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Abstract

The growing use of aeronautical systems, spanning from passenger airplanes to au-
tonomous drones, increases the awareness for ecological and economic aspects, e.g., to
increase autonomy, endurance, energy efficiency, and flexibility. Therefore, the avia-
tion industry aims to develop advanced (robust/reliable) planning and control systems
to guarantee flexible operation, flight safety, and robustness despite a multitude of dis-
turbance and environmental challenges.
This work proposes model predictive control as a suitable method to tackle com-

bined planning and control challenges for aircraft applications. Model predictive con-
trol allows systematically considering the vehicle dynamics and constraints, e.g., load
envelops and obstacle avoidance, as well as optimizing a performance index, such as
energy consumption, tracking error, ride comfort, and load reduction. Furthermore,
the predictive nature makes model predictive control suitable for the motion planning
and usable in each of the main control layers present in aerospace systems.
The first part of this work considers the problem of load alleviation. Load alleviation

system aims to reduce the structural loads, oscillation, and the passenger discomfort
resulting from atmospheric turbulence. Model predictive control allows including pre-
view of gust information ahead of the aircraft to improve the prediction accuracy,
thereby to improve the load alleviation performance. Using model predictive control
for load alleviation allows enlarging the flight envelops and improving fatigue life and
aircraft performance, such as passenger comfort. Reducing the load allows designing
new aircraft configurations, like lighter structures, without compromising the safety
regulations. Consequently, this reduces the fuel expenditure and thereby the operating
cost that makes the aircraft more eco-efficient.
The second part of this thesis presents an approach to interface the planning and

control systems of autonomous vehicles moving through uncertain/dynamic environ-
ments. The developments aim towards a hierarchical control framework that is robust
and flexible, yet safe. The contributions in this part are refinements of existing plan-
ning techniques that significantly improve performance and computational efficiency.
These refinements speed up the online optimization and allow for online planning on
embedded platforms. Constraint tightening is shown to guarantee constraint satisfac-
tion (collision avoidance) despite uncertainty. This planning approach is then applied
and expanded towards area coverage.
Fusion of path planning and path following is achieved by “contracts”, which guar-

antee vehicle safety and constraint satisfaction, e.g., obstacle avoidance despite uncer-
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tainty. The design of the proposed controllers takes into account the interconnections
in terms of dynamic constraints and reference definitions between them. In particular,
a hybrid moving-horizon planner can switch between different controllers in a predic-
tive and optimized way, taking into account the controller capabilities to maintain
planning feasibility, i.e., vehicle safety even in cluttered environments.
In summary, this thesis provides an integrative, real-time feasible model predictive

control approach to path planning and path following, suitable for embedded imple-
mentation. Several experimental results (wind-tunnel and flight-tests) demonstrate
that the proposed algorithms successfully overcome various implementation challenges
and uncertainties.
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Deutsche Kurzfassung

Der vermehrte Einsatz von Luftfahrtsystemen, die von Passagierflugzeugen bis hin zu
autonomen Drohnen reichen, führt zu einer verstärkten Betrachtung ökologischer und
ökonomischer Aspekte, wie z.B. Autonomie, Reichweite, Energieeffizienz und Flexibi-
lität. Daher ist die Luftfahrtindustrie bestrebt, fortschrittliche (robuste/ zuverlässige)
Planungs- und Regelungssysteme zu entwickeln, die einen flexiblen Betrieb, Flugsi-
cherheit und Robustheit, trotz der Vielzahl von Störungen und Umweltveränderungen,
gewährleisten.
In dieser Arbeit wird als geeignete Methode zur Bewältigung von kombinierten

Planungs- und Steuerungsherausforderungen für Flugzeuganwendungen der Einsatz
der modellprädiktiven Regelung vorgeschlagen. Diese ermöglicht die systematische
Berücksichtigung der Fahrzeugdynamik und -beschränkungen, z.B. des sogenannten
zulässigen Belastungsbereichs und der Vermeidung von Hindernissen, sowie die Opti-
mierung eines Leistungsindex, z.B. des Energieverbrauchs, des Trajektorienfolgefehlers,
des Fahrkomforts oder einer Lastenreduktion. Darüber hinaus ist die modellprädiktive
Regelung dank ihres vorausschauenden Aspekts auch für die Bewegungsplanung ge-
eignet. Somit ist die modellprädiktive Regelung in allen wichtigen Reglerebenen, die
in Luft- und Raumfahrtsystemen vorhanden sind, einsetzbar.
Der erste Teil dieser Arbeit befasst sich mit dem Lastabminderungssystem, das

die strukturellen Belastungen und Schwingungen sowie das durch die atmosphärische
Turbulenzen verursachte Unwohlsein der Passagiere verringert. Die modellprädiktive
Regelung ermöglicht die Berücksichtigung von Böeninformationen vor dem Flugzeug,
das die Vorhersagegenauigkeit verbessert und die mögliche Lastabminderung erhöht.
Dies wiederum führt zu einer Vergrößerung des zulässigen Flugbereiches und einer
reduzierten Materialermüdung, und somit zu einer erhöhten Lebensdauer und besse-
ren Flugzeugleistung sowie einem erhöhten Passagierkomfort. Durch die Reduzierung
der Last können neue Flugzeugkonfigurationen wie leichtere Strukturen unter Einhal-
tung der Sicherheitsbestimmungen entworfen werden. Dies führt zu reduziertem Treib-
stoffverbrauch und damit niedrigeren Betriebskosten, was das Flugzeug ökoeffizienter
macht.
Der zweite Teil dieser Arbeit stellt einen Ansatz zur Verknüpfung von Planungs- und

Steuerungssystemen autonomer Fahrzeuge vor, die sich durch unsichere/ dynamische
Umgebungen bewegen. Die Entwicklungen führen zu einem hierarchischen Ansatz, der
robust, flexibel und dennoch sicher ist. Die Beiträge in diesem Teil sind Verbesserungen
bestehender Planungstechniken, mit denen Leistung und Recheneffizienz erheblich ver-
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bessert werden können. Diese Verbesserungen beschleunigen die Online-Optimierung
und ermöglichen es, die Online-Planung auf eingebetteten Plattformen zu nutzen. Des
Weiteren wird gezeigt, dass eine geeignete Anpassung von Beschränkungen die Erfül-
lung der Kollisionsvermeidung auch unter Unsicherheiten garantiert. Der entwickelte
Planungsansatz wird weiterhin auf das Problem der Flächenabdeckung erweitert.
Die Verschmelzung von Pfadplanung und Pfadverfolgung wird durch eine Formu-

lierung als “Verträge” erreicht, die die Fahrzeugsicherheit und die Erfüllung von Be-
schränkungen gewährleisten. So lassen sich z.B. Hindernisse trotz Unsicherheit vermei-
den. Der Reglerentwurf berücksichtigt, dass Pfadplanung und Pfadverfolgung durch
dynamische Einschränkungen und Referenzdefinitionen verknüpft sind. Insbesondere
kann der hybride Planer, der auf einem beweglichen Horizont agiert, auf prädikti-
ve und optimierte Weise zwischen verschiedenen Regelungskonfigurationen wechseln,
wobei die Eigenschaften des Reglers berücksichtigt werden, um die Durchführbarkeit
der Planung, auch unter Unsicherheiten in Umgebungen mit hoher Aktivität oder mit
vielen Objekten, sicher zu stellen.
Zusammenfassend bietet diese Arbeit einen integrativen, in Echtzeit realisierbaren

modellprädiktive Regelungsansatz für die Pfadplanung und die Pfadverfolgung, der
für eine eingebettete Implementierung geeignet ist. Die Wirksamkeit und Robustheit
der vorgeschlagenen Planungs- und Kontrollstrategien wird anhand von Simulations-
ergebnissen validiert. Mehrere experimentelle Ergebnisse (Windkanal- und Flugtests)
zeigen, dass die vorgeschlagenen Verfahren den Implementierungsherausforderungen
und auftretenden Unsicherheiten gerecht werden.
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1 Introduction, Motivations, and Objectives

Driven by ecological and economic considerations, the aviation industry aims towards
developing efficient “flexible” aircraft, e.g., to increase endurance, safety, and reliability
and to reduce fuel consumption [1–4]. Furthermore, there are appealing applications
of unmanned aerial vehicles (UAVs) for scientific and commercial applications, see [5–
11]. By now, UAVs are used for search-and-rescue missions [12–14], weather forecast
and meteorological monitoring, surveillance, and mapping [15].
Both flexible aircraft and UAVs must operate under a wide variety of operating

conditions and sustain different uncertainties and environmental disturbances. Guar-
anteeing the flight safety and robustness despite these uncertainties and disturbances
is essential. For example, flight safety and regulations require maintaining that the
vehicle’s position and loads stay within a defined safety region under all conditions [1].
Improving aircraft efficiency requires significant efforts, e.g., new configurations,

advanced guidance and control systems, and sensing and actuation technologies. In
general, aircraft development is time-consuming, with a typical period spanning up to
decades from conception design to first flight. Indeed, the aircraft design and control
systems have a significant impact on the weight and performance in addition to the
development and maintenance costs [16]. Flexible control system architectures become
elementary to meet the environmental and economic requirements. As a result, signif-
icant efforts are underway to develop and deploy new control methods for operating
aircraft and UAVs.
From the control point of view, there are different control objectives to consider,

spanning from disturbance rejection, stabilization to long-term mission planning and
fast real-time control. To improve the existing control systems, it becomes important
to operate near or at the constraints, such as maximum surface deflections and maxi-
mum permissible load [17]. Furthermore, it is essential to develop controllers that can
cope in a flexible way with a wide range of operation conditions, constraints, and non-
linearities [17]. So far, only a few control methodologies can simultaneously achieve
these requirements in a systematic manner [17].
In this work, we propose model predictive control (MPC) as a suitable control solu-

tion to tackle these problems in a unified way. Specially, we consider load alleviation,
planning, and low-level control. As shown, MPC has the ability to tackle all these
problems by allowing a suitable interaction between the different control layers and
the different control objectives.
MPC is based on a repetitive decision-making process, i.e., MPC repeatedly solves

1



1 Introduction, Motivations, and Objectives

a finite-horizon optimal control problem (OCP) applying the first part of the solution,
see e.g., [17–30]. MPC allows taking in a systematic way the vehicle dynamics and
constraints into account to optimize performance objectives, such as energy, tracking
error, passenger comfort, or load reduction. The predictive principle allows using
MPC for both motion planning and load alleviation. By solving an OCP online, using
the system model for prediction allows taking the aircraft constraints into account
and permits system operation closer to constraint boundaries, thereby improving the
performance. In this context, obstacle avoidance constraints can be handled by MPC,
allowing achieving safe and autonomous operation.
Furthermore, MPC can be applied hierarchically at different levels, spanning from

strategic (planning), supervisory control, to tactical (executional), and low-level con-
trol. Moreover, MPC allows for different decision architectures, such as centralized,
decentralized, and distributed decision. This allows MPC to consider and handle other
agents’ future actions and objectives while making local decisions. Due to this flexibil-
ity, MPC has revolved as a solution to many constrained multivariate control problems
in a wide variety of applications from aerospace, robotics, and chemical processes. This
is also driven by the emergence of fast numerical algorithms, see, e.g., [1, 7, 17, 24, 30].
The main purpose of this thesis is to examine the use of MPC for different aircraft

applications, underlining its wide applicability.

Figure 1.1: Predicting the upcoming gust using LIDAR sensor, which can be included in MPC.

In the first part of this thesis, we propose to use MPC as a suitable control ap-
proach for load alleviation, focusing on atmospheric turbulence. Using MPC for load
alleviation is motivated by the possibility to include the gust preview information to
improve the alleviation performance, see Fig. 1.1. Reducing loads allows consider-
ing new aircraft configurations, i.e., lighter structures, without compromising safety
regulations. Consequently, this allows reducing the fuel expenditure and thereby the
operating cost, which makes the aircraft more eco-efficient.
In the second part of this thesis, we consider the use of MPC for path/mission plan-

ning, focusing on UAVs. Most planning approaches, e.g., [6–8, 31], do not take the

2



vehicle capabilities into account, which might lead to dynamically infeasible paths.
This issue is essential, especially in the case of fast dynamics and in changing envi-
ronments [8]. We propose a model-based planning algorithm, i.e., MPC, which takes
the environment and the vehicle dynamics and constraints into account, e.g., maneu-
verability, velocity, acceleration, and energy limitations, see [32–34]. We also consider
different objectives, such as point-to-point movement and area coverage.

Figure 1.2: Moving-horizon planning approach in a dynamic environment avoiding static and
dynamic obstacles [35].

Autonomous vehicles often operate in a cluttered (non-convex) environment, as il-
lustrated in Fig. 1.2. Then, the vehicle’s knowledge about the environment may be
incomplete at the start of a mission. This makes the planning of the entire mission
challenging if not impossible [6, 8, 36]. MPC allows solving a reactive planning prob-
lem in a receding-horizon manner, i.e., to generate/update the path online repetitively
using the latest environment information. This leads to an indirect feedback control
law that allows compensating environmental disturbances, thereby ensuring collision
avoidance even in dynamic environments [32–34].
In practical applications, the vehicle might deviate from the planned trajectory due

to uncertainties such as wind disturbance. This causes degradation of the performance
and might affect vehicle stability, especially in dynamic environments [6, 8, 31, 37]. To
improve the performance, we propose to intertwine the path planning and control. To
ensure “consistency” between the different layers, we propose that the moving-horizon
planner and the low-level controller agree on a “contract” regarding the precision [33].
The high-level moving-horizon planner takes the contract into account by constraint
tightening. Obstacles on the planning are enlarged by a safety set considering the
precision contract to generate a collision-free optimal reference. The safety bounds are
provided and ensured by a low-level tube-based MPC [38], i.e., under certain condi-
tions, robust constraint satisfaction is guaranteed despite uncertainties considering an
adequate level of accuracy.

3
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Figure 1.3: Thesis Structure and dependency of each chapter in the thesis.

1.1 Outline and Contributions
As outlined, the main contributions of this thesis can be divided into two main parts:
The use and the experimental validations of MPC for load alleviation, and the use of
MPC to fuse planning and control in a structured and theoretical way.
The thesis is organized in seven chapters, see Fig. 1.3:
Chapters 1 introduces the motivation, objective, and a summary of the contribu-

tions covered in this thesis.
Chapter 2 introduces the essentials of aerial vehicles that are required to under-

stand the work in the following chapters.
Chapter 3 provides an introduction to MPC and outlines the basic components

and mathematical formulation of MPC, which forms the base for the developments
in this thesis. Besides theoretical aspects such as robustness and stability, we outline
some implementation challenges of MPC for aerospace applications, with a special
emphasis on the real-time feasibility. Subsequently, we present an overview of some
efficient solution methodologies and the available numerical tools used in this work.
In Chapters 4-6, we will discuss the design and implementation of MPC for aerial

vehicles, spanning from load alleviation and planning to low-level control.
Chapter 4 illustrates the design and real-time implementation of MPC to alleviate

atmospheric loads. First, we present the load alleviation problem and briefly review
the common existing load alleviation approaches. Then we present the proposed MPC
setup for load alleviation. We furthermore discuss how to use the preview information
to predict the disturbances. We consider two different aircraft as case studies to
demonstrate the effectiveness of the proposed approach through numerical simulations
with different gust conditions. We furthermore provide one of the first wind-tunnel
investigations to validate the real-time capability of MPC to reduce gust loads.
Chapters 5-6 focus on the use of MPC for moving-horizon planning and control
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1.1 Outline and Contributions

problem of autonomous vehicles in uncertain dynamic environments. The major con-
tributions are the use of a hierarchical MPC strategy to couple planning and low-level
control under flight uncertainties.
Chapter 5 commences with a background survey of the common planning ap-

proaches. Contrary to most planning approaches, the proposed moving-horizon plan-
ning strategy allows taking the vehicle dynamics and constraints into account. To do
so, we reformulate the problem as a mixed-integer programming. We propose a tuple
binary encoding that decreases the solution time by reducing the number of binary
variables.
Furthermore, a constraint tightening approach is introduced to guarantee constraint

satisfaction despite the present uncertainties, with a feasibility proof of the proposed
approach. Thereby, each obstacle is enlarged with a safety margin to ensure collision
avoidance. We furthermore explain how to solve the area coverage problem. The
efficiency and real-time feasibility of the proposed approaches are emphasized through
several numerical simulations and experimental results using quadcopter flying in a
cluttered environment.
Chapter 6 describes the synthesis of a hierarchical MPC strategy that fuses the

planning and control layers. To ensure compatibility between the layers, we consider
the problem of recursive feasibility to guarantee vehicle safety and constraint satisfac-
tion, e.g., obstacle avoidance despite uncertainty. A hybrid moving-horizon planning
approach is proposed, which allows switching between different low-level controllers
in a predictive and optimized way, taking into account the controller capabilities. As
such, it allows for more flexible and less conservative solutions to improve the appli-
cability of the planner for maintaining vehicle safety through cluttered environments.
The effectiveness and robustness of the proposed planning and control strategies are

validated via simulation results. Although the planning and control methodologies
developed in this thesis can be applied to many vehicle types, we focus on applica-
tions and scenarios for quadcopter, operating in cluttered/uncertain environments.
Experimental results and flight-test demonstrate that the proposed algorithms can be
implemented on limited onboard computation and allow handling different uncertain-
ties, e.g., external disturbance and measurement noise.
Chapter 7 concludes with remarks on the thesis contributions and discusses possible

future developments.
In summary, this thesis explores the real-time implementation of MPC for the control

of aerial vehicles, focusing on load alleviation, planning, and control subject to different
environmental uncertainties.
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2 Aircraft Planning and Control Systems

The focus of this thesis is to design and implement an MPC scheme for aerial vehicles
such as passenger and unmanned aircraft. This chapter aims to introduce the funda-
mental topics of guidance and flight control systems, spanning from aerodynamics and
aircraft modeling to the autopilot and low-level flight control. In doing so, we hope to
provide motivations for the research topics presented in this thesis. This chapter de-
scribes two parts; the gust load alleviation system for passenger aircraft and planning
and control systems for autonomous aerial vehicles.

2.1 Aircraft, Aircraft Design, and Gust Load
The aviation industry is currently driven by a multitude of environmental and eco-
nomic demands. In response, optimistic targets and stringent regulations are set to
reduce the environmental footprint of aviation and improve aircraft efficiency, e.g.,
reduce pollution emissions [1–4]. For instance, in Europe, ACARE has established
broad objectives for air transport over the next few decades in their Flightpath 2050
report [39], while NASA periodically updates its technology roadmap spanning over
20-year horizons [40]. So the aircraft industry aims to develop more efficient and flex-
ible “greener” aircraft, to meet the new challenging requirements concerning quality,
safety, and environment impacts [1–4], and to allow widespread use from passenger
transport to delivery and surveillance.
Developing aircraft requires passing through many stages; see Fig. 2.1, e.g., concep-

tual, preliminary, and detailed design process [16]. During these processes, the aircraft
specifications are verified and validated at different levels up to the first flight test [16].
The desired qualities are derived from marketing studies (previous experience or cus-
tomer needs) that define the aircraft characteristics, e.g., payload, range, speed, and
maximum take-off weight [16], as well as a multitude of regulations.
All aircraft systems impact the weight and performance in addition to the develop-

ment and maintenance costs [16]. For this reason, it is typical to take into account
the aircraft flight systems, e.g., planning and control systems, during the conceptual
design to improve the overall design processes and to prevent the extra work and in-
tegration issues. Furthermore, early exploration of system architectures ensures an
efficient development process to improve aircraft specifications supported by modern
sensing and actuation technologies.
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2.1 Aircraft, Aircraft Design, and Gust Load
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Figure 2.1: Aircraft development cycle.

In the conceptual phase of the aircraft design, different configurations are generated
and evaluated. Then the best configurations are selected to proceed to the preliminary
design stage according to the performance requirements. Mainly, the aircraft efficiency
depends on the aerodynamic performance [41], which can be enhanced by developing
new structural configurations [42] or taking the flight dynamics into account. For
instance, high-aspect-ratio design leads to maximizing aerodynamic efficiency, i.e.,
reducing the aerodynamic drag and thereby the fuel consumption [43]. Using the
same design concept, there is increasing interest in developing more efficient aircraft,
e.g., high-altitude long-endurance [2], high-altitude performance demonstrator [44],
and solar-powered aircraft [45], see Fig. 2.2. More complex configurations, so-called
sensorcrafts, aim at equipping UAVs with all the sensing devices usually included only
in large transport aircraft [46], to enable them for long endurance missions [4].
Practically, aircraft are exposed to different operating conditions, system uncertain-

ties, and environmental disturbances [5, 6, 47, 48]. These aircraft are characterized by
high structural flexibility, which leads to significant inertial coupling between the struc-
tural and rigid-body dynamics [1]. This coupling can lead to critical structural issues,
e.g., more stress loads at the wing-root and large wing deformations [49]. Consequently,
these deflections might lead to dynamic instabilities, which can be catastrophic in the
case of large disturbances, for example, in the Helios accident, see Fig. 2.2 [50].
To address these challenges, load alleviation systems (LAS) play a crucial role in

alleviating the loads and variations resulting from the aggressive maneuver or atmo-
spheric turbulence [3]. Therefore, considering these control systems early during the
conceptual phase can extend the lifetime of the airframe structure and enhance overall
aircraft performance. This may also allow decreasing the overall costs related to fuel
consumption by reducing the operation-empty-weight [43, 51]. In the first part of the
thesis, we aim to design and implement MPC to alleviate the gust loads for passen-
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Figure 2.2: Flexible High-Altitude Aircraft: a Helios incident (source of all three photos: [50]).

ger aircraft, while the second part is related mainly to autonomous aircraft and their
efficient operations in complex environments. The following section provides a brief
introduction to autonomous vehicles.

2.2 Autonomous Aerial Vehicles
Recently, there has been growing interest in the role of autonomous vehicles in a
wide range of applications [5–15]. Due to the increasing use of autonomous vehicles,
many national laws and regulations have been developed to organize the civil UAVs us-
age [52]. For instance, they regulate flight safety to maintain the vehicle’s position and
velocity within a set of safe margins. UAVs also need to have the ability to detect/sense
and avoid airborne hazards, i.e., by updating the environment knowledge via sensor
information [13] and reacting to unforeseen changes. As a result, great efforts have
been invested in improving the efficiency of the autonomous vehicle, e.g., designing
new configuration, advancing the guidance and control systems, and improving the
sensing and actuation capabilities.

Definition 2.1 (Autonomous Vehicles): powered vehicles with the necessary support-
ing capabilities, e.g., sensing, actuation, and computation, to achieve a specific task
autonomously, i.e., without external human assistance [7].

Definition 2.2 (Autonomous Systems): a group of vehicles, controlled by a
ground/air control station via communication architecture with support equipment [48].

Because of their potential applications, a wide variety of autonomous vehicle are cur-
rently in use or being developed. Generally, the autonomous vehicles can be classified
according to their structure, capability, environment, or operation, as ground, un-
derwater, or aerial vehicles [6, 7]. Comparing to ground robots, UAVs have gained
considerable attention owing to their features, such as expendable operation range
and long flight mission duration [48]. UAVs have different design configurations, e.g.,
fixed, rotor, or flapping wings. However, extra factors need to be considered for UAVs’
operation as they fly in 3D environments and need to achieve safe operation despite
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atmospheric turbulence. For this reason, this thesis aims to develop robust planning
and control strategies for autonomous vehicles.
The following section will provide a breve introduction to the different control sys-

tems present in aerial vehicles.

