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"AI has always been – to my mind – a subject whose potential is on par with 

some of other fundamental historic scientific achievements like say quantum 

physics or logic, possibly however with much more dramatic applications 

and influence on how we will live on this planet in the future. Recent 

breakthroughs in neural computing and deep learning triggered a new 

excitement worldwide, but it is now becoming increasingly clear, that these 

techniques alone will not achieve machine intelligence on par with human 

capabilities. Reasoning on a symbolic level, as we humans do and which has 

been the hallmark of classic (good old fashion) AI research, has to be part of 

it. The scientific challenge of the immediate future is how to integrate these 

two research paradigms" [1].  

 

— Prof Dr. (Ph D) grad Ing Jörg Siekmann, EurAI and GI Fellow, Co-Founder of DFKI, Senior Professor 

at University of the Saarland and DFKI, Germany 

 

"Recent breakthroughs in deep learning have created the illusion that deep 

learning will solve all of AI. This illusion is false as truly intelligent machines 

should not only learn but also reason, just like humans do. Self-driving cars, 

for instance, must comply with, and hence, reason about traffic regulations. 

The long-term promise of AI can only be realised by fostering all AI 

techniques. A too narrow focus is like claiming that the important invention 

of rubber tires in the automobile industry could also lead to better engines" 

[1]. 

 
— Luc De Raedt, EurAI Fellow, ERC Advanced Grant, KU Leuven, Belgium. 

 

 

  



 

___________________________________________________________________________ 

iv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Intentionally left blank 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

___________________________________________________________________________ 

v 

 

 

 

 

 

 

 

 

Dedicated to my wife Jyothsna and my parents Krishna Prasad and Padmaja. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

___________________________________________________________________________ 

vi 

 

Abstract 

Modern Industrial Control System (ICS) represent a wide variety of networked infrastructure 

connected to the physical world. Depending on the application, these control systems are 

termed as Process Control Systems (PCS), Supervisory Control and Data Acquisition (SCADA) 

systems, Distributed Control Systems (DCS) or Cyber Physical Systems (CPS). Nowadays, the 

internet has been evolved as a universal communication platform in many domains, including 

ICS. The major technical background of the latest industrial revolution (Industrie 4.0 or Smart 

Factories) is the introduction of internet technologies into the industry making the field 

devices, machines, plants and factories connected to a network. As ICS is designed for 

reliability; but security especially against cyber threats is also a critical need. Despite several 

measures, every day a new attack against the ICS is being identified. Therefore, a proper 

measure is necessary to identify those novel attacks and ensure security. 

Cybersecurity through detection of malicious activities in ICS by efficiently configuring the 

deep learning algorithms is the main research foci of this thesis. Through research, the cyber-

attacks on ICS can be broadly classified as network attacks or injection attacks. In order to 

develop the deep learning-based cybersecurity, a proper dataset providing the possible 

attacks on an ICS is necessary. For network attacks, different datasets do exist. Out of them, 

NSL-KDD is popularly used by many researchers and is selected for the development of 

Intrusion Detection System (IDS) in ICS for network attacks. As no proper dataset exists for 

injection attacks, a dataset for injection attacks is simulated using the data from process 

control plant in the institute.  

In order to identify the novel or unknown attack, anomaly-based intrusion detection 

technique is developed using different deep learning algorithms for classification of normal to 

anomalous behaviour and a proof-of concept was implemented. The implementations are 

done in MATLAB using different deep learning libraries originally from MATLAB and also from 

other sources such as Theano, Tensorflow. Despite classifying the malicious behaviour, this 

thesis also concentrates on the classification of multiple attack classes.  The use of deep 

learning algorithms for cyber security improves the detection accuracies and are efficient in 

the identification of novel attacks when compared to the existing approaches. Hybrid deep 
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learning approaches are also proposed and found to be good in identifying the attacks more 

accurately and improve the detection accuracy during identification of multiple attack classes.  

The contribution of this thesis is as follows: identification and configuration of different deep 

learning algorithms for drawing hidden complex relations between the input dataset and 

multi-class attack classification were performed and assessed using famous NSL-KDD dataset 

for network attacks. Deep learning algorithms are also used to identify complex relations 

between traditional features and use them to identify injection attacks possible on ICS and 

their detection accuracies was assessed. Finally, with the outcome of thesis results, 

development of special injection attack toolbox is developed so that in future researchers can 

use this toolbox in development of more complex defence in depth strategies for injection 

attacks against ICS. 

Keywords: Deep Learning, Network attacks NSL-KDD, Injection attacks, Industrial Control 

Systems, Multi-class classification, Intrusion Detection System, anomaly detection, Cyber 

Security, Network security 
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Kurzfassung 

Moderne Industrial Control System (ICS) repräsentieren eine Vielfalt von vernetzten 

Infrastrukturen, die mit der physikalischen Welt verbunden sind. Je nach Anwendung werden 

diese Control Systeme als Process Control Systems (PCS), Supervisory Control and Data 

Acquisition (SCADA) Systeme, Distributed Control Systems (DCS) oder Cyber Physical Systems 

(CPS) bezeichnet. Der wichtigste technische Hintergrund der neuesten industriellen 

Revolution (Industrie 4.0 oder Smart Factories) ist die Einführung von Internet-Technologien 

in der Industrie, die die Feldgeräte, Maschinen, Anlagen und Fabriken mit einem Netzwerk 

verbinden können. Da ICS auf Zuverlässigkeit ausgelegt sind, ist aber auch die Sicherheit, 

insbesondere gegen Cyberangriffe, ein kritisches Erfordernis. Trotz mehrerer Maßnahmen, 

wird täglich ein neuer Angriff auf das ICS identifiziert. Daher ist eine angemessene Maßnahme 

ist notwendig, um diese neuartigen Angriffe zu identifizieren und die Sicherheit zu 

gewährleisten. 

Cybersicherheit durch Erkennung bösartiger Aktivitäten im ICS durch effiziente Konfiguration 

der Deep-Learning-Algorithmen ist der Schwerpunkt in dieser Arbeit. Durch Forschung können 

die Cyber-Angriffe auf das ICS allgemein als Netzwerkangriffe oder Injektionsangriffe 

klassifiziert werden. Um die auf Deep Learning basierende Cybersicherheitsstrategie zu 

entwickeln, ist ein geeigneter Datensatz notwendig, der die möglichen Angriffe auf ein ICS 

bereitstellt. Für Netzwerkangriffe gibt es verschiedene Datensätze. Aus diesen wird NSL-KDD 

von vielen Wissenschaftlern gerne verwendet und für die Entwicklung des Intrusion Detection 

System (IDS) im ICS für Netzwerkangriffe ausgewählt. Da es keinen eigenen Datensatz für 

Injektionsangriffe gibt, wird ein Datensatz für Injektionsangriffe mit den Daten aus der 

Prozesskontrollanlage im Institut simuliert. 

Um den neuen oder unbekannten Angriff zu identifizieren, wird eine Anomalie basierte 

Intrusion Detection-Technik entwickelt, die durch verschiedene Deep-Learning-Algorithmen 

zur Klassifizierung von normalem und anomalem Verhalten verwendet und ein Proof-of-

Konzept implementiert. Die Implementierungen in MATLAB erfolgten mit verschiedenen 

Deep-Learning-Bibliotheken, die ursprünglich aus MATLAB und auch aus anderer Herkunft wie 

Theano, Tensorflow sind. Trotz der Klassifizierung des bösartigen Verhaltens, diese Arbeit 

konzentriert sich auch auf die Klassifizierung mehrerer Angriffsklassen. Der Einsatz von Deep-
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Learning-Algorithmen für die Cybersicherheit verbessert die Erkennungsgenauigkeit und ist 

im Vergleich zu den bestehenden Ansätzen effizient bei der Identifizierung neuer Angriffe. 

Hybride Deep-Learning-Ansätze werden ebenfalls vorgeschlagen und als gut befunden, um die 

Angriffe genauer zu identifizieren und die Erkennungsgenauigkeit bei der Identifizierung 

mehrerer Angriffsklassen zu verbessern.  

Der Beitrag dieser Arbeit sind wie folgt: Identifizierung und Konfiguration von verschiedenen 

Deep-Learning-Algorithmen für die Zeichnung versteckter komplexer Beziehungen zwischen 

dem Input-Datensatz und Multi-Class-Angriff Klassifizierung wurde durchgeführt und 

bewertet mit Hilfe der berühmten NSL-KDD Datensatz für Netzwerk-Angriffe. Deep-Learning-

Algorithmen werden auch verwendet, um komplexe Zusammenhänge zwischen traditionellen 

Merkmalen zu identifizieren und sie zu nutzen, um mögliche Injektionsangriffe auf das ICS zu 

identifizieren, und ihre Erkennungsgenauigkeiten wurden bewertet. Abschließend, mit dem 

Ergebnis der Arbeits, wird eine Entwicklung einer speziellen Injektionsangriffs-Toolbox getan 

wird, so dass in Zukunft Wissenschaftler diese Toolbox bei der Entwicklung komplexerer 

Defence-in-Depth Strategien für Injektionsangriffe gegen ICS verwenden können.  

Stichworte: Deep Learning, Netzwerkangriffe, NSL-KDD, Injektionsangriffe, Industrial Control 

System, Multiklassen-Klassifizierung, Intrusion Detection System, Anomalie Erkennung, 

Cybersicherheit, Netzwerksicherheit 
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1. Introduction 

Cyber-attacks through internet have proliferated in recent years. Hence, security is considered 

as a critical concern in many domains and Industrial Control System (ICS) is not an exemption. 

This chapter gives a brief introduction to ICS architecture, followed by the importance of 

developing an exclusive security concept for ICS in contrast to the available Information 

Technology (IT) solutions. A discussion on different types of attacks on ICS is done along with 

some famous example for attacks on ICS.   

1.1. Background and Motivation 

ICS refers to a variety of systems compromised of computers, electrical and mechanical devices 

and manual process overseen by humans. They perform automated or partially automated 

control of equipment and are an integral part of several infrastructures. Main components are 

services which include Supervisory Control and Data Acquisition (SCADA), Distributed 

Control Systems (DCS), Programmable Logic Controllers (PLC) and devices such as Remote 

Telemetry Units (RTU), smart measurement/actuation devices and intelligent field instruments 

including remotely controlled devices and intelligent electronic relays [2]. A typical 

architecture of an ICS is shown in Fig.1 below [3]. 

 

Figure 1: Typical ICS architecture 

 

Among others, the primary function of an ICS includes collecting data from physical processes 

and sending commands to control these physical processes, thereby creating a feedback control 
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loop. ICS components are networked [4], still many of the industries pre-assume some of the 

following myths [5] 

• The plant is not connected to the internet 

• The plant is secure because it has a firewall 

• Hackers do not understand SCADA/ DCS/ PLC 

• The industries are not a target 

• Available safety systems will prevent any harm 

There are different versions of these myths and many other but still the summary is the same; 

ICS is not secure. From the architecture shown in Fig.1. it is clear that the attack on ICS can be 

possible at different levels ranging from low level field devices (PLC’s, RTU’s, Actuators, etc.) 

to a high level SACADA/corporate network. The ICS must ensure three of the following 

security attributes/qualities famously know as CIA (Confidentiality, Integrity, Availability) 

triad [6] shown in Fig. 2. 

 

Figure 2: CIA triad and causes for their violations 

• Confidentiality: Is the property, that information is not made available or disclosed to 

unauthorized individuals, entities or processes. Interception of data leads to a violation 

of confidentiality. 

• Integrity: Is the property of maintaining and assuring the accuracy and completeness 

of data over its entire life-cycle or protecting information from being modified by 

unauthorized parties. External modification of the data leads to a violation of integrity. 

• Availability: Is the property to ensure that authorized parties or entities able to access 

the information or devices when needed. Interruption of data arrival or transfer leads 

to violation of availability.  
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If any of these security attributes are not satisfied, the system is considered to be under threat 

or attacked. ICS differ quite significantly from traditional enterprise networks due to the 

specific requirements of their operations especially reliability and safety. Hence the priority of 

the security attributes also differs in each case. The following Table 1-1 provides the differences 

in priority of security attributes of an IT to ICS infrastructure. 

Table 1-1: Priorities of security attributes in IT vs ICS 

Priority Information 

Technology (IT) 

Industrial Control 

Systems (ICS) 

1 Confidentiality Availability 

2 Integrity Integrity 

3 Availability Confidentiality 

 

Existing security approaches such as firewalls, cryptographic primitives etc. are either 

inapplicable, insufficiently scalable, incompatible or inadequate to secure the ICS. While strong 

concerns about the security of ICS, particularly in the context of critical national infrastructure, 

were expressed even in the early 2000s [7]. To address this issue, a large number of defences 

against attacks have been proposed in the literature. Despite all the efforts made by researchers 

in the community over the decades, the security problem is not solved and always brings new 

challenges. One prominent reason for that could be rapid growth in computational power and 

available resources to attackers, which enable them to launch complex attacks [8].  [9] provides 

a real-time threat map, that how the attacks packets were published from one region to other 

and it is surprising to see that more than 95% of those attack patterns are unknown.  Some of 

the known ICS cyber-attacks are: 

• Trojan attack: In 1982, it was the first know attacks on the critical infrastructure 

occurred in Serbia. Trojan was used to insert malicious values in pump speeds and 

valve settings which created high pressure beyond acceptable to the pipeline joints and 

welds resulted in an explosion. This attack can be considered as an injection attack on 

ICS [10].  
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• SQLSlammer: In 2003, the SQLSlammer worm infected a Supervisory Control and 

Data Acquisition (SCADA) system that controlled the Davis-Besse nuclear plant in 

Ohio. The worm shutdown the HMI of the supervisor SCADA systems that handled 

the plant’s safety systems. This can be considered as Denial of Service (DoS) attack 

on ICS [11].  

• Operation Ghoul: In August 2016, Kaspersky Labs unearthed a spear phishing 

campaign that was targeting industrial organizations. The attack started with an email 

that appeared to be coming from a bank in UAE. This email is attached with a malware 

named HawkEye, which collects the personal information through key strokes and 

clipboard data.  Around 130 organizations across the globe were impacted by this 

attack. This attack can be considered as a probing attack on ICS [12]. 

• New York Dam attack: U.S. Infrastructure online was attacked and infiltrated the 

computerized controls of a New York Dam. Justice department claimed it that it was 

done by Iranian hacker. The attackers broke into the command and control system of 

the dam in 2013, through a cellular modem. Even though the attack happened in 2013, 

it was only in 2016 that the cyber-attack was affirmed [13]. 

The mentioned attacks are just a few but a lot of attacks still exists and every day new attacks 

are being identified. Therefore, novel technologies need to be adopted for the development and 

to secure ICS from these attacks.  

In general, defence against attacks consists of preparation, detection and reaction phases. A risk 

analysis is usually conducted by security engineers during the preparation phase to understand 

the environment and the assets they are trying to protect in that environment. This process is 

very crucial because it helps the engineers to understand how attacks can take place and how 

they affect the network [14]. The preparation phase also includes identification of infrastructure 

vulnerabilities, development of security strategies and plans and installation of required security 

devices based upon analysis of the information gathered [15] [16]. Another key element of the 

security concept is the detection system. An Intrusion Detection System (IDS) usually 

complements a firewall to forma an effective cyber security solution. One security motto is 

“Prevention is ideal but detection is a must” [17]. Efficient detection of attacks is required to 

able to react properly. Thus, a detection phase is of paramount importance in development of 

defence-in-depth concept. Finally, handling detected intrusions is done during the reaction 

phase. For this purpose, it is also vital to know the type of attack. As a consequence, this thesis 
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prime concentration is on securing the ICS infrastructure from possible attacks by appropriate 

design and use of IDS through novel deep learning algorithms. 

In general, the process of intrusion detection is performed using two basic approaches. The first 

one is signature-based detection also termed as misuse detection [18].  In this type, IDS searches 

for the evidence of attacks based on the knowledge accumulated from the known attacks. This 

knowledge is represented by attack signatures which are patterns or sets of rules that can 

uniquely identify an attack. Based on the knowledge of the past intrusions or known 

vulnerabilities, these signatures were designed. The key advantage of this approach is good 

detection accuracy on the contrary, the main drawback is its inability to detect novel attacks. 

The second type of IDS is anomaly-based intrusion detection, also termed as behaviour-based 

detection [19]. This approach builds models of the legitimate activates and any deviations from 

these legitimate actions are termed as anomalous or attacks.  The key advantage of this approach 

is its ability to detect novel or unforeseen attacks on contrary the main drawback is its high false 

alarm rate. A more detailed discussion of  the type of detection mechanisms is done in Chapter 

3. 

In order to cover these existing challenges and secure the ICS from such attacks, we found it is 

necessary to improve the detection accuracy of the anomaly-based intrusion detection using 

novel deep learning algorithms.  

1.2. Problem statement 

Existing cybersecurity mechanisms either suitable for IT infrastructure or use misuse detection 

techniques. The knowledge and patterns of previous attacks are used to create them as 

signatures which accurately identify new instances of those attacks. But these techniques are 

not suitable for identifying novel attacks as there is a need to update the signatures after 

identifying the attacks, which is not so fast and not feasible every time. Novel attack detection 

through anomaly detection approaches is possible at the expense of falsely identifying novel 

activity as malicious. Even with the modern infrastructure, existing approaches are unable to 

handle the bandwidth of data and perform the attack detection mechanism efficiently. Despite 

detection, in order to respond to the identified attacks, it is necessary to know the attack type. 

Many existing approaches fail or inaccurate in identifying the attack classes which close the 

door to perform prevention mechanism. These limitations lead to a significant number of attacks 

being missed or misclassified paving the way to successful attacks on ICS.    
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Machine learning techniques have the potential to overcome some limitations of intrusion 

detection systems as discussed in (Chapter 3) and their drawbacks were identified. The main 

problem is that existing machine learning techniques cannot extract the necessary features from 

the network packets that are necessary for identification of the complex nature of the novel 

attacks. Similarly, normal feature extraction techniques such as statistical features and 

mathematical features are also not sufficient in identifying attacks that are intelligently 

concealed in the plant data. So, extracting such complex correlations from the input data also 

termed as features is therefore a critical step which influences the attack detection accuracy. 

However, extracting such complex features is often an ad-hoc process, using trial and error to 

find which identified features are more relevant for the detection processes. Such a process 

requires domain knowledge, and it is time consuming when done iteratively. Other difficulties 

specific to the field of ICS security include: 

• A huge volume of data is generated 

• Malicious data is in general only a tiny fraction of the total traffic 

• Accurately labelled training data is difficult to obtain 

• ICS has a high diversity 

• The detection algorithms are expected to have low false detection rates 

These difficulties in intrusion detection motivate the application of deep learning techniques 

for extracting complex features in cybersecurity for ICS. In this thesis, an investigation is done 

on how to construct these features from the obtained data to perform multi-class classification. 

1.3. Research aims 

To address the problem statement, we have the following research aims. 

Aim 1: Investigating existing applications and approaches of different machine learning 

techniques to ensure the security of ICS, concentrating on feature extraction and multi-class 

attack classification. 

Since the correlation between the input dataset is a key aspect in identifying the attacks, feature 

extraction has been identified as a key issue in intrusion detection. We explore different existing 

techniques presented in the literature. The literature review focuses on both network intrusion 

as well as injection attack detection. 
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Aim 2: Designing different deep learning techniques which can be used to find relevant features 

from network traffic for given network-based intrusion detection in ICS. 

To overcome the existing drawback of misuse-based intrusion detection and machine learning 

based anomaly detection techniques, we propose the use of deep learning. Intrusion detection 

using deep learning can learn from previous attacks and investigations. They can interpret the 

complex correlations between the input data and extract the necessary features for proper 

classification. They can detect novel attacks as either similar to know attacks or as anomalies. 

They are even capable of processing large volumes of data in an automated way for fast feature 

extraction and detection. As it is complex to identify whether the extracted features are good or 

not, a proper feature engineering is developed so that the deep learning algorithms can identify 

the relevant features. 

Key or relevant features enable the deep learning-based IDS to discriminate normal and 

malicious behaviours. However, if the deep learning algorithms are provided with some 

irrelevant features, it may not be able to identify the attacks. Hence, proper training of the 

algorithm to extract the relevant features is a key point for the classifier’s performance. In 

general, proper feature identification requires a huge domain knowledge, but the aim is to 

identify an automated features extraction process based on the relevant input features.  

The aim is to identify which deep learning algorithms were able to identify the propose features 

for detecting the attack patterns efficiently. The research also focuses on identifying which deep 

learning algorithm are able to identify which types of attacks efficiently.  

Aim 3: Using those complex features generated through Aim 2, build an appropriate classifier 

for multi-class classification in identifying network attacks and test their effectiveness. 

The multi-class classification of network attacks is achieved through the use of key features 

from the network traffic dataset. The features are used for training the classifier such as SoftMax 

or support vector machines. In particular, the aim is to detect all attack classes with maximum 

possible accuracy.     

Aim 4: Identification of proper feature extraction and classification mechanism for the detection 

of injection attacks on ICS. 

Injection attacks are considered to be hard to identify attack types in the scope of ICS 

cybersecurity. They mitigate all possible network IDS strategies and modify the datagrams of 

the network packets. From Aim 2, proper feature extraction strategies need to be taken and their 
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correlation with traditional features extraction techniques needs to be evaluated. Later, the 

features are used for training classifier to identify the normal and attack patterns in the plant 

data.    

Aim 5:  Development of an injection attack toolbox for the future generation of multiple 

injection attack types dataset in a simulation environment. 

As there doesn’t exist a standard dataset for testing and evaluating the performance of the IDS 

against injection attacks and each ICS application is independent, simulation of an injection 

dataset is of key importance. This simulation toolbox will pave a way in generating the injection 

attack dataset for different applications based on their needs.  

1.4. Research contributions 

The main goal of this work is to extract the complex features out of the network packets as well 

as from the datagrams of the network packets to identity different attack classes along with 

recommending appropriate security mechanism techniques for protecting ICS against cyber-

attacks. As a part of achieving this goal, the thesis contributes to carry out different tasks to 

achieve the aims mentioned above. The contributions of this thesis are categorized into the 

following:  

Contribution 1: Development of a deep learning-based features extraction mechanism to 

generate a set of complex features from raw network data. This work is described in Section 

7.1. 

Use of deep learning algorithms such as Stacked-Autoencoders (SAE), Deep Belief Networks 

(DBN) and Convolutional Neural Network (CNN) for extracting proper feature that 

incorporates the relevant correlations in the input data of the network traffic.  These extracted 

features are further used for the development of multi-class attack classification. 

Contribution 2: Development of Multi-class attack classification using a combination of deep 

learning-based feature extraction with machine learning algorithms such as SoftMax and SVM.    

This contribution addresses Aim 3. Different classification algorithms were considered for 

training with the features extracted through contribution 1. In order to evaluate the efficiency 

of the features along with the classification algorithms, performance metrics mentioned in 

Section 3.5. were calculated and compared with the different combinations of feature extraction 
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mechanisms and classification algorithms. The best configuration parameters and combinations 

were presented with their critical advantages.  

Contribution 3: Combination of traditional features extraction techniques with the deep 

learning-based feature extraction mechanisms for the identification of injection attacks in the 

datagrams of the network packets. 

To accomplish Aim 4, the traditionally extracted features are given to a deep learning-based 

features extraction mechanism such as SAE, DBN and CNN for the extraction of complex 

features. These features are used for training the classifiers for efficient identification of normal 

and attack packets. Performance metrics are calculated and evaluated to identify the feasibility 

of the algorithms.   

Contribution 4: Development of an injection attack toolbox in MATLAB/Simulink as a toolkit 

to use with different ICS simulation environments to develop the defence-in-depth strategies in 

industries. 

In order to fulfil the Aim 5, an injection attack toolbox is developed in MATLAB/Simulink. 

The different classes of injection attacks are developed in accordance with the attack types 

mentioned in [20]. This toolbox is very versatile and can be configured in such a way that it can 

be used with all simulated ICS models and configure the key parameters according to the 

individual needs.  

1.5. Outline of the document 

The rest of the thesis is organized as follows: Chapter 2 gives detailed information about the 

possible types of attacks on ICS. The two categories of attacks; network attacks, injection 

attacks and their types are discussed in detail. How these attacks stipulate the key security 

parameters (CIA) is also explained.  

Chapter 3 provides a comprehensive review on the complete relevant literature related to the 

taxonomy of the intrusion to the different intrusion detection systems followed by the summary 

of most used and commonly mentioned techniques for the development of IDS and their 

drawbacks are discussed. It also discusses the basic evaluation metrics that are used to evaluate 

the efficiency of the developed algorithms.  

Chapter 4 offer a detailed information on the datasets used in part of the scope of the research 

in detail. Two datasets, namely NSL-KDD and UNSW15 were used for the evaluation of 
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intrusion detection capabilities for network attacks and proceed control plant data for the 

detection of injection attacks is discussed. The description of the datasets includes the types of 

attacks and their fraction to the normal data is included.  

Chapter 5 discuss the step by step approach of the proposed security schema using deep learning 

algorithms. The basics concepts along with their usage in the proposed approach, are discussed. 

A step by step procedure for the implementation of deep learning algorithms for the securing 

ICS is discussed. The implementations of the deep learning algorithms with the datasets 

mentioned in chapter 4 to achieve the aims that are discussed earlier in section 1.3.  It also 

considers the use of hybrid deep learning algorithms that is a combination of different machine 

learning and deep learning algorithms as different classifier combinations to improve the 

accuracy in multi-class attack classification. The importance of using high-performance 

computing is also discussed.  

Chapter 6 presents the selected results of this thesis, followed by a discussion and evaluation 

based on the obtained results. Some recommendations on the choice of algorithms are made 

based on the acquired results.  

Chapter 7 from the outcome after evaluation, it is found that in order to develop an IDS against 

injection attacks, a dataset with possible attacks is necessary. Due to this reason, an injection 

attack toolbox is developed and described in this chapter for other researchers to use it.  

Finally, the thesis is concluded in Chapter 8, which summarizes the entire work and presents 

some suggestions for further research in the area of intrusion detection.  
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2. Classification of cyber-attacks on ICS 

"ICS are widely used in many industries like chemical processing, petroleum refining, electrical 

power generation and distribution, water purification and distribution, intelligent buildings and 

nuclear plants" [21]. Their primary functions include collecting data from remote physical 

processes and sending commands to control these physical processes, thereby creating a 

feedback control loop. There have been several infrastructure vulnerabilities with the ICS 

infrastructures and hence these systems are prone to intrusions and cyber-attacks. These attacks 

are so critical enough to cause a variety of financial damage and harmful effects on humans and 

surroundings [22]. The common attacks that are targeted on an ICS can be grouped under any 

of these following two classes as seen in Fig. 3. 

 

Figure 3 : Classification of possible cyber-attacks on ICS 

2.1. Network attacks 

The attacks types can change significantly from one year to the next. Many of the actual attacks 

involve combinations of vulnerabilities. Some common attacks on ICS can be:  

Denial of Service (DoS) 

"An attack against ICS to stop the proper functioning of some portion of an ICS or to effectively 

disable the entire system. These attacks can target the connected physical system or the ICS 

itself. DoS against physical system vary from opening or closing of valves manually and 

switching to the destruction of portions of the physical process that prevent operation. DoS 

against the ICS target the communication links or attempt to disable programs running on 

system endpoints which control the system, log data and govern communications [23]. DoS 
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attack mainly affects ‘availably’ which is the main priority in ICS. Some examples of DoS 

attacks are apache, smurf, Neptune, ping of death, back, mail bomb, UDP storm etc" [24]. 

Probe 

"It is an action taken or an object used for the purpose of learning something about the state of 

the network. It collects or monitors network activity and attempt to gain access to a computer 

and its files. Probe attack mainly effects the ‘confidentiality’ in ICS. This technique is 

commonly used in data mining. Some examples of probe attacks are saint, portsweep, mscan, 

nmap etc" [24]. 

Remote to Local (R2L) 

An R2L is an attack in which a user sends packets to a machine over the internet, which s/he 

does not have access to in order to expose the machines vulnerabilities and exploit privileges 

which a local user would have on the computer. Some examples of R2L attacks are xlock, guest, 

xnsnoop, phf, sendmail dictionary etc. 

User to Root (U2R) 

U2R attacks are exploitations in which the hacker starts off on the system with a normal user 

account and attempts to abuse vulnerabilities in the system in order to gain superuser privileges.  

Some examples of U2R attacks are perl, xterm etc. 

A more detailed information about different types of network attacks and their detection 

mechanisms can be found in [25]. The mentioned attacks present here are taken from the famous 

benchmark dataset NSL-KDD. These are just some categories of attack classes possible in 

network attacks. The other possible attack types from another dataset are discussed in Chapter 

4.  

2.2. Injection attacks 

"Injection attacks are also known as False Data Injection Attacks (FDIA) where the attacker 

gains access to a critical process or process parameters in ICS and forces the system to execute 

newly introduced code or command. Injection attacks effect the ‘integrity’ of an ICS" [24]. 

FDIA are broadly classified into three categories. Common injection attack categories are: 

• Response Injection: "ICS protocols often take the first response packet to a query and 

reject subsequent responses as erroneous. This enables to craft response packets and use 
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timing attacks to inject the responses into a network when they are expected by a client" 

[26].   

• Measurement Injection: "Falsified process measurements are injected into the ICS in 

this type of attacks. The attacker simulates a process measurement such as a water level 

or gas pressure increasing or decreasing, which in turn generate false actuations" [26]. 

• Command Injection: "False control or configuration commands are injected into the 

ICS in this type of attacks. Potential impacts of this attack include interruption of 

process control, interruption of device communications, unauthorized modification of 

device configurations etc" [26]. 

Apart from the key attack classes, there are several subclasses in these attack types. The 

different types of attack classes and their categories are mentioned in Table 2-1. This table 

provides info about the name of the attack their classification category and the level in ICS 

where the attack takes place in relation to the behaviour and system. These attack classes are 

the sub-classes of the injection attack classes mentioned in Fig. 3.  

Table 2-1: List of FDIA attacks and their sub-classes [20] 

S.No Attack Name Classification Level 

1  Naïve Read Payload Injection  NMRI  2  

2  Invalid Read Payload Size  NMRI  2  

3  Naïve False Error Response  NMRI  2  

4  Sporadic Sensor Measurement Injection Attack  NMRI  1  

5  Slope Sensor Measurement Injection  CMRI  0  

6  High Slope Measurement Injection  CMRI  0  

7  High Frequency Measurement Injection  CMRI  0  
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2.2.1. Naive malicious response injection (NMRI) 

In this type of attack, the attacker will successfully inject response packets into the network but 

lacks information about the process that is being monitored and controlled. The attacker will 

inject invalid payloads in the form of all zeroes, negative numbers, large numbers, etc. This 

attack lacks sophistication and causes an alarm. There are 4 types of NMRI and they include: 

1. Naive read payload size: The first form of NMRI attack which is based on network protocol 

knowledge. Read coil, discrete input, holding register and input register queries will have a 

quantity field to specify the number of objects returned by the server. An attack is injected 

such that the server will respond with the correct number of objects on request, but with 

random contents. 

2. Invalid read payload size: This is another type of NMRI attack, where the requested number 

of objects from the read coil, discrete input, holding register or input register queries is 

ignored. The response payload will be either larger or smaller than the requested amount. 

3. Naive false error response: It is an NMRI attack, where false error messages are sent to a 

client on a read command. 

4. Sporadic sensor measurement injection: A kind of NMRI attack, that sends sporadic false 

process measurements outside the bounds of the high (H) and low (L) control set points. 

But these false measurements are not outside the alarm set point range. 

