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Abstract: Human-machine addressee detection (H-M AD) is a modern paralinguistics and dialogue
challenge that arises in multiparty conversations between several people and a spoken dialogue
system (SDS) since the users may also talk to each other and even to themselves while interacting
with the system. The SDS is supposed to determine whether it is being addressed or not. All existing
studies on acoustic H-M AD were conducted on corpora designed in such a way that a human
addressee and a machine played different dialogue roles. This peculiarity influences speakers’
behaviour and increases vocal differences between human- and machine-directed utterances. In the
present study, we consider the Restaurant Booking Corpus (RBC) that consists of complexity-identical
human- and machine-directed phone calls and allows us to eliminate most of the factors influencing
speakers’ behaviour implicitly. The only remaining factor is the speakers’ explicit awareness of their
interlocutor (technical system or human being). Although complexity-identical H-M AD is essentially
more challenging than the classical one, we managed to achieve significant improvements using data
augmentation (unweighted average recall (UAR) = 0.628) over native listeners (UAR = 0.596) and a
baseline classifier presented by the RBC developers (UAR = 0.539).

Keywords: addressee detection; human-computer interaction; computational paralinguistics;
speaking style; data augmentation; mixup; speech classification

1. Introduction

Spoken dialogue systems (SDSs) appeared a couple of decades ago and have already become
part of our everyday life. Speech is the most natural way of communication between people, and
therefore they usually prefer speech-based user interfaces over textual and graphical input alone
when it comes to natural interaction with technical systems [1]. Speech input alone is particularly
convenient for specifying abstract actions or defining multiple entities [2]. Sometimes a combination
with additional modalities, usually touch or gesture, is preferred to resolve deictic references or spatial
information [3,4]. In recent years, considerable progress has been made towards adaptive SDSs [5] and
understanding multiparty conversations [6–8]. Virtual assistants, e.g., Siri, Cortana, Alexa, and Alisa,
are typical examples of modern SDSs. Such systems face the problem of human-machine addressee
detection (H-M AD) that arises in multiparty spoken conversations between several people and an
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SDS since the users may also talk to each other and even to themselves while interacting with the
system [9,10]. The SDS is supposed to adapt to this mixed interaction, i.e., to determine whether the
system is being addressed or not. The currently preferred approach to AD is confined to the detection
if the user has pronounced a wake-word. Unfortunately, this method is too unnatural and error-prone
to be used for realistic spoken interaction and often leads to some misunderstanding between SDSs
and users. It is just annoying if the SDS is not activated when the wake-word has been said and the
user has to utter the wake-word repeatedly. Sometimes, even worse, the system is activated due to
a misunderstood phrase or due to the usage of the wake-word in a different context without any
intention to interact with the SDS [11–13].

In the present study, we tackle H-M AD as a computational paralinguistics challenge and focus
specifically on vocal accommodation. Such an approach to H-M AD does not require any visual,
lexical, or language-specific information and therefore appears to be the most flexible solution that may
theoretically be applied to various dialogue domains and languages [14]. The approach is based on
the observation that people accommodate their manner of speech, making it more rhythmical, louder,
and generally easier to understand, as soon as they start talking to an SDS, since they do not perceive
the system as an adequate conversational partner [15]. Future users are unlikely to accommodate
their manner of speech to SDSs to such a high degree as they do it presently, since modern systems
are becoming more adaptive and human-like, especially in their ability to understand. Therefore,
the prosody and complexity of a conversation depend on the communicational abilities of the user’s
conversational partner. In this connection, we introduce the term “complexity-identical”. This term
denotes conversations between a human and another human (H-H) and conversations between a
human and a the technical device (H-M) with the same complexity in the sense of grammatical phrases.
In such conversations, the user’s human-directed and machine-directed utterances are thus likely to
be pronounced similarly.

AD problems and paralinguistic problems in general, are known to be highly language-, corpus-,
and even speaker-dependent [16–18]. Nevertheless, existing studies on acoustic H-M AD use
self-recorded data sets as there is no benchmark data set available [9,14,19]. Among the prominent
INTERSPEECH challenges of recent years, there was just a single addressee sub-challenge in 2017
aimed at distinguishing adult-directed and child-directed utterances both produced by adults [20].

