream for) the
possibility of refactoring” (Fowler et al. [107], p. 75) or as “surface indications that
usually corresponds to a deeper problem in the system” [106]. To make up for this
lack of a definition, I have identified the following four points to highlight the key
properties of code smells.

First, smelly code is not necessarily faulty code. In other words, source code with
a smell usually behaves correctly but is written in a way that makes it hard to
understand or change. However, Fowler et al. also argue that a bug report indicates

6 2. Code Smells

that refactoring is required because the code was not clear enough to see the bug
beforehand (Fowler et al. [107], p. 59).

Second, code smells only hint at underlying problems, they are not the problems
themselves [106, 55]. Trifu and Marinescu use illnesses as an analogy [363]: An
illness is indicated by one or several symptoms, and is cured through appropriate
treatment. In software engineering, the illness is a higher-level design problem,
the symptoms are code smells, and the treatment is refactoring. An important
implication of this analogy is that the goal of refactoring is not to eliminate code
smells but to remove the underlying design problem. The code smells disappear
simply as a side effect.

Third, code smells are something that is readily recognizable in the source code.
For instance, Fowler claims that a Java method with more than a dozen lines
of code makes his “nose twitch” [106]. The smell in this instance is called Long
Method (Fowler et al. [107], p. 76f.) and indeed, overly long and complex methods
are easily spotted in the source code. However, other smells require a more intimate
knowledge of the software system in question. For example, the smell Parallel
Inheritance Hierarchies (Fowler et al. [107], p. 83) can only be detected if the
inheritance relationships of the involved classes are known. So it is true that code
smells are “quick to spot”, but only by developers who are familiar with the source
code and its history.

Finally, code smells are not precise; they are only heuristics. Opdyke writes, “These
structural abnormalities or structural similarities don’t always mean that you’d want
to apply a refactoring, but often they do.” (Fowler et al. [107], p. 384). In other
words, the presence of code smells warrants closer inspection but in some cases,
smelly code is just fine (see also [106, 55]).

Related Concepts

Code smells are not the only attempt at identifying bad practices in software devel-
opment. Anti-patterns, linting tools, and style guides are only some of the concepts
that pursue similar goals. In this section, I explain these related concepts and high-
light similarities to and differences from code smells.

Anti-patterns. Design patterns codify known, good solutions to recurring prob-
lems in software development [37, 108]. Brown et al. inverted this idea and created
the concept of anti-patterns, which codify known, bad solutions to recurring prob-
lems [42].

Brown’s catalog groups anti-patterns into three categories, software development,
software architecture, and software project management (see Chapters 5, 6 and, 7,
respectively). Anti-patterns in the latter two categories refer to high-level issues.
For example, the Vendor Lock-In anti-pattern describes software that is difficult
to evolve because it depends too much on proprietary third-party architectures.
Problems of this kind have nothing to do with way the source code is structured.
Hence, only software development anti-patterns, which describe problems on the
implementation level, are related to code smells.

2.1. Defining Code Smells 7

Although some researchers make no distinction between software development anti-
patterns and code smells (e. g., [274, 281]), others see a cause-and-effect relationship
(e. g., [258, 172, 170]): Anti-patterns are the reasons for a flawed design and code
smells are the source code manifestations of the flawed design. Consider the Blob
anti-pattern as an example. A Blob is a design in which one class performs all
the processing and other classes degenerate to mere data holders (Brown et al. [42],
Chapter 5). The class that monopolizes the processing will have the Large Class
smell because it is “trying to do too much” (Fowler et al. [107], p. 78). It will also
smell of Feature Envy (Fowler et al. [107], p. 80) because its computations are
mostly based on data that belongs to other classes. Those other classes, in turn, will
have the Data Class smell (Fowler et al. [107], p. 86). In summary, anti-patterns,
and in particular, software development anti-patterns, lead to poor software designs
and code smells can be symptoms of such designs.

Linting tools and bug patterns. Long before code smells and anti-patterns were
proposed, tools have existed that check for suspicious, potentially erroneous pro-
gramming constructs, such as unused variables and infinite loops. The first of these
tools was lint, a static code analyser for C programs [146]. Since then, many
“linting tools” followed, for instance, FindBugs and Checkstyle for Java [139,
50], ESlint for JavaScript [90], and Coverity for C/C++, Fortran, and
Ruby [355]. Hovemeyer and Pugh, the creators of FindBugs, demonstrated that
checking for unused variables and similar suspicious patterns is a cheap and effective
means to prevent bugs [139]. Consequently, they call them “bug patterns”.

Code smells and linting tools share some similarities, but they also have differences.
The similarities are that both pursue the goal of preventing bugs, and they do
so with the help of suspicious patterns in the source code. The difference is that
bug patterns serve to identify concrete, localized problems, whereas code smells
serve to identify higher level design flaws and are concerned with larger program
elements. For example, the bug pattern uninitialized variable simply means that
the programmer forgot an initializing statement. The fix usually involves a single
line of code. By contrast, a smell like Large Class indicates the whole class design
is flawed. Fixing such a design usually involves creating one or more helper classes
and shifting around many lines of code.

Style guides. Companies, but also open-source projects, may specify style guides,
guides that define how source code should or should not be written (e. g., Airbnb [3],
npm [269], and the Linux kernel project [210]). Many style guides focus on for-
matting questions, for example, whether to use DOS- or Unix-style line endings
(cf. [269]). However, some style guides also include lint-like bug patterns and other
higher-level issues. For example, Airbnb advises programmers, “Be descriptive with
your naming.” [3]. The npm’ style guide, in turn, forbids the use of null or 0 as
boolean values [269]. Just like code smells, such rules focus on the internal quality
of software, which is why some researchers extend Fowler’s traditional code smell
catalog with selected style guide rules (e. g., Saboury et al. [319]). Thus, I conclude
that there is an overlap, but generally, style guides and code smells are not the same.

8 2. Code Smells

Code clones. Code clones are source code fragments that occur in the same or
similar form in multiple locations [312]. They usually result from copying a piece of
source code and pasting it elsewhere, possibly adapting the copy afterwards [152].

Under the name Duplicated Code, Fowler et al. included code clones at position
one in their catalog (Fowler et al. [107], p. 76). Nevertheless, the academic literature
continues to treat code clones and code smells as separate topics, likely because code
clone research predates the work of Fowler et al. by several years (e. g. [24, 145, 180,
236, 36]). I adhere to this separation in this thesis because in this thesis, I mainly
consider code clones in the context of cloning entire programs, a topic that I explain
in detail in the next chapter (see Section 3.6) as well as in Chapter 6.

Smells in other paradigms and specialized domains. Building on the pio-
neering work of Fowler et al., Brown et al. and Riel for object-oriented software,
numerous researchers transferred the smell concept to new programming paradigms
and to specialized domains. I summarize their work in the next paragraphs.

The literature contains several catalogs of code smells for programming paradigms
besides Object-Oriented Programming (OOP). Specifically, smells for Aspect-Ori-
ented Programming (AOP) [102, 260, 294, 346], and for Delta-Oriented Programming
(DOP) [329] have been discussed. Hermans et al., in turn, pioneered code smell and
refactoring research for spreadsheet applications [131, 130, 129, 128]. Moreover,
code smells and refactoring have been explored for functional programming [320]
and databases [9].

Garcia et al. argue that bad design also affects higher levels of abstraction, not just
the implementation level. To characterize such high-level problems, they proposed
a catalog of architectural smells [110, 111], and further researchers have extended
this initial catalog with additional smells [10, 254].

Complementing smell catalogs for other paradigms and higher levels of abstraction,
various authors explored code smells for specific domains. In particular, Deursen
et al. discovered that test code has is own specific set of code smells [67]. These
so-called test smells are now an established subfield in the wider field of code smell
research (e. g., [66, 310, 34, 367]). Others investigated code smells for Android and
iOS apps (e. g. [284, 125, 262, 167, 126, 222, 122, 45]). These studies cover a variety
of topics, including automatic code smell detection [284, 167, 126] and the impact
of code smells on performance and energy consumption [125, 262, 45].

My work on variability-aware code smells is similar to the aforementioned work as
it also transfers the smells concept from OOP to other paradigms (Feature-Oriented
Programming (FOP) and procedural programming) and considers smells in a non-
traditional setting (highly configurable software systems). I discuss this point further
in Chapter 4.

Summary

Code smells are symptoms of design problems that make a software system hard to
understand, change, or evolve. These symptoms are reflected in poorly structured
source code, for example, in methods that are overly long or in inheritance hierar-
chies that are difficult to change. The remedy is to restructure the code through

2.2. A Code Smell Example: Long Method 9

refactoring, which solves the design problems and, as a side effect, eliminates the
code smells.

There are several concepts that are related code smells, including software develop-
ment anti-patterns and lint-like bug patterns. I have discussed how these concepts
are similar to and different from code smells.

2.2 A Code Smell Example: Long Method

Having defined the code smell concept in the previous section, I will now make the
concept more palpable by explaining the Long Method smell (Fowler et al. [107],
p. 76f.) in detail. This smell is of special importance to my thesis as it forms the
basis for my variability-aware code smell Annotation Bundle, which I describe
in Chapter 4. In this section, I discuss the essential properties of a Long Method
in OOP and outline how to refactor a Long Method into a short one.

In Listing 2.1, I show a Java method that Martin, the author of the programmer’s
guide Clean Code, uses as an example for a Long Method (Martin [232], Chap-
ter 3). Martin cites a number of reasons why this method is hard to understand.
For instance, there are several nested if statements, e. g., on Lines 6 and 9, some
of them doubly nested. Inside these if statements, many low-level activities take
place, such as string buffers that are filled (e. g., on Lines 12–14 and 21–23) and
wiki pages that are fetched (e. g., on Lines 7–8 and 17). It is hard to see how all
these low-level activities fit together and which part of the method’s overall task
they solve.

Several refactorings can turn a Long Method into something that is easier to
understand. Particularly complex cases can be refactored into their own class using
Replace Method with Method Object (Fowler et al. [107], p. 135ff.). In less
severe cases, such as the one in Listing 2.1, Extract Method (Fowler et al. [107],
p. 110ff.) is the recommended refactoring. Specifically, Martin applied Extract
Method multiple times to turn the original method into the much shorter variant
shown in Listing 2.2. For brevity, I omitted the extracted helper methods from the
listing and only show the top-level method. Compared to the original, it is easier to
get an intuition of what the refactored method does. Although not all details are
clear, one can understand that a web page, which is passed as a parameter, can either
be a test page or not. If it is, some setup and teardown code is included and the
page is rendered as HTML; otherwise, the page is rendered immediately. The old
method name, testableHtml, hardly revealed that this was the sequence of actions
that the method would perform. For this reason, the method was also renamed.
The new name, renderPageWithSetupsAndTeardowns, reflects more clearly what
the method actually does.

In summary, a Long Method is overly complex because it implements all the steps
toward fulfilling a big task right in place. The solution is to identify the steps that
belong to a certain subtask and refactor them into a helper method using Extract
Method. That way, a Long Method is turned into an easily understandable,
shorter method.

10 2. Code Smells

1 public static String testableHtml(PageData pageData,
2 boolean includeSuiteSetup) throws Exception {
3 WikiPage wikiPage = pageData.getWikiPage();
4 StringBuffer buffer = new StringBuffer();
5 if (pageData.hasAttribute("Test")) {
6 if (includeSuiteSetup) {
7 WikiPage suiteSetup =
8 PageCrawlerImpl.getInheritedPage(SuiteResponder.SUITE_SETUP_NAME, wikiPage);
9 if (suiteSetup != null) {

10 WikiPagePath pagePath = suiteSetup.getPageCrawler().getFullPath(suiteSetup);
11 String pagePathName = PathParser.render(pagePath);
12 buffer.append("!include -setup .")
13 .append(pagePathName)
14 .append("\n");
15 }
16 }
17 WikiPage setup = PageCrawlerImpl.getInheritedPage("SetUp", wikiPage);
18 if (setup != null) {
19 WikiPagePath setupPath = wikiPage.getPageCrawler().getFullPath(setup);
20 String setupPathName = PathParser.render(setupPath);
21 buffer.append("!include -setup .")
22 .append(setupPathName)
23 .append("\n");
24 }
25 }
26 buffer.append(pageData.getContent());
27 if (pageData.hasAttribute("Test")) {
28 WikiPage teardown = PageCrawlerImpl.getInheritedPage("TearDown", wikiPage);
29 if (teardown != null) {
30 WikiPagePath tearDownPath = wikiPage.getPageCrawler().getFullPath(teardown);
31 String tearDownPathName = PathParser.render(tearDownPath);
32 buffer.append("\n")
33 .append("!include -teardown .")
34 .append(tearDownPathName)
35 .append("\n");
36 }
37 if (includeSuiteSetup) {
38 WikiPage suiteTeardown =
39 PageCrawlerImpl.getInheritedPage(SuiteResponder.SUITE_TEARDOWN_NAME, wikiPage);
40 if (suiteTeardown != null) {
41 WikiPagePath pagePath = suiteTeardown.getPageCrawler().getFullPath(suiteTeardown);
42 String pagePathName = PathParser.render(pagePath);
43 buffer.append("!include -teardown .")
44 .append(pagePathName)
45 .append("\n");
46 }
47 }
48 }
49 pageData.setContent(buffer.toString());
50 return pageData.getHtml();
51 }

Listing 2.1: Example of a Long Method (Reproduced from Martin [232], Chap-
ter 3)

2.3 Negative Effects of Code Smells

Code smells, anti-patterns, and related concepts are of interest because they are
believed to be detrimental to software development. Specifically, they are believed
to impede program comprehension, increase maintenance effort, and make faulty
changes more likely. In this section, I summarize the respective research findings.

The initial publications I reviewed for this section stem from the systematic literature
review of code smell research by Zhang et al. [388], and from the excellent discussions
of related work by Sjøberg et al. [338] as well as Hall et al. [124]. Through snowballing

2.3. Negative Effects of Code Smells 11

1 public static String renderPageWithSetupsAndTeardowns(PageData pageData,
2 boolean isSuite) throws Exception {
3 boolean isTestPage = pageData.hasAttribute("Test");
4 if (isTestPage) {
5 WikiPage testPage = pageData.getWikiPage();
6 StringBuffer newPageContent = new StringBuffer();
7 includeSetupPages(testPage, newPageContent, isSuite);
8 newPageContent.append(pageData.getContent());
9 includeTeardownPages(testPage, newPageContent, isSuite);

10 pageData.setContent(newPageContent.toString());
11 }
12 return pageData.getHtml();
13 }

Listing 2.2: Long Method example from Listing 2.2 after refactoring (Reproduced
from Martin [232], Chapter 3)

and following up on more recent work of the eminent research groups in the field,
I extended this initial set of publications to a total of twenty studies. Although this
process is no substitute for a systematic literature review, I argue that it yielded
a representative overview of the relevant findings.

Note that in the present chapter, I discuss the negative effects of all code smells
except Duplicated Code. The overview of the negative effects of Duplicated
Code (code clones) follows in the next chapter, when I explain large-scale cloning
as means to develop program families.

2.3.1 Change and Fault Proneness

Many studies of the negative effects of code smells focus either on change prone-
ness [169, 274, 309], on fault proneness [62, 143, 202, 124, 218, 231, 319], or on
both [273, 170]. In this context, change proneness refers to changes happening
either more frequently or more extensively. Both forms of change proneness are un-
desirable because statistically, frequent changes statistically increase the likelihood
of faults [84, 123], while more extensive changes require more maintenance effort [86,
255, 338]. Fault proneness, in turn, corresponds to the frequency with which a piece
of code contains a fault (a. k. a. “bug”). Since identifying faults directly is impossible
in the general case, fault proneness is usually approximated by counting the number
of bugfixes that a piece of code has undergone (see [103, 339] for details about the
corresponding technique).

Nearly all studies agree that the presence of one or several code smells in a piece of
code is statistically associated with an increase in change proneness [169, 170, 274,
273, 309] and fault proneness [202, 62, 273, 170, 218, 319]. Furthermore, there is
evidence that Java classes that are related to a class with a smell are more fault-
prone than classes without such a relationship [231, 143]. Here, “related” means that
a class calls methods of a smelly class or is frequently changed together with a class
containing smells.

Even though the aforementioned studies suggest that code smells are unequivocally
harmful, the evidence is only clear if no distinction is made between smells. However,

12 2. Code Smells

a look at the detailed results reveals that individual smells often have negative effects
only in some software systems but not in others (for examples, see [169, 170, 309,
319]). For instance, Saboury et al. investigated twelve smells in five JavaScript
regarding fault-proneness [319]. Among these twelve smells, not a single one was
consistently associated with increased fault proneness in all five systems.

There is further work that casts a doubt on the harmfulness of code smells [124,
273]. In particular, Hall et al. showed that Java classes exhibiting certains smells
are sometimes less fault-prone than classes without smells [124]. Olbrich et al., in
turn, found that after controlling for differences in size, the apparently negative
effects reversed, meaning that smelly classes were actually less change- and fault-
prone than classes without smells. Research on object-oriented metrics already
highlighted the importance of controlling for size when trying to predict change or
fault proneness [87, 390]. This is also important for code smells, especially for smells
such as Large Class or Long Method, which are related to large code size. For
these reasons, the study I present in Chapter 5 went to great lengths to control for
the confounding effects of size, as well as other potential confounding factors.

2.3.2 Program Comprehension

Deligiannis et al. ran two similar controlled experiments in which the effect of God
Classes on program comprehension was measured [64, 65]. Resultes were mixed:
God Classes negatively affected program comprehension only in the first experi-
ment [64] but had no effect in the second one [65].

A controlled experiment involving the Blob and Spaghetti Code anti-patterns
found that neither anti-pattern affects program comprehension when it occurs in iso-
lation [1]. However, confronted with code in which both anti-patterns were present,
the participants had more difficulties comprehending the code and gave less accurate
answers.

2.3.3 Maintenance Effort

Instead of using change- or fault-proneness as proxies, several researchers chose to
measure maintenance effort directly in controlled experiments [64, 65, 337, 338].
Two such experiments, which involved university students, found that the presence
of God Class smells increases maintenance effort and leads to solutions that are
less complete and less correct [64, 65]. In another experiment, professional develop-
ers were given maintenance tasks on industrial software systems [337, 338]. After
controlling for confounding variables (e. g., differences in experience between individ-
ual developers) and for file size, only two out of the twelve smells under investigation
were significantly correlated with effort. Notably, one of the two significant corre-
lations – the correlation for Refused Bequest – was negative. In other words, if
Refused Bequest was present, effort decreased. As a secondary finding, this study
concluded that predictions of maintenance effort based on file size alone are more
accurate than predictions based on smell information alone.

A recent trend in academia is to focus on co-occurring smells instead of smells that
occur in isolation (see, e. g., [1, 383, 272, 285]). The hypothesis is that if two or more
smells occur close to each other (e. g., in the same class), their respective negative

2.3. Negative Effects of Code Smells 13

effects aggravate. Regarding program comprehension, the experiment of Abbes et
al. [1] (already mentioned in the previous section) supports this hypothesis. Further
evidence comes from Oizumi et al., who showed that certain combinations of co-
occurring code smells indicate design problems with high accuracy whereas a code
smell that occurs alone rarely corresponds to an actual design problem [272].

2.3.4 Subjective Perception of Developers

To enrich the quantitative evidence with qualitative insights, developers have been
asked about their subjective opinions on the harmfulness of code smells [381, 382,
282]. According to these studies, developers generally perceive Duplicated Code
as a design problem [382], as well as smells related to long or complex code (e. g.,
Complex Class and Long Method) [382, 282]. Other smells (e. g., Refused
Bequest) are only considered problematic if the smell intensity is high [282], and
a final group of smells (including, e. g., Lazy Class) is seen as harmless.

Yamashita and Moonen identify thirteen factors that professional developers deem
important for maintenance and reason how well they align with code smells [381].
They find that code smells cover nine factors at least partially but not the remaining
four. For example, several smells, including the God Class smell, are related to the
“simplicity” factor, but no smell is related to a factor such as “appropriate technical
platform”.

2.3.5 Biases in Surveyed Studies

The literature discussed in this section contains several biases that threaten the
validity of the findings on the negative effects of code smells. First, code smells come
from an OOP background, so it is no surprise, that all the work on their negative
effects has been performed on software written in an OOP language. However, there
is a notable bias towards one language in particular, Java. Except for Saboury
et al., who studied JavaScript systems, all the other studies used Java subject
systems. The results may be similar for other OOP languages that resemble Java,
such as C++, or C#, but we cannot be certain.

Second, as several authors already pointed out, the choice of studied code smells
is imbalanced [388, 124]. For example, the negative effects of Large Class and
its siblings (God Class, Brain Class, and the Blob) were covered by fifteen
studies (namely [1, 64, 65, 143, 169, 170, 202, 218, 231, 274, 273, 282, 309, 337,
338]). By contrast, only six studies have considered Feature Envy (see [62, 202,
231, 282, 337, 338]) and none have investigated the negative effects of Parallel
Inheritance Hierarchies. As a result, there are some smells whose harmfulness
has been researched thoroughly but for many others, the empirical evidence is thin
or missing entirely.

A final threat is the choice of analyzed systems. Only four studies analyzed indus-
trial systems (see [272, 337, 338, 381]) but the vast majority analyzed open-source
systems (see [1, 62, 124, 143, 170, 169, 202, 231, 218, 274, 273, 282, 309]). A partially
mitigating factor is that many studies included Eclipse (see [169, 170, 309, 62, 124,
202, 231, 282]). Although open-source, Khomh et al. point out that Eclipse is close
in size and complexity to many industrial software systems, and is partly developed
by a commercial company, IBM [170].

14 2. Code Smells

2.3.6 Summary

Researchers have investigated whether code smells make source code more difficult to
change and evolve, more fault-prone, or harder to understand. Moreover, developers’
opinions on the usefulness of code smells as indicators of maintainability have been
collected. The evidence suggests that if we do not distinguish between specific types
of smells, then smelly code is harder to maintain and contains more faults than
code without smells. But if we look at individual smells, the findings can hardly be
generalized. A smell that has negative effects in one system can have no effects or
even positive ones in another system.

Other factors besides code smells may affect maintenance effort and fault prone-
ness, but not all studies consider them. Those that ignore potentially confounding
factors report medium to large negative effects of code smells. By contrast, studies
that control for these factors report small negative effects, no effects, or even small
positive effects.

There are few findings on the effects of code smells on program comprehension.
The findings that are available indicate that smelly code is harder to understand,
especially if a piece of code suffers from multiple smells. However, more work is
needed to draw definitive conclusions.

From a developer’s point of view, not all code smells are equally relevant. While
developers generally pay attention to smells that are related to long or complex
code, other smells are only seen as problematic if the smell intensity is high, and
yet others are seen as unimportant. Moreover, maintainability encompasses many
different factors, and not all of them are addressed by code smells.

Research into the negative effects of code smells is biased in several ways. Specif-
ically, most studies consider open-source systems written in Java and concentrate
on a small number of well-known smells. To achieve a comprehensive picture of the
harmfulness of code smells, more studies are needed, which should cover further pro-
gramming languages, different smells, and focus on software developed in industrial
settings.

2.4 Detecting Code Smells

As discussed in the previous section, code smells may negatively affect software
development. It is therefore useful to detect them, either manually or automatically.
The literature mentions a number of arguments that speak against manual smell
detection. Not only is manual detection time-consuming, unrepeatable, and does
not scale [227, 257], it is also highly subjective [224, 223, 332, 275, 140, 276]. For
example, experiments showed that developers who know a certain piece of code
well tend to notice fewer smells than others who are new to that code [223, 224].
Furthermore, there are certain smells whose detection requires extensive context
information, such as knowledge about inheritance relationships, third-party libraries,
or historical developments [223, 224, 275, 276]. Moverover, different developers may
employ different heuristics to detect a given code smell [332, 140]. Collaborative
smell detection – developers work in groups to detect smells – has been shown to lead

2.4. Detecting Code Smells 15

to more consistent, less subjective results [275, 276]. However, it is still very time-
consuming because the process remains manual.

Due to the subjectivity and inefficiency of manual code smell detection, tool au-
tomation is desirable. In this section, I describe the corresponding approaches, thus
laying the groundwork for Chapter 4, in which I present my detection approach for
variability-aware code smells. In particular, I describe detection techniques based on
object-oriented metrics but also summarize work using machine learning, historical
and lexical information, and visualizations.

2.4.1 Detection with Object-Oriented Metrics

Marinescu, both alone and in collaboration with Lanza, worked extensively on de-
tecting code smells using object-oriented metrics [227, 229, 228, 230, 196]. As Lanza
and Marinescu explain, a metric is “the mapping of a particular characteristic of
a measured entity to a numerical value” (Lanza and Marinescu [196], Chapter 2).
In the context of code smell detection, the measured entities are program elements
(e. g., classes and methods), and the characteristics of those entities are, for exam-
ple, the number of instance variables in a class or the number of statements within
a method.

To determine whether an entity is smelly, Marinescu uses detection strategies. A de-
tection strategy consists of rules that are combined with boolean operators, such
as or and and. A rule, in turn, is a comparison between the metric value of an
entity and a threshold. As an example, consider the detection strategy for the God
Class smell depicted in Figure 2.1. According Marinescu, a God Class has three
properties [227, 196]: First, it accesses an unusually high amount of data from for-
eign classes. Second, its methods are unusually complex. Thirdly, it lacks cohesion.
All three properties are reflected in the detection strategy, which is a conjunction
of three rules, each of them relying on a different metric. Specifically, the metrics
are access to foreign data (ATFD), weighted method count (WMC), and tight class
cohesion (TCC).

The rules in the detection strategy in Figure 2.1 use two kinds of thresholds, absolute
and relative ones. The rule ATFD>FEW contains an example of an absolute
threshold value. In particular, FEW is a constant that equates to 4 (Lanza and
Marinescu [196], p. 18). The constant ONE THIRD, used in the third rule, is another
absolute threshold. In contrast to these absolute values, the threshold VERY HIGH
in the rule WMC≥VERY HIGH is relative. A formal definition of VERY HIGH
is given elsewhere (Lanza and Marinescu [196], p. 15), but in a nutshell, it means
the following: Given the WMC values of all classes in a software system, a VERY
HIGH value is an outlier, that is, a value that is much larger than the average value
of the WMC metric. Tying it all together, this detection strategy defines a God
Class as a class that (1) accesses more than 4 attributes from other classes, (2) has
a WMC value that is much larger than the average WMC value of other classes,
and (3) has a cohesion value, as measured by TCC, that falls below 1

3
.

Similar to the God Class detection strategy from Figure 2.1, Marinescu formulated
detection strategies for a total of eleven code smells [229, 196] and implemented
a corresponding detection tool [229, 228, 226, 196]. The tool detects code smells

16 2. Code Smells

ATFD > FEW

Class uses directly more than a

few attributes of other classes

WMC ! VERY HIGH

Functional complexity of the

class is very high

TCC < ONE THIRD

Class cohesion is low

AND GodClass

fi

Figure 2.1: Detection strategy for a God Class (Taken from Lanza and Mari-
nescu [196], p. 81)

with a high precision (70 % on average); recall however, was not reported [228]. To
summarize, Marinescu has shown that detecting code smells automatically using
object-oriented metrics is both feasible and scalable. Moreover, he has proven that
this approach is generalizable to a variety of smells. Yet, certain smells remain that
can only be detected by taking additional sources of information into account, such
as evolutionary and textual information. I discuss the corresponding work in the
following section.

Fundamentally, Moha’s smell detection approach, Decor [257], is similar to Mari-
nescu’s. Decor, too, relies on object-oriented metrics that are compared to abso-
lute and relative thresholds [257]. Nevertheless, there are two notable enhancements.
First, Decor can also simple lexical information. For instance, it can detect classes
with an unclear purpose by checking whether the class name contains“weasel words”,
such as “Make” or “Exec” [257]. Second, detection strategies can refer to other de-
tection strategies. Thus, anti-patterns, which arise from the interaction between
several code smells, can be described very succinctly in a Decor detection strategy.

Others languages and frameworks for code smell detection have been proposed, ei-
ther with an explicit code smell focus [342] or more generally aimed at reverse
engineering [362, 173]. Specifically, the FindSmells tool allows users define their
own code smell detection strategies in a domain-specific language [342]. Although
the language makes smell detection flexible, it lacks some of the interesting features
that Moha’s Decor approach already possessed. Others, in turn, propose frame-
works for reverse engineering software systems, using Prolog-like [362] or SQL-
like query languages [173], respectively. These frameworks have many use cases, and
code smell detection is just one of them. Consequently, the exemplified detection
strategies are trivial and contribute little to the field compared to Marinescu’s and
Moha’s work.

Finally, Srivisut and Muenchaisri propose eight code smells and corresponding de-
tection strategies for AOP [347, 346]. The novelty of their work lies in the metrics,
which are specifically aimed at AOP. The relevance of their new smells, however,

2.4. Detecting Code Smells 17

seems questionable: In their validation on four different systems, only one smell
occurred frequently whereas the other seven occurred only once or twice in a given
system, or not at all.

2.4.2 Machine Learning

Designing detection strategies by hand and deciding on appropriate thresholds re-
quires substantial expertise. To overcome this difficulty, various researchers combine
metrics-based detection approaches with machine learning. The basic idea is to auto-
matically learn the characteristics of smelly code from training data instead of man-
ually encoding these characteristics into a detection algorithm. To this end, various
machine-learning techniques that have been explored, including decision trees [184,
19], support vector machines (SVMs) [220, 219], and genetic programming [252, 168,
334, 167]. The results frequently exceed what traditional metrics-based detectors
can achieve. For instance, Arcelli Fontana et al. report detection accuracies of 95 %
in terms of F-measure [19]. Apart from detection itself, machine learning has also
been applied to rank detection result, that is, to make the most severe smell in-
stances appear at the top of the results list. Bayesian belief networks [171] as well
as random forests [20] performed well in this context.

2.4.3 Additional Sources of Information

Not all code smells can be detected reliably using only object-oriented metrics. For
example, the Shotgun Surgery smell (Fowler et al. [107], p. 80) is intrinsically
characterized by the way that code is changed: It forces developers to make many
scattered modifications in order to change a single piece of functionality. Scattered
changes cannot be detected with object-oriented metrics, and further smells exist
whose characteristics are equally hard to describe with object-oriented metrics alone.
For this reason, several smell detection approaches take further sources of informa-
tion into account. In particular, Palomba et al. mine co-change information from
version control repositories to detect change-centric smells [283]. Other work ex-
tracts textual information from the source code (e. g., variable and method names)
to find smells related to low cohesion or high coupling [33, 286]. Chatzigeorgiou
et al., in turn, adapted page ranking algorithms known from web search engines to
identify classes that are highly central to a system’s design (i. e., God Classes) [49].
Others combine object-oriented metrics with distance measures and Abstract Syntax
Tree (AST) analyses [105, 365, 366]. Further work considers the role that a class
plays in a design pattern and uses this role information to reduce the amount of false-
positives during smell detection [225]. Finally, Ligu et al. use a technique similar to
mutation testing to detect instances of the Refused Bequest (Fowler et al. [107],
p. 87) smell [207].

2.4.4 Visually Aided Detection

Humans have a great capacity to process visual data, which allows them to examine
large amounts of information at once. This capacity has been exploited for code
smell detection. Many visual code smell detection approaches are fundamentally
visualizations of object-oriented metrics of a software system (e. g., [335, 195, 196,

18 2. Code Smells

68]). The elements of the analyzed system (e. g., classes or methods) are represented
as graphical objects (e. g., boxes), and different metric values are expressed by vary-
ing the width, height, and color of these objects. Additional data is encoded in
the layout, for example by placing similar objects close together. Finally, filtering
techniques help users focus on objects of interest. By combining all of these ideas,
clever visualizations make program elements with a code smell stand out as visual
anomalies that will quickly catch the user’s eye.

Apart from using visualizations to detect smells, visualizations can also help summa-
rize and rank the results of traditional code smell detectors [88, 351]. For instance,
Steinbeck proposes a combination of tree maps and heat maps to help developers
focus on the most severe smell instances first and, thus, prioritize their maintenance
efforts [351].

2.4.5 Summary

Purely manual code smell detection is both time-consuming and subjective. As
a solution, semi- and fully automatic code smell detection approaches have been
proposed. Many approaches to detect code smells rely on object-oriented metrics.
The basic assumption behind metrics-based smell detection is that smelly program
elements exhibit unusual metric values. Consequently, it is possible to detect smells
by identifying elements with exceptional (combinations of) metrics. Designing a cor-
responding detection strategy involves selecting suitable metrics and deciding on ap-
propriate threshold values. In early work, these decisions were made by experts who
designed and implemented detection strategies manually. More recent work uses
machine learning for this purpose, and often achieves better results than expert-
designed detection strategies.

In addition to object-oriented metrics, other sources of information can be beneficial
for code smell detection. For instance, mining changes from version control systems,
as well as extracted textural information through information retrieval techniques
have been shown to be effective.

Finally, researchers have explored the use of visualizations for code smell detection.
Corresponding work ranges from interactive, graphical smell detection approaches
to visualizing the distribution of code smells in a system.

2.5 Refactoring

In the previous sections, I have explained code smells in depth and also mentioned
the term refactoring a number of times, but without explaining it in detail. In the
next section, I illustrate the usefulness of refactoring with the help of an example.
Afterwards, I will explain how it is possible to ensure that refactorings change a pro-
gram’s structure without also changing its behavior. Finally, I discuss tool support
and summarize research findings on current refactoring practice.

2.5.1 A Refactoring Example

In this section, I give an example of how refactoring can be used. Specifically, I ex-
plain how refactoring helps remove Duplicated Code from a fictitious banking

2.5. Refactoring 19

application written in Java (see Listing 2.3). The application contains two classes
representing bank accounts, OwnAccount and ForeignLoan (see Listing 2.3 (a)).
OwnAccount is for accounts that are managed by the bank using the application;
ForeignLoan, in turn, is for keeping track of loans that a customer has taken out
with a foreign bank. A comparison of these classes reveals two problems: First, some
of the code in ForeignLoan is identical to code in OwnAccount (highlighted in green
Listing 2.3 (a)). Other code is conceptually similar, but named differently (high-
lighted in red). Second, despite their conceptual relation, the classes lack a common
superclass. Consequently, it is impossible to write generic code that works on objects
of both classes.

1 class OwnAccount {
2 double balance;
3 String accountNumber;
4 double overdraft;
5
6 double getBalance() { return balance; }
7 String getAccountNumber() {
8 return accountNumber;
9 }

10 double getOverdraft() { return overdraft; }
11 }

1 class ForeignLoan {
2 double balance;
3 String accountNo;
4 String bankCode;
5
6 double getBalance() { return balance; }
7 String getAccountNo() {
8 return accountNo;
9 }

10 String getBankCode() { return bankcode; }
11 }

(a) Before refactoring: Identical class members highlighted in green; nearly identical
members highlighted in red.

1 class OwnAccount {
2 double balance;
3 String accountNumber;
4 double overdraft;
5
6 double getBalance() { return balance; }
7 String getAccountNumber() {
8 return accountNumber;
9 }

10 double getOverdraft() { return overdraft; }
11 }

1 class ForeignLoan {
2 double balance;
3 String accountNumber; ¶
4 String bankCode;
5
6 double getBalance() { return balance; }
7 String getAccountNumber() { ·
8 return accountNumber; ¶
9 }

10 String getBankCode() { return bankCode; }
11 }

(b) After Rename: Naming differences removed (changes highlighted in yellow).

1 abstract class Account {
2 double balance; ·
3 String accountNumber; ¸
4
5 double getBalance() { return balance; } ·
6 String getAccountNumber() { ¸
7 return accountNumber;
8 }
9 }

1 class OwnAccount extends Account { ¶
2 double balance; ·
3 String accountNumber; ¸
4 double overdraft;
5
6 double getBalance() { ... } ·
7 String getAccountNumber() { ... } ¸
8 double getOverdraft() { return overdraft; }
9 }

1 class ForeignLoan extends Account { ¶
2 double balance; ·
3 String accountNumber; ¸
4 String bankCode;
5
6 double getBalance() { ... } ·
7 String getAccountNumber() { ... } ¸
8 String getBankCode() { return bankCode; }
9 }

(c) Refactoring complete: Common code pulled up to a new superclass.

Listing 2.3: Example of an Extract Superclass refactoring

20 2. Code Smells

To solve these problems, an Extract Superclass refactoring is performed, whose
purpose is to extract common functionality from two unrelated classes into a common
superclass (Fowler et al. [107], p. 336). The refactoring happens in two phases.
In the first phase, naming differences are eliminated so that similar code becomes
actually identical code. This is achieved with a series of Rename refactorings (see
Listing 2.3 (b)). Then, in the second phase, a new superclass is created and all the
identical code is moved into this superclass with the help of Pull Up refactorings
(see Listing 2.3 (c)).

In Listing 2.3 (b), I show the result of the first phase, renaming. OwnAccount, shown
on the left remains unchanged. In ForeignLoan, however, shown on the right, two
members underwent Rename refactorings to make the names identical to the ones in
OwnAccount (see yellow highlights). A Rename refactoring encompasses two kinds
of changes. First, the name of the program element (e. g. a field or method) must
be changed at the place where the element is defined. Second, the whole program
must be checked for references to the program element, and these references must
be changed accordingly. Consequently, renaming accountNo to accountNumber in-
volves one change on Line 3, where the field is defined, and a second change on Line 8,
where the field is referenced (see the changes marked with ¶ in Listing 2.3 (b)). Re-
naming the get method from getAccountNo to getAccountNumber, in turn, only
requires a single change (see the change marked with ·) because there is no code
calling this method. (Of course, if other code in the application contained such calls,
further changes would be necessary.)

After eliminating the naming differences in phase one of the Extract Super-
class refactoring, the second phase commences. In this phase, three refactorings
are executed, whose purpose is to create a new superclass and to pull up duplicated
code from the subclasses to that superclass. The resulting code is depicted in List-
ing 2.3 (c). Changes are highlighted in yellow, and the marks ¶, ·, and ¸ indicate
which changes belong together. In detail, refactoring ¶ creates a new superclass,
Account (see upper part of Listing 2.3 (c)). The class is initially empty, and extends
clauses are added to both OwnAccount and ForeignLoan to make them subclasses.
Refactoring ·, a Pull Up refactoring, moves the field balance and its get method,
getBalance, to the superclass. To this end, a single copy of the corresponding field
and method definition is created in the superclass, and the original definitions are
deleted from OwnAccount and ForeignLoan. In the same way, the final refactoring
(see mark ¸), moves the field accountNumber and its get method to the superclass.

As a result, Extract Superclass has consolidated code clones in OwnAccount
and ForeignLoan. Moreover, it made the conceptual relationship between the two
classes explicit, thus opening up further reuse potential in the rest of the code base.

2.5.2 Ensuring Behavior Preservation

One of the central properties of refactorings is behavior preservation. According to
Griswold, who proposed the concept, behavior preservation means that given the
same input, a program will compute the same output before and after refactor-
ing (Griswold [119], p. 65). In their seminal survey of refactoring, Mens and Tourwé
state more formally that a refactoring must perserve both the syntactic as well as the

2.5. Refactoring 21

semantic correctness of the program [249]. Syntactic correctness is easily checked
with a parser: the refactored program must simply remain compilable. The difficult
part is ensuring semantic correctness because it is generally impossible to decide
whether an arbitrary program change preserves the semantics of the program [120].
Consequently, formal proofs of semantics preservation have only been constructed
for a few specific program transformations in specific programming languages, but
not for popular general purpose languages such as C++ and Java [249]. Fowler
et al. avoid formal proofs altogether and essentially recommend to frequently run
tests during refactoring (Fowler et al. [107], p. 89). However, most approaches in
the literature try to provide stronger guarantees while, at the same time, avoiding
the complexities of formal proofs [249]. The core idea is to rely on a conservative
notion of behavior preservation, meaning they accept that some valid refactorings
have to be ruled out as potentially incorrect (see [249], as well as Opdyke [278],
p. 6f. for a concrete example). The approach I use in my thesis (see Chapter 6),
called precondition checking, is one of these conservative approaches.

Preconditions. In order to automate refactorings, Griswold and Opdyke propose
to split a refactoring into two phases, the checking of preconditions and the actual
source code transformation [119, 278]. In this context, preconditions are the prop-
erties that must hold so that the subsequent source code transformation will be
behavior-preserving. As an example, recall the Rename refactoring in Listing 2.3,
which renames ForeignLoan’s accountNo field into accountNumber. The only pre-
condition when renaming a variable is that the new name must not collide with
the name of an existing variable (Opdyke [278], p. 60f.). If the name were already
used, the change would either produce a name clash and render the code uncompil-
able; or worse, the renamed variable might be shadowed by a variable from another
scope, thus changing the program’s behavior. In the example in Listing 2.3, the
check for name collisions is simple because first, none of ForeignLoan’s methods
introduce local variables and because second, there are no super- or subclasses that
might contain conflicting variable definitions. As a consequence, the check for name
collisions only needs to verify that none of the existing fields are already named
accountNumber. As this is not the case, the refactoring can proceed.

Precondition checks commonly rely on static analyses of the program’s AST and
the inheritance relationships between classes [249]. In certain cases, these analy-
ses are easier to perform on a Program Dependence Graph (PDG) [100], which is
a graph representation of the data and control dependencies within a program (Gris-
wold [119], p. 59). However, PDG-based precondition checks are not strictly more
powerful than checks on an AST, which is why I do not use them in my thesis.

Other approaches. Roberts observed that static analyses are sometimes too re-
strictive and envisioned analyses based on runtime information as a solution [306].
Kataoka et al. later showed that such an approach is feasible [163]. Mens et
al. adapted work on graph transformations to overcome the limitations of Opdyke’s
overly conservative precondition approach [246, 248, 251] and constructed formal
correctness proofs for several refactorings [248]. Others used program slicing [374]
to guarantee behavior preservation of Extract Method refactorings [194, 193].
Finally, Sands proposed an improvement theory for functional programs, showing
that refactorings derived from this theory increase a program’s efficiency [320].

22 2. Code Smells

2.5.3 Tool Support

In the previous section, I discussed research into ensuring behavior preservation.
The goal of this research is to automate refactoring and thus relieve developers from
the burden of manually checking preconditions and changing the source code. The
resulting tools, called refactoring engines, are available in many current IDEs and
for many mainstream programming languages, such as Java, C++, and PHP.

Not all languages are supported equally well. For example, the Eclipse IDE cur-
rently provides more than twenty refactorings for Java [83], but only six refactorings
for C/C++ [82]. ReSharper, a popular Visual Studio plug-in, is only slightly
better, providing eight C/C++ refactorings [301]. As these examples show, devel-
opers working in some languages benefit from extensive tool support whereas others,
who work in a different language, are mostly forced to refactor manually.

Beyond refactoring engines in IDEs, which are intended for interactive use, there are
also tools to refactor a software system fully automatically (e. g., [261, 47, 4, 127,
189, 188]). These tools are useful when a code base has to undergo many similar re-
factorings or when the same refactorings are applied repeatedly. For example, Akers
et al. discuss a tool that automatically refactors a C++ system from a component
style to a CORBA-like framework [4]. Refactoring feature modules, in turn, combine
refactorings with generative programming [189, 188]. Among other use cases, refac-
toring feature modules make it possible to generate variants of a software system
with different Application Programmer Interfaces (APIs).

Finally, there is a category of tools that bridges the gap between code smell detection
and refactoring (e. g., [250, 365, 366, 265, 264, 33]). For instance, the Stench
Blossom plug-in for Eclipse adds unobtrusive hints to the IDE’s editor window
to alert the programmer to the presence of code smells [265, 264]. Programmers can
either ignore the hints and continue coding, or they can click on them to receive
advice on corresponding refactorings. The tool I present in Chapter 6 of my thesis
takes up some of Stench Blossom’s ideas. Specifically, my tool also highlights
refactorable code in the editor and uses tooltips to provide additional information.

2.6 Summary

This chapter contained the background on code smells and refactoring for traditional
software systems. In short, code smells are patterns in the source code that indicate
design deficiencies. Not only do code smells make source code hard to understand,
change, and extend, they also increase the likelihood of faulty changes. Developers
should therefore be aware of code smells, and as a first step to raise this awareness,
code smells must be detected. In this chapter, I have discussed several approaches
to automate the detection of code smells, with a specific focus on approaches based
on object-oriented metrics.

The design deficiencies indicated by code smells can be corrected through refactor-
ing, which was the second major topic of this chapter. To refactor a program means
to change its internal structure without changing its behavior. Refactoring is chal-
lenging, because even simple changes must obey numerous rules to avoid unwanted
side-effects. Precondition checking is a frequently used technique to address this

2.6. Summary 23

challenge. Based on this technique, tool support for refactoring has been developed,
which relieves the developer from the tedious and error-prone process of executing
refactorings manually. I summarized the corresponding research in this chapter.

In my thesis, I transfer code smells and refactoring to highly configurable software
systems. Such systems are special in that they correspond not just to a single
program, but to a range of similar, yet distinct programs. Configurability affects
code smells and refactoring in various ways, but before I can discuss this in detail,
I have to explain the fundamentals of highly configurable software systems in the
following chapter.

24 2. Code Smells

3. Highly Configurable Software
Systems

This chapter shares material with the VaMoS ’15 paper “Code Smells Re-
visited: A Variability Perspective” [96], the SANER ’17 paper “Variant-
Preserving Refactorings for Migrating Cloned Products to a Product
Line” [95], as well as the GPCE ’17 paper “How Preprocessor Anno-
tations (Do Not) Affect Maintainability: A Case Study on Change-
Proneness” [98].

Traditionally, one software system corresponds to exactly one software product.
However, sometimes, there is a need for multiple software products that satisfy
similar requirements but also exhibit certain differences. Such a group of related
software products is called a software product family [288] and one way to build
a product family efficiently is to design it as a highly configurable software system
(a. k. a. Software Product Line (SPL)) [53, 61, 13]. The Linux kernel is a well-
known, successful example of a highly configurable software system. Thanks to
being highly configurable, customized Linux kernels run on systems ranging from
smartphones to supercomputers, with platforms as varied as Intel’s x86 architecture,
PowerPC, and ARM. This thesis is concerned with the code quality of highly con-
figurable software systems, and in this chapter, I provide the necessary background
on how such systems are built. In particular, I explain the development process for
highly configurable software systems, Software Product Line Engineering (SPLE),
elaborate on modeling and implementation aspects, and, most importantly, discuss
the implications of configurability for the quality of the source code.

In the second half of this background chapter, I focus on an alternative approach
to building software product families. This alternative is called clone-and-own [91,
245, 79, 317, 349] and it plays a central role in my study of refactoring that I present
in Chapter 6. In a nutshell, clone-and-own means that an existing software product
is copied and adapted to fit a new set of requirements. Since clone-and-own involves
copying entire code bases, it introduces code clones [312] at a massive scale, with

26 3. Highly Configurable Software Systems

corresponding negative consequences [79]. For example, if a bug is discovered in
a cloned piece of code, the bugfix has to be propagated to all the products that
contain the clone. In the best case, this involves a lot of repetitive work; in the
worst case, some products are forgotten and a bug that was supposed to be fixed
continues to persist [147, 79]. As I show in Chapter 6, code clones are not only
a source of problems, they can also be exploited to facilitate the transition from
clone-and-own to SPLE. Therefore, at the end of the present chapter, I explain the
background of clone-and-own development and code clones, with a particular focus
the negative effects and on techniques to detect and remove clones.

3.1 Software Product Line Engineering

Software is now used much more pervasively than it used to be several decades
ago. The earliest software products were developed to perform scientific simulations,
decipher encrypted texts, and solve other mathematical problems. While these early
software products were often deployed on just a few machines, the availability of
ever cheaper computers soon turned software into a mass product. This means that
software products for word processing, graphics editing, and many other tasks were
developed once and deployed on thousands or even millions of machines. Today,
software is part of many products that we use on a regular basis. This encompasses
not only software on desktop computers, but also on smartphones, cars, or coffee
machines.

As the use of software has grown over time, the way it is developed has changed,
too. The early software products and also the mass-produced ones were developed
to fulfill a fixed set of requirements. If those requirements changed, the product was
either evolved and enhanced, or a new product was developed from scratch. But with
the advent of mass customization, which continues to replace mass production in
many industries, including the software industry [185], software had to become more
flexible. Consequently, much of today’s software is developed in a way that severals
sets of requirements, sometimes even competing ones, can be satisfied. Such software
systems allow the creation of multiple, distinct software products, each of which is
customized to best serve a specific purpose. For example, Google’s Web browser,
Chrome, is available for three different desktop operating systems (Windows, Linux,
and Mac OS X), and also as a mobile app for Android and iOS devices. While
the desktop variants are controlled by mouse and keyboard, and are optimized for
high performance, the mobile variants offer touch operation and are more energy
efficient. Hence, Google Chrome is not a single software product, but a software
product family [288, 61, 13].

The members of a software product family differ in the features that they provide but
more importantly, they also share a lot of commonalities. Hence, a product family
should not be treated as separate products because that would waste a lot of reuse
opportunities. Instead, a product family should be treated as a whole so that each
common feature is developed, maintained, and evolved only once. The developers of
Google Chrome and of many other software systems (e. g., Linux, Eclipse, MySQL,
to name only a few) have managed to do that because these software systems are
developed as highly configurable software systems.

3.2. Domain and Application Engineering 27

According to Clements and Northrop, a highly configurable software system (also
called Software Product Line (SPL)) is “a set of software-intensive systems sharing
a common, managed set of features that satisfy the specific needs of a particular
market segment or mission and that are developed from a common set of core as-
sets in a prescribed way” [53]. This definition mentions a central concept for highly
configurable software systems, the concept of a feature. A feature is an increment in
functionality that is relevant to a particular stakeholder [13]. The exact nature of
what a feature encompasses varies. It ranges from things that matter to users, such
as the option to pay by credit card in an online shop SPL, to technical aspects that
only matter to developers, such as a workaround for a bug in a specific operating
system, but also includes non-functional properties, such as the amount of memory
and processing power consumed. In the context of my thesis, a feature can be any-
thing that falls in this broad spectrum of meanings. Generally, features characterize
the commonalities and variations of the products (also referred to as instances or
variants) of an SPL.

Highly configurable software systems offer a number of benefits, including shorter
time to market, reduced cost, and improved quality (Clements and Northrop [53],
p. 17). Whether or not these benefits materialize depends on the ability to develop
what Clements and Northrop call the core assets – reusable artifacts that can be
configured and combined in flexible ways. Designing and implementing these core
assets poses challenges that traditional software development processes fail to ad-
dress. For example, variations between products must be planned, release cycles
of many products have to be synchronized, and developers have to reason about
potential side effects when changing a reused artifact. For these reasons, Clements’
and Northrop’s definition states that an SPL is developed “in a prescribed way”.
This prescribed way is known as Software Product Line Engineering (SPLE), and
in the following sections, I explain the domain and application engineering levels
of SPLE, discuss how commonalities and variations are modeled, and describe how
configurability is implemented on the source code level.

3.2 Domain and Application Engineering

In this section, I explain SPLE using the terminology of Feature-Oriented Software
Development (FOSD), an approach to SPLE that puts features at the center of
every stage of the development process [15]. Not all highly configurable software
systems are developed strictly according to SPLE, which is why SPLs are sometimes
considered a subcategory within the broader category of highly configurable software
systems [336]. I do not make this distinction in this thesis and instead agree with
Sincero et al., who argues that many of the benefits attributed to SPLs can be had
even if the development process deviates from SPLE in certain aspects [336].

An overview of the feature-oriented SPLE process is depicted in Figure 3.1. As
illustrated in the overview, development tasks in SPLE are structured according
to two orthogonal dimensions. The first dimension distinguishes between problem
space and solution space, and the second dimension distinguishes between domain
engineering and application engineering (Apel et al. [13], Chapter 2). Roughly
speaking, problem space relates to identifying and organizing requirements, that is,

28 3. Highly Configurable Software Systems

Product derivation

D
om

ai
n

En
gi

ne
er

in
g

Domain
knowledge

Customer
needs

A
pp

lic
at

io
n

En
gi

ne
er

in
g

Mapping

New
requirements

Common
implementation

artifacts

Product

Problem Space Solution Space

Domain analysis Domain implementation
class Graph {
 List<Vertex> vertices;
 List<Egde> edges;

 Edge addEdge(Vertex from,
 Vertex to,
 int weight) {
 Edge e = new Edge(from, to);
 ...
 return e;
 }

 void run(Vertex v) {
 /* to be refined */
 }
}

class Vertex { ... }

class Edge { ... }

class Graph {
 Edge addEdge(Vertex from,
 Vertex to,
 int weight) {
 Edge e = original(to,
 from,
 weight);
 e.setWeight(weight);
 return e;
 }
}

class Edge {
 int weight;
 void setWeight(int weight) {
 ...
 }
}

class Graph {
 void run(Vertex v) {
 original(v);
 numberVertex(v);
 }

 void numberVertex(Vertex v) {
 ...
 }
}

class Graph {
 void run(Vertex v) {
 original(v);
 detectCycles(v);
 }

 void detectCycles(Vertex v) {
 ...
 }
}

Feature
selection

Features

Requirements analysis
GraphLibrary

Edges

Directed

Undirected

Weighted

Algorithms

Cycle

Number

Cycle → Directed

Figure 3.1: Overview of a software product line engineering process (Adapted from
Apel et al. [13])

the problems that the products of the SPL shall solve. Solution space, in turn, is
about solving these problems by implementing source code, models and other arti-
facts, from which products can be built. Regarding the second dimension, domain
engineering focuses on all products as a whole, whereas application engineering fo-
cuses on an individual product. To summarize, domain engineering is “development
for reuse” and application engineering is “development with reuse” (Apel et al. [13],
Chapter 2). Combined with each other, these two dimensions yield the four groups
of tasks that are illustrated in Figure 3.1: (1) domain analysis, (2) domain imple-
mentation, (3) requirements analysis, and (4) product derivation. I describe these
groups of tasks next.

Domain analysis encompasses all domain engineering tasks that belong to problem
space. The goal is to identify all the requirements that the SPL shall satisfy, frame
them as features, and organize these features so that commonalities and variabilities
become apparent. To this end, domain analysis draws on the information elicited
during requirements analysis, which is the first phase of application engineering.
Information also flows in the opposite direction as requirements analysis draws on
the features that domain analysis has already uncovered. This exchange, illustrated
by the arrows connecting domain analysis and requirements analysis in Figure 3.1,
shows that domain and application engineering are not entirely separate but benefit
from communication and feedback.

A crucial task during domain analysis is to scope the domain, that is, to decide what
the products in the SPL should and should not be able to do. If the scope is too
narrow, possibly useful future products are excluded and reuse potential is wasted.

3.2. Domain and Application Engineering 29

Conversely, if the scope is too large, the SPL becomes overly complex because it
tries to foster reuse among products that actually have little in common.

When the requirements have been collected and the scope is clear, the features of
the SPL are identified. This way, the similarities and differences of the require-
ments and, consequently, of the products in the SPL are documented. The next
step is to establish how the features relate to each other, for example, whether fea-
tures mutually exclude (are alternative to) each other, whether they can co-exist, or
whether certain features are specializations of other, more general features. These
relationships are typically expressed in feature models, which I cover in more detail
in Section 3.3.

Domain implementation relates to all the tasks of domain engineering in solution
space. They are depicted in the upper right part of Figure 3.1. The goal is to
implement the features that domain analysis has uncovered in the form of source
code, models (e. g., class diagrams), database schemas, and so on. The resulting
implementation artifacts constitute the reusable core assets of the SPL. Core assets
are combined with each other in many different ways to create a product. To make
these combinations possible, core assets must offer customization options – variation
points. There are multiple mechanisms to implement such variation points. I cover
the mechanisms that are most relevant to this thesis in Section 3.4.

After domain analysis and domain implementation, domain engineering is complete.
The domain of the product line is scoped, the relationships between features are
documented, and a collection of reusable artifacts has been created. Based on these
features and artifacts, it is now possible to derive concrete software products. This is
the focus of the application engineering level of SPLE (see lower part of Figure 3.1),
which consists of requirements analysis (in problem space) and product derivation
(in solution space).

Requirements analysis entails eliciting requirements of an individual product by
interviewing customers, reading documents, and so on, much in the way that re-
quirements analysts do in traditional software engineering [141]. A key difference
is that a requirements analyst in SPLE can make use of the knowledge from do-
main analysis. In the ideal case, the analyst only has to map requirements to the
corresponding features, thus creating a configuration that represents the product.
In other cases, the analyst may uncover a requirement for which no corresponding
feature exists. If this happens, there are basically three options (Apel et al. [13],
Chapter 2): The first option is to decide that the requirement is out of scope of
the SPL and to not build the product. The second option is to change the scope,
which involves going back to domain engineering, introducing the necessary features
and implementing the corresponding assets. Such a scope change breaks the usual
separation between domain and application engineering and instead requires that
the two interact. In Figure 3.1, this interaction is symbolized by the two arrows
connecting domain analysis and requirements analysis, one of them facing down-
ward, the other one upward. Finally, the third option to deal with a requirement
without a corresponding feature is to build the product in a hybrid fashion, using
a combination of SPLE and traditional software engineering. Based on the reusable
assets, a product is built that is as close as possible to what the customer wants.

30 3. Highly Configurable Software Systems

Subsequently, this product is enhanced by implementing the missing requirements,
but without feeding the enhancements back into the SPL code base.

Product derivation encompasses the solution space tasks of application engineer-
ing, and it commences when the requirements of the product are clear. In this
step, the core assets that implement the required features are gathered, the varia-
tion points are configured to match the product at hand, and finally the product
is generated. As indicated by the assembly line pictogram in the lower right part
of Figure 3.1, the ultimate goal in FOSD is to automate product derivation, for
example by using generative programming techniques. However, depending on the
variability mechanism, product derivation can also involve writing glue code, that
is, variant-specific code that ties together the reused core assets, as well as adding
functionality that is unique to the product being derived.

3.3 Modeling Variability

One important task during domain analysis is to model the commonalities and
differences between products of the SPL. There are several variability modeling
languages to achieve that, which differ in terms of expressiveness and in the way the
variability model is represented. Linux, for example, uses the KConfig language,
which describes the variability model in textual form and offers advanced concepts
such as tristate features.1 A tristate feature can be configured in one of three
ways: built into the kernel (state y), not included at all (state n), and included
as a dynamically loadable module (state m). In contrast to KConfig, many other
modeling languages only allow boolean features: a features is either included or it is
excluded, without any third option. I use one of these simpler languages throughout
my thesis, FODA feature models (FMs), which result from a process called feature-
oriented domain analysis (FODA) [150]. I chose FODA FMs because they visualize
the relationships between features in an easy-to-understand tree structure, because
they are sufficiently expressive for my needs, and because they are commonly used
in the SPL literature. In the remainder of my thesis, I will simply refer to these
models as feature models (FMs).

In Figure 3.2, I show the FM for an exemplary product line of graph algorithms, the
GraphLibrary SPL (adapted from Lopez-Herrejon and Batory [214]). FMs have
a tree structure, which puts features in a parent-child relationship. In a nutshell,
parent features express more general concepts, whereas child features represent spe-
cializations (or refinements) of their respective parent features. In Figure 3.2, the
root feature is GraphLibrary, and we can imagine that it encompasses general func-
tionality of the domain, such as providing classes for vertices and edges. Its children,
Edges and Algorithm, cover more specific aspects, namely different kinds of edges
(e. g., directed or undirected) as well as various graph algorithms.

While visualizing generalization / specialization relationships between features is one
goal of FMs, they also define the set of valid configurations of an SPL. A configuration
is a subset of the available features. Given a specific configuration, we say that
a feature is selected if it is part of that configuration and not selected otherwise.

1https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt

https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt

3.3. Modeling Variability 31

Number CycleDirected Undirected

Algorithms

GraphLibrary

Mandatory  
Optional 
Alternative  
Or 
Abstract 
Concrete

Legend:

Weighted

Edges

Cycle→ Directed

Figure 3.2: FODA feature model of the GraphLibrary product line

In every domain, there will be constraints as to which feature combinations are
meaningful or not. For example, a graph cannot be directed and undirected at
the same time. An FM expresses these domain constraints, thereby defining which
configurations are valid. First, a valid configuration must include the root feature,
called GraphLibrary in the example FM in Figure 3.2. Second, a child feature can
only be selected if its parent is selected. For example, it would be invalid to select the
Cycle feature without selecting the base functionality from GraphLibrary. Finally,
given that a parent feature is selected, there are several rules, which I will cover next,
that govern which of its children can be selected. Assuming that a configuration
satisfies all these rules, we say that the configuration is a valid configuration. A valid
configuration corresponds to a product (a. k. a. instance) of the SPL.

The rules that govern whether or not a child feature can be selected are as follows.
First, a child feature can either be mandatory or optional. A mandatory feature
must be selected, an optional feature can be selected (but it does not have to be).
Second, child features can form an alternative group or an or-group. Features in an
alternative group mutually exclude each other, meaning that exactly one of them
must be selected. In an or-group, by contrast, at least one feature must be selected
(but more are allowed). Third, any additional restrictions not expressible through
these means can be added as a cross-tree constraint, a propositional logic formula
that is written below the feature diagram. To illustrate how these rules are used to
model the GraphLibrary SPL, consider Figure 3.2. The FM expresses that every
graph library must include edges (feature Edges is mandatory), but it is possible
to leave the algorithms out (feature Algorithms is optional). Moreover, edges can
either be directed or undirected, but not both (features Directed and Undirected
form an alternative). Furthermore, if Algorithms are selected, then at least one of
the concrete algorithms must be selected as well (features Number and Cycle form
an or-group). Lastly, selecting the Cycle algorithm requires Directed edges (see the
cross-tree constraint below the feature tree).

A final property of the FM in Figure 3.2 is that it includes both concrete and abstract
features. Concrete features (shown in a darker shade of blue) correspond to one or
several implementation artifacts, which is the usual case. The algorithms Number
and Cycle are some of the concrete features in the example FM. Abstract features
(shown in a lighter shade of blue), by contrast, lack corresponding implementation
artifacts [359]. Their purpose is to improve the clarity of a model by grouping

32 3. Highly Configurable Software Systems

features. In the example FM, the abstract feature Algorithms groups the Number
and Cycle algorithms together.

3.4 Implementing Variability

After identifying the features and modeling their relationships during domain analy-
sis, they must be implemented during domain implementation. Most implementation
work happens in a general purpose programming language, such as C or Java, and
much of the resulting source code will be base code, that is, code that is common
to all products. However, there is a second kind of code in a highly configurable
software system beyond base code. It is called feature code. Feature code is the code
that implements a configurable feature, and it must be possible to include or ex-
clude such code depending on a product’s configuration. To this end, the underlying
programming is combined with a variability mechanism.

Different variability mechanisms exist, which can be subdivided into annotation-
based and composition-based mechanisms [155, 13]. Annotation- and composition-
based variability mechanisms differ in terms of modularization and separation of
concerns [287, 72, 73], and these differences have a fundamental effect on how the
variable code base is structured. Since the structure of code is at the heart of
the code smell concept (see Chapter 2), I hypothesize in my thesis that different
variability mechanisms also lead to different code smells. I come back to this point
in Section 3.4.3 of this chapter and explore it further in Chapter 4.

3.4.1 Composition-Based Mechanisms

Composition-based mechanisms physically separate concerns, which means that all
artifacts (code and non-code) that belong to a certain feature are modularized in
one cohesive unit [155, 13]. In my thesis, I focus on Feature-Oriented Programming
(FOP) as a representative of composition-based mechanisms. In FOP, this unit is
called a feature module, and directly corresponds to a feature in the FM [297, 32].
There are several tools that support the implementation of SPLs using FOP, such as
Ahead [32] and FeatureHouse [16]. Beyond FOP, other composition-based vari-
ability mechanisms have been explored, for instance, component frameworks, plug-in
architectures, and Aspect-Oriented Programming (AOP) [333, 22, 340, 117]. More-
over, Delta-Oriented Programming (DOP), an extension of FOP, has been proposed
that allows more complex refinements [322]. In my thesis, though, I use FOP as the
composition-based variability mechanism and specifically its FeatureHouse [16]
flavor. I made this choice because FOP has a sound formal foundation [18] and a
clear focus on physical separation of concerns, and because tool support (e. g., the
Eclipse-based FeatureIDE [358]) and open-source case studies2 are available.

In Listing 3.1, I show a selection of the feature modules of the FOP implementation
of my GraphLibrary SPL (see Listing 3.2 for the FM). For brevity, parts of the
implementation have been omitted, which is indicated by ... in the listing. The
feature module GraphLibrary, depicted in part (a) of the listing, introduces the
fundamental classes, such as Graph, Edge, and Vertex (see Lines 1–15, 16, and 17).

2See http://spl2go.cs.ovgu.de/ for a selection of SPL case studies.

http://spl2go.cs.ovgu.de/

3.4. Implementing Variability 33

1 class Graph { Feature GraphLibrary
2 List<Vertex> vertices;
3 List<Edge> edges;
4
5 Edge addEdge(Vertex from, Vertex to,
6 int weight) {
7 Edge e = new Edge(from, to);
8 ...
9 return e;

10 }
11
12 void run(Vertex v) {
13 /* to be refined by Algorithms */
14 }
15 }

16 class Vertex { ... }

17 class Edge { ... }

1 class Graph { Feature Weighted
2 Edge addEdge(Vertex from, Vertex to,
3 int weight) {
4 Edge e = original(to, from, weight);
5 e.setWeight(weight);
6 return e;
7 }
8 }

9 class Edge {
10 int weight;
11 void setWeight(int weight) {...}
12 }

(a) (b)

1 class Graph { Feature Number
2 void run(Vertex v) {
3 original(v);
4 numberVertex(v);
5 }
6
7 void numberVertex(Vertex v) {...}
8 }

(c)

1 class Graph { Feature Cycle
2 void run(Vertex v) {
3 original(v);
4 detectCycles(v);
5 }
6
7 void detectCycles(Vertex v) {...}
8 }

(d)

Listing 3.1: FOP-based implementation of the GraphLibrary product line

A feature module is said to introduce a program element (e. g., a class, method,
or field) if no other feature module has previously defined the respective program
element. Along with the class Graph, the method addEdge(Vertex, Vertex, int)
is introduced, whose responsibility is to attach a new edge to a given Graph object, as
well as the method run(Vertex) (see Lines 5–10 and 12–14, respectively). The body
of run(Vertex) is initially empty but in combination with the feature modules in
part (c) and (d) of the listing, run(Vertex) serves as a hook for running algorithms.

The feature module for feature Weighted is depicted in Listing 3.1 (b). This mod-
ule refines the classes Graph and Edge that were introduced by GraphLibrary. A
refinement in FOP adds new fields or methods to an existing class or overrides
existing methods. Refinement is similar to inheritance in Object-Oriented Program-
ming (OOP), with the key difference that inheritance extends a subclass relative
to its superclasses, whereas refinement makes extensions in the same class, relative
to the class’s introduction and refinements in other feature modules. Specifically,
Lines 10–12 in Listing 3.1 (b) add the field weight and the method setWeight(int)
to the class Edge. Lines 2–7, in turn, constitute a method refinement. Specifically,
method addEdge(Vertex, Vertex, int), originally introduced by GraphLibrary
(see Lines 5–10 in Listing 3.1 (a)), is refined. First, the refined method invokes the
original behavior by way of an original call (see Line 4 in Listing 3.1 (b)). Af-
terwards, the original behavior is extended by executing two additional statements
(see Lines 5 and 6). As this example shows, an original call is similar to a super
call in an object-oriented language, with the difference that a super call refers to

34 3. Highly Configurable Software Systems

a method in a superclass, whereas an original call refers to a method in the same
class but from another feature module.

