

Einfluß der Azeotropie auf die "wahre" Siedekurve komplexer Vielstoffsysteme aus Aliphaten, Aromaten und n-Butanol

DISSERTATION

zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.)

vorgelegt der

Mathematisch-Naturwissenschaftlich-Technischen Fakultät (mathematisch-naturwissenschaftlicher Bereich) der Martin-Luther-Universität Halle-Wittenberg

von Herrn Ryszard Kabatek geb. am 09.01.1970 in Bydgoszcz

Gutachter:

Prof. Dr. habil. H. Kehlen
 Prof. Dr. habil. J. Schmelzer
 Dr. habil. H. Laux

Halle (Saale), 27.07.1999

INHALTSVERZEICHNIS

1.	Einl	leitung		1
2.	Gru	ndlagen		4
	2.1	Kontir	nuierliche Thermodynamik	4
	2.2	Berech	nung des Dampf-Flüssig Gleichgewichtes mit der kontinuierlichen Thermo-	
		dynam	iik	6
	2.3	Destill	ation	7
		2.3.1	"Einfache" Destillation	7
		2.3.2	Fraktionierte Destillation	7
	2.4	Azeotr	copie	8
		2.4.1	Minimumazeotropie	8
		2.4.2	Maximumazeotropie	9
		2.4.3	Polyazeotropie	9
3.	The	rmodyn	amische Behandlung der Blasendestillation	10
	3.1	Verlau	f der Destillation eines Kohlenwasserstoffgemisches ohne Azeotropie - die	
		"wahr	e" Siedekurve	10
	3.2	Verlau	f der Destillation eines Kohlenwasserstoffgemisches mit einem Azeotrop-	
		bildne	r	12
		3.2.1	Verfälschung der TBP-Kurve	12
		3.2.2	Phasen einer Destillation bei Bildung von nur aliphatischen Azeotropen $% \mathcal{A}$.	13
	3.3	Verlau	f der Destillation bei Bildung von aliphatischen und aromatischen Azeotropen	16
		3.3.1	Verfälschung der TBP-Kurve	16
		3.3.2	Phasen einer Destillation bei Bildung von aliphatischen und aromatischen	
			Azeotropen	17
4.	Vora	ausberee	chnung des azeotropen Verhaltens	21
	4.1	Grupp	enbeitragsmethoden	21
		4.1.1	UNIFAC-Modell	22
		4.1.2	UNIFAC-Modifizierung nach Weidlich und Gmehling	23

		4.1.3	Kolonnenberechnung mit dem UNIFAC-, bzw. modifizierten UNIFAC-	
			Modell	23
		4.1.4	Probleme bei Berechnungen mit kleinen Bodenzahlen	26
	4.2	Bereck	nnung der Azeotropsiedetemperatur $\vartheta^{Az}_{i-A}(\tau)$ und der Azeotropzusammen-	
		setzur	ng $\xi_{i-A}^{Az}(\tau)$ mit einem modifizierten Porter-Ansatz	27
		4.2.1	Berechnung der Azeotropsiedetemperatur $\vartheta_{i-A}^{Az}(\tau)$ mit Hilfe des Porter-	
			schen Ansatzes	27
		4.2.2	Anpassung der Azeotropzusammensetzung $\xi_{i-A}(\tau)$ an die experimentellen	
			Daten	34
5.	Meß	Sappara	tur und verwendete Meßtechniken	39
	5.1	Destil	lationsanlage	39
		5.1.1	Destillationsverlauf	39
		5.1.2	Wirkungsprinzip der verwendeten Kolonne	41
		5.1.3	Charakteristik der Kolonne und verwendete Parameter	41
	5.2	Gasch	romatographische Analyse	42
		5.2.1	Analyse der Benzinfraktionen	42
		5.2.2	Analyse der Fraktionen aus der Blasendestillation	43
6.	Exp	eriment	telle Untersuchungen	44
	6.1	Mode	llsysteme aus wenigen Komponenten	44
		6.1.1	Destillation eines Aliphatengemisches mit n-Butanol (Destillation 1) $\ . \ .$	44
		6.1.2	Destillation eines Aliphaten-Aromatengemisches mit n-Butanol (Destilla-	
			tion 2) \ldots	48
		6.1.3	Destillation eines einer konstanten kontinuierlichen Verteilungsfunktion	
			entsprechenden (gleichverteilten) Kohlenwasserstoffgemisches mit n-Butanol	
			$(Destillation 3) \dots $	51
	6.2	Reale	komplexe Vielstoffsysteme	54
		6.2.1	Charakterisierung eines aliphatischen und eines aromatischen Benzins $\ .$.	54
		6.2.2	Destillation des aliphatischen Benzins im Gemisch mit einigen Aromaten	
			und mit n-Butanol (Destillation 5) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	57
		6.2.3	Destillation des aliphatisches Benzins im Gemisch mit dem aromatischen	
			Benzin und n-Butanol (Destillationen 6-8)	59
7.	Zusa	ammeni	fassung	65
Li	terati	ırverzei	chnis	70

An	hang	80
A.	Anpassung der Molmasse eines Kohlenwasserstoffs an die experimentellen Daten	81
В.	Anpassung der "Trouton-Konstante"	82
С.	An passung des Parameters $\alpha(\tau)$	83
D.	Zusammenstellung der mit dem modifizierten Porter-Ansatz berechneten Werte	84
Ε.	Zusammenstellung der an experimentelle Daten angepaßten Werten für ξ_{i-Al}^{Az}	87
F.	Zusammenstellung der bei den experimentellen Untersuchungen gewonnenen Daten	90
	F.1 Destillation 1	90
	F.2 Destillation 2 \ldots	92
	F.3 Destillation 3	97
	F.4 Destillation 4	100
	F.5 Destillation 5	101
	F.6 Destillation 6	103
	F.7 Destillation 7	105
	F.8 Destillation 8	107
G.	Gleichverteilung der Kohlenwasserstoffe	109
Η.	Verteilungsfunktionen der Benzine	110

iv

SYMBOLVERZEICHNIS

n	Stoffmenge
p	Druck
r	Segmentzahl
w	extensive Verteilungsfunktion
x	Molenbruch in der flüssigen Phase
y	Molenbruch in der Gasphase
A	Trouton-Konstante
G_m^E	molare freie Exzeßenthalpie
M	Molmasse
Ι	integrale intensive Massenverteilungsfunktion
I^{Kopf}	relative Destillat masse, die bis zur Temperatur ${\cal T}$
	am Kolonnenkopf übergegangen ist
I_i^{Kopf}	Messenbruch des Azeotropbildners i (Alkohol)
	im bis zur Temperatur ${\cal T}$ angefallenem Destillat
R	Gaskonstante
T	Temperatur
W	intensive Massenverteilungsfunktion
W_m	molare Verteilungsfunktion

griechische Buchstaben

α	Analogon zur Porter-Konstante im modifizierten Porter-Ansatz Gl. (4.14)
γ	Aktivitätskoeffizient
δ	Dirac-Funktion
θ	Normalsiedetemperatur einer Mischung
μ	chemisches Potential
ν	Zahl der funktionellen Gruppen

ξ	Massenbruch
au	Normalsiedetemperatur einer reinen Spezies, Identifizierungsvariable
ϕ	Fugazitätskoeffizient
Γ	Gruppenbeitragskoeffizient
Θ	Oberflächenbruch
Φ	Segmentmolenbruch

untere Indizes

0	Siedeanfang
$i,\ j,\ k$	Komponente
i - Al	binäres Azeotrop Aliphat + i (Alkohol)
i - Ar	binäres Azeotrop Aliphat + i (Alkohol)
m	molare Größe
A	Aliphat oder Aromat
Al	Aliphat
Ar	Aromat

obere Indizes

0	Siedeende
*	reiner Stoff
_	Mittelwert
Az	Azeotrop
В	Anfang des Azeotrophereiches
C	kombinatorischer Term (UNIFAC-Modell)
E	Ende des Azeotrophereiches; oder siehe ${\cal G}_m^E$
E'	tatsächliches Ende (des Azeotrophereiches)
G	Gasphase
L	Flüssigphase
M	Mischung
R	Restterm (UNIFAC-Modell)

1. EINLEITUNG

Das Erdöl und die darauf aufbauenden Trenn- und Verarbeitungsprozesse spielen in der chemischen Industrie nach wie vor eine große Rolle. Erdöl ist ein komplexes, vorwiegend aus aliphatischen und aromatischen Kohlenwasserstoffen bestehendes Vielstoffgemisch. Die Zusammensetzung im einzelnen schwankt in Abhängigkeit vom Fördergebiet zum Teil erheblich. Die Kenntnis der Zusammensetzung des Erdöls ist aber für die nachfolgenden Trenn- und Verarbeitungsprozesse sehr wichtig. Gleiches gilt auch für die z.B. bei der destillativen Aufarbeitung anfallenden Fraktionen.

Die Vielzahl der auftretenden Stoffe im Erdöl und seinen Fraktionen, die sich in ihren Eigenschaften sehr ähnlich sind, machen eine detailierte Auftrenung des Gemisches zusammen mit einer genauen Bestimmung von Molen- bzw. Massenbrüchen praktisch unmöglich. Die Methoden zur Erdölcharakterisierung (fraktionierte Blasendestillation, gaschromatographisch simulierte Destillation, andere chromatographische Methoden) liefern daher die stoffliche Zusammensetzung des Erdöls nicht in Form diskreter Konzentrationsangaben sondern in Form kontinuierlicher Verteilungsfunktionen.

Das klassische Verfahren zur Erdölcharakterisierung ist die fraktionierte Blasendestillation über eine Kolonne hoher Trennleistung, die auf die sogenannte *"wahre" Siedekurve* (auch als <u>True-Boiling-Point</u> Curve oder *TBP-Kurve* bezeichnet) führt. Diese hat den Charakter einer kontinuierlichen Verteilungsfunktion. Bei der TBP-Kurve wird die Kopftemperatur gegen die bis dahin übergegangene relative Destillatmenge aufgetragen. Es wird davon ausgegangen, daß die Stoffe entsprechend ihrer Reinstoffsiedetemperaturen überdestillieren.

Die Blasendestillation hat viele Vorteile, wie z.B. direktes Meßprinzip, einfacher Aufbau, niedrige Anschaffungskosten und, was häufig zwecks weiterer Untersuchungen wichtig ist, Gewinnung größerer Fraktionen. Sind in dem Gemisch Azeotropbildner vorhanden, wird die TBP-Kurve jedoch verfälscht, Maskow (1993). Ein praktisch bedeutendes Beispiel sind die Heteroazeotrope zwischen Wasser und einigen niederen Aliphaten. Die Azeotrope haben deutlich niedrigere Siedetemperaturen als die reinen Aliphaten und führen deshalb zu einer erheblichen Verfälschung der TBP-Kurve. Die zusätzlich auf den Böden der Kolonne auftretende Flüssig-Flüssig-Entmischung erschwert aber eine experimentelle Untersuchung des Azeotropieeinflusses.

Zur Untersuchung des Azeotropieeinflusses erscheinen daher Azeotropbildner wie Alkohole geeigneter. Hier wird die Flüssig-Flüssig-Entmischung vermieden; der Azeotropieeinfluß ist aber trotzdem sehr groß.

Im Erdöl bilden sowohl die Aliphaten als auch die Aromaten Azeotrope mit Alkoholen wie z.B. Ethanol, Propanol, Butanol. Aliphaten und Aromaten bilden auch untereinander Azeotrope, was aber die TBP-Kurve kaum beeinflußt. Um die Verhältnisse übersichtlich zu gestalten beschäftigten sich die ersten Untersuchungen mit Systemen des Typs aromatenarmes Schwerbenzin + Alkohol (Browarzik et al. (1996), Glindemann et al. (1997)). Hier spielen praktisch nur Azeotrope des Typs Aliphat + Alkohol eine Rolle. Die Untersuchungen wurden sowohl experimentell als auch mit Hilfe der *kontinuierlichen Thermodynamik* durchgeführt. Bei der kontinuierlichen Thermodynamik handelt es sich um eine Betrachtungsweise, die nicht wie üblich mit Molen- oder Massenbrüchen verknüpft ist, sondern unmittelbar auf den kontinuierlichen Verteilungsfunktionen aufbaut.

In diesem Fall ergeben sich folgende Destillationsphasen:

- Aliphatendestillation 1: Hier destillieren die nicht zur Azeotropbildung befähigten Aliphaten als reine Stoffe.
- Azeotropdestillation: Es destillieren Siedetemperaturminimumazeotrope des Typs Aliphat + Alkohol deutlich unterhalb der entsprechenden Reinstoffsiedetemperatur.
- Lücke/Sprung: Es destilliert nichts, weil die Aliphaten, die als reine Stoffe in diesem Temperaturbereich sieden würden, bereits als Azeotrope übergegangen sind. Die Siedekurve weist einen Sprung auf.
- Aliphatendestillation 2: Der Azeotropbildner Alkohol ist verbraucht, so daß wieder reine Aliphaten den Kolonnenkopf verlassen.

Das Hauptziel dieser Arbeit ist die experimentelle Bestimmung der Siedekurve für komplexe Systeme bestehend aus Aliphaten, Aromaten und n-Butanol. Dabei soll die Rolle der Aromaten bei der durch das Auftreten von Azeotropen verursachten Verfälschung der TBP-Kurve in den Vordergrund gestellt werden. Als erstes werden aus nur wenigen Komponenten bestehende Modellgemische untersucht. Danach wird schrittweise zu realen Systemen übergegangen, wobei zunächst die aliphatischen Schlüsselkomponenten durch ein aliphatisches Benzin und dann auch die aromatischen Schlüsselkomponenten durch ein aromatisches Benzin ersetzt werden. Das Verwenden der Modellsysteme ermöglicht eine gaschromatographische Analyse (Grob und Grob (1979), Schwartz et al. (1987)) aller Bestandteile der einzelnen Fraktionen. Bei realen Systemen kann auf Grund der hohen Anzahl und Dichte der Peaks aus dem Chromatogramm lediglich der Alkoholgehalt ermittelt werden.

Die experimentelle Arbeit soll durch entsprechende Berechnungen ergänzt werden. Auf Grund der Natur der komplexen Vielstoffgemische bietet sich die auf kontinuierlichen Verteilungsfunktionen basierende kontinuierliche Thermodynamik, Kehlen und Browarzik (1994), Cotterman und Prausnitz (1991) als Grundlage an.

2. GRUNDLAGEN

2.1 Kontinuierliche Thermodynamik

Die Thermodynamik basiert auf Stoffmengen. Eine thermodynamische extensive Größe Z wird hierbei als Funktion von der Temperatur T, dem Druck p und den Stoffmengen $(n_1, ..., n_k)$ betrachtet:

$$Z = Z(T, p, n_1, ..., n_k).$$
(2.1)

Als Beispiel sei hier die freie Enthalpie G genannt:

$$G = G(T, p, n_1, ..., n_k).$$
(2.2)

Das chemische Potential μ_j einer Komponente j, die zentrale Größe in der Phasengleichgewichtsthermodynamik, ist eine partielle Ableitung der obengenannten Größe nach der Stoffmenge n_j :

$$\mu_j = \left(\frac{\partial G}{\partial n_j}\right)_{T,p,n_{k\neq j}}.$$
(2.3)

Will man z.B. das Dampf-Flüssig Gleichgewicht (VLE) eines Systems berechnen, so gilt für das thermische, mechanische und stoffliche Gleichgewicht

$$T^L = T^V \tag{2.4}$$

$$p^L = p^V \tag{2.5}$$

$$\mu_j^L = \mu_j^V. \tag{2.6}$$

Dabei muß man die genaue Zusammensetzung der Feed-Phase kennen.

Besteht das System aus nur einigen Komponenten, ist die Bestimmung der Stoffmengen kein großes Problem. Hat man es aber mit einem komplexen Vielstoffgemsich zu tun, wie z.B. bei einer Erdölfraktion, ist es kaum möglich, alle Stoffe zu identifizieren, geschweige denn, deren genaue Zusammensetzung zu bestimmen. Häufig kann man jedoch die Tatsache nutzen, daß sich die Stoffe, die das Ensemble bilden, chemisch sehr ähneln.

Wie die Abb. 2.1 zeigt, kann man dann die durch die Balken dargestellten diskreten Stoffmengen durch eine kontinuierliche Verteilungsfunktion ersetzen. Auf diesem Ansatz basiert die von Kehlen und Rätzsch (1980) entwickelte kontinuierliche Thermodynamik.

Abb. 2.1: Zusammenhang zwischen der diskontinuierlichen und der kontinuierlichen Verteilungsfunktion.

Abb. 2.1 zeigt einen Ausschnitt eines Ensembles E einer großen Anzahl sehr ähnlicher chemischer Spezies, die durch eine Variable τ identifiziert seien. Hier wurde die Normalsiedetemperatur als Identifizierungsvariable gewählt, in anderen Fällen kann es günstiger sein, die Molmasse oder die Anzahl der C-Atome zu verwenden.

Die Stoffmenge $n_{E[\tau',\tau'')}$ aller Spezies aus dem Siedebereich $[\tau',\tau'')$ ist nun gegeben durch:

$$n_{E[\tau',\tau'')} = \int_{\tau'}^{\tau''} w(\tau) \, d\tau.$$
(2.7)

 $w(\tau)$ ist die extensive Verteilungsfunktion. Die Gesamtstoffmenge n_E kann dann ausgedrückt werden durch:

$$n_E = \int_{\tau} w(\tau) d\tau \quad \text{analog zu} \quad n_E = \sum_j n_j, \tag{2.8}$$

wobei \int_{τ} bedeuten soll, daß über den ganzen Definitionsbereich von τ integriert wird. Dividiert man $w(\tau)$ durch n_E , erhält man die molare Verteilungsfunktion $W_m(\tau)$

$$W_m(\tau) = \frac{w(\tau)}{n_E}$$
 analog zum Molenbruch $x_j = \frac{n_j}{n_E}$. (2.9)

Die Integration führt dann zu:

$$\int_{\tau} W_m(\tau) d\tau = 1 \quad \text{analog zu} \quad \sum_j x_j = 1.$$
(2.10)

Oft ist es zweckmäßig, die intensive Massenverteilungsfunktion $W(\tau)$ zu verwenden. Für diese gilt:

$$W(\tau) = \frac{w(\tau)M(\tau)}{\int\limits_{\tau'} w(\tau')M(\tau')\,d\tau'}.$$
(2.11)

Dabei ist die Molmasse $M(\tau)$ Funktion der Normalsiedetemperatur τ und für $W(\tau)$ gilt eine zu Gl. (2.10) analoge Normierungsbedingung.

Die kontinuierliche Thermodynamik baut unmittelbar auf den kontinuierlichen Verteilungsfunktion auf. So ist Z im kontinuierlichen Fall eine Funktion von T und p und ein Funktional von $w(\tau)$:

$$Z = Z(T, p; w)^{1}.$$
(2.12)

Unter einem Funktional ist eine Abbildungsvorschrift zu verstehen, die jeder Funktion (hier $w(\tau)$) eine Zahl zuordnet. Ein wichtiges Beispiel eines Funktionals ist das bestimmte Integral einer Funktion.

2.2 Berechnung des Dampf-Flüssig Gleichgewichtes mit der kontinuierlichen Thermodynamik

Als Beispiel für die Anwendung der kontinuierlichen Thermodynamik soll das Dampf-Flüssig Gleichgewicht (VLE) betrachtet werden. Hier sind die Gleichungen (2.4) - (2.6) anzuwenden. Für die zwei koexistierenden Phasen gilt dann bei Annahme idealer Mischung für die Dampfphase V und bei Vernachlässigung der Druckabhängigkeit des chemischen Potentials der flüssigen Phase L:

$$\mu^{V}(\tau, T, p) = \mu^{*V}(\tau, T, p^{*}) + RT \ln \frac{W_{m}^{V}(\tau)p}{p^{*}(\tau, T)}$$
(2.13)

$$\mu^{L}(\tau, T, p) = \mu^{*L}(\tau, T, p^{*}) + RT \ln[W_{m}^{L}(\tau)\gamma(\tau)].$$
(2.14)

Alle Größen in den obigen Gleichungen beziehen sich auf eine durch die Variable τ identifizierte Komponente. $\mu^{*L}(\tau, T, p^*)$ und $\mu^{*V}(\tau, T, p^*)$ sind jeweils das Standardpotential bezogen auf die reine Komponente bei der Systemtemperatur T und den Reinstoffdampfdruck $p^*(\tau, T)$. $\gamma(\tau)$ ist der Aktivitätskoeffizient in der Flüssigphase. R ist die Gaskonstante. In den Gln. (2.13) und (2.14) wird die Gasphase als ideal betrachtet und die Druckabhängigkeit des chemischen Potentials der flüssigen Phase vernachlässigt.

¹ Das Semikolon soll den Unterschied zwischen Funktion und Funktional unterstreichen.

Nach Gl. (2.6) sind die linken Seiten und die jeweils ersten Terme der rechten Seiten der Gln. (2.13) und (2.14) gleich. Daraus ergibt sich unmittelbar die kontinuierliche Version des erweiterten Raoultschen Gesetzes:

$$W_m^V(\tau)p = W_m^L(\tau)\gamma(\tau)p^*(\tau,T).$$
 (2.15)

Integration dieser Gleichung über den gesamten τ -Bereich liefert eine Gleichung für den Dampfdruck des komplexen Vielstoffgemisches. Einen guten Überblick über zahlreiche Anwendungen der kontinuierlichen Thermodynamik findet man bei Cotterman und Prausnitz (1991).

2.3 Destillation

Die Destillation, insbesondere die von Erdöl, ist ein wichtiges Trennverfahren für Stoffgemische. Für Erdöle wird sie auch zur Charakterisierung angewendet und liefert hierbei auch die für Anwendungen der kontinuierlichen Thermodynamik benötigte kontinuierliche Verteilungsfunktion. Im folgenden soll die Destillation eines idealen binären Gemisches der Komponenten 1 und 2 bei konstantem Druck diskutiert werden.

2.3.1 "Einfache" Destillation

Die Abb. 2.2 stellt schematisch ein Siedediagramm einer binären Mischung dar. Der Blaseninhalt soll am Anfang die Zusammensetzung x_I und die Temperatur T_I haben; das entspricht den Koordinaten (x_I, T_I) . Durch Erwärmung steigt die Temperatur und das Gemisch beginnt zu sieden (x_I, T_{II}) . Dabei verdampft es und der sich gerade bildende Dampf hat die Zusammensetzung x_{II} (x_{II}, T_{II}) . In dem Destillat hat sich also die Komponente mit der niedrigeren Siedetemperatur angereichert.

Diesen Effekt könnte man im Labor mit einem Kolben und einem kurzen Kühler erreichen. Diese "einfache" Destillation ist genau genommen kein Trenn-, sondern ein Anreicherungsverfahren.

2.3.2 Fraktionierte Destillation

In der Praxis ist man aber meistens an einer möglichst vollständigen Trennung der Komponenten interessiert. Deswegen wendet man die fraktionierte Destillation an. Dabei wird der obenbeschriebene Zyklus mehrmals wiederholt. In Abb. 2.2 sind das die Schritte auf dem Pfad $(x_I, T_I) \rightarrow (x_I, T_{II}) \rightarrow (x_{II}, T_{II}) \rightarrow (x_{II}, T_{III})$ usw. bis $(1, T_1^*)$. Mit jedem Schritt wird die niedrieger siedende Komponente im Destillat angereichert. Am Ende erhält man sie in praktisch reiner Form.

Abb. 2.2: Schematische Darstellung des Verlaufs einer Destillation eines binären Gemisches.

2.4 Azeotropie

In einer Reihe von Fällen treten Abweichungen von dem oben beschriebenen Idealverhalten auf. Diese Abweichungen können zu Maxima oder Minima in der Siede- und Taukurve führen. In diesen Extremwerten haben die Flüssig- und die Gasphase die gleiche Zusammensetzung. Aus dem erweiterten Raoultschen Gesetz folgt dann:

$$\frac{\gamma_1}{\gamma_2} = \frac{p_2^*}{p_1^*}.$$
(2.16)

Ob und welcher dieser Fälle auftritt, hängt von den zwischenmolekularen 1-2-Wechselwirkungen ab. Den Effekt nennt man *Azeotropie*. Stoffe, die mit mehreren Stoffen oder Stoffklassen Azeotrope bilden, nennt man *Azeotropbildner*.

Bei der destillativen Stofftrennung ist das Entstehen von Azeotropen meist unerwünscht. Um das zu verhindern kann man den Druck verändern, oder eine geeignete Komponente hinzufügen.

2.4.1 Minimumazeotropie

Wenn die Wechselwirkungen vom Typ 1-2 schwächer sind als das Mittel der Wechselwirkungen vom Typ 1-1 und 2-2 tritt Siedetemperaturmimimumazeotropie auf. Das bedeutet, daß die Vermischungstendenz der beiden Stoffe kleiner als die einer idealen Mischung ist. Die freie Exzeßenthalpie G^E , also der Unterschied zwischen der praktisch beobachteten und der freien Mischungsenthalpie im Idealfall, ist in diesem Fall positiv (Atkins (1990)).

$$G^E > 0. (2.17)$$

Abb. 2.3: Schematische Darstellung des Verlaufs einer Destillation eines binären Gemisches bei Bildung eines Minimumazeotrops.

Abb. 2.3 stellt einen solchen Fall dar. Führt man eine fraktionierte Destillation eines solchen Gemisches durch, kommt man unverweigerlich in das Minimum mit den Koordinaten (x^{Az}, T^{Az}) . Von dort aus gelangt man aber nicht weiter in Richtung eines reinen Stoffes, sondern es destilliert ein Gemisch (Azeotrop) der dem Minimum ensprechenden azeotropen Zusammensetzung. Man spricht hier von Siedetemperaturminimumazeotropie.

2.4.2 Maximumazeotropie

Ist die Tendenz der Komponenten, sich zu vermischen größer als im Idealfall, was auf stärkere 1-2-Wechselwirkungen als im Idealfall schließen läßt, tritt ein Siedetemperaturmaximum auf. Die Überlegungen sind analog zu dem eben besprochenen Siedetemperaturminimum. Die freie Exzeßenthalpie G^E ist in diesem Fall negativ:

$$G^E < 0. (2.18)$$

In diesem Fall spricht man von Siedetemperaturmaximumazeotropie.

2.4.3 Polyazeotropie

Selbst in Vielstoffsystemen werden meist nur binäre Azeotrope gebildet. Es können jedoch auch Azeotrope höheren Grades entstehen. In diesem Fall spricht man von *Polyazeotropie*, Świętosławski (1963). Es kann ebenfalls vorkommen, das ein System (sogar ein binäres) zwei (oder mehr) stabile Azeotrope bildet, Segura et al. (1996).

3. THERMODYNAMISCHE BEHANDLUNG DER BLASENDESTILLATION

Im folgenden wird der Destillationsverlauf aus der Sicht der kontinuierlichen Thermodynamik diskutiert. Dabei wird davon ausgegangen, daß es sich um ein oder mehrere Ensembles chemisch ähnlicher Spezies, wie z.B. Aliphaten- bzw. Aromatenfraktion eines Benzins handelt. Weiterhin wird eine Kolonne unendlicher Trennleistung mit unendlichem Rückfluß vorausgesetzt.

Als Zusatz können eine oder mehrere anders geartete, diskrete Komponenten, wie z.B ein Alkohol auftereten. Diese können als Grenzfall eines Ensembles betrachtet werden, das durch nur einen Stoff repräsentiert wird. Dann ist die Verteilungsfunktion dieses Ensembles eine Dirac-Funktion $\delta(x)$. Für diese gilt bekannterweise:

$$\delta(x \neq 0) = 0; \quad \delta(x = 0) = \infty; \quad \int_{x} \delta(x) \, dx = 1. \tag{3.1}$$

3.1 Verlauf der Destillation eines Kohlenwasserstoffgemisches ohne Azeotropie - die "wahre" Siedekurve

Trägt man bei der Destillation eines Kohlenwasserstoffgemisches die Kopftemperatur T der Kolonne gegen die bis dahin übergegangene relative Destillatmasse I^{Kopf} auf, erhält man die sogenannte "wahre" Siedekurve (TBP-Kurve). In dem einfachsten Fall (nur ein Ensemble), Abb. 3.1, kann man also die Funktion

$$I^{Kopf}(T) = I(\tau) \tag{3.2}$$

als integrale Verteilungsfunktion bezüglich der Reinstoffsiedetemperatur τ betrachten, da die Komponenten entsprechend ihrer Reinstoffsiedetemperaturen übergehen $(T = \tau)$. Daraus kann man die differenzielle Verteilungsdichtefunktion $W(\tau)$ (intensive Massenverteilungsfunktion)

$$W(\tau) = dI(\tau)/d\tau \tag{3.3}$$

ableiten. Diese gibt den Massenbruch aller Spezies mit τ -Werten aus dem engen Siedetemperaturintervall $\tau \in [\tau, \tau + d\tau)$ an. Anders ausgedrückt gilt:

$$I(\tau) = \int_{\tau_0}^{\tau} W(\tau) \, d\tau. \tag{3.4}$$

Abb. 3.1: TBP-Kurve (rechts) und differentielle Verteilungsfunktion (links) eines Aliphatengemisches bei unendlicher Trennleistung der Destillationskolonne ($T = \tau$).