2.3 Aircraft Guidance and Control Systems
The aircraft performance and operating costs depend on aircraft flight systems. The
flight system spans from flight control to guidance and navigation systems, see Fig. 2.3.
The aircraft control system is decomposed in a hierarchy architecture to handle the
complexity. Such a decomposition decouples the fundamental planning and control
challenges into sub-levels of tractable problems, allowing each to be pursued inde-
pendently. This hierarchy-based design effectively reduces the computational burden,
paving the way for real-time implementation of mission planning and control systems.
It also allows reducing the hardware and software complexity.
The global decision-making layer operates at the slowest time scale, which provides

global decisions concerning objectives based on the environment information, e.g.,
obstacle location, see Fig. 2.3. The reference planning layer generates offline/online
the vehicle trajectory depending on the mission and the environment, i.e., static or
dynamic. The reference governor modifies online the reference commands based on the
current measurements considering simplified vehicle capabilities [53]. At the mid-level,
the reference tracking layer determines more detailed state trajectories, e.g., velocity,
angles, and rates, to achieve the designed reference. The vehicle is controlled via the
local controller, which acts on a fast time scale to compute the input signal to the
actuators, e.g., throttle, elevator, and drives.
In practice, common problems for the control of UAVs are unmodeled dynamics

due to external disturbances, e.g., wind, uncertainty, and model errors. Neglecting
the uncertainties and environmental changes can result in performance degradation,
e.g., loss of feasibility or instability of the control systems. Therefore, a disturbance
rejection module is often added to decrease the influence of external disturbance [34].
Typically, the planning and control layers take into account different vehicle models

and different environment information, i.e., situation awareness. For instance, the
obstacles information coming from the radar or camera sensors are mainly used in
the high-level planner, while the low-level controller uses the local measurements for
feedback, e.g., surface positions. The hierarchy, shown in Fig. 2.3, is often used in
the aerospace and robotics applications. Extra modules and layers can be added to
perform a specific function, e.g., fallback controller [54].
Practically, these layers and systems are highly interconnected. However, often

the interaction between planning and control is not exploited directly. For example,
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Figure 2.3: Aircraft planning and control systems: the low-level (red) utilizes a faster sampling
frequency than the mid-level (blue) and the higher-level planner (black). The speed
increases downwards, while the situation awareness and intelligence increase upward.

the planer sends information to the control layer, but the control layers do not send
direct information to the planner. The separation between these systems leads to
possibly unsafe overall behavior of the aircraft, especially for autonomous vehicles in
dynamic environments. We propose an effective interface between different aircraft
layers to overcome these limitations. For instance, increasing performance demands
require path planning and control to be closely interwoven, taking into account all
available information and vehicle dynamics and constraints. As another example,
the load alleviation, e.g., disturbance rejection, can be integrated with the primary
flight control system to ensure safe operation concerning structural integrity while
improving passenger comfort. These objectives can be achieved by direct consideration
of environmental disturbances and maneuver commands from the pilot.
In this work, we introduce MPC as a suitable approach to achieve all these ob-

jectives, e.g., load alleviation, planning, and low-level controller. We exploit MPC
formulations on both the planning and control layers, which generate plans/controls
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robust to the aircraft uncertainties and environmental disturbance. Note that MPC
allows taking the vehicle dynamics and constraints into account to optimize the objec-
tive index. Furthermore, MPC has the ability to achieve a suitable interaction between
the different control layers. In this hierarchy, the planning and control systems are
often designed using different complexity levels of models of the aircraft dynamics and
physical capabilities [32–35]. To ensure “consistency” between the levels and guaran-
tee safety, we let the different systems communicate each layer using the measurement
information from the navigation system.
The navigation system is responsible for determining the vehicle’s state (position,

angles, velocity, and loads) and the surrounding environment data, e.g., obstacle po-
sition and wind speed. The navigation system includes onboard sensors, e.g., inertial
measurement unit, and environment detection sensors, e.g., lidar, radar. For instance,
accelerometers measure the mass displacement, which is proportional to experienced
acceleration. Pressure sensors provide indications of the gust speed and the altitude
and airspeed of the aircraft. The aircraft heading is usually indicated using a com-
pass via measuring the direction of the magnetic field. The global positioning system
is a satellite-based navigation system that provides a 3D position for outdoor appli-
cations [47]. In real-time applications, direct measurements of all actual states are
usually not available, and measurement delays are present. As a result, it is necessary
to combine the control scheme with a stable state estimation or filter. We proceed to
describe each layer of the hierarchy.

2.4 Guidance and Motion Planning Systems
There is growing interest in increasing the autonomy level of many autonomous sys-
tems, e.g., aerospace [6–8], and automotive applications [55, 56]. Concerning them,
one refers to autonomy, guidance, and motion planning as

Definition 2.3 (Autonomy): the ability of being self-governing and includes sensing,
perception, communication, planning, decision-making, and execution. It also includes
task assignment and coordination in the case of multiple vehicles [6, 57].

Enhancing vehicle autonomy requires improving the planning capabilities, making the
system independent from a ground/air base station [6, 7].

Definition 2.4 (Guidance system): exercises planning and decision-making functions
to accomplish the assigned mission using the navigation data in diverse operating and
environmental conditions [6, 7].

Definition 2.5 (Motion Planner): generates and updates reference commands and
collision-free references to guide the vehicle through clutter environments to achieve
its task [6, 7, 32, 33].
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Often, motion planning algorithms are divided into trajectory generation and path
planning approaches.

Definition 2.6 (Trajectory Generator): computes a time-dependent trajectory to-
wards a desired state or configuration [6].

Definition 2.7 (Path Planner): determines a geometric path without timing infor-
mation [6]; the time dependency is used as an additional degree of freedom.

Most existing planning approaches do not take the vehicle dynamics and capabil-
ities into account in the planning phase, which might lead to infeasible motions or
poor performance. This issue is growing in importance, especially in the case of fast
dynamics and in time-critical missions [8].
During the mission, the generated reference should also optimize performance crite-

ria, e.g., time, energy, and uncovered area in search operations, see [32–35]. Generally,
optimization-based planning techniques have become more common for real-time ap-
plications, facilitated by recent advancements in algorithms, computational power, and
numerical implementations.
It is challenging to solve an optimization-based planning problem with many non-

convex constraints, i.e., no-fly zones. One solution is reform to mixed-integer program-
ming (MIP) [32–34, 58, 59]. MIPs allow formulating and solving the hybrid optimiza-
tion problems using both discrete decisions and continuous variables, e.g., [33, 36, 57].
The discrete decisions “schedule” waypoints, which should be visited, thereby con-
structing the path with a large sampling time [32, 33]. In literature, MIP approaches
have been implemented in many applications, e.g., planning formulations of multi-
vehicles for the search and rescue mission [13, 47, 58]. MIP optimization-based for-
mulations have been introduced with different operational features, e.g., minimum
time problems, turn rate constraints [60], in case of 2D [13, 47, 58], and 3D environ-
ments [57, 60, 61].
MIPs are often “NP-hard problems”, i.e., the computation time increases exponen-

tially with the number of integer variables. Practically, the variables number depends
on the problem size, e.g., number of constraints, obstacles, and vehicles, and the area
size [36, 62, 63]. Moreover, the non-convex configuration space, i.e., clutter environ-
ment, makes planning the entire mission prohibitively computationally expensive to
find the global minimum by introducing large numbers of binary variables [6, 8, 36].
Moreover, it is challenging to represent the operating environment in many applica-

tions, where the vehicle’s knowledge may be incomplete and/or uncertain at the start
of a mission. Typically, new information, e.g., obstacle locations, becomes available as
the vehicles enter the operation region, i.e., the situational awareness change [6, 57].
For this reason, we propose to solve a reactive planning problem in a receding hori-
zon scheme, i.e., to generate/update the path online based on the latest information
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about the environment dynamics to achieve the avoidance requirements, see [32–35].
Furthermore, moving-horizon planning takes the vehicle dynamics, constraints, and en-
vironment descriptions into account, contrary to many existing planning approaches.
Autonomous vehicles are often exposed to uncertainties, e.g., wind disturbances and

modeling error. Neglecting the uncertainties is detrimental, especially in cluttered and
dynamic environments, and can result in performance degradation or complete failure.
To overcome these challenges, robust planning approaches and control systems are
needed to obtain safe and plausible references and control inputs to satisfy constraints
and improve performance. In this work, the high-level planner uses the constraint
tightening, i.e., encountered obstacles are enlarged by a safety bound to provide online
a collision-free reference to the low-level controller. The safety bounds are provided
and ensured by the low-level tube-based MPC [38], i.e., robust constraint satisfaction
despite uncertainties by an adequate level of accuracy bounded in a tube.
The optimal solution of the planning problem, i.e., an energy-optimal path that

avoids collisions with (dynamic) obstacles, is provided to the low-level controller.

2.5 Flight Control System
This section aims to clarify the motivation of the proposed control methodology. As
mention above and illustrated in Fig. 2.3, the vehicle is controlled via the local con-
troller, i.e., inner-loop, which acts on a fast time scale to compute the input signal to
the actuators, e.g., throttle, elevator, and rudder.

Definition 2.8 (Flight Control System): generates the control signal (forces and mo-
ments) utilizing the navigation data to satisfy specified control objectives.

For example, the objective is to control the flight parameters to follow the desired
reference, to improve the airplane stability, or to reject atmospheric disturbance [64].
To achieve these objectives, the flight control system often includes subsystems, e.g.,
stability augmentation system, controllability augmentation system, and autopilot.

Definition 2.9 (Stability Augmentation System): regulates the vehicle state to equi-
librium by suppressing any motion perturbations to stabilize the aircraft [64].

This system eliminates high frequencies modes by providing artificial damping, e.g.,
pitch, roll and, yaw dampers [43].

Definition 2.10 (Controllability Augmentation System): The system allows the air-
craft to execute the desired maneuver easier and more precise, i.e., leads to superior
pilot commands in all operation modes [43, 64].

Definition 2.11 (Autopilot): The system performs the autonomous functions, such as
keeping constant altitude or attitude, or automatic take-off and landing modes [43, 64].
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These functions are necessary for the autonomous vehicles during all flight phases
and for passenger aircraft to reduce the pilot workload [43, 47]. The flight control
system mainly encompasses some actuating means, e.g., engine thrust and the control
surfaces, in addition to redundant distribution systems to ensure aircraft safety.
In literature, the aircraft dynamics are usually decomposed into longitudinal (pitch-

ing and climbing) motions and lateral (rolling and heading) motions, including different
modes, e.g., phugoid, short-period, and dutch-roll [47, 64]. Then classical controllers
are designed independently for each mode using different control actuators [64]. For
instance, the longitudinal controller has different feedback loops, e.g., airspeed hold
using throttle and altitude hold via pitch attitude using an elevator [47, 64]. While
the lateral-directional control is designed based on other loops, e.g., roll attitude, and
course or sideslip hold via aileron and rudder [47, 64]. This approach is not valid
for modern aircraft with complex dynamics, i.e., the control surfaces are nonlinearly
coupled [65]. Moreover, the objective and performance of the control system depend
on the aircraft dynamics and constraints, which might vary significantly according to
the flight conditions. For this reason, it is recommended to design a unified control
system with multi-objective and multi-input-multi-output, e.g., MPC approach.
According to the aircraft specifications, the flight control system is often designed

to achieve some control requirements, e.g., response speed, relative stability, and sys-
tem accuracy. For instance, the control system has to be designed to operate at low
bandwidth to prevent exciting extra structural vibrations and flutter [65].
Furthermore, it is important that the controller does not generate too large com-

mands that could damage the aircraft’s structure. Therefore, the control system has
to take the aircraft (state and inputs) constraints into account, which are due to the
physical limitations of the structure, aerodynamics, or performance requirements. Tra-
ditionally, conventional control techniques usually decrease the possibility of constraint
violations via choosing operating points far enough away from constraint boundaries,
which might cause impaired performance, e.g., system instability. MPC allows the
system to operate near to the constraint boundary; this improves operation efficiency.
Autonomous vehicles are often exposed to many types of uncertainties, e.g., wind

disturbances. Neglecting the uncertainties is critical, especially in cluttered and dy-
namic environments, and can result in performance degradation or complete failure.
For this reason, this work proposes a disturbance rejection strategy that combines opti-
mal control with machine learning to improve the control performance and robustness
by mitigating the effect of the disturbances. The next section describes the control
methodology used to handle the gust disturbance for passenger aircraft.
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2.6 Load Alleviation System
For ecological and economic aspects, efficient aircraft design tends to use a more flexible
and lighter structure. The aircraft structure has to be strong and robust to withstand
the maneuver and gust loads. One way to cope with this problem is to install a load
alleviation system (LAS). LAS is mainly used to alleviate the structural loads and
variations resulting from the aggressive maneuver or atmospheric turbulence [2, 3].
These control systems allow improving the aircraft fatigue life and performance, i.e.,
flying qualities [3, 43, 51]. Guaranteeing load reduction allows reducing the weight, i.e.,
by designing a lighter structure without compromising the safety standards. Conse-
quently, weight reduction reduces the fuel expenditure and thereby the operating cost,
which makes the aircraft more eco-efficient. For these reasons, these control schemes
should be taken into account early in the design process of aircraft production. Hence,
the interactions between LAS and the primary flight control system have to be taken
into account to achieve the required performance and to ensure safe operating con-
ditions. LAS is mainly divided into gust load alleviation (GLA) and maneuver load
alleviation (MAL) systems.

Definition 2.12 (Gust Load Alleviation): structural-mode suppression system is used
to attenuate the structural vibrations and loads resulting from the gust turbulence.

GLA allows enhancing aircraft stability and improving ride comfort, e.g., reducing
cabin noise [1]. Therefore, GLA enhances the aircraft design, i.e., makes it more effi-
cient and lighter, while still assuring compliance with the certification standards [66].

Definition 2.13 (Maneuver Load Alleviation): system reduces the maneuver loads by
redistributing the aerodynamic load via actuating control surfaces [43].

Practically, the control performance depends on the actuator’s surface effectiveness,
which mainly depends on the actuator position, e.g., flaps, ailerons, elevators, and
rudders. Using these actuation surfaces for different functions, e.g., primary control
system and alleviating the gust loads, simultaneously might lead to undesired perfor-
mance. For instance, using an elevator to alleviate the gust loads can increase the
internal stresses in the horizontal tail root. So it is preferable to use redundant control
effectors [2]. Another challenge in the aircraft with coupled flight-dynamics/aeroelastic
response is the synthesis of appropriate control algorithms for stabilization, flutter sup-
pression, and load alleviation.
For these reasons, we introduce MPC as a suitable control solution to the load alle-

viation problem for a flexible aircraft. Since the MPC framework has adaptation and
reconfiguration capability, e.g., specifying certain actuators for load alleviation, this
improves the functionality of the actuation system. Furthermore, MPC allows opti-
mizing online the performance criterion, e.g., the load reduction at relevant stations,
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e.g., wing root. Simultaneously, the actuator fatigue can also be addressed, e.g., by
including the input rates in the performance criterion. The key advantages of MPC
for this application are also the ability to consider multiple-input-multiple-output air-
craft dynamics. Moreover, MPC allows systematically handling the aircraft (state and
inputs) constraints, e.g., actuators limitations both in terms of operability range and
response speed. MPC also has the ability to handle the model uncertainties and the
external disturbance in a robust framework. Additionally, MPC allows utilizing the
look-ahead information about the atmospheric turbulence, e.g., LIDAR, to improve
prediction accuracy [67, 68]. This thesis focuses on the application aspects and the
overall achievable performance by applying MPC-based GLA schemes.
The first step to design the proposed planning and control systems is to develop

appropriate mathematical models of the underlying aircraft and autonomous vehicles.

2.7 Aircraft Modeling, Linearization, and Reduction
An aircraft is often considered as a rigid-body structure whose equations of motion
(EOM) can be derived using physics principles, e.g., Newton’s laws [47, 64]. Developing
this mathematical model requires identifying the physical properties, e.g., geometry,
mass, and aerodynamic coefficients. Traditionally, these coefficients are often obtained
via system identification techniques using wind-tunnel or flight test data.
During flight, forces and moments acting on the aircraft’s structure include dis-

tributed loads, e.g., aerodynamics and inertial, and concentrated loads, e.g., propul-
sive and gravitational. The aircraft loads are usually highly nonlinear functions of the
aircraft geometry, flight conditions, and control surface deflections. As a result, the air-
craft models usually include nonlinear differential equations for rigid-body kinematics
and dynamics presenting the aerodynamic forces and moments [47, 64].
From the control perspective, the main challenge is how to approach the complex

high-order models of the aircraft, often with time-varying parameters [69]. Therefore,
different simplification and approximation methods are utilized to reduce the model
complexity to facilitate control synthesis. For instance, the equations of aircraft motion
are often linearized at different trim conditions, e.g., steady horizontal flight, steady
climb flight, and steady horizontal turn [47, 64]. The flight trims are the steady-
state conditions where the aircraft is in equilibrium, i.e., flies without translational
or angular acceleration [47, 64]. To improve the computational efficiency, the model
order can be reduced by projecting the full order models onto a subspace of the original
physical space [4, 70]. This subspace encapsulates the fundamental dynamics of the
aircraft with a small number of state [70].
For load alleviation in Chapter 4, the aircraft dynamics are defined by high-order

aeroelastic models, which represent the flight-mechanics (rigid-body motions) and the
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aeroelastic modes (elastic vibrations). In Chapter 5, the strategic-level control, i.e.,
planning layer, uses linear kinematic models representing the closed-loop behavior of
the vehicle dynamics and the low-level controller, e.g., [32–34]. The kinematic modeling
is based on the geometric information of the system, e.g., invoking the point-mass
assumption, which decreases the computation time [71]. The main simplifications are
to ignore the complex equations, which are force and moment dependent. In this setup,
the inputs are commanded accelerations and the outputs are the airspeed and inertial
position. In Chapter 6, the “tactical” levels, i.e., low-level controllers, are designed
based on the rigid-body dynamics and ignoring the flexible effects, see [32, 34, 35].

2.8 Summary
This chapter presented an introduction to the basic of aircraft, guidance, and flight
control systems. The following chapter provides an introduction to MPC principles
that underlay the thesis contributions.
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We focus on exploring real-time implementation of MPC for flight control and guidance
systems. This chapter outlines the basic MPC concepts that underlie all of the thesis
contributions. Section 3.1 provides an introduction to MPC. Section 3.2 outlines the
basic elements and mathematical formulation of MPC. Section 3.3 discusses application
aspects and implementation challenges of MPC, such as robustness, stability, and
real-time implementation. Finally, we present a selective overview of efficient solution
methods, architectures, and the available numerical tools for MPC.

3.1 Overview of Model Predictive Control
MPC is based on a repetitive decision-making process, see Fig. 3.1. MPC scheme solves
a finite-horizon optimization problem repeatedly, taking the system dynamics and con-
straints into account. There are many excellent reviews on the MPC main principles,
theoretical aspects, and potential applications [17–30]. MPC was first utilized as a so-
lution to tackle multivariate control problems for slow industrial processes [27]. In the
1970s and 1980s, MPC gained much interest in the process industry. Approaches such
as dynamic matrix control [72], model predictive heuristic control [73], and generalized
predictive control [74] were originated at that time. Following these applications, MPC
strategies have been rapidly adopted due to the simplicity and the possibility to use
dynamics models. Recently, MPC is used in a diverse range of applications, such as
aerospace and robotics, driven by the emergence of fast numerical solution algorithms
and embedded computing platforms.

3.1.1 Model Predictive Control Principle

In MPC for discrete-time systems, the future system behavior is predicted over a fi-
nite period, the so-called prediction horizon T = N · Ts, using a system model and
state measurements at the current time tk, see Fig. 3.1. An optimal control sequence
u? = {u(tk), u(tk+1), ..., u(tk+Nc)} is calculated solving an OCP, taking the system
dynamics and (input and/or state) constraints into account. The solution of the opti-
mization problem, if it exists, ensures the satisfaction of system constraints and bound-
ary conditions and optimizes a cost functional, which represents the performance index
involving objectives on both state and inputs, e.g., energy, tracking error, comfortable
ride, and load reduction, see [17–27].
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Figure 3.1: Principle of model predictive control: The future system behavior is predicted over
the horizon T = N · Ts, based on a system model and state measurements at the current
time tk. The optimal control sequence u? = {u(tk), u(tk+1), ..., u(tk+Nc)} optimizes a cost
functional, i.e. the performance index, which in general depends on both state and inputs.
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The essential difference between MPC and standard optimal control is that MPC
solves an OCP online at every sampling time [20]. Unmeasured disturbances or
model inaccuracy lead to a mismatch between the predicted and actual system
response. To counteract this deviation, MPC applies only the first term of the control
sequence, i.e., u(tk), to the system until the next sample tk+1. Then, the prediction
and optimization are repeated, see Fig. 3.1b, in a moving-horizon fashion, using an
updated state measurement [7, 17]. For this reason, MPC is also known as the receding
horizon control (RHC). The main idea is summarized in the following Algorithm [7, 48]:

Algorithm 1: Basic MPC Algorithm

1. Measure/estimate the system state x(tk) = x0 at the current time tk;

2. Solve a (finite-horizon) OCP by minimizing/maximizing a cost/reward function
subject to the system model and constraints;

3. Of the resulting sequence of optimal control inputs u?, only apply the first u(tk);

4. Go to step 1, repeat the optimization.

3.1.2 Model Predictive Control Potential and Possibilities

MPC has been attracting increasing attention in the control community due to the
following advantages [7, 17, 48, 75]:

• Use of previews and predictions: MPC optimizes the predicted system behavior
over the prediction horizon to yield the optimal control action. This predic-
tive nature allows utilizing available preview information, such as predicted gust
disturbances or moving obstacles.

• Systematic treatment of constraints: This allows considering constraints of ma-
neuverability, obstacle avoidance, load, and actuator limitations.

• Optimized performance: MPC optimizes online the performance criterion, e.g.,
energy, tracking error, comfort ride, or load reduction.

• Wide spectrum of models: MPC can handle multi-input-multi-output, linear,
nonlinear, or hybrid dynamics model.

• Simple reconfigurability: MPC can reconfigure the controller by merely updating
the system model, cost function, and/or using different constraints, e.g., spec-
ifying certain actuators for load alleviation to improve the functionality of the
actuation system.
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• Hierarchical applicability: MPC can be applied at different levels, e.g., strate-
gic (planning), supervisory controller, or tactical (executional) controller. MPC
provides a suitable interaction between the different control layers considering
different objectives.

• Possibilities to handle uncertainty: Robust and stochastic MPC approaches en-
sure a priori absolute or probabilistic guarantees despite bounded (set member-
ship) or probabilistic (stochastic) types of uncertainty.

• Consideration of time delays: MPC can handle delays e.g., due to communication,
sensors, and actuators.

3.2 Basic Constituents and Mathematical Formulation
The mathematical formulation of MPC consists of a set of OCP elements [20]. Often,
MPC is formulated in a discrete-time setting, i.e. generates control actions at discrete
time intervals {tk, tk+1, tk+2, . . . , tk+N}.

Definition 3.1 Sampling time: Time interval between two time-steps, Ts = tk+1− tk.

Definition 3.2 Prediction horizon: Time over which the future system behavior is
predicted T = N · Ts.

Definition 3.3 Control horizon: Nc defines the number of actuation signals to be
determined in the future.

The prediction horizon and sampling time are typically connected. Often, a faster
sampling rate is desired to handle high-frequency perturbations for disturbance rejec-
tion applications. However, it typically increases the computation-time as it requires
more prediction steps for a given prediction duration. Often, increasing the predic-
tion horizon might be necessary to achieve the performance demands, e.g., sufficient
foresight to avoid a collision in the planning formulation [32, 33].
One way to reduce the computational burden is to fix the control input beyond the

control horizon, Nc ≤ N , as this reduces the number of decision variables [17].

3.2.1 System Model and Prediction

One of the core aspects of MPC, model-based control, is to utilize the system model to
predict future behavior starting from an initial measured/estimated state, see Fig. 3.1.
According to these predictions, the optimal control sequence is determined, so the
optimization program is constrained by the model while still fulfill the constraints.
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For choosing an appropriate model, there is a trade-off between prediction accuracy
and computation complexity. For instance, using more accurate models results in
more computation time to solve the optimization problem, and it affects the control
performance and stability [17]. A reasonable rule is to choose the simplest possible
model that is accurate enough to make reasonable predictions. In this work, different
MPC approaches have been proposed based on distinct types of models:

1. We use nonlinear discrete-time models of the form:

x(k + j + 1|k) = f(x(k + j|k), u(k + j|k)), (3.1a)
y(k + j|k) = g(x(k + j|k), u(k + j|k)), (3.1b)

where x ∈ Rnx, u ∈ Rnu, y ∈ Rny represent the controlled variables (state), the
manipulated variables (control inputs) and outputs vectors with appropriate di-
mensions nx, nu, ny respectively. The argument (k+ j|k) denotes the j-th future
time step prediction made at the time step k. The map f : Rnx × Rnu → Rnx
represents the system dynamics, which defines the successor state in terms of the
current state and input. The function g(·, ·) : Rnx × Rnu → Rny represents the
system output as a function of the state and inputs.