2.2.2. Complex malicious response injection (CMRI) 

CMRI attacks are very sophisticated compared to NMRI. The attacker would have a good 

understanding of the ICS architecture that is to be attacked. This attack will mask the real state 

8  Altered System Control Scheme  MSCI  1  

9  Altered Actuator State  MSCI  1  

10  Altered Control Set Point  MPCI  3  

11  Force Listen Only Mode  MFCI  3  

12  Restart Communication  MFCI  3  
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of the physical process being controlled, thereby affecting the feedback control loop managing 

the cyberphysical system in a negative manner. There can be different forms in which a CMRI 

attack can be injected and they include: 

1. Calculated sensor measurement injection: This is a type of CMRI attack where calculated 

process measurements are injected. It requires system knowledge and an accurate model of 

the system to be attacked. For example, an attacker can send false response packets to 

indicate that water level is full to turn off the water pump while the actual water level is 

much below. 

2. Replayed measurement injection: Here, the attacker replays the captured process 

measurements to the client. This gives an impression to the operator that the system is 

running normally. 

3. High frequency measurement injection: A special type of calculated sensor measurement 

injection where frequency of process measurement changes is increased beyond the normal 

rate. The attack scenario may appear similar to the system behaviour at a different time of 

a day and cause the operator to misconfigure the system to handle the falsified demand. 

2.2.3. Malicious state command injection (MSCI) 

In MSCI attack type, the state of the process control system will be changed from a safe state 

to critical state by sending malicious commands to remote field devices. The attack can be 

planned with single or multiple injected commands. Different types of MSCI are listed as 

follows: 

1. Altered system control scheme: Most of the control systems allow operators to change the 

control modes between automatic and manual. In this type of MSCI attack, these control 

modes are changed. For example, consider a gas pipeline control system. During automatic 

mode, the pump is controlled from a PLC and in the manual mode PLC is not used to 

control. MODBUS commands are used to set or change values stored for system control 

mode, pump state and solenoid state. An attacker can inject commands to change the control 

mode from automatic to manual and this, in turn, can be very critical if the gas pressure 

exceeds certain limit. 

2. Altered actuator state: In this attack type, the command injection is used to change the 

system actuator states for one time. In a gas pipeline system, the pump can be turned ON or 

OFF and the relief valve can be made open or close. 
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2.2.4. Malicious parameter command injection (MPCI) 

Altered control setpoint is an MPCI attack type. The device set points are changed in this type 

of attack. The setpoints are used to provide variable control on a system. In a water tank system, 

the command injection can be used to alter the high and low setpoints. This attack can also be 

used to change the alarm values stored in PLC registers. To disable the alarms, values are altered 

to different high and low setpoints. 

2.2.5. Malicious function code injection (MFCI) 

MFCI can be classified into 2 types:  

1. Force listen only mode: This attack type will cause the server not to respond to queries and 

will no longer transmit on the network. Most of the industrial control systems use the polling 

technique, where master node like human machine interface (HMI) will frequently poll the 

servers for data. The data displayed on HMI is used by human operators to take supervisory 

control. Using this type of command injection, the attacker will place the server (MODBUS) 

in listen only mode and the server is prevented from responding to any queries. Hence there 

is a loss of system visibility and control. 

2. Restart communication: In this attack, the attacker sends a command to restart the server, 

which leads to temporary loss of communication. This leads to an inability to observe and 

control the process. Multiple successive restart communication attacks can lead to complete 

loss of communication between the process and control. 

These attack types and attack classes defined the number of possibilities of the possible attacks 

on an ICS infrastructure. A more detailed informant about the theory of injection attacks can 

be found at [27] and some important points are discussed in Chapter 3. In this thesis, research 

efforts are made in the identification of some of those attacks accurately, but further research is 

necessary in future to develop the defence mechanisms against all possible attacks.  
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3. Literature review 

This chapter provides a detailed overview on the background of the attack on ICS, a detailed 

overview on IDS and the available research work on the development of IDS using machine 

learning and deep learning techniques on network and injection attacks.   

3.1. Background 

"In 1990’s, ICS cybersecurity awareness was very low and its perceived importance is even 

lower. Generally, it was viewed as a corporate Information Technology (IT) issue with little 

direct impact on powerplant or grid operation. Moreover, it was viewed as a hindrance to ICS 

technology advancements. From a security perspective, ICS were generally isolated networks 

and the concept of “security by obscurity” was alive and well. As security was not a 

consideration, there was little reason to question the need for tighter system integration" [24].  

Existing security approaches such as firewalls, cryptographic primitives etc. are either 

inapplicable, insufficiently scalable, incompatible or inadequate to secure the ICS. Recent 

events have shown that cyber-attacks on industrial control systems are becoming increasingly 

sophisticated. Cyber-attacks with the ability to compromise physical equipment are considered 

as the most trivial forms of attacks [28]. Disabling or tampering with physical equipment can 

easily render them unavailable at critical times of operations, while operational reliability is of 

the utmost importance in smart grids. Threats are evolving over time, while cybercriminals are 

becoming smarter and smarter, less so their victims. Cyber-attacks in the past were generally 

one-dimensional and mainly in the form of denial of service (DoS) attacks, computer viruses 

or worms, or Trojan horses. However, this has fundamentally changed in recent times. Cyber 

threats are undergoing a diversification that is resulting in the combination of the “Internet”, 

“teamwork” and “commercial interests”, while appearing in multiple forms [29] . BlackEnergy 

malware is one example of such threats, which has evolved over time from a simple distributed 

denial of service (DDoS) platform to rather sophisticated plug-in based malware [30]. 

Moreover, BlackEnergy has been used in numerous targeted attacks [31]  since its discovery in 

2007. 

By exploiting vulnerabilities, an attacker can infect systems with malware, propagate malware 

within the system (or even between different systems) and use additional attack methods to 

achieve his/her ultimate goal. In this regard, as a single act of penetration is often not sufficient 

this leads to a situation involving multistage attacks, which are composed of a number of 
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dynamically interrelated attack steps, where the occurrence of the next step depends on the 

successful completion of the previous step. The Stuxnet cyberattack on the Iranian nuclear 

programme is the best-known example of a multistage attack on physical infrastructure [10]. 

Stuxnet infected approximately 100,000 hosts across over 155 countries prior to September, 

2010, according to the Symantec report [11]. More recent, widely known multistage cyberattack 

scenarios include the German steel mill breach in December 2014 [12] and the Ukrainian 

electric power disruption in December 2015, which will be briefly described in the following 

paragraphs: 

In present days scenarios, the modern ICS is not secure anymore and are under continuous 

attacks. The cyber defences of the ICS are being tested, probed and targeted at an unprecedented 

rate by a variety of attackers with different motives, skill levels and techniques. The concept of 

Industry 4.0, a combination of CPS and Internet of Things (IoT) on one side brings the features 

of interoperability and flexibility but on other side exposes to the risk of more cyber-attacks. 

Attacks on ICS are not new, but the recent trend of increasing attacks on ICS will highlight the 

necessity of a robust mechanism for ensuring the security of ICS [32]. 

3.2. Intrusion detection system 

Attacks on industrial systems are performed by threat actors with varying sophistication and 

goals. While it is not possible to list all the potential attacks, it is good to know that the list is 

always growing. Some types of attacks on communication network are vulnerabilities [33][34], 

SYN flooding [35], Distributed Denial-of-Service (DDOs) [36] [37], surfing and the list goes 

on. Intrusion detection refers to the detection of malicious activity (attacks, break-ins, 

penetrations and other forms of computer abuse) in a computer related system or in the 

communication networks. An intrusion can be sometimes identified as a completely different 

behaviour from the normal and sometimes hard to identify it from normal behaviour. These 

malicious activities or intrusions are very important in network security perspective. Due to 

these complexities, there doesn’t exist a unique technic that can identify all types of attacks or 

intrusions. 

As IDS deals with only detection, it is considered as a passive mechanism only. In order to 

prevent attacks, we need systems that can detect attacks online and prevent malicious data from 

entering the network. Hence IDS is improvised as IPS (Intrusion Prevention System) in some 

literature this is also termed as IDPS (Intrusion Detection and Prevention Systems).  
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In the early stages, a system administrator monitored the systems personally and identify the 

unusual activities in the network [38]. Later, some improvements occurred in the late 70’s 

where the administrators audited the logs by printing the log files and searching them for a 

suspicious activity [39]. This approach is time consuming and easy to miss such suspicious 

activities. After the storage technology became less expensive, the logs were moved to online 

and programs and technologies were developed to analyse the data. Despite these technologies 

are slow and computationally intensive, they somehow match with those days network 

requirements [40]. The steps for the development of modern days IDS was developed in the 

early 90’s [41]. Since then, the effectiveness and efficiency of the IDS is based on how fast the 

system could identify an intrusion by maximizing the True Positives and minimizing the False 

Positives [42].  

 

Figure 4: Possible placement of an IDS in a network infrastructure 

An IDS is a software or hardware that helps to protect from and ward off attacks and penetration 

attempts to the network. The key difference from an IDS to a simple firewall or adaptive proxy 

firewall is that the firewalls can block connections. IDS is a combination of several individual 

intrusion detection techniques available (signature analysis, traffic monitoring and anomaly 

detection). IDS check the network behaviour and find the nodes that are not working normally. 

It is an additional unit installed at the clients or server or both [43] [44] . The typical placement 

of an IDS in a network is depicted in Fig. 4.   

From Fig. 4, it is clear that the IDS is placed after the firewall, the typical protective mechanism 

to any network. IDS guard's the network infrastructure from the attacks that overcome through 
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the traditional firewall protection. So, it lies between the network infrastructure and state of the 

art protection mechanisms.  

Several characteristics are needed in the development of an IDS to have optimized performance, 

maximizing the detection rate and minimizing the errors. Many of such characteristics are listed 

by [45] [46]. A summary of the characteristics is provided in [47] and are listed below.  

• Run continuously without human supervision 

• If fault tolerant and be able to recover from crashes 

• Is simply tailored to a specific network 

• Adapts to behaviour to a specific network 

• Works in real time 

• Detect the maximum number of intrusions with a minimum number of false positive 

alarms 

• Is self-monitored 

• Is self-configurable to the security policies changes 

• Operated while maintaining minimum overhead 

With the advancements in the technologies that involve sharing of data and resources, the IDS 

must handle with the amount of data and the number of components that are involved in the 

network. With the emerging technologies in ICS such as CPS and Industry 4.0, a tremendous 

amount of data transfer happens. The developed IDS must compel with many such novel 

requirements.  

3.2.1. Classification of intrusion detection system 

The IDS can be classified into various categories based on their detection methods (signature/ 

anomaly), data source (network based/ host based), analysis timing (real-time/ offline), system 

architecture (centralized/ distributed), reaction after detection (passive/ active) [48] [38]. 

[49]also classified the IDS into categories based on the type of intruders (external/ internal) and 

types of intrusion (leakage/ malicious use / etc.) [50]. Three major properties of classification 

and their sub-categories are given in the following Fig. 5.     

In this section, the IDS categories based on the detection methods and the data sources are 

explained in detail, as they are keenly focused in this scope of research.   
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Figure 5: Classification of intrusion detection systems 

From Fig. 5, we can see that IDS based on its data sources into two main categories: network 

based intrusion detection (NIDS) and host-based intrusion detection system (HIDS). They are 

simply defined as that “HIDS provides protection for the host on which it is being installed 

where as NIDS suspects for attacks or irregular behaviour by inspecting the contents and header 

information of all the packets moving across the networks” [51] [52]. A detailed discussion is 

given below: 

NIDS – Network based Intrusion Detection System 

NIDS are placed at an intentional point or points with in the network to monitor the traffic going 

in and out of all devices in the network [53]. NIDS are mostly passive devices that monitor the 

on-going network activity without adding significant overhead or interfering with the network 

operations. They are easy to secure against attack and may even be undetectable to attackers; 

they also require little effort to install and use on existing networks. Ideally it would scan all 

inbound and outbound traffic; however, doing so might create a bottleneck that would impair 

the overall speed of the network. The functional implementation of NIDS in a network 

infrastructure is represented in Fig. 6.  

From Fig. 6, we can see that NIDS lies before the network infrastructure and all the network 

packets are passed via a switch into the NIDS. There every packet is analysed individually 

based on the implemented detection methods. If any malicious activity is found in the network, 

it is reported to the network administrator to take necessary action.  
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Figure 6: Functional placement of NIDS in a network infrastructure 

HIDS – Host based Intrusion Detection System 

HIDS runs on individual hosts or devices on the network. A HIDS monitors the incoming and 

outgoing packets from the device only and will alert the user or administrator of suspicious 

activity detected [53]. The suspicious activities are based on the type detection technique 

employed. For example, audit analyse technique is able to identify the activities related to 

operating-system-level intrusion and application-level intrusions. The functional 

implementation of HIDS in a network infrastructure is represented in Fig. 7. 

From Fig. 7, we can see that HIDS is like a piece of software or a hardware that lies on each 

and individual device on a network and all packets that are receiving to this device are analysed.  

If any malicious packet the user of the device or/and the administrator is informed.  
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Figure 7: Functional placement of HIDS in a network infrastructure 

From Fig. 5, we can see that IDS is classified based on the detection methods into two popular 

categories termed as signature based and anomaly detection based. In signature based intrusion 

detection analyse the network packets for known patterns of intrusion where as in anomaly 

based intrusion try to identify the novel patterns that are different from the known behaviour 

[54] [55]. A detailed discussion is given below:   

Signature based Intrusion Detection System 

A signature based IDS also termed as misuse based IDS will monitor packets on the network 

and compare them against a database of signatures or attributes from known malicious threats 

[56]. The issue is that there will be a lag between a new threat being discovered in the wild and 

the signature for detecting that threat being applied to your IDS. During that lag time your IDS 

would be unable to detect the new threat. The functionality of the signature based IDS is shown 

in Fig. 8.  
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Figure 8: Functional diagram of signature based intrusion detection system 

The signature based IDS works similar to an antivirus's software/hardware. That means the 

signature based IDS works like the virus scanners where the known identity or signature is 

searched for each and every intrusion attempt. It is very efficient to have signature based IDS 

but at the same time signature log of a network should be updated in regular basis as like 

antiviruses. Due to the new techniques of the attackers the signature database must be updated 

with the regular signatures. Therefore, the signature based IDS is good enough only if the 

signature database is extended on regular basis. There are two major shortcomings of signature 

IDS and they are: 

• The signature based IDSs could be fooled very easily by changing the signature 

architecture of an attack. This technique normally goes around the signature database 

which creates an opportunity for attackers to intrude. 

• The CPU load increases gradually as the signature database volume increases because 

it is required to check a symptom with every entry of the database. This might cause of 

packet dropping beyond the bandwidth capacity. 

Anomaly based Intrusion Detection System 

In anomaly based intrusion detection, it is assumed that the nature of the intrusion in unknow, 

but the intrusion will result in a behaviour that is different from the normal behaviour that is 
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seen in the system. This abnormal behaviour of the network is considered as anomaly.  [57] 

defined anomalies as "the patterns in data that do not conform to a well-defined notion of normal 

behaviour".  

 

Figure 9: Illustration of anomalies in a 2-dimensioanl dataset 

Fig. 9. shows two normal regions N1 and N2 and most of the observed data points lie in those 

two regions. The data points that are far from those regions, namely point O1 and O2 and points 

in region O3 are considered as outliers termed as anomalies.  

An IDS which is anomaly based will monitor network traffic and compare it against an 

established baseline. The baseline will identify what is “normal” for that network what sort of 

bandwidth is generally used, what protocols are used, what ports and devices generally connect 

to each other- and alert the administrator or user when traffic is detected which is anomalous, 

or significantly different than the baseline [58]. 

In network communication the header of each and every transmitted data packet is captured by 

the anomaly based IDSs. These captured packet headers are filtered according to the known 

legal traffic. The known legal traffics are learned by the network administrator. Anomaly based 

IDS plays a role like security guard who takes interview of every incoming packets before the 

entry. This high level of filtering reduces the data quantity to be analyzed but still a big number 

of log data can be created by anomaly based IDSs. These log data are analyzed according to 

their functionality or pattern. Since almost every packet is monitored in anomaly based IDSs, 

it is really difficult for the attackers to send any kind of packets including malicious code. There 

are few drawbacks still available in anomaly based IDSs and they are described below: 
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• One of the major disadvantages of anomaly is to define the rules for detecting intrusion 

because the protocol analysis for every feature must be determined, accomplished and 

tested for achieving better detection accuracy. Therefore, it is a difficult job to define 

the rule.  

• It requires more hardware resources throughout the network for anomaly based IDSs 

compared to the signature based IDSs. 

The key differences between signature based and anomaly based intrusion detection along with 

their advantages and disadvantages is discussed in Table 3-1.  

Some other minor categories of IDS are based on data processing techniques and through data 

labels.  

Data processing techniques 

After collecting the data, the IDS use that data to train its classifiers in order to distinguish 

between normal and abnormal behaviours. The IDS algorithms purpose is to report an attack. 

The output of the detection mechanism can be categorized into two main types [57]. 

• Scores: This is mainly used for anomaly detection techniques where an anomaly score 

is assigned to each tested instance that determines whether it is an anomaly or not based 

on a pre-defined threshold. 

• Labels: The detection techniques assign a label (e.g. normal or abnormal or attack 

class) for a tested instance. Determining whether the label is normal or abnormal 

depends on the type of algorithm technique type.  
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Table 3-1: Comparision of key differences between signautre based and anomaly based intrusion 

detection 

 Signature Based Detection Anomaly based detection 

Advantages • Simplest and effective method to 

detect attacks 

• Efficient in finding known 

attacks  

• Efficient in detecting new attacks 

• Less dependent on OS 

• Easy configuration 

Disadvantages • Difficulties in keeping signatures 

up to date. 

• Time consuming to maintain the 

knowledge 

• Long string-matching times with 

increase in size of the database 

• Not effective in detecting new 

attacks 

• Weak profiles accuracy due to 

observed events 

• Unavailable during rebuilding of 

behaviour profiles 

• Difficult to trigger alerts in right 

time 

• Not suitable for the system with 

regular behavioural changes 

 

Data Labels 

Every data sample is associated with a label that determines the sample either as normal or 

abnormal. Labelling of a normal behaviour is simple that labelling an abnormal one. It is 

obvious that identifying an abnormal behaviour is hard as it is very dynamic in nature so, the 

new types of anomalies could have no labels in the training data [57]. Based ion the data labels 

and their availability, the detection techniques operate in different modes: 

• Supervised detection, where the detection algorithm is trained using labels for normal 

and abnormal behaviour samples and patterns 

• Semi-supervised detection, where only normal samples are labelled and the abnormal 

are not labelled for the training purpose of the IDS algorithm 
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• Unsupervised detection, where the samples are not required to be labelled when the 

detection algorithm is trained.     

For each mode of the detection technique mentioned above, there are different detection 

algorithms that fall under it. The detection algorithms are categorized into different models. 

The main categories that have been used by many researches can be briefly summarized into 

following categories: 

• Statistical based: These are used by anomaly detection techniques that use statistical 

theories to assign anomalies and their scores. 

• Instance based: This is also called as lazy-learning algorithm [59], as it delays the 

generalization or induction processes until the classification process ends. K- nearest 

neighbour is the most popular instance-based algorithm which is based on the principle 

that dataset instances generally exist in close proximity to these instances with similar 

properties [60] [61]. 

• Classification based: This uses the training data to model a classifier that assigns 

intrusion scores or labels to a tested instance [57].  

As mentioned in Chapter 2, the possible attacks on ICS are classified into network attacks and 

injection attacks. Due to this reason, literature review on the development of IDS on the network 

attacks and injection attacks is discussed separately in the following sub-sections.   

3.3. Intrusion Detection Systems – Network Attacks 

As the development of IDS date backs to early 90's, many of the research methods are out dated 

or not relevant to the scope of this research work. In this sub-section, the relevant literature 

which performs the intrusion detection using prominent machine learning techniques and deep 

learning algorithms using KDD dataset and NSL-KDD dataset are discussed. This research 

helps later in evaluating the performance of the developed deep learning algorithms.  

In order to identify network attacks, some relevant features from network packet are necessary. 

Fig. 10 illustrates the necessary parameters from a sample TCP/IP network packet that can be 

used as basic features by IDS. From Fig. 10, we can see that except datagram, all the network 

parameters of a network packet (marked in red colour) are necessary to generate the basic 

feature set of a network packet.  
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Figure 10: Architecture of network packet and parameters in network packet used for identification of 

network attacks 

The further literature review on how these network features used by different techniques for 

intrusion detection are discussed below. 

3.3.1. Machine learning for NIDS 

[62] from Columbia University, NY, proposed that “the intrusion detection can be thought of 

as a classification problem: we wish to classify each audit record into one of a discrete set of 

possible categories, normal or a particular kind of intrusion” 

Artificial Neural Networks 

Artificial Neural Networks (ANN) are considered to be the technical equivalent of the neural 

network of the human brain. ANN structures imitate the inter-connections of different neurons 

similar to brain that creates a network of simple, but highly interconnected processing units 

which are able to computer output values gives a set of input values [63]. The traditional ANN 

architecture is represented in Fig. 11.  From Fig. 11, we can see that a traditional ANN 

comprises of an input layer, a hidden layer and an output layer. All these neurons are 

interconnected and works as a processing units like in human brain.  ANNs are one of the most 

familiar and common ML technique used for the development of IDS.  
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Figure 11: Traditioanl architecture of artificial neural networks 

Intrusion detection literature has offered a wide spectrum of the works related to the 

development of IDS by adoption different structures of the ANN either for misuse or for 

anomaly-based detection of the malicious events.  Some important research work such as [64] 

combines ANN with fuzzy clustering to offer a predictive model called FC-ANN, that performs 

adequately for low-frequent attacks. By utilizing the fuzzy clustering technique, the authors 

created a smaller dataset of KDDCup’99 that are given as inputs to the ANN. Using “divide 

and conquer” approach [65], the authors advocate that this separation of the dataset helps each 

ANN to achieve more precise results for the lo frequent classes of the dataset. The results of 

the different ANN are aggregated using a fuzzy meta-learner to deliver a complete prediction 

model. An intrusion detection model called MOVCIDS is presented in [66]. This model is able 

to visualize the network traffic data through a functional and mobile visualization interface, 

which reveals the internal structure of the data. This approach can provide valuable insights to 

security administrators.  

[67] used Self-Organizing Maps (SOM) for data clustering and Multi-Layer Perceptron (MLP) 

to deliver an anomaly-based IDS.  

Decision Trees 

Decision Trees (DT) are widely used model of supporting decision making in the context of 

machine learning [68].  DT are constructed as graphs, where internal nodes represent conditions 

for testing the attribute values of instances in a dataset with the aim of inferring a target value. 

This value can be either a discreet value i.e. the classes of the instance (Classification tree) or a 

continuous value (Regression Tree). A sample architecture of a decision tree with root nodes 

and child nodes is depicted in Fig. 12.  
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Figure 12: Archtiecture of decision trees 

C4.5 [69], ID3 [70] and CART [71] are considered as standard decision tree algorithms that are 

mostly considered in the context of IDS. These algorithms are used to create a DT based on the 

training instance and their classification ability is measured during the testing period on 

previously unseen data.  

DT pose some limitations and challenges such as, fail to learn minor classes and sensitive to 

class imbalances. DT algorithms usually generate complex structures DT and pruning 

techniques should be adopted to minimize the size of the trees. Several discretization techniques 

are also applied to the continuous data features for tree size minimization. Additionally, 

algorithms driven by information gain that construct a DT are biased towards major classes of 

a dataset achieving low classification accuracy for the classes with a smaller percentage in a 

dataset [72]. This drawback poses the main challenge in the context of developing IDS as the 

network traffic data flow has such behaviour of imbalance dataset.   

DT are combined with other models in the development of IDS to improve the detection 

accuracy. [73] presented a lightweight IDS based on a wrapper approach and DT. The wrapper 

approach [74] aimed to identify an efficient subset of features in the dataset to improve the 

overall performance of the system. The author proposed a multiple neural network model in an 

assembled fashion in order to pre-process the dataset and derive a new one. The new dataset 

was given in C4.5 tree classifier to realize the final detection model. Additionally, the authors 

in [75] utilized a genetic algorithm to identify a subset of features of the KDDCup’99 dataset 

in order to maximize the performance of a classifier.  
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Support Vector Machines  

Support Vector Machines (SVM) [76] are widely used machine learning based classification 

algorithm that can achieve high performance results based on simple concepts. The history of 

SVM goes back to the seventies [77]. The main objective of this ML algorithm is to find a 

hyperplane that distinctly classified the data points of a given dataset in an N-dimensional 

space.   

 

Figure 13: Sample SVM classification in a 2D dataspace 

In a simple scenario, as shown in above Fig. 13, where a dataset contains two classes, the 

objective of an SVM is to define a plane that has the maximum perpendicular distance (i.e. 

margin) between the closest points of both classes. The points are called the support vectors. 

The wider is this margin between the hyperplane and the support vectors, the higher is the 

generalization ability of the predictive model.  

In real data, the definition of an optimal hyperplane is a difficult task as the data may not be 

linearly separable. Thus, transformations are applied to augment the input dimensions of the 

problem with the aim of achieving the class separation. These transformations are termed as 

kernels. Several kernels can be used to transform the input space into higher dimensions, such 

as Polynomial Kernel and a Radial Kernel. This is called a Kernel Trick [78]. 

SVM are mainly designed to address binary classification problems. However, multi-class 

classification problems can be solved by breaking the problem into a multiple binary class 
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classification tasks and combining the final result. Common approaches in this context are the 

one-versus-all or pairwise classification one-versus-one approaches [79] [80]. 

Similar to ANN, SVM are also other common ML algorithms used for the development of 

anomaly-based IDS. Some important research works such as [81][82][83]  uses an SVM 

classifier to build an anomaly IDS. The training process of the classifier is enhanced using 

Dynamically Growing Self Organizing Tree (DGSOT) algorithm for clustering analysis in 

order to pinpoint the support vectors [84].  Thus, the authors achieved faster SVM training and 

higher generalization that achieves higher scores in detecting attacks compared to other legacy 

methods. A similar approach in [85] combined BIRCH hierarchical clustering algorithms to 

create a smaller dataset with abstracted datapoints that aid the SVM classifier to build a more 

accurate model. Four SVM were trained separately, to cover all the major classes of the dataset. 

[86] presented an IDS which uses a genetic algorithm (GA) based optimization methodology 

to define an optimal feature subset and the kernel parameters (C, γ) of an SVM classifier. SVM 

achieves good results in the context of intrusion detection but required huge pre-processing and 

parameter optimization due to its complex nature and high input dimensions. In addition, the 

design of multi-class classification development requires the combination of multiple binary 

classification tasks.  

There exist several other ML algorithms which are used for the development of IDS. [87] 

implemented a using the dimensionality reduction technique Principal Component Analysis 

(PCA) which is also known as Karhunen-Loêve transform [88] to identify a subset of rules to 

classify the behaviour of the network packet as normal or abnormal. Each rule of intrusion 

detection is an if-then clause form and the condition part of the rule is composed of the features 

connected by the AND function. The result of each rule is a verification of an intrusion 

taxonomy. This approach has the ability to pre-process network data in real-time and offer a 

high detection rate and low false positive rate. Nevertheless, they considered only three kinds 

of attacks which are not sufficient to assess the technique.   

[89] proposed the use of Bayesian Networks (BN) and Classification and Regression Trees 

(CART) algorithm for IDS. They used these two paradigms as a hybrid classifier and as an 

ensemble classifier. Initially feature selection was performed on the DARPA dataset to speed 

up the computation.  First, BN and CART were evaluated separately with full and with a subset 

of features. The performance of the set of 41 features was compared to a set of 17 selected by 

BN and 12 selected by CART. BN performed worse with a smaller set of features except on the 
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normal class. CART using a reduced dataset achieved 100% normal class classification and an 

increased U2R and R2L classification accuracy as well. The hybrid model was able to classify 

the normal, probe and DOS instances more accurately.  

[90] proposed a heterogeneous ensemble by fusing three different classifiers designed for 

detecting a single class. They adopted learning algorithms such as the Linear Genetic 

Programming (LGP), Random Forest (RF) and Adaptive Neuro Fuzzy Inference System 

(ANFIS) to construct a network based IDS. Each of the algorithms (i.e. LGP, ANFIS and RF) 

used the same dataset during the training. Rough Set Technique and Discrete Particle Swarm 

Optimisation (RST-BPSO) was employed to extract the important features. The original 41 

features were cut down to 155 for all classes and selected features for each class are varied. 

After building the base classifiers, the system then used the weighted voting method to 

determine the final classification. Overall, the performance of LGP is better in comparison with 

the other two algorithms, while both ANFIS and RF are nearly at the same level.   

Different other ML based techniques for the development of IDS can be further reviewed in the 

following surveys [91] [92] [93]. 

3.3.2. Deep Learning for NIDS 

"Deep learning techniques also come under the subcategory of machine learning algorithms. 

But discussing about every machine learning algorithm used for the development of IDS is not 

possible. A detailed analysis of NSL-KDD data using various machine learning techniques with 

the Waikato Environment for Knowledge Analysis (WEKA) tool is discussed in [94]. Different 

deep learning techniques for IDS is discussed here" [95]. 

"Deep learning-based studies show that it completely surpasses the traditional methods in 

intrusion detection. In [96], deep neural networks for flow based anomaly detection was 

proposed and proves that deep learning techniques can be used for anomaly detection in 

software defined networks. [97] uses deep learning with self-taught learning technique and 

benchmarks the performance using NSL-KDD dataset for network intrusion detection. Here 

deep learning is used to classify the normal and attack classes. Performance evaluation for 

multiclass classification was not performed" [95].    

"In [98], Recurrent Neural Networks (RNN) are considered as  reduced-size networks. They 

classify the multiple attack classes and the performance looks promising. But the dataset used 

for training is not complete NSL-KDD dataset, they used a part of the training dataset, which 
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makes the performance biased. They also concentrated mainly on feature grouping rather than 

attack classification. Unfolded RNN were used in [99], and also used the limited training dataset 

of NSL-KDD dataset for training against attacks.  When compared to existing machine learning 

approaches, the detection accuracies are higher with RNN. DBN for IDS was proposed by [100] 

and explained the efficiency of achieving higher accuracy. They performed the training 

operation with 20%. 30% and 40% of the NSL-KDD train dataset and tested it with the same" 

[95].  

"Overcoming the above mentioned drawbacks, [101] uses SAE for deep feature extraction and 

multiclass attack classification. The results look promising and much better than the existing 

approaches. To overcome the drawback of long training time [102] mentioned the use of 

accelerated computing platform techniques to train the deep neural networks faster along with 

multi-class attack classification. In [103], the use of hybrid deep learning techniques a 

combination of deep learning and machine learning techniques were discussed. For better 

classification, a combination of multiple detection mechanisms with a ranking approach for 

highest detection accuracy of the individual attack classes was proposed" [95]. 

"Recently [104], provided a detailed multiclass class classification of NSL-KDD datasets using 

the DBN and SAE. They outperformed the detection accuracy when compared to other 

approaches by proposing the nonsymmetric deep autoencoder. They also performed a more 

detailed 13-class multi-class classification to evaluate the performance of their proposed 

approach and looks promising. Despite the results looks promising, they used the same training 

dataset to test and evaluate the performance of the proposed approach which leads to achieve 

higher detection accuracies" [95].    

"As CNN are mainly performed on images, only one related work using CNN for development 

of IDS was found. We also used this approach as a basis for our implementation. [105] provided 

an effective image conversion method of NSL-KDD data set. The numerical features in NSL-

KDD are normalized using min-max normalization and then different binary values are 

assigned to the different features of NSL-KDD data. This assigned binary values are converted 

to an image for training and testing of the CNN. This approach converts all the NSL-KDD 

features into image format. Even though the existing CNN approaches performed a structured 

pre-processing, the performance of IDS was analyzed using pre-available CNN architectures 

such as ResNet50 and GoogLeNet which are famous for real image processing applications. 

