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Abstract
Purpose For the evaluation and rupture risk assessment of intracranial aneurysms, clinical, morphological and hemodynamic
parameters are analyzed. The reliability of intracranial hemodynamic simulations strongly depends on the underlying models.
Due to the missing information about the intracranial vessel wall, the patient-specific wall thickness is often neglected as well
as the specific physiological and pathological properties of the vessel wall.
Methods In this work, we present a model for structural simulations with patient-specific wall thickness including different
tissue types based on postmortem histologic image data. Images of histologic 2D slices from intracranial aneurysms were
manually segmented in nine tissue classes. After virtual inflation, they were combined into 3D models. This approach yields
multiple 3D models of the inner and outer wall and different tissue parts as a prerequisite for subsequent simulations.
Result We presented a pipeline to generate 3D models of aneurysms with respect to the different tissue textures occurring
in the wall. First experiments show that including the variance of the tissue in the structural simulation affect the simulation
result. Especially at the interfaces between neighboring tissue classes, the larger influence of stiffer components on the stability
equilibrium became obvious.
Conclusion Thepresented approach enables the creation of a geometricmodelwith differentiatedwall tissue. This information
can be used for different applications, like hemodynamic simulations, to increase the modeling accuracy.
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Introduction

An important aspect in the research of intracranial aneurysm
(IA) development and rupture risk assessment is the simula-
tion of blood flow inside the aneurysm including the analysis
of hemodynamic characteristics. In ruptured IAs, a larger
mean velocity, mean and maximum (flow-induced) wall
shear stress and mean and maximum oscillatory shear index
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were found [7]. Other studies show contradicting results: Jou
et al. [14] reported similarmaximalwall shear stresses in rup-
tured and unruptured aneurysms and found that a large part
of ruptured aneurysms had low wall shear stress. Cebral et
al. [3] associated low flow conditions with degenerative his-
tologic changes of the aneurysm wall. Model simplifications
impair the results of numerical simulations, e.g., related to
cerebral flow rates or vital parameters under physical activity
[2].

Themajority of those studies based on hemodynamic sim-
ulations assume arterial vessel walls to be rigid, i.e., with
infinite resistance. This is very common as it reduces the
modeling effort and avoids the need forwall propertieswhich
can hardly be determined. Wall movement is considered to
be small and, as a result, has a minor impact on hemody-
namic parameters [6]. However, only the inclusion of the
wall itself in the simulation model enables the analysis of the
intramural wall stresses and thus the location where rupture
takes place. Intracranial aneurysmwalls are characterized by
strong heterogeneity [10]. In a previous work, the inclusion
of patient-specific vessel wall thickness for fluid simulation
yields much higher wall stress values for the IA’s rupture
site [26]. The wall thickness was extracted with an industrial
micro-CT scanner. However, no patient-specific wall prop-
erties were assigned, and the whole wall was modeled as
homogeneous structure. With the help of histology, a clas-
sification of the wall composition can be conducted. This
includes the analysis of local properties like plaques or col-
lagen deposits.

Even before considering patient-specific wall thicknesses
in aneurysms, earlier studies focused on the wall thick-
ness of vessels. Bazilevs et al. [1] generated a vessel model
with variable wall thickness. Voß et al. [27] extracted a
vessel bifurcation of the circle of Willis postmortem and
scanned it using optical coherence tomography. The images
resolved the local wall thickness and were combined to a
3Dmodel. This model was compared to others with constant
or diameter-dependent wall thickness using fluid–structure
interaction. The results revealed a strong impact on the local
wall stress distribution. In finite element models of the artery
wall different plaque types (hypercellular, hypocellular and
calcified) had a significant influence on the stresses inside the
wall. The wall stress was reduced with the stiffer calcified
plaque compared to cellular plaques [24]. Fortunato et al. [8]
found that calcification influences the behavior of cerebral
aneurysm tissue. They generated an aneurysm model with
calcification from micro-CT and multiphoton images. Based
on these studies, we expect the stress inside the aneurysm
wall to be influenced by the different tissues occurring in
the wall. In this study, we present detailed tissue segmenta-
tion and aneurysm wall model generation from histologic
images. These are the prerequisites for future studies on
3D aneurysm wall analysis. We use postmortem collected

whole aneurysms instead of intraoperative samples, which
are restricted to the aneurysm dome. The data collection
involved the analysis of 200 human cadavers by the Forensic
Institute to find and extract intracranial aneurysms with their
parent vessels. This allows analysis of the transition from
neck to dome. The focus of this work is the tissue segmenta-
tion and model generation.

