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0.1. Abbreviations 3

0.1 Abbreviations

BBGKY Bogolyubov, Born, Green, Kirkwood, Yvon (hierarchy)
CI configuration interaction (method)
DFT density functional theory
DMFT dynamical mean-field theory
ECP effective core potential
ERI electron repulsion integral
FFT fast Fourier transform
GW approximation for the self-energy Σ(12) = iG(12)W (1+2)
G0W0 simplified GW approximation, G and W are computed from the LDA

or HF calculations.
GW0 simplified GW approximation, G is involved in self-consistency loop,

while W is computed from the LDA or HF calculations.
HF Hartree-Fock approximation
HOMO highest occupied molecular orbital
HRR horizontal recurrence relation
lanl2dz Los Alamos National Laboratories double zeta (basis set)
LCAO linear combination of atomic orbitals
LDA local density approximation
LTH linearized time-dependent Hartree (approximation)
LUMO lowest unoccupied molecular orbital
MBPT many-body perturbation theory
ODE ordinary differential equation
ph particle-hole (excitation)
RPA random phase approximation
RHF restricted Hartree-Fock (method, approximation)
RHS right-hand side
RWA rotating wave approximation
SCF self-consistent field
SHG second harmonic generation
TBRIM two-body random interaction model
TDDFT time-dependent density functional theory
TDHF time-dependent Hartree-Fock (approximation)
TDLDA time-dependent local density approximation
TR-2PPE time-resolved two photon photoemission
VRR vertical recurrence relation

0.2 Units

In this thesis we adopted the following conventions:

• Formulae for the observables are shown in SI units in order to make them comparable with
experimental results.

• For the abstract quantities that cannot be measured in experiments like operators, Green’s
functions, Hamiltonians etc. we use a system of units in which they look most naturally.
In the case of cluster physics this is atomic units.
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• Interatomic distances in clusters are shown in Å (1 Å=1 · 10−10 m).

• Energy levels, photon energies are shown in eV. (1 eV= 1.602188 · 10−19 J).

Throughout the text we use atomic units of length, energy, time etc. The atomic unit of length
is the so-called Bohr radius

1 aB = h̄2/me2 = 0.529 · 10−10 m = 0.529 Å.

The atomic unit of energy (so called Hartree) is

1 Hr = me4/h̄2 = 27.21 eV.



Chapter 1

Introduction

The success of physics as a science can be explained to a large extend by its refusal to build
a complete picture of the whole world and by its general method to reduce complicated
phenomena to simple models. The most representative example closest to our discussion of
this is, probably, scattering theory. We have initially a target (elementary particle, atom or
cluster in our case) and a particle interacting with this target (another elementary particle,
electron or photon). Based on the initial information about the position and velocity of
the particles the scattering theory predicts the final state of the system after the inter-
action process has been completed. The processes, that happened during the interaction
normally are not considered to be important and are assumed to be instantaneous. In the
application to the interaction of an atom with light, normally, one uses the terminology
that the atom absorbs the photon and goes to the excited state. The energy of the final
excited state, as well as a ground state can be computed on different levels of theory, for
example configuration interaction (CI), that takes into account the internal properties of
the system such as the number of electrons, spin-multiplicity etc., but does not care about
the excitation process itself.

Although the many-body problem of the electrons in an atom, molecule, or cluster is not
solvable in general, many approximate methods have been developed to treat these systems
approximately. The oldest, but still in many cases reliable Hartree-Fock approximation,
treats electrons on the mean-field level. Attempts to go beyond that, in the many-particle
theory terminology, to take account of the correlations — the part of the electron energy,
not taken into account in the mean-field approach – have lead to the development of
density functional theory (DFT). This approach owes its origin to the Hohenberg-Kohn
theorem, published in 1964, which demonstrates the existence of a unique functional which
determines the ground state energy and density exactly. The theorem does not provide
the form of this functional, however. One has to use some approximation to derive it for
simple systems such as the homogeneous electron gas, and then to transfer this dependence
on the real systems. The diagram technique of many-body perturbation theory provides
necessary tools for that.

There is, however, one question, that has only recently gained sufficient attention,
namely, what happens to the system between the initial and final state. The answer
requires the extension of the model, that is exhausted by describing only static properties.
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6 Chapter 1. Introduction

The word transition must now acquire a deeper meaning, revealed in life-times of the states,
typical switching speeds, no longer being something, that happens instantly and traceless.
There are two cases that can be described relatively easy in the framework of perturbation
theory: the limit of instantaneous disturbance and the limit of slowly varying perturbation.
The intermediate situation, when the time scale of the excitation is comparable with the
speed of internal processes in the system, is the most interesting, but at the same time,
the most difficult one.

The systems under investigation in this work are metallic clusters. Our interest in
metallic clusters is raised by the recent advances in nanotechnology, fabrication and inves-
tigation of quantum dots, improvement of quantum chemical ab initio methods as well as
of computational facilities, which enable the modelling of hundreds of atoms. On the other
hands progress in technology with its steady tendency to the miniaturization is constantly
demanding for novel materials. Clusters, that may be considered to form a new phase of
materials lying between macroscopic solids and microscopic particles such as atoms and
molecules, possess a large number of physical properties making them so attractive for
future applications. Among them stands out a large flexibility in changing their qualities
by varying their geometry and size. Addition of even a single atom may change the elec-
tronic structure of the cluster drastically. Clusters with certain numbers of atoms (magic
numbers) are very stable due to completion of atomic-like electronic shells. Increasing the
number of atoms by one then leads to the formation of a new incomplete shell, lowering
the stability. Metallic clusters inhere the high density of electronic states from their bulk
material counterparts combining it with seemingly contradictory large band-gap peculiar
to insulators and semi-conductors.

To better realize the typical time scales in this kind of systems let us consider as an
example a NaN cluster interacting with a laser field. Sodium is a material that is often
used for comparison of the theoretical results with experiments because of its relatively
simple electronic structure, which makes it an almost perfect realization of the free electron
gas model. There are several relaxation mechanisms, that take place during and after the
excitation: electron-electron and electron-plasmon scattering, generation of phonons. They
can be described by the relaxation times τel, τp, τph respectively.

To estimate the typical time of electron-electron interaction we can use perturbation
theory, which in the limit of a small electron density parameter rs (so called Wigner-Seitz
radius1) and a small quasiparticle energy E with respect to the Fermi energy EF is reduced
to the simple expression [1]:

τel =
263

r
5/2
s (E − EF )2

fs (1.1)

As a measure of the time scale for the second process it is convenient to take the period
of one collective electron oscillation — elementary excitation plasmon, whose properties
can be derived already on the classical level of the theory. In terms of the Wigner-Seitz

1 For the homogeneous infinite electron gas rs is the only parameter that determines its properties. It
is defined as 4

3πr3
s = N

V , where N is the number of electrons, contained in the volume V .
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radius rs the plasma frequency for bulk materials can be written as:

h̄ωp = 13.6

√
12

r3
s

eV (1.2)

For the clusters, surface effects reduce this value by a factor of 1√
3
. Thus, for NaN with

electron density of rs = 3.96 aB we obtain a plasmon energy of h̄ω = 3.45 eV (this is close
to the experimental values of h̄ω = 2.7−3.2 eV depending on geometry). This corresponds
to the duration of one period of oscillation of τp = 1.2 fs. For the measure of E − EF in
Eq. (1.1) one can use the energy distance between the highest occupied molecular orbital
(HOMO) of the cluster and its lowest unoccupied molecular orbital (LUMO). For the small
sodium clusters, the HOMO-LUMO gap lies around ∆E = 3.5 eV yielding an extremely
short quasiparticle life-time of τel = 0.69 fs.

To include the role of electron-phonon interaction (generation of phonons), we can use
the result of Migdal [2], who determined that electron spectra are affected by electron-
phonon interaction, when the excitation energies are of the order of ωD (the Debye fre-
quency). Thus

τph =
E − EF

h̄ωD

τel. (1.3)

Using the experimental value of the Debye temperature for sodium TD = 158 K [3] we
obtain characteristic time of the electron-phonon relaxation τpn = 177 fs.

From that we can conclude that typical electronic processes are much faster than the
electron-phonon relaxation. The former take place on the femtosecond time scale, while the
latter ones occurs on sub-picosecond time intervals. Thus, if a sufficient time resolution
is provided one can not only ascertain a fact that a system under the influence of some
perturbation has been switched from one quantum state to another, but also follow the
electron dynamics during that process.

Lasers provide a unique excitation source for these purposes supplying pulses of an
extraordinary wide range of frequencies and intensities. Currently optical pulses as short as
10 fs or even less are available yielding a time resolution of about 1 fs. Typically experiments
comprise the excitation of the system by a strong pump-pulse and the subsequent detection
of the time evolution by monitoring its response to a second weaker pulse (probe) impinging
after a variable time delay (so called pump-probe experiments).

Investigation of the ultrafast electron dynamics is not only a question of purely fun-
damental interest. It has a wide range of possibilities for technological applications first
of all in quantum state manipulation with further perspectives on quantum computing.
There are several aspects that have made this area of science recently so attractive. First,
the typical speed of the quantum processes is very high compared to conventional ones,
used in the silicon devices. The second stems from the superposition principle of quan-
tum mechanics and in turn from the simple fact, that Hilbert space is a big place. Heavy
parallelization lies in the nature of the quantum computing. Besides that, one can take
advantage of quantum operations (quantum gates) to build more effective algorithms for
solving a variety of computational problems, that are difficult to solve by conventional,
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classical bit operations: quantum Fourier transform, factorization of numbers, quantum
cryptography.

The problem of the ultrafast electron dynamics in small metallic clusters on the ab
initio level has several aspects. Here the word small is used in order to emphasize the
fact that a real first principles investigation is only possible for systems, that contain a
limited number of atoms. In contrast to bulk materials, where translational invariance
helps to overcome the problem of an infinite (or very large) number of particles, in the
case of molecules or clusters the symmetry group is normally much smaller. The number
of atoms in the cluster is the critical parameter, that determines the level of the theory.
Let us consider several examples.

The simplest approach is to treat electrons in the system on the one-electron level. It
means that the many-body Hamiltonian in this case is reduced to an effective one-particle
Hamiltonian. In both cases, viz. the Hartree-Fock and local density approximations, it
depends self-consistently on the one-particle density. In contrast to bulk materials, where
one has to deal with delocalized eigenstates that can be approximated by plane-waves,
the wave-functions in finite systems can be better represented as linear combination of
atomic-like orbitals. Thus the number of basis functions is approximately proportional
to the number of atoms in the cluster. In we denote the number of basis functions by
Nbf then both the Hamiltonian and the electronic density can be represented as matrices
Nbf × Nbf . The self-consistent computation of the Hamiltonian from the density matrix
would then require, without any simplifying approximation, N4

bf operations. It means, that
even systems containing hundreds of atoms or thousands of basis functions are accessible
on this level of the theory. In the time-dependent case the numerical efforts will increase
considerably. Each time step will require at least one evaluation of the Hamiltonian matrix.
The number of time steps should be at least larger than the ratio of the largest and smallest
energy scales in the system, which determine the length of the integration step and the
total observation time respectively. For small clusters our experience shows that typically
105 − 106 time steps are needed.

Considering an opposite example, when the system is treated without any simplifying
approximation with respect to electron-electron interaction (correlations are fully taken
into account) by means of the full configuration interaction method one can see the ex-
treme increase of the computational efforts with system size. The method amounts to the
diagonalization of the full many-body Hamiltonian. Its size is proportional to the number
of ways one can distribute all electrons in the system over the states. The number of such
configurations (this gave the name to the method) grows factorially with the system size.
Without any further approximations only molecules or clusters with very few atoms are
accessible to the method.

From these two examples one can see that there are two extreme approaches to our
problem. Either one treats the electronic correlations on a low level, or even neglects them,
and then is able to follow the electron dynamics for a long time interval, or one treats the
electron-electron interaction without any approximations, but then is limited to a very
small system without any chance to address its dynamics. Many-body perturbation theory
(MBPT) provides an intermediate approach, giving the possibility to stop at any desired
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level of the theory. At the same time it also contains any other approximations derived
by various other methods as a partial case. For example, the Hartree-Fock approximation,
initially derived from a variational principle, from the point of view of MBPT simply
comprises the first two lowest order terms in the perturbation expansion.

MBPT is based on the Green’s function technique. The Green functions used in the
many-body problems are extremely useful generalizations of the original Green function,
well known from the theory of ordinary differential and integral equations. They form basic
elements in the field theoretical approach to the many-body problem and provide a direct
way to calculate physical properties. They have also an obvious physical interpretation:
the one-particle Green function describes the propagation of the electron or hole in the
many-body system. The Green function of the next order describes the propagation of two
particles in the field of other particles and so on. They are connected by an infinite chain
of equations, where the equation of motion for the nth order Green function depends on
Green’s function of order n+1. Ironically, these equations are named differently, according
to Dyson for the first order and to Bethe and Salpeter for the second. Breaking this chain
at a certain level leads to an approximate treatment of the electron-electron interactions.
From the numerical point of view the number of calculations needed for the computation
according to such a scheme increases rapidly, with the increase of the order of the Green
function explicitly taken into account. For real systems such calculations became possible
only recently. Both computations that involve one-particle Green’s functions, used to
describe the ground state electronic structure, and two-particle Green’s functions, aiming
on excited-state properties, are currently state of the art.

In addition to the eigenstate energies and wave-functions, containing information about
the static properties of the system, that can be obtained from the Green’s function tech-
nique, one can also gain information on the system dynamics such as the life-times of
the quasiparticle states and collective excitations. The former manifest themselves as an
imaginary part of the eigenstate energies and have a simple physical meaning: decay of
the quasiparticle state because of interaction with other particles. The latter is visible
as a broadening of the plasmon peak in the inverse dielectric function. However, both of
them are effects of a higher order than the phenomena they pertain to. For instance to
obtain a non-zero imaginary correction to the eigenstate energies one needs to go beyond
the mean-field approach and consider diagrams of at least second-order in the Coulombic
interaction.

In the present work two approaches are used to study the electron dynamics in metallic
clusters:

• the solution of the time-dependent Hatree-Fock equation in order to monitor the time
evolution of the system upon ultrashort laser pulse excitation and

• a Green’s function technique, namely the GW method to compute the correction to
the eigenstates energies and to obtain decay constants for the plasmon excitations
and quasiparticles.

The work is organized as follows. Chapter 2 is devoted to the presentation of the
main concepts of MBPT and its application to real systems. Starting from the many-body
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Hamiltonian and second quantization we introduce key quantities such as the Green func-
tion, the dielectric function, or the polarization operator that describe quasiparticle states
and collective excitations in the clusters. This is, however, only one side of the problem.
Although we can get insight in the electron dynamics of clusters by going further in the
treatment of correlations and interpreting the imaginary part of the eigenstate energy as an
inverse life-time of the state, we would like to have also a method, that is able to treat the
electron dynamics explicitly, by propagating the wave-functions in time. This is necessary
when one wants to reveal what happens in experiment, during the interaction of the electro-
magnetic field or any other perturbation with a cluster and on the subsequent – relaxation
period. Next we describe different approaches for the treatment of the electron dynamics
in clusters, starting from the simplest single-particle picture, the adiabatic approximation
to the time-dependent mean-field equation, and compare them to the anticipated evolu-
tion from the exact solution of the time-dependent Schrödinger equation. In Chapter 3
we concentrate on the two complementary ab initio methods: TDHF equation and GW
approximation. Special attention is paid to the accurate reformulation of the theory for
the numerical implementation. In the first part, the properties of the TDHF equation are
discussed and compared with other existing methods. We show the application of this
method to different systems including a model system, alkali clusters, and transition-metal
clusters in Chapter 4. Considering the GW approximation, several aspects have to be
addressed: conservation of the particle number, effect of self-consistency, comparison with
other existing numerical implementations. In Chapter 5 numerical results for a variety of
systems are presented. Finally, the conclusions of our investigation are drawn. Appendix
A is devoted to the analytical evaluation of the 3D integrals over gaussian basis functions.
The latter ones are described in Appendix B. Appendix C makes our work self-contained
by highlighting the derivation of the system of GW equations.



Chapter 2

Concepts of Many-Particle Theory

As mentioned in the introduction the electron-electron interaction processes are most im-
portant for the investigation of the electron dynamics on the femtosecond time scale. Here
we neglect other slower relaxation mechanisms, like generation of phonons, that take place
on the picosecond time scale. Thus, in what follows we assume the Born-Oppengeimer
approximation, neglecting the motion of atomic nuclei.

The results of this chapter are valid for the electrons in clusters, molecules, bulk ma-
terials, as well as for the model system – the 3D homogeneous electron gas – eventually
for systems for which perturbational theory converges and that can be mimicked by the
Fermi liquid. The dimension of the space is important here, because only for the 3D elec-
tron gas and three dimensional systems1 one can introduce the concept of the quasiparticle
states, which are absent in lower dimensions, where the Tomonaga-Luttinger liquid model
becomes adequate, substituting the Fermi liquid concept.

In this chapter we consider different theoretical approaches to study the electron gas
in clusters and in particular their relation to quantum chemical methods. We promote
the idea of the representation of localized wave-functions by linear combinations of atomic
orbitals, show how the shell model explains the high stability of magic clusters, give an
illustrative example of the quasiparticle description, thus, elucidating it from the point of
view of an Green’s functions approach and show the origin of the plasmon excitation from
the equation of motion for the density matrix. In the last section we focus on the dynamics
in many-body systems and compare the mean-field evolution of electronic states with other
approaches.

2.1 Electronic states in different systems

Depending on the choice of the system the wave-functions of the electrons can have different
spatial and momentum configuration. Let us forget for the moment about the many-body
nature of the problem and consider just one electron in the electric field of rigid nuclei. In
the case of single atoms the electron wave-functions are strongly localized and similar to

1 We refer to spatial degrees of freedom in the Hamiltonian, but not to the geometric structure. From
this point of view clusters are considered to be 3D objects.

11



12 Chapter 2. Concepts of Many-Particle Theory

that of the H atom. In this case, the solution of the Schrödinger equation yields the mean
spatial extent of the wave-functions:

r =
1

2
[3n2 − l(l + 1)] aB, (2.1)

where n and l are the main and orbital quantum numbers. Thus for the 1s wave function
r = 1.5 aB, for 2p r = 5.0 aB, and for 3d r = 10.5 aB. On the larger distance from the
nuclei the wave-functions decay exponentially. This behavior is completely different from
bulk metals, where the wave-functions of the conduction electrons are delocalized and to
first approximation can be considered as plane waves.

For the numerical calculations one has two options how to describe the wave-functions
or the electronic density as a set of numbers. First one can work in the real space represen-
tation introducing an appropriate mesh. To each point of the mesh a number is assigned
and stored in the memory. Another option would be to expand wave-functions over a cer-
tain basis set and store the coefficients of this expansion, the so-called linear combination
of atomic orbitals method (LCAO). The advantage of the second approach is the smaller
number of parameters that describe the wave-functions. As basis functions it is convenient
to take functions from one of three classes:
Gaussian functions

φ(r, ζ, n,R) = (x−Rx)
nx(y −Ry)

ny(z −Rz)
nze−ζ(r−R)2 , (2.2)

Bessel functions2

B(r, ζ, n,R) = (x−Rx)
nx(y −Ry)

ny(z −Rz)
nzkn−1/2(ζ|r −R|) (2.3)

or Slater functions

χ(r, ζ, n,R) = (x−Rx)
nx(y −Ry)

ny(z −Rz)
nzrn−1e−ζ|r−R|. (2.4)

Here R denotes the position of the atom on which the functions are centered, the vector
n = (nx, ny, nz) shows the spherical symmetry of the functions. We use Cartesian spher-
ical harmonics, that consist of an one-component s function, 3-component p functions,
6-component d functions, etc.

Gaussian basis functions are most commonly used for localized systems because of the
simplicity of performing 3D integrations where they are involved. In order to further reduce
the number of functions for better performance one uses contracted Gaussian functions

g(r, n,R) =
∑

i

ciφ(r, ζi,n,R) (2.5)

that better represent atomic orbitals. Coefficients ci and ζi are specific for each kind of
atoms. They are optimized in order to represent the wave-functions in the atoms very

2 in this formula kn−1/2(x) = xn−1/2Kn−1/2(x), where Kγ(x) is the Mcdonald function or the modified
Bessel function of the second kind.
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accurately, and can be used by various of ab initio programs. Increasing the number of
basis functions leads to a more precise representation of the electronic density in the clus-
ter and to a higher accuracy of calculations. The basis functions, however, are designed
to represent the wave-functions of the occupied states. Unoccupied states normally are
never required for ground-state calculations. For the investigation of the excited states
as well as for some Green’s function methods it is also important to have the informa-
tion about unoccupied or virtual states. As their energy increases they become more
and more extended, until, finally, they form a continuous spectrum. The wave-functions
are then delocalized and very similar to plane-waves. As an example let us consider
the density of states for the Na+

9 cluster, obtained with different basis sets (Fig. 2.1).
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Fig. 2.1: Density of states for a Na+
9 cluster

computed within the Hartree-Fock approxima-
tion.