The accuracies were not satisfactory and discussion on multi-class classification fails which 
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also led us to investigate further on the performance on CNN for multi-class classification. 

Another research on CNN based IDS was mentioned in [106] used 10% KDDcup 99 dataset. 

Despite getting better accuracies they just used 10% dataset so this research is not considered 

in our benchmarking" [95].  

3.4. Intrusion detection System - FDIA 

 

Figure 14: Archtiecture of network packet and parameters in network packet used for identification of 

injection attacks 

In order to identify injection attacks, the datagram needs to be extracted from the network 

packet. Fig. 14 illustrates the structure of a network packet from which the data needs to be 

extracted. From Fig. 14, we can see that the data datagram (marked in red colour) is necessary 

to analyse for the injection attacks. From Fig. 10 & Fig. 14 we can clearly see the key difference 

in the analysis part for the identification of network attacks to the identification of injection 

attacks. 

[107] introduced the mathematical model of false data injection. Assuming the real measuring 

vector z is represented as  

z {z1, z2, ……, zm}                                                              (3-1) 

and the observed measuring vector za is represented as  

za = {za1, za2, ……, zan}                                                            (3-2) 

and if  
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a {a1, a2, …., am}                                                              (3-3) 

represents the injected false data vector, za will be equal to  

za = z + a                                                                      (3-4) 

when there is false data injection, a will not be zero vector. 

In [108], the conditions for undetectable FDIA’s are developed and the minimum number of 

sensors to be attached to ensure the undetectability is computed. [109] a linear deception attack 

scheme that can fool the popular X2 detector is provided. 

The further literature review discusses different techniques proposed for identification of 

injection attacks is discussed below. As the research related to FDIA on ICS mainly 

concentrates on the smart grids and power sector, some important relevant literature is 

discussed.  

"Several failure detection algorithms in dynamic systems were reviewed by the author in [110]. 

A Complete Survey on existing attacks and detection methods for false data injection are given 

in [111]. Different types of FDIA attacks such as maximum magnitude-based attack, wave 

based attack, positive or negative deviation attack and mixed attacks were discussed in [112]. 

The impact of FDIA in control systems is discussed in [27]. All the mentioned research 

concentrates on the impact of FDIA on ICS" [113]. 

"Since FDIA would result in abnormal behaviour, widely researched Anomaly Detection (AD) 

techniques can be applied for ICS. Due to the novel attack identification capabilities, machine 

learning and deep learning based AD techniques were exploited in many domains [114]. AD 

based network intrusion detection systems are the most commonly used techniques to identify 

anomalous network patterns. Many techniques such as [115] [116] use machine learning and 

deep learning techniques to identify the novel network attack patterns using deep learning 

techniques" [113]. 

"Anomaly based detection to detect strong attacks that feature the injection of a large amount 

of spurious measurement data in a very short time was provided by [117] in the smart grid 

applications. Three types of injection attacks were discussed in [118] who uses a network level 

water control system to provide a closed loop defence framework to secure cyber physical 

systems. Single-input, single output scheme is used to verify the performance of controlled 

auto-regressive moving average models is discussed in [119]" [113].  
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"AD techniques were also used for monitoring sensors networks and abnormal event detection. 

[120] mentioned the importance of anomaly detection-based approach and used a knowledge 

database to identify the attacks. This approach becomes complex if the amount of sensor data 

to be watched is enormous and requires a constant update of knowledge base which is 

practically not possible. A Bayesian network based approach for anomaly detection was 

performed in [121]. They combined Bayesian networks with Kalman Filter for predicting 

sensor failures but they did not consider any possible attacks on the network. Several machine 

learning algorithms were also used to identify the network attacks. Supervised machine learning 

techniques such as feed forward neural networks [122] and unsupervised learning techniques 

such as self-organizing maps [123] were used in identifying the attacks in network traffic. The 

detection accuracies of the unsupervised learning techniques were not comparable with the 

supervised learning mechanism when the labels are available. A further analysis is necessary 

to understand the outcome of the unsupervised technique which needs thorough knowledge on 

the process" [113].  

 "A lot of study on FDIA on smart grids is available [124] [125] [126]. Some other techniques 

such as sate estimation [127], machine learning [128], sparse optimization [129] were discussed 

also used for identification of attacks. Our research has identified that the impact of FDIA on 

ICS needs to be addressed and the research on identification FDIA in industrial infrastructure 

is limited. A neural network based FDIA identification approach on automation plant was 

discussed in [130]" [113]. 

Efficient attack detection and secure estimation schemes for linear Gaussian systems under 

cyber-attack on a static, unknown sensor subset have been developed in [131], but the proposed 

detector is not designed to tackle the linear deception attack of [109]. The optimal attack models 

to steer the control of CPS to target a value is provided in [132], while ensuring a constraint on 

the attack detection probability, centralized and decentralized attack detection schemes for 

noiseless systems have been developed in [133]. [134] proposed a coding of sensor output 

approach to efficient attack detection using X2 detector. Attack resilient state estimation of a 

dynamical system with only bounded noise has been discussed in [135]. Sparsity models to 

characterize the switching location attack in a noiseless linear system and state recovery 

constraints for various attack modes have been described in [136]. Attack detection, secure 

estimation and control in the presence of FDI attack for power systems are addressed in [137] 

[138].   
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In recent years, intensive research activities on investigating the FDIA’s which affect the 

integrity of a system have emerged [139] [140]. To defends against such attacks, residue based 

X2 detector is widely deployed [141] [139] by checking the statistic characteristics of the 

obtained sensor data. However, statistical approaches are not suitable in all cases and the 

loopholes still exists for the adversaries to perform the attacks. [107] [142] reveals that a certain 

category of stealthy attacks (FDIA) which can deteriorate system performance without being 

noticed by the proposed detectors.   

3.5. Evaluation metrics of IDS 

Detection rate or true positive rate and false alarm is also known as false positive rate or recall 

are considered to be the best metric that can be used to evaluate the developed IDS. The 

detection rate is equivalent to the efficiency, and the false alarm rate is equivalent to the 

effectiveness of the IDS.  Most of the performance metrics are based on the evaluation of the 

on the classifiers. The evaluation of the classifier is based on the confusion matrix generated. 

A sample confusion matrix for the 2-class classifier is shown in Fig. 15. Fig.15 gives 

information about the True Positives (TP), True Negatives (TN), False Positives (FP) and False 

Negatives (FN) through a confusion matrix. A confusion matrix is generated based on the 

outcomes of the trained ML and deep learning algorithms.   

 

Figure 15: Confusion Matrix to understand TP, TN, FP, FN 

The performance metrics that are used to evaluate all the proposed methods and calculated 

using the following procedure: 

i. Accuracy: "The number of detected samples correctly over the total number of samples, 

which is represented in percentages" [24]. 
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ii. Precision (𝑷): "The precision is mentioned for Positive Predictive Value (PPV) and it 

is calculated in percentage via dividing the TP by the summation of TP and FP" [24] as 

given in equation (3-5). 

 𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
× 100 (3-5) 

 

iii. Recall (𝑹): "The recall is mentioned as the TP rate and it is calculated in percentage via 

TP by the summation of TP and FN" [24] as given in equation (3-6). 

 𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100 (3-6) 

 

iv. F-Measure: "The F-Measure is a measurement for representing the test accuracy and 

mentioned as harmonic mean of values 𝑃 and 𝑅" [24] and can be calculated by using 

the equation (3-7). 

 𝐹 =
2 × 𝑃 × 𝑅

𝑃 + 𝑅
 (3-7) 

 

3.6. Conclusions and limitations of IDS  

IDS play an important role in finding possible attacks or threats and have a significant positive 

impact on security infrastructure. However, it is not an answer to all issues related to security, 

as there are some limitations. One of those limitations is its inability to trance and analyse all 

traffic on highly loaded or busy networks. Therefore, the system may not be able to provide an 

instantaneous report for attacks o threats in such scenarios. It is also reported that IDS do not 

help if there is weakness in a network protocol, or in the absence of strong identification and 

authentication mechanism. Another limitation would be lacking the capability of conducting an 

investigation in the absence of human interaction. They also mentioned that it is not effective 

in dealing with a switched network. A study reported a number of issues with IDS. One of those 

issues is that some IDS do not provide verification for the checksum field in the IP header. This 

shortcoming gives hackers a chance to manipulate this field. As a result, the system will record 

different information than what it should receive. Moreover, it was found that IDSs are not 

cheap solutions as it consumes different types of resources during both setup and monitoring 

phases. In addition, it demands a high level of technical and organizational expertise. In spite 

of the requirements of a lot of resources and expertise, it is not simple to trace the improvement 
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in security processes. A common complaint reported is that IDS can generate an enormous 

number of alerts while the majority of those alerts are false positive.  
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4. Dataset 

Especially addressing complex problems like anomaly-based intrusion detection using data 

driven approaches such as deep learning requires a dataset of a certain quality. The quality of a 

dataset depends on the following issues: 

• How many different types of classes that are going to be classified? 

• How different the classes are? 

• How good are the data samples for individual classes? 

• How big is the dataset to the proposed application requirements? 

• Is the dataset balanced or unbalanced?  

A dataset needs to provide answers to those questions. Only then it is possible to use the dataset 

for train and test an IDS. This chapter provides detailed information about the dataset used and 

generated for the process of development of IDS using deep learning algorithms.  

4.1 Network attack dataset – NSL-KDD 

NSL KDD dataset is one such dataset that is used to train and test an intrusion detection system. 

It is derived from its predecessor, KDD’99 dataset  [143]. More details of the KDD’99 dataset 

can be seen in [144]. A web server is visited by many clients, and this results in a tremendous 

amount of traffic data. The traffic data is logged and can be used to analyze the behavior to be 

normal or abnormal traffic. For this, each network connection is mapped to a certain set of 

attributes, which is then analyzed using some machine learning algorithm.  

KDD’99 data set was having a lot of drawbacks, which had affected the detection accuracy of 

many IDS. Hence NSL-KDD dataset is a refined version of the KDD’99 dataset. Compared to 

the KDD’99 dataset, NSL KDD dataset has following features [145], 

1. The redundant records are removed to enable the classifiers to produce an un-biased 

result. 

2. Sufficient number of records is available in the train and test datasets, which is 

reasonably rational and enables to execute experiments on the complete set. 

3. The number of selected records from each difficult level group is inversely proportional 

to the percentage of records in the original KDD dataset. 

In each record of the dataset, there are 41 attributes representing different features related to 

network security. The corresponding label assigned to each record is presented as the 42nd 
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attribute in the dataset. The label can be either an attack type or a normal behavior. The labels 

of attack type are classified into 4 attack classes namely DoS, Probe, R2L and U2R. Hence 

there are total 5 classes in NSL-KDD dataset. The description for each attack class is discussed 

in Chapter 2, Section 2.1 in accordance with  [145]. 

More examples for each attack class can be learned from Table 4-1. 

Table 4-1: Attack types groupd into their respective attack clases [145] 

Attack Class Attack Type 

DoS Back, Land, Neptune, Pod, Smurf, Teardrop, 

Apache2, Udpstorm, Processtable, Worm 

Probe Satan, Ipsweep, Nmap, Portsweep, Mscan, 

Saint 

R2L Guess_Password, Ftp_write, Imap, Phf, 

Mutlihop, Warezmaster, Warezclient, Spy, 

Xlock, Xsnoop, Snmpguess, Snmpgetattack, 

Httptunnel, Sendmail, Named 

U2R Buffer_overflow,  Loadmodule, Rootkit, Perl, 

Sqlattack, Xterm, Ps 

 

There are different downloadable files that are available for any research works. The details are 

listed as below  and can be found at [146] 

1. KDDTrain+.ARFF: The full NSL-KDD train set with binary labels in ARFF format. 

2. KDDTrain+.TXT: The full NSL-KDD train set having attack-type labels and difficulty 

level in CSV format. 

3. KDDTrain+_20Percent.ARFF: A 20% subset of the KDDTrain+.ARFF file. 

4. KDDTrain+_20Percent.TXT: A 20% subset of the KDDTrain+.TXT file. 

5. KDDTest+.ARFF: The full NSL-KDD test set with binary labels in ARFF format. 
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6. KDDTest+.TXT: The full NSL-KDD test set having attack-type labels and difficulty 

level in CSV format. 

7. KDDTest-21.ARFF: It is a subset of the KDDTest+.ARFF file, which has no records 

with difficulty level of 21 out of 21. 

8. KDDTest-21.TXT: It is a subset of the KDDTest+.TXT file which has no records with 

difficulty level of 21 out of 21. 

As mentioned before, there are 41 attributes representing different features related to network 

security. Table 4-2, 4-3, 4-4 and 4-5 describes each attribute in detail. 

Table 4-2: Basic features present in each network connection vector [145] 

Attribute 

No. 

Attribute Name Description Sample Data 

1 Duration Length of time duration of the 

connection 

0 

2 Protocol_type Protocol used in the connection Tcp 

3 Service Destination network service used ftp_data 

4 Flag Status of the connection – Normal or 

Error 

SF 

5 Src_bytes Number of data bytes transferred from 

source to destination in single 

connection 

491 
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6 Dst_bytes Number of data bytes transferred from 

destination to source in single connection 

0 

7 Land If source and destination IP  addresses 

and port numbers are equal then, this 

variable takes value 1 , else 0 

0 

8 Wrong_fragment Total number of wrong fragments in this 

connection 

0 

9 Urgent  Number of urgent packets in this 

connection.Urgent packets are those 

packets with the urgent bit activated 

0 

 

 

Table 4-3 : Content related features present in each network connection vectore [145] 

Attribute 

No. 

Attribute Name Description Sample Data 

10 

 

Hot Number of ‘hot’ indicators in the content 

w hich could be:entering a system 

directory,  creating programs and 

executing programs 

0 

11 Num_failed_logins Count of failed login attempts 0 

12 Logged_in Login Status: 1 if successfully logged in; 

otherwise 0 

0 
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13 Num_compromised Number of ‘compromised’ conditions 0 

14 Root_shell 1 if root shell is obtained; otherwise  0 0 

15 Su_attempted 1 if ‘su root’ command  attempted or 

used; otherwise 0 

0 

16 

 

Num_root Number of ‘root’ accesses or number of 

operations performed as a root in the 

connection 

0 

17 Num_file_creations Number of file creation operations in the 

connection 

0 

18 Num_shells Number of shell prompts 0 

19 Num_access_files Number of operations on access control 

files 

0 

20 Num_outbound_cmds Number of outbound commands in an ftp 

session 

0 

21 Is_hot_login 1 if the login belongs to the ‘hot’ list i.e., 

root or admin; else 0 

0 

22 Is_guest_login 1 if the login is a ‘guest’ login; otherwise 

0 

0 
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Table 4-4: Time related traffic features present in each network connection vector [145] 

Attribute 

No. 

Attribute Name Description Sample Data 

23 Count Number of connections to the same 

destination host as the current  

connection in past two seconds 

2 

24 Srv_count Number of connections to the same 

service (port number) as the current  

connection in past two seconds 

2 

25 Serror_rate The percentage of connections that 

have activated the flag (attribute 4) s0, 

s1, s2 or s3, among the connections 

aggregated in count (attribute 23) 

0 

26 Srv_serror_rate The percentage of connections  that 

have activated the flag (attribute 4) s0, 

s1, s2 or s3, among the connections 

aggregated in Srv_count (attribute 24) 

0 

27 Rerror_rate The percentage of connections that 

have activated the flag (attribute 4) 

REJ, among the connections 

aggregated in count (attribute 23) 

 0 
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28 

 

Srv_rerror_rate The percentage of connections that 

have activated the flag (attribute 4) 

REJ, among the connections 

aggregated in Srv_count (attribute 24) 

0 

29 Same_srv_rate 

 

The percentage of connections that 

were to the same service, among the 

connections  aggregated in count 

(attribute 23) 

1 

30 Diff_srv_rate The percentage of connections  that 

were to different service,  among the 

connections  aggregated in count 

(attribute 23) 

0 

31 

 

Srv_diff_host_rate The percentage of connections that 

were to the different destination 

machines among the connections 

aggregated in srv_count (attribute 24) 

0 
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Table 4-5: Host based traffic features present in a network connection vector [145] 

Attribute 

No. 

Attribute Name Description SampleData 

32 Dst_host_count Number of connections having the 

same destination host IP address 

150 

33 Dst_host_srv_count Number of connections having the 

same port number 

25 

34 Dst_host_same_srv_rate The percentage of connections that 

were to the same service, among 

the connections aggregated in 

Dst_host_count (attribute 32) 

0.17 

35 

 

Dst_host_diff_srv_rate The percentage of connections that 

were to different service, among 

the connections aggregated in 

Dst_host_count (attribute 32) 

0.03 

36 

 

Dst_host_same_src_port_rate The percentage of connections that 

were to the same service, among 

the connections aggregated in 

Dst_host_srv_count (attribute 33) 

0.17 

37 

 

Dst_host_srv_diff_host_rate 

 

The percentage of connections that 

were to the different destination 

machines, among the connections 

aggregated in Dst_host_srv_count 

(attribute 33) 

0 
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38 

 

Dst_host_serror_rate The percentage of connections that 

have activated the flag (attribute 4) 

s0, s1, s2 or s3, among the 

connections aggregated in 

Dst_host_count (attribute 32) 

0 

39 

 

Dst_host_srv_serror_rate The percentage of connections that 

have activated the flag (attribute 4) 

s0, s1, s2 or s3, among the 

connections aggregated in 

Dst_host_srv_count (attribute 33) 

0 

40 Dst_host_rerror_rate The percentage of connections that 

have activated the flag (attribute 4) 

REJ, among the connections 

aggregated in Dst_host_count 

(attribute 32) 

0.05 

41 Dst_host_srv_rerro_rate The percentage of connections that 

have activated the flag (attribute 4) 

REJ, among the connections 

aggregated in Dst_host_srv_count 

(attribute 33) 

0 

 

 

The different attributes discussed in the Table IV, V, VI and VII can be grouped together based 

on the attribute value type. The 3 different attribute types present in NSL-KDD dataset are,  

1. Nominal  

2. Binary  

3. Numeric  

The classification of different attributes can be further learned from Table 4-6. 
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Table 4-6: Attributes and their value types [145] 

Type Feature 

Nominal Protocol_type (2), Service (3), Flag (4) 

Binary Land (7), logged_in (12), root_shell (14),  su_attempted (15), 

is_host_login (21), is_guest_login (22) 

Numeric Duration (1), src_bytes (5), dst_bytes (6), wrong_fragment (8), 

urgent (9), hot (10),  num_failed_logins (11), num_compromised 

(13), num_root (16), num_file_creations (17), num_shells (18), 

num_access_files (19), num_outbound_cmds (20), count (23), 

srv_count (24), serror_rate (25), srv_serror_rate (26), rerror_rate 

(27), srv_rerror_rate (28), same_srv_rate (29), diff_srv_rate (30), 

srv_diff_host_rate (31), dst_host_count (32), dst_host_srv_count 

(33), dst_host_same_srv_rate (34),  dst_host_diff_srv_rate (35), 

dst_host_same_src_port_rate (36), dst_host_srv_diff_host_rate 

(37), dst_host_serror_rate (38), dst_host_srv_serror_rate (39), 

dst_host_rerror_rate (40), dst_host_srv_rerror_rate (41) 

 

Table 4-7 will give the details for normal and attack data in different types of NSL-KDD 

dataset. 
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Table 4-7: Normal and attack data in different types of NSL-KDD dataset [145] 

Dataset Type Total No. of 

Records Normal  DoS  Probe  R2L  U2R  

KDD Train+ 20% 25192 13449 9234 2289 209 11 

53.39 % 36.65 % 9.09 % 0.83 % 0.04 % 

KDD Train+ 125973 67343 45927 11656 995 52 

53.46 % 36.46 % 9.25 % 0.79 % 0.04 % 

KDDTest+ 22544 9711 7458 2421 2754 200 

43.08 % 33.08 % 10.74 % 12.22 % 0.89 % 

 

Further study and analysis of KDDTrain+ dataset can be understood from Table 4-8. It has 

exposed one of the important facts about the attack class network vectors [5]. 
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Table 4-8: Network protocols used by various attacks [145] 

         Attack    

class 

Protocol 

DoS Probe R2L U2R 

TCP 42188 5857 995 49 

UDP 892 1664 0 3 

ICMP 2847 4135 0 0 

 

From Table 4-8, it can be concluded that most of the attacks planned by the hackers use the 

TCP protocol suite. This is due to the fact that the TCP protocol is very transparent and easy to 

use. Hence this protocol is easily exploited by the attackers to launch network-based attacks on 

victim machines. 
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Figure 16: Visualization of no. of records in NSL-KDD datasets 

The NSL-KDD data has four different types of attacks excluding normal as mentioned earlier. 

These attacks are attempted normally using different network protocols. Therefore, a statistic 

is made on the network protocols those are used for attempting different attacks and it is shown 

in Fig. 16. 
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Figure 17: Used network protocols by different attack types 

4.2. Network attack dataset – UNSW-NB-15 

"In the year 2015 [147] [148], the UNSW-NB-15 data set was introduced first time by Moustafa 

and Slay. The data set was created in the lab of the Australian Centre for Cyber Security (ACCS) 

and the IXIA PerfectStorm tool was used to create the data set. A volume of 100 GB raw 

network traffic was captured using tcpdump tool to create the data set" [95]. The data set is 

downloadable at [149]. The UNSW-NB 15 dataset is included 49 features in total and it has 

nine attack categories excluding the normal. The attack classes along with their sub-classes of 

UNSW-NB 15 data are given in Table 4-9 on the next page and the nine attack categories are 

described below: 

1. Analysis: A various type of intrusion method that stabbed the web applications using 

web scripts, emails and ports. 

2. Backdoors: This is a malware type attack where; the normal authentication process of 

a system is paralyzed to gain access to that system. 
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3. DoS: Denial of Service makes a network system extremely busy keep sending data 

packets to prevent the legal authentication requests. 

4. Exploits: It is a type of which is attempted by taking advantages of the weakness of a 

system. It could be approached through software libraries or application plugins. 

5. Fuzzers: It is a black-box testing method for identifying the unknown vulnerabilities of 

a system.  

6. Generic: An attack type that uses hash functions to establish a collision against the 

block cipher of a system.  

7. Reconnaissance: It is similar to a probe attack and it collects information about a 

network or system to escape its monitoring control cleverly. 

8. Shellcode: Shellcode is used to exploit a network vulnerability having limited access to 

that network. It is a small piece of code applied as payload to penetrate. 

9. Worms: The worms are also as like malwares that reproduces itself to spread out 

through the other network devices connected in the same network taking advantage of 

security failures.  

The main objective of creating this new dataset is to overcome the shortcomings of previously 

defined datasets like KDD Cup 99, NSL-KDD or DARPA 98/99. The efficiency of an IDS is 

entirely dependent on how well it has been trained to capture intrusions and the training 

efficiency is depended on the dataset that contains contemporary activities of normal and attack. 

There are three major disadvantages of previously defined datasets [148]. They are: 

• "Lack of knowledge on modern footprint attack fashions. For example, the attack 

behaviors are changed closer to normal behavior with the time for attacks like stealthy 

or spy attacks" [95]. 

• "The defined normal traffic benchmark is not similar with the present normal traffic 

because these datasets were defined before two decades ago" [95]. 

• "The training and testing set have different distribution on attack types. For instance, 

the existing benchmark datasets have different data types comparing in between the 

training and testing set" [95]. 
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Table 4-9: Attack sub-classes of UNSW-NB 15 data 

Attack Class Attack Type Total 

Number of 

Types 

Analysis HTML, Port Scanner, Spam 3 

Backdoors - 0 

DOS Asterisk, Browser, CUPS, Cisco Skinny, Common Unix 

Print System (CUPS), DCERPC, DNS, Ethernet, FTP, 

HTTP, Hypervisor, ICMP, IGMP, IIS Web Server, 

IMAP, IRC, ISAKMP, LDAP, Microsoft Office, 

Miscellaneous, NTP, NetBIOS/SMB, Oracle, RDP, 

RTSP, SIP, SMTP, SNMP, SSL, SunRPC, TCP, TFTP, 

Telnet, VNC, Windows Explorer, XINETD 

36 

Exploits All, Apache, Backup Appliance, Browser, Browser FTP, 

Cisco IOS, Clientside, Clientside Microsoft, Clientside 

Microsoft Media Player, Clientside Microsoft Office, 

Clientside Microsoft Paint, DCERPC, DNS, Dameware, 

Evasions, FTP, ICMP, IDS, IGMP, IMAP, Interbase, 

LDAP, LPD, MSSQL, Microsoft IIS, Miscellaneous, 

Miscellaneous Batch, NNTP, Office Document, Oracle, 

PHP, POP3, PPTP, RADIUS, RDesktop, RTSP, 

SCADA, SCCP, SIP, SMB, SMTP, SOCKS, SSH, SSL, 

SunRPC, TCP, TFTP, Telnet, Unix 'r' Service, VNC, 

WINS, Web Application, Webserver 

53 
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Fuzzers BGP, DCERPC, FTP, HTTP, OSPF, PPTP, RIP, SMB, 

Syslog, TFTP  

10 

Generic All, HTTP, IXIA, SMTP, SIP, Superflow, TFTP 7 

Reconnaissance DNS, HTTP, ICMP, MSSQL, NetBIOS, SCTP, SMTP, 

SNMP, SunRPC, SunRPC Portmapper (TCP) TCP 

Service, SunRPC Portmapper (TCP) UDP Service, 

SunRPC Portmapper (UDP), SunRPC Portmapper 

(UDP) TCP Service, SunRPC Portmapper (UDP) UDP 

Service, Telnet 

15 

Shellcode AIX, BSD, BSDi, Decoders, FreeBSD, HP-UX, IRIX, 

Linux, Mac OS X, Multiple OS, NetBSD, OpenBSD, 

SCO Unix, Solaris, Windows 

15 

Worms - 0 

 

The UNSW-NB 15 data is available online only in “CSV” format and the downloadable files 

are as given below 

• UNSW-NB15_features.csv: The available features of UNSW-NB 15 data along with 

their numbers and data types are described in this file. 

• UNSW-NB15_GT.csv: The ground truth table of UNSW-NB 15 data along with attack 

names and references are provided. 

• UNSW-NB15_LIST_EVENTS.csv: The list of events is provided with their numbers. 

Such as attack categories and their subcategories. 

• UNSW-NB15_1.csv: The 1st portion of two million and 540,044 sample records are 

available. 

• UNSW-NB15_2.csv: The 2nd portion of two million and 540,044 sample records are 

available. 

• UNSW-NB15_3.csv: The 3rd portion of two million and 540,044 sample records are 

available. 
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• UNSW-NB15_4.csv: The 4th portion of two million and 540,044 sample records are 

available. 

• UNSW_NB15_training-set.csv: A partition of UNSW-NB 15 data as training set 

including 175,341 samples. 

•  UNSW_NB15_testing-set.csv: A partition of UNSW-NB 15 data as testing set 

including 82,332 samples. 

The available 49 features of UNSW-NB 15 data are further categorized into five classes except 

the 48th and 49th features because the 48th feature is the categorical label of the attacks where, 

normal is labeled as blank and the 49th feature is the binary label of attacks where, “0” 

represents normal and “1” represents all other types of attack. All the five categories of 

available features have been elaborated in following Tables 4-10 to Tables 4-14. 

Table 4-10: The flow features of UNSW-NB 15 data [148] 

Feature 

No 

Feature Name Description Sample Data 

1 srcip IP address of the source 59.166.0.0 

2 sport Port Number of the Source 1390 

3 dstip IP address of the destination 149.171.126.6 

4 dsport Port Number of the destination 53 

5 proto Type of the protocol udp 

 

The details of basic features are provided in Table 4-11 below: 
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Table 4-11: The Basic features of UNSW-NB 15 Data [148]  

Feature 

No 

Feature Name Description Sample Data 

6 state Indication of the state and its protocol 

dependency  

CON 

7 dur Record of the duration in total 0.001055 

8 sbytes Bytes from source to destination 132 

9 dbytes Bytes from destination to source 164 

10 sttl Lifetime source to destination 31 

11 dttl Lifetime from destination to source 29 

12 sloss Retransmission or dropped source packets 0 

13 dloss Retransmission or dropped destination 

packets 

0 

14 service Used service Protocol ftp 

15 Sload Bits per seconds on source 500473.9 

16 Dload Bits per Second on destination 621800.9375 
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17 Spkts Number of packets from source to 

destination 

2 

18 Dpkts Number of packets from destination to 

source 

2 

 

The details of Content features are provided in Table 4-12 below: 

Table 4-12: The content features of UNSW-NB 15 data [148] 

Feature 

No 

Feature Name Description Sample Data 

19 swin The TCP window advertisement of source 0 

20 dwin The TCP window advertisement of 

destination 

0 

21 stcpb The sequence no. of TCP based source 0 

22 dtcpb The sequence no. of TCP based destination 0 

23 smeansz The mean of flow packet size (Transmitted 

by source) 

66 

24 dmeansz The mean of flow packet size (Transmitted 

by destination) 

82 

25 trans_depth The pipeline depth representation  0 

26 res_bdy_len Actual uncompressed content size of the data 

transferred from the server’s http service 

0 
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The details of time related features are provided in Table 4-13 below: 

Table 4-13: The Time features of UNSW-NB 15 Data [148]  

Feature 

No 

Feature Name Description Sample Data 

27 Sjit Source jitter (in mSec) 9.89101 

28 Djit Destination jitter (in mSec) 10.682733 

29 Stime Starting time of the record 1421927414 

30 Ltime Last time of the record 1421927414 

31 Sintpkt Source interpacket arrival time (in mSec) 0.017 

32 Dintpkt Destination interpacket arrival time (in 

mSec) 

0.013 

33 tcprtt The round trip time of TCP setup 0 

34 synack The setup time for TCP connection (time 

between the SYN and the SYN_ACK 

packets) 

0 

35 ackdat The setup time for TCP connection (time 

between the SYN_ACK and the SYN 

packets) 

0 

 

The details of generated other features are provided in Table 4-14 below: 
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Table 4-14: The Additional Generated features of UNSW-NB 15 [148]  

Feature 

No 

Feature Name Description Sample Data 

36 is_sm_ips_ports If srcip (1) equals to dstip (3) and sport (2) 

equals to dsport (4), this variable assigns to 1 

otherwise 0 

0 

37 ct_state_ttl No. for each state (6) according to specific 

range of values of sttl (10) and dttl (11) 

0 

38 ct_flw_http_mthd No. of flows that has methods such as Get 

and Post in http service 

0 

39 is_ftp_login If the ftp session is accessed by user and 

password then 1 else 0 

0 

40 ct_ftp_cmd No of flows that has a command in ftp 

session 

0 

41 ct_srv_src No. of records that contain the same service 

(14) and srcip (1) in 100 records according to 

the ltime (26) 

3 

42 ct_srv_dst No. of records that contain the same service 

(14) and dstip (3) in 100 records according to 

the ltime (26) 

7 

43 ct_dst_ltm No. of records of the same dstip (3) in 100 

records according to the ltime (26) 

1 
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44 ct_src_ ltm No. of records of the srcip (1) in 100 records 

according to the ltime (26) 

3 

45 ct_src_dport_ltm No of records of the same srcip (1) and the 

dsport (4) in 100 records according to the 

ltime (26) 

1 

46 ct_dst_sport_ltm No of records of the same dstip (3) and the 

sport (2) in 100 records according to the 

ltime (26) 

1 

47 ct_dst_src_ltm No of records of the same srcip (1) and the 

dstip (3) in in 100 records according to the 

ltime (26) 

1 

 

There are four types of data values are available in UNSW-NB 15 dataset namely: nominal, 

binary, numeric and time stamps. The features and their data types with the samples are given 

in Table 4-15 along with the feature numbers inside the braces. 
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Table 4-15: Different data type features of UNSW-NB 15 Data 

Type Feature Total 

Nominal scrip(1), dstip(2), proto(5), state(6), service(14), attack_cat(48) 6 

Binary is_sm_ips_ports(36), is_ftp_login(39), Label(49) 3 

Numeric sport(2), dsport(4), dur(7), sbytes(8), dbytes(9), sttl(10), 

dttl(11), sloss(12), dloss(13), Sload(15), Dload(16), Spkts(17), 

Dpkts(18), swin(19), dwin(20), stcpd(21), dtcpb(22), 

smeansz(23), dmeaansz(24), trans_depth(25), res_bdy_len(26), 

Sjit(27), Djit(28), Sinpkt(31), Dinpkt(32), tcprtt(33), 

synack(34), ackdat(35), ct_state_ttl(37), ct_flw_http_mthd(38), 

ct_ftp_cmd(40), ct_srv_src(41), ct_srv_dst(42), ct_dst_ltm(43), 

ct_src_ltm(44), ct_src_dport_ltm(45), ct_dst_sport_ltm(46), 

ct_dst_src_ltm(47) 

38 

Time Stamp Stime(29), Ltime(30) 2 

 

The UNSW-NB 15 data is saved into four parts due to storing capacity and the first three parts 

are prepared for training set where each part is contained with 700001 data samples and the 

fourth part is prepared a testing set and it is included of 440044 data samples. An overview of 

the prepared train and test datasets have been given in the Fig. 18. where, an analysis of the 

sample records has been made for all the available attack classes in the dataset and it is provided 

differently for training and testing parts of the dataset. 
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  Figure 18 : The Sample Records of UNSW-NB 15 Train and Test Data 
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4.3. Injection attack dataset - process control plant 

To analyse the functionality of the developed IDS against injection attacks, a process control use 

case is selected. Existing datasets such as Tennessee Eastman Process (TEP) Simulation dataset 

[150] [151] cannot be used in this scope of the thesis. The TEP dataset is explicitly used of the 

anomaly detection evaluation. The disturbance in the process variable are doesn't reflect the real 

attacks but represents the anomaly in dataset. The injection attacks are an intelligent way of 

manipulating the process variable that almost looks real and hard to distinguish from the normal 

variables. The anomalies in the TEP dataset also doesn't represent the injection attack behaviours 

on ICS mentioned in [20]. 

