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Abstract
For a set A of Boolean functions, a closure operator c and an involution i , letNc,i (A)

be the number of sets which can be obtained from A by repeated applications of c
and i . The orbit O(c, i) is defined as the set of all these numbers. We determine the
orbits O(S, i) where S is the closure defined by superposition and i is the comple-
ment or the duality. For the negation non, the orbit O(S, non) is almost determined.
Especially, we show that the orbit in all these cases contains at most seven numbers.
Moreover, we present some closure operators where the orbit with respect to duality
and negation is arbitrarily large.

Keywords Kuratowski’s closure-complement theorem · Superposition of Boolean
functions · Complement and negation and duality of sets of Boolean functions

Mathematics Subject Classification 06D25 · 06A15 · 08A05

1 Introduction

In Kuratowski (1922), proved the following closure-complement theorem: If (X , T )

is a topological space and A ⊆ X , then at most 14 sets can be obtained from A
by repeated applications of the operations topological closure and complement. Fur-
thermore, there is a topological space and a set for which the bound 14 is achieved.
More information on Kuratowski-like theorems for topological space can be found in
Gardner and Jackson (2008).

Hammer (1960) noticed that such a statement holds in a more general setting; it
is not necessary to consider topological spaces and topological closure. The theorem

Dedicated to Prof. Gustav Burosch on the Occasion of his 80th Birthday.

B Jürgen Dassow
dassow@iws.cs.uni-magedeburg.de

1 Fakultät für Informatik, Otto-von-Guericke-Universität Magdeburg, PSF 4120, 39106 Magdeburg,
Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13366-021-00584-1&domain=pdf
http://orcid.org/0000-0002-4735-4696


322 Beitr Algebra Geom (2022) 63:321–334

also holds if—instead of the topological closure—a closure operator on a set X is
used.

Most papers related to Kuratowski’s closure-complement theorem ask for upper
bounds for the number of sets obtainable by repeated applications of a closure operator
and complement. However, one can also consider the followingmore general question:
Given a closure operator, determine the set of all numbers n (called the orbit of the
closure operator and complement) such that there is a set An fromwhich we can obtain
exactly n sets by repeated applications of the closure operator and complement.

In Brzozowski et al. (2009), this question was firstly investigated by Brzozowski,
Grant, andShallit for theKleene-closure definedon formal languages and complement.
They proved that the orbit of Kleene-closure and complement consists of the numbers
4, 6, 8, 10, 12, 14.Moreover, forn ∈ {4, 6, 8, 10, 12, 14}, they gave precise conditions
for a language to produce exactly n languages by repeated applications of Kleene-
closure and complement.

For further language theoretic closure operators and involutions (instead of com-
plement) the orbit was studied in Dassow (2019).

In this paper, we continue the determination of the orbit, but we consider the set of
Boolean functions. Here a ”classical” closure operator is defined by superpositions.
The lattice of all closed sets (with respect to superpositions) of Boolean functions was
determined in 1921 by Post (see Post 1921, a more complete version is Post 1941,
and a modern version is Jablonski et al. 1970). We study the orbit of superpositions
and complement, duality, and negation as involution. We prove that the orbit contains
three, four, and at most 7 numbers for complement, duality, and negation, respectively.
The corresponding Kuratowski numbers are six, four, and seven, respectively.

However, the situation changes completely if we allow other closure operators.
We define some special closure operators such that with duality (or negation) the
corresponding orbit contains infinity or hasm elements wherem is an arbitrary natural
number with m ≥ 3.

2 Definitions and known facts

Let X be a set. We define the complement A of a set A ⊂ X by A = X \ A.
An operator c is called a closure operator on X , if the following three conditions

are satisfied:

• For all sets A ⊆ X , c(A) ⊆ X .
• For all sets A ⊆ X , A ⊆ c(A).
• For all sets A ⊆ X and B ⊆ X , A ⊆ B implies c(A) ⊆ c(B).
• For all sets A ⊆ X , c(c(A)) = c(A), i. e., c is idempotent.

An operator i is called an involution on X if, for any A ⊆ X , the relations i(A) ⊆ X
and i(i(A)) = A hold.

Definition 1 Let c a closure operator on X , and i an involution on X . Then, for A ⊆ X ,
we define the orbitOX

c,i (A) of A under c and i as the set of all setswhich can be obtained
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from A by repeated applications of c and i and set

N X
c,i (A) = card(Oc,i (A)).

Moreover, we define the orbit of the pair (c, i) as

OX (c, i) = {n | N X
c,i (A) = n for some A ⊆ X}

and the Kuratowski number of (c, i) as

KX (c, i) = sup{n | n ∈ OX (c, i)}.