The authors of [21,22] trained their deep neural networks (DNNs) for acoustic H-M AD on huge
corpora containing several hundred hours of speech data. However, we do not have that much
data at our disposal. In this light, the present study has the following contributions. We investigate
the dependence of acoustic models on various German H-M AD corpora, conducting a series of
cross-corpus experiments. Applying a novel mixup-based algorithm, we augment the Restaurant
Booking Corpus (RBC) of complexity-identical human- and machine-directed utterances [23] with
other two corpora developed for classical H-M AD scenarios [9,24]. Using the obtained data mixture,
we train an ensemble of classifiers combining advantages of both classical models and DNNs.
The mixup technique has already been studied on image classification [25], speech recognition [26],
and acoustic H-M AD [27]. As a result, we obtain the first competitive RBC baseline using cross-corpus
data augmentation that significantly outperforms native listeners and an existing baseline classifier
presented in [23] on the RBC classification problem.

We dedicated our previous study [27] to multitask learning and general mixup capabilities
towards acoustic H-M AD, while the present research considers a similar but more challenging
problem under some constraints that allow us to exclude collateral factors potentially influencing users’
acoustic behaviour. Compared to [27], the key novelty of the present paper is the comparison between
the new complexity-identical RBC experimental setup and the classical experimental setup used for
modelling H-M AD problems. RBC is introduced in the present paper and was not used in [27].
Another improvement is the ensemble of classifiers, while in [27] they were employed individually.
Finally, the main focus of the present paper is to improve the classification performance on the most
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challenging corpus (RBC), while the paper [27] was focused on the multitask training of individual
classifiers learning several corpora at once and on improving their multitask performance.

The paper is organised as follows: in Section 2, we analyse both classical and complexity-identical
setups for modelling the H-M AD problem and briefly describe several existing studies using the
classical H-M AD setup; in Section 3, we introduce speech data augmentation and classification
methods; in Section 4, we describe three corpora, on which we conduct a series of experiments and
report their results in Section 5. Finally, we make concluding remarks in Section 6.

2. Related Work

Most existing studies on acoustic H-M AD [9,14,19,28] are focused on acoustic feature design
rather than on model design. Meanwhile, any additional data preprocessing results in information
losses, and therefore data-driven and particularly end-to-end models based on DNNs dealing with
low-level features can improve acoustic H-M AD. Solving the classical problem of acoustic H-M
AD, the authors of [21] designed a huge DNN comprising multiple layers of Long Short-Term
Memory (LSTM) cells to detect device-directed utterances. The best performing network configuration
had around 16 million parameters and was trained on 280 h (238k device-directed and 162k non
device-directed utterances) of real recordings of natural human interactions with voice-controlled
far-field devices. More details on the used data set are not given. The network reached an equal error
rate (EER) of 10.9%. In their next study [29], the researchers extended this model to have a separate
output branch for each dialogue type resulting in a relative 12.5% of EER reduction. However, neither
this network nor that one proposed in [22] were end-to-end since they both received log filter-bank
features as the input for H-M AD. In addition to handcrafted features, we want our model to learn its
own feature representations directly from raw waveforms. We compensate the lack of training data,
carefully choosing the model architecture and applying mixup to cross-corpus data augmentation.

All existing studies on acoustic H-M AD were conducted using a similar setup. This experimental
setup consists of a user talking either to a interlocutor or to an SDS within the same conversation.
Regarding the addressee patterns, most analyses of the speech characteristics capture clear differences
between human-directed and machine-directed utterances [30,31].

It furthermore has to be mentioned that the so far used data sets capture the capabilities of
actual human-computer interaction systems, which are significantly lower compared to humans’
communicational capabilities. Neither the complexity of the utterances, the ability to process
ellipses/topic changes, nor the understanding of emotional or laughter speech is similar between
them [32,33].