On the first step we use the standard
lanl2dz basis set together with effec-
tive core potential (ECP) for the core
electrons. This consists of 2 s-type and
2 p-type basis functions for each of the
atoms. In order to better represent vir-
tual states close to the Fermi level we ex-
tended this basis set with diffusive func-
tions, adding one function of s symmetry
and one function of p symmetry in the
second step, and 4 s and 1 p on the third
step. One sees (Fig. 2.1) that states be-
low the Fermi energy (their spectral func-
tion is positive) are not affected by the
addition of the new function: the position
of the peaks remains almost the same in
the three cases. The number of virtual
states close to Fermi level, however, in-
creases drastically, indicating initially their poor representation. We would like to men-
tion, that unbound states cannot be represented by a linear combination of the localized
functions. Thus it looks like they cannot be taken into account for further Green’s function
calculations3.

The electronic structure in small cluster exhibits another interesting feature – a high
stability of clusters with a certain number of atoms. It was first revealed by observing
anomalies of the mass spectrum (Fig. 2.2) of a Na cluster beam at specific sizes, called
magic numbers. Then it was experimentally confirmed that the magic numbers come
from the shell structure of the valence electrons. The stability and magic behavior of
these clusters have been understood using a simple model of particles in a potential well
or a jellium model in which the atomic structure of the cluster is ignored and the ionic

3 Virtual states can be accounted by using the Dalgarno-Lewis scheme [4] that employs the closure
relation in order to eliminate the need of an explicit knowledge of the empty states. This was applied to
calculate the dynamical response and plasmon dispersion in metals (A. A. Quong, Phys. Rev. Lett. 70
(1993), 3955.) as well as for the supercell GW calculation of the sodium tetramer [5].
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Fig. 2.2: Abundance spectrum (a) and ionization potential (b) of sodium clusters (Ref. [7]).

charge is smeared into a uniform positive spherical background4. The solution of the one-
electron Schrödinger equation in such potentials leads to 1s, 1p, 1d, 2s, 1f , 2p, 1g 2d, . . . ,
electronic shells similar to the shell model of nuclei. Shell closure occurs for clusters having
8, 18, 20, 40, 58, 70, 92, . . . valence electrons, which explains the strong stability of such
clusters5. This was further confirmed by LDA calculations within the spherical jellium
model [6]. Because of the high stability of magic-number clusters a variety of experimental
investigations is possible. That is why we use some of these clusters (Na+

9 , two isomers of
Na+

21) for our theoretical investigation.

2.2 Electronic excitations in clusters

2.2.1 Many-body Hamiltonian

If one neglects relativistic effects, such as the spin-orbit interaction, the behavior of elec-
trons in the clusters can be explained by the Schrödinger equation. The Hamiltonian
describes the interaction of electrons with ions, electron-electron interactions and, possi-
bly, the interaction with an external perturbation, like the electromagnetic field of the
laser. In the system of N electrons one has:

Ĥ = −1

2

N∑

i=1

∆i +
N∑

i>j

1

|ri − rj| +
N∑

i=1

v(ri), (2.6)

where the first term on the right-hand side represents the electron kinetic energy, the second
term is the electron-electron interaction and the third one, v(ri), denotes the Coulomb

4 This explanation is valid only for the clusters composed of the open shell atoms which possess valence
electrons (alkali metals). In the case of rare-gas clusters the magic numbers were also observed, but they
results from packing of atoms into a specific geometric structure. For instance, for xenon clusters the
magic numbers 13, 19, 25, 55, 71, 87, 147 result from the completion of the icosahedral structure.

5 The ordering of the shells at high principal quantum number, in principle, depends on the specific
form of the potential. For example, the 3s and 1h energy levels are interchanged in the square potential
well compared to the spherical one.
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potential caused by the nuclei.
Each electron has a spin coordinate equal to either +1/2 (spinup) or −1/2 (spindown).

In the nonrelativistic case, since the Hamiltonian does not depend on the spin coordinate,
spins are good quantum numbers, i.e. the spin state of each electron is either upwards or
downwards.

To get insight into the physics of such a many-body system let us first consider the
simpler case, when the electrons do not interact one with each other (the second term
in the Hamiltonian is absent). In this case the Hamiltonian breaks into N independent
commuting parts that describe the motion of each electron.

Ĥ = Ĥ1 + Ĥ2 + · · ·+ ĤN

In this case the whole many-body wave-function can be factorized as an antisymmetrized
product of the N one-particle wave-functions, satisfying the eigenvalue equation:

Ĥiψj(i) = εjψj(i). (2.7)

Here the subscript i labels the electrons, and j labels the eigenstates. The antisymmetriza-
tion can be expressed as an determinant of the matrix built from the N lowest energy
one-particle eigenfunctions and is called Slater determinant:

Ψ =
1

N !

∣∣∣∣∣∣∣∣∣∣

ψ1(1) ψ2(1) · · · ψN(1)
ψ1(2) ψ2(2) · · · ψN(2)

...
...

...
ψ1(N) ψ2(N) · · · ψN(N)

∣∣∣∣∣∣∣∣∣∣
(2.8)

This is the many-body wave-function of the ground state of the system. The wave-
functions of the excited states can be expressed in the same way, by taking different com-
binations of the one-particle wave-functions as a basis for the Slater determinant. This can
conveniently be represented in the second quantized form by introducing creation (a†i ) and
annihilation (ai) operators. This approach is fully equivalent to the usual representation
of quantum mechanics and allows to deal with systems of variable particle number. If we
denote the state without any electrons as |0〉 then the ground state can be expressed as:

|1, 2, · · · , N〉 = a†1a
†
2 · · · a†N |0〉

and any excited state as:

|k1, k2, · · · , kN〉 = a†k1
a†k2

· · · a†kN
|0〉

From the second quantized representation of the interacting Hamiltonian (Eq. 2.6):

Ĥ =
∑

i

εia
†
iai +

1

2

∑

i1,i2,i3,i4

〈i1i2| 1

|r − r′| |i3i4〉a
†
i1a

†
i2ai4ai3 (2.9)

one sees that the electron-electron interaction mixes Slater determinants corresponding to
different configurations. Thus one can build the many-body Hamiltonian in a basis of Slater
determinants corresponding to different configurations. This is exactly the Configuration
Interaction (CI) approach used in quantum chemistry.
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2.2.2 Quasiparticles

To better understand, what happens to the system, when we switch on electron-electron
interaction it is useful to introduce the exact definition of the one-particle Green function:

G(rt, r′t′) = −i〈N |T [ψ̂(r, t)ψ̂†(r′, t′)]|N〉, (2.10)

Here |N〉 denotes the ground state of the N particle system, and ψ̂†(r, t) and ψ̂(r, t) are
creation and annihilation field operators, defined as:

ψ̂(r, t) =
∑

j âj(t)ψj(r),

ψ̂†(r, t) =
∑

j â†j(t)ψ
∗
j (r)

For t > t′, Green’s function describes the propagation of an additional electron injected at
time t′ in the system, whereas for t < t′ it describes the propagation of a hole (removal of
an electron). The corresponding ordering of operators is given by T – the time ordering
operator.

From the definition it is clear that Green’s function in the equal time limit (i.e. t′ = t+)
denotes the density matrix of the system:

ρ(r, r′) = 〈N |ψ̂†(r′)ψ̂(r)|N〉 = −iG(rt, r′t+) (2.11)

In what follows we will assume that the Green function can be represented in a more
general basis6, not just a real space (r, r′). We will denote it as (r, r′) without loss of
generality. In the absence of time-dependent interactions the Green function depends only
on the difference of t and t′. Introducing τ = t− t′ we can obtain an expression for Green’s
function:

G(r, r′, τ) = −i
∑

k

fk(r)f
∗
k (r′)e−iεkτ {θ(τ)θ(εk − εF )− θ(−τ)θ(εF − εk)} (2.12)

with

fk(r) = 〈N |ψ(r)|N + 1, k〉, εk = EN+1,k − EN for εk ≥ εF

fk(r) = 〈N − 1, k|ψ(r)|N〉, εk = EN − EN−1,k for εk < εF .

The different states of the N + 1 and N − 1 particle Hamiltonian are distinguished by the
index k, |N〉 is the ground state of the N particle Hamiltonian. The above expression is
valid for both interacting and non-interacting cases. It is useful to make a Fourier transform
of the above equation to get Green’s function in the ω representation:

G(r, r′, ω) =
∑

k

fk(r)f
∗
k (r′)

ω − εk

(2.13)

Here we redefined the εk, adding infinitesimally small imaginary parts to the energies
coming from the Fourier transform of the Θ functions:

εk → εk + iδ for εk < εF , δ > 0
εk → εk − iδ for εk > εF , δ > 0.

(2.14)

6 One can have additional indices for spin coordinates, expansion within a certain basis set, etc.
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The computation of the Green function according to this definition is never used in practice
because it requires the knowledge of not only the ground state properties of the N particle
system, but as well of the excited states of the N + 1 and N − 1 particle systems.

In the non-interacting case the expression can be further simplified:

G(r, r′, ω) =
∑

j

ψj(r)ψ
∗
j (r

′)

ω − εj

. (2.15)

Here εj is the energy of the single-particle state, determined from Eq. (2.7), and should not
be mixed with εk that denotes the energy difference between states with different particles
number.

It is useful to introduce the spectral representation of the Green function.

G(r, r′, ω) =
∫

C

A(r, r′, ω′)
ω − ω′

dω′ (2.16)

where the integration is performed along the path C in Fig. 2.3.

C

EF

ω

Fig. 2.3: Integration path in the definition of
the G(r, r′, ω).

The spectral function is closely related to
the imaginary part of the Green function:

A(r, r′, ω) =
1

π
|=m G(r, r′, ω)|

From the definition of the spectral
function Eq. (2.16) and the expres-
sion for non-interacting Green’s function
Eq. (2.15) one can easily see that the spectral function in this case is just a set of δ-
functions. They are positioned at the eigenenergies εi of the non-interacting Hamiltonian.
Switching on the interaction one can expect several scenarios, according to which the spec-
tral function can be modified. First the position of the peaks may shift. Due to the
electron-electron interaction the peaks can also split in many one-particle states that were
originally degenerate. At small splittings this will lead just to a broadening of the peaks,
and can be described by Lorentzians with some finite peak width instead of δ functions. If
the interaction strength will increase further the splitting might become comparable with
the distance between the states of the non-interacting Hamiltonian. Additional satellite
peaks will appear. When going even further the spectral function A(ω) cannot be described
in some regular way7.

To better understand the behavior of the spectral function upon an increase of the
interaction strength we performed model calculations on the random-interaction system.

7 At this point we would like to mention one of the most beautiful ideas of modern theoretical physics,
related to this discussion. It goes back to the work of G. t’Hooft, Nucl. Phys. B72, 461 (1974) and
shows the possibility of mapping the graph problem in a certain configurational space to a surprisingly
new problem. For example the generating functional of diagrams in the large N limit of QCD or random
triangulations of space in 2D quantum gravity can be related to the random matrix model. Similarly, the
problem of quasiparticle decay can be mapped onto the Anderson localization problem in configurational
space due to B. L. Altshuler et al., Phys. Rev. Lett., 78, 2803 (1997). In this new language one considers
quasiparticles as localized states and their broadening as a delocalization in Fock space.
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Fig. 2.4: Imaginary part of the Green function for the model system with n = 10 and
m = 5 for different interaction strength. The thick line denotes the exact Green function
computed according to the definition Eq. (2.13), the thin line shows the Hartree-Fock Green
function. In order to improve the readability the exact Green function is multiplied by −1.

We will use this model also further, that is why we consider it in more detail. The system
consists of n states among which m spinless electrons can be distributed. In the second
quantized form the Hamiltonian can be written as:

Ĥ =
n∑

i=1

εia
†
iai + α

n∑

i,j,k,l=1

Vij,kla
†
ia
†
jakal (2.17)

The εi are distributed on the energy interval [−1, 1] eV. The matrix elements of the electron-
electron interaction Vij,kl are random numbers distributed according to a Gaussian law with
standard deviation σ = 1. The parameter α controls the interaction strength.

We consider the case n = 10 and m = 5, and perform exact diagonalization of the
Hamiltonian in order to build the Green function according to the definition Eq. (2.13)
for different interaction strengths. For comparison we computed the Green function from
the approximate calculations on the Hartree-Fock level (Fig. 2.4). In order to represent
the δ-functions graphically we applied an artificial broadening δ = 0.05 eV to each of the
states.

One can see that for low interaction strength (α = 0.05) both exact and approxi-
mate methods give almost identical results. The spectral function consists of 10 peaks,
shifted slightly from the eigenvalues of non-interacting Hamiltonian. The peaks are well
pronounced. They manifest the existence of quasiparticle states in the system – states,
that result from the introduction of an additional particle or hole ( a|N〉, a†|N〉) in the
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system. Due to the presence of electron-electron interaction they are no longer eigenstates
of the (N − 1) or (N + 1)-particle Hamiltonian, but are very close to the true eigenstates.
Consequently they have an admixture of some other states. Increasing the strength of
interaction more and more states get admixed to the quasiparticle state. As a result the
width of the quasiparticle peak gets larger, additional satellite peaks appear. At α = 0.5
only two states around the Fermi level can be called quasiparticles. The other ones are
smeared out over the large energy interval and cannot be described in the quasiparticle
approximation. The Hartree-Fock method, which operates with quasiparticles fails in this
case. At an intermediate strength of the interaction α = 0.25 it is clear that with a small
exception of satellite states the quasiparticle approach is adequate in this case. However,
the Hartree-Fock approach is not sufficient in this case. Without taking into account cor-
relations one cannot describe the broadening of the states. Also the position of the peaks
is not the same as in the exact result.

Thus from the above consideration we see that there is a need to go for a higher-order
treatment of the correlations. This will improve the energy of the quasiparticle states and
give information about their broadening. The second point is important for the dynamics.
The inverse of the imaginary part of the energy gives the life-time of the excitation.

2.2.3 Collective excitations

Besides quasiparticle excitations that have properties very similar to usual particles – elec-
trons or holes – in the electron gas there is another kind of excitations – plasmons. In the
classical picture they are defined as a collective motion of the electrons. The frequency of
the plasmon oscillations depends on the density of the electron gas.

Metal Electron ωpl (eV)
density, rs (aB) Calculated Experimental

Li 3.25 8.04 6.64
Na 3.93 6.05 5.4-5.94
K 4.86 4.40 3.79-4.15
Rb 5.19 3.98 3.45
Cs 5.62 3.54 2.82
Al 2.07 15.8 12.2-14.7
Cu 2.67 10.8 8.0
Ag 3.02 8.98 3.83
Pt 2.90 9.55 6.0

Tab. 2.1: Bulk plasmon frequency for different metals.
Calculations are done by the classical formula Eq. (1.2),
experimental values are deduced from Ref. [8], by look-
ing for the zeroes of the dielectric function.

For real materials it lies in
the energy interval ranging from
ωpl = 2.82 eV for cesium with
density rs = 5.62 aB to ωpl =
18.9 eV for beryllium with den-
sity rs = 1.87 aB (Tab. 2.1). The
classical result for the plasma
frequency can also be confirmed
from quantum theory in a variety
of ways: by the random phase
approximation (RPA) of the di-
agram technique, the equation-
of-motion method for the density
matrix or by introducing collec-
tive coordinates. However, the
classical picture only gives the
value of the plasmon energy in
the limit of q = 0. To get the
dependence of wpl on the q vector – plasmon dispersion, classical theory is not sufficient.

Here we will use the equation of motion method for the density matrix, described in
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Ref. [9] in order to get the plasmon dispersion. Assuming that the system is subject to the
time-dependent external electric field φ(r, t), one can obtain the equation for the density
matrix in first order perturbation theory as:

ρkk′(ω) =
nk − nk′

εk − εk′ − ω − iδ
δVkk′(ω) (2.18)

Here δV is the variation of the average potential that acts on the electrons of the system (it
is different from φ because the external potential, besides affecting the electronic density
directly, also causes the change of the potential, created by the electrons themselves). To
obtain expression Eq. (2.18) the following has been done:

• The quasiparticle picture is assumed to be valid here. It means that the many-body
system can be described effectively by the single-particle Hamiltonian.

• We denote the eigenenergies of this Hamiltonian as εk. k labels the eigenstates.

• The unperturbed density matrix is diagonal in the eigenstate representation. In real
space it is given as a sum of over the occupied states:

ρ(r, r′) =
∑

k∈occ

ψ∗k(r
′)ψk(r) (2.19)
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Fig. 2.5: Plasmon dispersion according to the
Lindhard dielectric function. Labels I and II
show areas in the q−ω plane, where the imagi-
nary part of the dielectric function is non-zero.

It is useful to introduce the dielec-
tric function8 ε(r, r′, t) that builds a
connection between the external time-
dependent potential φ(r′, t′) and the ef-
fective potential δV (r, t):

δV (r, t) =
∫

ε−1(r, r′; t−t′)φ(r′, t′)dr′dt′

(2.20)
In what follows we will use matrix nota-
tions and make a Fourier transform of the
time-dependent quantities. If we denote

Pkk′(ω) =
nk − nk′

εk − εk′ − ω − iδ
(2.21)

we can relate the dielectric function to
the response function Pkk′(ω) through the
following set of equations:

δρ = PδV = P (vδρ + φ)

δρ = (1− Pv)−1Pφ (2.22)

δV =
[
1 + v(1− Pv)−1P

]
φ.

8 The dielectric function defined here has the same meaning as in electrodynamics, but is more general
in a sense that it describes non-local effects (two space coordinates) in contrast to the well known rank-two
tensor dielectric function for the translationally invariant media.
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Here v is the matrix of the Coulomb interaction between the electrons. Comparing the last
equation with the definition of the dielectric function one finds:

ε(ω) = 1− vP (ω) (2.23)

If the condition ε(ω) = 0 is fulfilled, then according to Eq. (2.20) we can have a charge
oscillation in the system even in the absence of the external field.

In the case of an homogeneous electron gas it is possible to obtain the expression for
the response function P (ω) in the q representation. This gives the famous Lindhard [10]
formula for the dielectric function.

The dielectric function is complex, and it has a nonzero imaginary part in the so-called
particle-hole continuum (Fig. 2.5, areas I and II).

=m ε(q, ω) =
(4/9π)1/3rs

q3

{
ω region I

1− 1
4
[q − (ω/q)]2 region II

As a consequence the plasmon frequency, determined as a root of the dielectric function
has a non-zero imaginary part in these regions. This indicates the decay of the plasmon,
when the wave-vector reaches a certain value. From a physical point of view it means that
the plasmon is long-range oscillation.

In the small metallic clusters surface effects become important. Confinement of the
system leads to a red shift of the plasmon resonance. One can analyze this situation from
the classical point of view (the so-called Mie theory) as well and estimate the plasmon
frequency in the limit of vanishing radius of a spherical particle to be 1/

√
3ωpl. In the

literature it is often called surface plasmon of the cluster.

2.3 Dynamics in many-body systems

Time-dependent problems in quantum mechanics are in general much more complicated
than stationary ones. Analytical solutions are known only in few cases: periodically driven
free particle, harmonic oscillator, as well as some spin systems. Even the one-electron
two-level system under the influence of a periodic perturbation can be solved only approx-
imately9 (so called Rabi solution [11]).

In relation to many-body systems several theoretical methods have been developed to
describe the electron dynamics:

• Hierarchy of equations for the reduced classical density matrices (BBGKY) and its
generalization to quantum systems.

• Method of Nonequilibrium Green’s functions.

• Molecular dynamics simulations.

9 An analytic solution in the form of an infinite series is known for arbitrary time-dependent perturbation
due to X.-G. Zhao, Phys. Rev. B 49, 16753 (1994).
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• Monte Carlo methods.

Closest to our target is the first approach with its concept of the hierarchy of the
relaxation times. Although all scattering mechanisms differ greatly with respect to the
intensity, effective length scale and number of particles involved it is possible to classify
them according to the relaxation time peculiar to each of the processes. Then at a given
time stage one can pick up the dominating relaxation mechanism, neglecting other more
slowly varying phenomena and build a correct approximation to the theory. In contrast
to the single-particle picture, where changes of the quantum state can only be due to the
interaction with an environment, the many-body nature of the electron gas also provides
an internal clock mechanism. There exists a hierarchy of relaxation times corresponding to
the equilibration of the one-, two-, three-particle distribution, etc. For each of the periods it
is possible to build a quantum-kinetic theory [12, 13] that takes into account the necessary
number of correlation functions while neglecting correlation functions of higher order. The
simplest approximation is to treat the electron dynamics on the Hartree-Fock level, i.e. to
neglect two-particle correlations.