2. Linear models are often used to reduce the computation time by linearizing the
nonlinear one (3.1), either around the operating point or around a trajectory.

x(k + j + 1|k) = A(k + j|k)x(k + j|k) +B(k + j|k)u(k + j|k), (3.2a)
y(k + j|k) = C(k + j|k)x(k + j|k) +D(k + j|k)u(k + j|k). (3.2b)

Here, the system matrix A ∈ Rnx×nx, the input matrix B ∈ Rnx×nu, and the
output matrices C ∈ Rny×nx, D ∈ Rny×nu could be time-variant or invariant
matrices, which leads to the different models, e.g., linear time-invariant, linear
parameter-varying, or linear time-varying.

3.2.2 State and Input Constraints

MPC allows taking constraints explicitly into account. Those might represent the
physical limitations of the state, e.g., maximum velocity and accelerations, stall angle
of attack, or desired operation modes, and inputs, e.g., actuators restrictions, fuel,
and energy [17]. Furthermore, safety constraints, e.g., obstacles, can be formulated as
mixed state-control constraints [32–34]. Theoretically, constraints can also represent
some controller design objectives, e.g., used to achieve recursive feasibility [33, 59].
Generally, the constraints can be classified as:
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3.2 Basic Constituents and Mathematical Formulation

Stage Constraints represent the state and input constraints over the horizon.

x(k + j|k) ∈ X(k + j|k) ⊂ Rnx, ∀j ∈ {0, ..., N − 1}, (3.3a)
u(k + j|k) ∈ U(k + j|k) ⊂ Rnu, ∀j ∈ {0, ..., N − 1}. (3.3b)

The sets X and U are the state and input constraints, which could be time-varying
due to moving obstacles [32] or constraint tightening [33].
Terminal Constraints represent constraints, which must be fulfilled at the end of

the prediction horizon, e.g. x(N) = xT ∈ Rn. This constraint is in some cases relaxed
by introducing a so-called terminal region constraint, e.g. x(N) ∈ XT ⊂ Rn [20].

3.2.3 Objective Function

According to the control goals, the objective function contains the performance speci-
fications to be optimized. Typically, the finite-horizon cost functional J(·)

J
(
x(k), u(k)

)
=

N−1∑
j=1

`
(
x(k + j|k), u(k + j|k)

)
+ E

(
x(k +N |k)

)
, (3.4)

is decomposed into a stage and a terminal cost.
Stage Cost Function `

(
x(·), u(·)

)
: Rnx × Rnu → R+

0 is typically formulated as a
function of both the state x and control variables u to achieve the desired perfor-
mance. For instance, it could penalize the deviation from the reference (desired state
and controls), which could include the steady-state in the case of stabilization. For
technical reasons, it is often assumed that the stage cost is strictly greater than zero
everywhere (except at origin).
Terminal Cost Function E(x(·)) : Rnx → R+

0 is employed to specify the state’s
contribution beyond the horizon. Terminal penalty (cost-to-go) is often incorporated
with a short horizon to reduce the computational burden compared to the long horizon.
The overall mathematical formulation for MPC is summarized in a discrete-form as:

min
x,u

N−1∑
j=1

`(u(k + j|k), x(k + j|k)) + E(x(k +N |k)), (3.5a)

s.t. x(k|k) = x0, (3.5b)
x(k + j + 1|k) = f(x(k + j|k), u(k + j|k)), j ∈ {0, ..., N − 1}, (3.5c)

y(k + j|k) = g(x(k + j|k), u(k + j|k)), j ∈ {0, ..., N − 1}, (3.5d)
x(k + j|k) ∈ X(k + j|k), j ∈ {0, ..., N − 1}, (3.5e)
u(k + j|k) ∈ U(k + j|k), j ∈ {0, ..., N − 1}, (3.5f)
x(k +N |k) ∈ XT, (3.5g)

where, x0 represents the initial condition of the system.
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Typical stability and feasibility properties can be guaranteed by stability conditions
on the cost function E(.), and a positive invariance condition on the terminal set
XT [21]. The MPC performance depends on properly tuning the weight parameters in
the cost function J(·).

3.3 Theoretical Aspects
The thesis’s focus is to design and real-time implement MPC schemes for aircraft and
autonomous vehicles. Thereby, this section aims to outline some theoretical aspects
of MPC implementation, e.g., stability and handling uncertainties.

3.3.1 Stability

Solving online an infinite-horizon OCP is often (computationally) not possible. Using
a finite-horizon in MPC in general results in instability and feasibility problems [20].
Many approaches have been proposed to achieve stability in MPC, e.g., [20, 29, 76–78],
e.g. by careful selection of the terminal cost and set as well as the weighting matrices.
For instance, stability can be achieved by zero terminal constraints forcing the state

to be zero x(tk + N) = 0 at the end of the prediction horizon at every time step.
However, satisfying this constraint is in general difficult, if not impossible, for a short
prediction horizon [20]. To avoid this problem, the terminal region constraint and/or
the terminal penalty have been proposed which determines an upper bound of the
infinite-horizon cost. These ensure that the value function decreases as the horizon
recedes in time [20].
In the Lyapunov function approach [79], the terminal cost is related to a (known)

Lyapunov-function to enforce MPC stability.
Dual-mode MPC was developed to guarantee the system stability by forcing the sys-

tem state to end in a terminal region where a controller is switched to which enforces
local stability. The system state will remain inside this terminal region using an ap-
propriate local linear controller. A terminal penalty is used to ensure the convergence
to the terminal region, i.e., decreasing the value function [80].
To enforce system stability, contraction constraints [81] can be added to explicitly

enforce both the actual and predicted state to contract every recalculation instant [81].
However, this approach does not guarantee the recursive-feasibility without other as-
sumptions on the system.

3.3.2 Model Predictive Control under Uncertainties

As MPC is a model-based controller, its performance depends on the model quality,
i.e., the mismatch between the real system and the prediction model [17]. In practical
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applications, model quality may be affected by external disturbances, inherent dis-
crepancies, or measurement noise [17]. Other sources that lead to prediction error can
be parameter identification errors, changes in the operating conditions, and modeling
assumptions, e.g., neglecting high-order dynamics [17]. Additionally, often the sur-
rounding environments are highly uncertain, or only limited information is available.
In principle, nominal MPC has inherent robustness properties to cope with the

system uncertainties [20], but under certain conditions [82]. However, in the presence of
uncertainty, MPC may perform poorly or drive the system into an infeasible region [83].
To guarantee feasibility, robust MPC (RMPC) approaches (e.g., [38, 83–96]) have

been proposed to systematically “robustify” the original MPC formulation by mod-
ifying the objective function and constraints. This leads to input sequence or poli-
cies, which satisfy constraints despite the uncertainty [83]. The main issues of most
approaches are conservativeness or the computational time to achieve the desired ro-
bustness properties [17]. The appropriate choice depends on various factors, e.g.,
optimization run-time and achievable performance [83].
For constraints satisfaction, RMPC approaches use different mathematical descrip-

tions of uncertainty. For instance, parameter uncertainty can be represented by

x(k + 1) = f(x(k), u(k),P(k)), P ∈ P,

where the uncertain parameter P is bounded in a compact set P [21]. Additive state
disturbance is commonly represented by

x(k + 1) = f(x(k), u(k)) + ω(k), ω(k) ∈W,

where the disturbance ω is assumed to be bounded in a compact setW, which contains
the origin [17]. Many results in RMPC [38, 86–88] have focused on handling bounded
uncertainties [17]. Other RMPC approaches, e.g., in [89, 90], consider state-dependent
(bounded) uncertainties. Common RMPC approaches can be classified as follows.
Min-Max RMPC approaches are based on minimizing the cost function concern-

ing the worst case of the admissible disturbance sequence [86]. This ensures robust
feasibility by guaranteeing constraint satisfaction for all disturbance realizations [17].
However, this approach might be excessively conservative (i.e., large infeasible regions)
and computationally intense because it attempts to optimize over every possible distur-
bance sequence. Often, Min-Max RMPC is not suitable for online optimization [86, 90].
Affine Feedback Policy based MPC restricts the anticipated growth of the un-

certainty to overcome the conservativeness limitation of the open-loop prediction [97].
This can be achieved by inserting an affine feedback policy [86]. Several parametriza-
tions of affine approaches have emerged, and the feedback term can be optimized online
or offline [83]. However, the complexity of such approaches grows exponentially with
the problem size, limiting their online implementations.
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Linear matrix inequalities are an alternative approach of affine policies to frame
the robust problem as computationally tractable [85, 98]. As in the min-max formu-
lations, this approach minimizes the upper bound on the cost function (worst-case)
over all possible disturbance sequences using state feedback policies. Stability and
robustness can be guaranteed using convex optimization techniques [99].
Constraint Tightening approaches solve the nominal open-loop optimization

problem and achieve robustness by systematically shrinking the system constraints.
This leads to a guarantee to satisfy the original constraints despite any possible re-
alization of the future uncertainties (unknown but bounded), which can be rejected
using a future feedback correction, e.g., in [57, 83]. Offline procedures have been pro-
posed [57] to compute the feedback policy to determine the tightening amount. This
feedback improves the performance and satisfies various design criteria, e.g., tolerating
much stronger disturbances. The bounded uncertainty effects in the case of a linear
system can be represented by disturbance-invariant sets, which is used to shrink the
system constraints, by the Pontryagin difference operator [100]. Many constraint tight-
ening approaches have been presented, considering varying constraints [59], constant or
time-varying state feedback [59, 88], and time-varying disturbance feedback [57, 100].
An essential advantage of this approach is less computationally intensive, suitable
for real-time applications [17]. Constraint tightening methods do not significantly in-
crease the online optimization complexity, i.e., the decision space and the number of
the constraints. However, they might be conservative (i.e., smaller feasibility regions)
introduced to account for the disturbances along the prediction horizon [17].
Tube RMPC allows handling directly bounded uncertainties, e.g., [38, 91, 92, 97].

The core of tube RMPC is to replace individual trajectories with an envelope that
includes all possible trajectories [38]. This can be achieved by replacing the predicted
state’s trajectories with robust forward invariant tubes [87]. The initial state condition
is also relaxed such that the predicted state’s trajectory defines a “tube center”, which
does not necessarily need to originate at the current state. In this context, tube MPC
involves the control parametrization into a feed-forward term and a feedback term that
regulates the true state of the system to the predicted tube center.
To ensure a feasible solution, tube-based MPC modifies the system constraints,

closely related to constraint tightening methods. In general, constraint tightening and
tube RMPC approaches can handle bounded uncertainty without requiring a distur-
bance estimator, enabling more aggressive performance [38, 100]. In linear systems,
constraint tightening with a fixed state feedback gain is less conservative than tube
MPC. However, both approaches increase conservativeness.
Stochastic and Probabilistic RMPC approaches have been proposed to handle

the uncertainties, which cannot be represented by sets [96]. In conventional robust
formulations, the uncertainty bounds are assumed to be known a priori or be estimated
online, which are used to modify the robustness bounds [88]. The resulting problems

26



3.4 Implementation Aspects

are typically formulated as stochastic optimization involving probabilities [93–95].
Chance constraints have been proposed to provide a systematic way for a probabilis-

tic interpretation of constraints violation, e.g., [101]. In cases of uncertainties with an
arbitrary distribution, sample-based methods have been proposed to approximate the
state distributions with particles, which leads to a deterministic optimization problem.

3.4 Implementation Aspects
In critical applications, it is necessary to investigate the reliability of the underly-
ing control system from both the control and implementation perspectives. Thereby,
this section aims to outline some implementation aspects, e.g., numerical solvers and
optimization algorithms.
It is necessary to verify and validate the reliability of the MPC algorithms, especially

in cases of safety-critical applications, e.g., load alleviation and planning, which endan-
gers human safety. From a control perspective, the MPC algorithm should satisfy all
control requirements based on some theoretic metrics, e.g., guarantees of optimality,
invariance, stability, convergence, and verifiability [17]. From a practical perspec-
tive, MPC algorithms can be verified using software-in-the-loop tests, demonstration
tests [102], Monte-Carlo simulations [103], or software verification tools [104].
Practically, MPC applications are mainly restricted by the onboard capabilities,

e.g., computational power, software architectures, communication capabilities, and the
available memory to store the computation data. For online computations, the required
memory depends on the prediction horizon, the system dimension (i.e., number of
inputs, state, outputs, and constraints), the required bytes [105]. This also depends
on how the program has been written, i.e., using specific structures, e.g., sparsity [20].
This variety of aspects has led us to approach the MPC implementation in a holistic
manner to achieve real-time implementation.
Implementing NMPC requires solving a nonlinear (non-convex) OCP, which in-

creases the problem complexity and leads to reliability and computational/numerical
issues, e.g., a guarantee of global optimum [17]. This limits the generic implemen-
tations of NMPC in real-time applications. To reduce the computational burden,
many MPC approaches are based on simplification and approximation of the system
dynamics or the calculated control law.
Using linear models and constraints with quadratic cost functions leads to a

quadratic programming (QP) (i.e., convex optimization) appropriate for the real-time
MPC implementation using efficient tools, e.g., [106, 107].
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3.4.1 Available Solution Methods

Different methods have been proposed to solve OCP in general and MPC problems in
particular, for more details, the reader is referred to [24, 108] for an introduction on
numerical methods, and [17, 109] for embedded optimal control. Many techniques have
been developed to enable real-time MPC implementation by solving the optimization
problem by implicit or explicit methods or use a combination of both methods [17].
Implicit methods solve online the underlying OCP for the current state at every time

instance. This solution can require high computational power, which could be chal-
lenging on embedded platforms [17]. Therefore, explicit methods have been proposed
to solve the underlying OCP offline to avoid the online optimization [107, 110].
This reduces online calculation to look-up table evaluations of the optimal control

function for the current state. This reduces the online computational complexity [17,
110]. However, the achievable performance depends on the size and resolution of
these look-up tables, which depends on the problem complexity, i.e., horizon, number
of state, inputs, and constraints. Therefore, there is a trade-off between optimality
and memory, especially for high-dimensions systems, e.g., flexible aircraft. For these
reasons, researchers proposed combining the explicit and implicit methods, i.e., pre-
compute part of the optimization offline, to decrease the online computation time [17].
For the iterative solution, so-called warm start approaches use the previous solution

of the MPC problem for the next control action to reduce the required time-to-solve
optimization problems.
Computations requirements have been reduced with the help of tailored sequential

and simultaneous methods [106, 111]. For example, sequential quadratic programming
(SQP) methods solve the MPC problem by repeatedly approximating the KKT system
that is compatible with QP solver [55]. For NMPC, QP solvers can use Hessian
approximation approaches, e.g., quasi-Newton methods [108], or generalized Gauss-
Newton Hessian approximations [55]. Moreover, NMPC problems can also be solved
using iterative solutions of QP-based subproblems [17], i.e., the solution approaches
can be roughly divided along the lines of interior-point and SQP methods [55].
Real-time iteration methods have been developed for NMPC applications to relax

the optimality condition [55]. Multi-level iteration methods [112] subdivide the deriva-
tive computations into two or more levels (increasing complexity) to be executed in
parallel with different sampling rates [55]. The main idea is to update some parame-
ters while keeping others fixed according to two update strategies, one to improve the
feasibility, and another improves optimality [55]. In the same concept, mixed-level iter-
ation methods [113] assign a different level of parameter update to different segments
of the NMPC prediction horizon. In addition to the above solution methodologies,
many numerical algorithms have been developed to reduce the required computational
time for solving the underlying OCP, see the following section.
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3.4.2 Efficient Software Solution Tools

The verification and real-time applicability of the MPC algorithms mainly depend on
the reliability of the optimization algorithm [17]. Most numerical solvers are potential
candidates to be tailored specifically for MPC implementation [17]. We provide a short
review of the available numerical solvers with a particular focus on the tools used in
this thesis, see Fig. 3.2.
The real-time MPC implementation of the GLA system, in Chapter 4, uses the code

generation software µAO-MPC [114]. µAO-MPC is a code generation tool, which
provides a highly portable library-free C-code. This allows implementing MPC on
embedded applications with low computational requirements [114]. The optimization
problem is solved online by a QP solver based on an augmented Lagrangian method
with Nesterov’s gradient method. The constraint equations, gradient vector, and Hes-
sian matrix of the optimization problem are calculated in a condensed form.
The MIP planning problems, in Chapter 5, are solved using YALMIP [115],

which provides solutions of convex and non-convex mixed-integer optimization prob-
lems [115]. To find a solution to these MIP problems, it exploits a powerful optimiza-
tion software, e.g., Gurobi optimizer [116]. Gurobi can efficiently solve LP, QP, MILP,
and MIQP with a reasonable size, i.e., the number of binary variables. There are
different methods to solve the MIP, e.g., branch-and-bound algorithm, cutting-plane
algorithm, and branch-and-cut algorithm [117]. This thesis uses the branch-and-bound
algorithm [118] to solve MILP problems efficiently in reasonable computation times (on
the order of milliseconds). This method allows using integer relaxation to accelerate
the solution process by splitting the problem into sub-problems [117].
Tube-based MPC, in Chapter 6, is implemented using the multiparametric program-

ming MPT toolbox [119].
We tackled the NMPC path following problem, in [32, 35], by the ACADO

Toolkit [120]. ACADO provides a Matlab interface to generate C++ code for
NMPC. ACADO implements the real-time iteration scheme with different algorithms
to solve OCP. It incorporates efficient numerical integrators in auto-generated C-
code [120, 121]. The extension of ACADO, called ACADOS [122], provides a com-
putationally efficient modular framework for direct optimal control methods, which is
applicable for embedded applications [122].
CasADi [123], another open-source tool, provides a framework for numerical opti-

mization and automatic computing the Jacobian matrices. CasADi uses C-code gen-
eration and interfaces codes, e.g., SUNDIALS [124], and IPOPT [125]. IPOPT is an
interior point nonlinear programming solver used in conjunction with MATLAB fmin-
con solvers and the BLOM software package [126]. BLOM is also used for modeling
nonlinear systems for NMPC applications. Many software packages are based on QP
solver, e.g., qpOASES [127] and HPIPM [128]. For implicit MPC design, qpOASES is
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Figure 3.2: Software tools and approaches used in this thesis.

the default QP solver used in the ACADO Toolkit, and used to implement an active
set strategy online in the C++ code.
For small to medium scale problems, HPIPM [128] is an efficient interior-point

QP solver based on BLASFEO [129], which is a set of linear algebra routines for
embedded optimization applications. Another QP-based software is the MATLAB
MPC toolbox [130], which provides C-code generation to calculate explicit solutions.
Other MATLAB-based software packages for MPC with linear systems are, e.g., fast
mpc [107], jMPC Toolbox [131], FiOrdOs [132] and PnPMPC toolbox [133].
Different tools are available to solve convex optimization problems, e.g., CVX [134],

ECOS [135], FORCES [136], and FiOrdOs [132], which are particularly suitable to gen-
erate C code for implementing MPC on embedded platforms. For real-time NMPC ap-
plications, other software packages, e.g., ICLOCS [137], and PROPT [138], MUSCOD-
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II [139], and OptCon [140] are based on the multiple-shooting optimization approach.
These advanced solvers use the recent developments in the computation technology,

e.g., electronic processor and memory, for real-time implementation in embedded plat-
forms. Nevertheless, with the increasing autonomy and performance demands, MPC
applications become more challenging considering more complex dynamics and objec-
tive function, or long prediction horizon. So there still exist significant challenges,
which need more advanced solutions to have emerged in the future.

3.5 Summary
This chapter outlined MPC formulations and key ingredients required in the following
chapters. First, we introduced the MPC, the underlying tools used in this thesis. Af-
terward, we outlined implementation challenges, efficient solution methodologies, and
numerical tools. In the next chapters, we will discuss how to design and implement an
MPC scheme to solve different problems, e.g., load alleviation, planning, and control.
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4 Model Predictive Control for Gust Load
Alleviation

Ecological and economic aspects are a driver in the development of flexible aircraft,
which are exposed to critical loads resulting from, e.g., gust. This motivates us, in this
chapter, to design and implement an MPC scheme to attenuate atmospheric loads.
First, we outline the load alleviation problem in Section 1 and briefly review the
common GLA approaches. Section 2 presents the control setup of MPC for the GLA
design. Section 3 illustrates numerical simulation scenarios, and then Section 4 shows
the results of wind-tunnel experiments, which demonstrate the real-time capability
of the proposed methodology to reduce the gust loads. Finally, Section 5 provides
discussion and concluding remarks.

4.1 Introduction and Motivations
The aviation industry is continuously driven to decrease the ecological footprint and
improve economics. More efficient “greener” aircraft need to be developed to reduce
fuel consumption while enhancing endurance and passenger comfort [4, 16]. This
requires enhancing the aerodynamics and propulsion efficiency as well as the advanced
control systems. Many research activities focus on reducing the structure weight and
designing aircraft with high-aspect-ratio wings to reduce the aerodynamic drag and
fuel consumption [141]. However, this increases the structural flexibility, i.e., aircraft
becomes more sensitive to atmospheric disturbances. Due to flexibility, aerodynamic
loads changes leading to further elastic deformation. This influences the rigid-body
aerodynamic and might decreases flying performance, e.g., passenger comfort [1]. For
instance, lighter wings are more exposed to unstable performance, i.e., flutter and
high-frequency oscillation.
Such effects might lead to critical stresses on the structure, e.g., wing-root, causing

fatigue problems, i.e., reduce the aircraft lifetime.
This can be compensated using active control techniques that allow increasing the

lifetime of the aircraft [51]. Load reduction can allow reducing the weight, i.e., design
lighter structure, without compromising the safety standards. Consequently, this re-
duces the fuel expenditure and thereby the operating cost, making the aircraft more
eco-efficient.Therefore, these active control systems can be essential parts of the de-
veloping process of any new aircraft design [142].
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The importance of GLA system mandates to be included early in the design process
to achieve the required performance and ensure safe operating conditions. This is
challenged by the often present classical control strategies, the primary flight control
system can overrule the GLA system [67].
The following section gives a brief review of the existing GLA approaches.

4.1.1 Load Alleviation State of the Art

Historically, load alleviation systems have been implemented to alleviate the struc-
tural loads resulting from atmospheric turbulence [3, 142]. Many aircraft in-service
are equipped with load alleviation systems to mitigate the effects of atmospheric dis-
turbances. This leads to increase wing fatigue life and/or enhance the flight quality [3].
For instance, Airbus A320 aircraft have been equipped with a load alleviation function,
increasing the maximum take-off weight by 1.3% [3, 141].

Model Predictive Control
Gust Load Alleviation
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u

State
Estimator

x̂(0)

Gust Sensors
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(Gust-speed data)

LIDAR Range

LIDAR measurement
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Figure 4.1: Proposed scheme of GLA/MPC utilizing the gust measurement via a nose probe
and LIDAR sensor. The main idea is to design an MPC scheme to minimize the relevant
loads via the actuation signals u using the available onboard measurements ym, and the
gust information ωg.

As full state measurements are challenging for aeroelastic applications, static output
feedback controllers have been proposed, e.g., [143]. This feedback GLA system uses
the available sensor measurements to control specific surfaces, e.g., the load factors
to the longitudinal controls (elevators or canards), or sideslip angle to the lateral
controls (rudders). The Boeing 787 aircraft incorporates static-air data to counteract
the turbulence using ailerons, spoilers, and elevons [3]. These controllers are simple
but highly dependent on sensor selection and positioning. Recently, active aeroelastic
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control has been proposed to collocate both sensors and actuators at the same location,
e.g., acceleration feedback and piezoelectric patches on the wing [144].
To improve the GLA performance, feed-forward controllers have been implemented

using gust measurements, e.g., from an onboard angle-of-attack (AoA) probe, or LI-
DAR [145], see Fig 4.1. These sensors provide lead-time to anticipate future loads
to control the actuator surfaces [146]. Therefore, early gust measurements allow im-
proving control performance, i.e., to reduce the effect of the incoming turbulence and
decrease the structural loads [67, 145]. In this context, a combination of feed-forward
and feedback approaches have been proposed to enhance the control performance [146].
In this setup, the feed-forward controller is used to alleviate the disturbance via the
control surfaces directly. The feedback controller uses small additional deflection of
the control surfaces to increase the damping of elastic modes.
In aerospace applications, linear controllers, e.g., proportional integral derivative,

have been used, e.g., for GLA systems [144] thanks to their simplicity and intrinsic
robustness. Often, aircraft nonlinear dynamics can be represented as a set of linear
models for different flight conditions, each associated with a linear control law [70].
Hence, a suitable scheduling/adaptive scheme can be used to maintain an acceptable
performance in the transition between the operating conditions [147].
Practically, flexible aircraft are associated with different uncertainties, e.g., dynamics

approximations and estimation errors [1]. Neglecting the uncertainties can result in
performance degradation or instability of the control systems. So robust controllers,
e.g., H2 and H∞ [148, 149], have been proposed to determine a stabilizing solution
under all uncertainties less than worst-case uncertainties.
Recently, there is an increasing interest in optimization-based GLA approaches, e.g.,

linear quadratic control (LQR) and linear quadratic Gaussian (LQG). They are based
on minimizing a quadratic objective function to alleviate the structural loads and to
control both rigid-body and flexible modes [148, 149]. However, these approaches do
not allow considering constraints. To do so, MPC approaches solve an OCP online over
a finite prediction horizon, taking into account the system dynamics and constraints [1,
67, 78, 145, 150, 151]. A receding horizon approach was recently proposed to account
for stochastic gust disturbances and maneuvers with limited preview [2].
In this work, we propose to use MPC as a suitable solution to the load alleviation

problem. MPC allows optimizing online the performance criterion, e.g., reducing ac-
celeration and loads, at relevant stations, e.g., wing-root, and at other stations on the
aircraft structure. Simultaneously, penalization on the control inputs can be imposed
to prevent actuator fatigue [67]. Furthermore, MPC also has the ability to consider
multiple-input-multiple-output systems, e.g., flexible aircraft dynamics [150]. More-
over, MPC allows utilizing the preview information about the atmospheric turbulence,
see Fig. 4.1, to improve prediction accuracy and control performance [67, 68, 145].
Furthermore, MPC has adaptation and reconfiguration capabilities to handle actuator
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failure and specify certain actuators for load alleviation.