Da die relative Destillatmenge I im gesamten Destillationsbereich vom Siedeanfang τ_0 bis zum Siedeende τ^0 auf eins normiert ist, ergibt sich für die differenzielle Verteilungsdichtefunktion $W(\tau)$ die folgende Beziehung:

$$I(\tau^{0}) = \int_{\tau_{0}}^{\tau^{0}} W(\tau) \, d\tau = 1.$$
(3.5)

Für den allgemeinen Fall (n Ensembles) gilt in Verallgemeinerung von Gl. (3.4):

$$I(\tau) = \sum_{j=1}^{n} \xi_j I_j(\tau); \qquad I_j(\tau) = \int_{\tau_{j,0}}^{\tau} W_j(\tau) \, d\tau.$$
(3.6)

Dies ist die allgemeine Gleichung für die "wahre" Siedekurve. ξ_j ist dabei der Massenbruch des Ensembles *j*. Diskrete Zusatzkomponenten werden durch die Dirac-Funktion, Gl. (3.1), beschrieben.

Abb. 3.2 zeigt ein Beispiel mit einem Aliphatengemisch Al und einer diskreten Zusatzkomponente *i*. In diesem Fall gilt für die Zusammensetzung am Kolonnenkopf:

$$W(\tau) = \xi_{Al} W_{Al}(\tau) + \xi_i \delta(\tau - \tau_i); \quad I(\tau) = \xi_{Al} I_{Al}(\tau) + \xi_i I_i.$$
(3.7)

 I_i ist für $\tau < \tau_i$ gleich 0 und sonst gleich 1.

In beiden Abbn. 3.1 und 3.2 haben wir es mit einer "wahren" Siedekurve zu tun, die Gl. (3.6)

Abb. 3.2: Zusammenhang zwischen der TBP-Kurve (rechts) und der Verteilungsfunktion (links) eines Aliphatengemisches mit einer azeotropbildenden Zusatzkomponente bei unendlicher Trennleistung der Destillationskolonne ohne Azeotropie¹.

erfüllt. Der temperaturkonstante Verlauf $(T = \tau_i)$ der TBP-Kurve im rechten Teil von Abb. 3.2 entspricht der Destillation der reinen Zusatzkomponente *i*.

3.2 Verlauf der Destillation eines Kohlenwasserstoffgemisches mit einem Azeotropbildner

Ist die Zusatzkomponente *i* aus dem vorhergehenden Abschnitt ein Azeotropbildner, z.B. ein Alkohol, ändert sich die Situation, denn nun können in einem bestimmten Siedebereich $[\tau_{Al}^B, \tau_{Al}^E]$ Azeotrope gebildet werden. In diesem Bereich gilt die Gl. (3.6) nicht mehr. Im folgenden wird stets der Fall von Siedetemperaturminimumazeotropie diskutiert. Hier gehen azeotrope Gemische bei niedrigerer Temperatur als der entsprechenden Reinstoffsiedetemperatur über. Es kommt zur Verfälschung der "wahren" Siedekurve (TBP-Kurve).

3.2.1 Verfälschung der TBP-Kurve

Abb. 3.3 stellt ein System des Typs Aliphaten-Azeotropbildner dar. Die Aliphaten aus dem Siedebereich $[\tau_{Al,0}, \tau_{Al}^0]$ sollen in dem Bereich $[\tau_{Al}^B, \tau_{Al}^E]$ Azeotrope bilden können. In der Regel werden nicht alle Azeotrope gebildet, da der Azeotropbildner früher verbraucht wird. Deshalb erstreckt sich dieser Bereich nur von τ_{Al}^B bis $\tau_{Al}^{E'}$. $\tau_{Al}^{E'}$ ist die Reinstoffsiedetemperatur des letzten

 $^{^{1}}$ Der Pfeil auf der linken Seite des Bildes steht für die Dirac-Funktion.

Aliphaten, der den Kolonnenkopf tatsächlich als Azeotrop verläßt.

Die Kopftemperatur T ($T < \tau$ für Azeotrope) steigt kontinuierlich, bis alle Azeotrope gebildet wurden. Danach folgt ein Temperatursprung. Die Siedetemperatur T^E , des letzten gebildeten Azeotrops kann im Genzfall der Siedetemperatur τ_i des Azeotropbildners gleich sein. Der gestrichelte Verlauf in Abb. 3.3 zeigt zum Vergleich den Fall ohne Azeotropieeinfluß. Mit $T < \tau$ gilt auch $I^{Kopf}(T) = I(\tau)$ nicht mehr.

$$W^{Kopf}(T) = \frac{dI^{Kopf}(T)}{dT}$$
(3.8)

ist das Analogon zu $W(\tau)$. Die nun verfälschte TBP-Kurve wird im folgenden nur noch als Siedekurve bezeichnet.

Abb. 3.3: Zusammenhang zwischen der Siedekurve (rechts) und der Verteilungsfunktion (links) eines Aliphatengemisches mit einer azeotropbildenden Zusatzkomponente bei unendlicher Trennleistung der Destillationskolonne².

3.2.2 Phasen einer Destillation bei Bildung von nur aliphatischen Azeotropen

Bei der Destillation eines Gemisches des Typs Aliphaten + Azeotropbildner kann man vier Destillationsphasen unterscheiden.

 $^{^{2}}$ Der Pfeil auf der linken Seite des Bildes steht für die Dirac-Funktion.

Aliphatendestillation 1 ($\tau_{Al,0} \leq T < \tau_{Al}^B$)

In dieser Phase destillieren reine Aliphaten in der Reihenfolge ihrer Siedetemperaturen. Die TBP-Kurve ist unverfälscht. Die Kopftemperatur T entspricht also der Reinstoffsiedetemperatur τ . Daher gilt:

$$T = \tau \tag{3.9}$$

$$W^{Kopf}(T) = \xi_{Al} W_{Al}(\tau) \tag{3.10}$$

$$I^{Kopf}(T) = \xi_{Al} \int_{\tau_{Al,0}} W_{Al}(\tau) \, d\tau.$$
 (3.11)

Azeotrop
destillation $(\tau^B_{Al} \leq T \leq T^E)$

Mit dem Anfang dieser Phase beginnt die Verfälschung der TBP-Kurve.

In dieser Phase destillieren azeotrope Gemische bestehend aus der Aliphatenfraktion Al und der Zusatzkomponente *i* mit dem Massenbruch ξ_{i-Al}^{Az} in der Reihenfolge ihrer Siedetemperaturen ϑ_{i-Al}^{Az} . Im Fall der Minimumazeotropie gilt für die Kopftemperatur T:

$$T = \vartheta_{i-Al}^{Az}(\tau) \le \tau. \tag{3.12}$$

 $\vartheta_{i-Al}^{Az}(\tau)$ gibt die Azeotropsiedetemperatur in Abhängigkeit von der Reinstoffsiedetemperatur des Aliphaten an. Bei τ_{Al}^B wird theoretisch das 1. Azeotrop gebildet. Der Massenbruch des Azeotropbildners *i* (Alkohol) im Azeotrop beträgt $\xi_{i-Al}^{Az} = 0$. Mit wachsendem τ wächst auch ϑ_{i-Al}^{Az} , wobei aber Gl.(3.12) gilt. Gleichfalls wächst auch ξ_{i-Al}^{Az} bis für $\vartheta_{i-Al}^{Az} = \tau_i$ (Reinstoffsiedetemperatur des Azeotropbildners *i*) gerade $\xi_{i-Al}^{Az} = 1$ gilt.

Liegt genügend Zusatzkomonente vor, werden alle theoretisch möglichen Azeotrope gebildet. Praktisch wird jedoch der Azeotropbildner stets vor Erreichen der oberen Temperaturgrenze verbraucht. In den beiden Temperaturgrenzfällen kann man auch Aussagen über die Ableitungen von $\vartheta_{i-Al}^{Az}(\tau)$ nach τ herleiten (Glindemann et al. (1997)). Die Charakteristika der beiden Grenzfälle können wie folgt zusammengefaßt werden.

Untere Temperaturgrenze

$$\tau = \tau_{Al}^B = \vartheta_{i-Al}^{Az}; \quad \xi_{i-Al}^{Az} = 0; \quad \lim_{\tau \to \tau_{Al}^B} \left(\frac{\partial \vartheta_{i-Al}^{Az}}{\partial \tau} \right)_p = 1. \tag{3.13}$$

Obere Temperaturgrenze

$$\tau = \tau_{Al}^{E}; \quad \vartheta_{i-Al}^{Az} = \tau_{i}; \quad \xi_{i-Al}^{Az} = 1; \quad \lim_{\tau \to \tau_{Al}^{E}} \left(\frac{\partial \vartheta_{i-Al}^{Az}}{\partial \tau}\right)_{p} = 0.$$
(3.14)

Die Funktionen $\vartheta_{i-Al}^{Az}(\tau)$ und $\xi_{i-Al}^{Az}(\tau)$ verlaufen im Intervall $\tau_{Al}^B \leq \tau \leq \tau_{Al}^E$ monoton wachsend. Die Azeotrop
destillation findet im Temperaturintervall $\tau_{Al}^B \leq \tau \leq T^E$ statt, wobei die Kopftemperatur T^E die Siedetemperatur des letzten tatsächlich übergehenden Azeotrops ist. Für diese gilt:

$$\tau_{Al}^B \le T^E \le \tau_i. \tag{3.15}$$

Der zur Azeotropsiedetemperatur T^E gehörende Aliphat hat die Reinstoffsiedetemperatur $\tau_{Al}^{E'}$. In der Phase der Azeotropdestillation gilt für die Funktion $W^{Kopf}(T)$:

$$W^{Kopf}(T) = \frac{d\tau}{dT} \frac{\xi_{Al} W_{Al}(\tau)}{1 - \xi_{i-Al}^{Az}(\tau)}.$$
(3.16)

 $I^{Kopf}(T)$ ist die Summe der Beiträge aus der vorhergehenden (Aliphatendestillation 1) und der jetzigen Phase. Man berechnet sie nach:

$$I^{Kopf}(T) = \xi_{Al} \int_{\tau_{Al,0}}^{\tau_{Al}^{B}} W_{Al}(\tau) \, d\tau + \xi_{Al} \int_{\tau_{Al}^{B}}^{T} \frac{d\tau}{dT} \frac{W_{Al}(\tau)}{1 - \xi_{i-Al}^{Az}(\tau)} \, dT$$
(3.17)

bzw.

$$I^{Kopf}(T) = \xi_{Al} \int_{\tau_{Al,0}}^{\tau_{Al}^{B}} W_{Al}(\tau) \, d\tau + \xi_{Al} \int_{\tau_{Al}^{B}}^{T} \frac{W_{Al}(\tau)}{1 - \xi_{i-Al}^{Az}(\tau)} \, d\tau, \tag{3.18}$$

wobei der Zusammenhang zwischen T und τ aus Gl. (3.12) folgt.

Den Massenbruch I_i^{Kopf} der azeotropbildenden Zusatzkomponente *i*, der während der Azeotropdestillation am Kolonnenkopf überdestillierte, berechnet man nach:

$$I_{i}^{Kopf}(T) = \xi_{Al} \int_{\tau_{Al}^{B}}^{T} \frac{d\tau}{dT} \frac{\xi_{i-Al}^{Az}(\tau)}{1 - \xi_{i-Al}^{Az}(\tau)} W_{Al}(\tau) dT = \xi_{Al} \int_{\tau_{Al}^{B}}^{T} \frac{\xi_{i-Al}^{Az}(\tau)}{1 - \xi_{i-Al}^{Az}(\tau)} W_{Al}(\tau) d\tau.$$
(3.19)

Die Reinstofsiedetemperatur $\tau_{Al}^{E'}$ des letzten als Azeotrop übergehenden Aliphaten ergibt sich aus

$$I_i^{Kopf}(T^E) = 1 - \xi_{Al}$$
 (3.20)

bzw. mit Gl. (3.19) aus

$$1 - \xi_{Al} = \xi_{Al} \int_{\tau_{Al}^{B}}^{\tau_{Al}^{E'}} \frac{\xi_{i-Al}^{Az}(\tau)}{1 - \xi_{i-Al}^{Az}(\tau)} W_{Al}(\tau) d\tau.$$
(3.21)

Lücke/Sprung $(T^E < T \le \tau_{Al}^{E'})$

Nach Verbrauch der azeotropbildenden Zusatzkomponente folgt ein Temperatursprung. An dieser Stelle destillieren keine Stoffe, da die Aliphaten aus diesem Siedebereich in der vorhergehenden Phase verbraucht wurden.

Die Kopftemperatur T steigt von T^E auf $\tau_{Al}^{E'}$. Für die Funktion $W_{Al}^{Kopf}(\tau)$ gilt im Intervall $T^E < T \le \tau_{Al}^{E'}$

$$W^{Kopf}(\tau) = 0 \tag{3.22}$$

und für $I^{Kopf}(T)$

$$I^{Kopf}(T) = \xi_{Al} \int_{\tau_{Al,0}}^{\tau_{Al}^{B}} W_{Al}(\tau) \, d\tau + \xi_{Al} \int_{\tau_{Al}^{B}}^{\tau_{Al}^{E'}} \frac{W_{Al}(\tau)}{1 - \xi_{i-Al}^{Az}(\tau)} \, d\tau = const.$$
(3.23)

Aliphaten
destillation 2 ($\tau_{Al}^{E'} < T < \tau_{Al}^{0}$)

Mit dem Anfang dieser Phase endet die Verfälschung der TBP-Kurve.

Nach dem Temperatursprung destillieren wieder reine Aliphate in der Reihenfolge ihrer Siedetemperaturen. Nun gelten wieder solche Gleichungen wie in der ersten Phase. Insgesamt ergibt sich

$$I^{Kopf}(T) = \xi_{Al} \int_{\tau_{Al,0}}^{\tau_{Al}^{B}} W_{Al}(\tau) \, d\tau + \xi_{Al} \int_{\tau_{Al}^{B}}^{\tau_{Al}^{E'}} \frac{W_{Al}(\tau)}{1 - \xi_{i-Al}^{Az}(\tau)} \, d\tau + \xi_{Al} \int_{\tau_{Al}^{E}}^{T} W_{Al}(\tau) \, d\tau.$$
(3.24)

3.3 Verlauf der Destillation bei Bildung von aliphatischen und aromatischen Azeotropen

Enthält das Kohlenwasserstoffgemisch außer Aliphaten auch Aromaten, muß das berücksichtigt werden. Die Aromaten, $[\tau_{Ar,0}, \tau_{Ar}^{0}]$, bilden nämlich mit einem Azeotropbildner ähnlich wie die Aliphaten Siedetemperaturminimumazeotrope.

3.3.1 Verfälschung der TBP-Kurve

Abb. 3.4 stellt ein System Aliphaten-Aromaten-Azeotropbildner dar. Nun ist die Lage komplizierter als in der im Abschnitt 3.2 dargestellten Variante. Die Aromaten können Azeotrope in einem Siedebereich $[\tau_{Ar}^B, \tau_{Ar}^E]$ bilden $(\tau_{Ar}^B > \tau_{Al}^B)$. Der Einfachheit halber wird in Abb. 3.3 angenommen, daß alle theoretisch möglichen aromatischen Azeotrope gebildet werden. Weiterhin stellt die differentielle Kurve die summarische Verteilungsfunktion der Aliphaten und der Aromaten dar.

Der Lücke folgt jetzt ein kleiner Siedeabschnitt $[\tau_{Ar}^E, \tau_{Al}^{E'}]$, in dem reine Aromaten destillieren. Wie stark dieser ausgeprägt ist, hängt vom Aromatenanteil in der Mischung ab.

Während der Sprung im rechten Teil von Abb. 3.3 ohne Anwesenheit von Aromaten von T^E bis $\tau_{Al}^{E'}$ ginge, ist er jetzt auf das Intervall $T^E < \tau \leq \tau_{Ar}^E$ beschränkt. Die Aromaten haben einen kleineren azeotropen Bereich, so daß in dem aliphatischen Sprung oberhalb τ_{Ar}^E reine Aromaten destillieren können.

Abb. 3.4: Zusammenhang zwischen der Siedekurve (rechts) und der Verteilungsfunktion (links) eines Kohlenwasserstoffgemisches (Aliphaten und Aromaten) mit einer azeotropbildenden Zusatzkomponente bei unendlicher Trennleistung der Destillationskolonne³.

3.3.2 Phasen einer Destillation bei Bildung von aliphatischen und aromatischen Azeotropen

Die Destillation eines Gemisches bestehend aus Alkanen, Aromaten und einem Azeotropbildner kann man, analog zu dem oben beschriebenen Fall ohne Aromaten, gewöhnlich in die folgenden Phasen einteilen:

³ Der Pfeil auf der linken Seite des Bildes steht für die Dirac-Funktion.

Aliphatendestillation $(\tau_{Al,0} \leq T < \tau_{Al}^B)$

Es destillieren reine Aliphaten in der Reihenfolge ihrer Siedetemperaturen. Das ist meistens ein kleiner Bereich zwischen dem Siedeanfang der Aliphaten $\tau_{Al,0}$ und der Siedetemperatur des ersten Azeotropes τ_{Al}^{B} . Es gelten hier Gln. (3.9)-(3.11).

Azeotrop
destillation 1 ($\tau_{Al}^B \leq T < \vartheta_{i-Ar}^{Az}(\tau_{Ar,0})$)

Mit dem Anfang dieser Phase beginnt die Verfälschung der TBP-Kurve.

Es wird angenommen, daß der am niedrigsten siedende Aromat bereits Azeotrope bildet ($\tau_{Ar,0} > \tau_{Ar}^B$). In diesem Fall destillieren zunächst azeotrope Gemische des Typs Aliphat + Azeotropbildner in der Reihenfolge ihrer Siedetemperaturen. Die Siedetemperatur des ersten aliphatischen Azeotrops τ_{Al}^B ist niedriger als die des ersten aromatischen Azeotrops $\vartheta_{i-Ar}(\tau_{Ar,0})$. In diesem Bereich gilt für die Kopftemperatur T

$$\tau_{Al}^B \le T < \vartheta_{i-Ar}^{Az}(\tau_{Ar,0}). \tag{3.25}$$

Der Wert von T gleicht dann dem der Siedetemperatur $\vartheta_{i-Al}(\tau)$ des gerade destillierenden aliphatischen Azeotrops:

$$T = \vartheta_{i-Al}(\tau). \tag{3.26}$$

In dieser Phase gilt für die Funktion $W^{Kopf}(T)$ Gl. (3.16). Für die Funktion $I^{Kopf}(T)$ gilt Gl. (3.17). Es wird angenommen, daß der Azeotropbildner (Alkohol) so reichlich zur Verfügung steht, daß alle Azeotrope dieses Bereichs gebildet werden können.

Azeotrop destillation 2 $(\vartheta_{i-Ar}^{Az}(\tau_{Ar,0}) \leq T \leq T^E)$

Zu den aliphatischen kommen auch Azeotrope des Typs Aromat + Azeotropbildner hinzu. Für die Kopftemperatur T gilt:

$$\vartheta_{i-Ar}^{Az}(\tau_{Ar,0}) \le T \le T^E \tag{3.27}$$

$$T = \vartheta_{i-Al}(\tau) = \vartheta_{i-Ar}(\tau'). \tag{3.28}$$

Der Aliphatenanteil W_{Al}^{Kopf} Verteilungsfunktion W^{Kopf} ist durch Gl. (3.16) gegeben. Der Aromatenanteil W_{Ar}^{Kopf} der Verteilungsfunktion W^{Kopf} ist analog zu Gl. (3.16) über:

$$W_{Ar}^{Kopf}(T) = \frac{d\tau'}{dT} \frac{\xi_{Ar} W_{Ar}(\tau')}{1 - \xi_{i-Ar}^{Az}(\tau')}.$$
(3.29)

zu berechnen. In die Funktion I^{Kopf} gehen beide Beiträge ein:

$$I^{Kopf}(T) = \xi_{Al} \int_{\tau_{Al,0}}^{\tau_{Al}^{B}} W_{Al}(\tau) \, d\tau + \xi_{Al} \int_{\tau_{Al}^{B}}^{\tau} \frac{W_{Al}(\tau)}{1 - \xi_{i-Al}^{Az}(\tau)} \, d\tau + \xi_{Ar} \int_{\tau_{Ar,0}}^{\tau'} \frac{W_{Ar}(\tau')}{1 - \xi_{i-Ar}^{Az}(\tau')} \, d\tau'.$$
(3.30)

wobei sich τ und τ' aus Gl. (3.28) ergeben. Ähnlich wie in Gl. (3.19) berechnet man den Massenbruch I_i^{Kopf} des Azeotropbildners, der während der Azeotropdestillation überdestillierte, nach:

$$I_{i}^{Kopf}(T) = \xi_{Al} \int_{\tau_{Al}^{B}}^{\tau} \frac{\xi_{i-Al}^{Az}(\tau)}{1 - \xi_{i-Al}^{Az}(\tau)} W_{Al}(\tau) d\tau + \xi_{Ar} \int_{\tau_{Ar,0}}^{\tau'} \frac{\xi_{i-Ar}^{Az}(\tau')}{1 - \xi_{i-Ar}^{Az}(\tau')} W_{Ar}(\tau') d\tau'.$$
(3.31)

Am Ende dieser Phase sind die Aliphaten aus dem Siedebereich $\tau \in [\tau_{Al}^B, \tau_{Al}^{E'})$ und die Aromaten aus $\tau' \in [\tau_{Ar,0}, \tau_{Ar}^{E})$ überdestilliert.

Die Azeotropdestillation endet mit dem Verbrauch der azeotropbildenden Zusatzkomponente (Alkohol) bei der Temperatur

$$T^E = \vartheta_{i-Al}^{Az}(\tau_{Al}^{E'}). \tag{3.32}$$

 $\tau_{Al}^{E'}$ ergibt sich aus der Bedingung

$$I_i^{Kopf}(T) = 1 - \xi_{Al} - \xi_{Ar}, \qquad (3.33)$$

so daß gilt

$$1 - \xi_{Al} - \xi_{Ar} = \xi_{Al} \int_{\tau_{Al}^{B}}^{\tau_{Al}^{E'}} \frac{\xi_{i-Al}^{Az}(\tau)}{1 - \xi_{i-Al}^{Az}(\tau)} W_{Al}(\tau) d\tau + \xi_{Ar} \int_{\tau_{Ar,0}}^{\tau_{Ar}^{E}} \frac{\xi_{i-Ar}^{Az}(\tau)}{1 - \xi_{i-Ar}^{Az}(\tau)} W_{Ar}(\tau) d\tau, \quad (3.34)$$

wobe
i τ_{Ar}^{E} die Reinstoffsiedetemperatur des letzten Aromaten ist, der Aze
otrope mit dem Alkohol *i* bilden kann. $\tau_{Al}^{E'}$ ist die Reinstoffsiedetemperatur des letzten Aliphaten, der tatsächlich
 Azeotrope bildet. Es gilt $\tau_{Al}^{E'} \leq \tau_{Al}^{E}$. τ_{Al}^{E} i
dentifiziert den letzten Aliphaten, der theoretisch
 Azeotrope bilden könnte, wenn ausreichend Alkohol vorhanden wäre. Es wurde mit $\tau_{Al}^{E'} > \tau_{Ar}^{E}$
angenommen, daß genügend Alkohol vorliegt, um alle möglichen aromatischen Azeotrope zu
 bilden.

Lücke/Sprung $(T^E < T \le \tau_{Ar}^E)$

Es folgt ein Siedetemperatursprung. An dieser Stelle destillieren keine Stoffe, da die Aliphaten und die Aromaten aus diesem Siedebereich als Azeotrope destillierten. Der Sprung ist jetzt allerdings kürzer, als in dem Fall ohne Aromaten, denn im Bereich $\tau_{Ar}^E \leq T \leq \tau_{Al}^{E'}$ destillieren jetzt reine Aromaten. Es gilt im Intervall $T^E < T \leq \tau_{Ar}^E$:

$$W^{Kopf}(T) = 0 \tag{3.35}$$

und

$$I^{Kopf}(T) = const. (3.36)$$

Aromaten
destillation $(\tau^{E}_{Ar} < T \leq \tau^{E'}_{Al})$

Es destillieren reine Aromaten. Das ist ein Bereich, der wegen der vorangegangenen Azeotropdestillation aliphatenfrei ist. Das rührt daher, daß die Aliphaten in einem viel größeren Siedetemperaturbereich als die Aromaten Azeotrope bilden. Die TBP-Kurve bleibt immer noch verfälscht, es gilt aber $T = \tau$.

Für die Funktion I^{Kopf} kommt hier nur der Beitrag der Aromaten hinzu:

$$I^{Kopf}(T) = \xi_{Al} \int_{\tau_{Al,0}}^{\tau_{Al}^{B}} W_{Al}(\tau) d\tau \qquad (3.37)$$

+ $\xi_{Al} \int_{\tau_{Al}^{B}}^{\tau_{Al}^{E'}} \frac{W_{Al}(\tau)}{1 - \xi_{i-Al}^{Az}(\tau)} d\tau + \xi_{Ar} \int_{\tau_{Ar,0}}^{\tau_{Ar}^{E}} \frac{W_{Ar}(\tau)}{1 - \xi_{i-Ar}^{Az}(\tau)} d\tau$
+ $\xi_{Ar} \int_{\tau_{Ar}^{E}}^{T} W_{Ar}(\tau) d\tau.$

Aliphaten-/Aromaten
destillation $(\tau^{E'}_{Al} < T \leq \tau^0)$

Erst mit dem Anfang dieser Phase endet die Verfälschung der TBP-Kurve.

Nun destillieren reine Kohlenwasserstoffe in der Reihenfolge ihrer Siedetemperaturen. Die Funktion $I^{Kopf}(\tau)$ ist nun die Summe der Beiträge beider Fraktionen aus allen Destillationsphasen. Nimmt man für die Aliphaten und die Aromaten das gleiche Siedeende an $(\tau_{Al}^0 = \tau_{Ar}^0 = \tau^0)$ folgt insgesamt:

$$I^{Kopf}(T) = \xi_{Al} \int_{\tau_{Al,0}}^{\tau_{Al}^{Bl}} W_{Al}(\tau) d\tau \qquad (3.38)$$

+ $\xi_{Al} \int_{\tau_{Al}^{Bl}}^{\tau_{Al}^{E'}} \frac{W_{Al}(\tau)}{1 - \xi_{i-Al}^{Az}(\tau)} d\tau + \xi_{Ar} \int_{\tau_{Ar,0}}^{\tau_{Ar}^{E}} \frac{W_{Ar}(\tau)}{1 - \xi_{i-Ar}^{Az}(\tau)} d\tau$
+ $\xi_{Al} \int_{\tau_{Al}^{E'}}^{T} W_{Al}(\tau) d\tau + \xi_{Ar} \int_{\tau_{Ar}^{E}}^{T} W_{Ar}(\tau) d\tau.$

4. VORAUSBERECHNUNG DES AZEOTROPEN VERHALTENS

Bei der Berechnung des Dampf-Flüssig Gleichgewichtes eines nichtidealen Systems ist die Ermittlung des Aktivitätskoeffizienten γ_j jeder Komponente j, der das nichtideale Verhalten beschreibt notwendig. Der Aktivitätskoeffizient γ_j ist eine Funktion bezüglich der Temperatur T, des Druckes p und der durch die Menge aller Molenbrüche gegebenen Zusammensetzung $\{x\}$:

$$\gamma_j = \gamma_j(T, p, \{x\}). \tag{4.1}$$

Definitionsgemäß beträgt der Wert eines Aktivitätskoeffizienten einer reinen Komponente Eins. Der Maximalwert wird bei der *unendlichen Verdünnung* erreicht, Gmehling und Kolbe (1992):

$$\gamma_j^* = 1; \quad \gamma_j^\infty = \gamma_j^{Max}. \tag{4.2}$$

Aktivitätskoeffizienten stehen im direkten Zusammenhang mit der freien molaren Exzeßenthalpie G_m^E . Dieser ist gegeben durch:

$$G_m^E(T, p, \{x\}) = RT \sum_j x_j \ln \gamma_j.$$

$$(4.3)$$

Für den Grenzfall eines reinen Stoffes folgt:

$$G_m^E = 0. (4.4)$$

Der einfachste Ansatz für eine binäre Mischung ist der Porter-Ansatz:

$$G_m^E = RTAx_1x_2. aga{4.5}$$

A ist dabei ein anpassbarer Parameter. Die Aktivitätskoeffizienten werden dann berechnet nach:

$$\ln \gamma_1 = A x_2^2 \tag{4.6}$$

$$\ln \gamma_2 = A x_1^2. \tag{4.7}$$

4.1 Gruppenbeitragsmethoden

Ein gängiger Weg der Berechnung von Aktivitätskoeffizienten ist die Verwendung von Gruppenbeitragsmethoden. Sie basieren auf dem Prinzip der lokalen Zusammensetzung. Die Mischung wird dabei praktisch als eine Mischung *funktioneller Gruppen* (CH_3 , CH_2 , OH, usw.) aufgefaßt, unabhängig davon, wie diese miteinander verknüpft sind. Der Vorteil ist dabei der, daß man die Parameter für die funktionellen Gruppen nur einmal bestimen muß, und man kann sie dann bei Berechnungen eines beliebigen Systems einsetzen.