The feature modules for the algorithms, Number and Cycle, are depicted in the
lower part of Listing 3.1, in subfigures (c) and (d), respectively. Both feature mod-
ules refine the class Graph and are implemented in a similar fashion. On Line 2,
they refine the run(Vertex) method. To this end, they use an original call
on Line 3 followed by a regular method call on Line 4 that invokes the respec-
tive algorithm (numberVertex(Vertex) or detectCycles(Vertex)). Hence, the
run(Vertex) method that GraphLibrary introduces as an empty hook is refined so
that it will run the algorithms that are selected in a given product.

Based on these feature modules, it is possible to derive products of the GraphLi-
brary SPL. Product derivation in FOP is more complex than just compiling each
file with a regular compiler. The reason is that a class in FOP does not necessarily
reside in a single file. Instead it may be divided into multiple introductions and
refinements. Hence, before compiling a class for a given product, all the relevant
introductions and refinements must be composed first. (Note that not just classes
need to be composed but also artifacts written in other languages, such as XML
documents.) The composition idea is borrowed from function composition in math-
ematics and also uses the symbol • as the composition operator. As an example, the
composition of GraphLibrary and Number, written as Number • GraphLibrary, is
shown in Listing 3.2. The tool performing the composition is called a composer and
its output depends on the chosen composition technique. FeatureHouse, the com-
poser that was used to produce the code in Listing 3.2, uses superimposition [16] as
the composition technique.3 As is shown in Listing 3.2, the result of superimposing
Number on GraphLibrary encompasses all the code from GraphLibrary, such as the
definition of class Graph including its fields vertices and edges (see Lines 1–3) and
the method addEdge(Vertex, Vertex, int) (see Lines 5–9). On Lines 13 and 16,
we see code from the Number feature. Remember from Listing 3.1 (a) and (b) that
both GraphLibrary and Number define a class named Graph. Superimposition has
connected these definitions with each other by adding the numberVertex(Vertex)
method to the composed Graph class. Similarly, superimposition has merged the
run(Vertex) methods that both GraphLibrary and Number define. On Lines 11–14,
the resulting method definition is shown, which closely resembles the defintion from
Number except that the original call was replaced with the method body from the
GraphLibrary feature module. Hence, the composed run(Vertex) method behaves
exactly as expected: First, it executes the original behavior of GraphLibrary and
afterwards, it invokes the behavior of Number.

In certain situations, the composition order is important, that is, the order in
which feature modules are composed. For example, the correctness of the pre-
condition checks for the refactorings I propose in my thesis (see Chapter 6, es-
pecially Section 6.4) depends on the composition order. As an illustration, con-
sider Listing 3.3, where two variants of the run(Vertex) method of class Graph are
depicted that result from different composition orders. In particular, the compo-

3Note that the actual output of FeatureHouse is more complex than the code shown in
Listing 3.2. To ease presentation, I show a simplified but functionally equivalent version. Details
about the way that FeatureHouse implements superimposition can be found elsewhere [16].

3.4. Implementing Variability 35

1 class Graph {
2 List<Vertex> vertices;
3 List<Edge> edges;
4
5 Edge addEdge(Vertex from, Vertex to, int weight) {
6 Edge e = new Edge(from, to);
7 ...
8 return e;
9 }

10
11 void run(Vertex v) {
12 /* to be refined by Algorithms */
13 numberVertex(v);
14 }
15
16 void numberVertex(Vertex v) { ... }
17 }

Feature module Number superimposed on feature module GraphLibrary, pro-
ducing the composition Number • GraphLibrary.

Listing 3.2: Composition of two feature modules of the GraphLibrary product line

sition Cycle • Number • GraphLibrary is shown in Listing 3.3 (a) and the com-
position Number • Cycle • GraphLibrary is shown in Listing 3.3 (b). In List-
ing 3.3 (a), numberVertex(Vertex) is executed before detectCycles(Vertex) (see
Lines 6 and 7) because feature Number is composed before feature Cycle. In List-
ing 3.3 (b), by contrast, the order of execution is reversed (see Lines 6 and 7) because
feature Number is composed after feature Cycle. Consequently, two products based
on the same code base and the same configuration can exhibit different behaviors
depending on the composition order. Therefore, analyses and transformations of
FOP-based SPLs must take the composition order into account to produce correct
results. In FeatureIDE, the default composition order is the level order of the
features in the feature diagram. However, other composition orders, including fully
customized ones, are possible.

For simplicity, the previous examples only showed the composition of a few features,
but the process can be easily extended to an arbitrary number of features. In this

1 class Graph {
2 ...
3
4 void run(Vertex v) {
5 /* to be refined by Algorithms */
6 numberVertex(v);
7 detectCycles(v);
8 }
9

10 ...
11 }

(a) Cycle • Number • GraphLibrary

1 class Graph {
2 ...
3
4 void run(Vertex v) {
5 /* to be refined by Algorithms */
6 detectCycles(v);
7 numberVertex(v);
8 }
9

10 ...
11 }

(b) Number • Cycle • GraphLibrary

Listing 3.3: Effects of different of composition orders in FOP

36 3. Highly Configurable Software Systems

way, given all the features in a product’s configuration, the code base for that product
is generated by composing the corresponding feature modules. The composed code
base is then compiled in the usual fashion to produce an executable product.

3.4.2 Annotation-Based Mechanisms

As explained in the previous section, composition-based variability mechanisms such
as FOP modularize all the code that implements a specific feature into one cohesive
unit. In contrast to this physical separation of concerns, annotation-based mechan-
isms provide a virtual separation of concerns [155, 13]. Virtual separation of concerns
means that all features are implemented in a single code base, and annotations are
used to mark code fragments that correspond to a given feature. In order to create
a specific product, annotated code is optionally excluded or modified by a prepro-
cessor before it is passed on to the compiler [13]. Hence, conditional compilation
is a central idea of annotation-based variability mechanisms: In contrast to non-
annotated code, which is always compiled into a product, annotated code is only
compiled if a certain condition is met during preprocessing.

There are many preprocessors that provide conditional compilation. One of the old-
est and most well-known preprocessors is the C preprocessor, cpp [166]. Beyond
that, there are many preprocessor with similar capabilities, such as XVCL or the
Java preprocessors jpp and Antenna [30, 144, 279, 11]. Most preprocessors em-
ploy textual annotations, but other approaches have been explored as well. CIDE,
for instance, uses colors to annotated variable code fragments [153], which has the
advantage that annotations do not clutter the code base. Among these choices,
I focus on the cpp in my thesis as the representative of annotation-based variability
mechanisms because it continues to be widely-used in industrial and open-source
projects [13].

The cpp, originally invented for the C programming language [166], is a general-
purpose, text-based preprocessor. The way cpp preprocesses text is controlled by
directives, for instance for macro definition (#define) or file inclusion (#include).
More important to my thesis are the conditional compilation directives, namely
#if, #ifdef, #ifndef, #else, #elif, and #endif. In a nutshell, feature code is
annotated with these directives so that the preprocessor can conditionally exclude
this code from compilation. Whether to include or exclude feature code depends on
whether the conditional expression of an #if (or #elif) is true or false. I refer
to such expressions as feature expressions. The most common form of a feature
expression is to test whether a name, which I call a feature constant, is defined as
a preprocessor macro or not. In fact, this form is so common that directives of the
form #if defined(X) can be abbreviated to #ifdef X. Hence, I will synonymously
use #ifdef in my thesis to refer to any of the cpp’s conditional compilation di-
rectives. Simple feature expressions can be combined to form more complex ones
using logical operators (such as && or ||). Apart from testing whether a feature
constant is defined, a conditional compilation directive can also involve an arith-
metic expression. For example, the GNU C library, glibc, contains the following
expression: defined __GNUC__ && __GNUC__ >= 2.4 The first part of the expres-

4See Line 54 in libio/oldstdfiles.c at revision 58b587c1f8 in git://sourceware.org/git/glibc.
git

git://sourceware.org/git/glibc.git
git://sourceware.org/git/glibc.git

3.4. Implementing Variability 37

sion tests whether the feature constant __GNUC__ is defined. If so, the second part,
an arithmetic expression, tests whether __GNUC__’s value is greater than or equal
to 2. Thus, the expression ensures that only a GNU C compiler of at least version 2
is used to compile the respective piece of feature code.

I illustrate the use of cpp conditional compilation with the help of the “Hello world”
program shown in Listing 3.4. Depending on how this code is compiled, three
distinct program variants can be created. The first variant simply prints “Hello
world!”; the second additionally asks the user to guess a number and always con-
gratulates him or her for guessing right; the third variant also asks for a number but
always claims the user guessed wrong. The inclusion of the corresponding feature
code (Lines 4, 8–9, 11, and 13) depends on the feature constants GUESS_POS and
GUESS_NEG. Specifically, if GUESS_POS or GUESS_NEG are defined, Lines 4 and 8–14
are preprocessed further. If, on the contrary, neither feature constant is defined,
all of these lines are excluded. It is possible to nest #ifdefs, in which case the
processing of the inner #ifdef depends on how the outer #ifdef is evaluated. In
Listing 3.4, the #ifdef spanning Lines 10–14 is nested. Considering this #ifdef in
isolation suggests that the program will always respond negatively (i. e., execute the
statement on Line 13) if GUESS_POS is undefined. However, this is not entirely cor-
rect because this #ifdef is nested within the #ifdef starting on Line 7. If neither
GUESS_POS nor GUESS_NEG are defined when this outer #ifdef is preprocessed, the
inner #ifdef will be skipped entirely.

1 #include <stdio.h>
2 int main(int argc, char **argv) {
3 #if defined(GUESS_POS) || defined(GUESS_NEG)
4 int x;
5 #endif
6 printf("Hello world!\n");
7 #if defined(GUESS_POS) || defined(GUESS_NEG)
8 printf("What is my favorite number? ");
9 scanf("%d", &x);

10 # ifdef GUESS_POS
11 printf("Yes, %d is my favorite number!\n", x);
12 # else
13 printf("No, %d is my favorite number!\n", x+1);
14 # endif
15 #endif
16 return 0;
17 }

Listing 3.4: A “Hello world” program with annotation-based variability

For completeness I want to mention that highly configurable systems frequently
combine preprocessor-based variability with build system variability. Build system
variability essentially means that certain source files are either compiled into the
product or not depending on a given configuration (Apel et al. [13], Chapter 5).
There are multiple possibilities to implement this form of conditional compilation.
One possibility is to generate build scripts that are tailored to a specific config-
uration. The Gnu Autotools5 framework is an example of such an approach.

5https://www.gnu.org/software/automake/manual/html node/index.html

https://www.gnu.org/software/automake/manual/html_node/index.html

38 3. Highly Configurable Software Systems

Another possibility is the use of conditionals of the Makefile language.6 Such condi-
tionals work similarly to #ifdefs but instead of controlling the inclusion or exclusion
of lines of source code, conditionals control whether or not a Makefile rule is eval-
uated, and thus, whether or not a file is compiled into the product. Build system
variability is a coarse-grained variability mechanism that is only applicable if an en-
tire file consists of feature code. Some researchers propose it as the sole variability
mechanism [350] but this is rare. More commonly, systems take the Linux route
and combine the coarse-grained variability offered by the build system with the fine-
grained variability of preprocessor annotations [40, 70].

3.4.3 How Variability Mechanisms Affect the Shape of Fea-
ture Code

In this section, I discuss how annotation-based and composition-based variability
mechanisms affect the shape of the code in different ways. To this end, I comple-
ment the composition-based implementation of the GraphLibrary SPL shown in
Listing 3.1 with the annotation-based implementation shown in Listing 3.5. Al-
though cpp directives are more common in C or C++ code, I chose Java as the
host language to keep both implementations as close to each other as possible.

1 class Graph {
2 List<Vertex> vertices;
3 List<Edge> edges;
4
5 Edge addEdge(Vertex from, Vertex to,
6 int weight) {
7 Edge e = new Edge(from, to);
8 #ifdef Weighted
9 e.setWeight(weight);

10 #endif
11 ...
12 return e;
13 }
14
15 void run(Vertex v) {
16 #ifdef Number
17 numberVertex(v);
18 #endif
19 #if defined(Cycle) && defined(Directed)
20 detectCycles(v);
21 #endif
22 }

23 #ifdef Number
24 void numberVertex(Vertex v) {...}
25 #endif
26
27 #ifdef Cycle
28 # ifdef Directed
29 void detectCycles(Vertex v) {...}
30 # endif
31 #endif
32 }

33 class Vertex { ... }

34 class Edge {
35 #ifdef Weighted
36 int weight;
37 void setWeight(int weight) {...}
38 #endif
39 ...
40 }

Listing 3.5: Annotation-based implementation of the GraphLibrary product line

A comparison of Listing 3.1 and Listing 3.5 reveals that the FOP-based imple-
mentation looks considerably different from the cpp-based implementation. Both
implementations are functionally equivalent, so these differences must be rooted in
the chosen variability mechanism. Indeed, the literature has identified a number of
aspects by which variability mechanisms can be distinguished, including scattering,

6https://www.gnu.org/software/make/manual/html node/Conditionals.html

https://www.gnu.org/software/make/manual/html_node/Conditionals.html

3.4. Implementing Variability 39

tangling, and the granularity of feature code [343, 89, 32, 158, 155]. In the following
paragraphs, I explain these aspects in detail. Moreover, I outline how they affect
the shape of feature code because the shape is important to the way in which code
smells appear.

Scattering and tangling. Taking the feature Weighted as an example, we observe
that the FOP-based implementation encapsulates the corresponding feature code in
a single place, the feature module (see Listing 3.1 (b)). The same feature code is also
present in the cpp-based implementation but it is scattered over multiple locations
(see Lines 9, 38, and 39 in Listing 3.5). Moreover, feature code in the cpp-based
implementation is tangled with the base code and with other feature code (e. g., on
Lines 20 and 29). Scattering and tangling of feature code are typical for annotation-
based variability mechanisms and are often seen as an obstacle to traceability and
modular reasoning about the implementation of a feature [343, 89, 32, 155].

Interestingly, the composition-based implementation in Listing 3.1 exemplifies an-
other kind of scattering: The implementation of the Graph class is scattered across
all four feature modules in the listing. Hence, a programmer would have to inspect
four files and mentally compose them to understand the Graph class in its entirety.
Inheritance in OOP has a similar effect: In order to fully understand a subclass, the
developer also has to take its superclasses into account. This reasoning lead to spec-
ulations that inheritance makes programs harder to understand [200] and should be
taken into account as a software quality metric [51]. However, empirical studies of
this matter are inconclusive, with some suggesting that deep inheritance hierarchies
are detrimental to software quality [28, 46] and others suggesting they are not [356,
87] or only in certain cases [352]. Consequently, it is open to debate whether FOP’s
scattering of program elements (e. g., classes or methods) is problematic.

Code obfuscation. Apart from scattering and tangling, annotation-based varia-
bility mechanisms are criticized for obfuscating the source code of the underlying
programming language (e. g., [343, 89, 213]). There are signs of obfuscation in List-
ing 3.5. Specifically, 14 out of 40 lines of code consist of preprocessor directives.
Since these directives are interleaved with the source code, understanding the pro-
gram may be difficult. Code obfuscation as well as scattering and tangling are the
reasons why “#ifdef [is] considered harmful” by some researchers [343] and why
others even speak of “#ifdef hell” [213].

Granularity. The granularity of variability is a further important difference be-
tween annotation- and composition-based mechanisms [158]. Composition-based
variability mechanisms provide only coarse-grained variability. Specifically, intro-
ductions in FOP can add new classes, fields, and methods, and refinements can add
statements at the beginning or end of a method. However, adding statements in the
middle of a method or adding parameters to a method signature is impossible or re-
quires cumbersome workarounds [156, 157]. The cpp, by contrast, allows individual
statements and (parts of) expressions to be annotated, down to the level of single
characters [158]. As a consequence, it handles fine-grained feature interactions on
the implementation level, such as the optional feature problem, more gracefully than
FOP [159, 155].

40 3. Highly Configurable Software Systems

While beneficial in certain situations, the fine-grained variability offered by the cpp
can lead to undisciplined annotations [206]. An annotation is called undisciplined
if it does not align with a syntactical unit of the host programming language. For
example, annotating an entire statement is disciplined but annotating a single open-
ing brace is not. Not only do such annotations pose problems for refactoring and
other automated analyses and transformations [2, 23, 35, 112, 115, 113, 114, 154,
157, 296, 345, 344, 369, 370], but several studies also suggest that they hinder pro-
gram comprehension [238, 221, 240]. However, there is also contradicting evidence,
suggesting that the lack of annotation discipline by itself is harmless [327]. Even
though the discussion about harmfulness is still ongoing, refactorings have already
been proposed that transform undisciplined into disciplined annotations [206, 240].

Undisciplined annotations can be seen as one of the first variability-aware code smells
because they posses all of the important properties: They are a distinctive pattern
in the source code that is directly tied to the (mis)use of a variability mechanism.
Moreover, there is evidence that this pattern occurs in real-world software and that it
may be harmful. One of the goals of this thesis is to research whether further patterns
with similar properties exist. As such, the work on undisciplined annotations has
served as an inspiration and motivation for this thesis.

To summarize, composition- and annotation-based variability mechanisms differ
with regards to the separation of concerns, code obfuscation, and granularity. As
I explain in more detail in Chapter 4, these differences profoundly affect how the
code of the underlying host language is shaped and, consequently, how code smells
appear.

3.5 Clone & Own Variant Development
Not all software product families are developed with the help of structured SPLE ap-
proaches such as FOSD. Reports from the industry show that companies frequently
choose the clone-and-own strategy [91, 245, 79, 317, 349]. In a nutshell, clone-
and-own means that a new development artifact is created by copying an existing,
similar artifact and adapting the copy until the new requirements are met. The
size of the cloned artifacts varies, ranging from a handful of functions and individ-
ual components to entire products [79]. In my thesis, I focus on the upper end of
the range, that is, on cloning of entire products as way to create a software product
family. Although cost-effective in the short term, clone-and-own causes maintenance
problems in the long term, as I will outline in this section. As part of my thesis,
I propose an approach to migrate clone-and-own product families into an SPL to
alleviate those problems (see Chapter 6). In this section, I provide the background
to my approach. In particular, I explain why and how companies apply clone-and-
own, which problems this may induce, and how clone-and-own relates to code clone
detection and refactoring.

3.5.1 Reasons for Clone & Own

The benefits of SPLE as a way to develop software product families have been
known for several decades. This raises the question why companies continue to
employ unstructured reuse via clone-and-own. The interview study by Dubinsky
et al. reveals four main reasons [79]:

3.5. Clone & Own Variant Development 41

1. Efficiency. Clone-and-own is perceived as a simple but efficient reuse mech-
anism because development starts from already implemented and verified artifacts.
Sometimes unawareness of other reuse strategies is the reason for this perception.
In other cases, it is rooted in previous failed attempts at adopting systematic reuse.

2. Independence. In contrast to other reuse strategies, developers can freely
change cloned artifacts. Neither do they have to worry about side effects on other
products, nor do they have to synchronize release cycles with the remaining product
family as it is the case with SPLE. These reasons make clone-and-own popular in
the industry, but also in the open-source world, where it often takes the form of
forking [270, 349, 43]. To fork is to start a new project by copying the version con-
trol repository of an existing project. Open-source developers fork for a variety of
reasons, for example to reactivate an abandoned project, add missing functionality,
remove unneeded functionality, or to customize the project for their own use case.
Industrial developers also fork, but their reasons are more related to management as-
pects [80]. For example, companies fork to accommodate different release schedules
and to reduce coordination overhead.

3. Short-term thinking. Companies using clone-and-own tend to focus on the
success of individual products while, at the same time, postponing reuse issues until
later. Therefore, they are unable or unwilling to invest in systematic reuse.

Sometimes the success of a new product is uncertain or the size of the future product
family is unknown [183]. A comparison of the costs of different approaches to develop
a program family reveals that clone-and-own is a sensible choice in such a situation.
In Figure 3.3, I plotted the costs for single product development and for SPLE based
on estimates reported in the literature (see Clements and Northrop [53], p. 226f. and
Pohl et al. [295], p. 9f.). Similar estimates are unavailable for clone-and-own, which
makes it difficult to determine exactly where its cost curve lies. In Figure 3.3, it
was placed between single product development and SPLE based on the following
reasoning: On the one hand, reuse through cloning is more efficient than single
product development, where everything is developed from scratch. On the other
hand, reuse through cloning is less efficient than SPLE, where reuse is structured
and planned. Comparing all cost curves in Figure 3.3, we see that SPLE clearly
pays off for a large number of variants. At the same time, its initial planning phase
makes SPLE more expensive than the other options when only a few variants are
developed. This planning phase requires an up-front investment that will never be
recovered if some of the variants fail. Considering single system development and
clone-and-own, we notice that neither one requires such an up-front investment.
Additionally, we notice that the costs of clone-and-own rise more slowly than the
costs of single system development as the number of variants increases. Hence, if the
success or the number of future variants are uncertain, clone-and-own is the most
attractive and cost-efficient option of all three.

4. Lack of governance. Systematic reuse requires a certain organizational struc-
ture and specific roles that are responsible for managing and measuring reuse. Con-
versely, the absence of such roles favors clone-and-own as the reuse approach. It
is therefore not surprising that clone-and-own (forking, in particular) is common in
the loosely organized open-source world [270, 349, 43]. However, companies, too,

42 3. Highly Configurable Software Systems

1 2 3 4 5 6

●

●

●

●

●

●

Number of products

C
um

ul
at

iv
e

co
st

 o
f p

ro
du

ct
s

●

Single product development
Product line engineering
Clone & own?

Figure 3.3: Comparison of product line engineering with single-product development
and clone & own (Adapted from Clements and Northrop [53], page 227)

frequently lack the organizational structure for managing reuse and, thus, resort
to clone-and-own [79]. Since such companies typically do not measure reuse, they
cannot even quantify whether clone-and-own is economically sensible or whether
a systematic reuse approach would suit them better.

3.5.2 Technical Realization

Clone-and-own is usually implemented with the help of the branching or forking ca-
pabilities of a Version Control Systems (VCSs) such as subversion, or git (cf. [350,
79, 317] as well as Apel et al. [13], Chapter 5). Branching and forking are concep-
tually similar with regards to clone-and-own but the technical details differ. For
simplicity, I focus on branching in this section but I briefly return to forking at the
end.

Feature branches. Before explaining why branching is problematic for variant
development, it is helpful to understand how branching is used in single-product
development. Branching in single-product development is used extensively to isolate
concurrent changes from each other. I call this style of using branches the feature-
branch style, and it is illustrated in Figure 3.4. All activity in this example is
centered around the main branch (shown in light gray), which is where the stable
version of the product is developed. Whenever a new feature is implemented or
a bug is fixed, the developer branches off of the main branch and creates a so-called
feature branch, such as the branch bugfix (shown in orange). A branch is essentially
a copy. Hence, the developer working in the bugfix branch can experiment freely
without accidentally breaking the stable product in main and without disturbing
the development of feature A and B, which takes place in separate branches (shown
in blue and red). Once the bugfix has stabilized, it is integrated into the stable
product by merging the corresponding changes (commits C8 and C11) back into the
main branch. Afterwards, the bugfix branch is closed.

The merge step is critical because concurrent changes can cause merge conflicts.
A merge conflict occurs if commits in concurrent branches affect the same code. For
example, if the commits C8 in bugfix and C9 in main change the same line in the same

3.5. Clone & Own Variant Development 43

C1

branch

C2

C8

C9

C3

C6

merge
C3, C5

C5

C12

branch

C11bugfix

feature-A

merge
C8, C11

main C4

branch

C7

merge
C7, C10, C13

C13

C14

feature-B C10

(closed)

(closed)

(closed)

Figure 3.4: Branching and merging in single-product development

file, then the attempt to merge the bugfix back into main will cause a merge con-
flict [247]. Simple merge conflicts can be resolved automatically, but more complex
conflicts must be resolved manually by a developer, which is time-consuming and
error-prone. How to avoid such conflicts is still not well understood [201]. Therefore,
the only safe advice is to organize work in such a way that changes in each branch
are focused on distinct parts of the code base.

Advantages of the feature-branch style. Using branches in the style described
above does not eliminate merge conflicts or other problems related to concurrent
development but it helps avoid them. The following properties in particular are
helpful.

1. Feature branches are created for a specific, narrow purpose. Keeping the
purpose narrow ensures that a feature branch only contains commits related
to its purpose. It is not necessary to manually cherry-pick which commits to
merge into the target branch and which to leave out. As a consequence, both
effort and the potential for errors remain low.

2. Feature branches are short-lived, which limits the amount of concurrent changes
that can occur in the parent branch. Moreover, the developers in different
branches work on a single product, and, assuming proper coordination, are
aware of each other’s activities. Due to these factors, changes are rarely merged
into a code base that contains unknown modifications, that is, modifications
that can cause merge conflicts or, worse, semantic conflicts from which bugs
arise.

3. Finally, the rule to determine the merge target is simple: A feature branch is
merged back into the branch from which it was created. Not only does this rule
avoid the problems connected to merging changes into a unknown environment
(see previous point), but it also minimizes the risk of missing a merge target.

These helpful properties are lost when branches are used for variant development.
I explain this style of using branches next.

44 3. Highly Configurable Software Systems

C1

branch

C2

C3

merge
C4, C9

C5

bugfix

variant-2

variant-1

branch

C6 C11

C15

variant-3 C8

C10 C14C12

merge
C4, C9

C13

merge
C14

C7C4 C9

Figure 3.5: Branching and merging for variant development (Adapted from Apel et
al. [13] and Pfofe [292])

Variant branches. In Figure 3.5, I illustrate the variant-branch style, which is how
clone-and-own uses branches. The example encompasses three variants, the original
product, Variant 1, and the derived products, Variant 2 and 3. Every variant is
developed in its own branch, variant-1, variant-2 (branched off at commit C2), and
variant-3 (branched off at commit C5). Each of those branches contains commits
that are unique to that branch, such as C7, which only occurs in variant-1. These
are the commits that implement variant-specific changes. For example, commit C7
may implement a feature that is exclusive to Variant 1. In contrast to these variant-
specific commits, other commits are merged to multiple variants. For example, the
commits C4 and C9 fix a bug in an artifact that was cloned to all three variants.
Thus, C4 and C9 are merged from variant-1 to variant-2 and variant-3. Commit
C14, in turn, comprises an enhancement that was first implemented for Variant 2
but is also needed in Variant 1. For this reason, C14 was merged from variant-2 to
variant-1.

Disadvantages of the variant-branch style. The style depicted in Figure 3.5
works well for keeping variant-specific changes local but it causes problems for
changes to reused (cloned) artifacts. The reason is that the helpful properties of
the feature-branch style no longer hold. In particular:

1. Variant branches lack the narrow purpose of feature branches. Variant-specific
adaptations, such as commit C7, are mixed with changes to cloned artifacts,
such as the bugfix in commits C4 and C9. Thus, the commits that imple-
ment a change to a cloned artifact must be cherry-picked before they can be
propagated to other variants. This is tedious and error-prone.

2. Variant branches are long-lived. Over time, variant-specific adaptations accu-
mulate and the implementations of cloned artifacts start to deviate [386]. The
lack of coordination among the developers of different variants, which is typical
for clone-and-own [79], contributes to these deviations. As a result, changes
to cloned artifacts are increasingly difficult to merge because the source and
the target of the merge are increasingly dissimilar. In extreme cases, changes

3.5. Clone & Own Variant Development 45

must be reimplemented manually, resulting in repetitive work and additional
costs [79].

3. Finally, there is no simple rule to decide where to merge which changes and
reuse is rarely documented when clone-and-own is used. Consequently, the
developer performing a merge may fail to remember all the relevant merge
targets [147, 79]. For instance, the developer implementing the bugfix in the
example in Figure 3.5 might propagate the fix to Variant 2 but forget Vari-
ant 3, leaving the variant vulnerable.

A final drawback of the variant-branch style is the difficulty to create variants that
encompass new feature combinations (Apel et al. [13], p. 104). As an example,
assume that branch variant-1 implements features A and B, and branch variant-2
implements features C and D. Based on these branches, a new variant should be
created that comprises only features A and C, but not B or D. Creating this new
variant through a simple merge is impossible because the implementations of A
and B are tangled with each other and likewise, the implementations of C and D
are tangled with each other. As a result, the corresponding feature code must be
extracted first, which is a time-consuming, costly process [315].

Forking. Apart from relying on the branching capabilities of the version control
systems, the variant-branch style can also be implemented with the help of forking:
To create a new variant, the version control repository of an existing product is
copied and all variant-specific adaptations are applied to the copy, called the fork.
Hosting services, such as GitHub, allow developers to maintain a traceability link
between the original repository and the fork [349]. Through this link, it is possible
to propagate changes between repositories by way of a pull request. A pull request
essentially comprises a list of commits that implement a particular change, along
with a description of that change. Sending a pull request to the maintainers of
another, linked repository is an invitation for them to integrate the change into their
own repository. If they accept, all the respective commits are merged (“pulled”) into
their repository.

Forking is used both in the industry and in open-source to develop variants [79,
270]. Even though the technical details differ, using forks or (variant-style) branches
for variant development is essentially the same approach: Variants are created by
copying and freely adapting a code base, change propagation involves cherry-picking
and merging commits, and whether the variants stay synchronized depends on the
memory and good will of the maintainers. As a consequence, the problems for
variant development are also the same.

3.5.3 Negative Effects of Clone & Own

The previous section already mentioned some technical problems, such as merge
conflicts, that arise from clone-and-own but further problems have been documented
in the literature [386, 147, 300, 79, 39, 80, 349]. I summarize these problems in this
section.

46 3. Highly Configurable Software Systems

Missed reuse opportunities. Studies of clone-and-own in open-source and the
industry report several reasons why reuse opportunities are missed. First, if reuse
is not valued, developers tend to implement new solutions right away without even
trying to identify existing, reusable solutions [386, 79]. Second, even if the de-
velopers are willing to reuse, decentralization of information and the lack of reuse
management cause problems [349, 386, 79, 80, 39]. In particular, developers using
clone-and-own report having difficulties maintaining an overview of existing features
and bugfixes, especially in program families comprising a large number of variants.
Hence, reuse only happens if they happen to remember a reusable solution or are
willing to actively search for one.

Unpropagated changes. When clone-and-own is used, changes to reused artifacts
originate in one variant and then must be actively propagated if other variants
should also benefit. Change propagation sometimes does not always take place,
and the resons for that differ depending on who is responsible for initiating the
propagation process: If the implementors of the original change are responsible,
they face the problem that reuse is not documented. As a result, they sometimes
forget to propagate a change to all the necessary target variants [147]. If, on the
other hand, the maintainers of the target variants are responsible, they may not be
aware of new changes from other variants, or are unable or unwilling to spend time
and effort on integrating them [349]. The consequences are the same in both cases:
Some variants do not receive new features or worse, are left vulnerable to bugs, even
though fixes already exist.

Change propagation is costly. Developers from the open-source world report
that integrating changes from other forks requires a large amount of developer ef-
fort [300, 349]. The sheer number of changes is one factor, but the need to review
and possibly revise changes from other forks also plays a role. Companies relying on
clone-and-own face similar problems but since they typically do not measure reuse,
they cannot quantify the costs that arise from these problems [79].

Proliferation of incompatible solutions. Solutions that have not been designed
with reuse in mind can be too specialized and inflexible to be reused for a similar
problem [79]. Thus, highly specialized, incompatible solutions are implemented
multiple times, wasting development effort and causing the code in different variants
to diverge from each other. A case study report from Yoshimura et al. indicates that
the extent of such divergencies quickly reaches a point where a switch from clone-
and-own to SPLE becomes infeasible [386].

Unexpected costs. Even though clone-and-own is perceived as a simple reuse ap-
proach, it can be difficult in surprising ways. Identifying the ideal source artifact for
cloning is sometimes hard, especially when there are many similar artifacts to choose
from [79]. The following step, integrating the clone, is also sometimes more complex
than anticipated. In severe cases, the attempt to clone-and-own is abandoned and
the required artifact is rewritten instead.

Repetetive tasks. Finally, developers working with clone-and-own complain about
an excessive number of repetitive tasks [79]. For example, if a bug is discovered,
multiple clones have to be checked whether they also contain the bug. Once the

3.6. Code Clones 47

bug is fixed, the bug must be propagated or, if that is infeasible, reimplemented.
Repetitive tasks are not limited to code but also involve other areas such as running
tests or updating the documentation. Not only are these tasks tiresome, they also
cost time and money, and the cost increases with each additional variant.

3.5.4 Summary

Clone-and-own as a reuse approach requires minimal planning and makes the cre-
ation of new variants quick and cheap. However, clone-and-own becomes expensive
during maintenance and evolution when change propagation takes up a substantial
share of the development effort. The root cause of these problems is that clone-
and-own focuses on the differences between variants but neglects the fact that vari-
ants share a lot of commonalities (cf. Apel et al. [13], Chapter 5). Maintaining and
evolving these commonalities efficiently is the strength of SPLE but the weakness
of clone-and-own.

The larger a software product family grows, the more apparent the weaknesses of
clone-and-own will become. At some point a migration to an SPL is desirable.
In Chapter 6, I propose an approach to migrate a clone-and-own product family
to an SPL. My approach was inspired by the insight that many of the problems
that plague clone-and-own are well known from research on code clones. I outline
the fundamentals on code clones next, thus providing the necessary background for
Chapter 6.

3.6 Code Clones

Code clones are pieces of source code that occur in the same or similar form in
multiple locations [312]. As mentioned in Section 2.1, the code smell community
knows code clones under the name Duplicated Code (Fowler et al. [107], p. 76).
Usually, code clones result from copying a piece of code from one location to another,
optionally customizing the copy afterwards [152].

If there are just two pieces of code that are similar, they are called a clone pair [312].
If three or more pieces of code are involved, the more general terms clone class or
clone group are used.

With these definitions in mind, I will devote the rest of this section to describing
types of code clones and techniques to detect them. Afterwards, I summarize em-
pirical studies of the negative effects of code clones on software development and
describe approaches to deal with code clones.

More comprehensive overviews of code clone research are found elsewhere [181, 313,
312]. Specifically, Koschke explains why code is cloned and which consequences
this has. Moreover, he covers the evolution of clones, ways to detect, manage and
remove them, as well as approaches to present clone detection results (Koschke [181],
Chapter 2). Roy et al., in turn, focus on code clone detection. They present a
classification of different types of code clones, give an overview of the available
detection techniques and tools, and evaluate the suitability of those tools in different
scenarios [313, 312]. For a thorough treatment of code clones specifically in SPLs,
see Schulze’s thesis [323].

48 3. Highly Configurable Software Systems

3.6.1 Types of Code Clones

Code clones differ in their degree of textual similarity, which impacts the refactorings
required to consolidate them. Roy et al. categorize clones into four types, namely,
Type-1 to Type-4 clones [312]. The category number aligns with the degree of
similarity between the original and the cloned fragments, with Type-1 clones having
the highest similarity and Type-4 clones the lowest.

In Listing 3.6, I show examples of Type-1 to Type-3 clones, which are the types
that are most relevant for my migration approach. The original code fragment
is depicted in Listing 3.6 (a) and the cloned fragment is shown in (b). Type-1
clones, highlighted in green, are exact copies of each other, except for changes in
whitespace or comments. Type-2 clones subsume all Type-1 clones, but also allow
for renaming (for instance, function or type names may differ). In Listing 3.6, the
green and yellow areas together form a Type-2 clone. Type-3 clones allow further
modifications beyond simple renaming. Specifically, they allow statements to be
added, deleted, or changed with respect to the original code. There is a special name
for a Type-3 clone that only encompasses added, deleted, or changed statements
but no renames: It is called a gapped clone. Together, the green, yellow, and red
areas in Listing 3.6 form such a clone. Finally, there are also Type-4 clones, but
they are not depicted in Listing 3.6. Type-4 clones, also called functional clones,
implement similar functionality but share little or no textual similarity [312]. Instead
of resulting from copy and paste programming, they often constitute independently
implemented solutions for the same or similar problems.

1 void calc(int a) { Type-2
2 if (a >= n) { Type-1
3 c = a + 1; // Comment 1
4 } else
5 c = a + 1; // Comment 2
6 }
7

(a) Original code

1 void recalc(int a) { Type-2
2 if (a >= n) { Type-1
3 c=a+1;
4 d=a+1; Type-3
5 } else
6 c=a+1; // Comment 2
7 }

(b) Code clone

Examples of code clones of Type-1 to Type-3. The red areas form Type-1 clones.
Red and yellow together form a Type-2 clone. Red, yellow and green together
form a Type-3 clone.

Listing 3.6: Examples of different types of code clones

In clone-and-own product families, all of these clone types are possible. Assuming
there are two products in the family, product A and product B, then all program
elements that were only copied but never modified will be Type-1 clones. If iden-
tifiers (e. g., variables or type names) or constants (e. g., numbers or string literals)
have been changed, there will also be Type-2 clones. Small additions, deletions, and
modifications, such as some added statements inside a function, will lead to Type-3
clones. Type-4, in turn, will be signs of functionality that was implemented indepen-
dently in both products. According to the literature, such duplicate implementations
can also arise from clone-and-own, especially if the product family is large or if there
is little coordination between the teams working on different variants [386, 79, 349].
Unfortunately, Type-4 clones are almost impossible to detect automatically [312]

3.6. Code Clones 49

(more on clone detection in the next section). Finally, there may be some code is
not cloned. Such code may encompass a customization or a feature that only exists
in a single variant. It could also be a bugfix that was never propagated.

3.6.2 Code Clone Detection

Manual clone detection is tedious and error-prone, especially in cloned product fam-
ilies that contain large amounts of code clones. Therefore, my migration approach
relies on automatic code clone detection.

Classification. Many clone detection techniques have been proposed in the litera-
ture. Roy et al. classify them into text-based, token-based, tree-based, and metrics-
based techniques [312]. The differences lie in efficiency, programming-language in-
dependence, and the types of clones each technique can detect. For example, text-
based clone detectors are highly efficient and handle gapped clones well but they
tend to miss clones with minor variations, such as formatting or names [312]. Tree-
based detectors, by contrast, are more robust to such to differences but since they
depend on a parser, they are highly language-dependent and computationally ex-
pensive [312].

The migration approach I propose in this thesis (see Chapter 6) relies on a token-
based detector, which falls somewhere in the middle of the design spectrum: Com-
pared to text-based clone detectors, it handles minor variations better. At the same
time, it is more efficient and less language-dependent than tree- or metrics-based
detectors [312].

Token-based. Tokens are the smallest syntactical units of a programming language,
such as keywords, identifiers, and braces. Token-based clone detectors (e. g., [24,
25, 149, 203]) convert the input text into a token sequence and detect clones by
searching for runs of identical tokens [312]. Some token-based detectors can deal
with renaming and are thus able to find Type-2 clones.

The quality of the results of token-based clone detectors critically depends on the
clone length, which is the number of tokens that must be identical so that a clone
pair is reported. If this number is too low, too many irrelevant clones are reported
and precision suffers. If, on the other hand, it is too high, too many relevant clones
are not reported and recall declines.

In a migration context, the biggest disadvantage of token-based clone detectors is
that they do not respect the boundaries of syntactical units of the programming
language. For example, they report clones that start at the end of one function and
end at the beginning of the following function [245]. Such results are not meaningful
as they actually contain two shorter clones that just happen to appear next to each
other in the source code.

Summary. Clone detectors generally support Type-1 and 2 clones well, but few
tools can handle Type-3 or 4 clones [312]. The focus on low-level similarities and
the failure to respect syntactical boundaries (in the case of text- and token-based
detectors) is a challenge in a migration context because features are high-level and
typically comprise program elements in multiple locations. Moreover, the focus

50 3. Highly Configurable Software Systems

on similarities means that systematic variations between similar but not identical
features may be missed. Thus, clone detection can support migration but it needs
to be complemented with other techniques and must be guided by human expertise.

3.6.3 Effects of Cloning

Fowler et al. list Duplicated Code as “number one in [their] stink parade” of code
smells (Fowler et al. [107], p. 76). A lot of research on the effects of cloning agrees
with that assessment. In particular, code clones increase maintenance effort because
cloned code is changed more frequently than other code [217, 216]. Moreover, the
failure to propagate changes to all members of a clone class code causes problems,
such as inconsistent bugfixes [203, 147]. Increased fault-proneness is further negative
consequence of cloning, especially for long clones comprising several hundred lines
of code [259].

Other findings, however, indicate that cloning is sometimes harmless and can even
be a reasonable design choice [59, 177, 152, 197, 299, 371]. For example, Cordy, as
well as, Kapser and Godfrey point out that extending an existing solution for reuse
bears the risk of introducing faults [59, 152]. In finance, among other domains, the
cost of such faults can be so high that developers rather resort to clone-and-own.

The aforementioned work has studied the effects of cloning in single software systems
but we must keep in mind that clone-and-own as a way to develop program families
produces clones on a massive scale. As discussed in Section 3.5, managing clones at
such a scale is a major challenge in terms of coordination and maintenance effort.
Since the prerequisite organizational structures are usually missing when clone-and-
own is used, the challenge is often too great.

3.6.4 Dealing with Code Clones

Once a clone detector has analyzed a software system, the question is what to do
with the results. A first possible step is to assess the cloning situation with the
help of visualizations. Such visualizations provide an abstract overview that helps
development teams gauge the extent of cloning and identify hotspots that require
particular attention. Treemaps, scatter plots, and heat maps, among others, have
proven useful in this regard [304, 212, 134].

After assessing the cloning problem, developers basically have two options of dealing
with the detected clones. The first option is to consolidate code clones through refac-
toring. This option is frequently advocated and it is also the option that I pursue in
this theses. However, consolidation is not always feasible, for example because clones
do not align with syntactic units [24] or because limitations of the programming lan-
guage render certain refactorings impossible [263]. In such cases, developers have
a second option, clone management. The core idea is not to remove the clones but to
reduce their negative effects. To this end, editor-based solutions have been proposed,
which help developers change clones consistently [253, 361, 77, 138, 78]. Some clone
management approaches also identify the creation of new clones by actively mon-
itoring copy and paste activities [138] or by taking evolutionary information from
the version control repository into account [268].

3.6. Code Clones 51

In my thesis, I have not explored the applicability of clone management techniques
to migrate cloned product families to an SPL. Instead, I focus on code clone con-
solidation, which I discuss in more detail next. More comprehensive treatments on
approaches to deal with code clones can be found in the overviews by Koschke [181]
and Roy et al. [312] as well as the dissertation by Schulze (Schulze [323], Chapter 2).

Code clone consolidation. Early work by Baxter et al. relies on function-like
macros to consolidate clones [36]. Specifically, their clone detector generates a cpp
macro for each clone class and replaces the original locations of the cloned code with
an invocation of the macro.

In languages such as C, function-like macros are sometimes the only available solu-
tion, but other languages provide a similar, but safer solution in the form of generic
programming (e. g., templates in C++ or generics in Java). By using placeholders
instead of concrete types, generic programming is effective at unifying two algorithms
or data structures that only differ in the types involved [29].

Design patterns [108, 165] are another, more heavy-weight solution for clone consol-
idation. Balazinska et al. present a redesign process based on the strategy and
the template design patterns that is especially suitable for consolidating Type-2
and 3 clones [27, 26]. The core idea is to refactor the commonalities of the clones
into one class and to refactor the variations into one ore more helper classes.

A large body of work proposes object-oriented refactorings as a means to consolidate
clones [81, 135, 132, 136, 136, 133, 148, 199, 263, 326, 385, 392]. For my migration
approach (see Chapter 6), the Pull Up family of refactorings (Fowler et al. [107],
p. 320ff), comprising Pull Up Method, Pull Up Constructor Body and
Pull Up Field, is the most relevant. Many authors propose Pull Up refactorings
to consolidate clones in a single software system [81, 135, 132, 133, 385, 136, 326, 199,
392]. These refactorings apply when several subclasses with a common superclass
define a method, constructor or field in the same way (i. e., as a Type-1 clone).
To consolidate such definitions, one definition is copied to the superclass and the
redundant definitions are deleted from the subclasses.

As Ducasse et al. already pointed out, the context of clones determines which re-
factorings can be used [81]. For instance, Pull Up Method is only applicable if
the cloned methods reside in classes with a common superclass. Sometimes, such
a superclass can be introduced, in which case Extract Superclass or Extract
Intermediate Superclass are possible solutions [385, 136, 199, 392]. If not,
other refactorings may be applicable, such as Move Method [136, 326, 199], Ex-
tract Class [136, 199], and Extract Utility Class [263, 392]. If none of these
refactorings work, for example, because the clones only cover parts of a method, pre-
liminary refactorings may be of help [81, 135, 148]. Preliminary refactorings prepare
the code base for code clone consolidation. To this end, several refactorings have
been proposed, including Form Template Method, Parameterize Method,
and, most commonly, Extract Method [81, 135, 132, 133, 136, 148, 199, 326,
392].

In addition to the above mentioned OOP refactorings, AOP refactorings have also
been considered for clone consolidation. In particular, Extract Feature Into

52 3. Highly Configurable Software Systems

Aspect, Extract Fragment Into Advice, and Move Method From Class
to Inter-Type have been discussed [263, 326].

1 class Loan {
2 double interestRate;
3 abstract double getMonthlyInterest();
4 }

5 class EuroLoan extends Loan {
6 double principal;
7 @Override
8 double getMonthlyInterest() {
9 return principal

10 * interestRate / 12;
11 }
12 }

13 class ForeignCurrencyLoan extends Loan {
14 double foreignPrincipal;
15 double exchangeRate;
16 @Override
17 double getMonthlyInterest() {
18 double principal = foreignPrincipal
19 * exchangeRate;
20 return principal
21 * interestRate / 12;
22 }
23 }

(a) Before refactoring

The subclasses of Loan implement getMonthlyInterest() similarly (high-
lighted in green) but not identically (highlighted in red).

1 class Loan {
2 double interestRate;
3 double getMonthlyInterest() {
4 return getEuroPrincipal()
5 * interestRate / 12;
6 }
7 abstract double getEuroPrincipal();
8 }

9 class EuroLoan extends Loan {
10 double principal;
11 @Override
12 double getEuroPrincipal() {
13 return principal;
14 }
15 }

15 class ForeignCurrencyLoan extends Loan {
16 double foreignPrincipal;
17 double exchangeRate;
18 @Override
19 double getEuroPrincipal() {
20 return foreignPrincipal * exchangeRate;
21 }
22 }

(b) After refactoring

Method getMonthlyInterest() is now defined only once (see green highlights),
and the variations are encapsulated in getEuroPrincipal() (see red highlights).

Listing 3.7: A Form Template Method refactoring to consolidate code clones

Clone consolidation example. In Listing 3.7, I illustrate how a Form Template
Method refactoring is used to consolidate Type-3 clones. The original code, de-
picted in Listing 3.7 (a), involves the superclass Loan and its subclasses EuroLoan
and ForeignCurrencyLoan. The first subclass implements loans in the European
currency; the second one is for loans in a foreign currency. Both subclasses imple-
ment the method getMonthlyInterest(), whose task is to calculate the monthly
interest payment in Euros. The implementations are mostly identical (see green
highlights), except that ForeignCurrencyLoan encompasses some additional code.
This additional code converts the loan’s principal (i. e., the amount of money that
the borrower still owes the lender) from the foreign currency to Euros (see red high-

3.7. Summary 53

lights). As such, the methods are Type-3 clones, which means that a simple Pull
Up Method refactoring is infeasible. However, a related refactoring, Form Tem-
plate Method, is applicable.

The code after applying Form Template Method is shown in Listing 3.7 (b).
Method getMonthlyInterest() has been turned into a single template method in
the superclass (see Lines 3–6 in Listing 3.7 (b)). This template comprises on the one
hand, the fundamental interest calculation (see green highlights) but on the other
hand, also accommodates for the optional currency conversion (see red highlights).
Specifically, the principal is no longer accessed directly but through an abstract
helper method (see Lines 4 and 7 in Listing 3.7 (b)), which both subclasses imple-
ment differently (see Lines 11–14 and Lines 18–21). In summary, Form Template
Method replaces cloned methods in two or more subclasses with a single template
method in a superclass. This template encompasses all the code that was identical in
the original methods and provides variations points to accommodate the differences.

3.7 Summary

In this chapter, I have explained the fundamentals of software product families and
two approaches how such product families are developed. The first approach is build
a highly configurable software system, a system that can be configured so that mul-
tiple, similar software products can be derived. Depending on which development
process is used, a highly configurable software systems is also sometimes referred
to as a Software Product Line (SPL). The products encompassed by a highly con-
figurable system exhibit variations but also share commonalities. On the domain
level, these variations and commonalities are referred to in terms of features. By
organizing the features of a highly configurable software system in a feature model
(FM), it is possible to express the variability of the whole product family. On
the implementation level, there are two kinds of mechanisms to implement variable
features, namely annotation-based and composition-based variability mechanisms.
Both kinds of mechanisms have their own advantages and disadvantages, and affect
the structure of the source code in fundamentally different ways. As I will show in
Chapter 4 of my thesis, these differences have an effect on the appearance of code
smells in highly configurable software systems.

The second part of this background chapter was devoted to the other approach to
create software product families, the clone-and-own approach. Creating software
product variants with clone-and-own is easy, but maintaining and evolving them is
not. As explained in this chapter, these problems are rooted in the massive amount
of code clones that clone-and-own creates. To lay the groundwork for Chapter 6, in
which I present a concept to migrate a family of cloned product variants to an SPL,
this chapter also provided the background on techniques to detect and remove code
clones.

54 3. Highly Configurable Software Systems

4. Variability-Aware Code Smells

This chapter is based on and shares material with the VaMoS ’15 pa-
per “Code Smells Revisited: A Variability Perspective” [96] and the
SCAM ’15 paper “When Code Smells Twice as Much: Metric-Based De-
tection of Variability-Aware Code Smells” [97].

In the previous chapters, I described code smells, which are patterns in the source
code that result from flawed design decisions. Moreover, I explained how variability
in highly configurable systems is modeled and implemented. This chapter brings
both topics together by introducing code smells specifically for highly configurable
systems. I call these smells variability-aware code smells.

In Section 3.4.3, I discussed how annotation- and composition-based variability
mechanisms differ with respect to many properties, such as separation of concerns,
the granularity of variability, and the tendency to obfuscate the source code. In
particular, I showed how each mechanism shapes the source code of the underlying
host language in a different way. One thing that all variability mechanisms have
in common, though, is that variability is implemented explicitly and thus is part of
the code base. This adds another dimension of complexity to the design of a highly
configurable software system: Apart from designing the structure of program ele-
ments (e. g., classes, and methods), developers also have to design the structure of
variability. Variability-aware code smells are based on the observation that some
variability-related design decisions are better, and some are worse. Unfortunately,
established code smells do not cover the additional dimension of variability and are
therefore useless for distinguishing the good from the bad decisions. The reason is
that established code smells address issues in the structure of the host language,
but are oblivious to the effect of variability. The main proposition I make in this
chapter is that it is necessary to take variability into account as a first-class concept
for variability-related code smells and their detection. Only then can we extend the
established foundations of code smells to the domain of highly configurable soft-
ware systems. This is of special importance because highly configurable software
systems are typically large, long-lived systems. Any problems regarding program
comprehension, maintainability or evolvability will only worsen over time.

56 4. Variability-Aware Code Smells

In the first sections of this chapter, I revisit code smells in the light of variability. To
this end, I extend existing, object-oriented code smells with the notion of variability,
thereby creating an initial catalog of variability-aware code smells. This catalog
covers both annotation- and composition-based variability mechanisms, using the
C preprocessor and Feature-Oriented Programming (FOP) as representatives.

In the later sections of this chapter, I propose a metrics-based technique to auto-
matically detect a selection of these smells. The technique has been implemented in
a tool called Skunk and evaluated on five mature, widely used open-source systems.
This evaluation serves two purposes. First, it demonstrates that the detection of
variability-aware code smells is feasible. Second, it helps us understand how fre-
quently such smells occur in practice and how instances of these smells look. In
particular, I make the following contributions:

• A catalog of six code smells that take variability into account. For each smell,
I discuss possible negative effects on program comprehension, maintainability,
and evolvability. Moreover, I present examples how annotation- and com-
position-based variability mechanisms, respectively, affect the shape of these
smells.

• An initial validation of my code smell catalog based on a survey with 15 re-
searchers in the Software Product Line (SPL) field. The results reveal that
most participants (a) observed these smells in real-world systems and (b) ac-
knowledge that these smells may hinder maintenance and evolution.

• A set of metrics that capture different aspects of implementing variability with
the help of C preprocessor directives and a concept for combining these metrics
to detect variability-aware code smells.

• An implementation of this concept in the variability-aware code smell detection
tool Skunk.1 Among other capabilities, Skunk allows for the parametrization
of thresholds and weighting factors for individual metrics.

• An empirical study of the variability-aware code smell Annotation Bundle.
To this end, I analyzed five software systems with up to 285 KLOC. Besides
a quantitative evaluation, 100 instances of this code smell have been reviewed
manually to (a) assess the effectiveness of the detection method and (b) provide
qualitative insights into how the Annotation Bundle manifests itself in
source code.

4.1 Derivation Methodology

Before presenting my catalog of variability-aware code smells, I first explain how
I derived them from established, object-oriented code smells. The basis for my pro-
posed smells are the code smells described by Fowler et al. [107]. Specifically, I have
considered how variability constructs, such as #ifdefs, can affect the language ele-
ments of the smell description, and how this will affect the code shape. For instance,

1https://github.com/wfenske/Skunk

4.2. A Catalog of Variability-Aware Code Smells 57

the object-oriented code smell Long Method describes a method with too many
statements, indicating that the method is too complex to be understood easily. Ap-
plying my methodology to this smell, with a focus on annotation-based variability,
my question was: “What will a Long Method look like if some (or many) of the
statements are guarded by #ifdefs?” This methodology works straightforward for
many object-oriented smells besides Long Method (e. g., Duplicated Code,
Switch Statements). However, it does not work for all smells. One counterex-
ample is Primitive Obsession, which criticizes the use of primitive data types
(e. g., char, int) when a class would be more appropriate. I found no way in which
variability could affect this smell or a variety of other smells.

In the following catalog, I focus on six object-oriented smells, most of which have
been shown to occur frequently in practice. For all six smells, I apply my methodo-
logy and distinguish between the two variability mechanisms cpp and FOP in case
that their interactions with language elements matters. As I will show, there can
be considerable differences. I discuss those differences in more detail when I com-
pare my variability-aware smells Annotation Bundle and Long Refinement
Chain.

4.2 A Catalog of Variability-Aware Code Smells

Next, I present six variability-aware code smells that I have derived using the method
just described. For each smell, I start with a summary of the original object-ori-
ented code smell, followed by a description of the derived smell. I further state
which variability mechanisms (annotation-based, composition-based or both) the
smell applies to. I then present an illustrative example and finally discuss potential
problems for program comprehension, maintenance, and evolution that are caused
by the respective smell. For my discussion, maintenance comprises bug fixes, qual-
ity improvements and other minor changes, whereas evolution means adding new
functionality or making major modifications.

4.2.1 Inter-Feature Code Clones

Derived from: Duplicated Code (Fowler et al. [107], p. 76)

Copying an existing piece of code and pasting it somewhere else leads to code clones.
For reasons I explained in Section 3.6, code clones (a. k. a. the smell Duplicated
Code) are considered a code smell in non-configurable software systems.

Variability-aware description. There are two forms of code duplication in highly
configurable software systems. First, code may be duplicated within a feature. In
this case, the resulting clones are unaffected by variability and hence are associated
with the same problems as code clones in non-configurable software systems (see
Section 3.6.3). The second case, when there are two or more features that contain
similar code, is more interesting. I call this smell Inter-Feature Code Clones.
The smell can originate from intentional cloning but can also arise unintentionally,
for instance because developers working on different variants or features fail to co-
ordinate their work sufficiently. As discussed in Section 3.5, unintentional cloning
can quickly reach alarming levels and thus cause severe problems for maintenance
and evolution.

58 4. Variability-Aware Code Smells

Applies to: Annotation-based and composition-based mechanisms

Example. In Listing 4.1, I show a composition-based example of Inter-Feature
Code Clones, taken from the Graph Product Line (GPL).2 The GPL is
a product line of standard graph algorithms [214]. In the GPL code example,
features BFS (breadth-first search) and DFS (depth-first search) contain an exact
clone of the method GraphSearch(). This is surprising at first, as the two search
algorithms are very different. A closer look at the rest of the implementation (not
shown here) revealed that most of the work is performed by a helper method, which
the features BFS and DFS implement differently. Thus, the implementation is, in
fact, correct.

1 public class Graph { Feature BFS
2 public void GraphSearch(Workspace w) {
3 VertexIter itr = getVertices();
4 /* more source code... */
5 for (itr=getVertices(); itr.hasNext();) {
6 Vertex v = itr.next();
7 if (!v.visited) {
8 w.nextRegionAction(v);
9 v.nodeSearch(w);

10 }
11 }
12 }
13 }

1 public class Graph { Feature DFS
2 public void GraphSearch(Workspace w) {
3 VertexIter itr = getVertices();
4 /* more duplication... */
5 for (itr=getVertices(); itr.hasNext();) {
6 Vertex v = itr.next();
7 if (!v.visited) {
8 w.nextRegionAction(v);
9 v.nodeSearch(w);

10 }
11 }
12 }
13 }

Listing 4.1: Inter-Feature Code Clones in the GPL

Problems. I argue that Inter-Feature Code Clones are an even bigger obsta-
cle than Duplicated Code in non-configurable software. First, the aforementioned
unawareness of clone instances in other features increases the likelihood of inconsis-
tent changes. Secondly, the variability in an SPL increases the complexity as the
features containing the clones may be combined with a multitude of other features.
Consequently, when a bug is fixed or other modifications are performed, the consis-
tent propagation of the changes to other clones may be unnecessary or even lead to
semantic errors. Hence, the developer has to verify for each feature in every valid
configuration whether the change is both syntactically and semantically correct.

4.2.2 Annotation Bundle

Derived from: Long Method (Fowler et al. [107], p. 76f.)

The longer a method, the more difficult it is to understand. Even though this is true
for many methods comprising hundreds upon hundreds of statements, the “long” in
Long Method does not necessarily refer to the number of statements. As Fowler
et al. emphasize, the criterion for a Long Method is “not [. . .] length but the
semantic distance between what the method does and how it does it.” (Fowler et
al. [107], p. 77). Thus, methods with only a few densely coded statements can
be “long” whereas others, which encompass many very simple statements, are still
“short”.

2http://spl2go.cs.ovgu.de/projects/49

http://spl2go.cs.ovgu.de/projects/49

4.2. A Catalog of Variability-Aware Code Smells 59

Variability-aware description. Like a Long Method, an Annotation Bun-
dle does not necessarily consist of many statements. Instead, it consists of many
variable parts. A large number of features controls which of these parts are included
or excluded. On the code level, this results in many (groups of) statements that are
annotated. Several different annotations are involved, maybe even nested.

Applies to: Annotation-based mechanisms

Example. In Listing 4.2, I show a function implemented in C, which is heavily
annotated with cpp directives. It is taken from the open source database manage-
ment system MySQL, version 5.6.17.3 Although the function is not long in terms
of C statements, there are five different cpp macros that control which of these
statements make up a concrete implementation. Moreover, these macros are nested
and sometimes negated. For instance, the statement on Line 23 is controlled by
three different macros, two of which must be undefined for the statement to be in-
cluded. Altogether, only a few statements of the whole function are base code that
is compiled into every possible program (e. g., the if condition on Line 5 and the

3http://dev.mysql.com/downloads/file.php?id=451519

1 sig_handler process_alarm(int sig __attribute__((unused)))
2 {
3 sigset_t old_mask;
4
5 if (thd_lib_detected == THD_LIB_LT && !pthread_equal(pthread_self(),

alarm_thread)) {
6 #if defined(MAIN) && !defined(__bsdi__)
7 printf("thread_alarm in process_alarm\n");
8 fflush(stdout);
9 #endif

10 #ifdef SIGNAL_HANDLER_RESET_ON_DELIVERY
11 my_sigset(thr_client_alarm, process_alarm);
12 #endif
13 return;
14 }
15
16 #ifndef USE_ALARM_THREAD
17 pthread_sigmask(SIG_SETMASK, &full_signal_set, &old_mask);
18 mysql_mutex_lock(&LOCK_alarm);
19 #endif
20 process_alarm_part2(sig);
21 #ifndef USE_ALARM_THREAD
22 #if !defined(USE_ONE_SIGNAL_HAND) && defined(SIGNAL_HANDLER_RESET_ON_DELIVERY)
23 my_sigset(THR_SERVER_ALARM, process_alarm);
24 #endif
25 mysql_mutex_unlock(&LOCK_alarm);
26 pthread_sigmask(SIG_SETMASK, &old_mask, NULL);
27 #endif
28 return;
29 }

Listing 4.2: Annotation Bundle; taken from MySQL, version 5.6.17, file
mysys/thr_alarm.c.

http://dev.mysql.com/downloads/file.php?id=451519

60 4. Variability-Aware Code Smells

function call on Line 20). However, the majority of the lines are either feature code
or preprocessor directives (e. g., the block on Lines 21–27).

Problems. I argue that an Annotation Bundle is difficult to understand for
a certain configuration or in its entirety. Having many variable parts in the method
body obscures the view on the core functionality. Moreover, each annotation requires
additional knowledge of the macros that are involved. Hence, to comprehend an
Annotation Bundle, a developer has to work with many different abstractions
on both the programming language level and the variability level.

Maintenance and evolution tasks are also hampered by heavily annotated methods.
For instance, locating a bug is difficult if the exact configuration that exhibits the
defect is not known. Moreover, developers have to take special care when changing
heavily annotated code. Otherwise they might break the presence conditions of
existing statements or introduce dangling references due to particular configurations
they failed to consider.

4.2.3 Long Refinement Chain

Derived from: Long Method (Fowler et al. [107], p. 76f.)

Variability-aware description. The smell Long Refinement Chain is the
composition-based counterpart of the Annotation Bundle smell. As such, it
denotes a method with many variable parts due to feature refinement.

Applies to: Composition-based mechanisms

Example. In Listing 4.1, I show a Long Refinement Chain from GUIDSL [31].
GUIDSL is a product line configuration tool implemented in Java with FOP. In my
code example, I show the process() method of class Main and all of its refinements.
The method is introduced as an empty stub by feature dmain and subsequently re-
fined by five other features (fillgs, propgs, formgs, clauselist, modelopts). In contrast
to this heavily refined method, the average refinement depth in GUIDSL is lower
than one. In other words, most methods are never refined at all. Each refinement
of process() contains between three to nine additional lines of code. As such, each
refinement contributes considerably to the overall method. Moreover, most of these
refinements can occur in different combinations, depending on the feature selection.

Problems. In contrast to an Annotation Bundle, with a Long Refinement
Chain, feature-specific parts of a method are encapsulated in refinements. Even
though encapsulation is a favorable property, I argue that excessive refinement is
problematic. My argument follows Chidamber’s and Kemerer’s reasoning that high
values of the Depth of Inheritance Tree (DIT) [51] metric indicate complex
programs. First, as with Annotation Bundles, it is hard to understand the effect
of particular combinations of refinements for a concrete configuration. Secondly,
when modifying an often-refined method or adding a new refinement, the developer
must be aware of all existing refinements (and their combinations) and possible side
effects of changing or adding code. Hence, I contend that methods with a Long
Refinement Chain are harder to understand, maintain and evolve than methods
with few refinements.

4.2. A Catalog of Variability-Aware Code Smells 61

class Main { Feature dmain
public static void process(Model root)
throws SemanticException {
// layers extend this method for AST processing

}
}

class Main { Feature fillgs
public static void process(Model root)
throws SemanticException {
original(m);
// harvest the tree
m.harvest(new fillFPtable());
if (Util.errorCount() != 0)
throw new SemanticException(
"Error(s) in specification found");

m.harvest(new enterGspec());
if (Util.errorCount() != 0)
throw new SemanticException(
"Error(s) in specification found");

}
}

class Main { Feature propgs
public static void process(Model root)

throws SemanticException {
original(m);
grammar.current.visit(new propcons());
if (Util.errorCount() !=0)
throw new SemanticException(
"Errors in propagating Constraints");

}
}

class Main { Feature formgs
public static void process(Model root)

throws SemanticException {
original(m);
production.makeFormula();
pattern.makeFormula();
if (Util.errorCount() != 0)
throw new SemanticException(
"Errors in making propositional formulas");

}
}

class Main { Feature clauselist
public static void process(Model root)

throws SemanticException {
original(m);
production.makeClauses();
pattern.makeClauses();
ESList.makeClauses();
grammar.makeClauses();
if (Util.errorCount() != 0)
throw new SemanticException(
"Errors in making conjunctive normal formulas");

}
}

class Main { Feature modelopts
public static void process(Model root)

throws SemanticException {
original(m);
if (modelMode) {
try { harvestInfo(); }
catch (IOException e) {
JOptionPane.showMessageDialog(null,
"Model Harvesting Error -- see command line " +
"for details", "Error!", JOptionPane.ERROR_MESSAGE);
System.err.println(e.getMessage());

}
}

}
}

Figure 4.1: Long Refinement Chain in GUIDSL

Interestingly, even though I have derived both, Annotation Bundle and Long
Refinement Chain, from the same object-oriented smell (Long Method), they
manifest themselves very differently on the code level. This illustrates how much
the chosen variability mechanism affects the shape of an object-oriented code smell
when it is transferred to an SPL context.

4.2.4 Latently Unused Parameter

Derived from: Long Parameter List & Speculative Generality (Fowler
et al. [107], p. 78, 83f.)

A method with many parameters hampers program comprehension as each param-
eter increases the cognitive burden of the caller. Furthermore, a Long Param-
eter List impedes evolution as it is frequently changed when additional data is
needed (Fowler et al. [107], p. 78).

Speculative Generality, in turn, describes functionality that was added in an-
ticipation of future evolution but is actually never used. Such functionality increases
the complexity of the code without any immediate benefit (Fowler et al. [107], p. 83.).
Speculative Generality can take several forms; unused parameters are one of
them.

62 4. Variability-Aware Code Smells

Variability-aware description. In an SPL context, parameter lists are also sub-
ject to variability. Sometimes, a parameter of a method is optional, that is, it is only
needed by a certain feature, but is unnecessary for others. One solution to deal with
an optional parameter would be a variable method signature, that is, a method sig-
nature that only includes the parameter if the corresponding feature is selected [311].
However, if the method signature is variable, the call sites also have to be variable.
In particular, every call site has to take one form (with the parameter) or another
(without the parameter). Effectively, variable method signatures cause variability to
spread throughout the code base, which is undesirable. Rosenmüller et al. explain
that another solution is to forward-declare the optional parameter upon introduction
of the method [311], even if it is only used further down in the refinement chain.
The disadvantage of forward-declaration, however, is that for all features higher up
in the refinement chain, the forward-declared parameter will be unused. This, in
turn, is a form of Speculative Generality.

Applies to: Annotation-based and composition-based mechanisms

Example. In Listing 4.3, I show a Latently Unused Parameter in code us-
ing annotation-based variability. The second parameter of the push() method,
a Transaction object named txn, is only used if the feature SYNC is active (see
Lines 4, 5, and 11). If, by contrast, SYNC is inactive, only Lines 7, 9, and 13 are
compiled, which make no use of the txn parameter.