So, in order to simulate the injection attack dataset for the scope of this thesis, the chair of 

“Integrated Automation” at Otto-von-Guericke University Magdeburg has a Process Control Plant 

in the Automation Laboratory is used. This plant was built by Festo Didactic and termed as MPS 

PA compact workstation with level, flow rate, pressure and temperature controlled system [152]. 

The following Fig. 19. gives an overview about the picture of the plant and the P&ID diagram of 

the plant.  

Using a corresponding controller such as Samson Trovsi 6495, the level and flowrate-controlled 

system can be set up as a cascade control system. The level of each tank is measured via ultrasound 

sensors and the flow rate between the tanks are measured via flow sensors. Pressure sensor and 

temperature sensor also provided but they are not used for this experiment. A two-way ball valve 

with a pneumatic process actuator which connects the elevated tank and lower reservoir is used to 

control the manipulated variable. The pump is controlled via speed adjustment. The level sensor 

values as well as the pump actuation values from the plant are used for the evaluation. Simulated 

measurement injection attacks were injected in the level sensor data as well as command injection 

attacks were injected in pump data. 

The attacks were simulated very effectively that they are hard to identify in general. For example, 

Fig. 20. (a) represents the filtered tank level data and Fig. 20. (b) represents the attack injected 

signal (measurement injection). We can see some specific differences between the two signals in 

Fig. 20 (a) & (b) but it is hard to identify by just looking at the signal that there are some attacks 

injected.  
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Figure 19: Process control plant and P&ID diagram of the plant 
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Figure 20: Tank level sensor data (a) Filtered signal (b) Attack injected signal 
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Figure 21: Pump data (a) Filtered signal (b) Attack injected signal 

Similar to measurement injection, Fig. 21. (a) represents the filtered pump data and Fig. 21. (b) 

represents the attack injected signal (command injection). We can also see some specific 

differences between the two signals in Fig 21 (a) & (b) but it is hard to identify by just looking at 

the signal that there are some attacks injected. The injected attacks will be in normal range of the 
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signal but are inserted in a specific pattern such that the values are complete opposite to the normal 

behaviour but within the normal range and only through specific features the difference is 

identified. The level sensor data is the simulated data from the level sensors of the twin tank system 

shown in Fig. 19. The level sensors are used to read the liquid level in the tank constantly for the 

proper function of the two-tank system, but this system behaviour can be manipulated with faulty 

measurement injection to the sensor data by the attackers. Suppose, fault measurement data has 

been injected to the level sensor data then the scenario could be like this: due to fault measurement 

injection the sensor would read different level of liquid than the actual and caused the 

malfunctioning of the system. This malfunctioning could bring a great damage to the system and 

surrounding the system. After obtaining the sensors signals (with injections) they are used to train 

and test with the proposed deep learning security schema for attack identification and classification.  
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5. Concept and usage of deep learning algorithms 

In this chapter, a detailed overview about the concept and usage of deep learning algorithms for 

securing ICS is presented.  

5.1. Steps of data flow from ICS to attack classification 

The schematic steps of the data flow from the ICS to attack classification is shown in Fig. 22. The 

flow defines the necessary steps in developing cybersecurity strategies to secure an ICS against 

attacks. This flow elaborates on different steps involved in the development process of using a deep 

learning for security purposes. A detailed description of the concept in the development of the deep 

learning algorithms in securing ICS against cyber-attacks is given in the following subsections. 

 

Figure 22: Schema for implementation of deep learning in securing ICS 
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5.2. Data source 

As mentioned earlier, ICS is a complex system and encompasses several types of control systems 

and associated instrumentation used in the process control. In order to develop an efficient deep 

learning algorithm for securing ICS, two different ICS scenarios are considered. In terms of 

network attacks (e.g. a benchmark data set) and injection attacks (e.g. simulated process control 

plant data) are used for evaluation. From Fig. 22. the benchmark dataset used for evaluation of IP 

based networks relates to the enterprise network and service networks and the process control 

system gets the data from the lower level sensor, actuators or device network. A detailed 

description of the datasets from network infrastructure and process control application used in the 

scope of this thesis is discussed in Chapter 4. 

5.3. Pre-processing 

"Pre-processing of data is a crucial step for various applications, not only for deep learning but also 

for many data driven applications. The effort on pre-processing depends on the characteristics of 

acquired data. It involves transforming raw data into a deep learning algorithm understandable 

format. The data obtained from real-world is often incomplete, inconsistent, lack certain common 

behaviour or trend and is likely to contain errors and corrupted values. Pre-processing techniques 

such as data cleaning, data transformation and data reduction are proven techniques to resolve the 

above-mentioned issues. Data cleaning detects and corrects corrupt or inaccurate records in the 

collected data. This includes removing of corrupted data which may occur due to equipment 

malfunction, handling of noisy data and outlier removal. Data transformation includes tasks such 

as smoothing, normalization, aggregation and generalization of acquired data. Normalization is the 

key task in data transformation which scales the data to a specified range. Min-Max normalization 

and z-score normalization techniques are most commonly used normalization techniques. Data 

reduction is usually done when acquired data is too big to handle or work with. Dimensionality 

reduction and aggregation are two common approaches in data reduction. A more detailed 

information about the data pre-processing can be found in [153]. Pre-processing prepares the data 

for further processing, such as feature extraction" [24]. Below gives a detailed overview of the 

performed pre-processing procedures on the individual datasets. 
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5.3.1. Pre-processing of NSL-KDD dataset 

"As deep learning algorithms can take only numerical values for training and testing, a pre-

processing stage is necessary to convert the non-numerical attributes to numerical values. Two 

main tasks of pre-processing NSL-KDD dataset are" [154]: 

• "Converting the non-numerical attributes in the dataset to numerical values. The features 2, 

3 and 4 represent the protocol type, service and flag. These attributes in the NSL-KDD train 

and test data set were converted to numerical values" [154]. The conversion of non-numeric 

features to numeric features sample for protocol type feature is given in Table 5-1. 

• "Converting the attack name at the end of the dataset into its numeric categories. 1,2,3,4 

and 5 were assigned to normal, DoS, Probe, R2L and U2R respectively" [154]. 

Table 5-1: Representation of non-numerical characters to numeric in NSL-KDD dataset 

Feature Value Numeric Value  

TCP 1 

UDP 2 

ICMP 3 

 

"Since the features of the NSL-KDD dataset have either discrete or continuous values, the ranges 

of the feature values were different and this made them incomparable. Therefore, the features were 

normalized by using min-max normalization shown in Eq. 5-1 to map all the different values for 

individual attributes to range between [0 ,1]" [154].  

𝑥𝑖[0 𝑡𝑜 1] =  
𝑥𝑖− 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥− 𝑥𝑚𝑖𝑛
                                                         (5-1) 

Where 𝑥𝑖 represented each data point, 𝑥𝑚𝑖𝑛 is the minimum among all data points,  𝑥𝑚𝑎𝑥 is the 

maximum among all data points and 𝑥𝑖[0 𝑡𝑜 1] is the normalized data point value between 0 and 1. 
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5.3.2. Pre-processing of UNSW-ND-15 dataset 

UNSW-NB 15 dataset also consists of some non-numerical data. "Hence a pre-processing stage is 

necessary to convert the non-numerical attributes to numerical values. Two main tasks of pre-

processing are" [154]: 

• "Converting the non-numerical attributes in the dataset to numerical values. The features 

that represent the protocol type, state and service are non-numeric. These attributes in the 

UNSW-NB-15 train and test data set were converted to numerical values" [154]. The 

conversion of non-numeric features to numeric features sample for service feature is given 

in Table 5-5. 

• "Converting the attack name at the end of the dataset into its numeric categories. 1,2,3,4 

and 5 and so on to normal, Generic, Exploits, Fuzzers and so on respectively" [154]. 

Table 5-2: Representation of non-numerical characters to numeric in UNSW-NB-15 dataset 

Feature Value Numeric Value Feature Value Numeric Value 

- 1 pop3 8 

dhcp 2 radius 9 

dns 3 smtp 10 

ftp 4 snmp 11 

ftp-data 5 ssh 12 

http 6 ssl 13 

irc 7   
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"Since the features of the UNSW-NB-15 dataset have either discrete or continuous values, the 

ranges of the features value were different and this made them incomparable. Therefore, the 

features were normalized by using min-max normalization shown in Eq. 7-1 to map all the different 

values for individual attributes to range between [0 ,1]" [154].  

5.3.3. Pre-processing injection attack dataset 

The sensors signal measured form the real process control plant incorporate noise in it. For analysis 

of data and to identify the attacks, the sensor signal should be free from the noise. As a part of pre-

processing step, the noise in sensor data needs to be filtered.  Filtering techniques are applied to 

filter those noise. The filtered sensor data is then fed for attack injection model to create the dataset 

with attacks presented in Chapter 4.   

5.3.4. Pre-processing for implementing CNN 

The implementation of a security mechanism using CNN is different from the other deep learning 

algorithms like SAE and DBN. The input to a CNN algorithm in general is an image or more 

technically as 2D or a 3D matrix of numerics. Other algorithms take mostly the data as a 1D vector 

or an array. Due to this reason, a separate pre-processing step is necessary to convert the dataset 

into a specific format to use it with CNN.  

NSL-KDD dataset  

The NSL-KDD data is comprised of three types of features as mentioned in according to Table 4-

6 and they are nominal, binary and numeric. As the deep learning algorithms can be implemented 

using numeric values, a numeric or binary value are needed to assign for nominal values. The 

available nominal values on NSL-KDD data have been assigned with the number of bits equal to 

their available categories. For instance, the 2nd attribute of NSL-KDD data includes three types of 

nominal values namely “tcp”, “udp” and “icmp” therefore, they are assigned with three bits value 

like tcp = 100, udp = 010 and icmp = 001. Similarly, this binary bits assignment can be done 

automatically using the hot encoder defined in Fig. 23 where the Y represents the number of 

available nominal values that will be assigned with Y number of binary bits.  

Deep learning algorithms require data scaling for better generalization of a high variance data 

points otherwise it may cause a knock-on effect on the learning process. As explained earlier for 
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the use of NSL-KDD dataset with CNN, the numeric values have been normalized using min-max 

normalization using Equ.5-1. With this normalization, all the values are scaled in between 0 to 1.  

 

Figure 23: Hot encoder for binary extraction 

All the continuous features, including the binary and normalized features, are then discretized into 

10 intervals using a binary discretizer as shown in Fig. 24. The discretization is done with a 

standard scaler of value 0.1 and then all the ten intervals have been assigned with ten different 

binary bits by a hot encoder. 
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Figure 24: Discretizer for Binary Extraction of feature 

The 41 features of the NSL-KDD data have been converted into a binary vector of size 464 

dimensions after pre-processing where the nominal values have been assigned with 84 bits and 

continuous values with 380 bits. 

 

Figure 25: Image representation of NSL-KDD dataset 

Each 8 bits of the binary vector of 380 bits have been converted into grayscale pixels. The 

converted pixels are reshaped into a 8 × 8 pixel matrix where the empty pixels at the last column 
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are padded with zero values and then this same 8 × 8 pixel matrix is assigned to the red green and 

blue channels to represent as image as shown in Fig. 25.  

 

Figure 26: Input image 8x8 of different classes from NSL – KDD Dataset 

The generated images for normal and different attack types in NSL-KDD dataset are represented 

in Fig. 26. These images are just a sample from the dataset. In order to get a deep insight into the 

images, a recoloured image is also presented below the original image to depict the differences 

between the normal and different attack types. These images are fed to CNN for training and later 

for testing. 

UNSW-NB-15 dataset  

The UNSW-NB-15 data is comprised of four data types, nominal, numeric, binary and time stamps, 

as mentioned in Table 4-16. The time stamps and few of the nominal features like IP addresses and 

port numbers are not useful; therefore, they have been removed during pre-processing. The selected 

nominal features of this data have been assigned with binary values using the same hot encoder 

that is used for NSL-KDD data in Fig. 23. The number of categories available under a feature is 

assigned with that number of bits. For instance, the service feature is included of 13 categories of 

nominal value therefore, each category of service feature has been assigned with 13 binary bits. 

The numeric features of UNSW-NB-15 data have been normalized using the Eq. 5-1 for scaling 

purpose as it is discussed for NSL-KDD data. The normalized values are then discretized into 20 

intervals by using the same discretizer used for sensor data and each interval has been assigned 

with 20 different bits for binary extraction. 
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The features of UNSW-NB-15 data are converted into a size of 924 binary bits after hot encoding 

and discretization. Now, for converting each 8 bits into pixels the binary vector is short of 4 bits 

hence, these 4 bits are filled with zeros to convert the binary bits vector into 121 grayscale pixels. 

These 121 grayscale pixels are arranged into 12 × 12 grayscale pixels matrix where, the vacant 

pixels are padded with zeros as like in Fig. 27. Finally, the same 12 × 12 pixel matrix has been 

sent to the red green and blue channels to represent UNSW-NB 15 data images.  

The generated images for normal and different attack types in UNSW-NB-15 dataset are 

represented in Fig. 28 & 29. These images are just a sample from the dataset.  

 

Figure 27: Image representation of UNSW-ND-15 dataset 
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Figure 28 : Input image 8x8 of different classes from UNS-NB-15 dataset – Set 1 

In order to get a deep insight into the images, a recoloured image is also presented to depict the 

differences between the normal and different attack types. A deep insight into the image can show 

a slight difference between the normal and different attack types. These images are fed to CNN for 

training and later for testing. 

 

Figure 29: Input image 8x8 of different classes from UNS-NB-15 dataset – Set 2 

Injection attack dataset  

An injection attack dataset is a time-series numerical data. It is hard to convert into an image. Due 

to this, the injection attack dataset is converted into the necessary images after certain features 

extracted from the dataset. More details about the feature extraction can be seen in Section 5.3.3. 

In total, 11 features will be extracted from the injection attack dataset. These extracted features are 
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already numeric. The numeric features of the simulated injection attack data have been normalized 

using the Eq. 5-1. for scaling purpose. "The normalized value has been discretized into 20 intervals 

using a similar discritizer shown in Fig. 24. The discritizer has a standard scaler of value 0.1 but 

here it has been used of value 0.05. Hence, it has divided into 20 intervals instead of 10. These 20 

intervals have been assigned after on with 20 different bits for binary extraction" [24]. 

"The simulated sensor data has been converted into 240 bits binary vector by assigning 20 bits to 

each of 12 extracted features via the discritizer. Now, each 8 bits of 240 bits have been converted 

into grayscale pixels and then the pixels are reshaped into 6x6 matrix where the vacant six pixels 

are filled with zeros. In order to create an 8 × 8 pixel matrix the previous pixel matrix is padded 

with zeros circularly, as shown in Fig. 30. Finally, the same 8x8 pixel matrix has been sent to the 

red green and blue channels to represent converted sensor data as images" [24]. 

 

Figure 30: Image representation of  injection attack dataset 

The generated images for normal and attack types in sensor dataset are represented in Fig. 31 & 

32. These images are just a sample from the dataset. A deep insight into the image can show a 

slight difference between the normal and attack types. These images are fed to CNN for training 

and later for testing. 
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Figure 31: Input image 8x8 of  level sensor data  

 

 

 

Figure 32: Input image 8x8 of  pump data 

All the above-mentioned procedures for different datasets to make the dataset suitable for training 

and testing comes under pre-processing. 

5.4. Feature extraction 

"Feature extraction is vital for all data driven applications such as pattern recognition and image 

processing. The derived features out of raw data intend to be more informative and non-redundant 

facilitating the subsequent learning and generalization steps and in some cases, leading to better 
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human interpretations. Sometimes some feature extraction techniques are also considered as a data 

reduction mechanism in pre-processing stage. Different features and features extraction techniques 

are available. Some common and significant feature categories are statistical features, 

mathematical features and features extracted through traditional ML techniques" [24]. 

Statistical features 

"Statistics termed as a branch of mathematics dealing with the collection, analysis, interpretation 

and presentation of masses of numeric data. Statistical features are those which are defined and 

calculated through statistical analysis. Statistical analysis theory is the frequently used method of 

data feature extraction in the time domain [155]. It can analyze according to the statistical laws 

when several objects and several indices are interrelated. Statistical methods are based on forceful 

theory, have lots of algorithms, and can effectively analyse and process the data. Several statistical 

factors exist out of which some most commonly used are mean, median, variance, standard 

deviation, root means square etc. A huge list of statistical features can be found in [156]" [24].  

Mathematical features 

"Mathematical methods are applied on the raw or pre-processed data to obtain meaningful 

information. Mathematical features are the most commonly extracted features on both time series 

and time independent transformations. Several mathematical functions from transform theory can 

be used to translate the signal into a different domain. List of mathematical features includes 

derivate, probability and stochastic process, estimation theory, numerical methods etc" [24].  

Machine learning based features 

"ML techniques are not only used to perform classification or clustering but can be used for feature 

extraction from raw data and complex data structures. The features such as efficient data 

compression and data reduction are performed with ML techniques for feature extraction. One 

good example of machine learning based feature extraction is Principal Component Analysis 

(PCA). Even deep learning techniques such as autoencoders and Boltzmann machines can also be 

used for feature extraction. ML techniques are also used to extract features out of features i.e. the 

extracted features from other techniques or even from ML techniques can be again given to ML 

based feature extraction to get much refined or complex features" [24]. 
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"The set of features extracted from raw data differs from the network packets and the choice of 

features extracted such as statistical, mathematical of ML based need to be made based on the 

application and acquired data" [24]. 

5.4.1. Feature extraction NSL-KDD dataset  

For NSL-KDD dataset, during the preparation of dataset itself, the providers are able to extract 

such features from the dataset to implicate the influence of the attacks and network behavior into 

the generated features. NSL-KDD dataset consists of 41 features mentioned in Tables 4-2 to 4-5. 

As the dataset is already given with features, the pre-processing of the dataset that is suitable for 

deep learning algorithms covers the feature conversion process for the NSL-KDD dataset. These 

41 features are given further to deep learning algorithms for the extraction of complex features 

from NSL-KDD dataset before attack classification.  

5.4.2. Feature extraction UNSW-ND-15 dataset UNSW-NB-15 dataset  

Similar to NSL-KDD dataset, the providers of UNSW-NB-15 dataset during the preparation of 

dataset itself, the providers are able to extract such features from the dataset to implicate the 

influence of the attacks and network behavior into the generated features. UNSW-NB-15 dataset 

consists of in total of 47 features mentioned in Tables 4-11 to 4-15. Out of these 47 features, only 

43 features were selected during the pre-processing. The feature time stamp and nominal features 

like IP addresses and port numbers are not useful and even hard to translate them into the numerical 

format. The pre-processing of the selected features to numerical format and feature selection covers 

the feature extraction phase for the UNSW-NB-15 dataset. These 43 features are given further to 

deep learning algorithms for the extraction of complex features from UNSW-NB-15 dataset before 

attack classification. 

5.4.3. Feature extraction injection attack dataset  

As raw sensor signal is simply a single numeric value at an instance of time, it is not completely 

meaningful to feed this data directly to a deep learning algorithm. Therefore, some meaningful 

features need to be extracted out of the sensors data. As mentioned earlier, we can extract as many 

features as possible from a dataset. From this huge feature set possible, some statistical and 

mathematical features were selected to extract from the inject attack data. The selected features are 

listed in Table 5-3. 
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Figure 33: Use of windowing technique for feature extraction from sensor data 

In order to extract the necessary features, windowing technique is adapted. There exist several 

techniques for choice of window depending on the application and on type of data. In our case, the 

selected sized on window should have either one attack sample or completely without attack. Due 

to this reason, a relatively small windows size of is selected in an empirical manner for feature 

extraction.  After experimenting with different window sizes, a windows size of 10 samples is 

selected and slid across the entire sensor data and a sample is illustrated in Fig. 33. From each 

window, the necessary features are extracted. The extracted features set is mapped to their 

corresponding labels with normal (0) or attack (1). The labelling is based on the injected attack 

samples.   
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Table 5-3: Selected feature for injection attack identification 

Feature No. Feature Name Feature Type 

Featture 1 Mean Statistical 

Feature 2 Standard Deviation Statistical 

Feature 3 Variance Statistical 

Feature 4 Median Statistical 

Feature 5 RMS (Root Mean Square) Statistical 

Feature 6 Maximum Value Statistical 

Feature 7 Minimum Value Statistical 

Feature 8 Peak to RMS Statistical 

Feature 9 Mean of First Differential Mathematical 

Feature 10 Mean of Second Differential Mathematical 

Feature 11 Kurtosis Statistical 

 

The features extracted from the sensor data are continuous or discrete. Due to this reason, the 

extracted feature set is normalized. Min-Max normalization is performed to bring different feature 

values into the range [0, 1]. After the normalization, the data is split into train and test data and the 

dataset is ready for training the deep learning algorithm.  
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The features extracted on the level sensor data for measurement injections are illustrated in the 

following Figures 34, 35 & 36. 

 

Figure 34: Extracted feature set 1 on level sensor data (a) mean (b) standard deviation (c) varience (d) 

median 

 



Concept and usage of deep learning algorithms 

___________________________________________________________________________ 

___________________________________________________________________________ 

115 

 

 

Figure 35: Extracted feature set 2 on level sensor data (a) RMS (b) mean (first differential) (c) mean 

(second differential) (d) maximum 

 

 

Figure 36: Extracted feature set 3 on level sensor data (a) minimum (b) peak to RMS (c) Kurtosis 
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The features extracted on the pump data for command injections are illustrated in the following 

Figures 37, 38 & 39. 

 

Figure 37: Extracted feature set 1 on pump data (a) mean (b) standard deviation (c) varience (d) median 

From the features illustrated, we can see that some additional and multi-variant information is 

extracted out of the raw sensor data. But for normal observations, it is hard to identify the attacks 

from those representations. These features set are fed to the deep learning algorithms for further 

extraction of complex correlations and identify the attacks present in the data. 
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Figure 38: Extracted feature set 2 on pump data (a) RMS (b) mean (first differential) (c) mean (second 

differential) (d) maximum 

 

Figure 39: Extracted feature set 3 on pump data (a) minimum (b) peak to RMS (c) Kurtosis 



Concept and usage of deep learning algorithms 

___________________________________________________________________________ 

___________________________________________________________________________ 

118 

 

5.5. Concepts of Deep Learning algorithms 

"Deep learning techniques are a specific type of machine learning techniques combining both 

supervised and unsupervised techniques inspired from the human brain. The human brain has got 

multiple levels of representations with simple features at lower levels and more abstract features at 

higher levels. Similarly, deep learning consists of multiple hidden layers with initial layers 

representing the information at lower levels and the final layers representing the information in an 

abstract format. Some common deep learning architectures include Stacked Auto-Encoders (SAE), 

Deep Belief Networks (DBN), Convolution Neural Networks (CNN) etc" [113]. For the 

development of efficient IDS in securing ICS, the traditional deep learning models are used and 

configured accordingly to the requirements of the application and available datasets so that there 

are capable of efficiently identifying the attacks. In addition, some theoretical details about 

different deep learning algorithms used in the scope of this thesis are discussed followed the 

appropriate use of the algorithms for the desired application.  

5.5.1. Stacked Autoencoders 

Auto-Encoders (AE) are simple learning architecture which aims to transform inputs into outputs 

with the least possible amount of distortion. An AE is considered as a feed forward neural network 

that can learn a compressed, distributed representations of a dataset [157]. Even there are very 

simple structures, they play an important role in machine learning. Auto-encoders were first 

introduced in 1980’s by Hinton and the PDP group [158] to address the problem of “back 

propagation”.  

Stacking the single level AE initializes a deep neural network and works in the same way as in 

single autoencoders and is considered as a Stacked Autoencoder (SAE). Due to this stacking of 

AE’s, SAE is considered as a deep learning model. SAE uses the same autoencoder principle 

defined above as a building block to create a Deep Neural Network (DNN) architecture. SAE has 

many interesting applications such as data compression, visualization etc. Here the output of an 

individual hidden layer (AE) will be the input to the next hidden layer (another AE). The structure 

of the stacked autoencoders is shown in Fig. 40.  
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Figure 40 : Structure of stacker autoencoder 

Similar to the human brain, the inputs are initially represented in a lower level of abstraction at first 

AE layer represented in Fig. 40 as Feature 1. These extracted features are fed to the next layer and 

again more complex features, but a lower number are extracted. In this case with two AE layers, 

the extracted features are of a higher level of abstraction. Increase in the number of hidden layers 

increases in higher level of abstraction of the features as well as the inputs.  

"The training of stacked autoencoders is done in two phases a pre-training phase and a fine-tuning 

phase. In the pre-training phase, each layer is considered as a single AE and trained individually in 

an unsupervised manner. This process involves the feature reduction from the input data. Later, the 

features extracted from the previous layer are fed to the next layer as inputs for more complex and 

meaningful feature extraction. This process repeats until the number of autoencoder layers in the 

stack. The training of stacked autoencoders is done in a greedy layer wise approach. It means each 

layer is trained at a time. Now a days due to availability of high computation resources at lower 

prices, for some applications all layers can be trained at a time" [103].    

The fine-tuning phase comes after the trained stacked autoencoder was coupled to the 

classification/regression concept based on the applications need. At this stage, the extracted 
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features are given as input to supervised learning approaches such as SoftMax regression or SVM 

or logistic regression etc. for efficient learning mechanism yielding a supervised deep neural 

network architecture. The fine-tuning phase comes after the trained stacked autoencoder was 

coupled to the classification mechanism. This fine-tuning process of the algorithm is usually a 

backpropagation algorithm. This improves the performance of the autoencoder by adapting its 

weights.  

5.5.2. Deep Belief Networks 

"Deep Belief Networks (DBN) are formed by stacking Restricted Boltzmann Machines (RBM). 

RBM is a generative stochastic network which can learn a probability distribution over its set of 

inputs [159]. The main difference of RBM to a feed forward neural network was, the connection 

between the visible and hidden layers are undirected. That means, the values can propagate from 

visible layer to hidden layer and from hidden layer to visible layer. But RBM, in contrast, don’t 

have any connection between the neurons of visible layers and hidden layers like a normal 

Boltzmann machine" [103].  
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Figure 41: Structure of deep belief network 

"The main objective of using this algorithm is to bring the recreated data to be as close as the real-

world data, and this is achieved by using the weight update method. Stacking of the RBMs forms 

a DBN. As mentioned for stacked autoencoders, DBN will also have pre-training phase done in 

greedy wised approach and the fine-tuning process is done after coupling with other machine 

learning algorithm for classifying attacks" [103].  

Fig. 41 shows the architecture of the stacked version of RBM termed as DBN. The key difference 

of AE to RBN is, in AE the Euclidean cost function between the input and the output of the AE is 

minimized whereas in RBN, the network weights adapted in such a way that probability of 

representation of the input to the output is maximized. In simple terms, AE / SAE uses 

mathematical models for network weight adaption whereas RBN / DBN uses probabilistic models 

for network weight update mechanisms. A more detailed information about DBN can be found at 

[160]. 
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5.5.3. Convolutional Neural Networks 

Convolutional Neural Networks (CNN) is another category of deep learning algorithm and are 

considered as an extension to the traditional feed forward neural networks. CNN have proven very 

effective in many application domains such as image recognition and classification, speech 

processing applications etc. Its effectiveness has been successfully proven in tasks such as 

identifying faces, objects and traffic sign detection mainly used in robotics and self-driving cars.  

Four main operations of CNN comprise of Convolution layer, non-linear activation function such 

as ReLu, pooling layer, and fully connected layer (classification). Combining the above-mentioned 

key parameters forms the CNN. The convolution and pooling layers act as a feature extraction 

mechanism out of an image while the fully connected layer act as a classifier. More detailed 

discussion on CNN is discussed in [161]. Fig. 42 will give an overview of the CNN.  

 

 

Figure 42. Structure of convolutional neural network 

 

5.5.4. Algorithm configuration parameters 

a. Weight initialization 

Training of any DNN in general starts with random weights [162] [163]. These random weights 

are normally chosen within a range of (-1,1). However, these random initializations can produce a 

set of weights that are sometimes hard for backpropagation to train. Some researchers have 

proposed some weight initialization algorithms that provide a good set of starting weights for 

backpropagation [164]. [165]introduced weight algorithms termed as Xavier weight initialization 

algorithm. Because of its ability to produce consistently performing weights which are suitable for 
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backpropagation, this technique becomes rather popular. In this thesis, the performance of this 

initialization was also evaluated.    

b. Transfer functions for deep learning 

The backpropagation of DNN also relies on the derivatives of the transfer functions to 

incrementally calculate or propagate, error corrections from the output neurons back through the 

weights of the network. Before 2011, most of the neurons in the hidden layers used the hyperbolic 

tangent or the logistic transfer function, which are the sigmoid functions as the transfer functions. 

The derivative of both of their functions saturates to 0 as the input approaches, either positive or 

negative infinity, which causes this transfer function to exhibit the vanishing gradient problem 

[166]. [167] introduces the ReLU transfer functions to address this problem.  