In this terminology, the classical Kuratowski’s Theorem is given as follows: If
(X , T ) is a topological space and c the corresponding topological closure, then
KX (c,− ) = 14.

By the properties of an closure operator c and an involution i , in order to determine
the orbit OX

c,i (A) of a set A it is sufficient to determine the sets

A, c(A), i(c(A)), c(i(c(A))), i(c(i(c(A)))), . . .

and

A, i(A), c(i(A)), i(c(i(A))), c(i(c(i(A)))), . . . .

Let P2 be the set of Boolean functions. In the rest of the paper we restrict to X = P2,
and for the sake of simplicity we shall omit the upper index P2 in the notations given
in Definition 1.

Wenowdefine some specialBoolean functions and sets ofBoolean functions,which
will be used later. With respect to the notation, we follow (Jablonski et al. 1970).

The constants giving the value 0 or 1 are denoted by k0 and k1, respectively.
A special unary Boolean function is the negation non defined by

non(0) = 1 and non(1) = 0. We extend the negation to functions by setting
(non( f ))(x1, x2, . . . , xn) = non( f (x1, x2, . . . , xn)).

We use the following functions (in some cases we give two notations, and if the
functions are associative, we omit some brackets in the sequel):

• vel(x1, x2) = x1 ∨ x2 = 0 if and only if x1 = x2 = 0,
• gk(x1, x2, . . . , xk) = x1 ∨ x2 ∨ · · · ∨ xk for k ≥ 2,
• et(x1, x2) = x1 · x2 = 1 if and only if x1 = x2 = 1,
• hk(x1, x2, . . . , xk) = x1 · x2 · · · · · xk for k ≥ 2,
• x1 + x2 = 0 if and only if x1 = x2,
• sh(x1, x2) = non(vel(x1, x2)) and sh′(x1, x2) = non(et(x1, x2)).

Let C2 (C3) be the sets of all functions f such that f (1, 1, . . . , 1) = 1
( f (0, 0, . . . , 0) = 0, respectively).

The dual function d( f ) of a function f is defined as

(d( f ))(x1, x2, . . . , xn) = (non( f ))(non(x1), non(x2), . . . , non(xn)).
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Moreover, a Boolean function f is called self-dual if and only if d( f ) = f . Let D3
denote the set of all self-dual Boolean functions.

We extend the concept of negation and duality to subsets A ⊆ P2 by setting

non(A) = {non( f ) | f ∈ A} and d(A) = {d( f ) | f ∈ A}.

Note that these operators non and d are involutions on P2.
A function f is called linear if f (x1, x2, . . . , xn) = xi1 + xi2 + · · · + xir or

f (x1, x2, . . . , xn) = xi1 + xi2 + · · · + xir + 1, where 1 ≤ i1 < i2 < · · · < ir ≤ n. By
L1 we denote the family of all linear functions.

By 0 < 1, an order is defined on {0, 1}.We say that an n-ary function f is monotone
if and only if, for all tuples (x1, x2, . . . , xn)and (y1, y2, . . . , yn), xi ≤ yi for 1 ≤ i ≤ n
implies f (x1, x2, . . . , xn) ≤ f (y1, y2, . . . , yn).

We now define some operations which lead to the closure operator superposition.
For an n-ary function f , n ≥ 0, we set

(ζ0( f ))(xn+1, x1, x2, . . . , xn) = f (x1, x2, . . . xn) (1)

(ζi ( f ))(x1, x2, . . . , xi , xn+1, xi+1, . . . , xn) = f (x1, x2, . . . xn), 1 ≤ i ≤ n. (2)

For an n-ary function f , n ≥ 2, and a permutation π on {1, 2, . . . , n}, we define

(Δ( f ))(x1, x2, . . . , xn−1) = f (x1, x2, . . . , xn−1, xn−1), (3)

(π( f ))(x1, x2, . . . , xn) = f (xπ(1), xπ(2), . . . , xπ(n)). (4)

If f is an n-ary function and n ≤ 1, then we set Δ( f ) = π( f ) = f .
For an n-ary function f , n ≥ 1, and an m-ary function g, m ≥ 0, we define the

(n + m − 1)-ary function

( f ◦ g)(x1, . . . xn−1, y1, . . . , ym) = f (x1, . . . xn−1, g(y1, . . . , ym)). (5)

For a set A ⊆ P2, we define [A] as the set of all functions which can be obtained
by finitely many iterated application of the operations defined in (1) – (5) to functions
from A. It is easy to see that the operator S given by S(A) = [A] is a closure operator.
Thus, A is called closed if and only if A = [A].

We denote the set of all functions which can be obtained from f by iterated appli-
cation of (1) and (2) by 
 f �.

3 The classical closure operator: superpositions

In this section we study the orbits of the closure operator given by superpositions and
the involutions complement, duality, and negation.