In this section we compare the time-dependent mean-field approach and simpler meth-
ods like the adiabatic solution or the evolution of the matrix Hamiltonian with the exact
solution of the dynamical problem.

2.3.1 Four approaches

The time-dependent Hartree-Fock equation will be considered in details in the next chap-
ter. Here we are interested only in its general properties following from the functional
dependence of the Hamiltonian on the electronic density. As a result we can write the
following general form of the mean-field evolution:





i∂ψi(r,t)
∂t

= [ĤHF(ρ) + ˆV (t)]ψi(r, t)
ρ(r, r0, t) =

∑
i=occ

ψ∗i (r, t)ψi(r
′, t) (2.24)

Here ψi(r, t) is the time-dependent single particle wave-function, ρ(r, r0, t) is the density

matrix, ˆV (t) is perturbation operator that describes the interaction of the system with the
electric field of the laser. The Hartree-Fock Hamiltonian ĤHF describes an electron that
moves in the electric field of the nuclei and the field created by the other electrons. In
the TDHF scheme, shortly after the system has been excited it exhibits oscillations with
the plasmon frequency Fig. 2.6(c), which is the zero of the longitudinal dielectric function
on the RPA level. But, as scattering processes are not very accurately described in the
mean-field approximation, the plasmon oscillation will last considerably longer in time,
compared to the higher level treatment of electronic correlations Fig. 2.6(d).

In the regime of a slowly varying external field we can expect the adiabatic approxima-
tion to give a reasonable result. In that way, instead of solving Eq. (2.24), we perform a
self-consistent solution of the eigenvalue problem:

[
ĤHF(ρ) + ˆV (t)

]
ψi(r, t) = εi(t)ψi(r, t) (2.25)
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Fig. 2.6: Typical time evolution of the electron population within different approaches. (a)
Adiabatic solution of Hartree-Fock equation. (b) Evolution of matrix Hamiltonian, Rabi
oscillations. (c) Solution of the TDHF equation. (d) Full quantum kinetic solution.

with the eigenvalues εi(t), dependent on time. The main feature of this approach is that
it is fully reversible, and, after switching off the perturbation, the systems returns to its
initial state Fig. 2.6(a).

Another approach to study the time evolution would be to find the excitation levels of
the system, which in the many-body picture do not coincide with the quasiparticle states
of the Hamiltonian and should be determined on a higher-level approximation, e.g. as the
poles of two-particle Green’s function. Then we can follow the electron dynamics of the
system in the basis of ground and excited states. The Hamiltonian in this case could be
represented in a matrix form, with excited state energies on the diagonal, and off-diagonal
perturbation operators:




ε0 V01 · · · V0n

V10 ε1 · · · V1n

. . .

Vn0 Vn1 · · · εn







ψ0(r, t)
ψ1(r, t)

...
ψn(r, t)




= i
∂

∂t




ψ0(r, t)
ψ1(r, t)

...
ψn(r, t)




. (2.26)

Here the matrix elements of the perturbation operator correspond to the transitions be-
tween different states:

Vi,j(t) = 〈ψi(r)|V (r, t)|ψj(r)〉
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The evolution of such a system has widely been studied in the literature [14], but even in the
simplest case of a two level system this equation has no analytical solution. In the rotating
wave approximation (RWA) we have so called Rabi oscillations [11] between levels, which
accompany transitions from one state to another one. After the external perturbation stops
the system displays no more oscillation, but, in contrast to the adiabatic approximation,
it remains in the last state it achieved. This state could be different from the initial state,
and, if no further perturbation takes place, the system will remain in that state forever
Fig. 2.6(b).

From these considerations we can see, that the time-dependent Hartree-Fock equation
is capable of explaining the gross features of the quantum evolution of the system, such as
reversibility vs. irreversibily, transitions between states, plasmon oscillations, which cannot
be achieved in the simpler theories.

As a conclusion we discussed in this chapter:

• the description of the electron wave-functions in the clusters by means of linear
combination of atomic orbitals.

• the stability of the clusters

• two different electronic states in the electron gas:

- quasiparticles

- plasmons

We saw that the properties of the first are very similar to that of the usual particles.
They can be analyzed considering the one-particle Green function. The plasmon os-
cillation is a collective effect, that is most easily studied using the dielectric function.

• three approximate approaches to study the electron dynamics in many-body systems
and to compare them with the exact solution of the Schrödinger equation.
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Methods

In this chapter we explain the implementation of the TDHF and GW methods from a
unified point of view. As a starting point we consider diagrammatic expansions of the
MBPT. Based on that we rewrite the equations in the form suitable for the numerical
calculations. This is achieved by expanding all operators and functions in a certain basis
set (Gaussian in our case, although the formulae are valid in general). The third section
is devoted to the calculation of non-linear properties of the system, in particular, second
harmonic generation and Kleinman symmetry of its tensor.

In order to achieve high numerical performance every operation should be rewritten in
matrix form. Because of this the form of some equations differs from the usual notations.
That is why we spend additional efforts to clarify relations between different representations
of the main results.

Although both approximations are known for a long time (TDHF was established by
Dirac [15] in the early 1930s and GWA originates from the work of Hedin [16] published
in 1965) their numerical implementation became possible only with the development of
modern computers. On the first stages a lot of additional approximations were used to
facilitate computations. Thus we consider our implementations in the light of previous
works.

3.1 TDHF equation

3.1.1 Theory

In a similar way as the stationary HF equation the TDHF equation can be obtained from
the variational principle:

〈
δΨ(t)

∣∣∣∣∣

{
HHF − ih̄

∂

∂t

}∣∣∣∣∣ Ψ(t)

〉
= 0.

The many-body (MB) problem is then reduced to an effective one-body one imposing a
particular form of the MB wave-function Ψ(t), namely so that it can be represented as a
single Slater determinant Eq. (2.8) based on the one-body wave-functions that yet have

25
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to be determined. The time-dependent HF equation Eq. (2.24) then describes the time
evolution of the electron wave-functions in the effective field created by the other electrons
in the presence of an external perturbation. The Hamiltonian ĤHF can be written as:

ĤHF = −1

2
∆ +

N∑

i=1

Zi

|r −Ri| + Ĥd(ρ) + Ĥex(ρ) (3.1)

Note that the fundamental physical constants drop out with the use of atomic units. The
first term describes the kinetic energy of the electron, the second represents the electric
field of the nuclei of charge Zi at position Ri. The interaction with the other electrons is
taken into account through the direct (Ĥd) and exchange (Ĥex) energy functionals:

Ĥd(ρ)ψ(r, t) =
∫

d3r′ ρ(r′,r′,t)
|r−r′| ψ(r, t)

Ĥex(ρ)ψ(r, t) = − ∫
d3r′ ρ(r,r′,t)

|r−r′| ψ(r′, t)

(3.2)

They depend self-consistently on the electron density:

ρ(r, r′, t) =
∑

i=occ

ψ∗i (r, t)ψi(r
′, t). (3.3)

From the point of view of diagrammatic perturbation theory the stationary HF equation
is equivalent to the self-consistent solution of the following Dyson equation (Fig. 3.1) for
the one-particle Green’s function.
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Fig. 3.1: Dyson’s equation for the one-particle Green
function on the HF level. The diagrams are shown in
the real space, real time representation. To each vertex
the time coordinate t and space coordinate r is assigned.
Integration over the coordinates of internal vertices is as-
sumed. Wavy lines denote Coulomb interaction, straight
lines are electron propagators (Green’s functions). The
thin line is the Green function of the system without
electron-electron interaction.

From this form of the represen-
tation one can easily see how
Green’s function G(r1, t1; r2, t2)
(denoted on the diagrams as a
thick line) is determined itera-
tively: one starts with the zeroth
approximation G0(r1, t1; r2, t2) (de-
noted as a thin line) that repre-
sents the non-interacting Green
function (first term of RHS) and
proceeds by putting the LHS so-
lution in the RHS until con-
vergence is achieved. The sec-
ond and the third terms in the
RHS represent the direct and ex-
change functionals [Eq. (3.2)] re-

spectively. Up to now we have considered the HF equation in the absence of spin. Upon
inclusion of the spin the equations will be modified slightly. Most easily this can be seen
from the diagrammatic method (Fig. 3.1). In the presence of spin each fermion line will
acquire an additional index that labels the spin. According to the diagrammatic technique
the summation over the spin labels of the closed internal lines should be performed. In the
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case of equal numbers of electrons with spin-up and spin-down this gives a factor of 2 for
the second term in the RHS – direct interaction.

Let us now represent the HF Hamiltonian in the matrix form suitable for the numerical
calculations. We will consider here only the case of equal numbers of spin up and spin
down electrons (the so call restricted Hartree-Fock (RHF)). Denoting the basis functions
as φα(r) we can express the wave-functions as a set of time-dependent coefficients:

ψi(r, t) =
Nbf∑

α=1

ciα(t)φα(r). (3.4)

The density matrix then reads:

ραβ(t) = 2
∑

i=occ

c∗iα(t)ciβ(t). (3.5)

To compute the direct and exchange functionals Eq. (3.2) we introduce matrix elements of
the Coulomb interaction – the electron repulsion integrals (ERIs):

〈αβ|γδ〉 =
∫

d3rd3r′ φα(r)φβ(r)φγ(r′)φδ(r′)
|r−r′|

α, β, γ, δ = 1, · · · , Nbf .
(3.6)

Then: [
Ĥd(ρ)ψi(r, t)

]
α

=
∑
βγδ
〈αβ|γδ〉ργδciβ

[
Ĥex(ρ)ψ(r, t)

]
α

= −1
2

∑
βγδ
〈αβ|γδ〉ρβδciγ

. (3.7)

The first term gains a factor of 2 in the spin case. Introducing matrix elements of the
non-interacting part of the Hamiltonian

H0
αβ =

∫
d3rφ∗α(r)

[
−1

2
∆ +

N∑

i=1

Zi

|r −Ri|

]
φβ(r)

the matrix elements of the total HF Hamiltonian Eq. (3.1) are computed as:

HHF
αβ = H0

αβ +
∑

γδ

(〈αβ|γδ〉 − 1/2〈αγ|βδ〉) ργδ. (3.8)

This form is already suitable for the numerical implementation. However, the symmetry
properties of the ERI’s

〈αβ|γδ〉 = 〈βα|γδ〉
〈αβ|γδ〉 = 〈αβ|δγ〉
〈αβ|γδ〉 = 〈γδ|αβ〉

(3.9)

give the possibility to further reduce the requirements for the memory and number of
operations needed to compute HF Hamiltonian.

In general, the ERIs are four-index quantities. Thus, even for the small basis set they
form a huge amount of data, that has to be stored in the computer memory1. For example

1 Alternatively they can be computed on the fly in the course of the self-consistent loop, when the HF
Hamiltonian has to be evaluated. Here we consider the situation, where ERIs are precomputed and stored
in the memory.
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to properly describe the wave-functions of the Na atom one needs 8 basis functions. The
calculations for a cluster, that contains 15 Na atoms will require 120 basis function. This
amounts to keeping 1204 real numbers or 1.5 GB in the memory. According to the definition
(Eq. (3.5)) the density matrix is Hermitian:

ραβ = ρ∗βα,

or separating the real part <e ραβ = ρ′αβ and the imaginary =m ραβ = ρ′′αβ:

ρ′αβ = ρ′βα

ρ′′αβ = −ρ′′βα

.

Using that and the symmetry properties of the ERIs Eq. (3.9) we can rewrite the direct
and exchange part of the HF Hamiltonian as:

∑

γδ

(〈αβ|γδ〉 − 1/2〈αγ|βδ〉) ργδ

=
∑

γ≤δ (〈αβ|γδ〉 − 1/2〈αγ|βδ〉) (ρ′γδ + iρ′′γδ) +
∑

γ≥δ (〈αβ|γδ〉 − 1/2〈αγ|βδ〉) (ρ′γδ + iρ′′γδ)

=
∑

γ≤δ (〈αβ|γδ〉 − 1/2〈αγ|βδ〉) (ρ′γδ + iρ′′γδ) +
∑

γ≤δ (〈αβ|γδ〉 − 1/2〈αδ|βγ〉) (ρ′γδ − iρ′′γδ)

=
∑

γ≤δ (〈αβ|γδ〉 − 1/2〈αγ|βδ〉 − 1/2〈αγ|βδ〉) ρ′γδ + i
∑

γ≤δ (−1/2〈αγ|βδ〉+ 1/2〈αγ|βδ〉) ρ′′γδ

Separating real and imaginary parts we can write

<e Hd−ex
αβ =

∑

γ≤δ

Iαβ,γδρ
′
γδ (3.10)

=m Hd−ex
αβ =

∑

γ≤δ

Jαβ,γδρ
′′
γδ, (3.11)

where we introduce the notations:

Iαβ,γδ = 2〈αβ|γδ〉 − 0.5(〈αγ|βδ〉+ 〈αδ|βγ〉)
Jαβ,γδ = −0.5(〈αγ|βδ〉 − 〈αδ|βγ〉) . (3.12)

It seems that after all we achieved more complex expressions than originally. However,
a careful inspection shows the advantages of such an approach:

• The HF Hamiltonian is Hermitian, thus Iαβ,γδ and Jαβ,γδ should be stored only for
α ≤ β and γ ≤ δ. Only half of 〈αβ|γδ〉 is required.

• Representing I and J as matrices of size Nbf · (Nbf +1)/2 and the density matrix as a
vector of this size computation of the direct and exchange Hamiltonian can efficiently
done by matrix-vector multiplications.

• Because the real and imaginary parts are computed separately the number of floating
point operations is further reduced.
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3.1.2 Details of the numerical implementation

The general scheme for solving Eq. (2.24) is as follows: initially, we perform a stationary
self-consistent field (SCF) calculation in order to obtain the wave-function of the ground
state. Then we use this as the initial condition for the system of ordinary differential
equations to which Eq. (2.24) reduces after expanding all operators and functions in a
given basis set. The size of the basis set can be reduced on the second step by transforming
from the Gaussian basis (α, β, ...) to the eigenfunction basis (i, j, ...). This is very useful,
because it gives the possibility to exclude deeply lying states, that are always populated
and highly excited states, that are never occupied. The major computational problem on
this stage is the transformation of the ERIs (I and J) to the new basis. This is done in 4
stages:

Iαβ,γδ → Iiβ,γδ =
∑
α

Iαβ,γδciα → Iij,γδ =
∑

β

Iiβ,γδcjβ → Iij,kδ =
∑
γ

Iij,γδckγ → Iij,kl =
∑

δ

Iij,kδclδ.

In a similar way the J integrals are transformed. Here the indices i, j, k... label the eigen-
states of the HF Hamiltonian. They can be selected in the desired way to include a certain
number of initially occupied and virtual states in the consideration.

We propagate the solution in time by an adaptive Runge-Kutta or Bulirsch-Stoer
method [17]. The major computational problem on this stage is the evaluation of the
matrix elements of the direct and exchange Hamiltonian according to Eqs. (3.10,3.11). If
we denote the number of time-steps by Nt, the numerical cost of the method scales as2:

Nop = 2 ·Nt · (Nbf · (Nbf + 1)/2)

From the numerical point of view it is better to propagate only the wave-functions of the
initially occupied states, rather than the full density matrix. Thus, at each moment of time
the system is characterized by the set of Ne vectors of size Nbf , where Ne is the number
of electrons under consideration. They contain all information about the system and give
the possibility to compute different observables.

3.1.3 Observables

The system in our approach is described by a set of Ne time-dependent one-particle wave-
functions (Eq. (3.4)) or Ne ·Nbf coefficients. From that we can compute populations of the
molecular orbitals as a function of time

ni(t) =
Ne∑

j=1

〈ψi(r, t = 0)|ψj(r, t)〉 =
Ne∑

j=1

Nbf∑

α=1

c∗iα(0)cjα(t) (3.13)

2 N4
bf scaling in fact can further be lowered. For example, static HF calculations with N2

bf scaling are
possible when neglecting a large part of vanishing ERIs by so called integral prescreening. Using some
tricks, which are valid only for non-metallic systems (sparsity of the density matrix) one can even lower
the scaling to N1

bf . The ERIs are then computed on the fly at each evaluation of the Hamiltonian matrix.
However the gain in speed of the computation of the ERIs has a drawback in the complicated program
logics, that on the small and medium size systems is overwhelming.
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and consequently the time-dependent density of states

ρ(ε, t) =
∑

i

ni(t)δ(ε− εi). (3.14)

Here the εi are the eigenvalues of the unperturbed HF Hamiltonian. A certain broadening
should be applied to the δ-function in order to represent the results graphically.

The TDHF method conserves the total energy of the system. Under the influence of
the laser pulse the system undergoes a transition from the ground to some excited state.
One can follow that by observing the total energy. It can be computed as:

E(t) =
1

2

Ne∑

i=1

[
εi(t) + 〈ψi(r, t)|Ĥ0 + V̂ (t)|ψi(r, t)〉

]
=

1

2

Ne∑

i=1


εi(t) +

Nbf∑

α,β=1

[
H0

αβ + Vαβ(t)
]
ciα(t)∗ciβ(t)


 . (3.15)

In this equation εi(t) are the instantaneous eigenvalues of the Hamiltonian. Note, the
seemingly contradictory result that the total energy of the system is not just equal to
the sum of eigenstate energies. However it has a clear interpretation. Each eigenstate εi

contains the interactions with all other occupied orbitals. For example, ε1 contains the
interaction with particle 2, particle 3 and so on, up to particle Ne; ε2 contains once again
the energy of the interaction between particle 2 and 1, and so on. Thus, all interaction
energies will be counted twice in the sum over εi. This double counting is then compensated
by adding the average over the noninteracting Hamiltonian and taking half of the sum.

The optical response of the system to the external perturbation can be analyzed by
computing the expectation value of the dipole or higher order multipole operators:

di(t) =
∫

d3rrLYL,i(
r

r
)ρ(r, t).

We will consider only the dipole response, thus L = 1 – the orbital quantum number for
the spherical harmonics YL,i(

r
r
). The ρ(r, t) are diagonal elements of the density matrix

Eq. (3.5) (r′ = r). The computations are performed as

d(t) =
Ne∑

i=1

Nbf∑

αβ=1

di
αβciα(t)∗ciβ(t),

where the dαβ are matrix elements of the corresponding dipole operator. The signal d(t)
is then transformed to the frequency domain, finally yielding the power spectrum:

P (ω) =
∫

dt eiωtd(t). (3.16)

The properties of the power spectrum are considered in detail in a review paper [18].
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3.1.4 Alternative implementations

Mean-field methods now are established as a very powerful approach in theoretical physics.
They have a very broad range of applications from mathematics, statistical physics to
quantum-field theory and many-body systems. Results obtained within this approach serve
as a good initial guess for further corrections. The advantage of these methods are their
simplicity, and the possibility to derive it without using a complicated diagram technique
(for instance from the variational principle).

In relation to many-body physics mean-field theory received its widest attention. Hartree-
Fock equations were applied to various systems: atoms, molecules, solids, surfaces, etc.
Now it became a standard tool for all ab initio programs in quantum chemistry. Some
of its disadvantages, such as the non-linearity of HF equations, difficulties in predicting
properties of the unoccupied states, or the overestimation of the band (HOMO-LUMO)
gap have a trade-off by their simplicity.

The time-dependent HF equation was discovered shortly after its stationary counter-
part [15]. At first sight it accounts for electron-electron interaction on the same level as
the stationary equation, and, thus, contains no additional information about electronic
correlations. This is, however, not the case. One can consider the regime of linear re-
sponse assuming a small temporal deviation of the wave-function from the stationary HF
solution. Neglecting the exchange term and transforming to the frequency domain one
can obtain eigenvalue equations that describe small oscillations in the systems around the
time-independent solution:

(
A B
B∗ A∗

) (
Xk

Y k

)
= ωk

(
Xk

−Y k

)
. (3.17)

The matrix A contains matrix elements of the interaction between particle-hole excitations,
whereas matrix B is composed of matrix elements of the interaction between the ground
and two-particle two-hole excitations:

Ama,nb = (εm − εa)δabδmn + 〈mb|V |an〉
Bma,nb = 〈mn|V |ab〉. (3.18)

The indices a, b (m,n) refer to the hole (particle) states. The positive eigenvalues ωk

of Eq. (3.17) are the excitation energies of the system. We will call it linearized time-
dependent Hartree (LTH) approximation. Although the extension of the HF self-consistent
field method to the time domain looks physically very natural it describes a number of
important phenomena, not accessible within the original HF approach. The LTH approxi-
mation is equivalent to a sequence of approximations like equation of motion, summation of
a certain class of Feynman diagrams, etc. For the uniform electron gas it gives a dielectric
function first derived by Lindhard [10]. On the other hand it is equivalent to the random
phase approximation of the diagram technique Fig. (3.2), where the effective interaction
between electrons accounts for dynamical screening [19].
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Fig. 3.2: Dyson’s equation for the screened poten-
tial on the RPA level. Thick wavy lines denote fre-
quency dependent screened photon propagators, thin
wavy lines represent the Coulomb interaction. The
bubble is formed by electron propagators (one-particle
Green’s functions).