The existing studies were designed in such a way that the system and the interlocutor always
played different dialogue roles, e.g., the system tended to interact with the user passively, only
responding to the user’s queries, while the interlocutor could behave actively, initiating his or her
interaction with the user [9,14]. Moreover, the H-M interaction was more problem-oriented than the
H-H one [34,35]. The various dialogue roles resulted in essential lexical differences between the H-M
and the H-H dialogue domains [31,36]. Furthermore, the effect of a visible counterpart arose since
the user could see both conversational partners simultaneously. The authors of [37] investigated this
effect and noted that the way people talked to a technical system depended on how it looked like, i.e.,
whether it had a human-like appearance or not. As a result, these factors could potentially influence
speakers’ behaviour, leading to more obvious addressee patterns. Regarding H-M dialogues, humans
usually have some negative experience in their daily living to adapt themselves to the limitations of
technical systems. This results in a slower, more pronounced but less modulated way of speaking
with a limited vocabulary and being mostly non-spontaneous [15,38]. Given these considerations, we
claim that a real benchmark data set for AD systems should take into account future developments
where H-H and H-M dialogues are getting more similar due to the growing capabilities of future
technical systems.
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The authors of [23] designed RBC to eliminate most of the aforementioned factors influencing
the dialogue complexity and therefore the addressee behavior of the participant. The only remaining
factor was the speaker’s explicit awareness of their interlocutor’s nature (technical system or
human being). As it is hardly feasible (a) to design a realistic and trustworthy technical system
with the same conversational capabilities as humans and (b) to conduct a convincing experiment
where the participants behave naturally and use the same conversational style towards the system
and another human, the authors developed a data set where the complexity of the H-H dialogues
is adjusted towards the limited capabilities of existing technical systems in order to obtain equal
conditions for both types of conversations. In this corpus, described in Section 4.3, a user solves a
certain task with a human agent, and then the user accomplishes a similar task with an SDS so that the
agent and the system play the same dialogue role with identical dialogue complexity. The effect of a
visible counterpart does not appear since the interlocutors do not see each other during a phone call.
The complexity-identical setup should be considered to be a diagnostic experiment enabling a better
understanding of the acoustic H-M AD problem and not as an individual problem statement. The main
advantage of this corpus is that it represents a benchmark data set with a similar dialogue complexity.

3. Methods

To improve the classification performance, we employ an ensemble method where sophisticated
classifiers are fused as depicted in Figure 1. Furthermore, we apply data augmentation to increase the
available amount of training data. As input, the ensemble receives the originally segmented utterances
as they were defined by the authors of the corpora. Next, we segment the utterances into context
windows of various lengths for two of our models: ComParE_LLD and e2e. The windows containing
only silence are excluded from consideration. See Section 5.3 for more details on the segmentation.

Figure 1. Proposed classifier architecture. Notation of convolutional layers: layer_name(n_units,
filter_size, stride). Other network layers: layer_name(n_units).
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3.1. Classifier Architecture

The first model (ComParE_func) is similar to the baseline classifier from [23] in the sense that it is
also based on a support vector machine (SVM) with a linear kernel. However, our model processes an
essentially extended attribute set of 6373 acoustic functionals extracted at the utterance level using the
Interspeech 2013 ComParE feature configuration [39] of the openSMILE toolkit [40]. The ComParE
features have already been applied to various AD problems [20,22,28].

The second model (ASR_conf ) is based on an SVM with a radial kernel. As input, this model
receives a vector of metafeatures obtained from an automatic German speech recogniser (Google
Cloud ASR [41]) and representing an ASR confidence. The core idea of applying such models to
acoustic H-M AD is connected with the observation that ASR-directed speech tends to match speech
recognition patterns (acoustic and language models) better compared to human-directed speech since
people usually simplify and vocally emphasise their speech directed to the system, see [19] for details.
ASR metainformation may also be used for improving the overall performance of an SDS [42].

The third model (ComParE_LLD) is a recurrent neural network containing two stacked LSTM
layers followed by a global max pooling, a dropout, and a softmax layer. As input, this model receives
the same sequence of low-level descriptors (LLDs) used for computing the ComParE functionals [39]
for the ComParE_func model. Each sequence element is a vector of 130 LLDs extracted for a sliding
time window of 60 ms with an overlap of 50 ms.

The fourth model (e2e) is an end-to-end version of the previous one: the LLD extractor is replaced
by a convolutional component containing a stack of convolutional and pooling layers. This component
was taken from the five-layer SoundNet architecture [43] and modified for our needs: the fifth
convolutional layer was cut off, and the number of filters and their sizes were scaled in accordance
with the available amount of our training data and the input signal resolution respectively. Rectified
linear unit (ReLU) is used as an activation function after each convolutional layer. Batch normalisation
is applied between each convolution and activation. For the other models mentioned above, we use
statistical corpus normalisation by bringing the handcrafted features to zero mean and unit variance.
A similar convolutional recurrent neural network was already applied to AD [20] and emotion
recognition [44]. Our end-to-end network has considerably fewer parameters (0.3 M) compared to the
network from [21] (1 6M).