1 class Stack {
2 void push(Object elem, Transaction txn) {
3 #ifdef SYNC
4 if (elem==null || txn==null) return;
5 Lock l = txn.lock(elem);
6 #else
7 if (elem==null) return;
8 #endif
9 elementData[size++] = elem;

10 #ifdef SYNC
11 l.unlock();
12 #endif
13 fireStackChanged();
14 }
15 }

Listing 4.3: Latently Unused Parameter using annotations (Listing adapted
from Schulze [323])

In FOP, where feature code is separated into distinct modules, the smell Latently
Unused Parameter looks different. The parameter appears perfectly normal in
some modules, but completely unused in others. In Listing 4.4, I show an example
from the code base of the GPL. Here, feature WeightedOnlyVertices extends class
Graph with method addAnEdge() (see Lines 2–4). The third parameter of this
method is an integer, weight. This is reasonable, as the feature provides support for
weighted graphs. Indeed, weight is used by helper method addEdge() (see Lines 3
and 6–10). Feature DirectedOnlyVertices also provides a method addAnEdge(). In
order to be compatible with feature WeightedOnlyVertices, it has the same signature.

4.2. A Catalog of Variability-Aware Code Smells 63

However, in this second method definition, the parameter weight is confusing and,
in fact, unused.

1 public class Graph { Feature WeightedOnlyVertices
2 public void addAnEdge(Vertex start, Vertex end, int weight) {
3 addEdge(start, end, weight);
4 }
5
6 public void addEdge(Vertex start, Vertex end, int weight) {
7 addEdge(start, end);
8 start.addWeight(weight);
9 /* More source code ... */

10 }
11 /* More source code ... */
12 }

13 public class Graph { Feature DirectedOnlyVertices
14 public void addAnEdge(Vertex start, Vertex end, int weight) {
15 addEdge(start, end);
16 }
17 /* More source code ... */
18 }

Parameter weight is used in WeightedOnlyVertices (see Lines 2 and 3), but not
in DirectedOnlyVertices (see Line 14).

Listing 4.4: Latently Unused Parameter in FOP; taken from the GPL

Problems. The natural assumption is that a parameter has some effect on the
method’s outcome. Unused parameters make a method harder to understand be-
cause they foil this assumption (Fowler et al. [107], p. 277). Latently Unused
Parameters only foil that assumption in particular cases, which I argue is at least
as bad. Moreover, a Latently Unused Parameter introduces coupling between
callers of the method and the feature that requires the parameter. For instance,
a client application of the GPL that solely uses feature DirectedOnlyVertices but
never WeightedOnlyVertices, will nonetheless have to supply a weight when calling
addAnEdge(). This is not only confusing to developers of the client application. In
addition, in order to understand the reason behind the extra parameter, the develop-
ers are forced to inspect WeightedOnlyVertices – a feature that is otherwise entirely
irrelevant to them.

4.2.5 Large Feature

Derived from: Large Class (Fowler et al. [107], p. 78)

Fowler describes a Large Class as a class with a large number of instance variables,
an abundance of methods, or both. Put simply, a Large Class is “trying to do
too much” (Fowler et al. [107], p. 78). Likewise, Martin advises that a class should
have a single responsibility – a single reason to change [233]. As an example, imagine
a class aggregating news articles that is changed every time a new type of input is
added (e. g., HTML, RSS) and every time a different output format (e. g., RTF, PDF)
is requested. Handling different input and output formats are unrelated aspects, and
the news aggregation class should not be responsible for both of them. Consequently,
it is a Large Class.

64 4. Variability-Aware Code Smells

Variability-aware description. I hypothesize that similarly to classes in an ob-
ject-oriented system, features in an SPL can also be “trying to do too much,” that
is, have too many responsibilities. To describe them, I propose the variability-aware
code smell Large Feature. First signs of this smell can be large numbers of lines
of code and the introduction of many new elements, such as functions and classes.
But counting lines of code and program elements is not enough. The only reliable
way to detect a Large Feature is to analyze its responsibilities, that is, its reasons
to change. For example, an air-conditioning feature whose implementation needs to
change for every new temperature sensor and every new humidity sensor is likely
too large. A solution would be to extract temperature and humidity measurement
into child features.

Applies to: Annotation-based and composition-based mechanisms

Example. The kernel feature of the GUIDSL is a candidate for a Large Feature.
According to the tool cloc,4 the average size of a feature in GUIDSL is 412 non-
blank, non-comment lines of code (SLOC). With 2 150 SLOC, feature kernel is
much larger than that, and indeed, the feature exhibits an unfortunate aggregation
of responsibilities. Most classes in kernel serve to implement abstract syntax trees.
However, the command line interface, which is an entirely different responsibility,
is also implemented here. Thus, both changes to the representation of abstract
syntax trees as well as changes to the command line interface require modifications
of the same feature. Moreover, one cannot simply create variants of GUIDSL without
a command line interface because many other features depend on the abstract syntax
tree implementation.

Problems. I argue that Large Features are problematic for the same reasons
that Large Classes are problematic. First, mixing responsibilities makes the
feature harder to understand. Secondly, changing one responsibility may have un-
wanted side-effects on other responsibilities. Thus, maintenance and evolution are
hampered. Finally, even if only a portion of the Large Feature’s functionality
is needed, unwanted parts cannot be excluded. This hinders customization and
increases footprint.

4.2.6 Switch Statements with Optional Cases

Derived from: Switch Statements (Fowler et al. [107], p. 82)

The smell Switch Statements is present when the same switch appears in dif-
ferent locations in a program (Fowler et al. [107], p. 82). It arises if type-specific
behavior is implemented with the help of a switch statement or nested if-else
statements. This is a smell in object-oriented languages because these languages pro-
vide subtype polymorphism (i. e., inheritance and overriding) to accomodate type-
specific behavior. The problem with Switch Statements is code duplication. But
in contrast to Inter-Feature Code Clones, where a group of statements is du-
plicated, Switch Statements mean that the control flow structure is duplicated.
Hence, when adding a case clause to a duplicated switch, the developer has to
find all the other occurrences of the switch and modify them accordingly. This is a
tedious and error-prone task and increases maintenance costs.

4http://cloc.sourceforge.net/

http://cloc.sourceforge.net/

4.2. A Catalog of Variability-Aware Code Smells 65

Variability-aware description. Taking variability into account, I derive the new
smell Switch Statements with Optional Cases. The smell is present when
there is an optional case in a duplicated switch statement. The optional case is
only active if a certain feature is selected, and otherwise inactive.

Applies to: Annotation-based mechanisms and (with workarounds) composition-
based mechanisms

Example. In Listing 4.5, I show an annotation-based example for Switch State-
ments with Optional Cases. It has been taken from the file pkcs11.c, which
provides cryptographic support for Firefox.5 Both instances of the switch include
the case CKK_EC, with the case guarded by the same preprocessor directive. The
effect is that case CKK_EC is only present iff the macro NSS_ENABLE_ECC is defined.

In contrast to annotation-based mechanisms, composition-based mechanisms, such
as FOP, lack direct support for optional case clauses in switch statements. Optional
case clauses can be emulated, though, by combining multiple switch statements
(one per feature) with original calls. I show an instance of this workaround in

5http://sourceforge.net/projects/portableapps/files/Source/Firefox/firefox-28.0.source.tar.bz2

1 static CK_RV
2 pk11_handlePublicKeyObject(
3 PK11Session *session,
4 PK11Object *object,
5 CK_KEY_TYPE key_type)
6 {
7 /* More code... */
8 switch (key_type) {
9 /* Handle other cases... */

10 case CKK_DH:
11 /* Handle CKK_DH... */
12 break;
13 #ifdef NSS_ENABLE_ECC
14 case CKK_EC:
15 /* Start handling CKK_EC... */
16 if (!pk11_hasAttribute(object,
17 CKA_EC_POINT)) {
18 return CKR_TEMPLATE_INCOMPLETE;
19 }
20 pubKeyAttr = CKA_EC_POINT;
21 derive = CK_TRUE; /* for ECDH */
22 verify = CK_TRUE; /* for ECDSA */
23 encrypt = CK_FALSE;
24 recover = CK_FALSE;
25 wrap = CK_FALSE;
26 break;
27 #endif /* NSS_ENABLE_ECC */
28 default:
29 /* Handle default case... */
30 }

1 NSSLOWKEYPublicKey *
2 pk11_GetPubKey(
3 PK11Object *object,
4 CK_KEY_TYPE key_type,
5 CK_RV *crvp)
6 {
7 /* More code... */
8 switch (key_type) {
9 /* Other code for other cases... */

10 case CKK_DH:
11 /* Other code for CKK_DH... */
12 break;
13 #ifdef NSS_ENABLE_ECC
14 case CKK_EC:
15 /* Start handling CKK_EC... */
16 if (EC_FillParams(arena,
17 &pubKey->u.ec.ecParams.
18 DEREncoding,
19 &pubKey->u.ec.ecParams)
20 != SECSuccess)
21 break;
22 crv = pk11_Attribute2SSecItem(
23 arena,
24 &pubKey->u.ec.publicValue,
25 object, CKA_EC_POINT);
26 break;
27 #endif /* NSS_ENABLE_ECC */
28 default:
29 /* Other default code... */
30 }

Listing 4.5: Switch Statements with Optional Cases using annotations;
taken from Firefox, file security/nss/lib/softoken/pkcs11.c

http://sourceforge.net/projects/portableapps/files/Source/Firefox/firefox-28.0.source.tar.bz2

66 4. Variability-Aware Code Smells

Listing 4.6. The code is based on TankWar,6 an SPL of a Java game. TankWar
was originally written in Ahead but the code excerpt has been translated to Fea-
tureHouse, the FOP dialect used in this chapter. The example contains a method
init() that is refined by two features, Freeze (see Lines 2–9) and Firepower (see
Lines 12–19). Both refinements contain a switch statement (see Lines 4–8 and
Lines 14–18, respectively). These switch statements refine each other as follows:
Imagine a product that is the composition of Firepower after Freeze (and possi-
bly some features before these two). Then, when init() method is called with
toolType=372, the original call on Line 13 will invoke the Freeze’s init() on
Line 2. After invoking another original method on Line 3, the switch statement
is evaluated. Since toolType does not match the specified constant, the case clause
on Lines 5–7 is skipped. Afterwards, control resumes at Line 14 where the refine-
ment of the switch statement is evaluated. This time, toolType matches the case
clause on Lines 15–17, and the corresponding statements are executed.

1 public class Tool { Feature Freeze
2 protected void init(TankManager manager, int xPos, int yPos, int toolType) {
3 original(manager, xPos, yPos, toolType);
4 switch (toolType) {
5 case 371:
6 /* code specific to tool type 371 */
7 break;
8 }
9 }

10 }

11 public class Tool { Feature Firepower
12 protected void init(TankManager manager, int xPos, int yPos, int toolType) {
13 original(manager, xPos, yPos, toolType);
14 switch (toolType) {
15 case 372:
16 /* code specific to tool type 372 */
17 break;
18 }
19 }
20 }

Listing 4.6: Switch Statements with Optional Cases in FOP; adapted from
TankWar

Problems. Switch Statements with Optional Cases contain even more du-
plication than Switch Statements in non-configurable software. The reason is
that apart from the replicated cases, the annotations (such as #if, #endif) that
make some cases optional, are also replicated. Thus, not only does adding or re-
moving a case require additional effort, but changing the (replicated) annotations
of an optional case requires additional effort as well.

As the lengthy explanation of Listing 4.6 demonstrates, the FOP workaround for
Switch Statements with Optional Cases makes it hard to follow the control
flow. Moreover, the workaround may not always behave as expected. As an ex-
ample, suppose that feature Freeze also contained a case clause for toolType=372.

6http://spl2go.cs.ovgu.de/projects/7

http://spl2go.cs.ovgu.de/projects/7

4.3. Validation of the Catalog 67

The expected behavior of composing the switch statements in features Firepower
and Freeze would be for the case in feature Firepower to override the one in fea-
ture Freeze. But this does not happen because the switch statements are not
truly merged. Instead, the FOP workaround simply executes them sequentially.
Thus, a call to init() with toolType=372 would first execute Freeze’s case for
toolType=372 and afterwards Firepower ’s case. In summary, wile Switch State-
ments are already a smell in Object-Oriented Programming (OOP), I argue that the
smell becomes even stronger in FOP because refinements further obscure the control
flow, and the FOP workaround may cause unexpected behavior.

4.3 Validation of the Catalog

While the description of the variability smells in the previous section have been elab-
orated with care, based on established code smells and on observations of variable
code in the wild, they may be biased to the author’s point of view. Hence, before de-
veloping tools to detect these smells it is imperative to verify whether the proposed
smells “are really smells”. This means finding out whether the described code pat-
terns have been witnessed by others in practice and whether others agree they might
pose problems regarding program comprehension, maintenance, and evolution. To
this end, I conducted a survey among experts in the field of software product lines.
In the following, I provide information about the setup, the particular questions and
the result of this survey.

4.3.1 Objectives

The objective of my survey was to receive feedback on my proposed variability-aware
code smells from product-line experts. Particularly, the survey was designed with
the following two questions in mind:

RQ1: Do my proposed smells exist in design and implementation of SPLs? Par-
ticipants of the survey have different backgrounds in product lines such as teaching,
analysis, implementation, or developing tool support. Nevertheless, my assumption
was that most of them have to deal with SPLs on implementation level. Hence,
with this question, I aim to elicit which of the proposed smells the participants
encountered in the described (or similar) form.

RQ2: Are my smells problematic with respect to different aspects of SPL devel-
opment? Code smell are fundamentally just patterns in the source code, but that
does not say anything about whether they are good or bad. A pattern could be an
idiom or a design, both of which are beneficial. Code smells, on the other hand,
are patterns that have negative effects. Hence, I am are also interested in how the
participants would estimate the severity of my proposed smells with respect to pro-
gram comprehension, maintainability, and evolvability, based on their experience
with product-line implementation.

From the answers to the survey questions, I obtain valuable information about
whether my proposed smells constitute real problems or not. This, in turn, lays the
foundation for my work on detecting and qualitatively assessing variability-aware
code smells, which I present later in this chapter.

68 4. Variability-Aware Code Smells

4.3.2 Setup

In the following, I provide information about the concrete questions of the survey
and the participants who answered them. The complete survey and all responses
are available at the web page that supplements the paper in which my smell catalog
was first published [96].7

Participants. The target audience of the survey were the participants of the 2014
international meeting on feature oriented software development (FOSD meeting,
www.fosd.de/meeting2014), held at Schloß Dagstuhl in May 2014. The audience of
this meeting consists of PhD students, postdoctoral researchers as well as professors,
all of them working in the field of software product lines. The 2014 meeting had 32
participants, out of which two (Sandro Schulze and myself) were involved in the
design of the survey. The other 30 participants received the survey two weeks before
the meeting, and 17 of them turned in their responses. Two response sets were
incomplete and thus have been excluded from further consideration.

One of the survey assumptions was that participants are familiar with general pur-
pose programming and with SPL programming in particular. To validate that as-
sumption, the survey included questions to measure each participants programming
experience, based on the work of Feigenspan et al. [94]. Particularly, the survey
asked questions about programming experience, different programming paradigms,
and programming activity. Moreover, participants had to answer questions related
to their experiences with different variability mechanisms and projects dealing with
SPLs. The responses to these questions confirm that all participants are advanced
programmers with a solid foundation in SPL implementation. Particularly, most
of the participants are (very) experienced with the cpp and with feature-oriented
programming. In summary, all participants are eligible for inclusion in the survey.
Moreover, given their level of experience, I can expect reliable, informative results.

Survey – Structure & Questions. The survey consists of four sections, each
of them covering a particular category of questions. The first section comprises
questions about personal data such as gender, age, or the current affiliation of the
participant. Next, there is a larger section with questions regarding the background
& experience of the participant, which mainly focuses on the above mentioned pro-
gramming experience. Moreover, participants were asked about their experience
with SPL programming. This second section of the survey mainly ensures that the
obtained answers are reliable.

The third section asks questions about the knowledge of code smells. Particularly,
I was interested in how well participants know the concept of code smells, both, in
general but also in terms of concrete smells. Given such knowledge, it is probably
easier to identify and reason about variability-aware code smells.

Finally, the last section contains questions about the proposed code smells and
thus constitutes the main part of the survey. Basically, it asks for each of the
variability-aware code smells from Section 4.2 whether participants observed these
smells, for which variability mechanism, and in which kind of project (e. g., open

7https://www.isf.cs.tu-bs.de/cms/team/schulze/material/vacs/

www.fosd.de/meeting2014
https://www.isf.cs.tu-bs.de/cms/team/schulze/material/vacs/

4.3. Validation of the Catalog 69

source, industrial). Moreover, participants had to estimate the severity of each
code smell for the following aspects: program comprehension, maintainability, and
evolvability (for instance, adding/changing code).8

The survey was accompanied by a short description of the six code smells, similar
to the one in Section 4.2. This description is available on the supplementary page
as well.

4.3.3 Results

Next, I present the main results of my validation survey. For the sake of brevity,
I only present results about variability-aware code smells, because this has been
the main objective of the survey. Detailed results (e. g., related to background and
experience, knowledge of code smells, as well as additional qualitative comments)
are available on the supplementary page.

In Figure 4.2, I present the results related to the existence of my proposed smells.
In a nutshell, my results reveal that most of the smells have been observed in the
wild by the participants. Particularly, 63 % of the participants (on average) have
observed at least one of the proposed smells. Even for the Switch Statements
With Optional Cases smell, almost half of the participants confirmed that they
observed this kind of smell. Moreover, participants were asked for which variability
mechanism they observed the respective code smell. I did not ask this question for
Annotation Bundle and for Long Refinement Chain because these smells are
only defined for cpp and for FOP, respectively. For the other smells, the responses
reveal that the smells occur roughly as often in SPLs implemented with the cpp
as in SPLs using FOP. Beyond that, individual participants also observed certain
smells for proprietary mechanisms.

8Due to a mistake in the survey setup, questions about severity are missing for Large Feature.

of

 a
ns

w
er

s

0

2

4

6

8

10

12

14

16

Code Smells
Clones Refinement Bundle Parameter Large Feature Switch

CPP
FOP

Code Smell observed
Code Smell NOT observed

Lines show how often each smell has/has not been observed, bars indicate for
which variability mechanism they have been observed.

Figure 4.2: Survey results on the occurrence of variability-aware code smells

70 4. Variability-Aware Code Smells

Apart from information on the frequency of smell occurrences, the survey also asked
participants to rate the negative the impact of each smell on SPL development. The
ratings use a five-point Likert scale, ranging from “unproblematic” to “very prob-
lematic”. I show the results in Figure 4.3. This figure is composed of three bar
charts, which relate to three different aspects of software development. Chart (a)
depicts the ratings related to program comprehension, chart (b) those related to
maintainability, and chart (c) shows ratings related to evolvability. Overall, these
charts reveal that the participants consider most of the code smells as problematic.
First, regarding program comprehension (see Figure 4.3 (a)), especially Refine-
ment Chain, Annotation Bundle, and Latently Unused Parameter are
considered problematic, while Inter-Feature Code Clones are not seen as an
issue. Secondly, the participants estimate that all code smells are mostly problem-
atic for maintainability of SPLs (see Figure 4.3 (b)). Particularly, 61% on average
consider the severity of the smells “rather problematic” or even “very problematic”,
with Inter-Feature Code Clones and Long Refinement Chain being the
most severe smells. Similarly, the results reveal that participants confirm that these
smells make SPLs difficult to evolve (see Figure 4.3 (c)). Although some participants
consider particular smells to be rather unproblematic, the majority (i. e., 57 %) is
convinced that they have a negative impact on evolution of SPLs.

0

2

4

6

8

10

12

14

16

Clones Refinement Bundle Parameter Switch

Very problematic
Rather problematic

Don't know
Rather unproblematic

Unproblematic

0

2

4

6

8

10

12

14

16

Clones Refinement Bundle Parameter Switch

Very problematic
Rather problematic

Don't know
Rather unproblematic

Unproblematic

0

2

4

6

8

10

12

14

16

Clones Refinement Bundle Parameter Switch

Very problematic
Rather problematic

Don't know
Rather unproblematic

Unproblematic

(a) Program Comprehension (b) Maintainability (c) Evolvability

(a) Program Comprehension (b) Maintainability (c) Evolvability

Results on how the survey participants estimate the impact of variability-aware
code smells on three aspects of software development

Figure 4.3: Survey results on the negative impact of variability-aware code smells

4.3.4 Discussion

I now interpret and discuss the aforementioned results by relating them to the ques-
tions in Section 4.3.1. Furthermore, I enrich the previous quantitative results with
selected qualitative comments.

RQ1: Do my proposed smells exist in SPLs? The survey results confirm that my
proposed variability-aware code smells occur regularly in SPLs. For all smells, a con-
siderable amount of participants (more than 50 %) acknowledged that they faced the
respective smells in SPL implementations. Moreover, participants observed these
smells not only in toy examples or in programs they developed themselves; rather,
they confirmed having witnessed them also in open source or industrial projects.
This is also reflected by the following two comments, which I took from the survey:

[Inter-Feature Code Clones] “Our industry partner is strug-
gling with inter-feature code clones due to a lack of awareness. . . . ”

4.4. Detection Concept 71

[Annotation Bundle] “. . . in Linux, I have observed that in some
cases a lot of #ifdefs are used in a method and some of them are nested
making the method longer and more complicated.”

Additionally, I want to emphasize the fact that half of the affected projects refer-
enced by the survey participants used the cpp as the variability mechanism. Since
cpp usage is rare in academic projects, but common in industrial and open source de-
velopment, this fact leads me to conclude that the proposed smells occur frequently
in the wild.

RQ2: Are my smells problematic with respect to different aspects of SPL develop-
ment? Although my results reveal differences between particular code smells and
the different aspects, the overall opinion is that my proposed smells impede pro-
gram comprehension, maintenance, and evolution of SPLs. Particularly, up to 80%
participants acknowledged possible problems. Of course, this result only reflects the
personal opinion and experience of each participant and thus may be somewhat sub-
jective (e. g., no independent measurements exist). However, each participant has
long-time experience with SPLs, and worked on different projects from different do-
mains. Moreover, these projects are not only proprietary SPLs but also encompass
open source and industrial project. Hence, these results justify the conclusion that
my proposed smells negatively affect SPL implementation and thus warrant further
investigation. This conclusion is backed up by the previous qualitative comments of
the survey participants, and also by the following ones:

[Latently Unused Parameter] “. . . at least identified this as
a potential problem during own implementation.”

[Switch Statement with Optional Cases] “Have found myself
in this issue a couple of times.”

Overall, the results of my survey confirm that (a) it is beneficial to include the notion
of variability into our reasoning about code smells and (b) that variability-aware code
smells, as proposed here, occur regularly and may impede SPL development. These
are encouraging results, which prompted me to investigate variability-aware code
smells in a more structured way. To this end, I performed an empirical study with
the aim of gaining deeper insights into the frequency which these smells occur in
practice and how they may affect SPL development. The study was performed with
the help of an automatic code smell detection approach that I developed. I report
on this detection approach and the corresponding empirical study in the remainder
of this chapter.

4.4 Detection Concept

As discussed in the earlier sections of this chapter, variability has an impact on how
source code is structured and can therefore lead to variability-aware code smells. In
this section, I propose an approach for detecting such smells.

72 4. Variability-Aware Code Smells

Whereas the catalog relates to both annotation-based and composition-based var-
iability mechanisms, my smell detection approach targets only annotation-based
mechanisms, specifically, programs written in C with cpp annotations. The ra-
tionale is that the smell detector mainly serves as a tool to support an empirical
study of variability-aware code smells in the wild. Such a study necessitates realistic
subject systems. Since the combination of C with cpp annotations is very popular
in practice, realistic subject systems using this combination are easily found. By
contrast, realistic subject systems using feature-oriented programming are virtually
non-existent. Consequently, more relevant insights can be gained from detecting
variability-aware code smells in programs written in C with cpp annotations than
in programs using feature-oriented programming.

I chose a metrics-based smell detection approach and implemented it in a tool called
Skunk. Specifically, Skunk’s detection approach relies on static properties ex-
tracted from the source code. There is a large number of smell detection tools that
also rely on (static) source code metrics (e. g., [229, 196, 257]). However, these tools
could not be used as a basis for Skunk because they lack metrics to capture var-
iability in source code. Moreover, they focus detecting smells in Java and other
object-oriented languages, whereas my goal is to detect smells in the procedural
language C. Consequently, Skunk was built on top of cppstats9, a framework to
measure cpp usage in SPLs, and srcML,10 a flexible parsing infrastructure with
good support for C and cpp annotations [204, 142, 57].

In the remainder of this section, I describe the metrics I propose to detect the
variability-aware code smells Annotation Bundle and Large Feature. Skunk
already computes metrics for other variability-aware code smells but I focus on these
two because the corresponding metrics are the ones most well tested. Specifically,
the metrics for Annotation Bundle have been validated in a case study whose
results have been analyzed qualitatively. I report the details about this case study
in (see Section 4.6).

4.4.1 Metrics

My smell catalog in Section 4.2 comprises human-readable descriptions of variability-
aware code smells, but these descriptions cannot be used as a specification for a smell
detection tool right away. To develop such a tool, I first had to capture the essential
properties of my smells with a set of metrics. I describe these metrics and how
I combined them into a detection formula in the following paragraphs.

Metrics for Annotation Bundles

The atomic metrics that I use to detect Annotation Bundles are given in Ta-
ble 4.1. Apart from the LOC metric, which simply counts lines of code, these
metrics are specifically designed to capture the complexity added by preprocessor
annotations. For instance, LOAC counts the lines of feature code within a function,
whereas FL measures the number of feature locations.

9https://github.com/clhunsen/cppstats
10http://srcml.org/

https://github.com/clhunsen/cppstats
http://srcml.org/

4.4. Detection Concept 73

The Annotation Bundle smell describes a heavily annotated function. Since
“heavily annotated” is a property with many facets, I propose the aggregated metric
ABsmell to measure how much a particular function suffers from the Annotation
Bundle smell. I show the formula to compute the ABsmell metric in Equation 4.1.

w1 ·
LOAC

LOC
· FL+ w2 ·

FCDUP
FL

+ w3 ·
CND

FL
(4.1)

This formula consists of three terms, intended to capture three aspects of complexity
introduced by #ifdef annotations: (1) Term one computes the ratio of annotated
code (feature code) to all code. (In the remainder of this chapter, I will refer to this
ratio as the LOAC/LOC ratio.) The reasoning behind this ratio is the assumption
that, for instance, 10 lines of feature code in a function with a total length of 20
lines have more of a negative effect than 10 lines of feature code in a function
of 100 lines. Furthermore, based on the intuition that a function with several small
feature locations is more problematic than a function with a single, large feature
location, the LOAC/LOC ratio is multiplied by the number of feature locations.
As a result, with increasing scattering of feature code, the value of term one also
increases. (2) The second term is designed to capture the average complexity of
feature expressions within a function. If all feature expressions consist only of a single
feature constant, term two evaluates to one. However, if complex feature expressions
are used (i. e., feature expressions that refer to two or more feature constants), term
two will evaluate to a value greater than one. (3) Finally, the third term accounts
for nesting. Without nesting, this term evaluates to zero. By contrast, for functions
with two feature locations, the second location being nested within the first one, the
value will be 0.5.

Abbrev. Full Name Description

LOC Lines of code Source lines of code of the function, ignoring blank lines and
comments.

LOAC Lines of anno-
tated code

Source lines of code in all feature locations within the function.
Lines that occur in a nested feature location are counted only
once.

CND Cumulative
nesting depth

Nesting depth of annotations, accumulated over all feature lo-
cations within the function. An #ifdef that is not enclosed by
another #ifdef (a top-level #ifdef) has a nesting depth of 0; an
#ifdef within a top-level #ifdef has a nesting depth of 1, and
so on. CND is accumulated over all feature locations within the
function. Thus, for example, if there are two feature locations in
a function, each with a nesting depth of 1, CND of the function
will be 2.

FCdup Number of fea-
ture constants

Number of feature constants referenced by the feature locations
in the function. Constants referenced multiple time are also
counted multiple times.

FL Number of fea-
ture locations

Number of blocks annotated with #ifdefs. An #ifdef con-
taining a complex expression, such as #if defined(A) &&
defined(B), counts as a single feature location. An #ifdef
with an #else or #elif branch counts as two feature locations.

Table 4.1: Atomic metrics to capture the Annotation Bundle code smell

74 4. Variability-Aware Code Smells

For the example Annotation Bundle in Figure 4.2 (see page 59), the values of
the atomic metrics are as follows:

• LOC= 27 (27 lines of code excluding blank lines and comments),
• LOAC= 8 (eight lines of annotated code),
• FL= 5 (five feature locations),
• FCdup = 7 (there are five distinct feature constant, of which USE_ALARM_THREAD

and SIGNAL_HANDLER_RESET_ON_DELIVERY occur twice), and
• CND= 1 (nesting only occurs once, for the feature location on Line 22).

Next, I use these metrics to compute the three terms of ABsmell. This computation
yields 1.48, 1.4, and 0.2 for the first, second, and third term, respectively. Assuming
that all weights (w1, w2, and w3) are 1, the final ABsmell value for the function in
Figure 4.2 is 3.08. Now that the value is computed, the following question arises:
Is 3.08 a high value that developers should pay attention to, or is it a low value
that can be ignored? To answer this question, the 3.08 must be compared to other
ABsmell values. For example, it is possible to compare this value to the ABsmell

values of other functions in the same project. If 3.08 is above the 95th percentile of
all ABsmell values, the function should be inspected. If, on the other hand, 3.08 is
close to the median, it is nothing out of the ordinary and can be ignored. I come
back to the topic of interpreting smell metric values at the end of Section 4.4.2.

Metrics for Detecting Large Features

The metrics to detect Large Features are given in Table 4.2. In contrast to
Annotation Bundle, which focuses on a single function definition, Large Fea-
ture focuses on a feature, which can be implemented in many places throughout
the system. Consequently, the metrics are collected at a different scope: Whereas
the metrics for Annotation Bundles are collected at the scope of an individual
function, the metrics for Large Features are collected at the global scope, that
is, taking the whole software system into account.

Abbrev. Full Name Description

CUfeat Number of compi-
lation units

Number of compilation units (i. e., *.c files) in which fea-
ture locations referencing the given feature constant occur.

FLfeat Number of feature
locations

Number of feature locations that reference the given fea-
ture constant.

LOACfeat Lines of code of
the feature

Source lines of code annotated by the given feature con-
stant, ignoring blank lines and comments.

CUtotal Number of all com-
pilation units

Total number of all compilation units (i. e., *.c files) within
the system.

FLtotal Number of all fea-
ture locations

Total number of feature locations throughout the system.

LOCtotal Total lines of code Source lines of code within the entire system, ignoring
blank lines and comments.

Table 4.2: Atomic metrics to capture the Large Feature code smell

The metrics for the feature of interest are listed in the upper half of Table 4.2.
These metrics are collected by analyzing all compilation units (that is, all *.c files)
in the system at hand. During the analysis, all feature locations in a compilation

4.4. Detection Concept 75

unit are checked for references to the feature constant that belongs to the feature
of interest. The CUfeat metric is the number of compilation units that contain at
least one feature location that references the feature constant. FLfeat, in turn, is
the number of all such feature locations. Finally, LOACfeat is the number of non-
blank, non-comment lines of code that occur inside these feature locations. These
feature-specific metrics are combined with metrics about the entire system, which
are listed in the lower half of Table 4.2. Together, these metrics are aggregated into
the LFsmell metric to detect Large Features. I show the formula to compute the
LFsmell metric in Equation 4.2.

w1 ·
LOACFEAT
LOCTOTAL

+ w2 ·
FLFEAT
FLTOTAL

+ w3 ·
CUFEAT
CUTOTAL

(4.2)

The three terms of this formula relate to the size and to the degree of scattering
of a feature: (1) The first term computes the ratio of code that belongs to the
feature of interest to all code within the system. Basically, this metric measures the
same property as the LOAC/LOC ratio in the detection formula for Annotation
Bundles, but on a different scope. For features with very little code, the ratio of
LOACfeat to LOCtotal will be close to zero, whereas for larger features, it assumes
values closer to one. (2) The second term accounts for fine-grained scattering of the
feature. This is expressed as the ratio of feature locations that reference the feature
in question to all feature locations. The more scattered a feature is, the higher
this ratio will become because highly scattered features are implemented in many
different feature locations and, hence, have a high FLfeat value. Note that this term
ignores whether or not different feature locations reside in the same compilation unit
or in different ones. This is what the third term is for. (3) The third and final term
captures a more coarse-grained notion of scattering. It is the ratio of compilation
units that contain parts of the feature’s implementation to all compilation units. In
the extreme case that feature code is present in every compilation unit, this ratio
will be one. Otherwise it will be a value lower than one but greater than zero.

4.4.2 Parameterization and Thresholds

How much a particular atomic metric contributes to the complexity may vary de-
pending on the individual perception of the developer working with the code. Hence,
my detection method can be parameterized using weights and thresholds. If intimate
knowledge of the source code or guidelines for cpp usage are available, users can
encode this knowledge in the provided weights and thresholds to obtain more precise
results.

For both the ABsmell metric in Equation 4.1, as well as for the LFsmell formula in
Equation 4.2, the influence of each of the three terms is controlled by a weight (w1,
w2, and w3, respectively). For example, a user wishing to detect Large Features
may want to put more emphasis on size than on scattering. Using the LFsmell

formula, this can be achieved by assigning a large value to w1 and smaller values to
w2 and w3.

In addition to weights, users can specify a lower boundary for a particular term
with the help of thresholds. Such thresholds are intended to reduce false positives

76 4. Variability-Aware Code Smells

in the result set. Following the ideas of Marinescu, Lanza, and Moha (for details,
see Section 2.4.1, as well as [227, 196, 257]), thresholds in Skunk are either ab-
solute or relative. As an example for an absolute threshold, a user can set the
threshold for the LOAC/LOC ratio to 0.5 when detecting Annotation Bundles.
That way, only functions with at least 50 % of annotated code will be considered
Annotation Bundles. Relative thresholds, in turn, enable users to detect smells
based on outliers, that is, program elements whose metric value is unusually high
or low compared to other metric values in the analyzed system. Skunk uses rela-
tive thresholds to detect Large Features. For example, a user can specify that
a feature is a Large Feature if its size is in the top 5 % range. To do so, the user
would set the LOACfeat parameter to 0.95.

After parameterizing the detection formulas with weights and reducing the result
set with thresholds, the last question is how to interpret the reported ABsmell and
LFsmell values. According to previous work on code smell detection (e. g., [227,
196, 257]), the common way to interpret a given metric value is to compare it
to other metric values in a reference corpus. This corpus may comprise all the
function in the software system being analyzed but it could also be a curated corpus
compiled by a group of experts. Given such a reference corpus, several strategies,
such as ranking or normalization, can be used. Ranking means that all functions are
sorted in descending order by their smelliness metric value. Guided by this ranking,
developers can focus their attention on the highest-ranked functions, for example,
on the functions whose smelliness value is above the 95th percentile. The other
strategy, normalization, means that a given metric value is put in relation to some
fixed reference value. For example, every ABsmell value could be divided by the
maximum ABsmell value from the corpus, and if the result is close to 0.0, smelliness
is low; if it is close to 1.0, smelliness is high. Beyond these simple approaches,
further approaches to interpret metric values and determine proper weights and
thresholds have been proposed in the literature. For example, if training data is
available, machine learning techniques can produce good results. See Section 2.4.1
in Chapter 2 for more details.

4.5 Implementation

In Figure 4.4, I show the basic detection process of Skunk, the tool that implements
my variability-aware code smell detection concept. Detection starts by preprocessing
the source code of the analyzed system. Preprocessing is performed by two external
tools, cppstats and src2srcml. cppstats extracts most variability-related infor-
mation that Skunk requires, such as the locations of #ifdef directives. However,
Skunk needs additional syntactic information (e. g., the location of function defini-
tions), which cppstats does not provide. To extract this information, I rely on the
output of src2srcml, a tool that transforms C code into an XML representation
containing information similar to an Abstract Syntax Tree (AST). One important
property of this XML representation is that it preserves all preprocessor directives
(such as #ifdefs) that appear in the original source code files. This is in contrast
to most C parsers, which create the AST only after preprocessing, rendering them
useless as a basis for Skunk.

4.5. Implementation 77

src2srcML

cppStats

C sources

stats.csv
Feature Locations  
feature constants, 
nesting, 
…

source.xml
Syntactic Info 
functions, 
caller-callee, 
…

combine
Feature  
Syntax  

+ 
Metrics

detect

Results  
x.c:11: Annotation Bundle: 0.9 
y.c:42: Large Feature: 0.7 
z.c:66: Latently Unused: 0.6 
…

Code Smell 
Templates Parametrization+

Figure 4.4: Variability-aware code smell detection architecture

After preprocessing, Skunk extracts feature locations and other variability-related
information from the results of cppstats. Function definitions and further metrics
are extracted from the output of src2srcml. Next, Skunk combines both sources
of information in order to calculate the atomic metrics shown in Table 4.1 and
Table 4.2. The results of this data extraction step are stored in an internal format
for further processing. The extracted data is represented by the box labeled Feature
Syntax + Metrics in Figure 4.4.

Based on the extracted data, the actual detection of variability-aware code smells
takes place. Detection is controlled by a Code Smell Template, in which the user
specifies his/her smell detection criteria, namely, the smell to detect as well as
the weights and thresholds to apply. For instance, the user may want to limit
reported Annotation Bundles to functions that contain at least 50 % of anno-
tated code. This can be achieved by setting the parameter Method_LoacToLocRatio
to 0.5;mandatory, where 0.5 is the threshold for the LOAC/LOC ratio and the
keyword mandatory instructs Skunk to ignore functions with a ratio below that
threshold. For program elements that pass this filtering step, Skunk computes the
smell metric. In particular, when detecting Annotation Bundles, the ABsmell

(see Equation 4.1) metric is computed, and when detecting Large Features, the
LFsmell metric is computed (see Equation 4.2). Afterwards, the metric value, along
with the function’s name (in the case of Annotation Bundles) or feature name
(in the case of Large Feature) and location, are written to a results file. This
results file is depicted as the box named Results in Figure 4.4. Finally, the results
can be inspected by the user, who can identify functions or features of interest and
take appropriate corrective action.

Besides setting the LOAC/LOC threshold, Skunk’s Code Smell Templates offer
additional parameters to control the other thresholds and weights discussed in the
previous section. Beyond that, Skunk computes further metrics to be used in the

78 4. Variability-Aware Code Smells

future to detect additional variability-aware code smells. The source code of Skunk,
as well as a short how-to can be obtained from the tool’s repository at GitHub.11

4.6 Case Study of Detecting Annotation Bundles

The operationalization of variability-aware code smells by way of metrics makes it
possible to answer the interesting question to what extent these smells occur in the
wild. To this end, I applied my smell detection tool in an exploratory case study
using five highly configurable open-source software systems.

The main goal of this study was to establish a ground truth for the detection of
Annotation Bundles but also to develop an infrastructure for detecting further
variability-aware smells listed in my catalog (see Section 4.2). I focus specifically
on the Annotation Bundle smell to allow for an in-depth, qualitative analysis
of the detection results. In the remainder of this section, I present the setup of
this case study, including research questions, subject systems, and methodology.
Furthermore, I present the results and analyze them qualitatively. This qualitative
analysis reveals insights into why some of the functions that Skunk reported as
Annotation Bundles were actually smelly. Even more interesting, the analysis
also explains why other alleged Annotation Bundles were, in fact, not smelly.

4.6.1 Research Questions

Basically, I want to answer two research questions aimed at assessing the usefulness
of both, the concept of variability-aware code smells as well as my detection concept.

RQ 3: Does my algorithm detect meaningful instances of the Annotation Bundle
smell?

With this question, I evaluate the precision of my detection algorithm. By means
of manual inspection, I determine to what extent automatically detected instances
of the Annotation Bundle smell align with human perception regarding under-
standability and changeability.

RQ 4: Do Annotation Bundles reveal recurring, higher-level patterns of anno-
tation usage?

With this question, I explore why developers introduced the smell. In particular,
I want to know whether implementation- or domain-specific characteristics foster
the occurrence of the smell. Moreover, I investigate which of such patterns are more
likely to negatively impact the source code.

4.6.2 Subject Systems

In Table 4.3, I show an overview of the subject systems of my exploratory case study.
I used five highly configurable open-source systems of medium size. For each system,
I list its version, domain (e. g., text editor), size (in LOC; measured using the cloc
tool12), the ratio of annotated code to total system size (column % LOAC, given

11https://github.com/wfenske/Skunk/
12http://cloc.sourceforge.net

https://github.com/wfenske/Skunk/
http://cloc.sourceforge.net

4.6. Case Study of Detecting Annotation Bundles 79

in percent), and the number of potential instances of the Annotation Bundle
detected by Skunk. I report the ratio of annotated code to provide a rough impres-
sion of how much variable code each system contains. The given values are based on
the measurments published by Liebig et al. for slightly older versions of my subject
systems [204]. Note that values in LOC and % LOAC column only include non-
blank and non-comment lines of C code. Moreover, header files have been excluded
from both measurements, since Skunk does not analyze them.

Name Version Domain LOC % LOAC ABpot
Median
ABsmell

Emacs 24.5 Text editor 247,403 29.0 20 6.9
Libxml2 2.9.2 XML processing library 215,751 69.5 76 4.0
Lynx 2.8.8 Text-based browser 115,102 43.8 76 10.9
PHP 5.6.9 Scripting language 117,813 18.2 26 5.1
Vim 7.4 Text editor 285,817 69.8 259 7.1

Version: version number; Domain: application domain; LOC: number of non-
blank, non-comment lines of C code, ignoring header files; % LOAC: ratio of lines
of annotated code (feature code) to total lines of code, in percent; ABpot: number of
potential Annotation Bundles reported by Skunk; Median ABsmell: median
of metric values, computed over all candidates of ABpot

Table 4.3: Overview of subject systems used in evaluation

My subject systems constitute a subset of the forty systems used by Liebig et al., who
analyzed preprocessor usage [204]. I based my selection on three criteria: 1. I chose
systems of medium size in order to get a sufficient number of potential instances of
the Annotation Bundle smell but also to show the applicability to systems of
reasonable size. 2. I targeted systems with a considerable fraction of annotated code,
the rationale being that systems with a high proportion of feature code are more
likely to contain Annotation Bundles than systems with little feature code. 3. In
order to remove bias regarding specific properties of a particular application domain,
I chose systems of four different domains. Nevertheless, I included two text editors
(Emacs and Vim) to account for different coding styles within a single domain.

Threats to validity. The selection of subject systems poses a potential threat
to the external validity of the findings. I concede that my findings may be not
representative for domains that none of my subject systems belongs to. For instance,
my findings may not be representative for embedded systems. However, as my
systems represent different domains, my selection is not biased to only one specific
domain. Consequently, my results can at least be generalized to similar domains.

4.6.3 Methodology

In the following, I describe my methodology for detecting and evaluating the Anno-
tation Bundle smell. This methodology consists of three steps: (1) parametriza-
tion of the detection algorithm, (2) creating the sample set, (3) and validating these
samples.

80 4. Variability-Aware Code Smells

Parametrizing the Detection Algorithm

As mentioned in Section 4.4, the user can parametrize the detection process by
providing thresholds and weighting factors for particular measures. For my case
study, I set thresholds for the following four parameters:

• LOAC/LOC = 0.5: As the considered smell focuses on problematic usage of
cpp directives, I required each function to contain at least 50% annotated code.
Otherwise, I assumed to obtain too many false positives, that is, functions that
smell only a little or not at all.
• FCdup = 2: Since tangling and scattering are part of my ABsmell metric, I re-

quired the occurrence of at least two different feature constants.
• FL= 2: I argue that one large chunk of annotated code is something that hap-

pens frequently in C programs and hardly indicates problems for changeability
or understandability. Thus, I chose a higher threshold.
• CND= 1: My intuition was that nesting significantly contributes to the com-

plexity of an Annotation Bundle. Hence, I set this threshold such that
only functions with at least one nested #ifdef directive are reported.

All of the aforementioned parameters are mandatory for the detection process, that
is, a function will only be reported by Skunk if it adheres to all of these thresholds.
Based on test runs of Skunk on other system, I chose these thresholds to reduce the
number of false positives. While I could have chosen higher thresholds, this might
have resulted in decreasing recall, that is, the likelihood of missing potentially smelly
functions would have increased.

Sample Selection

After running Skunk on my subject systems, I determined the precision of my
detection approach. Since there is no baseline for variability-aware code smells
so far (e. g., a human oracle), I decided to manually inspect the reported smell
instances and classify them into true positives and false positives. This inspection
was restricted to a subset of the reported smell instances because inspecting all of
them is infeasible in a reasonable time. To create this subset, I took a sample of 20
smell instances from each subject system by the following method: Half the samples
(i. e., 10 per system) constitute those smell instances with the highest ABsmell value.
This top-10 list also allows me to evaluate to what extent the ABsmell indicates the
strength of the smell, i. e., whether functions with higher ABsmell values are more
smelly than functions with lower values. For the second part of the sample set,
I split the remaining result set into 10 equally distributed segments. For each of
those segments, I randomly selected one entry and added it to my sample set. This
way, I obtained a cross section of all smell instances for my evaluation. Moreover,
I gain insights on a possible cutoff regarding my detection metric, that is, whether
smells occur only above a certain metric value.

To illustrate the sample selection process, I use Lynx as an example. The detection
result of Lynx consists of 76 potential smell instances. In step one, I included the top-
10 results in my sample set. Next, I split the remaining 66 results into 10 segments,
encompassing approximately seven smell instances each, and randomly selected one
instance from each segment. This sample set was then manually validated, which
I explain next.

4.6. Case Study of Detecting Annotation Bundles 81

Validating the Smells

I use the previously created sample set for assessing the precision of my detection
algorithm. To this end, a cross validation was performed by reviewing each sample
independently and assigning a rating to it, thus, simulating a human oracle. The
cross validation was executed by Sandro Schulze, who is a coauthor of the paper in
which this case study was first described [97], and by myself. We used a 3-point
scale for assessing the sample smells with the ratings −1 (no negative impact), 0
(partial negative impact), and 1 (high negative impact). While the first indicates
a false positive sample (i. e., no smell), the other two ratings indicate at least partial
smells. The difference between a partial and a high impact is that the former means
that only certain code fragments impede changeability and understandability; for
the latter, the whole (or most of) the function is negatively affected.

For the actual inspection of the smells (and their impact), my coauthor and I mainly
focused on how much preprocessor annotations interfere with data and control flow.
Among other things, this includes annotated variable initializations and assignments,
annotated conditional branches (both, whole blocks as well as just parts of the
condition) and loops. Moreover, we considered nested annotations and compound
feature expressions (i. e., #ifdef directives that reference multiple feature constants).
For all of these occurrences, we rated how difficult annotations make it to understand
the given function (e. g., its data and control flow) or to identify the location for
a possible change. Note that in our review, we disregarded shortcomings that result
only from inappropriate use of the programming language, such as sequences of
nested conditionals or just overly long functions. Based on this review process,
both of us individually assigned a rating to a respective smell sample. Moreover,
we recorded qualitative data regarding different properties of the function in the
sample. For example, we noted down the purpose of the function and why or why
not we believed it was smelly. Moreover, we listed possible reasons why the original
developers may have introduced variability.

After both of us had completed their review tasks, we compared our ratings, sample
by sample. In case of different ratings, we discussed our ratings (including the
qualitative observations) until we achieved a rating we both could agree on.

Threats to validity. While the study methodology was devised with care, it in-
herently comprises certain threats. First, parametrization may lead to missing smell
instances in the results set. However, I have chosen conservative values for the re-
spective parameters, thus mitigating the risk of missing “real” smells. In any case,
I do not claim anything about the recall of my detection concept, only about its
precision. Second, sampling bears the risk not being representative or too small
regarding the whole data set. I mitigate this threat in two ways: (1) The selection
method incorporates not only peak values (i. e., the top-10 result for the ABsmell

metric) but also covers the rest of the value domain. This coverage is achieved us-
ing the randomized, equally distributed sampling strategy described above. (2) My
sample sets encompass between 8% and 100% of the initial result set. This is a rea-
sonable size for being representative. Finally, my validation process may introduce
a bias, because the ratings are based on personal opinions, which renders the results
subjective. Hence, I set up a strategy with concrete criteria for rating the inspected

82 4. Variability-Aware Code Smells

smells in advance, thus preventing an entirely arbitrary rating procedure. Moreover,
we first rated the samples independently and subsequently discussed our ratings in
a review meeting.

4.6.4 Results

I provide the initial result set, containing all potential instances of Annotation
Bundle after running my detection algorithm, in Table 4.3. The final results, after
manual inspection and validation, are given in Table 4.4.

Initial Result Set

Basically, my data reveal that each of the subject system exhibits potential smells.
Nevertheless, the amount of detected smells differs considerably, ranging from only 20
(for Emacs) to 259 (for Vim). These differences indicate that there is considerable
heterogeneity in how different systems use cpp annotations. Moreover, the average
ABsmell metric value (computed as the median over all values per system; see Ta-
ble 4.3) exhibits differences as well. Hence, for each system, a different cutoff value
may apply at which the result set turns from rather reliable results into an excessive
number of false positives.

Inspection of Sample Set

In Table 4.4, I show the results for the manual inspection of the sample set. In
particular, I show two different views on my results: ratings for the whole sample
set (stated in the all subcolumns) and for a reduced sample set encompassing only
the smells with the top-10 ABsmell metric values (stated in the top10 columns). For
the whole sample set, my data reveals that approximately 50 % of the detected smells
have been discarded (rating of −1). On the negative side, this indicates that the
precision of my detection algorithm is only average. On the positive side, the data
also reveals that each system exhibits smells that have a medium or high impact on
changeability and understandability of the source code. Moreover, precision differs
considerably between systems, ranging from 25 % for PHP to 70 % for Vim. For
the top-10 sample set, by contrast, I obtain more precise results. In particular, the
average precision is 72 %, with four systems having a precision between 70 % and
90 %. Additionally, note that the number of smells with a high impact (rating +1)
clearly exceeds the rating for medium impact. Thus, the higher the ABsmell value
of a function, the more confident we can be that the use of preprocessor directives in
that function is actually problematic. In summary, especially the smells with high
metric values are good indicators for real shortcomings and thus are useful to guide
developers to functions that require special attention.

The raw results, including code artefacts, metric values, and ratings, are available
on the website that complements the original publication about this case study.13

Next, I present the insights of my qualitative analysis.

13https://www.isf.cs.tu-bs.de/cms/team/schulze/material/scam2015skunk/

https://www.isf.cs.tu-bs.de/cms/team/schulze/material/scam2015skunk/

4.6. Case Study of Detecting Annotation Bundles 83

Name AB–1 AB0 AB+1 AB0+1 % Prec.
top10 all top10 all top10 all top10 all top10 all

Emacs 2 8 4 8 4 4 8 12 80 60
Libxml2 3 12 3 4 4 4 7 8 70 40
Lynx 2 8 2 6 6 6 8 12 80 60
PHP 6 15 4 5 0 0 4 5 40 25
Vim 1 6 1 4 8 10 9 14 90 70

Total 14 49 14 27 22 24 36 51 72 51

AB–1: samples with a manual rating of −1 (no impact); AB0: samples with a man-
ual rating of 0 (medium impact); AB+1: samples with a manual rating of +1 (high
impact); AB0+1: samples with a manual rating of 0 or +1 (medium or high impact);
% Prec.: ratio of manually confirmed smell instances rated 0 or +1 in relation to
sample size, in percent. The top10 columns refer to the top ten detection results.
The all columns refer to all twenty samples.

Table 4.4: Detection results for Annotation Bundle smell

4.6.5 Qualitative Analysis

In this section, I report on qualitative observations that Sandro Schulze, who was
my partner in the manual validation process, and myself made during our manual
inspection of the samples. In particular, I relate these observations to the research
questions posed in Section 4.6.1. I provide details why smells occur, whether they
follow certain patterns, and why there are sometimes good reasons that developers
write heavily annotated functions.

RQ 3: When is a Smell a Smell?

The goal of RQ 3 is to find out whether my algorithm detects meaningful instances
of the Annotation Bundle smell. Overall, we made four important observations
with respect to this question, which I detail in the following. Basically, these ob-
servations show that my metric-based approach enables the detection of smells that
have a negative impact. However, they also shed a light on possible weaknesses of
my detection algorithm. For instance, my algorithm disregards recurring patterns
of annotations, which actually improve code understandability and thus cannot be
considered smelly.

Observation 1: There is no single reason for why functions smell. During manual
inspection of potential smells, we repeatedly noted that no single property (e. g.,
LOAC ratio, nesting depth) reliably predicts whether a sample was actually nega-
tively affected by variability (according to my review partner’s and my subjective
perception). Rather, a combination of different properties is necessary to make
a potential smell a real one. For instance, samples 10 and 14–20 of Libxml2 con-
stitute unit tests for configurable (i. e., optional) functionality. I show an example
of such a function in Listing 4.7. The implementation of this function depends on
functionality provided by the feature LIBXML_TREE_ENABLED. Since the function
would not compile without this functionality, most of the body is enclosed in two

84 4. Variability-Aware Code Smells

1 static int
2 test_xmlValidateNCName(void) {
3 int test_ret = 0;
4
5 #if defined(LIBXML_TREE_ENABLED) || defined(LIBXML_XPATH_ENABLED) || defined(

LIBXML_SCHEMAS_ENABLED) || defined(LIBXML_DEBUG_ENABLED) || defined (
LIBXML_HTML_ENABLED) || defined(LIBXML_SAX1_ENABLED) || defined(
LIBXML_HTML_ENABLED) || defined(LIBXML_WRITER_ENABLED) || defined(
LIBXML_DOCB_ENABLED) || defined(LIBXML_LEGACY_ENABLED)

6 #ifdef LIBXML_TREE_ENABLED
7 int mem_base;
8 int ret_val;
9 xmlChar * value; /* the value to check */

10 int n_value;
11 int space; /* allow spaces in front and end of the string */
12 int n_space;
13
14 for (n_value = 0;n_value < gen_nb_const_xmlChar_ptr;n_value++) {
15 for (n_space = 0;n_space < gen_nb_int;n_space++) {
16 mem_base = xmlMemBlocks();
17 value = gen_const_xmlChar_ptr(n_value, 0);
18 space = gen_int(n_space, 1);
19
20 ret_val = xmlValidateNCName((const xmlChar *)value, space);
21 desret_int(ret_val);
22 call_tests++;
23 des_const_xmlChar_ptr(n_value, (const xmlChar *)value, 0);
24 des_int(n_space, space, 1);
25 xmlResetLastError();
26 if (mem_base != xmlMemBlocks()) {
27 printf("Leak of %d blocks found in xmlValidateNCName",
28 xmlMemBlocks() - mem_base);
29 test_ret++;
30 printf(" %d", n_value);
31 printf(" %d", n_space);
32 printf("\n");
33 }
34 }
35 }
36 function_tests++;
37 #endif
38 #endif
39
40 return(test_ret);
41 }

Listing 4.7: Test code for optional functionality in Libxml2, file testapi.c.

large annotated blocks (see Lines 5 and 6). Especially the annotation on Line 5
looks daunting because it references ten feature constants. However, if we assume
that LIBXML_TREE_ENABLED (referenced on Line 6) is disabled, the function becomes
very simple. Only two statements remain, the variable definition on Line 3, and the
return statement on Line 40. Consequently, the function will simply return 0 in con-
figurations without LIBXML_TREE_ENABLED, i. e., the test will pass successfully. Like
the other test functions in Libxml2, the example in Listing 4.7 exhibits a high per-

4.6. Case Study of Detecting Annotation Bundles 85

centage of annotated code (approximately 95 %), which normally indicates a highly
variable function. However, with only two feature locations per test, one immedi-
ately wrapped around the other, the annotations are very coarse-grained and easy
to follow. Consequently, these samples were rated −1 by both authors, as they were
easy to understand.

I learned from this observation that my detection formula, which combines several
metrics, is a good baseline for detecting Annotation Bundles in many real-
world scenarios. Nevertheless, as the Libxml2 samples show, there is room for
improvement since particular patterns of #ifdef usage can lead to false positives.

Observation 2: Interactions of preprocessor variability with runtime variability
leads to smelly code. Another observation we made is that annotated code ampli-
fies the negative impact of an already complex control flow. For instance, function
ins_redraw from Vim (sample 13, 83 LOC) is rather short. Nevertheless, it contains
11 (runtime) if statements, and most ifs are nested over one or two levels within
another if. While this control flow is already hard to understand, these (runtime)
if statements are additionally annotated with 12 (compile-time) #ifdefs. Even
more, some of these #ifdefs are undisciplined [206] because they annotate parts
of an if-condition. As such complex interactions impede understandability and
changeability, this example and similar ones have been rated +1 (high impact).

I learned from this observation that it matters how cpp directives interact with the
structure of the host language. Taking this into account will make the detection
algorithm more precise.

Observation 3: Keep it short. Many short functions (i. e., LOC ≤ 100), even some
with a top-10 ABsmell value, were rated −1 (no impact). Longer functions, by con-
trast, were more likely to be rated 0 or +1 (medium/high impact). The reasons may
be related to the interaction between complex code in the host language and pre-
processor variability, as discussed in Observation 2. Short functions are less likely to
contain complex control flow. Hence, they inherently exhibit fewer interactions be-
tween preprocessor and runtime variability. An exemplary comparison of the LOC
metrics for Lynx supports this intuition: samples rated −1, 0, and +1 have an av-
erage length of 83, 294, and 319 LOC, respectively. A similar trend can be observed
in the Emacs samples. Both examples indicate that LOC may be positively corre-
lated with preprocessor annotations that have a negative impact. Hence, I learned
that the precision of the ABsmell metric may also benefit from taking LOC into
account. Note, however, that LOC alone is not sufficient to identify Annotation
Bundles because we also found a number of long, heavily annotated functions that
were not smelly.

Observation 4: Repetitive feature code aids comprehension. Some smells were dis-
carded although they exhibited high ABsmell values (e. g., due to a vast amount
of feature locations and constants). The reason is that we observed a repetitive
structure of the variable code, which aided comprehension when reading the code.
For instance, function f_has in Vim (file src/eval.c) contains 95 % of annotated
code and 177 feature locations. This function received the highest ABsmell value
for Vim. However, most feature locations in f_has are related to a single statement

86 4. Variability-Aware Code Smells

that initializes an array of strings. These strings represent the configuration options
of a particular Vim installation so that Vim can report its configuration at runtime.
In Listing 4.8, I show an excerpt of the respective code. As the excerpt illustrates,
the feature locations in f_has merely control whether a particular option string is
included in the array or not. For instance, if and only if Vim is built for the oper-
ating system OS2, this array will contain the string "os2". Consequently, function
f_has was rated −1, because the repetitive structure aids understanding and chang-
ing the code. Finding the place to add a new feature, for example, and inserting
the necessary #ifdefs and string constant, will be straightforward. Note that our
observation is in line with the work of Kapser and Godfrey regarding code cloning
practices, which are not necessarily harmful and sometimes even beneficial [152]. In
this sense, we argue that repetitive feature code is another argument in favor of their
claim.

1 static char *(has_list[]) =
2 {
3 /* ...*/
4 #ifdef OS2
5 "os2",
6 #endif
7 #ifdef __QNX__

8 "qnx",
9 #endif

10 #ifdef UNIX
11 "unix",
12 #endif
13 /* ... more features ... */
14 };

Listing 4.8: Repetitive feature code in Vim

In summary, I learned that recurring structural similarities of annotated code should
be considered by my detection algorithm. By taking such similarities into account,
I may be able to obtain more precise results.

RQ 4: High-Level Patterns of Annotated Code

With RQ 4, I investigate whether more abstract patterns exist that lead to the in-
troduction of the Annotation Bundle smell, or, conversely, patterns that prevent
heavily annotated functions from being smelly. Based on qualitative analysis of my
review partner and myself, we identified three such patterns and report another
observation that may introduce further smells.

Observation 5: Adapter pattern. Some platforms (e. g., operating systems or com-
pilers) provide implementations of functions that do fully conform to the expecta-
tions of a particular subject system. Hence, systems that rely on these functions
provide adapters for platforms that do not provide a suitable implementation. For
instance, Emacs provides an adapter for gettimeofday, whose purpose is to return
the current time. On some platforms, this adapter will delegate to the platform-
provided implementation and perform clean-up actions to work around a bug. On

4.6. Case Study of Detecting Annotation Bundles 87

other platforms, this adapter will delegate to another function, ftime, which pro-
vides similar functionality but a different interface. In the particular case of Emacs’
gettimeofday adapter, the code was rated 0, indicating only a partial negative im-
pact on some parts of the function. The alternative to an adapter would be to
introduce variability at every call site of the respective function. This would lead
to more annotated code throughout the system compared to the adapter, which
encapsulates the variability in a single location. In general, I learned that adapters
benefit overall code quality as they protect the rest of the system’s source code from
the encapsulated variability.

Observation 6: Optional Feature Stub. We found a number of functions do-
ing nothing if a particular optional feature is not present. I call this pattern
the Optional Feature Stub. The unit tests for Libxml2, described in Ob-
servation 1, are one example. As a further example, Emacs contains the func-
tion apply_xft_settings, whose purpose is to initialize the font drawing library
libXft. I show an excerpt of this function in Listing 4.9. Lines 6 and 113 in this
listing illustrate that the whole function body is enclosed in an annotation. Simi-
lar to the Adapter pattern, this annotation relieves the rest of the system from
having to concern itself with the variability of libXft support. If libXft sup-
port enabled, a call to this function will perform the necessary work. Otherwise, it
simply does nothing. Although Optional Feature Stubs have a LOAC ratio of
almost 100 %, most samples that followed this pattern were rated −1. In particular,
I argue that Optional Feature Stubs are beneficial, because callers of the stub
remain oblivious of a particular feature being present or not. Hence, I learned that
the Optional Feature Stub actually reduces variability-related complexity and
consider them as beneficial patterns rather than being smells.

Observation 7: Featurized God Function. Especially in Vim, we found many func-
tions with more than 1000 LOC (e. g., samples 2, 3, 4). Besides their sheer length,
these functions contained a lot of variable code, usually annotated by a vast amount
of different feature constants. For instance, function win_line (Vim, sample 2,
2153 LOC) contains 23 feature locations related to multibyte strings, 22 feature lo-
cations for right-to-left writing systems, and 16 feature locations related to syntax
highlighting, among others. In reference to the anti-pattern God Class [305], I call
these functions Featurized God Functions, because they encompass a huge de-
gree of variability. Although samples from other systems constitute long functions as
well, the samples indicate that Vim is especially prone to this kind of function. As a
result, I learned that too much variability related to too many features is a common
pattern for the Annotation Bundle smell as it impedes understanding of data
and control flow.

Observation 8: Other platform and library variability. Generally, the samples re-
vealed platform- and library-related differences as a frequent source of variability.
For instance, differences in representing path names on Windows and Unix-like op-
erating systems are a reason for variable code in Lynx (samples 8, 9, and 11),
PHP (samples 4 and 8), and Vim (sample 15). Moreover, differences between al-
ternative libraries or different versions of the same library foster the introduction of
variability. For instance, Libxml2 can either use the iconv or the uconv library
to convert text between different character encodings. Although the interfaces of

88 4. Variability-Aware Code Smells

1 static void
2 apply_xft_settings (struct x_display_info *dpyinfo,
3 int send_event_p,
4 struct xsettings *settings)
5 {
6 #ifdef HAVE_XFT
7 FcPattern *pat;
8 struct xsettings oldsettings;
9 int changed = 0;

10
11 memset(&oldsettings, 0, sizeof (oldsettings));
12 pat = FcPatternCreate();
13 XftDefaultSubstitute(dpyinfo->display,
14 XScreenNumberOfScreen (dpyinfo->screen),
15 pat);
16 ... /* more code */

103 ... /* more code */
104 Vxft_settings
105 = make_formatted_string(buf, format,
106 oldsettings.aa, oldsettings.hinting,
107 oldsettings.rgba, oldsettings.lcdfilter,
108 oldsettings.hintstyle, oldsettings.dpi);
109
110 }
111 else
112 FcPatternDestroy(pat);
113 #endif /* HAVE_XFT */
114 }

Listing 4.9: Optional Feature Stub in Emacs, file src/xsettings.c

iconv and uconv are similar, they are not identical. Hence, the Libxml2 func-
tion xmlFindCharEncodingHandler (sample 11) contains alternative feature code
for each library. Portability has long been pointed as a major source of variability
in C programs [343]. I learned that this still holds more than 25 years later.

4.7 Related Work

The work presented in this chapter is related to a large body of existing work, which
can be divided into four topics. First, my catalog of variability-aware code smells is
preceded by several other catalogs of code smells. I explain how the smells in my
catalog differ from the existing ones. Second, others have studied the use of cpp
directives, sometimes also identifying specific usage patterns. Third, my detection
concept and its implementation, Skunk, builds on existing research into code smell
detection. Finally, in the same way that code smells are related to refactoring, my
variability-aware code smells complement the variant-preserving refactorings that
have already been discussed in the literature.

Other code smell catalogs. Independently from my work, Apel et al. coined the
term “variability smell” for code-smell-like problems in SPLs and present a catalog
of fourteen such smells [13]. These smells which are based on the authors’ own expe-
rience, as well as on reports from fellow researchers and practitioners. Compared to

4.7. Related Work 89

the smells I present in Section 4.2, their smells are more general in that they include
different kinds of problems in an SPL, such as overly complex feature models (FMs)
or run-time overhead resulting from inadequately chosen variability mechanisms. By
contrast, my smell catalog is restricted to the implementation level, and is based on
established code smells known from object-oriented programming.

Schulze, with varying coauthors, provides details on the smell Duplicated Code in
both, composition-based and annotation-based SPLs [324, 325, 323]. He found that
disciplined annotations lead to more replication than undisciplined annotations [325].
Moreover, he observed more replication in composition-based SPLs than in anno-
tation-based ones [323]. Schulze’s work gives empirical evidence for the existence
of one of the smells in my catalog, Inter-Feature Code Clones. Beyond this
particular smell, my catalog also encompasses other smells.

Others proposed code smell catalogs for Aspect-Oriented Programming (AOP) [102,
260, 294, 346] and for Delta-Oriented Programming (DOP) [329]. For example,
Schulze et al. discuss smells that arise from improper use of DOP constructs, such
as overly complex application conditions of delta modules [329]. These catalogs are
related to mine because both AOP and DOP can be used as variability mechanisms
for SPLs. In contrast to AOP and DOP smells, variability-aware code smells are not
limited to a single variability mechanism. Moreover, variability-aware code smells
explicitly consider variability as the cause for smells. By constrast, AOP smells
ignore this perspective because they focus on cross-cutting concerns and on the
structure of pointcuts and advice.

Architectural smells (see Section 2.1) were originally proposed with object-oriented
software systems in mind [110, 111] but they have also been explored in the context
of SPLs [10]. In comparison to architectural smells, variability-aware code smells
characterize issues that are more low-level. Thus, both kinds of smells complement
each other.

Like my own smell catalog, all of the aforementioned code smell catalogs build on
the foundational work on code smells and anti-patterns for object-oriented software
by Fowler, Beck, Brown, and others [42, 107, 372, 165, 233]. These smell catalogs
also apply in a product-line context because much of an SPL’s code base is, in fact,
not variable. My variability-aware code smells complement them in the cases where
the improper use of a variability mechanism causes quality issues.