Die Betrachtung einer Mischung als Mischung funktioneller Gruppen basiert auf dem von Guggenheim entwickelten *Gittermodell*, Guggenheim und Mc Glashahn (1951). Es wird dabei davon ausgegangen, daß der Aktivitätskoeffizient sich aus entropischen (kombinatorischer Term C) und enthalpischen (Restterm R) Effekten zusammensetzt. Die entropischen Effekte werden durch die verschiedenen Anordnungsmöglichkeiten der in Segmente eingeteilten Moleküle im Flüssigkeitsgitter verursacht. Die enthalpischen Effekte kommen durch die Wechselwirkungen zwischen benachbarten Segmenten zustande. Der Zusammenhang der beiden Effekte wird gegeben durch:

$$\ln \gamma_j = \ln \gamma_j^C + \ln \gamma_j^R. \tag{4.8}$$

Die Grundlage für die Beschreibung der entropischen Effekte, hervorgerufen durch unterschiedliche Molekülgröße liefern Arbeiten von Flory (1941) und Huggins (1942).

Mittlerweile gibt es eine Anzahl von Gruppenbeitragsmethoden. Beispiele sind das UNIFAC-Modell (Fredenslund et al. (1977)), seine Modifizierungen (Weidlich und Gmehling (1987)), (Larsen et al. (1987), Schmelzer et al. (1987)) oder das ASOG-Modell (Kojima und Tochigi (1979)).

4.1.1 UNIFAC-Modell

Die bekannteste Gruppenbeitragsmethode ist sicherlich das von Fredenslund et al. (1977) entwickelte UNIFAC-Modell. Der Name kommt von <u>UNI</u>QUAC-<u>F</u>unctional-Groups <u>A</u>ctivity <u>C</u>oefficients.

In den kombinatorischen Term gehen die Flory-Huggins-Beziehung, (Berücksichtigung der Größenunterschiede der Moleküle) und die Staverman-Guggenheim-Korrektur hinein.

$$\ln \gamma_j^C = \left(\ln \frac{\Phi_j}{x_j} + 1 - \frac{\Phi_j}{x_j}\right) - \frac{1}{2} z q_j \left(\ln \frac{\Phi_j}{\Theta_j} + 1 - \frac{\Phi_j}{\Theta_j}\right).$$
(4.9)

 Φ_j ist dabei der Segmentmolenbruch, Θ_j der Oberflächenbruch, und q_j die relative Moleküloberfläche der Komponente *j*. Diese Größen werden aus den van der Waals-Volumina und Oberflächen berechnet. *z* ist die Koordinationszahl, die gleich 10 gesetzt ist. Der Restterm beinhaltet die Gruppenaktivitätskoeffizienten Γ_k bezogen auf die der reinen Komponenten $\Gamma_k^{(j)}$.

$$\ln \gamma_j^R = \sum_k \nu_k^{(j)} (\ln \Gamma_k - \ln \Gamma_k^{(j)}). \tag{4.10}$$

 $\nu_k^{(j)}$ ist die Zahl der funktionellen Gruppen k pro Molekül der Komponente j. Wie der Name sagt, ist der Gruppenaktivitätskoeffizient Γ_k ein Analogon zum eigentlichen Aktivitätskoeffizienten. Zur Berechnung dessen benötigt man allerdings anstelle der molekülspezifischen Größen Gruppenbeiträge, wie Gruppenoberfläche, Gruppenoberflächenanteil, und zur Erfassung der energetischen Wechselwirkungen zwischen den Gruppen, Gruppenwechselwirkungsparameter. Letzte werden im ursprunglichen UNIFAC-Modell als temperaturunabhängig betrachtet. Sie liegen tabelliert vor, Hansen et al. (1991).

4.1.2 UNIFAC-Modifizierung nach Weidlich und Gmehling

Das UNIFAC-Modell ermöglicht eine recht gute Vorhersage von Dampf-Flüssig-Gleichgewichten und Exzeßenthalpien. Manche Annahmen, auf denen es basiert, sind zu grob. Deswegen versuchte man das Modell zu verbessern. Eine solche Verbesserungsmöglichkeit stellt die Modifizierung von Weidlich und Gmehling (1987) dar.

Sie unterscheidet sich von dem Original durch eine andere Berechnung des Segmentmolenbruchs Φ_j , und durch die Berücksichtigung der Temperaturabhängigkeit der Gruppenwechselwirkungsparameter. Darüber hinaus wird hier die Gruppenoberfläche nicht aus dem van der Waalsschen Radius berechnet, sondern an experimantelle Daten angepaßt, Weidlich (1987). Dazu wurden mehrere Systeme des Typs Alkan-Alkan, Alkan-Alkohol und Alkohol-Alkohol bei unendlicher Verdünnung vermessen.

Basierend auf diesen Daten wurde eine neue Parametermatrix erstellt, Weidlich und Gmehling (1987). Eine aktuelle Matrix und Beispiele für verschiedene thermodynamische Eigenschaften sind in Gmehling et al. (1993) zu finden.

4.1.3 Kolonnenberechnung mit dem UNIFAC-, bzw. modifizierten UNIFAC-Modell

Um den Verlauf einer Destillation berechnen zu können benötigt man ausgehend vom erweiterten Raoultschen Gesetz die Aktivitätskoeffizienten und die Dampfdrücke der reinen Komponenten als Temperaturfunktionen. Das UNIFAC-Modell erlaubt die Bestimmung der Aktivitätskoeffizienten. Für die Berechnung der Dampfdrücke braucht man *Dampfdruckmodelle*. Für die Berechnungen zum Systemtyp n-Butanol-Kohlenwasserstoffe, deren Ergebnisse in den Tabellen 4.1 und 4.2 zusammengestellt sind, wurde für den Alkohol die Antoine- und für die Kohlenwasserstoffe die Frost-Kalkwarf-Gleichung (Frost und Kalkwarf (1953)) verwendet. Als Referenz dienen die Daten von Daubert und Danner (1987).

Falls Azeotrope während der Destillation enstehen, werden auf diese Weise sowohl die Azeotropsiedetemperatur ϑ_{i-A}^{Az} als auch die Azeotropzusammensetzung ξ_{i-A}^{Az} berechnet.

Die Berechnung erfolgt auf Basis der *Siedegleichung*. Die Summe der Molenbrüche in der Gasphase y_i muß Eins ergeben:

$$\sum_{j} y_j = 1. \tag{4.11}$$

Ausgehend von der flüssigen Phase werden die Siedetemperatur und die Gleichgewichtszusammensetzung der Gasphase unter Einhaltung von Gl. (4.11) iterativ ermittelt. Dies entspricht der einfachen Destillation aus dem Abschnitt 2.3.1 und wird als ein *theoretischer Boden* bezeichnet.

Die so berechnete Zusammensetzung wird wiederum als Ausgangszusammensetzung für das Phasengleichgewicht auf dem nächsten Boden verwendet, usw. Um ein binäres Gemisch destillativ zu trennen braucht man eine bestimmte Anzahl von Böden, genannt *theoretische Bodenzahl*. Sie hängt vom Unterschied der Siedetemperaturen der reinen Stoffe ab.

Ergebnisse der Berechnungen mit dem UNIFAC-Modell

Im folgenden werden mit dem UNIFAC-Modell berechneten azeotropen Daten ϑ_{i-A}^{Az} und ξ_{i-A}^{Az} (A = Al, Ar) mit den Literaturdaten (Gmehling et al. (1994)) für binäre Systeme aus n-Butanol und Kohlenwasserstoffen verglichen (Tabn. 4.1 und 4.2). Die azeotrope Temperatur wird im allgemeinen sehr gut wiedergegeben. Der Temperaturunterschied ist immer kleiner als 0.5K. Die azeotrope Zusammensetzung ergibt sich ebenfalls recht genau. Mit steigender Temperatur wird die Abweichung jedeoch immer größer. Im Fall der Alkane wird für n-Octan und n-Nonan ein zu kleiner und für n-Decan ein zu großer Wert berechnet. Für die Aromaten wird außer für Toluol ein zu kleiner Wert erhalten.

Würde man lediglich die Werte für die Stoffe vergleichen, die tatsächlich Azeotrope bilden, müßte man sagen, daß das UNIFAC-Modell eine sehr gute Korrelation mit den experimentellen Werten liefert. Die Abweichungen in der Zusamensetzung haben jedoch zur Folge, daß es auch

	exp. Werte		UNIFAC		
Kohlenwasserstoff	$\frac{\vartheta_{i-A}^{Az}}{K}$	ξ_{i-A}^{Az}	$\frac{\vartheta_{i-A}^{Az}}{K}$	ξ_{i-A}^{Az}	
n-Hexan	341.45	0.0342	341.72	0.0257	
n-Heptan	366.98	0.1760	366.79	0.1809	
n-Octan	382.29	0.4342	381.94	0.4102	
n-Nonan	389.05	0.7150	389.00	0.6854	
n-Decan	k. A.	0.9531	390.88	0.9806	
Benzol			353.22	0.0132	
Toluol	378.71	0.2826	378.04	0.2833	
Ethylbenol	388.62	0.6677	388.06	0.6079	
p-Xylol	389.00	0.6873	389.15	0.6756	
m-Xylol	389.38	0.7179	389.33	0.6910	
o-Xylol	390.35	0.8490	390.21	0.7895	
i-Propylbenzol			390.33	0.8097	
n-Propylbenzol			390.85	0.9529	

Tab. 4.1	: Zusammenstellung d	ler mit dem	UNIFAC-Modell	berechneten	azeotropen	Daten i	mλ	/ergleich
	mit experimentellen	Werten für	binäre Systeme de	es Typs n-Bu	tanol + Kol	hlenwass	erst	off.

solche Azeotrope vorhersagt, die es nicht gibt. Das betrifft vor allem die Aromaten (Benzol, Propylbenzole).

Aus der Sicht der Berechnung der Siedekurve hat das zur Folge, daß man den Sprung, der nach der Azeotropphase folgt, falsch berechnet.

Ergebnisse der Berechnungen mit dem nach Weidlich und Gmehling modifizierten UNIFAC-Modell

Die UNIFAC-Modifizierung nach Weidlich und Gmehling basiert unter anderem auf Daten für Alkohole. Es ist daher eine bessere Übereinstimmung zu erwarten.

Das trifft nur bedingt zu. Die azeotrope Temperatur wird ähnlich wie beim UNIFAC-Modell sehr gut wiedergegeben. Bei der azeotropen Zusammensetzung wird im Unterschied zum UNIFAC-Modell ein zu hoher Wert (n-Nonan, Xylole) berechnet.

	exp. Werte		UNIFAC-WG		
Kohlenwasserstoff	$\frac{\vartheta_{i-A}^{Az}}{K}$	ξ_{i-A}^{Az}	$\frac{\vartheta_{i-A}^{Az}}{K}$	ξ_{i-A}^{Az}	
n-Hexan	341.45	0.0342	341.53	0.0356	
n-Heptan	366.98	0.1760	367.20	0.1793	
n-Octan	382.29	0.4342	383.20	0.4317	
n-Nonan	389.05	0.7150	389.93	0.7614	
n-Decan	k. A.	0.9531	—	—	
Benzol			353.24	0.0001	
Toluol	378.71	0.2826	379.38	0.2685	
Ethylbenzol	388.62	0.6677	389.16	0.6669	
p-Xylol	389.00	0.6873	390.21	0.7551	
m-Xylol	389.38	0.7179	390.37	0.7773	
o-Xylol	390.35	0.8490	390.83	0.9225	
i-Propylbenzol			390.88	0.9758	
n-Propylbenzol					

Tab. 4.2: Zusammenstellung der mit dem nach Weidlich und Gmehling modifizierten UNIFAC-Modell (UNIFAC-WG) berechneten azeotropen Daten im Vergleich mit den experimentellen Werten für binäre Systeme des Typs n-Butanol + Kohlenwasserstoff.

Ähnlich wie beim UNIFAC-Modell werden Azeotrope vorhersagt, die es nicht gibt (Benzol, i-Propylbenzol) oder welche nicht berechnet, die es gibt (n-Decan).

4.1.4 Probleme bei Berechnungen mit kleinen Bodenzahlen

Die in den Tabellen 4.1 und 4.2 zusammengestellten Ergebnisse wurden für binäre Systeme mit einer Bodenzahl von 40, also praktisch bei einer unendlichen Trennleistung der Kolonne durchgeführt. Ist diese begrenzt, wie im Fall der in dieser Arbeit zur Messungen verwendeten Kolonne, muß man kleinere Bodenzahl verwenden. Das führt dazu, daß bei der Destillation eines Vielstoffsystems des unter 3.2 bzw. 3.3 diskutierten Typs in der azeotropen Destillationsphase rechnerisch mehr Stoffe überdestillieren, als es in der Tat der Fall ist.

4.2 Berechnung der Azeotropsiedetemperatur $\vartheta_{i-A}^{Az}(\tau)$ und der Azeotropzusammensetzung $\xi_{i-A}^{Az}(\tau)$ mit einem modifizierten Porter-Ansatz

Im folgenden wird eine andere Möglichkeit der Berechnung von Siedekurven, bei Bildung von Azeotropen vorgestellt.

Bei einer ausreichenden Trennleistung der Destillationskolonne destillieren reine Stoffe bzw. Azeotrope bei ihrer Normalsiedetemperatur. Man braucht also lediglich die Verteilungsfunktion $W(\tau)$ und die Funktionen $\vartheta_{i-A}^{Az}(\tau)$ und $\xi_{i-A}^{Az}(\tau)$ zu kennen um mit den unter Kapitel 3 beschriebenen Gleichungen die integrale Siedekurve $I^{Kopf}(\tau)$ zu ermitteln.

4.2.1 Berechnung der Azeotropsiedetemperatur $\vartheta_{i-A}^{Az}(\tau)$ mit Hilfe des Porterschen Ansatzes

Basierend auf der Gittertheorie werden die Moleküle in Segmente eingeteilt, um die unterschiedliche Molekülgröße berücksichtigen zu können. Deswegen benutzt man auch segmentmolare Größen. Diese gewinnt man aus den molaren Größen in dem man sie durch die *mittlere* Segmentzahl der Mischung \overline{r}^M dividiert. Diese wird berechnet nach:

$$\overline{r}^M = \sum_j r_j x_j. \tag{4.12}$$

 r_j ist dabei die Segmentzahl eines Moleküls der Sorte j.

Für ein binäres Gemisch aus einem Azeotropbildner i und einem Kohlenwasserstoff A bedeutet das:

$$\overline{r}^M = r_A x_A + r_i x_i. \tag{4.13}$$

Im einfachsten Fall kann man die Segmentzahl als proportional zur Molmasse betrachten. Dann ergibt das Gittermodell, daß die segmentmolare Exzeßenthalpie proportional zu $\xi_{i-A}(1-\xi_{i-A})$ ist, wobei ξ_{i-A} den Massenbruch der Komponente *i* im binären System i-Abezeichnet. Wenn die Größenunterschiede der Moleküle nicht sehr groß sind, gilt für die segmentmolare Exzeßenthalpie der gleiche, dem Porteransatz ähnelnde Ausdruck und nach Multiplikation mit \overline{r}^M ergibt sich die molare freie Exzeßenthalpie G_m^E näherungsweise als proportional zu $\overline{r}^M \xi_{i-A}(1-\xi_{i-A})$. Da \overline{r}^M der mittleren Molmasse $x_AM_A + x_iM_i$ proportional ist, gilt

$$G_m^E = \alpha(\tau)\xi_{i-A}(1 - \xi_{i-A})(x_A M_A + x_i M_i), \qquad (4.14)$$

wobei α ein Proportionalitätsfaktor ist, der als Funktion der Identifizierungsvariable τ (Reinstoffsiedetemperatur) behandelt wird. Gl. (4.14) kann auch als eine Art modifizierter Porter-Ansatz angesehen werden. Der Zusammenhang zwischen der Exzeßenthalpie und dem Aktivitätskoeffizienten ist gegeben durch:

$$RT\ln\gamma_A = G_m^E - x_i \frac{dG_m^E}{dx_i}$$
(4.15)

$$RT \ln \gamma_i = G_m^E + (1 - x_i) \frac{dG_m^E}{dx_i}.$$
 (4.16)

Setzt man Gl. (4.14) in die obigen Gleichungen ein, bekommt man am azeotropen Punkt:

$$R\vartheta_{i-A}^{Az} \ln \gamma_A = \alpha (\xi_{i-A}^{Az})^2 M_A \tag{4.17}$$

$$R\vartheta_{i-A}^{Az}\ln\gamma_i = \alpha(1-\xi_{i-A}^{Az})^2 M_i.$$

$$(4.18)$$

Anderseits kann man die Aktivitätskoeffizienten am azeotropen Punkt bei Normaldruck mit Hilfe von Gl. (2.16) sowie der Clausius-Clapeyronschen Gleichung und der verallgemeinerten Trouton'schen Regel wie folgt ausrechnen:

$$\ln \gamma_A = A_A \left(\frac{\tau}{\vartheta_{i-A}^{Az}} - 1 \right) \tag{4.19}$$

$$\ln \gamma_i = A_i \left(\frac{\tau_i}{\vartheta_{i-A}^{Az}} - 1 \right). \tag{4.20}$$

 A_A und A_i sind die "*Trouton-Konstanten"*. Im Fall des Alkohols *i* handelt es sich nicht um die eigentliche Trouton'sche Regel, sondern um ein Analogon, deren entsprechende Konstante von der allgemein bekannten "Trouton-Konstante" abweicht. Kombiniert man die Gln. (4.17) und (4.19) sowie (4.18) und (4.20) bekommt man nach Umstellung:

$$\vartheta_{i-A}^{Az}(\tau) = \tau - \frac{\alpha(\tau)M_A(\tau)}{RA_A} \left(\xi_{i-A}^{Az}\right)^2 \tag{4.21}$$

$$\vartheta_{i-A}^{Az}(\tau) = \tau_i - \frac{\alpha(\tau)M_i}{RA_i} (1 - \xi_{i-A}^{Az})^2.$$
(4.22)

Die Kombination dieser beiden Gleichungen liefert folgende Beziehung zur Bestimmung von ξ_{i-A}^{Az}

$$\left(1 - \frac{M_A A_i}{M_i A_A}\right) (\xi_{i-A}^{Az})^2 - 2\xi_{i-A}^{Az} + \frac{RA_i}{\alpha M_i} (\tau - \tau_i) + 1 = 0.$$
(4.23)

Die quadratische Gleichung (4.23) hat praktisch stets eine positive und eine negative Lösung.

Setzt man das Ergebnis von Gl. (4.23) in Gl. (4.21) oder (4.22) ein, erhält man die Azeotroptemperatur. Die folgenden Abbn. 4.1 bis 4.6 stellen die Berechnungsergebnisse für die Azeotroptemperatur für die drei Alkohole, Ethanol, n-Propanol und n-Butanol dar. Die dazugehörigen Daten sind im Anhang D zu finden. Das Modell ist aber sicher auch auf andere Alkohole anwendbar.

Abb. 4.1: Berechnete Azeotropsiedetemperatur $\vartheta_{i-Al}^{Az}(\tau)$ für das System Aliphaten-Ethanol im Vergleich mit experimentellen Werten.

Abb. 4.2: Berechnete Azeotropsiedetemperatur $\vartheta_{i-Al}^{Az}(\tau)$ für das System Aliphaten-n-Propanol im Vergleich mit experimentellen Werten.

Abb. 4.3: Berechnete Azeotropsiedetemperatur $\vartheta_{i-Al}^{Az}(\tau)$ für das System Aliphaten-n-Butanol im Vergleich mit experimentellen Werten.

Abb. 4.4: Berechnete Azeotropsiedetemperatur $\vartheta_{i-Ar}^{Az}(\tau)$ für das System Aromaten-Ethanol im Vergleich mit experimentellen Werten.

Abb. 4.5: Berechnete Azeotropsiedetemperatur $\vartheta_{i-Ar}^{Az}(\tau)$ für das System Aromaten-n-Propanol im Vergleich mit experimentellen Werten.

Abb. 4.6: Berechnete Azeotropsiedetemperatur $\vartheta_{i-Ar}^{Az}(\tau)$ für das System Aromaten-n-Butanol im Vergleich mit experimentellen Werten.

Die Wiedergabe der Temperatur ist sehr gut. Im Fall der Aromaten werden auch Azeotrope für Stoffe berechnet, die niedriger als Benzol sieden. Das ist aber insofern kein Problem, da an dieser Stelle die Verteilungsfunktion der Aromaten den Wert Null hat.

Im Bezug auf die Berechnung der Zusammensetzung ist das Modell jedoch etwas grob. Daher empfielt sich hier eine andere Vorgehensweise, auf die unter 4.2.2 eingegangen wird. Zur Gewinnung der Abbn. 4.1 - 4.6 mußten die Funktionen $M_A(\tau)$ und $\alpha(\tau)$ sowie die "Trouton-Konstanten" bestimmt werden. Im folgenden wird das näher erläutert.

Bestimmung der Molmasse M_A als Funktion der Normalsiedetemperatur τ

Zur Anwendung der Gln. (4.21) - (4.23) ist die Kenntnis der Molmassen notwendig. Im Fall einer reinen Komponente ist es trivial, bei einem Ensemble muß man eine Funktion bezüglich der Identifizierungsvariable τ konstruieren. Es wird dabei an die n-Alkane bzw. die n-Alkylaromaten angepaßt.

Abb. 4.7: Abhängigkeit der Molmasse von der Normalsiedetemperatur.

In der Literatur gibt es Modelle (Hariu und Sage (1969), Twu (1983) und Trebble et al. (1993)) die dieses Problem bewältigen. Diese haben jedoch meistens den Nachteil, daß sie zuverlässig erst im höheren Temperaturbereich funktionieren. Aus diesem Grund wurde in dieser Arbeit die Anpassung eines Polynoms des zweiten Grades vorgenommen:

$$M_A(\tau) = a + b\tau + c\tau^2. \tag{4.24}$$

Die Parameter wurden für die Aliphaten und die Aromaten gesondert bestimmt, Abb. 4.7. Sie sind im Anhang A zu finden.

Anpassung der "Trouton-Konstante" an die experimentellen Daten

Trouton hat beobachtet, daß das Verhältnis der molaren Verdamfungsenthalpie $\Delta H_m^{LV}(\tau)$ zur Normalsiedetemperatur τ weitgehend konstant ist. Das ist bekannterweise die molare Verdampfungsentropie $\Delta S_m^{LV}(\tau)$:

$$\Delta S_m^{LV}(\tau) = \frac{\Delta H^{LV}(\tau)}{\tau}.$$
(4.25)

Der Wert beträgt für unpolare Stoffe ungefähr 88J/mol * K. Dividiert man diesen Wert durch die universelle Gaskonstante R, erhält man eine dimmensionslose Zahl, die "Trouton-Konstante" $A \approx 10.6$. Für die Alkohole oder z.B. Wasser treten aber erhebliche Abweichungen hiervon auf. Myrdal et al. (1996) haben eine empirische Gleichung vorgeschlagen, mit der man die Verdampfungsentropie als Funktion der Molekülstruktur des Spezies vorausberechnen kann. Für den Zweck dieser Arbeit ist es jedoch ausreichend, für die Alkane, die Aromaten und die Alkohole jeweils den Mittelwert von $\Delta S_m^{LV}(\tau)/R$ zu ermitteln. Abb. 4.8 stellt die Daten für ausgewählte Alkane, Aromaten und Alkohole dar. Die dazugehörigen Daten sind im Anhang B zu finden. Man sieht, daß auch für die Alkohole eine Art Trouton'sches Gesetz gibt, allerdings mit einer wesentlich höheren "Trouton-Konstante".

Abb. 4.8: Anpassung der "Trouton Konstante" für Aliphaten, Aromaten und Alkohole.

Berechnung des Parameters α

Wie schon erwähnt, ist der anpaßbare Parameter α eine Funktion von der Normalsiedetemperatur τ . Es hat sich herausgestellt, daß man ihn am besten als Summe der Gln. (4.21) und (4.22) berechnet:

$$\alpha(\tau) = \frac{R[A_A \tau + A_i \tau_i - \vartheta_{i-A}^{Az} (A_A + A_i)]}{(\xi_{i-A}^{Az})^2 M_A(\tau) + (1 - \xi_{i-A}^{Az})^2 M_i}.$$
(4.26)

An diese Daten wurde ein Polynom zweiten (Aliphaten), bzw. ersten (Aromaten)¹ Grades angepaßt. Die Abbn. 4.9 und 4.10 stellen ein Beispiel für das System Aliphaten-n-Butanol und Aromaten-n-Butanol dar. Die numerischen Daten sind im Anhang C zu finden.

Abb. 4.9: Anpassung des Parameters α für das System Aliphaten-n-Butanol.

4.2.2 Anpassung der Azeotropzusammensetzung $\xi_{i-A}(\tau)$ an die experimentellen Daten

Mit Gl. (4.23) berechnet man zwar die Azeotropsiedetemperatur gut, die Azeotropzusammensetzung wird jedoch zu grob wiedergegeben. Deswegen empfielt es sich, den Massenbruch ξ_{i-A}^{Az} als Funktion der Normalsiedetemperatur τ anzupassen. Dies erfolgt über ein Polynom dritten Grades, welches $\xi_{i-A}^{Az} = 0$ für $\tau = \tau_A^B$ (A = Al, Ar) berücksichtigt:

$$\xi_{i-A}^{Az}(\tau) = B(\tau - \tau_A^B) + C(\tau - \tau_A^B)^2 + D(\tau - \tau_A^B)^3; \quad A = Al, Ar.$$
(4.27)

Den Parameter *B* kann man aus der Grenzbedingung $\xi_{i-A} = 1$ berechnen:

$$\xi_{i-A}^{Az}(\tau_A^E) = 1 = B(\tau_A^E - \tau_A^B) + C(\tau_A^E - \tau_A^B)^2 + D(\tau_A^E - \tau_A^B)^3; \quad A = Al, Ar.$$
(4.28)

 $^{^{1}}$ Es sind zu wenige Daten vorhanden, um ein Polynom höheren Grades zu verwenden.

Abb. 4.10: An
passung des Parameters α für das System Aromaten-
n-Butanol.

Der Wert von B ist also gegeben durch:

$$B = \frac{1}{\tau_A^E - \tau_A^B} - C(\tau_A^E - \tau_A^B) - D(\tau_A^E - \tau_A^B)^2; \quad A = Al, Ar.$$
(4.29)

Die folgenden Abbn. 4.11 bis 4.16 stellen die Ergebnisse der Berechnung der Azeotropzusammensetzung anhand der an die experimentellen Daten angepaßten Gl. (4.27) dar. Die dazugehörigen numerischen Daten sind im Anhang E zu finden. Die Korrelation ist nun sehr gut.

Abb. 4.11: Berechnete Azeotropzusammensetzung $\xi_{i-Al}^{Az}(\tau)$ für das System Aliphaten-Ethanol im Vergleich mit experimentellen Werten.

Abb. 4.12: Berechnete Azeotropzusammensetzung $\xi_{i-Al}^{Az}(\tau)$ für das System Aliphaten-n-Propanol im Vergleich mit experimentellen Werten.

Abb. 4.13: Berechnete Azeotropzusammensetzung $\xi_{i-Al}^{Az}(\tau)$ für das System Aliphaten-n-Butanol im Vergleich mit experimentellen Werten.

Abb. 4.14: Berechnete Azeotropzusammensetzung $\xi_{i-Ar}^{Az}(\tau)$ für das System Aromaten-Ethanol im Vergleich mit experimentellen Werten.

Abb. 4.15: Berechnete Azeotropzusammensetzung $\xi_{i-Ar}^{Az}(\tau)$ für das System Aromaten-n-Propanol im Vergleich mit experimentellen Werten.

Abb. 4.16: Berechnete Azeotropzusammensetzung $\xi_{i-Ar}^{Az}(\tau)$ für das System Aromaten-n-Butanol im Vergleich mit experimentellen Werten.

5. MEßAPPARATUR UND VERWENDETE MEßTECHNIKEN

5.1 Destillationsanlage

Zur experimenteller Durchführung der Blasendestillation wurde eine Destillationsapparatur der Firma FISCHER verwendet. Abb. 5.1 stellt diese Anlage dar.

5.1.1 Destillationsverlauf

Der Betrieb der Anlage läuft in folgenden Schritten ab:

- 1. Die Destillationsblase wird mit der untersuchten Flüssigkeit gefüllt.
- 2. Das Ölbad wird hochgeschraubt, bis die Blase in das Öl eintaucht ist.
- 3. Die Heizungen des Ölbades und des Kompensationsheizmantels werden angeschaltet und die Voreinstellungswerte manuell gewählt.
- 4. Der Drehmagnetrührer wird angelassen.
- 5. Die Anlage arbeitet unter Rückfluß, bis sich die Kopftemperatur nicht mehr ändert (etwa 4 Stunden).
- 6. Die automatische Belastungsregulierung wird aktiviert. Das ist ein eingebauter Mechanismus, der die Konstanz der Temperaturdifferenz zwischen dem Blaseninneren und dem Ölbad gewährleistet. Auf diese Weise erreicht man eine konstante Belastung.
- Die Destillatentnahme wird gestartet. Dies erfolgt über ein Ventil, das sich in regelmäßigen Zeitabständen für eine bestimmte Zeit öffnet.
- 8. Sobald sich die Kopftemperatur ändert, wird eine neue Fraktion entnommen und gewogen.
- 9. Nachdem die Flüssigkeit in der Blase verbraucht ist, wird die Destillation beendet.