Theorem 1 We have O(S,− ) = {2, 4, 6}.
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Proof Let A be a subset of P2. First, we assume that [A] �= P2. Then sh /∈ A and
sh /∈ [A] (since [{sh}] = P2). Therefore sh ∈ A, sh ∈ [A], and [A] = [ [A] ] = P2.
Moreover P2 = ∅, [∅] = ∅, and [P2] = P2. Consequently, OS,−(A) contains at most
the six sets A, A, [A], [A], P2, and ∅.

Now let [A] = P2. If [A] = P2, too, then OS,−(A) contains at most the sets A, A,

P2, and ∅. If [A] �= P2, then sh ∈ [A], which results in [[A]] = P2; and consequently

at most the six sets A, A, [A], [A], P2, and ∅ are in OS,−(A).
Furthermore, if OS,−(A) contains a set B, then it also contains B. Hence O(S,− )

contains only even numbers.
Consequently, the only possible numbers which can occur in O(S,− ) are 2,4,

and 6. We now prove that all these numbers are possible.
Let B1 = {vel}. Then [B1] = ⋃

k≥1 
 gk � and thus (as shown above) [B1] =[ [B1]
] = P2. Consequently,

OS,−(B1) = {B1, B1, [B1], [B1], P2,∅}.

Obviously, the six sets of OS,−(B1) are pairwise different. Hence 6 ∈ O(S,− ).
Let B2 = {sh}. Then sh′ ∈ B2 and [B2] = [B2] = P2. Thus

OS,−(B2) = {B2, B2, P2,∅}.

Since these sets are pairwise different, 4 ∈ O(S,− ).
Let B3 = P2. Then OS,−(B3) = {P2,∅}, and consequently 2 ∈ O(S,− ). ��

Theorem 2 We have O(S, d) = {1, 2, 3, 4}.
Proof Let A be a subset of P2. Because d([A]) = [d(A)] (Jablonski et al. 1970,
Chapter 1, Sect. 6, Folgerung 2), we obtain that OS,d(A) contains at most the sets A,
d(A), [A], and [d(A)]. Thus the only possible numbers in O(S, d) are 1, 2, 3, and 4.
We now give witnesses for these numbers.

Let B1 = P2. Then OS,d(B1) = {P2} and, consequently, 1 ∈ O(S, d).
Let B2 = {g} with g(x, y, z) = x · non(y) ∨ x · non(z) ∨ non(y) · z. Then it is

known (see Jablonski et al. 1970) that g is a self-dual function and [{g}] is the set D3
of all self-dual functions. Thus we obtain d({g}) = {g} and d([{g}]) = [{g}]. This
implies OS,d(B2) = {B2, [B2]} and 2 ∈ O(S, d).

Let B3 = {vel, non}. Then we have d(B3) = {et, non} and [{vel, non}] =
[{et, non}] = P2 which gives OS,d(B3) = {B3, d(B3), P2}. Thus 3 ∈ O(S, d).

Let B4 = {vel}. Then d(B4) = {et}, [B4] = ⋃
k≥1 
 gk �, and [d(B4)] =

⋃
k≥1 
hk �. Therefore 4 ∈ O(S, d).

Theorem 3 We have {1, 2, 3, 4, 5, 7} ⊆ O(S, non) ⊆ {1, 2, 3, 4, 5, 6, 7}.
Proof Let A be a subset of P2.

Assume that [A] = P2. If [non(A)] = P2 holds, then we have OS,non(A) =
{A, non(A), P2} (we do not know whether these sets are pairwise different or some
of them are identical). If [non(A)] �= P2, then A ⊆ non([non(A)]) and hence
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[non([non(A)])] = P2. ThusOS,non(A) contains atmost the sets A, non(A), [non(A)],
non([non(A)]), and P2.

Nowwe discuss some cases where [A] �= P2. We start with the cases that [A] = Oi

for some i with 1 ≤ i ≤ 9 where

O1 =
 id� O5 =
 id� ∪ 
k1�
O2 =
k1� O6 =
 id� ∪ 
k0�
O3 =
k0� O7 =
k1� ∪ 
k0�
O4 =
 id� ∪ 
non� O8 =
 id� ∪ 
k1� ∪ 
k0�

O9 =
 id� ∪ 
non� ∪ 
k1� ∪ 
k0�

If [A] = O1, then A ⊆ O1 and non(A) ⊆
 non �. Therefore [non(A)] = O4.
Furthermore, non([A]) = non(O1) =
 non � and [non([A])] = O4. Because
[O4] = non(O4) = O4 we have that OS,non(A) contains at most the sets A, non(A),
O1, 
non�, and O4.