Patterns of preprocessor use. Many researchers investigated the use of the cpp
and its potential negative impact on source code [343, 89, 204, 206, 327, 221, 243,
239, 239, 238, 241, 142, 298]. Specifically, Spencer and Collyer argue against the use
of #ifdefs for building portable software [343]. Their argumentation is based on
experiences with a single system but has not been validated on other systems or by
other researchers or practitioners, as I have done. Ernst et al. empirically analyzed
cpp usage patterns, but focus on potential problems of macro expansion and tech-
niques to replace cpp usage [89]. By contrast, my code smells for annotation-based
variability mechanisms center around conditional compilation, a different feature of
the cpp. Moreover, neither Spencer and Collyer, nor Ernst et al. address the auto-
matic detection of code anomalies. Next, Medeiros et al. investigated bugs related
to preprocessor variability [239, 238, 241]. In particular, they found that developers

90 4. Variability-Aware Code Smells

perceive variability-related bugs easier to introduce, harder to fix, and more critical
than other bugs [238]. Other researchers studied the negative effects preproces-
sor discipline and nesting of #ifdef directives on program comprehension [327, 221,
243]. These studies underline the importance of my work, which investigates sources
of complexity introduced by preprocessor variability. I evaluate the negative effects
of annotation-based variability in more detail in Chapter 5. Other researchers have
analyzed scattering, tangling, and nesting (as well as other properties) of #ifdef
directives in highly configurable systems [204, 206, 142, 298]. Skunk is built on top
of the tooling developed by Liebig and Hunsen and relies on some of the metrics
they proposed [204, 206, 142]. But in contrast to my work, their analyses are sta-
tistical in nature, and do not discuss methods to detect concrete patterns of misuse.
Furthermore, although the Skunk tool is limited annotation-based mechanisms, the
concept variability-aware code smells also covers composition-base mechanisms.

Code smell detection. A large body of research has addressed the detection of
code smells and anti-patterns in software using OOP, AOP and FOP, and I have
summarized this work in Section 2.4.1 of in Chapter 2 of this thesis. The detection
concept that was implemented in Skunk relies on metrics that are combined into
detection strategies and compared to absolute and relative threshold values. As
such, it builds on the work of Moha, Marinescu, and Lanza, who pioneered metrics-
based detection for object-oriented code smells (e. g., [229, 228, 230, 226, 196, 257]).

Other work on code smell detection takes additional sources of information into ac-
counts, such as historical changes and textual information extracted from identifiers
and comments. Furthermore, machine learning has been used to improve detection
results, for example, by learning the weights and thresholds of a detection strategy.
This work, which I discuss in Section 2.4.3 and Section 2.4.2 of Chapter 2, is com-
plementary to mine and could be used to improve the effectiveness of my detection
approach in the future.

Skunk currently outputs its results in a text-based format. In future work, vi-
sualizations may help users explore these results more efficiently. I summarized
corresponding work in Section 2.4.4 of Chapter 2.

In the present chapter, I propose the smell Inter-Feature Code Clones, which
is an SPL-specific variant of code clones. An entire field of research is devoted to
detecting code clones, and I have summarized this work in Section 3.6.2 of Chapter 3
of this thesis. It seems feasible that this work could be adapted to detect Inter-
Feature Code Clones.

In summary, my code smell detection approach in Skunk builds on the foundations
of metrics-based code smell detectors. The novelty is that Skunk detects varia-
bility-aware code smells instead of known object-oriented or aspect-oriented smells.
Consequently, Skunk employs other metrics than existing code smell detectors and
combines them into detection strategies in different ways. Skunk’s precision might
benefit from taking additional sources of information into account, such as code
changes or traditional metrics related to the underlying host language. Moreover,
machine learning techniques appear as a promising means to find better threshold
values and to improve Skunk’s detection formulas.

4.8. Conclusion 91

Variability-aware refactoring. Fowler et al. describe object-oriented code smells
as indicators for source code that should be refactored [107]. My code smells can be
used in the same way, but for the variable source code of an SPL. Following Fowler’s
and Beck’s example, other smell catalogs also offer advice on how to refactor (and
thus remove) each smell (e. g., [13, 260, 329]). In Chapter 6, I present variability-
aware refactorings to remove Inter-Feature Code Clones in FOP code. Beyond
that, I offer no refactoring advice in this thesis. Hence, my work is complementary
to previous work on variability-preserving refactoring [330, 328, 174, 175], as well
as recent advances in automating refactoring in the presence of cpp directives [205,
240].

4.8 Conclusion

Highly configurable software systems owe much of their configurability to variable
source code structures. On the one hand, variability at the source code level opens
up opportunities for innovative implementation patterns but on the other hand, it
may lead to new kinds of design flaws. In this chapter, I have argued that to char-
acterize these design flaws, we need a new kind of code smell, one that explicitly
takes variability into account. As a solution, I have presented a catalog of six varia-
bility-aware code smells, which have been validated by means of a survey. Moreover,
I developed a concept and tool support to detect variability-aware code smells au-
tomatically. I applied this concept to five highly configurable software systems, and
manually inspected the detection results. The insights gained from this inspection
indicate (a) that metrics-based detection of variability-aware code smells is feasible,
(b) that variability-aware code smells occur in the wild, and (c) that variability-
aware code smells may constitute problems for understanding, maintenance, and
evolution.

Based on the findings in this chapter, I answer RQT 1 of this thesis – How do var-
iability mechanisms affect the code smell concept? – as follows: Regarding subques-
tion RQT 1.1, I showed that certain themes from established code smells, such
as replication or overly strong centralization, also occur at the level of variability.
By transferring these themes to annotation-based and composition-based variability
mechanisms, it is possible to characterize a new class of design flaws. As indicators
of these flaws, I propose the concept of variability-aware code smells. Regarding
RQT 1.2, my evaluation results indicate that variability-aware code smells actually
occur in real-world software and can negatively affect the quality of the source code.
Additionally, I found that variability-code smells, like traditional code smells, are
only indicators of potential problems, not certain proof. In particular, I found ev-
idence that certain instances of variability-aware code smells are either harmless,
for example, because they are easy to understand, or even beneficial, because they
encapsulate variability in such a way that the complexity in other parts of the code
base is reduced. This evidence is especially interesting because it furthers our un-
derstanding of how developers use variability mechanisms in practice. Moreover, it
can guide future research into best practices of implementing variability – practices
that could form a catalog of variability-aware design patterns. Regarding RQT 1.3,
I demonstrated that a metrics-based approach to detect variability-aware code smells
is feasible, even though detection precision should be improved in the future.

92 4. Variability-Aware Code Smells

In the next chapter, I study one of my variability-aware code smells, the Annota-
tion Bundle, in greater detail. In particular, I focus on the individual metrics
that make up the current detection formula for this smell. Moreover, I investigate
an aspect of maintainability which the evaluations in the present chapter have not
considered: change-proneness.

5. How Preprocessor Annotations
(Do Not) Affect Maintainability

This chapter is based on and shares material with the GPCE ’17 pa-
per “How Preprocessor Annotations (Do Not) Affect Maintainability: A
Case Study on Change-Proneness” [98]. The study described in this pa-
per was redesigned and significantly extended under the guidance of Sven
Apel and Sandro Schulze, leading to the revised study presented in this
chapter.

In the case study described in the previous chapter, I focused on one variability-aware
code smell in particular, the Annotation Bundle. By applying my detection ap-
proach to five software systems, I demonstrated that Annotation Bundles occur
frequently in real-world source code and that at least some Annotation Bundles
negatively affect program comprehension. These properties – frequent occurrence“in
the wild” and having negative effects – are the two most important characteristics
of a code smell. Thus, the case study lends support to the hypothesis that the
Annotation Bundle is indeed a code smell.

Despite the encouraging findings, the previous chapter leaves two points open. First,
it showed that my detection approach for Annotation Bundles lacks precision.
While the detection formula may be constructed from the right metrics, the com-
bination of those metrics or the metrics are likely not optimal. Second, program
comprehension is only one aspect of software development that may be affected by
smells but other aspects should also be considered. For example, does the Annota-
tion Bundle also affect fault proneness or maintenance effort? To address these
points, I conducted a follow-up study, which I describe in this chapter.

In this chapter, I analyze how the use of C preprocessor directives in functions relates
to code change frequency as well as code churn, which are evolutionary metrics that
have been shown to be associated with increased fault proneness and maintenance
effort [84, 123, 86, 255, 338]. This analysis addresses the points left open by the
previous chapter as follows: First, it avoids the problems of the imprecise detection

94 5. How Preprocessor Annotations (Do Not) Affect Maintainability

formula for Annotation Bundles because each metric (e. g., the number of feature
locations) is analyzed individually, without making assumptions about potentially
harmful combinations of metrics. Thus, preprocessor use is considered at its most
basic level. The results of this analysis should indicate how a better detection
formula can be constructed. Second, as the focus shifts from program comprehension
to maintainability, I can explore whether certain patterns of cpp usage have any
further negative effects.

I have mined the data for my study from the version control repositories of twenty
open-source systems written in C. Statistical analyses of the data indicate that
functions with cpp directives are changed more frequently and more extensively
than other functions. However, after accounting for confounding factors (size, age,
time since recent changes, and number of previous changes), the differences are
small and inconsistent across different subject systems. I qualitatively inspected the
change histories of a selection of change-prone and stable functions to determine the
role that cpp use may have played in their respective change proneness or stability.
I conclude that the presence of preprocessor directives sometimes (but not always)
predicts change-prone functions but other indicators, such as the use of comments
to structure code in a long function, must be considered as well. In particular, this
chapter contributes the following:

• Quantitative and qualitative insights into the relationship between fine-grained
use of cpp directives and change proneness.

• A methodology and publicly available tool support to mine fine-grained infor-
mation on cpp use and changes from version control repositories.

5.1 Research Questions

My study is driven by two objectives that give rise to three research questions.
The first objective is to find out whether the presence of cpp directives affects
maintenance effort. This objective leads to the following research question:

RQ1: Is code containing cpp directives harder to maintain than code without
cpp directives?

As stated by previous studies, cpp directives can be used in various ways, which
lead to many different shapes of feature code [204, 298]. To reflect these shapes in
my study, I differentiate between the following aspects of cpp use: (1) the number
of preprocessor directives, (2) the number of macros controlling those directives,
(3) their nesting depth, (4) the use of negation (e. g., the use of #ifndef or #else
directives), and (5) the proportion of code enclosed in preprocessor directives. I re-
duce these aspects to binary properties when answering RQ 1 and look at each one
in isolation. For example, regarding aspect (3), I test whether code with nested
preprocessor directives is more change-prone than code without nested directives.

Several studies found that many metrics (e. g., the object-oriented coupling metric
LCOM1) correlate with the size of a piece of code [87, 390, 124]. Size, in turn,

5.2. Methodology 95

correlates with important maintenance aspects, such as change and fault prone-
ness [208, 273, 123, 170, 338]. Together, these findings suggest that size may also
be a confounding factor in my study. To determine whether this is the case, I ask
the following research question:

RQ2: Does the presence of cpp directives relate to the size of a piece of code?

My second objective is to understand the impact of each aspect of cpp use on
maintainability when all aspects are studied in combination. For example, does
the number of preprocessor directives affect maintainability more strongly than the
amount of nesting? To control for possible confounding factors, I consider not only
the size of piece of code, but also its age, the time since the last change, and the
number of previous changes. This way, I can also determine whether the size of
a piece of code, for example, has a stronger effect on maintainability than the number
of preprocessor directives. To address my second objective, I formulate the following
research question:

RQ3: Considering all aspects of cpp use in combination and in the context
of possible confounding factors, what is the independent effect of each aspect on
maintainability?

5.2 Methodology

In this section, I describe the design of my study. In particular, I present my
operationalization of maintainability and cpp use, state my research hypotheses,
introduce the analyzed software systems, and explain my data collection process.

5.2.1 Measuring Maintainability

To answer my research questions and achieve the objectives stated in Section 5.1,
I need a measure for maintainability. Unfortunately, a direct measurement of main-
tainability requires (controlled) experiments, similar to the ones that Sjøberg et
al. performed to study the effect of object-oriented code smells on maintenance
effort [337, 338]. Although such experiments are highly valuable, they limit the
number of systems and the amount of code that can be investigated. Hence, I use
change proneness as a proxy for maintenance effort and mine my data from version
control repositories. Change proneness comes in two flavors: the number of changes
(e. g., used by Khomh et al. [169, 170]) and the extent of changes (a. k. a. code churn;
e. g., used by Romano and Pinzger [308]). While the former is a good predictor of
later defects (i. e., fault proneness) [84, 123], the latter correlates with the effort of
developers (i. e., hours spent) when performing maintenance tasks [86, 255, 338]. In
my study, I consider both measures because both fault proneness and the number
of hours spent are important performance figures that describe the quality and cost
of a software project.

The level of granularity of my analysis is crucial. As cpp annotations can be used
at a fine grain, a similarly fine-grained analysis is required to investigate possible
effects. Hence, my analysis works at the function level: I measure annotation use
and changes for each function individually.

96 5. How Preprocessor Annotations (Do Not) Affect Maintainability

5.2.2 Variables

Next, I describe how I operationalized the use of preprocessor directives and change
proneness in my study. To this end, I defined the variables listed in Table 5.1. Both
preprocessor use and change proneness are modeled as binary (dichotomous) vari-
ables (see upper part of Table 5.1) and metric variables (see lower part of Table 5.1).
In both parts of the table, the independent variables are listed above the horizontal
rule and the dependent variables (changed , as well as commits and lines) are listed
below. While the binary variables only indicate whether a property is present or
not, the metric variables also account for different extents to which a property is
present. For example, cnd>0 indicates whether there are nested #ifdef directives,
but cnd can additionally indicate that nesting occurs twice, three times, or even
more often. Defining both binary and metric variables enables me to study the
relationship between preprocessor use and change proneness from different perspec-
tives and using different statistical analyses (see Section 5.3). The analyses based
on binary variables are robust (e. g., regarding different probability distributions)
and their results are easy to interpret. However, possible insights are rather coarse-
grained. Hence, I perform complementary analyses based on metric variables, whose
results are harder to interpret but also offer richer insights.

Binary Variables

fl>0 true if the function contains at least one #ifdef directive; false oth-
erwise

fc>1 true if the #ifdef directives in the function reference two or more
feature constants; false otherwise

cnd>0 true if at least one #ifdef in the function is nested; false otherwise
neg>0 true if negation occurs at least once in the #ifdef directives in the

function; false otherwise

changed true if the function was changed at least once in a period of time; false
otherwise

Metric Variables

fl Number of feature locations
fc Number of distinct feature constants referenced by the #ifdef direc-

tives in the function
cnd Number of times that the #ifdef directives in the function are nested
neg Number of negations in the #ifdef directives in the function

loac/loc Proportion of lines of annotated code (lines of code that are enclosed
in #ifdefs) to all lines of code, ignoring blank lines and comments

commits Number of times the function was changed over a period of time
lines Number of lines of code that were changed in the function over a period

of time

Independent variables are listed above the horizontal rule in both parts of the
table; dependent variables (changed , commits, and lines) are listed below.

Table 5.1: Independent and dependent variables

5.2. Methodology 97

To capture different aspects of preprocessor use, I consider four properties: the num-
ber of feature constants, the number of feature locations, the use of nesting, and the
use of negation. The corresponding binary variables are fc>1, fl>0, cnd>0, and neg>0,
and their metric counterparts are fc, fl , cnd , and neg . Note that each preprocessor
directive references at least one feature constant. Therefore, I deliberately chose not
one feature constant as the threshold for fc>1, but two feature constants. Otherwise,
fc>1 would have been identical to fl>0.

As an additional aspect of preprocessor use, I model the proportion of annotated
code in a function with the metric variable loac/loc. In contrast to fc, fl , cnd , and
neg , which are counts, loac/loc is a fraction. This made it difficult for me to define
a threshold that would make the binary variant of loac/loc sufficiently different from
the other four binary variables. Hence, loac/loc lacks a corresponding binary variable.

Change proneness as a binary property is modeled by a single variable, changed . It
expresses whether a function was changed over a period of time or not. As metric
variables, I define commits , which models the frequency with which a function is
changed, and lines , which models the extent of those changes. All three variables are
measured in the context of a certain period of time, which I call a commit window.
In Section 5.2.5, I explain commit windows in detail, and also describe the metrics
that correspond to the variables in Table 5.1 (see Table 5.5).

In addition to preprocessor use, I consider four factors that may also influence change
proneness and, thus, may confound my analyses. In particular, I consider (1) the
size of a function, (2) its age, (3) the number of previous changes, and (4) the time
since the last change. The corresponding control variables are listed in Table 5.2; the
respective metrics are explained in Section 5.2.5 (see Tables 5.5 and 5.6). Previous
studies have shown that change proneness is partially explained by the size of a piece
of code (e. g., [390, 338]). As I assume that larger pieces of code also tend to contain
more preprocessor annotations than smaller ones, it is possible that differences in
function size, and not differences in preprocessor use, are the true drivers of change
proneness. In addition to size, I also suspect that newly written code, code that was
frequently changed in the past, as well as recently changed code is more likely to
change in the future than older code, infrequently changed code, or code that has
not changed for a long time, respectively. By controlling for all four factors, I can
differentiate between the unique effect of preprocessor use on change proneness, on
the one hand, and the effects of these others factors, on the other hand.

Metric Control Variables

loc Source lines of code of the function, ignoring blank lines and comments
age Age of the function
mrc Time since the most recent change to the function

pc Number of previous changes to the function

Table 5.2: Control variables

5.2.3 Null Hypotheses

In this section, I formulate null hypotheses arising from my research questions. For
RQ 1 and RQ 3, which are my main research questions, the independent variables

98 5. How Preprocessor Annotations (Do Not) Affect Maintainability

model preprocessor use and the dependent variables model change proneness. In
RQ 1, preprocessor use is modeled by binary variables; in RQ 3, it is modeled by
metric variables and possible confounders are taken into account. For both research
questions, I formulate three groups of null hypotheses that correspond to the three
possible operationalizations of change proneness (changed, commits, and lines). This
way, I explore all possible combinations of binary/metric independent variables with
binary/metric dependent variables. In the auxiliary research question RQ 2, the
independent variables model preprocessor use in metric form, and the dependent
variable, loc, models size in metric form.

RQ 1. In the first question, I consider preprocessor use with the help of the binary
variables fc>1, fl>0, cnd>0, and neg>0. For the first group of null hypotheses, I model
change proneness with the binary variable changed . Considering preprocessor use
and change proneness in this fashion allows me to investigate how the presence (or
absence) of the corresponding aspect of preprocessor use in a function affects the
likelihood that this function undergoes a change. To this end, I formulate four null
hypotheses, one for each independent variable:

H0 1.1 (fl>0): Functions containing at least one preprocessor directive are
just as likely to be changed as functions without any preprocessor directives.

H0 1.1 (fc>1): Functions containing preprocessor directives that reference two
or more feature constants are just as likely to be changed as functions in which
fewer feature constants are referenced.

H0 1.1 (cnd>0): Functions containing at least one nested preprocessor direc-
tive are just as likely to be changed as functions without any nested preprocessor
directives.

H0 1.1 (neg>0): Functions containing preprocessor directives that use nega-
tion at least once are just as likely to be changed as functions without prepro-
cessor directives that use negation.

For the two following groups of null hypotheses, change proneness is modeled by the
metric variables commits and lines , respectively. Thus, I investigate whether the
presence or absence of a certain aspect of preprocessor use in a function is related
to the frequency or profundity with which the function is changed. For brevity,
I only explicitly state the two null hypotheses for fl>0; the others are formulated
accordingly:

H0 1.2 (fl>0): Functions containing at least one preprocessor directive are
changed just as frequently as functions without any preprocessor directives.

H0 1.3 (fl>0): Functions containing at least one preprocessor directive are
changed just as profoundly as functions without any preprocessor directives.

5.2. Methodology 99

RQ 2. Analyzing correlations between preprocessor use and change proneness in
isolation may produce misleading answers because possible confounding factors are
ignored. The goal of RQ 2 is to test whether function size may be such a confounding
factor. My independent variables in this question are the metric variables fc, fl ,
cnd , neg , and loac/loc, and the dependent variable is always the metric variable loc.
I formulate the following null hypothesis regarding the relationship between the
number of #ifdef directives in a function (variable fl) to its size; as for RQ 1, there
are corresponding hypotheses for the remaining independent variables (fc, cnd , neg ,
and loac/loc), but I omit them for brevity.

H0 2 (fl): The number of preprocessor directives in a function is unrelated to
the size of the function.

RQ 3. In case that H0 2 is rejected, I turn to RQ 3. In this question, I investigate how
different extents of different aspects of preprocessor use (e. g., number of #ifdefs,
depth of nesting) relate to change proneness. Instead of looking at each aspect
in isolation, as I do for RQ 1, I now consider all aspects of preprocessor use in
combination. I model preprocessor use with the help of metric variables, namely
fc, cnd , neg , and loac/loc. As a further modification compared to RQ 1, I control for
potentially confounding factors by including the control variables loc, age, mrc, and
pc (see Table 5.2).

Note that fl is not included in the list of independent variables. The reason is that
I found that fl strongly correlates with fc, which would have violated the assumptions
of my statistical tests. See Section 5.3.3.1 for a detailed explanation.

Change proneness in RQ 3 is modeled by the binary variable changed , and by the
metric variables commits and lines . In a nutshell, the goal of RQ 3 is to examine
how much different extents of preprocessor use affect the likelihood, the frequency,
and the profundity of changes to a function. To this end, formulate the following
null hypotheses:

H0 3.1: After accounting for differences in function size, age, number of pre-
vious changes, and time since the last change, the likelihood that a function is
changed is unrelated to the extent of preprocessor use in that function.

H0 3.2: After accounting for differences in function size, age, number of previ-
ous changes, and time since the last change, the frequency of changes to a func-
tion is unrelated to the extent of preprocessor use in that function.

H0 3.3: After accounting for differences in function size, age, number of pre-
vious changes, and time since the last change, the profundity of changes to
a function is unrelated to the extent of preprocessor use in that function.

100 5. How Preprocessor Annotations (Do Not) Affect Maintainability

5.2.4 Subject Systems

I chose my subjects from a set of well-known systems used in previous studies of
preprocessor usage [204, 142, 298]. This section describes my subjects and my
selection criteria.

I used the following seven criteria to guide my selection.

1. well-known system, preferably used in previous studies of cpp usage
2. implemented in C (as cpp directives are frequent in C code)
3. systems from different application domains (to avoid bias)
4. open-source software (as I need access to the repository to extract change

information)
5. git version control system (to be accessible by my tool infrastructure)
6. considerable development history (to minimize the effect of outliers in small

datasets).

In addition to these criteria, I faced a number of practical and technical limitations
that prevented me from including further systems that previous studies analyzed.
One limitation was the scalability of my analysis infrastructure. Although my anal-
ysis scales to systems of almost 1 000 000 SLOC (non-blank, non-comment source
lines of code) and development histories of well over 100 000 commits, Linux and
other popular open-source operating systems (e. g., Free-, Open-, and NetBSD)
proved to be too large. OpenSolaris would have been an interesting substitute in
the operating systems domain, especially since it used to be a closed-source system.
However, I found its git repository to be incomplete, preventing my tooling from
reconstructing the evolution of OpenSolaris’ code.

Other systems lacked a publicly accessible version control repository (e. g., mDNS-
Responder, Sendmail), or they relied on a system other than Git for version con-
trol (e. g., MPlayer continues to use Subversion). In a few of these cases, I found
suitable replacements. For example, I replaced MPlayer with mpv, an MPlayer
fork whose developers switched to git.

Finally, a few systems (e. g., glibc, VirtualBox) contained highly uncommon
C language constructs that triggered bugs in my analysis infrastructure. In the case
of glibc, for example, I was able to fix those bugs, allowing me to include it in my
study after all. However, for others, such as VirtualBox, I was unable to do so,
forcing me to exclude the system.

Based on my criteria and accounting for the aforementioned limitations, I selected
twenty subject systems. The information about these systems is split across two
tables, Table 5.3 and Table 5.4: In Table 5.3, I state the time period analyzed,
the number of commits in that period, and the domain of each subject system.
In Table 5.4, I report information about the size of each subject system, taking
the latest version as the reference point. Specifically, I state the number of .c
files, the number of function definitions, and, in parentheses, the percentage of
functions containing at least one preprocessor directive. Moreover, I report the
SLOC comprised by function definitions and, in parentheses, the percentage of code
that is feature code.

5.2. Methodology 101

System Period Commits Domain

Apache 1996–2019 31 104 Web server
Blender 2002–2019 84 456 3D graphics creation
BusyBox 1999–2019 16 128 Unix command line tool suite
Cherokee 2006–2018 5 585 Web server

Gimp 1997–2019 42 885 Image editor
glibc 1972–2019 34 420 GNU C standard library

gnuplot 1987–2019 10 681 Plotting command line tool
Gnumeric 1998–2019 23 384 Spreadsheet

libxml2 1998–2019 4 501 XML parser and toolkit
mpv 2001–2019 46 531 Media player

MySQL 2000–2019 139 726 Database management system
OpenLDAP 1998–2018 22 256 LDAP directory service
OpenVPN 2005–2019 2 162 Secure network communication

php 1999–2019 110 684 Programming language interpreter
Pidgin 2000–2017 38 328 Instant messaging client
qemu 2003–2019 66 752 Hypervisor

PostgreSQL 1996–2019 46 343 Database management system
SQLite 2000–2019 20 176 Database management system

Subversion 2000–2019 59 020 Revision control
Vim 2004–2019 9 338 Text editor

Table 5.3: Subject systems: Development periods and domains

Note that the mean percentage of feature code in my subject systems is 6.7 %, much
lower than the 24 % reported by Hunsen et al. [142]. The difference is rooted in the
way I measure feature code. Hunsen et al. work on the file level and thus count every
line of code belonging to a function, data type, and variable definition as feature code
if the line is enclosed in an #ifdef directive. By contrast, I measure feature code on
the function level, and I ignore data types and global variables. More importantly,
I only consider a line as feature code if the opening #ifdef occurs inside the function
body, not if it is placed before the start of the function definition. As a result, the
percentages of feature code I report are lower than those reported in related work.

As can be seen in Table 5.3 and Table 5.4, my subjects cover a great variety of
domains, sizes, and extent of preprocessor use. For example, the domains range from
Web servers (Apache) to spreadsheet applications (Gnumeric), and the sizes range
from just above 50 000 SLOC (in Cherokee) to almost 1 million SLOC (in qemu).
Even though most of my subjects are purely open-source, I was able to include one
formerly closed-source system, the 3D graphics software Blender. In summary,
my subject selection allows me to gain robust insights that are representative for
C software systems of many different domains, sizes, and extents of configurability.

5.2.5 Data Collection

In this section, I describe which data I collected from my subject systems and how.
My data collection process comprises four tasks:

102 5. How Preprocessor Annotations (Do Not) Affect Maintainability

1. Identify all relevant commits from the subject’s repository.

2. Visit all commits in level order and periodically take snapshots to extract
metrics of all functions (e. g., the number of #ifdefs), yielding the preprocessor
metrics listed in Table 5.5.

3. Record changes to functions (e. g., number of changes, number of lines added
or deleted), yielding the change metrics listed in Table 5.6.

4. Combine the preprocessor and the change metrics and aggregate them into
commit windows.

Overview. I describe each data collection task in detail in the following paragraphs,
but to give an initial overview, I illustrate the process with help of the example in
Figure 5.1. The example focuses on three functions in a fictitious C system and
follows their evolution over 200 commits. The functions are called main, print_help,
and usage_error, and all are located in file src.c. The commits are named c1–c200
and belong to two branches, master and refactor. My analysis starts at the root
commit, c1, where I take a snapshot to determine which functions exist and what
their preprocessor metrics are.

System Files Functions
Functions
w/ #ifdefs

SLOC
Feature
Code

Apache 330 5 710 (7 %) 161 489 (4 %)
Blender 1 446 35 729 (3 %) 804 927 (4 %)
BusyBox 656 4 871 (14 %) 144 071 (11 %)
Cherokee 168 1 824 (8 %) 51 738 (9 %)

Gimp 1 648 21 632 (2 %) 613 383 (1 %)
glibc 6 403 12 766 (9 %) 350 113 (7 %)

gnuplot 88 2 207 (11 %) 81 741 (8 %)
Gnumeric 348 10 404 (2 %) 242 547 (1 %)

libxml2 109 5 627 (25 %) 178 470 (19 %)
mpv 305 4 876 (2 %) 94 373 (1 %)

MySQL 212 3 410 (9 %) 72 999 (7 %)
OpenLDAP 552 5 722 (12 %) 247 759 (6 %)
OpenVPN 105 2 356 (15 %) 64 649 (12 %)

php 777 10 944 (12 %) 365 639 (8 %)
Pidgin 496 10 998 (3 %) 227 439 (3 %)
qemu 2 324 50 821 (3 %) 936 743 (3 %)

PostgreSQL 1 220 20 446 (5 %) 681 039 (2 %)
SQLite 320 8 631 (10 %) 216 238 (8 %)

Subversion 587 11 613 (3 %) 367 710 (2 %)
Vim 141 7 789 (25 %) 289 471 (18 %)

Mean 912 11 919 (9.0 %) 309 627 (6.7 %)

Table 5.4: Subject systems: Sizes and extents of configurability

5.2. Methodology 103

C1

create new
branch

C2

C6

C3

merge

C5

refactor

master

C4

C101

(branch closed)

Snapshot 1

src.c
int main(int argc, char **argv)

LOC: 40, FC: 1, FL: 1, ...
void print_help()

LOC: 20, FC: 0, FL: 0, ...
...

Snapshot 2

src.c
int main(int argc, char **argv)

LOC: 50, FC: 2, FL: 3, ...
void show_help()

...
void usage_error()

...
...

…

src.c, int main(int argc, char **argv)
modify 15 lines

src.c, int main(int argc, char **argv)
modify 2 lines

src.c, void print_help()
rename to void show_help(),
modifying 1 line

src.c, int show_help()
modify 3 lines

src.c, void print_help()
modify 3 lines

src.c, void usage_error()
add function

(adopt name change of
void print_help() to void show_help())

C100

Combined metrics at the end of Snapshot 1

src.c
int main(int argc, char **argv)

Static metric:
LOC: 40, FC: 1, FL: 1, ...

Changes metrics:
COMMITS: 2, LINES: 17, AGE: 0, MRC: 0, PC: 0

void show_help() (formerly src.c, void print_help())
Static metrics:

LOC: 20, FC: 0, FL: 0, ...
Change metrics:

COMMITS: 3, LINES: 7, AGE: 0, MRC: 0, PC: 0
...…

C200

Combined metrics at the end of Snapshot 2

src.c
int main(int argc, char **argv)

Static metric:
LOC: 50, FC: 2, FL: 3, ...

Changes metrics:
COMMITS: 0, LINES: 0, AGE: 100, MRC: 98, PC: 2

void show_help()
Static metrics:

LOC: 23, FC: 0, FL: 0, ...
Change metrics:

COMMITS: 0, LINES: 0, AGE: 100, MRC: 96, PC: 3
void usage_error()

...
...

…

Figure 5.1: Illustration of the data collection process

The preprocessor metrics (see Table 5.5) capture the length of a function and five
aspects of its use of cpp annotations, namely, the number of feature locations in its
body (FL), the number of referenced feature constants (FC), the extent of nesting
(CND), the number of negation (NEG), and the lines of code that are subject to
compile-time configurability (LOAC). The last metric, LOAC/LOC, is a derived
metric, computed from LOAC and LOC. Except for NEG, all of these metrics
already appeared in the same or similar form in the previous chapter as the atomic
metrics of the Annotation Bundle detection formula (see Table 4.1 on Page 73
in Section 4.4.1). They are also included in the present chapter because they op-
erationalize the various aspects of cpp use on the function level well. In addition
to these known metrics, I take NEG into account, which is an operationalization
of a notable aspect of cpp use that was previously not considered: negation. In
Table 5.5, I explain how the metrics computed and note how they are similar to or
different from the metrics introduced in the previous chapter.

104 5. How Preprocessor Annotations (Do Not) Affect Maintainability

Metric Description

LOC Source lines of code of the function (measured in the same way as
in Table 4.1 in the previous chapter, i. e., ignoring blank lines and
comments).

FL Number of feature locations (same as in Table 4.1).

FC Number of feature constants referenced by the feature locations
in the function. Constants referenced multiple times are counted
only once. (FC is similar to the FCdup metric in Table 4.1, but
in contrast to FCdup, FC ignores multiple references to the same
constant.)

CND Cumulative nesting depth of annotations (same as in Table 4.1).

NEG The number of negations in the #ifdef directives in a func-
tion. Both #ifndef X and #if !defined(X) increase NEG by 1.
An #else branch also increases NEG because #if <expr> ...
#else ... #endif is expanded to #if <expr> ... #endif fol-
lowed by #if !<expr> ... #endif. (This metric was not used
in the previous chapter.)

LOAC Source lines of code in all feature locations within the function
(same as in Table 4.1).

LOAC/LOC Proportion of LOAC to all code in the function, i. e.,
LOAC÷LOC. (This metric already appeared in the previous
chapter and was part of the detection formula for Annotation
Bundles shown in Equation 4.1.)

Table 5.5: Preprocessor metrics

In Figure 5.1, the preprocessor metrics collected for Snapshot 1 are shown in the
yellow box in the upper left corner. They reveal that src.c contains two function
definitions at revision c1 (main and print_help), and that function main is forty
lines long (LOC: 40), references one feature constant (FC: 1), and contains one
#ifdef (FL: 1).

After taking this Snapshot 1, I visit the following commits to analyze how the iden-
tified functions change. Commits are visited in level order to ensure that every time
a commit is analyzed, all changes from its ancestor commits are already available.
In Figure 5.1, the changes of a commit are denoted by the green boxes that are
placed next to a commit. For example, c2 in the master branch changes fifteen lines
in function main, and a second change occurs in the refactor branch, in c3. In ad-
dition to changing main, c3 also renames print_help to show_help. Concurrently
to c3, commit c4 from the master branch also changes print_help, but without
renaming it. Since my analysis is aware of branches, it keeps track of the different
names under which this function is known in different branches. At c6, when the
refactor branch is merged back into master, my analysis combines the data from
both branches and resolves the name change of print_help. Thus, from c6 onward,

5.2. Methodology 105

Metric Description

AGE Age of the function, i. e., number of commits since the function
was created, relative to the start of the snapsnot.

MRC Time since the most recent change, i. e., number of commits since
the function was most recently changed, relative to the start of
the snapsnot.

PC Number of previous changes, i. e., number of commits that changed
the function before the start of the snapshot.

COMMITS The number of commits within the snapshot that have modified
the function definition.

LINES The number of lines added plus the number of lines removed, ac-
cumulated over the course of the snapshot.

Table 5.6: Change metrics extracted for each function

the function is known as show_help in the master branch. At the same time, my
analysis remembers that the preprocessor metrics of this functions must be retrieved
using the function’s old name, print_help.

My change analysis continues in the described fashion until a certain number of
commits has been visited. At this point, the change information is aggregated
and combined with the preprocessor metrics from the snapshot, yielding a set of
combined metrics (see purple boxes at the bottom right of Figure 5.1). For exam-
ple, the combined metrics reveal that function main in src.c was forty lines long
(LOC: 40) and contained one #ifdef (FL: 1) at the start of Snapshot 1. More-
over, the combined metrics reveal that main was modified twice between c1 and c100
(COMMITS: 2) and that seventeen lines of code were changed (LINES: 17). Note
that function usage_error is included only in the combined metrics of Snapshot 2
but not of Snapshot 1. The reason is that usage_error was added in commit c4 and
thus was not present when Snapshot 1 was taken. However, listing usage_error in
Snapshot 2 for the first time does not mean that usage_error’s earliest changes are
entirely ignored. Instead, these changes are included in a different form, with the
help of metrics that model a function’s past evolution. I explain these metrics next.

In addition to COMMITS and LINES (see lower part of Table 5.6), my change
analysis extracts three more change-related metrics: AGE, MRC, and PC (see
upper part of Table 5.6). These metrics are computed based on information from
previous snapshots, and I include them as additional control variables in my statisti-
cal analyses (see Section 5.3.3) to gain more robust results. As an example, consider
the combined metrics of function main in Snapshot 2 (see purple box at the bottom
right of Figure 5.1). Snapshot 2 starts at commit c101 and at this point, main is 100
commits old (AGE: 100), was previously changed twice (PC: 2), and the most recent
change, which was at commit c3, happened 98 commits ago (MRC: 98).

After this illustration of the overall data collection process, I now explain the four
data collection tasks listed at the beginning of this section in detail.

106 5. How Preprocessor Annotations (Do Not) Affect Maintainability

Identifying relevant commits. As the first step in my data collection process,
I classify all commits in the respective Git repository as either relevant or irrelevant.
A commit is relevant if it modifies at least one .c file, as this is the kind of file where
functions in C are defined. Commits that only modify header files (which contain
function declarations, not definitions) or other kinds of files, such as change logs
or shell scripts, are marked as irrelevant. During change analysis, the irrelevant
commits are only used to retrace branching and merging activities, but otherwise
ignored.

Taking snapshots. To gather the preprocessor source metrics, I visit the commits
in level order and take a snapshot of the entire system every time a fixed number of
relevant commits has been visited. Taking a snapshot involves four steps, (1) check-
out, (2) preprocessing, (3) gathering preprocessor metrics, and finally, (4) storing
the metrics.

The first step is to check out the respective revision and copy all.c files to a dedicated
directory. In the second step, preprocessing, the files are converted to SrcML [57],
an XML representation that is easier to parse than raw, unprocessed C code. Us-
ing the SrcML representation, comments and empty lines are removed. Moreover,
#ifdefs are normalized to ease subsequent analysis. For instance, #ifndef FEATURE
is transformed to the equivalent #if !defined(FEATURE). Third, I parse all SrcML
files to identify the function definitions and collect their preprocessor metrics (see
Table 5.5).

Finally, when all the metrics are collected, I store them in a map that is associated
with the revision at which the checkout was performed. As keys in this map, I use
so-called function ids, which I compose of a function’s name, return type, parameter
list, and the name of the file in which the function is defined. In later phases of my
analysis, function ids allow me to unambiguously relate the preprocessor metrics of
a function with the changes to that function, which I describe next.

Recording changes. In a nutshell, I record changes by inspecting the diffs of every
commit to the previous revision and determining for every added and deleted line
which C function, if any, is affected. Based on this data, I compute the change
metrics listed in Table 5.6.

In Listing 5.1, I show an excerpt of the diff of commit 984cf003 in OpenVPN to
illustrate how I identify changes. Unnecessary portions of the diff (e. g., on Lines 4
and 9) have been omitted. The diff consists of a block of metadata (see Lines 1–4),
followed by a sequence of diffs for individual files. In the example, the block on
Lines 5–9 contains the diff for the file Makefile.am, and the block on Lines 10–41
contains the diff for the file manage.c. Each file’s diff consists of a four line header
followed by a sequence of edits, which, in turn, convey the information about added
and deleted lines (see, e. g., Lines 14–17 and Lines 18–21 in the example). In particu-
lar, the first line of an edit reveals the location of the edit, and the body encompasses
one or more added and deleted lines, which are optionally surrounded by context
lines. Deleted lines are prefixed with a “-”, added lines are prefixed with a “+”, and
context lines are prefixed with a single space character (see Lines 39, 40, and 41,
respectively). The context lines are included for technical reasons but since they do
not represent changes they are irrelevant for my analysis.

5.2. Methodology 107

1 commit 984cf0036c882c4fada83448aaa37bbd5ebb8130
2 Author: james <james@e7ae566f-a301-0410-adde-c780ea21d3b5>
3 Date: Thu Oct 20 05:58:08 2005 +0000
4 ...
5 diff --git a/Makefile.am b/Makefile.am
6 index 6519f2aa..424b167d 100644
7 --- a/Makefile.am
8 +++ b/Makefile.am
9 ...

10 diff --git a/manage.c b/manage.c
11 index 7be67fd0..d17d9ce7 100644
12 --- a/manage.c
13 +++ b/manage.c
14 @@ -41,2 +41,3 @@
15 #include "integer.h"
16 +#include "misc.h"
17 #include "manage.h"
18 @@ -76,2 +77,3 @@
19 msg (M_CLIENT, "net : (Windows only) Show info and routing table.");
20 + msg (M_CLIENT, "ok type : Enter confirmation for NEED-OK request.");
21 msg (M_CLIENT, "password type : Enter password for a queried password.");
22 @@ -522,0 +529,9 @@
23 +static void
24 +man_query_need_ok(struct management *man, const char *type)
25 +{
26 + const bool needed = ((man->connection.up_query_mode == UP_QUERY_NEED_OK)
27 + && man->connection.up_query_type);
28 + man_query_user_pass (man, type, "ok", needed, "ok-confirmation",
29 + man->connection.up_query.password, USER_PASS_LEN);
30 +}
31 +
32 @@ -1727,9 +1745,9 @@
33 bool
34 management_query_user_pass(struct management *man,
35 struct user_pass *up,
36 const char *type,
37 - const bool password_only)
38 + const unsigned int flags)
39 {
40 struct gc_arena gc = gc_new ();
41 bool ret = false;

Listing 5.1: Excerpt of the diff of commit 984cf003 in OpenVPN

When extracting function changes from the diff in Listing 5.1, I ignore the first
file-level diff because it does not affect a .c file; only the second diff is important.
To analyze this diff further, I first check out both the previous and the current
revision of the modified file, manage.c, and extract the start and end points of every
C function. An excerpt of the extracted information is shown in Table 5.7, with the
upper half of the table listing the function locations before the commit and the lower
half listing the function locations after the commit. Next, I determine for each edit
whether it overlaps these function locations. Specifically, I check whether deleted
lines overlap with function locations before the commit (upper half of Table 5.7)
and whether added lines overlap with function locations after the commit (lower

108 5. How Preprocessor Annotations (Do Not) Affect Maintainability

Revision Start End Function Signature

f7868716 60 87 static void man_help()
.

1727 1797 bool management_query_user_pass(struct
management *man, struct user_pass *up,
const char *type, const bool password_only)

.

984cf003 61 89 static void man_help()
529 536 static void man_query_need_ok(struct

management *man, const char *type)
.

1745 1837 bool management_query_user_pass(struct
management *man, struct user_pass *up,
const char *type, const unsigned int flags)

.

Table 5.7: Function locations in manage.c extracted for the diff in Listing 5.1

half of Table 5.7). Depending on the overlap, I decide whether an edit (1) modifies
the body of a function, (2) adds a function, (3) deletes a function, or (4) changes
a function’s id (by changing its name, return type, its parameter list, or by moving
the function to another file).

Using the edits on Lines 14–41 in Listing 5.1 and aligning them with the function lo-
cations in Table 5.7, I next illustrate how I determine the type of change for an edit.
The first edit (see Lines 14–17) adds one line of code to the file manage.c at posi-
tion 42, but according to Table 5.7, no C function is defined at this position. Conse-
quently, this edit is skipped. The second edit (see Lines 18–21) adds one line of code
at position 78, which is within the body of the function man_help() (see Table 5.7).
Hence, this edit is classified as a modification of function man_help adding a single
line. The third edit (see Lines 18–21) adds nine lines of code. According to Table 5.7,
this edit completely covers the location of the function man_query_need_ok(...)
in the new revision of manage.c. Moreover, the upper half of Table 5.7 reveals that
this function did not exist in the previous revision. Hence, this edit is classified as
a function addition. Much like I detected this function addition, I also detect func-
tion deletions (not shown in the example). In particular, a function deletion is an
edit in which the deleted lines fully cover a function definition, relative to the func-
tion’s location before the commit. Coming back to the example, the fourth and final
edit (see Lines 32–42 in Listing 5.1) illustrates how I handle changes to a function’s
id. The edit deletes one line and adds one line. According to Table 5.7, the deletion
overlaps with the old location of the function management_query_user_pass, and
the addition overlaps with the new location of a function of the same name, but
with a different last parameter. Since the parameters are part of the function id, I
treat this change separately. In particular, I classify this edit as a function id change
of management_query_user_pass that modified two lines. After analyzing all four
edits to manage.c, my analysis has recorded three changes. The corresponding data
is listed in Table 5.8.

5.2. Methodology 109

Hash Old & New Function Id
Mod.
Type

COM-
MITS

LINES

984cf003 main.c: static void man_help() mod +1 +1
(no id change)

984cf003 main.c: static void man_query_need_ok(struct
management *man, const char *type)

add ±0 ±0

(no id change)
984cf003 main.c: bool management_query_user_pass(

struct management *man, struct
user_pass *up, const char *type,
const bool password_only)

id change +1 +2

main.c: bool management_query_user_pass(
struct management *man, struct
user_pass *up, const char *type,
const unsigned int flags)

Table 5.8: Function changes extracted from the diff in Listing 5.1

Apart from changing a function’s parameter list, an edit can also change a function’s
id by changing the return type or the function name. Moreover, functions are
sometimes moved to other files, which is difficult to track because git reports moved
functions as two unrelated edits, one that deletes a function and one that adds
a function. I handle all of these possible function id changes in a post-processing
step, which takes place after I have seen all edits that belong to a particular commit.
The basic idea is to inspect each edit that deleted a function and to try to match it to
an edit that added the same or a similar function. If a match is found, I fold the edits
into a function id change. The matching process has two phases. In the first phase,
I match deletions to additions if the function names are the same. This resolves
deletions and additions that result from moving a function definition to another file,
possibly also changing the return type or parameter list. In the second phase, I match
the remaining deletions and additions based on the similarity of the full function
definitions (i. e., taking both function signature and body into account). Specifically,
I calculate the Levenshtein distance (the number of single-character edits) between
each deleted and added function, and based on this distance, compute the percentage
of characters that the functions have in common. At 60 % or more, I treat two
functions as similar; otherwise, as dissimilar. (I decided on the 60 % threshold
after manually inspecting numerous changes involving potential renames in several
subject systems, including Apache and OpenLDAP. However, this process was no
rigorous scientific experiment, and so the choice of 60 % as the threshold remains
a threat to the internal validity of my study.) Then, starting with the pair with the
highest similarity, I proceed to fold pairs of deleting and adding edits into function
id changes. Finally, I go through the remaining deletions and additions, for which
no match was found, and record them as actual deletions or additions. As a result
of tracking function id changes so precisely, I am able to relate the preprocessor
metrics of each function, which are taken at the start of a snapshot, to all subsequent
modifications, even if the function’s name, return type, or parameter list change, or
if the function is moved to another file.

Formation of commit windows. My initial experiments revealed that the small
number of commits between my snapshots prevents me from observing functions

110 5. How Preprocessor Annotations (Do Not) Affect Maintainability

that undergo a large number of commits and heavy changes. This made it difficult
to distinguish between functions that are truly change-prone and those that are
not. As a solution, I use a sliding window technique in which I aggregate the
changes of several consecutive snapshots into a commit window. Based on my initial
experiments, I set the window size to be five snapshots (i. e., 500 commits). I found
this size to be sufficiently large to make change-prone and stable functions easily
distinguishable, while, at the same time, keeping analysis runtimes within feasible
limits.

Commit windows are formed as follows: For the first commit window, I use the
combined preprocessor metrics and change information of Snapshot 1 as the basis
and extend this data with the change information (but not the preprocessor metrics)
from Snapshot 2 , 3, 4, and 5. When adding the change information, I include only
changes related to functions that are present in Snapshot 1 but omit changes to
functions that were added later on. However, the omitted changes are not lost: they
will be included in future commit windows.

The second commit window is formed in the same way as the first, but starting
at Snapshot 2, and the aggregation process continues until no more snapshots are
left. Compared to an individual snapshot, the frequency and amount of changes
captured in a commit window increase substantially. In summary, my sliding window
technique produces data that reveal truly change-prone functions more clearly and
allows me to obtain more robust results.

5.3 Statistical Analyses

In this section, I explain the statistical analyses I employed to test my null hypothe-
ses.

I compute several statistics to investigate if and how much preprocessor use affects
change proneness. In these statistics, the independent variables basically capture
different aspects of preprocessor use. The dependent variable in turn, a. k. a. the
outcome, captures change proneness. When testing a null hypothesis, I always follow
a two-step process: First, I test whether an independent variable has a statistically
significant effect on the dependent variable. Statistical significance refers to the
degree of confidence that an observed effect is not merely the result of chance. It is
indicated by the probability value or p value for short. The smaller the p value, the
higher the significance. In my experiments, I will regard an independent variable as
having a significant effect if p< .01 in the majority of subject systems. Thus, the
likelihood that my observations result from random effects is less than 1 %.

Proving a statistically significant effect is enough to reject a null hypothesis, but it
does not reveal whether the effect is large or small, nor whether it is positive or neg-
ative. Therefore, in case I find a significant effect, I take a second step and compute
the effect size. If the effect size is positive, more preprocessor use corresponds to
a higher change proneness; if it is negative, more preprocessor use corresponds to
a lower change proneness. The absolute value of the effect size, in turn, indicates
how strong the correspondence is.

5.3. Statistical Analyses 111

In what follows, I describe in detail which statistical methods I apply to answer my
research questions and how I define the corresponding independent and dependent
variables. Moreover, I explain how to interpret the results of each method.

5.3.1 Answering RQ 1: Binary Classification with Binary
and Metric Outcomes

I use a binary classification scheme to test H0 1.1, H0 1.2, and H0 1.3. Basically,
I combine the data of all commit windows for a system into one large dataset, and
then split this dataset into an experimental group and a control group depending
on the presence or absence of a certain aspect of preprocessor use. Functions that
exhibit the aspect (e. g., contain at least one #ifdef directive), belong to the experi-
mental group, the others to the control group. I then test whether the proportion of
changed functions to unchanged functions differs between experimental and control
group.

I create four pairs of experimental and control group, one for each of my four binary
independent variables fc>1, fl>0, cnd>0, and neg>0 (see Table 5.1). To test H0 1.1,
which has a binary outcome, the dependent variable is changed (see Table 5.1). I use
Fisher’s exact test to check for statistically significant differences in the likelihood
of changes between experimental and control group [104]. If there is a statistically
significant effect, I report its size as an odds ratio (OR). An OR is the factor by
which the odds of the outcome being 1 are bigger in the experimental group than
the respective odds in the control group. Thus, an OR of 1 corresponds to a neutral
effect, values greater than 1 indicate positive effects, and values lower than 1 indicate
negative effects. As an example, assume that the odds are 1:1 that a function from
the control group is changed and that the OR is 2. Given this data, the odds that
a function in the experimental group is changed can be calculated as 1:1× 2.0 = 2:1.
In terms of likelihoods, this would mean that the likelihood of a change is 50 % in
the control group and about 67 % in the experimental group.

I perform Fisher’s test on all twenty subjects, for all four independent variables. Ad-
ditionally, I aggregate the subject-specific results into an overall result by computing
a pooled p value and a pooled OR using the Mantel-Haenszel method [63].

I keep the same binary classification scheme to test H0 1.2 and H0 1.3 that I also
use to test H0 1.1, but I switch the dependent variables. Specifically, I consider the
metric variable commits as the dependent variable and apply the Mann-Whitney-U
test. The test will reveal if there is a statistically significant difference in changes fre-
quencies in the experimental group compared to the control group. If the difference
is significant, I compute the effect size in terms of Cliff’s delta [54]. I proceed in the
same way to test H0 1.3, with the exception that lines is the dependent variable. To
summarize the effect sizes over all subjects, I report the mean value and standard
deviation of the Cliff’s delta values of the significant correlations.

5.3.2 Answering RQ 2: Relation between Preprocessor Use
and Function Size

In answering RQ 1, I only analyze preprocessor use as a binary property. Moreover,
I study each aspect of preprocessor use in isolation. While this analysis is easy

112 5. How Preprocessor Annotations (Do Not) Affect Maintainability

to understand, it has two important limitations. First, the possible insights are
rather coarse-grained because I learn nothing about the effects of other extents of
preprocessor use. For example, are functions with two or three feature locations more
change-prone than functions with just one feature location? Secondly, this analysis
neglects possible confounding effects, in particular, the possible confounding effect
of function size. For these reasons, I analyze the relationship between preprocessor
use and function size in RQ 2 (see results in Section 5.4.4). To this end, I test
whether the variables fl , fc, cnd , neg , and loac/loc correlate with loc. The statistical
technique I use is the Spearman rank correlation coefficient [56], which indicates both
statistical significance as well as effect size. I test H0 2 based on the test outcomes.
Based on the results, I can put the answer to RQ 1 into context and proceed to the
more complex analyses in RQ 3.

5.3.3 Answering RQ 3: Different Extents of Preprocessor
Use in Context

To answer RQ 3, I use regression analyses, which will reveal how different extents of
preprocessor use affect change proneness, while, at the same time, allowing me to
control for potential confounding effects. The basic idea of regression is to iteratively
fit a formula to a dataset. The result is a regression model that describes the
correlations between several independent variables and a dependent variable, called
the outcome. Regression models are sometimes created to predict the outcome
on another dataset, but I use them to deduce which correlations are statistically
significant and what the effect sizes are.

5.3.3.1 Effect on the Likelihood of Changes

To test H0 3.1, I use logistic regression, where the dependent variable (a. k. a. the
outcome) has a binary type: the dependent variable is true if the outcome takes place
and false if it does not. Given a set of independent variables, X1, X2, . . . , Xn, logistic
regression finds the parameters β1, β2, . . . , βn that best fit the following formula:

ln(
p

1− p
) = intercept+ β1X1 + β2X2, . . . , βnXn (5.1)

In this formula, p is the probability that the dependent variable becomes true.1 In
the logistic regression models that I build to test H0 3.1, the dependent variable is
changed , and p is the probability that changed becomes true. I use R’s implemen-
tation of logistic regression,2 which reveals for each independent variable whether
its effect on the outcome is statistically significant. If so, the effect size of an in-
dependent variable Xi is indicated by the corresponding coefficient βi. The sign of
the coefficient indicates whether the effect is positive or negative. A positive effect
means that the outcome will become more likely if Xi increases. Conversely, a nega-
tive effect means that the outcome becomes less likely if Xi increases. The absolute
value of a coefficient shows the strength of the effect. For ease of interpreting the
effects strengths, I convert the coefficients to ORs, which is done by exponentiation,
that is, by computing eβi . The resulting OR for an independent variable Xi is the

1Note that the p in (5.1) is unrelated to the significance level.
2https://www.rdocumentation.org/packages/stats/versions/3.6.1/topics/glm

https://www.rdocumentation.org/packages/stats/versions/3.6.1/topics/glm

5.3. Statistical Analyses 113

factor by which the odds that the dependent variable becomes true increase if Xi

increases by one unit, assuming all other independent variables Xj, j 6= i, are kept
constant. As an example, consider two functions, f1 and f2, and assume that the
FC metric for f1 is 1, and for f2, it is 2, and assume that all other metrics (e. g.,
CND, LOC) have identical values. Furthermore, assume that the odds of being
changed are 2:5 for f1 and that the coefficient for fc is 0.405. Given these values,
I can compute the expected odds that f2 changes in two steps: In the first step, I
compute the OR of fc, which is e0.405 ≈ 1.5. In the second step, I multiply the odds
of f1 with this factor. Thus, the expected odds that f2 changes are 2:5× 1.5 = 3:5.
In short, the OR of fc in this example is the factor by which the odds to change
increase if the number of feature constants increases by one.

Apart from estimating the coefficients β1, . . . , βn, logistic regression also estimates
a constant called the intercept (see Equation 5.1). In a null model (i. e., a model
without predictor variables), the intercept is directly related to the proportion of
successes in the dataset, that is, the proportion of data points where the dependent
variable is true. More formally, the intercept in a null model is the log-odds of
success in that dataset. In models that comprise one or several predictors, the
intercept basically summarizes the effects that are not part of the model. Beyond
that, it has no meaningful interpretation.

I next explain which dependent and independent variables I use in my logistic re-
gression models. Since H0 3.1 focuses on the likelihood of changes, my dependent
variable is the binary variable changed (see Table 5.1). As independent variables,
I include fc, cnd , neg , and loac/loc. The variable loac/loc is included to investigate the
influence of the amount of annotated code in a function. I chose loac/loc over loac
for this purpose because loac correlates more strongly with loc than loac/loc, thus
potentially causing other multicollinearity problems. Calculation of the variation
inflation factor (VIF) [76] of different model variants proved loac/loc to be less prob-
lematic than loac. As mentioned in Section 5.2.3, I was forced to exclude fl due to its
strong correlation with fc (Pearson’s r= 0.86, Spearman’s rS > 0.99, p � .001). In
other words, there is a very strong tendency in my data that more feature constants
are referenced in functions that contain more preprocessor directives. In addition to
the preprocessor-related variables, I additionally include loc, age, mrc, and pc (see
Table 5.1) to control potential confounding factors.

The exclusion of fl in favor of fc raises the question of what my regression models
reveal about the effect of the number of feature locations on change proneness. The
strong, positive correlation between fc and fl suggests that the answers I obtain
for fc can generally be transferred to fl , and I found this was indeed the case by
conducting a separate experiment: I computed an alternative set of regression models
that comprised fl instead of fc, and found that the results were almost identical. In
particular, fl and fc had almost the same number of significant effects, the effects
had the same directions, and the magnitude of the effects was very similar, with fc
having slightly stronger effects than fl . Thus, my findings regarding the effect of the
number of feature constants in a function apply in equal measure to the number of
feature locations in a function.

All independent and control variables except loac/loc are included in log2-transformed
form. For example, fc and loc are included as log2(fc) and log2(loc). The transfor-

114 5. How Preprocessor Annotations (Do Not) Affect Maintainability

mation was applied because preliminary experiments showed that it leads to better-
fitting models compared to including the variables without any transformation. The
log2-transformation changes the interpretation of the ORs as follows: A one unit
increase of log2(loc) means that the underlying LOC metric doubles in value. Like-
wise, a one unit decrease of log2(loc) means that LOC halves. Thus, the OR of
log2(loc) is the factor by which the odds increase (or decrease) if the value of the
LOC metric is doubled (or halved). The majority of my independent and control
variables (all except loc) can take on the value 0, but since the logarithm is undefined
for 0, I added 1 to the original value before computing the logarithm. For exam-
ple, the log2-transformed variable for the FC metric, log2(fc), is actually computed
as log2(FC+1). Therefore, if log2(fc) takes on the values 0, 1, 2, 3, . . . , n, then the
underlying FC values will be 0, 1, 3, 7, . . . , 2n−1, respectively. To summarize, the
OR of log2(fc) is the factor by which the odds increase if FC increases from 0 to 1
or (for greater values) if FC approximately doubles. The ORs of the other log2-
transformed variables (log2(cnd), log2(neg), log2(age), log2(mrc), and log2(pc)) must be
interpreted accordingly.

Apart from the full models, I also build simple models that comprise just the control
variables. I compare these simple models to the full models using the McFadden
statistic [237]. Based on this comparison, I can conclude how much better change
proneness is explained when preprocessor-related variables are taken into account.

I build logistic regression models for each of my subject systems, using the combined
data of all commit windows as the input. Differently from RQ 1, I cannot use the
Mantel-Haenszel method to aggregate the resulting models because the independent
variables for RQ 3 are metric, not binary. Hence, I use the following procedure: First,
I identify in each model which independent variables have a statistically significant
effect at p< .01. Afterwards, I compute the mean value of the regression coefficients
of these variables and convert the mean coefficient to an OR by exponentiation.
I reject H0 3.1 for an independent variable if the variable has a significant effect in
the majority of subject systems. Otherwise the evidence is insufficient to justify
a rejection.

5.3.3.2 Effect on the Frequency and Profundity of Changes

The logistic regression models to test H0 3.1 treat change proneness as a binary vari-
able. Thus, they only reveal how preprocessor use affects the likelihood of changes,
but not how it affects the frequency and extent of these changes. Therefore, I create
another kind of regression model in which the frequency and the extent of changes
is considered in metric form.

My dependent variables (commits and lines) constitute count data, which I found
not to be normally distributed (cf. Figure 5.3 and Figure 5.4 in Section 5.4.1 for
histograms). This rules out linear regression, which assumes a normal distribution.
Also, a Poisson distribution cannot be used to describe my counts, as I found strong
evidence of overdispersion [76], i. e., the variance of the statistical variables exceeds
the mean. Hence, I chose negative binomial regression [137], a technique that other
software engineering researchers have used to predict software faults (e. g., [280, 353,
109, 124]). The distribution characteristics of faults closely resemble those of my

5.4. Quantitative Results 115

dependent variables. Thus, the same regression technique is appropriate. Negative
binomial regression estimates the coefficients β1, β2, . . . , βn of the formula

ln(Y) = intercept+ β1X1 + β2X2, . . . , βnXn (5.2)

In this formula, X1, X2, . . . , Xn are the independent variables (such as, log2(fc),
log2(loc)), Y is the dependent variable (either commits or lines), and the intercept
is a constant. As for logistic regression, the effect size of an independent variable is
indicated by the coefficient. Additionally, R’s implementation of negative binomial
regression3 estimates the statistical significance of each variable. The effect sizes are
interpreted as follows: Given that βi is the coefficient of Xi and assuming that all
other variables Xj, j 6= i, are kept constant, then if Xi increases by one unit, I can
expect Y to take on 1+βi times its previous value. As an example, consider again
two functions f1 and f2 that are identical in all metrics except for FC, which is 0
for f1 and 1 for f2. Furthermore, assume that the coefficient for log2(fc) is 0.2 and
that the dependent variable is commits . Then I expect f2 to undergo 1.2 times as
many commits as f1.

I create two regression models for each of my subject systems, one where commits
is the dependent variable and one where lines is the dependent variable. In both
models, I use the same input data and include the same independent variables and
control variables that I also use for the logistic regression models (see Section 5.3.3.1).
Again, all independent and control variables except loac/loc are included in log2-
transformed form.

As for testing H0 3.1, I build simple models comprising just the control variables
and compare them to the full models to measure how much the annotation metrics
help explain change proneness. As a way to derive summary effect sizes over all
subjects, I compute the mean and standard deviation of the regression coefficients
for each independent variable if the variable’s effect is statistically significant at
p< .01. I follow the same procedure to decide whether to reject (or fail to reject)
the null hypotheses that I also use for H0 3.1. I use the models with commits as the
outcome to test H0 3.2 and the models with lines as the outcome to test H0 3.3.

5.4 Quantitative Results

Next, I present the quantitative results of my analysis. After discussing descriptive
statistics of the data extracted from my subject systems, I address each research
question and reject or fail to reject the corresponding null hypotheses.

5.4.1 Descriptive Statistics

I now present the descriptive statistics to give an indication of the average extent
of preprocessor use in my subject systems, the average frequency and extent of
changes, and also of the average values of the controlled factors, such as function
size. Moreover, I discuss the distributions of the corresponding statistical variables.
This information will make it easier to put the results of correlation analyses in the
following sections into perspective.

3https://cran.r-project.org/web/packages/MASS/index.html

https://cran.r-project.org/web/packages/MASS/index.html

116 5. How Preprocessor Annotations (Do Not) Affect Maintainability

I start with the overview in Figure 5.2. For this overview, I first computed the
arithmetic means of all variables in each subject system and then created violin
plots that depict the distributions of these mean values. The first six violin plots (in
yellow) are related to the variables of preprocessor use, the following four (in gray)
are related to the control variables, and the last three (in light blue) are related to

0.0

0.5

1.0

1.5

fl

mean=0.34

0.00

0.25

0.50

0.75

1.00

fc

mean=0.21

0.0

0.1

0.2

0.3

0.4

cnd

mean=0.05

-0.1

0.0

0.1

0.2

0.3

neg

mean=0.11

0

4

8

12

loac

mean=2.29

0.00

0.05

0.10

0.15

loac

loc

mean=0.04

20

30

40

loc

mean=29.2

-10000

0

10000

20000

30000

age

mean=8933

-5000

0

5000

10000

15000

mrc

mean=4344

0

5

10

15

20

pc

mean=5.67

0.0

0.2

0.4

0.6

changed

mean=0.18

0.0

0.5

1.0

1.5

commits

mean=0.36

0

4

8

12

lines

mean=3.64

Figure 5.2: Distribution of the mean values of all variables in all subjects

5.4. Quantitative Results 117

the dependent variables. The black horizontal bars highlight the median value, the
red dots highlight the mean value, and the red vertical lines extend to one standard
deviation above and below the mean. Additionally, I state the overall mean value
in numerical form above each plot. Except for changed , all variables are metric
variables, and for those variables, the interpretation is straightforward. I take fl ,
the number of preprocessor directives per function, as an example. The mean value
of fl over all subjects is 0.34, and thus, we can expect to find one #ifdef directive in
three randomly chosen functions. The vertical extent of the violin plots indicate that
this expectation varies between systems. For fl , it ranges from 0.05 in Gimp (one
#ifdef directive in twenty functions) to 1.41 in Vim (about seven #ifdef directives
in five functions).

Besides the metric variables, I have one dichotomous (binary) variable, changed , and
for this variable, the violin plot visualizes the distribution of the average probability
of the variable becoming true. Hence, the mean value 0.18 states that, on average,
about one in five functions is expected to change over the course of a commit window
(500 commits). Again, there is some variation between the subjects. On the low end,
there is qemu, where only one in twenty functions is changed (M = 0.05), and on
the high end, there is OpenVPN, where eleven out of twenty functions are changed
(M = 0.57).