4.2 Model Predictive Control for Load Alleviation
MPC for GLA minimizes the gust loads via suitably calculated actuation signals u us-
ing the measurements ym, and the gust information ωg. The mathematical formulation
of MPC for GLA is considered in this work as follows.

min
x,u

J = min
x,u

N−1∑
j=1

`(ym(k + j|k),yl(k + j|k), u(k + j|k)) + E
(
x(k +N |k)

)
, (4.1a)

s.t. ∀j ∈ {0, ..., N − 1}
x(k|k) = x̂(k), (4.1b)

x(k + j + 1|k) = f
(
x(k + j|k), u(k + j|k), ωg(k)

)
, (4.1c)

ym(k + j|k) = gm
(
x(k + j|k), u(k + j|k)

)
, (4.1d)

yl(k + j|k) = gl
(
x(k + j|k), u(k + j|k)

)
, (4.1e)

x(k + j|k) ∈ X, u(k + j|k) ∈ U, ∆u(k + j|k) ∈ ∆U, (4.1f)
x(k +N |k) ∈ XT. (4.1g)

Here, x ∈ Rnx are the aircraft states, e.g., describing the flight-mechanics (rigid-body
motions) and the aeroelastic modes. x(k|k) is the initial condition and x̂ the estimated
value. u ∈ Rnu are control inputs, e.g., signals to throttle, elevator, flaps and aileron,
see Fig. 4.2. ωg(k) ∈ Rng is gust velocity. The map f : Rnx × Rnu × Rng → Rnx
is the rigid-body dynamics (i.e., EOM) and flexibility characteristics, i.e., structural
deflections. gm(·, ·) : Rnx × Rnu → Rnm and gl(·, ·) : Rnx × Rnu → Rnl represent the
measured and performance output as functions of the state and inputs. The measured
outputs ym ∈ Rnm represent the information of the sensors , e.g., rigid-body state,
aerodynamic angles, and structural variables and loads. The performance output
yl ∈ Rnl defines the quantities of interest desired to be optimized, and they may be
unmeasurable.
Eq. (4.1f) are constraints on the aircraft state x(j) and control inputs on the

deflection range u(j) and the response rate ∆u(j), respectively. The functional
` : Rnm × Rnl × Rnu → R+

0 represents the objective cost, e.g., loads reduction yl,
control input u, and the deviations from the trim conditions ym. The terminal con-
straint (4.1g) and cost E : Rnx → R+

0 are mainly imposed for stability purposes.
At every time k, the optimization problem (4.1) is solved online to determine the

optimal control sequence u?(k) = {u∗(k), u∗(k + 1), u∗(k + 2), ...u∗(k + N)}. Only
the first term u∗(k) is applied to the aircraft actuators, then both prediction and
optimization are repeated at the next time instant k + 1 with a receding horizon
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fashion when new measurements are available. Before examining the MPC approach
for load alleviation, it is important to outline the main coordinate frames used to
describe the aircraft motions, i.e., rigid and flexible bodies.

North

East

Down

ZB

ZS

α

YB

YW

β

XB

XW

XS

α

β

Relative Wind

Rudder

Elevator

Spoilers/
Speed Brakes

Aileron

Flaps

Leading Edge Flaps

Figure 4.2: Aircraft reference frames, aerodynamic angles, and control surfaces, adapted
from [47, 64].

4.2.1 Aircraft Reference Axes Frames

The aircraft motions are usually described in terms of translation and rotation vari-
ables in the reference frames, see Fig. 4.2. For instance, mission requirements, map
information, and EOM are represented in the inertial coordinate frame with an ori-
gin at a convenient point on the Earth’s surface [47, 64]. Here, the horizontal axes
XI , YI are pointing to the north and east, respectively. As the ZI axis is pointing
downward to the earth center, this reference frame is often known as a north-east-
down frame [47, 64]. Sensor measurements and the actuators’ forces and torques are
defined with respect to the body reference frame whose origin is fixed at the aircraft’s
CG [47, 64] and whose axes XB, YB, ZB are towards the longitudinal (airframe nose),
lateral (right-wing), and downward directions, respectively. The XB − ZB plane is
coplanar with the symmetry plane.
Generally, the aerodynamic forces and moments are defined by the aerodynamic

angles, AoA α and the sideslip angle β, represented in the wind axis frame, where
the origin is at the aircraft’s CG with its x-axis along the velocity direction [47, 64].
The x-axis of the stability frame is set in alignment with the relative wind according
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to aircraft AoA. This angle, between the wings and airspeed vector, is required to
generate lift. The transformations between these coordinate frames are performed
using the aircraft attitude, i.e., Euler angles, e.g., roll, pitch, and yaw angles [47, 64].
In this thesis, we use the coordinate transformation also to define the coupling between
the planning and the low-level control layers in the next chapters.

4.2.2 Flexible Aircraft Model

The first step to designing a model-based control approach is to develop an appropri-
ate aircraft model used to predict future behavior. According to these predictions, the
optimal control sequence is determined, so the optimization program is constrained
by the model while fulfilling the constraints. For choosing an appropriate model,
one must consider many factors, e.g., prediction accuracy, computation complexity,
and control performance and stability [17]. A reasonable rule is to choose the simplest
possible model accurate enough to make reasonable predictions. MPC-based GLA sys-
tems have been proposed using different aircraft models, e.g., geometrically-nonlinear
beam models [152], and aeroelastic models [51], or linear, aeroelastic, reduced-order
models [67, 145].
For flexible aircraft, the resulting elastic deformation changes the aerodynamic loads,

which leads to further changes in elastic deformation. These interactions can lead to
structural oscillation and change rigid-body aerodynamic and flight modes [1]. There-
fore describing the flexible structure interaction requires a unified aeroelastic analysis
incorporating simultaneously geometrically elastic modules (structural dynamics) with
rigid-body aerodynamics [51]. The structural model provides distributed mass and
stiffness information of the airframe to calculate the structural deformations resulting
from external forces. As a result, the airframe is often considered as an elastic body
acted upon by external forces, depending on the structural state, e.g., geometry and
velocity. The nonlinear aircraft dynamics (4.1c), used in the simulation environment,
is represented as [153, 154]:m (

V̇B + ΩB × VB + TBE [0 0 g]>
)

IBΩ̇ + ΩB × (IBΩB)

 = M>rbFext, (4.2a)

Mfmäf +Mfdȧf +Mfsaf = M>fbFext, (4.2b)

where m and IB are the aircraft mass and mass moment of inertia matrix, respectively.
VB = [Vx Vy Vz]> and ΩB = [p q r]> are the translational and rotational velocities in
the x, y, z body axes, respectively. TBE is the transformation matrix from the earth
E to body B axes. Mrb,Mfb represent the modal matrix for the rigid and flexible
modes, respectively. The structural model (4.2b) includes the distributed mass Mfm,
dampingMfd and stiffnessMfs matrices of the flexible modes, to calculate the structural
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deformations at generalized coordinates af resulting from external forces Fext.
Practically, each aircraft is equipped with different control surfaces, e.g., aileron,

flaps, and elevator, see Fig. 4.1, to achieve the control commands by deflecting the
surface with a certain time delay. Moreover, every actuator has physical constraints,
e.g., deflection limits and rate saturation. Therefore, it is necessary to take the actuator
model, time-delay, and constraints into account inside the MPC formulation. In our
study, there are two aircraft with different actuation system, see Section 4.3.

4.2.3 Aircraft Model Linearization and Reduction

To facilitate the control synthesis, the nonlinear model (4.1c) is linearized at the trim
conditions, e.g., steady horizontal flight. Thereby, we consider a steady-state condition
in the absence of gust effects, i.e., ωg = 0:

Vy = Vz = φ = ψ = p = q = r = 0,
ṗd = V̇x = V̇y = V̇z = φ̇ = θ̇ = ψ̇ = ṗ = q̇ = ṙ = 0.

Then both the rigid-body dynamics and flexible modes are taken into account to obtain
the linear time-invariant model of the underlying flexible aircraft as:

ẋ(t) = Ax(t) +Bu(t) +Bgωg(t), (4.3a)
ym(t) = Cmx(t) +Dmu(t) +Dmgωg(t), (4.3b)
yl(t) = Clx(t) +Dlu(t) +Dlgωg(t), (4.3c)

where A,B,Bg, Cm, Dm, Cl, Dl, Dmg, and Dlg are the linear model matrices.
The structural dynamics models have many structural states [4]. To improve the

computational speed, the model order can be reduced by projecting full order models
onto a subspace, which encapsulates the fundamental dynamics of the aircraft with a
smaller number of state [70].
The linear model (4.3) is then discretized with a sampling time Ts

x(k + 1) = A(Ts)x(k) +B(Ts)u(k) +Bg(Ts)ωg(k), (4.4a)
ym(k) = Cm(Ts)x(k) +Dm(Ts)u(k) +Dmg(Ts)ωg(k), (4.4b)
yl(k) = Cl(Ts)x(k) +Dl(Ts)u(k) +Dlg(Ts)ωg(k). (4.4c)

This model is used within the MPC formulation (4.1) to predict the future response.
The main idea of the MPC scheme, see Fig. 4.1, is to design a feedback control

strategy using state information. However, the direct measurements of all state of the
flexible aircraft are usually not available [1]. Therefore, it is necessary to combine the
MPC scheme with a stable state estimator.
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4.2.4 State Estimation

A state estimation calculates dynamically the estimated state x̂(k) via fusing process
model with the available measurement information ym, gust measurements ωg(k), and
actuation signals u(k). In this linear case, one can use a so-called Luenberger observer:

x̂(k + 1|k) = Ax̂(k|k − 1) +Bu(k) +Bgωg(k) + L (ym(k)− ŷm(k|k − 1)) , (4.5a)
ŷm(k|k − 1) = Cmx̂(k|k − 1) +Dmu(k|k − 1) +Dmgωg(k), (4.5b)

where x̂(k+1|k) is the estimated value of the state x at time k+1 based on the available
information at time k. ŷm(k|k − 1) is the output estimation at time k based on the
available information at previous time k−1. The objective is that the estimation error
e(k) = x(k) − x̂m(k|k − 1), i.e., the difference between actual state vector x and its
reconstructed counterpart x̂ converges to zero. L is a feedback gain matrix, necessary
for convergence in case of an unstable A, and otherwise improves the estimation speed,
as the Luenberger observer is stable if the matrix Â − LĈm has all the eigenvalues
inside the unit circle. Then, the error between the estimated state and the actual one
converges to zero.

4.2.5 Control Objectives Setup for Load Alleviation

The control objectives focus on alleviating the structural loads and stresses without
decreasing the handling qualities and passenger comfort. To achieve the real-time
requirements in this work, we consider the quadratic cost function

J (x(j), u(j)) =
N−1∑
j=1

(
y>m(j)Qmym(j) + y>l (j)Qlyl(j) + u>(j)Ruu(j)

)
+ x>(N)QNx(N).

where Qm, Ql, QN ≥ 0, and Ru > 0 are the weighting matrices for the measured and
performance output, terminal state, and control, respectively. Picking the cost func-
tional, i.e., the weighting matrices, suitably is essential to achieve stability and good
control performance. For instance, the wing-root is the most critical station exposed
to the highest loads, so alleviating the loads at the wing-root leads to an increase in
the lifetime of the aircraft structure. The aircraft structure is practically designed to
withstand high shear forces, so they are not included in the cost function. Therefore,
the performance output yl includes some loads criteria, e.g., bendingM i

b, and torsional
moments M i

t as response to the atmospheric gust at station i ∈ {1, · · · , Ns}, e.g., the
wing root, the mid-wing, and the horizontal tail:

yl = [M1
b ,M

1
t , · · · ,M i

b,M
i
t , · · · ,MNs

b ,MNs
t ]>,
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where Ns is the stations number. The control objective penalizes the deviations of the
aircraft altitude h and velocity Vt from the trim point by considering the measured
output vector

ym = [h, Vt, α, nz(xi, yi, zi)]>.

Furthermore, one needs to ensure that the aircraft variables are within the safety
range. The passenger comfort criterion depends mainly on the vertical acceleration
nz(xi, yi, zi), at some points (xi, yi, zi), e.g., the nose, CG, and the tail section.
The third term u>(j)Ruu(j) accounts for the control inputs to minimize energy

consumption. However, using some actuators, e.g., elevator, to alleviate the gust loads,
can increase internal stresses in the horizontal tail root. Therefore, it is recommended
to specify a different weight for each control input.
The terminal constraint (4.1g) and cost E are used to enforce stability.

4.2.6 Stability of MPC/GLA Approach

MPC solves an OCP over a finite prediction horizon, which may lead to stability
loss, i.e., the finite-horizon solution does not always lead to a stable closed loop [20].
Therefore, we investigate the stability of the closed-loop MPC scheme (4.1) before
the real-time implementation. This investigation is inspired by the previous theoreti-
cal studies concerning MPC application [21, 155], particularly for the GLA problem,
e.g., [51, 78]. To do so, we suppose the following assumptions:

Assumption 4.1 (Stabilizability) the pair (A,B) is stabilizable.

Assumption 4.2 (Full-state measurement) the exact information of the aircraft state
x(k) is available at each time k.

Assumption 4.3 (Terminal set) there exists an admissible terminal set XT ⊂ X
(4.1g) and a terminal control law κT(x) = Kx ∈ U, K ∈ Rnu×nx,∀x ∈ XT such
that if x ∈ XT, then Ax + BκT(x) ∈ XT, i.e., XT is positively invariant under the
control law κT(·).

Assumption 4.4 (Terminal set reachability) the admissible terminal set XT ⊂ X
(4.1g) is reachable for any prediction horizon N > 1.

Assumption 4.5 (Weighting matrices) assume the matrices Qm ≥ 0, Ql ≥ 0, Ru > 0,

Q = C>QyC, Qy =
Qm 0

0 Ql

 ≥ 0, and
(
A,Q1/2

)
is detectable.
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Assumption 4.6 (Terminal penalty) the terminal penalty

E
(
x(N)

)
= x>(N)QNx(N) : Rnx → R+

0 , QN > 0,

is assumed to be equal to the value function V ∗uc of the unconstrained infinite-horizon
OCP P∞uc:

V ∗uc := min
κT(x)

j=∞∑
j=1

`
(
x(j), u(j)

)
= min

κT(x)

j=∞∑
j=1

1
2
(
x>(j)Qx(j) + u>(j)Ru(j)

)
,

where R = Ru +D>QyD > 0 and u = κT(x) is the optimal controller for OCP P∞uc.

Assumption 4.7 (No prediction error) there is no system-model mismatch and no
gust, i.e., ωg(k + j) = 0,∀j ∈ {1, · · · , N}.

Proposition 4.1 (Nominal stability)
Let Assumptions 4.1-4.7 hold, then the MPC scheme (4.1) is exponentially stabilizing
the system (4.4) for any prediction horizon N > 1.

Proof As the system is linear and constrained, Assumption 4.6 implies that the ter-
minal penalty

E
(
x(N)

)
= x>(N)QNx(N) : Rnx → R+

0 ,

is chosen to be equal to the value function V ∗uc for the unconstrained infinite horizon
optimal control problem P∞uc.
Assumption 4.7 implies no gust, i.e. ωg(k + j) = 0, Therefore, we can reformulate

the stage cost functional `(ym(j), yl(j), u(j)) as:

`
(
ym(j), yl(j), u(j)

)
= y>m(j)Qmym(j) + y>l (j)Qlyl(j) + u>(j)Ruu(j),

as Qm ≥ 0, Ql ≥ 0, and take y =
ym
yl

, and Qy =
Qm 0
0 Ql

 ≥ 0, then

`
(
ym(j), yl(j), u(j)

)
= y>(j)Qyy(j) + u>(j)Ruu(j)

=
[C D

] x(j)
u(j)

>Qy

[C D
] x(j)
u(j)

 + u>(j)Ruu(j)

=
[x>(j) u>(j)

] C>
D>

Qy

[C D
] x(j)
u(j)

 + u>(j)Ruu(j)

=
[
x>(j) u>(j)

] C>QyC C>QyD

D>QyC D>QyD

 x(j)
u(j)

 + u>(j)Ruu(j)

= x>(j)C>QyCx(j) + u>(j)
(
Ru +D>QyD

)
u(j) + 2x>(j)C>QyDu(j)
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where Q = C>QyCx(j), R = Ru +D>QyD, and N = C>QyD. It then holds that

` = x>(j)Qx(j) + u>(j)Ru(j) + 2x>(j)Nu(j). (4.6)

As Qy ≥ 0,

Q = C>QyC ≥ 0. (4.7)

The next step is to prove that

Q−NR−1N> ≥ 0⇔
C>QyC C>QyD

D>QyC D>QyD

 ≥ 0. (4.8)

As
[
x>(j) u>(j)

] C>QyC C>QyD

D>QyC D>QyD

 x(j)
u(j)


=
[
x>(j)C> u>(j)D>

] Qy Qy

Qy Qy

 Cx(j)
Du(j)


=
[
x̄>(j) ū>(j)

] Qy Qy

Qy Qy

 x̄(j)
ū(j)

 .

we calculate the eigenvalues of the matrix
Qy Qy

Qy Qy

:

det
λI−Qy −Qy

−Qy λI−Qy

 = det
((
λI−Qy

)2
−Q2

y

)
= det

(
λ2I− 2λQy

)
= detλny

(
λI− 2Qy

)
.

As Qy ≥ 0, also 2Qy ≥ 0 and
Qy Qy

Qy Qy

 ≥ 0. Therefore,

C>QyC C>QyD

D>QyC D>QyD

 ≥ 0⇔ Q−NR−1N> ≥ 0. (4.9)

Due to Assumption 4.5 and Equations (4.7) and (4.8), the optimal solution of the
OCP (4.6) stabilizes the system (4.3), see [156].
As a result, the weighting matrix QN of the terminal penalty E(·) satisfies:

QN ≥ Q+K>RK + (A−BK)>QN(A−BK). (4.10)
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Thus, E(·) is a Lyapunov function, i.e.

E
(
f
(
x(k), κT(x(k))

))
− E

(
x(k)

)
+ `

(
x(k), κT

(
x(k)

))
≤ 0, ∀x ∈ XT,

and the cost monotonicity condition of the cost function is satisfied, i.e.,

J
(
u∗;x(k);ωg = 0;N + 1

)
≤ J

(
u∗;x(k);ωg = 0;N

)
.

Assumption 4.5 allows applying LaSalle’s invariance principle, which shows that the
closed-loop system is exponentially stable with a domain of attraction XT [155]. As
this set is by Assumption 4.3 reachable from any x ∈ X, the closed loop is globally
exponentially stable. �

Next, we discuss stability in the presence of bounded finite-time gusts.

Assumption 4.8 (Bounded finite-time gusts) The gusts acting on the aircraft are
bounded and vanish after a finite time Ng, i.e.,

ωg(k + j)

∈ G ⊂ R
ng , ∀j ∈ {1, · · · , Ng},

= 0, ∀j ∈ {Ng + 1, · · · , N}.

Proposition 4.2 (Nominal Stability in presence of bounded finite-time gusts) Let As-
sumptions 4.1-4.5 hold, assume finite bounded gusts, i.e., Assumption 4.8, and choose
the terminal penalty E(x(N)) = x(N)>QNx(N) according to Proposition 4.1. Then
the MPC scheme (4.1) is globally exponentially stabilizing the system (4.4) for any
prediction horizon N > Ng ≥ 1.

Proof A bounded gust acting on a linear system (4.4), causes a bounded state devia-
tion, for any time j ∈ {1, · · · , Ng}. Assumption 4.8 implies that the gust has vanished
after the finite time Ng. Thus, by Proposition 4.1, the MPC (4.1) exponentially sta-
bilizes (4.4), i.e.:

∀j ∈ {Ng, · · · , N}, x(k + j) ≤ β (x(Ng)) γj, ‖γ‖ < 1. (4.11)

Due to the linearity of the model and the boundedness of the gust, this exponential
bound can be extended on the states x(k + j),∀j ∈ {1, · · · , Ng} by enlarging the
overshoot constant to some βg(x(Ng)) > β(x(Ng)):

∀j ∈ {1, · · · , Ng}, x(k + j) ≤ βg (x(Ng)) γj, ‖γ‖ < 1. (4.12)

Thus, the MPC scheme (4.1) is globally exponentially stabilizing the system (4.4) in
presence of bounded finite-time gusts. �

43



4 Model Predictive Control for Gust Load Alleviation

4.2.7 Improving MPC for GLA with Preview Gust Information

MPC allows utilizing the preview of gust information to improve predicting the future
state and gust, see Fig. 4.3.
In the first scenario, see Fig. 4.3a, the gust velocity is measured using an onboard

AoA probe at the aircraft nose and stored at the current time step k to be used
within the MPC formulation (4.1). So the estimated gust velocity sequence ω̄g [m/s]
at specified positions on the aircraft structure, e.g., CG, tail, or wing-root is:

ω̄g = [ωg(k), ωg(k + 1), · · · , ωg(k +Nn), ωg(k +Nn + 1), · · · , ωg(k +N)],

where Nn is the number of time steps in the future that the gust takes to affect these
positions. This time depends on the cruse velocity and length of the aircraft. The
unmeasured gust terms ωg(k + Nn + 1), · · · , ωg(k + N) are assumed to be constant,
i.e., equal zero or the last measured value ωg(k +Nn).

Nose probe
measurement

ωg(k)
ωg(k + 1)

ωg(k +Nn) ωg(k +N)

(a) Gust measurement via nose probe, and the unmeasured gust is assumed to be constant.

LIDAR Range

Nose probe
measurement

ωg(k)
ωg(k + 1)

ωg(k +Nn) ωg(k +N)

(b) Gust measurement via nose probe and LIDAR sensor, which provide the preview informa-
tion of the incoming gust further distance ahead of the aircraft.

Figure 4.3: Comparison of gust measurement via nose probe and LIDAR sensor.

In the second scenario, see Fig. 4.3b, LIDAR provides the preview information of the
incoming gust certain distance ahead of the aircraft, typically 60-300 m [145, 146]. This
improves the GLA performance as the prediction accuracy of MPC adversely affects
control performance. According to the LIDAR range and the prediction horizon, the
gust information will be available, i.e.,

ω̄g = [ωg(k);ωg(k + 1), · · · , ωg(k +Nn), ωg(k +Nn + 1), · · · , ωg(k +N)].

This preview information provides the MPC scheme enough time to counteract dis-
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turbances before they arrive at the critical stations, e.g., wing-root. As will be shown,
this updated MPC with improved prediction yields a significant load reduction and
better usage of the control surfaces. However, the sensor needs to provide an accurate
measurement for the gust perturbation to apply the feed-forward load alleviation.

4.3 Implementation
The main objective of this section is to demonstrate the potential for design and real-
time implementation of the GLA approach. First, we outline two reference aircraft as
case studies with different state, output, and control configurations. We then outline
the real-time implementation of the proposed MPC approach.