- 2.12 Destillatkühler

5.8

Abb. 5.1: Blasendestillationsapparatur der Firma Fischer.

Temperaturvorwahl Heizmantel

15

Vakuumpumpe

40

5.1.2 Wirkungsprinzip der verwendeten Kolonne

In dieser Anlage wird eine SPALTROHR^R-Kolonne verwendet. Die Trennwirkung dieser Kolonne beruht auf dem physikalischen Prinzip des Stoffaustausches zwischen dem senkrecht aufsteigenden Dampf und dem wendelförmig herabrieselnden Flüssigkeitsfilm in einem konzentrischen Ringspalt aus Glas.

Die Trennsäule besteht aus zwei konzentrisch eingeschmolzenen kalibriereten Glasrohren. Dieser Aufbau wird in Abb. 5.2 verdeutlicht.

Abb. 5.2: Prinzipschema der SPALTROHR^R-Kolonne.

1 Freier Kolonnen-Ringspalt für Dampfauftrieb.

2-3 Profilierung der Kolonnenwände für den wendelförmigen Rückfluß.

5.1.3 Charakteristik der Kolonne und verwendete Parameter

In Tab. 5.1 sind die im Bezug auf die durchgeführten Experimente relevanten Daten zusammengestellt. Diese entsprechen im wesentlichen den Forderungen nach ASTM D2892.

In den experimentellen Arbeiten wurde eine Belastung von etwa 180 $\frac{ml}{h}$ verwendet, was im Falle des Referenzsystems, einem Gemisch aus n-Heptan und Methylcyclohexan, einer Trennleistung (theoretische Bodenzahl) von etwa 80 entspricht. Das Rücklaufverhältnis 1:50 wurde durch das Öffnen des Ventils alle 25 Sekunden für 0.5 Sekunden erreicht. Bei der eingesetzten Menge (100ml), dauerte die experimentelle Aufnahme einer Siedekurve 30-36 Stunden. Zur Überprüfung der Reproduzierbarkeit wurde die Siedekurve jedes Gemisches zwei mal gemessen.

Merkmal	Spaltrohr-Kolonne	
Einsatzbereich	bis 625K	
Trennleistung	bis 90 theor. Böden	
Genauigkeit der Kopftemperatur	$0.1 \mathrm{K}$	
Einsatzmenge	$100 \mathrm{ml}$	
Rücklaufverhältnis	1:50	
Maximale Blasentemperatur	$550 \mathrm{K}$ (Ölbad)	
Kühlmedium/Kühltemperatur	E than ol/288 K	
Siedeerleichterung	flach geformte Blase; Rühren	
Kolonnenaufbau	Ringspalt; vakuumummantelt;	
	innen verspiegelt; Mantelheizung	

Tab. 5.1: Relevante Daten der Destillationskolonne.

5.2 Gaschromatographische Analyse

Die aus der Blasendestillation gewonnenen Fraktionen wurden einer gaschromatographischen Analyse unterworfen. Dabei wurde die Zusammensetzung aller Komponenten (Modellgemische), bzw. der Alkoholanteil (reale Systeme) untersucht.

5.2.1 Analyse der Benzinfraktionen

Die untersuchten Benzine wurden mittels der gaschromatographisch simulierten Destillation analysiert. Diese, Eggertsen et al. (1960), eignet sich sehr gut für die Analyse kleiner Mengen, da das Probevolumen (mobile Phase) etwa 1 μ l beträgt. Das Verfahren ist sehr nützlich für die Analyse von Erdölfraktionen, Mc Taggart und Glaysher (1974).

Alle Komponenten des Gemisches passieren den Detektor in der Reihenfolge ihrer Dampfdrücke und damit der Reinstoffnormalsiedetemperaturen. Das wird dadurch erreicht, daß man eine unpolare Flüssigkeit für die *stationäre Phase* verwendet. Auf diese Weise wird die Rolle der Aktivitätskoeffizienten unterdrückt.

Die Retentionszeit R_T , also die Zeit vom Beginn der Analyse bis zum Erscheinen der Komponente am Detektor, ist bei gegebenen Säulenlänge und Temperatur für einen Stoff konstant und sie ist proportional zur Normalsiedetemperatur. Um eine Blasendestillation nachzubilden, ist ein Temperaturprogramm notwendig, das eine lineare Temperaturerhöhung der Säulentemperatur ermöglicht.

Eine Schwierigkeit ergibt sich in Fällen, in denen das Kohlenwasserstoffgemisch auch Aromaten enthält. Man kann in diesem Fall die *Fluoreszenz-Indikator-Adsorption* verwenden, um die Fraktionen zu trennen. Bei dieser Methode wird allerdings die Aromatenfraktion mit bis zu 20% Nichtaromaten verunreinigt, Kühne (1988).

5.2.2 Analyse der Fraktionen aus der Blasendestillation

Die Fraktionen aus der Blasendestillation (50-70 pro Siedekurve) wurden ebenfalls mit der gaschromatographisch simulierten Destillation untersucht. Ein großer Vorteil dabei ist, daß selbst in Fällen, wo bei der Blasendestillation Azeotrope gebildet werden, hier keine solche Effekte entstehen. Da der Alkohol jedoch anders als die Kohlenwasserstoffe geartet ist, müssen *Flächenfaktoren* berücksichtigt werden. Ansonsten würden die bei der chromatographischen Analyse ermittelten Flächen nicht den Massenprozenten entsprechen. Als Bezugsstoff wird Benzol verwendet, Rödel und Wölm (1982).

Die in den Analysen auftretenden Komponenten, wurden gegen Benzol vermessen. Die Ergebnisse sind in Tab. 5.2 zusammengestellt. Die Flächenfaktoren sind für eine Klasse von Stoffen weitgehend konstant.

Kohlenwasserstoff	Flächenfaktor	
1-Butanol	1.59285	
n-Hexan	1.13142	
n-Heptan	1.10110	
n-Octan	1.08625	
n-Nonan	1.09111	
n-Decan	1.09374	
Toluol	1.01376	
Ethylbenzol	1.03430	
m-Xylol	1.01525	
i-Propylbenzol	1.03708	
n-Propylbenzol	1.02944	

Tab. 5.2: Flächenfaktoren für ausgewälte Alkane, Aromaten und n-Butanol.

6. EXPERIMENTELLE UNTERSUCHUNGEN

Im folgenden werden die Ergebnisse der experimentellen Untersuchung des Einflusses der Azeotropie auf die TBP-Kurve diskutiert. Diese werden mit den anhand des verwendeten Berechnungsmodells berechneten Daten verglichen. Bei den Experimenten wurden folgende Aspekte untersucht:

- Abhängigkeit der Kopftemperatur von der relativen Destillatmasse,
- Zusammensetzung der einzelnen Fraktionen.

Zunächst wurden Modellgemische aus nur wenigen aliphatischen und aromatischen Komponenten sowie n-Butanol untersucht. Schrittweise erfolgte der Übergang zu realen und damit komplizierteren Systemen, bestehend aus einem aliphatischen und einem aromatischen Benzin sowie n-Butanol.

6.1 Modellsysteme aus wenigen Komponenten

6.1.1 Destillation eines Aliphatengemisches mit n-Butanol (Destillation 1)

Als erstes soll ein einfaches System, bestehend aus fünf homologen n-Alkanen von Hexan bis Decan und einem Azeotropbildner in Form von n-Butanol, erörtet werden. Abb. 6.1 zeigt die experimentelle und die berechnete Siedekurve sowie zum Vergleich den fiktiven Fall ohne Azeotropie. Die numerischen Daten befinden sich im Anhang F.1.

Da es sich um diskrete Komponenten handelt, sind eindeutig ausgeprägte Stufen erkennbar. Solange der Alkohol vorhanden ist, werden Azeotrope gebildet. Diese destillieren in der Reihenfolge ihrer Siedetemperaturen.

Die Verfälschung der TBP-Kurve ist hier offensichtlich. Man kann eigentlich nicht mehr von einer "wahren Siedekurve", sondern nur von einer Siedekurve sprechen. Im vorliegenden Fall fängt die Verfälschung bei n-Hexan an und endet bei n-Nonan, allerdings nur deswegen, weil der Alkohol verbraucht wurde. Der Ausmaß der Verfälschung hängt von der Reinstoffsiedetemperatur des Alkans ab. Besonders stark ausgeprägt ist sie bei Stoffen, die höher als der Alkohol

Abb. 6.1: Experimentelle und berechnete Siedekurve im Vergleich mit dem fiktiven Fall ohne Azeotropie für das System n-Alkane (50.54Ma.-%) + n-Butanol (49.46Ma.-%).

sieden, wie z.B.: n-Octan oder n-Nonan.

Der Übergang zwischen zwei Stufen ist natürlich nicht ganz sauber. Der Temperaturanstieg von einer zur anderen Stufe kommt in jedem Fall etwas früher, als erwartet. Der Anfang der nächsten Stufe wird aber von dem verwendeten Berechnungsmodell korrekt wiedergegeben. Dieses Phänomen ist auf eine Schwankung der Belastung in den Übergangsbereichen zurückzuführen.

Eine eingehende Analyse der Zusammensetzungen, Abb. 6.2, belegt, daß es sich innerhalb der jeweiligen Stufe um ein binäres Gemisch handelt und daß in den Übergangsbereichen eine weitere Komponente hinzukommt. Die Zusammensetzung innerhalb einer Stufe entspricht jedoch nicht ganz der des entsprechenden Azeotrops. Die experimentellen Punkte wurden zwecks besserer Überschaubarkeit mit Linien verbunden.

Dies wird in der Abb. 6.3 mit der Analyse des Alkoholgehaltes in den einzelnen Proben verdeutlicht. Bei Temperaturen um 341K, 366K, 382K und 389K sind Anhäufungen der Meßpunkte festzustellen, die die einzelnen Stufen markieren. Die dazugehörigen Alkoholgehalte sind aber im Vergleich zu den Literaturdaten zu groß.

Das gilt für den gesamten Bereich, in dem Azeotrope gebildet werden. Dieser Effekt verstärkt

Abb. 6.2: Zusammenstellung der experimentell bestimmten n-Alkan-Gehalte I_j^{Kopf} in den einzelnen Fraktionen für das System n-Alkane (50.54Ma.-%) + n-Butanol (49.46Ma.-%).

exp. Werte \diamond

Abb. 6.3: n-Butanolverbrauch für das System n-Alkane (50.54Ma.-%) + n-Butanol (49.46Ma.-%).

sich mit dem Anstieg der Siedetemperatur. Beim n-Hexan kommt er nur geringfügig zum Vorschein, beim n-Nonan ist er schon ganz deutlich.

theor. Bodenzahl	n-Hexan	n-Nonan
40	0.0257	0.6854
30	0.0257	0.6854
20	0.0258	0.6854
10	0.0271	0.6980
9	0.0277	0.7092
8	0.0286	0.7293
7	0.0301	0.7616
6	0.0326	0.8064
5	0.0371	0.8578
4	0.0463	0.9055
3	0.0736	0.9423
2	0.3519	0.9668
1	0.8875	0.9816
0	0.9900	0.9900

 $Tab. \ 6.1: \ {\rm Abhängigkeit} \ {\rm des} \ {\rm n-Butanolverbrauchs} \ {\rm von} \ {\rm der} \ {\rm theoretischen} \ {\rm Bodenzahl} \ {\rm für} \ {\rm binäre} \ {\rm Mischungen} \\ {\rm aus} \ 99{\rm Ma.-\%} \ {\rm n-Butanol} \ {\rm und} \ {\rm n-Alkanen}.$

Um dieses Verhalten zu erklären, sollen zwei binäre azeotropbildende Systeme erörtert werden. Dabei soll der Alkoholgehalt am Kolonnenkopf in Abhängigkeit von der theoretischen Bodenzahl untersucht werden.

In Tab. 6.1 sind die Ergebnisse der mit dem UNIFAC-Modell duchgeführten Berechnungen des n-Butanolverbrauchs für binäre Gemische (99Ma.-% n-Butanol-1Ma.-%Alkan)¹ mit n-Hexan und n-Nonan zusammengestellt. Ist die Bodenzahl groß, 20 oder höher, destilliert reines Azeotrop. Liegt sie aber in der Größenordnung von 10 oder weniger, ist der Alkoholverbrauch zu groß. Das liegt vor allem an dem Überschuß an n-Butanol in der Destillationsblase.

 $^{^{1}}$ Ein so großer Überschuß an n-Butanol mag auf den ersten Blick übertrieben erscheinen. Man muß aber beachten, daß im Vergleich zu einem einzigen Alkan, erst recht bei einem Benzin mit sehr vielen Komponenten, der Überschuß in diese Größenordnung kommen kann.

Entscheidend ist die unterschiedliche Flüchtigkeit der beiden Komponenten. Da n-Hexan viel flüchtiger als n-Butanol ist, wird schon bei wenigen Böden ein Alkoholverbrauch in der Größenordnung von dem bei unendlicher Trennleistung erreicht. Ein umgekehrtes Flüchtigkeitsverhältnis wie bei n-Nonan vergrößert die notwendige Bodenzahl. Die Folge ist, daß bei einer theoretischen Bodenzahl von 10 im Fall von n-Hexan der Unterschied im Alkoholverbrauch in der dritten Stelle und im Fall von n-Nonan schon in der zweiten Stelle nach dem Komma auftritt. Das bedeutet, daß in diesem Fall bei einer Kopftemperatur T nicht nur das dazugehörige Azeotrop destilliert, sondern zusätzlich auch eine kleine Menge n-Butanol am Kolonnenkopf erscheint.

Im Fall eines butanolreichen Vielstoffgemisches der hier betrachteten Art wird innerhalb eines weiten Tempereturbereichs mehr n-Butanol verbraucht als es der jeweiligen azeotropen Zusammensetzung entspricht. Erst bei höheren Temperaturen, am Ende des azeotrop beeinflußten Bereichs, ändert sich die Situation, da dann nur noch wenig n-Butanol übrig ist und die nun auftretenden Azeotrope einen hohen Butanolgehalt besitzen. Insgesamt ist bei hohem Butanolgehalt des Ausgangsgemisches also zu erwarten, daß das Ende der Azeotropdestillationsphase, markiert durch den Temperatursprung, früher eintritt, als vom Modell vorausberechnet. Das hat aber, wie gezeigt wurde, apparative Ursache (Bodenzahl ist praktisch begrenzt) und ist nicht als Indiz für eine mangelhafte Eignung des Berechnungsmodells zu werten.

6.1.2 Destillation eines Aliphaten-Aromatengemisches mit n-Butanol (Destillation 2)

Im folgenden soll ein Fall diskutiert werden, in dem das Kohlenwasserstoffgemisch auch Aromaten enthält. Abb. 6.4 stellt die experimentellen und berechenten Werte für ein Gemisch, daß aus etwa gleichen Massenanteilen von n-Alkanen (Hexan-Decan), Aromaten (Toluol, Ethylbenzol, m-Xylol, i-Propylbenzol, n-Propylbenzol) und n-Butanol besteht, zusammen. Die numerischen Daten befinden sich im Anhang F.2.

Da es sich immer noch um diskrete Komponenten handelt, sind die einzelnen Stufen deutlich ausgeprägt. Im Gegenteil zu dem Fall ohne Aromaten ist hier der Sprung kürzer und zwar obwohl das n-Nonan vollständig verbraucht wurde.

Zwischen dem letzten Azeotrop und der n-Decan-Stufe befinden sich nun drei weitere Stufen (m-Xylol, i-Propylbenzol, n-Propylbenzol). Obwohl m-Xylol niedriger als n-Nonan siedet und ebenfalls Azeotrope mit n-Butanol bildet, destilliert es hier zum größten Teil als reine Komponente. Das liegt daran, daß die Siedetemperatur des Azeotrops n-Butanol-m-Xylol höher als die des Azeotrops n-Butanol-n-Nonan ist. Die Verfälschung der TBP-Kurve hört mit der ersten Stufe nach dem Temperatursprung auf². Danach ist der Kurvenverlauf mit jenem gleich, der im Fall ohne Azeotropie zu erwarten wäre.

Bei einem größeren Alkoholzusatz würde das m-Xylol ebenfalls als Azeotrop destillieren. Der Temperatursprung wäre trotzdem kürzer als im Fall ohne Aromaten, da die Propylbenzole keine Azeotrope mit n-Butanol bilden.

Abb. 6.4: Experimentelle und berechnete Siedekurve im Vergleich mit dem fiktiven Fall ohne Azeotropie für das System n-Alkane (33.02Ma.-%) + Aromaten (32.12Ma.-%) + n-Butanol (34.86Ma.-%).

Da das Gemisch fünf Alkane und fünf Aromaten enthält, würde man zehn Stufen erwarten. Diese werden zwar berechnet, sind aber beim Experiment teilweise nicht zu erkennen. Das liegt daran, daß die Siedetemperaturen der Azeotrope ziemlich nahe beieinander liegen. Dieser Effekt verstärkt sich in dem Bereich, wo Azeotrope mit großem Alkoholgehalt destillieren, da sich hier die Siedetemperatur des Azeotrops der des Alkohols fast asymptotisch nähert.

In Abb. 6.5 sind die Massenbrüche der Kohlenwasserstoffe in der Destillatfraktionen zusammengestellt. Am Anfang ist das Bild ähnlich zu Abb. 6.2. Nähert sich die Kopftemperatur der Siedetemperatur des n-Butanols, beginnen Komponenten am Kolonnenkopf zu erscheinen, die

² In diesem Fall gibt es eine kleine Differenz zwischen dem Anfang der m-Xylol-Stufe mit und ohne Azeotropie. Dieser ist aber darauf zurückzuführen, daß ein Teil des m-Xylols als Azeotrop destillierte.

Abb. 6.5: Zusammenstellung der experimentell bestimmten Kohlenwasserstoff-Gehalte I_j^{Kopf} in den einzelnen Fraktionen für das System n-Alkane (33.02Ma.-%) + Aromaten (32.12Ma.-%) + n-Butanol (34.86Ma.-%).

Abb. 6.6: n-Butanolverbrauch für das System n-Alkane (33.02Ma.-%) + Aromaten (32.12Ma.-%) + n-Butanol (34.86Ma.-%).

eigentlich bei einer höheren Kopftemperatur Azeotrope bilden. Kurz vor dem Sprung ist das Bild fast unüberschaubar, da hier mehrere Komponenten zusammen sieden.

Der Alkoholverbrauch, Abb. 6.6, wird hier weitgehend korrekt wiedergegeben. Das ist aber keine Überaschung, denn die Zusammensetzungen wurden so gewählt, daß lediglich solche Azeotrope gebildet werden konnten, die relativ wenig n-Butanol verbrauchen. Auf diese Weise wurden die auf die endliche Trennschärfe der Kolonne zurückzuführenden Effekte minimiert.

6.1.3 Destillation eines einer konstanten kontinuierlichen Verteilungsfunktion entsprechenden (gleichverteilten) Kohlenwasserstoffgemisches mit n-Butanol (Destillation 3)

In den bis jetzt vorgestellten Experimenten wurden einige Kohlenwasserstoffe, also diskrete Komponenten, untersucht. Die Zusammensetzungen wurden so gewählt, daß die einzelnen Stufen erkennbar waren. Der Zweck dieser Arbeit ist aber die Beschreibung realer Vielstoffsysteme auf der Basis kontinuierlicher Verteilungsfunktion. Dieser Abschnitt soll den Übergang von der diskreten zur kontinuierlichen Verteilung veranschaulichen. Darüber hinaus geht es auch um die Überprüfung der Leistungsfähigkeit der kontinuierlichen Behandlungsweise.

Es werden immer noch 5 n-Alkane und 5 Aromaten zugrunde gelegt, aber deren Zusammensetzungen so gestaltet, daß sich näherungsweise für die kontinuierlichen Verteilungsfunktionen der einfachste Fall, nämlich die Gleichverteilung³ ergibt. $W_{Al}(\tau)$ und $W_{Ar}(\tau)$ sind dann innerhalb der jeweiligen Siedebereiche konstant.

Um die Zusammensetzung der Aliphaten bzw. Aromaten zu bestimmen, geht man wie folgt vor. Zunächst wird aus den jeweils 5 Komponenten eine diskontinuierliche Verteilungsfunktion konstruiert (siehe Balken in Abb. 2.1), wobei angenommen wird, daß die Balkenbegrenzungen genau in der Mitte zwischen τ_j und τ_{j+1} bzw. τ_{j+1} und τ_{j+2} usw. liegen. Damit müssen nur noch der Siedeanfang, das Siedeende und die Höhe der Verteilungsfunktion bestimmt werden. Diese Unbekannten erhält man über die Forderung, daß das 0., 1., und 2. Moment (Normierungsbedingung, Mittelwert, Standardabweichung) von kontinuierlicher und diskontinuierlicher Verteilungsfunktion übereinstimmen sollen.

Abb. 6.7 stellt die auf diese Weise ermittelte integrale diskontinuierliche und kontinuierliche Verteilungsfunktion für die Alkane dar. Analoges gilt für die Aromaten. Die numerischen Daten

³ Selbstverständlich können fünf Stoffe eine kontinuierliche Verteilung nicht völlig ersetzen. Die grundlegenden Merkmale im Bezug auf die Destillation und Azeotropbildung sollten aber hier schon die gleichen sein.

für die n-Alkane und die Aromaten befinden sich im Anhang G. Jede einzelne Stufe der diskreten Verteilung wird in halber Höhe von der kontinuierlichen durchschnitten.

Abb. 6.7: Vergleich der TBP-Kurve (Stufenfunktion) der n-Alkane $C_6 - C_{10}$ bei unendlicher Trennleistung und der sich für den kontinuierlichen Fall der Gleichverteilung ergebenden Kurve.

Abb. 6.8 stellt die experimentelle und die auf diskontinuierlicher Basis berechnete Siedekurve für das aus 5 n-Alkanen, 5 Aromaten und n-Butanol bestehendes System dar. Die numerischen Daten befinden sich im Anhang F.3. Das Bild sieht ähnlich aus wie im vorhergehenden Beispiel. Die Wiedergabe des Destillationsverlaufes ist weitgehend gut. In Abb. 6.9 werden die nach der kontinuierlichen und diskontinuierlichen Methoden berechneten Kurven miteinander verglichen. Die kontinuierliche Methode basiert auf den der Gleichverteilung entsprechenden konstanten Verteilungsfunktionen für die Alkane und die Aromaten. Die Übereinstimmung der kontinuierlichen und der diskontinuierlichen Kurve ist hervorragend. Die einzelen diskreten Stufen werden etwa in halber Höhe durchschnitten. Der Sprung wird mit derselben Genauigkeit wiedergegeben wie bei der Berechnung mit diskreten Massenbrüchen.

Da die Wiedergabe des Destillationsverlaufes im Fall der Gleichverteilung sehr gut ist, sollte auch der mit der kontinuierlichen Thermodynamik berechnete Butanolverbrauch mit den experimentellen Werten verglichen werden. Wie in Abb. 6.10 zu erkennen ist, ist er etwas kleiner als im Experiment, was die Diskrepanz in der Wiedergabe des Temperatursprunges in Abb. 6.8 erklärt. Auffällig ist der Rückgang des Alkoholverbrauches bei etwa 376K. Dieses Phänomen ist charakteristisch für den Fall konstanter Verteilungsfunktionen (Gleichverteilung). Die Tempera-

Abb. 6.8: Experimentelle und diskontinuierlich berechnete Siedekurve im Vergleich mit dem fiktiven Fall ohne Azeotropie für das System n-Alkane (31.28Ma.-%) + Aromaten (23.48Ma.-%) + n-Butanol (45.24Ma.-%) bei Gleichverteilung der Kohlenwasserstoffe.

Abb. 6.9: Vergleich der kontinuierlich und der diskontinuierlich berechneten Siedekurven für das System n-Alkane (31.28Ma.-%) + Aromaten (23.48Ma.-%) + n-Butanol (45.24Ma.-%) bei Gleichverteilung der Kohlenwasserstoffe.

Abb. 6.10: n-Butanolverbrauch für das System n-Alkane (31.28Ma.-%) + Aromaten (23.48Ma.-%) + n-Butanol (45.24Ma.-%) bei Gleichverteilung der Kohlenwasserstoffe.

tur 376K hat eine bestimmte Bedeutung. Bei dieser Temperatur fangen nämlich die ersten (nur theoretisch möglichen) aromatischen Azeotrope an zu sieden. Deren Alkoholgehalt ist niedrigerals der Alkoholgehalt der bei 376K siedenden aliphatischen Azeotrope. Bei Berechnungen mit diskreten Komponenten und im Experiment kommt dieses Phänomen nicht vor, da die ersten aromatischen Azeotrope die des Toluols sind, welche einen ähnlichen Alkoholverbrauch haben wie die aliphatischen Azeotrope, die bei dieser Temperatur sieden.

6.2 Reale komplexe Vielstoffsysteme

6.2.1 Charakterisierung eines aliphatischen und eines aromatischen Benzins

Um TBP-Kurven realer komplexer Vielstoffsysteme untersuchen zu können, wurden ein weitgehend aus Aliphaten und ein weitgehend aus Aromaten bestehendes Benzin benutzt. Die Zusammensetzung von Erdölen läßt sich häufig durch Gauß-Verteilungen beschreiben (Laux et al. (1992), Laux (1992)). Die hier verwendeten Benzine wiesen ebenfalls Gauß-Verteilungen auf. Eine Gauß-Verteilung $W(\tau)$ wird durch zwei Parameter beschrieben, den Mittelwert θ und die Standardabweichung σ :

$$W(\tau) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(\tau-\theta)^2}{2\sigma^2}}.$$
 (6.1)

Liegen diskrete experimentelle Werte $W_j(\tau_j)$ vor, so wie über die gaschromatographisch simulierte Destillation zugänglich, können θ und σ wie folgt berechnet werden:

$$\theta = \sum_{j=1}^{n} W_j \tau_j, \tag{6.2}$$

$$\sigma^{2} = \sum_{j=1}^{n} W_{j} \tau_{j}^{2} - \theta^{2}.$$
(6.3)

Auf diese Weise wurden die kontinuierlichen Verteilungsfunktionen für die Alliphaten und die Aromaten ermittelt. Ob die so gewonnenen Funktionen zuverlässig sind, kann man am besten anhand der integralen Verteilungsfunktionen feststellen, Dutschmann (1994).

Abb. 6.11 stellt die experimentellen und die berechneten Werte für die integrale Verteilungsfunktion

$$I(\tau) = \int_{\tau_0}^{\tau} W(\tau) d\tau$$
(6.4)

der Aliphatenverteilung dar. Die numerischen Werte für die Verteilungsfunktionen der Aliphaten und Aromaten sind im Anhang H zu finden. Die Übereinstimmung ist sehr gut.

Abb. 6.11: Integrale Verteilungsfunktion $I(\tau)$ des Aliphatenbenzins basierend auf der Gauß-Verteilung im Vergleich mit den experimentellem Daten der gaschromatographisch simulierten Destillation.

Eine analoge Darstellung der Aromatenverteilung Abb. 6.12, sieht zumindest im Anfangsbereich, auf den ersten Blick nicht so gut aus. Das rührt daher, daß die Aromaten in diesem Bereich

Abb. 6.12: Integrale Verteilungsfunktion $I(\tau)$ des Aromatenbenzins basierend auf der Gauß-Verteilung im Vergleich mit den experimentellem Daten der gaschromatographisch simulierten Destillation.

Abb. 6.13: Vergleich der mit der kontinuierlichen Thermodynamik auf Basis der Gauß-Verteilung berechneten Siedekurve mit den experimentellen Werten für eine Mischung des Aromatenbenzins (60Ma.-%) mit n-Butanol (40Ma.-%).

keine kontinuierliche Verteilung aufweisen. Durch den hohen Anteil an Toluol (22.648Ma.-% des Aromatenanteils) muß dieses als diskrete Zusatzkomponente betrachtet werden.

Schließlich sollte noch überprüft werden, ob auch durch Azeotropie beeinflußte Siedekurven auf der Basis der zuvor diskutierten Gauß-Verteilungen gut vorausberechnet werden können. Zu diesem Zweck wurde zunächst die Siedekurve für das Aromatenbenzin im Gemisch mit n-Butanol experimentell bestimmt (Destillation 4). Die Berechnungen bauen auf den unter 3.2 aufgeführten Gleichungen der kontinuierlichen Thermodynamik auf, sind aber auf die Aromaten bezogen. Toluol wird als diskrete Zusatzkomponente behandelt. Abb. 6.13 stellt das Ergebnis dar. Die numerischen Daten sind im Anhang F.4 zu finden. Die Berechnung mit der Gauß-Verteilung liefert ein gutes Resultat. Der Temperatursprung wird mit ähnlicher Genauigkeit wiedergegeben, wie bei den Modellsystemen aus wenigen Komponenten. Die Verwendung einer Gauß-Verteilung ist also in diesem Fall berechtigt.