Usually, in image processing applications, ReLU transfer function usually achieves better training 

results for DNN than the sigmoid transfer function. In modern DNN, the type of transfer function 

to be used can be defined separately for each individual hidden layer. For the feature extracting 

hidden layers of DNN, either sigmoid or ReLU transfer functions can be used based on the 

application. For the output layer, if it is regression linear transfer function is used and if it is 

classification SoftMax transfer function is used. No transfer function is necessary for the input 

layer. Following Table. 5-4 summarizes the logistic, hyperbolic tangent, ReLU, linear, and 

SoftMax transfer functions: 
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Table 5-4: List of transfer functions commonly used in deep learning 

Name / Range Expression(Forward) Derivitative 

(Backward) 

Graph (Derivatives in 

Red) 

Logistic / Sigmoid     

[0, 1] 
𝛷(𝑥) =  

1

1 +  𝑒−𝑥
 𝛷(𝑥) =  

𝑒𝑥

(1 + 𝑒−𝑥)2
 

 

HTan                           

[-1, 1] 

𝛷(𝑥) = ℎ𝑡𝑎𝑛 (𝑥) 𝛷′(𝑥) = 1 −  𝛷2(𝑥) 

 

ReLU                         

[0, +∞] 

𝛷(𝑥) = max (0, 𝑥) 𝛷′(𝑥) = {
𝑥 > 0   1
𝑥 ≤ 0  0

 

 

Linear                          

[-∞, +∞] 

𝛷(𝑥) =  𝑥 𝛷′(𝑥) =  1 

 

SoftMax                       

[-∞, +∞] 
𝛷(𝑥) =  

1𝑒𝑥𝑗

∑ 𝑒𝑥𝑘
||𝑥||
𝑘=1

 
NA NA 

 

The graph column of the table shows the transfer function and the derivative of that transfer 

function. The solid black line is the transfer function output and the dotted red line is the derivative. 

c. Regularization 

Overfitting and underfitting are most common problems while using the ML algorithms. When 

coming to DNN, overfitting is a frequent problem [168].  Regularization is a concept designed to 

combat overfitting. One most common form of regularization is to simply add a scaled summation 
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of the weights of the neural network to the loss function. This calculation will cause the training 

algorithm attempts to lower the weights of the neural network along with the output error. The 

most common forms of this weight regularization are L1 and L2 [169]. 

L1 regularization sums the weights of the neural network (w) and produces an error value (E1) that 

is added to the loss function of the network. The equation is shown in the following equation 

𝐸1 =  
𝜆1

𝑛
∑ |𝑤|𝑤                                                     (5-2) 

The w vector includes only the actual weights but not the bias weights. The value λ1 is a scaling 

factor for the effect of the L1 regularization. If λ1 is too high, the objective of lowering the weights 

will overwhelm the once for achieving a lower error for the neural network training. This situation 

causes a failure of the neural network to converge to a lower error. The value n represents the 

number of training set elements.  

L2 regularization is defined as similarity to L1 and is provided by the following equation.  

𝐸2 =  
𝜆2

𝑛
∑ 𝑤2

𝑤                                                           (5-3) 

Both L1 and L2 regularization sum the weights without regard to their sign. This magnitude-

oriented approach is accomplished by an absolute value for L1 and a square of L2. The weights are 

pushed toward 0 in both cases. However, L1 has a greater likelihood of pushing the weights entirely 

to 0 and effectively pruning the weighted connection [169]. This pruning feature of L1 is especially 

valuable in this research as it works as a function for efficient feature selection. L1 will specify the 

worthless engineered features by pruning them. 

Apart from L1 and L2 regularization, [170] introduced dropout as simple regularization technique 

for DNN. Dropout is typically implemented as a single dropout layer.  

d. Batch size 

There are three different techniques to decide how often the weights are updated. They are online, 

full batch and mini batch [171].  

• Online learning: Updates weights after each training data instance; thus, it takes more 

computation time to complete the learning compared to other techniques.   
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• Full batch: It runs a full sweep through the training data and updates weights. However, it 

is impractical to run full batch learning for a big dataset such as 60,000+ training samples. 

• Min-batch: It divides a dataset into small chunks of data and performs the learning for each 

chunk. This method allows matrix-matrix multiples in software programming and takes less 

computation time and are more efficient on GPU’s.    

e. Enhancements to backpropagation 

Several techniques exist for the enhancements apart from basic backpropagation and weight update 

rule. Momentum has been a significant component of backpropagation training for some time. 

[172] introduced the seminal momentum algorithm that is a regularization technique for gradient 

ascent/descent. Momentum backpropagation influences the current iteration’s weights by adding a 

portion of weight change from the previous iteration.  

𝑣𝑡 = 𝑦𝑣𝑡 −  𝜂𝛻𝜃𝑡−1
𝐽(𝜃𝑡−1)                                         (5-4) 

Accordingly, the weight updates have the necessary momentum to push through local minima and 

to continue the descent of the output of the loss function.  

[173] improves the momentum calculation by increasing the effectiveness of random mini-batches 

selected by SGD termed as Nesterov momentum. This decreases the likelihood of a particular bad 

mini-batch from changing the weights into an irreparable state. A NN update rule using the 

Nesterov momentum was introduced by [174]. 

Several researchers also developed different update rules beyond the classic backpropagation and 

Nesterov momentum update rules. The user needs to choose learning rate and momentum training 

parameters that are applied across all weights in NN using either classic backpropagation rules or 

with Nesterov momentum. Usually, the decay in learning rate as the NN trains is advantageous and 

proposed by [175]. In addition, sometimes each weight in NN with a different learning rate might 

be beneficial [176]. [177] introduced the Adaptive Gradient Algorithm (AGA) to decay both the 

learning rate as well as vary the rate per weight. [178] introduced AdaDelta update rule that uses a 

window of gradients that determine the learning rate to mitigate the aggressive monotonic learning 

rate decay of AdaGrad. [179] proposed a separate RMSprop to address the aggressive learning rate 
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decay of AGA. In this algorithm, the learning rate is determined by dividing gradients by a root 

means square of the weights.  

[180] proposed the Adam update rules, the name is derived from the adaptive moment estimates 

that it uses. Adam determines the weight corrections by estimating the first (mean) and second 

(variance) moments. Adam begins with the exponentially decaying averages of past gradients (m): 

𝑚𝑡 =  𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡                                             (5-5) 

This average achieves a similar goal like classic momentum update, but its value is calculated 

automatically based in the current gradient (gt). The update rule then calculates the second 

momentum (vt): 

𝑣𝑡 =  𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2

                                           (5-6) 

The values mt and vt are estimates of the first moment (the mean) and the second moment (the un-

centered variance) of the gradients. However, a strong bias towards zero during the initial training 

cycles will be there. The first moment’s bias is corrected as follows: 

𝑚𝑡̂ =  
𝑚𝑡

1− 𝛽1
𝑡                                                                 (5-7) 

Similarly, the second moment is also corrected: 

𝑣𝑡̂ =  
𝑣𝑡

1− 𝛽2
𝑡                                                                 (5-8) 

These bias-corrected first and second moment estimates are applied to the ultimate Adam update 

rule, as follows: 

𝜃𝑡 =  𝜃𝑡−1 − 
𝜂

√𝑣𝑡̂+ 𝜀
𝑚𝑡̂                                                    (5-9) 

This dissertation featured the Adam update rule for all neural network training due to the rule’s 

robustness to initial learning rate (η) and other training parameters. Kingma and Ba (2014) 

propose default values of 0.9 for β1, 0.999 for β2, and 10-8 for ε, that were used in this 

dissertation. 

In addition to the above mentioned deep learning algorithms, researchers have also utilized deep 

learning for recurrent neural networks. The research community has recently shown considerable 

interest in deep LSTM networks. [181] used a grid of LSTM units to achieve greater accuracy. 
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[182] introduced the gated recurrent network (GRU) and added an output gate, which allows 

greater accuracy as the time series increases in length. Unlike feedforward neural networks, LSTM 

and GRU are recurrent networks that can function as Turing machines [183]. 

5.6. Usage of Deep Learning algorithms 

The proposed deep learning algorithms are the basic methods or model that can be used for any 

application. But it needs to be adapted the necessity of the individual application. This sub-section 

discussed the proper implementation of the mentioned deep learning algorithms such that an 

efficient security mechanism can be established using those algorithms. The implementation of the 

individual deep learning algorithms needs to be discussed in accordance with their datasets.  

5.6.1. NSL-KDD dataset - Stacked Autoencoder 

The deep learning model of implementing the SAE on NSL-KDD dataset is represented in Fig. 43. 

From Fig. 43. we can see that the input layer with 41 nodes which represent the 41 features of NSL-

KDD dataset. The hidden layers 1,2,3 are used for complex feature extraction. During pre-training 

hidden layer 1 reduces the input features from 41 to 30 followed by hidden layer 2 which reduces 

the 30 features to 20 Features followed by hidden layer 3 that reduces the 20 features further to 10 

features. Due to this reason, hidden layer 1 have 30 neurons, hidden layer 2 have 20 neurons and 

hidden layer 1 have 10 neurons. The output of the third hidden layers are considered as extracted 

features from NSL-KDD dataset.  
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Figure 43: Implementation of SAE on NSL_KDD dataset 

The features extracted during the pre-training phase are purely unsupervised learning. The 

extracted features are given as an input to the SoftMax Regression (SMR) layer, which is the hidden 

layer 4. The SoftMax layer will use the 10 features and identify the normal and attack classes based 

on the requirements. The no. of output classes is based on the requirements according to the Table 

5-6. The SoftMax layer is trained in a supervised manner with the extracted features and labels 

termed as fine-tuning step 1. Now, the whole SAE with all hidden layers (1-4) is fine-tuned via 

backpropagation in a supervised manner. This procedure improves the extracted features for the 

learning of the SAE. This process is considered as fine-tuning step 2. After the process of fine-

tuning, the trained network is validated with validation dataset. The validation of the training is 

performed on the entire network. Validation prevents the network from overfitting. Later the best 

model is tested with the test data for evaluating the performance of the network with the 

performance metrics mentioned in Section 3.5. The results are discussed in Chapter 6 and in 

Appendix B. 
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5.6.2. NSL-KDD dataset - Deep Belief Network 

The deep learning model of implementing the DBN on NSL-KDD dataset is represented in Fig. 

44. From Fig. 44. we can see that the input layer with 41 nodes which represent the 41 features of 

NSL-KDD dataset. The hidden layers 1,2,3 are used for complex feature extraction. During pre-

training hidden layer 1 reduces the input features from 41 to 30 followed by hidden layer 2 which 

reduces the 30 features to 20 Features followed by hidden layer 3 that reduces the 20 features 

further to 10 features. Due to this reason, hidden layer 1 have 30 neurons, hidden layer 2 have 20 

neurons and hidden layer 3 have 10 neurons. The output of the third hidden layers are considered 

as extracted features.  

  

Figure 44: Implementation of DBN on NSL_KDD dataset 

The features extracted during the pre-training phase are purely unsupervised learning. The 

extracted features are given as an input to the SMR layer which is the hidden layer 4. The SoftMax 

layer will use the 10 features and identify the normal and attack classes based on the requirements. 

The no. of output classes is based on the requirements according to the Table 5-6. The SoftMax 

layer is trained in a supervised manner with the extracted features and labels termed as fine-tuning 

step 1. Now, the whole DBN with all hidden layers (1-4) is fine-tuned via back propagation in 

supervised manner. This procedure improves the extracted features for learning of the DBN. This 

process is considered as fine-tuning step 2. After the process of fine-tuning, the trained network is 
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validated with validation dataset. The validation of the training is performed on the entire network. 

Validation prevents the network from overfitting. Later the best model is tested with the test data 

for evaluating the performance of the network with the performance metrics mentioned in Section 

3.5. The results are discussed in Chapter 6 and in Appendix B. 

5.6.3. NSL-KDD dataset - Convolutional Neural Networks 

 

Figure 45: Implementation of CNN on NSL-KDD dataset 

From Fig. 45, we can see the implemented CNN model. It includes the following steps: 

Step 1: The image data set of NSL-KDD dataset obtained from image representation stage with 

each image of size 8x8 is given as an input image to CNN – Hidden Layer 1. 

Step 2: The CNN layers are initially initialized with Xavier weights and random filters and these 

are adopted during the training process. 

Step 3: The network takes the input image and initiates the training process. The image goes 

through the forward propagation steps (convolution, ReLU and pooling operations along 

with forward propagation of the fully connected layers) and finds the output probabilities. 

Step 4: The error value of the desired output to the generated output is calculated. And validation 

is performed after every 300 iterations. 

Step5: Now backpropagation with gradient decent is used to update the network weights and all 

filter values to minimize the output error. 
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The above steps are continued until the validation function measures the same value for five times 

as the patience was set to 5. This ensures the network from overfitting. Narrow convolution 

technique is used for the first convolution hidden layer. The output feature map of the first 

convolution hidden layer is smaller than 8x8. Due to this reason, in second and third hidden layers 

wide convolution technique is used by padding the feature maps with zeros. SoftMax regression 

with non-linear sigmoid transfer function is used for classification of attack classes at the final fully 

connected layer. The no. of output classes is based on the requirements according to the Table 5-

6. The SMR layer is trained in a supervised manner with the extracted features and labels. The 

output of the trained CNN for multiple attacks classes present in the dataset.  

The validation of results has been done following three facts for all the proposed IDS models and 

these facts are described using the training and validation curve in Fig. 46. The figure has been 

chosen for the trained IDS on NSL-KDD dataset for discussing the validation method generally. 

Validations are done following the exact same procedure for all proposed models. 

i. Overfitting: By overfitting, it is ensured that the training model is not memorizing but 

actually learning something from the given input. This means the difference in between 

validation accuracy and the training accuracy must be closer to zero. In Fig. 53. the dotted 

black line is represented for the training accuracy and loss validation and the blue and red 

lines are represented for actual training accuracy and loss respectively. From the figure it 

visible, there is no difference in between the training and validation curve for both accuracy 

and loss. Therefore, it is ensured that all the trained network in this paper is not overfitted. 

ii. Under-fitting: By under-fitting it is made certain that the training model or network is not 

showing immature behaviour. This means the training model is performed well on the 

training data. The training curve of accuracy and loss in Fig. 53. has proven that the trained 

models are not suffered from under-fitting because the calculated accuracy on training data 

is started from 54 % approximately and has gradually increased as the training iteration has 

progressed as well as the training loss has gradually decreased and this is known as the 

normal behaviour of a training process. 

iii. Variance: By variance, it is verified that the proposed models are trained properly right 

from the beginning till the end of the training process. This means the validation accuracy 
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and loss are always closer to the training accuracy and loss throughout the whole training 

process. No variance has been experienced on both validation and training curve in Fig. 53. 

 

 

Figure 46: Training and validation curve of CNN for a given dataset 

By maintaining these three facts, it is confirmed that the calculated test results are correct and 

meaningful. The best model is tested with the test data for evaluating the performance of the 

network with the performance metrics mentioned in Section 3.5. The results are discussed in 

Chapter 6 and in Appendix B.  

5.6.4. UNSW-NB-15 - Stacked Autoencoder 

The deep learning model of implementing the SAE on UNSW-NB-15 dataset is represented in Fig. 

47. From Fig, 47. we can see that the input layer with 43 nodes which represent the 43 features of 

UNSW-NB-15 dataset. The hidden layers 1,2,3 are used for complex feature extraction. During 

pre-training hidden layer 1 reduces the input features from 43 to 30 followed by hidden layer 2 

which reduces the 30 features to 20 Features followed by hidden layer 3 that reduces the 20 features 

further to 10 features. Due to this reason, hidden layer 1 have 30 neurons, hidden layer 2 have 20 
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neurons and hidden layer 3 have 10 neurons. The output of the third hidden layers are considered 

as extracted features.  

 

 

Figure 47: Implementation of SAE on UNSW-NB-15 dataset 

The features extracted during the pre-training phase are purely unsupervised learning. The 

extracted features are given as an input to the SMR layer which is the hidden layer 4. The SoftMax 

layer will use the 10 features and identify the normal and attack classes based on the requirements. 

The no. of output classes is based on the requirements according to the Table 5-7. The SoftMax 

layer is trained in a supervised manner with the extracted features and labels termed as fine-tuning 

step 1. Now, the whole SAE with all hidden layers (1-4) is fine-tuned via back propagation in 

supervised manner. This procedure improves the extracted features for learning of the SAE. This 

process is considered as fine-tuning step 2. After the process of fine-tuning, the trained network is 

validated with validation dataset. The validation of the training is performed on the entire network. 

Validation prevents the network from overfitting. Later the best model is tested with the test data 
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for evaluating the performance of the network with the performance metrics mentioned in Section 

3.5. The results are discussed in Chapter 6 and in Appendix B. 

5.6.5. UNSW-NB-15 - Deep Belief Networks 

The deep learning model of implementing the DBN on UNSW-NB15 dataset is represented in Fig. 

48. From Fig. 48, we can see that the input layer with 43 nodes which represent the 43 features of 

UNS-NB-15 dataset. The hidden layers 1,2,3 are used for complex feature extraction. During pre-

training hidden layer 1 reduces the input features from 43 to 30 followed by hidden layer 2 which 

reduces the 30 features to 20 Features followed by hidden layer 3 that reduces the 20 features 

further to 10 features. Due to this reason, hidden layer 1 have 30 neurons, hidden layer 2 have 20 

neurons and hidden layer 1 have 10 neurons. The output of the third hidden layers are considered 

as extracted features.  

  

Figure 48: Implementation of DBN on UNSW-NB-15 dataset 
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The features extracted during the pre-training phase are purely unsupervised learning. The 

extracted features are given as an input to the SMR layer which is the hidden layer 4. The SoftMax 

layer will use the 10 features and identify the normal and attack classes based on the requirements. 

The no. of output classes is based on the requirements according to the Table 5-7. The SoftMax 

layer is trained in a supervised manner with the extracted features and labels termed as fine-tuning 

step 1. Now, the whole DBN with all hidden layers (1-4) is fine-tuned via backpropagation in 

supervised manner. This procedure improves the extracted features for the learning of the DBN. 

This process is considered as fine-tuning step 2. After the process of fine-tuning, the trained 

network is validated with validation dataset. The validation of the training is performed on the 

entire network. Validation prevents the network from overfitting. Later the best model is tested 

with the test data for evaluating the performance of the network with the performance metrics 

mentioned in Section 3.5. The results are discussed in Chapter 6 and in Appendix B. 

5.6.6. UNSW-NB-15 - Convolutional Neural Networks 

 

Figure 49: Implementation of CNN on UNSW-NB-15 dataset 

From Fig. 49, we can see the implemented CNN model. It includes the following steps: 

Step 1: The image data set of NSL-KDD dataset obtained from image representation stage with 

each image of size 8x8 is given as an input image to CNN – Hidden Layer 1. 

Step 2: The CNN layers are initially initialized with Xavier weights and random filters and these 

are adopted during the training process. 
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Step 3: The network takes the input image and initiates the training process. The image goes 

through the forward propagation steps (convolution, ReLU and pooling operations along 

with forward propagation of the fully connected layers) and finds the output probabilities. 

Step 4: The error value of the desired output to the generated output is calculated. And validation 

is performed after every 300 iterations. 

Step5: Now backpropagation with gradient decent is used to update the network weights and all 

filter values to minimize the output error. 

The above steps are continued until the validation function measures the same value for five times 

as the patience was set to 5. This ensure the network from overfitting. Narrow convolution 

technique is used for the first convolution hidden layer. The output feature map of the first 

convolution hidden layer is smaller than 12x12. Due to this reason, in second and third hidden 

layers wide convolution technique is used by padding the feature maps with zeros. SoftMax 

regression with non-linear sigmoid transfer function is used for classification of attack classes at 

the final fully connected layer. The no. of output classes is based on the requirements according to 

the Table 5-7. The SMR layer is trained in a supervised manner with the extracted features and 

labels. The output of the trained CNN for multiple attacks classes present in the dataset. Later the 

best model is tested with the test data for evaluating the performance of the network with the 

performance metrics mentioned in Section 3.5. The results are discussed in Chapter 6 and in 

Appendix B. 

5.6.7. Injection attack - Stacked Autoencoder 

The deep learning model of implementing the SAE on the extracted feature dataset is represented 

in Fig. 50. From Fig. 50, we can see that the input layer with 11 nodes which represent the extracted 

features of the raw sensor data. The hidden layers 1,2,3 are used for complex feature extraction. 

During pre-training hidden layer 1 reduces the input features from 11 to 8 followed by hidden layer 

2 which reduces the 8 features to 6 Features followed by hidden layer 3 that reduces the 6 features 

further to 4 features. Due to this reason, hidden layer 1 have 8 neurons, hidden layer 2 have 6 

neurons and hidden layer 3 have 4 neurons. The output of the third hidden layers are considered as 

the extracted features.  
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Figure 50: Implementation of SAE on injection attack dataset 

The features extracted during the pre-training phase are purely unsupervised learning. The 

extracted features are given as an input to the SoftMax layer, which is the hidden layer 4. The 

SoftMax layer will use the 4 features and identify the normal and attack. The SMR layer is trained 

in a supervised manner with the extracted features and labels termed as fine-tuning step 1. Now, 

the whole SAE with all hidden layers (1-4) is fine-tuned via backpropagation in supervised manner. 

This procedure improves the extracted features for the learning of the SAE. This process is 

considered as fine-tuning step 2. After the process of fine-tuning, the trained network is validated 

with validation dataset. The validation of the training is performed on the entire network. 

Validation prevents the network from overfitting. Later the best model is tested with the test data 

for evaluating the performance of the network with the performance metrics mentioned in Section 

3.5.  The results are discussed in Chapter 6 and in Appendix B. 

5.6.8. Injection attack - Deep Belief Networks 

The deep learning model of implementing the DBN on extracted feature dataset is represented in 

Fig. 51. From Fig. 51, we can see that the input layer with 11 nodes which represent the extracted 

features of the raw sensor data. The hidden layers 1, 2, 3 are used for complex feature extraction. 

During pre-training hidden layer 1 reduces the input features from 11 to 8 followed by hidden layer 
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2 which reduces the 8 features to 6 Features followed by hidden layer 3 that reduces the 6 features 

further to 4 features. Due to this reason, hidden layer 1 have 8 neurons, hidden layer 2 have 6 

neurons and hidden layer 3 have 4 neurons. The output of the third hidden layers are considered as 

extracted features. 

  

Figure 51: Implementation of DBN on injection attack dataset 

The features extracted during the pre-training phase are purely unsupervised learning. The 

extracted features are given as an input to the SMR layer, which is the hidden layer 4. The SoftMax 

layer will use the 4 features and identify the normal and attack. The SoftMax layer is trained in a 

supervised manner with the extracted features and labels termed as fine-tuning step 1. Now, the 

whole DBN with all hidden layers (1-4) is fine-tuned via backpropagation in a supervised manner. 

This procedure improves the extracted features for learning of the DBN. This process is considered 

as fine-tuning step 2. After the process of fine-tuning, the trained network is validated with 

validation dataset. The validation of the training is performed on the entire network. Validation 

prevents the network from overfitting. Later the best model is tested with the test data for evaluating 

the performance of the network with the performance metrics mentioned in Section 3.5. The results 

are discussed in Chapter 6 and in Appendix B. 
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5.6.9. Injection attack - Convolutional Neural Networks 

 

 

Figure 52: Implementation of CNN on injection attack dataset 

From Fig. 52, we can see the implemented CNN model. It includes the following steps: 

Step 1: The image data set of injection attack dataset obtained from the image representation stage 

with each image of size 8x8 is given as an input image to CNN – Hidden Layer 1. 

Step 2: The CNN layers are initially initialized with random weights and filters and these are 

adopted during the training process. 

Step 3: The network takes the input image and initiates the training process. The image goes 

through the forward propagation steps (convolution, ReLU and pooling operations along 

with forward propagation of the fully connected layers) and finds the output probabilities. 

Step 4: The error value of the desired output to the generated output is calculated. And validation 

is performed after every 300 iterations. 

Step5: Now, backpropagation with gradient decent is used to update the network weights and all 

filter values to minimize the output error. 

The above steps are continued until the validation function measures the same value for five times 

as the patience was set to 5. This ensures the network from overfitting. Narrow convolution 

technique is used for the first convolution hidden layer. The output feature map of the first 

convolution hidden layer is smaller than 8x8. Due to this reason, in second and third hidden layers, 

wide convolution technique is used by padding the feature maps with zeros. SoftMax regression 

with non-linear sigmoid transfer function is used for classification of attack classes at the final fully 
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connected layer. The SMR layer is trained in a supervised manner with the extracted features and 

labels.  The output of the CNN is either normal or an attack. Later the best model is tested with the 

test data for evaluating the performance of the network with the performance metrics mentioned in 

Section 3.5. The results are discussed in Chapter 6 and in Appendix B. 

5.7. Hybrid deep learning models 

Every deep learning techniques has its own constraints during the extraction of features from the 

input data. Similarly, every classification algorithm such as SoftMax may not yield proper results 

for certain applications and development of anomaly detection based IDS is not an exemption.  

Some existing works on hybrid machine learning and deep learning models are already discussed 

during the literature review in Chapter 3. Due to this reason, hybrid deep learning models are 

proposed and implemented as a part of this thesis. The combinations of deep learning models 

verified in the scope of this thesis are listed in Table 5-5.  

The implementation of hybrid deep learning models is similar to other deep learning 

implementations, but the key difference is the internal hidden layers used for feature extraction and 

the classification layer combination coupled to the deep learning model. The training of the hybrid 

models is performed according to the principles of validation and evaluated the validation accuracy. 

Later the best model is tested with the test data for evaluating the performance of the network with 

the performance metrics mentioned in Section 3.5. The results are discussed in Chapter 6 and in 

Appendix B. 
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Table 5-5: Different combinations of hybrid deep learning 

Type No. Feature Extraction Technique Classification Technique 

1 Stacked autoencoder Support Vector Machines 

2 Deep Belief Network Support Vector Machines 

3 Stacekd Autoencoder + Deep Belief 

Network 

SoftMax regression 

4 Stacked Autoencoder + Deep Belief 

Network 

Support Vector Machines 

 

5.8. High performance models 

Deep learning algorithms are computationally intensive. Due to the increasing number of data and 

the number of neurons in a deep learning algorithm makes it necessary to perform a lot of 

computations in a short period of time. Especially during the training process, the deep learning 

algorithms need to exploit the complex correlations between the input data and represent them as 

features. During the development of IDS using deep learning algorithms, it is found that the training 

takes a lot of time on normal CPU’s. With the availability of modern high-performance CPU’s and 

GPU’s with higher clock speeds, it is possible to perform the parallel operations on these multi-

core platforms.  

The accelerated computing platforms are used especially helpful during the training phase. The 

pre-training, Fine-tuning step1 and fine-tuning step 2 are performed on multi-core high 

performance computing platforms with higher clock speeds and the performance is evaluated on 

different available platforms with different algorithms. The results are discussed in Chapter 6 and 

in Appendix B. 
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5.9. Attack Classification 

Classification of attacks is directly obtained by supervised learning techniques as well as deep 

learning techniques. Most of the existing research classify the output of deep learning algorithm 

into two categories, namely normal and attack. In this thesis, classification of attacks into multiple 

attack classes is considered as it is necessary to know the attack type in order to take a preventive 

measure after attack identification. In this scope of this thesis, network attacks are detected with 

the different attacks such as DoS, Probe, R2L and U2R and injection attacks are classified to 

measurement injections and command injections.  

5.9.1. NSL-KDD dataset 

The proposed deep learning algorithms with necessary configurations are verified on NSL-KDD 

dataset. As the motivation of this thesis is classification of multiple attack classes, the training is 

also classified into different levels of attack identification based on the attack occurrence. The 

attack class classification is mentioned in the following Table 5-6. 

From Table 5-6 in 2 class classification all the attack types were considered into single attack class 

apart from normal data and are represented as an attack. In 3 class classification DoS was 

considered separately and the rest of the attack types were considered into single attack class. In 4 

class classification DoS and Probe were separated into two attack classes and R2L and U2R are 

considered as attacks.  Finally, in 5 classes classification all the attack types were considered 

individually and represented by their attack names. The aim is to maximize the accuracy of 

detecting all attack classes but due to unbalanced data from Table 4-7, evaluation is also performed 

on the basis mentioned above. 
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Table 5-6: Attack class classification NSL-KDD dataset 

Classes Attack Types 

DoS Probe R2L U2R 

2 Classes X X X X 

3 Classes - X X X 

4 Classes - - X X 

5 Classes - - - - 

 

5.9.2. UNSW-NB-15 dataset 

The proposed deep learning algorithms with necessary configurations are verified on UNSW-NB-

15 dataset. As the motivation of this thesis is classification of multiple attack classes, the training 

is also classified into different levels of attack identification based on the attack occurrence. The 

attack class classification is mentioned in the following Table 5-7. 

From Table 5-7 in 2 class classification all the attack types were considered into single attack class 

apart from normal data and are represented as an attack. In 3 class classification, the next most 

prominent class, according to Fig. 18.  Generic is considered separately and the rest of the attack 

classes are considered into single attack class. In 4 class classification, the next most prominent 

class, according to Fig. 18.  Generic and Exploits are considered separately and the rest of the attack 

classes are considered into single attack class.  This has continued further and finally, in 10 classes 

classification all the attack types were considered individually and represented by their attack 

names. The aim is to maximize the accuracy of detecting all attack classes but due to unbalanced 

data from Table 4-9, evaluation is also performed on the basis of considering non-prominent attack 

classes into single attack class. The flow of implementing SAE and DBN on UNSW-NB-15 dataset 

is a way similar to the implementation of SAE and DBN on NSL-KDD dataset. The only difference 
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is from UNSW-NB-15 dataset, 43 features were considered where are in NSL-KDD dataset we 

have 41 features.  

Table 5-7: Attack class classification UNSW-NB-15 dataset 

No. of 

Classes 

Attack Type 

Generic Expl

oits 

Fuzz

ers 

DoS Reconn

aissance 

Analysi

s 

Backd

oor 

Shell

code 

Worms 

2 

Classes 

X X X X X X X X X 

3 

Classes 

− X X X X X X X X 

4 

Classes 

− − X X X X X X X 

5 

Classes 

− − − X X X X X X 

6 

Classes 

− − − − X X X X X 

7 

Classes 

− − − − − X X X X 
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8 

Classes 

− − − − − − X X X 

9 

Classes 

− − − − − − − X X 

10 

Classes 

− − − − − − − − X 

 

5.9.3. Injection attack dataset 

For injection attack dataset, the attack classification is simple. As the output of the deep learning 

algorithm is binary in case of injection attack dataset, the output can be simply classified into either 

normal data or to a specific attack data i.e. normal or measurement injection attack or else normal 

or command injection attack.  
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6. Results and evaluation 

This section presents the important results obtained through the implementation of the proposed 

approach using deep learning to secure ICS against cyber-attacks. The results of the individual 

deep learning algorithms on different datasets are discussed individually and presented in Appendix 

B by computing the necessary performance metrics. An evaluation is performed to identify the best 

algorithms for detection of attacks, followed by comparing the obtained results with the existing 

literature.  

6.1. Selected results 

This section provides a detailed evaluation based on the deep learning algorithms implemented in 

the scope of this thesis for securing ICS against network and injection attacks. The evaluation is 

differentiated into two section based on the types of attacks identified using deep learning models.   

6.1.1. Deep learning models for network attacks 

The deep learning algorithms performed efficiently in identifying the network attacks from the 

datasets. But each proposed algorithm has different detection accuracies for different attack types 

in different datasets.  

NSL-KDD 

Table 6-1: Classification accuracies of deep learning algorithms on NSL-KDD dataset 

 

Type of Deep 

Learning 

Algorithm 

 

Attack Classes 

Over all 

Detection 

Accuracy (%) 

Normal 

(%) 

DoS 

(%) 

Probe 

(%) 

R2L 

(%) 

U2R 

(%) 

CNN 98.10 86.60 87,70 0 0 80.33 

SAE 89.65 97.80 78.60 46.43 53.84 90.95 

DBN 89.18 96.06 83.81 83.91 15.38 91.14 
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The summary of the proposed deep learning algorithms performance with best detection accuracies 

for different attack classes in NSL-KDD dataset is given in Table 6-1. Despite having the good 

detection accuracies for individual classes, the overall detection accuracy is low, this is due to the 

irregular distribution of attack samples in the dataset.  