4.3.1 Aircraft Models Considered for Simulation Studies

We consider two models, the Green Regional Aircraft and the Remos GX aircraft.
The Green Regional Aircraft is one of the six Clean-Sky platforms representing

a regional transport airplane with 130 seats and T-tail configuration, see Fig. 4.5a.
This aircraft has fuselage-mounted engines and is equipped with winglets.
The aircraft was designed for weight reduction, energy, aerodynamics efficiency, and

low pollution and noise levels [143]. Two mass configurations were considered, zero
fuel weight and maximum take-off weight. Table A.1 lists the aircraft geometry [143].

Basic Reference

z

x
y

Wing Reference

(Motion and shear force)

z x

y

Wing Reference

(Internal Moments)

z

x

y

Elevator

Wing Accelerometers

Inner Aileron

Outer Aileron

Pitch angle

Pitch Rate

CG Accelerometers

AoA probe

Figure 4.4: Green Regional Aircraft: actuators and sensors configuration and reference sys-
tems: fuselage accelerations and displacements are expressed using the basic reference
system. Wing reference is used to express the displacement, velocities and accelerations
of points on the wing. Second wing reference expresses the internal moments, e.g., shear,
bending, and torsional, adapted from [157].
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(a) Green Regional Aircraft1. (b) Remos GX Aircraft [158]

Figure 4.5: Reference Aircraft with different state, output and control configurations.

The GLA system was designed based on three control surfaces, e.g., elevator and
inboard and outboard aileron, see Fig. 4.4. All the surfaces and motors have positive
rotation when the trailing edge is moved downward. The dynamics and limits of the
actuators driving the control surfaces are inserted in the numerical model by

δs(s) = ω2
0

s2 + 2ξω0s+ ω2
0
δc(s)−

Mh(s)
Kδ

|δs| ≤ δm, |δ̇s| ≤ δ̇m, |Mh| ≤Mhm (4.13)

where δs is the actual surface deflection, δc is the commanded deflection, Mh is the
moment acting on the control surfaces hinges and Kδ represents the actuator stiff-
ness. Two types of saturation were included: saturation limits imposed on the surface
deflection angle |δs| ≤ δm = ±15 ◦, and on the deflection rate |δ̇s| ≤ δ̇m = ±50 ◦/s,
in addition to the torque-dependent saturation on the hinge moment |Mh| ≤ Mhm =
±10000 [Nm] [141, 157]. The nonlinearities are due to the internal saturation of the
actuators and the dependency on the output hinge moments [141, 157].
The nonlinear model is linearized around the steady trimmed condition in the

absence of gust to facilitate the control synthesis. The resulting aircraft model
has 153 states expressed in three different reference systems, see Fig. 4.4 and Ap-
pendix A.1 [141, 143, 157]. The measurement output vector contains 34 variables,
e.g., AoA measurement, velocity, and the structural displacements and loads; for more
details, see [141, 143, 157]. We investigated the model dynamics, see Fig. A.1, to derive
a discrete-time linear model. The frequency of the fastest mode equals 58.4[Hz], so we
decided to discretize the model with a fixed time-step of Ts = 10ms.
Remos GX, the second case study, is a two-seat ultralight aircraft with fiber com-

posite construction, see Fig. 4.5b. This aircraft has a high-wing design with struts and
a front-mounted engine and propeller with three-wheel landing gears [153].
The coupling of the structural and the aerodynamical model is achieved through a

surface spline. The simulation model is linearized around a trim point. The model state
includes the aircraft velocities VB = [Vx Vy Vz]>, attitudes φ, θ, ψ, rotational rates Ω =
[p, q, r]>, and 3D positions pn, pe, pd in addition to the flexible deformation modes af ∈

1Source: GLAMOUR Project, https://home.aero.polimi.it/glamour/, Accessed: 27.09.2020
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R10, and modal velocities ȧf ∈ R10. The control inputs u = [δelev, δrud, δflap, δar, δal]T
are elevator, rudder, flap, right, and left ailerons, respectively. The MPC formulation
includes the aircraft constraints in (4.1f), which are here the physical limitations and
the flight envelope, e.g., safety range, see Table A.2. The output of the state-space
model consists of the rigid-body state, vertical load factor, AoA, and the structural
displacements and velocities. The strain gauges measure the structural loads (forces
and moments) at the specified points. ωg ∈ R10 is the gust velocity vector at ten
stations on the aircraft structure [153].

4.3.2 Gust Loads Conditions

For passenger aircraft, civil airworthiness requirements explicitly specify the tolerable
aircraft response to both discrete gusts and continuous turbulence [3].
For instance, the EASA airworthiness regulations [66] specify the variance and the

power spectral density for stochastic (continuous) turbulence, as well as the time his-
tory and intensity for deterministic (discrete) gusts [3]. The continuous turbulences are
mainly modeled with two random distributions, e.g., Dryden and von Kármán models,
in which the power spectral densities are defined in either the frequency domain or
time domain [3, 141, 159]. The Dryden and von Kármán distributions are defined by a
characteristic scale wavelength and the root-mean-square turbulence velocity [3, 159].
The power spectral density of the von Kármán gust model is

Φ(Ω) = σ2
w

L

π

1 + 8
3 (1.339LΩ)2[

1 + (1.339LΩ)2]11�16 , (4.14)

where σ2
ω is the velocity variance in the turbulent field and L is the turbulence length

scale. This model approximates experimental data well but is quite unpractical to
use since it requires an irrational filter. For this reason, a simpler model, the Dryden
spectra, is often used in computations:

Φ(Ω) = σ2
ω

L

π

1 + 3 (ΩL)2[
1 + (ΩL)2]2 . (4.15)

Discrete gusts are commonly represented in three forms; step, ramped, and (1 −
cosine) gust profile [3]. The latter one is specified according to the EASA regulations

υg = Vgust
2

[
1− cos

(πs
H

)]
, 0 < s ≤ 2H, (4.16)

where the distance s[m] is the gust penetration, the gust gradient H[m] is the distance
over which the gust acts, and Vgust[m/s] is the local peak gust velocity, in equivalent
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airspeed. The latter is defined as

Vgust = VrefFg

(
H

350

) 1
6

, (4.17)

where Vref is a function of the altitude, while Fg increases linearly from zero at sea
level to one at the maximum operating altitude.

4.3.3 Real-Time Solution of MPC Implementation

The real-time implementation of the MPC requires considering many factors, e.g.,
the maximum computational time, required memory, and numerical algorithms to be
implemented on embedded platforms [160]. The required memory depends on the
prediction horizon, the system dimension, i.e., the number of inputs, state, and con-
straints [105]. The increased capability of computer hardware and fast QP techniques
have made it possible to apply MPC to fast dynamics problems.
For the real-time implementation of the GLA system, we used the code generation

software package µAO-MPC [114]. µAO-MPC generates a highly portable library-free
C-code for MPC on embedded applications with low computational requirements [114].
The optimization problem (4.1) is cast in the form of a general QP, which is solved
online via a QP solver based on an augmented Lagrangian method with Nesterov’s
gradient method. The constraint equations, gradient vector, and Hessian matrix re-
lated to the optimization problem are precalculated in condensed form. This leads to
extremely fast implementation with low-memory requirements.
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(d) Wind-tunnel experiment.

Figure 4.6: µAO-MPC computational time Tcom s: increasing the prediction horizon N in-
creases the time-to-solve for calculating the control inputs. Computational time must be
smaller than the sampling time of Ts = 10ms.

First, we investigate the timing characteristics of the MPC approach to ensure that

48



4.3 Implementation

the optimization problem (4.1) is solved online with a reasonable time, i.e., less than
the system’s sample-time. Fig. 4.6 depicts the corresponding timing characteristics
to solve the MPC problem using µAO-MPC on an Intelr CoreTM i7-6700 CPU @
3.40GHz.
The 10 steps horizon provides adequate performance with a mean time-to-solve of

0.45 [ms] while increasing on prediction horizon (50 steps) provides better results but
increases the time-to-solve (10.6 [ms]). It is important to mention that the operating
system also performed the nonlinear simulation and computed the control input. This
results in some maxima time-to-solve reaching up to 1.51 [ms] and 22.64 [ms] for
N = 10 and N = 50, respectively, see Fig. 4.6. The mean time-to-solve is less than
the underlying sample time; there is also enough safety-margin left to perform the
state-estimation and accommodate the real-time implementation requirements.
To measure the computation time accurately, we propose in the next section a real-

time processor-in-the-loop simulation.

4.3.4 Processor-in-the-Loop Experiments

Practically, conducting the experimental verifications, e.g., wind-tunnel and flight
tests, is costly and time-consuming. Therefore, we propose a real-time processor-in-
the-loop (PIL) simulation, see Fig. 4.7, to bridge the gap between the numerical simu-
lation and the experimental tests. The proposed PIL framework achieves more realistic
simulations to verify the overall control performance. For instance, this framework al-
lows investigating the hardware requirements, e.g., memory usage, and to measure the
computation time accurately, see Fig. 4.6c.
In the proposed framework, see Fig. 4.7, two computation modules (onboard hard-

ware and ground station) are integrated with a communication architecture through
an Ethernet network via user datagram protocol (UDP). In the ground station module,
the primary nonlinear simulation, measurement, and gust generation are performed.
The µAO-MPC code and state estimator are running on the onboard computer. Both
computations are performed via two Matlab/Simulink environments. The onboard
computer receives the measured output ym and the gust information ωg to estimate
the full state information x̂. The µAO-MPC code is implemented as S-function in
Simulink to determine the optimal control input u∗. This control signal is delivered
to the simulation environment to perform the closed-loop simulation at the next time
step. Fig. 4.6c depicts the corresponding time-to-solve of the optimization problem on
the onboard computer. As we can see, the computational time is still less than the
sampling time. This is very promising to perform the experimental tests.
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Intel NUC/Core i7-8559U 4x2.7GHz
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Figure 4.7: PIL schematic diagram with UDP communication protocol. The µAO-MPC code
determines the control input u∗ using the state information x̂ from the state estimator,
which receives the measured output ym from the main computer, which is computing the
main nonlinear simulation

4.3.5 Numerical Simulations Results

A numerical simulation study is used to validate the control performance before the
experimental tests. These simulations focus on the discrete vertical gust.
Fig. 4.8a presents the open-loop and closed-loop responses of the first case study,

GRA aircraft, passing through a discrete gust (1− cosine) with and without LIDAR.
Fig. 4.8a shows that the MPC/GLA has successfully reduced the load criteria, e.g.,
wing-root bending moment, by approximately 26%, even 35% when using LIDAR.
Also, the wing tail acceleration is decreased by 30% via MPC using the nose probe and
38% by MPC with LIDAR, see Fig. 4.8a. As expected, using LIDAR provides more
load reduction and improves the wing fatigue-life significantly because the bending
moment does not go through high oscillation.
The performance of the GLA system also depends on the effectiveness and function-

ality of the control surfaces. The most interesting observation from Fig. 4.8b is that
early gust detection (i.e., preview information from LIDAR) provides sufficient lead
time to anticipate future loads. This improves the functionality of the control surfaces.
Simultaneously using the actuation surfaces for different functions, e.g., primary

control system and alleviating the gust loads, might decrease performance. For in-
stance, using an elevator to alleviate the gust loads can increase the internal stresses
in the horizontal tail root. For this reason, different aircraft configurations have been
analyzed, e.g., using an elevator or without an elevator. Both configurations achieve
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a similar load alleviation performance.
As depicted in Fig. 4.8b, MPC allows using the available actuation configurations

while achieving a similar load reduction. In this case, the elevator can be used for the
primary flight control system, mainly to regulate the aircraft altitude while the inner
and outer ailerons achieve the structural relaxation. The more surprising finding is
that the control signals do not reach the maximum deflection limits. Therefore, these
constraints are not critical for discrete gust, see Fig. 4.8b.
Fig. 4.9-4.10b present the simulation results for the second case study (Remos-

GX airplane) in two cases; using nose probe and LIDAR. MPC-LIDAR utilizes
smoother and smaller surface deflection than the case of MPC using the nose probe
only. Both MPC approaches stabilize the aircraft at the reference altitude, velocity,
and angles with very small rotation. MPC-LIDAR reduces significantly the vertical
load factor and the roll rotation. Supplementary video material can be found on
https://www.youtube.com/watch?v=u8dlFdRAQM4.
Taken together, the obtained results highlight the applicability of this framework to

alleviate the gust loads with less control effort.

4.4 Wind-Tunnel Validation
We validated the proposed control scheme in a series of wind-tunnel (WT) experiments
at Politecnico di Milano, see Fig. 4.12 [141, 157]. WT tests are cheaper alternatives to
flight tests and allow performing the experiments in a controlled environment. More-
over, the WT tests guarantee repeatability to compare different control strategies [157].
In WT, a left half model of the GRA aircraft, see Fig. 4.12, is placed vertically, so
its symmetry plane is parallel to the floor with a support system to guarantee a free
motion in plunge and pitch. A weight augmentation system includes an electric motor
with force feedback to apply a constant weight force to perform the dynamic response
test around the trimmed condition [141, 157].
A suitable scaling process is applied without disregarding critical nonlinear aeroe-

lastic phenomena. The scaling strategies have been mainly performed to two different
parameter categories, e.g., dimensional and non-dimensional parameters. The geom-
etry scale has been set to λL = 1/6 because of the maximum size available at the
chamber [141, 157]. The time scale was taken unitary λT = 1, to keep unchanged nat-
ural frequencies of the structural modes and the bandwidth and rate saturation of the
actuators. The density scale was also considered unitary, λρ = 1, i.e., the air density
during the WT tests approximately equals the reference density at sea level [141, 157].
The gust is generated by oscillating gust generator vanes mounted upstream of

the WT, see Fig. 4.12, to achieve the specified loading conditions [141, 157]. Since
the LIDAR system was not available in the WT, the LIDAR preview information is
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Figure 4.8: Numerical results for the first case study (GRA aircraft) in three cases: the first
simulation uses nose probe, the second one uses LIDAR and elevator, the third is with
LIDAR without elevator; MPC-LIDAR utilizes smoother and smaller surface deflection
than the case of MPC using the nose probe only. MPC can achieve the same performance
without using an elevator.
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Figure 4.9: Computational time Tcom is always smaller than the sampling time of Ts = 50ms.
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Figure 4.10: Numerical results for the second case study (Remos-GX airplane) in two cases:
the first simulation uses nose probe, the second one uses LIDAR; MPC-LIDAR utilizes
smoother and smaller surface deflection than the case of MPC using the nose probe only.
MPC stabilizes the aircraft at the reference altitude and velocity. MPC-LIDAR reduces
significantly the vertical load factor.
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Figure 4.11: Numerical results for the second case study (Remos-GX airplane): Angles: roll φ,
pitch θ, and yaw ψ. Angular rates: roll r, pitch q, and yaw r. MPC stabilizes the aircraft
at the trim angle condition with very small rotation. MPC-LIDAR reduces significantly
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Figure 4.12: Wind Tunnel Experiment Layout: includes one PC, electronics, and four power
supplies, which are used to drive the actuation system of the three control surfaces,
i.e., two for the inner and outer ailerons and one for the elevator. The gust generator
composed of six vanes actuated by electric motors, adapted from [141, 161].
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emulated as knowledge of a predetermined time-series of the gust generator.
The WT is equipped with different sensors (c.f. Fig. 4.4, Fig. 4.12), including a set

of piezoelectric accelerometers on the wing, the fuselage, and the horizontal tailplane,
to measure the vertical accelerations and displacements [141, 157]. The AoA vane on
the nose provides both gust and pitch orientation components, i.e., angle and rate.
Furthermore, strain gauges are used to measure structural loads and two potentiome-
ters to measure the plunge and pitch motion. The lift load is measured by a dedicated
load cell, while the photogrammetric system is used to measure the airframe displace-
ment [141]. The motor position is measured using an embedded encoder inside the
motor, while a potentiometer measures the aileron position [141, 157].

4.4.1 Wind-tunnel Results

A series of WT tests had been conducted with two flow speeds, V∞ = 27.44 [m/s] and
V∞ = 34.3 [m/s], and two gust velocities, VG = ±2.03 [m/s]. Table 4.1 summarizes
the comparison between the experimental and numerical simulation values in terms of
the reduction of the wing-root bending moment (WRBM). The maximum achievable
reduction is 35.87% in the numerical simulation and 18.08% in the WT experiments.

Table 4.1: Results for wing root bending moment [N m]

V∞ VG Numerical Experimental
[m/s] [m/s] Open-Loop Close-Loop Reduction Open-Loop Close-Loop Reduction

1 27.44 +2.03 207.69 133.21 35.86% 217.59 195.07 10.34%
2 27.44 -2.03 207.69 133.21 35.86% 219.05 179.44 18.08%
3 34.3 +2.03 166.15 106.55 35.87% 184.46 160.72 12.87%
4 34.3 -2.03 166.15 106.55 35.87% 188.99 154.99 17.98%

Fig. 4.13 depicts the experimental results at V∞ = 27.44 [m/s] and upward gust
VG = 2.03 [m/s]. The real-time capability of the MPC approach using µAO-MPC
was able to reduce the dynamic loads acting on the wing and other structure posi-
tions. Moreover, the proposed MPC/GLA also reduces vertical acceleration, which is
related to passenger comfort. The aircraft altitude is also taken into account inside
the objective function to guarantee a stable flight, see Fig. 4.13. The potential for load
alleviation is very promising, even if the gain is smaller than the values predicted in
the simulation.
As expected, the computation time of the µAO-MPC code using the WT facilities

is 6 [ms], see Fig. 4.6d, which is within the same range of the time-to-solve during the
numerical simulation, 0.45 [ms], and PIL setup 2.5 [ms]. This gives us an indication of
the real-time capability of the µAO-MPC code to implement MPC/GLA on this limited
computational power devices. The mean time-to-solve is less than the underlying
sample time; there is also enough a margin left to accommodate state-estimation.
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Figure 4.13: Experimental wind-tunnel results.
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For safety requirements inside the WT champer, we consider more weighting on the
actuator commands, see Fig. 4.13b, to prevent abrupt control action, even the control
rate limitations are taken into account.
These experimental results depend on many factors, e.g., the quality of the numerical

model, estimator, and measurements. Better performance might have been achieved
by retuning of the weighting matrices in the MPC optimization problem.

4.5 Discussion and Conclusion
The main contributions of this chapter are the design, real-time implementation, and
experimental validation of MPC to alleviate the atmospheric loads acting on the pas-
senger aircraft. This work demonstrated how MPC can solve the GLA problem. As
shown, MPC allows considering the preview information of the turbulence measure-
ments, e.g., using LIDAR or onboard AoA probe. The effectiveness of the proposed
GLA/MPC approach was shown using simulations. The WT experiments demon-
strated the real-time capability of the proposed MPC scheme to reduce the loads and
to increase the handling qualities, e.g., passenger comfort.
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This chapter is organized as follows. Section 5.1 outlines the motivation and provides a
background survey of common planning approaches. Section 5.2 outlines the proposed
planning algorithm based on MILP formulation to handle non-convex constraints, e.g.,
obstacle avoidance. This approach is extended to solve the area coverage problem using
in Section 5.4. Section 5.5 emphasizes the efficiency and applicability of the proposed
approaches through several simulation results, followed by experimental results.

5.1 Introduction and Motivation
Autonomous vehicles are used in a wide range of academic and commercial appli-
cations, e.g., for traffic and accident surveillance, or search-and-rescue missions to
scan dull, dangerous, or dynamic environments [12–14]. They are furthermore used
in case of emergency response and disaster relief, such as fire monitoring and man-
agement [12]. Autonomous vehicles, equipped with sensors, have been used to gather
scientific data, e.g., for weather forecast, map generation [15], or marine habitat map-
ping [162]. Moreover, they are used for cleaning and monitoring [15], and for crop
management, harvesting, and fertilizers [163]. Autonomous technology improves the
efficiency and environmental impact of aviation applications by reducing the operating
costs, time, and energy usage [6, 48].
Autonomous vehicles can be classified into ground, underwater, or aerial vehicles [7].

We focus on multi-rotors UAVs, e.g., quadcopter. Contrary to a fixed-wing UAV,
multi-rotors UAVs are capable of hovering at a fixed position and vertical takeoff and
landing, eliminating the need for a runway. Further advantages of quadcopters are
efficient structural design, e.g., mechanical simplicity, robustness, and being easily
controllable [6]. One of the control problems in autonomous vehicle operation is the
planning of a suitable path. We will develop a moving-horizon path planning approach
for task planning and area coverage.

5.1.1 Motion Planning State of the Art

This section provides a brief review of the common planning approaches. For a compre-
hensive review, the reader is referred to [6, 8, 31, 37, 164]. The planning algorithms are
mainly categorized as global or local; optimized or heuristic algorithms; with or with-
out differential constraints; and deliberative or reactive approaches [6, 8, 31, 37, 164].
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Global approaches generate a complete path at once. They often assume a static
environment [6, 47]. Local planning algorithms generate/update the path online in
response to environmental dynamics. These algorithms use local sensor information
or maps acquired during the mission [6, 47]. These methods are often tailored to be
implemented in real-time using low computational power. However, these approaches
might get trapped in a situation instead of global objectives. The combination of
global and local planning functions ensures safe and effective planning through static
or dynamic environments.
Various motion planning techniques have been devised. For instance, graph-search

methods, e.g., road map and Dijkstra’s algorithm, represent the path as a state se-
quence, e.g., nodes/waypoints in the configuration space [165]. Sampling-based ap-
proaches discretize the state and input space, e.g., lattices, which contain a library of
steady-states and transient trajectories connecting two steady-states [31, 166]. This
simplifies the planning and often only requires low computational time combining a
finite number of quantized motion primitives. Plans can be constructed using the
motion primitive library by, e.g., particle swarm optimization [167] or greedy search
algorithms [168]. In the same concept, heuristic search algorithms have been proposed,
e.g., A∗, D∗, and genetic algorithms [6, 169], to determine collision-free but suboptimal
trajectories at a low computational cost. One drawback of these approaches is that
they typically require a large amount of memory [6].
Potential field approaches produce a feasible path over the so-called collision-free

space [6]. The main idea is to construct the potential field as the sum of an attractive
force to the destination and a repulsive force to avoid obstacles [170]. These approaches
are characterized by a low computational complexity, which is applicable for real-time
implementation [171]. However, these techniques can get trapped in local minima and
imprecise description of the obstacle’s shape and dimensions [6].
Neural networks have been used to navigate and cover entirely unstructured/clutter

environments [169], so they are suitable for map building and learning [15].
For robotic applications, randomized planning approaches have been devel-

oped [163]. For instance, rapidly-exploring random trees produce an optimal path
by a random sampling of the configuration space [6, 8].
Most planning approaches do not directly consider the vehicle dynamics in the plan-

ning phase, which can lead to decrease performance or infeasibility. This issue has
grown in importance, especially for fast dynamics and in changing environments [8].
We propose a model-based planning algorithm that considers the vehicle dynamics
and constraints, e.g., maneuverability, velocity, and acceleration [32–34].
Generally, optimization-based planning techniques have become common for real-

time applications, facilitated by recent advancements in computational power and nu-
merical algorithms. These methods determine the optimal path/trajectory by solving
constrained OCP taking into account vehicle dynamics and collision avoidance [57].
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5.2 Mixed Integer Programming Moving-Horizon Planning
In many applications, it is challenging to represent the operating environment in many
applications, see Fig. 5.1, where the vehicle’s knowledge might be incomplete/uncertain
at the mission start. Typically, new information becomes available as the vehicles
enter the operation region, i.e., the situational awareness change [6, 57]. For this
reason, we propose to solve a reactive planning problem in a receding horizon scheme,
i.e., to generate/update the path online based on the latest information about the
environment dynamics to achieve the avoidance requirements, see [32–35]. As a result,
the proposed approach reduces the computational complexity by generating only a
part of the overall path.
We formulate the planning problem as a MIP that provides a framework for formu-

lating and solving the planning and avoidance problems using discrete decisions and
continuous variables, e.g., [32–34, 36, 57–59].
The main idea, see Fig. 5.1, is to design a moving-horizon planning approach to

achieve the mission objective and avoiding obstacles. The resulting receding-horizon
planning problem is represented as MILP:

min
x,u,zd

J(x, u, zd) (5.1a)

s.t.∀j ∈ {0, . . . , N}
x(k + j + 1|k) = Ax(k + j|k) +Bu(k + j|k), (5.1b)

x(k + j|k) ∈ X(k + j|k) ⊂ Rnx, (5.1c)
u(k + j|k) ∈ U(k + j|k) ⊂ Rnu, (5.1d)
r(k + j|k) /∈ O(k + j|k), (5.1e)
x(k +N |k) ∈ XT. (5.1f)

The vehicle dynamics (5.1b) and the constraints (5.1c,5.1d) capture the kinematic
and dynamic characteristics. Note that the constraint sets X(j) and U(j) can be
time-dependent. The constraints (5.1e) represent obstacles, modeled by a set of con-
vex, compact polytopes (denoted by O(j)). The terminal constraint (5.1f) is used to
guarantee feasibility.
MIP formulation (5.1) contains continuous variables and discrete decisions. The dis-

crete variables zd ∈ Znz are binary values, i.e., zd ∈ {0, 1}. They are used to formulate
task assignment problems, waypoint selection, and for collision avoidance [32, 33].
At each time step, the moving-horizon planner generates the optimal path by solving

the optimization problem (5.1) online via minimizing the objective function J(x, u, z).
Herein the vehicle model (5.1b) is used to predict future behavior over the planning
horizon, taking into account the predicted behavior of the environment, i.e., moving
obstacles, see Fig. 5.1. Only the first path segment of the generated path is imple-
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Figure 5.1: Moving horizon planning in a populated environment to achieve the mission ob-
jective and avoiding static and moving obstacles.

mented. The optimization process is then repeated for the current state.
However, using a finite-horizon may lead to stability and feasibility problems, which

can be handled by designing proper terminal costs and constraints [172]. In the fol-
lowing, we comment on parts of the optimization problem (5.1) and outline possible
choices to achieve real-time implementation and improve performance.