6.2.2 Destillation des aliphatischen Benzins im Gemisch mit einigen Aromaten und mit n-Butanol (Destillation 5)

Im folgenden soll ein System untersucht werden, das aus dem aliphatischen Benzin und fünf Aromaten besteht. Die Aromaten sind wieder die aus den Modellsystemen. Ihre Zusammensetzung entspricht wieder, wie unter 6.1.3 behandelt, einer konstanten kontinuierlichen Verteilungsfunktion (Gleichverteilung).

Abb. 6.14 stellt ein solches System dar. Die numerischen Daten befinden sich im Anhang F.5. Erwartungsgemäß sind die meisten Stufen verschwunden. Erkennbar sind noch die Stufen, die auf die Aromaten zurückzuführen sind (Toluol, Propylbenzole). Ansonsten ist der Anstieg der Temperatur kontinuierlich. Die berechnete Kurve gibt den Destillationsverlauf weitgehend korrekt wieder.

Die Berechnungen wurden mit der Gauß-Verteilung für die Aliphatenfraktion durchgeführt. Für die Aromaten wurden einmal die Massenbrüche und einmal die dazu angepaßte Gleichverteilung verwendet. Der Vergleich der beiden Methoden ist in Abb. 6.15 zu sehen. Die beiden Kurvenverläufe unterscheiden sich nur geringfügig. Es wird wieder bestätigt, daß man eine kontinuierliche Verteilungsfunktion anstelle von diskreten Komponenten einsetzen kann, sogar schon bei einer relativ kleinen Zahl von Komponenten.

Da man es im Fall eines Benzins mit einer sehr großen Menge Komponenten mit jeweils sehr

Abb. 6.14: Experimentelle und berechnete Siedekurve im Vergleich mit den fiktiven Fall ohne Azeotropie für das System aliphatisches Benzin (21.49Ma.-%) + Aromaten (21.73Ma.-%) + n-Butanol (56.78Ma.-%) bei Gleichverteilung der Aromaten und Gauß-Verteilung der Aliphaten.

Abb. 6.15: Vergleich der mit zwei Methoden berechneten Siedekurven für das System aliphatisches Benzin (21.49Ma.-%) + Aromaten (21.73Ma.-%) + n-Butanol (56.78Ma.-%) bei Gleichverteilung der Aromaten und Gauß-Verteilung der Aliphaten.

kleinen Massenanteilen zu tun hat, wurde bei der gaschromatographischen Analyse lediglich der Alkoholgehalt ermittelt. In Abb. 6.16 wurde das Ergebniss der Analyse mit der berechneten Kurve dargestellt. Der Rückgang des Alkoholverbrauchs bei 376K hat wieder mit der der Gleichverteilung der Aromaten entsprechenden konstanten Verteilungsfunktion zu tun, wie bereits unter 6.1.3 ausgeführt wurde.

Abb. 6.16: n-Butanolverbrauch für das System aliphatisches Benzin (21.49Ma.-%) + Aromaten (21.73Ma.-%) + n-Butanol (56.78Ma.-%) bei Gleichverteilung der Aromaten und Gauß-Verteilung der Aliphaten.

6.2.3 Destillation des aliphatisches Benzins im Gemisch mit dem aromatischen Benzin und n-Butanol (Destillationen 6-8)

Im letzten Schritt der Untersuchungen wurden dem Aliphatenbenzin unterschiedliche Mengen des Aromatenbenzins zugesetzt, so daß mehr oder weniger aromatenreiche Benzine vorlagen. Nach Zusatz von n-Butanol in variierender Menge wurde die Siedekurve aufgenommen. Dabei sollten drei Fälle untersucht werden:

- aromatenreiches Benzin mit großem Alkoholanteil,
- aromatenreiches Benzin mit kleinem Alkoholanteil,
- Benzin mit kleinem Aromatenanteil und mit kleinem Alkoholanteil.

Aromatenreiches Benzin mit großem Alkoholanteil (Destillation 6)

In Abb. 6.17 ist ein solches System dargestellt. Die Berechnungen fußen wieder auf der kontinuierlichen Thermodynamik, wobei die Zusammensetzung beider Benzine jeweils durch Gauß-Verteilung beschrieben wird. Die numerischen Daten befinden sich im Anhang F.6. In diesem Fall destillieren fast alle zur Azeotropie befähigten Komponenten als Azeotrope. Es gibt keine erkennbaren Stufen mehr, der Kurvenverlauf ist stetig.

Abb. 6.17: Experimentelle und mit der Gauß-Verteilung berechnete Siedekurve im Vergleich mit dem fiktiven Fall ohne Azeotropie für das System Aliphatenbenzin (20.10Ma.-%) + Aromatenbenzin (19.98Ma.-%) + n-Butanol (59.92Ma.-%).

Wie in Abb. 6.18 zu erkennen ist, destillieren in der Endphase der Azeotropdestillation Azeotrope mit einem Alkoholgehalt von 0.9. Aus dem Anstieg ist auch erkennbar, daß es im Fall einer kontinuierlichen Verteilung nicht möglich ist, daß alle theoretisch möglichen Azeotrope gebildet werden können, denn der Alkoholmassenbruch in den Azeotropen nähert sich asymptotisch dem Wert 1 an, was zu einem unendlich großem Alkoholverbrauch führen würde. Es ist damit unmöglich, daß nach der Azeotropdestillationsphase Alkohol übgrig bleibt.

Aromatenreiches Benzin mit kleinem Alkoholanteil (Destillation 7)

Bis jetzt wurden Systeme vorgestellt, bei denen ein sehr großer Alkoholgehalt vorhanden war. Das machte sich notwendig, um den gesamten Bereich der Azeotropie zu untersuchen. Es stellt

Abb. 6.18: Mit der Gauß-Verteilung berechneter n-Butanolverbrauch für das System Aliphatenbenzin (20.10Ma.-%) + Aromatenbenzin (19.98Ma.-%) + n-Butanol (59.92Ma.-%) im Vergleich mit den experimentellen Werten.

sich allerdings die Frage, ob auch bei kleinem Alkoholgehalt eine signifikante Verfälschung der TBP-Kurve auftritt.

In Abb. 6.19 ist ein solcher Fall dargestellt. Die numerischen Daten befinden sich im Anhang F.7. Obwohl der Alkoholgehalt im Vergleich zu dem vorhergehenden System stark reduziert wurde, er beträgt nur noch etwa 10Ma.-%, ist ein Siedetemperatursprung deutlich erkennbar. Die Verfälschung im Vergleich zu dem Fall ohne Azeotropie ist ebenfalls sichtbar. Der Effekt wäre noch stärker ausgeprägt, wenn man Benzine einsetzte, die den Siedeanfang bei etwa 390K haben, da in diesem Fall gleich am Anfang Komponenten destillieren würden, die höher als der Alkohol sieden.

Im Gegensatz zu den bisher vorgstellten Systemen mit einem großen Alhoholmassenbruch erfolgt hier der experimentell ermittelte Temperatursprung später als der berechnete. Die Erklärung dafür findet man in Abb. 6.20 die den den Vergleich des berechneten mit dem gemessenen Alkoholverbrauch darstellt. Die berechnete Kurve verläuft vor allem bei höheren Temperaturen oberhalb der experimentellen Werte, was den Siedesprung zu einem kleineren T-Wert verschiebt. Der eigentliche Hintergrund der Unterschiede zwischen den berechneten und den experimentellen Werten ist wieder (siehe auch 6.1.1), daß die Berechnungen auf einer unendlichen Bodenzahl basieren, die reale Kolonne aber nur eine endliche Trennleistung hat. Generell wird am Anfang der azeotrop beeinflußten Phase hierdurch mehr n-Butanol verbraucht als es der azeotropen Zusammensetzung entspricht. Im Bereich höherer Temperaturen ist wegen der vorangegangenen Azeotrope weniger n-Butanol vorhanden und die gerade übergehenden Azeotrope sind sehr butanolhaltig. Somit wird hier weniger n-Butanol verbraucht als es der jeweiligen azeotropen Zusammensetzung entspricht. Das ist auch in Abb. 6.20 zu sehen. Bei hohem n-Butanolgehalt überwiegt der erstgenannte Effekt. Der experimentelle Temperatursprung kommt vor dem berechneten, wie z.B. in Abb. 6.17. Bei niedrigem Butanolgehalt überwiegt der zweitgenannte Effekt. Der experimentelle Temperatursprung kommt nach dem berechneten (Abb. 6.19).

Abb. 6.19: Experimentelle und mit der Gauß-Verteilung berechnete Siedekurve für das System Aliphatenbenzin (49.98Ma.-%) + Aromatenbenzin (39.97Ma.-%) + n-Butanol (10.05Ma.-%).

Aromatenarmes Benzin mit kleinem Alkoholanteil (Destillation 8)

Zum Schluß soll ein System vorgestellt werden, in dem der Aromatenanteil im Vergleich zu den bisher vorgestellten Systemen relativ klein ist (etwa 20Ma.-%) und daß auch nur einen kleinen Alkoholanteil (etwa 10Ma.-%) hat. Dies soll den Überblick über die möglichen Varianten vervollständigen.

In der Abb. 6.21 ist ein solcher Fall dargestellt. Die numerischen Daten befinden sich im Anhang F.8. Der Destillationsverlauf untercheidet sich nur geringfügig von dem im vorhergehenden System. Diese Tatsache ist darauf zurückzuführen, daß es in diesem Bereich kaum Aromaten gibt (praktisch nur das Toluol). Es ist also nicht nur die Tatsache von Bedeutung, ob das System Aromaten enthält, sondern auch, in welchem Bereich diese sieden.

Abb. 6.20: Mit der Gauß-Verteilung berechneter n-Butanolverbrauch für das System Aliphatenbenzin (49.98Ma.-%) + Aromatenbenzin (39.97Ma.-%) + n-Butanol (10.05Ma.-%) im Vergleich mit den experimentellen Werten.

Abb. 6.22 gibt wieder Auskunft über n-Butanol-Verbrauch, unterscheidet sich aber kaum von Abb. 6.20.

Abb. 6.21: Experimentelle und mit der Gauß-Verteilung berechnete Siedekurve im Vergleich mit dem fiktiven Fall ohne Azeotropie für das System Aliphatenbenzin (69.57Ma.-%) + Aromatenbenzin (20.30Ma.-%) + n-Butanol (10.13Ma.-%).

Abb. 6.22: Mit der Gauß-Verteilung berechneter n-Butanolverbrauch für das System Aliphatenbenzin (69.57Ma.-%) + Aromatenbenzin (20.30Ma.-%) + n-Butanol (10.13Ma.-%).

7. ZUSAMMENFASSUNG

Erdöl ist ein komplexes Vielstoffgemisch, das aus einer sehr großen Anzahl chemisch ähnlicher Spezies besteht. Die Bestimmung der Molen- bzw. Massenbrüche der im Erdöl enthaltenen Komponenten ist praktisch unmöglich. Es ist aber möglich und auch sinnvoll, die Zusammensetzung des Erdöls durch kontinuierliche Verteilungsfunktionen zu beschreiben.

Ein zu diesem Zweck häufig angewendetes Verfahren ist die fraktionierte Blasendestillation. Diese liefert die "wahre" Siedekurve, auch TBP-Kurve (True-Boiling-Point curve) genannt. Man geht dabei davon aus, daß die einzelnen Komponenten in der Reihenfolge ihrer Reinstoffsiedetemperaturen destillieren. Daher stammt auch der Name dieser Kurve. Man trägt dabei die relative Destillatmasse I^{Kopf} gegen die Kopftemperatur T auf. Die auf diese Weise erhaltene Kurve repräsentiert eine integrale Verteilungsfunktion. Durch deren Differentiation nach der Temperatur kann man die differentielle Verteilungsfunktion erhalten.

Enthält das Gemisch außer Kohlenwasserstoffen Azeotropbildner wie z.B. Wasser oder andere polaren Komponenten, tritt eine Verfälschung der TBP-Kurve auf, die deshalb dieser Beschreibung nicht länger gerecht wird und nur als Siedekurve bezeichnet werden darf. Der Grund ist die Bildung von Azeotropen. Im Fall von Wasser oder Alkoholen hat man es mit Siedetemperaturminimumazeotropen zu tun. In der Siedekurve äußert sich dieses Phänomen durch einen verkleinerten Temperaturzuwachs in dem durch Azeotropie beeinflußten Bereich, gefolgt von einem Temperatursprung. Der Verlauf der Siedekurve in diesem Bereich, zwischen dem Anfang der azeotropen Destillationsphase bis zum Ende des Sprunges, weicht von dem der TBP-Kurve zum Teil erheblich ab.

Der Azeotropieeinfluß in komplexen Vielstoffsystemen aus Aliphaten war aus vorangegangenen Arbeiten bereits bekannt. Unklar war, was passiert, wenn Aromaten ebenfalls zugegen sind, so wie es in realen Erdölfraktionen gewöhnlich der Fall ist. Das schien vor allem deshalb interessant, weil Aromaten und Alkohole ebenfalls Siedetemperaturminimumazeotrope bilden. Somit war die Untersuchung des Einflusses der Azeotropie auf die TBP-Kurve von komplexen Vielstoffsystemen aus Aliphaten, Aromaten und einem Alkohol (n-Butanol) das Hauptziel der Arbeit.

Die Untersuchungen wurden sowohl experimentell als auch in Form von Berechnungen durchgeführt. Die experimentellen Untersuchungen beinhalteten sowohl die Bestimmung der Siedekurve als auch die gaschromatographische Analyse der anfallenden Fraktionen. Letzteres war wegen der großen Zahl abgenommener Fraktionen sehr zeitaufwendig. Alle Messungen wurden auf ihre Reproduzierbarkeit überprüft.

Zur Berechnung der Siedekurve kam vor allem die kontinuierliche Thermodynamik zur Anwendung. Diese basiert unmittelbar auf der Beschreibung der Gemischzusammensetzung durch kontinuierliche Verteilungsfunktionen, die von einer Identifizierungsvariablen der Spezies, hier der Normalsiedetemperatur τ , abhängen. In die Berechnungsgleichungen gehen auch der Alkoholmassenbruch am azeotropen Punkt und die zugehörige Siedetemperatur des binären Azeotrops ein. Diese Größen werden für die binären Azeotrope des Typs Aliphaten + Alkohol und des Typs Aromaten + Alkohol in Abhängigkeit von der Identifizierungsvariable, der Normalsiedetemperatur τ , benötigt. Mit Hilfe eines modifizierten Porter-Ansatzes, der Clausius-Clapeyron'schen Gleichung und einer modifizierten Trouton'schen Regel ergab sich eine einfache Beziehung, deren Parameter an experimentelle azeotrope Daten angepaßt wurden und die dann die Siedetemperatur binärer Azeotrope als Funktionen von τ exzellent beschreibt. Für den Alkoholmassenbruch am azeotropen Punkt erwies sich ein kubisches Polynom in τ als geeigneter Ansatz. Die den azeotropen Punkt beschreibenden Funktionen wurden nicht nur für n-Butanol, sondern auch für Ethanol und n-Propanol ermittelt.

Die Auswahl der untersuchten Systeme wurde so getroffen, daß zunächst Modellsysteme aus nur wenigen n-Alkanen und Aromaten im Gemisch mit n-Butanol untersucht wurden. Das hatte den Vorteil, daß die Ausgangszusammensetzung exakt bekannt war und die Zusammensetzung in den destillierten Fraktionen gaschromatographisch für jeden einzelnen Stoff bestimmt werden konnte. Danach wurde schrittweise zu realen Systemen übergegangen, indem die n-Alkane durch ein Aliphatenbenzin und dann auch die Aromaten durch ein Aromatenbenzin ersetzt wurden. Die meisten der untersuchten Gemische hatten einen hohen Gehalt an n-Butanol, damit die Azeotropieeffekte deutlich hervorheben. Es wurden aber auch zwei Gemische mit relativ wenig n-Butanol untersucht.

Im Rahmen dieser Arbeit wurde die Siedekurve für acht Gemische experimentell ermittelt (Destillationen 1-8). In der Destillation 1 wurde zunächst ein Gemisch aus den n-Alkanen C_6 -
C_{10} und n-Butanol untersucht, um eine Bezugsbasis für die Bewertung des Aromateneffekts zu haben. Der durch die Azeotropie hervorgerufene Temperatursprung ist beträchtlich (über 30K). Die Siedekurve bezogen auf unendliche Trennleistung der Kolonne ist hier exakt berechenbar. Der bei zu niedrigen I^{Kopf} -Werten liegende experimentelle Temperatursprung ist eine Folge der begrenzten Trennleistung der realen Kolonne. Es konnte gezeigt werden, daß ein hoher Butanolgehalt des Ausgangsgemisches dazu führt, daß der experimentelle Temperatursprung vor dem berechneten kommt und daß es bei niedrigem Butanolgehalt gerade umkgekehrt ist.

In der Destillation 2 wurde das zuvor genannte Gemisch durch die Aromaten Toluol, Ethylbenzol, m-Xylol, i-Propylbenzol und n-Propylbenzol ergänzt. Der Temperatursprung ist jetzt erheblich kleiner als vorher, vor allem weil die Aromaten in einem kleineren Temperaturbereich Azeotrope bilden, so daß dort, wo sonst noch nichts destilliert, jetzt die reinen Aromaten m-Xylol, i-Propylbenzol und n-Propylbenzol übergehen. Obwohl m-Xylol mit n-Butanol Azeotrope bilden kann, geht es zum größten Teil als reiner Stoff über, weil das n-Butanol bereits durch die vorangegangenen Azeotrope verbraucht ist.

Das Gemisch aus der Destillation 3 bestand aus den gleichen Komponenten wie das vorige, aber das Massenverhältnis der n-Alkane zueinander und das Massenverhältnis der Aromaten zueinander wurden so gewählt, daß sie konstanten kontinuierlichen Verteilungsfunktionen im jeweiligen Siedebereich entsprechen. Im Rahmen der kontinuierlichen Behandlungsweise hat man es dann mit einer Gleichverteilung der Aliphaten und der Aromaten zu tun. Mit diesem Gemisch kann eine Brücke von den bisherigen diskontinuierlich berechenbaren Siedekurven der Modellsysteme zu den mit der kontinuierlichen Thermodynamik zu berechnenden Siedekurven realer Erdölsysteme geschlagen werden. Darüber hinaus hat man folgenden Vorteil. Einerseits lassen sich die Siedekurven aufgrund der begrenzten Komponentenzahl exakt berechnen. Andererseits kann die kontinuierliche Methode eingesetzt werden, weil die kontinuierlichen Verteilungsfunktionen in einfacher Weise gegeben sind. Der Vergleich beider Berechnungsvarianten zeigt, daß die kontinuierliche Methode sogar bei so niedriger Komponentenzahl brauchbare Ergebnisse liefert. Auch der Vergleich mit den experimentellen Daten fällt gut aus, abgesehen vom Temperatursprung, der aufgrund der begrenzten Trennleistung der Kolonne experimentell wieder bei niedrigeren Temperaturen als nach der Rechnung erwartet kommt.

Als reale Vielstoffsysteme standen ein praktisch nur aus Aliphaten bestehendes und ein praktisch nur aus Aromaten bestehendes Benzin zur Verfügung. Die Zusammensetzung der Benzine wurde mit der gaschromatographisch simulierten Destillation untersucht. Für beide Benzine konnte sie durch Gauß-Verteilungen gut beschrieben werden, wobei für das Aromatenbenzin Toluol (22.64Ma.-%) als diskrete Zusatzkomponente behandelt werden mußte. Für eine Mischung aus dem Aromatenbenzin und n-Butanol wurde die Siedekurve (Destillation 4) experimentell aufgenommen. Die hierzu durchgeführten Berechnungen auf Basis der Gauß-Verteilung und mit Toluol als diskreter Zusatzkomponente stimmen mit den experimentellen Werten gut überein, auch den Temperatursprung betreffend. Das konnte als Bestätigung für die gewählte Art und Weise der Beschreibung der Zusammensetzung des Aromatenbenzins gewertet werden.

Als nächstes wurde das Aliphatenbenzin mit den Aromaten Toluol, Ethylbenzol, m-Xylol, i-Propylbenzol und n-Propylbenzol (Gleichverteilung) und mit n-Butanol gemischt und hierzu die Siedekurve aufgenommen (Destillation 5). Entsprechende Berechnungen auf Basis der Gauß-Verteilung für das Aliphatenbenzin führten zu einer guten Übereinstimmung mit den experimentellen Daten, was für die Verwendung der Gauß-Verteilung spricht. Dabei spielt es keine Rolle, ob die Aromaten als diskrete Komponenten erfaßt werden, oder ob man ihre Zusammensetzung durch eine konstante kontinuierliche Verteilungsfunktion beschreibt. Das spricht sehr für die kontinuierliche Behandlungsweise.

Im nächsten Schritt kam das Aromatenbenzin anstelle der fünf einzelnen Aromaten zum Einsatz. Durch unterschiedliche Beimengungen des Aromatenbenzins zum Aliphatenbenzin entstand ein mehr oder weniger aromatenreiches Benzin, das mit unterschiedlichen n-Butanolmengen versetzt wurde. Im einzelnen wurden untersucht: aromatenreiches Benzin mit großem Alkoholgehalt (Destillation 6), aromatenreiches Benzin mit kleinem Alkoholgehalt (Destillation 7), aromatenarmes Benzin mit kleinem Alkoholgehalt (Destillation 8). Ergänzend zu den experimentellen Untersuchungen erfolgten wieder Berechnungen mit der kontinuierlichen Methode auf Basis von Gauß-Verteilung für die Aliphaten und die Aromaten (mit Toluol als diskreter Zusatzkomponente). Die Übereinstimmung mit den experimentellen Werten ist gut, sowohl die Siedekurve betreffend als auch bezüglich des Alkoholverbrauchs der Destillatfraktionen. Interessant ist auch die beachtliche Größe des Azeotropieeinflusses schon bei niedrigem Butanolgehalt. Im Fall niedrigen Butanolgehalts erfolgt der Temperatursprung in der Siedekurve experimentell bei höheren I^{Kopf} -Werten als berechnet, was wieder ein Ergebnis der endlichen Trennleistung der Kolonne ist.

Theoretisch können die letzten übergehenden Azeotrope den Alkoholmassenbruch 1 haben. Der Wert 1 wird allerdings niemals erreicht, da sich der Alkoholanteil asymptotisch an 1 nähert, was zu einem immer höher werdenden Alkoholverbrauch führt. Das bedeutet, daß unabhängig davon wie groß der Alkoholanteil in der Mischung ist, er in jedem Fall während der Azeotropdestillation vollständig verbraucht wird.

Insgesamt zeigt die vorliegende Arbeit, daß der Zusatz von Azeotropbildnern wie Alkohol zu Erdölfraktionen eine wesentliche Verfälschung der sogenannten "wahren" Siedekurve herbeiführt. Das trifft auch schon für relativ geringe Mengen solcher Zusätze zu. Der Anteil der Aromaten kann Größe und Erscheinungsform des Azeotropieeinflusses wesentlich beeinflussen. Mit der in dieser Arbeit entwickelten, auf der kontinuierlichen Thermodynamik basierenden Vorgehensweise ist eine exzellente Vorausberechnung azeotrop beeinflußter Siedekurven für komplexe Vielstoffgemische aus Aliphaten, Aromaten und n-Butanol möglich. Für entsprechende Systeme mit Ethanol und n-Propanol wurden die nötigen Modellparameter ebenfalls bereitgestellt, so daß auch hierfür Vorausberechnungen ähnlicher Qualität erwartet werden können.

LITERATURVERZEICHNIS

- P. W. Atkins. Physikalische Chemie. VCH Verlagsgesellschaft mbH, Weinheim, 1990.
- D. Browarzik, D. Glindemann, H. Kehlen, T. Maskow, und J. Kutscha. Einfluß der Azeotropie auf die analytische Destillation komplexer Kohlenwasserstoffgemische. *Chem.-Ing.-Tech.*, 68: 138–141, **1996**.
- R.L. Cotterman und J.M. Prausnitz. Kinetic and thermodynamic lumping of multicomponent mixtures. In G. Astarita und S.I. Sandler, editors, *Chemical Process Design*, chapter Continuous Thermodynamics for Phase Equilibrium Calculations, Seiten 225–275. Elsevier, Amsterdam, 1991.
- D. E. Daubert und R. P. Danner. Physical and thermodynamic properties of pure chemicals-Data compilation. Des. Inst. phys. prop. data, Am. Inst. Chem. Eng., Washington, 1987.
- B. Dutschmann. Experimentelle Bestimmung und Berechnung der Gleichgewichtsverdampfungskurven komplexer Vielstoffgemische. Dissertation, Martin-Luther-Universität Halle-Wittenberg, 1994.
- F. T. Eggertsen, S. Grönnings, und T. J. Holst. Analytical destillation by gas chromatography. Analyt. Chem., 32:904–909, 1960.
- P. J. Flory. Thermodynamics of high-polymer solutions. J. Chem. Phys, 9:660-661, 1941.
- A. Fredenslund, J. Gmehling, und P. Rasmussen. Vapor-liquid equilibria using UNIFAC-A group contribution method. Elsevier, 1977.
- A. A. Frost und D. R. Kalkwarf. A semiempirical equation for the vapor pressure of liquids as a function of temperature. J. Chem. Phys, 21:264–267, 1953.
- D. Glindemann, Maskow T., D. Browarzik, H. Kehlen, und J. Kutscha. Role of azeotropy in characterization of complex hydrocarbon mixtures by true-boiling-point distillation. *Fluid Phase Equilibria*, 135:149–167, **1997**.
- J. Gmehling und B. Kolbe. Thermodynamik. VCH Verlagsgeselschaft mbH., Weinheim, 1992.

- J. Gmehling, J. Li, und M. Schiller. A modified UNIFAC model. 2. Present parameter matrix and results for different thermodynamics properties. *Ind. Eng. Chem. Res.*, 32:178–193, **1993**.
- J. Gmehling, J. Menke, J. Krafczyk, und K. Fischer. Azeotropic Data, volume I, II. VCH Verlagsgesellschaft mbH, Weinheim, 1994.
- K. Grob und G. Grob. Practical capillary gas chromatography a systematic approach. J. High Resol. Chrom. Commun, 2:109–117, 1979.
- E. A. Guggenheim und Mc Glashahn. Interaction between nextnearst neighbors in regular mixtures. Trans. Faraday Soc., 47:929–937, 1951.
- H. K. Hansen, P. Rasmussen, A. Fredenslund, M. Schiller, und J. Gmehling. Vapor-liquid equilibria by UNIFAC group contribution. 5. Revision and extention. *Ind. Eng. Chem. Res.*, 30:2352–2355, 1991.
- O. H. Hariu und R. C. Sage. Crude split figured by computer. *Hydrocarbon Process*, 48(4): 143–148, **1969**.
- M. L. Huggins. Some properties of solutions of long-chain compounds. J. Chem. Phys, 46: 151–158, **1942**.
- H. Kehlen und D. Browarzik. Kontinuierliche Thermodynamik ein Weg zur Behandlung komplexer Vielstoffsysteme. Chem.-Ing.-Tech., 66:1346–1350, 1994.
- H. Kehlen und M.T. Rätzsch. Continuous thermodynamics of multicomponent mixtures. In Proceedings 6th. Int. Conf. on Thermod., Seiten 41–51, Merseburg, 1980.
- K. Kojima und K. Tochigi. *Prediction of vapor-liquid equilibria by the ASOG Method*. Kodansha, Tokio, **1979**.
- R. Kühne. Verteilungsfunktionen von Aromaten und Nichtaromaten in der kontinuierlichen Thermodynamik. Dissertation, Technische Hochschule Leuna-Merseburg, 1988.
- B. L. Larsen, P. Rasmussen, und A. Fredenslund. A modified UNIFAC group contribution model for prediction of phase equilibria and heats of mixing. *Ind. Eng. Chem. Res.*, 26:2274–2286, 1987.
- H. Laux. Löslichkeitsparameter und Verteilung von Erdölrückstandskomponenten. Erdöl-Erdgas-Kohle, 108:227–232, 1992.
- H. Laux, I. Rahimian, und A. Hatke. Zur Kolloidalzusammensetzung und Stabilität von Erdölen. Chem. Techn., 44:263–270, 1992.