To understand the processes of wall degeneration, aneury-
smdevelopment and attributes of rupturedwall-like calcifica-
tion and fiber direction are combined with simulations. This
requires the extraction of wall attributes and the combination
with a 3D model.

The evaluation of histologic data is usually carried out in
2D. 3D models have to be created based upon the 2D data.
Recently, Tomoaki et al. [23] have reconstructed a 3D model
of an anterior anorectum from histologic images stained with
Elastica van Gieson. After manual registration and manual
segmentation, they used commercial 3D reconstruction soft-
ware.Kugler et al. [17] described a landmark-based approach
to register histologic images of different stains to generate a
3D histologic image. Based on multiple histologic datasets,
Kraut et al. [16] constructed a 3D atlas of the human tha-
lamus using affine registration and elastic deformation to
refine a model from one dataset. In our previous work, the
reconstruction of a 3D IA model from several 2D histologic
images included a multilayer segmentation in intima, media
and adventitia [21]. As these layers may dissolve during the
progression of IAs, this segmentation may not be applicable
for all IAs. Frösen et al. [9] and Kataoka et al. [15] showed
that changes in the aneurysm wall (de-endothelialization,
luminal thrombosis, smooth muscle cell proliferation, T-cell
and macrophage infiltration) precede rupture of IAs. In addi-
tion, rupture was associated with structural damages in the
aneurysmwall and inflammatory cell invasion. Costalat et al.
[5] found that the wall of unruptured IAs is more rigid than
the wall of ruptured ones. Furthermore, the local stiffness
depends on the load direction [25].

Frösen et al. [9] introduced four intracranial aneurysm
wall types: (A) linearly organized smooth muscle cells and
intact endothelium, (B) thickened wall, with disorganized,
proliferating smooth muscle cells, occasionally bearing a
luminal fresh or organizing thrombus, (C) thick but decellu-
larized of former myointimal hyperplasia (MH) or organized
thrombus and (D) very thinwall, decellularized,with an orga-
nized luminal thrombus. This classification was used in a
previous aneurysmmodel [21]. It has several limitations: The
wall types are only defined for the aneurysms and not for the
parent vessel and in aneurysms the wall types can overlap,
resulting in an ambiguous segmentation. To use character-
istic tissue values for structural simulations (like Young’s
modulus), the segmentation should be unambiguous.

In some aneurysms, a thrombus can be found and thus
should be included in the aneurysm model. Traditionally, a
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Fig. 1 Postmortem collection of intracranial aneurysms

fresh thrombus can be divided into white thrombi (mainly
composed of fibrin and platelet aggregates) and red thrombi
(mainly being enriched in fibrin and erythrocytes) [18]. In
this regard, Wilson et al. [28] analyzed thrombi in abdom-
inal aortic aneurysms. They found that the fresh thrombus
of aneurysms is biologically active and cannot be correctly
modeled as homogeneous inert material. Older thrombus
becomes organized. Intracranial aneurysms contain throm-
bus of different states [9,10]. With further insight into the
changes in the aneurysm wall tissue, treatment might be
improved with pharmacological therapy [9].

In the present study, a newmodel based on different tissue
textures is introduced. It is based on histologic image data
and applied to structural simulations of two aneurysm seg-
ments. The tissue analysis is more detailed than the previous
classification by Frösen et al. [9] based on combinations of
these features and is suitable for the aneurysm as well as the
parent vessel.

Materials andmethods

For this study, three IA datasets were available andwere used
for tissue classification and subsequent segmentation of dif-
ferent tissue parts. The data were collected in a pathological
study where 200 human cadaver were analyzed. If present,
intracranial aneurysm were extracted as shown in Fig. 1 and
Fig. 2. Segments of these datasets were then used to create
reduced 3D models to prove the applicability for structural
simulations.