For both ComParE_LLD and e2e networks, the loss function is computed as binary cross-entropy
and Adam [45] is applied as a weight optimisation algorithm. The networks are trained for 100 epochs
with a batch size of 32 examples. The initial learning rate is optimised on a development set and
then divided by 10 if there is no performance improvement observed for the past 10 epochs on
the development set. We make checkpoints, saving the current model weights at each epoch and
using the best checkpoint as the resulting model according to its performance on the development
set. In contrast to [27], we also optimise the SVM complexity parameter C of the ComParE_func
model on a development set similarly to [20]. Therefore, some results obtained with this model in
Sections 5.1 and 5.2 are slightly higher than those reported in [27].

The confidence scores from all the models are concatenated and fed to a metamodel using a
linear SVM as depicted in Figure 1. This model is trained on a development set, while the low-level
classifiers are trained on a training set. As a performance metric, unweighted average recall (UAR)
is calculated. The neural networks were developed using TensorFlow [46], the other models were
designed in RapidMiner [47].

3.2. Data Augmentation

Data augmentation helps us to combat overfitting that is a critical issue for neural networks.
For this purpose, we apply a simple yet efficient approach called mixup [25]. This method regularises
our model by encouraging it to behave linearly in the vector space between seen data points.
We propose a novel Algorithm 1 that combines mixup and multitask learning strategies and allows
our model to learn data from several similar corpora in a smooth manner [27].
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Algorithm 1: One training epoch of the proposed algorithm based on mixup.
input : target corpus T, auxiliary corpora C1, ..., Cn, batch size l, parameter α, proportion of the

number of artificial examples and the number of real examples k.
output : training batches.

1 while there are at least l unused examples in T do
2 R← none ; // List of real examples.
3 select l random unused examples from T, mark them as used, and append them to R;
4 for i = 1 to n do
5 if there are fewer than l unused examples in Ci then
6 mark all examples in Ci as unused;
7 end
8 select l random unused examples from Ci, mark them as used, and append them to R;
9 end

10 A← none ; // List of artificial examples.
11 for i = 1 to l·ceil((n + 1) · k) do
12 select two random examples (Xp, Yp), (Xq, Yq) from R;
13 generate a λ value from the following β-distribution:
14 f (x; α) = xα−1(1− x)α−1;
15 generate an artificial example (X, Y) as follows:
16 X ← λXp + (1− λ)Xq,
17 Y ← λYp + (1− λ)Yq;
18 append (X, Y) to A;
19 end
20 append R to A;
21 shuffle A;
22 split A into batches of l examples each and yield these batches for training;
23 end

The β-distribution is defined by a parameter α that lies within the interval (0, ∞) and determines
the probability that our generated example lies close to one of real examples. We noted that the
algorithm gave adequate results with α values lying in the interval (0, 1), i.e., when each generated
example biased toward one of real examples. Another algorithm parameter k defines the proportion
of the number of artificial examples that should be generated and the number of real examples.
The algorithm does not result in any considerable delays during the training process since artificial
examples are generated batchwise. The parameters α and k are optimised on a development set.

Algorithm 1 mixes real examples regardless of their class and corpus. As a result, the labels of
artificial examples are soft targets that partially resolves the problem of imbalanced training data.
According to our experiments, mixing only those examples belonging to one class or to one corpus does
not improve the classification performance in comparison with the current version of the algorithm.

4. Corpora

Our experiments were conducted on three data sets: Voice Assistant Conversation Corpus
(VACC) [24], SmartWeb Video Corpus (SVC) [9], and RBC [23]. The speech data of all three corpora
was uttered in German and segmented into utterances; each utterance was manually annotated as
human- or machine-directed. The characteristics of the used data sets and training, development,
and test partitions are given in Table 1.
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Table 1. General characteristics of the analysed data sets and their utterance-level labelling.
Each utterance was manually annotated as human- (H) or machine-directed (M).