- T. Maskow. Probleme der Charakterisierung von Erdölfraktionen mit Hilfe der Blasendestillation. Dissertation, Martin-Luther-Universität Halle-Wittenberg, Merseburg, **1993**.
- N. G. Mc Taggart und P. Glaysher. Simulated true boiling points of total crude oils by gas chromatography, chapter Recente analytical developments in the petroleum industry. Appl. Sci. Publ. LTD, 1974.
- P. B. Myrdal, J. F. Krzyzaniak, und S. H. Yalkowsky. Modified Trouton's rule for predicting the entropy of boiling. *Ind. Eng. Chem. Res.*, 35:1788–1792, **1996**.
- W. Rödel und G. Wölm. Grundlagen der Gaschromatographie. VEB Deutscher Verlag der Wissenschaften, Berlin, 1982.
- J. Schmelzer, B. L. Larsen, und A. Fredenslund. Vorausberechnung von Flüssigkeit-Dampf-Gleichgewichten und mischungsenthalpien mit dem Modifizierten UNIFAC-Modell. *Chem. Techn.*, 39(3):114–119, **1987**.
- H. E. Schwartz, R. G. Brownley, M. M. Boduszinsky, und F. Su. Simulated distillation of high-boiling petroleum fractions by capillary supercritical fluid chromatography and vacuum thermal gravimatric analysis. *Anal. Chem.*, 59:1393–1401, **1987**.
- H. Segura, J. Wisniak, A. Aucejo, J. B. Montón, und R. Muñoz. Polyazeotropy in binary systems.
 2. Association effects. *Ind. Eng. Chem. Res.*, 35:4194–4202, 1996.
- W. Świętosławski. Azeotropy and Polyazeotropy. Pergamon Press, Oxford, 1963.
- M. A. Trebble, P. H. Salim, und P. M. Sigmund. A generalized approach to prediction of two and three phase CO_2 -hydrocarbon equilibria. *Fluid Phase Equilibria*, 82:111–118, **1993**.
- Ch. H. Twu. Prediction of thermodynamic properties of normal paraffins using only normal boiling point. *Fluid Phase Equilibria*, 11:65–81, **1983**.
- U. Weidlich. Experimantelle und theoretische Untersuchungen zur Erweiterung der Gruppenbeitragsmethode UNIFAC. Dissertation, Universität Dortmund, **1987**.
- U. Weidlich und J Gmehling. A modified UNIFAC model. 1. Prediction of VLE, h^E and γ^{∞} . Ind. Eng. Chem. Res., 26:1372–1381, **1987**.

ABBILDUNGSVERZEICHNIS

2.1	Zusammenhang zwischen der diskontinuierlichen und der kontinuierlichen Vertei-	
	lungsfunktion.	5
2.2	Schematische Darstellung des Verlaufs einer Destillation eines binären Gemisches.	8
2.3	Schematische Darstellung des Verlaufs einer Destillation eines binären Gemisches	
	bei Bildung eines Minimumazeotrops.	9
3.1	TBP-Kurve (rechts) und differentielle Verteilungsfunktion (links) eines Alipha-	
	tengemisches bei unendlicher Trennleistung der Destillationskolonne $(T=\tau).$	11
3.2	Zusammenhang zwischen der TBP-Kurve (rechts) und der Verteilungsfunktion	
	$({\rm links})$ eines Aliphatengemisches mit einer azeotropbildenden Zusatzkomponente	
	bei unendlicher Trennleistung der Destillationskolonne ohne Azeotropie. \ldots .	12
3.3	Zusammenhang zwischen der Siedekurve (rechts) und der Verteilungsfunktion	
	(links) eines Aliphatengemisches mit einer azeotropbildenden Zusatzkomponente	
	bei unendlicher Trennleistung der Destillationskolonne	13
3.4	Zusammenhang zwischen der Siedekurve (rechts) und der Verteilungsfunktion	
	(links) eines Kohlenwasserstoffgemisches (Aliphaten und Aromaten) mit einer	
	azeotropbildenden Zusatzkomponente bei unendlicher Trennleistung der Destil-	
	lationskolonne.	17
4.1	Berechnete Azeotropsiedetemperatur $\vartheta^{Az}_{i-Al}(\tau)$ für das System Aliphaten-Ethanol	
	im Vergleich mit experimentellen Werten. \ldots	29
4.2	Berechnete Azeotropsiedetemperatur $\vartheta_{i-Al}^{Az}(\tau)$ für das System Aliphaten- n-Propanol	
	im Vergleich mit experimentellen Werten. \ldots \ldots \ldots \ldots \ldots	29
4.3	Berechnete Azeotropsiedetemperatur $\vartheta^{Az}_{i-Al}(\tau)$ für das System Aliphaten- n-Butanol	
	im Vergleich mit experimentellen Werten.	30
4.4	Berechnete Azeotropsiedetemperatur $\vartheta_{i-Ar}^{Az}(\tau)$ für das System Aromaten-Ethanol	
	im Vergleich mit experimentellen Werten.	30
4.5	Berechnete Azeotropsiedetemperatur $\vartheta^{Az}_{i-Ar}(\tau)$ für das System Aromaten- n-Propanol	
	im Vergleich mit experimentellen Werten.	31

4.6	Berechnete Azeotropsiedetemperatur $\vartheta^{Az}_{i-Ar}(\tau)$ für das System Aromaten-n-Butanol	
	im Vergleich mit experimentellen Werten.	31
4.7	Abhängigkeit der Molmasse von der Normalsiedetemperatur.	32
4.8	Anpassung der "Trouton Konstante" für Aliphaten, Aromaten und Alkohole	33
4.9	An passung des Parameters α für das System Aliphaten- n-Butanol	34
4.10	An passung des Parameters α für das System Aromaten- n-Butanol	35
4.11	Berechnete Azeotropzusammensetzung $\xi^{Az}_{i-Al}(\tau)$ für das System Aliphaten-Ethanol	
	im Vergleich mit experimentellen Werten. \ldots	36
4.12	Berechnete Azeotropzusammensetzung $\xi^{Az}_{i-Al}(\tau)$ für das System Aliphaten- n-Propano	l
	im Vergleich mit experimentellen Werten. \ldots	36
4.13	Berechnete Azeotropzusammensetzung $\xi^{Az}_{i-Al}(\tau)$ für das System Aliphaten- n-Butanol	
	im Vergleich mit experimentellen Werten. \ldots	37
4.14	Berechnete Azeotropzusammensetzung $\xi^{Az}_{i-Ar}(\tau)$ für das System Aromaten-Ethanol	
	im Vergleich mit experimentellen Werten. \ldots	37
4.15	Berechnete Azeotropzusammensetzung $\xi^{Az}_{i-Ar}(\tau)$ für das System Aromaten- n-Propano	ol
	im Vergleich mit experimentellen Werten. \ldots	38
4.16	Berechnete Azeotropzusammensetzung $\xi^{Az}_{i-Ar}(\tau)$ für das System Aromaten- n-Butanol	
	im Vergleich mit experimentellen Werten.	38
5.1	Blasendestillationsapparatur der Firma Fischer.	40
5.2	Prinzipschema der SPALTROHR ^R -Kolonne $\hfill \ldots \hfill \hfill \ldots \hfill \ldots \hfill \hfill \ldots \hfill \ldots \hfill \ldots \hfill \hfill \ldots \hfill \hfill \ldots \hfill \hfill \hfill \ldots \hfill \hfill \ldots \hfill $	41
6.1	Experimentelle und berechnete Siedekurve im Vergleich mit dem fiktiven Fall ohne	
	Azeotropie für das System n-Alkane $(50.54$ Ma $\%)$ + n-Butanol $(49.46$ Ma $\%)$.	45
6.2	Zusammenstellung der experimentell bestimmten n-Alkan-Gehalte I^{Kopf} in den	
	einzelnen Fraktionen für das System n-Alkane $(50.54$ Ma $\%)$ + n-Butanol (49.46Ma	
	%)	46
6.3	n-Butanolverbrauch für das System n-Alkane (50.54Ma%) + n-Butanol (49.46Ma	
	%)	46
6.4	Experimentelle und berechnete Siedekurve im Vergleich mit dem fiktiven Fall ohne	
	Azeotropie für das System n-Alkane $(33.02Ma\%)$ + Aromaten $(32.12Ma\%)$ +	
	n-Butanol (34.86Ma%)	49
6.5	Zusammenstellung der experimentell bestimmten Kohlenwasserstoff-Gehalte I_i^{Kopf}	
	in den einzelnen Fraktionen für das System n-Alkane (33.02Ma%) + Aromaten	
	· · · · · · · · · · · · · · · · · · ·	
	(32.12Ma%) + n-Butanol $(34.86Ma%)$.	50

6.6	n-Butanolverbrauch für das System n-Alkane $(33.02 {\rm Ma\%})$ + Aromaten $(32.12 {\rm Ma})$	
	%) + n-Butanol (34.86Ma%)	50
6.7	Vergleich der TBP-Kurve (Stufenfunktion) der n-Alkan e ${\cal C}_6-{\cal C}_{10}$ bei unendli-	
	cher Trennleistung und der sich für den kontinuierlichen Fall der Gleichverteilung	
	ergebenden Kurve	52
6.8	Experimentelle und diskontinuierlich berechnete Siedekurve im Vergleich mit dem	
	fiktiven Fall ohne Azeotropie für das System n-Alkan e $(31.28 {\rm Ma\%})$ + Aromaten	
	$(23.48 {\rm Ma\%})$ + n-Butanol (45.24 {\rm Ma\%}) bei Gleichverteilung der Kohlenwasser-	
	stoffe	53
6.9	Vergleich der kontinuierlich und der diskontinuierlich berechneten Siedekurven	
	für das System n-Alkane (31.28 Ma%) + Aromate n (23.48 Ma%) + n-Butanol	
	(45.24 Ma%) bei Gleichverteilung der Kohlenwasserstoffe 	53
6.10	n-Butanolverbrauch für das System n-Alkane $(31.28 {\rm Ma\%})$ + Aromaten $(23.48 {\rm Ma})$	
	%) + n-Butanol (45.24 Ma%) bei Gleichverteilung der Kohlenwasserstoffe . $\ .$.	54
6.11	Integrale Verteilungsfunktion $I(\tau)$ des Aliphatenbenzins basierend auf der Gauß-	
	Verteilung im Vergleich mit den experimentellem Daten der gaschromatogra-	
	phisch simulierten Destillation.	55
6.12	Integrale Verteilungsfunktion $I(\tau)$ des Aromatenbenzins basierend auf der Gauß-	
	Verteilung im Vergleich mit den experimentellem Daten der gaschromatogra-	
	phisch simulierten Destillation.	56
6.13	Vergleich der mit der kontinuierlichen Thermodynamik auf Basis der Gauß-Verteilung	
	berechneten Siedekurve mit den experimentellen Werten für eine Mischung des	
	Aromatenbenzins (60Ma%) mit n-Butanol (40Ma%).	56
6.14	Experimentelle und berechnete Siedekurve im Vergleich mit den fiktiven Fall oh-	
	ne Azeotropie für das System aliphatisches Benzin (21.49 Ma%) + Aromaten	
	$(21.73\mathrm{Ma\%})$ + n-Butanol (56.78 Ma%) bei Gleichverteilung der Aromaten und	
	Gauß-Verteilung der Aliphaten.	58
6.15	Vergleich der mit zwei Methoden berechneten Siedekurven für das System alipha-	
	tisches Benzin (21.49 Ma%) + Aromaten (21.73 Ma%) + n-Butanol (56.78 Ma	
	%) bei Gleichverteilung der Aromaten und Gauß-Verteilung der Aliphaten. $\ . \ .$	58
6.16	n-Butanolverbrauch für das System aliphatisches Benzin (21.49 Ma%) + Aroma-	
	ten (21.73 Ma%) $+$ n-Butanol (56.78 Ma%) bei Gleichverteilung der Aromaten	
	und Gauß-Verteilung der Aliphaten.	59

6.17	Experimentelle und mit der Gauß-Verteilung berechnete Siedekurve im Vergleich	
	mit dem fiktiven Fall ohne Azeotropie für das System Aliphatenbenzin (20.10Ma	
	%) + Aromatenbenzin (19.98 Ma%) + n-Butanol (59.92 Ma%)	60
6.18	Mit der Gauß-Verteilung berechneter n-Butanolverbrauch für das System Alipha-	
	tenbenzin (20.10 Ma%) + Aromatenbenzin (19.98 Ma%) + n-Butanol (59.92 Ma	
	%) im Vergleich mit den experimentellen Werten	61
6.19	Experimentelle und mit der Gauß-Verteilung berechnete Siedekurve für das Sy-	
	stem Aliphatenbenzin (49.98 Ma%) + Aromatenbenzin (39.97 Ma%) + n-Butanol	
	(10.05Ma%)	62
6.20	Mit der Gauß-Verteilung berechneter n-Butanolverbrauch für das System Alipha-	
	tenbenzin (49.98 Ma%) + Aromatenbenzin (39.97 Ma%) + n-Butanol (10.05 Ma	
	%) im Vergleich mit den experimentellen Werten	63
6.21	Experimentelle und mit der Gauß-Verteilung berechnete Siedekurve im Vergleich	
	mit dem fiktiven Fall ohne Azeotropie für das System Aliphatenbenzin (69.57 Ma	
	%) + Aromatenbenzin (20.30 Ma%) + n-Butanol (10.13 Ma%)	64
6.22	Mit der Gauß-Verteilung berechneter n-Butanolverbrauch für das System Alipha-	
	tenbenzin (69.57 Ma%) + Aromatenbenzin (20.30 Ma%) + n-Butanol (10.13 Ma	
	%)	64

TABELLENVERZEICHNIS

4.1	Zusammenstellung der mit dem UNIFAC-Modell berechneten azeotropen Daten	
	im Vergleich mit experimentellen Werten für binäre Systeme des Typs n-Butanol	
	+ Kohlenwasserstoff	25
4.2	Zusammenstellung der mit dem nach Weidlich und Gmehling modifizierten UNIFAC-	
	Modell (UNIFAC-WG) berechneten azeotropen Daten im Vergleich mit den ex-	
	perimentellen Werten für binäre Systeme des Typs n-Butanol + Kohlenwasserstoff.	26
5.1	Relevante Daten der Destillationskolonne.	42
5.2	Flächenfaktoren für ausgewälte Alkane, Aromaten und n-Butanol	43
6.1	Abhängigkeit des n-Butanolverbrauchs von der theoretischen Bodenzahl für binäre	
	Mischungen aus 99Ma% n-Butanol und n-Alkanen.	47
A.1	Anpassung der Molmasse als Funktion der Normalsiedetemperatur für die n-	
	Alkane C_5 - C_{12} (oben) und die n-Alkylaromaten C_6H_5 - C_nH_{2n+1} mit n = 0, 1,	
	2, 3, 4 (unten)	81
B.1	Anpassung der "Trouton-Konstante" für Aliphaten ($A_{Al} = 10.20$), Aromaten	
	$(A_{Ar} = 10.55)$ und Alkohole $(A_i = 13.43)$	82
C.1	Werte des Parameters $\alpha(\tau)$ für das System n-Butanol-Alkane (links) und n-	
	Butanol-Aromaten (rechts).	83
C.2	Zusammenstellung der $\alpha\mbox{-} \mbox{Parameter}$ für Systeme Alkohol-Alkane. 	83
C.3	Zusammenstellung der $\alpha\mbox{-} \mbox{Parameter}$ für Systeme Alkohol-Aromaten. 	83
D.1	Zusammenstellung der berechneten Werte für ϑ^{Az}_{i-Al} und ξ^{Az}_{i-Al} für das System	
	Ethanol-Alkane mit den experimentellen Daten	84
D.2	Zusammenstellung der berechneten Werte für ϑ_{i-Al}^{Az} und ξ_{i-Al}^{Az} für das System	
	n-Propanol-Alkane mit den experimentellen Daten.	85
D.3	Zusammenstellung der berechneten Werte für ϑ^{Az}_{i-Al} und ξ^{Az}_{i-Al} für das System	
	n-Butanol-Alkane mit den experimentellen Daten.	85

D.4	Zusammenstellung der berechneten Werte für ϑ_{i-Al}^{Az} und ξ_{i-Al}^{Az} für das System	
	Ethanol-Aromaten mit den experimentellen Daten	86
D.5	Zusammenstellung der berechneten Werte für ϑ_{i-Al}^{Az} und ξ_{i-Al}^{Az} für das System	
	n-Propanol-Aromaten mit den experimentellen Daten	86
D.6	Zusammenstellung der berechneten Werte für ϑ_{i-Al}^{Az} und ξ_{i-Al}^{Az} für das System	
	n-Butanol-Aromaten mit den experimentellen Daten	86
E.1	Zusammenstellung der berechneten Werte für ξ_{i-Al}^{Az} für das System Ethanol-	
	Alkane mit den experimentellen Daten	87
E.2	Zusammenstellung der berechneten Werte für ξ^{Az}_{i-Al} für das System n -Propanol-	
	Alkane mit den experimentellen Daten	88
E.3	Zusammenstellung der berechneten Werte für ξ_{i-Al}^{Az} für das System n-Butanol-	
	Alkane mit den experimentellen Daten	88
E.4	Zusammenstellung der berechneten Werte für ξ^{Az}_{i-Al} für das System Ethanol-	
	Aromaten mit den experimentellen Daten	88
E.5	Zusammenstellung der berechneten Werte für ξ^{Az}_{i-Al} für das System n -Propanol-	
	Aromaten mit den experimentellen Daten	89
E.6	Zusammenstellung der berechneten Werte für ξ_{i-Al}^{Az} für das System n-Butanol-	
	Aromaten mit den experimentellen Daten	89
F.1	Zusammensetzung des Gemisches bei der Destillation 1	90
F.1 $F.2$	Zusammensetzung des Gemisches bei der Destillation 1	90
F.1 F.2	Zusammensetzung des Gemisches bei der Destillation 1	90 90
F.1 F.2 F.3	Zusammensetzung des Gemisches bei der Destillation 1. . Massenbrüche der einzelnen Kohlenwasserstoffe in den Fraktionen der Destillation 1. . Zusammensetzung des Gemisches bei der Destillation 2.	90 90 92
F.1 F.2 F.3 F.4	Zusammensetzung des Gemisches bei der Destillation 1. . Massenbrüche der einzelnen Kohlenwasserstoffe in den Fraktionen der Destillation 1. . Zusammensetzung des Gemisches bei der Destillation 2. Die relative Destillatmasse in Abhängigkeit von der Temperatur bei der Destilla-	90 90 92
F.1 F.2 F.3 F.4	Zusammensetzung des Gemisches bei der Destillation 1. . Massenbrüche der einzelnen Kohlenwasserstoffe in den Fraktionen der Destillation 1. . Zusammensetzung des Gemisches bei der Destillation 2. Die relative Destillatmasse in Abhängigkeit von der Temperatur bei der Destillation tion 2.	90 90 92 93
F.1 F.2 F.3 F.4	Zusammensetzung des Gemisches bei der Destillation 1. . Massenbrüche der einzelnen Kohlenwasserstoffe in den Fraktionen der Destillation 1. . Zusammensetzung des Gemisches bei der Destillation 2. Die relative Destillatmasse in Abhängigkeit von der Temperatur bei der Destillation Massenbruch des n-Butanols in den Fraktionen der Destillation 2.	90 90 92 93 94
F.1 F.2 F.3 F.4 F.5 F.6	Zusammensetzung des Gemisches bei der Destillation 1. . Massenbrüche der einzelnen Kohlenwasserstoffe in den Fraktionen der Destillation 1. . Zusammensetzung des Gemisches bei der Destillation 2. Die relative Destillatmasse in Abhängigkeit von der Temperatur bei der Destilla- tion 2. Massenbruch des n-Butanols in den Fraktionen der Destillation 2. Massenbrüche der einzelnen Kohlenwasserstoffe in den Fraktionen der Destillation	90 90 92 93 94
 F.1 F.2 F.3 F.4 F.5 F.6 	Zusammensetzung des Gemisches bei der Destillation 1. . Massenbrüche der einzelnen Kohlenwasserstoffe in den Fraktionen der Destillation 1. . Zusammensetzung des Gemisches bei der Destillation 2. Zusammensetzung des Gemisches bei der Destillation 2. Die relative Destillatmasse in Abhängigkeit von der Temperatur bei der Destillation 2. Massenbruch des n-Butanols in den Fraktionen der Destillation 2. Massenbrüche der einzelnen Kohlenwasserstoffe in den Fraktionen der Destillation 2.	 90 90 92 93 94 95
F.1 F.2 F.3 F.4 F.5 F.6 F.7	Zusammensetzung des Gemisches bei der Destillation 1. . Massenbrüche der einzelnen Kohlenwasserstoffe in den Fraktionen der Destillation 1. . Zusammensetzung des Gemisches bei der Destillation 2. Die relative Destillatmasse in Abhängigkeit von der Temperatur bei der Destilla- tion 2. Massenbrüche der einzelnen Kohlenwasserstoffe in den Fraktionen der Destillation 2. Massenbrüch des n-Butanols in den Fraktionen der Destillation 2. Massenbrüche der einzelnen Kohlenwasserstoffe in den Fraktionen der Destillation 2. . Zusammensetzung des Gemisches bei der Destillation 3.	 90 90 92 93 94 95 97
F.1 F.2 F.3 F.4 F.5 F.6 F.7 F.8	Zusammensetzung des Gemisches bei der Destillation 1. . Massenbrüche der einzelnen Kohlenwasserstoffe in den Fraktionen der Destillation 1. . Zusammensetzung des Gemisches bei der Destillation 2. Zusammensetzung des Gemisches bei der Destillation 2. Die relative Destillatmasse in Abhängigkeit von der Temperatur bei der Destillation 10. Massenbruch des n-Butanols in den Fraktionen der Destillation 2. Massenbrüche der einzelnen Kohlenwasserstoffe in den Fraktionen der Destillation 2. Zusammensetzung des Gemisches bei der Destillation 3. Massenbrüche der einzelnen Kohlenwasserstoffe in den Fraktionen der Destillation Massenbrüche der einzelnen Kohlenwasserstoffe in den Fraktionen der Destillation Massenbrüche der einzelnen Kohlenwasserstoffe in den Fraktionen der Destillation Massenbrüche der einzelnen Kohlenwasserstoffe in den Fraktionen der Destillation Massenbrüche der einzelnen Kohlenwasserstoffe in 3. Massenbrüche des n-Butanols in den Fraktionen der Destillation 3.	 90 90 92 93 94 95 97 98
 F.1 F.2 F.3 F.4 F.5 F.6 F.7 F.8 F.9 	Zusammensetzung des Gemisches bei der Destillation 1. . Massenbrüche der einzelnen Kohlenwasserstoffe in den Fraktionen der Destillation 1. . Zusammensetzung des Gemisches bei der Destillation 2. Zusammensetzung des Gemisches bei der Destillation 2. Die relative Destillatmasse in Abhängigkeit von der Temperatur bei der Destilla- tion 2. . Massenbrüche des n-Butanols in den Fraktionen der Destillation 2. Massenbrüche der einzelnen Kohlenwasserstoffe in den Fraktionen der Destillation 2. . Zusammensetzung des Gemisches bei der Destillation 3. Die relative Destillatmasse in Abhängigkeit von der Temperatur bei der Destillation Die neuer des n-Butanols in den Fraktionen der Destillation Die relative Destillatmasse in Abhängigkeit von der Temperatur bei der Destillation	 90 90 92 93 94 95 97 98
 F.1 F.2 F.3 F.4 F.5 F.6 F.7 F.8 F.9 	Zusammensetzung des Gemisches bei der Destillation 1. . Massenbrüche der einzelnen Kohlenwasserstoffe in den Fraktionen der Destillation 1. . Zusammensetzung des Gemisches bei der Destillation 2. . Zusammensetzung des Gemisches bei der Destillation 2. . Die relative Destillatmasse in Abhängigkeit von der Temperatur bei der Destillation 2. . Massenbruch des n-Butanols in den Fraktionen der Destillation 2. . Massenbrüche der einzelnen Kohlenwasserstoffe in den Fraktionen der Destillation 2. Zusammensetzung des Gemisches bei der Destillation 3. . Massenbrüch des n-Butanols in den Fraktionen der Destillation 2. Zusammensetzung des Gemisches bei der Destillation 3. . Die relative Destillatmasse in Abhängigkeit von der Temperatur bei der Destillation 3. Die relative Destillatmasse in Abhängigkeit von der Temperatur bei der Destillation 3. Die relative Destillatmasse in Abhängigkeit von der Temperatur bei der Destillation 3.	 90 90 92 93 94 95 97 98 99
 F.1 F.2 F.3 F.4 F.5 F.6 F.7 F.8 F.9 F.10 	Zusammensetzung des Gemisches bei der Destillation 1. . Massenbrüche der einzelnen Kohlenwasserstoffe in den Fraktionen der Destillation 1. . Zusammensetzung des Gemisches bei der Destillation 2. . Zusammensetzung des Gemisches bei der Destillation 2. . Die relative Destillatmasse in Abhängigkeit von der Temperatur bei der Destillation 2. . Massenbruch des n-Butanols in den Fraktionen der Destillation 2. . Massenbrüche der einzelnen Kohlenwasserstoffe in den Fraktionen der Destillation 2. Zusammensetzung des Gemisches bei der Destillation 3. . Zusammensetzung des Gemisches bei der Destillation 3. . Die relative Destillatmasse in Abhängigkeit von der Temperatur bei der Destillation 2. Zusammensetzung des Gemisches bei der Destillation 3. . Die relative Destillatmasse in Abhängigkeit von der Temperatur bei der Destillation 3. . Zusammensetzung des Gemisches bei der Destillation 4. .	 90 90 92 93 94 95 97 98 99 100
 F.1 F.2 F.3 F.4 F.5 F.6 F.7 F.8 F.9 F.10 F.11 	Zusammensetzung des Gemisches bei der Destillation 1. . Massenbrüche der einzelnen Kohlenwasserstoffe in den Fraktionen der Destillation 1. . Zusammensetzung des Gemisches bei der Destillation 2. . Zusammensetzung des Gemisches bei der Destillation 2. . Die relative Destillatmasse in Abhängigkeit von der Temperatur bei der Destillation 2. . Massenbruch des n-Butanols in den Fraktionen der Destillation 2. . Massenbrüche der einzelnen Kohlenwasserstoffe in den Fraktionen der Destillation 2. Zusammensetzung des Gemisches bei der Destillation 3. . Zusammensetzung des Gemisches bei der Destillation 3. . Massenbrüche der einzelnen Kohlenwasserstoffe in den Fraktionen der Destillation 2. Zusammensetzung des Gemisches bei der Destillation 3. . Die relative Destillatmasse in Abhängigkeit von der Temperatur bei der Destillation 3. Zusammensetzung des Gemisches bei der Destillation 4. . Die relative Destillatmasse in Abhängigkeit von der Temperatur bei der Destillation . Die relative Destillatmasse in Abhängigkeit von der Temperatur bei der Destillation . Die relative Destillatmasse in Abhängigkeit von der Temperatur bei der Destillation .	 90 92 93 94 95 97 98 99 100

F.12	Zusammensetzung des Gemisches bei der Destillation 5	101
F.13	Massenbruch des n-Butanols in den Fraktionen der Destillation 5	101
F.14	Die relative Destillatmasse in Abhängigkeit von der Temperatur bei der Destilla-	
	tion 5	102
F.15	Zusammensetzung des Gemisches bei der Destillation 6	103
F.16	Massenbruch des n-Butanols in den Fraktionen der Destillation 6	103
F.17	Die relative Destillatmasse in Abhängigkeit von der Temperatur bei der Destilla-	
	tion 6	104
F.18	Zusammensetzung des Gemisches bei der Destillation 7.	105
F.19	Massenbruch des n-Butanols in den Fraktionen der Destillation 7	105
F.20	Die relative Destillatmasse in Abhängigkeit von der Temperatur bei der Destilla-	
	tion 7	106
F.21	Zusammensetzung des Gemisches bei der Destillation 8.	107
F.22	Massenbruch des n-Butanols in den Fraktionen der Destillation 8	107
F.23	Die relative Destillatmasse in Abhängigkeit von der Temperatur bei der Destilla-	
	tion 8	108
G.1	Verteilungsfunktion Alkane.	109
G.2	Verteilungsfunktion Aromaten.	109
H.1	Die experimentell ermittelte intensive Verteilungsfunktion $I(\tau)$ des Aliphatenben-	
	zins	110
H.2	Die experimentell ermittelte intensive Verteilungsfunktion $I(\tau)$ des Aromatenben-	
	zins	111

ANHANG

A. ANPASSUNG DER MOLMASSE EINES KOHLENWASSERSTOFFS AN DIE EXPERIMENTELLEN DATEN

 $M_{Al}(\tau) = 27.073 - 0.10469\tau + 0.000810729\tau^2$ $M_{Ar}(\tau) = 33.8098 - 0.202791\tau + 0.000927588\tau^2$

Tab. A.1:	Anpassung	der	Molmasse	als Fu	Inktion	der	Normalsiede	etemperatur	für	die	n-Alkane	$C_5 - C_{12}$
	(oben) und	die	n-Alkylaro	maten	$C_{6}H_{5}-6$	$C_n H$	a_{2n+1} mit n =	= 0, 1, 2, 3,	4 (u	nten).	