When one uses this result to
compute the total energy of the
uniform electron gas one obtains
results identical to that derived
by Gell-Mann and Brueckner
in the high-density limit (small
rs) summing up ring diagrams.
Thus we see that allowing wave-
functions to change in time leads
to the inclusion of some correla-
tions.

Besides the fundamental interest in TDHF and its relation to other methods, this
approach was also widely used in nuclear physics to study collective excitations in atomic
nuclei.

Density functional theory now is the most popular way to include electronic correlations
beyond HF. The formal basis of the theory was laid by Hohenberg and Kohn [20] in their
famous theorem. It states that the exact ground-state energy of a correlated electron
system is a functional of the density ρ(r) alone and that this functional has its variational
minimum when evaluated for the exact ground-state density. In principle, the theory maps
the full many-body problem onto a simple mean-field equation. However, the exact form
of the functional is not known. Many approaches have been used to treat the exchange-
correlational functional approximately. To build it one performs more or less sophisticated
many-body calculations for hypothetical infinite systems of electrons with constant density
ρ. The resulting expression is used to extract the corresponding exchange-correlation part
exc(ρ), which is a function of the variable ρ. One can then proceed further to use the local
density approximation (LDA) to express the functional dependence as:

ELDA
xc [ρ(r)] =

∫
ρ(r)exc(ρ(r)) d3r.

This approach was applied with great success to a large variety of systems often giving
considerable improvement over the HF calculations.

As in the case of TDHF it is natural to extend LDA to account for the time depen-
dence. The theory of this type was developed by Gross [21] and has been used for both
purposes: to observe the evolution of the system in real time, and to study the system
in the limit of linear response, reducing the equations to an eigenvalue problem. Early
attempts to compute the atomic polarizabilities [22, 23] in the framework of the second
approach showed the practicability of this method. Like TDHF this approach uses an
RPA-like set of equations (Eq. (3.17)) to compute the excitation spectra of the system.
The only difference between the HF and LDA is in the definition of the matrix elements
of the interaction between excited states. In the case of HF it contains besides the direct
term the exchange interaction

〈ij|V |kl〉 = 〈ij| 1

|r − r′| |kl〉 − 〈ij| 1

|r − r′| |lk〉
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while in the LDA case it contains the exchange-correlational functional:

〈ij|V |kl〉 = 〈ij| 1

|r − r′| |kl〉 − 〈ij|δVxc

δρ
|kl〉.

The first application of this method to a large system like metallic clusters has been
performed by Ekardt [6] employing the jellium model. However, one should be aware of
possible pitfalls of the direct transfer of the exchange-correlational functional to the case
of time-dependent electronic density [24]:

• the Hohenberg-Kohn theorem and the density-functional theory built upon it are
strictly limited to the static ground state. In general, the exchange-correlation func-
tional should be frequency dependent [25], and this cannot be reduced to the indirect
dependence through the time-dependent electronic density ρ(r, t).

• unlike the time-dependent HF scheme, where the LTH limit is known, there is a risk
of double counting of some correlations in the TDLDA approach.

For the thorough comparison of a different type of TDLDA linear response calculations we
refer reader to the works of van Gisbergen et al. [26] and Madjet et al. [27]. To the end
of this section we concentrate on the first approach – time propagation of the electronic
density.

The works in that direction have been initiated almost simultaneously by two groups
of investigators [28, 29] soon after the development of the formal basis for TDDFT. In a
series of papers [30, 31] Yabana and Bertsch gave a strong argumentation that for the large
number of particles in a three dimensional configuration it is a more efficient way than to
use the matrix formulation of the linear response. With the growth of the system size the
diagonalization of a large matrix (Eq. (3.17)) soon becomes less efficient3 than the solution
of the time-dependent problem, which amounts to a matrix-vector multiplication4 only.

Both approaches are quite similar. The electronic density is represented on a mesh in
the 3D or 2D space exploiting the symmetry of the problem. The Laplace operator entering
the Hamiltonian is evaluated by means of a finite-difference scheme, and the propagation in
time is done by solving the set of ordinary differential equations by appropriate methods.
To eliminate core electrons, that do not affect much the static and dynamic properties of the
clusters, the jellium model or pseudopotentials of different kinds are used. Despite general
belief, that for the time-dependent calculations one needs to use a frequency-dependent
exchange-correlational potential, the standard functionals available from the static DFT
are in wide use. This comes from the proven fact that, in the adiabatic limit, both types
of functionals should give identical results.

3 The size of the matrix is proportional to the number of particle-hole excitation, that scales as N2
e ,

where Ne is the number of electrons in the system. The diagonalization of the matrix would require N6
e

operations.
4 In the real-time method the object of interest is the set of Ne wave-function vectors, each of the size of

the basis Nbf . The time evolution is carried out by applying the Hamilton operator to the wave-functions,
which require at most N3

bf operations for each wave-function, or Ne ·N3
bf in total.
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The TDLDA method has been applied so far to different systems ranging from organic
molecules and fullerenes to metallic clusters. The theory [28] is able to predict the gross
features of the excitation spectrum of the C60 molecule, such as the position of the plasmon
resonance, and its broadening due to Landau damping. For the organic chain molecules
TDLDA gives the possibility to check the dependence of the frequency of the collective
excitations on the length of the chain [30, 31]. The results are close to those of CI calcula-
tions for a small number of atoms and confirm the theoretical prediction ωpl ∼

√
ln N/N

in the limit of a large number (N) of atoms. The calculations on alkali-metal clusters show
that at large numbers of atoms the response function is not very sensitive to the ionic
structure [28]. Thus, calculations can be facilitated by using the jellium model. However,
in the case of smaller clusters or systems with localized d-electrons this approach is not
permissible. The structure of the excitation spectrum depends very much on the cluster ge-
ometry. Extensive calculations [32] were done on sodium clusters from Na2 to Na+

59. They
clearly show the dependence of the optical properties of the clusters on the geometry. In
particular, because of the absence of spherical symmetry, the plasmon peaks are composed
of several lines. They can be observed in photoabsorption experiments, and results of the
TDLDA calculations show very good agreement with the measured spectra.

But not only the photoabsorption spectrum can be obtained from the results of the
TDLDA calculations. One can vary parameters of the excitations such as the excitation
energy, to observe the non-linear plasmon response [29, 33] or second and higher harmonic
generation [34].

3.2 GW approximation

The single-particle Green function contains a great deal of information about the properties
of the system under consideration. With its help we can calculate the ground-state expec-
tation value of any single-particle operator as well as the ground-state energy of the system,
etc. In principle, it contains more information about the system than the wave-functions
and energies in the quasiparticle approximation. The latter is a very strong restriction. It
says that the many-body wave-function of the system can be represented in the form of a
single Slater determinant based on some one-particle wave-functions that describe quasi-
particle states. To understand it better let us consider a simple example. According to
a definition of Green’s function for the system containing m electrons distributed over n
states the Green function has n!

(m+1)!(n−m−1)!
+ n!

(m−1)!(n−m+1)!
poles as a function of energy.

They result from the transitions between the ground state of the m particle and the excited
states of the m + 1 and m − 1 particle systems. In the assumption of quasiparticles this
is approximated by a function having only n poles. As we saw before this does not always
work. The Hartree-Fock Green function, although quite well predicting the position of the
major peaks in the spectral functions is not able to describe their broadening. Moreover
it fails to describe their satellites simply because of the insufficient number of states it is
built on. To remedy that one must go beyond the quasiparticle picture. But even in the
framework of this approximation one can improve the description by allowing the energy
of the quasiparticle to be complex, and, thus, taking into account its broadening or decay:
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εα = ε0
α + 〈α|Σ(εα)|α〉. The real part of the self-energy Σ(ω) also improves the energy of

the eigenstates and corrects the gap between occupied and virtual states, which is too high
in the Hartree-Fock picture and too low in the local density approximation. In this section
we describe how the MBPT can contribute corrections to the Hartree-Fock or LDA eigen-
states ε0

α. Two main functions have to be considered: the single-particle Green function
G and the self-energy Σ. They are connected by a complicated set of equations, through
which the self-energy has to be determined self-consistently from the screened potential W
and Green’s function G as a product Σ = −iGW . This gave the name to the method.

3.2.1 Theory

The equations of the many-body perturbation theory do not form a closed set, rather an
infinite chain. The equation of motion for the single-particle Green function contains a
two-particle Green function. The equation of motion for two-particle Green’s function
depends on the Green function for three-particles, and so on. Instead of terminating such
a chain at a certain level by an appropriate decoupling scheme we can proceed in different
way by imposing a particular form of equation that the single particle Green function
fulfills. Introducing the energy dependent self-energy operator Σ(r, r′, ω), we can write
the equation for Green’s function without loss of generality as

[
ω − Ĥ0(r)

]
G(r, r′; ω)−

∫
d3r′′Σ(r, r′′; ω)G(r′′, r′; ω) = δ(r, r′). (3.19)

In contrast to many textbooks where the general formalism of Green’s function tech-
nique is built in the real-space representation (r, t) or reciprocal space (k, ω), for our pur-
pose it is better to work in a general basis. To simplify the notations we use (1), (2), (3)...
to label the set of space coordinates, time, and, possibly, spin. We label the basis functions
as α, β, .... It is clear that most of the equations will not change its form in this basis set
representation. But in this way we avoid some problems that arise from the assumption
on a particular kind of basis function and simplify the notations. Thus, we can rewrite the
last equation in the form

∑
α

[
ω −H0

γα − Σγα(ω)
]
Gαβ(ω) = Iγβ, (3.20)

where Iαβ is a diagonal operator. It is clear that one can get the equation for the Green
function in the HF approximation diagrammatically represented on Fig. 3.1 from this
equation as a particular case assuming that the self-energy takes the form

ΣHF (rt, r′t′) =

iv(r, r′)G(rt, r′t′)δ(t− t′ + δt)︸ ︷︷ ︸
Hex

− iδ(r, r′)
∫

d3r′′v(r, r′′)G(r′′ t, r′′ t + δt)
︸ ︷︷ ︸

Hd

(3.21)

Thus, we see that in the HF theory the self-energy depends self-consistently on the density
matrix, or, which is the same, on the Green function in the equal time limit. In general,
going beyond HF the self-energy should be regarded as a functional of G, i.e. Σ = Σ(G). In
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the case of any approximation the Hartree part (the second term of the above equation) of
self-energy must be present. It is local in space and describes the effective potential in which
the electron moves. We add it to the single-particle Hamiltonian redefining accordingly
the self-energy Σ(rt, r′t′) → δ(r, r′)Hd(r) + Σ(rt, r′t′).

Now we consider functional equations that enable us to determine the self-energy from
the known Green function, and thus to close the infinite chain. The set of equations was
first derived by Hedin (see Appendix C for the thorough derivation), and in the real-space
representation it takes the form:

Σ(12) = i
∫

W (1+3)G(14)Γ(42; 3)d(34) (3.22a)

W (12) = v(12) +
∫

W (13)P (34)v(42)d(34) (3.22b)

P (12) = −i
∫

G(23)G(42)Γ(34; 1)d(34) (3.22c)

Γ(12; 3) = δ(12)δ(13) +
∫ δΣ(12)

δG(45)
G(46)G(75)Γ(67; 3)d(4567). (3.22d)

The plus sign here denotes the appropriate selection of the time arguments: (1) ↔ (r1, t1),
whereas (1+) ↔ (r1, t1 + δt). The key quantity in Hedin’s set of equations is the screened
interaction W . It describes the interaction between the electrons in the electron gas.
Because of the screening effects this interaction is weaker than the pure Coulomb interaction
and is frequency dependent. It is connected to the Coulomb interaction via the inverse
dielectric function as

W (12) =
∫

v(13)ε−1(32)d(3). (3.23)

v(12) is an abbreviated notation for the Coulomb interaction

v(12) = v(r1, r2)δ(t1 − t2),

which, of course, is time-independent. To calculate the dielectric function one needs to
know the irreducible polarization operator P, which is related to ε by

ε(12) = δ(12)−
∫

P (32)v(13)d(3). (3.24)
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Fig. 3.3: Dyson’s equation for the single-particle
Green function.

The set of Eqs. (3.22a)-(3.22d) has
a very clear interpretation in terms
of Feynman diagrams, see Fig. 3.4.
As usually, thin and thick straight
lines denote electron Green’s functions
of the non-interacting and interacting
systems, respectively. Thin and thick
wavy lines describe the screened and

bare Coulomb interaction. Each connection point means integration in real space and real
time. We also use the following notations: the self-energy is shown as a filled circle, the
irreducible polarization operator is depicted by a filled electron loop, the irreducible vertex
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part is given as a filled triangle and the functional derivative of the self-energy with respect
to the Green function is displayed as a rectangle. The set of equations (4.22) should be
complemented by the Dyson equation for Green’s function, see Fig. 3.3

G(12) = G0(12) +
∫

G(13)(Hd(34) + Σ(34))G0(42)d(34), (3.25)

where G0 stands for the unperturbed Green function.
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Fig. 3.4: Hedin’s equations.

The influence of the self-energy on
the properties of Green’s function can
be most easily understood by consider-
ing the translationally invariant homo-
geneous electron gas and expressing all
quantities in reciprocal space. It is ad-
vantageous that in this case the non-
interacting Hamiltonian Ĥ0 is diago-
nal, and the Green function and self-
energy depend only on the k-vector
and frequency ω. The direct inter-
action part of the Hamiltonian Hd,
which is diverging in this case, is can-
celled by the field of the positive ion
background, thus we do not include it
in the following. Neglecting the spin,
Dyson’s equation (Eq. (3.25)) takes a
simple form:

G(k, ω) = G0(k, ω)+G(k, ω)Σ(k, ω)G0(k, ω).

From this, using the expression for G0 (similar to Eq. (2.15))

G0(k, ω) = lim
δ→0+

[
Θ(k − kF )

ω − ε0
k + iδ

+
Θ(kF − k)

ω − ε0
k − iδ

]

one can obtain the following representation of the Green function

G(k, ω) =
1

ω − ε0
k − Σ(k, ω)

. (3.26)

From that one can see two effects of the self-energy (Fig. 3.6). First, it renormalizes the
quasiparticle dispersion law. Instead that of the non-interacting system ε0

k = k2

2m
it is now

determined from the zero of the denominator5:

ω − k2

2m
− Σ(k, ω) = 0 (3.27)

5 Generally speaking one can have more than one solution, however, all of them except one lie in the
region of energies where the imaginary part of the self-energy is large, and, thus, they are strongly damped.
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The second important effect is the renormalization of the spectral weight of the quasiparticle
peak. If we write the Green function in the vicinity of the pole in the form G(ω) = Z

ω−ε

we see that for the non-interacting system the spectral weight Z is exactly unity. In the
interacting case we expand the self-energy around the pole as Σ(ω) = Σ(ε)+ ∂Σ(ω)

∂ω

∣∣∣
ω=ε

(ω−ε)

and obtain the following expression for the spectral weight:

Z

ω − ε
=

1

ω − ε0
k − Σ(ω)

=
1

ω − (ε0
k + Σ(ε))︸ ︷︷ ︸

∼ε

− ∂Σ(ω)
∂ω

∣∣∣
ω=ε

(ω − ε)
=

1

(ω − ε)(1− ∂Σ(ω)
∂ω

∣∣∣
ω=ε

)
∼

1 + ∂Σ(ω)
∂ω

∣∣∣
ω=ε

ω − ε

⇒ Z = 1 +
∂Σ(ω)

∂ω

∣∣∣∣∣
ω=ε

.

Fig. 3.5: Momentum distribution function in the
homogeneous electron gas at rs = 4 aB accord-
ing to Ref. [35]. The calculations were performed
on different levels of the theory: full line – GW,
dashed line – GW0, dotted line – G0W0.

The spectral weight is closely re-
lated to the momentum distribution
function. In the case of the non-
interacting electron gas the distribu-
tion is just a step function that is
equal to 1 below the Fermi level and
is 0 for the states with momentum
larger than kF . In the interacting case
the states above the Fermi level get
partially populated6 and, as shown in
Fig. 3.5, the magnitude of the disconti-
nuity equals the strength of the quasi-
particle pole at k = kF .

In a similar manner Eq. (3.27) can
be solved approximately to estimate
the broadening Γ(k) of the quasipar-
ticle peak:

Γ(k) =
=m Σ(k, ε(k))

1− ∂<eΣ(ω)
∂ω

∣∣∣
ω=ε

.

The frequency dependence of the self-energy can be understood from general principles.
Such, from the existence of quasiparticles in the vicinity of the Fermi surface it follows that

6 Note the similarity between the distribution function of the non-interacting electron gas at non-zero
temperature and the interacting electron gas. There is, however, one important difference – at finite
temperature the discontinuity at the Fermi energy disappears in the noninteracting case, whereas it is
preserved in the interacting case. This has been confirmed in the work of Daniel and Vosko (Phys.
Rev. 120 (1960), 2041) by considering RPA-type diagrams for the homogeneous electron gas at metallic
densities. They demonstrate that the magnitude of the discontinuity is related to the Wigner-Seitz radius
rs as: Z ∼ 1− 3.4 1

π2 ( 4
9π )1/3rs.
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the imaginary part of the self-energy vanishes at ω = EF. In the cases when MBPT works
it is possible to prove that |=m Σ(ω)| ∼ (ω − EF)2. From the fact that the discontinuity
of the momentum distribution function cannot be larger than unity (Z < 1) a limitation

of the slope of the real part of the self-energy follows ∂<e Σ(ω)
∂ω

< 0. Combining these two
properties and imposing causality of the self-energy

Σ(ω) = Hex +
1

π

∫

C

|=m Σ(ω′)|
ω − ω′

dω′

one obtains the qualitative behavior as shown in Fig. 3.6.

Fig. 3.6: Anticipated behavior of the electron self-
energy. Intersections of the straight line with the
self-energy curves give solutions of Dyson’s equa-
tion.

The system of Hedin’s equa-
tions (3.22) is exact and very com-
plicated. The equations for the self-
energy, screened potential, and polar-
ization operator contain double inte-
gration over the space and time co-
ordinates. Each of these quantities
depends on two space-time variables.
Even to represent them on the mesh
in real space is very difficult. Let us
make an estimation. For the DFT cal-
culation one needs typically 105 mesh
points to represent the electronic den-
sity. Let us assume that the time
axis can be divided in 102 intervals.
Thus one needs to keep at least 1014

real numbers for each function to cap-
ture them correctly. Double integra-
tion would require than 1028 floating-point operations, which are impossible now even on
the most powerful supercomputers. The equation for the vertex part is even more com-
plex. It contains the four-index quantity δΣ

δG
that has to be determined by a functional

differentiation of the self-energy with respect to the Green function. This is very difficult
to do numerically. Thus, one has to resort to approximations. The simplest one is to
neglect the vertex function (Γ(12; 3) = δ(12)δ(13)). One can consider that as a first step
of the iterative solution of Hedin’s equations. One starts with Σ = 0 and inserts this in
Eq. (3.22d). From that we get a self-consistent set of equations to determine the single-
particle electron propagator G(ω), screened interaction W (ω), dielectric function ε(ω) and
irreducible polarization operator P (ω):

Σ(12) = iW (1+2)G(12)
W (12) = v(12) +

∫
W (13)P (34)v(42)d(34)

P (12) = −iG(12)G(21).
(3.28)

In the literature the set of Eqs. (3.28) is usually referred to as GW approximation, because
the self-energy is a product of Green’s function G and screened Coulomb interaction W .
In a diagrammatic form they can be represented as shown in Fig. 3.7.
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Fig. 3.7: Hedin’s equations neglecting the vertex
correction.