Next, I take a more detailed look at the distributions of my variables in Figures 5.3
and 5.4. I use the data from BusyBox as an example; the distributions in other
subjects look similar. The histograms in both figures follow the same color coding
as Figure 5.2: The yellow ones are related to the variables of preprocessor use, the
gray ones to the control variables, and the light blue ones to the dependent vari-
ables. The histograms in Figure 5.3 illustrate the skew of the distributions of the
variables: Low values are very common whereas high values are very uncommon.
For example, the histogram for fl shows that the vast majority of functions in Busy-
Box contains between 0 to 6 #ifdef directives, but there is a tiny minority that
contains 47 #ifdef directives or more. Other researchers made similar observations
regarding the distribution of software engineering data, both in relation to metrics
of preprocessor use [298] as well as in relation to other metrics, such as lines of

0e+00

1e+05

2e+05

3e+05

4e+05

0…
6

7…
13

14
…
19

20
…
26

27
…
33

34
…
39

40
…
46
>=
47

fl

C
ou
n
t

0e+00

1e+05

2e+05

3e+05

4e+05

0…
10
0

10
1…
20
0

20
1…
30
1

30
2…
40
1

40
2…
50
2

50
3…
60
3

60
4…
70
3

>=
70
4

loc

C
o
un
t

0e+00

1e+05

2e+05

3e+05

4e+05

0…
5

6…
12

13
…
19

20
…
25

26
…
31

32
…
38

39
…
45
>=
46

commits

C
ou
n
t

Figure 5.3: Histograms of selected variables without applying transformations (data
from BusyBox)

118 5. How Preprocessor Annotations (Do Not) Affect Maintainability

1e+01

1e+03

1e+05

0
1…
3
4…
7

8…
13

14
…
21

22
…
30

31
…
41
>=
42

fl (log scale)

C
o

un
t

(l
o

g
 s

ca
le

)

1e+01

1e+03

1e+05

0
1…
2
3…
5
6…
8

9…
12

13
…
17

18
…
22
>=
23

fc (log scale)

C
o

un
t

(l
o

g
 s

ca
le

)

1e+01

1e+03

1e+05

0
1…
3
4…
7

8…
12

13
…
19

20
…
27

28
…
36
>=
37

cnd (log scale)

C
o

un
t

(l
o

g
 s

ca
le

)

1e+01

1e+03

1e+05

0
1…
2
3…
5
6…
9

10
…
14

15
…
19

20
…
25
>=
26

neg (log scale)

C
ou

nt
 (

lo
g

 s
ca

le
)

1e+01

1e+03

1e+05

0
1…
6

7…
22

23
…
51

52
…
98

99
…
16
5

16
6…
25
7

>=
25
8

loac (log scale)

C
o

u
nt

 (
lo

g
 s

ca
le

)

1e+01

1e+03

1e+05

0.
00
…
0.
11

0.
12
…
0.
24

0.
25
…
0.
36

0.
37
…
0.
48

0.
49
…
0.
61

0.
62
…
0.
73

0.
74
…
0.
85

>=
0.
86

loac

loc

C
ou

nt
 (

lo
g

sc
a

le
)

1e+01

1e+03

1e+05

1…
7

8…
27

28
…
67

68
…
13
3

13
4…
23
3

23
4…
37
3

37
4…
56
1

>=
56
2

loc (log scale)

C
ou

nt
 (

lo
g

sc
al

e)

0e+00

5e+04

1e+05

0…
15
99

16
00
…
31
99

32
00
…
47
99

48
00
…
63
99

64
00
…
79
99

80
00
…
95
99

96
00
…
11
19
9

>=
11
20
0

age

C
ou

nt

0

40000

80000

120000

0

1…
21

22
…
13
6

13
7…
49
5

49
6…
13
46

13
47
…
30
45

30
46
…
60
73

>=
60
74

mrc (log scale)

C
ou

nt

1e+01

1e+03

1e+05

0
1…
5

6…
15

16
…
32

33
…
57

58
…
91

92
…
13
5

>=
13
6

pc (log scale)

C
ou

n
t

(l
og

 s
ca

le
)

1e+01

1e+03

1e+05

0
1…
3
4…
7

8…
13

14
…
20

21
…
29

30
…
39
>=
40

commits (log scale)

C
ou

nt
 (

lo
g

sc
al

e)

1e+01

1e+03

1e+05

0

1…
11

12
…
49

50
…
13
7

13
8…
30
3

30
4…
58
0

58
1…
10
03

>=
10
04

lines (log scale)

C
ou

nt
 (

lo
g

sc
al

e)

Figure 5.4: Histograms of all variables after applying transformations (data from
BusyBox)

code and faults [338, 124]. To provide deeper insights into the distributions despite
these skews, I created a second set of histograms in which the x- or y-axes (and
sometimes both) use a logarithmic scale. A logarithmic scale on the x-axis increases
the resolution for small values of the variable, and for some variables, such as mrc,

5.4. Quantitative Results 119

this was enough to make the shape of the distribution become visible. However, for
most variables, such as fl and commits , the skew was so strong that I additionally
used a logarithmic scale on the y-axis to prevent the high frequency of low values
from completely overshadowing the low frequency of higher values. The resulting
histograms are depicted in Figure 5.4. These histograms reveal two things: First,
the extent of preprocessor use is low in most functions, with the vast majority con-
taining no #ifdef directives at all. For example, 86 % of all functions in BusyBox
contain no #ifdef directives, 10 % contain between 1 and 3, and only 2.5 % contain
between 4 and 7. Second, most functions are not changed, and if they are, chances
are high that they are changed only once and only by a few lines. For example,
only 2.2 % of all functions in BusyBox are changed more than three times over the
course of a commit window, and changes of more than eleven lines of code affect
only 7.7 % of all functions.

5.4.2 RQ 1, H0 1.1: Relationship between Binary Properties
of Preprocessor Use and the Likelihood of Changes

By testing H0 1.1, I answer the question whether the presence or absence of different
aspects of preprocessor use affects the likelihood that a function is changed. The
results of the statistical analyses are given in Table 5.9. For each independent
variable, I report the number of subjects in which the variable had a statistically
significant effect at three levels of significance. Moreover, I report the pooled p values
and ORs computed over all subjects.

Variables Significance per Subject All Subjects
Dep. Indep. N <.001 <.01 <.05 p OR

changed fl>0 20 20 20 20 � .001 2.19
changed fc>1 20 20 20 20 � .001 2.91
changed cnd>0 20 19 19 20 � .001 3.08
changed neg>0 20 20 20 20 � .001 2.20

N: total number of subjects; <.001, <.01, <.05: number of subjects where
the effect was significant at the given p value; p: pooled p value over all subjects;
OR: pooled odds ratio over all subjects

Table 5.9: Between-group differences regarding the likelihood of changes

In addition to the numeric results in Table 5.9, I also show the effect sizes as a set
of box plots in Figure 5.5. The box plots were created as follows: Every box covers
50 % of the data, i. e., its height corresponds to one interquartile range, and the thick
line marks the median value. The location of the whiskers depends on the minimum
and maximum values in the data. The standard location of the whiskers is at 1.5
times the interquartile range above and below the box, respectively. However, if
a whisker would lie beyond the actual minimum/maximum value, it is retracted to
mark the actual minimum/maximum value. Finally, circles above and below the
whiskers mark outliers, i. e., values whose distance from the box exceeds 1.5 times
the interquartile range. Below each box plot, I indicate in parentheses in how many
subjects the respective independent variable had a statistically significant effect at

120 5. How Preprocessor Annotations (Do Not) Affect Maintainability

1
2

3
4

5
6

Changed/Not Changed

O
dd

s
Ra

tio

f l >0 f c >1 cnd>0 neg>0
(n=20/20) (n=20/20) (n=19/20) (n=20/20)

Figure 5.5: Between-group differences regarding the likelihood of changes

p< .01. Green indicates that a variable had a statistically significant effect in all
subjects, and black that it had a significant effect in more than half of the subjects.
As a visual aid to mark the value of a neutral effect, I inserted a dashed horizontal
line at the OR 1.

The summarized results (see last two columns of Table 5.9) reveal that all four
variables are associated with highly significant differences. The test results for the
individual subjects are also very consistent. Specifically, the variables fc>1, fl>0, and
neg>0 have statistically significant effects at p< .01 in all twenty subjects, and cnd>0

has statistically significant effects in all subjects but one, Gnumeric (p= .04).

The pooled ORs of all variables are positive. Likewise, inspecting the individual
results of every subject, I found that all ORs in all subjects are positive. Even in
Gnumeric, where cnd>0 failed the significance test, the effect tends to be positive
(OR = 1.18). I conclude that the direction of the effects of all four variables is
consistent across subjects, and the direction is always positive.

The pooled ORs range from 2.19 (for fl>0) to 3.08 (for cnd>0). I use Pidgin and
cnd>0 to illustrate the strength of these effects. In Pidgin, the odds are 12:88 that
functions without any nested annotations (cnd>0 = 0) are changed, and the OR of
cnd>0 is 2.7. Thus, the odds that functions with nested annotations (cnd>0 = 1)
in Pidgin are changed are 12:88× 2.7≈ 32:88, which, when normalized to 100, ap-
proximately amounts to the odds 27:73. Expressed in terms of likelihoods, a change

5.4. Quantitative Results 121

to a function in Pidgin is 12 % likely if there are no nested annotations and 27 %
likely if there are nested annotations. This difference is considerable. Since the av-
erage ORs of all four variables fall in the same range as the OR of cnd>0 in Pidgin,
I conclude that all four variables are associated with considerable differences in the
likelihood of changes.

The long whiskers of the box plots in Figure 5.5 indicate that the ORs of all four
variables vary strongly between subjects. As an example, I inspected the OR of
cnd>0 in all subjects, finding it ranges from 1.84 at the low end (in MySQL) to 5.72
at the high end (in SQLite). As the box plots in Figure 5.5 show, the ORs of the
other variables vary to a similarly high degree. I therefore note that the effects of
all four variables vary greatly in strength from subject to subject.

In summary, I observe that preprocessor use, when viewed as a binary property,
correlates with statistically significant differences in the likelihood that functions
are changed. The direction of the statistical effect is always positive but it varies
from subject to subject. Based on these observations, I reject H0 1.1 and instead
accept the following alternative hypotheses:

Ha 1.1 (fl>0): Functions containing at least one preprocessor directive are
more likely to be changed than functions without any preprocessor directives.

Ha 1.1 (fc>1): Functions containing preprocessor directives that reference two
or more feature constants are more likely to be changed than functions in which
fewer feature constants are referenced.

Ha 1.1 (cnd>0): Functions containing at least one nested preprocessor direc-
tive are more likely to be changed than functions without any nested prepro-
cessor directives.

Ha 1.1 (neg>0): Functions containing preprocessor directives that use nega-
tion at least once are more likely to be changed than functions without prepro-
cessor directives that use negation.

5.4.3 RQ 1, H0 1.2 and H0 1.3: Relationship between Binary
Properties of Preprocessor Use and the Frequency and
Extent of Changes

By testing H0 1.2 and H0 1.3, I answer the question how much the presence or ab-
sence of different aspects of preprocessor use affects the frequency and the extent of
changes to a function. I report the results of the statistical analyses in Table 5.10.
The upper part of the table contains the results of the tests for H0 1.2, where the
dependent variable is commits (the number of changes). The lower part contains
the results for H0 1.3, where the dependent variable is lines (the number of lines
changed). Similarly to Table 5.9, I report the number of subjects in which an in-
dependent variable had a statistically significant effect at three levels. Additionally,

122 5. How Preprocessor Annotations (Do Not) Affect Maintainability

I report the number of subjects in which the p value of the correlation exceeded .05,
indicating a clearly insignificant effect. Moreover, I report effect sizes in terms of
the mean and standard deviations of Cliff’s delta, d. These averages encompass
only effect sizes of the significant correlations (p< .01). The final column contains
a qualitative assessment of the mean d following the thresholds proposed by Gris-
som and Kim [118]. According to these thresholds, d is negligible if |d|<0.147, small
if |d|<0.33, medium if |d|<0.474, and large otherwise. In Table 5.10, the effects
are symbolized by # for negligible, and G# for small (no stronger mean effects were
observed).

Variables Significance Cliff’s Delta
Dep. Indep. N <.001 <.01 <.05 ≥ .05 M±SD

commits fl>0 20 20 20 20 0 0.14±0.08 #

commits fc>1 20 19 19 19 1 0.20±0.11 G#

commits cnd>0 20 16 17 18 2 0.22±0.11 G#

commits neg>0 20 20 20 20 0 0.15±0.09 G#

lines fl>0 20 20 20 20 0 0.14±0.08 #

lines fc>1 20 19 19 19 1 0.21±0.11 G#

lines cnd>0 20 17 18 18 2 0.22±0.12 G#

lines neg>0 20 20 20 20 0 0.15±0.09 G#

N: total number of subjects; <.001, <.01, <.05: number of subjects where
the effect was significant at the given p value; ≥ .05: number of subjects where
the effect was not significant at p< .05; Cliff’s Delta: mean value and standard
deviation of Cliff’s delta (if significant); the symbols # and G# indicate negligible
and small mean effects, respectively

Table 5.10: Between-group differences regarding the frequency and profundity of
changes

As for RQ 1, H0 1.1, I also depict the effect sizes as box plots, with the results related
to H0 1.2 in Figure 5.6 and those related to H0 1.3 in Figure 5.7. The box plots were
drawn using the same settings as in Figure 5.5. The difference is that the dashed
horizontal line is now located at 0 as this is the neutral value for Cliff’s delta.

In the data in Table 5.10, Figure 5.6, and Figure 5.7, I observe a high proportion of
significant correlations. For both dependent variables, the variables fl>0 and neg>0

have significant effects (p< .01) in all twenty subjects, and fc>1 has significant effects
in all subjects except Gnumeric. The variable cnd>0 has significant effects on
commits in seventeen subjects and on lines in eighteen subjects. The insignificant
results were obtained in Blender, Gimp, and Gnumeric.

Manual inspection of the Cliff’s d values of all subjects revealed that all significant
relationships are positive, both regarding commits and lines . The average effect
sizes range from negligible to small but in a few subjects, I found stronger effects.
In particular, I observed medium and large effects in four subjects (BusyBox,
gnuplot, libxml2, and OpenVPN). For example, the effects of fc>1 on commits
are medium in BusyBox (d= 0.33) and OpenVPN (d= 0.42). The only large

5.4. Quantitative Results 123

-0
.1

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Number of Changes

C
liff

's
D

el
ta

f l >0 f c >1 cnd>0 neg>0
(n=20/20) (n=19/20) (n=17/20) (n=20/20)

Figure 5.6: Between-group differences regarding the frequency of changes

effect was observed for cnd>0 on lines in OpenVPN (d= 0.52). Compared to the
results for RQ 1, H0 1.1, where all four variables were associated with considerable
average effects, I note that the average effects are now smaller. In other words, the
differences in the likelihood that functions are changed are considerable, but at the
same time, the differences in the frequency or extent of changes are rather small.

Similarly to RQ 1, H0 1.1, I observe that the effects vary greatly between subjects.
Taking cnd>0 as the example again, I found that its effect on lines ranges from
a negligible Cliff’s d of 0.07 (in MySQL) to a large 0.52 (in OpenVPN). The effect
sizes of the other variables vary to a similar degree, regarding both commits and lines
as the outcome. This aligns with my previous observation that the effect strengths
of all four variables vary greatly between subjects.

In summary, I observe that preprocessor use, when considered as a binary property,
has a statistically significant effect in the majority of the subject systems on both
the frequency with which functions are changed, as well as the extent of those
changes. The direction of the effects is always positive but it varies from subject
to subject. Based on these observations, I reject both H0 1.2 and H0 1.3 for all four
variables and instead accept the alternative hypotheses stated below. For brevity,
I only explicitly state the alternative hypotheses regarding the presence/absence of
#ifdefs. The alternative hypotheses regarding the number of feature constants,
nesting, and negation hold accordingly.

124 5. How Preprocessor Annotations (Do Not) Affect Maintainability

-0
.1

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Number of Lines Changed

C
liff

's
D

el
ta

f l >0 f c >1 cnd>0 neg>0
(n=20/20) (n=19/20) (n=18/20) (n=20/20)

Figure 5.7: Between-group differences regarding the profundity of changes

Ha 1.2 (fl>0): Functions containing at least one preprocessor directive are
changed more frequently than functions without any preprocessor directives.

Ha 1.3 (fl>0): Functions containing at least one preprocessor directive are
changed more profoundly than functions without any preprocessor directives.

5.4.4 RQ 2: Relationship between Different Extents of Pre-
processor Use and Function Size

In RQ 2, I ask whether different extents of cpp use affect a function’s change prone-
ness. Before I present the results, I investigate the relation of preprocessor use to
function size, as size is a possible confounder. I initially illustrate this relation by
means of Figure 5.8. In particular, I consider the variables fl , fc, cnd , neg , and
loac/loc as independent variables and relate them to function size (variable loc) as
the dependent variable. I differentiate between three metric values, resulting in three
boxplots per metric. For fl , fc, cnd , and neg , which are integer-valued, I differen-
tiate between 0, 1, and 2 or greater. For loac/loc, which is a ratio, I consider the
ranges 0–10 %, 10–20 %, and 20 % or greater. The width of each box depends on
the number of functions that fall into the respective group. Due to limited space,
I show only the boxplots for BusyBox; the other subjects exhibit the same trends.

5.4. Quantitative Results 125

My plots indicate that fl, fc, cnd, and neg correlate positively with function size,
indicating that functions that use preprocessor directives more heavily are, on aver-
age, longer. Moreover, as the values of the metrics increase, function size varies more
(indicated by longer whiskers), and the number of functions decreases considerably
(indicated by leaner boxes). By comparison, the trend for loac/loc is less clear. It
is also noteworthy that the number of functions decreases as loac/loc increases but
in contrast to the results for fl, fc, cnd, and neg , the highest average sizes and the
highest variations in size occur in the second group (loac/loc between 10 and 20 %),
not in the third group.

0

1

2+

fl

Number of functions per box

411,560 24,805 40,948

0

1

2+

fc

Number of functions per box

411,560 42,375 23,378

0

1

2+

0 100 200 300 400
loc

cnd

Number of functions per box

471,066 2,230 4,017

0

1

2+

0 100 200 300 400
loc

neg

Number of functions per box

452,902 15,554 8,857

0...10%

10...20%

20%+

0 100 200 300 400
loc

loac

loc

Number of functions per box

421,761 13,604 41,948

Figure 5.8: Distribution of function sizes for different extents of preprocessor use in
BusyBox

In summary, the plots suggest that functions making heavy use of (complex) cpp
directives tend to be larger. At the same time, such functions occur less frequently
compared to functions that make less or no use of cpp directives.

I calculated Spearman’s rank correlation coefficient, rS, to measure the relationship
between different values of my annotation-related metrics and function size. In all
of my subjects, the number of functions without any annotations (fl = 0) is much
greater than the number of functions with annotations (fl ≥ 1) and this imbalance
may mask possible correlations between my preprocessor metrics and function size.
For this reason, I calculated the correlation coefficients on two datasets of each
subject, a full dataset and a balanced dataset. The full dataset comprises the data
of all functions in a subject. In the balanced dataset, in turn, the number of functions

126 5. How Preprocessor Annotations (Do Not) Affect Maintainability

without any annotations was downsampled (using random sampling) to match the
number of functions with annotations.

I show the correlation coefficients, summarized over all subjects, in Table 5.11. The
results for the full datasets are shown in the upper half of the table, and the results
for the balanced datasets are shown in the lower half. In the column “Significant,”
I report the number of subjects in which correlations were significant, and the total
number of subjects. In the last columns, I report the mean value and the stan-
dard deviations of the correlations. Spearman’s rank correlation coefficient, rS, can
range from −1 to +1, indicating strong negative or strong positive correlations, re-
spectively. The absolute value of rS indicates how well the relationship between
independent and dependent variable can be described by a monotonic function.
However, the particular kind of relationship (e. g., logarithmic, linear, or quadratic)
is unimportant. The correlation is very weak for |rS|<0.2, weak for 0.2≤|rS|<0.4,
moderate for 0.4≤|rS|<0.6, strong for 0.6≤|rS|<0.8, and very strong for |rS|≥0.8.
In Table 5.11, these different strengths are symbolized by # for very weak, G# for
weak, and for moderate correlations. (Strong or very strong mean correlation
strengths were not observed.) For both the full and the balanced datasets, the
weakest correlation is highlighted in light gray, and the strongest one in dark gray.

Variables Significant Spearman’s rS
Dep. Indep. M± SD

F
u
ll

loc fl 20/20 0.29 ±0.10 G#

loc fc 20/20 0.28 ±0.10 G#

loc cnd 20/20 0.12 ±0.06 #

loc neg 20/20 0.19 ±0.06 #

loc loac/loc 20/20 0.27 ±0.09 G#

B
al

an
ce

d

loc fl 20/20 0.53 ±0.06

loc fc 20/20 0.50 ±0.06

loc cnd 20/20 0.20 ±0.06 G#

loc neg 20/20 0.30 ±0.07 G#

loc loac/loc 20/20 0.35 ±0.06 G#

Significant: number of subjects where effect was statistically significant and
total number of subjects; Spearman’s rank rS: mean value and standard
deviation of Spearman’s rank correlation coefficient; mean correlation strength:
very weak, G# weak, moderate

Table 5.11: Correlations between extent of cpp use and function size

The data in Table 5.11 reveal that all correlations are significant in all subjects,
both in the full and in the balanced datasets. In fact, all p values I obtained sat-
isfy the .0001 level, indicating highly significant correlations. All independent vari-
ables correlate positively with function size, confirming the trend already suggested
by Figure 5.8. Among all variables, cnd has the lowest and fl the highest correlation
strength in both datasets. Comparing the average effects on both datasets, I observe
only very weak or weak effects in the full datasets but stronger effects in the balanced
datasets, where they range from weak to moderate. I believe that the weaker effects

5.4. Quantitative Results 127

in the unbalanced datasets are indeed caused by a masking effect, that is, the vast
majority of functions without cpp directives overshadows the correlation between
different extents of cpp use and function size. Based on these results, I reject H0 2
for all annotation metrics and accept the following alternative hypothesis:

Ha 2 (fl,fc, cnd,neg, loac/loc): Functions containing more preprocessor di-
rectives, functions in which the preprocessor directives reference more feature
constants, use more negation or are more deeply nested, as well as functions
with a higher ratio of annotated code are also longer than functions in which
these metrics have lower values.

Given Ha 2 and combining it with the existing evidence that larger functions are
also more change-prone, I conclude that function size must be taken into account
as a possible confounder when analyzing the relationship between preprocessor use
and change proneness. I present the results next.

5.4.5 RQ 3, H0 3.1: Relationship between Different Extents
of Preprocessor Use and the Likelihood of Changes

By testing H0 3.1, I answer the question if and how much different aspects of pre-
processor use affect the likelihood of changes to a function when all aspects are
considered in combination and in the context of possible confounding factors, such
as function size. To answer this question, I computed logistic regression models
for all twenty subjects. I summarize the results in Figure 5.9, Table 5.12, and Ta-
ble 5.13: If an independent variable had a statistically significant effect in a given
subject at p< .01, I included the corresponding OR in the summary; otherwise it
was excluded. In Figure 5.9, I provide a graphical overview of this summary. In
Table 5.12, I report the number of subjects in which the effects where significant,
the number of times the effect direction was positive or negative, as well as the
mean effect sizes. In Table 5.13, in turn, I report the minimum and maximum effect
strengths.

The box plots in Figure 5.9 were drawn using the same settings that I used in
Figure 5.5, and the number of subjects in which an independent variable had a sta-
tistically significant effect is denoted below the x-axis in the same way. The dashed
horizontal line at the OR 1 highlights the neutral effect.

Preprocessor use. The data in Figure 5.9 and Table 5.12 reveal that all four vari-
ables of preprocessor use significantly affect the likelihood of changes in a majority
of the subjects. However, I also note that only one variable, log2(fc), has a significant
effect in all subjects. The average ORs deviate only by a small amount from neu-
tral (see Table 5.12). To illustrate what these ORs mean in practice, I take fc (the
number of distinct feature constants) as the example. The average OR of log2(fc)

is 1.14, meaning that the odds for a function to change multiply by 1.14 when the
number of feature constants in a function approximately doubles. More precisely,
the odds multiply by 1.14 if the number of feature constants increases one step in
the sequence 0, 1, 3, 7, . . . , 2n−1 (see Section 5.3.2 for details). According to the
data in Figure 5.2, the mean probability of a function being changed is 0.18, which

128 5. How Preprocessor Annotations (Do Not) Affect Maintainability

0.5

1.0

1.5

2.0

2.5

3.0
O

d
d

s
 R

a
tio

loac

loc

log2 log2 log2 log2 log2 log2 log2
(fc) (cnd) (neg) (loc) (age) (mrc) (pc)

(20/20) (13/20) (15/20) (15/20) (20/20) (20/20) (20/20) (20/20)

Figure 5.9: Summary of the regression results for change likelihood

corresponds to the odds 18:82 (18 functions changed vs. 82 not changed). Thus, the
expected odds to change for a function with twice as many feature constant as the
average function are 18:82×1.14≈ 20:82. Expressed in terms of likelihoods, this cor-
responds to an increase of only 0.02 (from 0.18 to 0.20). Even a three-unit increase
of log2(fc), which corresponds to fc increasing from 0 to 7, only raises the likelihood
of a change by 0.07 (from 0.18 to 0.25). Through manual inspection, I found that
only 0.3 % of all functions in my subjects reference seven feature constants or more.
Hence, such an increase in the number of feature constants must be considered ex-
treme. As the data in Table 5.12 reveal, the ORs of the other preprocessor-related
variables (log2(fl), log2(cnd), log2(neg), loac/loc) are even closer to a neutral effect than
the OR of log2(fc). Consequently, changes in these variables will affect the odds that
a function is changed even less strongly than a change of log2(fc). I conclude that
realistic increases in my metrics of preprocessor use have very small effects on the
likelihood that functions change.

In Table 5.12, I report how many of the significant effects were positive and how
many were negative, and in Table 5.13, I complement this data with details about the
minimum and maximum effects. The data reveal that every variable of preprocessor

5.4. Quantitative Results 129

log2

(fc)
log2

(cnd)
log2

(neg)
loac
loc

log2

(loc)
log2

(age)
log2

(mrc)
log2

(pc)

Significant 20/20 13/20 15/20 15/20 20/20 20/20 20/20 20/20
+/− 16:4 3:10 7:8 4:11 20:0 0:20 2:18 19:1

Mean 1.14 0.90 1.01 0.96 1.29 0.80 0.87 1.39

Significant: number of subjects where effect was statistically significant;
+/−: number of subjects where effect was positive/negative (only significant ef-
fects); bold font highlights effect direction that is in the majority; Mean: mean
odds ratio (only significant effects)

Table 5.12: Average odds ratios in the regression models for change likelihood

use has positive effects in at least one subject and negative effects in at least one
other subject. I thus conclude that there is no general pattern: It depends on the
subject whether a given variable of preprocessor use is associated with an increase
or a decrease in the likelihood of changes or whether there is no effect at all.

Variable Minimum Maximum
OR System OR System

log2(fc) 0.72 Gnumeric 2.19 OpenVPN
log2(cnd) 0.71 Gnumeric 1.06 mpv
log2(neg) 0.80 Cherokee 1.42 libxml2

loac/loc 0.47 OpenVPN 2.96 Gnumeric

log2(loc) 1.19 glibc 1.52 libxml2
log2(age) 0.69 SQLite 0.94 Subversion
log2(mrc) 0.69 Subversion 1.38 OpenVPN

log2(pc) 0.96 OpenVPN 1.76 Cherokee

Table 5.13: Minimum and maximum odds ratios in the regression models for change
likelihood

Contrary to my expectations, the data in Table 5.12 reveal that the mean ORs
of both log2(cnd) and loac/loc are below 1, indicating a negative effect. In other
words, higher nesting degrees of nesting or larger proportions of annotated code are
associated with small decreases in the likelihood of changes. Regarding, log2(neg)

the data show an anomaly: Even though the majority of effects (eight out of fifteen)
are negative, the mean effect is positive (OR = 1.01). The cause for this anomaly is
the positive effect in libxml2 (OR = 1.42, see Table 5.13, also visible as an outlier
in Figure 5.9), which is so strong that the weaker negative effects in other subjects
are outweighed.

Control variables. All control variables have statistically significant effects in all
subjects. I observe that the direction of the effects of the control variables conforms
to my expectations. In particular, the effect of log2(loc) is positive, meaning that
given two functions, the longer function is more likely to be changed than the shorter
one. The effects of log2(age) and log2(mrc) are negative, meaning that older functions

130 5. How Preprocessor Annotations (Do Not) Affect Maintainability

as well as functions whose most recent change is further in the past are less likely to
be changed than younger functions or functions that were recently changed. Finally,
the effect of log2(pc) is positive, meaning that functions that were changed more often
in the past are also more likely to be changed in the future.

The data about the number of positive and negative effects (see Table 5.12) indicate
that the direction of the effects of the control variables is more consistent than
it is for the variables of preprocessor use. Specifically, log2(loc) always has positive
effects, and log2(age) always has negative effects. The results for the other two control
variables are only slightly less consistent. In particular, log2(mrc) has negative effects
in eighteen subjects out of all twenty, and log2(pc) has positive effects in nineteen.
Through manual inspection of the individual results, I found the exceptions for
log2(mrc) to be OpenVPN (OR = 1.38) and Vim (OR = 1.06); for log2(pc), it was
OpenVPN (OR = 0.96).

A comparison of the ORs in Table 5.12 indicates that the preprocessor-related vari-
able have smaller effects than the control variables. Taking log2(fc) (OR = 1.14) and
log2(loc) (OR = 1.29) as the example, I see that the OR resulting from a two-unit
increase of log2(fc) is 1.142≈ 1.30, about the same effect as increasing log2(loc) by
one unit. A two-unit change in log2(fc) means that a function references at least
three feature constants, and a one-unit increase in log2(loc) means that a function
doubles in size. The question is, which increase is more realistic? Inspecting the
data of my subjects, I found that 11 % of all functions are at least twice as long as
the mean lenght of a function but that only 1.7 % of all functions reference three
feature constants or more. Hence, I conclude that it takes big increases in the num-
ber of feature constants to achieve effects that are comparable to moderate increases
in the size of a function. This answers the question how the statistical effects of fc
and loc relate to each other, but the same question arises for other combinations of
variables. I answer it in the following paragraphs.

Comparison of effect sizes. Relating the effect sizes of the preprocessor-related
variables and the control variables to each other is difficult because all variables
are measured in different units of measurement. I therefore recomputed the logistic
regression models after standardizing the independent variables. A standardized
variable Xi

∗ is derived from an unstandardized variable Xi by subtracting the mean
value of Xi and dividing the result by the standard deviation of Xi. The effect of
standardization is that all variables are centered around 0 and have a variance of 1.
As a result, I can determine which independent variable has the greatest effect on
the outcome by simply comparing the standardized regression coefficients with each
other.

The summaries of the standardized logistic regression models are given in graphical
from in Figure 5.10 and in numerical form in Table 5.14. The data reveal that
first, the standardized ORs of the control variables differ more strongly from neutral
than the standardized ORs of the variables of preprocessor use. I conclude from
this observation that variations in the size and age of a function, the time since
its last change, and the number of previous changes explain future changes better
than differences in the extents of preprocessor annotations. Second, among the
variables related to preprocessor use, log2(fc)

* has the greatest effect whereas the

5.4. Quantitative Results 131

0.5

1.0

1.5

2.0

O
d

d
s
 R

a
tio

loac*

loc

log2
* log2

* log2
* log2

* log2
* log2

* log2
*

(fc) (cnd) (neg) (loc) (age) (mrc) (pc)

(20/20) (13/20) (15/20) (15/20) (20/20) (20/20) (20/20) (20/20)

Figure 5.10: Summary of the regression results for change likelihood using standard-
ized variables

others (log2(fl)
, log2(cnd), log2(neg)*, and loac/loc

*) have effects that are very close
to neutral. I conclude from this second observation that variations in the number
of feature constants explain future changes to a small extent but that variations in
other preprocessor-related metrics have almost no explanatory power.

I analyzed the explanatory power of the preprocessor-related variables in more detail
with the help of the McFadden statistics. To this end, I complemented the full

log2
*

(fc)
log2

*

(cnd)
log2

*

(neg)
loac
loc

* log2
*

(loc)
log2

*

(age)
log2

*

(mrc)
log2

*

(pc)

Significant 20/20 13/20 15/20 15/20 20/20 20/20 20/20 20/20
+/− 16:4 3:10 7:8 4:11 20:0 0:20 2:18 19:1

Mean 1.07 0.98 1.00 0.99 1.41 0.69 0.74 1.59

Table 5.14: Average odds ratios in the regression models for change likelihood using
standardized independent variables

132 5. How Preprocessor Annotations (Do Not) Affect Maintainability

regression models (i. e., the models discussed so far) with a set of reduced regression
models, which only comprise the control variables. For the reduced models, the mean
McFadden statistic, averaged over all subjects, is 0.136, and for the full models, it
is 0.138. In other words, the control variables alone explain 13.6 % of the variance in
the data, and the addition of the preprocessor-related variables improves this value
by 0.2 %, yielding 13.8 %. I conclude that taking information about preprocessor
use into account helps explain the likelihood of changes better, but only by a very
small amount.

In summary, all four variables of preprocessor use, when considered in combination
and in the context of my control variables, have a statistically significant effect on
the likelihood of functions being changed in the majority of the subject systems. For
fc, the majority of the significant effects is positive, and for cnd , neg , and loac/loc, it
is negative. Based on these results, I reject H0 3.1 and instead accept the following
alternative hypotheses:

Ha 3.1 (fc): After accounting for differences in function size, age, number
of previous changes, and time since the last change, functions in which the
preprocessor directives reference more feature constants are more likely to be
changed in most but not all software systems than functions in which fewer
feature constants are referenced.
Depending on the system, the likelihood of being changed may also decrease as
the number of referenced feature constants rises.
For realistic changes in the number of feature constants, the effects are likely
small.

Ha 3.1 (cnd,neg, loac/loc): After accounting for differences in function size,
age, number of previous changes, and time since the last change, functions in
which the preprocessor directives are more deeply nested or use more negation,
as well as functions with a higher ratio of annotated code are less likely to
be changed in most but not all software systems than functions in which these
metrics have lower values.
Depending on the system, the likelihood of being changed may also increase or
not correlate with changes in these metrics.
For realistic changes of these metrics, the effects are likely small.

5.4.6 RQ 3, H0 3.2: Relationship between Different Extents
of Preprocessor Use and the Frequency of Changes

By testing H0 3.2, I answer the question whether preprocessor use affects the fre-
quency with which a function is changed. To answer this question, I computed
negative binomial regression models for all subjects. Much like in Section 5.4.5,
I summarize the models in Figure 5.11, Table 5.15, and Table 5.16. One important
difference is the way in which I report effect sizes: In Section 5.4.5, I reported ORs,
for which the value 1 corresponds to a neutral effect, but for the results related to
H0 3.1, I report the regression coefficients directly. For raw regression coefficients,
the coefficient value 0 indicates a neutral effect, which is why the horizontal helper

5.4. Quantitative Results 133

line in Figure 5.11 appears at 0. The color coding below the x-axis in Figure 5.11
is the same as in Figure 5.9, with the addition that variables that do not have
a significant effect in the majority of subjects are highlighted in red.

-0.2

0.0

0.2

0.4

0.6

C
o
e
ff
ic
ie
n
t

loac

loc

log2 log2 log2 log2 log2 log2 log2
(fc) (cnd) (neg) (loc) (age) (mrc) (pc)

(18/20) (11/20) (15/20) (10/20) (20/20) (20/20) (19/20) (20/20)

Figure 5.11: Summary of the regression results for change frequency

A visual comparison of Figure 5.11 with Figure 5.9 reveals that the results of negative
binomial regression are similar to those of logistic regression. Specifically, most
variables have statistically significant effects in the majority of systems, and once
again, the control variables have significant effects more often than the preprocessor-
related variables. Furthermore, for all variables except loac/loc, I observe that the
heights of the boxes relative to each other, as well as their position in relation to the
line indicating the neutral effect are similar in Figure 5.9 and Figure 5.11. These
observations allow me to draw two conclusions: first, whether the outcome is being
changed or whether the outcome is the number of changes, the direction of the
statistical effects of the independent variables is the same in both cases; second,
the relative size of the effects is similar. For example, the absolute effect (i. e., the
distance from a neutral effect) of log2(fc) is again greater than the absolute effect of
log2(neg).

134 5. How Preprocessor Annotations (Do Not) Affect Maintainability

log2

(fc)
log2

(cnd)
log2

(neg)
loac
loc

log2

(loc)
log2

(age)
log2

(mrc)
log2

(pc)

Significant 18/20 11/20 15/20 10/20 20/20 20/20 19/20 20/20
+/− 15:3 2:9 5:10 6:4 20:0 0:20 1:18 20:0

Mean 0.09 -0.10 -0.03 0.13 0.26 -0.24 -0.13 0.34

Table 5.15: Average effect sizes in the regression models for change frequency

Preprocessor use. The variables log2(fc), log2(cnd), and log2(neg) have statistically
significant effects in the majority of the subjects. The proportion of annotated
lines of code, modeled by loac/loc, has statistically significant effects in only half
of the subjects. Contrary to its effect on the likelihood of changes, which was
generally negative, the effect of loac/loc on the frequency of changes is generally
positive (compare Table 5.12 and Table 5.15).

The interpretation of the coefficients of the variables of preprocessor use (see Ta-
ble 5.15) reveals that the effect sizes are medium at best. As an example, consider
the mean coefficient for log2(fc), which is 0.09, and recall from Figure 5.2 that the
mean number of changes to a function in one commit window (500 commits) is 0.36.
Given these values, I can expect a function with twice as many feature constant as
the average to change 0.36 × (1 + 0.09)≈ 0.39 times over a commit window. Put
differently, an average function is changed once every 1389 commits, and with twice
as many feature constants, it can be expected to change once every 1274 commits,
a reduction by 8 %. Even at eight times as many feature constants (a three-unit
increase of log2(fc)), the expected time until the next change is still 1072 commits,
a reduction by 23 %. However, as discussed in Section 5.4.5, such an enormous in-
crease in the number of feature constants is unrealistic. For these reasons, I argue
that realistic differences in the extent of preprocessor use only have small effects on
the expected frequency of changes to a function.

Variable Minimum Maximum
Coef. System Coef. System

log2(fc) -0.19 Gnumeric 0.26 OpenVPN
log2(cnd) -0.25 Gnumeric 0.04 Pidgin
log2(neg) -0.18 Cherokee 0.09 libxml2

loac/loc -0.35 Subversion 0.71 Gnumeric

log2(loc) 0.19 mpv 0.38 libxml2
log2(age) -0.34 Gimp -0.13 Cherokee
log2(mrc) -0.24 Subversion 0.13 OpenVPN

log2(pc) 0.17 Pidgin 0.47 SQLite

Table 5.16: Minimum and maximum effect sizes in the regression models for change
frequency

The summary of the effects directions in Table 5.15, as well as the minimum and
maximum values of the regression coefficients in Table 5.16 indicate that the di-
rections of the effects are inconsistent. For every variable, there are subjects in

5.4. Quantitative Results 135

which the effects are positive and subjects in which the effects are negative. Thus,
the inconsistencies that I already witnessed in Section 5.4.5 (see Table 5.12) are
repeated.

Control variables. Similar to the regression results regarding the likelihood of
changes, the control variables log2(loc) and log2(pc) generally have positive effects,
whereas log2(age) and log2(mrc) have negative effects. The direction of the effects
is highly consistent across all subjects. The only exception is log2(mrc), which has
a negative effect in eighteen out of all twenty subjects, a positive effect in one,
OpenVPN, and no significant effect in one, Vim. I note that OpenVPN and Vim
are the same subjects for which the logistic regression results regarding log2(mrc)

also went against the general trend (see Section 5.4.5).

To illustrate the strength of the effects, I take log2(loc) as the example. Assuming the
mean number of commits to a function as the baseline, I can expect a function twice
as long as the average to change 0.36×(1+0.26)≈ 0.45 times per commit window. In
other words, the time until the next expected change is reduced by 21 %, from 1389
to 1102 commits. Thus, doubling the size of a function has almost the same effect
as increasing the number of feature constants by a factor of eight (23 % reduction).
The difference is that overly long functions are relatively common whereas functions
in which high numbers of feature constants are referenced are very rare.

I compared the McFadden statistics of the full and the reduced regression models to
assess how much preprocessor-related information helps explain variations in change
frequencies. I found that the reduced models explain 10 % of the variations, and the
full models fare only slightly better, explaining 10.1 % of the variations.

Overall, the regression results for H0 3.2 mirror the results for H0 3.1 in many ways,
such as which variables had statistically significant effects, which variables had pos-
itive or negative effects, and how big the absolute effects are in relation to each
other. Furthermore, I found again that information about the extent of preproces-
sor use hardly adds any explanatory power if all the controlled factors are already
accounted for. These similarities may be explained with the highly skewed distribu-
tion of commits : Averaged over all subjects, only 18 % of all functions are changed
during the course of a commit window, and only 7.5 % (less than half of all changed
functions) are changed twice or more. Therefore, considering the number of changes
as the outcome is almost the same as considering the binary criterion changed/not
changed, and for this reason, different regression techniques produce similar results.

In summary, three of my variables of preprocessor use (fc, neg , and cnd , but not
loac/loc), when considered in combination and in the context of my control vari-
ables, have a statistically significant effect on the number of times that functions
are changed in the majority of the subject systems. Based on these results, I reject
H0 3.2 for fc, neg , and cnd and instead accept the following alternative hypotheses:

136 5. How Preprocessor Annotations (Do Not) Affect Maintainability

Ha 3.2 (fc): After accounting for differences in function size, age, number of
previous changes, and time since the last change, functions in which the prepro-
cessor directives reference more feature constants are changed more frequently
in most but not all software systems than functions in which these metrics have
lower values.
Depending on the system, the frequency of changes may also decrease or not
correlate as the number of referenced feature constants rises.
For realistic changes in the number of feature constants, the effects are likely
small.

Ha 3.2 (cnd,neg): After accounting for differences in function size, age, num-
ber of previous changes, and time since the last change, functions in which the
preprocessor directives are more deeply nested or use more negation are changed
less frequently in most but not all software systems than functions in which these
metrics have lower values.
Depending on the system, the frequency of changes may also increase or not
correlate with changes in these metrics.
For realistic changes of these metrics, the effects are likely small.

The evidence is insufficient to reject H0 3.2 for loac/loc. Instead, I continue to assume
the following:

H0 3.2 (loac/loc): After accounting for differences in function size, age, num-
ber of previous changes, and time since the last change, differences in the ratio
of annotated code in a function have no consistent effect on the frequency with
which a function is changed.

5.4.7 RQ 3, H0 3.3: Relationship between Different Extents
of Preprocessor Use and the Extent of Changes

By testing H0 3.3, I answer the question whether preprocessor use affects the extent of
changes (measured in lines of code changed) that a function undergoes. I computed
negative binomial regression models to answer this question and summarize the
results in Figure 5.12, Table 5.17, and Table 5.18.

Preprocessor use. Compared to the results of testing H0 3.2 (see Table 5.15), I ob-
serve that log2(fc) and log2(neg) continue to have statistically significant effects in the
majority of the systems (see Table 5.17). For log2(cnd) and loac/loc, the situation has
reversed: log2(cnd) now has significant effects in a minority of the subjects (seven out
of twenty), but loac/loc has significant effects in a majority (thirteen out of twenty).

Regarding the direction of the effects, the results also exhibit some similarities to
the results for H0 3.2, but also some differences. On the one hand, the average effect
of log2(cnd) remains negative and the average effect of loac/loc remains positive. On
the other hand, the average effect of log2(fc) has turned from positive to negative
and the average effect of log2(neg) has turned from negative to positive.

5.4. Quantitative Results 137

0.0

0.5

1.0

C
o
e
ff
ic
ie
n
t

loac

loc

log2 log2 log2 log2 log2 log2 log2
(fc) (cnd) (neg) (loc) (age) (mrc) (pc)

(13/20) (7/20) (12/20) (13/20) (20/20) (20/20) (20/20) (20/20)

Figure 5.12: Summary of the regression results for change profundity

I use log2(neg) as an example to illustrate the strength of the effects. The average
coefficient of log2(neg) is 0.06 (see Table 5.17), and the average number of changed
lines in a function during one commit window is 3.64 (see Figure 5.2). Based on
these values, the number of changed lines in a function that contains twice as much
negation as the average can be expected to increase from 3.64 to 3.64× 1.06≈ 3.86.
I argue that this difference is hardly noticeable in practice. Based on a comparison
of the (unstandardized) regression coefficients, the absolute effect of loac/loc appears
stronger than the effects of the other variables of preprocessor use. However, loac/loc

stands for the proportion of annotated lines of within a function. Thus, its maximum

log2

(fc)
log2

(cnd)
log2

(neg)
loac
loc

log2

(loc)
log2

(age)
log2

(mrc)
log2

(pc)

Significant 13/20 7/20 12/20 13/20 20/20 20/20 20/20 20/20
+/− 6:7 1:6 9:3 12:1 20:0 0:20 1:19 20:0

Mean -0.02 -0.11 0.06 0.44 0.59 -0.28 -0.13 0.32

Table 5.17: Average effect sizes in the regression models for change profundity

138 5. How Preprocessor Annotations (Do Not) Affect Maintainability

value is 1.0 or 100 %. For a realistic increase of loac/loc by 10 %, the expected number
of changed lines in a function only increases to 3.64× (1 + 0.44)0.1≈ 3.78.

The data about the direction of the effects and the minimum and maximum effect
sizes (see Table 5.17 and Table 5.18) once again reveal that the average trends
regarding the direction of the effects do not hold for all subjects. Every variable
has positive effects in at least one subject and negative effects in at least one other
subject. As for the results related to H0 3.1 and H0 3.2, there is no general pattern
regarding the direction of the effects.

Variable Minimum Maximum
Coef. System Coef. System

log2(fc) -0.27 Pidgin 0.18 Gnumeric
log2(cnd) -0.21 Gnumeric 0.13 mpv
log2(neg) -0.28 Subversion 0.24 glibc

loac/loc -0.38 php 1.10 libxml2

log2(loc) 0.50 mpv 0.74 libxml2
log2(age) -0.42 Gimp -0.13 Vim
log2(mrc) -0.25 OpenLDAP 0.13 OpenVPN

log2(pc) 0.18 libxml2 0.46 BusyBox

Table 5.18: Minimum and maximum effect sizes in the regression models for change
profundity

Control variables. The results for the control variables show the same trends as for
H0 3.1 and H0 3.2. All of them have significant effects on the extent of changes in all
subjects, and the average directions of the effects are the same. Moreover, the data in
Table 5.17 reveal that the directions of the effects are highly consistent from subject
to subject. The only inconsistent result is related to log2(mrc), which has a negative
effect in nineteen subjects, but a positive effect in one subject, OpenVPN.

I use log2(loc) as an example to illustrate the strength of the effects. According
to Table 5.17, the average coefficient of log2(loc) is 0.59. Thus, I can expect the
number of lines changed in a function that is twice as long as the average function
to be 3.64× (1 + 0.59)≈ 5.79, which is an increase of 2.15 lines or 59 %. I conclude
from this example that realistic changes in the control variables tend to produce
noticeable changes in the number of lines changed. By comparison, the effects of
realistic changes in the variables of preprocessor use are much more subtle. The
McFadden statistics of the full and the reduced models confirm this conclusion: The
average McFadden statistic is the same for both models, 0.04. In other words, taking
only the controlled factors into account, I can explain 4 % of the variance. While
this is an unsatisfactory result, additionally taking information about preprocessor
use into account fails to yield any improvement.

In summary, three of my variables of preprocessor use (fc, neg , and loac/loc, but not
cnd), when considered in combination and in the context of my control variables,
have a statistically significant effect on the extent to which functions are changed in
the majority of the subject systems. Based on these results, I reject H0 3.3 for fc,
neg , and loac/loc and instead accept the following alternative hypotheses:

5.5. Qualitative Analysis 139

Ha 3.3 (neg, loac/loc): After accounting for differences in function size, age,
number of previous changes, and time since the last change, functions in which
the preprocessor directives use more negation, as well as functions with a higher
ratio of annotated code are changed more profoundly in most but not all software
systems than functions in which these metrics have lower values.
Depending on the system, the profundity of changes may also decrease or not
correlate with changes in these metrics.
For realistic changes in the values of these metrics, the effects are likely small.

Ha 3.3 (fc): After accounting for differences in function size, age, number
of previous changes, and time since the last change, functions in which the
preprocessor directives use reference more feature constants are changed less
profoundly than functions containing fewer or no preprocessor directives.
Depending on the system, the profundity of changes may also increase or not
correlate as the number of referenced feature constants rises.
For realistic changes in the number of feature constants, the effects are likely
small.

The evidence is insufficient to reject H0 3.3 for cnd . Instead, I continue to assume
the following:

H0 3.3 (cnd): After accounting for differences in function size, age, number
of previous changes, and time since the last change, functions in which the
preprocessor directives are more deeply nested are changed just as profoundly
as functions in which fewer nested preprocessor directives occur.

5.5 Qualitative Analysis

The quantitive results presented in the previous sections and, in particular, the
low explanatory power of my regression models suggest there are more reasons why
particular functions are change-prone while others remain stable. To gain a bet-
ter understanding of these reasons, I qualitatively analyzed the change histories of
a number of functions in my dataset, putting the focus on the role that cpp use
played in their change proneness or stability. Since such an analysis is time con-
suming, I had to restrict myself to a small sample of functions. At the same time,
I wanted variation in the sample so it covers different points in the space spanned
by the predictor and predicted variables considered in my study. To create a sample
that satisfies both criteria, I selected eight functions that represent extreme points
along the following three dimensions: (1) extent of preprocessor use (indicated by
the number of cpp directives or feature constants), (2) function size (an important
controlled factor according to my quantitative results), and (3) change proneness
(as indicated by the number of changes). Thus, my sample comprises functions that
were either short or long in combination with making light or heavy cpp use, and
for every combination, it encompasses one function that changed rarely and one that
changed frequently.

140 5. How Preprocessor Annotations (Do Not) Affect Maintainability

5.5.1 Short Functions with Heavy cpp Use

I found several short functions in my subjects that make heavy use of cpp directives.
A change-prone example is function usage from OpenLDAP, which prints a text
message explaining how to use OpenLDAP’s slapd command line tool (see List-
ing 5.2). At revision d8cb38c2e from May 1999, this function comprised 19 SLOC
and four preprocessor directives that referenced five feature constants. The reason
for the unusually large extent of cpp use in this function is that the slapd tool
possesses or lacks certain command line options depending on how OpenLDAP is
configured and compiled. During the commit window starting on May 1999, usage
was changed six times. Three of those changes were related to support for running
slapd as a Windows NT service. This support was added in revision 4d13d40, re-
tracted in revision 23c4b81 because it broke Unix builds, and then recommitted in
b0aea66 with changes that resolved the build errors. During each of these changes,
the command line interface of slapd was changed, and usage was modified to reflect
the change. The subsequent revisions (49d9c99, 669b8f4, and 1708367) follow the
same pattern: Each revision changed the command line interface of slapd, thus
requiring a corresponding change of the function. The underlying reason for the
frequent changes is that the implementation of slapd’s command line interface is
scattered across different functions: usage is responsible for explaining the com-
mand line interface to the user, but the actual parsing of command line options
happens in main. The presence of #ifdefs in both of these functions is an indicator
of this scattering. Nevertheless, I see no causal relationship between the presence of
#ifdefs in usage and the extent to which it is changed.

1 static void
2 usage(char *name)
3 {
4 fprintf(stderr, "usage: \%s [-d ?|debuglevel] [-f configfile]

[-p portnumber] [-s sysloglevel]", name);
5 fprintf(stderr, "\n [-a bind-address] [-i]");
6 #if LDAP_CONNECTIONLESS
7 fprintf(stderr, " [-c]");
8 #endif
9 #ifdef SLAPD_BDB2

10 fprintf(stderr, " [-t]");
11 #endif
12 #ifdef LOG_LOCAL4
13 fprintf(stderr, " [-l sysloguser]");
14 #endif
15 #if defined(HAVE_SETUID) && defined(HAVE_SETGID)
16 fprintf(stderr, " [-u user] [-g group]");
17 #endif
18 fprintf(stderr, "\n");
19 }

Listing 5.2: A short, change-prone function from OpenLDAP making heavy use of
cpp directives for configurability

In contrast to the change-prone example from OpenLDAP, I found short functions
that remained very stable despite comprising many cpp directives. One of them is
get_realtime from mpv, shown in Listing 5.3, which comprises 11 SLOC and two

5.5. Qualitative Analysis 141

1 static void get_realtime(struct timespec *out_ts)
2 {
3 #if defined(_POSIX_TIMERS) && _POSIX_TIMERS > 0
4 clock_gettime(CLOCK_REALTIME, out_ts);
5 #else
6 // OSX
7 struct timeval tv;
8 gettimeofday(&tv, NULL);
9 out_ts->tv_sec = tv.tv_sec;

10 out_ts->tv_nsec = tv.tv_usec * 1000UL;
11 #endif
12 }

Listing 5.3: A short, stable function from MPV making heavy use of cpp directives
for configurability

feature locations referencing one feature constant. Except for the function signature,
every line of code is feature code. The function was created in 2013 by commit
b78d11d328 under the name get_pthread_time in osdep/threads.c. Since then,
the only change to this function happened in commit f47a4fc3d9 from 2014, when
it was renamed to get_realtime and moved to a different file, osdep/timer.c.
As of commit 8b563a0346 from 2019, the function still exists in that file. Timer-
related functionality strongly depends on the operating system, which explains why
this short function makes relatively heavy use of cpp directives. However, operating
system developers try to keep their interfaces stable, which explains why the function
did not change.

5.5.2 Long Functions with Heavy cpp Use

The majority of heavily annotated, change-prone functions I found were much longer
than OpenLDAP’s usage. Many of these long functions were main functions, which
serve as the entry point to a C program. In mpv (formerly mplayer), I found an
extreme example. In October 2005, at revision d28ad7d31d, the main function in
mplayer.c was 2829 SLOC long and contained 131 feature locations that refer-
enced 35 distinct feature constants. The function performed all kinds of tasks, such
as reading configuration files, setting up signal handlers, loading media files, and
handling the main event loop of the GUI. Blocks of code that were responsible for
different tasks were separated by comments. mpv has always offered a large number
of compile time configuration options, including support for various operating sys-
tems (e. g., Linux, Windows), CPU instruction set extensions (e. g., MMX, SSE2),
and media file formats (e. g., Ogg, Matroska). These configuration options must be
implemented somewhere in the code, and since mpv’s main function implemented so
much functionality, I am not surprised to find so many #ifdefs in its body. I also
believe that the sheer wealth of functionality in main is the principal reason why
this function was changed so frequently. During 2005, when it was at its peak size
of almost 3000 SLOC, I frequently observed 30 changes or more per commit win-
dow. For example, when mpv’s GUI was adapted to support different languages in
November 2005, commit d291ddf016 changed main in 21 places. Later that month,
in commit f99cc19968, much of the GUI-related code was extracted to separate func-
tions, causing changes in 54 places. In 2006, main underwent major restructuring,

142 5. How Preprocessor Annotations (Do Not) Affect Maintainability

and once its size had stabilized at around 1200 SLOC, the number of changes per
commit window dropped to around 16. Starting in 2012, main underwent a second
round of restructuring, shrinking to 52 and finally to 4 SLOC. With all of its func-
tionality extracted to other functions, main hardly changed anymore afterwards. In
summary, I believe that the change proneness of mpv’s old main function resulted
from poor separation of concerns. The large number of #ifdefs and feature con-
stants certainly was an indicator of this problem, but there were other tell-tale signs,
such as the the extreme length, the use of comments to structure the code, and the
high number of previous changes. For these reasons, I do not regard the presence of
cpp directives in mpv’s main as the main cause of its change proneness.

In qemu, I found a stable counterexample to mpv’s change-prone main function.
Its name is dsound_log_hresult, and it is part of qemu’s DirectSound drivers for
older Microsoft operating systems. The function is 138 SLOC long and most of the
code belongs to a switch statement that translates numerical error codes into hu-
man-readable messages. Out of the 26 case labels, 25 are guarded by #ifdefs
because the presence of most error codes is subject to compile-time variability.
dsound_log_hresult was introduced with revision 1d14ffa97ea in 2005 and never
changed afterwards. At this point in time, DirectSound had already existed for ten
years, and I assume its Application Programmer Interface (API) was stable. Three
years later, DirectSound was deprecated. I believe that this is the main reason why
dsound_log_hresult never had to be changed, despite its length and extensive use
of cpp directives.

5.5.3 Short Functions with Light cpp Use

In Cherokee, I found two examples of short functions that made no use of cpp
directives, one of them change-prone and the other one highly stable. The change-
prone function is cherokee_handler_proxy_free, which never encompassed more
than 15 SLOC during its lifetime, but was changed fourteen times, adding up to
a total of 83 changed lines. The function is a destructor that is responsible for freeing
resources held by the data structure cherokee_handler_proxy_t. As expected,
some of the changes to the destructor stem from changes to the data structure. For
example, commit 4c96e5b2 renamed a field and commit 51a4ed0c added four new
fields. Both commits performed corresponding changes to the destructor. However,
I also found other kinds of commits. For example, commit af114041 only renamed
a parameter, and commit 28401e17 introduced a feature enhancement that was
removed again in commit 3a9c1d38. These changes show that the relationship to
a data structure is not the only reason for a destructor to change.

The stable function is cherokee_handler_init, also related to a data structure, but
in the role of a constructor. The function comprises 11 SLOC and has existed since
revision ae9d9717 from April 2006 and continues to exist in the lastest revision that
I analyzed, revision 9a75e65b from July 2018. During this time, only its whitespace
was changed, which happend in revision 72f644413. In summary, these two functions
demonstrate that tight coupling to a data structure sometimes may make a function
change-prone, but not necessarily.

5.5. Qualitative Analysis 143

5.5.4 Long Functions with Light cpp Use

In Cherokee, I found function process_active_connections, a representative of
a long change-prone function making little use of cpp directives. Specifically, this
function encompassed up to 530 SLOC during its existence but never contained more
than one #ifdef. On average, the function changed 29 times per commit window,
resulting in 130 revisions overall. An HTTP connection in Cherokee goes through
several phases, such as setup, header processing, and shutdown. All of these phases
are handled by a long switch statement in process_active_connections, and
many of the cases in this switch contain further, nested switch statements. Thus,
the function has numerous reasons to change, which explains why it changed so
frequently.

A counterexample from MySQL shows that long functions with a high cyclomatic
complexity are not necessarily change-prone: At revision 4e7a3d8b955, I found
function ieee_read_cxx_class in file pstack/ieee.c, which is part of a library
that MySQL uses to handle segmentation faults. The function encompasses 541
SLOC, 63 if statements, 3 switch statements with 12 cases, but not a single #ifdef.
Despite its complexity, the function never changed since its creation ten years ear-
lier, in revision 8f62579c38e8. According to the header of pstack/ieee.c, the code
was copied from the GNU Binutils project, which suggests that it was already ma-
ture when it appeared in MySQL. Thus, it is plausible that ieee_read_cxx_class
never changed.

5.5.5 Summary of Qualitative Findings

My qualitative analysis lead to four main insights, which I summarize as follows.

Concern tangling. First, concern tangling may be a cause for change proneness
because each concern that is present in a function is a potential reason why the
function needs to be changed in the future. Concern tangling is sometimes indicated
by the presence of cpp directives, but alternative indicators exist, such as a high
number of SLOC, comments to structure the code, or a high number of previous
changes.

Stability of external interfaces. Second, the stability of external interfaces fos-
ters the stability of functions depending on those interfaces. This is true even if the
presence of cpp directives suggests that multiple concerns are tangled in a single
function.

Coupling to data structures. Third, coupling to a data structure can lead to
change proneness, but it does not have to. For example, refactorings and experi-
mental feature enhancements are also reasons why functions change.

High cyclomatic complexity. Finally, a high cyclomatic complexity may be a sign
of concern tangling and of mixing different levels of abstraction in a single function.
Therefore, a high cyclomatic complexity can be an indicator of change proneness.
However, there are circumstances in which such code remains stable, for example, if
mature code is cloned from an external source.

144 5. How Preprocessor Annotations (Do Not) Affect Maintainability

In summary, my qualitative analysis uncovered many reasons why functions might
be stable or change-prone. However, the presence or absence of cpp directives was
not among them.

5.6 Threats to Validity

In this section, I discuss possible threats to the validity of my findings and how
I mitigated these threats.

5.6.1 Internal Validity

My statistical analyses can only reveal correlations between preprocessor use and
change proneness. However, even where I found correlations, I cannot claim that
preprocess use cause change proneness. On the other hand, the lack of correlations,
which I frequently observed, strongly suggests the lack of a causal relationship be-
tween preprocessor use and change proneness, and my qualitative findings corrobo-
rate this assessment. My methodology is based in large part on studies of the effects
of code smells on change or fault proneness (e. g., [273, 170, 124, 319]). Although I
investigate different phenomena (preprocessor use, not code smells), the underlying
questions are similar, and the same methods apply. Thus, I at least conform to the
state of the art.

Most statistics are sensitive to the distribution of the data. Where possible, I used
robust statistical tests so as not to violate any assumptions about the analyzed
data. I chose logistic and negative binomial regression as my regression techniques
and transformed the involved variables based on analyses of distribution charac-
teristics and additional statistics on model fitness. Others used such models and
transformations for similarly shaped data [353, 280, 109, 170, 124, 101].

In my study, the frequency and the extent of changes serve as proxies for mainte-
nance effort. This is common in software engineering research (e. g., [62, 64, 216,
273]), but has known limitations. For instance, preprocessor directives may hin-
der program comprehension, and as a result, changing one line of feature code may
require more effort than changing one line of other code. Since I cannot measure
program comprehension with my methodology, I only claim that the use of prepro-
cessor annotations is largely unrelated to the frequency and extent of changes as per
version control information.

Developers may be reluctant to change feature code and choose workarounds instead.
If such a workaround theory were true, preprocessor use would indirectly increase
maintenance effort in a way that my methodology cannot detect. However, in their
study of the influence of code smells on maintenance effort, [338] observed that
rather than working around smells, developers remove them during maintenance. It
is plausible that developers act in the same way when they encounter overly complex
annotated code. The workaround theory is therefore unlikely.

Bugs in the tools I developed and in third-party tools could confound my analyses.
I mitigate this threat by relying on mature tools where possible (src2srcml [57],
cppstats [204, 142], RepoDriller4 (formerly known as MetricMiner [341]),

4https://github.com/mauricioaniche/repodriller

5.6. Threats to Validity 145

and EGit5). I checked for bugs in my own tools using regression tests and sample-
based inspection of output data. A small number of files (<0.1 %) could not be
parsed due to errors in my tool-chain. This is unlikely to skew my data to any
relevant degree.

I collect data using a snapshot technique, which entails some imprecisions. For ex-
ample, the preprocessor metrics of a function could change considerably in the course
of a snapshot. Moreover, my heuristics to detect renamed and moved functions are
not perfect: They produce a small proportion of false-negative results (renames that
go undetected) and false-positive results (changes incorrectly classified as renames).
As a consequence, the change histories of some functions end prematurely while in
other cases, the change histories of unrelated functions are erroneously merged to-
gether. However, I carefully investigated these threats in preliminary experiments
(see Section 5.2.5). To mitigate the first threat (missed renames), I chose the snap-
shot size accordingly and combined it with a sliding window technique. Other studies
of change proneness use releases of a software system as snapshots (e. g., [69, 170,
124]). Since my snapshots are much shorter than typical release cycles, my analysis
is at least as precise as the current state of the art. To mitigate the second threat
(treating unrelated functions as renamed versions of each other), I implemented
a comprehensive post-processing step (a major extension compared to my original
study [98]) and tuned the thresholds of my rename detection heuristics to minimize
the number of false-negative and false-positive results. In particular, I manually
inspected a great number of potential renaming changes in several subject systems.
Based on this inspection, I chose 60 % similarity (in terms of Levenshtein distance)
as the threshold for determining whether a change is a rename or not. However,
I did not formally measure precision and recall during this process and so a different
threshold may have lead to more accurate results. Any remaining imprecisions will
affect functions with and without cpp directives equally. Hence, my statistics and
conclusions remain valid.

5.6.2 External Validity

I cover many well-known aspects of preprocessor use, e. g., the number of prepro-
cessor directives, nesting and negation. Nevertheless, I miss some aspects, such as
annotation discipline. I cannot generalize my findings to these aspects.

Software systems differ in how they use preprocessor directives and how changes
are performed, depending on their domain. I mitigated these threats by choosing
systems that differ in size and domains. All of my subject systems are open-source;
no industrial systems were analyzed. The only exception is Blender, which evolved
from a closed-source to an open-source system. Mitigating the bias toward open-
source systems, Hunsen et al. showed that preprocessor use is the same for open-
and closed-source systems [142]. Hence my results should be generalizable to at least
other systems in the same domains, both open- and closed-source.

I only consider subjects written in C and using the cpp. I expect my findings to be
generalizable to other procedural languages and other preprocessors that implement
conditional compilation similarly to the cpp.

5www.eclipse.org/egit/

http://www.eclipse.org/egit/

146 5. How Preprocessor Annotations (Do Not) Affect Maintainability

5.7 Discussion

The cpp has been criticized as the source of many maintenance problems, such as
making code difficult to understand, change, and prone to subtle bugs [343, 92, 89,
206, 239, 238, 240, 221, 243]. In this chapter, I studied the change proneness of
functions in C programs to judge whether cpp use is harmful or harmless. Change
proneness can either mean that code is changed frequently, which has been shown
to raise the likelihood of faults, or it can mean that code is changed to a greater
extent, which has been shown to increase maintenance effort [84, 123, 86, 255, 338].
I empirically investigated both flavors of change proneness using repository mining
techniques and now discuss my results.

For the first research question, I distinguished between four aspects of cpp use
that I modeled as binary criteria: (1) whether a function contains at least one
cpp directive, (2) whether the cpp directives in a function reference at least two
feature constants, (3) whether a function contains at least on nested cpp directive,
or (4) whether a function contains at least one negated cpp directive (e. g., an
#ifndef or an #else directive). For each criterion, I separated functions into one
group that fulfilled the criterion and another group that did not and examined
which group of functions was more change-prone. My results show that functions
fulfilling the criterion (i. e., exhibiting the corresponding aspect of cpp use) are more
likely to change and they also change more often and more profoundly. Given the
known, undesirable effects of change proneness, my findings suggest that functions
exhibiting any of these four aspects of cpp use are more fault-prone and require
more maintenance effort. Thus, I answer RQ 1 as follows:

RQ1: Code containing cpp directives is more likely to change, is changed more
often, and is changed more profoundly than other code.

The answer to RQ 1 seems to confirm the existing critique of the cpp, but my results
regarding research questions two and three call into question whether there really
is a relationship between cpp use and maintenance problems. Size is a well-known
confounding factor in studies on change and fault proneness [208, 87, 390, 273,
123, 338]. My quantitative results show that cpp use and function size correlate
positively, meaning long functions are more likely to contain cpp directives, and
conversely, functions containing cpp directives also tend be long. Thus, I answer
RQ 2 as follows:

RQ2: Function that use cpp directives to a greater extent tend to be longer than
other functions. This is true for the number of cpp directives in the function
body, the number of feature constants, the extent of nesting and negation in cpp
directives, and the proportion of feature code.

Hence, I controlled for size and for three other possible confounders: age, time since
the last change, and number of previous changes to a function. After controlling for
all four factors, I found that different extents of preprocessor use still have a sta-
tistically significant effect on change proneness, but this effect is limited in several

5.7. Discussion 147

ways: Depending on the subject system, each aspect of preprocessor use may either
increase change proneness, decrease change proneness, or have no statistically sig-
nificant effect at all. The effects can be very strong in some subjects but negligible
in others. In contrast to the inconclusive findings regarding cpp use, I observed
that differences in the size, age and number of previous changes of a function, and
in the time since the last change have much more consistent effects. Furthermore,
realistic changes in these factors have much stronger effects than realistic changes
in the extent of cpp use. Thus, I answer RQ 3 as follows:

RQ3: The relationship between cpp use and maintainability lacks a clear,
generalizable pattern. Whether or not code in which cpp directives are used
to a greater extent is harder to maintain than other code strongly depends on
the software system and the respective aspect of cpp use. The differences in
maintainability caused by different extents of cpp use are likely small.

I conclude that the extent of cpp use in a function is a very unreliable predictor
of future bugs and maintenance effort. This conclusion is in line with other studies
on the relationship between potentially harmful programming patterns and mainte-
nance problems, such as increased effort and fault proneness. Notably, Hall et al.
found that many object-oriented code smells have only small effects on fault prone-
ness, and depending on the smell and the software system, the presence of the smell
may decrease fault proneness [124]. Sjøberg et al. reported similarly inconsistent
results in a study of the relationship of code smells on maintenance effort [338].

As the McFadden statistics of my regression models revealed, considering the amount
of preprocessor use in a function yielded little if any improvement of the models’
quality, which again underlines the unreliability of cpp use as a predictor for main-
tenance problems. Averaged over the data of all subjects, only 11 % of all functions
contain cpp directives, and only 6 % contain more than one. In other words, func-
tions in which the cpp is heavily used are rare, and my results suggest that if such
functions are hard to maintain, then it is not because cpp directives make them
change prone. Therefore, any negative effects of cpp use on maintainability are
likely related to program comprehension, which several studies have shown to suffer
in the presence of cpp directives [198, 243, 221, 238, 240].