τ/K	$M_{Al}/g*mol^{-1}$					
$Literatur^1$	exakt	Ausgleich				
309.22	72.150	72.220				
341.88	86.177	86.041				
371.58	100.204	100.111				
398.83	114.231	114.279				
423.97	128.258	128.417				
447.30	142.285	142.454				
469.08	156.312	156.355				
489.47	170.338	170.066				
	•	•				

au/K	$M_{Ar}/g*mol^{-1}$				
$Literatur^1$	exakt	Ausgleich			
353.24	78.114	77.919			
383.78	92.141	92.604			
409.35	106.167	106.231			
432.39	120.194	119.548			
456.46	134.221	134.512			

¹ Daubert und Danner (1987)

B. ANPASSUNG DER ,,TROUTON-KONSTANTE"

Kohlenwasserstoff	τ/K	$\frac{\Delta H^{LV}}{R\tau}$
2-Methylbutan	300.99	9.91
Cyclopentan	322.65	10.17
n-Pentan	309.22	10.04
n-Hexan	341.88	10.13
Methylcyclopentan	344.96	10.23
Cyclohexan	353.87	10.16
n-Heptan	371.58	10.30
2,2,4-Trimethylpentan	372.39	10.02
Methylcyclohexan	374.08	10.23
2,5-Dimethylhexan	382.26	10.30
cis-1,3-Dimethylcyclohexan	393.24	10.01
n-Octan	398.83	10.45
n-Nonan	423.97	10.59
Benzol	353.24	10.47
Toluol	383.78	10.53
Ethylbenzol	409.35	10.55
p-Xylol	411.51	10.47
m-Xylol	412.27	10.60
o-Xylol	417.58	10.66
Ethanol	351.44	13.27
2-Methyl-2-Propanol	355.57	13.57
2-Propanol	355.41	13.49
1-Propanol	370.35	13.44
2-Butanol	372.70	13.22
2-Methyl-1-Propanol	380.81	13.73
1-Butanol	390.81	13.31

Tab. B.1: Anpassung der "Trouton-Konstante" für Aliphaten ($A_{Al} = 10.20$), Aromaten ($A_{Ar} = 10.55$) und Alkohole ($A_i = 13.43$).

C. ANPASSUNG DES PARAMETERS $\alpha(\tau)$

Alkan	τ/K	$\frac{\alpha(\tau)}{J*g^{-1}}$	Aromat	τ/K	$\frac{\alpha(\tau)}{J*g^{-1}}$
n-Hexan	341.88	86.0010	Toluol	383.78	41.8142
Methylcyclopentan	344.96	70.7651	Ethylbenzol	409.35	35.4608
Cyclohexan	353.87	74.5529	p-Xylol	411.51	35.5672
n-Heptan	371.58	61.4182	m-Xylol	412.27	33.8321
Methylcyclohexan	382.26	50.0544	o-Xylol	417.58	35.1770
cis-1,3-Dimethylcyclhexan	393.24	44.5465	Styrol	418.31	32.3201
n-Octan	398.83	48.6084			
n-Nonan	423.97	41.3899			

Tab. C.1: Werte des Parameters $\alpha(\tau)$ für das System n-Butanol-Alkane (links) und n-Butanol-Aromaten (rechts).

Tab. C.2: Zusammenstellung der α -Parameter für Systeme Alkohol-Alkane.

Alkohol	$\frac{\alpha_0}{J*g^{-1}}$	$\frac{\alpha_1}{J*g^{-1}*K^{-1}}$	$\frac{\alpha_2}{J*g^{-1}*K^{-2}}$
Ethanol	496.319	-1.75639	1.72098E-3
1-Propanol	199.757	-0.41257	0.13311E-3
1-Butanol	808.999	-3.45392	3.86329E-3

Tab. C.3: Zusammenstellung der α -Parameter für Systeme Alkohol-Aromaten.

Alkohol	$\frac{\alpha_0}{J*g^{-1}}$	$\tfrac{\alpha_1}{J*g^{-1}*K^{-1}}$	$\tfrac{\alpha_2}{J*g^{-1}*K^{-2}}$
Ethanol	101.007	-0.08012	0
1-Propanol	180.535	-0.34054	0
1-Butanol	122.146	-0.21201	0

D. ZUSAMMENSTELLUNG DER MIT DEM MODIFIZIERTEN PORTER-ANSATZ BERECHNETEN WERTE FÜR ϑ^{AZ}_{I-AL} UND $\xi^{AZ}_{I-AL}^2$

	Experiment			Berechnung	
Alkan	τ/K	ϑ_{i-Al}^{Az}/K	ξ_{i-Al}^{Az}	ϑ_{i-Al}^{Az}/K	ξ_{i-Al}^{Az}
(Siedeanfang)				300.23	0.0000
2-Methylbutan	300.99	299.95	0.0352	300.99	0.0522
n-Pentan	309.22	307.45	0.0500	308.82	0.0634
Cyclopentan	322.40	317.85	0.0750	319.81	0.1611
n-Hexan	341.88	331.65	0.2167	332.40	0.3103
Methylcyclopentan	344.96	333.45	0.2500	334.01	0.3339
Cyclohexan	353.87	337.85	0.3016	338.12	0.4020
n-Heptan	371.58	345.15	0.4828	344.17	0.5344
Methylcyclohexan	374.08	345.10	0.5149	344.83	0.5527
2,5-Dimethylhexan	382.26	346.35	0.5900	346.69	0.6117
n-Octan	398.83	349.45	0.7599	349.30	0.7269
n-Nonan	423.97	351.47	0.8722	351.12	0.8880
(Siedeende)				443.64	1.0000

Tab. D.1: Zusammenstellung der berechneten Werte für ϑ_{i-Al}^{Az} und ξ_{i-Al}^{Az} für das System Ethanol-Alkane mit den experimentellen Daten.

 $^{^{2}}$ Experimentelle Daten aus Daubert und Danner (1987), Gmehling et al. (1994); berechnete Werte mit den Gln. (4.22) und (4.23).

	Experiment			Berechnung	
Alkan	τ/K	ϑ_{i-Al}^{Az}/K	ξ_{i-Al}^{Az}	ϑ_{i-Al}^{Az}/K	ξ_{i-Al}^{Az}
(Siedeanfang)				327.96	0.0000
n-Hexan	341.88	338.95	0.1150	340.49	0.1357
Methylcyclopentan	344.96	341.65	0.0700	342.89	0.1655
Cyclohexan	353.87	347.80	0.1926	349.08	0.2509
n-Heptan	371.58	357.65	0.3585	358.40	0.4149
2,2,4-Trimethylpentan	372.39	358.45	0.4100	358.75	0.4222
Methylcyclohexan	374.08	360.15	0.3472	359.44	0.4373
2,5-Dimethylhexan	382.26	362.65	0.4699	362.39	0.5096
n-Octan	398.83	367.75	0.6200	366.65	0.6508
n-Nonan	423.97	369.95	0.8480	369.81	0.8564
(Siedeende)				441.56	1.0000

Tab. D.2: Zusammenstellung der berechneten Werte für ϑ_{i-Al}^{Az} und ξ_{i-Al}^{Az} für das System n-Propanol-Alkane mit den experimentellen Daten.

Tab. D.3: Zusammenstellung der berechneten Werte für ϑ_{i-Al}^{Az} und ξ_{i-Al}^{Az} für das System n-Butanol-Alkane mit den experimentellen Daten.

	Experiment			Berechnung	
Alkan	τ/K	ϑ_{i-Al}^{Az}/K	ξ_{i-Al}^{Az}	ϑ_{i-Al}^{Az}/K	ξ_{i-Al}^{Az}
(Siedeanfang)				332.76	0.0000
n-Hexan	341.88	341.45	0.0342	341.77	0.0373
Methylcyclopentan	344.96	344.95	0.0800	344.74	0.0522
Cyclohexan	353.87	353.03	0.0871	353.07	0.1023
n-Heptan	371.58	366.98	0.1760	367.79	0.2333
Methylcyclohexan	374.08	369.15	0.2019	369.60	0.2551
2,5-Dimethylhexan	382.26	375.05	0.2800	375.00	0.3311
cis-1,3-Dimethyl-	393.24	381.65	0.4300	380.87	0.4424
cyclohexan					
n-Octan	398.83	382.29	0.4342	383.23	0.5017
n-Nonan	423.97	389.05	0.7150	389.37	0.7647
n-Decan	447.30	k. A.	0.9531	390.76	0.9536
(Siedeende)				455.69	1.0000

	Experiment			Berechnung	
Aromat	τ/K	ϑ_{i-Al}^{Az}/K	ξ_{i-Al}^{Az}	ϑ_{i-Al}^{Az}/K	ξ_{i-Al}^{Az}
(Siedeanfang)				320.36	0.0000
Benzol	353.24	341.28	0.3259	341.54	0.4256
Toluol	383.78	349.88	0.6807	348.63	0.6884
m-Xylol	412.27	350.95	0.8501	350.87	0.8571
(Siedeende)				446.76	1.0000

Tab. D.4: Zusammenstellung der berechneten Werte für ϑ_{i-Al}^{Az} und ξ_{i-Al}^{Az} für das System Ethanol-Aromaten mit den experimentellen Daten.

Tab. D.5: Zusammenstellung der berechneten Werte für ϑ_{i-Al}^{Az} und ξ_{i-Al}^{Az} für das System n-Propanol-Aromaten mit den experimentellen Daten.

	Experiment			Berechnung	
Aromat	τ/K	ϑ_{i-Al}^{Az}/K	ξ_{i-Al}^{Az}	ϑ_{i-Al}^{Az}/K	ξ_{i-Al}^{Az}
(Siedeanfang)				334.49	0.0000
Benzol	353.24	350.17	0.1705	350.64	0.2203
Toluol	383.78	365.63	0.5089	365.74	0.5855
Ethylbenzol	409.35	370.13	0.9265	370.07	0.8874
p-Xylol	411.51	370.03	0.9215	370.19	0.9138
m-Xylol	412.27	370.23	0.9399	370.22	0.9230
(Siedeende)				418.53	1.0000

Tab. D.6: Zusammenstellung der berechneten Werte für ϑ_{i-Al}^{Az} und ξ_{i-Al}^{Az} für das System n-Butanol-Aromaten mit den experimentellen Daten.

	Experiment			Berechnung	
Aromat	τ/K	ϑ_{i-Al}^{Az}/K	ξ_{i-Al}^{Az}	ϑ_{i-Al}^{Az}/K	ξ_{i-Al}^{Az}
(Siedeanfang)				360.46	0.0000
Toluol	383.78	378.71	0.2826	378.90	0.3367
Ethylbenzol	409.35	388.62	0.6677	388.63	0.6955
p-Xylol	411.51	389.00	0.6873	389.05	0.7248
m-Xylol	412.27	389.38	0.7179	389.19	0.7350
o-Xylol	417.58	389.93	0.8301	389.97	0.8061
Styrol	418.31	390.35	0.8001	390.06	0.8158
(Siedeende)				432.26	1.0000

E. ZUSAMMENSTELLUNG DER AN EXPERIMENTELLE DATEN ANGEPAßTEN WERTEN FÜR $\xi^{AZ}_{I-AL}{}^2$

	Experiment		Berechnung
Alkan	τ/K	ξ_{i-Al}^{Az}	ξ^{Az}_{i-Al}
2-Methylbutan	300.99	0.0352	0.0015
n-Pentan	309.22	0.0500	0.0250
Cyclopentan	322.40	0.0750	0.0869
n-Hexan	341.88	0.2167	0.2215
Methylcyclopentan	344.96	0.2500	0.2463
Cyclohexan	353.87	0.3016	0.3220
n-Heptan	371.58	0.4828	0.4836
Methylcyclohexan	374.08	0.5149	0.5069
2,5-Dimethylhexan	382.26	0.5900	0.5829
n-Octan	398.83	0.7599	0.7305
n-Nonan	423.97	0.8722	0.9144

Tab. E.1: Zusammenstellung der berechneten Werte für ξ_{i-Al}^{Az} für das System Ethanol-Alkane mit den experimentellen Daten. $C = 1.00724E-4K^2$; $D = -4.56371E-7K^3$.

 $^{^{2}}$ Experimentelle Daten aus Daubert und Danner (1987), Gmehling et al. (1994); berechnete Werte mit den Gln. (4.27) und (4.29).

	Experiment		Berechnung
Alkan	τ/K	ξ_{i-Al}^{Az}	ξ^{Az}_{i-Al}
n-Hexan	341.88	0.1150	0.0948
Methylcyclopentan	344.96	0.0700	0.1186
Cyclohexan	353.87	0.1926	0.1924
n-Heptan	371.58	0.3585	0.3552
2,2,4-Trimethylpentan	372.39	0.4100	0.3630
Methylcyclohexan	374.08	0.3472	0.3794
2,5-Dimethylhexan	382.26	0.4699	0.4599
n-Octan	398.83	0.6200	0.6246
n-Nonan	423.97	0.8480	0.8606

Tab. E.2: Zusammenstellung der berechneten Werte für ξ_{i-Al}^{Az} für das System n-Propanol-Alkane mit den experimentellen Daten. $C = 6.52116E \cdot 5K^2$; $D = -3.54856E \cdot 7K^3$.

Tab. E.3: Zusammenstellung der berechneten Werte für ξ_{i-Al}^{Az} für das System n-Butanol-Alkane mit den experimentellen Daten. $C = 1.12153E-4K^2$; $D = -4.73789E-7K^3$.

	Experiment		Berechnung
Alkan	τ/K	ξ_{i-Al}^{Az}	ξ^{Az}_{i-Al}
n-Hexan	341.88	0.0342	0.0227
Methylcyclopentan	344.96	0.0800	0.0342
Cyclohexan	353.87	0.0871	0.0773
n-Heptan	371.58	0.1760	0.1998
Methylcyclohexan	374.08	0.2019	0.2203
2,5-Dimethylhexan	382.26	0.2800	0.2919
cis-1,3-Dimethyl-	393.24	0.4300	0.3966
cyclohexan			
n-Octan	398.83	0.4342	0.4525
n-Nonan	423.97	0.7150	0.7110
n-Decan	447.30	0.9531	0.9321

Tab. E.4: Zusammenstellung der berechneten Werte für ξ_{i-Al}^{Az} für das System Ethanol-Aromaten mit den experimentellen Daten. $C = 1.91907E-5K^2$; $D = -2.95343E-7K^3$.

	Exper	riment	Berechnung
Aromat	τ/K	ξ_{i-Al}^{Az}	ξ^{Az}_{i-Al}
Benzol	353.24	0.3259	0.3457
Toluol	383.78	0.6807	0.6490
m-Xylol	412.27	0.8501	0.8707

	Exper	riment	Berechnung
Aromat	τ/K	ξ_{i-Al}^{Az}	ξ^{Az}_{i-Al}
Benzol	353.24	0.1705	0.1492
Toluol	383.78	0.5089	0.5417
Ethylbenzol	409.35	0.9265	0.8925
p-Xylol	411.51	0.9215	0.9191
m-Xylol	412.27	0.9399	0.9283

Tab. E.5: Zusammenstellung der berechneten Werte für ξ_{i-Al}^{Az} für das System n-Propanol-Aromaten mit den experimentellen Daten. $C = 1.75486E-4K^2$; $D = -1.12014E-6K^3$.

Tab. E.6: Zusammenstellung der berechneten Werte für ξ_{i-Al}^{Az} für das System n-Butanol-Aromaten mit den experimentellen Daten. $C = 1.64329E-4K^2$; $D = -1.29756E-6K^3$.

	Exper	iment	Berechnung
Aromat	τ/K	ξ_{i-Al}^{Az}	ξ_{i-Al}^{Az}
Toluol	383.78	0.2826	0.2785
Ethylbenzol	409.35	0.6677	0.6723
p-Xylol	411.51	0.6873	0.7058
m-Xylol	412.27	0.7179	0.7175
o-Xylol	417.58	0.8301	0.7980
Styrol	418.31	0.8001	0.8088

F. ZUSAMMENSTELLUNG DER BEI DEN EXPERIMENTELLEN UNTERSUCHUNGEN GEWONNENEN DATEN

F.1 Destillation 1

Stoff	Massenanbruch	
n-Butanol	0.4945	
n-Hexan	0.0406	
n-Heptan	0.0502	
n-Octan	0.0512	
n-Nonan	0.1835	
n-Decan	0.1798	

Tab. F.1: Zusammensetzung des Gemisches bei der Destillation 1.

Tab. F.2: Massenbrüche der einzelnen Kohlenwasserstoffe in den Fraktionen der Destillation 1.

		Massenbruch						
I^{Kopf}	τ/K	n-Butanol	n-Hexan	n-Heptan	n-Octan	n-Nonan	n-Decan	
0.0041	341.35	0.0389	0.9610	0.0000	0.0000	0.0000	0.0000	
0.0251	341.45	0.0370	0.9629	0.0000	0.0000	0.0000	0.0000	
0.0288	355.65	0.0442	0.9199	0.0357	0.0000	0.0000	0.0000	
0.0354	362.85	0.1065	0.5212	0.3721	0.0000	0.0000	0.0000	
0.0422	364.25	0.1423	0.2652	0.5923	0.0000	0.0000	0.0000	
0.0521	365.65	0.1574	0.1450	0.6975	0.0000	0.0000	0.0000	
0.0608	366.25	0.1705	0.0768	0.7526	0.0000	0.0000	0.0000	
0.0690	366.45	0.1735	0.0489	0.7775	0.0000	0.0000	0.0000	
0.0810	366.75	0.1802	0.0292	0.7905	0.0000	0.0000	0.0000	
0.0912	376.25	0.2262	0.0178	0.6607	0.0952	0.0000	0.0000	
0.1003	379.65	0.3457	0.0124	0.2995	0.3422	0.0000	0.0000	
0.1097	381.15	0.3932	0.0106	0.1360	0.4599	0.0000	0.0000	
0.1206	381.85	0.4200	0.0093	0.0594	0.5111	0.0000	0.0000	
0.1347	382.15	0.4309	0.0074	0.0247	0.5368	0.0000	0.0000	
0.1582	382.25	0.4494	0.0070	0.0087	0.5346	0.0000	0.0000	

Fortsetzung Tab. F.2

		Massenbruch						
I^{Kopf}	T/K	n-Butanol	n-Hexan	n-Heptan	n-Octan	n-Nonan	n-Decan	
0.1627	382.35	0.4372	0.0065	0.0049	0.5512	0.0000	0.0000	
0.1778	386.45	0.5043	0.0047	0.0033	0.4289	0.0586	0.0000	
0.1896	387.75	0.6340	0.0033	0.0024	0.1923	0.1677	0.0000	
0.2032	388.25	0.6856	0.0000	0.0000	0.1000	0.2142	0.0000	
0.2190	388.55	0.7087	0.0000	0.0000	0.0572	0.2339	0.0000	
0.2495	388.85	0.7249	0.0000	0.0000	0.0306	0.2444	0.0000	
0.2861	389.05	0.7338	0.0000	0.0000	0.0113	0.2547	0.0000	
0.3225	389.05	0.7394	0.0000	0.0000	0.0040	0.2565	0.0000	
0.3588	389.15	0.7442	0.0000	0.0000	0.0000	0.2557	0.0000	
0.3947	389.15	0.7359	0.0000	0.0000	0.0000	0.2640	0.0000	
0.4315	389.15	0.7489	0.0000	0.0000	0.0000	0.2510	0.0000	
0.4683	389.15	0.7389	0.0000	0.0000	0.0000	0.2610	0.0000	
0.5047	389.15	0.7428	0.0000	0.0000	0.0000	0.2571	0.0000	
0.5366	389.15	0.7480	0.0000	0.0000	0.0000	0.2519	0.0000	
0.5705	389.15	0.7422	0.0000	0.0000	0.0000	0.2577	0.0000	
0.6009	389.15	0.7429	0.0000	0.0000	0.0000	0.2570	0.0000	
0.6361	389.15	0.7428	0.0000	0.0000	0.0000	0.2571	0.0000	
0.6678	389.15	0.7410	0.0000	0.0000	0.0000	0.2589	0.0000	
0.7001	389.15	0.7441	0.0000	0.0000	0.0000	0.2558	0.0000	
0.7258	389.15	0.7430	0.0000	0.0000	0.0000	0.2570	0.0000	
0.7466	389.05	0.7440	0.0000	0.0000	0.0000	0.2559	0.0000	
0.7660	389.05	0.7414	0.0000	0.0000	0.0000	0.2585	0.0000	
0.7768	389.05	0.7430	0.0000	0.0000	0.0000	0.2569	0.0000	
0.7835	415.65	0.4615	0.0000	0.0000	0.0000	0.5384	0.0000	
0.8009	424.05	0.0000	0.0000	0.0000	0.0000	1.0000	0.0000	
0.8239	445.25	0.0000	0.0000	0.0000	0.0000	0.2761	0.7238	
0.8453	446.25	0.0000	0.0000	0.0000	0.0000	0.0458	0.9541	
0.8544	446.45	0.0000	0.0000	0.0000	0.0000	0.0129	0.9870	
0.8675	446.55	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000	
0.8967	446.65	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000	
0.9068	446.65	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000	

F.2 Destillation 2

Stoff	Massenbruch
n-Butanol	0.3486
n-Hexan	0.0499
n-Heptan	0.0501
n-Octan	0.0502
n-Nonan	0.0304
n-Decan	0.1494
Toluol	0.0401
Ethylbenzol	0.0408
m-Xylol	0.1002
i-Propylbenzol	0.0902
n-Propylbenzol	0.0499

Tab. F.3: Zusammensetzung des Gemisches bei der Destillation 2.

I^{Kopf}	T/K	I^{Kopf}	T/K	I^{Kopf}	T/K	I^{Kopf}	T/K
0.0069	340.95	0.1320	377.85	0.3721	388.75	0.7042	421.05
0.0084	340.95	0.1368	377.95	0.3901	388.65	0.7044	421.95
0.0183	340.95	0.1458	378.35	0.4090	388.85	0.7143	423.95
0.0236	341.05	0.1538	378.95	0.4249	388.85	0.7199	424.05
0.0328	341.55	0.1601	379.55	0.4254	388.65	0.7482	424.75
0.0350	348.35	0.1700	380.45	0.4336	388.65	0.7515	424.45
0.0351	342.25	0.1740	380.65	0.4630	388.95	0.7656	424.45
0.0369	353.65	0.1850	381.05	0.4684	388.75	0.7690	424.75
0.0372	354.55	0.1889	381.15	0.5016	388.95	0.7805	426.45
0.0394	359.65	0.1970	381.45	0.5038	388.75	0.7835	426.75
0.0429	358.55	0.2078	381.55	0.5311	388.75	0.7896	427.75
0.0466	360.85	0.2173	381.65	0.5400	389.05	0.8020	426.95
0.0471	362.05	0.2173	381.75	0.5668	388.85	0.8171	429.95
0.0497	361.95	0.2238	381.95	0.5784	389.05	0.8215	429.35
0.0519	363.55	0.2258	381.95	0.6026	388.85	0.8237	430.95
0.0541	363.75	0.2292	382.95	0.6164	389.05	0.8273	432.35
0.0598	364.55	0.2366	385.05	0.6278	388.85	0.8274	433.05
0.0608	364.55	0.2390	385.55	0.6456	389.05	0.8341	435.95
0.0754	366.05	0.2498	387.05	0.6478	389.05	0.8387	441.75
0.0793	366.15	0.2529	387.15	0.6494	398.85	0.8393	441.75
0.0815	366.05	0.2661	387.85	0.6507	407.85	0.8496	444.75
0.0911	366.55	0.2781	388.15	0.6535	410.55	0.8504	444.65
0.0926	366.55	0.2789	388.05	0.6553	409.85	0.8642	445.95
0.0983	368.65	0.2959	388.25	0.6674	409.85	0.8722	445.95
0.0992	370.05	0.2967	388.45	0.6750	409.85	0.8853	446.25
0.1044	372.05	0.3096	388.35	0.6808	410.85	0.9019	446.35
0.1056	373.55	0.3115	388.55	0.6852	412.05	0.9073	446.35
0.1129	374.95	0.3257	388.45	0.6861	409.85	0.9262	446.45
0.1180	376.85	0.3344	388.65	0.6909	412.45	0.9266	446.25
0.1206	376.95	0.3557	388.55	0.6936	416.05		

Tab. F.4: Die relative Destillatmasse in Abhängigkeit von der Temperatur bei der Destillation 2.

T/K	ξ_{i-A}^{Az}	T/K	ξ_{i-A}^{Az}
340.95	0.0375	380.45	0.3506
340.95	0.0360	380.65	0.3665
341.55	0.0373	381.05	0.3847
348.35	0.0385	381.15	0.3965
342.25	0.0369	381.45	0.4034
353.65	0.0384	381.55	0.4148
354.55	0.0524	381.65	0.4232
359.65	0.0613	381.75	0.4157
360.85	0.1194	381.95	0.4265
362.05	0.1161	381.95	0.4208
361.95	0.1329	382.95	0.4306
363.55	0.1449	385.05	0.4580
363.75	0.1468	385.55	0.4906
364.55	0.1588	387.05	0.5632
366.05	0.1681	387.85	0.6237
366.15	0.1746	388.15	0.6563
366.05	0.1686	388.05	0.6442
366.55	0.1757	388.25	0.6654
366.55	0.1777	388.35	0.6734
368.65	0.1797	388.45	0.6769
370.05	0.1792	388.55	0.6600
372.05	0.2002	388.75	0.6839
373.55	0.2061	388.65	0.6889
374.95	0.2321	388.85	0.6949
376.85	0.2452	388.75	0.6988
376.95	0.2569	389.05	0.6989
377.85	0.2704	388.85	0.7008
377.95	0.2743	389.05	0.7072
378.35	0.2883	388.85	0.7029
378.95	0.2973	389.05	0.7083
379.55	0.3192	389.05	0.7004

Tab. F.5: Massenbruch des n-Butanols in den Fraktionen der Destillation 2.

	Massenbruch							
T/K	n-Hex.	n-Hept.	n-Oct.	n-Non.	Toluen	Ethb.	m-Xyl.	i-Prb.
341.05	0.9638	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
342.25	0.9630	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
353.65	0.9593	0.0022	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
358.55	0.6284	0.2825	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
360.85	0.4121	0.4683	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
361.95	0.3153	0.5517	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
363.75	0.2403	0.6128	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
364.55	0.1584	0.6838	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
366.05	0.0761	0.7556	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
368.65	0.0169	0.7044	0.0000	0.0000	0.0988	0.0000	0.0000	0.0000
370.05	0.0166	0.7076	0.0019	0.0000	0.0944	0.0000	0.0000	0.0000
372.05	0.0146	0.4868	0.0107	0.0000	0.2876	0.0000	0.0000	0.0000
373.55	0.0129	0.4432	0.0129	0.0000	0.3246	0.0000	0.0000	0.0000
374.95	0.0111	0.2665	0.0263	0.0000	0.4637	0.0000	0.0000	0.0000
376.85	0.0096	0.1895	0.0338	0.0000	0.5217	0.0000	0.0000	0.0000
377.95	0.0074	0.0491	0.0728	0.0000	0.5961	0.0000	0.0000	0.0000
378.35	0.0068	0.0210	0.1243	0.0000	0.5593	0.0000	0.0000	0.0000
379.55	0.0077	0.0094	0.2509	0.0000	0.4125	0.0000	0.0000	0.0000
380.65	0.0063	0.0049	0.3852	0.0000	0.2368	0.0000	0.0000	0.0000
381.05	0.0055	0.0033	0.4485	0.0000	0.1578	0.0000	0.0000	0.0000
381.15	0.0053	0.0029	0.4647	0.0000	0.1304	0.0000	0.0000	0.0000
382.95	0.0033	0.0014	0.5101	0.0024	0.0338	0.0156	0.0024	0.0000
385.05	0.0031	0.0000	0.4480	0.0111	0.0275	0.0434	0.0085	0.0000
387.05	0.0025	0.0000	0.2172	0.0465	0.0179	0.1175	0.0348	0.0000
387.85	0.0022	0.0000	0.0951	0.0702	0.0121	0.1399	0.0565	0.0000
388.15	0.0021	0.0000	0.0490	0.0754	0.0082	0.1394	0.0692	0.0000
388.05	0.0023	0.0000	0.0651	0.0736	0.0101	0.1406	0.0638	0.0000
388.25	0.0021	0.0000	0.0288	0.0808	0.0054	0.1357	0.0816	0.0000
388.45	0.0018	0.0000	0.0122	0.0825	0.0024	0.1304	0.0935	0.0000
388.65	0.0000	0.0000	0.0094	0.0830	0.0019	0.1258	0.0999	0.0000
388.55	0.0016	0.0000	0.0056	0.1123	0.0013	0.1192	0.0997	0.0000

Tab. F.6: Massenbrüche der einzelnen Kohlenwasserstoffe in den Fraktionen der Destillation 2.