The system Eq. (3.28) must be
solved iteratively. It means that one
starts with a reasonable expression for
the Green function. Normally one can
build it in the quasiparticle approxi-
mation based on the results of the HF
or LDA calculations7

GHF (r, r′; ω) =
∑

i

ψ∗i (r)ψi(r
′)

ω − ε0
i

,

where we understand that the proper
infinitesimals are included in ε0

i ac-
cording to the rule Eq. (2.14). Here
the sum is taken over all occupied and

virtual states. From this Green’s function one builds the polarization operator and, conse-
quently, the screened interaction. The self-energy is then computed and is used to find a
new Green function by the solution of Dyson’s equation (Eq. (3.25)). The cycle is repeated
until the Green functions of two consecutive steps do not differ any more. From that one
can introduce further approximations, discussed in the literature. A broad review of the
multitude of approaches within the framework of the GW approximation can be found in
the paper of Aryasetiawan and Gunnarsson [36]. They differ by how the self-consistency
loop is arranged. If one stops after the first step of iteration, thus using the Green function
of the mean-field calculations to compute both the screened interaction and self-energy
it is referred to as G0W0 approximation. Within this approach only corrections to the
eigenstate energy are computed by approximately solving Dyson’s equation

εi = ε0
i + 〈i|Σ(εi)|i〉.

This equation should be understood as a first order perturbational treatment of the self-
energy function. This kind of approach is the simplest one because only the diagonal
matrix elements of the self-energy are required, thus, it was the first one that has been
implemented for realistic systems. However, one of the conceptual deficiencies of a non-
self-consistent procedure is, of course, the dependence of the final results on the choice of
initial Green’s function.

One can build a partially self-consistent scheme to avoid that problem. In the GW
calculations one of the major computational difficulty is the inversion of the dielectric
function ε(ω), that should be performed at each frequency point. This can be facilitated
by using the so called plasmon pole approximation for the dielectric function, or by taking
the screened potential out of the self-consistency loop, in the so called GW0 approximation.
Therefore, the computational efficiency is improved and the method becomes less sensitive
to the initial choice of Green’s function.

Summarizing, in this section we started with a set of Hedin’s equations that connect
Green’s function, polarization operator, screened potential and vertex function. Neglect

7 It is easy to verify that the HF Green function satisfies Eq. (3.19) with Σ = ΣHF given by Eq. (3.21).
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of the vertex function leads to the simplified GW approximation. Further simplification
can be achieved to make the theory accessible for numerical implementations in going to
the G0W0 or GW0 levels. Before proceeding further with these approximations one must
clarify the following points:

• For which systems and under which conditions are they valid?

• Do they conserve particle number and total energy of the system?

• What is the role of the vertex function, that is neglected in GW approach?

3.2.2 Justification of the GW approximation

One can understand how the approximation works for realistic systems by applying the
method to simplified models. The most popular system to test MBPT is the homoge-
neous, translationally invariant electron gas. In the series of papers by Holm and von
Barth [37, 35] the G0W0, GW0 and GW schemes were compared. Calculations show that
for the electronic density rs = 4 aB, which is typical for sodium, the shift of the quasiparti-
cle energy due to the GW corrections is around 10%. The description of the bandwidth is
best in the G0W0 scheme and deteriorates in going further to GW0 and GW. It is known,
for example, that for simple metals (e.g. sodium) experiments give the bandwidth approx-
imately 10% narrower compared to the results of band-structure calculations employing
LDA. This paradoxical result8, that the fully self-consistent GW calculation is worse than
G0W0 indicates the necessity of vertex corrections. The situation is opposite with the total
energy: the quality of the obtained results becomes better in the full GW calculation, giv-
ing excellent agreement with results of Monte-Carlo calculations (at rs = 4 aB the relative
error of the energy per particle is approximately 0.6%).

In the papers [38, 39] the role of the vertex function was discussed again for the same
system, for the Hubbard cluster [40] and for realistic systems like silicon or diamond [41].
Up to now it was not possible to take the vertex function into account without any sim-
plifying approximations because a numerical treatment is possible only if the functional
derivative in the Eq. (3.22d) can be evaluated analytically. A general approach how to
do that within the self-consistency loop was developed in [40] and was shown to be very
fruitful in describing the satellite structure, as well as in demonstrating the convergence of
the GWΓ scheme.

8 The reason for that is a different distribution of the spectral weight (Z) among the quasiparticle
peak and satellite structure on the different levels of theory. In the G0W0 scheme a Green function with
non-renormalized spectral weight (Z = 1 – no satellites) is used to compute the dynamical part of the
self-energy that partially cancels the HF contribution and produces the best result. On the GW0 level the
spectral weight of the quasiparticle peak in the Green function is already reduced because of the appearance
of the satellite structure. Thus, the dynamical part of the self-energy is smaller and does not compensate
the static one any more. On the fully self-consistency level the quasiparticle peak becomes sharper again
(compare full and dashed lines in Fig. 3.5), thus one can expect an improvement of the cancellation and
further reduce of the band-gap. This, however, is obstructed by the change of the static part of the self-
energy because of the redistribution of the electronic density. The second effect is even stronger leading to
an increase of the band-gap. A good discussion on this subject can be found in Ref. [35].
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Fig. 3.8: Expansion of the self-energy as a func-
tional of the screened interaction in second order
as used in Ref. [38].

There is the general belief that
there exists a cancellation of the self-
consistency effect on the band gap and
inclusion of the vertex correction com-
ing from the work of Shirley [39]. He
used the expansion of the self-energy
to second order in the screened inter-
action (Fig. 3.8) to capture some effect

of the vertex function. In the paper of Ummels et al. [41] it was shown that higher order
diagrams in both the polarization operator (to first order in W ) and self-energy (to sec-
ond order in W ) can partially cancel. This effect is very large for P and is 35% for the
self-energy.
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Fig. 3.9: Generating functional for the
self-consistent GW approximation that
guarantees conservation of the particle
number, total energy, and momentum.

Not all GW approaches are equivalent with
respect of their conservation properties. There
is a sufficient condition derived in the papers by
Kadanoff and Baym [42, 43] that guarantees con-
servation of particle number, total energy, and
momentum under a time-dependent external per-
turbation. It requires that the self-energy can be
represented as a functional derivative Σ = δΦ/δG
of a certain generating functional Φ with respect
to Green’s function G which satisfies the Dyson
equation with this self-energy. In the case of the
self-consistent GW approximation the functional

can be diagrammatically represented as shown in Fig. 3.9. On the other hand it is obvious
that the G0W0 approximation is not conserving because the Green function is not deter-
mined self-consistently from the corresponding self-energy. The partially self-consistent
scheme GW0, however, conserves the total particle number, although the self-energy can-
not be represented as a functional derivative of some functional. The prove of that as well
as calculations that show the violation of the total particle number in the G0W0 approach
can be found in Ref. [44]. According to this work, in the case of the homogeneous electron
gas, the relative error in determining the total particle number on the G0W0 level ranges
from 0% at rs = 0 to 0.25% at an electron density of rs = 4.6 aB.

3.2.3 Numerical implementation

In this section we describe our implementation of the GW method using localized basis
functions. This approach is particulary useful for systems without translational invariance
i.e. atoms, molecules and clusters. As a basis we use contracted Gaussians that have
found a broad application in quantum chemistry. It might look contradictory, that in this
section we use indices i, j, k, ... to label basis functions. As we mentioned before indices
α, β, γ... are reserved for this purpose, and i, j, k, ... label eigenstates. However, Gaussian
basis functions often contain information of limited physical relevance. For example results
of the HF calculations in this basis contain a number of virtual states with high energy
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that are represented very poorly. Their inclusion in further calculations will not add new
features to the physical picture, but slow down the computations. Therefore it is necessary
to limit the states included in the GW calculation. It is achieved by changing from the
Gaussian basis to the basis of HF eigenfunctions and introducing cut-offs for highly excited
and deeply lying states ({α, β, γ...} → {i, j, k, ...}).

It is important to represent all equations in matrix form to achieve the best performance.
When transforming Hedin’s equations to this form special care must be taken in order to
reduce possible numerical errors due to the incompleteness of the basis set. For example
one must avoid operations of the kind: Cαβ =

∑
γ AαγBγβ wherever possible when the

matrix C can be computed directly. As an illustration let us consider the computation
of the screened interaction W from the known Green function in detail. One may do it
in the following sequence of operations: first, the polarization operator is computed as
P = −iGG, then the dielectric matrix is built using Eq. (3.24). In the next step it has
to be inverted to compute the screened interaction according to Eq. (3.23). The first step
can easily be done in real space where it amounts to a simple multiplication. In order to
perform this operation in matrix form one must compute overlap integrals over three basis
functions

Omn
k =

∫
d3rφk(r)φm(r)φn(r).

Omitting the time arguments for the sake of simplicity we then have

P (r1, r2) = −i
∫

d3rG(r1, r2)G(r2, r1) =

−i
∫

d3r
∑

k1,k2

∑

l1,l2

Gk1,k2φk1(r1)φk2(r2)Gl1,l2φl1(r2)φl2(r1)

P (r1, r2) =
∑
mn

Pmnφm(r1)φn(r2).

Comparing both expressions we get finally

Pmn = −i
∑

k1,k2

∑

l1,l2

Ok1,l1
m Gk1,k2Gl1,l2O

k2,l2
n .

The integration over the space coordinates needed to compute the dielectric function in
the basis set representation is reduced to a simple matrix multiplication, thus

εmn = Imn +
∑

k

Pmkvkn.

Here the vkn are two-point matrix elements of the Coulomb interaction. However this
implementation is not an optimal way. The last identity is true only if the basis set is
complete and infinite. Performing the integration via matrix multiplication is not precise
even in the case of an extended basis, because of the absence of the delocalized basis
functions. One avoids this problem by introducing three-point electron repulsion integrals
(ERIs)

V mn
k =

∫
d3rd3r′

φk(r)φm(r′)φn(r′)
|r − r′|
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and combining two steps together:

(ε− I)mn = −i
∑

k1,k2

∑

l1,l2

Ok1,l1
m Gk1,k2Gl1,l2V

k2,l2
n .

The crucial place of performing the 3D integration has now shifted to the computation of
the 3-point ERIs, which can be done analytically in the case of Gaussian basis functions
as is explained in Appendix A.

Inversion of the dielectric matrix is as well not the best way from the computational
point of view because of the numerical instability. It is better to combine it with the
last step by solving the system of linear equations to determine the screened potential.
It is useful to split the screened potential W into two parts: the unscreened Coulomb
interaction that is not frequency dependent and the contribution from the Coulomb hole9

(Wmn(ω) = vmn + W ′
mn(ω)). The former, after convolution with Green’s function, gives

the exchange part of the Hartree-Fock Hamiltonian. Keeping in mind expression Eqs. (3.1,
3.8) for the Hartree-Fock Hamiltonian ĤHF we can rewrite the system of equations in the
form

Σ′
mn(ω) =

i

2π

∫
dω′

∑

k1,k2,l1,l2

Ok1l1
m Gk1k2(ω + ω′)W ′

l1l2
(ω′)Ok2l2

n eiω′δ, (3.29a)

W ′
mn(ω) = Wmn(ω)− vmn, (3.29b)

vmn =
∑

k,l

Wmk(ω)εkn(ω), (3.29c)

(ε− I)mn(ω) = − i

2π

∫
dω′

∑

k1,k2,l1,l2

Ok1l1
m Gk1k2(ω

′)Gl2l1(ω
′ − ω)V k2l2

n , (3.29d)

Gmn(ω) = [ωI −HHF − Σ′(ω)]−1
mn. (3.29e)

This is the set of equations that forms the essence of our method. However, spin is
not taken into account here (spinless fermions). According to the diagrammatic rules
summation over the spin variables must be performed in the expression for the polarization
operator. In the case of an equal number of spin-up and spin-down electrons an additional
factor 2 results in Eq. (3.29d) on the RHS.

The computation of the polarization operator and self-energy is the major computa-
tional task. At a first glance the numerical cost of performing these convolutions is N2

ωN6
bf

proportional to the square of ω points and sixth power of the number of basis functions. In
fact this estimate can be considerably reduced by making use of the fast Fourier transform
(FFT) to the real time ω → t and back. This idea is very similar to that used in the
real-space implementation of the GW method for jellium and semiconductors by Godby
et al. [45]. They define the Green function on a mesh in real space and imaginary time
(G(r, r′, τ)). To compute the convolutions P = −iGG and Σ = iGW 6D-FFT with respect
to space coordinates and 1D-FFT from complex time to complex energy are performed.

9 When a negatively charged particle – an electron – is put into the electron gas it repels other electrons.
Therefore, around it a cloud of positive charge density is build that reduces the strength of electron-electron
interaction and makes it frequency dependent.
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Fig. 3.10: Computation performed in the order shown by numbers. Numerical cost of each
step is proportional to N4

bf

In this new representation P and Σ are simply given as a product of the corresponding
quantities. As a consequence the method asymptotically scales almost linearly with the
system size. In the case of localized systems it is better to retain the basis set representa-
tion of the spacial part and use FFT to do the convolution in ω space. Convolution in the
frequency domain corresponds to a simple multiplication in the time domain. The number
of operations is, thus, proportional to Nω. The conventional Fourier transform scales as
N2

ω, therefore no gain in speed is expected. The fast Fourier transform, which operates only
on a certain number of mesh points10 scales as Nω log2(Nω) thus giving a huge acceleration.
The efficient computation of the product of 2 two-indexes and 2 three-indexes quantities
can be done at a cost of only N4

bf by carefully scheduling the order of operations as shown
schematically in Fig. 3.10. All three steps can be done by matrix multiplications employing
highly efficient mathematical libraries.

The initial Green function and dielectric function are computed from the results of the
self-consistent Hartree-Fock calculation

Gmn(ω) =
Nbf∑

s=1

ψs
mψs

n

ω − εs

, (3.30)

(ε− I)mn(ω) =
Nbf∑

k1,k2,
l1,l2=1

Nbf∑

s,s′=1

ns − ns′

εs − εs′ − ω
ψs

k1
ψs′

l2
ψs′

l1
ψs

k2
V k2l2

n Ok1l1
m . (3.31)

Here a small positive (negative) imaginary part has to be added to the eigenvalues below
(above) the Fermi energy, according to the rule Eq. (2.14). The last expression is ob-
tained by performing the integration in Eq. (3.29d). ns is the occupation number of the
corresponding state.

We represent all ω-dependent quantities on the real axis (Fig. 3.11). This has advantages
and deficiencies. For example there is no need to perform an analytic continuation from
the real axis to the imaginary axis and back, for which no reliable numerical algorithm
exists. On the other hand, the Green function (for instance) has a complicated behavior
close to the real axis because of the vicinity of the poles. This requires a larger number of
mesh points compared to the imaginary axis, where the function is smooth. To overcome

10 most often it is a power of 2
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this problem we use a dense mesh only in the central part, close to the Fermi level, where
all physics happens, whereas outside that region functions are rationally approximated as:

Fmn(ω) =
F (1)

mn

ω − ω1

+
F (2)

mn

ω − ω2

(3.32)

Fig. 3.11: Representation of the ω-dependent func-
tions in our approach. Black dots schematically
denote the poles of Green’s function. In the cen-
tral part a uniform mesh is used. At the edges
functions are approximated by a rational expres-
sion, see Eq. (3.32).

In contrast to the analytic contin-
uation, for such fitting one can use a
reliable least squares method11. The
above approach reduces the memory
requirements and speeds up the com-
putations by eliminating the regions,
in which functions behave predictably
and smoothly anyway.

Up to now the only approxima-
tion that we used was neglecting the
vertex part in the expressions for the
self-energy and polarization operator.
Now we discuss several approximation,
that we used in order to speed up the
computations.

(i) It is well known that the self-
consistent approximation GW belongs
to the class of conserving approxima-
tions (Ref. [42, 46]). The problems

arises in the course of the self-consistent loop, when we start with the G0W0 approxi-
mation which is not conserving. The manifestation of the non-conservation of the particle
number is the non-Hermiticity of the density matrix which is most readily obtained via
integration of Green’s function in the whole frequency domain

ρmn =
1

2


Inm − 1

πi

∞∫

−∞
Gnm(ω)dω




To avoid this problem one has to symmetrize the density matrix, or, as we did to keep the
density matrix on the HF level throughout the GW self-consistency loop (see Fig. 3.12 for
the diagrammatic representation).

(ii) In order to speed up the computation of the polarization operator as a convolution
of two Green’s functions one might construct both Gmn(ω) and Pmn(ω) by solving the
Dyson equation approximately (path (a) on the flowchart Fig. 3.13 compared to the exact
solution of Dyson’s equation, that is shown as path (b)). Instead of computing the Green
function as the inverse of the non-local Hamiltonian one may try to solve the eigenvalue

11 In fact such fitting is done in two stages. First the least squares-method is used to find the coefficients
of Fmn(ω) = A(1)

mnω+A(0)
mn

B(2)ω2+B(1)ω+B(0) . Then this is transformed to the above form by factorizing the denominator.



3.3. Differences and similarities between HF, LDA, and GW 47

problem close to each expected pole of the Green function. As the Hamiltonian due to the
self-energy correction is non-Hermitian we must consider left end right eigenfunctions.

εn ∼ εHF
n + Σnn(εn) (3.33a)[

HHF + Σ′(εn)
]
ψL

n = εnψL
n (3.33b)

[
HHF + Σ′†(εn)

]
ψR

n = εnψR
n (3.33c)

The Green function is then constructed (approximately) similar to Eq. (3.30)

Gmn(ω) =
∑

s=1,Nbf

ψRs
m ψLs

n

ω − εs

. (3.34)

The dielectric function is built then in analogy to Eq. (3.31). However this method is not
suitable when the poles of the Green function are close one to another.
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�

Fig. 3.12: Dyson’s equation, two approximations:
top – fully self-consistent GW. The Σ′ as well as
direct and exchange terms are updated from the
Green function of the previous step. Bottom – the
direct and exchange energies are kept on the HF
level (first iteration).

Our computational approach per-
mits an efficient parallelization for
the multi- or vector-processors ma-
chines in the most time-demanding
stages, namely, convolutions of two
Green’s functions or Green’s func-
tion and screened interaction. After
FFT the problem consists of many
independent tasks of computing the
self-energy or polarization operator
for each time point according to the
schemes of Fig. 3.10. This is shown
schematically on Fig. 3.13 by multi-
lines.

3.3 Differences and similarities between HF, LDA,

and GW

The notion of electronic states is the cornerstone of solid-state physics and quantum chem-
istry. With the exception of several models, where analytic solutions are known, one has
to rely on different approximations to deal with the many-body nature of the problem.
Here we would like to concentrate on the question how electron-electron interaction (this,
actually, makes the problem a many-body one) is described on the single-particle level in
different approximations, such as HF, LDA, and GW. Several aspects have to be addressed:

• To which extent are results of HF, LDA, and GW comparable ?

• How do these methods describe electronic correlations ?

• How is the non-local two-body Coulomb interaction treated within a one-body scheme ?
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Fig. 3.13: Flow chart of the self-consistent GW calculation. (a) denotes the path, when
Dyson’s equation is solved approximately, (b) — Dyson’s equation is solved by the inversion
of the non-local Hamiltonian at each ω point.
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For the HF and LDA approaches or their time-dependent counterparts the result is
always single-particle wave-functions and their energies. In contrast, the GWA operates
mainly with Green’s functions. However, as we showed by Eqs. (3.33a-3.33c, 3.34), even
in the case of a non-Hermitian problem that arises due to the self-energy corrections the
Green function can still be built based on the single-particle eigenstates. But the analogy
with HF and LDA is not complete – one must consider left and right eigenfunctions.

By definition electronic correlations are not accounted on the HF level. In the case
of DFT one can, in principle, calculate them completely, but the exchange-correlation
functional is known only for a few model systems. In the case of realistic systems one has
to resort to various approximations. The first and most obvious one is the simplified spatial
dependence of the exchange-correlation potential in the LDA (their are also cases were
the gradient correction is needed). The second is the simplified treatment of correlation
used to build the exchange-correlation functional. As a consequence the results of the
calculations done for the same system using different functionals may differ slightly.12 The
GW approximation has several advantages in this respect by accounting for correlations
more fully and allowing even for the life-time determination that is not possible within the
LDA approach.

Regarding the properties of the effective Coulomb interaction entering the eigenvalue
problem in all three cases one sees a similarity between the HF and GW approaches,
which is different from the LDA. In the latter case the exchange-correlation functional that
describes electron-electron interaction is local in space similar to the direct interaction
in HF, LDA, and GWA. By contrast, the exchange interaction in the HF approach as
well as the self-energy in the GW are non-local in space, i.e. they depend on two space
variables (r, r0). In the GW scheme the self-energy additionally depends on the energy.
The non-locality of the self-energy is very important and can be illustrated on the example
of dynamical mean-field theory (DMFT) [47]. Within this approach, which gives an explicit
analytical solution for the infinite-dimensional Hubbard model [48] and well describes the
Mott transition in model and realistic systems, the correlational problem on the lattice is
reduced to a single-site problem which has to be solved via the k-integrated Dyson equation.
For the one-site problem the self-energy is, of course, local. The iterative mapping between
the lattice and the one-site problem, which is given by the Anderson impurity model, is
necessary to account for spatial variations and, thus, to obtain a solution for a bulk system.
This last step shows the importance of spatial resolution, which, in contrast, is achieved in
the GW approach by explicitly constructing the non-local self-energy.13

12 For quantum chemical calculations examples of commonly used functionals are: correlational function-
als of Vosko, Wilk, and Nusair (Canadian J. Phys. 58, 1200 (1980), the gradient corrected functional of
Lee, Yang and Parr (Phys. Rev. B 37, 785(1988)) employed together with exchange functional of Becke
(Phys. Rev. A 38, 3098(1988)) or the Perdew and Wang exchange-correlational functional (Phys. Rev. B
54, 16533 (1996)).