The aneurysms were collected postmortem in coopera-
tion with the Forensic Institute of the University Hospital
Magdeburgwith approval of the local ethics committee.After
harvesting, the specimens were stained with hematoxylin
and eosin (H&E). Each specimen contained the IA dome,
neck and the parent vessel. The specimens were embedded

Fig. 2 Extracted intracranial aneurysm and histologic image

in paraffin, sliced axial to the aneurysm sac and scanned with
a Hamamatsu Nanozoomer (Hamamatsu Photonics, Hama-
matsu, Japan) resulting in between 51 and 66 slices each.
The 2 − µm-thick slices are 100µm apart. More informa-
tion about the image acquisition can be found in [11].

Tissue classification in histologic images

The digitalized whole slide images were utilized for tissue
texture classification; see Figs. 3 and 5. Taking into account
the versatility of the local histologic changes in the aneurysm
wall, a non-overlapping segmentation solely based on the
images was chosen.

Based on the three IA datasets, we defined nine tissue tex-
ture classes visible in the H&E stained whole slide images.
This categorization was discussed and refined with twomed-
ical experts (R.T. and S.W.) and is presented in Fig. 4. The
classes can be described as follows:

– Mixed textures (1) include all areas that cannot be clas-
sified into one of the other classes. This includes unusual
findings and areas where a reliable identification is not
possible. In the patch in Fig. 4, infiltrating red blood cells
between connective tissue bundles are shown.

– Inflammatory cells (2) show regions with an increased
amount of inflammatory cells.

– Myointimal hyperplasia (3) (MH)
– Degenerated wall (4) showswall tissues of the aneurysm
wall with signs of wall degeneration, defined as loss of
mural cells.

– Decellularized organizing thrombus (OT)/MH (5) shows
decellularized tissue. In histologic images, the origin of
this tissue is difficult to determine.
Three textures are used to describe the thrombus:

– Red thrombus (6) (RT), i.e., a fresh thrombus with a
lot of red blood cells.
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Fig. 3 Depiction of the histologic 2D image of a H&E stained intracra-
nial aneurysm section and corresponding segmentation. Six different
tissues were identified in the image: blue: myointimal hyperplasia,

green: degenerated wall, yellow: white thrombus, red: red thrombus,
pink: decellularized organizing thrombus and gray: mixed textures

– Organizing thrombus (7) (OT).
– White thrombus (8) , i.e., a thrombus made of fibrin
with very few red blood cells.

– Intact wall (9) shows intact wall tissuewith linearly orga-
nized mural cells, of most likely smooth muscle cells
based on the morphology and location.

3Dmodel generation

Based on the histologic whole slide images and the presented
tissue characterization, we carried out manual segmenta-
tions of the different tissue classes and built 3D models. Our
pipeline is presented in Fig. 6.
In order to use a surface model from an arbitrary image
modality for any kind of fluid or structural simulation, it
must meet certain requirements. The surface must be closed
and should not contain any non-manifolds or duplicate faces
for easy processing. In addition, unrealistically sharp edges
must be avoided; otherwise, this can lead to singular points
with locally wrong solutions. But at the model edges, which
represent a system boundary, a clear edge is necessary. These
are, for example, the virtual slice planes where a model sec-
tion is cut out from the surrounding structure. Therefore, a
separate boundary condition is applied at these cut planes,
which requires a clear demarcation from other boundaries
like mechanically free surfaces.
The first step is the segmentation of the histologic images.
Different segmentations were carried out manually: a seg-
mentation of the inner and outer contour of the IA’s walls and
a segmentation of the different tissue classes, as described in
“Tissue classification in histologic images” section. While
the histologic images contain small details, like cell nuclei,
the segmented images comprise larger, uniformly colored
areas. Therefore, the image resolution is reduced by 85%.
On the segmented images, a virtual inflation as described
by Glaßer et al. [11] is performed. For the virtual inflation,