 

Figure 53: Overall detection accuracies of deep learning on NSL-KDD dataset 

From Fig. 53, it is clear that the CNN algorithm was able to perform well for the detection of 

normal classes with higher accuracy in all categories. In the next level, SAE algorithms are good 

at detecting attack classes such as DoS, U2R attack classes. Detection of the attack class probe is 

not bad in comparison to CNN and DBN but DBN outperformed SAE and CNN for detection of 

probes in 4 class attack classes, but CNN performed well for probe attack in 5-class attack 

classification. The combination of multiple deep learning algorithm is found only advantageous in 

identifying the R2L attack class with accuracy, but its performance is limited in all other variations. 

The combination of SVM for deep learning seems advantageous if we look at 3-class attack 
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classification for identification general attack class. Due to this reason, the analysis on UNSW-NB-

15 was only performed on the deep learning algorithms combined with the SMR.    

UNSW-NB-15 

The summary of the proposed deep learning algorithms performance with best detection accuracies 

for different attack classes in UNSW-NB-15 is given below. From Fig. 54, it is clear that the CNN 

algorithm performs well for a smaller number of classes with good accuracy. With the increase in 

classes, decrease in number of samples for other classes, the performance of the CNN is degraded. 

On the other hand, SAE performs good for multiple attack classes with better accuracy. Until 7 

class classification, i.e., identifying, normal, generic exploits, fuzzers, DoS and reconnaissance 

SAE was able to detect them. From 8 class classification no algorithm performed well but SAE 

was able to detect some samples of analysis, backdoor and shellcode. Worms are the only attacks 

in the UNSW-NB-15 dataset, which were unable to be detected by and deep learning algorithm. It 

is obvious as the number of samples for attack class worms is too less in comparison to other 

classes. In some cases, DBN produced similar results to the SAE. But with an increase in attack 

classes, DBN was unable to maintain the accuracy for the attack classes with more samples. But 

the precision of DBN detection is higher in relation to SAE for the attack classes with more 

samples.   

Benchmark 

In order to evaluate the efficiency of the proposed approach with other existing approaches, a 

comparison of the obtained results is done with the existing techniques discussed in Chapter 3. As 

NSLK-KDD dataset is the most common dataset used for evaluating the performance of the 

algorithm, a benchmarking is also done using the NSL-KDD dataset. Most of the existing 

techniques evaluated the performance of the algorithm based on the overdetection accuracy of the 

algorithm by considering only 2-classes. Hence the benchmarking is also done using the same 

approach. The following Fig. 55. provides the overall detection accuracies of the existing 

techniques and our approach. 

The red line in the Fig. 55 gives a comparison of the detection accuracy of the proposed deep 

learning approach with the other existing approaches. There exist some techniques which provide 

better detection accuracies than our approach, which crosses the red line. This is due to the use of 
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a single attack class for classification or using the same training dataset for training and testing of 

the machine learning technique.  
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Figure 54: Overall detection accuracies of deep learning on UNSW-NB 15 dataset
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Figure 55: Benchamrking detection accuracies of NSL-KDD dataset with exisitng daapproaches 

The proposed CNN architecture was able to perform much better than the existing CNN models. 

A benchmarking is performed with other existing techniques and the results look promising. The 

comparison is provided in Table 6-2. 

Table 6-2: Benachmarking detection accuracies of propsed CNN algorithm on NSL-KDD dataset.  

Technique Accuracy (%) 

CNN - ResNet 50 79.14 

CNN - GoogLeNet 77.04 

CNN - Proposed 

Approach 

91.14 

 

The benchmarking of the performance of deep learning was unable to perform on UNSW-NB 

dataset as limited research is performed using this dataset is available and due to the prominence 

of the NSL-KDD dataset, the latest research's still use the same for evaluating their algorithms 

rather than UNSW-NB-15. Due to the development of application specific CNN algorithm, our 

proposed algorithms were able to perform even better on UNSW-NB15 dataset compared to NSL-

KDD dataset.   
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6.1.2. Deep learning models for injection attacks 

The deep learning algorithms performed efficiently in identifying the injection attacks from the 

extracted basic features of the generated datasets. But each proposed algorithm has different 

detection accuracies for different attack types in different datasets.  

Measurement injection 

The summary of the proposed deep learning algorithms performance with best detection accuracies 

for identifying measurement injection attacks classes in generated process control plant dataset is 

given in Table 6-3. 

Table 6-3: Classification accuracies of deep learning algorithms on measurement injection attacks 

Type of Deep 

Learning Algorithm 

Attack Classes Over all Detection 

Accuracy (%) Normal (%) Attack (%) 

CNN 97.50 94.90 96.70 

SAE 97.44 96.69 97.18 

DBN 86.39 88.51 87.11 

 

 

Figure 56: Overall detection accuracies of deep learning algorithms on measurement injection 
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From Fig. 56. we can see that, the performance of SAE is good for the detection of measurement 

injection attacks in relation to DBN and CNN. The detection accuracies of the CNN algorithm is 

nearly equal to the performance of SAE but DBN performs significantly low for the detection of 

measurement injection attacks.  

Command injection 

The summary of the proposed deep learning algorithms performance with best detection accuracies 

for identifying command injection attacks classes in generated process control plant dataset is given 

in Table 6-4. 

From Fig. 57 we can see that, the performance of DNB is good for detecting normal data samples 

in command injection dataset while SAE performs better for identifying the command injection 

attacks. Even, the detection accuracy of the SAE for normal is almost equivalent to the detection 

accuracy of the DBN. DBN performance significantly poor for detection of the attack classes for 

command injection. The performance of CNN is comparable to the performance of SAE in 

identifying the command injection attacks.   

Table 6-4: Classification accuracies of deep learning algorithms on command injection attacks 

Type of Deep 

Learning Algorithm 

Attack Classes Over all Detection 

Accuracy (%) Normal (%) Attack (%) 

CNN 95.90 92.70 94.90 

SAE 97.07 94.11 96.09 

DBN 97.45 57.05 84.13 

 

Similar to UNSW-NB15 dataset, a benchmarking the performance of the injection attack dataset is 

not possible as the dataset had been generated for this specific application internally from the 

department. Nevertheless, the results from the proposed approach looks promising and 

implementation of deep learning algorithms in this domain brings a significant advantage.  

Apart from mentioning the accuracies, additional performance metrics precision, recall, and F-

measure of the individual algorithms were also analyzed. As detailed analysis of individual 

algorithms and their performance metrics are mentioned in Appendix B. 
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Figure 57: Overall detection accuracies of deep learning algorithms on command injection 

6.1.3.  Hybrid deep learning algorithms 

The implementation of hybrid deep learning algorithms was performed on NSL-KDD dataset. A 

summary of the proposed hybrid algorithms performance with best detection accuracies for 

different attack classes in NSL-KDD dataset is given in Table 6-5. 

Table 6-5: : Classification accuracies of different hybrid deep learning algorithms on NSL-KDD dataset 

 

Type of Hybrid 

Deep Learning 

Algorithm 

 

Attack Classes 

Over all 

Detection 

Accuracy (%) 

Normal 

(%) 

DoS 

(%) 

Probe 

(%) 

R2L 

(%) 

U2R 

(%) 

SAE+SVM 91.47 96.05 78.60 65.72 19.23 91.71 

DBN+SVM 92.06 95.33 75.19 35.57 46.15 91.23 

SAE+DBN+SMR 90.56 95.79 78.21 49.74 21.11 90.92 

SAE+DBN+SVM 89.90 95.36 81.03 86.43 44.23 91.02 
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6.1.4. High performance model 

The proposed deep learning models are trained using the multi-core CPU's and GPU's for training 

the algorithm faster. The observations are mentioned in the Table 6-6 and Table 6-7.  

Table 6-6: Training and Fine-tunings times of different deep learning algorithms on different CPU's 

 

Technique 

Intel 2 Quad Q 8400 Intel i7 – 4720 HQ 

Pre-training 

(min) 

Fine-Tuning 

(min) 

Pre-training 

(min) 

Fine-Tuning 

(min) 

SA+SMR 157.25 7.36 123.73 5.94 

SA+SVM 157.6 8.01 123.6 6.54 

DBN+SMR 149.01 7.15 113.66 5.29 

DBN+SVM 144.33 8.89 113.58 6.91 

 

Table 6-6 gives an overview of the training time of different deep learning algorithms on two CPU's 

i.e., Intel 2 Quad Q 8400 and Intel i7 4720 HQ. Despite both being quad core processors, the 

number of threads on Q 8400 are 4 whereas on i7 4720 HQ there are 8 threads. This makes it a 

little faster in the training process. Both processors have a processor base frequency of 2.60 GHz. 

But i7 4720 HQ is equipped with max turbo frequency of 3.60 GHz. Q 4800 has 4MB cache where 

are i7 4720 HQ has 6MB cache. These are some parameters which make the performance 

improvements in the training process.   
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Table 6-7: Training of deep learning algorithms on different hardware accelration platforms in serial and 

parallel modes 

Hardware Training Time (in Sec) 

Intel Core i7 – 4720 HQ Serial 471.761888 

Parallel 147.423094 

Intel Core i7 - 4790 Serial 260.049666 

Parallel 108.583120 

Nvidia GeForce GTX 960M 132.5080829 

 

Intel Core i7 – 4720 HQ 

+ 

Nvidia GeForce GTX 960M 

 

145.593437 

 

Table 6-7 gives an overview and comparison of implementing the training process of a deep 

learning algorithms on CPU and GPU. As well as implementing the algorithms in a serial and 

parallel mode on the CPU's. With 8 threads, 3.60 GHz base frequency and 4.00 GHz turbo 

frequency and 8 MB cache makes the CPU i7 - 4790 much efficient in parallel mode of operation. 

This makes clear that the base frequency and the dataset types play a crucial role in the use of high-

performance models.   
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6.2. Evaluation 

All the algorithms discussed in the scope of this thesis can be interpreted as a complex form of the 

neural networks. The main difference between them would be the level of network hardwiring 

between the layers and on the training algorithms which they rely for updating the weights. In SAE, 

the information flow unidirectionally from the input layers, through the hidden layers, up to the 

output layers. Where as in DBN, the information flows both ways between the visible (input / 

output and the hidden layers) and the hidden layers. CNN differs from these two in different way. 

In CNN, instead of learning single global weight matrix between two layers, the aim to find a set 

of locally connected neuron. SAE and DBN are usable in applications with having huge sets of 

numerical data, whereas CNN are applicable on images or the datasets that are converted to the 

format of a 2D matrix, as is it done in the scope of this thesis.   

SAEs are, in general good for the neural transformation to reconstruct the inputs in an efficient 

manner. The hidden layers learn the set of latent features. While DBN learns the joint probability 

of the input data using stochastic distribution. CNN learns the local correlation between the input 

data based on the filter kernels.  

Based on the observations for the development of IDS using deep learning, it is clear that SAE and 

CNN outperform the DBN. This is due to the input data and network architecture. The given input 

samples are either features of a single network packet in case of network attacks or a set of features 

from 10 samples which already hold a correlation between the data samples. Due to this reason, 

DBN was unable to perform well in the learning process in comparison to SAE and CNN. SAE 

and CNN were able to extract the complex relations between the input samples and try to adjust 

the network based on the feedbacks. 

It is important to understand that none of the deep learning algorithms by themselves are classifiers. 

They are coupled with either SMR or SVM. Despite the proved classification capabilities of SVM, 

SMR performed better in coupling with deep learning algorithms. Due to this reason, SMR are 

wieldy used in relation with deep learning in comparison to SVM. 

The learning time of SAE algorithms is less in comparison to CNN. Therefore, the applications 

where a fast learning curve is necessary, SAE are better recommended in relation to CNN. Due to 
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the computing intensive convolution operations and a huge set of images, CNN consumers a lot of 

time and resources.  

SAE are good and applicable for dataset with less amount of data but with more classes. From the 

results of SAE performance on UNSW-NB15 dataset, it is clear that SAE is capable of learning the 

attack classes even with less number of samples in contrast, CNN requires huge dataset but they 

learn more efficiently. 

From the experience gained in the scope of this thesis some recommendations are made which 

correlated the input factors to the network infrastructures. The recommendations are scaled 

between 1 (Low) to 10 (High). Table 6-8 provides an overview of such recommendations.  

Table 6-8: Recommendation of the deep learning algorithm in realtion to the input parameters 

Parameters / Network Type SAE DBN CNN 

No. of feature - More 7 5 10 

No. of features - Less 9 6 5 

No. of Outputs / Classes - More 7 6 9 

No. of Outputs / Classes - Less 9 6 9 

Types of features - More 7 5 9 

Types of features - Less 9 6 6 

Size of the dataset - More 8 7 10 

Size of the dataset - Less 9 6 4 

Network Hardwiring 6 7 10 
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From the above Table, we can see the DBN are not so much suitable for the development of cyber 

security strategies.  

Along with the input parameters, the types of input parameters given to the deep learning 

algorithms also play a significant role in the detection accuracy. Table 6-9 provides the 

recommendation of using the specific deep learning algorithm for a specific input data type.  

Table 6-9: Recommendation of the deep learning algorithm in realtion to the input data types  

Data types / Network Type SAE DBN CNN 

Numeric 8 7 10 

Binary 3 3 8 

Discrete 7 6 9 

Continuous 8 7 10 

Categorical 4 3 6 

String 4 3 9 

 

From the above recommendations, we can provide a way or an approach to build a deep learning-

based security concept. For example, below Fig. 58 gives an approach in implementing the security 

of an ICS for injection attack.  
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Figure 58: Sample recommendation of deep leanring security concept on injection attacks 

 In Fig. 58, we can see the red arrows. These red arrows show the way of developing the security 

concept for injection attacks. From Fig 58, we can see that if we get the sensors data from a process 

control plant. We use the data cleaning approaches, such as filters and pre-process the data. After 

pre-processing, different statistical and mathematical features can be extracted from the sensor 

data. Based on the recommendations mentioned in Table 6-8 and 6-9, SAE can made as a choice 

if deep learning algorithms. The algorithm is trained with the extracted features and the 

classification in performed. As the dataset is not huge, the use of high-performance computing is 

not recommended for the injection attacks. Similarly, based on the properties of the input dataset, 

such recommendations can be achieved. 

Regardless of many efforts in generalizing, every deep learning is application specific and data 

driven. The performance of the algorithm may vary based on the requirements and the data used. 

The above recommendations can be taken into consideration while developing an application based 

on  deep learning algorithms. 
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7. False data injection attacks toolbox in MATLAB/Simulink 

This section provides the efforts made in the direction and development of the injection attack 

toolbox simulated in MATLAB/Simulink. Proposed toolbox is available for download in GitHub 

[184]. The types of attack simulated are in accordance to Table 2-1. 

 

Figure 59: MATLAB/Simulink window of attack injection toolbox 

7.1. Naïve Malicious Response Injection (NMRI) attacks 

"Industrial control systems use polling techniques for continuously monitor the remote process. 

Polling is the process in which the transmission of queries is done between the client and server 

with a response packet from the server to the client. It provides the information about the Human 

Machine Interface (HMI) i.e. monitor and store the processed measurements and implement the 

response with reference to the processed measurements of the control parameters as it’s the part of 

the feedback control loop [20]" [26].  

"Here the complete process takes place with digital processing, which can be easily analysed by 

the systems. While in NMRI attack the systems for transmitting the data onto client to server and 

server to client which induced with process measurements along with invalid process 

measurements which effect the complete feedback control parameters" [26].  
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"The first injection attack can be originated from malicious control of PLC or RTU, while the 

second response injection attack can capture the network packets and alter the content of 

transmission of the server to client. The third response injection may be crafted and injected into 

the network by third party devices. Sometimes the response there might be multiple reposes to the 

client query about invalid response might be assumed due to a race condition or secondary attack 

such as denial of service attack which stops the server from responding" [26].  

"An NMRI attack is defined as response injection attacks the sensor information and induce invalid 

sensor information, process measurement and also effects the feedback control loop process state. 

Dependent on the type of attack the NMRI attacks are classified in to four different types" [26]. 

Naïve Read Payload Size 

"The Naïve Read Payload size attack is fully based on network protocol technology. This attack 

comes under the classification of NMRI attacks. The query about transactions in between the server 

and client, to send the number of objects or quantity fields should be returned exact same length of 

objects to it. Here, the exact data is unable to read due to a lack of information or details about each 

data object in the packets. Therefore, the few quantities of data or objects are returned as all zeros 

or all ones. Whenever the data cannot access the exact information about the objects, it is replaced 

by either zeros or ones. Fig. 60 provides the simulation results of the attack in relation to normal 

behaviour" [26]. 

 

Figure 60: Naive read payload size attack behavior 
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Invalid Read Payload Size 

"Here, the number of objects or data from the input register query is neglected. The response to the 

payload size is either larger quantity or smaller quantity of data objected than the requested number 

of objects of input. Whenever the input is not responded to the queries about the client side. The 

response to payload size may be decreased or extending the data size or by creating zeros, ones, or 

any random data into the valid payload size. In Fig. 61 the response of data objects which is 

neglected by the input query and which is returned into the all ones. This is shown as dotted lines 

from sine wave to value of data is ones. Cross notation describes about the error response in the 

size of the valid payload attack" [26]. 

 

Figure 61: Invalid read payload size attack behavior 

Naive False Error Response 

"The term itself defines, the sender sends the packets to the client and the packets are returned to 

the client after read command which is a falsified error value. The NMRI attack can send the 

random codes to the client, which fall into the legal range codes. Otherwise, it comes under the out 

of range of given random codes. Simply, it is outside of the legal range values" [26]. 

"From Fig. 62, the injected response is denoted by the cross-dotted lines. When the attack occurs, 

the random codes are either in legal range or outside of the range. Here, legal range is from 20 to 

70 and data codes due to error response in the system the codes are returned into below or legal 

range" [26]. 
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Figure 62: Naïve false error response attack behavior 

Sporadic Sensor Measurement Injection 

"It is an NMRI attack which sends the sporadic false process measurement injection, which resides 

outside the bounds of High (H) and Low (L) control set points but doesn’t raise up to an alarm set 

point bounds of High High (HH) and Low Low (LL). Generally, the motor on and off cycle are 

decided by the High (H) and Low (L) set points of the controller, which are received from the 

sensor. There is a physical delay while switching between on and off of the motor which are outside 

the setpoints of High (H) and Low (L). But, the NMRI attack differs from the rest as response 

injects sporadic process measurements that affect the tank’s setpoints" [26]. 

"From Fig. 63, the input signal is the motor signal and the attacked injections are clearly depicted. 

The injection system defines the sporadic process measurements, which affect the sensor to detect 

the changes in the set points High (H) and Low (L). The shift in the water level from 12 to 8 to 

different set points in the graph at specific error points represents the injection of sporadic process 

measurement, which intern changes the tank’s water level" [26]. 
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Figure 63: Sporadic sensor measurement attack behavior 

7.2. Complex Malicious Response Injection (CMRI) attacks 

"These attacks a bit highly sophisticated than NMRI and require a greater understanding of the 

CPS. They always tend to mask the physical response, which affects the negative feedback control 

loop [20]" [26].  

Slope Sensor Measurement Injection 

"It is a CMRI attack in which the calculated process measurements are injected. The sensor 

measurement might increase or decrease the trend based on the system. The attack masks the actual 

state of the physical process by masking the feedback of the control loop. The attacker sends the 

pre-calculated process measurements that make the system shift from normal behaviour to 

abnormal behaviour and tend to shift the system in critical state" [26]. 

"The graph is taken from the example of the water tank system. From Fig. 64, the sensor gets 

effected, which intern affects the physical change such as water level. The physical change of 12 

to 5 sets a different setpoint. This effect will also change the behaviour of the motor switching 

cycle. If the sensor sends the water flowed lower than the normal High (H) the motor turns off and 

when it reaches to lower Low (L) set point the motor should turn on. This switching behaviour will 

affect the set points and replaces with new set points. The plot represents the change in behaviour 
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of the motor switching cycle with changes to the behaviour of the motor at attacks injected and the 

shift in motor switching is clearly visible" [26]. 

 

Figure 64: Slope sensor measurement attack behavior 

High slope measurement injection 

"It is a CMRI attack that sends repeatedly process measurements containing the same 

measurements to mask the real state of the system. The process measurement parameters are 

completely captured and then the same signal is repeated to make the impression that the system is 

running normally to the client" [26].  

 

Figure 65: High slope measurement attack behavior 
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"The simulating of the attack is primarily focussed on the capturing of the sensor signal and 

replaying it. From Fig. 65 we can see that the signal is captured for an instance of time and then 

the same signal is repeated. The representation of the original signals is represented in crosses and 

the repeated signal is represented as circles" [26].  

High Frequency Measurement Injection Attack 

"This CMRI attacks attempt to mask the original system physical behaviour, which is controlled 

negatively to affect the control loop system and it is managed by cyber physical behaviour system. 

In this attack, the measurement process of frequency will increase to the extended values than the 

normal rate. Frequency attacks look like normal system functionality. But it changes the system 

behaviour, which changes the process due to masking" [26]. 

 

Figure 66: High frequency measurement injection attack behavior 

"Fig. 66. for example, consider the water tank storage system. The graph shows the measurements 

are changing in the water storage tank level before and during the frequency injection attack. The 

injected response (cross-dotted line) is represented during water tank system under attack and the 

normal input signal is without being attacked. Whenever the frequency is injected suddenly, the 

water liquid level is increasing and decreases rapidly. Because this attacked system appears to the 

normal system behaviour in a different time, and also handle the misconfigured system by an 

operator. Such a simulated period of water level changes during high demand which in reality, the 

system is being attacked due to the falsified response" [26]. 
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7.3. Malicious State Command Injection (MSCI) attacks 

"These attacks inject invalid commands which cause incorrect control actions in the feedback 

control loop. These attacks mostly occur where human intervention is minimum as supervisory 

control takes over all the integral part and operated by few operations limiting the human interface. 

In these systems, hackers have a greater advantage of injecting the false supervisory control 

parameters in the control system network. Most of the remote terminals and intelligent electronic 

devices are generally programmed to monitor the system automatically and control the physical 

process when needed or via the remote interface. So, the hackers include a similar logic and take 

control of the control system, and these attacks are termed as Command Injection attacks" [26].  

"The effects of the command injection attacks are  

• Send false control and false configuration commands to alter the system behaviour.  

• It impacts the loss of process control and also interrupts the device communication.  

• It affects the unauthorized modifications of device configurations.  

• It also includes unauthorized modifications of process set points.  

Command injections are grouped into three categories as Malicious State Command Injection 

(MSCI), Malicious Parameter Command Injection (MPCI), and Malicious Function Code Injection 

(MFCI)" [26]. 

Altered System Control Scheme 

"It is an MSCI attack which changes the control mode from automatic to manual. In automatic 

mode, the complete system is operated on PLC control, but in manual mode, each and every 

operation should be monitored and controlled by the operator. It leads to various parameter changes 

which affect the system response. The increase or decrease in any parameter could trigger an alarm 

response which also includes the operator to take control. After switching into the manual mode, 

the operator loses the full control of the system and able to make changes w.r.t. the control 

parameters" [26]. 
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Figure 67: Altered system control scheme behaviour 

"From Fig. 67, the system is represented as a signal of PID controller obtaining the saturation value. 

After saturation, it shifts from automatic to manual. The manual mode is represented by a different 

signal" [26]. 

Altered Actuator State 

"It is an MSCI attack. The change of actuator state from on to off or vice versa. The change of 

actuator is done continuously. The change of actuator will also affect the system behaviour and 

make changes into the physical devices. It is represented in Fig. 68" [26].  
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Figure 68: Altered actuator state behaviour 

 

7.4. Malicious Parameter Command Injection (MPCI) attacks 

"Here the attack parameters are changed and it causes the system to perform incorrect control 

actions. Here the setpoints are changed which leads to other changes in the system behaviour" [26]. 

"The tank model described above is considered, and modifications are done w.r.t the attack. In the 

attack, the state of the actuator must change from ON to OFF or OFF to ON along with the physical 

change associated to it. Fig. 69, describes the implementation of the tank system actuator state. The 

change in the actuator is represented by crossed line (injected response) while the original actuator 

state is represented by the dotted line (Input signal)" [26]. 

 Altered Control Set Points 

"It is an MPCI attack. The changes in the setpoints of the tank in the control schema of the feedback 

control system occur. The change in the set points lead to the change in the system behaviour and 

may trigger other critical response signals. The operator doesn’t have any idea of changes in the 

system but the values of the system itself. The change in system behaviour may damage the system 

or leads to work the plant in the critical state which could lead to sudden failure of the complete 

plant" [26].  
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Figure 69: Altered control set points behaviour 

"Fig. 69. represents the changes in the tank set points takes place which is represented in straight 

line. The change in set points High (H) and Low (L) in the water tank. The change occurs at 

instances where the injection response takes places. The other physical changes such as a change 

in output are also represented in the figure with a thick line. The water tank model is preferred, and 

with the change of the water level set points, the physical change of the motor switching and the 

feedback loop is also affected" [26]. 

7.5. Malicious Function Code Injection (MFCI) attacks 

Force Listen Only Mode 

"This Malicious Function Code Injection (MFCI) attacks comes under the subclasses of command 

injection attack. This attack causes a server to no longer transmits the data to the network. 

Normally, most of the industrial control systems are using polling techniques, such as HMI. The 

term itself says, machine to machine communication. These interfaces normally well designed in 

the combination of hardware and software products and these are enabled to all users to provide 

inputs which are converted into machine language signals. Then, these signals are processed and 

provide the desired response to the users. HMI called with different names, namely computer-

human interface, human-machine interface. That means, HMI software checks the status of the 

data periodically from servers. These interface software’s display the data to the human operators. 
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So that, they can control the supervisory actions based upon the state of the current system. This 

attack is made through the MATLAB GUI" [26]. 

 

Figure 70: Force listen only mode behaviour with GUI 

 

"The signal queries sent by the client to the server. The server accepts the data and sends the 

acknowledgement and response to the queries to the client. This kind of interaction of various 

devices which are designed in a way human to machines handling and vice-versa is done reliability. 

Whenever the system data is affected by the third party (attacker) in between the server and client. 

The attacker controls the queries response to the client from the server. This leads to loss of 

visibility of data and control. As shown in Fig. 70. the attacker induced some sort of data into the 

system’s data. Therefore, the client unable to get the results of his queries and lose the data visibility 

and control of the data. That means the data is received by server, but it is read only mode due to 

the hands-on control by attacker" [26]. 

Restart Communication 

"The restart communication defines as, the data is in communication between from sender to 

receiver. The data restarts irrespective of time before it receives the entire data completely to the 

receiver’s side, is called restart communication. While the process of communication of data is 

unexpectedly restarted and it leads to temporary loss of data. Due to this, the data causes lags in 
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communication and during this time it provide the default value and no communication takes place 

in a meanwhile. These data lags lead to major interrupts in the communication in between them" 

[26]. 

 

Figure 71: Restart communication attack behavior 

"From Fig. 71, we can observe sine wave signal, which is modified from sender to receiver. During 

the modification of the signal, communication is restarted at multiple time intervals. The attacker 

injects the error communication, which is denoted by the straight line and error response is the 

crossed-straight line. In between the data is lost due to restarting the system which leads to loss of 

data and also effects the system communication" [26]. 
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8. Conclusion and Future work 

In this chapter, the summary of the research is detailed within the scope of this thesis. The work 

has demonstrated the use of applying the deep learning algorithms for securing the ICS against the 

cyber-attacks. For this purpose, the available and relevant literature is reviewed. Later, the 

proposed implementations were applied on the different datasets. The performance of the 

algorithms is evaluated in detail for network and injection attacks using different metrics. The 

results from the proposed approach looks promising. This chapter also presents some initial 

thoughts about the directions for future research.     

8.1. Conclusion 

Cybersecurity in ICS infrastructures gains in size and complexity at a fast pace. Their protection 

priorities exceed the existing threats processing capabilities. Hence, it is crucial to investigate 

methods which not only achieve high detection accuracy but are also capable in handling the 

current network traffic and data flow demands. To achieve these trending demands, the security 

strategies should bring intelligence, self-adaption and automatic novel threat detection.   

The key issues of this thesis are: 

• Exploring the existing research on the intrusion detection and multi-class classification 

• Development of deep learning algorithms for network attack detection and multi-class 

attack classification 

• Development of deep learning algorithms for injection attacks in ICS 

• A toolbox for the simulation of multiple injection attacks dataset in ICS  

From the available literature, this thesis broadly classifies the possible attacks on ICS into two 

categories, i.e. network attacks and injection attacks. These attacks are further classified into 

different attack types based on the attacks presented in the available datasets. A detailed description 

about these attacks and their effects on the security priorities of ICS are discussed in detail in 

Chapter 2.  

As security on ICS is not a new area of research, it found that there exists a huge amount of research 

for the development of IDS using different ML techniques for the identification of network attacks. 

The most relevant literature is discussed in Chapter 3. From this, it is observed that firstly, either 

these researchers not considering the complete dataset while training or not considering the attack 
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classes for classification. Secondly, existing mechanisms have huge false positives even for 

classification of normal network behaviour. Another finding from the literature review is, there 

exist very seldom research work in the development of security strategies against injection attacks 

in ICS infrastructure.  

This thesis has proposed an approach of extracting different complex features out of the network 

packets and datagrams to understand the behaviour of normal and attack behaviour in ICS. 

Different deep learning algorithms such as SAE, DBN and CNN were implemented for extraction 

of proper features. These algorithms are coupled with different classification algorithms like 

SoftMax regression and SVM. A discussion on the proposed concept and the usage of different 

deep learning algorithms is mentioned in Chapter 5. It discusses the basics of deep learning 

algorithms followed by the implementations with detailed architectural details.  

Initially, the developed algorithms are trained with the training dataset and are validated. The 

validation is performed efficiently to avoid overfitting and underfitting of the network. These 

trained deep learning algorithms are tested with the test datasets. Different performance metrics 

such as accuracy, precision, Recall and F-Measure were computed and the efficiency of the 

algorithms is evaluated. 

The developed algorithms are trained and tested with different datasets for evaluation. NSL-KDD 

and UNS-NB-15 datasets were used for the development of deep learning algorithms against 

network attacks. The details about the dataset and the attack types present in this dataset are 

discussed in Chapter 4. For the development of deep learning algorithms against injection attacks, 

a dataset is simulated using a process control plant. Injection attacks such as command injection 

and measurement injection were incorporated into the dataset efficiently. A more detailed 

discussion on the dataset is done in Chapter 4.      

The summary of obtained results were discussed in Chapter 6. A detailed analysis of different deep 

learning algorithms for intrusion detection on different datasets is performed. The analysis shows 

that the deep learning algorithms are efficient in detecting the attacks more accurately in 

comparison to the existing machine learning models discussed in the literature. From the 

evaluation, it is clear that each algorithm has has its efficiency for certain types of attacks on certain 
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datasets. Hence, some recommendations are made in the evaluation section which algorithm can 

perform good on which types of input datasets and their characteristics.   

After the development of the deep learning algorithms for securing ICS against injection attacks, 

it is observed that in order for further development of these security mechanisms it is necessary 

that the proposed deep learning algorithms need to train for more attack classes. For this purpose, 

an injection attack toolbox is developed and discussed in Chapter 7. This toolbox paves the way 

for future developers to generate the dataset based on their application and requirements. 

Although the proposed deep learning algorithms are efficient in identifying the attacks efficiently 

in comparison to the existing machine learning algorithms, to match with the existing network and 

data bandwidths, it is still necessary to work on the false positives. Handling of an imbalanced 

dataset through the extraction of proper features is done until some extent. But, after observing the 

results it is found that more effort in the direction of handling imbalanced dataset is necessary for 

more efficient intrusion detection. 