Corpus VACC SVC RBC

Set Train Dev Test Train Dev Test Train Dev Test

M 1809 501 1493 546 90 442 752 142 558
H 862 218 756 557 135 423 368 86 328

# of utterances
(# of speakers)

2671
(12)

719
(3)

2249
(10)

1103
(48)

225
(10)

865
(41)

1120
(16)

228
(3)

886
(11)

5639 (25), 2:50:20 s 2193 (99), 3:27:35 s 2234 (30), 1:39:17 s

4.1. Voice Assistant Conversation Corpus

VACC (Voice Assistant Conversation Corpus is available from their authors
(ingo.siegert@ovgu.de) for research purposes upon written request.) was collected within
real spoken conversations between a user, a confederate, and an SDS (Echo Dot Amazon Alexa) [24].
The recordings took place in a living room-like surrounding so that the participants could get
into a more informal communicational atmosphere compared to a laboratory setting. During each
experiment, a user was solving various tasks with Alexa, e.g., making appointments or answering
quiz questions. While solving the tasks, the user was cooperating with a confederate, e.g., discussing
possible appointment dates or answers to a quiz question. The confederate was only assisting the user
and has never talked to Alexa directly. A small part of the machine-directed utterances in the VACC
corpus starts with the wake-word (“Alexa”). Thus, we ran our experiments on the unchanged VACC
data and also excising the trigger-word.

4.2. SmartWeb Video Corpus

SVC (SmartWeb Video Corpus is available from the catalogue of the European Language Resources
Association (ELRA). was collected within large-scale Wizard-of-Oz (WoZ) experiments and consists
of realistic spoken conversations between a user, a confederate, and a mobile SDS in the context of
a visit to the Football World Cup 2006 [9]. A user was carrying a mobile phone, asking questions of
different categories (world cup schedule and statistics, transport, sightseeing, and also open-domain
questions), and discussing the obtained information with a confederate, who has never talked to the
SDS directly. The recordings were conducted in public places and therefore contain a lot of background
noise. For compatibility with the other corpora, we consider the two-class SVC problem and the
partitions introduced in [9]. However, there was no development set specified, and therefore we use
20% of the speakers from the SVC training set as a development set.

4.3. Restaurant Booking Corpus

RBC (Restaurant Booking Corpus is available from the authors (ingo.siegert@ovgu.de) for research
purposes upon written request.) is one of the first corpora of its kind, aimed at investigating the
H-M AD problem from a purely acoustic point of view [23]. The corpus consists of phone calls
between a customer and a restaurant booking service that is represented by a human agent or
by a SDS simulated by a WoZ technique. The participants being recorded in a living room-like
surrounding were asked to book tables in restaurants, taking into account several requirements,
such as desirable date, time, and cuisine, possibility to sit outside, etc. Each participant took part in
several experimental sessions: talking to a human interlocutor and talking to an SDS. The participants
were informed beforehand that they would talk to an artificial conversational agent and to a human
agent, which were clearly distinguishable by voice. The booking requirements were set to be different
for each experimental session. The statements given by the human agent and the SDS were identical,
and therefore the H-M and H-H dialogues had the same complexity level. This experimental setup
thus eliminates most of the factors that may influence the speakers’ addressee behaviour implicitly:



Sensors 2020, 20, 2740 8 of 15

different dialogue roles of the addressees, the effect of a visible counterpart, the lexical content,
the dialogue domain, and the different dialogue complexity. The only factor that remains is the
people’s explicit awareness of their interlocutor’s nature (technical system or human being). We realise
that RBC represents a compromise in achieving complexity-identical H-H and H-M dialogues;
the limitations applied—simple conversations with the human conversational partner, no parallel
interaction with the human and technical system—were needed to allow a plausible experimental
setting for the participants.

5. Results and Discussion

In Section 5.1, we conduct several experiments with feature selection using the ComParE_func
model. Next, we carry out a series of cross-corpus experiments with the same model in Section 5.2.
Section 5.3 contains experiments with the ComParE_LLD model on various acoustic context lengths.
The experiments reported in the latter three subsections do not use mixup. Finally, we combine all
four models with Algorithm 1 and compare the obtained classification performance with the baseline
and humans’ performance on RBC in Section 5.4.