If [A] = O2, then A ⊆ O2, non(A) ⊆ O3, and [non(A)] = O3. Because
non(O2) = O3, non(O3) = O2, [O2] = O2, and [O3] = O3, we have thatOS,non(A)

contains at most the sets A, non(A), O2, and O3.
If [A] = O3,we get analogously thatOS,non(A) contains atmost the sets A, non(A),

O2, and O3.
If [A] = O4, then A contains at least one function f1 of 
 non �. Assume

that A ⊆
 non �. Then we get the relations non(A) ⊆ O1, [non(A)] = O1,
non([non(A)]) =
non�, and [non([non(A)])] = O4. Because non(O4) = [O4] =
O4, OS,non(A) contains at most the sets A, non(A), O1, 
 non �, and O4. If we
assume that A contains a function of O1, too, then non(A) contains a function of

 non � and consequently [non(A)] = O4. Therefore OS,non(A) contains at most
the sets A, non(A), and O4.

If [A] = O5, then A contains functions f1 ∈
 id � and f2 ∈
 k1 �. Then
non(A) contains a function of
non� and a function of the set
k0�. This implies
[non(A)] = O9. Because we have that non(O5) =
 non � ∪ 
 k0 �, we also
obtain [non(O5)] = O9. Therefore, OS,non(A) contains at most the sets A, non(A),
O5, non(O5) and O9.

Analogously, if [A] = O6, then OS,non(A) contains at most the sets A, non(A),
O6, non(O6) and O9.

If [A] = O7, A contains a function of
k0� and a function of
k1�. This state-
ment holds for non(A), too. Therefore [non(A)] = O7. Because [O7] = non(O7) =
O7, OS,non(A) contains at most the sets A, non(A), and O7.

If [A] = O8, A contains functions f1 ∈
 id� and f2 ∈
k1�, and f3 ∈
k0�.
Therefore non(A) and non([A]) contain non( f1) ∈
non� and non( f2) ∈
 k0 �.
Hence [non(A)] = [non([A])] = O9. Thus OS,non(A) contains at most the sets A,
non(A), O8, and O9.

If [A] = O9, the set A contains a function f1 ∈
non� and a function f2 ∈
ki �
for some i ∈ {0, 1}. If A contains f3 ∈
 id�, then we
get [non(A)] = O9. Otherwise, non(A) ⊆ O8 and [non(A)] ∈ {O5, O6, O8}. In all
these three cases non([non(A)]) contains a function of 
 non � and a function of
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 ki � for some i ∈ {0, 1}. Consequently, [non([non(A)])] equals O9. Therefore,
OS,non(A) contains at most the sets A, non(A),
[non(A)], non([non(A)]), and O9.

We now discuss the case that {vel, et} ∩ [A] �= ∅. Then we obtain the relation
{sh, sh′} ∩ non([A]) �= ∅ which implies [non([A])] = P2. Moreover, A contains a
non-self-dual function f1 and a non-linear function f2 (otherwise [A] would contain
only self-dual or only linear functions, which cannot hold by our assumption because
vel and et are neither self-dual nor linear. But then non( f1) is not self-dual and non( f2)
is not linear. Thus [A] is not contained in D3 and not contained in L1. Moreover, A has
to contain a function f3 which depends essentially on at least two variables (otherwise
only functions in 
 id � ∪ 
 non � ∪ 
 k0 � ∪ 
 k1 � could be generated,
which gives {vel, et} ∩ [A] = ∅ in contrast to our assumption). Obviously, non( f3)
also depends on at least two variables. Thus [non(A)] is not contained in O9.
By the Post graph of all closed sets (see Jablonski et al. 1970, page 76), [non(A)] has
to contain a function of

⋃
k≥1 
 gk � or a function of

⋃
k≥1 
 hk �. From this it

follows that {vel, et}∩[non(A)] is not empty. As above, we get that [non([non(A)])] =
P2. Hence OS,non(A) contains at most the sets A, non(A), [A], non([A]), [non(A)],
non([non(A)]), and P2.

We now turn to [A] ∈ {L1, L2, L3, L4, L5} where

L2 = L1 ∩ C2, L3 = L1 ∩ C3, L4 = L1 ∩ C2 ∩ C3, L5 = L1 ∩ D3.

We note that all functions in L4 are self-dual.
Let [A] = L1. Then we have that A ⊆ non[non(A)]. Consequently, we obtain

[non[non(A)] = L1. Therefore OS,non(A) contains at most the sets A, non(A),
[non(A)], non([non(A)]), and L1.