Finally, we can conclude that the intrusion detection in ICS is a highly active research area. Deep 

learning algorithms are helpful and efficient in fulfilling the task of intrusion detection and play a 

major role in securing ICS from novel attacks. During this thesis, some efforts are made in this 

direction, but still some research questions and challenges do exist.   

8.2. Future work 

The work performed in this thesis provides a basis for future research of developing the IDS in ICS 

domain. One of the future works is applying a broad range of features for anomaly-based intrusion 

detection. These features need to be flow-based and calculated in real-time to enable the detector 

to handle the existing gigabit network speeds. Furthermore, a customized deep learning algorithm 

should be devised to minimize the CPU and memory consumptions of the intrusion detectors. It is 

also advantageous to work on an efficient random sampling method to reduce the huge number of 

flows that are fed to the system as the training dataset. 

One of the areas that need a lot of improvement is the fusing different algorithms in developing an 

effective intrusion detection system. Techniques such as Dempster’s rule of combination is proved 

to be good, assigning the probabilities are quite challenging. This can be developed by either 

applying more features or utilizing a more efficient clustering techniques. 
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As discussed in thesis, the training of an individual deep learning algorithms requires a lot of 

training time. Acceleration of the training process is an important requirement in present world due 

to the availably of new threat every day. Although the use of acceleration platforms such as GPU’s 

improve the training speed, development of algorithm specific hardware for deploying the 

developed IDS in industrial networks is advantageous. Hence, the research can also be carried out 

in this direction.  

Despite several unsupervised techniques exists for the development of IDS, this thesis concentrated 

mainly on the supervised approaches to decrease the false positives and get better accuracies. Use 

of efficient clustering algorithms by cascading multiple ML algorithms such as SOM with HMM 

or Fuzzy C Means Clustering with Decision trees can improve the detection of anomalies/intrusions 

that are not foreseen.  

Most of the injection attacks detection algorithms are trained with limited datasets that are 

generated or simulated offline. In reality, ICS generated a huge amount of data per day. So, looking 

into the direction and application of handling big data strategies such as data storage, parallel pre-

processing and efficient feature extraction techniques are necessary.  

All of the proposed algorithms and methods in this thesis could only be used for a static dataset of 

IDS. None of them could be directly applied as a real-time intrusion detection system. Real-time 

IDS require a response in time and it usually deals with data according to the instance. Deep 

learning algorithms could be used on real-time IDS, but it needs more improvements and testing 

in practice.  
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Appendix A 

Notable Cyber Attacks on Industrial Control Systems 

Siberian Pipeline Explosion 

A (Central Intelligence Agency) CIA to sabotage Soviet Industry by dumping Moscow into stealing 

booby-trapped software was spectacularly successfully when it triggered a huge explosion in a 

Siberian gas pipeline. The CIA inserted a hidden code into computer software illegally obtained 

by the Soviet Union. This software includes a Trojan Horse. The pipeline software that was to run 

the pumps, turbines, and valves was programmed to go haywire after a decent interval, to reset 

pump speeds and valve setting to produce pressures far beyond those acceptable to the pipeline 

joints and welds. The result was the most monumental non-nuclear explosion and fire ever seen 

from space in June 1982 [185] [186]. 

German Steel Mill Breach 

"In December 2014, the German Government’s Bundersamt für Sicherheit in der 

Informationstechnik (BSI) (translated as the Federal Office for Information Security) issued a 

report about a cyber attack on a steel mill that resulted in significant damage to the facility. The 

attack has received extensive publicity (from the BBC to YouTube) since then, while the technical 

details of the attack have been released by SANS [187] " [188]. 

"The BSI report stated that adversaries targeted industrial operators with spear phishing emails, 

which was observed in the HAVEX (targeting OPC communications) 1 and BlackEnergy Version 

2 2 (targeting human-machine interface (HMI) products) malware threats. The attacker, described 

as an advanced persistent threat (APT) attacker, followed a pattern that is described as a “cyber kill 

chain” [189] to target the facility. At the first stage, the attacker sent out phishing emails to 

industrial operators and made use of social engineering techniques to gain access to the network. 

Those emails, which were attached with malicious documents (such as PDFs), once opened, 

executed malicious code that targeted an application vulnerability in the facility’s corporate 

network. The attacker worked his/her way to the production network, i.e., industrial control system 

(ICS)). Owing to the connection between the corporate network and the production network, the 

exploitation of a vulnerability in the corporate network opened a remote connection point, allowing 

the attacker access to the production network. The second stage of the attack was the compromise 

of small sets of workstations. Once workstations were totally in his/her control, the attacker moved 
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into the plant network. Then, the attacker destroyed a blast furnace in the plant network by initiating 

its security settings in time, causing serious damage to the infrastructure. It took months to replace 

damaged equipment due to the need to remove and replace large pieces of machinery" [188].  

Ukrainian Electric Disruption 
 

"On 24, December 2015, TSN (a Ukrainian news outlet) released a report about power outages 

caused by a cyber attack 1. Numerous reporting agencies and independent bloggers, including the 

Washington Post, SANS Institute, New York Times, the BBC, CNN, Fox News, as well as the E-

ISAC, had followed up on the initial TSN report and provided further details of that cyber attack, 

which was targeted at the Ukrainian electric system. The power outage caused by the cyber attack 

affected roughly 225,000 customers for over six hours during a spell of cold whether 2. Those 

outages were due to a combination of BlackEnergy Version 3, unreported backdoors, KillDisk, and 

malicious firmware uploads within the utility’s systems. It was shown that the vulnerabilities in the 

utility (e.g., a lack of two-factor authentication, no resident capability to continually monitor the 

ICS network) had provided the adversary with the opportunity to persist within the environment 

for at least six months in order to conduct extensive reconnaissance and subsequently execute the 

attack 3. The attacks was conducted in three sophisticated, well-planned stages, as shown in Figure 

1.2. During the cyber attack, spear phishing emails were sent out to gain access to the business 

networks of the three regional electric power distribution companies. The remote malicious 

opening of breakers in a number of substations was conducted by using either existing remote 

administration tools at the operating system level or remote ICS client software via virtual private 

network (VPN) connections. Modified KillDisk malware was used to erase selected files on 

targeted systems and corrupt the master boot record. The adversary also caused serial-to-Ethernet 

devices (located at substations) to malfunction at a firmware level. Moreover, the attacker also 

leveraged a remote telephonic denial of service on the energy company’s call centre to ensure that 

the affected customers could not report outages and force the opener goes to move to a manual 

operation system in response to the attacks [190] [191]" [188]. 

The mentioned attacks are just a few but a lot of attacks still exists and every day a new attack is 

being identified. [9] gives an overview of the cyber-attack maps on ICS. These attacks with ability 

to compromise physical equipment are considered as the most trivial forms of attacks on ICS.    
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Appendix B 

Complete Results 

In this section, we can all obtained results in relation to the performance metrics of each and every 

individual algorithm in detail. A summary of these results is presented in Chapter 8 of this thesis.  

B.1. NSL-KDD dataset 

This sub-section provides the detailed overview about the performance of SAE and DBN on the 

NSL-KDD dataset. The summary of the attack classes and their attack types is mentioned in the 

Table 5-6. The results are self explanatory with the titles. 

B.1.1 Stacked autoencoders 

SAE – SMR (2-Classes) 

Table B. 1: Accuracy for 2-class classification on NSL-KDD dataset with SAE+SMR 

 Normal Attack Overall 

Accuracy 89.97 92.70 91.24 

 

 

Table B. 2: Performance metrics for 2-class classification on NSL-KDD dataset with SAE+SMR 

Parameter Normal Attack 

Precision 93.40 92.70 

Recall 89.97 88.95 

F-Measure 91.66 90.79 
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SAE – SMR (3-Classes) 

Table B. 3: Accuracy for 3-class classification on NSL-KDD dataset with SAE+SMR 

 Normal DoS Attack Overall 

Accuracy 88.95 96.18 76.19 90.30 

Table B-4: Performance metrics for 3-class classification on NSL-KDD dataset with SAE+SMR 

Parameter Normal Dos Attack 

Precision 93.04 93.33 82.45 

Recall 92.92 96.13 74.08 

F-Measure 92.98 94.71 78.04 

 

SAE – SMR (4-Classes) 

Table B-5: Accuracy for 4-class classification on NSL-KDD dataset with SAE+SMR 

 Normal DoS Probe Attack Overall 

Accuracy 85.90 97.46 78.65 91.97 89.49 
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Table B-6: Performance metrics for 4-class classification on NSL-KDD dataset with SAE+SMR 

Parameter Normal Dos Probe Attack 

Precision 95.39 94.84 74.87 16.35 

Recall 85.90 97.46 78.68 91.97 

F-Measure 90.40 96.13 79.73 27.77 

 

SAE – SMR (5-Classes) 

Table B-7: Accuracy for 5-class classification on NSL-KDD dataset with SAE+SMR 

 Normal DoS Probe R2L U2R Overall 

Accuracy 89.65 97.80 75.39 46.43 53.84 90.95 

 

Table B-8: Performance metrics for 5-class classification on NSL-KDD dataset with SAE+SMR 

Parameter Normal Dos Probe R2L U2R 

Precision 94.33 95.87 74.87 12.26 2.9 

Recall 89.65 97.80 78.68 46.43 53.84 

F-Measure 91.93 96.83 79.73 19.40 5.51 
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B.1.2 Deep belief networks 

DBN – SMR (2-Classes) 

Table B-9: Accuracy for 2-class classification on NSL-KDD dataset with DBN+SMR 

 Normal Attack Overall 

Accuracy 88.34 94.20 91.07 

 

Table B-10: Performance metrics for 2-class classification on NSL-KDD dataset with DBN+SMR 

Parameter Normal Attack 

Precision 94.59 94.19 

Recall 88.34 87.55 

F-Measure 91.36 90.75 

 

DBN – SMR (3-Classes) 

Table B-11: Accuracy for 3-class classification on NSL-KDD dataset with DBN+SMR 

 Normal DoS Attack Overall 

Accuracy 90.64 95.50 76.23 91.09 

 

 



Appendix B 

___________________________________________________________________________ 

___________________________________________________________________________ 

199 

 

Table B-12: Performance metrics for 3-class classification on NSL-KDD dataset with DBN+SMR 

Parameter Normal Dos Attack 

Precision 92.99 97.40 63.30 

Recall 90.64 95.50 76.23 

F-Measure 91.80 96.44 69.16 

 

DBN – SMR (4-Classes) 

Table B-13: Accuracy for 4-class classification on NSL-KDD dataset with DBN+SMR 

 Normal DoS Probe Attack Overall 

Accuracy 88.30 95.83 83.97 86.53 90.63 

 

 

Table B-14: Performance metrics for 4-class classification on NSL-KDD dataset with DBN+SMR 

Parameter Normal Dos Probe Attack 

Precision 95.33 95.83 76.67 17.84 

Recall 88.30 96.19 83.97 86.53 

F-Measure 91.68 96.01 80.16 29.59 
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DBN – SMR (5-Classes) 

Table B-15: Accuracy for 5-class classification on NSL-KDD dataset with DBN+SMR 

 Normal DoS Probe R2L U2R Overall 

Accuracy 89.18 96.06 83.81 83.91 15.38 91.14 

 

Table B-16: Performance metrics for 5-class classification on NSL-KDD dataset with DBN+SMR 

Parameter Normal Dos Probe R2L U2R 

Precision 95.04 96.41 76.43 23.58 1.15 

Recall 89.18 96.06 83.81 83.91 15.38 

F-Measure 92.02 96.24 79.95 36.82 2.15 

 

B.2. UNSW-NB-15 dataset 

This sub-section provides the performance results of SAE and DBN on the UNSW-NB-15 dataset. 

B.2.1 Stacked autoencoders 

SAE – SMR (2-Classes) 

Table B-17: Accuracy for 2-class classification on UNS-NB-15 dataset with SAE+SMR 

 Normal Attack Overall 

Accuracy 94.62 90.70 92.54 
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Table B-18: Performance metrics for 2-class classification on UNS-NB-15 dataset with SAE+SMR 

Parameter Normal Attack 

Precision 95.40 90.91 

Recall 94.84 89.93 

F-Measure 93.62 91.24 

 

SAE – SMR (3-Classes) 

Table B-19: Accuracy for 3-class classification on UNS-NB-15 dataset with SAE+SMR 

 Normal Generic Attack Overall 

Accuracy 93.86 96.68 91.46 94.68 

 

 

Table B-20: Performance metrics for 3-class classification on UNS-NB-15 dataset with SAE+SMR 

Parameter Normal Generic Attack 

Precision 95.47 97.26 70.24 

Recall 93.73 96.57 90.89 

F-Measure 94.64 96.94 80.43 
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SAE – SMR (4-Classes) 

Table B-21: Accuracy for 4-class classification on UNS-NB-15 dataset with SAE+SMR 

 Normal Generic Exploit Attack Overall 

Accuracy 94.93 97.30  69.10 72.80 94.86 

 

 

Table B-22: Performance metrics for 4-class classification on UNS-NB-15 dataset with SAE+SMR 

Parameter Normal Generic Exploit Attack 

Precision 93.85 98.62 81.48 43.26 

Recall 94.97 96.72 67.81 72.46 

F-Measure 93.68 97.92 69.42 56.53 

 

SAE – SMR (5-Classes) 

Table B-23: Accuracy for 5-class classification on UNS-NB-15 dataset with SAE+SMR 

 Normal Generic Exploits Fuzzers Attack Overall 

Accuracy 95.70 97.34 70.46 68.43 69.52 94.96 
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Table B-24: Performance metrics for 5-class classification on UNS-NB-15 dataset with SAE+SMR 

Parameter Normal Generic Exploits Fuzzers Attack 

Precision 96.48 96.56 69.82 65.28 51.22 

Recall 94.53 98.27 71.62 70.32 63.54 

F-Measure 97.82 97.43 70.98 69.72 48.35 

 

 

SDA – SMR (6-Classes) 

Table B-25: Accuracy for 6-class classification on UNS-NB-15 dataset with SAE+SMR 

 Normal Generic Exploits Fuzzers DoS Attack Overall 

Accuracy 95.65 97.28 78.20 70.43 64.67 58.48 93.62 

 

Table B-26: Performance metrics for 6-class classification on UNS-NB-15 dataset with SAE+SMR 

Parameter Normal Generic Exploits Fuzzers DoS Attack 

Precision 96.79 96.46 72.53 54.42 51.28 49.43 

Recall 95.45 97.38 77.32 68.35 63.94 59.25 

F-Measure 97.23 98.24 79.74 69.86 65.29 57.65 
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SDA – SMR (7-Classes) 

Table B-27: Accuracy for 7-class classification on UNS-NB-15 dataset with SAE+SMR 

 Normal Generic Exploits Fuzzers DoS Reconnaissance Attack Overall 

Accuracy 95.62 97.19 77.93 69.85 58.64 48.28 22.14 93.20 

 

Table B-28: Performance metrics for 7-class classification on UNS-NB-15 dataset with SAE+SMR 

Parameter Normal Generic Exploits Fuzzers DoS Reconnaissance Attack 

Precision 96.43 96.38 71.85 55.39 47.26 35.68 11.44 

Recall 95.29 97.42 77.24 69.46 56.49 47.16 20.62 

F-Measure 96.94 98.14 78.92 68.73 45.34 37.21 17.37 
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SDA – SMR (8-Classes) 

Table B-29: Accuracy for 8-class classification on UNS-NB-15 dataset with SAE+SMR 

 Accuracy 

Normal 95.68 

Generic 97.24 

Exploits 77.25 

Fuzzers 69.38 

DoS 56.16 

Reconnaissance 43.82 

Analysis 10.47 

Attack 18.58 

Overall 93.41 

 



Appendix B 

___________________________________________________________________________ 

___________________________________________________________________________ 

206 

 

Table B-30: Performance metrics for 8-class classification on UNS-NB-15 dataset with SAE+SMR 

 Precision Recall F-Measure 

Normal 92.32 95.03 93.16 

Generic 93.27 96.87 96.56 

Exploits 70.83 76.69 72.49 

Fuzzers 55.08 67.81 68.28 

DoS 35.13 54.07 54.22 

Reconnaissance 31.43 42.91 44.35 

Analysis 20.50 10.89 09.14 

Attack 10.47 17.60 16.04 
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SDA – SMR (9-Classes) 

Table B-31: Accuracy for 9-class classification on UNS-NB-15 dataset with SAE+SMR 

 Accuracy 

Normal 95.62 

Generic 97.21 

Exploits 77.19 

Fuzzers 69.29 

DoS 54.23 

Reconnaissance 41.64 

Analysis 10.27 

Backdoor 4.71 

Attack 2.14 

Overall 93.28 
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Table B-32: Performance metrics for 9-class classification on UNS-NB-15 dataset with SAE+SMR 

 Precision Recall F-Measure 

Normal 92.26 95.24 93.43 

Generic 93.34 96.92 95.94 

Exploits 70.68 76.62 75.61 

Fuzzers 55.54 66.95 67.08 

DoS 33.81 53.72 52.44 

Reconnaissance 28.93 40.89 42.11 

Analysis 18.06 10.48 10.69 

Backdoor 8.63 3.86 4.33 

Attack 5.47 2.89 2.04 
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SDA – SMR (10-Classes) 

Table B-33: Accuracy for 10-class classification on UNS-NB-15 dataset with SAE+SMR 

 Accuracy 

Normal 95.60 

Generic 97.19 

Exploits 77.14 

Fuzzers 69.21 

DoS 54.18 

Reconnaissance 41.24 

Analysis 10.25 

Backdoor 4.40 

Shellcode 1.12 

Worms 0 

Overall 93.17 
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Table B-34: Performance metrics for 10-class classification on UNS-NB-15 dataset with SAE+SMR 

 Precision Recall F-Measure 

Normal 91.87 95.43 94.16 

Generic 92.91 96.74 96.21 

Exploits 70.27 75.97 76.24 

Fuzzers 53.34 65.63 68.13 

DoS 31.52 53.60 51.09 

Reconnaissance 26.82 38.73 40.28 

Analysis 16.64 10.33 10.49 

Backdoor 6.71 3.94 4.22 

Shellcode 4.03 1.28 1.08 

Worms 0 0 0 
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B.2.2 Deep belief networks 

DBN – SMR (2-Classes) 

Table B-35: Accuracy for 2-class classification on UNS-NB-15 dataset with DBN+SMR 

 Normal Attack Overall 

Accuracy 91.14 90.82 91.15 

 

Table B-36: Performance metrics for 2-class classification on UNS-NB-15 dataset with DBN+SMR 

Parameter Normal Attack 

Precision 94.82 93.69 

Recall 90.78 89.38 

F-Measure 93.42 90.92 

 

DBN – SMR (3-Classes) 

Table B-37: Accuracy for 3-class classification on UNS-NB-15 dataset with DBN+SMR 

 Normal Generic Attack Overall 

Accuracy 92.48 95.57 90.82 93.63 
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Table B-38: Performance metrics for 3-class classification on UNS-NB-15 dataset with DBN+SMR 

Parameter Normal Generic Attack 

Precision 96.24 94.75 71.32 

Recall 91.86 95.22 91.37 

F-Measure 92.51 94.83 82.64 

 

DBN – SMR (4-Classes) 

Table B-39: Accuracy for 4-class classification on UNS-NB-15 dataset with DBN+SMR 

 Normal Generic Exploit Attack Overall 

Accuracy 93.21 95.40 64.42 68.76 94.18 

 

 

Table B-40: Performance metrics for 4-class classification on UNS-NB-15 dataset with DBN+SMR 

Parameter Normal Generic Exploit Attack 

Precision 94.63 95.28 85.51 54.27 

Recall 93.18 94.62 67.94 67.30 

F-Measure 94.36 93.79 68.29 68.15 
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DBN – SMR (5-Classes) 

Table B-41: Accuracy for 5-class classification on UNS-NB-15 dataset with DBN+SMR 

 Normal Generic Exploits Fuzzers Attack Overall 

Accuracy 92.82 95.63 66.41 60.54 58.29 92.93 

 

 

Table B-42: Performance metrics for 5-class classification on UNS-NB-15 dataset with DBN+SMR 

Parameter Normal Generic Exploits Fuzzers Attack 

Precision 94.81 95.64 58.56 64.48 54.54 

Recall 93.26 96.23 59.88 59.71 56.93 

F-Measure 94.48 95.48 60.27 60.55 57.58 

 

 

DBN – SMR (6-Classes) 

Table B-43: Accuracy for 6-class classification on UNS-NB-15 dataset with DBN+SMR 

 Normal Generic Exploits Fuzzers DoS Attack Overall 

Accuracy 91.87 95.28 64.74 60.38 58.44 48.62 91.43 
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Table B-44: Performance metrics for 6-class classification on UNS-NB-15 dataset with DBN+SMR 

Parameter Normal Generic Exploits Fuzzers DoS Attack 

Precision 95.48 94.26 77.59 59.82 52.29 50.41 

Recall 91.62 96.12 63.87 59.66 60.08 47.90 

F-Measure 90.84 95.68 64.64 60.75 59.54 49.22 

 

 

DBN – SMR (7-Classes) 

Table B-45: Accuracy for 7-class classification on UNS-NB-15 dataset with DBN+SMR 

 Normal Generic Exploits Fuzzers DoS Reconnaissance Attack Overall 

Accuracy 90.52 94.41 61.85 59.67 57.63 44.93 16.11 90.87 

 

Table B-46: Performance metrics for 7-class classification on UNS-NB-15 dataset with DBN+SMR 

Parameter Normal Generic Exploits Fuzzers DoS Reconnaissance Attack 

Precision 94.22 94.21 74.43 60.34 52.84 38.72 18.62 

Recall 90.71 93.84 62.54 58.76 58.07 43.46 15.67 

F-Measure 90.69 94.68 61.34 59.19 57.80 44.87 17.71 
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DBN – SMR (8-Classes) 

Table B-47: Accuracy for 8-class classification on UNS-NB-15 dataset with DBN+SMR 

 Accuracy 

Normal 90.46 

Generic 94.19 

Exploits 61.79 

Fuzzers 58.23 

DoS 56.47 

Reconnaissance 43.76 

Analysis 0 

Attack 0 

Overall 90.14 
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Table B-48: Performance metrics for 8-class classification on UNS-NB-15 dataset with DBN+SMR 

 Precision Recall F-Measure 

Normal 94.12 91.18 90.82 

Generic 94.17 93.75 94.51 

Exploits 72.28 61.43 60.94 

Fuzzers 60.28 59.56 58.86 

DoS 51.64 56.27 55.19 

Reconnaissance 35.61 41.93 42.81 

Analysis 0 0 0 

Attack 0 0 0 
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DBN – SMR (9-Classes) 

Table B-49: Accuracy for 9-class classification on UNS-NB-15 dataset with DBN+SMR 

 Accuracy 

Normal 90.38 

Generic 94.08 

Exploits 61.64 

Fuzzers 57.14 

DoS 55.86 

Reconnaissance 41.97 

Analysis 0 

Backdoor 0 

Attack 0 

Overall 90.02 
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Table B-50: Performance metrics for 9-class classification on UNS-NB-15 dataset with DBN+SMR 

 Precision Recall F-Measure 

Normal 94.09 91.12 90.79 

Generic 94.08 93.94 94.46 

Exploits 72.87 61.57 61.22 

Fuzzers 59.42 58.06 57.51 

DoS 51.26 56.17 55.13 

Reconnaissance 34.49 41.73 41.97 

Analysis 0 0 0 

Backdoor 0 0 0 

Attack 0 0 0 
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DBN – SMR (10-Classes) 

Table B-51: Accuracy for 10-class classification on UNS-NB-15 dataset with DBN+SMR 

 Accuracy 

Normal 90.32 

Generic 94.01 

Exploits 61.48 

Fuzzers 57.71 

DoS 56.21 

Reconnaissance 42.15 

Analysis 0 

Backdoor 0 

Shellcode 0 

Worms 0 

Overall 89.97 
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Table B-52: Performance metrics for 10-class classification on UNS-NB-15 dataset with DBN+SMR 

 Precision Recall F-Measure 

Normal 94.06 91.08 90.67 

Generic 93.74 94.12 94.38 

Exploits 71.52 61.47 61.36 

Fuzzers 58.24 58.45 57.62 

DoS 50.83 56.27 55.09 

Reconnaissance 32.75 41.63 41.81 

Analysis 0 0 0 

Backdoor 0 0 0 

Shellcode 0 0 0 

Worms 0 0 0 

 

B.3. Injection attack dataset 

This sub-section provides the performance results of SAE and DBN on the injection attacks dataset. 
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B.3.1 Stacked autoencoders 

Level sensor data – Measurement injection 

Table B-53: Accuracy for measurement injection attacks with SAE+SMR 

 Normal Attack Overall 

Accuracy 97.44 96.69 97.18 

 

Table B-54: Performance metrics for measurement injection attacks with SAE+SMR 

Parameter Normal Attack 

Precision 98.26 95.14 

Recall 97.44 96.69 

F-Measure 97.85 95.91 

 

Pump data – Command injection 

Table B-55: Accuracy for command injection attacks with SAE+SMR 

 Normal Attack Overall 

Accuracy 97.07 94.11 96.09 
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Table B-56: Performance metrics for command injection attacks with SAE+SMR 

Parameter Normal Attack 

Precision 97.10 94.05 

Recall 97.07 94.11 

F-Measure 97.08 94.08 

 

B.3.2 Deep belief networks 

Level sensor data – Measurement injection 

Table B-57: Accuracy for measurement injection attacks with DBN+SMR 

 Normal Attack Overall 

Accuracy 86.39 88.51 87.11 

 

Table B-58: Performance metrics for measurement injection attacks with DBN+SMR 

Parameter Normal Attack 

Precision 93.54 77.14 

Recall 86.39 88.51 

F-Measure 89.82 82.44 
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Pump data – Command injection 

Table B-59: Accuracy for command injection attacks with DBN+SMR 

 Normal Attack Overall 

Accuracy 97.45 57.05 84.13 

 

Table B-60: Performance metrics for command injection attacks with DBN+SMR 

Parameter Normal Attack 

Precision 82.18 91.68 

Recall 97.45 57.05 

F-Measure 89.17 70.33 

 

 

B.4. Convolutional neural networks 

This sub-section provides the performance results of CNN on NSL-KDD, UNSW-NB-15 and 

injection attacks dataset. 
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B.4.1 NSL-KDD dataset 

CNN – SMR (2-Classes) 

Table B-61: Accuracy for 2-class classification on NSL-KDD dataset with CNN+SMR 

 Normal Attack Overall 

Accuracy 89.97 92.70 91.24 

 

Table B-62: Performance metrics for 2-class classification on NSL-KDD dataset with CNN+SMR 

Parameter Normal Attack 

Precision 93.40 92.70 

Recall 89.97 88.95 

F-Measure 91.66 90.79 

 

CNN – SMR (3-Classes) 

Table B-63: Accuracy for 3-class classification on NSL-KDD dataset with CNN+SMR 

 Normal DoS Attack Overall 

Accuracy 88.95 96.18 76.19 90.30 
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Table B-64: Performance metrics for 3-class classification on NSL-KDD dataset with CNN+SMR 

Parameter Normal Dos Attack 

Precision 93.04 93.33 82.45 

Recall 92.92 96.13 74.08 

F-Measure 92.98 94.71 78.04 

 

CNN – SMR (4-Classes) 

Table B-65: Accuracy for 4-class classification on NSL-KDD dataset with CNN+SMR 

 Normal DoS Probe Attack Overall 

Accuracy 85.90 97.46 78.65 91.97 89.49 

 

 

Table B-66: Performance metrics for 4-class classification on NSL-KDD dataset with CNN+SMR 

Parameter Normal Dos Probe Attack 

Precision 95.39 94.84 74.87 16.35 

Recall 85.90 97.46 78.68 91.97 

F-Measure 90.40 96.13 79.73 27.77 
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CNN – SMR (5-Classes) 

Table B-67: Accuracy for 5-class classification on NSL-KDD dataset with CNN+SMR 

 Normal DoS Probe R2L U2R Overall 

Accuracy 89.65 97.80 75.39 46.43 53.84 90.95 

 

Table B-68: Performance metrics for 5-class classification on NSL-KDD dataset with CNN+SMR 

Parameter Normal Dos Probe R2L U2R 

Precision 94.33 95.87 74.87 12.26 2.9 

Recall 89.65 97.80 78.68 46.43 53.84 

F-Measure 91.93 96.83 79.73 19.40 5.51 

 

 

B.4.2 UNSW-NB-15 dataset 

CNN – SMR (2-Classes) 

Table B-69: Accuracy for 2-class classification on UNS-NB-15 dataset with CNN+SMR 

 Normal Attack Overall 

Accuracy 99.10 93.70 98.00 
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Table B-70: Performance metrics for 2-class classification on UNS-NB-15 dataset with CNN+SMR 

Parameter Normal Attack 

Precision 98.41 96.46 

Recall 99.13 93.66 

F-Measure 98.77 95.04 

 

CNN – SMR (3-Classes) 

Table B-71: Accuracy for 3-class classification on UNS-NB-15 dataset with CNN+SMR 

 Normal Generic Attack Overall 

Accuracy 97.80 97.70 97.90 97.80 

 

 

Table B-72: Performance metrics for 3-class classification on UNS-NB-15 dataset with CNN+SMR 

Parameter Normal Generic Attack 

Precision 99.93 99.45 74.14 

Recall 97.77 97.69 97.92 

F-Measure 98.84 98.56 84.39 
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CNN – SMR (4-Classes) 

Table B-73: Accuracy for 4-class classification on UNS-NB-15 dataset with CNN+SMR 

 Normal Generic Exploit Attack Overall 

Accuracy 99.20 97.70 39.00 64.30 96.20 

 

 

Table B-74: Performance metrics for 4-class classification on UNS-NB-15 dataset with CNN+SMR 

Parameter Normal Generic Exploit Attack 

Precision 98.32 99.46 68.76 54.10 

Recall 99.19 97.69 39.01 64.35 

F-Measure 98.75 98.57 49.78 58.78 

 

CNN – SMR (5-Classes) 

Table B-75: Accuracy for 5-class classification on UNS-NB-15 dataset with CNN+SMR 

 Normal Generic Exploits Fuzzers Attack Overall 

Accuracy 99.70 97.70 56.30 0 12.30 95.00 
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Table B-76: Performance metrics for 5-class classification on UNS-NB-15 dataset with CNN+SMR 

Parameter Normal Generic Exploits Fuzzers Attack 

Precision 95.86 99.46 55.77 0 49.19 

Recall 99.68 97.69 56.31 0 12.33 

F-Measure 97.73 98.57 56.04 0 19.72 

 

 

CNN – SMR (6-Classes) 

Table B-77: Accuracy for 6-class classification on UNS-NB-15 dataset with CNN+SMR 

 Normal Generic Exploits Fuzzers DoS Attack Overall 

Accuracy 99.70 97.70 62.20 0.60 0 0 94.90 

 

Table B-78: Performance metrics for 6-class classification on UNS-NB-15 dataset with CNN+SMR 

Parameter Normal Generic Exploits Fuzzers DoS Attack 

Precision 95.79 99.46 53.73 5.13 0 0 

Recall 99.68 97.69 62.22 0.56 0 0 

F-Measure 97.70 98.57 57.66 1.01 0 0 
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CNN – SMR (7-Classes) 

Table B-79: Accuracy for 7-class classification on UNS-NB-15 dataset with CNN+SMR 

 Normal Generic Exploits Fuzzers DoS Reconnaissance Attack Overall 

Accuracy 99.70 97.70 62.10 0.40 0 0 0 94.90 

 

Table B-80: Performance metrics for 7-class classification on UNS-NB-15 dataset with CNN+SMR 

Parameter Normal Generic Exploits Fuzzers DoS Reconnaissance Attack 

Precision 95.72 99.46 54.05 4.66 0 0 0 

Recall 99.68 97.69 62.14 0.37 0 0 0 

F-Measure 97.66 98.57 57.81 0.69 0 0 0 
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CNN – SMR (8-Classes) 

Table B-81: Accuracy for 8-class classification on UNS-NB-15 dataset with CNN+SMR 

 Accuracy 

Normal 99.70 

Generic 97.70 

Exploits 61.40 

Fuzzers 0 

DoS 0 

Reconnaissance 0 

Analysis 0 

Attack 0 

Overall 94.90 
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Table B-82: Performance metrics for 8-class classification on UNS-NB-15 dataset with CNN+SMR 

 Precision Recall F-Measure 

Normal 95.56 99.69 97.58 

Generic 99.42 97.69 98.55 

Exploits 54.09 61.42 57.52 

Fuzzers 0 0 0 

DoS 0 0 0 

Reconnaissance 0 0 0 

Analysis 0 0 0 

Attack 0 0 0 
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CNN – SMR (9-Classes) 

Table B-83: Accuracy for 9-class classification on UNS-NB-15 dataset with CNN+SMR 

 Accuracy 

Normal 99.70 

Generic 97.70 

Exploits 61.60 

Fuzzers 0 

DoS 0 

Reconnaissance 0 

Analysis 0 

Backdoor 0 

Attack 0 

Overall 94.90 
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Table B-84: Performance metrics for 9-class classification on UNS-NB-15 dataset with CNN+SMR 

 Precision Recall F-Measure 

Normal 95.59 99.69 97.60 

Generic 99.42 97.69 98.55 

Exploits 54.06 61.59 57.58 

Fuzzers 0 0 0 

DoS 0 0 0 

Reconnaissance 0 0 0 

Analysis 0 0 0 

Backdoor 0 0 0 

Attack 0 0 0 
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CNN – SMR (10-Classes) 

Table B-85: Accuracy for 10-class classification on UNS-NB-15 dataset with CNN+SMR 

 Accuracy 

Normal 99.70 

Generic 97.70 

Exploits 61.80 

Fuzzers 0 

DoS 0 

Reconnaissance 0 

Analysis 0 

Backdoor 0 

Shellcode 0 

Worms 0 

Overall 94.90 
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Table B-86: Performance metrics for 10-class classification on UNS-NB-15 dataset with CNN+SMR 

 Precision Recall F-Measure 

Normal 95.61 99.69 97.61 

Generic 99.42 97.69 98.55 

Exploits 53.97 61.85 57.64 

Fuzzers 0 0 0 

DoS 0 0 0 

Reconnaissance 0 0 0 

Analysis 0 0 0 

Backdoor 0 0 0 

Shellcode 0 0 0 

Worms 0 0 0 
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B.4.3. Injection attack dataset 

Level sensor data – Measurement injection 

Table B-87: Accuracy for measurement injection attacks with CNN+SMR 

 Normal Attack Overall 

Accuracy 97.50 94.90 96.70 

 

Table B-88: Performance metrics for measurement injection attacks with CNN+SMR 

Parameter Normal Attack 

Precision 97.74 94.37 

Recall 97.52 94.86 

F-Measure 97.63 94.61 

 

Pump data – Command injection 

Table B-89: Accuracy for command injection attacks with CNN+SMR 

 Normal Attack Overall 

Accuracy 95.90 92.70 94.90 
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Table B-90: Performance metrics for command injection attacks with CNN+SMR 

Parameter Normal Attack 

Precision 96.90 90.40 

Recall 95.87 92.69 

F-Measure 96.38 91.53 

 

B.5. Hybrid deep learning 

The implementation of hybrid deep learning algorithms was implemented using only NSL-KDD 

dataset with SAE and DBN algorithms. This sub-section provides the results of the provided hybrid 

deep learning algorithms mentioned in Section. 7.5. 