5.1. Feature Selection

First, we want to determine the degree of similarity between our corpora in the sense of common
relevant acoustic features and apply recursive feature elimination (RFE) in combination with the
ComParE_func model for this purpose. The coefficients of the normal vector of the SVM are used as
attribute weights similarly to [28]. Figure 2a demonstrates RFE curves obtained by applying ten-fold
leave-one-speaker-group-out (LOSGO) cross-validation on various corpora without their test sets.
The resulting performance is calculated as UAR and averaged over all folds for each reduced feature set.
One set of curves visualises RFE on individual corpora; another set of curves marked with an asterisk
reflects joint RFE across all three corpora. To obtain the latter curves, we compute a single weighting
list on all the corpora merged in equal proportions and use a single ComParE_func model, which is also
trained on all the corpora, to calculate the classification performance on them. We consider a feature
set to be optimal if further RFE iterations worsen the classification performance stably. Intersections of
three optimal feature sets, each of which was obtained on a random fold by RFE on individual corpora,
are depicted in Figure 2b. The representative acoustic functionals vary considerably: VACC, SVC,
and RBC have only 1300, 2000, and 1600 relevant features out of 6373 respectively, while having only
150 features in common. However, these common functionals concern each of the 130 ComParE LLDs
in some form [39], i.e., the feature selection is reduced to the selection of the optimal functionals for
each LLD. For this purpose, we apply the ComParE_LLD model in Sections 5.3 and 5.4. Due to its
recurrent architecture, this model can learn its own, "custom" functionals from the time-continuous
LLD sequences for the particular task.

According to the joint RFE experiments (marked with an asterisk in Figure 2a) across all three
corpora, the entire set of the 6373 ComParE functionals should be used for joint classification since
the performance on VACC and RBC starts dropping directly after the first RFE iterations and the
performance on SVC does not reach the values of individual RFE. In particular, it can be seen in
Figure 2a that the performance of the entire functional set on RBC is always higher than the performance
of any of its subsets. In other words, the 150 common functionals visualised in Figure 2b are important
but not enough to classify RBC utterances reliably.
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Figure 2. Feature selection results.

5.2. Leave-One-Corpus-Out Experiments

Second, we conduct leave-one-corpus-out (LOCO) and inverse LOCO experiments with the
ComParE_func model to estimate its behaviour on unknown corpora. In both cases, the entire
ComParE feature set is used without RFE and the model is trained and tested on the corresponding
partitions from Table 1. Results of both experimental series are depicted in Figure 3. Inverse LOCO
means that the classifier is trained on one corpus (rows in Figure 3a) and individually tested on each
of the corpora (columns in Figure 3a). LOCO means that the classifier is jointly trained on all corpora
but one (rows in Figure 3b) and individually tested on each of the corpora (columns in Figure 3b).
Let us denote the matrix from Figure 3a as A, the matrix from Figure 3b as B, and their elements as
ai,j and bi,j respectively. a1,2 and a2,1 are considerably greater than the other off-diagonal elements
of A, demonstrating a clear relation between VACC and SVC. The other off-diagonal elements of A
are close to a random-choice UAR of 0.5. However, a3,1 is greater than a3,3, meaning that the model
trained on RBC performs better on VACC than on the RBC test set. In other words, training on the
complexity-identical setup allows the model to capture true acoustic patterns that are also typical
for the classical H-M AD setup. However, the opposite statement does not work due to collateral
factors influencing the users’ behaviour in the latter setup only and which cause the model to overfit.
SVC and RBC do not exhibit such a relationship probably due to the difficult acoustic conditions of
SVC (it is the only corpus containing not only indoor recordings but also outdoor recordings made
by a distant-microphone). Another remarkable observation is b1,3 and b2,3 being greater than a3,3

and meaning that merging RBC and another corpus improves the classification performance on RBC
compared to using the RBC training data only. This positive result motivates us to apply Algorithm 1
rather than just merging examples from different corpora.

(1) (2) (3)
Test

(1
)

(2
)

(3
)Tr

ai
n 0.849 0.624 0.519

0.662 0.770 0.503
0.647 0.508 0.541

(a) Inverse LOCO experiments

(1) (2) (3)
Test

(1
)
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)

(3
)

Ex
cl

. f
ro

m
 T

ra
in

0.617 0.751 0.570
0.841 0.583 0.601
0.843 0.759 0.537

(b) LOCO experiments
Figure 3. Cross-corpus experiments. All results are presented in terms of UAR. Corpora: (1) VACC,
(2) SVC, (3) RBC.