Let [A] = L2. Then the set A contains a non-self-dual function g. Moreover,
id ∈ L2. Hence non(L2) contains non(g) /∈ D3 and non /∈ C2 ∪ C3. Thus we
obtain [non(L2)] = L1. Furthermore, A ⊆ non([non(A)]) which implies the relation
[non([non(A)])] ∈ {L2, L1}. From the above considerations,we obtain thatOS,non(A)

contains at most the sets A, non(A), [non(A)], non([non(A)]), L2, non(L2), and L1.
The case [A] = L3 can be handled analogously, and gives also at most seven sets

in OS,non(A).
Let [A] = L4. Since id ∈ L4, we get non ∈ non(L4) and [non(L4)] = L5.

Moreover, A ⊆ non([non(A)]) which implies [non([non(A)])] ∈ {L4, L5} and that
OS,non(A) contains atmost the sets A, non(A), [non(A)], non([non(A)]), L4, non(L4),
and L5.

Let [A] = L5. Because A ⊆ non([non(A)]), we obtain [non([non(A)])] = L5.
Thus OS,non(A) contains at most the sets A, non(A), [non(A)], non([non(A)]),
and L5.

Finally,we discuss the case [A] ∈ {D1, D2, D3}, where D1 is the set of allmonotone
self-dual functions and D2 = D3 ∩ C2 ∩ C3.

Let [A] = D3. Because A ⊆ non[non(A)], we obtain [non[non(A)] = D3 and that
OS,non(A) contains at most the sets A, non(A), [non(A)], non([non(A)]), and D3.

Let [A] = D1 or [A] = D2. Then id ∈ [A], and therefore non in non([A]), but
it is not monotone, not in C2 and not in C3. Moreover, A and thus non(A) contain
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a non-linear function each. Moreover, for any function f ∈ C2 ∩ C3, we have that
non( f ) /∈ C2∪C3 and non( f ) is not monotone. Since D2 ⊂ D1 ⊂ C2∩C3, again, by
the Post graph of all closed sets, we get [non(A)] = D3. Moreover, [non([A])] = D3
now follows immediately. HenceOS,non(A) contains at most the sets A, non(A), [A],
non([A]), and D3.

By Jablonski et al. (1970), we have above covered all possible cases.
Summarizing, in all casesOS,non(A) contains at most seven sets.We now show that

the numbers 1,2,3,4,5, and 7 are possible as the cardinality of some orbit OS,non(A).
For P2, obviously, we get OS,non(P2) = {P2}. Thus 1 ∈ O(S, non).
For A2 = {sh, vel}, we obtain non(A2) = A2 and [A2] = P2. Consequently,

OS,non(A2) = {A2, P2} and hence 2 ∈ O(S, non).
For A3 = {vel, non}, we have non(A3) = {sh, id}. Furthermore, we get [A3] =

[non(A3)] = P2, which impliesOS,non(A3) = {A3, non(A3), P2} and 3 ∈ O(S, non).
For A4 = {k0}, we obtain the relations non(A4) = {k1}, [A4] =
 k0 �, and

[non(A4)] =
k1�. Therefore

OS,non(A4) = {{k0}, {k1},
k0�,
k1�}

and 4 ∈ O(S, non) hold.
For A5 = {id, k1}, we get the relations non(A5) = {non, k0}, [A5] = O5,

non(O5) =
 non � ∪ 
 k0 �, and [non(A5)] = [non(O5)] = O9. Therefore
we have

OS,non(A4) = {{id, k1}, {non, k0}, O5,
non� ∪ 
k0�, O9}

and 5 ∈ O(S, non).
Let A7 = {g} where g(x, y) = x ∨ non(y). We recall that F∞

4 (and F∞
8 ) is the

set of all functions f satisfying that there is an i such that f −1(0) ⊆ {0, 1}i−1 ×
{0}×{0, 1}n−i (and f −1(1) ⊆ {0, 1}i−1×{1}×{0, 1}n−i , respectively). By Jablonski
et al. (1970), [{g}] = F∞

4 . Let g′ = non(g). Then g′(x, y) = non(x) ∧ y and
[{g′}] = F∞

8 (because the function g′′(x, y) = x ∧ non(y), which is a generator of
F∞
8 , is obtained from g′ by a permutation of variables and vice versa). Obviously, the

function h with h(x, y, z) = x ∧ (y ∨ z) is in F∞
8 , but non(h) is neither in F∞

8 nor
in F∞

4 . By definition, for any n-ary function from the set non(F∞
4 ), there is a j such

that f −1(1) ⊆ {0, 1} j−1 × {0} × {0, 1}n− j . Now it is obvious that non(h) is not in
non(F∞

4 ). By these facts and the infinity of F∞
8 , non(F∞

8 ) differs from A7, non(A7),
F∞
4 , F∞

8 , and non(F∞
4 ). Analogously, we can show that non(F∞

4 ) differs from A7,
non(A7), F∞

4 , F∞
8 , and non(F∞

8 ). Moreover, vel ∈ F∞
4 and et ∈ F∞

8 . Therefore
sh ∈ non(F∞

4 ), sh′ ∈ non(F∞
8 ), and [non(F∞

4 )] = [non(F∞
8 )] = P2. Therefore we

get

OS,non(A7) = {A7, non(A7), F
∞
4 , non(F∞

4 ), F∞
8 , non(F∞

8 ), P2}

and 7 ∈ O(S, non).