the inner contour is projected to a circle in order to account
for deflation during the postmortem explanation of the spec-
imens. We do not use the perfect circular inner contour, but
use the interpolation step of 4/10, which was empirically
determined to be a suitable interpolation step.
After the virtual inflation, the contours of the segmented areas
are determined. For each tissue class, a binary mask is gen-
erated. Next, a connected component analysis is applied to
the binary mask and the boundaries of each component are
extracted with the Moore neighbor tracing algorithm using
Jacob’s stopping criteria [12]. As a result, we obtain closed
2D contours for each 2D histologic whole slide image and
the comprised tissue categories.
The next step is a point cloud generation from these 2D con-
tours that represent different tissue types. During the slicing
and scanning of the slides, the orientation of each individ-
ual histologic slice can vary. Therefore, an affine registration
using the coherent point drift algorithm [19] with up to 40
iterations is carried out. After registration, the algorithm
searches for corresponding contours in consecutive slices.
The contours are re-sampled to have the same number of
points as the contours of the previous slide. The distance
between the centers of two contours as well as the average
distance between corresponding points of two contours is
calculated. Only contours of the same tissue class are con-
sidered for matching. Matching contours are summarized in
3D point clouds, where the z-coordinate depends on the slice
number and slice distance.

The resulting point clouds have flat endings. While it is
not visible in the data, we assume that abrupt changes are
uncommon in human tissue. To generate a realistic model
and avoid artifacts during simulation due to unnatural sharp
edges, a cap is added to the start and end of the point clouds.
The first and last contour of a point cloud are determined by
the smallest and largest z-values, respectively. In addition,
their midpoints are determined. While keeping the midpoint
of the contour constant, several smaller contours are gener-
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Fig. 4 Detailed, non-overlapping tissue texture classification for histologic images of intracranial aneurysms

Fig. 5 Depiction of another histologic 2D image of a H&E stained
intracranial aneurysm section and corresponding segmentation. Eight
different tissues were identified in the image: blue: myointimal hyper-

plasia, green: degenerated wall, yellow: white thrombus, red: red
thrombus, gray: mixed textures, purple: intact wall, orange: inflamma-
tory cells and brown: organizing thrombus

ated and added above/below the last/first contour. The factor
for decreasing the contour is based on a parabolic function,
and therefore, the resulting smaller contours form a cap. For
this procedure, the midpoint has to be inside the contour. To
ensure this, the contour is transformed to a binary image and
a thinning algorithm yielding the centerline of the shape is
applied [12]. The points of this centerline are the candidates
for themidpoint of the contour. The point with the largest dis-
tance to the nearest contour point is chosen as the midpoint
(see Fig. 7).
In the last step, each point cloud is converted to a mesh by
iterative fitting a start mesh to the points [20]. Due to tears in
the tissue, folding of the tissues and impurities the contours
from the images and the meshes might contain some noise.
The meshes were manually smoothed to correct these prob-

lems. This results in meshes of the inner and outer contour
and several meshes of larger regions of the same tissue type.
Small intersections of the meshes may occur due to the mesh
generation and smoothing. This can cause problems in appli-
cations like structural simulations. Boolean operations were
used in this study to clear intersections and create distinct
interfaces between meshes.
A structural simulation is generally based on simplifications
andmodeling assumptions. The solution is calculated only at
discrete points. The number of these solution points depends
on the spatial discretization and affect the computational
effort. Therefore, the underlying surface model should only
contain that level of detail, which can be spatial resolved by
the simulation. In this investigation, structures smaller than
1mm3 are neglected.
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Fig. 6 Concept for the reconstruction of 3D meshes for the patient-
specific wall thickness and wall composition based on the segmented
2D histologic images. a image segmentation, b virtual inflation of seg-

mented images, c contours derived from segmented and inflated images,
d contours combined to 3D point clouds, e surface meshes from point
clouds

Fig. 7 a Last contour of a tissue segment (contour of the tissue in the
last slide where this tissue segment was visible) as 3D point cloud; b
corresponding binary image, red line: points left after thinning, blue

circle: center of the contour; c example of a dome added to a contour
in 3D, red: top contour blue: added points for the dome

Structural simulation

The high level of detail provided by the tissue modeling and
resulting large number of meshes are challenging for simula-
tions. In order to demonstrate a possible application of such
detailed models, we evaluated its impact based on structural
simulations. Two reduced models consisting of three (Model
A) and ten slices (Model B) are imported in the commercial
software STAR-CCM+ 13.06 (Siemens Product Lifecycle