5.3. Experiments with Various Acoustic Context Lengths

Next, we determine the optimal acoustic context length for H-M AD. The segmentation into
context windows allows us to increase the number of examples and partially offsets the lack of training
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data for neural networks. Context windows are extracted with an overlap of 75% of their length.
The windows containing only silence are excluded from consideration. We suppose the most important
vocal addressee patterns to appear at short context lengths of around 1 s and therefore use a logarithmic
scale depicted in Figure 4a. For each context length, the ComParE_LLD model is examined on the
LOSGO cross-validation. The resulting UAR is averaged over all folds. We confine to a context
length of 2 s in our experiments with the ComParE_LLD and the e2e model in Section 5.4 since this
value is optimal for all three corpora, though the maximum of the KDE values of their utterance
length distributions depicted in Figure 4b are around 1 s for VACC and RBC and around 3 s for SVC.
The differences between the average utterance lengths appeared due to various interaction complexity
levels supported by the systems. Two-second speech fragments were also shown to be sufficient for
H-M AD in English [14].
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Figure 4. Experiments with various context window lengths.

5.4. RBC Data Augmentation

Both SVM- and neural network-based models show considerably lower performance values on
RBC compared to the other two corpora. In contrast to [21,22], we do not have an Amazon-scale
amount of training data, though data augmentation helps us to combat this problem. We conduct a
series of experiments, simply merging RBC with the other corpora or doing the same in combination
with Algorithm 1. Results of these experiments computed on the partitions from Table 1 are given
in Table 2. Alongside with UAR, unweighted average precision (UAP) is calculated. We noted that
applying several regularisation techniques, e.g., mixup, Gaussian noise, and high dropout ratios,
at once eliminated their positive effect, and therefore we use low dropout ratios and no additional
noise when Algorithm 1 is activated. The performance values obtained with the models (1)–(4) on the
RBC development set demonstrate that these classifiers benefit from merging RBC and another corpus
and especially from merging RBC and VACC. According to the LOSGO cross-validation and a t-test
with a significance level of 0.05, these classification improvements are significant. However, merging
all three corpora is not the most effective training strategy due to a low proportion of RBC in the
augmented training data: sometimes the model starts neglecting RBC in favour of the other corpora.
Mixup does not provide any significant performance improvement for the SVM-based models (1) and
(2) on the RBC development set due to their simple architectures that do not require regularisation.
Mix(RBC + VACC) and mix(RBC + SVC) significantly improve the performance of the ComParE_LLD
model (3) on the RBC development set, while significantly worsen the performance of the e2e model (4)
compared to merging the same corpora without mixup. This result may be explained by the nature of
mixup: when applied to raw audio signal, the method just overlaps two audio files and does not differ
from noise augmentation essentially. Furthermore, it may cause the cocktail party effect confusing
the model. The aforementioned differences between the performance values of individual classifiers
remain for the RBC test set. However, the performance values on this set are slightly higher than the
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corresponding ones on the RBC development set as the former values were obtained using the RBC
development set in addition to the training sets. The following model configuration has been chosen
for metafusion: ASR_conf(RBC + VACC) + ComParE_func(RBC + VACC) + ComParE_LLD(mix(RBC +
VACC)) + e2e(RBC + VACC). The metamodel (5) demonstrates a UAR of 0.628 and a UAP of 0.632
on the RBC test set. We compare these results with the performance of the baseline classifier (6)
and with the non-native (7) and native listeners’ (8) classification performance, applying the LOSGO
cross-validation and a t-test with a significance level of 0.05. Our metaclassifier significantly surpasses
the baseline classifier and both groups of human listeners on RBC in terms of both UAR and UAP.
Each individual classifier of the proposed metamodel also significantly surpasses the baseline classifier
and the non-native listeners and performs at the native listeners’ level. The baseline classifier and the
perceptual experiments with the human listeners are described in detail in [23].

Table 2. Classification performance on RBC in terms of UAR (upper value) and UAP (lower value).
Each of the columns (1)–(4) has two subcolumns. The left subcolumn contains performance values
computed on the RBC development set, the right subcolumn contains performance values obtained on
the RBC test set. The other performance values are computed on the RBC test set. A bold value denotes
the best result in the column/subcolumn. The underlined bold value shows the best result overall.
Classifiers: (1) ASR_conf, (2) ComParE_func, (3) ComParE_LLD, (4) e2e, (5) metamodel, (6) baseline
classifier, (7) non-native listeners, (8) native listeners. Configuration of the model (5): ASR_conf(RBC +
VACC) + ComParE_func(RBC + VACC) + ComParE_LLD(mix(RBC + VACC)) + e2e(RBC + VACC).
The classifiers (1) and (2) use entire utterances. The classifiers (3) and (4) use context windows of 2 s.
The “+” mark denotes a simple merger of several corpora. The “mix” mark means that Algorithm 1
is applied.