5.2.1 Vehicle Dynamics

Contrary to many existing planning strategies, the proposed approach takes the vehicle
dynamics into account. They prevent the planner from suggesting the lower-level
controller a path that might not be physically feasible. There is always a trade-off
between the computational complexity and the model fidelity, i.e., capturing more
detailed dynamics. We approximate the vehicle dynamics via a double integrator
discrete-time model r(j + 1)

vr(j + 1)

 =
 I2 TpI2
O2 I2

  r(j)
vr(j)

 +
T 2

p

2 I2
TpI2

 an
ae

 . (5.2)

Here, we consider for simplicity of presentation only 2D motion planning problems.
As a result, the state vector becomes x =

[
r vr

]
describing the position r = [pn pe]>

and the velocity vr = [vn ve]>. We furthermore use a point mass abstraction of the
dynamics, then the inputs become u =

[
an ae

]>, i.e., the acceleration commands. O2
and I2 represent zero and identity matrices of size 2× 2, respectively.

5.2.2 Vehicle Constraints

The vehicle capabilities are taken into account in form of constraints (5.1c,5.1d). These
constraints specify the range of operating conditions, by imposing max/min limits on
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Figure 5.2: Vehicle limitations (velocity Vmax and acceleration amax) are approximated/upper-
bounded by M-sided polygons using set of M = 8 linear inequalities.

the vehicle velocity and acceleration:

∀j ∈ {1, . . . , N},
√
v2
n(j) + v2

e(j) ≤ Vmax,
√
a2
n(j) + a2

e(j) ≤ amax.

We reformulate these nonlinear constraints by M-sided polygons, see Fig. 5.2:

∀m ∈ {1, . . . ,M},∀j ∈ {1, . . . , N}

vn(j) cos
(2πm
M

)
+ ve(j) sin

(2πm
M

)
≤ Vmax, (5.3a)

an(j) cos
(2πm
M

)
+ ae(j) sin

(2πm
M

)
≤ amax. (5.3b)

As M →∞, we approximate the actual nonlinear constraints more accurately. How-
ever, more linear constraints increase the computation complexity [32].
Dynamic constraints on variables such as the maximum acceleration change ∆amax

per time step Tp are included to avoid changes in the acceleration, which are physically
not possible,

∀j ∈ {1, . . . , N} an(j)− an(j − 1) ≤ Tp ∆amax, −an(j) + an(j − 1) ≤ Tp ∆amax,

ae(j)− ae(j − 1) ≤ Tp ∆amax, −ae(j) + ae(j − 1) ≤ Tp ∆amax.

Furthermore, turning rate constraints are also taken into account in the planning
problem, especially in the case of UAV. There is a relation between the maximum
velocity and acceleration limits, i.e., Ωmax = amax/vmax [36].
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(b) Nβ = 3 binary variables for 2Nβ = 8 sides.

Figure 5.3: Reformulation of obstacles via binary variables: Nβ = 3 binary variables for
2Nβ = 8 polygon sides are used, see Fig 5.3b. Comparing to the formulation, using eight
binary variables, see Fig 5.3a.

5.2.3 Collision and Obstacles Avoidance Constraints

MILP formulation overbounded/relaxed the obstacles O by polygons introducing bi-
nary variables bom(k), see Fig. 5.3 [13, 60, 61, 63, 173]:

∀m ∈ {1, . . . ,M}, ∀o ∈ {1, . . . , No},∀j ∈ {1, . . . , N}(
pn(j)− pon(j)

)
cos 2πm

M
+
(
pe(j)− poe(j)

)
sin 2πm

M
≥ δod + δsafe −Mbigb

o
m(j), (5.4a)

M∑
m=1

bom(j) ≤M − 1, (5.4b)

Here NO is the number of (static/dynamic) obstacles, and δod represents the vehi-
cle size added to every obstacle with the coordinates (pon, poe). The binary variables
bom(j) ∈ {0, 1} are used to activate or relax the constraints (5.4a) using the so-
called “big M” method. Here, Mbig is a large positive number [32–34, 36]. The
constraint (5.4b) ensures that at least one constraint is active, see Fig. 5.3. These
constraints, if feasible, ensure a collision-free path, i.e., the vehicle does not touch any
obstacle. These constraints can be easily extended to the 3D obstacle shapes [57, 60].
Obstacle Enlargement

We considered a continuous dynamics. Therefore, the generated path in continuous-
time might cut through the obstacles corners between two sampling-times. To
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avoid this, we enlarge the obstacle dimensions by a safety margin δsafe =
0.5TpVmax sin(π/4) [13, 32, 33, 36, 61]. Note that the safety margin depends on the
vehicle dynamics (e.g., Vmax) and the discretization’s sampling time Tp.

(k − 3)

(k − 2) (k − 1)

Moving Obstacle

(pon(k|k), poe(k|k))

(pon(k + 1|k), poe(k + 1|k))

(pon(k +N |k), poe(k +N |k))

Figure 5.4: Prediction of moving obstacle position.

Representing dynamic obstacles
We consider moving obstacles with a position (poe(k+ j|k), pon(k+ j|k)), predicted over
the planning horizon, see Fig. 5.4 by a linear dynamics:

∀o ∈ {1, . . . , Nm},∀j ∈ {0, . . . , N − 1},
poe(k + j + 1|k) = poe(k + j|k) + Tpv

o
e(k), (5.5a)

pon(k + j + 1|k) = pon(k + j|k) + Tpv
o
n(k). (5.5b)

We assume a constant speed (voe(k), von(k)).
Complexity reduction reformulation:

Introducing binary variables bom(k) in (5.4a) leads to an increase in the problem com-
plexity. To reduce the solution time, we propose to reformulate the obstacle avoidance
constraints (5.4a) via a suitable representation:

∀m ∈ {1, . . . ,M}, ∀o ∈ {1, . . . , NO}, ∀j ∈ {1, . . . , N}(
pn(j)− pon

)
cos 2πm

M
+
(
pe(j)− poe

)
sin 2πm

M
≥ δs −Mbig

σm0 +
Nβ∑
s=1

σms β
o
s(j)

 (5.6)

To do so, we extend the binary encoding [173] by introducing binary variables (βos) ∈
{0, 1} with coefficients (σm0 , σms ):

∀s ∈ {1, . . . , Nβ},∀m ∈ {1, . . . ,M}

σms = −(−1)

⌈( m

2(s−1)

)⌉
, σm0 = 0.5

Nβ∑
s=1

((σms )2 − σms ).

Here, the operator dae determines the smallest integer greater than or equal to a.
For example for one obstacle o = 1 in Fig. 5.3b, we use Nβ = 3 binary variables for
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2Nβ = 8 polygon sides, whereas in [13, 36, 60, 61, 63, 173], eight binary variables are
used, see Fig. 5.3a.

Remark Considering eight obstacles No = 8, and a prediction horizon N = 25, a
total reduction in the binary variables of No × N × (8 − 3) = 8 × 25 × 5 = 1000 is
achieved. This allows reducing the computational time significantly.

5.2.4 Objective Functions

Basically, any cost function can be considered, allowing formulating different mission
objectives. One particular choice is to minimize both the energy consumption and the
distance to the target, e.g., by choosing a (quadratic) cost:

Jp =
N−1∑
j=1

Wu‖u(j)‖+Wd‖xTarget − x(N)‖.

Here, DTarget = ‖xTarget − x(N)‖ penalizes the distance to the target point xTarget at
the end of the planning horizon, while the stage cost minimizes the control input
‖u(j)‖ =

√
a2
n(j) + a2

e(j), i.e. the energy.
For computational reasons, one can aim to replace the quadratic cost by a linear

problem via introducing “slack variables” sn, se, and DTarget [13, 32, 33, 63]:

Jp = Wu

N∑
j=1

(
sn(j) + se(j)

)
+WdDTarget(N).

Here sn and se are upper bounds of the magnitude of an and ae, respectively, given by
set of linear constraints ∀j ∈ {1, . . . , N}

an(j) ≤ sn(j), −an(j) ≤ sn(j), ae(j) ≤ se(j), −ae(j) ≤ se(j),

while the distance-to-target DTarget is given as [13, 33, 63]:

∀j ∈ {1, . . . , N}, ∀m ∈ {1, . . . ,M},

(pn(j)− pTarget
n ) cos 2πm

M
+ (pe(j)− pTarget

e ) sin 2πm
M
≤ DTarget(j) + δth. (5.7)

Note that tuning the weights Wu,Wd significantly impacts the control performance.
Increasing Wu lays a higher weight on the energy minimization leading to less acceler-
ation and deceleration, i.e., to a more uniform traveling speed with less (sharp) turns.
Therefore, it improves the efficiency of the generated path and makes it is easier to be
followed. In general, tunning the weights Wu,Wd requires considering many factors,
e.g., the region area, number and size of obstacles, and the vehicle capabilities.
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5.3 Robust Moving-Horizon planning
In practical applications, the vehicle might deviate from its expected trajectory due
to uncertainties and external disturbances. Neglecting the uncertainties is critical,
especially in cluttered and dynamic environments resulting in performance degradation
and vehicle instability or complete failure [6, 8, 31, 37]. To overcome these challenges,
robust planning approaches are needed to obtain safe and plausible references to satisfy
constraints and improve performance.
In real missions, autonomous vehicles are often exposed to different uncertainties,

e.g., wind disturbances, model mismatch, and measurement noise. Additionally, the
surrounding environments might be highly uncertain or subject to limited information
due to inadequate sensing capabilities [6, 8, 17, 31, 37]. Therefore, robust planning
approaches have been proposed, see, e.g., [6, 8, 31, 37, 174]. A common approach is
to treat the uncertainties as a deterministic worst-case by introducing a conservative
safety corridor with suitable risk thresholds [6, 62]. We propose robust planning using
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Figure 5.5: Illustration of constraint tightening.

a constraint tightening approach to a guarantee to satisfy the original constraints
despite unknown but bounded uncertainties.
The constraint tightening approach is based on solving a nominal open-loop opti-

mization problem. It guarantees robustness by “shrinking” the vehicle constraints sets,
i.e., state X, input U, and terminal set XT, see Fig 5.5. This allows satisfying the orig-
inal constraints despite uncertainties, which can be rejected using a future feedback
correction, e.g., in [57, 83]. As a result, encountered obstacles (5.4b) are enlarged by
a safety bound to provide online a collision-free reference.
For simplicity, we focus on linear dynamics subject to additive disturbances:

x(k + 1) =Ax(k) +Bu(k) + ω(k), (5.8a)
x(k) ∈X, u(k) ∈ U, (5.8b)
ω(k) ∈W. (5.8c)
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Here ω(k) is an unknown, but bounded disturbance, i.e., W ⊂ Rn is convex and
compact uncertainty set containing the origin in its interior.
We use the Minkowski set sum ⊕ and the Pontryagin set difference 	. Given two

sets X,Y ⊂ Rn, they are defined by:

X⊕ Y , {x+ y|x ∈ X, y ∈ Y},
X	 Y , {x|x⊕ Y ⊆ X}.

The effect of the disturbance is counteracted by restricting the constraints (5.3,5.4b)
to the worst-case under a disturbance rejection controller K:

X(k + j + 1|k) = X(k + j|k)	 L(j)W, (5.9a)
U(k + j + 1|k) = U(k + j|k)	K(j)L(j)W, (5.9b)
O(k + j + 1|k) = O(k + j|k)⊕ L(j)W, (5.9c)

XT = RCT 	 L(N − 1)W, (5.9d)

L(j) denotes a state transition matrix for the closed-loop system under the control law
u(j) = K(j)x(j):

L(j + 1) = (A+BK(j))L(j), L(0) = I. (5.10)

Here, K is a stabilizing feedback law designed using, e.g., an LQR or nilpotent
method [59, 83]. This feedback policy is used to determine the margin for constraint
tightening in expressions (5.9), with feasibility guarantee (constraints satisfaction), for
any admissible uncertainties sequence. The safety set RCT ⊂ X is a robust control
invariant admissible set that has the following property:

Ax+BκT(x) + L(N − 1)ω ∈ RCT, (5.11a)
x ∈ X	 L(N − 1)W, (5.11b)

κT(x) ∈ U	K(N − 1)L(N − 1)W, (5.11c)
r /∈ Oi ⊕ CL(N − 1)W. (5.11d)

Note that if the state is inside the safety set, the vehicle can remain safe despite the
uncertainty, i.e., satisfying the vehicle constraints (e.g., obstacle avoidance) using the
terminal control law κT.
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The resulting robust planning MILP using the constraint tightening is defined as:

min
x,u

J(x, u) (5.12a)

s.t.∀j ∈ {0, . . . , N}
x(k + j + 1|k) = Ax(k + j|k) +Bu(k + j|k), (5.12b)

x(k + j|k) ∈ X(k + j|k), (5.12c)
u(k + j|k) ∈ U(k + j|k), (5.12d)
r(k + j|k) /∈ O(k + j|k), (5.12e)

x(N) ∈ XT. (5.12f)

Using this planning formulation, we can provide constraint satisfaction if the following
assumptions hold:

Assumption 5.1 (Controllability) The linear system {A;B} in (5.8), is controllable.

Assumption 5.2 (Full state information) The full state x(k) is available at each
time k.

Assumption 5.3 (Bounded disturbance) W in (5.8) is a convex and compact set,
which contains the origin in its interior.

Assumption 5.4 (Terminal set) There exists an admissible terminal set XT ⊂ X,
which is positively invariant under a terminal control law κT(x) ∈ U, i.e., ∀x ∈ XT
satisfying:

Ax+BκT(x) ∈ XT, (5.13a)
x ∈ X	 L(j)W, (5.13b)

κT(x) ∈ U	K(j)L(j)W, (5.13c)
r /∈ Oi ⊕ CL(j)W. (5.13d)

Note that if the vehicle enters the terminal set, the generated path will remain feasible
(i.e., obstacle-free) despite the uncertainty, i.e., satisfying the vehicle constraints using
the terminal control law κT.

Proposition 5.1 (Feasibility) Let Assumptions 5.1-5.4 hold. If the moving-horizon
planning problem (5.12) is initially feasible at time k0, with a feasible solution

{x?(k0 + 1|k0), x?(k0 + 2|k0), · · · , x?(k0 +N |k0)}
{u?(k0|k0), u?(k0 + 1|k0), · · · , u?(k0 +N − 1|k0)}

then for all disturbances w ∈W, the robust planning problem (5.12) is feasible at time
k1 = k0 + 1.
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Proof To verify the recursive feasibility for the optimization problem (5.12) at k1 =
k0 + 1, we consider the following initial candidate solution based on the previous
solution and the terminal control law κT:

ũ(k1 + j|k1) = u?(k0 + j + 1|k0) +K(j)L(j)w(k0), j = 1, . . . , N, (5.14a)
ũ(k1 +N |k1) = κT

(
x?(k0 +N |k)

)
, (5.14b)

x̃(k1 + j|k1) = x?(k0 + j + 1|k0) + L(j)w(k0), j = 1, . . . , N, (5.14c)
x̃(k1 +N + 1|k1) = Apx

?(k +N |k) +BκT
(
x?(k0 +N |k)

)
. (5.14d)

One can verify straightforwardly that this initial guess (5.14) is feasible (but subopti-
mal). Hence, it must satisfy all constraints in (5.12) at time step k1 = k0 + 1 despite
of any disturbance w ∈W using the properties of the terminal set XT.
Dynamics constraints:

The previous plan satisfied the vehicle dynamics (5.12b), i.e. implying:

∀j ∈ {0, . . . , N − 1},
x?(k0 + j + 2|k0) = Ax?(k0 + j + 1|k0) +Bu?(k0 + j + 1|k0) (5.15)

Substituting on the both sides for x? and u? from the candidate solution (5.14):(
x̃(k1 + j + 1|k1)− L(j + 1)w(k0)

)
= A

(
x̃(k1 + j|k1)− L(j)w(k0)

)
+B

(
ũ(k1 + j|k1)−K(j)L(j)w(k0)

)
= Ax̃(k1 + j|k1) +Bũ(k1 + j|k1)− (A+BK(j))L(j)w(k0)

Substituting the state transition matrices L from (5.10), subject to ∀j ∈ {0, . . . , N}:

x̃(k1 + j + 1|k1) = Ax̃(k1 + j|k1) +Bũ(k1 + j|k1) (5.17)

we get identical to the dynamics constraint (5.12b) using the candidate solution (5.14).
Initial state constraint:

The vehicle state at time k0 +1 is found by applying control u?(k0|k0) and disturbance
w(k0) to the vehicle dynamics (5.12b).

x?(k0 + 1|k0) = Ax?(k0|k0) +Bu?(k0|k0) + w(k0). (5.18)

Then subtracting from this equation, the certain dynamics (6.5b) for step j = 0 at
time k = k0:

x?(k0 + 1|k0) = Ax?(k0|k0) +Bu?(k0|k0). (5.19)

So the new state at time k1 = k0 + 1 can be expressed as a perturbation from the
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planned next state

x(k0 + 1|k0) = x?(k0 + 1|k0) + w(k0). (5.20)

Substituting L(0) = I into (5.14c) with j = 0 gives

x̃(k1|k1) = x?(k0 + 1|k0) + w(k0). (5.21)

Then x̃(k1|k1) = x(k0 + 1|k0) satisfying the initial state condition.
Terminal constraints (5.12f):

substituting into the candidate solution (5.14c) for j = N gives

x̃(k1 +N + 1|k1) = x?(k0 +N + 1|k0) + L(N)w(k0). (5.22)

Feasibility at time k0 requires

x?(k0 +N + 1|k0) ∈ XT. (5.23)

according to terminal constraint (5.12f), so

x̃(k1 +N |k1) ∈ RCT. (5.24)

The invariance condition (5.9d) ensures

Ax̃(k1 +N |k1) +BκT(x̃(k1 +N |k1)) + L(N)w ∈ RCT, ∀w ∈W,

which from the candidate solution (5.14d) implies ∀w ∈W

x̃(k1 +N + 1|k1) + L(N)w ∈ RCT. (5.25)

Using the definition of the Pontryagin difference and the terminal set (5.9d) this shows

x̃(k1 +N + 1|k1) ∈ XT. (5.26)

which satisfies the terminal constraint (5.12f) for time k1 = k0 + 1.

State and input constraints (5.12c,5.12d):
Feasibility at time k0 implies ∀j ∈ {1, · · · , N}:

x?(k0 + j + 1|k0) ∈ X(k0 + j|k0), (5.27a)
u?(k0 + j|k0) ∈ U(k0 + j|k0). (5.27b)

Applying (state and input) constraint sets (5.9), and the definition of the Minkowski
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difference A	 B = {a|a+ b ∈ A ∀b ∈ B} in (5.27), with ∀w(k0) ∈W giving:

x?(k0 + j + 1|k0) ∈ X(k0 + j + 1|k0)⇒
x̃(k1 + j|k1) = x?(k0 + j + 1|k0) + L(j)w(k0) ∈ X(k1 + j|k1),
u?(k0 + j|k0) ∈ U(k0 + j|k0)⇒
ũ(k1 + j|k1) = u?(k0 + j + 1|k0) +K(j)L(j)w(k0) ∈ U(k1 + j|k1).

which satisfies the state and input constraints (5.12c),(5.12d) at time k1 = k0 + 1.
Also, it follows from (5.24) and the admissibility requirement (5.12c),(5.12d),(5.12e)

that the final control step using κT
(
x̃(k1 +N |k1)

)
is admissible for state set X(N) and

input U(N) according to (5.12c),(5.12d),(5.12e).
This ensures that the optimization’s feasibility at time k = k0 implies the feasibility

at the next time k1 = k0 + 1, resulting in the robust feasibility. The constraint
tightening guarantees the existence of an input sequence such that the constraints are
satisfied at the next time step. �

Remark (Online complexity) The disturbance feedback policy and tightened con-
straints are computed offline. Thereby, it does not increase the complexity of the online
optimization. The decision space of the online optimization remains the same as nom-
inal MPC, allowing for efficient real-time computation.

(a) Area Coverage in dynamic environment.

dω
Rs

Waypoint

δsafeStatic
Obstacle

Moving
Obstacleδsafe

(b) Discretized representation of the search area.

Figure 5.6: Area coverage problem: An area should be covered by an autonomous vehicle,
which has a sensor range Rs while avoiding static and dynamic obstacles with safety
margin δsafe. To do so, we divide the area in cells, each containing a waypoint with a
relaxation threshold dw, allowing deviation from these waypoints [32, 35].

5.4 Planning for Area Coverage
In this section, the planning problem is extended to allow for area coverage [32]. In
recent years, area exploration/coverage [11, 174] has received increasing attention,
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as it can be used for many applications. Examples are exploration and scanning in
agriculture, geological research, structures inspection, forest fire detection, search and
rescue missions, up to autonomous cleaning systems and mapping [12–14, 162]. The
reader is referred to the comprehensive survey, e.g., [9, 11, 174, 175]. Area coverage
planning aims to generate a flyable/moveable path to completely cover the region-
of-interest while minimizing a cost, e.g., time and energy. The path must avoid the
forbidden regions, e.g., obstacles, see Fig. 5.6a. To approach this problem, we simply
decompose the region-of-interest offline into cells/waypoints, see Fig. 5.6b.

5.4.1 Implementation of search area

Practically, motion planning requires an environmental representation to define the
space information. Quantitative mapping introduces a feasible data structure for every
cell using a metric mapping, e.g., occupancy map, meadow map, target probability
map, quadtree map, uncertainty map, see [8]. We use a binary representation that is
applicable to MILP formulation. Each grid cell has an associated binary value.
To achieve completeness, coverage planning algorithms are often based on decompo-

sition methods, e.g., exact/approximate cellular decomposition, Boustrophedon, trian-
gulation, trapezoidal, Morse function, and Voronoi diagram, see [6, 8, 174–176]. These
use computational geometry methods to subdivide the configuration space into a set of
smaller uniform or non-uniform regions/polygons termed cells according to the sensor
range [163, 169, 175]. Each cell can then be modeled as a node in an adjacency graph,
in which the edges represent the boundary between two adjacent cells [170].
We use a discretized representation of the search area, which is decomposed into a

simple, non-overlapping discrete map (grid or cells), each containing a waypoint, see
Fig. 5.6b. The planner uses a number of waypoints Np inside this area to reduce the
number of variables, thereby the computation time. The number of waypoints and the
distance between them is influenced by the area size, the sensor’s range, the desired
precision, and the vehicle dynamics [13, 32]. Based on the defined waypoints, the
planning algorithm finds a path that covers a maximum number of waypoints online,
with minimum overlapping.