It remains as an open problem whether 6 ∈ O(S, non). We conjecture that six does
not belong to O(S, non). The reason for that is that there are only a few cases where
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six can occur (mostly we got that at most five sets are in the orbit of A), and for some
of them we can show that six is impossible.

Corollary 1 With respect to the Kuratowski number the following relations hold:

K(S,− ) = 6, K(S, d) = 4, and K(S, non) = 7.

4 Special closure operators

In the preceding section, we have studied the orbit of superposition and some invo-
lutions. In all cases, the Kuratowski number is smaller than 7 and therefore we only
get very small orbits. We shall now prove that this depends on the closure operator
superposition. If we consider other closure operators on sets of Boolean functions and
the involutions duality or negation, we can obtain arbitrary large Kuratowski numbers
and arbitrary large orbits.

Theorem 4 There is a closure operation c1 such that O(c1, d) = {1, 2, 3,∞}.
Proof We say that f ∈ P2 is a β-function (or γ -function), if f (x, . . . , x) = 1
( f (x, . . . , x) = 0, respectively) for x ∈ {0, 1}. For n ≥ 0 and z ∈ {β, γ }, by
U (z, n), we denote the set of all n-ary z-functions. Obviously, U (β, 0) = {k1} and
U (γ, 0) = {k0}. Hence, for κ ∈ {β, γ }, there is no A such that ∅ ⊂ A ⊂ U (κ, 0).
Moreover, we set

V (β, n) =
n⋃

i=0

U (β, i) and V (γ, n) =
n⋃

i=0

U (γ, i).

We note that the dual of a β-function is a γ -function, and vice versa. Thus
d(U (β, n)) = U (γ, n) and d(U (γ, n)) = U (β, n) for n ≥ 0.

We define c1 by

c1(A) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∅ for A = ∅
V (β, n + 1) for A ⊆ V (β, n), A ∩U (β, n) �= ∅, n even
V (β, n) for A ⊆ V (β, n), A ∩U (β, n) �= ∅, n odd
V (γ, n + 1) for A ⊆ V (γ, n), A ∩U (γ, n) �= ∅, n odd
V (γ, n) for A ⊆ V (γ, n), A ∩U (γ, n) �= ∅, n even
P2 otherwise

We first prove that c1 is a closure operator.
(i) The relations c1(A) ⊆ P2 and A ⊆ c1(A) follow from the definition of c1.
(ii) A′ ⊆ A implies c1(A′) ⊆ c1(A). We distinguish some cases:
If A = ∅, then we also have A′ = ∅, and c1(A′) = c1(A) = ∅ holds.
If A ⊆ V (β, n), A ∩ U (β, n) �= ∅, and n is even, then, we obtain by definition of

c1, c1(A) = V (β, n + 1). Since A′ ⊆ A, we get A′ ⊆ V (β, n). Let r be the maximal
number such that A′ ∩ U (β, r) �= ∅. If r = n, then we get c1(A′) = V (β, n + 1),
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too, and therefore c1(A′) = c1(A). If r ≤ n − 1, then c1(A′) ⊆ V (β, r ′) for some
r ′ ≤ n − 1, which implies c1(A′) ⊂ c1(A).

We can analogously prove that c1(A′) ⊆ c1(A) if

A ⊆ V (β, n), A ∩U (β, n) �= ∅, and n is odd, or
A ⊆ V (γ, n), A ∩U (β, n) �= ∅, and n is even, or
A ⊆ V (γ, n), A ∩U (β, n) �= ∅, and n is odd.

If A is not contained in V (β, n) and not contained in V (γ, n) for some n, then
c1(A) = P2. Therefore c1(A′) ⊆ c1(A) is obvious.

iii) c1(c1(A)) = c1(A). Again, we distinguish some cases:
If A = ∅ then c1(A) = ∅ and c1(c1(A)) = c1(∅) = ∅ and c1(c1(A)) = c1(A) is

true.
If A ⊆ V (β, n), A ∩ U (β, n) �= ∅, and n is even, then we obtain the relation

c1(A) = V (β, n + 1). Because c1(A) ∩U (β, n + 1) �= ∅ and n + 1 is odd, we obtain
c1(c1(A)) = V (β, n + 1) by definition of c1, which proves c1(c1(A)) = c1(A).