Management Software Inc., Plano, TX, USA). In both cases,
one simulation includes several meshes and different tissue
classes representing the heterogeneous wall state. Table 1
lists the tissue classes (only those included in the reduced
models, some tissue classes did not occur in the slices used
for the reduced models) and their elastic properties. A linear
elastic material is considered (Poisson’s ratio of 0.45 for all
classes). Each configuration is compared to a homogeneous
one which consists of only one tissue class, intact wall.
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Table 1 Young’s moduli of all
tissue classes used in the
simulation. Values for classes
without literature information
were approximated based on
their visual texture by a domain
expert. (tissue classes 2, 4 and 7
were not present in the model)

Tissue class Young’s modulus (kPa) Reference

1 - Mixed textures 85.17 (Average of tissue 8 and tissue 9)

3 - Myointimal hyperplasia 109.54 (1/4 of tissue 8, 3/4 of tissue 9)

5 - Decellularized OT/MH 72.99 (Average of tissue 3 and tissue 8)

6 - Red thrombus 18.22 (Half of tissue 8)

8 - White thrombus 36.44 Noble et al. [22]

9 - Intact wall 133.9 Noble et al. [22]

Fig. 8 Resulting model for one
of the aneurysm datasets
(without outer mesh) from two
different views. White: mesh of
inner wall, colored meshes:
selected different tissue
segments; the model is based on
22 consecutive slices, distance
between slices 100µm, image
resolution per slice around
18500× 6000

The reduced models are discretized by tetrahedral finite
elements cells with linear basis functions. Large geometric
deformations are enabled. The following boundary condi-
tions are defined: The outer wall is a free surface, the inner
wall is subjected to the intravascular pressure, and the slice
area has a symmetry condition to mimic the link to the con-
nected tissue.

Results

Based on the proposed pipeline, highly resolved histologic
images of IAwall can be converted to a 3Dmodel preserving
the wall composition. Utilizing the introduced classification
of tissues textures into nine different types a high level of
heterogeneity is maintained. Each IA model consists of two
global meshes that mark the inner and outer wall. In between
them, a number of smaller adjacent meshes representing
the individual sections of different tissue types are located.
Finally, the models meet all requirements to be applied to
various visualization, quantification or simulation purposes.

Most tissue segments can only be traced a few slices at
most, resulting in small meshes. While some tissue changes
are found in the parent vessel, most changes occur in the
aneurysm itself. The model for the aneurysm consists of 94
meshes of tissue segments, a mesh of the inner aneurysm
wall and a mesh of the outer aneurysm wall. A selection of
thesemeshes is shown in Fig. 8. The wholemodel was gener-

ated based on 22 consecutive slices. As the mesh generation
requires presence of the tissue in consecutive slices, smaller
tissue segments are not captured and some volumes between
the outer and inner mesh are not covered by tissue meshes.

Figures 9 and 10 show the results of the structural simu-
lation based on the reduced models A and B. On the left, the
homogeneous configuration is shown. On the right, the het-
erogeneous configuration consisting of up to seven different
tissue classes is depicted. Wall stress patterns are identical
in regions that consist of intact tissue only. The clustering
of several tissue classes causes a more heterogeneous wall
stress distribution. Due to varying mechanical tissue elas-
ticity, the individual components are able to compensate for
the load at different levels. The stiffer components have a
larger influence on the stability equilibrium than the flexible
ones. This is particularly obvious in the stress transitions at
interfaces between neighboring tissue classes. The intralu-
minal pressure leads to local deformations of the aneurysm
wall andmechanical stresses inside the tissue. Increased pres-
sure results in increased wall stress up to the maximum wall
strength. Stress above this limit will cause rupture.

Discussion

We defined nine classes of tissue textures found in histologic
images of intracranial aneurysms, which can be identified
solely based on the pattern. Based on the data collected from
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Fig. 9 Reduced models A and B of the patient-specific vasculature
as homogeneous configuration and heterogeneous configuration. Top:
model composition from different tissue classes; middle: resulting

mechanical wall stress distribution of the structural simulations of the
wall under intraluminal blood pressure; bottom: detailed view of the
local wall stress distribution

Fig. 10 Strain fields of the models
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serial sectionswewere able to create a 3Dmodel representing
these different tissue classes in intracranial aneurysm and
show that variance of tissue in the structural simulation affect
the simulation result.