5.4.2 Formulation of the Area Coverage Planning Problem

MILP formulation is expanded by discrete decisions “scheduling” waypoints construct-
ing the path exploiting a discrete representation of the environment [32, 33]. The move-
ment between the waypoints is parametrized by continuous decision variables taking
simplified dynamics of the autonomous vehicle and moving obstacles into account. In
what follows, we will shorten the time-index (k + j|k) to j to simplify the notation.
The objective of the planner is to find a plausible path that minimizes the uncovered
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area by solving the optimization problem:

min
x,u,D,C

J
(
x(·), u(·),Φ(·)

)
(5.28a)

s.t.∀j ∈ {0, . . . , N},∀p ∈ {1, . . . , Np}
x(j + 1) = A(Tp)x(j) +B(Tp)u(j), x(0) = x(k), (5.28b)

x(j) ∈ X(j)	 L(j)W, (5.28c)
u(j) ∈ U	K(j)L(j)W, (5.28d)
r(j) /∈ O(j)⊕ CL(j)W, (5.28e)
x(N) ∈ XT 	 L(N)W, (5.28f)

Φp(j + 1) = Φp(j)− cp(j), Φp(0) = Φp?(k − 1) (5.28g)
0 ≤ Φp(j) ≤ 1 0 ≤ cp(j) ≤ 1 cp(j) ≤ dp(j) (5.28h)

‖rp − r(j)‖ ≤ δth ⇒ dp(j) = 1. (5.28i)

Here, J denotes the coverage cost function, Tp is the planning sampling time, N de-
notes the planning horizon, and Np is the number of the waypoints. Contrary to many
existing strategies, the vehicle dynamics are accounted for by a linear discrete-time
model (5.28b). The state and input constraint X and U in (eqs. (5.28c) and (5.28d))
represent the vehicle capabilities, e.g., maximum velocity and acceleration. This guar-
antees the planner to generate a physically feasible, i.e., flyable path. The obstacle
avoidance constraints (5.28e) are time-dependent, allowing for moving obstacles. The
terminal constraint (5.28f) is a positively invariant set under the control law κT(·), i.e.,
if x ∈ XT, then Ax+BκT(x) ∈ XT.

Φp(j) is the waypoint status, dp(j) is a binary decision, and cp(j) is an auxiliary
input for the waypoint p (at position rp, and time j). If the p-th cell was covered
dp(j) = 1, cp(j) = 1,Φp(j) = 0, else dp(j) = 0, cp(j) = 0,Φp(j) = 1 [32, 58]. At the
beginning k = 0, Φp(0) = 1 means that all waypoints are uncovered.

5.4.3 Implementation of Multiple Waypoint Constraints

The initial state and dynamics of each cell/waypoint is given by (5.28g), i.e., updating
the covering map of the environment according to the new sensor measurement. Note
that each cell state Φp and each auxiliary input cp are constrained between 0 and 1
by (5.28h). This provides the planner with the capability to compute a path that covers
a maximum number of waypoints online. If the distance between the autonomous
vehicle r(k) and a waypoint rp is smaller than a threshold δth, the binary decision
variable dp(j) is set to one, see (5.28i), which labels the waypoint as being covered
via the waypoint dynamics (5.28g). D ∈ RN×Np is the decision matrix of binary
variables dp(j) ∈ {0, 1}, which indicates whether the waypoint p is covered at time
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step j (dp(j) = 1) or not (dp(j) = 0) over the planning horizon:

C =


c1(j) · · · cNp(j)

c1(j + 1) · · · cNp(j + 1)
... . . . ...

c1(j +N) · · · cNp(j +N)

 5 D =


d1(j) · · · dNp(j)

d1(j + 1) · · · dNp(j + 1)
... . . . ...

d1(j +N) · · · dNp(j +N)

 .

Here C ∈ RN×Np is the matrix of auxiliary inputs cp(j), which are introduced as slack
variables to allow the autonomous vehicle to visit a waypoint p more than once without
any cost. When this happens, the optimizer chooses dp(j) = 1 and cp(j) = 0, so one
can guarantee a feasible solution and the waypoint constraint (5.28h) is satisfied, i.e.,
Φp ≥ 0. Note that cp is upper bounded by the binary decision variable dp via (5.28h),
which indicates whether the waypoint p is covered for the first time over the planning
horizon at the time step j (cp(j) = 1) or not (cp(j) = 0).
Reformulation for computation reduction:

To reduce the computation time, we use a reformulation of binary decision variables,
which leads to decreasing the number of binary variables. We use Nλ binary variables
for 2Nλ − 1 waypoints, comparing to the formulation in [32, 58], which uses Np binary
variables di for Np waypoints. cp is upper bounded by binary decision variables λs,
i.e., the constraint (5.28h) is modified to:

∀p ∈ {1, . . . , Np} cp(j) ≤ γp0 +
Nλ∑
s=1

γpsλs(j), (5.29)

where the coefficients (γp0 , γps ) are defined by ∀s ∈ {1, . . . , Nλ},∀p ∈ {1, . . . , Np}:

γps = (−1)

⌈(
p+ 1
2(s−1)

)⌉
, γp0 = 1− 0.5

Nλ∑
s=1

(
(γps )2 + γps

)
.

Hereby, dae determines the least integer greater than or equal to a. The auxiliary
decision variables cp(k) are introduced as slack variables to allow the vehicle to visit
a waypoint more than once without decreasing the cost. When this happens, the
optimizer chooses the combinationγp0 +

Nλ∑
s=1

γpsλs(j)
 = 1, and cp(j) = 0,

so one can guarantee that Φp ∈ {0, 1} is satisfied. For example, let Np = 15, then
Nλ = 4 binary variables are sufficient as for 2Nλ − 1 = 15 waypoints, compared to
the formulation used in [32, 58], which uses 15 binary variables for 15 waypoints, see
Fig. 5.7. Example: for 15 waypoints, Np = 15, and a prediction horizon N = 25, the
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total reduction in the binary variables is N × (Np −Nλ) = 25× 11 = 275.

d1 = 1 d3 = 1 d5 = 1

d6 = 1 d10 = 1

d11 = 1 d15 = 1

(a) Np = 15 binary variables di.

(λ1, λ2, λ3, λ4)
= (1, 0, 0, 0)

(λ1, λ2, λ3, λ4)
= (1, 0, 1, 0)

(λ1, λ2, λ3, λ4)
= (0, 1, 1, 0)

(λ1, λ2, λ3, λ4)
= (0, 1, 0, 1)

(λ1, λ2, λ3, λ4)
= (1, 1, 0, 1)

(λ1, λ2, λ3, λ4)
= (1, 1, 1, 1)

(b) Nλ = 4 variables (λ1, λ2, λ3, λ4).

Figure 5.7: Discretized representation of the search area with Np = 15 binary variables
dp, p ∈ {1, · · · , Np}, see Fig.5.7a, while we use Nλ = 4 binary variables for 2Nλ − 1 = 15
waypoints, see Fig.5.7b.

Visiting a waypoint p is verified via the constraint

‖rp − r(j)‖ ≤ δth ⇔
√

(ppn − pn(j))2 + (ppe − pe(j))2 ≤ δth ⇒ dp(j) = 1, (5.30)

which presents the distance between the vehicle position r(j) at time step j and a
waypoint rp should be smaller than a threshold δth. The two-norm approximation for
estimating distance is very similar to distance-to-target (5.7). We present approximate
the waypoints constraint (5.30) as a set of linear constraints representing M-sided
polygons [32, 58] using again the big M method:

∀m ∈ {1, . . . ,M},∀p ∈ {1, . . . , Np},∀j ∈ {1, . . . , N}

(pn(j)− ppn) cos 2πm
M

+ (pe(j)− ppe) sin 2πm
M
≤ dw +Mbig

αp0 +
Nλ∑
s=1

αpsλs(j)
 .

Here Mbig is a sufficiently large positive number to relax the constraints when the i-th
waypoint is not reached within the prediction horizon. M is the number of sides of the
polygon. The coefficients (αp0, αps) are defined by ∀s ∈ {1, . . . , Nλ},∀p ∈ {1, . . . , Np}:

αps = −(−1)

⌈(
p+ 1
2(s−1)

)⌉
, αp0 = 0.5

Nλ∑
s=1

(
(αps)2 − αis

)
.

Remark The waypoints constraint (5.30) is a circular region with radius δth. Setting
δth = 0.5TpVmax leads to generating a path passing through this region without deceler-
ating to obtain a smoother path at lower cost. The waypoints are further apart from
each other than 2δth.

75



5 Moving Horizon Path Planning

5.4.4 Control Setting and Objective Function

The area coverage planning can be formulated with respect to different objectives,
e.g., time-to-completion, energy/fuel-saving, collision probability [58], the repetition
rate [14], and to minimize the number of turns [175].
In this work, the main objective is to minimize the energy consumption and the

uncovered area. This is achieved via the following optimization:

min
x,u,cp,λs

J = Wu

N∑
j=1

(
sn(j) + se(j)

)
+WΦ

Np∑
p=1

Φp(N) +WdD
Best(N). (5.31)

Here, sn, se are slack variables. The terminal cost Φp(N) penalizes all uncovered area.
The third term DBest(N) represent the distance-to-go to the best waypoint, which is
determined by solving the optimization problem:

DBest(N) = min
p∈P
‖rp − r(N)‖,

where P := {p|Φ(p) = 1} is the set of uncovered waypoints, see [58].
This section outlined the MPC/MILP approach for area coverage application. If

a large-scale area needs a long time to be covered by a single vehicle, multi vehicles
might provide a more efficient and robust solution. So the next section describes
different MPC-based planning approaches for area coverage using multiple vehicles,
e.g., centralized, decentralized, and distributed algorithms.

5.5 Simulation Results
This section presents numerical simulations and experimental studies to verify the
feasibility and applicability of the proposed planning approach that yields good per-
formance in a complex environment and also is computationally feasible. In the simu-
lations, the quadcopter is assumed to have a sensor range of Rs = 50 m at an altitude
of h = 100 m and an area to cover of 5 × 5 circular cells. First, a minimum number
of waypoints that cover the area are found and passed to the MILP MPC considering
the sensor range Rs and the dimensions of the search area, see [32, 34, 35]. The initial
position of the quadcopter is at the map origin where pn = 0 m and pe = 0 m.
Fig. 5.8 shows the overall performance of the area coverage path planning for sev-

eral scenarios. In each shown scenario, the complete area is covered by an energy
minimizing path while avoiding static (Fig. 5.8b) and dynamically moving obstacles
(Fig. 5.8c). The distance between the quadcopter and two dynamically moving ob-
stacles while completing the full area coverage is always larger than the predefined
safety range of 15 m, see Fig. 5.10. We furthermore analyzed the influence of preview
information. To do so, we tested three different ranges of a “radar system”, which can
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(b) Area coverage with static obstacles.
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(c) Static and dynamic obstacle case.
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Figure 5.8: Area Coverage results for the quadcopter visiting all way points (magenta cir-
cles) while avoiding static obstacles (grey boxes) and dynamic obstacles (grey diamond).
Supplementary video material can be found at https://youtu.be/4GDmBLcjGZs.
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Figure 5.9: Computation time is smaller than
planning sampling time Td = 1 s.
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Figure 5.10: Euclidean distance between the
quadcopter and two moving obstacles.
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be used for obstacle detection, as shown in Fig. 5.8d. The MILP planner re-planned
the path considering the detected obstacle earlier for wide range sensors (solid blue
line), which leads to reducing the overall time for the complete coverage. Therefore,
superior behavior compared to shorted range sensors (dashed lines). However, even
shorter-range sensors show safe performance in terms of obstacle avoidance.
It is necessary to solve the planning problem (5.28) online. So the required time to

solve both MPC optimization problems should be less than the sampling time (depicted
in Fig. 5.9), which could be achieved. The computation times were achieved running
both optimizations on an Intelr CoreTM i7-6700 CPU @ 3.40GHz desktop CPU. The
above results of the proposed planning approach also depend on the underlying coding
language and the solver. In this work, the MILP optimization problems have been
numerically implemented in YALMIP [115] and solved via Gurobi [116].
These numerical simulations demonstrate that the planning approach can solve com-

plex problems, e.g., area coverage. Note, the linear constraints provide good approxi-
mations to the vehicle dynamics and capabilities.

5.5.1 Experimental Validation

The numerical simulations demonstrate the real-time feasibility of MPC/MILP plan-
ning approach. We validate and investigate the real-time performance of the proposed
planning scheme by experiments. Fig. 5.11 illustrates the implementation setup us-
ing Quanser’s AVRS system [177]. This system includes a Qdrone, a ground control
station, and a four-camera optitrack for motion capture [178]. Table B.1 outlines the
quadcopter specifications.
The experimental results (Fig. 5.12-5.15) demonstrate the real-time feasibility of the

proposed planning approach. The MPC/MILP planner overcomes the implementation
challenges, e.g., limited onboard computation and real-world uncertainties arising from
modeling error of the vehicle dynamics, tracking error of the lower-level controller,
external disturbance, and sensing noise.

5.6 Discussion and Conclusion
This chapter presented a planning approach for the autonomous vehicle moving
through clutter environments. Following a problem description and motivation, this
chapter provided a brief survey of the common planning approaches to distinguish
between these methods and the moving-horizon approach to clarify the motivation of
the research topics presented in this chapter. Then we outlined the principal compo-
nents of the proposed planning algorithm using MILP formulation. MILP can han-
dle the non-convex constraints, e.g., obstacle avoidance. Contrary to most planning
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MPC
min J(x, u)

x+ = f(x, u)

x ∈ X, u ∈ U

OptiTrack Motion Capture System
Intel Core i7-6700 CPU@3.40GHz

Figure 5.11: Experimental implementation setup using Quanser’s AVRS system, which in-
cludes a quadcopter, a ground control station, and a four-camera optitrack flex13
array used for motion capture. Supplementary video material can be found at
https://www.youtube.com/watch?v=1TKaP4NAewU,
https://youtu.be/wZOhx-XGBc8.
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Figure 5.12: Experimental results: 3D quadcopter path covering an area.

approaches, the vehicle dynamics and constraints were taken into account in the op-
timization problem. Using the tuple encoding allow reducing the solution time by
reducing the number of binary variables.
To handle bounded uncertainties, we proposed a robust planning approach using

constraint tightening. The main drawback of this robust planning approach consists
of conservativeness (i.e., less feasibility regions) introduced to account for the distur-
bances along the prediction horizon [17]. For this reason, we propose a state-dependent
contract in Chapter 6. This contract specifies the capabilities of the lower-level con-
troller, i.e., bounded error between the planned reference and the real movements.
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Figure 5.13: Experimental results: roll and pitch angles.
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Figure 5.14: Experimental results: the control inputs of the motors.
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Figure 5.15: Experimental results: quadcopter position in (x,y,z) coordinates.
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Figure 5.16: Experimental results: Sample time and computation time.
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This chapter proposes an interface between the planning and path following layers
to provide guarantees. The presented moving-horizon planning approach takes the
capability of a lower-level linear MPC into account in a hierarchical way.

6.1 Introduction and Motivation
Control and operation of autonomous systems are often decomposed into different
decision and control layers in a hierarchy architecture, see Fig. 6.1. In this hierarchy,
the planning and control systems are designed and use vehicle models of different
complexities [32–35]. While these systems are highly interconnected, they operate on
different time-scales, see Fig. 6.1. Due to the time-scale separation, the interaction
between guidance and control is often neglected and not fully exploited.
As speed and performance demands increase, the separation between planning and

control becomes challenging, leading to possibly unsafe behavior of the autonomous ve-
hicle. The path needs to be more frequently recalculated, leading to loos of time-scale
separation. Therefore, efficient and safe operations in highly dynamic environments
require tight and coordinated interaction of these levels to achieve maximum perfor-
mance and to guarantee collision avoidance.
We exploit MPC formulations on both the planning and control layers, which gener-

ate plans/controls robust to the vehicle uncertainties and environmental disturbance.
The higher-level planner operates on a slow time-scale, taking simplified vehicle dy-
namics and constraints into account. The optimal planning solution, which avoids
collisions, is provided to a lower-level controller. The autonomous vehicle itself is con-
trolled by a lower-level controller with a faster time-scale, which obeys more detailed
dynamic and kinematic constraints and follows the provided reference. The design of
the controllers takes into account the interconnections in terms of dynamic constraints
and reference definitions between the layers by exchanging information on the achiev-
able precision of the lower-level. The planning layer can take this precision in a robust
way into account, leading to a safe trajectory.
In reality, the vehicle might deviate from its expected trajectory, see Fig. 6.2, due to

the uncertainties, which can cause performance degradation and even loss of vehicle
stability [6, 8, 31, 37]. Therefore, robust planning and control approaches are needed
to obtain safe and plausible references and control inputs to satisfy constraints and
improve performance. Using a single combined planning and control approach can
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Figure 6.1: Illustration of the hierarchical moving-horizon control strategy and the information
exchanged between reference planning and the tracking control layers.The lower-levels
(black) utilizes a sampling time Tf (time index k), which is faster than higher-level
planner (red) sampling time Tp (time index kp).

often not be implemented for complexity and computational feasibility reasons, as
solving a robust planning control problem is challenging [62].
To address these challenges, we propose a hierarchical robust planning and control

framework, see Fig 6.1. The proposed hierarchical structure effectively allows de-
composing the complex task into tractable subproblems, allowing each to be pursued
independently to reduce the computational burden. This paves the way for the real-
time implementation of robust planning and control systems using the often limited
onboard computational resources [32–34].

6.2 Robust Planning and Control with Guarantees
The autonomous vehicle might deviate from its expected trajectory, see Fig. 6.2, due
to the uncertainties, e.g., model mismatch, tracking error, or measurement noise [17].
Additionally, the surrounding environments might be highly uncertain, e.g., due to
wind disturbances [6, 8, 31, 37]. Neglecting the uncertainties can be hazardous, espe-
cially in populated/dynamic environments, and can result in performance degradation,
complete failure, or obstacle collisions.
To overcome these challenges, robust planning approaches have been proposed to sat-

isfy constraints under uncertainty, see, e.g., [6, 8, 31, 37, 174]. The common approach
is to treat the uncertainty propagation as a deterministic worst-case by introducing
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Figure 6.2: The impact of state-dependent uncertainties d1 < d2 can be smaller for a slow
velocity V1 < V2 (Fig. 6.2a) compared to a fast velocity V2 (Fig. 6.2b). The planner
computes a feasible path (dotted blue line) at the slow time (Tp) but the lower-level
controller (red dashed line) is unable to follow this path without violating the constraint
(obstacle collision) for high velocity (Fig. 6.2b). To ensure constraint satisfaction, it is
necessary to add a obstacle safety margins, which depend on the state, e.g., velocity, see
Fig. 6.2c and Fig. 6.2d.

a conservative safety corridor [6, 62]. This approach might lead to a conservative
solution for the planning problem if the same safety margin is always used.
We propose a robust hierarchical strategy, see Fig. 6.1. The planning layer and

the lower-level controller agree on a “contract”, inspired by [179–182]. This contract
maintains guaranteed “consistency” between the layers, thereby robustness and re-
cursive feasibility, i.e., constraints satisfaction (collision avoidance). To do so, the
high-level planner uses a constraint tightening approach. Encountered obstacles are
enlarged by a safety bound to provide online a collision-free reference. The safety
bounds are provided and ensured by the lower-level tube-based MPC [38], i.e., ro-
bust constraint satisfaction is guaranteed despite uncertainties by an adequate level of
accuracy bounded in a tube, see Fig. 6.3.
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Figure 6.3: The planner cannot find a feasible solution in case of a fixed conservative con-
straint tightening/obstacle enlargement, e.g., Fig. 6.3a. Using an “adaptive” contract
formulation, there exists a feasible solution by adjusting the vehicle velocity Fig. 6.3b.

6.2.1 Contract Formulation

For simplicity, we focus on a linear system dynamics subject to bounded disturbances:

x(k + 1) =A(Tf )x(k) +B(Tf )u(k) + ω(k), (6.1a)
x(k) ∈X ⊂ Rnx, u(k) ∈ U ⊂ Rnu. (6.1b)

Here x(k), u(k) are the vehicle’s state and control input, while ω(k) is an unknown,
but bounded disturbance. (6.1b) represent the state and control constraints, and the
sets X and U are convex and compact. The system (6.1a) and lower-level controller
operate on a fast time-scale with the sampling time Tf (time index k). The planner
operates at a slower sampling time Tp with time index kp, see Fig. 6.1.
We focus on state-dependent uncertainties ω(k), which might depend on the vehicle

state x(k), e.g., velocity, see Fig. 6.2. These state-dependent disturbances might be
due to wind disturbance or due to the controller capability, see [33, 34, 183]. We
approximate this dependency by Nω different operating regions, defining disturbance-
bounds.

Assumption 6.1 (State-dependent disturbance bounds) If x(k) ∈ Xi ⊆ X, then
ω(k) ∈Wi, where Xi and Wi are convex, compact polytopes.

The sets Xi can overlap, i.e., one can have that Xi ∩ Xj 6= ∅ for i 6= j.

Remark It is straightforward to generalize the results for both state constraints
x(k) ∈ Xi ⊆ X and input constraint u(k) ∈ Ui ⊆ U.
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The autonomous vehicle is controlled by a lower-level controller, which might be based
on a more detailed model (6.1) and constraints (6.1b) to track the reference with
guaranteed accuracy. The non-convex constraints (obstacle avoidance) are handled by
the planner to achieve an efficient and fast implementation of the lower-level controller.
The planner generates a reference to navigate the vehicle, avoiding obstacles, i.e.,
satisfying (6.1b), for all possible disturbance realizations. To do so, the planner uses
a simplified model of the form

xp(k + 1) = Ap(Tp)xp(kp) +Bp(Tp)up(k). (6.2)

We assume that the planning model is obtained from the real model (6.1) using a
larger sampling time Tp = Nf × Tf with time index kp:

Ap(Tp) = ANf , Bp(Tp) =
Nf−1∑
l=0

AlB. (6.3)

With respect to the real dynamics (6.1a) and the planing dynamics (6.2) we make the
following assumption

Assumption 6.2 (Controllability) The pairs (A,B) and (Ap, Bp) are controllable.

Definition 6.1 State-dependent contract: A contract specifies the controller capabil-
ities (uncertainty bound), i.e., guaranteed accuracy for the corresponding operation
region.

According to the contract of Definition 6.1, the lower-level controller guarantees

x
(
(k + 1)Nf

)
− xp(k + 1) ∈ Zi, ∀x(k) ∈ Xi. (6.4)

The contract defines the error between the planned reference and the real movements
within this specific bounds. If x ∈ Xi, i.e., the state is inside the corresponding
operation region i, see Assumption 6.1. The contracts are known to both control
levels, and they depend on the design of the lower-level controller and the (partly)
selectable uncertainty bound. Thereby, the planner can improve the performances
by switching between different operation regions, see e.g., Fig. 6.3, exploiting the
controller capability in the planning optimization problem. The planner generates
online the reference to guide an autonomous vehicle through cluttered and uncertain
environments with less conservative constraint tightening (obstacle enlargement), see
Fig. 6.3b, contrary to the constant constraint tightening, see Fig. 6.3a. Therefore, the
planner, which operates on a slow time-scale Tp, see Fig. 6.1, computes and transmits to
the lower-level controller the reference and selects the required maximum discrepancy
Zi.
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6.2.2 Robust Moving-Horizon Planning via MILP

Vehicle safety is typically defined in terms of robust constraint satisfaction, so neglect-
ing the uncertainty in the path planning can result in obstacle collision, see Fig. 6.2.
We extend and improve the moving-horizon planning [32–34], represented in Chap-

ter 5, to take the state-dependent contract (6.2.1) into account. The proposed algo-
rithm modifies the constraints using a constraint tightening approach to guarantee the
planning robustness despite uncertainty. This uncertainty is assumed to be unknown
and lie in a bounded set Zi for each corresponding operating region i. The updated
planning problem is represented as:

min
xp,up,ip

Jp({xp}, {up}) =
kp+Np−1∑
j=kp

‖up(j)‖+ ‖xTarget − xp(kp +Np)‖, (6.5a)

s.t.∀j ∈ {0, . . . , Np − 1}
xp(kp + j + 1|kp) =Apxp(kp + j|kp) +Bpup(kp + j|kp), (6.5b)

x(kNf )− xp(kp|kp) ∈Zi, (6.5c)
xp(kp + j|kp) ∈Xi 	 Zi, (6.5d)
up(kp + j|kp) ∈U	KZi, (6.5e)

Cxp(kp + j|kp) /∈Oi ⊕ CZi, (6.5f)(
xp(kp + j|kp), up(kp + j|kp)

)
∈Ii, (6.5g)

xp(kp +N |kp) ∈XTi. (6.5h)

Here (kp + j|kp) denotes the prediction of a planning variable at time kp + j made
at a slower time-scale kp. The stage cost (6.5a) minimizes the control input ‖up(j)‖,
while the terminal cost penalizes the distance to the target point xTarget at the end
of planning horizon Np. The constraint (6.5c) defines that the initial state of the
autonomous vehicle lies in a region Zi guaranteed by the lower-level controller. The sets
Zi are convex compact polytopes and depend on the lower-level closed-loop tracking
accuracy achieved for the selected operation region i. This set is also used to modify
the vehicle constraints ( 6.5d, 6.5e, 6.5f). The inter-sample constraints (6.5g) and the
terminal constraint (6.5h) depend on the operation region i. Concerning the inter-
sample constraints (6.5g) we make the following assumption to guarantee that the
lower-level controller can satisfy the constraints at all times.