13 For realistic materials the DMFT approach can be combined with the GWA (P. Sun and G. Kotliar,
Phys. Rev. B 66, 085120 (2002)) or with the LDA (K. Held I. A. Nekrasov, N. Blümer, V. I. Anisimov,
and D. Vollhardt, Int. J. Mod. Phys. B 15, 2611 (2001)).
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3.4 SHG

In Section. 2.2.3 we derived the plasmon dispersion from the equation of motion for the
density matrix. As a starting point we used perturbational theory and computed the vari-
ation of the electronic density due to some time-dependent external potential (Eq. (2.18))
in first order. One can put a question: What will give us the inclusion of the higher orders
into the perturbational treatment? Analogously to Eq. (2.18) we can obtain the expression
for the second order correction to the density matrix:

ρ
(2)
kk′(2ω) =

1

εkk′ − 2ω

∑

l

VklVlk′

[
nkl

εkl − ω
− nlk′

εlk′ − ω

]
, (3.35)

where we introduce the notations nkl = nk − nl and εnk = εn − εk. The summation is
performed over all eigenstates of the single particle Hamiltonian. The superscript ”(2)”
indicates that the expression corresponds to second-order perturbation theory and the
argument 2ω explicitly shows that in this order we have response only on the double
frequency (second harmonic generation). We introduce the second order susceptibility

tensor ρ
(2)
kk′(2ω) according to:

P
(2)
2ω

i
= χijk(2ω)Ej

ωEk
ω (3.36)

as a quantity that shows the dipole response of the system P
(2)
2ω at frequency 2ω to the

electric field Eω at frequency ω. With

P
(2)
2ω =

∑

kl

dklρ
(2)
lk (2ω)

Vkl = (d,Eω)kl = (dkl, Eω)

Eq. (3.35) enables us to express the susceptibility tensor via internal parameters of the
system as

χijk(2ω) =
1

2

∂2

∂Ej∂Ek

∣∣∣∣∣
Ej=Ek=0

∑

kl

di
klρ

(2)
lk (2ω). (3.37)

d denotes the vector of the dipole moment. Performing the differentiation we finally obtain:

χijk(2ω) =
∑

lmn

di
lmdj

lnd
k
nm

εlm − 2ω

[
nln

εln − ω
− nnm

εnm − ω

]
, (3.38)

where the overline denotes symmetrization:

dj
lnd

k
nm =

1

2
(dj

lndk
nm + dk

lnd
j
nm).

In order to make sense of the formula close to the poles small imaginary parts should be
added to the eigenvalue energies according to the rule Eq. (2.14). In SI units the expression
for the second order susceptibility tensor reads [49]:

χijk(2ω) =
ρ0

ε0

∑

lmn

di
lmdj

lnd
k
nm

εlm − 2h̄ω

[
nln

εln − h̄ω
− nnm

εnm − h̄ω

]
, (3.39)
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where ε0 is the permittivity of free space and ρ0 denotes the unperturbed electronic density.
Let us check the dimension of the formula:

χijk[m/V] = χijk

[
e · s2

kg ·m

]
=

ρ0[1/m3]

ε0[e2 · s2/(kg ·m3)]

(d[e ·m])3

(E[J])2
=

ρ0[1/m3]

ε0[e2 · s2/(kg ·m3)]

d3[e3 ·m3]

(E[kg ·m2/s2])2
=

[
m

V

]
.

This second order susceptibility tensor χijk(2ω) possesses a number of symmetry prop-
erties. Obviously, it is symmetric with respect to the interchange of the two last indices

χijk(2ω) = χikj(2ω). (3.40)

This reflects the equivalence of the two incident photons. In the static case (ω = 0) the
tensor is symmetric with respect to the interchange of the first and second (third) indices
(so-called Kleinman symmetry [50]):

χijk(0) = χjik(0). (3.41)

To prove that let us rewrite Eq. (3.38) in the form:

χijk(2ω) =
∑

lmn

di
lmdj

lnd
k
nmF (lmn),

where the function F (lmn) in the limit ω = 0 is:

F (lmn) =
nln

ωlnωlm

− nnm

ωnmωlm

.

Upon changing indexes i ↔ j we have:

χjik(0) =
∑

lmn

dj
lmdi

lnd
k
nmF (lmn) =

∑

lmn

di
lmdj

lnd
k
nmF (lnm).

Thus, we need to prove the following symmetry property F (lmn) = F (lnm). We proceed
with transformations:

F (lmn) =
nln

εlnεlm

− nnm

εnmεlm

=
1

εlm

[
nlm − nnm

εlm − εnm

− nnm

εnm

]

=
1

εlm

nlmεnm − nnmεlm

εnmεln

=
nlm

εlmεln

− nnm

εnmεln

=
nlm

εlmεln

− nmn

εmnεln

= F (lnm).

Q.E.D.

In summary, we discussed in this chapter the theoretical ideas well-known from the
literature and our new implementations of:

• the TDHF method to study electron dynamics in real time.

• the GW method to study the electronic structure of the system and its decay processes
in the frequency domain.

• the computation of the second harmonic response.



Chapter 4

Results I: Electron dynamics from
TDHF theory

In this chapter we apply the TDHF method previously developed by us to realistic systems:
Na4, Na+

9 , and Pt3 clusters. The small number of electrons, the simple electronic structure,
the similarity to the homogeneous electron gas make the first two clusters accessible to a
large variety of methods. Both static and dynamical calculations were reported in the
literature. Na clusters can also easily be produced in experiment. Important information
that can be measured is the optical absorption spectrum. This quantity characterizes the
excitation spectrum of the system. In small metallic clusters collective excitations are very
pronounced. Depending on the geometry of the clusters the plasmon peak can have a
regular shape (single peak) or can split because of the absence of axial symmetry. Besides
the position of the plasmon resonance we are interested in its broadening due to electron-
electron interaction. It contains important information about the dynamics and relaxation
processes in the system.

The situation with the Pt3 cluster is much more complicated. Because of the strongly
localized d-electrons and the complicated electronic structure this system differs very much
from the jellium model. Due to the incomplete d-shell, and, as a consequence, the high
density of states close to the Fermi level, electron-electron scattering is very important for
the relaxation It reduces the plasmon life-time from 200 fs in the closed shell transition
metals to 70 fs in Pt.

The structure of this chapter is as follows. First we apply the TDHF method to the
simple, molecule-like systems in order to better understand the time evolution in this
approach and to test the numerical precision of our method. As an example regimes of low
and high frequency excitations are considered and compared with the adiabatic solution.
On the second step we study properties of the collective excitations by analyzing the power
spectrum of the metallic clusters subject to an ultrafast laser pulse. Our aim is to obtain
information about the plasmon decay and compare it with available experimental data.
This task looks very controversial in the framework of the TDHF approach. One may
argue that the direct and exchange interaction taken into account in the method are not
sufficient to describe a finite life-time, and one needs to consider correlations on the higher
level of the theory. We give a thorough explanation of this paradox using a model system

52
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as an example.
As is shown in the theory section our method is fully ab initio. Input parameters for

the calculations are only the geometry of the cluster, number of electrons and parameters
of the laser pulse. Geometry optimization of all clusters explored in the present work was
done on the HF level by means of the Gaussian 98 quantum chemistry package. The
initial guess of the geometry was taken from the publications and will be cited below. All
systems we consider are closed-shell, i.e. the number of electrons with spin up and spin
down is equal. Therefore we performed restricted HF calculations for the systems in the
singlet state. Triplet states require spin-polarized calculations and will not be considered
here.

4.1 Deviation from adiabaticity

We start our investigation with Na4 (Fig. 4.1) – one of the most widely studied cluster in
the literature. A small number of atoms made it accessible to almost all known ab initio
methods including CI [51], GW [5] and TDLDA [52].
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Fig. 4.1: Top – geometry of the Na4

cluster. Bottom – electronic density
of the two highest occupied (1-2) and
six lowest unoccupied (3-8) orbitals ac-
cording to Ref. [5]. The two surfaces
correspond to the constant density of,
approximately, 0.001 a.u.−3 and 0.002
a.u.−3 Arrows denote allowed dipole
transitions.

The cluster geometry is a planar rhombus with
D2h symmetry. The result of the geometry opti-
mization for this cluster is also widely reported
in the literature, predicting this isomer as the
most stable one. However, the bond lengths dif-
fer slightly depending on the level of theory and
the basis set. The length of the rhombus side
ranges from 3.27 Å in the LDA calculation [53]
to 3.74 Å in the HF approach [54]. The length of
the shorter diagonal is 2.87 Å and 3.25 Å respec-
tively. Geometry optimization on a higher level
of the theory gives similar results that fall inside
these extremes.

We study the behavior of the Na4 cluster
within the TDHF and adiabatic approaches [com-
pare Fig. 2.6(a)(c)]. At time t = t0 the system is
excited by a laser pulse with a temporal intensity
distribution [55]

I(t) = I0 · sech2(
t− t0

σ
) (4.1)

of a fixed duration and different photon fre-
quencies. The results of the spectral analysis
of the dipole response (power spectrum) and
the excitation pulse are given in Fig. 4.2. The
Fourier transform of the laser pulse peaks around
the photon frequency and its width is inversely
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proportional to the duration of the pulse (see Fig. 4.4, dashed line). Thus, when
the temporal width of the pulse is large compared to the period of one oscillation,
the main contributions to the electron dynamics take place at the photon frequency.
We follow the time evolution of the total energy of the system (Eq. (3.15)) and the number
of the electrons (Eq. (3.13)) in the initially highest occupied (HOMO – 1b3u, see Fig. 4.1)
and lowest unoccupied (LUMO – 1b2u) molecular orbital states). The initial stationary
HF calculation was done by employing the Los Alamos effective core potential (ECP) that
replaces 8 inner electrons and use double zeta basis functions that contain two s and two p
orbitals for each of the atoms. Thus we are left with 4 active electrons, that are described by
32 basis functions. In Fig. 4.1 two occupied and six lowest unoccupied eigenstates states are
shown. Arrows denote allowed dipole transitions among the states. The adiabatic electron
dynamics is obtained by performing the self-consistent solution of the HF equation with
the perturbation operator for each of the time points.
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Fig. 4.2: Top: Fourier transform of the laser pulse
(dashed line) and power spectra (solid line) of the
Na4 cluster in two regimes: (a) low frequency exci-
tation; (b) high frequency excitation. Bottom: op-
tical absorption spectrum measured in experiment
(Ref. [56]).

The HOMO-LUMO gap in our
approach is quite large (3.7 eV)
and reflects the general feature of
the Hartree-Fock method to over-
estimate the band gap. This is,
however, consistent with a previ-
ous HF result (3.4 eV) reported in
Ref. [51]. The LDA clearly fails in
this case giving a band gap of only
0.55 eV. However GW calculation
performed on top of LDA yields
a systematically improved value of
3.0 eV [5]. The HOMO-LUMO
gap gives only a crude approxima-
tion to the energy of the first ex-
cited state. Thus, information from
the time-dependent calculation is
required. The power spectrum that
has been computed from the time-
dependent calculations (Fig. 4.2,
top) shows results similar to the ex-
perimental optical absorption spec-
trum (Fig. 4.2, bottom). In par-
ticular our calculation shows two
strongly pronounced peaks at 2.3
and 3.1 eV observed as well in ex-
periment at slightly lower energy.
As is shown in a supercell GW cal-
culation for this cluster they result
from the transitions (see Fig. 4.1)
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1b3u − 2ag (2-4); 1ag − 1b2u (1-3) and 1b3u − 1b1g (2-6); 1ag − 1b1u (1-5), respectively. In
general, our calculations agree well with CI [51], GW [5] and TDLDA [52] calculations of
excited states in the Na4 cluster. A small shift to higher energies does not necessary mean
a systematic tendency of TDHF to overestimate excited state energies. As we have shown
above even stationary HF calculations can differ in predicting the HOMO-LUMO gap by
up to 0.3 eV depending on numerical details, such as basis set size, use of the ECP, etc.
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Fig. 4.3: The Na4 cluster in the regime of low fre-
quency excitation. Solid line – TDHF, dashed line
– adiabatic solution. Time evolution of: (a) total
energy; (b) number of the electrons in the HOMO
state; (c) number of the electrons in the LUMO
state.

The difference between the power
spectra obtained from high and low
frequency excitations is only quanti-
tative: the magnitude of the peaks in-
creases approximately by one order of
magnitude when the laser frequency
approaches the resonance, preserv-
ing, however, their position. But,
a completely different behavior has
been found comparing the time evo-
lution of the populations of the eigen-
states and the total energy of the
system. For excitations of an en-
ergy considerably lower than the en-
ergy of transitions between differ-
ent states the dynamics of the sys-
tem (Fig. 4.3) obtained from the
full time-dependent treatment differs
only slightly from that in the adia-
batic approach.

After the excitation it returns al-
most to the initial state, preserv-
ing only some small oscillations. By
contrast, a completely different be-
havior is found at higher frequencies
(Fig. 4.4). Our calculations indicate
that, in the case of a Na4 cluster, for
an excitation energy above 0.5 eV [Fig. 4.2(b)] the adiabatic approximation ceases to be
valid and one has to resort to methods that explicitly account for the time dependence
[compare Fig. 3.13(a) — adiabatic approximation and Fig. 3.13(c) — TDHF]. After the
HOMO level is partially depopulated, it remains in that state forever, which, of course, is
an effect, that cannot be observed on the adiabatic level. The time-dependence of the total
energy reveals another feature of the method – energy conservation. After the perturba-
tion is switched off the energy remains constant. This also provides a good test for the
numerical precision of the ordinary differential equations (ODE) solvers that we used to
propagate wave-functions in time. We have tested both Runge-Kutta and Bulirsch-Stoer
methods with adaptive step-size. They give a perfect agreement and conserve total energy
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and particle number on the scale of hundreds of femtosecond with an accuracy of 10−6.
Another possibility to study the high-frequency case would be to use Floquet theory [57],
where the time-dependent Hartree-Fock or DFT equation is recast into a generalized eigen-
value problem. But as we found numerically it is very difficult to solve this kind of equation
self-consistently.

4.2 SHG response
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Fig. 4.4: The Na4 cluster in the regime of high fre-
quency excitation. Line 1 – TDHF, line 2 – adia-
batic solution. Time evolution of: (a) total energy;
(b) number of the electrons in the HOMO state; (c)
number of the electrons in the LUMO state.

In Sec. 3.4 we have derived the second
order nonlinear susceptibility χ2ω

ijk us-
ing perturbation theory for the den-
sity matrix. In contrast to the lin-
ear response it is very sensitive to
the geometry of the system, quality
of the wave-functions and eigenener-
gies involved in the calculation. In
particular, from the symmetry anal-
ysis one expects no second harmonic
generation on systems with inversion
symmetry. From an experimental
point of view SHG is a valid method
for the characterization of nanostruc-
tures and clusters. Recent investi-
gations have examined, for example,
the transient properties of SHG in
silver island films [58], in specially
designed silver particles [59] and Na
clusters [60]. Employing observation
of the size-dependence of the non-
linear response of Ref. [61] one can
use the SHG measurements to char-
acterize the distribution of the clus-
ter size. Recently, the femtosecond
time-resolved SHG from alkali metal
clusters [62, 63, 64] was used to find

life-times of the plasmon excitations. Compared to other techniques, such as linear optical
measurements, the SHG scheme has the distinct advantage of eliminating the role of the
substrate since the bare surface does not give an appreciable second harmonic response.

Here we would like to check the absence of SHG in the case of system with inversion
symmetry and its appearance when the symmetry is broken by employing the eigenstates
of the HF Hamiltonian used for the time-dependent calculation on the example of a Na4

cluster. In order to break the inversion symmetry of the equilibrium geometry (D2h) we
allow for the displacement of one of the atoms of the cluster (Fig. 4.5). Apparently, this
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Fig. 4.5: Displacement of one the atom in Na4 cluster that breaks inversion symmetry and,
therefore, enables nonzero SHG response. See text.

kind of distortion has no physical substantiation, serving only for the purpose to show the
possibility to accurately compute the SHG response from clusters with broken inversion
symmetry. However, one can expect a non-zero SHG signal even from the cluster with
inversion symmetry at finite temperature due to the phonon distortion of the geometry1.
Another possibility of getting non-zero response is to assume a situation close to experi-
ment, where clusters are deposited on a substrate. This situation was theoretically studied
in Ref. [34] by means of TDLDA.

In our case the HF equation is solved for each value of ∆y in order to obtain the
eigenenergies and wave-functions, which are subsequently used to compute the SHG re-
sponse according to Eq. (3.38). We find that at zero displacement of the Na atom from the
minimal energy position all matrix elements of χ2ω

ijk(ω) are zero within machine precision.
At nonzero displacement we distinguish three groups of tensor elements:

• non-zero — |χ2ω
ijk(ω)| > 1.0 · 10−6 (shown with bold face)

• almost zero — 1.0 · 10−6 > |χ2ω
ijk(ω)| > 1.0 · 10−8 (shown with normal face)

• vanishing — 1.0 · 10−8 > |χ2ω
ijk(ω)| (are not shown).

χ2ω
ijk(ω) =




(xxy) (xzx)
(yyy) (yzz) (yyz)

(zxx) (zyy) (zzz) (zyz)




Our calculations show the reliability of the results of the HF calculation numerically
fulfilling the selection rules with a high precision (the magnitude of non-zero tensor elements
contradicting the selection rules is on the noise level, the smoothness of the graphs indicates
a high precision of computing the dipole moments). A strong SHG response is observed in
the region of energies from 2 eV to 6 eV in accordance with [34], where optimal frequency
of the incident light is stated to be at 1/2 and 1 times the plasmon frequency.

As a possible development of the present technique two approaches are possible: using
many-body wave-functions and excited states from the CI calculation to compute the SHG
response according to the perturbation formula and performing a TDHF calculation. The
present method, although being very simple, correctly accounts for the selection rules and,
thus, can be used to describe future experiments. At the present time experiments are only
possible on larger Na clusters of a size of tens of nanometers [62, 64].

1 SHG is also possible for systems with inversion symmetry when quadrupole transitions are taken into
account.
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Fig. 4.6: SHG response of the Na4 cluster resolved as a function of displacement of one of
the atoms. Absolute values of χzxx, χzyy and χzzz are shown.

4.3 Finite life-time from TDHF theory

From the beginning we would like to distinguish two different approximations that form
the essence of the time-dependent Hartree-Fock (TDHF) method. In the first step the
stationary HF equation is solved in order to get the unperturbed ground state of the sys-
tem. It contains no Coulomb correlation by definition. The Hartree-Fock Hamiltonian is
Hermitian. It means that the energy of the quasi-particle states (eigenvalues of the HF
equation) are pure real numbers, i.e. there is no imaginary part that would be responsible
for the decay. In the second step the time evolution of the system is monitored by solving
the TDHF equation Eq. (2.24). This equation does not only describe ground-state prop-
erties, but also excited states: particle-hole (ph) excitation and collective excitation — the
plasmon.
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Energy (eV)

0.01

0.1

1

10

100

1000

 ρ
(E

)

Fig. 4.7: Distribution of the matrix elements of
the Coulomb interaction for the Na+

9 cluster.

To better understand how one can ex-
tract a finite life-time for the particle-hole
states from the time-dependent HF calcu-
lations we continue to investigate the ran-
dom interaction model described by the
Hamiltonian Eq. (2.17), that contains m =
5 particles distributed over the n = 10
states. The one-particle energies are uni-
formly distributed in the energy interval
[−10, ..0] and the two-particle interaction
is given by a random Gaussian-shaped dis-
tributed potential with standard deviation
σ = 1.

The model is not a completely abstract
object having no relation to realistic sys-

tems. Just on the contrary, a simple glance on the distribution of the matrix elements of
the Coulomb interaction in clusters (Fig. 4.7) shows that they exhibit a great amount of
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Fig. 4.8: Power spectra for the model (Eq. 2.17) with different interaction strength α.

the randomness in their electronic properties. This fact leads to the idea that one can un-
derstand some general features of their spectra (Ref. [65]), as well as in other complicated
systems like heavy nuclei Ref. [66] or mesoscopic quantum dots Ref. [67] on the basis of
random matrix theory (Ref. [68]). We performed a series of time-dependent calculations
for this model at different interaction strengths. The system is excited by changing the
sign of interaction (α → −α) at time t = 0.