The McFadden statistics of my regression models also suggest something else: For
all three outcomes, the results were low, ranging from 0.043 to 0.138. In other
words, my models generally predict the change proneness of functions very poorly.
Other work has uncovered additional reasons of change proneness, such as fault fixes
and API refactorings [255, 71, 176]. In the course of my own qualitative analysis,
I encountered a great variety of such potential reasons. For example, I found that
the presence of cpp directives may indicate an underlying problem, such as concern
tangling, that may be a cause for change proneness. However, in the examples I
inspected, concern tangling was not always accompanied by the presence of cpp
directives and conversely, cpp directives were not always accompanied by concern
tangling. Moreover, I found other possible indicators for tangled concerns, such
as large code size or the use of comments as a structuring aid. Given that I only
inspected the histories of eight functions, my qualitative results are no more than

148 5. How Preprocessor Annotations (Do Not) Affect Maintainability

anecdotal evidence, and thus, must be taken with a grain of salt. Nevertheless, they
agree with my quantitative results, which suggest that that variations in the extent
of preprocessor use are not a major driver for change proneness.

My findings have at least four implications that are relevant to the practitioner.
First, adding a cpp directive to a function or increasing the complexity of the ex-
isting cpp annotations is likely harmless. Second, shortening a function, e. g., by
performing an extract method refactoring, will increase its maintainability more than
reducing the number of cpp directives in the function’s body. Third, if the goal is to
identify functions that may cause maintenance problems in the future, it is more re-
liable to look at its size and examine how it changed in the past than to measure the
extent of cpp use. Finally, further studies into the true causes of change proneness
as well as tools to identify these causes will likely benefit practitioners in reducing
faulty changes and maintenance effort more than analyses focussed on cpp use. Nev-
ertheless, practical tools for C programmers must take the cpp into account, and
academia already developed corresponding prototypes, such as TypeChef [164] and
Morpheus [205]. My tool infrastructure, too, may benefit practitioners, who could
use it to reconstruct a C function’s change history and thus predict future mainte-
nance hotspots. And yet, many tools in industrial practice are very limited in their
support of cpp directives, thus forcing practitioners to make maintenance decisions
based on incomplete or unsound analyses. As a result, tasks that are simple in other
programming languages require more effort and are at a higher risk to be completed
with errors.

5.8 Related Work

Three avenues of research are related to mine. First, my work builds on and com-
plements previous studies of problems arising from preprocessor usage and static
code configurability. Second, my study has profited from and confirms exiting work
on preprocessor usage. Third, there are many studies of the relationship between
various static source code properties (e. g., object-oriented metrics and code smells)
and maintenance problems. My work adds preprocessor usage metrics to that body
of knowledge.

C preprocessor usage and variability-related problems. Several researchers
studied empirically how cpp use relates to fault proneness and code comprehension.
Syntax errors caused by an incorrect use of annotations were found to be rare,
but once introduced, they are particularly long-lived [239, 238, 241]. Moreover,
developers perceive cpp-related bugs as easier to introduce, harder to fix, and more
critical than other bugs. Melo et al. showed that developers find bugs more slowly
and less precisely when the amount of variability increases [243]. Other findings
suggest that functions with security vulnerabilities use cpp directives to a greater
than non-vulnerable functions [101].

Another line of work explored the use of colors to support or replace cpp-based vari-
ability [155, 93, 198]. Specifically, highlighting cpp-annotated code with background
colors helps program comprehension in some (but not all) situations [93]. Others
propose a combination of background colors and virtual separation of concerns [155]

5.9. Conclusion 149

as an alternative to cpp-based variability [198]. Experiments showed that this alter-
native improves the efficiency and correctness of program comprehension compared
to using plain cpp directives.

It is an ongoing debate whether undisciplined annotations matter with regards to
the speed and precision of bug-finding. Such annotations encompass only parts of
a syntactical unit, for example, a parameter in a function declaration. A previ-
ous study by Schulze et al. suggested that discipline does nots matter [327], but
newer studies suggest it does [221, 240]. It also matters to developers: They prefer
disciplined annotations [238, 240, 221].

These studies relate preprocessor use to program comprehension and fault prone-
ness. I complement this work with quantitative and qualitative empirical findings
on a different maintenance aspect, namely change proneness.

C preprocessor use in general. Other work analyzed cpp use in highly config-
urable software, for instance, with respect to scattering and tangling [89, 204, 206,
142, 298, 289] or artifact co-evolution [74, 290, 267]. They do not relate cpp us-
age to maintenance, as I do. Nevertheless, I build on some of their tooling, and
their insights into the statistical distributions of cpp usage metrics helped us choose
appropriate statistical tests.

Object-oriented metrics and code smells. Many studies try to predict and
explain maintenance problems with the help of object-oriented metrics, such as
coupling and cohesion, or code smells (e. g., [308, 170, 273, 123, 124, 338, 272, 319]).
The findings are mixed. For example, some studies report that (combinations of)
code smells clearly have negative effects (e. g., [170, 272, 319]) whereas others observe
no such relationships or only weak ones (e. g., [273, 338, 124]). Even though the
investigated properties (e. g., code smells) are different from the ones I study (use
of C preprocessor directives), the methodologies are similar. More interestingly,
the secondary findings of these studies closely mirror my own. Specifically, the
simple metric of code size has repeatedly been identified as a comparatively reliable
predictor of future maintenance effort and faults [87, 273, 123, 124, 338]. Moreover,
multiple studies acknowledge that metrics and code smells alone are insufficient to
properly explain maintenance problems [123, 381, 384, 379, 271]. Instead, it is
necessary to take many other factors into account.

5.9 Conclusion

One of the variability-aware code smells that I propose in my thesis is the Annota-
tion Bundle. In the previous chapter, I presented a metrics-based detection ap-
proach for the Annotation Bundle and a case study that demonstrated that this
smell sometimes negatively affects program comprehension. The study described
in the present chapter was conducted to complement these findings in two ways.
The first goal was to improve the detection formula for Annotation Bundles
by investigating the corresponding metrics in more detail. The second goal was to
gather evidence that Annotation Bundles – or more generally, C functions with
unusually great extents of preprocessor directives – are not only hard to comprehend
but also hard to maintain.

150 5. How Preprocessor Annotations (Do Not) Affect Maintainability

To reach these goals, I performed a quantitative and qualitative analysis of how
preprocessor directives relate to an important maintenance aspect, change prone-
ness. The quantitative part of my analyses revealed that preprocessor use correlates
significantly and positively with change proneness when preprocessor use is consid-
ered in isolation. However, after controlling for potential confounding factors (i. e.,
differences in size, age, time since the last change, and number of previous changes),
I observed much fewer significant correlations. Moreover, I observed that the re-
maining correlations were inconsistent, being positive in some subjects but negative
in others.

The inconsistent relationship between preprocessor use and change proneness was
confirmed in the qualitative part of my study. I found no evidence that the presence
or absence of cpp directives causes a function to be change-prone or stable. In cer-
tain cases, cpp directives co-occurred with an underlying cause for change proneness,
such as concern tangling. However, I encountered other indicators of such causes,
including the use of comments as a structuring aid, large code size, and a great
number of frequent changes in the past. According to my quantitative results, the
latter two predict change proneness much more consistently than different extents of
cpp use. Moreover, they also apply to functions without any cpp directives, which
means they are not only more consistent than preprocessor-related metrics but also
more versatile.

In summary, my findings call into question the criticism that preprocessor use makes
code harder to maintain. More specifically in relation to RQT 1 of this thesis,
I must change my answer as follows: Regarding, RQT 1.2, I found that measured
by the number of commits and the number of lines changed, the fine-grained use of
preprocessor directives has no systematic effect on maintainability. Thus, it seems
unlikely that the Annotation Bundle smell negatively affects fault proneness
or maintenance effort. It is still possible that changes to code with preprocessor
directives take longer than changes to other code. However, since my methodology
did not capture program comprehension, future work is needed to prove or disprove
this conjecture. Regarding RQT 1.3, my study failed to provide new hints how
the precision of my detection formula for the Annotation Bundle smell could
be improved because none of the underlying metrics had a systematic effect. More
generally, I conclude that preprocessor-related metrics alone are very limited in their
ability to detect code that is hard to maintain. Other metrics, such as code size
and the extent of previous changes, appear to be more reliable and more versatile
predictors.

In this chapter and the one preceding it, I have studied the effects of variability on
the code smell concept, which answers RQT 1 of this thesis. In the next chapter,
I turn to RQT 2 and explore novel refactorings to improve the internal structure of
highly configurable software systems.

6. Variant-Preserving Refactoring
to Migrate Cloned Product
Variants

This chapter is based on and shares material with the VaMoS ’14 pa-
per “A Taxonomy of Software Product Line Reengineering” [99] and
the SANER ’17 paper “Variant-Preserving Refactorings for Migrating
Cloned Products to a Product Line” [95].

In Chapter 4, I presented my concept of variability-aware code smells, which are
code smells that are specific to Software Product Lines (SPLs). But not just code
smells are affected by variability, refactoring is affected, too. I turn to this topic in
this chapter.

The chapter starts with an in-depth look at the diverse meanings of “refactoring” in
Software Product Line Engineering (SPLE). In the world of non-configurable soft-
ware systems, refactoring is commonly understood as a change to the structure of
the source code to improve a certain quality aspect, such as readability or extensi-
bility. Literature on SPLE, by contrast, uses the term “refactoring” in a more liberal
fashion. For instance, feature oriented refactoring has been proposed as a means to
bootstrap an SPL from a legacy application [211, 364, 162]. This type of refactoring
is also sometimes called migration. Furthermore, a model of refactoring physically
and virtually separated features has been presented, which translates one way of
encoding variability into another [157]. For example, Feature-Oriented Program-
ming (FOP) could be replaced with preprocessor annotations. More conservative
extensions of refactoring to SPLs have also been discussed [330, 329]. For instance,
extensions of several single-system refactorings (such as Pull Up Method) have
been proposed as a means to reduce code replication in feature-oriented SPLs.

The common characteristic of these SPL reengineering activities is behavior preser-
vation, but their connection to improving internal quality aspects is often unclear.
I argue that overloading the term “refactoring” in this manner makes it difficult to

152 6. Variant-Preserving Refactoring to Migrate Cloned Product Variants

distinguish between SPL reengineering activities and to see how they are related.
This is a problem for both researchers in the SPLE field as well as interested prac-
titioners. The taxonomy I present in this chapter alleviates this problem by iden-
tifying three orthogonal dimensions along which SPL reengineering occurs. From
these dimensions, I construct a detailed taxonomy of SPL reengineering, thereby
giving distinct names to distinct activities and showing their relationship. Further-
more, I propose definitions for the three major classes of reengineering activities
that I have identified. To show the utility of my taxonomy, I reclassify a part of
the corpus previously surveyed by Laguna and Crespo [192] and classify selected
additional work.

After this theoretical literature work, the chapter switches to a more practical per-
spective on refactoring. Refactorings for SPLs have to be variant-preserving [330,
13]. In other words, they must preserve the behavior of not just a single product, but
of all products within the product line. As my literature classification will reveal,
only few variant-preserving refactorings exist to date. This is especially true for
refactorings that affect the source code, as opposed to refactorings that change con-
figurations or the feature model. I contribute to closing this gap with two variant-
preserving refactorings that target the source code level. These refactorings are em-
bedded in a concept to migrate a clone-and-own-based software product family into
an SPL. In this migration context, code clones, specifically Inter-Feature Code
Clones (see Section 4.2.1), are a major challenge. My refactorings are a means to
address this challenge. In summary, this chapter contributes the following:

• A taxonomy that distinguishes between different meanings of refactoring in
SPLE. Moreover, a corpus of literature is classified in the framework of this
taxonomy.

• Two variant-preserving refactorings for SPLs written in Java and using FOP
as the variability mechanism.

• A concept and tool support to migrate families of cloned software products
into an SPL based on those refactorings.

• A case study that (a) demonstrates the feasibility of my migration approach
and (b) shows its potential to reduce Inter-Feature Code Clones.

6.1 Dimensions of Software Product Line Reengi-

neering

Refactoring for single systems (as opposed to SPLs) aims at improving the structure
of existing code. This notion of refactoring also exists in the SPL context. However,
I have identified additional reengineering activities, which pursue other goals. To
make these goals more tangible, this section introduces three orthogonal dimensions
along which SPL reengineering occurs.

6.1. Dimensions of Software Product Line Reengineering 153

6.1.1 Quality

In the single-system context, refactoring has primarily been associated with changes
to improve the design of existing code (Fowler et al. [107], p. 53). Goals include mak-
ing code easier to understand and modify, and enabling future extensions. Improved
quality is easy to argue for many refactorings. For instance, Extract Method
is used to split up long methods or eliminate code clones. However, the inverse
refactoring, Inline Method, usually leads to longer methods and code duplication
– a decrease in code quality. Nevertheless, Inline Method may improve other
properties, such as readability or performance. If, under a given set of circum-
stances, these are more important than code duplication, the result is an overall
improvement. Therefore, I introduce Quality as the first reengineering dimension.

6.1.2 Variability Mechanism

Annotation-based and composition-based variability mechanisms occupy different
regions in the design space with regard to separation of concerns, granularity of
variation points, or language independence. My taxonomy reflects this by consis-
tently distinguishing between these two classes of variability mechanisms.

Further differences exist between concrete mechanisms. For instance, although both
Virtual Separation of Concerns (VSoC) and cpp-style preprocessors are annotation-
based, VSoC enforces disciplined annotations, while the cpp alone does not [155].
Likewise, AspectJ and FeatureHouse are used for composition-based SPL im-
plementation. Nevertheless, AspectJ employs pointcuts and advice, and is applica-
ble only to Java, while FeatureHouse relies on superimposition and is language-
independent.

Refactoring and other reengineering techniques must cope with these differences be-
tween implementation techniques. This leads to the second dimension along which
my taxonomy distinguishes SPL reengineering approaches. I call it Variability mech-
anism.

6.1.3 Legacy→SPL

Many software systems that have not been developed as an SPL. These systems
are certainly composed of disparate pieces of functionality, which could be called
“features”. But in contrast to an SPL, customization requires substantial effort
because these features cannot easily be included or excluded. I refer to such systems
as legacy software products. Various approaches to bootstrap an SPL from legacy
software products have been proposed (e. g., [211, 215, 368, 6, 377]). In the following,
I will refer to the process of bootstrapping an SPL from legacy products as migration.
In order to distinguish migration from other reengineering activities, I introduce
a third dimension, Legacy→SPL.

Some migration approaches consider only a single legacy product (e. g., [211, 215,
60, 368]). The result is an SPL from which new, tailored variants of the original
product can be created. In the legacy context, however, customization is sometimes
realized through clone-and-own, also referred to as forking : In order to create tai-
lored variants of a successful software product, the product is copied and adapted

154 6. Variant-Preserving Refactoring to Migrate Cloned Product Variants

as needed [318, 314, 317]. The result is a family of related legacy software products.
Clone-and-own is often implemented using the branching and merging capabilities
of a Version Control System (VCS) [58, 350, 80, 373, 349]. However, VCSes lack
the necessary support for mapping changes to features or tracking which variants
implement which features – a shortcoming that research has only recently started to
address (e. g., [12, 292, 293, 348]). Thus, practitioners still face the time-consum-
ing and error-prone tasks of identifying changes and synchronizing to the proper
variants. This makes long-term maintenance of cloned products expensive.

Compared to clone-and-own development, SPLE greatly reduces the effort for syn-
chronizing changes between variants because features in an SPL are implemented
only once, but shared among many variants. For this reason, migration is especially
desirable when multiple legacy software products (i. e., legacy product families) are
involved. Single-product migration approaches are ill-suited for this task, as they
lack the means to consolidate similar or identical functionality that is present in more
than one product. Instead, several researchers proposed specialized approaches (e. g.,
[6, 377]). For instance, Xue proposes to combine model comparison techniques and
code clone detection in order to locate common and variable functionality in the
legacy products being migrated [377]. Analyses of this kind are neither possible
nor necessary when only a single legacy product is migrated. This is a marked
difference between single-product and multi-product migration approaches. Conse-
quently, I identify two important starting points on the Legacy→SPL dimension:
one legacy software product and many legacy software products.

In Table 6.1, I give an overview of the reengineering dimensions from which my
taxonomy is built. For each dimension, I list its name and summarize its meaning.
The resulting taxonomy is discussed in the following section.

No. Name Description

(1) Quality Improve some property of the code, the feature
model, or the feature-to-code mapping (e. g., readability,
extensibility)

(2) Variability
mechanism

Differentiates between SPL implementation techniques
(e. g., AOP, FOP, VSoC);
Annotation-based and composition-based techniques are
distinguished

(3) Legacy→SPL One or several legacy software product(s) are migrated
to an SPL to enable mass-customization and systematic
code sharing

Table 6.1: SPL reengineering dimensions

6.2 A Taxonomy of Software Product Line Reengi-

neering

From the dimensions introduced in the previous section, I have constructed a taxo-
nomy of SPL reengineering activities. In Figure 6.1, I show an overview. The

6.2. A Taxonomy of Software Product Line Reengineering 155

SPL Reengineering

Variant-Preser-
ving Migration

...

Variant-Preser-
ving Refactoring

...

Variant-Preser-
ving Transcoding

...

Figure 6.1: Main branches of SPL reengineering

complete taxonomy is depicted in the appendix, in Figure A.1. My taxonomy has
three main branches, variant-preserving migration, variant-preserving refactoring,
and variant-preserving transcoding. Each of these branches corresponds to one of
the three dimensions, which is its primary dimension. For instance, variant-preserv-
ing migration transforms legacy software along the dimension Legacy→SPL. To each
main branch, I have applied the secondary dimension Variability mechanism. This
secondary dimension allows to discriminate, for instance, between variant-preserving
migration to VSoC and variant-preserving migration to FOP.

In Figure 6.2, I visualize the relationship of the three SPL reengineering activities
to legacy software and SPLs. Via variant-preserving migration, legacy software
products (one or many) are transformed into an SPL. The internal structure of
an SPL is improved via variant-preserving refactoring. Finally, variant-preserving
transcoding transforms a product line SPL into an equivalent one, SPL′, that uses
a different variability mechanism. In Section 6.2.2–6.2.4, I further elaborate on these
activities.

Legacy SPL SPL′

Variant-
Preserving
Migration

Variant-Preserving
Refactoring

Variant-
Preserving

Transcoding

Figure 6.2: Relationship of variant-preserving SPL reengineering activities

I structure existing work according to our taxonomy. I describe the literature selec-
tion process in the next subsection. In the following subsections, I give definitions
for the main taxonomy branches and describe them in detail.

6.2.1 Literature Selection

I reclassified a part of the corpus created by Laguna and Crespo [192]. The authors
have surveyed 74 publications related to legacy system reengineering and product
line refactoring. The scope of their survey is broader than ours, including literature
that concentrates on guidelines, processes, or organizational issues. For instance,
Bosch and Bosch-Sijtsema discuss the introduction of agile development methods
in a project to reengineer an existing SPL [41]; techniques to change code or the

156 6. Variant-Preserving Refactoring to Migrate Cloned Product Variants

feature model (FM) are not discussed. In contrast to this and other, similar work,
I focus exactly on those techniques. Hence, some of the material selected by Laguna
and Crespo has been excluded. As I am interested in changes to a software system,
analyses and metrics, such as those presented by Berger et al. [38], have not been
reclassified. Moreover, I excluded work on refactoring feature modules (RFMs),
proposed by Kuhlemann et al. [190]. RFMs are essentially single-system refactorings
that are applied automatically at product generation time. Therefore, they avoid
the SPLE-specific complexity of synchronizing code changes with FM constraints.

These selection criteria resulted in a total of 19 reclassified publications of the orig-
inal 74. I have extended this selection with two older and four newer publications
(including one book) relevant to my topic. I believe that this classification gives
a representative overview of existing work and shows the utility of my taxonomy.
However, I do not claim completeness. The classification result is summarized in
Table 6.2–Table 6.4. Approaches with a star (*) next to the author name were not
part of the survey by Laguna and Crespo. They are positioned in the lower part of
the tables.

6.2.2 Variant-Preserving Migration

Definition. The first main branch of my taxonomy is concerned with the transfor-
mation of one legacy software product or a family of related legacy software products
into an SPL. Figure 6.3 shows a sketch of the corresponding section of our taxonomy.
Before I can define variant-preserving migration, I first have to explain the meaning
of legacy software product in the context of my taxonomy.

Definition 1. A legacy software product is a piece of software that has been designed
without planning for variability or strategic reuse of the artifacts from which the
legacy software product is constructed.

In short, for the purpose of my taxonomy, I regard any piece of software that has
not been developed according to SPLE guidelines a legacy software product. Based
on this definition, I propose to define variant-preserving migration in the following
way:

Definition 2. Variant-preserving migration is the process of transforming one le-
gacy software product or a family of related legacy software products into a software
product line such that for each migrated legacy software product there is a product
line instance with the same external behavior.

Dimensions. Variant-preserving migration is reengineering that occurs along the
dimension Legacy→SPL. The difference between approaches to migrate one or many
products is reflected by the nodes 1→SPL and Many→SPL, respectively. In order
to further differentiate approaches, I have applied the secondary dimension Varia-
bility mechanism. The leaf nodes are labeled according to the targeted variability
mechanism.

The vertical dots in Figure 6.3 represent parts of the taxonomy that have been
omitted for brevity. For example, the dots to the right of 1→VSoC stand for reengi-
neering activities that migrate one legacy software product to an SPL implemented

6.2. A Taxonomy of Software Product Line Reengineering 157

SPL Reengineering

Variant-Preserving
Migration

1→SPL

1→Annotation-
Based SPL

1→cpp 1→VSoC
.
.
.

1→Composition-
Based SPL

1→FOP 1→AOP
.
.
.

Many→SPL

...

...
...

Figure 6.3: Variant-preserving migration

in some other annotation-based approach (e. g., XVCL or javapp). The subtree
rooted in Many→SPL (also represented by dots) is isomorphic in structure to the
one below 1→SPL.

Classification. Liu et al. propose Feature-Oriented Refactoring (FOR) as a process
to decompose a single legacy program into its features [211]. A theory is developed
that relates feature refactoring to algebraic factoring [211]. Furthermore, a five-step
process is presented. The process relies on a domain expert to name features and
label members of a feature (e. g., fields, methods). The code extraction step itself
is automated. However, FOR also proposes derivatives, special feature modules for
interacting features. If two or more features interact, a derivative is created that
contains the implementation of this interaction. Reengineering these derivatives
again requires manual intervention. FOR only considers a single legacy product.
The result of FOR is an SPL implemented using Ahead, a variability mechanism
based on FOP. Consequently, I classify it 1→FOP.

Alves et al. present eight patterns to extract variable functionality from legacy Java
code to AspectJ aspects [8, 6, 7, 5]. These patterns are automated by the tool
FLiPEx, part of the FLiP tool suite [5, 44]. Furthermore, Alves et al. discuss
FM refactoring patterns [6]. However, the combination of code extraction patterns
and FM refactoring is not explored in detail. Besides single product migration,
a process to migrate a family of legacy products to an SPL is outlined. According
to this process, each member of the legacy product family is migrated separately to
a temporary SPL. These temporary SPLs are then refactored in such a way that
all source code that is common to two or more products is located in features that
have identical names in the temporary SPLs. All other code is moved to unique
features. In order to form the final SPL, the temporary SPLs are superimposed.
Alves et al. leave several question open regarding this migration process. How are
developers expected to identify which code is common to multiple products and
which code is unique? Moreover, what are good ways to accomodate product-specific
customizations? Dealing with these issues manually is very time-consuming, even for
small programs. On the other hand, automation is still subject to ongoing research.

158 6. Variant-Preserving Refactoring to Migrate Cloned Product Variants

Consequently, it is unclear whether the migration process of Alves et al. will be
feasible on program families of realistic size.

Of the material from the survey by Laguna and Crespo, the largest part (13 pub-
lications out of 19) deals with variant-preserving migration. I show an overview
of this work in Table 6.2. Most approaches migrate just a single legacy product,
with the work of Alves et al., Xue et al., and Zhang et al. being notable exceptions.
Moreover, there is emphasis on approaches that target composition-based variabil-

First Author Classification Note

Alves [5, 6, 7, 8] 1→AOP,
Many→AOP

Eight transformations to extract variable parts of one le-
gacy software product to AspectJ aspects [8, 7]; Descrip-
tion of process to migrate one or several legacy software
product(s) to an Aspect-Oriented Programming (AOP)
SPL [8, 6]; Approach is implemented in FLiP tool suite [5]

Calheiros [44] 1→AOP,
Many→AOP

Tool demo of FLiPEx migration tool (part of FLiP tool
suite); Implements approach of Alves et al. [8, 6]

Couto [60] 1→javapp Case study migrating the open source Unified Modeling
Language (UML) tool ArgoUML to ArgoUML-SPL

Kästner [156] 1→AOP Case study migrating BerkeleyDB to an SPL using As-
pectJ; Argues that AOP is unsuitable for migration

Kästner [162] 1→AOP Presents tool ColoredIDE (now called CIDE) for migra-
tion of a legacy software product to an AOP SPL; Uses
derivative model by Liu et al. [211] to migrate interacting
features

Liu [211] 1→FOP Algebraic model of migration of one legacy product
to Ahead; Introduces derivative model for interacting
features

Lopez-
Herrejon [215]

1→FOP Migration of a single legacy Java product to Feature-
House; Identifies eight migration patterns

Olszak [277] 1→FOP Semi-automatic feature location and automatic restructur-
ing of one legacy software product; features modules are
represented as Java packages; Classes implementing more
than one concern are not split, resulting in limited separa-
tion of concerns

Trujillo [364] 1→FOP Case study migrating code, XML documentation, and tests
of the Ahead tool suite to a composition-based SPL (im-
plemented with Ahead)

Xue [377, 376] Many→XVCL Migration of family of cloned legacy software products to an
annotation-based SPL; Combines FM comparison and code
clone detection to locate common and variable features

Zhang [389] Many→XVCL Experience report migrating cloned legacy products to an
SPL in order to create product variants for mobile devices

Apel * [13] Various Refactoring as a path toward a product line (pp. 203–210);
Refactoring example catalog (pp. 201, 202) contains Ex-
tract Feature and Extract Shared Code suitable
for migration of legacy software products

Valente * [368] 1→VSoC Semi-automatic feature location and annotation in VSoC
tool CIDE

Table 6.2: Classified work on variant-preserving migration

6.2. A Taxonomy of Software Product Line Reengineering 159

ity mechanisms. Approaches that target annotation-based mechanisms are rare by
comparison.

6.2.3 Variant-Preserving Refactoring

Definition. Figure 6.4 details the part of my taxonomy that covers activities to
change the FM or code of an SPL in a behavior-preserving way. The concept of
variant-preserving refactoring was first introduced by Schulze et al. [330]. Apel et
al. additionally differentiate between refactorings that increase or reduce the number
of products in the SPL [13], but for simplicity, I repeat the original definition that
Schulze et al. proposed:

Definition 3. A change to the feature model or the implementation of features or
both is called variant-preserving refactoring if the following two conditions hold:

1. Each valid combination of features remains valid after the refactoring, whereas
the validity is specified by the feature model.

2. Each valid combination of features that was compilable before can still be com-
piled and has the same external behavior after the refactoring.

SPL Reengineering

...
Variant-Preserving

Refactoring

Annotation-
Based SPL

cpp VSoC XVCL
.
.
.

Composition-
Based SPL

FOP AOP DOP
.
.
.

...

Figure 6.4: Variant-preserving refactoring

Dimensions. Variant-preserving refactoring primarily changes the code, FM, or
the feature-to-code mapping along the Quality dimension. Approaches to variant-
preserving refactoring can be distinguished by the variability mechanism of the SPL
being refactored: Refactoring of cpp code must handle annotations, whereas refac-
toring of AOP programs deals with pointcut expressions and advice. Hence, my
taxonomy takes the dimension Variability mechanism into account. Note that this
results in a hierarchy that is structurally similar to the subtree rooted in 1→SPL in
Figure 6.3.

Classification. Variant-preserving refactoring pursues the same goal as refactoring
defined by Fowler et al. (Fowler et al. [107], p. 53), that is, to improve the design
of existing code. This is reflected in the literature on variant-preserving refactor-
ing that I list in Table 6.3. For instance, Schulze et al. define variant-preserving
refactoring and propose the variant-preserving refactorings Pull Up Field To

160 6. Variant-Preserving Refactoring to Migrate Cloned Product Variants

First Author Classification Note

Alves [6] AOP Focus on FM transformations that maintain or increase
configurability; Synchronization with code changes remains
vague

Ghanam [116] design
patterns

Introduce variation points in unit tests using the factory de-
sign pattern (composition-based); Reactive, agile process of
SPL refinement

Şavga [321] FOP Challenges of refactoring in both problem and solution spaces
(roughly: FM and code)

Apel * [13] Various Ch. 8 (pp. 193–212) defines refactoring in feature-oriented
software development ; Catalog of variability smells (roughly:
code smells in an SPL)

Kim * [174,
175]

Custom
annotations

Automation of 34 refactorings for SPLs in Java using a cus-
tom annotation scheme; Tool X15 [175]

Liebig * [205] cpp Automation of three refactorings for C with cpp directives;
Tool Morpheus

Neves * [267] AOP Presents templates for the safe evolution of SPLs (considers
code, FM, feature-to-code mapping); Validation of templates
by analyzing evolution of two SPLs

Schulze * [329] DOP Code smell catalog and selected refactorings for Delta-Ori-
ented Programming (DOP); Tool DeltaJ

Schulze * [330] FOP Definition of consistent refactoring of code and FM; Catalog
of four FOP refactorings that cross feature boundaries (e. g.,
Move Field Between Features)

Schulze * [328] FOP Discussion of challenges to automating refactorings for FOP;
Tool VAmPiRE that automates Pull Up To Parent Fea-
ture

Table 6.3: Classified work on variant-preserving refactoring

Parent Feature, Pull Up Method To Parent Feature, Move Method
Between Features, Move Field Between Features for FOP SPLs [330].
They discuss how to use these refactorings to remove code clones, which is a typi-
cal maintenance activity. Schulze et al. further report experiences in implementing
variant-preserving refactorings for FOP using Pull Up To Parent Feature as
an example [328]. Their report shows the technical and practical challenges that
implementors of variant-preserving refactoring engines face.

Later work of Schulze et al. discusses refactoring delta-oriented SPLs [329]. A catalog
of code smells and 23 DOP refactorings is presented. The refactorings are automated
by the tool DeltaJ.

Alves et al. discuss FM refactoring and patterns for variant-preserving migration to
an AOP SPL [6]. However, FM refactoring and migration are discussed separately.

The factory design pattern is employed by Ghanam et al. as a means to introduce
variation points into an existing SPL [116].

Examples of variability smells and corresponding refactorings are given by Apel et
al. ([13], Chapter 8). As discussed in Section 4.7, these variability smells are similar
to the variability-aware code smells I propose in Chapter 4, but more broadly scoped.
Furthermore, Apel et al. distinguish between three notions of behavior-preservation

6.2. A Taxonomy of Software Product Line Reengineering 161

for SPL refactorings, which differ in the number of products in the SPL that are
preserved. They call refactorings variability-enhancing if they increase the number
of potential products in the SPL. Variability-preserving refactorings, in turn, keep
the number of potential products exactly the same. In other words, none of the
existing (or potential) products are removed, and no new products are added. By
comparison, the definition of Schulze et al. is less specific because it only demands
that no products are removed. In the terminology of Apel et al., this encompasses
both variability-preserving and variability-enhancing refactorings. Finally, Apel et
al. categorize refactorings as product-preserving if they preserve the behavior of
a given subset of products. For instance, a company may be satisfied if behavior is
preserved only for the subset of products that are actually delivered to customers.

While the aforementioned work has addressed composition-based variability mech-
anisms, two refactoring engines for annotation-based variability mechanisms have
been proposed recently [205, 174, 175]. Specifically, Morpheus can perform three
refactorings (Rename, Extract Function, and Inline Function) on C code
with preprocessor directives [205]. The analyses for the refactorings are performed
on a variability-aware Abstract Syntax Tree (AST), which is generated by Type-
Chef [161]. Kim et al., in turn, implemented their X15 engine without such an
AST [174]. Instead they “lift” a number of precondition checks of an existing Java
refactoring engine, R3, to make it variant-preserving. Thus, despite relatively few
customizations to R3, the engine is capable of 34 refactorings, which makes it the
most comprehensive variant-preserving refactoring engine to date. X15 can refactor
SPLs in Java that use a custom annotation scheme as the variability mechanism.
Details on the implementation are available in the accompanying tool paper [175].

Table 6.3 contains a summary of the research on variant-preserving refactoring. This
summary indicates that much work is left for researchers and tool builders in the
field of highly configurable software systems to reach the maturity of refactoring for
single systems. The challenges of variant-preserving refactoring have been pointed
out [321, 330], and some advances toward automation have been made [329, 328, 205,
174, 175]. Most of these contributions focus on composition-based variability mech-
anisms, mainly on AOP and FOP. By comparison, much fewer work has addressed
refactoring for annotation-based variability mechanisms, despite the fact that anno-
tations are much older and more widely used in practice [13]. Independently of the
variability mechanism, automation remains a challenge.

6.2.4 Variant-Preserving Transcoding

Definition. Both annotation-based and composition-based variability mechanisms
have their own benefits and drawbacks. It has been argued that one should be free
to switch from one representation to the other, and even mix and match techniques,
in order to profit from the respective benefits [14, 157]. For techniques that enable
this switch, I propose the term variant-preserving transcoding.

Definition 4. A substitution of the implementation technique of a software prod-
uct line is called variant-preserving transcoding if for each instance of the original
product line there is an instance of the new product line that has the same external
behavior.

162 6. Variant-Preserving Refactoring to Migrate Cloned Product Variants

Dimensions. Variant-preserving transcoding changes the variability mechanism of
an SPL. Thus, the primary dimension is Variability mechanism. As there is a source
mechanism and a target mechanism, I apply the dimension Variability mechanism
a second time. Figure 6.5 shows a sketch of the resulting section of my taxonomy.

SPL Reengineering

...
...

Variant-Preserving
Transcoding

Intra Approach

Annotation-
Based SPL

cpp→VSoC
.
.
.

Composition-
Based SPL

AOP→FOP
.
.
.

Inter Approach

Annotation-→
Comp.-Based

cpp→FOP
.
.
.

Composition-→
Annot.-Based

FOP→cpp
.
.
.

Figure 6.5: Variant-preserving transcoding

Approaches that stay in the same class of variability mechanism (either annotation-
based or composition-based) are covered by the subtree rooted in Intra Approach.
Inter Approach, by contrast, covers techniques that transcode the implementation
from an annotation-based mechanism to a composition-based one or the other way
around.

Classification. Kästner et al. present twelve transcoding “refactorings”, named
R.1–R.12 [157]. R.1–R.5 transcode feature modules to annotated code. They are
complemented by R.6–R.12, which transcode annotated code back to feature mod-
ules. These transformations have been used to implement an import/export facility
for the tool CIDE and proven correct for the Java subset Featherweight Java.
CIDE itself uses the annotation-based technique VSoC. However, utilizing R.1–R.5
and R.6–R.12, it can import and export projects in the composition-based FOP
languages Ahead, FeatureHouse and the AOP approach AspectJ. Hence, R.1–
R.12 are inter -approach transcodings.

Prior to the work of Kästner et al., Kuhlemann et al. explored the equivalence of AOP
and FOP [191]. They provide a set of rules to transcode aspect-oriented programs
to equivalent feature-oriented programs. These rules are validated by expressing 23
aspect-oriented design patterns with the help of FOP language constructs.

Ribeiro and Borba present a tool to recommend inter-approach-transcodings from
runtime, annotation-based variability (using if-else statements) to static, compo-
sition-based mechanisms [303, 302]. The tool does not perform these transcodings,
though.

Apel et al. describe at least two smells related to the variability mechanism and
informally discuss refactorings to rectify those smells ([13], Chapter 8). The first is
Runtime Overhead, which can result from the use load-time binding of features

6.2. A Taxonomy of Software Product Line Reengineering 163

as opposed to compile-time binding. The solution is a Change Binding-Time
refactoring to switch from runtime if statements to a compile-time mechanism, such
as #ifdefs or FOP. The second smell is Language and Variability-Mechanism
Overload, which can cause developers to struggle with a mixture of too many
variability mechanisms, such as build-system variability, #ifdefs, and aspects. To
remove the smell, Apel et al. recommend to use fewer, more uniform mechanisms.

Table 6.4 summarizes work on variant-preserving transcoding. Imports and ex-
ports à la CIDE are an interesting application of variant-preserving transcoding.
Transcoding may also prove useful as a tool for variant-preserving migration of le-
gacy preprocessor code to more structured variability mechanisms.

First Author Classification Note

Kästner [157] VSoC→FOP,
FOP→VSoC

Inter-approach transcoding between VSoC (anno-
tation-based) and the FOP dialects Ahead and
FeatureHouse (composition-based); Implemen-
tation as im-/exports in CIDE; Correctness proof
for Featherweight Java

Ribeiro [303,
302]

if-else→AOP,
if-else→inheritance,
if-else→mixins,
if-else→patterns

Tool to recommend inter-approach transcod-
ings from if-else-statements (annotation-based)
to various composition-based mechanisms (e. g.,
AOP, mixins, design patterns) and to “configura-
tion files” (configuration files are not explained)

Apel * [13] Various Variability smells that indicate need for transcod-
ing, such as Runtime Overhead (p. 199);
Transcoding refactorings (e. g., Change Binding-
Time maps runtime if-else to static #ifdef
statements) (pp. 201, 202)

Kuhlemann * [191] AOP→FOP Discusses the feasibility of using FOP to implement
23 aspect-oriented design patterns; Rules to trans-
form AOP into FOP

Table 6.4: Classified work on variant-preserving transcoding

6.2.5 Summary

In contrast to object-oriented programming, SPLE literature uses “refactoring” as
an umbrella term to denote a variety of reengineering techniques. In the previous
sections, I have proposed a taxonomy to clarify the connections and distinctions be-
tween these techniques. Moreover, I have classified a body of existing work according
to this taxonomy.

My taxonomy reveals that SPL reengineering techniques belong to one of three cat-
egories. First, variant-preserving migration serves to create an SPL from one or
several legacy software systems. The purpose of migration is to adopt SPLE for (a
set of) software systems that were previously developed without a systematic reuse
approach. Most “refactoring” approaches for SPLs that I classified actually fall in
this category. Among those, the majority targets the migration of a single legacy
software system into an SPL, for example, by making features optional. By compar-
ison, much fewer approaches exist to migrate a set of related legacy software systems
(e. g., systems created via clone-and-own) into an SPL. Second, variant-preserving

164 6. Variant-Preserving Refactoring to Migrate Cloned Product Variants

refactoring is a particular kind of change to the source code of an SPL, its feature
model, or both. This change is performed in a way that preserves the behavior of all
instances of the SPL. Similar to Object-Oriented Programming (OOP) refactoring,
the goal is to improve internal quality attributes of the SPL, such as understand-
ability or evolvability. The classified literature shows that some progress toward
automating variant-preserving refactorings has been made. Nevertheless, tool sup-
port remains a major challenge. Finally, variant-preserving transcoding exchanges
one variability mechanism for another. For example, transcoding makes it possible
to import an FOP-based SPL into an annotation-based tool such as CIDE without
risking a behavior change.

6.3 Open Challenges in Variant-Preserving Re-

factoring and Migration

My literature classification showed that there is little work on migrating families
of related legacy software products to an SPL. More importantly, the published
approaches focus on models, processes, and so on, but lack specifics at the imple-
mentation level. However, this is exactly what developers face during migration:
the analysis and transformation of potentially huge amounts of legacy source code.
Thus, an important aspect of migration is underrepresented in the current state of
the art. Therefore, in the following sections, I will focus on the implementation-
level aspects of a novel Many→FOP migration approach for Java. Specifically, I
will discuss how to find commonalities and differences in the source code of cloned
variants, and how to increase the amount of systematic source code reuse through
variant-preserving refactoring. To this end, I propose two novel refactorings and
explain how they have been automated in the tool FeatureIDE. Thus, I fill in
another gap that my literature classification revealed, the lack of automation for
variant-preserving refactorings.

My migration approach targets families of related legacy software products that
have been created via clone-and-own. Due to the clone-and-own origin, I expect a
large amount of code sharing, a. k. a. code clones. Thus, I consider migration pri-
marily as a code-clone problem: If I can reduce the amount of code clones across
product variants, I will also reduce the maintenance overhead caused by having to
synchronize changes from one variant to another. Consequently, the main building
blocks of my approach are code clone detection for identifying commonalities be-
tween product variants and variant-preserving refactoring [330] to consolidate them.
As an important supporting concept, I propose preparatory refactorings, that is,
refactorings that align variant-specific divergences that would otherwise prevent the
consolidation of code clones.

Apart from its focus on the implementation level, my migration approach is also
novel in that it is flexible and incremental. Existing approaches attempt migration
in one “big bang”, without accommodating other development activities, such as
enhancements or bug fixes. This is impractical because migration endeavors take
considerable time and effort, and the chances of failure are high [52, 187]. Few com-
panies will be willing to start a migration if it means that all other development

6.4. Refactorings to Remove Inter-Feature Code Clones 165

must be suspended for months or even years. In contrast to those “big-bang” ap-
proaches, my approach favors small, incremental, easy-to-understand steps, which
can be interleaved with other activities. The goal is not full automation. Instead,
the goal is to automate the tedious and error-prone tasks and leave the big design
decisions to the developers.

Next, I explain the variant-preserving refactorings that I propose for code clone
consolidation. Afterwards, I describe how to integrate these refactorings with code
clone detection into a variant-preserving migration process.

6.4 Refactorings to Remove Inter-Feature Code

Clones

Refactorings that fail to take variability into account are not generally behavior-
preserving when applied to an SPL. I demonstrate this point with the help of the
example in Listing 6.1. The example depicts an application of Eclipse’s OOP
Rename refactoring to a small graph product line with two features, Base and
Number. The original code is shown on the left (see Listing 6.1 (a) and (c)). The code
after the refactoring attempt is depicted on the right (see Listing 6.1 (b) and (d)).
Although the goal was to rename class BaseGraph to Graph, the variability-unaware
refactoring only renamed the code in the feature module of Base (see Listing 6.1,
top row), but not in Number (bottom row). As a result, the feature module in the
bottom row contains several errors, highlighted in gray and red in Listing 6.1 (d). In
particular, the class in Number is still named BaseGraph, when it should be named
of Graph. In effect, this has turned the class from a refinement into an introduction.

1 class BaseGraph { Feature Base
2 void run(Vertex v) { ... }
3 void addEdge(Edge edge) { ... }
4 }

(a)

⇒
1 class Graph { Feature Base
2 void run(Vertex v) { ... }
3 void addEdge(Edge edge) { ... }
4 }

(b)

1 class BaseGraph { Feature Number
2 int numRuns = 0;
3 void run(Vertex v) {
4 original(v);
5 numRuns++;
6 }
7 static void test() {
8 BaseGraph g = new BaseGraph();
9 g.addEdge(new Edge());

10 }
11 }

(c)

⇒

1 class BaseGraph { Feature Number
2 int numRuns = 0;
3 void run(Vertex v) {
4 original(v);
5 numRuns++;
6 }
7 static void test() {
8 BaseGraph g = new BaseGraph();
9 g.addEdge(new Edge());

10 }
11 }

(d)

Example of an OOP Rename refactoring producing wrong results when applied
to FOP code. Only the code in feature Base is renamed correctly (b), but the
code in Number is not, leading to dangling references (red highlights in (d)).

Listing 6.1: An OOP Rename refactoring producing wrong results on FOP code

166 6. Variant-Preserving Refactoring to Migrate Cloned Product Variants

As a result, the calls to original and addEdge have become dangling references
(highlighted in red), which will cause compilation errors in variants that contain the
Number feature. A variant-preserving Rename refactoring would also have changed
the class name in feature Number from BaseGraph to Graph (highlighted in gray
in Listing 6.1 (d)). This would have kept the introduction-refinement relationship
between the code in features Base and Number intact, and thus, would have avoided
the dangling references (highlighted in red).

Next, I describe two variant-preserving refactorings for FOP, Pull Up To Com-
mon Feature and Rename. The Pull Up To Common Feature in particular
generalizes and improves upon previous work by Schulze et al., who proposed a Pull
Up To Parent Feature [330, 328]. Compared to their OOP counterparts, Pull
Up and Rename, I contribute the following:

1. I extend the preconditions and mechanics of both refactorings so they become
variant-preserving.

2. For the Pull Up To Common Feature refactoring, I provide an algorithm
to identify the “common feature”, that is, the feature into which the respective
code fragment can be moved in a variant-preserving manner. If no suitable
feature exists, the algorithm tries to create a new one.

Although I propose these refactorings to eliminate Inter-Feature Code Clones
in a migration context, I anticipate they will also be useful in other settings, such as
maintenance and evolution. In particular, Inter-Feature Code Clones could
also arise in an SPL when a developer copies a piece of code from one feature to
reuse it in another feature. My Pull Up To Common Feature refactoring is
applicable in those situations, too. Regarding Rename, Murphy-Hill et al. found
that it is by far the most frequently used refactorings in OOP [266]. There is
no reason why things should be different for FOP. Thus, my variant-preserving
Rename refactoring will have many uses besides enabling clone removal.

6.4.1 Pull Up To Common Feature

The Pull Up refactorings described by Fowler et al. (Fowler et al. [107], p. 320ff.)
are used to move identical definitions of class members (i. e., fields, methods, and
constructor bodies) from a set of subclasses into a common superclass. As Pull
Up replaces multiple replicated definitions with a single definition, it is an effective
means to remove code clones in a single software product. While removing clones
is my goal as well, I want to remove them from multiple software products. To this
end, I propose an extension of Pull Up for FOP, called Pull Up To Common
Feature. The basic idea of my refactoring is to move identical definitions of class
members from several source features into a single, common target feature, which is
located higher up in the feature hierarchy than the source features. Hence, instead
of moving code within the class hierarchy, as OOP Pull Up does, I move the code
within the feature hierarchy.

I illustrate the application of Pull Up To Common Feature by means of the
example in Listing 6.2. The example is a product line consisting of the features Bar
and Baz , whose parent feature is Common. Common introduces class Foo, which

6.4. Refactorings to Remove Inter-Feature Code Clones 167

1 class Foo { Feature Common
2
3 String name() { return "Common"; }
4 }

(a)

⇒

1 class Foo { Feature Common
2 int answer() { return 42; }
3 String name() { return "Common"; }
4 }

(b)

1 class Foo { Feature Bar
2 int answer() { return 42; }
3 String name() { return "Bar"; }
4 }

(c)

⇒

1 class Foo { Feature Bar
2
3 String name() { return "Bar"; }
4 }

(d)

1 class Foo { Feature Baz
2 int answer() { return 42; }
3 String name() { return "Baz"; }
4 }

(e)

⇒

1 class Foo { Feature Baz
2
3 String name() { return "Baz"; }
4 }

(f)

Application of the Pull Up To Common Feature refactoring to move the
common definition of method answer in class Foo from features Bar and Baz
(gray highlight in (c) and (e)) to the common feature Common (green highlight
in (b)).

Listing 6.2: Application of Pull Up To Common Feature

is refined by both, Bar and Baz . More importantly, Bar and Baz contain a Type-
1 Inter-Feature Code Clone, the method answer (highlighted in gray in (c)
and (e)). By applying Pull Up To Common Feature, the definitions of answer
in Bar and Baz are replaced with a single definition in feature Common (see (d),
(f), and the green highlight in (b)) and thus, the code clone is removed. As a result,
common functionality of product variants containing features Bar or Baz has been
consolidated, while preserving the behavior of these variants.

I will now explain how Pull Up To Common Feature works in detail. Like
Pull Up for OOP, my refactoring can be applied to fields, methods and construc-
tors, meaning that there are in fact three refactorings. Since all of them are very
similar, I focus on Pull Up Method To Common Feature as a representative,
and explain this refactoring in terms of arguments, preconditions and mechanics.
The arguments are supplied by the developer or some analysis tool and specify, for
instance, which method definitions to pull up. Preconditions are properties that
must hold in order for the program transformation to be behavior-preserving. Fi-
nally, the mechanics specify the program transformation itself.

Arguments:

1. n source features Fs = {fs1 , fs2 , . . . , fsn} with n > 1,
2. A target feature ft,
3. A class name c,
4. A method signature m,
5. A selection i, 1 ≤ i ≤ n, denoting the definition mi of method m in class c in

feature fsi , where fsi ∈ Fs.

168 6. Variant-Preserving Refactoring to Migrate Cloned Product Variants

Preconditions:

1. Each fs ∈ Fs must contain a class c that defines a method with signature m.
I suggest pulling up definitions only if they constitute Type-1 clones as these are
currently the only ones for which the tool support can ensure fully automatically
that the refactoring is behavior-preserving. However, developers may override
this suggestion, e. g., to pull up method definitions that constitute higher-level
clones.

2. All fields and methods referenced in mi must be defined in ft or one of the
features implied by ft.
This precondition ensures that the selected method definition, mi, will not ref-
erence any fields or methods that are undefined in the target feature. If such
references exist, Pull Up To Common Feature must be applied to the
respective fields and methods first.

3. Target feature ft must be a concrete feature.
Only concrete features can contain code, abstract ones cannot.

4. Any valid configuration that contains an fs ∈ Fs must also contain ft and vice
versa.
This precondition enforces that all products containing one of the source fea-
tures will have access to the new location of the code. Since this precondition
additionally requires that at least one source feature is present whenever the
target feature is present, it prevents the pulled up method definition from shad-
owing other definitions, for example, definitions in features composed before
the target feature.

5. If a class c already exists in the target feature ft, it must not define a method
with signature m.

6. With F being the set of all features, no valid configuration containing an
fs ∈ Fs may contain an fd ∈ F \ Fs that fulfills the following criteria:
(a) fd contains a class c that defines a method with signature m,
(b) fd is composed after ft but before fs.

This precondition prevents definition mi from being overwritten or refined by
a definition from another feature before the source feature is composed.

Mechanics:

1. Create class c in ft (unless it already exists) and create a new method with
signature m in that class.

2. Copy the selected method definition mi from si into the newly created method.
3. Delete the old definitions of m from all classes c in all source features fs ∈ Fs.

Determining the Target Feature A critical point of Pull Up To Common
Feature is how to determine a suitable target feature. In general, the target feature
must be part of any valid configuration that contains one of the source features, and
it must be composed before the source features. In case all source features have a
common parent feature, the parent might serve as the target feature. Otherwise,
a new target feature can usually be created.

In Algorithm 1, I show the function ensureTargetFeature that implements
this task. The function takes as input the set of source features Fs, the name of

6.4. Refactorings to Remove Inter-Feature Code Clones 169

Algorithm 1 Find or Create a Target Feature for Pull Up To Common Feature
1: function ensureTargetFeature(Fs, c,m, fm, C)
2: Fc ← findTargetFeatures(Fs, c, m, fm)
3: if Fc 6= ∅ then
4: return choseClosest(Fc, Fs, fm)
5: else
6: return createTargetFeature(Fs, c, m, fm, C)
7: end if
8: end function

9: function findTargetFeatures(Fs, c,m, fm)
10: Fb ← {f ∈ features(fm) | implies(fm, f ⇔

∨
fs∈Fs

fs)}

11: omin ← min({order(fs) | fs ∈ Fs})
12: Fc ← {f ∈ Fb | order(f) < omin ∧ concrete(f) ∧ ¬defines(f, c,m)}
13: return removeShadowed(Fc, Fs, c, m, fm)
14: end function

15: function createTargetFeature(Fs, c, m, fm, C)
16: Fi ← {f ∈ features(fm) | implies(fm, f ⇐

∨
fs∈Fs

fs}

17: omin ← min({order(fs) | fs ∈ Fs})
18: Fc ← {f ∈ Fi | order(f) < omin}
19: Fp ← removeShadowed(Fc, Fs, c, m, fm)
20: if Fp = ∅ then
21: error(“Too many conflicting definitions.”)
22: end if
23: fp ← choseClosest(Fp, Fs, fm)
24: ft ← addChild(fp, CONCRETE, OPTIONAL)
25: addCTC(fm, ft ⇔

∨
fs∈Fs

fs)

26: for C ∈ {C ∈ C | C ∩ Fs 6= ∅} do
27: C ← C ∪ {ft}
28: end for
29: return ft
30: end function

31: function removeShadowed(Fc, Fs, c, m, fm)
32: Fd ← {f ∈ features(fm) \ Fs | defines(f, c,m)}
33: Fr ← ∅
34: for fc ∈ Fc do
35: if ∀fs ∈ Fs,@fd ∈ Fd : satisifable(fm ∧ fc ∧ fd ∧ fs)

∧ order(fc) < order(fd) < order(fs) then
36: Fr ← Fr ∪ {fc}
37: end if
38: end for
39: return Fr

40: end function

the defining class c, the method signature m, the FM fm, given as a propositional
formula, and the set of existing configurations as C. In a migration context, these are
the configurations of the products being migrated. First, ensureTargetFeature
calls findTargetFeatures to identify suitable target features. If there are some,
choseClosest (not shown) will select the one that is most appropriate. This
helper function could be a metric or an interactive function that lets the developer
make the decision. If no suitable target features exist, createTargetFeature

170 6. Variant-Preserving Refactoring to Migrate Cloned Product Variants

will create a new one. The bulk of Algorithm 1’s work is, of course, performed by
the two helper functions findTargetFeatures and createTargetFeature,
which I explain in the following.

The first helper function, findTargetFeatures, starts by identifying the features
that are implied by all source features and which, in turn, also imply that at least
one of the source features is selected (Line 10). This implements precondition 4
of Pull Up To Common Feature. In Lines 11 and 12, this set of features is
reduced to features that are concrete (precondition 3), do not already define method
m (precondition 5), and are composed before the source features. (Assume that
order returns the composition order of a feature.) Finally, removeShadowed is
called on the set of remaining features (Line 13). This helper function implements
precondition 6 by excluding potential target features that could be composed with
another feature that contains a conflicting definition of method m (Line 35).

The second helper function, createTargetFeature, first identifies parent fea-
tures for the target feature ft, which is about to be created (Lines 16–18). Note
that these parents must also fulfill precondition 6 (Line 19) since conflicting method
definitions would also affect ft. If no suitable parent exists, the function aborts
(Lines 20–22). Otherwise, a parent feature is chosen by choseClosest. Next, the
target feature ft is created as a concrete, optional child of the chosen parent feature
(Line 24). To fulfill precondition 4, a cross-tree constraint is added stating that ft
must be selected if and only if one of the source features Fs is selected (Line 25).
Finally, after updating all existing configurations so that they conform to this new
constraint (Lines 26–28), the new target feature is returned.

6.4.2 Rename

Code clone removal is sometimes impossible due to minor differences. For instance,
if two methods are identical except for different names (as shown in Listing 6.3, gray
highlights), Pull Up To Common Feature is not applicable.

1 class Circle { Feature s1
2 int x, y, radius;
3 int getX() { return x; }
4 int getY() { return y; }
5 int getRadius() { return radius; }
6 }

(a)

1 class Circle { Feature s2
2 int centerX, centerY, diameter;
3 int getCenterX() { return centerX; }
4 int getCenterY() { return centerY; }
5 int getDiameter() { return diameter; }
6 }

(b)

The code that models the circle’s center in s1 and s2 is a Type-2 clone, but
naming differences (highlighted in gray) prevent its consolidation. By contrast,
getDiameter and getRadius (highlighted in red), should not be consolidated,
despite their similarity.

Listing 6.3: Naming differences that prevent code clone consolidation

Similar problems arise when trying to pull up cloned code from classes with differ-
ent names. Pull Up To Common Feature works by moving code up in the
refinement hierarchy, but classes can only be part of the same refinement hierarchy
if they have the same name. To enable clone removal in such situations, it is neces-
sary to eliminate the differences by means of preparatory refactorings. To this end,

6.4. Refactorings to Remove Inter-Feature Code Clones 171

I propose a Rename refactoring that takes variability into account. Essentially,
I use Rename to convert Type-2 clones into Type-1 clones and, thus, make them
amenable to subsequent consolidation via Pull Up To Common Feature.

Similarly to Pull Up To Common Feature, my Rename refactoring can be
applied to different elements, such as classes and interfaces, methods (static and
instance methods), fields (static and instance fields), method and constructor pa-
rameters, and to local variable. I describe Rename Instance Method as a rep-
resentative.

Arguments:

1. Old method signature mo,
2. The class, c, that defines mo,
3. The feature, f , containing the definition of c,
4. New method name n.

Auxiliary Definitions: I introduce the following definitions to describe precondi-
tions and mechanics more concisely.

1. Let mn be the new method signature. It is constructed from mo by replacing
the old method name with the new one, n.

2. Let Dmo be the set of classes containing c, as well as all classes that define
methods that override or are overridden by c’s definition of mo. If mo is
private in c, Dmo contains only c as private methods cannot be overridden in
Java. Otherwise (mo is non-private), Dmo contains c, as well as all sub- and
superclasses of c that contain a non-private definition of mo.

Preconditions:

1. The introductions and refinements of the classes in Dmo must not define a
method with signature mn.
This precondition prevents Rename from producing duplicate definitions in
the classes that define a method with signature mo.

2. If mo is non-private in c, then for all classes d in Dmo it must hold that there
is no introduction or refinement of a subclass of d that defines a method mn

with a lower visibility than that of mo in d.
Overriding methods in Java must not reduce the visibility of superclass meth-
ods. This precondition prevents Rename from breaking that rule.

3. For all classes d in Dmo it must hold that there is no introduction or refinement
of a superclass of d that defines a non-private method with signature mn with
a greater visibility than that of mo in d.
This precondition is also related to Java’s visibility rules. It prevents renamed
definitions of mo from restricting the visibility of preexisting definitions of mn.

Mechanics:

1. Find all references to method mo.
2. In all introductions and refinements of classes in Dmo that contain a definition

of mo, create a new method with signature mn and copy the contents of mo

into this new method.
3. Update the collected references to point to mn.

172 6. Variant-Preserving Refactoring to Migrate Cloned Product Variants

4. Remove the old definitions of mo.

Note that these preconditions are rather liberal, thus potentially allowing renamings
that are not variant-preserving. For instance, coming back to Listing 6.3, my pre-
conditions would allow me to rename getDiameter to getRadius (or even to getX!),
which is not a sensible change (see red highlights). I could prevent this with more
restrictive preconditions, but only at the cost of precluding many useful applications,
such as renaming getCenterX to getX and getCenterY to getY (gray highlights).

6.5 A Feature-Oriented Migration Process

The refactorings explained in the previous section can be combined with code clone
detection to form a process for the variant-preserving migration of cloned prod-
uct variants to an SPL. Since my refactorings target FOP, this is a Many→FOP
approach in the terms of my taxonomy. I describe this process in the following
paragraphs.

Initializing the SPL. I depict my migration process in Figure 6.6. Starting with
n product variants, which are named p1, p2, . . . , pn, the first step is to create a trivial
initial SPL whose FM contains only one alternative. This alternative consists of n
features, p1, p2, . . . , pn, one for each of the original products. The source code of
these products is moved without any changes into the corresponding feature mod-
ules. Together with the FM, n configurations, C1, C2, . . . , Cn, are created, each with
exactly one of the features p1, p2, . . . , pn selected, while all others are deselected.
Hence, it is possible to recreate the original product p1 by choosing configuration
C1, whereas p2 is recreated by choosing C2, and so on.

p1 p2

base

pn…

Extractive &  
Preparatory  
Refactoring f1

p1 p2 pn

f2

base

…

p1  
… 
… 
…

p2  
… 
… 
…

… 
… 
… 
…

pn 
… 
… 
…

Configurations:
C1 = {p1}
C2 = {p2}

. . .
Cn = {pn}

f1 ↔ (p1 ∨ p3)

Configurations:
C1 = {f1, p1}
C2 = {f2, p2}

. . .
Cn = {f2, pn}

Original Products Initial SPL
Variant-preser-
ving refactoring Final SPL

Feature-model perspective of my migration process, showing the migration of
n cloned product variants to a feature-oriented SPL via extractive and prepa-
ratory refactoring.

Figure 6.6: Feature-model perspective of my variant-preserving migration process

While this first step does not yet improve reuse, it forms the basis for the subsequent,
iterative refinement process that constitutes the core of my migration approach.

6.5. A Feature-Oriented Migration Process 173

Code clone extraction. The iterative refinement process encompasses two steps,
code clone extraction and preparatory refactoring. These steps are executed re-
peatedly and will progressively reduce the amount of code clones in the features
p1, p2, . . . , pn. To identify code clones, I use clone detection, as I will outline shortly.
If possible, a code clone is removed in an extraction step by applying Pull Up To
Common Feature. Recall that this refactoring removes code that is cloned across
two or more features by moving this code to a single location, called a common
feature. In the example in Figure 6.6, f1 and f2 are such common features.

Preparatory refactoring. If an extraction step is not directly possible, it is pre-
ceded by a preparatory refactoring, which aligns differing clones. As previously
discussed for Listing 6.3, methods with identical bodies but different names cannot
be pulled up. Similarly, extraction is impossible when otherwise identical classes
have different names. In the terminology of code clone detection, these are exam-
ples of Type-2 clones. Thus, finding opportunities for preparatory refactoring hinges
on the ability to identify such clones. Not all code clone detectors can do this, but
for my process it is necessary to use a clone detector that does. This has also been
taken into account for the design of my tool support. Thus, my tool helps the devel-
oper identify code that will benefit from preparatory refactoring. To align naming
differences, the tool offers a Rename refactoring.

Besides differences in names, clones can differ in other ways. For instances, a devel-
oper could have added statements to a method after cloning it. Likewise, parameters
may have been added or removed. These kinds of modifications lead to in Type-3
clones, which necessitate further preparatory refactorings, beyond Rename. For
example, added statements could be extracted by means of an Extract Method
refactoring. This shows that there are many ways in which additional preparatory
refactoring would improve my tooling. However, due to the high implementation
effort for a refactoring, the prototype tool currently only offers a single preparatory
refactoring.

Step-wise refinement. Both steps, code clone extraction and preparatory refac-
toring, can be repeated as often as needed. Since each step only affects a small part
of the code base, the correctness of each step can be easily verified. Moreover, as
I propose to perform changes by means of variant-preserving refactoring, the ex-
ternal behavior of the affected variants is preserved. Hence, all variants remain in
a working state, even if the migration is still ongoing. This is of special importance
as it allows releasing new product versions during the migration period. From an
industrial perspective, this is a major advantage over “big-bang” approaches (e. g.,
[6, 378]), which require migration to be completed before allowing other changes to
the code.

Inter-system versus inter-feature code clones. Cloning frequently occurs within
a single software product, e. g., if a method is copied from one class to another.
Koschke calls these clones intra-system clones [182]. Although intra-system clones
may constitute maintenance problems, they are not the focus of my approach be-
cause they do not originate from clone-and-own variant development. Instead, I am
interested in inter-system clones, that is, functionality that has been copied from

174 6. Variant-Preserving Refactoring to Migrate Cloned Product Variants

one product variant to another. The challenge is to tell apart one kind of clone from
the other.

In my migration process, each variant is initially converted to a distinct feature.
At this point, it is still easy to distinguish between inter- and intra-system clones.
But subsequently, many small refactoring steps happen, which move code from one
feature to another. These code movements make it increasingly difficult to precisely
track what was originally an inter- and what was an intra-system clone. In order to
avoid these difficulties, I relax the concept of inter-system clones and approximate
them with Inter-Feature Code Clones (i. e., clones between different features;
cf. Section 4.2). Hence, my approach is to use a code clone detector and filter its
results so that only clones between features are reported but not clones inside of
features. As a result, developers can focus on the code clones that constitute the
common functionality they need to extract, without being sidetracked by other,
irrelevant clones.

6.6 Tool Support

The proposed migration process has been integrated into the Eclipse IDE. To this
end, several existing tools were reused, namely FeatureIDE [358, 242], Fuji [17],
the Eclipse refactoring framework, and a variability-aware extension of the Copy/-
Paste Detector (CPD)1 [360]. In this section, I discuss how each tool was reused in
the implementation.

The basis of the tool support is FeatureIDE, an Eclipse framework for feature-
oriented software development. FeatureIDE supports several phases of the de-
velopment of SPLs, such as domain engineering (i. e., feature modeling), product
configuration, and product generation. Notably, FeatureIDE already integrates
the composer FeatureHouse, as well as the variability-aware compiler Fuji [17].

Guaranteeing that refactorings are variant-preserving requires a variability-aware
AST over all product variants. Fuji’s type checker is used to generate this AST.

The identification of code clones is performed by CPD, the token-based clone detec-
tor that is part of the PMD suite of static source code analysers. CPD was adapted
to identify inter-feature code clones but ignore intra-feature code clones [360]. In
Figure 6.7, a screenshot of the tool is shown. As the screenshot illustrates, code
clones are highlighted with a warning. The warning appears as a yellow symbol
next to the line number where a clone starts, and the cloned statements are under-
lined with a dotted yellow line. The corresponding tool tip shows how many lines
are cloned and in which files the clones reside. The feature that each file belongs to
is displayed in brackets before the filename. With the help of a so-called “quick fix”,
the developer can open all relevant files in an editor window.

Finally, the Rename and Pull Up To Common Feature refactorings were im-
plemented based on Eclipse’s refactoring framework for Java. Thus, existing ma-
chinery could be reused, such as the refactoring wizard. In Figure 6.8, an exemplary
application of Pull Up To Common Feature on method getVecY is depicted.

1http://pmd.sourceforge.net/cpd.html

http://pmd.sourceforge.net/cpd.html

6.7. Feasibility Study 175

Figure 6.7: Inter-feature code clone detection with CPD

In the left dialog at (1.), the destination feature is selected. At (2.) all occurrences
of the same method in other features are listed. Methods that are Type-1 clones are
especially marked with the keyword “Clone” (see highlight (3.)) because these are
the ones that can be pulled up safely. Other types of clones are not generally safe to
pull up and, consequently, are not marked. The right part of Figure 6.8 contains the
second dialog of the refactoring wizard. This dialog gives a preview of the changes
that the refactoring will perform. The upper part of this preview at (4.) lists all the
source files that will be modified. Depending on which file is selected in that list,
the lower part of the preview at (5.) shows the planned modifications in detail.

6.7 Feasibility Study
In this section, I evaluate the effectiveness of my approach to migrate cloned prod-
uct variants into an SPL. Specifically, I evaluate how effective my approach is in
finding and consolidating Inter-Feature Code Clones. To this end, I answer
the following research questions:

RQ1: How much cloned code can be safely and automatically migrated
using the Pull Up To Common Feature refactoring? An important aspect
of my approach is to what extent I can automate the migration process. Hence, it
is crucial to identify and migrate respective code fragments automatically.

RQ2: How do preparatory Rename refactorings increase the amount
of migratable code clones? As cloned products evolve, code clones diverge.

176 6. Variant-Preserving Refactoring to Migrate Cloned Product Variants

Figure 6.8: Wizard for the Pull Up To Common Feature refactoring (Picture
originally created by Steffen Schulze; reproduced from [331])

Preparatory Rename refactorings can remove some of these divergences. I quantify
their effectiveness by measuring the amount of migrated code again after renaming.

RQ3: How much cloned code remains and why? My approach cannot mi-
grate all Inter-Feature Code Clones into common features. With this ques-
tion, I investigate which portion of the products still remains as cloned code, and
why it was impossible to consolidate these clones.

6.7.1 Subject Systems

For answering my research questions, my subject systems must have the following
properties. First, they must be Java programs that are cloned from each other.
However, the specifics of the cloning process (e. g., forking in a VCS as opposed
to manual copying) are irrelevant. Second, the variants must implement custom
functionality, which will remain as variant-specific code. Third, the variants must
have evolved over time. Evolution may lead to shared code that is modified without
synchronizing the modifications to other variants. Such modifications allow me to
study the nature of divergences and to gauge the effectiveness of my preparatory
Rename refactoring.