Assumption 6.3 (Inter-sample constraints) The set Ii defines the inter-sample con-
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6.2 Robust Planning and Control with Guarantees

straints, determined such that (xp, up) ∈ Ii implies for l = 1, . . . , Nf − 1:

Alfxp +
l−1∑
m=0

Amf Bfup ∈ Xi 	 Zi, (6.6a)

C(Alfxp +
l−1∑
m=0

Amf Bfup) /∈ Oi ⊕ CZi. (6.6b)

A trivial choice is to choose Ii directly as (6.6), which might slightly increase the com-
putational effort. However, this is not always necessary, e.g., one can use alternative
approaches to enlarge the obstacles, see Section 6.2.3.
For the terminal set XTi, we assumed that

Assumption 6.4 (Terminal sets) There exists a terminal control law κT(x) and ter-
minal sets XTi such that if x ∈ XTi, then ∀l = 1, . . . , Nf − 1

Apxp +BpκT(x) ∈ XTi, (6.7a)
xp ∈ X	 Zi, (6.7b)

κT(xp) ∈ U	KZi, (6.7c)
(xp, κT(xp)) ∈ Ii, (6.7d)

Cxp /∈ Oi ⊕ CZi. (6.7e)

Note that the terminal set is non-convex due to the obstacle avoidance and (possibly)
the inter-sample constraints. Nonetheless, this assumption can be satisfied in many
applications. A straight forward choice is to focus on admissible, nominal steady state
xp = Apxp +BpκT(xp) for the terminal sets, i.e., points where the autonomous vehicle
can stop. The higher-level planner sends the selected operation region i? and the
following inter-sampled reference to the lower-level controller

xref (kNf + j) = Ajfx
?
p(k|k) +

j∑
m=0

Am−1
f Bfu

?
p(k|k). (6.8)

Proposition 6.1 (Planning Recursive Feasibility) Let Assumptions 6.1- 6.4 hold. If
the moving-horizon planning problem (6.5) is feasible at time k, and the lower-level
controller guarantees bounded error, i.e., x(k)− xref (k) ∈ Zi? for the reference (6.8),
then planning problem (6.5) is feasible at k + 1.

Proof Let us denote the optimal solution of the planning problem (6.5) as:

{x?p(kp|kp), . . . , u?p(kp|kp), . . . , i?p}.

To verify the above result consider for the optimization problem at kp + 1 the fol-
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lowing initial guess based on the previous solution and the terminal control law κT:

ip =i?p,
xp(kp + j|kp + 1) =x?p(kp + j|kp), j = 1, . . . , Np,

xp(kp +Np + 1|kp + 1) =Apx?p(kp +Np|kp) +BpκT(x?p(kp +Np|kp),
up(kp + j|kp + 1) =u?p(kp + j|kp), j = 1, . . . , Np − 1,

up(kp +Np|kp + 1) =κT(x?p(kp +Np|kp).

One can verify straightforwardly that this initial guess is feasible (but suboptimal), i.e.
that all constraints of (6.5) are feasible at kp + 1 using the properties of the terminal
set XT and the guarantee on the lower-level control accuracy. �

Remark (Planning without feedback) In principle, one can modify the approach such
that the initial constraint (6.5c) is only enforced at the begin (kp = 0) and use the
equality constraint x?p(kp + 1|kp) = xp(kp + 1|kp + 1) instead of (6.5c) for kp > 0. This
removes the feedback from the plant to the planning, which enables a computationally
more efficient planning, but leads to a decreased control performance.

Remark (Offline computation) The disturbance feedback policy and tightened con-
straints are computed offline, this prevents complexity increase in the online opti-
mization. Therefore, the decision space of the online optimization remains similar
to nominal MPC, allowing for efficient real-time computation.

In this setup, the planner computes and transmits to the lower-level controller not
only the reference but also selects the required maximum discrepancy due to the choice
of Zi. The following section describes how the reference planner can improve the
performances by switching between different operation regions, see e.g., Fig. 6.3.

6.2.3 Switching between Operating Regions

According to Assumption 6.1, the uncertainty set ω ∈Wi defines the state-dependent
disturbance bounds for every operating region Xi. For each set, the lower-level con-
troller guarantees the bounds Zi on the tracking error according to the contract defi-
nition 6.1. Consequently, the planner can exploit, as an additional degree of freedom,
scheduling between the operating regions, defined as state constraints sets:

Xi 	 Zi ≡ {xp|Fixp ≤ Gi}, ∀i ∈ {1, · · · , Nω}.

Here, Nω is the number of the operating regions, i.e., velocity ranges. The scheduling
between the operating regions is reformulated by exploiting the big M method, see [33]:

Fixp ≤ Gi +Mbig(1− di(kp)), ∀i ∈ {1, · · · , Nω}.
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6.2 Robust Planning and Control with Guarantees

Here Mbig is a sufficiently large positive number to relax the constraints when the i-th
region is not activated. di(kp) is a binary decision variable used to decide which region
is active at time instance kp. When this happens, the binary decision variable is set
to di(kp) = 1, which labels the constraint i-th being activated at time kp. An extra
constraint ∑Nω

i=1 di(kp) = 1 is imposed to ensure that at least one region is activated at
ever time. As a result, the constraint Xi is tightened, i.e., the obstacle boundaries Oi
are enlarged via the tracking error set Zi for each region i.
Non-convex avoidance constraints can be approximated by convex polygons introduc-
ing extra binary variables bim(kp) as in Chapter 5:

∀m ∈ {1, . . . ,M},∀k ∈ {1, . . . , Np}, ∀i ∈ {1, ..., Nω}(
pn(kp)− pon(kp)

)
cos 2πm

M
+
(
pe(kp)− poe(kp)

)
sin 2πm

M
≥ δisafe −Mbigb

i
m(kp),

An extra constraint ∑M
m=1 b

i
m(kp) ≤M − di(kp) is imposed to ensure that at least one

constraint is active for region i-th , i.e., di(kp) = 1. δisafe is a minimum separation
distance between the autonomous vehicle (pn(kp), pe(kp)) and the obstacle position
(pon(kp), poe(kp)) at time step kp for the region i-th .

Remark The operating regions are computed offline, while the scheduling is performed
online as additional degree of freedom.

As a result, the planner has an additional degree of freedom to adjust the obstacle en-
largement δisafe by controlling the vehicle velocity, see Fig. 6.3. The planning approach
generates online reference commands on a slow time-scale Tp to guide the autonomous
vehicle through cluttered and uncertain environments. To track the generated refer-
ence, the following section uses a robust tube-based MPC [38], which operates on a
fast time-scale Tf using the real system dynamics (6.1), see Fig. 6.1.

6.2.4 Robust Model Predictive Tracking Control

The proposed tube-based MPC utilizes a nominal prediction dynamics (state z, input
v) starting from the current real state

z(k + j + 1|k) = Az(k + j|k) +Bv(k + j|k), (6.9a)
z(k|k) = x(k), (6.9b)

for predicting the effect of future disturbances w(k + j), which is taken into account
using the fictitious, auxiliary control law

u(k + j|k) = v(k + j|k) +K
(
x(k + j)− z(k + j|k)

)
, (6.10)
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6 Fusing Planning and Path Following Control

where K is a control gain, such that A+BK is Schur stable. Note that one does not
need to use only one control gain, see [184]. The difference

e(k + j|k) = x(k + j)− z(k + j|k)

between the predictions made using the prediction dynamics (6.9) and the real system
dynamics (6.1) can be bounded in form of sets with the above auxiliary control law.
In detail, if the system is in the i-th operation region, then e(k+ j|k) ∈ Ei(j) where

Ei(j + 1) = (A+BK)Ei(j)⊕Wi, Ei(0) = {0}. (6.11)

As j → ∞ the sets size Ei increases, but is bounded by Ei(j) ⊆ Zi, where Zi is the
(minimum) robust positive invariant set:

Zi ⊇ (A+BK)Zi ⊕Wi. (6.12)

The lower-level MPC predicts until the next planning instant, so the horizon shrinks
between planing instants and is increased at the next planing instant again to length
Nf . In detail, if k is a multiple of Nf , then Lk = Nf . Otherwise, Lk is chosen such
that Lk < Nf and k + Lk is a multiple of Nf .
The lower-level MPC predicts a (nominal) state and input trajectory

z(k) = {z(k|k), . . . , z(k + Lk|k)},
v(k) = {v(k|k), . . . , v(k + Lk − 1|k)},

which are consistent with the nominal dynamics (6.9) and the following constraints

z(k + j|k) ∈Xi 	 Ei(j), (6.13a)
v(k + j|k) ∈U	KEi(j), (6.13b)

Cz(k + j|k) ∈{Cxref (k + j)⊕ C(Zi 	 Ei(j))}, (6.13c)
z(k + Lk|k) ∈{xref (k + Lk)⊕ (Zi 	 Ei(Lk))}. (6.13d)

Note that the (convex) state and input constraints (6.1b) are directly included in these
constraints. In contrast the non-convex obstacle avoidance constraints are considered
by requiring that the lower-level controller enforces the guaranteed accuracy on the
vehicle position and the terminal state constraint, which results in convex constraints.
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6.2 Robust Planning and Control with Guarantees

In summary, the lower-level MPC solves the following optimization problem:

minz,v Jf (z(k),v(k)) =
k+Lk−1∑
j=k

‖xref (j)− z(j|k)‖2
Q + ‖v(j|k)‖2

R

+ ‖xref (k + Lk)− z(k + Lk|k)‖2
P , (6.14a)

s.t.∀j ∈ {0, . . . , Lk − 1}
z(k|k) = x(k), (6.14b)

z(k + j + 1|k) = Az(k + j|k) +Bv(k + j|k), (6.14c)
z(k + j|k) ∈ Xi 	 Ei(j), (6.14d)
v(k + j|k) ∈ U	KEi(j), (6.14e)

Cz(k + j|k) ∈ {Cxref (k + j)⊕ C(Zi 	 Ei(j))}, (6.14f)
z(k + Lk|k) ∈ {xref (k + Lk)⊕ (Zi 	 Ei(Lk))}. (6.14g)

Here, Q ∈ Rnx×nx, QN ∈ Rnx×nx, and R ∈ Rnu×nu represent the positive definite
weighting matrix for the state and the inputs respectively, used to penalizes the devi-
ation error from the reference xref and the control input. The optimization problem
is a convex quadratic program and can be solved efficiently, even on computationally
limited hardware. Note that the optimization problem (6.14) is based on the cur-
rent state and the reference and the operation region determined by the higher-level
planner. For the closed-loop, we have the following properties.

Proposition 6.2 (Constraint satisfaction) Let Assumptions 6.1, 6.3 hold. If the
lower-level MPC problem (6.14) is feasible, then the constraints xp(k) ∈ Xi ⊆ X and
up(k) ∈ U are satisfied and the obstacles are avoided, i.e., (6.5f) holds.

Proof From the constraints (6.9), (6.10) and (6.13) we have that z?(k|k) = xp(k),
as v?(k|k) = up(k), Cz?(k|k) = Cxp(k). Together with Ei(0) = {0} and Assumption
6.1 this implies that the vehicle constraint (6.1b) is satisfied. Moreover, xp(k) ∈
xref (k)⊕Zi, which implies together with the avoidance constraint (6.5f) and the inter-
sample constraints (6.6) and that Cxp(k) /∈ int(Oi), i.e. (6.5f) holds. �

Proposition 6.3 (Recursive feasibility of the hierarchical control scheme) Let As-
sumptions 6.1- 6.4 hold. If the planning problem (6.5) is feasible at k = 0, then for
the closed-loop system consisting of the higher-level moving-horizon planer (6.5), the
lower-level controller (6.14), and the plant dynamics (6.1), the optimization problems
(6.5), (6.14) are feasible for any k > 0.

Proof The proof has three parts: first we show that feasibility of the planning prob-
lem (6.5) implies feasibility of the lower-level controller (6.14), second that feasibility
of the lower-level controller (6.14) implies feasibility of the lower-level controller (6.14)
(if k + 1 is not a multiple of Nf ) or the planning problem (6.5) (otherwise).
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If the higher-level planning problem (6.5) is feasible at k, then using the lower-level
input trajectory

v(k + j|k) = u?p(k|k) +K
(
(A+BK)jxp(k)− xref (j)

)
where j = 0, . . . , Nf − 1 results in a state trajectory satisfying all constraints due to
the constraint tightening utilized in the upper and lower-level optimization problems.
If k + 1 is not a multiple of Nf , i.e. no planing takes place and the horizon L(k)

shrinks, then due to the design of the set Ei(j) at k + 1 a feasible nominal state
trajectory z(k+ 1) and a nominal input trajectory v(k+ 1), satisfying the constraints
(6.9) and (6.13), exists:

z(k + j|k + 1) =z?(k + j|k) + (A+BK)j−1w(k),
v(k + j|k + 1) =v?(k + j|k) +K(A+BK)j−1w(k).

If k+ 1 is a multiple of Nf , then the feasibility of the lower-level controller (6.14) at
k implies that xp(k)− xref (k) ∈ Zi?, which together with Proposition 6.1 implies that
the planning problem (6.5) is feasible. �

Remark We assumed that the available constraints {Xi,Zi} are fixed over a certain
time at the initial time. In principle, they can also be changed/adapted, e.g., due to
changing weather conditions for UAVs. This will be addressed in the future research.
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(b) Feasible solution.

Figure 6.4: Adaptive contracts achieves less conservative results with enlarged feasible region
(Fig. 6.4b) compared to the case of constant worst-case uncertainty (Fig. 6.4a).
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Figure 6.5: The reference planner selects different contracts decides which state region is
activated (i.e., adjusts the vehicle velocity Vt) via the decision variables d1 and d2.

6.2.5 Simulation Results

To illustrate the efficiency of the proposed robust hierarchical MPC, we consider a
linear vehicle model. For the sampling time of the planner, we use Tp = 1s and for the
tracking control Tf = 0.1s, i.e., Nf = 10, while the planning horizon is set to Np = 15.

As depicted in Fig. 6.4a, there is no feasible solution using conservative constraint
tightening (Obstacle enlargement), even if there might exist a feasible one, due to
the short planning horizon. Nevertheless, a long horizon might require a considerable
computational time, which it is often unfeasible for onboard implementation. In the
“adaptive” contract case, the reference planner can find a feasible solution with less
conservative constraint tightening by switching between the contract, see Fig. 6.4b.
The contract choice enables the planner to find a feasible solution by adjusting the
vehicle velocity Vt to operate at the state region with smaller uncertainty bound.
The reference planner decides which state region is activated via the decision vari-

ables d1 and d2, see Fig. 6.5. As we can see, the vehicle is moving at fast speed up to
the time 11s when it is close to the obstacle. At this time, the planner activates the
state region with less uncertainty bound. Thereby, the planner finds a feasible solution
and then accelerates again after passing through the obstacles.
Both robust MPC formulations were formulated with YALMIP [115] and solved via

Gurobi [116], while the tube MPC is implemented using the MPT toolbox [119].
In this section, the proposed hierarchical framework guarantees robustness and re-

cursive feasibility, i.e., it maintains a guarantee of “consistency” between the different
layers. Even though the path planner takes a simplified dynamic model of the system
into account, this is often too simple for good performance.
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6.3 Discussion and Conclusion
We have proposed in this chapter a combined moving-horizon planner and robust
model predictive controller and shown the applicability of the these planning and
control approaches in simulation.
In the hierarchical strategy, the upper and lower-levels exploit “contract” (guaran-

teed precision levels). To ensure compatibility between these levels and to guarantee
safety, we do facilitate the recursive feasibility of the hierarchical controller by suitable
constraints. The reference planning is formulated as an MILP considering constraints
tightening. The constraints tightening −achievable performance− is calculated at the
lower-level controller, based on the capabilities of the autonomous vehicle. Utilizing
for the planning a different controller with different precision provides signification
advantages, e.g., allowing for less conservative results with the enlarged feasible region
compared to assuming a constant worst-case uncertainty. This decomposition of the
control problem reduces the computational cost, enables real-time implementation for
robust control in an autonomous vehicle. Simulation results demonstrate the efficiency
of the proposed hierarchical approach.
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In this work, we proposed to use MPC to solve different problems, e.g., load allevi-
ation, planning, and control. We investigate both theoretical aspects and real-time
implementation, such as controller structure, feasibility, and stability.
First, we considered MPC for load alleviation for passenger aircraft. The MPC

scheme’s advantages are the ability to consider the aircraft dynamics and constraints
to minimize a cost function, e.g., loads reduction. Furthermore, MPC allows using the
preview information, e.g., from LIDAR. As shown, the anticipation of the coming gust
improves the load alleviation performance. Two different aircraft were used to demon-
strate the proposed approach’s effectiveness through numerical simulations subject to
different gust conditions. Furthermore, this work provided one of the first wind-tunnel
investigations to validate the real-time capability and effectiveness of MPC-based GLA.
As shown, MPC has the potential to alleviate the gust loads actively, which allows
designing lighter aircraft, thereby reducing the fuel costs.
The second part considered the planning and control problem of autonomous vehicles

moving through uncertain/dynamic environments. The main developments of this part
are the inclusion of robustness in a hierarchical control framework.
Contrary to most planning approaches, the vehicle dynamics and constraints are

taken into account in the optimization problem. We proposed to use MILP to solve
non-convex optimization problems, e.g., obstacle avoidance. We also proposed a new
approach to reduce the number of binary variables used to represent the obstacle and
waypoint constraints. This reduced the solution time and enabled online planning on
embedded platforms.
Based on this approach, the constraint tightening was used to guarantee constraint

satisfaction despite uncertainties. Obstacles were enlarged by a safety margin to ensure
safe collision avoidance. The planning approach was extended to area coverage. The
efficiency and real-time feasibility of the proposed approaches are emphasized through
numerical simulations, followed by hardware experiments using a quadcopter flying in
a cluttered environment.
In Chapter 6, we considered the interaction between the planning and control lay-

ers. To ensure compatibility and constraint satisfaction, we proposed that the moving-
horizon planner considered the low-level controller capabilities to switch between dif-
ferent controllers in a predictive and optimized way, exploiting the contract idea. Sim-
ulations demonstrated that contracts allow improving the planning applicability while
maintaining recursive feasibility.
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The effectiveness and robustness of the proposed planning and control strategies were
validated via simulation results. As shown, the decomposition of the control problem
reduced computational cost, enabled real-time implementation for robust planning and
control. While the planning and control methodologies developed in this thesis can
be applied to many vehicle types, we focused on quadcopter scenarios operating in
cluttered/uncertain environments. Experimental results and flight-test demonstrated
that the proposed algorithms successfully overcome the implementation challenges,
e.g., limited onboard computation and different uncertainties, e.g., external distur-
bance and sensing noise. The experimental work was helpful in identifying real-world
problems not captured in numerical simulations.
In summary, this thesis explored mainly designing and real-time implementation

of MPC for load alleviation, planning, and control that deal with different types of
environmental uncertainties and taking the different control layers into account.

7.1 Directions for Future Research
Stimulated by the findings, many future research directions can be derived. The
following challenges stand out as further research areas.
1- Reducing the computational burden: Despite the achieved results, real-

time MPC implementations are still challenging in aerospace applications, especially
for nonlinear (high-dimension) systems, e.g., flexible aircraft. They require solving
nonlinear programming problems, which are in general non-convex, with a large num-
ber of variables. Approximation on MIP formulation allows using LMPC to reduce the
computational time. However, this has some drawbacks, e.g., linearization, are only
valid on a limited range and difficult to obtain, e.g., in the case of flexible aircraft. One
future direction might be to integrate MPC with dynamic feedback linearization, i.e.,
an algebraic transformation of nonlinear dynamics to a linear model with new con-
trol inputs. Another direction is to apply multi-parametric quadratic programming or
approximation functions, e.g., hinging hyperplanes or artificial neural networks.
2- Extending the idea of contracts to nonlinear systems using, e.g., ellipsoidal

tube NMPC [185] would enable reducing conservativeness in the case of nonlinear
systems. In this case, the lower controller online sends the tube parameterization
upwards. Therefore, the planner can predict a possible uncertainty evaluation over
the planning horizon.
3- Integrate MPC with a machine learning scheme to improve the prediction

by including, for example, the obstacle velocity.
4- Extend the hierarchical MPC structure to include more layers with faster

sampling to achieve better performance.
5- Considering communications issues, e.g., variable time-delay or data-losses,
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to maintain the connectivity between the multi-vehicles.
6- Substantiate the usefulness of the planning and control approaches

in a real outdoor environment with different tasks, e.g., searching and tracking a
moving object. This requires further studies to reduce the computational effort without
impacting the planning and control performance. For instance, the main hardware
issue is to process the sensor information about the environment, which are currently
often too computationally intensive to be implemented on embedded systems.
7- Real flight test experiments; Although the WT experiment provides a cheap

method to investigate the real-time performance of the proposed control scheme, the
full aircraft dynamics, i.e., six DoF, are not considered. During the Inflight project
activities, we are preparing to validate the proposed MPC/GLA system on the Remos
GX aircraft via real flight tests. The interaction between the MPC/GLA and the
aircraft systems, e.g., the navigation system and the primary flight control system, is
depicted in Fig. 7.1.

Gust Load AlleviationPrimary Flight Control System

MPC/GLA

min J(x, u)

x+ = f(x, u, ωg)

x ∈ X , u ∈ U

State
Estimator

u∗ x̂

Navigation
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Unit

Servo
Control
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Data
Acquisition
Computer

IMU
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A/C Sensors Stick Actuators

Navigation Data

Aircraft Data

Actuators

Commanded Actuators
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Status

Activation

Gust Data

Inertia Data

Figure 7.1: Schematic diagram of flight control system for the Inflight Project. µAO-MPC
code determines the control input u∗ using the state information x̂ from the state esti-
mator, which receives the measured output ym from the main data acquisition computer,
navigation recording, and servo control units, adapted from [186].
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A Gust Load Alleviation

A.1 Green Regional Aircraft States
The Green Regional Aircraft model includes 153 states, which are expressed in three
different reference systems, see Fig. 4.4 [141, 143, 157]:

• 20 aerodynamic states and 38 structural states.

• actuator dynamics (6 states) and low pass filter for control surface deflections (3
states).

• discrete gust shaping filter (4 states).

• IMU (4 states), 9 accelerometers (63 states), and 3 delay filters (15 states).

A.2 Aircraft Parameters

Property Green Regional Aircraft Remos GX Aircraft Unit
Mass 52, 266 600 kg
Length 40.69 6.48 m
Height 7.88 2.28 m

Wingspan 34.96 9.32 m
Wing root chord 5.45 1.23 m

Table A.1: Aircraft geometric properties [143, 187].
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A.2 Aircraft Parameters

Variable Symbol Min Max Unit
True Airspeed Vt 22.6 69.45 m/s
Angle of Attack α -10 30 ◦

Side Slip Angle β -20 20 ◦

Vertical load factor nz 0 4 g
Bank angle φ -180 180 ◦

Pitch angle θ -90 90 ◦

Yaw angle ψ 0 360 ◦

Bank & pitch & yaw rates p, q, r -100 100 ◦/s
Elevator δelev -30 30 ◦

Rudder δrud -28 28 ◦

Ailerons δar, δal -21 12 ◦

Table A.2: Remos GX aircraft limitations [186].
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Figure A.1: Pole-Zero Map of the model dynamics.
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B Quadcopter UAV Case-Study

Dimensios 40× 40× 15 cm
Weight 1000 g

Max Payload 300 g
Onboard Computer Intel Aero Compute Board – Intel Atom x7-Z8750

Quad-core 64-bit 2.56 GH z processor
4 GB LPDDR3-1600 RAM

Cameras
Intel RealSense 640× 480 @ 60 FPS or 1080p @ 30FPS
Omnivision VGA 640× 480 @ 120 FPS

Table B.1: quadcopter specifications [177].
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