As one can see from Fig. 4.8 at low interaction strength the power spectrum (Fig. 4.8)
consists of a set of single peaks that correspond to the transitions of the particles between
one-particle states. These states are degenerate, and increasing the interaction strength
α leads to their splitting. Thus, at high resolution one sees a large number of δ peaks
around each one-particle state. With low resolution, they essentially merge into one peak
of non-zero width. Selecting an appropriate theoretical model, for example a Lorentzian for
the decaying particle, one can fit the shape of this peak to that predicted from the model
and obtain a finite life-time of the state. Thus one always has a choice in interpreting
the results of a calculation or experimental observation. The only criterion that justifies a
certain choice for the interpretation is the requirement that the natural width of the single
peak in the envelope must be less than the distance between peaks, forming the envelope.

The situation with the plasmon life-time requires a more careful consideration. It
was found long time ago that the collective-resonance states are composed as a coherent
superposition of many 1 ph states, in other words as a constructive interference [18, 69].
On the other hand, as we mentioned above, the time-dependent Hartree approximation
(TDHF without exchange) in the limit of linear response is equivalent to the random
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System Fig. Nbf Ne I0[1011W/m2] NECP basis set ref.

Na+
9 4.10 72 4 107.6 10 [71]

Pt 4.10 72 24 2.1 30 [72]

Pt 4.11 72 24 1.4-2.8 30 [72]
Pt 4.12 15-25 5-10 0.0 30 [72]

Tab. 4.1: Parameters of the time-dependent calculation. As all systems are closed-shell Ne

means the number of spin-compensated electron pairs. NECP is the number of electrons
replaced by the effective core potential.

phase approximation (RPA) of many-body perturbation theory [9]. The RPA dielectric
function for the 3D uniform electron gas first derived by Lindhard [10] and its zeros, which
are situated in the complex plane describe the electronic excitations in the system. There
are two kinds of excitations in this approximation: particle-hole contributions and the
plasmon. The life-time of the particle-hole excitations is finite on the RPA level and it
explains why we are able to see a broadening in the above model. The plasmon excitation
has no decay below a certain critical wave-vector q. But both the TDHF method and
the RPA may yield a finite life-time for the plasmon. The Lindhard dielectric function
is obtained from the RPA expression assuming an equilibrium electron distribution. In
the case of finite temperature or an electron distribution away from equilibrium (which
was studied in our case) the dielectric function must be evaluated in the whole complex
plane. The plasmon frequency and decay can then be found at the intersection of the
<e (ε) = 0 and =m (ε) = 0 curves [12, 13, 70]. In our manuscript we study a situation
close to experiment (such as described in Ref. [55]). The laser pulse interacts with a cluster
and part of the photon energy is absorbed. The electron distribution becomes different
from a step function and can be approximately treated introducing some effective non-zero
temperature. For this case we expect to obtain a finite plasmon life-time from the TDHF
method by analogy with the RPA result.

We believe that the shown illustrative examples clearly indicate the existence of a finite
life-time of both the plasmon and the single-particle excitations in the time-dependent
Hartree-Fock description of electron dynamics.

4.4 Power spectra of Na+
9 and Pt3 metal clusters

In simple systems, such as Na4, the electronic density of states is small. This leads to
a power spectrum with well separated peaks that correspond to one particle-hole (1ph)
excitations. Considering more complicated systems such as Na+

9 and Pt3 (see Tab. 4.1
for the information about the number of basis functions, electrons in the active space and
laser pulse parameters and Fig. 4.9), with a larger number of electrons, a new feature in
their power spectra can be observed. Because of the dense level scheme in these clusters
many 1ph states merge and form a collective excitation — a plasmon — due to their
constructive interference. In contrast to one-particle excitations, the oscillator strength of
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the plasmon is very high and it manifests itself as a strong peak in the power spectrum
of the dipole moment. In contrast to the response function, which only characterizes the
internal properties of the system, such as the energies and the oscillator strengths of the
excited states, the power spectrum depends as well on the parameters of the external
excitation. To study intrinsic properties of the system one has to minimize the role of the
second factor. This can be done by putting the system initially in some nonequilibrium
state and then following its relaxation [18] or one uses very short pulses, that embrace a
large frequency interval.
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Fig. 4.9: Structures of Na+
9 and Pt3 clusters

studied in this work. The numbers indicate
the bond lengths in units of Å.

We performed a series of calculations on
Na+

9 cluster for pulses of the mean photon
frequency ω∗ = 2.25 eV and different dura-
tions [Fig. 4.10 (left panel)]. The polariza-
tion of the electric field is taken to be along
the axis of axial symmetry of the cluster.
When the frequency width of the pulse is
small predominantly states that correspond
to the absorption of one, two, and three pho-
tons (denoted by vertical lines) are well pro-
nounced. The plasmon peak at 2.7 eV is
almost invisible [see Fig. 4.10 (left panel:
a)]. Shorter pulses lead to a broader re-
gion of energies in which absorption can take
place and thus excitations of the states that
are further away from the resonance, but
of higher oscillator strength become pos-
sible. Our value for the position of the
plasmon peak, determined as a excitation
with the highest oscillator strength that
can be excited off-resonantly [Fig. 4.10 (left
panel: c)] (ωpl = 2.7 eV) of the Na+

9 clus-
ter is in good agreement with results ob-
tained within the real-space implementation
of TDLDA (Refs. [18, 73, 74, 75, 29]). In
spite of this its oscillator strength is consid-
erably lower in our approach. We think that this may be caused by the difference in the
excitation mechanisms used (initial dipole shift of the entire electron cloud vs. excitation
with certain frequency and time profile) and the number of electrons, taken into account.
The plasmon, as a collective effect, is very sensitive to the density of virtual states in the
system. Replacing part of the inner electrons with an effective potential may have small
impact on the ground state properties, but may imply a sophisticated analysis in the case
of excited states.

To better understand the possibility of the non-resonant plasmon excitation and in order
to estimate the plasmon lifetime we apply our technique to the previously experimentally
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	Fig. 4.10: Left panel. Power spectra of the Na+
9 cluster, excited with laser pulses of the

same photon energy and different pulse width. Dashed line shows the Fourier transform of
the pulses of different duration: (a) σ = 4.56 fs, (b) σ = 3.04 fs, (c) σ = 1.06 fs. Vertical
lines denote energies, that correspond to the one-, two-, and three-photon processes.
Right panel. Time-resolved density of states of the Pt3 cluster, excited by a laser pulse
with ω∗ = 3.125 eV. Gaussian broadening of width 0.27 eV has been used.

studied cluster Pt3 (Eberhardt and coworkers, Ref. [55]). It has been shown that the cluster
possesses a very dense metallic like energy-level structure [76], leading to the enhancement
of electron-electron scattering processes. The latter causes an effective energy transfer
from one 1ph state to another, thus considerably reducing the plasmon lifetime in open-
shell transition-metal clusters compared to noble or alkali-metal clusters. In calculations
we use pulses of the same duration σ = 0.76 fs and different photon energies in a range from
ω∗ = 2.625 eV to ω∗ = 3.625 eV that is in either case below the plasmon energy (Fig. 4.11).
Polarization of the electric field is perpendicular to the plane of Pt3 cluster. A typical time
evolution of the density of occupied states, computed according to Eq. (3.14) is shown in
Fig. 4.10 (right panel) (ni(t) is computed according to Eq. (3.13)). A transition of part
of the electronic population from the occupied states close to Fermi level to previously
unoccupied states occurs shortly after applying the laser pulse and leads to complicated
oscillations. The use of very short pulses, although at present experimentally not feasible
allows us to cover a very large energy range and to study fast processes far from resonance.

One can see (Fig. 4.11) a redistribution of the spectral weight of the peaks with the
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Fig. 4.11: Power spectra of the Pt3 cluster, excited with laser pulses of the same width
and different photon energies: dotted line – ω∗ = 2.625 eV; dashed line – ω∗ = 3.125 eV;
solid line – ω∗ = 3.625 eV. Right panel: comparison of the power spectra computed on
different time intervals. Solid lines denote power spectra, calculated on the time interval
after excitation took place, and dashed lines – power spectra on the whole time interval.

change of the excitation energy. The magnitude of the plasmon peak strongly depends
on the vicinity of the photon frequency to the plasmon pole. The spectral weight of the
shoulder in the region of energies 2-3.5 eV decreases when ω∗ approaches the plasmon
resonance at ωpl=3.7 eV. On the right panel of Fig. 4.11 for comparison power spectra
computed in two different time domains are plotted. Dashed lines corresponds to that on
the left panel, where power spectra are computed on the whole time interval: during the
excitation and after it. Solid lines show power spectra computed on the second, relaxation
period. One can see, that in this case the spectral weight is even more concentrated in the
in plasmon peak, shoulders become less pronounced.

As mentioned above, the plasmon is a collective effect that originates from the strong
enhancement of the one-particle excitations due to their constructive interference [18, 69].
If a time-dependent calculation is performed on very long time scales, it would be possible
to resolve the plasmon peak as a very dense structure of individual 1ph peaks of very small
width. In the higher-order correlation treatment these peaks will be smeared out to form
one envelope that will resemble the plasmon peak at the present level of the theory (for the
discussion of the plasmon width as a result of fragmentation of the resonance into nearby
1ph states and comparison with another mechanism — broadening due to the thermal
fluctuations see Ref. [77]). That is why it is natural to use information from mean-field
calculations in order to extract information about plasmon lifetime. The plasmon peak
can be viewed as a Lorentzian or Gaussian peak. The first case describes a e−

t
τ decay

of the quasiparticle in the many-body system, while the second one corresponds to the

inhomogeneous broadening of the peak. The decay law is then e−
t2

τ2 . The lifetime can
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differ up to a factor of 2π depending on the choice of the model2. We perform a non-linear
fitting of the power spectrum by a set of Lorentzians (a similar idea can be found in the
recent work of Molina et al. Ref. [78]):

P (ω) =
∑

i

Ai

2π

δi

(ω − ωi)2 + δ2
i

(4.2)

and find the width of the plasmon peak to be δpl = 0.17 eV that corresponds to a lifetime of
approximately τpl = 24 fs (τpl = 3.8 fs in the case of a Gaussian model). This result should
be compared with experimental data of Eberhardt and coworkers, [55] who determined
the lifetime to be less than 70 fs and attributed it solely to electron-electron scattering.
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Fig. 4.12: Power spectrum of the Pt3 cluster, for
different numbers of electrons and basis functions:
dotted line — Ne = 5, Nbf = 15; dashed line —
Ne = 10, Nbf = 20; solid line — Ne = 10, Nbf = 25.

Up to now we were interested only
in the properties of the system, ex-
cited in a way similar to the experi-
ment. For comparison the clean (con-
tains only the information about the
properties of the system, but not of the
laser pulse) power spectrum has been
computed. To move the system out of
equilibrium we used, as an initial con-
figuration, the eigenstates of the HF
Hamiltonian at elevated temperature
(T = 0.005 a.u.). We propagate this
solution during a very long time inter-
val (several ps) to get a fine resolution
for the spectra. A different number of
basis functions and electrons has been
included in the active space in order to
understand its role on the formation of

the plasmon peak (Fig. 4.12). Comparing this with the calculations using a larger basis set
(Fig. 4.11), shows that only a small number of basis functions (Nbf ∼ 15− 25) is needed to
get the correct position of the plasmon. However the fine details of the spectrum are quite
sensitive to the size of the active space. Another important feature of the clean spectra is
the presence of the peaks at 1-2 eV, not available for the case, when the system is excited
by a laser pulse, which shows that some transitions might be forbidden for the particular
polarization of the light, and can be excited only thermally.

Summarizing, in this chapter we demonstrated the application of a new computational
scheme for the investigation of the electron dynamics in clusters under the influence of
the external field within the mean-field approach. The application of the TDHF method
to the Na+

9 cluster, previously intensively studied theoretically with different methods,

2 For the Lorentzian model one has Et = 2πh̄. This gives the relation E[eV]t[fs] = 6.6260755×10−34

1.602188×10−19·10−15 =

4.135642. In the case of a Gaussian model Et = h̄. Thus E[eV]t[fs] = 6.6260755×10−34

2·3.141593·1.602188×10−19·10−15 =
0.658208.
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and the Pt3 cluster already accessible to experimental investigation revealed the following
capabilities of our approach:

• The method is able to accurately predict the position of the plasmon peak for the
Na+

9 cluster, although its oscillator strength differs considerably from the TDLDA
result.

• The calculation on the open-shell transition metal cluster Pt3 allowed us not only to
determine the position of the plasmon resonance, but also to estimate its life-time by
fitting the power spectrum to a set of Lorentzians. Our value for the decay constant
supports the experimental evidence in favor of a bulk-like lifetime of the electronic
excitations in this cluster despite an electronic structure that strongly differs from
bulk Pt.

• The calculation on the TBRIM supports the possibility to determine the life-time of
collective excitations from the time-dependent mean-field theory.



Chapter 5

Results II: Numerical results of GW
calculations

In this chapter we continue the ab initio investigation of metal clusters and the model
system by many-body perturbation theory. Besides the systems considered before we
apply our method to a row of larger sodium clusters up to a maximum size of 25 atoms.

The GW approach is much more complicated than TDHF. The latter is based on two
well developed numerical techniques: the self-consistent solution of the stationary problem
and the propagation of this solution in time by using ordinary differential equations (ODE)
solvers. Both have no adjustable parameters and can be completely automatized. The GW
calculation consists of more stages: building an initial approximation for the Green function
from the HF results, calculating the polarization operator and consequently the screened
potential. Finally the self-energy has to be computed and the improved Green function
has to be found by the solution of Dyson’s equation. If one wants to obtain self-consistent
results the above scheme has to be repeated until convergence is achieved. On each stage
of the calculations input and output quantities are frequency dependent. This means, that
in addition of requiring of convergence of results with respect to the basis set size one
must also pay attention to the density of the frequency mesh and energy cut-offs. FFT
that we introduced for the computation of convolutions must be applied to very large data
sets, that hardly fit the memory of state of the art workstations. The calculations even
on medium sized systems require parallelization of the entire scheme and balancing data
transfer traffic.

But not only numerical problems have to be solved. There are two principal difficulties
of physical origin. First, the results of the G0W0 computational scheme, which is the sim-
pler one, depend strongly on the initial guess, besides the approximation is non-conserving.
On the other hand, to achieve full convergence in the spirit of the GW scheme, which is con-
serving and gives results independent of the initial guess, one has to go through the stages,
where the density matrix of the system is not Hermitian because of non-conservation of
the total particle number. To avoid that problem we developed a partially self-consistent
scheme, where the frequency independent part of self-energy is kept on the initial level,
while the dynamical part is involved in the iteration loop. We start by comparing the G0W0

and GW schemes for our model system with random interactions. We use this experience

66
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to perform calculations on real systems in order to determine the improved eigenstate en-
ergies, the life-time of quasiparticles and to obtain information about collective excitations
– plasmons.

5.1 Comparison of G0W0 and GW approaches

5.1.1 Na+
9 cluster

In this section we continue the investigation of the Na+
9 cluster, initiated on the TDHF

level. As was explained in the theory part (Sec. 3.2), on the first stage of calculation the
polarization operator Pαβ(ω) has to be computed from the known initial approximation
to Green’s function (Here we neglect numerical details, considering just the physical side
of the problem). The polarization operator renormalizes the electron-electron interaction
by accounting for virtual electronic transitions between occupied and unoccupied states.
Consequently, we have here an additional complication compared to the conventional elec-
tronic structure methods. While the latter only require a good knowledge of the occupied
states, computations according to the GW scheme require also an adequate description of
the virtual states. Therefore we spent additional efforts to understand the role of the basis
set employed to represent the system. It was found that standard basis set used for the
quantum chemical calculations, indeed only represent the occupied states well. In order to
improve the representation of the virtual states we extended the laln2dz basis set with
additional diffusive functions as explained in Appendix B. For this particular cluster we
use a basis set (referred to as laln2dz2) containing 15 functions for each sodium atom.
As before an effective core potential is employed to eliminate the deeply lying core states
not important for our discussion. Thus, initially our system is described by 135 basis
functions and contains four spin-up, spin-down electron pairs. After the HF equation is
solved to produce an initial guess for Green’s function we do not use the gaussian basis
any more and change to the eigenstates basis. Furthermore we have the possibility to vary
the number of states included in the GW calculations and compare the results obtained for
different sizes. On Fig. 5.1 the real and imaginary parts of the state average self-energies
(〈HOMO|Σ(rr′, ω)|HOMO〉 and 〈LUMO|Σ(rr′, ω)|LUMO〉) of the cluster are shown for
different numbers of basis functions. We found very good agreement among calculations
with different basis size in the region of energies close to Fermi level. Augmenting the
basis set only affects states at the edges of the spectrum, indicating their incipient poor
representation. Not only self-energies have to be compared. Another important feature
that indicates the convergence of the results with respect to the number of states is the
HOMO-LUMO gap (Fig. 5.2). Starting with almost a toy system containing only 10 basis
states and increasing the size up to 50 states we observed a steady reduction of the gap. At
Nbf = 50 results differ already slightly from the previous step, indicating the convergence
towards ∆E = 3.7 eV.

In what follows we will be concerned only with the case Nbf = 50, which balances
between physical relevance and good numerical performance. The computational time
depends as well on the density of the frequency mesh on which all functions are represented



68 Chapter 5. Results II: Numerical results of GW calculations

-20 -15 -10 -5 0 5 10 15 20
Energy (eV)

-6

-4

-2

0

2

4

ℜ
e 

  Σ
(ω

) (
eV

)

-8 -7 -6 -5 -4 -3 -2 -1
Energy (eV)

-0.8

-0.6

-0.4

-0.2

0

0.2
ℜ

e 
  Σ

(ω
)

-20 -15 -10 -5 0 5 10 15 20
Energy (eV)

-6

-4

-2

0

2

4

6

ℑ
m

  Σ
(ω

) (
eV

)

-8 -7 -6 -5 -4 -3 -2 -1
Energy (eV)

-0.04

-0.02

0

0.02

0.04

ℑ
m

  Σ
(ω

)

Fig. 5.1: The real and imaginary part of the self-energy for the Na+
9 cluster. Diagonal

matrix elements of HOMO and LUMO states are shown for a different number of basis
functions: solid line —- 54, dotted — 56, dashed —58, dash-dotted — 60. The intersections
of the straight lines with the self-energy show the solutions of the Dyson equation.

and their energy cut-offs1. The former must be at least one order of magnitude smaller
than the details of fine structure of the functions, while the latter should be large enough to
cover regions of energy, where poles of functions are contained. For the present calculation
we use symmetrical energy intervals (Emin=-Emax) for the representation of the functions
and for the Fourier transforms. Typical parameters of our calculations are given in Tab. 5.1.
The density of such a mesh is sufficient to capture details of the order 5 · 10−3 eV.

Function
Mesh representation Rational fitting FFT
Emax (eV) Nmax Emax (eV) Emax Nmax

G 108.8 20000 217.6 356.3 65536
W 122.4 22500 272.0 356.3 65536
Σ 163.2 30000 326.4 356.3 65536

Tab. 5.1: Tabulation of the key parameters for the GW calculation.

Here we tried here the simplest approach to go beyond the G0W0 level of the theory
and to close the self-consistency loop (follow (a)-path on the scheme Fig. 3.13). After
the self-energy is computed, we approximately solve the Dyson equation to get improved
values of the energies for the quasiparticle states. After that a new Green function is
computed based on the initial Hartree-Fock wave-functions and on the new eigenenergies.
Our calculations indicate that already on the fourth cycle a satisfactory convergence of
all quantities (band-gap, screened interaction, self-energy, Green’s function) is achieved.

1 Typically the computational time for one SC cycle of GW calculation comprises 2.5 hours on the
2 CPU (21264 Alpha chip) AlphaStation DS20E (parallelization of some processes are allowed). This
time comprises the solution of Dyson’s equation (9%), the computation of the screened potential (1%),
the simultaneous FFT of the Green function and screened potential (21%), the multiplication in the time
domain (56%) and FFT transform of the self-energy back to the frequency domain (13%).
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Fig. 5.2: Energy of the HOMO and LUMO states of Na+
9 cluster at different levels of theory.

On the left panel the dependence on the number of basis function included in the G0W0

calculation is shown. On the right panels their evolution in the course of the self-consistent
GW calculation is displayed.