This work only includes H&E stained images. A variation
of stainingswould be desired to getmore reliable information
about the different tissues and cell types. However, the spec-
imens were acquired postmortem and are only very rarely
available. The segmentation could be further refined. For
example, without cell-type-specific stainings the definitive
identification of inflammatory cells is complicated. Also, the
degenerated wall class could be divided into adventitial and
luminal side. Further analysis of the location of the defined
tissue class within the aneurysm wall could allow division in
decellularized OT and decellularized MH.

While histologic images provide an excellent in-plane res-
olution, the large gaps (100µm in this study) between the
slices limit the resolution in the third direction. Furthermore,
if the volume of a tissue part is too small compared to the
gap between the slices, it may be only visible in one slice
and cannot be traced in the previous or following slice. Nev-
ertheless, textures could be mostly traced through at least a
few slices.

The reconstruction of different tissues in IAs is complex
due to the local remodeling and thrombosis of thewall, which
change tissue locally over time and lead to a heterogeneous
tissue class representation. Frequent changes in the tissue
occur and large regions of the same texture are rare.

Thus, the expressiveness of themodel is limited. In reality,
the changes between tissues in the wall are more blurred than
suggested by the clear borders presented between classes of
the model. For the generation of meshes, it is necessary to
define clear borders between tissue classes even if there is a
smooth transition between them. In the future, this might be
addressed by adding transition classes and creating volume
meshes with cell-specific properties.

The tissuewithin a single tissuemesh is not further refined
andmodeled as uniform.More detailed information like fiber
direction could further improve the model.

Here, the luminal shape has been artificially inflated
round. In reality the aneurysm lumen comes with different
irregularities. In vivo information of the lumen shape could
improve the aneurysm model.

Aneurysm walls are pathological and therefore differ-
ent from healthy vessel walls. Accordingly, the models for
healthy tissues are only partially transferable to intracranial
aneurysms. Therefore, detailed and individual modeling is
essential to assess the individual strength of an aneurysm.
In the future, this could comprise the differentiation into
aneurysm-specific tissue types, the morphological condition
and mechanical properties, including failure limits. The sim-
ulation results of the reduced models serve as examples, how
these aspects affect the simulation outcome. The more pro-

nounced the heterogeneity of the wall structure, the more
heterogeneous is the distribution of wall stresses. Realis-
tic and reliable simulations require advanced wall models.
They are based on the simple concept that aneurysm rup-
ture represents the moment of wall stress exceeding wall
strength. Therefore, knowing the wall morphology, local
mechanical properties and loads (intravascular pressure and
flow-induced shear) can lead to detailed models of rupture
probability. This study represents early steps toward such
modeling approaches. The presented finite element simula-
tions have limitations. Fiber orientation or complex material
behavior are not represented by the isotropic, linear elastic
model. In addition, the boundary/loading conditions are sim-
plified. However, they do illustrate the difference between a
homogeneous and a heterogeneous wall model. While this
study focuses on the aneurysm wall only, future investiga-
tions might also compare aneurysm tissue and parent vessel
tissue as well as resulting stresses.

Further validation of the model shape and wall thickness
needs a reference model of the aneurysm before slicing.
Unfortunately, that is not available for this dataset.

Thedetailedmodels presented here are basedonhistologic
images. Currently used diagnostic images do not provide the
same level of detail. The wall tissue thickness and calcifica-
tion could be also captured with micro-CT [4]. This avoids
the problem of deformation of the tissue during the slide
preparation and image registration as necessary for themodel
based on histologic images. While the model generation is
simpler, the information about the vessel wall tissue is very
limited.However, new imaging techniques like optical coher-
ence tomography might allow detailed vessel wall imaging
in the future and make simulations with patient-specific wall
composition possible [13].

The presented model generation could be useful for other
aneurysms (e.g., aortic and popliteal aneurysm) as well as
stenoses and plaques in coronary arteries.

Conclusion

We presented a classification of intracranial aneurysm wall
tissue textures in histologic images. Based on this classifi-
cation, a pipeline for the generation of a detailed aneurysm
model is described. The model consists of several meshes
representing different tissue texture classes. These are used in
structural proof-of-concept simulations. Stiffer components
contribute more to the stability than flexible tissue, which
leads to relevant differences between simulations of homo-
geneous and heterogeneous walls.
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