Data Augmentation Method (1) (2) (3) (4) (5) (6) (7) (8)

RBC 0.539 0.550 0.533 0.541 0.548 0.556 0.552 0.570 0.628 0.539 0.544 0.596
0.643 0.659 0.565 0.589 0.559 0.572 0.558 0.578 0.632 0.540 0.544 0.591

mix(RBC) 0.533 0.552 0.526 0.540 0.532 0.545 0.529 0.548 - - - -
0.635 0.657 0.568 0.581 0.546 0.566 0.548 0.568 - - - -

RBC + VACC 0.577 0.590 0.579 0.601 0.584 0.598 0.591 0.609 - - - -
0.617 0.630 0.619 0.638 0.599 0.611 0.606 0.622 - - - -

mix(RBC + VACC) 0.574 0.588 0.577 0.598 0.604 0.620 0.548 0.569 - - - -
0.615 0.628 0.616 0.635 0.613 0.631 0.567 0.581 - - - -

RBC + SVC 0.546 0.567 0.549 0.570 0.547 0.567 0.563 0.587 - - - -
0.585 0.598 0.580 0.599 0.556 0.577 0.575 0.598 - - - -

mix(RBC + SVC) 0.554 0.569 0.546 0.569 0.563 0.582 0.513 0.529 - - - -
0.581 0.597 0.584 0.597 0.576 0.591 0.537 0.554 - - - -

RBC + VACC + SVC 0.500 0.502 0.574 0.600 0.539 0.552 0.545 0.554 - - - -
0.578 0.590 0.619 0.632 0.541 0.560 0.547 0.568 - - - -

mix(RBC + VACC + SVC) 0.500 0.500 0.576 0.595 0.535 0.554 0.513 0.531 - - - -
0.573 0.591 0.605 0.624 0.555 0.569 0.540 0.551 - - - -

6. Conclusions

Our experiments revealed a pragmatic difference between the classical and the
complexity-identical H-M AD scenario. On the one hand, the necessity to choose between a
human and a machine interlocutor within the same conversation appears to be a strong motivation
for users to change their manner of speech in order to emphasise the desirable addressee. On the
other hand, users demonstrate ambiguous acoustic addressee patterns in the absence of collateral
factors, such as different dialogue roles of addressees, the effect of a visible counterpart, different
lexical content, and different dialogue domains of human- and machine-directed utterances.

Thus, acoustic H-M AD in complexity-identical scenarios turned out to be a significantly more
challenging problem than classical acoustic H-M AD. Acoustic changes that take place in classical
H-M AD include acoustic variations exhibited in complexity-identical H-M AD but are not confined to
them. Even native listeners can hardly resolve addressee ambiguity in complexity-identical scenarios.
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Non-native listeners completely fail to determine the addressees in RBC so that any of our models
outperforms or at least keeps up with them. With our classification architecture, we managed to
surpass the native listeners’ performance on RBC. The use of the out-of-domain data from other
corpora alongside with RBC is highly beneficial in this case, though the other two corpora were
designed for classical H-M AD scenarios. Mixup helps us to regularise complex models, i.e., neural
networks operating on handcrafted features.

Excising the wake-word (here “Alexa”) from the VACC data may have caused a problem since it
may result in utterances that no longer have a natural prosody, and artefacts from the data manipulation
could give inadvertent cues to the machine learning system. However, our experiments with excising
the wake-word do not influence the results significantly. This can be explained as follows. First, we do
not use the ASR output directly for classification. Second, only a small part of the machine-directed
utterances in VACC starts with the wake-word. Third, the artefacts that appear after excising the
wake-word still have the same meaning for our models as the wake-word itself.

The general applicability of the proposed architecture to different languages, acoustic conditions,
and applications has already been shown, e.g., in [27,48], thus it can be assumed that the proposed
approach is also usable for a broader AD application. An in-depth analysis with different data sets
similar to RBC has to be conducted. However, this has not been possible so far due to the absence of a
suitable data set.
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