In this evaluation, I use five programs of the ApoGames,2 which are listed in Ta-
ble 6.5. These programs are diverse games for Android written in Java. They
originated from manual copying and subsequently evolved independently. In Ta-
ble 6.5, I report the size of the programs in non-blank, non-comment lines of code
(LOC) (as measured by cloc3) and how much of each program is identified as In-
ter-Feature Code Clones. The latter metric is given in the LOCC (line of
cloned code) column. It was computed by CPD, which was configured to detect
only clones with a minimum of ten cloned tokens. As the code clone rates (CCR)

2http://apo-games.de/index android.php
3https://github.com/AlDanial/cloc

http://apo-games.de/index_android.php
https://github.com/AlDanial/cloc

6.7. Feasibility Study 177

show, all programs have a high portion of inter-feature code clones, between 57.2 %
and 80.0 %.

Product LOC LOCC CCR

ApoClock 3,584 2,643 73.7 %
ApoDice 2,504 2,003 80.0 %

ApoMono 6,483 4,382 67.6 %
ApoSnake 2,946 2,350 79.8 %

myTreasure 5,322 3,042 57.2 %

total 20,839 14,420 69.2 %

LOC: Lines of code; LOCC: Lines of code clones; CCR: Code clone rate

Table 6.5: Statistics on the subject systems

6.7.2 Methodology

I use the following methodology. First, the cloned products are transfered into
a trivial product line as described in Section 6.5. Second, Pull Up To Common
Feature is automatically applied to all program elements (methods, fields, etc.)
that constitute Type-1 clones. After this step, no more methods or fields can be
refactored using Pull Up To Common Feature. By measuring the remaining
LOC and LOCC of the individual feature modules and of the extracted common
modules, I answer RQ1. Third, I manually apply preparatory Rename refactor-
ings to all methods, fields and classes that only differ in name but not in content.
Afterwards, I apply Pull Up To Common Feature again and measure LOC and
LOCC once more. This is followed by an inspection of the remaining source code
in the feature modules that correspond to the five original variants. The repeated
measurements and the manual inspection provide the answers to RQ2 and RQ3,
respectively.

6.7.3 Results

I applied my methodology to the five ApoGames. In Figure 6.9, I show the LOC
and LOCC measurements of each feature module of the five variants, as well as the
LOC and LOCC of the modules for common code. For each module, I show from left
to right (1) the initial LOC before migration, (2) the LOC after applying the Pull
Up To Common Feature refactorings, and (3) the final LOC after preparatory
Rename and Pull Up To Common Feature. Additionally, I report the lines
that are identified as Inter-Feature Code Clones in the upper part (illustrated
with a brighter color).

In the first step, 110 fields could be extracted into 32 common fields and 291 methods
into 74 common methods. All extracted code belonged to three distinct classes.
Overall, LOC were reduced by 4.2 % (879 LOC) and LOCC by 7.6 % (1,095 LOCC).
In doing so, nine new features for common code were created. The common code
size is 419 LOC, of which 187 LOC are shared among all variants.

178 6. Variant-Preserving Refactoring to Migrate Cloned Product Variants

0

1.000

2.000

3.000

4.000

5.000

6.000

7.000 Initial LOC LOC without rename LOC with rename

Lines of code in each migration step of each program variant and amount of
common code. Detected code clones are illustrated in brighter color.

Figure 6.9: Reduction in lines of code during feasibility study (Chart originally
created by Jens Meinicke; reproduced from [95])

In the second step, 84 classes and eight methods were identified as candidates for
preparatory refactoring. Their names were aligned using the Rename refactoring.
After preparation, it was possible to pull up 473 additional fields into 150 common
fields and 862 methods into 245 common methods. The pulled up code belonged to
26 distinct classes, whereas before preparation, there were only three such classes.
Compared to the initial variants, the overall LOC was reduced by 15.6 % (3,259 LOC)
and the LOCC by 25.4 % (3,664 LOCC). The final size of the common code is 1,779
LOC. The final overall size of the product line is 17,580 LOC, out of which 10,756
constitute clones (CCR is 61.2 %). The size of the variant-specific code (i. e., not
considering the code in the common features) was reduced by 23.2 % (5,038 lines)
to 15,801 LOC, out of which 9,850 are still cloned. The final feature model has 15
common features. The largest one of these common features contains 619 LOC that
are shared among all variants. The second-largest one encompasses 466 LOC, which
are shared between ApoDice and ApoSnake.

6.7.4 Discussion

Regarding RQ1, Pull Up To Common Feature only reduced the code size
by 879 LOC (4.2 %). Code was migrated from only three out of 114 distinct classes.
The reason for the rather low reduction was a peculiar naming convention that
required class names to have a variant-specific prefix. For instance, the menu class
was called ApoClockMenu in ApoClock but ApoDiceMenu in ApoDice. It was
necessary to revert these changes first, which leads to RQ2.

During preparatory refactoring, eight methods and 84 classes were renamed, re-
ducing the number of distinct classes to 56. This made Pull Up To Common
Feature applicable to a considerably larger amount of cloned code. After renam-
ing, code could be pulled up from 26 distinct classes. This second round of Pull

6.7. Feasibility Study 179

Up To Common Feature reduced the variants’ code by an additional 3,300 LOC
or 15.8 %. I argue that by applying both extractive and preparatory refactorings,
I substantially reduced code clones and fostered systematic reuse. Also, the number
of additional features (15 in this case study), is still manageable, which indicates
that my ensureTargetFeature algorithm avoids creating unnecessarily complex
feature models.

Regarding RQ3, there remain 9,850 LOCC. I reviewed these code clones and found
that most of them come from large, similar methods with minimal customizations.
Much of this code is graphics-related. These customizations caused a great number
of missed refactoring opportunities. The reason is that Pull Up To Common
Feature can only be applied safely and in a fully automated fashion if methods
are completely identical. To consolidate further code clones, local customizations
must be extracted using other preparatory refactorings, such as Extract Method
and Extract Constant. Corresponding variant-preserving refactorings are part
of future work. I also observed that different variants use different versions of third-
party libraries. The conflicting Application Programmer Interfaces (APIs) of these
library versions were another source of divergences that prevented the consolidation
of clones. Possible solutions would be to either change all variants to use the same
library version or to introduce a façade pattern to abstract from the API differences.
However, neither solution lends itself well to automation.

6.7.5 Threats to Validity

My tool support integrates several external tools and a new implementation of vari-
ant-preserving refactoring. To ensure the validity of the implementation, unit tests
for both refactorings were developed. Furthermore, refactoring results were man-
ually inspected. Finally, all five variants were generated after the migration. No
compile errors occurred.

CPD was used for code clone detection, which was configured so that clones must
share at least ten tokens to be reported. Configuring this threshold is a balanc-
ing act. On the one hand, if the threshold is too high, some short clones are not
reported, recall suffers, and clone consolidation opportunities are missed. On the
other hand, if the threshold is too low, many meaningless clones are reported, pre-
cision degrades, and clones that are interesting candidates for consolidation become
hard to find. How does this affect the quality criterion of my evaluation, which
is the reduction in code clones? It has two opposite effects. On the one hand,
had I used a higher threshold, I would have missed more opportunities to con-
solidate clones. On the other hand, the overall number of clones reported would
have decreased. Thus, the reduction in code clones – the number of consolidated
clones in relation to the number of reported clones – may very well have stayed the
same. I argue that the ten tokens used in my evaluation are a good compromise.

public int getFoo() {
return foo;

}

Recall that each identifier, each opening or closing parenthesis,
and each semicolon counts as a single token. Hence, even the
simple Java get method depicted to the right, which consists
of exactly ten tokens, would have been reported. Thus, I only failed to consolidate
some cloned fields or methods without a visibility qualifier. I argue that not con-

180 6. Variant-Preserving Refactoring to Migrate Cloned Product Variants

solidating them is an acceptable error because such short clones encode very little
logic.

In my evaluation, the preparatory Rename refactoring highly increased the op-
portunities to consolidate cloned methods and fields. This effect is caused by the
previously mentioned naming convention in the ApoGames case study. For other
systems, I do not expect Rename to have such a high impact, but I expect the total
reduction in code clones to be comparable, if not higher.

The goal of clone-and-own is to reuse existing code and to integrate customizations.
The ApoGames are arguably an extreme case because the cloning and customiza-
tion was highly unstructured. Essentially, a dice-rolling game was copied and modi-
fied arbitrarily until it became a snake game, which is entirely something else. This
is not the same as copying an online shopping system, for example, and customizing
its design to fit one company or another. For this reason, I expect other program
families to contain much less custom code than the ApoGames and much more
reused code. As the effectiveness of my migration approach depends on how much
code is reused, I should be able to extract larger shared components in other program
families.

My implementation and refactorings currently only work for Java programs. Nev-
ertheless, the process and underlying concept can be applied to other programming
languages, as they all come with elements (e. g., functions and variables) that can
be refactored. This will require specialized tools, such as for the generation of the
variability-aware AST.

6.8 Related Work

At the beginning of this chapter, I presented a taxonomy of reengineering tech-
niques for SPLs. In the following paragraphs, I discuss how my taxonomy relates to
other taxonomies and surveys in the SPLE field. After the taxonomy, I proposed an
approach to migrate legacy software products to an SPL. A migration approach re-
quires both, reverse engineering techniques to uncover commonalities and variations,
as well as reengineering techniques to actually transform the legacy code. There-
fore, a considerable amount of existing work is related to mine. I chose code clone
detection for the reverse engineering part and variant-preserving refactoring for the
reengineering part, but other researchers made different choices. Moreover, reverse
engineering and refactoring for SPLs, as well as clone detection and removal have
also been explored separately, without the migration context. The next paragraphs
will clarify how my work relates to this body of knowledge.

Other taxonomies and surveys. Laguna and Crespo have performed a system-
atic mapping study on software product line evolution [192]. The scope of their
survey is broader than mine. Whereas I concentrate on techniques that change
a software system, they also discuss work on processes, organizational issues, and
metrics. Laguna and Crespo acknowledge the diversity of reengineering terms (e. g.,
refactoring, migration, restructuring), yet they do not provide a taxonomy. I extend
their work by deriving three dimensions of SPL reengineering and constructing a
detailed taxonomy from these dimensions. Furthermore, I reclassify a part of their
corpus, but also include additional literature.

6.8. Related Work 181

Krueger has offered two taxonomies for the field of SPLE [185, 186]. His first taxo-
nomy consists of three approaches to SPLE adoption, the extractive, reactive, and
the proactive approach [185]. This taxonomy complements mine as Krueger dicusses
the overall processes, whereas I focus on concrete techniques. In the extractive ap-
proach, an SPL is built from one or several legacy application(s). In terms of my
taxonomy, variant-preserving migration techniques can be employed for this task.
In the reactive approach, an existing SPL is extended in order to satisfy new require-
ments. Any restructuring this might require can be achieved through what I call
variant-preserving refactoring. However, if features have to be separated from the
common code, migration techniques could also be employed. Finally, the proactive
approach is presented, which equates to constructing an SPL from scratch. This is
forward engineering, not reengineering and hence unrelated to my work.

Krueger’s second taxonomy covers differences in binding times of variability mech-
anisms (e. g., clone-and-own at development-time, preprocessors at compile-time, or
configuration files at runtime) as well as the evolutionary changes of product line ar-
tifacts and how to propagate them [186]. I only distinguish between annotation- and
composition-based variability mechanisms, and mostly cover compile-time mechan-
ism. Adding binding time as a subordinate dimension to the Variability mechanism
dimension of my taxonomy would allow for a more fine-grained classification. The
other factor that Krueger considers, how to manage evolutionary changes, is related
to forward engineering and therefore beyond the scope of my taxonomy. Krueger
furthermore references two topics he covered in his first taxonomy, namely scoping
strategies for an SPL (planning far into the future versus adjusting to new require-
ments reactively) and SPLE adoption approaches (starting an SPL from scratch as
opposed to the extractive approach). As already discussed for Krueger’s first taxo-
nomy, he focuses on processes, whereas my taxonomy encompasses techniques to
implement these processes.

Svahnberg et al. present a comprehensive taxonomy of variability mechanisms [354].
Like Krueger, they consider binding time as a factor to distinguish between mech-
anisms, but they include other factors, too. The goal of their taxonomy is to offer
advice on how to choose the most appropriate mechanism. Companies could use such
advice to decide between the variant-preserving migration techniques that I cover
in my taxonomy. Thus, their taxonomy and mine complement each other.

Migration to an SPL. As mentioned in Section 6.2.2 and Section 6.3, there are
several approaches to migrate legacy software products to an SPL. Most only migrate
a single legacy product (e. g., [211, 60, 368]) and therefore fail to address the challenge
of identifying and consolidating commonalities (and differences) between multiple
variants. Those approaches that migrate multiple legacy products (e. g., [6, 316, 376,
377]) focus on models but lack details on how to actually transform the source code.
The description of my refactorings fills in those details. Moreover, my migration
process is step-wise and incremental, whereas others happen in one “big bang”. This
makes my process more flexible and less risky.

Others have proposed frameworks for migrating cloned product variants [317, 235].
These frameworks abstract migration activities such as similarity analysis or merg-
ing of commonalities. My approach specifically uses clone detection for similarity

182 6. Variant-Preserving Refactoring to Migrate Cloned Product Variants

analysis and refactorings for merging commonalities. Hence, my approach can be
seen as an instantiation of these frameworks.

Antkiewicz et al. propose the virtual platform as another alternative to existing
risky and disruptive big-bang migration approaches [12]. The core idea of the vir-
tual platform is that that clone-and-own and SPLE are not irreconcilable opposites.
Instead, there is a spectrum of approaches in between, ranging from ad-hoc clone-
and-own on one end to SPLE with a fully integrated platform on the other end. An-
tkiewicz et al. propose six governance levels to distinguish between these approaches
and explain how to companies can transition from a low level to a higher level by
changing their development process. Hence, they also outline an iterative process
to go from clone-and-own to SPLE. But whereas I focus on iterative changes on the
implementation level, they focus on iterative changes to the development process.

Beyond concrete approaches and abstract frameworks, the literature contains sev-
eral case studies on migrating multiple legacy systems into an SPL (e. g., [48, 178,
151]). Zhang et al., in turn, derive an agile, incremental process from their own
experiences in an industrial migration project [387]. Such case study reports con-
centrate on processes and lessons learned but not on techniques at the modelling or
implementation level. Hence, these reports are complementary to my work.

Reverse-engineering of variability. There are multiple approaches to reverse-
engineer commonalities and variations from the source code of cloned variants [244,
183, 234, 391, 179]. Specifically, Mende et al. used clone detection to identify (but
not consolidate) core functionality in SPLs that were evolved by unmanaged, large-
scale clone-and-own [244]. Koschke et al. recover individual product architectures
and combine them into a common product line architecture [183]. Others propose
program-dependency graphs [179] or architecture reengineering techniques [234] to
identify product-specific variations.

Similarly to my work, some of these approaches incorporate code clone detection [244,
183, 234]. But code clone detection is just one technique to support the analysis
phase of a migration project. Another popular technique is feature location, which
uncovers the features that are present in a given legacy system and establishes fea-
ture-to-code mappings. To this end, Concern Graphs, Program Dependence Graphs
(PDGs), Formal Concept Analysis (FCA), dynamic and iterative procedures, among
others, have been proposed [85, 160, 291, 307, 368, 375]. Detailed information can be
found in the surveys by Rubin and Chechik [315], Dit et al. [75], as well as Assunção
and Vergilio [21]. Many feature location techniques only apply to a single product,
so they cannot be integrated into my approach right away, but some also apply to
multiple variants (e. g., [391, 209]). Feature location techniques can identify features
in their entirety, which clone detection alone cannot. Thus, incorporating feature
location into my approach may lead to more cohesive, better structured results.

Weber et al. report initial insights from a case study in the health care domain [373].
The starting point is an open-source software system whose VCS repository was
forked multiple times to customize it for different users (e. g., hospitals and pri-
vate practices) and for different health care legislations. They propose to migrate
this multi-repository structure into an SPL by analyzing the VCS histories so that
a variability model can be created. This model, in turn, should serve as a guide for

6.8. Related Work 183

a subsequent merging and refactoring phase. Although a feasibility study remains as
future work, the proposal is interesting because it aims to exploit the evolutionary
information that only VCS histories can offer. Other approaches (mine included)
ignore this information since they only take the current state of each product variant
into account.

While the aforementioned work focuses on analyses, I focus on the source-code trans-
formations to execute the actual migration. Due to the higher level of abstraction,
their analyses are complementary to my approach.

Refactoring of variable source code. Refactorings for different variability mech-
anisms have been explored, among them aspect-, delta- and feature-oriented pro-
gramming, as well as C code with preprocessor annotations [7, 329, 328, 205].
My Pull Up To Common Feature refactoring is a generalization of the Pull
Up Method To Parent Feature refactoring that Schulze et al. proposed ear-
lier [328]. Contrary to my work, these refactorings either lack the migration con-
text [329, 328, 205, 174, 175] or they neglect the challenges of identifying and consol-
idating commonalities in multiple variants [7] because they are geared toward single-
system migration.

More recently, Kim et al. presented the X15 refactoring engine for Java SPLs that
use a custom annotation scheme to encode variability [174, 175]. X15 currently sup-
ports the impressive amount of 34 refactorings. This was accomplished by “lifting”
the precondition checks of an existing OOP refactoring engine to make it variability-
aware. According to Kim et al., the lifting approach saves a lot of implementation
effort compared to the traditional way of building variability-aware refactoring en-
gines. From a maintenance point of view, this is an important advantage.

Since X15 is based on an OOP refactoring engine, an interesting question arises,
which Kim et al. do not answer: Can X15 also perform refactorings that have no
direct counterpart in OOP? For example, can it move code across feature boundaries,
as my Pull Up To Common Feature refactoring does, or modify feature models
and configurations? If not, how much effort would be necessary to extend X15?

Clone detection and removal. Much work has discussed how to detect and
remove code clones from single (non-configurable) software systems (see in Sec-
tion 3.6.2 and Section 3.6.4 in Chapter 3 of this thesis for summaries). While most
of this work treats either detection or removal, some also combines both topics (e. g.,
[136, 326]), like I do in my migration process. The only clone consolidation refactor-
ing in my process is Pull Up, but further refactorings, such as Form Template
Method, have been proposed in the literature (e. g., [136, 199]). These refactorings
would make my approach more flexible and effective, but to do so, they must be
extended in a variant-preserving way.

Whereas the above work is restricted to single software systems, Schulze et al. focus
on code clones in SPLs, also touching the topic of clone removal [330, 323, 328].
I built my variant-preserving refactorings on these conceptual foundations and apply
them in a new context, the migration of cloned product variants.

Managing clone & own without migration. Whereas my approach is to migrate
a product family to an SPL, there are alternatives that do not require a migration

184 6. Variant-Preserving Refactoring to Migrate Cloned Product Variants

but still facilitate maintenance [350, 357, 121, 293, 348]. For example, Pfofe et
al. propose an IDE extension to facilitate propagating changes from one cloned vari-
ant to another [293]. In addition, their extension records feature-to-code mapping,
which may be used for a migration later on. Stănciulescu et al., in turn, showed that
projectional editing and VCSs can be integrated with each other to yield a variation
control system [348].

6.9 Conclusion

“Refactoring” for single software systems has a well-established meaning: It is a be-
havior-preserving change to the structure of the source code to achieve a quality
improvement. By contrast, SPLE literature uses the term for rather diverse (behav-
ior-preserving) reengineering activities. To help distinguish these activities from each
other, I have presented a taxonomy in this chapter that separates these activities
into three categories: variant-preserving migration, variant-preserving refactoring,
and variant-preserving transcoding. I have proposed definitions for these categories
and shown how they relate to SPLs and (non-configurable) legacy software. More-
over, I have classified a corpus of existing work based on the conceptual framework
of my taxonomy.

Furthermore, I contributed a semi-automatic, incremental migration process that
focuses on the source code aspects of migrating families of cloned software products
to an SPL. The core idea is to provide tool support for the tedious and error-prone
migration tasks while leaving the design decisions in the hands of the developer. My
process relies on code clone detection to identify commonalities of cloned product
variants and on variant-preserving refactorings to extract these commonalities into
shared artifacts. The process was evaluated in a case study involving five software
products.

Based on the insights discussed in this chapter, I answer RQT 2 of this thesis – How
can clone-and-own product families be migrated in a variant-preserving manner? –
as follows: Regarding, RQT 2.1, my classification of existing literature according
to my taxonomy indicates that little work on variant-preserving refactoring exists
and so far is limited to a few variability mechanisms. Automation and tool support
remain a particular challenge. Consequently, refactoring in the context of highly
configurable software systems considerably lags behind the state of the art in the
(non-configurable) OOP world. The variant-preserving Pull Up To Common
Feature and Rename refactorings that I presented in this chapter are a small
step toward rectifying this imbalance. Beyond their use in migration, I argue that
these refactorings will also be useful for general maintenance and evolution activities
in (FOP-based) SPLs.

Regarding RQT 2.2, my literature classification shows that most work on variant-
preserving migration only takes a single legacy system into account, whereas the
migration of multiple legacy systems (e. g., product families created through clone-
and-own) has received much less attention. Moreover, most existing approaches
for multiple systems attempt migration in one “big bang” and ignore the source-
code level. By contrast, the process I propose in this chapter is incremental and
especially takes the source-code aspects of migration into account. During evaluation

6.9. Conclusion 185

on a case study, the amount of cloned code could be reduced by 25 %. Although
this is a modest reduction, it is enough to demonstrate that my approach is at least
feasible.

Regarding RQT 2.3, the experiences from the case study highlighted two important
limitations. First, many clones could not be consolidated because they exhibited
minor variations, such as added or modified statements. Additional preliminary re-
factorings, for example a variant-preserving Extract Method refactoring, would
help prepare such clones for consolidation. Second, the purely source-code-centric
view of my approach may not lead to optimal results in terms of the target architec-
ture or the feature model. I envision that incorporating analyses on more abstract
levels, such as architectural views and feature location techniques, will guide re-
factoring decisions toward an improved product line architecture and better code
quality.

186 6. Variant-Preserving Refactoring to Migrate Cloned Product Variants

7. Conclusion and Future Work

In this chapter, I summarize the main conclusions of this thesis and discuss avenues
of future work regarding code smells and refactoring of highly configurable software
systems.

7.1 Conclusion

Code smells are indicators of deficient software design choices which manifest them-
selves in poorly structured source code. Refactoring, in turn, is a technique to
improve these deficient designs by changing the structure of the source code while
preserving the behavior. Research has shown that “smelly” code is associated with
various problems and that refactoring can alleviate these problems. However, the
vast majority of this research has focused on OOP and thus ignored the unique
challenges that developers of highly configurable software systems face.

Highly configurable software systems are software systems in which the code base is
no longer fixed but instead is subject to variability. For example, different pieces of
code can complement each other or they may mutually exclude each other. In this
thesis, I have investigated how this variability affects the code smell concept and
how it affects refactoring.

In Chapter 4 of this thesis, I have argued that variability at the source code level
poses new design challenges, which, in turn, create new opportunities to make bad
design decisions. As a novel concept to identify these bad design decisions, I pro-
pose variability-aware code smells – code smells that explicitly take variability into
account. Moreover, I have discussed how different variability mechanisms shape the
source code differently and how these different shapes change the appearance of
a given variability-aware code smell. Based on this reasoning, I have presented an
initial catalog of six variability-aware code smells. Furthermore, I have developed
a concept and tool support to detect variability-aware code smells in highly config-
urable software systems written in C and using cpp directives (a. k. a. #ifdefs) as
the variability mechanism. Based on a survey and by applying my tool support in
a case study, I demonstrated that variability-aware code smells exist in real-world

188 7. Conclusion and Future Work

software and that they can pose problems regarding program comprehension. Inter-
estingly, I also encountered a number of counterexamples in my case study, which
only appeared problematic at first, but at closer inspection, revealed patterns of
implementing variability that were harmless or even beneficial.

One of the variability-aware code smells proposed in this thesis is the Annotation
Bundle, which is a function in which the use of cpp directives is excessive. In
Chapter 5, I investigated the potential negative effects of this smell in greater depth.
In particular, I investigated how different extents of using the various facilities of the
cpp affects maintainability in terms of the frequency and extent of changes. The
results show that after controlling for other confounding factors, the fine-grained use
of preprocessor directives has litte or no systematic effect on maintainability. Given
these results, it appears partly unjustified that the C preprocessor is criticized so
frequently in the literature. Furthermore, I observed that truly great extents of cpp
use are very rare in real-world source code, which implies that most maintainability
problems in a highly configurable software system are unrelated to variability.

Combining the findings of Chapters 4 and 5, my conclusion about variability-aware
code smells is ambiguous: On the one hand, I identified certain patterns of imple-
menting variability that hinder code comprehension. On the other hand, I found no
evidence that these patterns also negatively affect maintainability, and even if they
do, most maintainability problems likely have other causes. Thus, if the general goal
is to identify problematic source code in a highly configurable software system, then
focusing only on variability implementation patterns is too restrictive.

The last chapter of this thesis, Chapter 6, explored refactoring of highly config-
urable software systems, both on the theoretical and on the practical level. On the
theoretical level, I have shown that SPLE literature uses the term “refactoring” for
many (behavior-preserving) reengineering activities, which often have little to do
with improving the internal structure of a software system. To differentiate between
these activities, I have proposed a taxonomy of SPL reengineering activities and
classified a corpus of existing work. This taxonomy and literature classification will
bring clarity to future discussions about SPL-related reengineering activities and
help researchers and practitioners alike match available solutions to the problems
at hand. On the practical level, I have investigated the usefulness of refactoring for
migrating a family of software products created through clone-and-own to an SPL.
Combining previous work on variant-preserving refactoring with code clone detec-
tion, I developed an incremental, semi-automatic migration process. The core idea
is to identify common functionality in the code bases of the products being migrated
and to refactor this common functionality into shared artifacts. I demonstrated that
this approach is feasible and argue that it constitutes an important contribution to
existing work on migration, which often ignores the source-code level aspects. More-
over, my refactorings will also be beneficial in other contexts since their applicability
is not limited to migration.

7.2 Future Work

While I was working on this thesis, several ideas formed how this work could be
extended and how its various limitations might be overcome. There is only so much

7.2. Future Work 189

that can be done in a single thesis and so I pursued only a few of these ideas myself.
The others I list here as potential avenues of future work.

Extending the catalog of variability-aware smells. The catalog of variability-
aware code smells I proposed in this thesis is still small and should be extended in
the future. In addition to deriving more variability-aware smells from existing smell
catalogs, it would be interesting to solicit feedback from practitioners in order to
learn from their experiences with implementing variability in real-world software.
Not only may such feedback lead to more smells, it may also uncover best practices
of implementing variability and thus lead to a catalog of variability-aware design
patterns.

The variability of highly configurable software systems is encoded not only in the
source code, but also on other levels, and in particular on the level of the build
system. Therefore, another possible direction of future work is to investigate smells
and design patterns for build-system-based variability mechanisms.

Variability-aware smell detection. The metrics-based detection approach pro-
posed in Chapter 4 lacks precision as it reports many false-positives. On the one
hand, these false-positives provided unexpected and highly interesting insights as
I believe that some of them encompass beneficial patterns of implementing variabil-
ity. On the other hand, false-positives are undesirable from a practitioner’s point of
view and should be excluded. Promising directions for improving detection preci-
sion include choosing better thresholds (e. g., through machine learning) and taking
other metrics into account (e. g., information about the use of runtime if state-
ments). Furthermore, it will be necessary to gain a deeper understanding of the
properties that make the difference between harmful and beneficial patterns. Such
an understanding will be needed to guide the search for better detection algorithms.

Negative effects of variability-aware code smells. In Chapter 5, where I in-
vestigated the effect of preprocessor use on change-proneness, I presented a compre-
hensive methodology and tool infrastructure. This methodology and infrastructure
could also be applied to analyze the relationship of preprocessor use to other prop-
erties of maintenance and evolution. One possible objective is to incorporate data
from issue tracking systems to study the effect on fault proneness from a different
angle. Other aspects, for instance, co-changes, are of interest, too.

Another line of future work is to use my data and tools to gain a better understanding
of change proneness in general, outside of the context of preprocessor use. The
qualitative analysis in Chapter 5 already hinted at the wealth of underlying causes
for the change proneness or stability of functions. A more comprehensive qualitative
analysis will deepen the understanding of these causes and possibly lead to more
accurate predictions of maintenance effort and thus benefit practitioners in cost
estimations.

Code smells can affect many aspects of software development, such as code com-
prehension, maintainability, evolvability, and fault-proneness. Many methods have
been used in the literature to investigate these aspects, including questionnaires,
controlled experiments, and interviews. In this thesis, I focused on two of these

190 7. Conclusion and Future Work

aspects (code comprehension and maintainability) and employed surveys, code in-
spection, and repository mining as my methods of investigation. To reach a more
comprehensive understanding, future work should analyse the relationship between
variability-aware code smells and additional aspects, such as fault-proneness. Fur-
thermore, different methods, such as controlled experiments, should be incorporated
to gather complementary insights.

Variant-preserving refactoring and migration. Future work to improve my mi-
gration approach includes the design and implementation of additional refactorings
to enable the extraction of more code clones than currently possible. It will also be
interesting to integrate the X15 refactoring engine because X15 is already capable
of many variant-preserving refactorings. However, such an integration would entail
major changes to my current tooling as X15 uses its own variability mechanism.
Besides additional refactorings, my approach could be extended to other variability
mechanisms. Of particular interest are annotation-based mechanisms, such as the
popular combination of C with preprocessor directives.

In my migration case study, I noticed that few of the extracted shared features
were actually cohesive and meaningful. I believe that this limitation results from
an overly strong focus on the source-code level. It should be possible to overcome
this limitation by combining my work with analyses on more abstract levels, such
as architectural views and feature location techniques.

A. Appendix

192 A. Appendix

SPL
Reengineering

Variant-Preserving
M

igration

1→
SPL

1→
A
nnotation-

B
ased

SPL

1→
cpp

1→
V
SoC

...

1→
Com

position-
B

ased
SPL

1→
FO

P
1→

AO
P

...

M
any→

SPL

M
any→

A
nnotation-

B
ased

SPL

M
any→

cpp
M

any→
V
SoC

...

M
any→

Com
position-

B
ased

SPL

M
any→

FO
P

M
any→

AO
P

...

Variant-Preserving
Refactoring

A
nnotation-

B
ased

SPL

cpp
V
SoC

X
VCL

...

Com
position-

B
ased

SPL

FO
P

AO
P

D
O

P
...

Variant-Preserving
Transcoding

Intra
A
pproach

A
nnotation-

B
ased

SPL

cpp→
V
SoC

...

Com
position-

B
ased

SPL

AO
P
→

FO
P

...

Inter
A
pproach

A
nnotation-→
Com

p.-B
ased

cpp→
FO

P
...

Com
position-→

A
nnot.-B

ased

FO
P
→

cpp
...

F
igu

re
A

.1:
F

u
ll

tax
on

om
y

of
S
P

L
reen

gin
eerin

g
tech

n
iq

u
es

Bibliography

[1] M. Abbes, F. Khomh, Y.-G. Guéhéneuc, and G. Antoniol. “An Empirical
Study of the Impact of two Antipatterns, Blob and Spaghetti Code, on Pro-
gram Comprehension”. In: Proc. European Conf. on Software Maintenance
and Reengineering (CSMR ’11). IEEE, 2011, pp. 181–190.

[2] B. Adams, W. De Meuter, H. Tromp, and A. E. Hassan. “Can We Refac-
tor Conditional Compilation Into Aspects?” In: Proc. Int’l Conf. on Aspect-
Oriented Software Development (AOSD ’09). ACM, 2009, pp. 243–254.

[3] Airbnb JavaScript Style Guide. 2014. url: https : / / github . com / airbnb /
javascript (visited on 05/31/2017).

[4] R. L. Akers, I. D. Baxter, and M. Mehlich. “Re-Engineering C++ Com-
ponents Via Automatic Program Transformation”. In: Proc. ACM Symp.
on Partial Evaluation and Program Manipulation (PEPM ’04). ACM, 2004,
pp. 51–55.

[5] V. Alves, F. Calheiros, V. Nepomuceno, A. Menezes, S. Soares, and P. Borba.
“FLiP: Managing Software Product Line Extraction and Reaction with As-
pects”. In: Proc. Int’l Software Product Line Conf. (SPLC ’08). IEEE, 2008,
p. 354.

[6] V. Alves, R. Gheyi, T. Massoni, U. Kulesza, P. Borba, and C. Lucena. “Re-
factoring Product Lines”. In: Proc. Int’l Conf. on Generative Programming
and Component Engineering (GPCE ’06). ACM, 2006, pp. 201–210.

[7] V. Alves, P. Matos Jr., L. Cole, A. Vasconcelos, P. Borba, and G. Ramalho.
“Extracting and Evolving Code in Product Lines with Aspect-Oriented Pro-
gramming”. In: Trans. Aspect-Oriented Softw. Development IV. Springer,
2007, pp. 117–142.

[8] V. Alves, P. Matos, L. Cole, P. Borba, and G. Ramalho. “Extracting and
Evolving Mobile Games Product Lines”. In: Proc. Int’l Software Product Line
Conf. (SPLC ’05). Rennes, France: Springer, 2005, pp. 70–81.

[9] S. W. Ambler and P. J. Sadalage. Refactoring Databases: Evolutionary
Database Design. Boston, MA, USA: Addison-Wesley, 2006.

[10] H. S. de Andrade, E. Almeida, and I. Crnkovic. “Architectural Bad Smells
in Software Product Lines: An Exploratory Study”. In: Companion to the
Proc. Working Conf. on Software Architecture (WICSA ’14). ACM, 2014,
12:1–12:6.

https://github.com/airbnb/javascript
https://github.com/airbnb/javascript

194 Bibliography

[11] Antenna: An Ant-to-End Solution for Wireless Java. 2010. url: http : / /
antenna.sourceforge.net/ (visited on 10/15/2018).

[12] W. Antkiewicz Micha land Ji, T. Berger, K. Czarnecki, T. Schmorleiz, R.
Lämmel, Ş. Stănciulescu, A. W ↪asowski, and I. Schaefer. “Flexible Product
Line Engineering with a Virtual Platform”. In: Companion to the Proc. Int’l
Conf. on Software Engineering (ICSE ’14). ACM, 2014, pp. 532–535.

[13] S. Apel, D. Batory, C. Kästner, and G. Saake. Feature-Oriented Software
Product Lines – Concepts and Implementation. Berlin Heidelberg, Germany:
Springer, 2013.

[14] S. Apel, C. Kästner, M. Kuhlemann, and T. Leich. “Pointcuts, Advice, Re-
finements, and Collaborations: Similarities, Differences, and Synergies”. In:
Innov. Syst. Softw. Eng. 3.4 (2007). issn: 1614-5046.

[15] S. Apel and C. Kästner. “An Overview of Feature-Oriented Software Devel-
opment”. In: J. Object Technol. 8.5 (2009), pp. 49–84.

[16] S. Apel, C. Kästner, and C. Lengauer. “Language-Independent and Au-
tomated Software Composition: The FeatureHouse Experience”. In: IEEE
Trans. Softw. Eng. 39.1 (2013), pp. 63–79.

[17] S. Apel, S. Kolesnikov, J. Liebig, C. Kästner, M. Kuhlemann, and T. Leich.
“Access Control in Feature-oriented Programming”. In: Sci. Comput. Prog.
77.3 (2012), pp. 174–187.

[18] S. Apel, C. Lengauer, B. Möller, and C. Kästner. “An Algebraic Foundation
for Automatic Feature-Based Program Synthesis”. In: Sci. Comput. Prog.
75.11 (2010), pp. 1022–1047.

[19] F. Arcelli Fontana, M. V. Mäntylä, M. Zanoni, and A. Marino. “Comparing
and Experimenting Machine Learning Techniques for Code Smell Detection”.
In: Empir. Softw. Eng. 21.3 (2016), pp. 1143–1191.

[20] F. Arcelli Fontana and M. Zanoni. “Code Smell Severity Classification Using
Machine Learning Techniques”. In: Knowledge-Based Systems 128 (2017),
pp. 43–58.

[21] W. K. G. Assunção and S. R. Vergilio.“Feature Location for Software Product
Line Migration: A Mapping Study”. In: Proc. Int’l Software Product Line
Conf. (SPLC ’14) Companion. ACM, 2014, pp. 52–59.

[22] C. Atkinson, J. Bayer, and D. Muthig. “Component-Based Product Line
Development: The KobrA Approach”. In: Proc. Int’l Software Product Line
Conf. (SPLC 1). Kluwer Academic Publishers, 2000, pp. 289–309.

[23] L. Aversano, M. Di Penta, and I. D. Baxter. “Handling Preprocessor-Condi-
tioned Declarations”. In: Proc. Int’l Working Conf. on Source Code Analysis
and Manipulation (SCAM ’02). IEEE, 2002, pp. 83–92.

[24] B. S. Baker.“A Program for Identifying Duplicated Code”. In: Computing Sci-
ence and Statistics: Proc. Symp. on the Interface (CSS ’92). Interface Foun-
dation of North America, 1992, pp. 49–57.

http://antenna.sourceforge.net/
http://antenna.sourceforge.net/

Bibliography 195

[25] B. S. Baker.“On Finding Duplication and Near-Duplication in Large Software
Systems”. In: Proc. Working Conf. on Reverse Engineering (WCRE ’95).
IEEE, 1995, pp. 86–95.

[26] M. Balazinska, E. Merlo, M. Dagenais, B. Lagüe, and K. Kontogiannis.
“Advanced Clone-Analysis to Support Object-Oriented System Refactoring”.
In: Proc. Working Conf. on Reverse Engineering (WCRE ’00). IEEE, 2000,
pp. 98–107.

[27] M. Balazinska, E. Merlo, M. Dagenais, B. Lagüe, and K. Kontogiannis. “Par-
tial Redesign of Java Software Systems Based on Clone Analysis”. In: Proc.
Working Conf. on Reverse Engineering (WCRE ’99). IEEE, 1999, pp. 326–
336.

[28] V. R. Basili, L. C. Briand, and W. L. Melo. “A Validation of Object-Oriented
Design Metrics as Quality Indicators”. In: IEEE Trans. Softw. Eng. 22.10
(1996), pp. 751–761.

[29] H. A. Basit, D. C. Rajapakse, and S. Jarzabek. “An Empirical Study on
Limits of Clone Unification Using Generics”. In: Proc. Int’l Conf. on Software
Engineering and Knowledge Engineering (SEKE ’05). 2005, pp. 109–114.

[30] P. G. Bassett. Framing Software Reuse: Lessons from the Real World. Upper
Saddle River, NJ, USA: Prentice-Hall, 1997.

[31] D. Batory. “Feature Models, Grammars, and Propositional Formulas”. In:
Proc. Int’l Software Product Line Conf. (SPLC ’05). Springer, 2005, pp. 7–
20.

[32] D. Batory, J. N. Sarvela, and A. Rauschmayer. “Scaling Step-Wise Refine-
ment”. In: IEEE Trans. Softw. Eng. 30.6 (2004), pp. 355–371.

[33] G. Bavota, R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lucia.
“Methodbook: Recommending Move Method Refactorings via Relational
Topic Models”. In: IEEE Trans. Softw. Eng. 40.7 (2014), pp. 671–694.

[34] G. Bavota, A. Qusef, R. Oliveto, A. De Lucia, and D. Binkley. “An Empir-
ical Analysis of the Distribution of Unit Test Smells and Their Impact on
Software Maintenance”. In: Proc. IEEE Int’l Conf. on Software Maintenance
(ICSM ’12). IEEE, 2012, pp. 56–65.

[35] I. D. Baxter and M. Mehlich. “Preprocessor Conditional Removal by Sim-
ple Partial Evaluation”. In: Proc. Working Conf. on Reverse Engineering
(WCRE ’01). IEEE, 2001, pp. 281–290.

[36] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. “Clone Detec-
tion Using Abstract Syntax Trees”. In: Proc. IEEE Int’l Conf. on Software
Maintenance (ICSM ’98). IEEE, 1998, pp. 368–377.

[37] K. Beck and W. Cunningham. Using Pattern Languages for Object-Oriented
Programs. Tech. rep. CR-87-43. Presented at the OOPSLA’87 Workshop on
Specification and Design for Object-Oriented Programming. Tektronix, Inc.,
Sept. 1987.

196 Bibliography

[38] C. Berger, H. Rendel, and B. Rumpe. “Measuring the Ability to Form a
Product Line from Existing Products”. In: Proc. Int’l Work. on Variability
Modeling of Software-Intensive Systems (VaMoS ’10). University of Duisburg-
Essen, Germany, 2010, pp. 151–154.

[39] T. Berger, D. Nair, R. Rublack, J. M. Atlee, K. Czarnecki, and A. W ↪asowski.
“Three Cases of Feature-Based Variability Modeling in Industry”. In: Proc.
Int’l Conf. on Model Driven Engineering Languages and Systems (MOD-
ELS ’14). Springer, 2014, pp. 302–319.

[40] T. Berger, S. She, R. Lotufo, A. W ↪asowski, and K. Czarnecki. “Variabil-
ity Modeling in the Real: A Perspective From the Operating Systems Do-
main”. In: Proc. IEEE/ACM Int’l Conf. on Automated Software Engineering
(ASE ’10). ACM, 2010, pp. 73–82.

[41] J. Bosch and P. Bosch-Sijtsema. “Introducing Agile Customer-Centered De-
velopment in a Legacy Software Product Line”. In: Softw.: Pract. Exper. 41.8
(2011), pp. 871–882.

[42] W. H. Brown, R. C. Malveau, H. W. McCormick, and T. J. Mowbray. An-
tiPatterns: Refactoring Software, Architectures, and Projects in Crisis. New
York, NY, USA: John Wiley & Sons, Ltd., 1998.

[43] J. Businge, M. Openja, S. Nadi, E. Bainomugisha, and T. Berger. “Clone-
Based Variability Management in the Android Ecosystem”. In: Proc. Int’l
Conf. on Software Maintenance and Evolution (ICSME ’18). IEEE, 2018,
pp. 625–634.

[44] F. Calheiros, V. Nepomuceno, P. Borba, S. Soares, and V. Alves. “Product
Line Variability Refactoring Tool”. In: Proc. ECOOP Work. on Refactoring
Tools (WRT ’07). Technical University of Berlin, Germany, 2007, pp. 32–33.

[45] A. Carette, M. A. A. Younes, G. Hecht, N. Moha, and R. Rouvoy.“Investigat-
ing the Energy Impact of Android Smells”. In: Proc. Int’l Conf. on Software
Analysis, Evolution, and Reengineering (SANER ’17). IEEE, 2017, pp. 115–
126.

[46] M. Cartwright and M. Shepperd. “An Empirical Investigation of an Object-
Oriented Software System”. In: IEEE Trans. Softw. Eng. 26.8 (2000), pp. 786–
796.

[47] E. Casais.“The Automatic Reorganization of Object Oriented Hierarchies – A
Case Study”. In: Object Oriented Systems 2.1 (1994), pp. 95–115.

[48] W. Chae and M. Blume. “Building a Family of Compilers”. In: Proc. Int’l
Software Product Line Conf. (SPLC ’08). IEEE, 2008, pp. 307–316.

[49] A. Chatzigeorgiou, S. Xanthos, and G. Stephanides. “Evaluating Object-Ori-
ented Designs with Link Analysis”. In: Proc. Int’l Conf. on Software Engi-
neering (ICSE ’04). IEEE, 2004, pp. 656–665.

[50] CheckStyle. 2004. url: http : / / checkstyle . sourceforge . net/ (visited on
05/02/2017).

[51] S. R. Chidamber and C. F. Kemerer. “A Metrics Suite for Object Oriented
Design”. In: IEEE Trans. Softw. Eng. 20.6 (1994), pp. 476–493.

http://checkstyle.sourceforge.net/

Bibliography 197

[52] P. Clements and C. Krueger. “Point/Counterpoint: Being Proactive Pays Off
/Eliminating the Adoption Barrier”. In: IEEE Softw. 19.4 (2002), pp. 28–31.

[53] P. Clements and L. Northrop. Software Product Lines: Practices and Pat-
terns. Boston, MA, USA: Addison-Wesley, 2001.

[54] N. Cliff. Ordinal Methods for Behavioral Data Analysis. Erlbaum, 1996.

[55] Code Smell. Dec. 2014. url: http://wiki .c2.com/?CodeSmell (visited on
01/06/2020).

[56] J. Cohen. Statistical Power Analysis for the Behavioral Sciences. 2nd ed.
Erlbaum, 1988.

[57] M. L. Collard, H. H. Kagdi, and J. I. Maletic. “An XML-Based Lightweight
C++ Fact Extractor”. In: Proc. Int’l Work. on Program Comprehension
(IWPC ’03). IEEE, 2003, pp. 134–143.

[58] R. Conradi and B. Westfechtel. “Version Models for Software Configuration
Management”. In: ACM Comput. Surv. 30.2 (June 1998), pp. 232–282.

[59] J. R. Cordy.“Comprehending Reality – Practical Barriers to Industrial Adop-
tion of Software Maintenance Automation”. In: Proc. Int’l Work. on Program
Comprehension (IWPC ’03). IEEE, 2003, pp. 196–205.

[60] M. V. Couto, M. T. Valente, and E. Figueiredo.“Extracting Software Product
Lines: A Case Study Using Conditional Compilation”. In: Proc. European
Conf. on Software Maintenance and Reengineering (CSMR ’11). IEEE, 2011,
pp. 191–200.

[61] K. Czarnecki and U. W. Eisenecker. Generative Programming. Boston, MA,
USA: Addison-Wesley, 2000.

[62] M. D’Ambros, A. Bacchelli, and M. Lanza. “On the Impact of Design Flaws
on Software Defects”. In: Proc. Int’l Conf. on Quality Software (QSIC ’10).
IEEE, 2010, pp. 23–31.

[63] J. J. Deeks, D. G. Altman, and M. J. Bradburn. “Statistical Methods for
Examining Heterogeneity and Combining Results from Several Studies in
Meta-Analysis”. In: Systematic Reviews in Health Care: Meta-Analysis in
Context. John Wiley & Sons, Ltd., 2001, pp. 291–299.

[64] I. Deligiannis, M. Shepperd, M. Roumeliotis, and I. Stamelos. “An Empirical
Investigation of an Object-Oriented Design Heuristic for Maintainability”. In:
J. Syst. Softw. 65.2 (2003), pp. 127–139.

[65] I. Deligiannis, I. Stamelos, L. Angelis, M. Roumeliotis, and M. Shepperd. “A
Controlled Experiment Investigation of an Object-Oriented Design Heuristic
for Maintainability”. In: J. Syst. Softw. 72.2 (2004), pp. 129–143.

[66] A. van Deursen and L. Moonen. “The Video Store Revisited–Thoughts on
Refactoring and Testing”. In: Proc. Int’l Conf. on eXtreme Programming and
Flexible Processes in Software Engineering (XP ’02). 2002, pp. 71–76.

[67] A. van Deursen, L. Moonen, A. van den Bergh, and G. Kok.“Refactoring Test
Code”. In: Proc. Int’l Conf. on eXtreme Programming and Flexible Processes
in Software Engineering (XP ’01). 2001, pp. 92–95.

http://wiki.c2.com/?CodeSmell

198 Bibliography

[68] K. Dhambri, H. Sahraoui, and P. Poulin. “Visual Detection of Design Anoma-
lies”. In: Proc. European Conf. on Software Maintenance and Reengineering
(CSMR ’08). IEEE, 2008, pp. 279–283.

[69] M. Di Penta, L. Cerulo, Y.-G. Guéhéneuc, and G. Antoniol. “An Empirical
Study of the Relationships Between Design Pattern Roles and Class Change
Proneness”. In: Proc. IEEE Int’l Conf. on Software Maintenance (ICSM ’08).
IEEE, 2008, pp. 217–226.

[70] C. Dietrich, R. Tartler, W. Schröder-Preikschat, and D. Lohmann.“A Robust
Approach for Variability Extraction From the Linux Build System”. In: Proc.
Int’l Software Product Line Conf. (SPLC ’12). ACM, 2012, pp. 21–30.

[71] D. Dig and R. Johnson. “How Do APIs Evolve? A Story of Refactoring”. In:
Softw. Maint. Evol.: Res. Pract. 18.2 (2006), pp. 83–107.

[72] E. W. Dijkstra. A Discipline of Programming. Upper Saddle River, NJ, USA:
Prentice-Hall, 1976.

[73] E. W. Dijkstra. “On the Role of Scientific Thought”. In: Selected Writings on
Computing: A Personal Perspective. Springer, 1982, pp. 60–66.

[74] N. Dintzner, A. van Deursen, and M. Pinzger. “FEVER: Feature-Oriented
Changes and Artefact Co-Evolution in Highly Configurable Systems”. In:
Empir. Softw. Eng. 23.2 (2018), pp. 90–952.

[75] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk. “Feature Location in
Source Code: A Taxonomy and Survey”. In: Softw.: Evol. Proc. 25.1 (Nov.
2013), pp. 53–95.

[76] A. J. Dobson and A. Barnett. An Introduction to Generalized Linear Models.
3rd ed. CRC Press, 2008.

[77] E. Duala-Ekoko and M. P. Robillard. “Clonetracker: Tool Support for
Code Clone Management”. In: Proc. Int’l Conf. on Software Engineering
(ICSE ’08). ACM, 2008, pp. 843–846.

[78] E. Duala-Ekoko and M. P. Robillard. “Tracking Code Clones in Evolving
Software”. In: Proc. Int’l Conf. on Software Engineering (ICSE ’07). IEEE,
2007, pp. 158–167.

[79] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, and K. Czar-
necki. “An Exploratory Study of Cloning in Industrial Software Product
Lines”. In: Proc. European Conf. on Software Maintenance and Reengineering
(CSMR ’13). IEEE, 2013, pp. 25–34.

[80] A. N. Duc, A. Mockus, R. Hackbarth, and J. Palframan. “Forking and Coor-
dination in Multi-Platform Development: A Case Study”. In: Proc. 2014 Int’l
Symp. on Empirical Software Engineering (ESEM ’14). ACM, 2014, 59:1–
59:10.

[81] S. Ducasse, M. Rieger, and G. Golomingi. “Tool Support for Refactoring
Duplicated OO Code”. In: Proc. ECOOP Work. on Experiences in Object-
Oriented Re-Engineering. Forschungszentrum Informatik, Karlsruhe, 1999.

Bibliography 199

[82] Eclipse C/C++ Development User Guide > Refactor Menu Actions. 2007.
url: https://help.eclipse.org/oxygen/index.jsp?topic=%2Forg.eclipse.cdt.
doc.user%2Freference%2Fcdt u m refactor.htm (visited on 11/26/2017).

[83] Eclipse Java Development User Guide > Refactor Actions. 2013. url: http:
//help.eclipse.org/oxygen/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%
2Freference%2Fref-menu-refactor.htm (visited on 11/26/2017).

[84] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and A. Mockus. “Does
Code Decay? Assessing the Evidence from Change Management Data”. In:
IEEE Trans. Softw. Eng. 27.1 (Jan. 2001), pp. 1–12.

[85] T. Eisenbarth, R. Koschke, and D. Simon. “Locating Features in Source
Code”. In: IEEE Trans. Softw. Eng. 29.3 (2003), pp. 210–224.

[86] K. El Emam. A Methodology for Validating Software Product Metrics. Tech.
rep. NCR 44142. Ottawa, Ontario, Canada: National Research Council, June
2000.

[87] K. El Emam, S. Benlarbi, N. Goel, and S. N. Rai. “The Confounding Effect
of Class Size on the Validity of Object-Oriented Metrics”. In: IEEE Trans.
Softw. Eng. 27.7 (2001), pp. 630–650.

[88] E. van Emden and L. Moonen. “Java Quality Assurance by Detecting Code
Smells”. In: Proc. Working Conf. on Reverse Engineering (WCRE ’02). IEEE,
2002, pp. 97–106.

[89] M. D. Ernst, G. J. Badros, and D. Notkin. “An Empirical Analysis of C
Preprocessor Use”. In: IEEE Trans. Softw. Eng. 28.12 (2002), pp. 1146–1170.

[90] ESLint: The Pluggable Linting Utility for JavaScript and JSX. 2013. url:
http://eslint.org/ (visited on 05/05/2017).

[91] D. Faust and C. Verhoef. “Software product line migration and deployment”.
In: Softw.: Pract. Exper. 33.10 (2003), pp. 933–955.

[92] J.-M. Favre. “Understanding-in-the-Large”. In: Proc. Int’l Work. on Program
Comprehension (IWPC ’97). IEEE, 1997, pp. 29–38.

[93] J. Feigenspan, C. Kästner, S. Apel, J. Liebig, M. Schulze, R. Dachselt, M. Pa-
pendieck, T. Leich, and G. Saake. “Do Background Colors Improve Program
Comprehension in the #ifdef Hell?” In: Empir. Softw. Eng. 18.4 (Aug. 2013),
pp. 699–745. url: http://link.springer.com/article/10.1007%2Fs10664-012-
9208-x.

[94] J. Feigenspan, C. Kästner, J. Liebig, S. Apel, and S. Hanenberg. “Measuring
Programming Experience”. In: Proc. Int’l Conf. on Program Comprehension
(ICPC ’12). 2012, pp. 73–82.

[95] W. Fenske, J. Meinicke, S. Schulze, S. Schulze, and G. Saake. “Variant-
Preserving Refactorings for Migrating Cloned Products to a Product Line”.
In: Proc. Int’l Conf. on Software Analysis, Evolution, and Reengineering
(SANER ’17). IEEE, 2017, pp. 316–326.

[96] W. Fenske and S. Schulze.“Code Smells Revisited: A Variability Perspective”.
In: Proc. Int’l Work. on Variability Modeling of Software-Intensive Systems
(VaMoS ’15). ACM, 2015, pp. 3–10.

https://help.eclipse.org/oxygen/index.jsp?topic=%2Forg.eclipse.cdt.doc.user%2Freference%2Fcdt_u_m_refactor.htm
https://help.eclipse.org/oxygen/index.jsp?topic=%2Forg.eclipse.cdt.doc.user%2Freference%2Fcdt_u_m_refactor.htm
http://help.eclipse.org/oxygen/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fref-menu-refactor.htm
http://help.eclipse.org/oxygen/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fref-menu-refactor.htm
http://help.eclipse.org/oxygen/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fref-menu-refactor.htm
http://eslint.org/
http://link.springer.com/article/10.1007%2Fs10664-012-9208-x
http://link.springer.com/article/10.1007%2Fs10664-012-9208-x

200 Bibliography

[97] W. Fenske, S. Schulze, D. Meyer, and G. Saake. “When Code Smells Twice as
Much: Metric-Based Detection of Variability-Aware Code Smells”. In: Proc.
Int’l Working Conf. on Source Code Analysis and Manipulation (SCAM ’15).
IEEE, 2015, pp. 171–180.

[98] W. Fenske, S. Schulze, and G. Saake. “How Preprocessor Annotations
(Do Not) Affect Maintainability: A Case Study on Change-Proneness”.
In: Proc. Int’l Conf. on Generative Programming: Concepts & Experiences
(GPCE ’17). ACM, 2017, pp. 77–90.

[99] W. Fenske, T. Thüm, and G. Saake. “A Taxonomy of Software Product Line
Reengineering”. In: Proc. Int’l Work. on Variability Modeling of Software-
Intensive Systems (VaMoS ’14). ACM, 2014, 4:1–4:8.

[100] J. Ferrante, K. J. Ottenstein, and J. D. Warren. “The Program Dependence
Graph and Its Use in Optimization”. In: ACM Trans. Program. Lang. Syst.
9.3 (1987), pp. 319–349.

[101] G. Ferreira, M. Malik, C. Kästner, J. Pfeffer, and S. Apel. “Do #ifdefs In-
fluence the Occurrence of Vulnerabilities? An Empirical Study of the Linux
Kernel”. In: Proc. Int’l Software Product Line Conf. (SPLC ’16). ACM, 2016,
pp. 65–73.

[102] E. Figueiredo, C. Sant’Anna, A. Garcia, and C. Lucena. “Applying and Eval-
uating Concern-Sensitive Design Heuristics”. In: J. Syst. Softw. 85.2 (2012),
pp. 227–243.

[103] M. Fischer, M. Pinzger, and H. Gall. “Populating a Release History Database
from Version Control and Bug Tracking Systems”. In: Proc. IEEE Int’l Conf.
on Software Maintenance (ICSM ’03). IEEE, 2003, pp. 23–32.

[104] R. A. Fisher. “On the Interpretation of χ2 from Contingency Tables, and the
Calculation of P”. In: J. Royal Statistical Society 85.1 (1922), pp. 87–94.

[105] M. Fokaefs, N. Tsantalis, and A. Chatzigeorgiou. “JDeodorant: Identification
and Removal of Feature Envy Bad Smells”. In: Proc. IEEE Int’l Conf. on
Software Maintenance (ICSM ’07). IEEE, 2007, pp. 519–520.

[106] M. Fowler. CodeSmell. Feb. 2006. url: https ://martinfowler . com/bliki/
CodeSmell.html (visited on 05/22/2017).

[107] M. Fowler, K. Beck, J. Brant, and W. Opdyke. Refactoring: Improving the
Design of Existing Code. Boston, MA, USA: Addison-Wesley, 1999.

[108] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Boston, MA, USA: Addison-Wesley,
1995.

[109] K. Gao and T. M. Khoshgoftaar. “A Comprehensive Empirical Study of
Count Models for Software Fault Prediction”. In: IEEE Trans. Reliability
56.2 (2007), pp. 223–236.

[110] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic. “Identifying Archi-
tectural Bad Smells”. In: Proc. European Conf. on Software Maintenance and
Reengineering (CSMR ’09). IEEE, 2009, pp. 255–258.

https://martinfowler.com/bliki/CodeSmell.html
https://martinfowler.com/bliki/CodeSmell.html

Bibliography 201

[111] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic. “Toward a Catalogue
of Architectural Bad Smells”. In: Proc. Int’l ACM SIGSOFT Conf. on Quality
of Software Architectures (QoSA ’09). Springer, 2009, pp. 146–162.

[112] A. Garrido.“Program Refactoring in the Presence of Preprocessor Directives”.
PhD thesis. Champaign, IL, USA: University of Illinois, 2005.

[113] A. Garrido and R. Johnson. “Analyzing Multiple Configurations of a C Pro-
gram”. In: Proc. IEEE Int’l Conf. on Software Maintenance (ICSM ’05).
IEEE, 2005, pp. 379–388.

[114] A. Garrido and R. Johnson. “Embracing the C Preprocessor During Refac-
toring”. In: Softw.: Evol. Proc. 25.12 (2013), pp. 1285–1304.

[115] A. Garrido and R. Johnson. “Refactoring C with Conditional Compila-
tion”. In: Proc. IEEE/ACM Int’l Conf. on Automated Software Engineering
(ASE ’03). IEEE, 2003, pp. 323–326.

[116] Y. Ghanam and F. Maurer. “Extreme Product Line Engineering – Refactor-
ing for Variability: A Test-Driven Approach”. In: Proc. Int’l Conf. on Ag-
ile Processes in Software Engineering and Extreme Programming (XP ’10).
Springer, 2010, pp. 43–57.

[117] M. L. Griss. “Implementing Product-Line Features by Composing Aspects”.
In: Proc. Int’l Software Product Line Conf. (SPLC 1). Kluwer Academic Pub-
lishers, 2000, pp. 271–288.

[118] R. J. Grissom and J. J. Kim. Effect Sizes for Research: A Broad Practical
Approach. Erlbaum, 2005.

[119] W. G. Griswold.“Program Restructuring as an Aid to Software Maintenance”.
PhD thesis. Seattle, WA, USA: University of Washington, 1991.

[120] D. Gupta, P. Jalote, and G. Barua. “A Formal Framework for On-Line Soft-
ware Version Change”. In: IEEE Trans. Softw. Eng. 22.2 (1996), pp. 120–
131.

[121] J. van Gurp and C. Prehofer. “Version Management Tools as a Basis for In-
tegrating Product Derivation and Software Product Families”. In: Proc. Int’l
Work. on Variability Management – Working with Variability Mechanisms.
Fraunhofer IESE, 2006, pp. 48–58.

[122] S. Habchi, G. Hecht, R. Rouvoy, and N. Moha. “Code Smells in iOS Apps:
How do They Compare to Android?” In: Proc. Int’l Conf. on Mobile Software
Engineering and Systems (MOBILESoft ’17). IEEE, 2017, pp. 110–121.

[123] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell. “A Systematic
Literature Review on Fault Prediction Performance in Software Engineering”.
In: IEEE Trans. Softw. Eng. 38.6 (2012), pp. 1276–1304.

[124] T. Hall, M. Zhang, D. Bowes, and Y. Sun. “Some Code Smells Have a Sig-
nificant but Small Effect on Faults”. In: ACM Trans. Softw. Eng. Methodol.
23.4 (Sept. 2014), 33:1–33:39.

[125] G. Hecht, N. Moha, and R. Rouvoy. “An Empirical Study of the Performance
Impacts of Android Code Smells”. In: Proc. Int’l Conf. on Mobile Software
Engineering and Systems (MOBILESoft ’16). ACM, 2016, pp. 59–69.

202 Bibliography

[126] G. Hecht, R. Rouvoy, N. Moha, and L. Duchien. “Detecting Antipatterns in
Android Apps”. In: Proc. Int’l Conf. on Mobile Software Engineering and
Systems (MOBILESoft ’15). IEEE, 2015, pp. 148–149.

[127] J. Henkel and A. Diwan. “CatchUp! Capturing and Replaying Refactorings
to Support API Evolution”. In: Proc. Int’l Conf. on Software Engineering
(ICSE ’05). ACM, 2005, pp. 274–283.

[128] F. Hermans and D. Dig. “Bumblebee: A Refactoring Environment for Spread-
sheet Formulas”. In: Proc. Int’l Symp. on the Foundations of Software Engi-
neering (FSE ’14). ACM, 2014, pp. 747–750.

[129] F. Hermans, M. Pinzger, and A. van Deursen. “Detecting and Refactoring
Code Smells in Spreadsheet Formulas”. In: Empir. Softw. Eng. 20.2 (2015),
pp. 549–575.

[130] F. Hermans, M. Pinzger, and A. van Deursen. “Detecting and Visualizing
Inter-Worksheet Smells in Spreadsheets”. In: Proc. Int’l Conf. on Software
Engineering (ICSE ’12). IEEE, 2012, pp. 441–451.

[131] F. Hermans, M. Pinzger, and A. van Deursen. “Detecting Code Smells in
Spreadsheet Formulas”. In: Proc. IEEE Int’l Conf. on Software Maintenance
(ICSM ’12). IEEE, 2012, pp. 409–418.

[132] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. “ARIES: Refactoring Sup-
port Environment Based on Code Clone Analysis”. In: Proc. IASTED Conf.
on Software Engineering and Applications (SEA ’04). ACTA Press, 2004,
pp. 222–229.

[133] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. “ARIES: Refactoring Sup-
port Tool for Code Clone”. In: Proc. Work. on Software Quality (WoSQ ’05).
ACM, 2005, pp. 1–4.

[134] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. “Method and Implementa-
tion for Investigating Code Clones in a Software System”. In: Inform. Software
Tech. 49.9-10 (2007), pp. 985–998.

[135] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue.“Refactoring Support Based
on Code Clone Analysis”. In: Proc. Int’l Conf. on Product Focused Software
Process Improvement (PROFES ’04). Vol. 3009. Springer, 2004, pp. 220–233.

[136] Y. Higo, S. Kusumoto, and K. Inoue. “A Metric-Based Approach to Identi-
fying Refactoring Opportunities for Merging Code Clones in a Java Software
System”. In: Softw. Maint. Evol.: Res. Pract. 20.6 (Nov. 2008), pp. 435–461.

[137] J. M. Hilbe. Negative Binomial Regression. 2nd ed. Cambridge University
Press, 2011.

[138] D. Hou, P. Jablonski, and F. Jacob. “CnP: Towards an Environment for
the Proactive Management of Copy-and-Paste Programming”. In: Proc. Int’l
Conf. on Program Comprehension (ICPC ’09). IEEE, 2009, pp. 238–242.

[139] D. Hovemeyer and W. Pugh. “Finding Bugs is Easy”. In: ACM SIGPLAN
Not. 39.12 (Dec. 2004), pp. 92–106.

Bibliography 203

[140] M. Hozano, A. Garcia, B. Fonseca, and E. Costa. “Are You Smelling It?
Investigating how Similar Developers Detect Code Smells”. In: Information
and Software Technology (2017).

[141] E. Hull, K. Jackson, and J. Dick. Requirements Engineering. 4th. Springer,
2017.

[142] C. Hunsen, B. Zhang, J. Siegmund, C. Kästner, O. Leßenich, M. Becker,
and S. Apel. “Preprocessor-Based Variability in Open-Source and Industrial
Software Systems: An Empirical Study”. In: Empir. Softw. Eng. 21.2 (2016),
pp. 449–482.

[143] F. Jaafar, Y.-G. Guéhéneuc, S. Hamel, and F. Khomh. “Mining the Relation-
ship Between Anti-Patterns Dependencies and Fault-Proneness”. In: Proc.
Working Conf. on Reverse Engineering (WCRE ’13). IEEE, 2013, pp. 351–
360.

[144] S. Jarzabek, P. Bassett, H. Zhang, and W. Zhang. “XVCL: XML-Based Vari-
ant Configuration Language”. In: Proc. Int’l Conf. on Software Engineering
(ICSE ’03). Portland, Oregon: IEEE, 2003, pp. 810–811.

[145] J. H. Johnson. “Identifying Redundancy in Source Code Using Fingerprints”.
In: Proc. Conf. of the Centre for Advanced Studies on Collaborative Research
(CASCON ’93). IBM Press, 1993, pp. 171–183.

[146] S. C. Johnson. Lint, a C Program Checker. Tech. rep. Computer Science
Technical Report 65. Murray Hill, USA: Bell Telephone Laboratories, 1977.

[147] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner. “Do Code Clones
Matter?” In: Proc. Int’l Conf. on Software Engineering (ICSE ’09). IEEE,
2009, pp. 485–495.

[148] N. Juillerat and B. Hirsbrunner. “An Algorithm for Detecting and Remov-
ing Clones in Java Code”. In: Proc. Work. on Software Evolution through
Transformations: Embracing the Change (SeTra ’06). EASST, 2006, pp. 63–
74.

[149] T. Kamiya, S. Kusumoto, and K. Inoue. “CCFinder: A Multilinguistic Token-
Based Code Clone Detection System for Large Scale Source Code”. In: IEEE
Trans. Softw. Eng. 28.7 (2002), pp. 654–670.

[150] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peter-
son. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Tech. rep.
CMU/SEI-90-TR-21. Pittsburgh, PA, USA: SEI, 1990.

[151] K. C. Kang, M. Kim, J. Lee, and B. Kim. “Feature-Oriented Re-Engineering
of Legacy Systems into Product Line Assets – A Case Study”. In: Proc. Int’l
Software Product Line Conf. (SPLC ’05). Springer, 2005, pp. 45–56.

[152] C. Kapser and M. W. Godfrey. “”Cloning Considered Harmful” Considered
Harmful: Patterns of Cloning in Software”. In: Empir. Softw. Eng. 13.6 (2008),
pp. 645–692.