SAE – SVM (2-Classes) 

TableB-91: Accuracy for 2-class classification on NSL-KDD dataset with SAE+SVM 

 Normal Attack Overall 

Accuracy 90.07 92.70 91.63 
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Table B-92: Performance metrics for 2-class classification on NSL-KDD dataset with SAE+SVM 

Parameter Normal Attack 

Precision 94.02 93.43 

Recall 90.07 89.12 

F-Measure 92.00 91.22 

 

SAE – SVM (3-Classes) 

Table B-93: Accuracy for 3-class classification on NSL-KDD dataset with SAE+SVM 

 Normal DoS Attack Overall 

Accuracy 92.04 95.50 80.24 92.11 

 

 

Table B-94: Performance metrics for 3-class classification on NSL-KDD dataset with SAE+SVM 

Parameter Normal Dos Attack 

Precision 92.37 98.21 67.09 

Recall 92.89 95.48 71.80 

F-Measure 92.63 96.82 69.39 
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SAE – SVM (4-Classes) 

Table B-95: Accuracy for 4-class classification on NSL-KDD dataset with SAE+SVM 

 Normal DoS Probe Attack Overall 

Accuracy 91.26 95.24 72.41 86.15 90.93 

 

 

Table B-96: Performance metrics for 4-class classification on NSL-KDD dataset with SAE+SVM 

Parameter Normal Dos Probe Attack 

Precision 93.04 95.24 80.39 25.84 

Recall 91.26 95.24 72.41 86.15 

F-Measure 92.14 95.24 76.19 39.76 
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SAE – SVM (5-Classes) 

Table B-97: Accuracy for 5-class classification on NSL-KDD dataset with SAE+SVM 

 Normal DoS Probe R2L U2R Overall 

Accuracy 91.47 96.05 78.60 65.72 19.23 91.71 

 

TableB-98: Performance metrics for 5-class classification on NSL-KDD dataset with SAE+SVM 

Parameter Normal Dos Probe R2L U2R 

Precision 93.44 95.06 87.16 21.38 6.66 

Recall 91.47 96.05 78.60 65.72 9.61 

F-Measure 92.44 95.55 82.66 32.27 7.87 

 

 

DBN – SVM (2-Classes) 

Table B-99: Accuracy for 2-class classification on NSL-KDD dataset with DBN+SVM 

 Normal Attack Overall 

Accuracy 90.04 92.76 91.31 
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Table B-100: Performance metrics for 2-class classification on NSL-KDD dataset with DBN+SVM 

Parameter Normal Attack 

Precision 93.46 92.76 

Recall 90.04 89.03 

F-Measure 91.72 90.86 

 

DBN – SVM (3-Classes) 

Table B-101: Accuracy for 3-class classification on NSL-KDD dataset with DBN+SVM 

 Normal DoS Attack Overall 

Accuracy 91.38 95.60 81.60 91.93 

 

 

Table B-102: Performance metrics for 3-class classification on NSL-KDD dataset with DBN+SVM 

Parameter Normal Dos Attack 

Precision 93.40 98.06 66.08 

Recall 91.38 95.60 81.60 

F-Measure 92.64 96.81 73.02 
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DBN – SVM (4-Classes) 

Table B-103: Accuracy for 4-class classification on NSL-KDD dataset with DBN+SVM 

 Normal DoS Probe Attack Overall 

Accuracy 89.93 96.54 74.16 78.70 90.73 

 

 

TableB-104: Performance metrics for 4-class classification on NSL-KDD dataset with DBN+SVM 

Parameter Normal Dos Probe Attack 

Precision 94.53 96.54 75.57 20.96 

Recall 89.83 95.13 74.16 78.70 

F-Measure 92.12 95.83 74.86 33.10 
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DBN – SVM (5-Classes) 

Table B-105: Accuracy for 5-class classification on NSL-KDD dataset with DBN+SVM 

 Normal DoS Probe R2L U2R Overall 

Accuracy 92.06 95.33 75.19 35.57 46.15 91.23 

 

Table B-106: Performance metrics for 5-class classification on NSL-KDD dataset with DBN+SVM 

Parameter Normal Dos Probe R2L U2R 

Precision 92.75 96.55 78.35 14.08 29.26 

Recall 92.06 95.33 75.19 35.57 46.15 

F-Measure 92.40 95.94 76.74 20.17 35.82 

 

After evaluating the above-mentioned hybrid deep learning algorithms, other combinations such 

as SAE+DBN+SMR and SAE+DBN+SVM didn't provide significant improvements in detection 

accuracies. Due to this reason, further evaluation of performance metrics such as precision, recall 

and F-measure weren’t performed. The detection accuracies are provided below for different 

classes as a reference.  
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SAE+DBN – SMR (2-Classes) 

Table B-107: Accuracy for 2-class classification on NSL-KDD dataset with SAE+DBN+SMR 

 Normal Attack Overall 

Accuracy 91.33 91.81 91.55 

 

 

SAE+DBN – SMR (3-Classes) 

Table B-108: Accuracy for 3-class classification on NSL-KDD dataset with SAE+DBN+SMR 

 Normal DoS Attack Overall 

Accuracy 91.78 95.73 68.37 90.86 

 

 

SAE+DBN – SMR (4-Classes) 

Table B-109: Accuracy for 4-class classification on NSL-KDD dataset with SAE+DBN+SMR 

 Normal DoS Probe Attack Overall 

Accuracy 89.56 95.64 59.42 41.30 88.59 
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SAE+DBN – SMR (5-Classes) 

Table B-110: Accuracy for 5-class classification on NSL-KDD dataset with SAE+DBN+SMR 

 Normal DoS Probe R2L U2R Overall 

Accuracy 90.56 95.79 78.21 49.74 21.11 90.92 

 

 

SAE+DBN – SVM (2-Classes) 

Table B-111: Accuracy for 2-class classification on NSL-KDD dataset with SAE+DBN+ SVM 

 Normal Attack Overall 

Accuracy 91.46 92.23 91.82 

 

 

SAE+DBN – SVM (3-Classes) 

Table B-112: Accuracy for 3-class classification on NSL-KDD dataset with SAE+DBN+SVM 

 Normal DoS Attack Overall 

Accuracy 92.55 95.02 77.82 91.97 
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SAE+DBN – SVM (4-Classes) 

Table B-113: Accuracy for 4-class classification on NSL-KDD dataset with SAE+DBN+ SVM 

 Normal DoS Probe Attack Overall 

Accuracy 92.34 95.57 73.58 82,21 91.69 

 

SAE+DBN – SVM (5-Classes) 

Table B-114: Accuracy for 5-class classification on NSL-KDD dataset with SAE+DBN+ SVM 

 Normal DoS Probe R2L U2R Overall 

Accuracy 89.90 95.36 81.03 86.43 44.23 91.02 
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Appendix C 

Shallow Neural Networks for Injection Attacks in automation applications 

"A screenshot of the developed use case is show in the Fig. 72. In this use case, two robotic arms 

are simulated. One, ABB IRB 140 for pick and place functions and second, KUKA LBR 4+ for 

pushing functions. We have two conveyor belts to move different sized packets in the environment. 

An Omni -directional platform is used for the purpose of transporting the finished product to a 

different place in the plant. Along with robots there exist different sensors (proximity sensors, 

visual sensors) which provide the information about the status of the plant. ABB robot has to pick 

a small box from one conveyor belt and place it into a big box on another conveyor belt. After 

placing certain number of small boxes into the big box the KUKA robot has to push the big box so 

that the filled box passes over a conveyor belt and reaches the Omni-directional platform and it 

transports the collected boxes to the required location in the plant" [130].   

 

Figure 72: Manufacturing plant use-case in V-REP 

"All the above-mentioned actions need to happen with high accuracy in a periodic manner to fulfil 

the purpose of the plant. A small disturbance in the plant either on the robot’s side or on the process 

side will lead to huge damage or dangerous situation" [130].  

"From the simulation, we continuously acquired the position information and the joints information 

of the robots and different sensors data was used to report the status of the plant. The streamed data 
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from the plant is connected to MATLAB/Simulink via remote API interface. The remote API 

interface translates the V-REP data so that MATLAB can interpret it.  The obtained information is 

used to give the control commands back to V-REP. A control algorithm is developed in Simulink 

to make the plant run based on the desired functionality. The choice of Simulink based control 

algorithm eases the further integration and testing of the trained neural network for attack detection 

into the plant control loop. The simulated V-REP videos can be seen in [192]" [130]. 

False Data Injection Tool 

"False data injection tool plays a key role in both training as well as testing phase. For this paper, 

we created two varieties of injection tools. One is a MATLAB function which takes the data from 

workspace where the data from the plant is stored and the other is a Graphical User Interface (GUI) 

based injection tool using MATLAB GUIDE (Graphical User Interface Design Environment)" 

[130].  

"During training phase, the MATLAB function injects different types of attacks into the data set. 

The attacks injected into the data set will disturb the position of the robots, the packets information 

from visual sensor and the control commands given to the robots. The attacks on the position of 

the robots causes a misinterpretation in the arms position which make the Simulink to choose the 

false actuation command and will disturb the entire functionality of the plant. The visual sensor 

provides the information about the number of packets placed in the big box. Attacks on this 

information initiates the wrong actuation of the KUKA robot which pushes the boxes before getting 

filled. In forward kinematic robotics control, the movement of individual joint in a specific 

sequence is necessary to fulfil the task and the changes in the sequence lead to the abnormal 

behaviour of the robot. In our use case, each robot needs to be executed with a specific sequence 

of commands and change in the command conditions will disturb the entire plant. This is explained 

in detail in the following subsection with the example. All these types are injected into the data set 

in different patterns to make the data set ready for training the neural network for FDIA 

identification. Apart from generating the dataset with injecting attacks this MATLAB function also 

creates the labels for the dataset in parallel as normal and attack. These labels play a key role in 

training the neural network" [130]. 

"The GUI based attack injection tool is displayed in the Fig. 73. It is created to inject the attacks 

into the data during the run time to test the performance of the trained neural network. For the case 



Appendix C 

___________________________________________________________________________ 

___________________________________________________________________________ 

250 

 

of testing, the GUI will inject attacks into a specific measurement values or command values of 

Robot 1 (ABB) and Robot 2 (KUKA). The type 1 and type 2 are of attacks on position 

measurements of robots with different amplitudes and the type 3 is attack on packet information 

by visual sensor and type 4 is attack on the control commands of the robot.  The attacks injected in 

the testing phase varies from the attacks injected in the data set during the training phase. This 

makes efficient testing of our developed neural network for FDAI identification" [130].   

 

Figure 73. GUI based attack injection tool 

Dataset development 

"A discussion about the attack on control command sequence is necessary out of different types of 

attacks mentioned above. V-REP provides different ways to control the different joints of the 

robots. They are forward kinematic mode, inverse kinematic mode, dependent mode, motion mode 

and torque and fore mode. The detail description of each and every mode is explained in [193]. 

Out of these modes, we choose forward kinematic mode to control our ABB and KUKA robots in 

our use case. In this mode, we can assign the specific movements of the joints to a certain position 

in relation to the environmental coordinates. These passive movements of the individual joint 

control define the functionality of the robot. Let use consider the ABB 6-axis robot used in the 

simulation environment shown in Fig. 74" [130]. 
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Figure 74. (a) 6-Axis ABB Robot [194] (b) Control command sequence 

"The different axes of the robot are represented in Fig 74 (a). Based on the application we need to 

program the motion of the each and individual robot joint.  In forward kinematic mode based robot 

control, we send the sequence of commands from MATLAB to the individual joints (axis) of the 

robot which makes the gripper to move to the specific position. The sequence of action commands 

is represented in Fig. 74(b). The command values in the sequence make the ABB robot to do the 

pick function. These sequences of action need to be continuously sent from MATLAB to V-REP 

simulation to run the simulation. After the sequence of commands were sent, we obtained the 

information back from V-REP to confirms the actuator action. In the same way, we also define the 

sequence of control commands for KUKA robots too. The switching of the control commands is 

based on the sensor information and the responses of the actors as a feedback from the V-REP 

environment" [130].  

"After defining the sequence of commands, the robots will perform the defined functionalities 

which were explained earlier. Now, the simulation is initially run for 30 min and the obtained data 

is saved to the MATLAB workspace. Later these data are injected with FDIA using the MATLAB 

function explained in subsection IV.a. Different types of false data were injected into the sequence 

of commands" [130].  

"As explained in above subsection, Fig. 75 (a) represents the original sequence and the attack 

injected sequence in grey color. The position information of the individual joints is replaced with 

the different values. Fig. 75 (b) represents changes in the task initiation. Here in this example, we 
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can see that the Task1 is replace by Task 2 due to the injection of attacks in the sensor information. 

Finally, Fig. 75 (c) represents the attacks which makes the change in the command sequences. Here 

all the measurements or commands will be in the normal range but the sequence of those command 

to be executed will be varied. This makes them more complex to identify and a proper training and 

sufficient amount of dataset is necessary to make them learn by our machine learning algorithms" 

[130].  

"Based on the types of defined attacks the attack injection MATLAB function will insert the 

specified attacks on the dataset. As well as inserting the attacks in parallel the labels for the dataset 

is also created. The labels are necessary to train and test the performance of the developed ANN 

for FDIA identification. In total 20% of the data is injected with attacks in the dataset" [130]. 

 

 

Figure 75. Attack on (a) Position Measurement (b) Sensor Measurement (c) Command sequence 

Approach 

"The workflow of our approach for identifying the FDIA is shown in Fig. 76. As explained earlier 

our main purpose is to detect abnormal behaviours caused by FDIA in plant data, for this purpose 

we created a manufacturing plant use case in Virtual Robotic Experimentation Platform (V-REP) 

to generate continuous data" [130].  
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Figure 76: Workflow of ANN based FDIA identifier 

"This data is initially used for training of our neural network for FDIA in the data and later for 

testing the performance. Fig. 76 shows two data paths from the plant. One is used for training 

purpose and the second one for testing purpose. V-REP is a simulation tool for manufacturing and 

assembly applications which provides interfaces to different remote API’s. in the scope of this 

work A detailed description of the developed use case is discussed in below subsection. We use 

the V-REP interface to MATLAB. This interface is used to acquire the simulated data from the 

plant to MATLAB. Through the interface, we the acquired data initially saved in MATLAB 

workspace. The simulated data of the plant is attacks free. We developed an attack injection tool 

to inject attacks into the data before training the neural network. Different attacks were injected 

into the data and the data is labelled with the normal and attack data. This injected data along with 

labels is used for training the neural network. The Receiver Operating Characteristic (ROC) curve 

is analyzed to identify the performance of the trained NN. If the classification accuracies were 

satisfactory, we extract the trained neural network. This extracted neural network is considered as 
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an FDIA identifier and placed in the Simulink model for test purpose. If the ROC curve is not 

satisfactory, we perform further training of neural network by changing the parameters of ANN.  

During testing, new data from the plant is taken and attacks were injected during run time. The 

performance of the ANN based FDIA identifier were evaluated with different performance 

parameters. A detailed description of each and every step represented in Fig.1 is explained in the 

following sections" [130]. 

Shallow Neural Network for FDIA identification 

"The following Fig.77 will give an overview on the training phase and testing phase of the neural 

network based FDIA identification" [130].  

Training Phase 

"From Fig. 77 (a) we see the training phase of our neural network based FDIA identification. The 

simulated use case delivers different signals of the plant to Simulink environment. The signals 

comprise of both the sensor and the actuator signals of the plant. The simulated plant was running 

for a specific period of time and MATLAB/Simulink acquires the periodic data samples of the 

plant which are initially stored in the environment workspace. The acquired data is injected with 

different types of attacks explained earlier. In order to run the plant continuously the sensor and 

actuator signals must be given to the control unit and the output signals are fed back to the plant" 

[130]. 

"For attack identification, we used ANN. ANN’s can generalize and identify specific patterns in 

the dataset which are very complex to generate by an individual. They can classify the normal and 

attack patterns after proper training. The training is done in supervised manner" [130]. 

"It uses a non-linear regression to abstract information and differentiate normal from attack. We 

trained our neural network with the generated attack dataset and labels. The input of the neural 

network is the sequence at every instance of time. The ANN tries to learn the relation between the 

inputs and outputs. The hidden layer has 100 neurons to train efficiently for all possible attack 

identification. For the case of simplicity, we used in this experiment only one hidden layer" [130]. 

"The response of the neural network is reviewed and the configuration of the system is refined until 

the neural network analysis reaches a satisfactory level. Cross validation methods are used to 
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estimate an appropriate stopping point for gradient descent search and thus minimize the risk of 

overfitting" [130]. 

"Scaled Conjugate Gradient algorithm is used to train the feed forward neural network in 

MATLAB which gives high classification accuracy in pattern recognition applications. We 

constructed the neural network with one hidden layer and 100 hidden neurons in the hidden layer. 

We used sigmoid transfer function for better classification. Currently, the neural network is able to 

classify the input data into four classes. The normal values and the three attack types mentioned in 

Fig. 75. The training process is continued until the best validation performance is achieved" [130]. 

"This parameter indicates the point where the accuracy over the validation performance stays same 

or decreases. At this point the training of neural network is stopped to prevent overfitting of the 

neural network" [130].  

"During the training process, we split the data into training, validation and testing phase. We choose 

65% of data for training 15% for validation and 20% for testing. The performance of the training 

process is evaluated with the confusion matrix generated after reaching the satisfactory level of 

training process. Confusion matrix indicates the ability of the classifier. The generated confusion 

matrix shows the ability of the trained neural network at the best validation performance point 

which display the accuracies of normal as well as attack data" [130]. 

Test Phase 

"Finally, the testing phase evaluates the trained neural network based.  From Fig. 77 (b) we see the 

testing phase of our neural network for attack identification. During the testing phase, we get the 

live data from the plant continuously. This data is initially acquired by data acquisition which acts 

as an interface between MATLAB/Simulink and V-REP. The obtained data is given to train neural 

network for attack identification as well as to the control unit as shown in Fig. 77 (b). Different 

types of attacks are injected into different parts of the robot during run time and can be used to test 

the performance of the developed FDIA identification system. Whenever an attack is detected it 

raises an alarm and halts the simulation. If no attack is detected the control signals were given back 

to the simulation and the process continues" [130].   
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Figure 77: ANN based FDIA identification (a) Training phase (b) Testing phase 

Results and Evaluation  

"We evaluated the performance of our ANN based FDIA identification with the following 

attributes resulted from training and testing datasets generated from the manufacturing plant. We 

first identify the True Positives (TP), True Negatives (TN), False Positives (FP) and False 

Negatives (FN) from generated confusion matrix then the performance parameters are evaluated. 

The definition of TP, TN, FP and FN are discussed below followed by the performance evaluation 

parameters Accuracy (ACC), Precision (P), Recall (R) and F-Measure (F)" [130].  

"The evaluate performance metrics were shown in the following Table C-1. Apart from the above-

mentioned parameters, the performance of the neural network also depends on the initial 

conditions, no. of hidden layers and no. of neurons in the hidden layers and the transfer function 

used by the neurons. We test the performance of the neural network with different mentioned 

conditions and the best results produced were as shown" [130].  
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Figure 78. Confusion matrix of the Neural Network at best validation performance 
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Table C-0-1: Evaluation of performance parameters for identification of injection acttacks in automation 

applications 

Parameter Value 

Accuracy 99.74 

Precision 99.70 

Recall 100 

F- Measure 99.84 
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Appendix D 

Simulation of network attacks dataset for future applications  

Despite using NSL-KDD dataset as well as UNSW-NB 15 dataset for identifying network attacks 

the attacks are not update and every day we see a new type of attack being appeared. Data collected 

from an operational computer network is optimal for evaluation of IDS, but this data can contain 

personal or sensitive information. Due to this reason, as a part of this thesis, the effort of generating 

the own network attack dataset with different datasets is explored. These new datasets are necessary 

to evaluate the developed IDS as well as to make the developed IDS robust against the novel 

attacks. Hence, the network attack data was synthesized and recorded on a network which simulates 

an operational network of a common user connected to the internet.  

Simulation network consisted of a Linux machine connected to multiple virtual machines running 

on the Linux operating system. The types of attack categories and different attach types we 

simulated were listed in the Table D-1 below: 

Table D-0-1: Planned attack classes and their types 

Attack Categories Attack Types 

Distributed / Denial of Service Neptune, Ping of Death, Smurf, Land, UDP, Strom 

Probe Nmap, IPscan 

 

Different tools we used for generating those attacks. They are: 

Hping3: Command line oriented TCP/IP network packet assembler/analyzer, inspired by ping unix   

command [195]. 

Nmap: A Secuirty scanner for discovering hosts and services on a computer network [196].  

Cmd: A linux command prompt 

Angry IP Scanner: It is a very fast IP address and port scanner in a network [197]. 
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Attack classes and attack types 

Denial of Service (DoS) and Distributed Denial of Service (DDoS) 

A denial of service attack is an attack in which the attacker makes some computing or memory 

resource too busy or too full to handle legitimate requests, therefore denying legitimate users access 

to a machine. Some common types of denial of service are Neptune and Ping of Death which mostly 

use the vulnerability of TCP Handshake. 

TCP Handshake implementation:  

When hosts need to establish communications via the TCP transport protocol, they must do a 

session initiation, which consists of a three-way handshake:  

1. The source host initiated the communication by sending a TCP packet to the destination host 

the SYN flag (SYNchronize sequence numbers) set to 1. In this packet reside the source IP 

address and port number as well as the destination IP address and port numbers.  

2. The destination host responds by sending a TCP packet to the source host with the flags SYN 

and ACK (ACKnowledge) set to 1. The response is sent to the source IP address and port of 

the initial packet in step 1.  

3. The source host sends the destination host another TCP packet with the ACK flag set to 1. This 

completes the 3-way handshake and normal data communication can start.  

Attack types in DoS and DDoS attack class are: 

Neptune 

A SYN flood DDoS attack exploits a known weakness in the TCP connection sequence (the “three–

way handshake”), where in a SYN request to initiate a TCP connection with a host must be 

answered by a SYN-ACK response from that host, and then confirmed by an ACK response from 

the requester. In a SYN flood scenario, the requester sends multiple SYN requests, but either does 

not respond to the host’s SYN-ACK response or sends the SYN requests from a spoofed IP address.  

Each half-open TCP connection made to a machine causes the server to add a record to the data 

structure that stores information describing all pending connections. This data structure is of finite 

size, and it can be made to overflow by intentionally creating too many partially-open connections. 
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The half-open connections data structure on the victim server system will eventually fill and the 

system will be unable to accept any new incoming connections until the table is emptied out.  

A Neptune attack can be distinguished from normal network traffic by looking for a number of 

simultaneous SYN packets destined for a particular machine that are coming from an unreachable 

host.  

Attack Generation by using Hping3 tool  

➔ hping3 –S –flood –V (dest ip addr)  

 

To specify the source(80)/destination port(5050)  

➔ hping3 –V –S –p 80 –s (dest port)(dest ip addr)  

 

For DDOS flooding: 

➔ hping3 –S –flood –V –rand –source (dest ip addr) 

Ping of Death 

Ping of Death is a type of network attack in which an attacker sends a network packet that is larger 

than what the target computer can handle. This can crash the computer or freeze or degrade 

computer service. Ping of death is used to make a computer system unstable by deliberately sending 

larger ping packets to the target system over an IPv4 network.  

An attempted Ping of Death can be identified by noting the size of all ICMP packets and flagging 

those that are longer than 64000 bytes.  

Attack Generation  

➔ ping –l 65510 your.host.ip.address 

Land Attack 

The Land attack occurs when an attacker sends a spoofed SYN packet in which the source address 

is the same as the destination address.  

The Land attack is recognizable because IP packets with identical source and destination addresses 

should never exist on a properly working network.  
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Attack Generation  

➔ hping3 –S (targetIP) –a (targetIP) –k –flood 

UDP Strom 

“UDP flood” is a type of Denial of Service(DOS) attack in which the attacker overwhelms random 

ports on the targeted host with IP packets containing UDP datagrams.  

The receiving host checks for applications associated with these datagrams and finding none sends 

back a “Destination Unreachable” packet. As more and more UDP packets are received and 

answered, the system becomes overwhelmed and unresponsive to other clients.  

This type of attack can be distinguished from normal network traffic by looking for a number of 

simultaneous UDP packets destined for a particular machine that are coming from an unreachable 

host.  

Attack Generation  

hping3 -2 –S –flood –V (dest ip addr) 

Probing 

In recent years, a growing number of programs have been distributed that can automatically scan 

a network of computers to gather information or find known vulnerabilities. These network probes 

are quite useful to an attacker who is staging a future attack. An attacker with a map of which 

machines and services are available on a network and can use this information to look for weak 

points. Some of these scanning tools enable even a very unskilled attacker to very quickly check 

hundreds or thousands of machines on a network for known vulnerabilities. 

Nmap 

Nmap is a general-purpose tool for performing network scans.  

This program also allows a user to specify which ports to scan, how much time to wait between 

each port, and whether the ports should be scanned sequentially or in a random order.  

The signature of a port scan using the Nmap tool varies widely depending on the mode of operation 

selected. A port scan can be recognized by noting that network packets (whether via TCP or UDP, 
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or via only FIN packets or only SYN packets) that have been sent to several (or more) ports on a 

victim or group of victims within some window of time.  

Probe:  

➔ Nmap (victim IP) 

IPScan 

An IP sweep attack is a surveillance sweep to determine which hosts are listening on a network. 

This information is useful to an attacker in staging attacks and searching for vulnerable machines.  

An intrusion detection system looking for the simple IP sweep used in the simulation can look for 

many Ping packets, destined for every possible machine on a network, all coming from the same 

source.  

Probing is done using Angry IP scanner 

Dataset generation 

A connection record summarizes the packets of a communication session between a connection 

initiator with a specified source IP address and a destination IP address over a pair of TCP/UDP 

ports.  

A ready-to-use Linux OS is configured to route all traffic through the network. The linux machine 

is composed of 2 virtual machines for generating the hping attacks. The outgoing traffic is captured 

and pcap files are generated.  

The labelled connection records in the training set are to be categorized normal or DOS/DDOS or 

Probe. The basic features are directly extracted or derived from the header information of IP 

packets and TCP/UDP segments in the packet capture files of each session.  

The pcap files are extracted using tshark which is a companion tool to Wireshark [198].  

TShark works from the command line rather than a graphical interface. TShark allows access to 

the raw bytes from a packet capture, it is possible to not only replicate, but also extend Wireshark’s 

extraction functionality.  

Command to extract pcap file:  

➔ tshark –I (interface) –w /tmp/(filename.pcap) 
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Feature Generation: 

Measurement of network traffic is done at the IP flow level. IP flow level data is a unidirectional 

series of IP packets of a given protocol traveling between a source and a destination IP/port pair 

within a certain period of time.  

For features generation, a new application, the ISCXFlowMeter [199] was used to generate the 

flows and calculate all necessary parameters. ISCXFlowmeter is a network traffic flow generator 

written in java and offers flexibility in choosing the features and adding new ones.  

The FlowMeter generates bidirectional flows, where the first packet determines the forward (source 

to destination) and backward (destination to source) directions, hence the statistical time-related 

features are also calculated separately in the forward and reverse direction.  

The output of the application is the CSV file format with more than 80 features. The features 

available from the application are described in the table below: 
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Table D-0-2: Features of the generated dataset 

Attribute No. Attribute Name Description Sample data 

1 ts Times stamp of the first packet 1533886081.0808 

2 id.ori_h Source IP address 192.168.0.104 

3 id.ori_p Source port number 46062 

4 id.resp_h Destination IP address 88.221.214.42 

5 id.resp_p Destination port number 80 

6 proto Transport layer protocol of the connection tvp 

7 duration Duration of the connection 0.008459 

8 orig_bytes Number of payload bytes the originator sent 1025 

9 resp_bytes Number of payload bytes the responder sent 1838 

10 conn_state Connection state description SF 

11 orig_pkts Number of packets that the originator sent 2 
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12 orig_ip_bytes Number of IP lelvel bytes that the 

originator sent 

104 

13 resp_pkts Number of packets that the responder sent 1 

14 resp_ip_bytes Number of IP lelvel bytes that the 

responder sent 

52 
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