Fortsetzung Tab. F.6

	Massenbruch							
T/K	n-Hex.	n-Hept.	n-Oct.	n-Non.	Toluen	Ethb.	m-Xyl.	i-Prb.
388.75	0.0000	0.0000	0.0040	0.0815	0.0000	0.1200	0.1104	0.0000
388.85	0.0000	0.0000	0.0000	0.0730	0.0000	0.1046	0.1274	0.0000
388.65	0.0014	0.0000	0.0000	0.0731	0.0000	0.1057	0.1277	0.0000
388.95	0.0000	0.0000	0.0000	0.0684	0.0000	0.0950	0.1425	0.0000
389.05	0.0000	0.0000	0.0000	0.0543	0.0000	0.0734	0.1707	0.0000
388.85	0.0000	0.0000	0.0000	0.0500	0.0000	0.0658	0.1850	0.0000
389.05	0.0000	0.0000	0.0000	0.0237	0.0000	0.0458	0.2220	0.0000
389.05	0.0000	0.0000	0.0000	0.0184	0.0000	0.0460	0.2349	0.0000
398.85	0.0000	0.0000	0.0000	0.0045	0.0000	0.0733	0.2406	0.0000
407.85	0.0000	0.0000	0.0000	0.0030	0.0000	0.0753	0.2724	0.0000
410.55	0.0000	0.0000	0.0000	0.0029	0.0000	0.0001	0.9997	0.0000
412.05	0.0000	0.0000	0.0000	0.0370	0.0000	0.0198	0.9175	0.0076
409.85	0.0000	0.0000	0.0000	0.0069	0.0000	0.0273	0.9217	0.0127
412.45	0.0000	0.0000	0.0000	0.1259	0.0000	0.0095	0.7805	0.0705
416.05	0.0000	0.0000	0.0000	0.1720	0.0000	0.0068	0.6889	0.1276
421.95	0.0000	0.0000	0.0000	0.1076	0.0000	0.0074	0.4304	0.4460
423.95	0.0000	0.0000	0.0000	0.0572	0.0000	0.0609	0.0036	0.8781
424.05	0.0000	0.0000	0.0000	0.0490	0.0000	0.0019	0.0953	0.8476
424.45	0.0000	0.0000	0.0000	0.0029	0.0000	0.0040	0.0000	0.9663
426.75	0.0000	0.0000	0.0000	0.0016	0.0000	0.0027	0.0000	0.8082
426.95	0.0000	0.0000	0.0000	0.0016	0.0000	0.0000	0.0023	0.3090
429.35	0.0000	0.0000	0.0000	0.0000	0.0000	0.0022	0.0000	0.2320
430.95	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0494
432.35	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0350
433.05	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0291
435.95	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0237
446.35	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
446.45	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
446.25	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

F.3 Destillation 3

Stoff	Massenbruch
1-Butanol	0.4524
n-Hexan	0.0628
n-Heptan	0.0705
n-Octan	0.0647
n-Nonan	0.0598
n-Decan	0.0549
Toluol	0.0751
Ethylbenzol	0.0521
m-Xylol	0.0299
i-Propylbenzol	0.0368
n-Propylbenzol	0.0409

Tab. F.7: Zusammensetzung des Gemisches¹ bei der Destillation 3.

¹ Entspricht $W_{Al}(\tau) = const$ und $W_{Ar}(\tau) = const$

T/K	$\zeta = \xi_{i-A}^{Az}$	T/K	ξ_{i-A}^{Az}	T/K	ξ_{i-A}^{Az}
341.7	0.0389	378.65	0.2776	389.05	0.6857
341.2	25 0.0400	378.75	0.2820	388.65	0.6806
341.4	5 0.0365	378.95	0.2906	389.05	0.6923
341.8	35 0.0372	378.95	0.3054	389.15	0.6923
349.3	0.0428	379.95	0.3292	388.75	0.6886
352.6	65 0.0391	379.85	0.3315	388.75	0.6902
357.5	65 0.0719	380.45	0.3514	389.15	0.6949
355.5	0.0514	380.95	0.3663	389.15	0.6995
361.1	.5 0.0842	380.95	0.3802	388.75	0.6993
360.1	.5 0.0884	381.45	0.3879	389.15	0.7031
362.3	0.1169	381.75	0.4041	388.85	0.7010
363.9	0.1396	382.05	0.4205	389.25	0.7089
364.9	05 0.1478	382.25	0.4221	389.25	0.7105
365.9	05 0.1586	381.85	0.4193	388.85	0.7085
366.2	0.1678	382.05	0.4284	389.45	0.7179
366.6	65 0.1709	382.45	0.4310	389.35	0.7281
366.6	65 0.1752	384.05	0.4557	389.85	0.7779
367.0	05 0.1770	384.75	0.4625	389.75	0.8352
367.6	65 0.1783	386.75	0.5257	389.95	0.8570
368.9	05 0.1779	386.95	0.5559	390.05	0.8903
369.2	0.1795	387.75	0.5968	390.15	0.8969
370.0	0.1829	387.75	0.6206	390.05	0.8833
371.7	0.1907	388.25	0.6340		
374.1	.5 0.1961	388.05	0.6473		
374.7	0.2171	388.65	0.6567		
375.5	0.2300	388.35	0.6611		
377.0	05 0.2474	388.85	0.6726		
376.7	0.2463	388.45	0.6726		
378.0	0.2658	388.95	0.6798		
378.1	.5 0.2696	388.65	0.6751		

Tab. F.8: Massenbruch des n-Butanols in den Fraktionen der Destillation 3.

I^{Kopf}	T/K	I^{Kopf}	T/K	I^{Kopf}	T/K	I^{Kopf}	T/K
0.0047	341.75	0.2171	378.75	0.5047	389.05	0.8611	424.75
0.0053	341.25	0.2274	378.95	0.5379	389.15	0.8633	424.25
0.0276	341.45	0.2339	378.95	0.5418	388.75	0.8651	425.15
0.0473	341.85	0.2428	379.95	0.5739	388.75	0.8678	425.15
0.0491	349.35	0.2444	379.85	0.6042	389.15	0.8714	426.15
0.0495	352.65	0.2480	380.45	0.6362	389.15	0.8726	426.35
0.0512	357.55	0.2552	380.95	0.6383	388.75	0.8754	426.95
0.0513	355.55	0.2601	380.95	0.6686	389.15	0.8789	427.85
0.0530	361.15	0.2644	381.45	0.6703	388.85	0.8791	427.85
0.0537	360.15	0.2752	381.75	0.7018	389.25	0.8834	428.95
0.0586	362.35	0.2891	382.05	0.7303	389.25	0.8878	429.65
0.0633	363.95	0.3044	382.25	0.7325	388.85	0.8893	429.55
0.0657	364.95	0.3048	381.85	0.7900	389.45	0.8935	429.75
0.0706	365.95	0.3274	382.05	0.7904	389.35	0.9006	429.95
0.0814	366.25	0.3320	382.45	0.8018	389.85	0.9081	429.95
0.0843	366.65	0.3419	384.05	0.8176	389.75	0.9081	430.55
0.1044	366.65	0.3424	384.75	0.8239	389.95	0.9096	432.15
0.1076	367.05	0.3508	386.75	0.8349	390.05	0.9140	433.15
0.1277	367.65	0.3551	386.95	0.8407	390.15	0.9150	433.25
0.1306	368.95	0.3597	387.75	0.8423	390.05	0.9176	436.55
0.1317	369.25	0.3686	387.75	0.8438	403.35	0.9195	435.85
0.1328	370.05	0.3703	388.25	0.8443	391.05	0.9206	439.95
0.1362	371.75	0.3836	388.05	0.8452	394.95	0.9221	439.05
0.1398	374.15	0.3872	388.65	0.8457	406.35	0.9241	442.35
0.1432	374.75	0.4031	388.35	0.8465	413.15	0.9255	439.95
0.1438	375.55	0.4076	388.85	0.8471	419.75	0.9283	444.15
0.1512	377.05	0.4194	388.45	0.8473	420.35	0.9398	445.75
0.1514	376.75	0.4379	388.95	0.8485	422.65	0.9497	445.85
0.1607	378.05	0.4471	388.65	0.8495	422.15	0.9651	446.35
0.1750	378.15	0.4715	389.05	0.8533	424.55	0.9709	446.35
0.1936	378.65	0.4797	388.65	0.8575	423.15		

 $Tab. \ F.9: \ Die \ relative \ Destillatmasse \ in \ Abhängigkeit \ von \ der \ Temperatur \ bei \ der \ Destillation \ 3.$

F.4 Destillation 4

Stoff	Massenbruch
n-Butanol	0.6000
Aromaten	0.4000

Tab. F.10: Zusammensetzung des Gemisches bei der Destillation 4.

Tab. F.11: Die relative Destillatmasse in Abhängigkeit von der Temperatur bei der Destillation 4.

I^{Kopf}	T/K	I^{Kopf}	T/K
0.0117	376.05	0.5285	390.25
0.0194	377.35	0.5464	390.25
0.0349	378.25	0.5871	390.25
0.0692	378.65	0.6303	390.25
0.0955	379.75	0.6731	390.25
0.0995	380.95	0.7156	390.15
0.1022	382.05	0.7589	390.15
0.1072	383.75	0.7870	390.15
0.1132	385.55	0.7935	417.25
0.1215	386.85	0.8003	421.65
0.1375	388.25	0.8129	422.65
0.1660	388.95	0.8255	424.65
0.2025	389.25	0.8357	427.65
0.2342	389.45	0.8444	431.65
0.2650	389.65	0.8538	433.15
0.3100	389.85	0.8584	438.55
0.3506	389.95	0.8738	439.45
0.3930	390.05	0.9124	441.65
0.4259	390.05	0.9229	442.45
0.4712	390.15	0.9250	445.15
0.4878	390.15		

F.5 Destillation 5

Stoff	Massenbruch
n-Butanol	0.5678
Aliphate	0.2149
Toluol	0.0690
Ethylbenzol	0.0479
m-Xylol	0.0280
i-Propylbenzol	0.0345
n-Propylbenzol	0.0380

Tab. F.12: Zusammensetzung des Gemisches bei der Destillation 5.

Tab. F.13: Massenbruch des n-Butanols in den Fraktionen der Destillation 5.

I^{Kopf}	ξ_{i-A}^{Az}	I^{Kopf}	ξ_{i-A}^{Az}
356.45	0.1247	388.15	0.6104
358.75	0.1262	388.65	0.6387
361.25	0.1066	388.85	0.6529
364.05	0.1425	389.05	0.6658
366.05	0.1615	389.15	0.6769
371.75	0.2069	389.35	0.6933
375.25	0.2421	389.75	0.7359
376.95	0.2561	390.25	0.8111
377.65	0.2630	390.45	0.8732
378.25	0.2681	390.55	0.8977
379.15	0.2891	390.55	0.9148
380.95	0.3479	390.55	0.9232
383.35	0.4222	420.75	0.8352
384.95	0.4738	424.65	0.4319
386.35	0.5261	425.65	0.0448
387.45	0.5830		

I^{Kopf}	T/K	I^{Kopf}	T/K	I^{Kopf}	T/K	I^{Kopf}	T/K
0.0011	345.85	0.1131	378.15	0.3253	388.75	0.7398	390.45
0.0025	346.45	0.1296	378.25	0.3506	388.85	0.7518	390.55
0.0039	356.45	0.1359	378.45	0.3518	388.65	0.7677	390.45
0.0041	351.05	0.1427	379.15	0.3777	388.95	0.7841	390.55
0.0062	356.45	0.1491	378.45	0.3835	388.75	0.7959	390.55
0.0062	354.45	0.1496	380.05	0.4032	389.05	0.8153	390.55
0.0096	358.75	0.1567	380.95	0.4162	388.85	0.8242	390.55
0.0114	357.15	0.1606	378.75	0.4300	389.15	0.8421	390.55
0.0136	361.25	0.1636	382.15	0.4468	388.95	0.8529	390.55
0.0159	360.15	0.1711	379.65	0.4574	389.15	0.8762	390.55
0.0188	364.05	0.1714	383.35	0.4780	389.05	0.8799	420.75
0.0197	362.35	0.1767	380.75	0.4894	389.25	0.8812	423.95
0.0238	366.05	0.1784	384.15	0.5089	389.15	0.8851	424.65
0.0280	365.95	0.1834	381.95	0.5165	389.35	0.8941	425.05
0.0301	368.55	0.1857	384.95	0.5335	389.15	0.8986	425.65
0.0347	368.75	0.1934	385.65	0.5464	389.55	0.9017	426.05
0.0374	371.75	0.1971	383.85	0.5641	389.25	0.9032	426.35
0.0401	371.25	0.2012	386.35	0.5727	389.35	0.9076	428.45
0.0438	374.15	0.2094	385.05	0.5766	389.75	0.9118	429.95
0.0470	374.05	0.2160	386.95	0.5827	389.45	0.9191	430.65
0.0491	375.25	0.2217	385.95	0.6072	389.95	0.9224	431.15
0.0532	376.25	0.2285	387.45	0.6072	389.75	0.9318	431.15
0.0542	376.05	0.2373	386.95	0.6337	389.85	0.9403	431.35
0.0590	376.95	0.2406	387.85	0.6377	390.25	0.9472	432.65
0.0630	377.15	0.2540	387.55	0.6565	390.05	0.9495	436.05
0.0690	377.45	0.2798	388.45	0.6697	390.35	0.9524	437.65
0.0748	377.65	0.2847	388.15	0.6852	390.25	0.9591	439.55
0.0828	377.95	0.3045	388.35	0.6994	390.45	0.9627	441.75
0.0879	377.85	0.3067	388.65	0.7121	390.35	0.9666	443.65
0.1096	378.25	0.3196	388.45	0.7256	390.55	0.9687	446.65

Tab. F.14: Die relative Destillatmasse in Abhängigkeit von der Temperatur bei der Destillation 5.
F.6 Destillation 6

Stoff	Massenbruch
n-Butanol	0.5992
Aliphaten	0.2010
Aromaten	0.1998

Tab. F.15: Zusammensetzung des Gemisches bei der Destillation 6.

Tab. F.16: Massenbruch des n-Butanols in den Fraktionen der Destillation 6.

T/K	ξ_{i-A}^{Az}	T/K	ξ_{i-A}^{Az}
347.25	0.0862	389.65	0.7141
352.95	0.1164	389.85	0.7417
361.65	0.0951	390.05	0.7652
370.15	0.1958	390.25	0.7989
376.05	0.2346	390.45	0.8240
378.15	0.2629	390.45	0.8362
378.55	0.2685	390.45	0.8410
380.05	0.3130	390.45	0.8537
384.25	0.4394	390.05	0.8532
387.25	0.5623	427.55	0.8325
388.55	0.6263	432.35	0.2900
389.15	0.6651	436.65	0.0613
389.45	0.6904		

I^{Kopf}	T/K	I^{Kopf}	T/K
0.0009	347.25	0.4071	389.95
0.0048	352.95	0.4247	390.05
0.0098	356.05	0.4498	390.15
0.0170	361.65	0.4848	390.25
0.0309	368.55	0.5192	390.35
0.0347	370.15	0.5437	390.45
0.0477	375.15	0.5823	390.45
0.0519	376.05	0.6168	390.45
0.0719	378.05	0.6528	390.45
0.0762	378.15	0.6895	390.45
0.0944	378.45	0.7225	390.45
0.0990	378.55	0.7566	390.45
0.1172	379.45	0.7931	390.05
0.1227	380.05	0.8249	390.05
0.1462	383.35	0.8584	390.15
0.1529	384.25	0.8618	427.55
0.1846	386.95	0.8655	430.35
0.1897	387.25	0.8698	432.35
0.2205	388.35	0.8754	434.85
0.2271	388.55	0.8805	436.65
0.2598	389.05	0.8899	439.15
0.2688	389.15	0.8968	440.65
0.3046	389.25	0.9060	442.85
0.3352	389.45	0.9122	444.55
0.3509	389.55	0.9258	448.65
0.3654	389.65	0.9360	452.55
0.3780	389.75	0.9451	461.75
0.3909	389.85		

Tab. F.17: Die relative Destillatmasse in Abhängigkeit von der Temperatur bei der Destillation 6.

F.7 Destillation 7

Stoff	Massenbruch
n-Butanol	0.1005
Aliphaten	0.4998
Aromaten	0.3997

Tab. F.18: Zusammensetzung des Gemisches bei der Destillation 7.

Tab. F.19: Massenbruch des n-Butanols in den Fraktionen der Destillation 7.

T/K	ξ_{i-A}^{Az}
345.55	0.0446
347.55	0.0822
352.75	0.1031
357.75	0.1284
360.15	0.1147
361.85	0.1215
366.15	0.1611
367.45	0.1696
371.55	0.1857
373.75	0.2073
377.05	0.2362
377.75	0.2602
378.45	0.2621
379.75	0.2837
379.85	0.3722

I^{Kopf}	T/K	I^{Kopf}	T/K	I^{Kopf}	T/K
0.0069	345.55	0.3316	379.85	0.6498	425.45
0.0092	346.15	0.3391	379.85	0.6502	424.85
0.0116	347.55	0.3604	381.25	0.6743	427.05
0.0172	352.75	0.3647	381.55	0.6815	427.15
0.0181	352.25	0.3707	396.45	0.6909	430.25
0.0308	357.05	0.3710	396.15	0.7003	431.25
0.0331	357.75	0.3756	403.15	0.7014	432.25
0.0414	360.15	0.3899	405.25	0.7076	433.05
0.0471	361.25	0.3899	405.85	0.7351	435.05
0.0518	361.85	0.4005	406.35	0.7414	436.05
0.0564	363.75	0.4131	407.95	0.7422	435.85
0.0681	366.15	0.4238	408.95	0.7489	437.05
0.0725	366.25	0.4331	408.75	0.7601	436.35
0.0794	367.45	0.4417	409.25	0.7692	437.25
0.0941	369.95	0.4729	411.65	0.7824	439.65
0.0946	369.95	0.4881	412.25	0.7920	440.45
0.1029	371.55	0.4907	411.75	0.8191	443.65
0.1180	373.75	0.5036	412.45	0.8195	445.45
0.1291	375.75	0.5286	414.65	0.8289	446.95
0.1491	377.05	0.5366	415.35	0.8317	448.35
0.1644	377.15	0.5453	414.65	0.8482	449.65
0.1912	378.05	0.5550	415.05	0.8566	450.85
0.2125	377.75	0.5813	416.35	0.8663	451.65
0.2487	377.85	0.5926	416.65	0.8806	454.45
0.2548	378.45	0.5964	415.75		
0.2813	379.15	0.6054	417.15		
0.2899	379.65	0.6237	420.65		
0.2927	379.75	0.6308	421.05		
0.3020	380.45	0.6441	424.35		
0.3316	380.45	0.6458	424.15		

Tab. F.20: Die relative Destillatmasse in Abhängigkeit von der Temperatur bei der Destillation 7.

F.8 Destillation 8

Stoff	Massenbruch
n-Butanol	0.1013
Aliphaten	0.6957
Aromaten	0.2030

Tab. F.21: Zusammensetzung des Gemisches bei der Destillation 8.

Tab. F.22: Massenbruch des n-Butanols in den Fraktionen der Destillation 8.

T/K	ξ_{i-A}^{Az}
347.05	0.0466
349.25	0.0710
354.55	0.1137
357.95	0.1505
360.35	0.1073
362.25	0.1350
366.95	0.1701
371.85	0.1805
371.95	0.1969
376.25	0.2494
377.45	0.2650
379.75	0.3369
380.05	0.3179
380.55	0.3711
381.55	0.3830

I^{Kopf}	T/K	I^{Kopf}	T/K	I^{Kopf}	T/K
0.0089	345.95	0.3836	380.55	0.6269	420.95
0.0197	346.15	0.3857	386.75	0.6350	421.65
0.0207	347.05	0.3862	381.55	0.6525	421.45
0.0248	349.25	0.3876	389.25	0.6604	421.85
0.0282	352.95	0.3890	387.65	0.6683	424.05
0.0356	354.55	0.3899	393.15	0.6774	424.95
0.0380	355.55	0.3914	393.95	0.6943	426.75
0.0468	357.95	0.3973	398.95	0.7043	427.45
0.0523	358.45	0.3982	397.65	0.7062	426.95
0.0607	360.45	0.4039	402.55	0.7122	427.15
0.0614	360.35	0.4052	401.95	0.7294	431.55
0.0725	362.25	0.4252	404.85	0.7401	432.15
0.1011	366.25	0.4377	404.75	0.7412	432.15
0.1060	366.95	0.4447	405.85	0.7499	433.05
0.1091	366.95	0.4506	407.25	0.7647	434.65
0.1360	370.15	0.4717	409.05	0.7735	435.55
0.1431	371.85	0.4837	409.95	0.7816	436.55
0.1485	371.95	0.4856	410.35	0.7926	437.75
0.1709	375.05	0.5032	411.15	0.7958	436.75
0.1815	375.65	0.5120	410.55	0.8080	439.65
0.1922	376.25	0.5234	410.65	0.8186	441.15
0.2161	377.15	0.5340	411.35	0.8260	442.05
0.2350	377.25	0.5459	411.65	0.8310	441.85
0.2452	377.45	0.5544	412.95	0.8404	441.95
0.2644	378.35	0.5618	413.25	0.8468	443.45
0.2918	379.35	0.5720	413.25	0.8531	444.05
0.2977	380.05	0.5795	413.65	0.8580	444.65
0.3010	379.75	0.5910	416.15	0.8726	445.45
0.3233	380.45	0.5966	417.05	0.8813	446.35
0.3332	380.55	0.6068	417.05	0.8889	447.75
0.3515	380.05	0.6177	418.55	0.9055	449.65

Tab. F.23: Die relative Destillatmasse in Abhängigkeit von der Temperatur bei der Destillation 8.

G. GLEICHVERTEILUNG DER KOHLENWASSERSTOFFE

Tab. G.1: Verteilungsfunktion Alkane.

Stoff	Massenbruch
n-Hexan	0.200734
n-Heptan	0.225082
n-Octan	0.20706
n-Nonan	0.191567
n-Decan	0.175558

$$\tau_{Al,0} = 331.335K \ \tau_{Al}^0 = 457.845K; \ W_{Al}(\tau) = \frac{1}{\tau_{Al}^0 - \tau_{Al,0}}$$

 $Tab.\ G.2: \ Verteilungs funktion \ Aromaten.$

Stoff	Massenbruch
Toluol	0.32034
Ethylbenzol	0.222157
m-Xylol	0.126401
i-Propylbenzol	0.15689
n-Propylbenzol	0.174211

$$\tau_{Ar,0} = 376.024K \ \tau_{Ar}^0 = 440.146K; \ W_{Ar}(\tau) = \frac{1}{\tau_{Ar}^0 - \tau_{Ar,0}}$$

H. VERTEILUNGSFUNKTIONEN DER BENZINE

I^{Kopf}	τ/K	I^{Kopf}	τ/K	I^{Kopf}	τ/K	I^{Kopf}	τ/K
0.00243	346.57	0.34894	398.63	0.74589	427.02	0.96989	450.92
0.00439	348.00	0.35960	399.22	0.75014	427.78	0.97530	452.17
0.01061	349.87	0.36708	400.23	0.75794	428.82	0.97730	452.96
0.01588	353.31	0.37034	400.60	0.76314	430.04	0.98101	454.82
0.02014	358.30	0.37998	402.07	0.77299	430.64	0.98384	455.33
0.03129	359.86	0.38840	402.54	0.78034	431.83	0.98615	456.70
0.04165	361.43	0.39035	403.11	0.79405	432.33	0.98848	457.50
0.04588	362.60	0.39270	403.51	0.80827	432.99	0.99116	458.38
0.05033	363.13	0.40195	404.52	0.81381	433.75	0.99337	459.99
0.05701	363.63	0.40398	405.16	0.83264	434.66	0.99472	461.32
0.07838	366.18	0.41076	405.78	0.83591	435.23	0.99629	463.34
0.10258	370.27	0.44057	406.89	0.83735	436.03	1.00000	467.17
0.10444	370.96	0.44364	407.71	0.84957	437.23		
0.11300	372.84	0.47611	408.66	0.86260	437.80		
0.11572	373.56	0.48168	409.70	0.86574	438.40		
0.12045	374.80	0.48672	410.36	0.87103	439.11		
0.12487	376.46	0.51615	411.88	0.87314	440.16		
0.12936	379.80	0.52402	412.53	0.87623	440.62		
0.15546	381.27	0.52631	413.19	0.92407	442.07		
0.18684	383.34	0.53227	413.58	0.92595	442.64		
0.19256	383.83	0.60753	416.16	0.92846	443.20		
0.19435	385.18	0.62034	416.84	0.93133	444.01		
0.20065	386.06	0.62552	417.60	0.93366	445.02		
0.21528	386.90	0.63715	419.69	0.93500	445.34		
0.22345	388.12	0.64374	420.16	0.93740	445.93		
0.27928	389.81	0.65381	420.87	0.93980	446.68		
0.28247	391.69	0.68223	422.94	0.94542	447.49		
0.28520	394.30	0.69699	423.99	0.95320	448.16		
0.29470	395.86	0.72063	425.21	0.96120	449.48		
0.33727	397.23	0.72530	425.96	0.96619	450.54		

Tab. H.1: Die experimentell ermittelte intensive Verteilungsfunktion $I(\tau)$ des Aliphatenbenzins¹.

¹ Die dazu angepaßte Gauß-Verteilung hat die Parameter $\theta = 409.278K$, $\sigma^2 = 656.603K^2$.

I^{Kopf}	τ/K	I^{Kopf}	τ/K
0.00126	404.34	0.91095	451.52
0.00204	405.62	0.91343	452.41
0.08379	409.03	0.91504	453.31
0.08479	411.38	0.92345	454.40
0.23087	412.20	0.92611	455.21
0.23153	413.45	0.92829	456.01
0.29015	417.81	0.93086	457.61
0.29087	418.00	0.94136	458.84
0.51601	418.26	0.94310	459.98
0.51730	421.95	0.94615	460.39
0.51888	424.42	0.95014	461.04
0.53873	429.08	0.95100	461.73
0.54946	431.52	0.95218	462.07
0.57739	433.47	0.95562	463.11
0.58788	433.90	0.95705	464.00
0.59421	435.24	0.96983	464.74
0.59545	435.87	0.97369	466.32
0.72739	437.51	0.97450	469.15
0.73965	439.97	0.97587	469.75
0.81440	440.81	0.97660	470.84
0.83409	441.50	0.97769	473.71
0.83520	445.51	0.98242	474.37
0.83594	446.68	0.98781	475.44
0.84160	447.30	0.98993	477.10
0.86803	447.86	0.99906	480.82
0.88681	449.17	1.00000	486.62
0.90344	449.76		

Tab. H.2: Die experimentell ermittelte intensive Verteilungsfunktion $I(\tau)$ des Aromatenbenzins².

² Die dazu angepaßte Gauß-Verteilung hat die Parameter $\theta = 429.11$, $\sigma^2 = 287.106$; Das Toluol mit einem Massenbruch von 0.22648 des Aromatenbenzins wurde gesondert behandelt.

Die vorliegende Arbeit wurde in der Zeit von Januar 1995 bis März 1999 am Institut für Physikalische Chemie der Martin-Luther-Universität Halle-Wittenberg unter Leitung von Prof. Dr. H. Kehlen durchgeführt.

Ich danke Herrn Prof. Dr. H. Kehlen für die Überlassung des Themas und das rege Interesse am Fortgang der Arbeit.

Mein ganz besonderer Dank gilt Herrn Dr. D. Browarzik für seine intensiven Bemühungen um diese Arbeit. Seine Hilfe und Hinweise und vor allem umfangreiche Disskusionen haben maßgeblich zur Qualität dieser Arbeit beigetragen.

Frau Chem.-Ing. I. Böttger danke ich vor allem für ihre besondere Flexibilität, was die ungewöhnlichen Arbeitszeiten anbelangt. Ohne sie hätten die langwierigen experimentellen Arbeiten überhaupt nicht realisiert werden können. Vielen Dank.

ERKLÄRUNG

Hiermit erkläre ich, daß ich mich an keiner anderen Universität um den akademischen Grad Dr. rer. nat. beworben habe.

ERKLÄRUNG

Hiermit erkläre ich eidesstattlich, daß ich die vorliegende Arbeit selbstständig und ohne fremde Hilfe verfaßt habe. Andere als die angegebenen Quellen und Hilfsmittel habe ich nicht benutzt. Anderen Arbeiten entnommene Angaben sind als solche kenntlich gemacht worden.

LEBENSLAUF

Name	Ryszard Kabatek	
Wohnort	ul. Siedlecka 37, 85-412 Bydgoszcz, Polen	
Geburtstag/-ort	09.01.1970/Bydgoszcz	
Staatsangehörigkeit	polnisch	
Bildung:		
01.09.1984-30.06.1989	Chemisches Technikum in Bydgoszcz	
01.10.1989-30.08.1994	Studium der Chemie an der Technischen Hochschule	
	Leuna-Merseburg	
	(später Martin-Luther-Universität Halle-Wittenberg);	
	Diplomarbeit zum Thema	
	"EFV-Kurven des Typs Erdölfraktion + Alkohol"	
01.10.1994-30.03.1999	Promotion unter Leitung von Prof. Dr. H. Kehlen	
Berufliche Tätigkeiten:		
01.01.1995-31.12.1997	wissenschaftlicher Mitarbeiter im FB Chemie der	
	Martin-Luther-Unversität Halle-Wittenberg;	
	Bearbeitung des Forschungsgebietes	
	"Azeotropieeinfluß auf TBP Kurven"	
01.06.1998-	wissenschaftlicher Mitarbeiter im FB Chemie der	
	Martin-Luther-Unversität Halle-Wittenberg;	
	DFG-Projekt auf dem Gebiet der Hochdruckphasengleichgewichte	
	unter Leitung von Dr. D. Browarzik	