[153] C. Kästner. “CIDE: Decomposing Legacy Applications into Features”. In:
Proc. Int’l Software Product Line Conf. (SPLC ’07) Second Volume. Ky-
oto, Japan: IEEE, 2007, pp. 149–150. isbn: 978-4-7649-0342-5. url: http:
//wwwiti.cs.uni-magdeburg.de/˜ckaestne/splc07demo.pdf.

http://wwwiti.cs.uni-magdeburg.de/~ckaestne/splc07demo.pdf
http://wwwiti.cs.uni-magdeburg.de/~ckaestne/splc07demo.pdf

204 Bibliography

[154] C. Kästner and S. Apel. “Type-Checking Software Product Lines – A Formal
Approach”. In: Proc. IEEE/ACM Int’l Conf. on Automated Software Engi-
neering (ASE ’08). IEEE, 2008, pp. 258–267.

[155] C. Kästner and S. Apel. “Virtual Separation of Concerns – A Second Chance
for Preprocessors”. In: J. Object Technol. 8.6 (2009), pp. 59–78.

[156] C. Kästner, S. Apel, and D. Batory. “A Case Study Implementing Features
Using AspectJ”. In: Proc. Int’l Software Product Line Conf. (SPLC ’07).
IEEE, 2007, pp. 223–232.

[157] C. Kästner, S. Apel, and M. Kuhlemann. “A Model of Refactoring Physically
and Virtually Separated Features”. In: Proc. Int’l Conf. on Generative Pro-
gramming and Component Engineering (GPCE ’09). ACM, 2009, pp. 157–
166.

[158] C. Kästner, S. Apel, and M. Kuhlemann. “Granularity in Software Product
Lines”. In: Proc. Int’l Conf. on Software Engineering (ICSE ’08). ACM, 2008,
pp. 311–320.

[159] C. Kästner, S. Apel, S. S. ur Rahman, M. Rosenmüller, D. Batory, and G.
Saake. “On the Impact of the Optional Feature Problem: Analysis and Case
Studies”. In: Proc. Int’l Software Product Line Conf. (SPLC ’09). SEI, 2009,
pp. 181–190.

[160] C. Kästner, A. Dreiling, and K. Ostermann. “Variability Mining: Consistent
Semi-Automatic Detection of Product-Line Features”. In: IEEE Trans. Softw.
Eng. 40.1 (Jan. 2014), pp. 67–82.

[161] C. Kästner, P. G. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann, and T.
Berger. “Variability-Aware Parsing in the Presence of Lexical Macros and
Conditional Compilation”. In: Proc. ACM SIGPLAN Conf. on Object-Ori-
ented Programming, Systems, Languages, and Applications (OOPSLA ’11).
ACM, 2011, pp. 805–824.

[162] C. Kästner, M. Kuhlemann, and D. Batory. “Automating Feature-Oriented
Refactoring of Legacy Applications”. In: Proc. ECOOP Work. on Refactoring
Tools (WRT ’07). Technical University of Berlin, Germany, 2007, pp. 62–63.

[163] Y. Kataoka, D. Notkin, M. D. Ernst, and W. G. Griswold. “Automated Sup-
port for Program Refactoring Using Invariants”. In: Proc. IEEE Int’l Conf.
on Software Maintenance (ICSM ’01). IEEE, 2001, p. 736.

[164] A. Kenner, C. Kästner, S. Haase, and T. Leich. “TypeChef: Toward Type
Checking #ifdef Variability in C”. In: Proc. Int’l Work. on Feature-Oriented
Software Development (FOSD ’10). ACM, 2010, pp. 25–32.

[165] J. Kerievsky. Refactoring to Patterns. Boston, MA, USA: Addison-Wesley,
2004.

[166] B. W. Kernighan and D. M. Ritchie. The C Programming Language. Upper
Saddle River, NJ, USA: Prentice-Hall, 1978.

[167] M. Kessentini and A. Ouni.“Detecting Android Smells Using Multi-Objective
Genetic Programming”. In: Proc. Int’l Conf. on Mobile Software Engineering
and Systems (MOBILESoft ’17). IEEE, 2017, pp. 122–132.

Bibliography 205

[168] M. Kessentini, S. Vaucher, and H. Sahraoui. “Deviance from Perfection Is
a Better Criterion than Closeness to Evil when Identifying Risky Code”. In:
Proc. IEEE/ACM Int’l Conf. on Automated Software Engineering (ASE ’10).
ACM, 2010, pp. 113–122.

[169] F. Khomh, M. Di Penta, and Y.-G. Guéhéneuc. “An Exploratory Study of
the Impact of Code Smells on Software Change-Proneness”. In: Proc. Working
Conf. on Reverse Engineering (WCRE ’09). IEEE, 2009, pp. 75–84.

[170] F. Khomh, M. Di Penta, Y.-G. Guéhéneuc, and G. Antoniol.“An Exploratory
Study of the Impact of Antipatterns on Class Change- and Fault-Proneness”.
In: Empir. Softw. Eng. 17.3 (2012), pp. 243–275.

[171] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui. “BDTEX: A
GQM-Based Bayesian Approach for the Detection of Antipatterns”. In: J.
Syst. Softw. 84.4 (2011), pp. 559–572.

[172] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui. “A Bayesian Ap-
proach for the Detection of Code and Design Smells”. In: Proc. Int’l Conf.
on Quality Software (QSIC ’09). IEEE, 2009, pp. 305–314.

[173] C. Kiefer, A. Bernstein, and J. Tappolet. “Mining Software Repositories with
iSPARQL and a Software Evolution Ontology”. In: Proc. Int’l Work. on Min-
ing Software Repositories (MSR ’07). IEEE, 2007, pp. 10–18.

[174] J. Kim, D. Batory, and D. Dig. “Refactoring Java Software Product Lines”.
In: Proc. Int’l Software Product Line Conf. (SPLC ’17). ACM, 2017, pp. 59–
68.

[175] J. Kim, D. Batory, and D. Dig. “X15: A Tool for Refactoring Java Soft-
ware Product Lines”. In: Proc. Int’l Software Product Line Conf. (SPLC ’17).
ACM, 2017, pp. 28–31.

[176] M. Kim, D. Cai, and S. Kim. “An Empirical Investigation into the Role of
API-Level Refactorings during Software Evolution”. In: Proc. Int’l Conf. on
Software Engineering (ICSE ’11). ACM, 2011, pp. 151–160.

[177] M. Kim, V. Sazawal, D. Notkin, and G. Murphy.“An Empirical Study of Code
Clone Genealogies”. In: Proc. Int’l Symp. on the Foundations of Software
Engineering (FSE ’05). ACM, 2005, pp. 187–196.

[178] M. Kim, J. Lee, K. C. Kang, Y. Hong, and S. Bang.“Re-Engineering Software
Architecture of Home Service Robots: A Case Study”. In: Proc. Int’l Conf. on
Software Engineering (ICSE ’05). St. Louis, MO, USA: ACM, 2005, pp. 505–
513.

[179] B. Klatt, K. Krogmann, and C. Seidl. “Program Dependency Analysis for
Consolidating Customized Product Copies”. In: Proc. Int’l Conf. on Software
Maintenance and Evolution (ICSME ’14). IEEE, 2014, pp. 496–500.

[180] K. Kontogiannis, R. DeMori, M. Bernstein, M. Galler, and E. Merlo. “Pat-
tern Matching for Design Concept Localization”. In: Proc. Working Conf. on
Reverse Engineering (WCRE ’95). IEEE, 1995, pp. 96–103.

[181] R. Koschke. “Identifying and Removing Software Clones”. In: Software Evo-
lution. Springer, 2008, pp. 15–36.

206 Bibliography

[182] R. Koschke. “Large-Scale Inter-System Clone Detection Using Suffix Trees
and Hashing”. In: Softw.: Evol. Proc. 26.8 (2014), pp. 747–769.

[183] R. Koschke, P. Frenzel, A. P. J. Breu, and K. Angstmann. “Extending the
Reflexion Method For Consolidating Software Variants Into Product Lines”.
In: Softw. Qual. J. 17.4 (2009), pp. 331–366.

[184] J. Kreimer. “Adaptive Detection of Design Flaws”. In: Electronic Notes in
Theor. Comput. Sci. 141.4 (Dec. 2005), pp. 117–136.

[185] C. W. Krueger. “Easing the Transition to Software Mass Customization”.
In: Proc. Int’l Work. on Software Product-Family Engineering (PFE ’01),
Revised Papers. Springer, 2002, pp. 282–293.

[186] C. W. Krueger. “Towards a Taxonomy for Software Product Lines”. In: Proc.
Int’l Work. on Software Product-Family Engineering (PFE ’03), Revised Pa-
pers. Vol. 3014. Springer, 2004, pp. 323–331.

[187] J. Krüger, W. Fenske, J. Meinicke, T. Leich, and G. Saake. “Extracting Soft-
ware Product Lines: A Cost Estimation Perspective”. In: Proc. Int’l Software
Product Line Conf. (SPLC ’16). ACM, 2016, pp. 354–361.

[188] M. Kuhlemann. “Refactoring Feature Modules: Disciplined Generation of
Reusable Modules”. Dissertation. Germany: University of Magdeburg, 2011.

[189] M. Kuhlemann, D. Batory, and S. Apel. Refactoring Feature Modules. Tech.
rep. 15. School of Computer Science, University of Magdeburg, 2008.

[190] M. Kuhlemann, D. Batory, and S. Apel. “Refactoring Feature Modules”. In:
Proc. Int’l Conf. on Software Reuse (ICSR ’09). Springer, 2009, pp. 106–115.

[191] M. Kuhlemann, M. Rosenmüller, S. Apel, and T. Leich. “On the Duality
of Aspect-Oriented and Feature-Oriented Design Patterns”. In: Proc. AOSD
Work. on Aspects, Components, and Patterns for Infrastructure Software
(ACP4IS ’07). ACM, 2007. url: http : //doi . acm .org/10 . 1145/1233901 .
1233906.

[192] M. A. Laguna and Y. Crespo. “A Systematic Mapping Study on Software
Product Line Evolution: From Legacy System Reengineering to Product Line
Refactoring”. In: Sci. Comput. Prog. 78.8 (2013), pp. 1010–1034.

[193] A. Lakhotia and J.-/. Deprez. “Restructuring Programs by Tucking State-
ments into Functions”. In: Inform. Software Tech., Special Issue on Program
Slicing 40.11 (1998), pp. 677–689.

[194] F. Lanubile and G. Visaggio. “Extracting Reusable Functions by Flow Graph
Based Program Slicing”. In: IEEE Trans. Softw. Eng. 23.4 (1997), pp. 246–
259.

[195] M. Lanza and S. Ducasse. “Polymetric Views—A Lightweight Visual Ap-
proach to Reverse Engineering”. In: IEEE Trans. Softw. Eng. 29.9 (2003),
pp. 782–795.

[196] M. Lanza and R. Marinescu. Object-Oriented Metrics in Practice: Using Soft-
ware Metrics to Characterize, Evaluate, and Improve the Design of Object-
Oriented Systems. Berlin Heidelberg, Germany: Springer, 2006.

http://doi.acm.org/10.1145/1233901.1233906
http://doi.acm.org/10.1145/1233901.1233906

Bibliography 207

[197] T. D. LaToza, G. Venolia, and R. DeLine. “Maintaining Mental Models: A
Study of Developer Work Habits”. In: Proc. Int’l Conf. on Software Engi-
neering (ICSE ’06). ACM, 2006, pp. 492–501.

[198] D. Le, E. Walkingshaw, and M. Erwig. “#ifdef Confirmed Harmful: Pro-
moting Understandable Software Variation”. In: Proc. IEEE Symp. on Vi-
sual Languages and Human-Centric Computing (VL/HCC ’11). IEEE, 2011,
pp. 143–150.

[199] S. Lee, G. Bae, H. S. Chae, D.-H. Bae, and Y. R. Kwon.“Automated Schedul-
ing for Clone-Based Refactoring Using a Competent GA”. In: Softw.: Pract.
Exper. 41.5 (2011), pp. 521–550.

[200] M. Lejter, S. Meyers, and S. P. Reiss. “Support for Maintaining Object-Ori-
ented Programs”. In: IEEE Trans. Softw. Eng. 18.12 (1992), pp. 1045–1052.

[201] O. Leßenich, J. Siegmund, S. Apel, C. Kästner, and C. Hunsen. “Indicators
for Merge Conflicts in the Wild: Survey and Empirical Study”. In: Autom.
Softw. Eng. 25.2 (2018), pp. 279–313.

[202] W. Li and R. Shatnawi. “An Empirical Study of the Bad Smells and Class
Error Probability in the Post-Release Object-Oriented System Evolution”.
In: J. Syst. Softw. 80.7 (2007), pp. 1120–1128.

[203] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. “CP-Miner: Finding Copy-Paste and
Related Bugs in Large-Scale Software Code”. In: IEEE Trans. Softw. Eng.
32.3 (2006), pp. 176–192.

[204] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze. “An Analysis
of the Variability in Forty Preprocessor-Based Software Product Lines”. In:
Proc. Int’l Conf. on Software Engineering (ICSE ’10). Cape Town, South
Africa: ACM, 2010, pp. 105–114.

[205] J. Liebig, A. Janker, F. Garbe, S. Apel, and C. Lengauer. “Morpheus:
Variability-Aware Refactoring in the Wild”. In: Proc. Int’l Conf. on Software
Engineering (ICSE ’15). ACM, 2015, pp. 380–391.

[206] J. Liebig, C. Kästner, and S. Apel. “Analyzing the Discipline of Preprocessor
Annotations in 30 Million Lines of C Code”. In: Proc. Int’l Conf. on Aspect-
Oriented Software Development (AOSD ’11). ACM, 2011, pp. 191–202.

[207] E. Ligu, A. Chatzigeorgiou, T. Chaikalis, and N. Ygeionomakis. “Identifica-
tion of Refused Bequest Code Smells”. In: Proc. IEEE Int’l Conf. on Software
Maintenance (ICSM ’13). IEEE, 2013, pp. 392–395.

[208] M. Lindvall. “Are Large C++ Classes Change-Prone? An Empirical Investi-
gation”. In: Softw.: Pract. Exper. 28.15 (1998), pp. 1551–1558.

[209] L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed. “Variability Extraction
and Modeling for Product Variants”. In: Softw. & Syst. Modeling 16.4 (2017),
pp. 1179–1199.

[210] Linux Kernel Coding Style. 2016. url: https://www.kernel.org/doc/html/
v4.12/process/coding-style.html (visited on 07/07/2017).

https://www.kernel.org/doc/html/v4.12/process/coding-style.html
https://www.kernel.org/doc/html/v4.12/process/coding-style.html

208 Bibliography

[211] J. Liu, D. Batory, and C. Lengauer. “Feature Oriented Refactoring of Le-
gacy Applications”. In: Proc. Int’l Conf. on Software Engineering (ICSE ’06).
ACM, 2006, pp. 112–121.

[212] S. Livieri, Y. Higo, M. Matushita, and K. Inoue. “Very-Large Scale Code
Clone Analysis and Visualization of Open Source Programs Using Dis-
tributed CCFinder: D-CCFinder”. In: Proc. Int’l Conf. on Software Engi-
neering (ICSE ’07). IEEE, 2007, pp. 106–115.

[213] D. Lohmann, F. Scheler, R. Tartler, O. Spinczyk, and W. Schröder-
Preikschat. “A Quantitative Analysis of Aspects in the eCos Kernel”. In:
Proc. ACM SIGOPS/EuroSys European Conf. on Computer Systems (EU-
ROSYS ’11). ACM, 2006, pp. 191–204.

[214] R. E. Lopez-Herrejon and D. Batory. “A Standard Problem for Evaluating
Product-Line Methodologies”. In: Proc. Int’l Conf. on Generative and Com-
ponent-Based Software Engineering (GCSE ’01). Ed. by J. Bosch. Vol. 2186.
Lecture Notes in Computer Science. Springer, 2001, pp. 10–24.

[215] R. E. Lopez-Herrejon, L. Montalvillo-Mendizabal, and A. Egyed. “From Re-
quirements to Features: An Exploratory Study of Feature-Oriented Refactor-
ing”. In: Proc. Int’l Software Product Line Conf. (SPLC ’11). IEEE, 2011,
pp. 181–190.

[216] A. Lozano and M. Wermelinger. “Assessing the Effect of Clones on Change-
ability”. In: Proc. IEEE Int’l Conf. on Software Maintenance (ICSM ’08).
IEEE, 2008, pp. 227–236.

[217] A. Lozano, M. Wermelinger, and B. Nuseibeh. “Evaluating the Harmfulness
of Cloning: A Change Based Experiment”. In: Proc. Int’l Work. on Mining
Software Repositories (MSR ’07). IEEE, 2007, p. 18.

[218] W. Ma, L. Chen, Y. Zhou, and B. Xu. “Do We Have a Chance to Fix Bugs
When Refactoring Code Smells?” In: Proc. Int’l Conf. on Software Analysis,
Testing and Evolution (SATE ’16). IEEE, 2016, pp. 24–29.

[219] A. Maiga, N. Ali, N. Bhattacharya, A. Sabané, Y.-G. Guéhéneuc, and E.
Aı̈meur. “SMURF: A SVM-Based Incremental Anti-Pattern Detection Ap-
proach”. In: Proc. Working Conf. on Reverse Engineering (WCRE ’12).
IEEE, 2012, pp. 466–475.

[220] A. Maiga, N. Ali, N. Bhattacharya, A. Sabané, Y.-G. Guéhéneuc, G. Antoniol,
and E. Aı̈meur. “Support Vector Machines for Anti-Pattern Detection”. In:
Proc. IEEE/ACM Int’l Conf. on Automated Software Engineering (ASE ’12).
IEEE, 2012, pp. 278–281.

[221] R. Malaquias, M. Ribeiro, R. Bonifácio, E. Monteiro, F. Medeiros, A. Gar-
cia, and R. Gheyi. “The Discipline of Preprocessor-Based Annotations Does
#ifdef TAG n’t #endif Matter”. In: Proc. Int’l Conf. on Program Compre-
hension (ICPC ’17). IEEE, 2017, pp. 297–307.

[222] U. A. Mannan, I. Ahmed, R. A. M. Almurshed, D. Dig, and C. Jensen.
“Understanding Code Smells in Android Applications”. In: Proc. Int’l Conf.
on Mobile Software Engineering and Systems (MOBILESoft ’16). IEEE, 2016,
pp. 225–236.

Bibliography 209

[223] M. V. Mäntylä and C. Lassenius. “Subjective Evaluation of Software Evolv-
ability Using Code Smells: An Empirical Study”. In: Empir. Softw. Eng. 11.3
(2006), pp. 395–431.

[224] M. V. Mäntylä, J. Vanhanen, and C. Lassenius. “Bad Smells—Humans
as Code Critics”. In: Proc. IEEE Int’l Conf. on Software Maintenance
(ICSM ’04). IEEE, 2004, pp. 399–408.

[225] C. Marinescu. “Identification of Design Roles for the Assessment of Design
Quality in Enterprise Applications”. In: Proc. Int’l Conf. on Program Com-
prehension (ICPC ’06). IEEE, 2006, pp. 169–180.

[226] C. Marinescu, R. Marinescu, P. F. Mihancea, and R. Wettel. “iPlasma: An
Integrated Platform for Quality Assessment of Object-Oriented Design”. In:
Proc. IEEE Int’l Conf. on Software Maintenance (ICSM ’05) (Industrial and
Tool Volume). IEEE, 2005.

[227] R. Marinescu. “Detecting Design Flaws via Metrics in Object-Oriented Sys-
tems”. In: Proc. Int’l Conf. and Exibition on Technology of Object-Oriented
Languages and Systems (TOOLS ’01). IEEE, 2001, pp. 173–182.

[228] R. Marinescu. “Detection Strategies: Metrics-Based Rules for Detecting De-
sign Flaws”. In: Proc. IEEE Int’l Conf. on Software Maintenance (ICSM ’04).
IEEE, 2004, pp. 350–359.

[229] R. Marinescu. “Measurement and Quality in Object-Oriented Design”. PhD
thesis. Timişoara, Romania: Polytehnica University of Timişoara, 2002.

[230] R. Marinescu. “Measurement and Quality in Object-Oriented Design”. In:
Proc. IEEE Int’l Conf. on Software Maintenance (ICSM ’05). IEEE, 2005,
pp. 701–704.

[231] R. Marinescu and C. Marinescu. “Are the Clients of Flawed Classes (Also)
Defect Prone?” In: Proc. Int’l Working Conf. on Source Code Analysis and
Manipulation (SCAM ’11). IEEE, 2011, pp. 65–74.

[232] R. C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship.
Upper Saddle River, NJ, USA: Prentice-Hall, 2009.

[233] R. C. Martin. Agile Software Development: Principles, Patterns, and Prac-
tices. Upper Saddle River, NJ, USA: Prentice-Hall, 2003.

[234] J. Martinez and A. K. Thurimella. “Collaboration and Source Code Driven
Bottom-up Product Line Engineering”. In: Proc. Int’l Software Product Line
Conf. (SPLC ’12) (Volume 2). ACM, 2012, pp. 196–200.

[235] J. Martinez, T. Ziadi, T. F. Bissyandé, J. Klein, and Y. Le Traon.“Bottom-up
Adoption of Software Product Lines: A Generic and Extensible Approach”.
In: Proc. Int’l Software Product Line Conf. (SPLC ’15). ACM, 2015, pp. 101–
110.

[236] J. Mayrand, C. Leblanc, and E. Merlo. “Experiment on the Automatic De-
tection of Function Clones in a Software System Using Metrics”. In: Proc.
IEEE Int’l Conf. on Software Maintenance (ICSM ’96). Vol. 96. IEEE, 1996,
pp. 244–253.

210 Bibliography

[237] D. McFadden. Quantitative Methods for Analyzing Travel Behavior of In-
dividuals: Some Recent Developments. Institute of Transportation Studies,
University of California, 1977.

[238] F. Medeiros, C. Kästner, M. Ribeiro, S. Nadi, and R. Gheyi. “The Love/Hate
Relationship with the C Preprocessor: An Interview Study”. In: Proc.
European Conf. on Object-Oriented Programming (ECOOP ’15). Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2015, pp. 495–518.

[239] F. Medeiros, M. Ribeiro, and R. Gheyi. “Investigating Preprocessor-Based
Syntax Errors”. In: Proc. Int’l Conf. on Generative Programming: Concepts
& Experiences (GPCE ’13). ACM, 2013, pp. 75–84.

[240] F. Medeiros, M. Ribeiro, R. Gheyi, S. Apel, C. Kästner, B. Ferreira, L. Car-
valho, and B. Fonseca. “Discipline Matters: Refactoring of Preprocessor Di-
rectives in the #ifdef Hell”. In: IEEE Trans. Softw. Eng. 44.5 (2018), pp. 453–
469.

[241] F. Medeiros, I. Rodrigues, M. Ribeiro, L. Teixeira, and R. Gheyi. “An Em-
pirical Study on Configuration-Related Issues: Investigating Undeclared and
Unused Identifiers”. In: Proc. Int’l Conf. on Generative Programming: Con-
cepts & Experiences (GPCE ’15). ACM, 2015, pp. 35–44.

[242] J. Meinicke, T. Thüm, R. Schröter, S. Krieter, F. Benduhn, G. Saake, and
T. Leich. “FeatureIDE: Taming the Preprocessor Wilderness”. In: Proc. Int’l
Conf. on Software Engineering (ICSE ’16). ACM, 2016, p. 4.

[243] J. Melo, C. Brabrand, and A. W ↪asowski. “How Does the Degree of Varia-
bility Affect Bug Finding?” In: Proc. Int’l Conf. on Software Engineering
(ICSE ’16). ACM, 2016, pp. 679–690.

[244] T. Mende, F. Beckwermert, R. Koschke, and G. Meier.“Supporting the Grow-
and-Prune Model in Software Product Lines Evolution Using Clone Detec-
tion”. In: Proc. European Conf. on Software Maintenance and Reengineering
(CSMR ’08). IEEE, 2008, pp. 163–172.

[245] T. Mende, R. Koschke, and F. Beckwermert. “An Evaluation of Code Simi-
larity Identification for the Grow-and-Prune Model”. In: Softw. Maint. Evol.:
Res. Pract. 21.2 (2009), pp. 143–169.

[246] T. Mens. “A Formal Foundation for Object-Oriented Software Evolution”.
PhD thesis. Belgium: Department of Computer Science, Vrije Universiteit
Brussel, Sept. 1999.

[247] T. Mens. “A State-of-the-Art Survey on Software Merging”. In: IEEE Trans.
Softw. Eng. 28.5 (2002), pp. 449–462.

[248] T. Mens, S. Demeyer, and D. Janssens. “Formalising Behaviour Preserving
Program Transformations”. In: Proc. Int’l Conf. on Graph Transformation
(ICGT ’02). Springer, 2002, pp. 286–301.

[249] T. Mens and T. Tourwé. “A Survey of Software Refactoring”. In: IEEE Trans.
Softw. Eng. 30.2 (Feb. 2004), pp. 126–139.

[250] T. Mens, T. Tourwé, and F. Muñoz. “Beyond the Refactoring Browser: Ad-
vanced Tool Support for Software Refactoring”. In: Proc. Int’l Work. on Prin-
ciples of Software Evolution (IWPSE ’03). IEEE, 2003, pp. 39–44.

Bibliography 211

[251] T. Mens, N. Van Eetvelde, S. Demeyer, and D. Janssens. “Formalizing Re-
factorings with Graph Transformations”. In: Softw.: Evol. Proc. 17.4 (2005),
pp. 247–276.

[252] P. F. Mihancea and R. Marinescu. “Towards the Optimization of Automatic
Detection of Design Flaws in Object-Oriented Software Systems”. In: Proc.
European Conf. on Software Maintenance and Reengineering (CSMR ’05).
IEEE, 2005, pp. 92–101.

[253] R. C. Miller and B. A. Myers. “Interactive Simultaneous Editing of Multiple
Text Regions”. In: Proc. Proc. USENIX Conf. USENIX Association, 2001,
pp. 161–174.

[254] R. Mo, Y. Cai, R. Kazman, and L. Xiao. “Hotspot Patterns: The Formal Def-
inition and Automatic Detection of Architecture Smells”. In: Proc. Working
Conf. on Software Architecture (WICSA ’15). IEEE, 2015, pp. 51–60.

[255] A. Mockus and L. G. Votta. “Identifying Reasons for Software Changes Using
Historic Databases”. In: Proc. IEEE Int’l Conf. on Software Maintenance
(ICSM ’00). IEEE, 2000, pp. 120–130.

[256] N. Moha. “Detection and Correction of Design Defects in Object-Oriented
Designs”. In: Proc. ACM SIGPLAN Conf. on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA ’07). ACM, 2007, pp. 949–
950.

[257] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. Le Meur. “DECOR: A
Method for the Specification and Detection of Code and Design Smells”. In:
IEEE Trans. Softw. Eng. 36.1 (2010), pp. 20–36.

[258] N. Moha, Y.-G. Guéhéneuc, A.-F. Le Meur, and L. Duchien.“A Domain Anal-
ysis to Specify Design Defects and Generate Detection Algorithms”. In: Proc.
Int’l Conf. on Fundamental Approaches to Software Engineering (FASE ’08).
Springer, 2008, pp. 276–291.

[259] A. Monden, D. Nakae, T. Kamiya, S.-i. Sato, and K.-i. Matsumoto. “Soft-
ware Quality Analysis by Code Clones in Industrial Legacy Software”. In:
Proc. IEEE Int’l Software Metrics Symposium (METRICS ’02). IEEE, 2002,
pp. 87–94.

[260] M. P. Monteiro and J. M. Fernandes. “Towards a Catalogue of Refactorings
and Code Smells for AspectJ”. In: Trans. Aspect-Oriented Softw. Develop-
ment I. Springer, 2006, pp. 212–258.

[261] I. Moore. “Automatic Inheritance Hierarchy Restructuring and Method Re-
factoring”. In: Proc. ACM SIGPLAN Conf. on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA ’96). ACM, 1996, pp. 235–
250.

[262] R. Morales, R. Saborido, F. Khomh, F. Chicano, and G. Antoniol. “EARMO:
An Energy-Aware Refactoring Approach for Mobile Apps”. In: IEEE Trans.
Softw. Eng. X.X (2017). to appear, pp. 1–31.

212 Bibliography

[263] E. R. Murphy-Hill, P. J. Quitslund, and A. P. Black. “Removing Duplication
From java.io: A Case Study Using Traits”. In: Companion to the Proc. ACM
SIGPLAN Conf. on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA ’05). ACM, 2005, pp. 282–291.

[264] E. Murphy-Hill and A. P. Black. “An Interactive Ambient Visualization for
Code Smells”. In: Proc. ACM Symp. on Software Visualization (SoftVis ’10).
ACM, 2010, pp. 5–14.

[265] E. Murphy-Hill and A. P. Black. “Seven Habits of a Highly Effective Smell
Detector”. In: Proc. Int’l Work. on Recommendation Systems for Software
Engineering (RSSE ’08). ACM, 2008, pp. 36–40.

[266] E. Murphy-Hill, C. Parnin, and A. P. Black. “How We Refactor, and How We
Know It”. In: IEEE Trans. Softw. Eng. 38.1 (2012), pp. 5–18.

[267] L. Neves, P. Borba, V. Alves, L. Turnes, L. Teixeira, D. Sena, and U. Kulesza.
“Safe Evolution Templates for Software Product Lines”. In: J. Syst. Softw.
106 (2015), pp. 42–58.

[268] H. A. Nguyen, T. T. Nguyen, N. H. Pham, J. Al-Kofahi, and T. N. Nguyen.
“Clone Management for Evolving Software”. In: IEEE Trans. Softw. Eng. 38.5
(2012), pp. 1008–1026.

[269] npm-coding-style. 2016. url: https ://docs .npmjs.com/misc/coding- style
(visited on 05/31/2017).

[270] L. Nyman and T. Mikkonen. “To Fork or not to Fork: Fork Motivations in
SourceForge Projects”. In: Int. J. Open Source Softw. Proc. 3.3 (2011), pp. 1–
9.

[271] M. Ó Cinnéide, A. Yamashita, and S. Counsell.“Measuring Refactoring Bene-
fits: A Survey of the Evidence”. In: Proc. Int’l Work. on Software Refactoring
(IWoR ’16). ACM, 2016, pp. 9–12.

[272] W. Oizumi, A. Garcia, L. da Silva Sousa, B. Cafeo, and Y. Zhao. “Code
Anomalies Flock Together: Exploring Code Anomaly Agglomerations for
Locating Design Problems”. In: Proc. Int’l Conf. on Software Engineering
(ICSE ’16). IEEE, 2016, pp. 440–451.

[273] S. M. Olbrich, D. S. Cruzes, and D. I. Sjøberg. “Are All Code Smells Harm-
ful? A Study of God Classes and Brain Classes in the Evolution of Three
Open Source Systems”. In: Proc. IEEE Int’l Conf. on Software Maintenance
(ICSM ’10). IEEE, 2010, pp. 1–10.

[274] S. Olbrich, D. S. Cruzes, V. Basili, and N. Zazworka. “The Evolution and Im-
pact of Code Smells: A Case Study of Two Open Source Systems”. In: Proc.
2009 Int’l Symp. on Empirical Software Engineering (ESEM ’09). IEEE,
2009, pp. 390–400.

[275] R. Oliveira, B. Estácio, A. Garcia, S. Marczak, R. Prikladnicki, M. Kali-
nowski, and C. Lucena. “Identifying Code Smells with Collaborative Prac-
tices: A Controlled Experiment”. In: Proc. 2016 Tenth Brazilian Symp. on
Software Components, Architectures and Reuse (SBCARS ’16). IEEE, 2016,
pp. 61–70.

https://docs.npmjs.com/misc/coding-style

Bibliography 213

[276] R. Oliveira, L. Sousa, R. de Mello, N. Valentim, A. Lopes, T. Conte, A. Gar-
cia, E. Oliveira, and C. Lucena. “Collaborative Identification of Code Smells:
A Multi-Case Study”. In: Proc. Int’l Conf. on Software Engineering: Software
Engineering in Practice Track (ICSE-SEIP ’17). IEEE, 2017, pp. 33–42.

[277] A. Olszak and B. N. Jørgensen. “Remodularizing Java Programs for Com-
prehension of Features”. In: Proc. Int’l Work. on Feature-Oriented Software
Development (FOSD ’09). ACM, 2009, pp. 19–26.

[278] W. F. Opdyke. “Refactoring Object-Oriented Frameworks”. PhD thesis.
Champaign, IL, USA: University of Illinois, 1992.

[279] org.jsesoft.jpp: A Java Macro Preprocessor. 2002. url: http : / / jsesoft .
sourceforge.net/ (visited on 10/15/2018).

[280] T. J. Ostrand, E. J. Weyuker, and R. M. Bell. “Predicting the Location and
Number of Faults in Large Software Systems”. In: IEEE Trans. Softw. Eng.
31.4 (2005), pp. 340–355.

[281] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia, and D. Poshy-
vanyk.“Detecting Bad Smells in Source Code Using Change History Informa-
tion”. In: Proc. IEEE/ACM Int’l Conf. on Automated Software Engineering
(ASE ’13). IEEE, 2013, pp. 268–278.

[282] F. Palomba, G. Bavota, R. Oliveto, and A. De Lucia. “Do They Really Smell
Bad? A Study on Developers’ Perception of Code Bad Smells”. In: Proc. Int’l
Conf. on Software Maintenance and Evolution (ICSME ’14). IEEE, 2014,
pp. 101–110.

[283] F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, D. Poshyvanyk, and A.
De Lucia. “Mining Version Histories for Detecting Code Smells”. In: IEEE
Trans. Softw. Eng. 41.5 (2015), pp. 462–489.

[284] F. Palomba, D. Di Nucci, A. Panichella, A. Zaidman, and A. De Lu-
cia. “Lightweight Detection of Android-Specific Code Smells: The aDoctor
Project”. In: Proc. Int’l Conf. on Software Analysis, Evolution, and Reengi-
neering (SANER ’17). IEEE, 2017, pp. 487–491.

[285] F. Palomba, R. Oliveto, and A. De Lucia. “Investigating Code Smell Co-Oc-
currences Using Association Rule Learning: A Replicated Study”. In: Proc.
IEEE Work. on Machine Learning Techniques for Software Quality Evalua-
tion (MaLTeSQuE ’17). IEEE, 2017, pp. 8–13.

[286] F. Palomba, A. Panichella, A. De Lucia, R. Oliveto, and A. Zaidman.“A Tex-
tual-Based Technique for Smell Detection”. In: Proc. Int’l Conf. on Program
Comprehension (ICPC ’16). IEEE, 2016, pp. 1–10.

[287] D. L. Parnas. “On the Criteria to Be Used in Decomposing Systems into
Modules”. In: Comm. ACM 15.12 (1972), pp. 1053–1058.

[288] D. L. Parnas. “On the Design and Development of Program Families”. In:
IEEE Trans. Softw. Eng. 1 (1976), pp. 1–9.

[289] L. Passos, R. Queiroz, M. Mukelabai, T. Berger, S. Apel, K. Czarnecki, and
J. Padilla. “A Study of Feature Scattering in the Linux Kernel”. In: IEEE
Trans. Softw. Eng. (2018), p. 16.

http://jsesoft.sourceforge.net/
http://jsesoft.sourceforge.net/

214 Bibliography

[290] L. Passos, L. Teixeira, N. Dintzner, S. Apel, A. W ↪asowski, K. Czarnecki, P.
Borba, and J. Guo. “Coevolution of Variability Models and Related Software
Artifacts”. In: Empir. Softw. Eng. 21.4 (2016), pp. 1744–1793.

[291] X. Peng, Z. Xing, X. Tan, Y. Yu, and W. Zhao.“Iterative Context-Aware Fea-
ture Location (NIER Track)”. In: Proc. Int’l Conf. on Software Engineering
(ICSE ’11). Waikiki, Honolulu, HI, USA: ACM, 2011, pp. 900–903.

[292] T. Pfofe. “Automating the Synchronization of Software Variants”. Master’s
Thesis. Germany: University of Magdeburg, Jan. 2016.

[293] T. Pfofe, T. Thüm, S. Schulze, W. Fenske, and I. Schaefer. “Synchronizing
Software Variants with VariantSync”. In: Proc. Int’l Software Product Line
Conf. (SPLC ’16). ACM, 2016, pp. 329–332.

[294] E. K. Piveta, M. Hecht, M. S. Pimenta, and R. T. Price. “Detecting Bad
Smells in AspectJ”. In: J. Univ. Comput. Science 12.7 (2006), pp. 811–827.

[295] K. Pohl, G. Böckle, and F. Van Der Linden. Software Product Line Engineer-
ing: Foundations, Principles, and Techniques. Berlin Heidelberg, Germany:
Springer, 2005.

[296] H. Post and C. Sinz. “Configuration Lifting: Verification Meets Software Con-
figuration”. In: Proc. IEEE/ACM Int’l Conf. on Automated Software Engi-
neering (ASE ’08). IEEE, 2008, pp. 347–350.

[297] C. Prehofer. “Feature-Oriented Programming: A Fresh Look at Objects”.
In: Proc. European Conf. on Object-Oriented Programming (ECOOP ’97).
Springer, 1997, pp. 419–443.

[298] R. Queiroz, L. Passos, M. T. Valente, C. Hunsen, S. Apel, and K. Czarnecki.
“The Shape of Feature Code: An Analysis of Twenty C-Preprocessor-Based
Systems”. In: Softw. & Syst. Modeling 16.1 (2017), pp. 77–96.

[299] F. Rahman, C. Bird, and P. Devanbu. “Clones: What is That Smell?” In:
Empir. Softw. Eng. 17.4-5 (2012), pp. 503–530.

[300] B. Ray and M. Kim. “A Case Study of Cross-System Porting in Forked
Projects”. In: Proc. Int’l Symp. on the Foundations of Software Engineer-
ing (FSE ’12). ACM, 2012, 53:1–53:11.

[301] ReSharper by Language: C++. 2017. url: https://www.jetbrains.com/help/
resharper/ReSharper by Language CPP.html (visited on 11/26/2017).

[302] M. Ribeiro and P. Borba. “Improving Guidance when Restructuring Vari-
abilities in Software Product Lines”. In: Proc. European Conf. on Software
Maintenance and Reengineering (CSMR ’09). IEEE, 2009, pp. 79–88.

[303] M. Ribeiro and P. Borba. “Recommending Refactorings when Restructur-
ing Variabilities in Software Product Lines”. In: Proc. OOPSLA Work. on
Refactoring Tools (WRT ’08). ACM, 2008, 8:1–8:4.

[304] M. Rieger, S. Ducasse, and M. Lanza. “Insights Into System-Wide Code Du-
plication”. In: Proc. Working Conf. on Reverse Engineering (WCRE ’04).
IEEE, 2004, pp. 100–109.

[305] A. J. Riel. Object-Oriented Design Heuristics. Boston, MA, USA: Addison-
Wesley, 1996.

https://www.jetbrains.com/help/resharper/ReSharper_by_Language_CPP.html
https://www.jetbrains.com/help/resharper/ReSharper_by_Language_CPP.html

Bibliography 215

[306] D. B. Roberts. “Practical Analysis for Refactoring”. PhD thesis. Champaign,
IL, USA: University of Illinois, 1999.

[307] M. P. Robillard and G. C. Murphy.“Concern Graphs: Finding and Describing
Concerns Using Structural Program Dependencies”. In: Proc. Int’l Conf. on
Software Engineering (ICSE ’02). Orlando, Florida: ACM, 2002, pp. 406–416.

[308] D. Romano and M. Pinzger. “Using Source Code Metrics to Predict Change-
Prone Java Interfaces”. In: Proc. IEEE Int’l Conf. on Software Maintenance
(ICSM ’02). IEEE, 2007, pp. 303–312.

[309] D. Romano, P. Raila, M. Pinzger, and F. Khomh. “Analyzing the Im-
pact of Antipatterns on Change-Proneness Using Fine-Grained Source Code
Changes”. In: Proc. Working Conf. on Reverse Engineering (WCRE ’12).
IEEE, 2012, pp. 437–446.

[310] B. van Rompaey, B. Du Bois, S. Demeyer, and M. Rieger. “On the Detection
of Test Smells: A Metrics-Based Approach for General Fixture and Eager
Test”. In: IEEE Trans. Softw. Eng. 33.12 (2007), pp. 800–817.

[311] M. Rosenmüller, M. Kuhlemann, N. Siegmund, and H. Schirmeier. “Avoiding
Variability of Method Signatures in Software Product Lines: A Case Study”.
In: Proc. GPCE Work. on Aspect-Oriented Product Line Engineering (AO-
PLE ’07). Workshop Website http://www.softeng.ox.ac.uk/aople/, 2007,
pp. 20–25.

[312] C. K. Roy, J. R. Cordy, and R. Koschke. “Comparison and Evaluation of
Code Clone Detection Techniques and Tools: A Qualitative Approach”. In:
Sci. Comput. Prog. 74.7 (2009), pp. 470–495.

[313] C. K. Roy and J. R. Cordy. A Survey on Software Clone Detection Research.
Tech. rep. 541. Canada: Queen’s University at Kingston, 2007.

[314] J. Rubin and M. Chechik. “A Framework for Managing Cloned Product Vari-
ants”. In: Proc. Int’l Conf. on Software Engineering (ICSE ’13). San Fran-
cisco, CA, USA: IEEE, 2013, pp. 1233–1236.

[315] J. Rubin and M. Chechik. “A Survey of Feature Location Techniques”. In:
Domain Engineering. Springer, 2013, pp. 29–58.

[316] J. Rubin and M. Chechik. “From Products to Product Lines Using Model
Matching and Refactoring”. In: Proc. Int’l Software Product Line Conf.
(SPLC ’10) (Volume 2). Lancaster University, 2010, pp. 155–162.

[317] J. Rubin, K. Czarnecki, and M. Chechik. “Managing Cloned Variants: A
Framework and Experience”. In: Proc. Int’l Software Product Line Conf.
(SPLC ’13). Tokyo, Japan: ACM, 2013, pp. 101–110.

[318] J. Rubin, A. Kirshin, G. Botterweck, and M. Chechik. “Managing Forked
Product Variants”. In: Proc. Int’l Software Product Line Conf. (SPLC ’12).
Salvador, Brazil: ACM, 2012, pp. 156–160.

[319] A. Saboury, P. Musavi, F. Khomh, and G. Antoniol. “An Empirical Study
of Code Smells in JavaScript Projects”. In: Proc. Int’l Conf. on Software
Analysis, Evolution, and Reengineering (SANER ’17). IEEE, 2017, pp. 294–
305.

http://www.softeng.ox.ac.uk/aople/

216 Bibliography

[320] D. Sands. “Total Correctness by Local Improvement in the Transformation
of Functional Programs”. In: ACM Trans. Program. Lang. Syst. 18.2 (1996),
pp. 175–234.

[321] I. Şavga and F. Heidenreich. “Refactoring in Feature-Oriented Programming:
Open Issues”. In: Proc. GPCE Work. on Modularization, Composition and
Generative Techniques for Product Line Engineering (McGPLE ’08). Univer-
sity of Passau, Germany, Oct. 2008, pp. 41–46.

[322] I. Schaefer, L. Bettini, F. Damiani, and N. Tanzarella. “Delta-Oriented Pro-
gramming of Software Product Lines”. In: Proc. Int’l Software Product Line
Conf. (SPLC ’10). Springer, 2010, pp. 77–91.

[323] S. Schulze.“Analysis and Removal of Code Clones in Software Product Lines”.
Dissertation. Germany: University of Magdeburg, Jan. 2013.

[324] S. Schulze, S. Apel, and C. Kästner. “Code Clones in Feature-Oriented Soft-
ware Product Lines”. In: Proc. Int’l Conf. on Generative Programming and
Component Engineering (GPCE ’10). ACM, 2010, pp. 103–112.

[325] S. Schulze, E. Jürgens, and J. Feigenspan. “Analyzing the Effect of Prepro-
cessor Annotations on Code Clones”. In: Proc. Int’l Working Conf. on Source
Code Analysis and Manipulation (SCAM ’11). IEEE, 2011, pp. 115–124.

[326] S. Schulze, M. Kuhlemann, and M. Rosenmüller. “Towards a Refactoring
Guideline Using Code Clone Classification”. In: Proc. OOPSLA Work. on
Refactoring Tools (WRT ’08). ACM, 2008, 6:1–6:4.

[327] S. Schulze, J. Liebig, J. Siegmund, and S. Apel. “Does the Discipline of Pre-
processor Annotations Matter? A Controlled Experiment”. In: Proc. Int’l
Conf. on Generative Programming: Concepts & Experiences (GPCE ’13).
ACM, 2013, pp. 65–74.

[328] S. Schulze, M. Lochau, and S. Brunswig. “Implementing Refactorings for
FOP: Lessons Learned and Challenges Ahead”. In: Proc. Int’l Work. on Fea-
ture-Oriented Software Development (FOSD ’13). ACM, 2013, pp. 33–40.

[329] S. Schulze, O. Richers, and I. Schaefer. “Refactoring Delta-Oriented Software
Product Lines”. In: Proc. Int’l Conf. on Aspect-Oriented Software Develop-
ment (AOSD ’13). ACM, 2013, pp. 73–84.

[330] S. Schulze, T. Thüm, M. Kuhlemann, and G. Saake. “Variant-Preserving Re-
factoring in Feature-Oriented Software Product Lines”. In: Proc. Int’l Work.
on Variability Modeling of Software-Intensive Systems (VaMoS ’12). ACM,
2012, pp. 73–81.

[331] S. Schulze. “Feature-orientiertes Refactoring zur Migration von Produktva-
rianten”. In German. Master’s Thesis. Germany: University of Magdeburg,
Feb. 2016.

[332] J. Schumacher, N. Zazworka, F. Shull, C. Seaman, and M. Shaw. “Building
Empirical Support for Automated Code Smell Detection”. In: Proc. 2010 Int’l
Symp. on Empirical Software Engineering (ESEM ’10). ACM, 2010, 8:1–8:10.

[333] D. C. Sharp. “Reducing Avionics Software Cost Through Component Based
Product Line Development”. In: Proc. Digital Avionics Systems Conf.
(DASC ’98). Vol. 2. IEEE, 1998, G32/1–G32/8.

Bibliography 217

[334] I. Shoenberger, M. W. Mkaouer, and M. Kessentini.“On the Use of Smelly Ex-
amples to Detect Code Smells in JavaScript”. In: Proc. European Conf. on the
Applications of Evolutionary Computation (EvoApplications ’17). Springer,
2017, pp. 20–34.

[335] F. Simon, F. Steinbrückner, and C. Lewerentz. “Metrics Based Refactor-
ing”. In: Proc. European Conf. on Software Maintenance and Reengineering
(CSMR ’01). IEEE, 2001, pp. 30–38.

[336] J. Sincero, H. Schirmeier, W. Schröder-Preikschat, and O. Spinczyk. “Is the
Linux Kernel a Software Product Line?” In: Proc. Work. on Open Source
Software and Product Lines (SPLC-OSSPL ’07). 2007.

[337] D. I. Sjøberg, B. Anda, and A. Mockus. “Questioning Software Maintenance
Metrics: A Comparative Case Study”. In: Proc. 2012 Int’l Symp. on Empirical
Software Engineering (ESEM ’12). ACM, 2012, pp. 107–110.

[338] D. I. Sjøberg, A. Yamashita, B. C. D. Anda, A. Mockus, and T. Dyba.“Quan-
tifying the Effect of Code Smells on Maintenance Effort”. In: IEEE Trans.
Softw. Eng. 39.8 (2013), pp. 1144–1156.

[339] J. Śliwerski, T. Zimmermann, and A. Zeller. “When Do Changes Induce
Fixes?” In: ACM SIGSOFT Softw. Eng. Notes 30.4 (2005), pp. 1–5.

[340] P. Sochos, I. Philippow, and M. Riebisch. “Feature-Oriented Development of
Software Product Lines: Mapping Feature Models to the Architecture”. In:
Lecture Notes in Computer Science 3263. Springer, 2004, pp. 138–152.

[341] F. Z. Sokol, M. Finavaro Aniche, and M. A. Gerosa. “MetricMiner: Support-
ing Researchers in Mining Software Repositories”. In: Proc. Int’l Working
Conf. on Source Code Analysis and Manipulation (SCAM ’13). IEEE, 2013,
pp. 142–146.

[342] B. L. Sousa, P. P. Souza, E. Fernandes, K. A. Ferreira, and M. A. Bigonha.
“FindSmells: Flexible Composition of Bad Smell Detection Strategies”. In:
Proc. Int’l Conf. on Program Comprehension (ICPC ’17). IEEE, 2017,
pp. 360–363.

[343] H. Spencer and G. Collyer. “#ifdef Considered Harmful, or Portability Expe-
rience With C News”. In: Proc. Proc. USENIX Conf. USENIX Association,
1992, pp. 185–197.

[344] D. Spinellis. “CScout: A refactoring browser for C”. In: Sci. Comput. Prog.
75.4 (2010), p. 216.

[345] D. Spinellis. “Global Analysis and Transformations in Preprocessed Lan-
guages”. In: IEEE Trans. Softw. Eng. 29.11 (2003), pp. 1019–1030.

[346] K. Srivisut and P. Muenchaisri. “Bad-Smell Metrics for Aspect-Oriented Soft-
ware”. In: Proc. IEEE/ACIS Int’l Conf. on Computer and Information Sci-
ence (ICIS ’07). IEEE, 2007, pp. 1060–1065.

[347] K. Srivisut and P. Muenchaisri. “Defining and Detecting Bad Smells of As-
pect-Oriented Software”. In: Proc. Int’l Computer Software and Applications
Conference (COMPSAC ’07). IEEE, 2007, pp. 65–70.

218 Bibliography

[348] Ş. Stănciulescu, T. Berger, E. Walkingshaw, and A. W ↪asowski. “Concepts,
Operations, and Feasibility of a Projection-Based Variation Control System”.
In: Proc. Int’l Conf. on Software Maintenance and Evolution (ICSME ’16).
IEEE, 2016, pp. 323–333.

[349] Ş. Stănciulescu, S. Schulze, and A. W ↪asowski. “Forked and Integrated Vari-
ants in an Open-Source Firmware Project”. In: Proc. Int’l Conf. on Software
Maintenance and Evolution (ICSME ’15). IEEE, 2015, pp. 151–160.

[350] M. Staples and D. Hill. “Experiences Adopting Software Product Line Devel-
opment Without a Product Line Architecture”. In: Proc. Asia Pacific Soft-
ware Engineering Conf. (APSEC ’04). IEEE, 2004, pp. 176–183.

[351] M. Steinbeck. “An Arc-Based Approach for Visualization of Code Smells”.
In: Proc. Int’l Conf. on Software Analysis, Evolution, and Reengineering
(SANER ’17). IEEE, 2017, pp. 397–401.

[352] R. Subramanyam and M. S. Krishnan. “Empirical Analysis of CK Metrics for
Object-Oriented Design Complexity: Implications for Software Defects”. In:
IEEE Trans. Softw. Eng. 29.4 (2003), pp. 297–310.

[353] G. Succi, W. Pedrycz, M. Stefanovic, and J. Miller. “Practical Assessment
of the Models for Identification of Defect-Prone Classes in Object-Oriented
Commercial Systems Using Design Metrics”. In: J. Syst. Softw. 65.1 (2003),
pp. 1–12.

[354] M. Svahnberg, J. Van Gurp, and J. Bosch. “A Taxonomy of Variability Re-
alization Techniques”. In: Softw.: Pract. Exper. 35.8 (2005), pp. 705–754.

[355] Synopsys Static Analysis (Coverity). 2017. url: https : / / www . synopsys .
com/software-integrity/security-testing/static-analysis-sast.htm (visited on
07/10/2017).

[356] M.-H. Tang, M.-H. Kao, and M.-H. Chen. “An Empirical Study on Object-
Oriented Metrics”. In: Proc. Int’l Software Metrics Symposium (ISMS ’99).
IEEE, 1999, pp. 242–249.

[357] C. Thao, E. V. Munson, and T. N. Nguyen. “Software Configuration Man-
agement for Product Derivation in Software Product Families”. In: Proc. Int’l
Conf. on Engineering of Computer Based Systems (ECBS ’08). IEEE, 2008,
pp. 265–274.

[358] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake, and T. Leich.
“FeatureIDE: An Extensible Framework for Feature-Oriented Software De-
velopment”. In: Sci. Comput. Prog. 79 (2014), pp. 70–85.

[359] T. Thüm, C. Kästner, S. Erdweg, and N. Siegmund. “Abstract Features in
Feature Modeling”. In: Proc. Int’l Software Product Line Conf. (SPLC ’11).
IEEE, 2011, pp. 191–200.

[360] K. Tonscheidt. “Leveraging Code Clone Detection for the Incremental Migra-
tion of Cloned Product Variants to a Software Product Line: An Explorative
Study”. Bachelor’s Thesis. Germany: University of Magdeburg, June 2015.

[361] M. Toomim, A. Begel, and S. L. Graham. “Managing Duplicated Code with
Linked Editing”. In: Proc. IEEE Symp. on Visual Languages and Human-
Centric Computing (VL/HCC ’04). IEEE, 2004, pp. 173–180.

https://www.synopsys.com/software-integrity/security-testing/static-analysis-sast.htm
https://www.synopsys.com/software-integrity/security-testing/static-analysis-sast.htm

Bibliography 219

[362] T. Tourwé and T. Mens. “Identifying Refactoring Opportunities Using Logic
Meta Programming”. In: Proc. European Conf. on Software Maintenance and
Reengineering (CSMR ’03). IEEE, 2003, pp. 91–100.

[363] A. Trifu and R. Marinescu. “Diagnosing Design Problems in Object Oriented
Systems”. In: Proc. Working Conf. on Reverse Engineering (WCRE ’05).
IEEE, 2005, pp. 155–164.

[364] S. Trujillo, D. Batory, and O. Diaz. “Feature Refactoring a Multi-Representa-
tion Program into a Product Line”. In: Proc. Int’l Conf. on Generative Pro-
gramming and Component Engineering (GPCE ’06). ACM, 2006, pp. 191–
200.

[365] N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou. “JDeodorant: Identifica-
tion and Removal of Type-Checking Bad Smells”. In: Proc. European Conf. on
Software Maintenance and Reengineering (CSMR ’08). IEEE, 2008, pp. 329–
331.

[366] N. Tsantalis and A. Chatzigeorgiou. “Identification of Move Method Refac-
toring Opportunities”. In: IEEE Trans. Softw. Eng. 35.3 (2009), pp. 347–
367.

[367] M. Tufano, F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia,
and D. Poshyvanyk. “An Empirical Investigation into the Nature of Test
Smells”. In: Proc. IEEE/ACM Int’l Conf. on Automated Software Engineering
(ASE ’16). ACM, 2016, pp. 4–15.

[368] M. T. Valente, V. Borges, and L. Passos. “A Semi-Automatic Approach for
Extracting Software Product Lines”. In: IEEE Trans. Softw. Eng. 38.4 (2012),
pp. 737–754.

[369] L. Vidács, Á. Beszédes, and T. Gyimóthy. “Combining Preprocessor Slicing
with C/C++ Language Slicing”. In: Sci. Comput. Prog. 74.7 (2009), pp. 399–
413.

[370] M. Vittek. “Refactoring Browser With Preprocessor”. In: Proc. European
Conf. on Software Maintenance and Reengineering (CSMR ’03). IEEE, 2003,
pp. 101–110.

[371] S. Wagner, A. Abdulkhaleq, K. Kaya, and A. Paar. “On the Relationship
of Inconsistent Software Clones and Faults: An Empirical Study”. In: Proc.
Int’l Conf. on Software Analysis, Evolution, and Reengineering (SANER ’16).
IEEE, 2016, pp. 79–89.

[372] W. C. Wake. Refactoring Workbook. Addison-Wesley, 2003.

[373] J. H. Weber, A. Katahoire, and M. Price. “Uncovering Variability Models
for Software Ecosystems from Multi-Repository Structures”. In: Proc. Int’l
Work. on Variability Modeling of Software-Intensive Systems (VaMoS ’15).
ACM, 2015, pp. 103–108.

[374] M. Weiser. “Program Slicing”. In: IEEE Trans. Softw. Eng. 4.10 (1984),
pp. 352–357.

[375] N. Wilde and M. C. Scully. “Software Reconnaissance: Mapping Program
Features to Code”. In: Softw. Maint.: Res. Pract. 7.1 (1995), pp. 49–62.

220 Bibliography

[376] Y. Xue. “Reengineering Legacy Software Products into Software Product
Line”. PhD thesis. Singapore: National University of Singapore, 2013.

[377] Y. Xue.“Reengineering Legacy Software Products into Software Product Line
Based on Automatic Variability Analysis”. In: Proc. Int’l Conf. on Software
Engineering (ICSE ’11). ACM, 2011, pp. 1114–1117.

[378] Y. Xue, Z. Xing, and S. Jarzabek. “Understanding Feature Evolution in a
Family of Product Variants”. In: Proc. Working Conf. on Reverse Engineering
(WCRE ’10). IEEE, 2010, pp. 109–118.

[379] A. Yamashita. “Assessing the Capability of Code Smells to Explain Mainte-
nance Problems: An Empirical Study Combining Quantitative and Qualita-
tive Data”. In: Empir. Softw. Eng. 19.4 (2014), pp. 1111–1143.

[380] A. Yamashita. “How Good Are Code Smells for Evaluating Software Main-
tainability? Results From a Comparative Case Study”. In: Proc. IEEE Int’l
Conf. on Software Maintenance (ICSM ’13). IEEE, 2013, pp. 566–571.

[381] A. Yamashita and L. Moonen. “Do Code Smells Reflect Important Main-
tainability Aspects?” In: Proc. IEEE Int’l Conf. on Software Maintenance
(ICSM ’12). IEEE, 2012, pp. 306–315.

[382] A. Yamashita and L. Moonen. “Do Developers Care About Code Smells?
An Exploratory Survey”. In: Proc. Working Conf. on Reverse Engineering
(WCRE ’13). IEEE, 2013, pp. 242–251.

[383] A. Yamashita and L. Moonen.“Exploring the Impact of Inter-Smell Relations
on Software Maintainability: An Empirical Study”. In: Proc. Int’l Conf. on
Software Engineering (ICSE ’13). IEEE, 2013, pp. 682–691.

[384] A. Yamashita and L. Moonen. “To What Extent Can Maintenance Problems
Be Predicted by Code Smell Detection? – An Empirical Study”. In: Inform.
Software Tech. 55.12 (Dec. 2013), pp. 2223–2242.

[385] N. Yoshida, Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue.“On Refactoring
Support Based on Code Clone Dependency Relation”. In: Proc. IEEE Int’l
Software Metrics Symposium (METRICS ’05). IEEE, 2005, 10–pp.

[386] K. Yoshimura, D. Ganesan, and D. Muthig. “Assessing Merge Potential of
Existing Engine Control Systems into a Product Line”. In: Proc. Int’l Work.
on Software Engineering for Automotive Systems (SEAS ’06). ACM, 2006,
pp. 61–67.

[387] G. Zhang, L. Shen, X. Peng, Z. Xing, and W. Zhao.“Incremental and Iterative
Reengineering Towards Software Product Line: An Industrial Case Study”.
In: Proc. IEEE Int’l Conf. on Software Maintenance (ICSM ’11). IEEE, 2011,
pp. 418–427.

[388] M. Zhang, T. Hall, and N. Baddoo. “Code Bad Smells: A Review of Current
Knowledge”. In: Softw. Maint. Evol.: Res. Pract. 23.3 (2011), pp. 179–202.

[389] W. Zhang, S. Jarzabek, N. Loughran, and A. Rashid. “Reengineering a PC-
Based System into the Mobile Device Product Line”. In: Proc. Int’l Work.
on Principles of Software Evolution (IWPSE ’03). IEEE, 2003, pp. 149–160.

Bibliography 221

[390] Y. Zhou, H. Leung, and B. Xu. “Examining the Potentially Confounding
Effect of Class Size on the Associations Between Object-Oriented Metrics
and Change-Proneness”. In: IEEE Trans. Softw. Eng. 35.5 (2009), pp. 607–
623.

[391] T. Ziadi, L. Frias, M. da Silva, and M. Ziane. “Feature Identification From
the Source Code of Product Variants”. In: Proc. European Conf. on Software
Maintenance and Reengineering (CSMR ’12). IEEE, 2012, pp. 417–422.

[392] M. F. Zibran and C. K. Roy. “A Constraint Programming Approach to
Conflict-Aware Optimal Scheduling of Prioritized Code Clone Refactoring”.
In: Proc. Int’l Working Conf. on Source Code Analysis and Manipulation
(SCAM ’11). IEEE, 2011, pp. 105–114.

222 Bibliography

Ehrenerklärung

Ich versichere hiermit, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Drit-
ter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe.
Ferner versichere ich, dass die Verwendung eigener und fremder Quellen als solche
kenntlich gemacht habe. Ich habe keine Hilfe von kommerziellen Promotionsberatern
in Anspruch genommen. Dritte haben von mir weder unmittelbar noch mittelbar
geldwerte Leistungen für Arbeiten erhalten, die im Zusammenhang mit dem Inhalt
der vorgelegten Dissertation stehen.

Insbesondere habe ich nicht wissentlich:

• Ergebnisse erfunden oder widersprüchliche Ergebnisse verschwiegen,

• statistische Verfahren absichtlich missbraucht, um Daten in ungerechtfertigter
Weise zu interpretieren,

• fremde Ergebnisse oder Veröffentlichungen plagiiert,

• fremde Forschungsergebnisse verzerrt wiedergegeben.

Mir ist bekannt, dass Verstöße gegen das Urheberrecht Unterlassungs- und Schaden-
ersatzansprüche des Urhebers sowie eine strafrechtliche Ahndung durch die Strafver-
folgungsbehörden begründen können. Die Arbeit wurde bisher weder im Inland noch
im Ausland in gleicher oder ähnlicher Form als Dissertation eingereicht und ist als
Ganzes auch noch nicht veröffentlicht.

Magdeburg, 16. März 2020

Wolfram Fenske

	Contents
	List of Figures
	List of Tables
	List of Listings
	List of Acronyms
	1 Introduction
	1.1 Research Questions
	1.2 Contributions
	1.3 Structure of the Thesis

	2 Code Smells
	2.1 Defining Code Smells
	2.2 A Code Smell Example: Long Method
	2.3 Negative Effects of Code Smells
	2.3.1 Change and Fault Proneness
	2.3.2 Program Comprehension
	2.3.3 Maintenance Effort
	2.3.4 Subjective Perception of Developers
	2.3.5 Biases in Surveyed Studies
	2.3.6 Summary

	2.4 Detecting Code Smells
	2.4.1 Detection with Object-Oriented Metrics
	2.4.2 Machine Learning
	2.4.3 Additional Sources of Information
	2.4.4 Visually Aided Detection
	2.4.5 Summary

	2.5 Refactoring
	2.5.1 A Refactoring Example
	2.5.2 Ensuring Behavior Preservation
	2.5.3 Tool Support

	2.6 Summary

	3 Highly Configurable Software Systems
	3.1 Software Product Line Engineering
	3.2 Domain and Application Engineering
	3.3 Modeling Variability
	3.4 Implementing Variability
	3.4.1 Composition-Based Mechanisms
	3.4.2 Annotation-Based Mechanisms
	3.4.3 How Variability Mechanisms Affect the Shape of Feature Code

	3.5 Clone & Own Variant Development
	3.5.1 Reasons for Clone & Own
	3.5.2 Technical Realization
	3.5.3 Negative Effects of Clone & Own
	3.5.4 Summary

	3.6 Code Clones
	3.6.1 Types of Code Clones
	3.6.2 Code Clone Detection
	3.6.3 Effects of Cloning
	3.6.4 Dealing with Code Clones

	3.7 Summary

	4 Variability-Aware Code Smells
	4.1 Derivation Methodology
	4.2 A Catalog of Variability-Aware Code Smells
	4.2.1 Inter-Feature Code Clones
	4.2.2 Annotation Bundle
	4.2.3 Long Refinement Chain
	4.2.4 Latently Unused Parameter
	4.2.5 Large Feature
	4.2.6 Switch Statements with Optional Cases

	4.3 Validation of the Catalog
	4.3.1 Objectives
	4.3.2 Setup
	4.3.3 Results
	4.3.4 Discussion

	4.4 Detection Concept
	4.4.1 Metrics
	4.4.2 Parameterization and Thresholds

	4.5 Implementation
	4.6 Case Study of Detecting Annotation Bundles
	4.6.1 Research Questions
	4.6.2 Subject Systems
	4.6.3 Methodology
	4.6.4 Results
	4.6.5 Qualitative Analysis

	4.7 Related Work
	4.8 Conclusion

	5 How Preprocessor Annotations (Do Not) Affect Maintainability
	5.1 Research Questions
	5.2 Methodology
	5.2.1 Measuring Maintainability
	5.2.2 Variables
	5.2.3 Null Hypotheses
	5.2.4 Subject Systems
	5.2.5 Data Collection

	5.3 Statistical Analyses
	5.3.1 Answering RQ1: Binary Classification with Binary and Metric Outcomes
	5.3.2 Answering RQ2: Relation between Preprocessor Use and Function Size
	5.3.3 Answering RQ3: Different Extents of Preprocessor Use in Context

	5.4 Quantitative Results
	5.4.1 Descriptive Statistics
	5.4.2 RQ1, H0 1.1: Relationship between Binary Properties of Preprocessor Use and the Likelihood of Changes
	5.4.3 RQ1, H0 1.2 and H0 1.3: Relationship between Binary Properties of Preprocessor Use and the Frequency and Extent of Changes
	5.4.4 RQ2: Relationship between Different Extents of Preprocessor Use and Function Size
	5.4.5 RQ3, H0 3.1: Relationship between Different Extents of Preprocessor Use and the Likelihood of Changes
	5.4.6 RQ3, H0 3.2: Relationship between Different Extents of Preprocessor Use and the Frequency of Changes
	5.4.7 RQ3, H0 3.3: Relationship between Different Extents of Preprocessor Use and the Extent of Changes

	5.5 Qualitative Analysis
	5.5.1 Short Functions with Heavy cpp Use
	5.5.2 Long Functions with Heavy cpp Use
	5.5.3 Short Functions with Light cpp Use
	5.5.4 Long Functions with Light cpp Use
	5.5.5 Summary of Qualitative Findings

	5.6 Threats to Validity
	5.6.1 Internal Validity
	5.6.2 External Validity

	5.7 Discussion
	5.8 Related Work
	5.9 Conclusion

	6 Variant-Preserving Refactoring to Migrate Cloned Product Variants
	6.1 Dimensions of Software Product Line Reengineering
	6.1.1 Quality
	6.1.2 Variability Mechanism
	6.1.3 Legacy to SPL

	6.2 A Taxonomy of Software Product Line Reengineering
	6.2.1 Literature Selection
	6.2.2 Variant-Preserving Migration
	6.2.3 Variant-Preserving Refactoring
	6.2.4 Variant-Preserving Transcoding
	6.2.5 Summary

	6.3 Open Challenges in Variant-Preserving Refactoring and Migration
	6.4 Refactorings to Remove Inter-Feature Code Clones
	6.4.1 Pull Up To Common Feature
	6.4.2 Rename

	6.5 A Feature-Oriented Migration Process
	6.6 Tool Support
	6.7 Feasibility Study
	6.7.1 Subject Systems
	6.7.2 Methodology
	6.7.3 Results
	6.7.4 Discussion
	6.7.5 Threats to Validity

	6.8 Related Work
	6.9 Conclusion

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work

	A Appendix
	Bibliography