If A ⊆ V (β, n), A ∩ U (β, n) �= ∅, and n is odd, then c1(A) = V (β, n). Because
n is odd, c1(c1(A)) = V (β, n), and hence c1(c1(A)) = c1(A).

Analogously, for A ⊆ V (γ, n), we can prove that c1(c1(A)) = c1(A).
If L is not contained in V (β, n) and not contained in V (γ, n) for some n, then

c1(A) = P2. Therefore we have c1(c1(A)) = c1(P2) = P2 = c1(A).
We now determine the orbits of subsets of P2.
If A = ∅ or A = P2, we get Oc1,d(A) = {A}. Therefore 1 ∈ O(c1, d).
If ∅ ⊂ A ⊂ P2 and A is not contained in V (β, n) and not contained in V (γ, n)

for some n, then d(A) satisfies ∅ ⊂ d(A) ⊂ P2 and d(A) is not contained in V (β, n)

and not contained in V (γ, n) for some n. Thus we obtain c1(A) = c1(d(A)) = P2
and Oc1,d(A) = {A, d(A), P2}. If A = d(A), e.g. for A = D3, then 2 ∈ O(c1, d). If
A �= d(A), e.g. for A = {et}, then 3 ∈ O(c1, d).

Let A ⊆ V (β, n), A ∩ U (β, n) �= ∅, and n even. Starting with the closure
operator c1, we obtain the following infinite sequences of sets:

A,

c1(A) = V (β, n + 1),

d(c1(A)) = V (γ, n + 1),

c1(d(c1(A))) = V (γ, n + 2),

d(c1(d(c1(A)))) = V (β, n + 2),

c1(d(c1(d(c1(L))))) = V (β, n + 3),

d(c1(d(c1(d(c1(L)))))) = V (γ, n + 3),

. . .

which proves thatOc1,d(A) is an infinite set. (For the sake of completeness wemention
that the sequence starting with duality gives
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A,

d(A),

c1(d(A)) = V (γ, n),

d(c1(d(A))) = V (β, n)

c1(d(c1(d(A)))) = V (β, n + 1) = c1(A), d(c1(A)), . . .

which is up to first elements the same sequence which was obtained by starting with
the closure operator.)

Analogouslywe can prove thatwe have infinite orbits for sets Awhere A ⊆ V (β, i),
A ∩U (β, n) �= ∅, and n is odd or A ⊆ V (γ, i) for some n.

Since we have covered all possible cases, O(c1, d) = {1, 2, 3,∞} follows.
Theorem 5 For any positive integer n, there is a closure operation c2 such that
O(c2, d) = {1, 3} ∪ {2, 4, . . . , 2n + 2}.
Proof Using the notation of the preceding proof, we define c2 by

c2(A) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅ for A = ∅
V (β, k + 1) for A ⊆ V (β, k), A ∩U (β, k) �= ∅, k even, k < n,

V (β, k) for A ⊆ V (β, k), A ∩U (β, k) �= ∅, k even, k ≥ n,

V (β, k) for A ⊆ V (β, k), A ∩U (β, k) �= ∅, k odd,
V (γ, k + 1) for A ⊆ V (γ, k), A ∩U (γ, k) �= ∅, k odd, k < n,

V (γ, k) for A ⊆ V (γ, k), A ∩U (γ, k) �= ∅, k odd, k ≥ n,

V (γ, k) for A ⊆ V (γ, k), A ∩U (γ, k) �= ∅, k even,
P2 otherwise

Analogously to the proof of Theorem 4, we can show that c2 is a closure operator.
If A = ∅ or A = P2, we obtain Oc2,d(A) = {A} and thus 1 ∈ O(c2, d).
If A is not contained in some V (β, k) and not contained in some V (γ, k), k ≥ 0,

then d(A) is also not contained in some V (β, k) and not contained in some V (γ, k),
and we obtainOc2,d(A) = {A, d(A), P2}which gives 2, 3 ∈ O(c2, d) (as in the proof
of Theorem 4).

If A ⊂ V (β, k), A ∩U (β, k) �= ∅, and 0 ≤ k < n, then we obtain

Oc2,d(A) = {A, d(A)} ∪ {V (β, k) | k ≤ r ≤ n} ∪ {V (γ, k) | k ≤ r ≤ n}.

We show this fact only for even k and even n (the proof for the other cases can be
given analogously). If we start with c2, we get the following sets (which are obtained
in succession)

V (β, k + 1), V (γ, k + 1), V (γ, k + 2), V (β, k + 2),

V (β, k + 3), V (γ, k + 3), . . . ,

V (γ, n − 2), V (β, n − 2), V (β, n − 1), V (γ, n − 1),

V (γ, n), V (β, n), V (β, n), V (γ, n), V (γ, n), V (β, n), . . . ,
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and if we start with d, we get d(A), V (γ, k), V (β, k), V (β, k + 1) and continue as
above (where we started with c2). Therefore

Nc2,d(A) = 2(n − k + 1) + 2.

If A = V (β, k) and 0 ≤ k < n, we obtain Nc2,d(A) = 2(n − k + 1).
If A ⊆ V (γ, k) and k < n, Nc2,d(A) ∈ {2(n − k + 1), 2(n − k + 1) + 2} follows

by slight modifications of the above consideration.
If A ⊂ V (β, k) and A ∩ U (β, k) �= ∅ or A ⊂ V (γ, k) and A ∩ U (γ, k) �= ∅ for

some k ≥ n, then we obtainOc2,d(A) = {A, d(A), V (β, k), V (γ, k)}. If A = V (β, k)
or A = V (γ, k) for some k ≥ n, then Oc2,d(A) = {V (β, k), V (γ, k)} holds.

Summarizing these facts, we obtain O(c2, d) = {1, 3} ∪ {2, 4, . . . , 2n + 2}.
Theorem 6 For any positive integer n, there is a closure operation c3 such that
O(c3, d) = {1, 2, 3} ∪ {5, 7, . . . , 2n + 3}.
Proof We define c3 as follows:

c3(A) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∅ for A = ∅
V (β, k + 1) for A ⊆ V (β, k), A ∩U (β, k) �= ∅, k even, k < n,

V (β, k) for A ⊆ V (β, k), A ∩U (β, k) �= ∅, k odd, k < n,

V (γ, k + 1) for A ⊆ V (γ, k), A ∩U (γ, k) �= ∅, k odd, k < n,

V (γ, k) for A ⊆ V (γ, k), A ∩U (γ, k) �= ∅, k even, k < n,

P2 otherwise

Now we follow the lines of the preceding proof; the only difference is that, for
A ⊆ V (β, n) and A ⊆ V (γ, n) we additionally get P2 in Oc3,d(A).

We mention that statements analogous to the Theorems 4, 5 and 6 also hold for
the involution non. We only do the following changes: Instead of β-functions we take
functions from C2 ∩ C3 and instead of γ -functions we take functions which are not
in C2 ∪ C3. Then we have the property that the negation of a function in C2 ∩ C3 is
not in C2 ∪ C3 and vice versa.

We note that we cannot obtain arbitrary sets of natural numbers as orbits with
respect to some closure operator and duality or negation. This comes from the fact
that the following statement was shown in Dassow (2019): Let c be a closure operator
on X and i an involution on X such that A′ ⊆ A ⊆ X implies i(A′) ⊆ i(A). If
KX (c, i) ≥ 6, then

{
2k + 1 | 0 ≤ k ≤ KX (c, i)

4
− 1

}
⊂ OX (c, i)

or

{
2k | 1 ≤ k ≤ KX (c, i)

4
− 1

}
⊂ OX (c, i).

Consequently, because d and non satisfy the suppositions for i , certain “small” num-
bers have to be in O(c, d) and O(c, non).
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5 Conclusion

In this paper we started the investigation of the Kuratowski number K(c, i) and the
orbit O(c, i) for some closure operators c on the set P2 of all Boolean functions and
some involutions i on P2.

Especially we have determined the orbits O(S,− ) and O(S, d) where S is the
operator given by the closure defined by superposition and the involution complement
or duality, respectively. For superposition and the involution negation, we have proved
that K(S, non) = 7 and with respect to the orbit O(S, non), we have only left open
whether or not 6 ∈ O(S, non).

Furthermore, we have presented some closure operators c where the orbitsO(c, d)

and O(c, non) are arbitrarily large. It remains as an open problem to characterize the
sets of natural numbers which can occur as orbits O(c, i).

Furthermore, we mention that it remains to study the Kuratowski number and the
orbits if the basic set is the set Pk of all functions which map {0, 1, 2, . . . , k−1}n into
{0, 1, 2, . . . , k − 1} for some n, i. e., of all functions of k-valued logic. By our results
and their proofs (the functions

q0(x1, x2) =
{
0 for x1 �= x2
x1 + 1 mod k for x1 = x2

and

q1(x1, x2) =
{
1 for x1 �= x2
x1 + 1 mod k for x1 = x2

serve as sh and sh′, respectively), we obtain

OPk (S,− ) = {2, 4, 6} and K(S,− ) = 6.

Let f be a unary function of Pk such that f ( f (x)) = x for all values x in
{0, 1, 2, . . . , k − 1}. Then we can define an f -duality d f by

(d f (g))(x1, x2, . . . , xn) = f (g( f (x1, f (x2), . . . , f (xn)))

and a “negation” (non f (g))(x1, . . . , xn) = f (g(x1, . . . , xn)). We have no results
concerning these involutions.
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