We observe that in the course of the self-consistency loop the band-gap reduces further
(Fig. 5.2) tending towards the value of 3.37 eV. Such a reduction of the gap influences
all other quantities, above all, the Green function and the screened Coulomb interaction
(Fig. 5.3). The latter reflects the frequency behavior of the inverse dielectric function. In
Sec. 2.2.3 we have shown that for metallic systems a plasmon peak is a typical feature
of its spectrum. In the case of clusters we have a deviation from this picture due to the
presence of the HOMO-LUMO gap. Modifying the derivation of the Lindhard formula for
the dielectric function for the systems with a gap one can show that the plasmon peak in
this case must be positioned at ∆HOMO−LUMO + ωpl, the sum of the plasmon frequency for
the gapless system and the HOMO-LUMO gap. Thus, in the case of clusters one expects
to find a strong peak in the inverse dielectric function at ∆HOMO−LUMO + ωs.pl, where
ωs.pl is the surface plasmon frequency. This was indeed observed in our calculations. At
every step of the iteration perfect agreement between the RPA position (ωs.pl = 2.5 − 2.6
eV) of the surface plasmon from our calculation and the experimental [79, 80] or TDLDA
values [32] was found. The peak itself changes its position from approximately 7 eV to 6
eV due to the reduction of the HOMO-LUMO gap. Besides that it narrows due to the
renormalization of the broadening of the quasiparticle states. Its half-maximum width
(∆ωs.pl = 2 eV) corresponds to the plasmon life-time of approximately 4.1 fs, which is in
fact very short. Recent experiments [63], however, support this result by estimating the
life-time of the plasmon resonance in Na+

93 to be about 10 fs in agreement with time-resolved
SHG measurements [62] on larger surface-bound Na clusters where the same life-time was
obtained for a cluster size of about 25 nm.

As well as the screened Coulomb potential, the self-energies obtained in our approach
fit the anticipated behavior very well (compare Fig. 5.4 with schematic expectation on
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Fig. 5.4: Sum of the diagonal matrix elements of the self-energy for the Na+
9 cluster.

Fig. 3.6)2. One sees, that in the region of energies, where all quasiparticle states are
located, the real part of the self-energy has a negative slope, leading to the shrinking
of the gap and pushing all quasiparticle states towards the Fermi energy. Its imaginary
part has two peaks below and above the Fermi energy, where it changes the sign. It
corresponds to the strong damping of the quasiparticle states far away from the gap. The
different sign of the function above and below the Fermi energy indicates the existence
of particles (holes) respectively, and is a pre-requisite of particle number conservation.
Despite being qualitatively correct, the imaginary part of the self-energy does not come
out very well quantitatively. From Fig. 5.4 (right panel) we see that its absolute value
for the HOMO and LUMO states is very small (life-time tends to infinity). This makes

2 It is necessary, however, to say, that the above figure has only illustrative character, without a direct
physical meaning. As we explained above all physical quantities involved in the calculation have a matrix
form. Representing their trace on the graph is only the way to display their average properties and does
not reflect the properties of a certain state.
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Fig. 5.5: Dyson’s equation, two approximations: top — fully self-consistent GW. The Σ′

as well as direct and exchange terms are updated from the Green function on the previous
step. Bottom — direct and exchange energy is kept on the HF level (first iteration).

these quasiparticle states too narrow to represent them correctly on the frequency mesh,
and prevents the determination of their life-time from the self-consistent calculation. To
remedy this situation we apply an additional broadening of the states with a width below
a certain critical value.

As a conclusion, our partially self-consistent scheme is successful in eliminating the
dependence of the final results on the initial guess for the Green function. It yields fast
convergence, further reduces the HOMO-LUMO gap and shifts the plasmon peak in the
inverse dielectric function to lower energies. The Na+

9 cluster, however, is too small a
system to observe the finite life-time of the quasiparticle state due to the electron-electron
interaction. Thus, we analyze the role of self-consistency on the life-time of quasiparticle
excitation for our model system.

5.1.2 Two-body random interaction model

Albeit the G0W0 method has widely been applied for various systems in most of the
cases the self-energy is evaluated only close to the poles of the initial Green function thus
yielding a correction to the quasiparticle energies. The corrections to the wave-functions
are normally neglected. However there were also attempts to perform a fully self-consistent
GW calculation. The results for the electron gas on this level [35, 40, 38] show the necessity
to include the vertex correction in order to get the correct bandwidth. The description of
the satellite structure is reasonable only on the G0W0 and GW0 levels. Here we would like
to extend the discussion to clarify the role of self-consistency for the life-times obtained
from G0W0 and GW.

We continue here the investigation of the random-interaction model, described by the
Hamiltonian Eq. (2.17). As we explained in Sec. 3.2, besides the Vij,lk we also need three
other matrix elements V lk

i , Vi,l, Olk
i to perform a GW calculation. Although all matrix

elements of the interaction are random quantities, we must generate them consistently.
Thus we randomly generate two-point interactions Vi,l and three-point overlap Oi

lk matrix
elements, make a transformation and normalize Olk

i in order to fulfill the orthogonality
condition ∑

lk

Olk
i Olk

j = δij (5.1)
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and then generate the rest of matrix elements according to:

V kl
i =

∑

j

Vi,jO
kl
j (5.2)

Vij,lk =
∑
mn

Oij
mVm,nOkl

n . (5.3)
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Fig. 5.6: Sum of diagonal elements of =m G(ω) for
the system with m = 30, n = 40. Thin line — HF
Green’s function, Thick line — forth iteration.

Finally, the distribution of the
four-point Coulomb matrix elements is
close to a Gaussian with standard de-
viation 1.

First we performed several fully
self-consistent GW cycles on the small
system m = 30, n = 40. In order to
avoid the possible errors in the density
matrix obtained via the integration of
the Green function over ω due to the
small values of the self-energy Σ(ω)
around the Fermi energy3 we kept the
direct and exchange part of the Hamil-
tonian on the HF level (Fig. 5.5). This
stabilizes the calculation while it does
not affect the imaginary part of the
self-energy =m Σ(ω) very much.

The initial Green function has been
computed using the eigenstates of the convergent Hartree-Fock Hamiltonian and applying
the broadening |δ| = 0.19 (Fig. 5.6). Our calculations show the rapid convergence of the
self-energy (Fig. 5.7) in the course of the self-consistent GW loop. There is a considerable
difference between the zeroth-order self-energy and consecutive iterations due to the homo-
geneous broadening that has been applied initially. In the beginning all peaks in Green’s
function have the same height and they give the same contribution to the self-energy. On
the next iteration, instead of artificial broadening, the imaginary part of self-energy gives
a finite width to the peaks. According to the results of MBPT the imaginary part of self-
energy must vanish in the vicinity of the Fermi level. Thus the peaks become very narrow
close to the Fermi energy, increasing their width for the deeply lying or highly excited
states. This shows, that the excitation, when the electron moves only slightly above Fermi
level is long lived and can be called a quasiparticle. By contrast, removing an electron with
a low energy or putting an electron to a highly excited state leads to its fast recombination.
The life-time of this kind of excitation is very small. The excitation cannot be described
as a quasiparticle.

3 A small imaginary part of the self-energy leads to very narrow peaks in the Green function. In order
to correctly integrate it one must use a very fine mesh. This increases both memory and CPU-time
requirements. Besides that, one must keep in mind that the intermediate steps in the GW interaction
procedure are not conserving the number of particles. In order to get a physically correct, Hermitian
Hartree-Fock Hamiltonian one must start with a Hermitian density matrix, thus its symmetrization is
required, which is difficult to substantiate physically.
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Already the second iteration gives good convergence of the self-energy. Moreover, the
self-energies at any cycle are physically relevant, for they satisfy three major requirements:

(i) =m Σ(EF ) ∼ 0

(ii) [∂<e Σ(ω)/∂ω]ω=EF
< 1

(iii) =m Σ(EF ) is positive for particles and negative for holes.
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Fig. 5.8: Average diagonal elements of =m W (ω)
for the system with m = 30, n = 40. Iterations:
1—solid, 2—dotted, 3—dashed, 4 — dash-dotted.

During the self-consistency loop a
change in the inverse dielectric func-
tion compared to the RPA (first step)
can be observed (on Fig. 5.8 the
screened Coulomb interaction that re-
flects the frequency dependence of the
dielectric function is shown). One can
anticipate two peaks in its spectrum:
a small bump at low energies associ-
ated with particle-hole scattering and
a strong plasmon peak due to collec-
tive excitations. However the zeroth
order dielectric function for the sys-
tem exhibits a deviation from this pre-
diction. There are several peaks at
low energy. In the course of the self-
consistent GW calculation they move
to the higher energies, merge and form
a broad bulge, that may be attributed to the existence of a hardly pronounced plasmon in
this disordered system.
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From the comparison of the GW calculations on the different stages we conclude that
G0W0 generally overestimates the life-time of the quasiparticle states far from the Fermi
level. But taking into account the good agreement of the self-energy in the vicinity of
the Fermi level and the complexity of the self-consistent GW calculation we perform the
further investigation on the G0W0 level.
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Fig. 5.9: Dependence of the average =m Σ(ω) for
the system with m = 25, n = 50 on the interac-
tion strength. The line shows a quadratical de-
pendence. In the inset a typical distribution of
the Coulomb matrix elements is shown.

Now we would like to put the ran-
dom interaction model in closer rela-
tion to the experimental situation. As
we showed before (Fig. 4.7) the distri-
bution of the matrix elements of the
Coulomb interaction in clusters has
a random character and can be de-
scribed by a regular shape. Increas-
ing the number of the atoms in the
cluster only enhances its randomness.
This fact leads to the idea that one
can understand some general features
of their spectra (Ref. [65]), as well as in
other complicated systems like heavy
nuclei Ref. [66] or mesoscopic quan-
tum dots Ref. [67] on the basis of ran-
dom matrix theory (Ref. [68]). We
use the two-body random interaction
model (TBRIM, Ref. [81]) described
above, which was widely studied be-

fore in the connection with the Poisson to Wigner-Dyson transition in the distribution of
the level spacing (P (E), Ref. [82]), to study the influence of the interaction strength on
the life-time of the quasiparticle states. The life-time of the quasiparticle states is closely
related to the P (E). Several results are known for the TBRIM (Ref. [83]). There are some
analytical estimates as well as numerical evidences from the diagonalization of the large
many-body Hamiltonian matrices that the life-time

1/τ ∼ Γ ∼ U2 (5.4)

is inversely proportional to the square of the interaction strength. However, numerical
results were obtained so far for the systems with the number of many-body states not
exceeding 105 − 106. Here we would like to use the perturbative approach (GWA) to go
far beyond that. In order to check the theoretical prediction Eq. (5.4) the calculation on
the TBRIM with m = 25, n = 50 (number of the many-body states ∼ 1015) has been
performed for the various interaction strength ranging from 10−3 to 10−1. The self-energy
has been averaged over the states. The averaging over the energy was done as well in the
energy window in which all states are contained. The results in Fig. 5.9 show excellent
agreement with the theoretical estimate and serve as a proof of the correctness of using this
perturbational approach for a disordered system. Interesting is the small deviation of the
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Cluster
HOMO-LUMO gap (eV) Broadening(eV) Life-time(fs)
HF LDA G0W0 HOMO LUMO HOMO LUMO

Na+
9 4.50 2.03 3.7 (3.47a) < 5 · 10−3 > −5 · 10−3 >827 >827

Na+
15 (a) 3.98 1.55 2.91 0.056 -0.016 74 258

Na+
15 (b) 3.49 1.28 3.13 0.022 -0.011 188 376

Na+
17 2.86 0.82 2.34 0.018 -0.016 606 258

Na+
21 (a) 2.95 0.83 2.11 0.022 -0.021 188 197

Na+
21 (b) 2.71 0.67 2.05 0.030 -0.009 138 460

Na+
25 2.71 0.82 2.42 0.021 -0.004 197 1034

Pt3 6.36 0.40 5.16 0.059 -0.19 70 22

Tab. 5.2: Comparison of the HOMO-LUMO gap of Na and Pt clusters from different
methods.
a Result of self-consistent calculation.

broadening of the states from the quadratic law at the interaction strength around 10−1.
This saturation was observed as well before in Ref. [83] on the TBRIM with m = 3, n = 130
and n = 4,m = 60. And the fact of such a good agreement can serve as an additional
evidence in favor of the GW approach.

5.2 Sodium clusters Na+
N , N from 15 to 25

In this section we present our result for the quasiparticle life-time and the HOMO-LUMO
gap correction (Tab. 5.2) from the non-self-consistent (G0W0) calculation. The geometry
of clusters (Fig. 5.10-5.16) has been optimized on the HF level using the Gaussian 98
package [84]. The idea of the initial configurations for the sodium clusters has been taken
from the work of Reinhard (Ref. [32]). Two isomers of the Na+

21 cluster are supposed to be
very stable due to the completion of the 2s shell (This is reflected in the high ionization
potential for the neutral Na20 cluster or, which is the same, the high electron affinity for
Na+

21, see Fig. 2.2).

We use the lanl2dz basis set for the Na+
17, Na+

21, Na+
25 clusters while for smaller clusters

we use the extended lanl2dz basis set (referred to in Appendix B as lanl2dz1) that
consists of three s-type and three p-type functions. Basis functions were optimized to well
represent the wave-functions of unoccupied states, which is important for the computation
of, for example, the polarization operator. The effective core potential replaces 10 inner
electrons. Therefore, our active space contains one electron described by 8 (12) basis
functions for each sodium atom.

As we explained above the inversion of the dielectric function is avoided in our im-
plementation because we compute the screened potential directly by solving the system
of linear equations for each ω point. Thus, we use this quantity to show the behavior of
the inverse dielectric function. In the plasmon-pole approximation the inverse dielectric
function is said to consist of a single peak. Its position and strength can be determined
directly from the boundary conditions. However, the above example shows that it is an
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of self-energy matrix
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Fig. 5.11: Na+
15 (b) cluster: geometry, density of states from HF and G0W0 theory, trace

of self-energy matrix

oversimplification. In the case of clusters with irregular shape or elongated clusters the
inverse dielectric function consists of several peaks.

Our calculation shows that for all sodium clusters we consider the dominant plasmon
peak is positioned in the region of energies from 6 to 8 eV. According to the explanation
in Sec. 5.1.1 an energy of the HOMO-LUMO gap must be subtracted from this value in
order to obtain the surface plasmon resonance observed in the optical absorption spectrum.
Comparing Fig. 5.17 and Tab. 5.2 shows that our RPA value for the surface plasmon energy
(around 3 eV) agrees well with experimental data [79, 80] as well as with theoretical results
from TDLDA theory [32].

In our calculations we initially applied a broadening δ = 0.136 eV to each of the Hartree-
Fock states. In order to reduce the computational effort and to make the calculations
comparable for different systems the GW calculation was done in the HF basis by restricting
the number of basis functions Nbf to 24.

Geometry optimization of the Na+
15, performed without imposing any symmetry restric-

tions, shows, besides the lowest energy isomer (Fig. 5.11) found in the work of Reinhard
et al., a low symmetry cluster (Fig. 5.10) with even smaller total energy (∆E = 0.36 eV).
Such an irregular shape of the cluster stipulates a complicated frequency dependence of
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Fig. 5.12: Na+
17 cluster: geometry, density of states from HF and G0W0 theory, trace of

self-energy matrix

the screened potential W (ω) (Fig. 5.17). The composite plasmon peak is very broad (ap-
proximately 3 eV) and splits into two pronounced peaks around 5.9 eV and 7.5 eV. The
structure of the screened potential in the case of another isomer of Na+

15 is more compact.
The total width is approximately 2 eV with a main maximum around 6.6 eV.
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Fig. 5.13: Distribution of the electrons over the
eigenstates of the density matrix for a Na+

17 clus-
ter. Solid line is shown as a guide for eyes and
was obtained by fitting the data by means of
Fermi distribution.

It is interesting to observe the effect
of the GW correction on the band gap
in these two clusters (Tab. 5.2). Both
HF and LDA calculations show a larger
HOMO-LUMO gap in the case of the first
isomer. This is consistent, also, with its
higher stability. On the contrary, GW
calculations show a larger reduction of
the band gap in the first case due to the
correction to the HOMO state (the shift
is around 0.96 eV, while for the second
isomer it is only 0.30 eV). This makes
the band gap for this cluster even smaller
(2.91 eV) than for the second isomer (3.13
eV) (unoccupied states are less affected
by the GW approximation). The density
of states for the Na+

15(b) cluster serves
as a perfect illustration of the results of
Fermi liquid theory. One sees, that ap-
proaching the Fermi level the width of the quasiparticle states reduces monotonically, or,
in other words, their life-time increases.

The structure of the Na+
17 cluster (Fig. 5.12) has been optimized imposing the symmetry

restriction, that puts 4 atoms on the main axis with the planes containing 5−4−4 atoms in
between. In order to check the quality of the final Green function we perform a numerical
integration along the ω axis to determine the density matrix (Eq (3.12)). The diagonal-
ization of the density matrix gives the occupation numbers for the quasiparticle states
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Fig. 5.14: Na+
21 (a) cluster: geometry, density of states from HF and G0W0 theory, trace

of self-energy matrix
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Fig. 5.15: Na+
21 (b) cluster: geometry, density of states from HF and G0W0 theory, trace

of self-energy matrix

(Fig. 5.13). One sees that according to the basic principles of many-body perturbation
theory, the electron distribution differs from a step function when electronic correlations
are taken into account. Summing up the eigenvalues of the density matrix gives the total
number of electrons in the system. Our calculation produces a result of 8.12 (should be
exactly 8), which shows the precision of the G0W0 method. This small error has two ori-
gins: physically the method is not conserving and, second, numerical errors occur due to
the convolution and integration.

Geometry optimization for the Na+
21 cluster gives two isomers when starting with con-

figurations 1− 5− 1− 6− 1− 6− 1 (Fig. 5.14)and 1− 6− 1− 6− 1− 6 (Fig. 5.15). The
first one has a slightly lower energy (∆E = 0.10 eV). This is consistent with a result of
Reinhard et al., where the difference in energy between these structures was found to be
almost negligible (∆E = 0.10eV).

Both clusters show similar results for the electronic properties: the main peak of the
screened potential is situated at 6.8 eV and 6.5 eV respectively, the HOMO-LUMO gap is
reduced by approximately 25% compared to the HF value.

The geometry of the Na+
25 cluster is very elongated4. Its electronic density (Fig. 5.16) has

4 Splitting of the plasmon resonance in elongated clusters can be estimated considering the Mie theory for
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Fig. 5.16: Na+
25 cluster. Top: geometry and surfaces of the electronic density 0.004 a.u.−3

(left) and 0.003 a.u.−3 (right) are shown. Bottom: density of states from HF and G0W0

theory, trace of self-energy matrix.

a spatial extent along the symmetry axis by approximately 26 Å, while in the perpendicular
direction it is considerably smaller 14 Å. This results in a splitting of the plasmon resonance
(Fig. 5.17) into two peaks at 5.1 eV and 6.4 eV. Contrary to the lighter clusters, the
reduction of the band gap is small. This could result from the small number of virtual
states (Ne = 12, Nbf = 24) taken into account and thus requires further investigation with
a larger basis set.

On the figures Figs. 5.18 and 5.19 the self-energy of the HOMO and LUMO states are
plotted as a function of energy for all clusters. Drawing straight lines E = ω − εi, the

the ellipsoidal particles characterized by 3 geometric parameters Rx, Ry and Rz such that Rx ·Ry ·Rz = R3
0,

where R0 is the average radius of the cluster. The surface plasmon correspondingly has three peaks at
ωi = ωs.pl

[
1− 3

5
Ri−R0

R0

]
. Putting realistic parameters for this cluster R1 = R2 = 7 Å, R3 = 13 Å,

R0 = 8.5 Å, ωs.pl = 2.7 eV we obtain the splitting ∆ωs.pl = ωs.pl
3
5

R3−R1
R0

= 1.1 eV.
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Fig. 5.17: Imaginary part of the trace of the screened potential that shows the frequency
dependence of the inverse dielectric function for sodium clusters.

intersections show a schematic solution of the Dyson equation. The imaginary part of the
self-energy gives a broadening of the quasiparticle states and, as a result, their life-time
due to the electronic correlations.

The results of our calculations – band-gap, broadening of the quasiparticle states – are
collected in Tab. 5.2. It is desirable for us to confirm them experimentally. Using time-
resolved second-harmonic generation via femtosecond pump-probe studies [62] or analyzing
photofragmentation of sodium clusters [63] the life-time of the surface plasmon can be
obtained. It was found that for the cluster sizes from 5 to 55 nm plasmon life-time ranges
from 3 fs to 10 fs. A similar result (10 fs) was also found for a system of much smaller
size, viz. the Na+

96 cluster. This is consistent with the plasmon broadening from the RPA
(Fig. 5.17) obtained during the G0W0 calculation, when initially constant broadening of
the eigenstate energies was applied. One can see that the width of the plasmon peak is
approximately 2 eV, which corresponds to life-times of a few femtoseconds. To obtain
a more precise value the exact knowledge of the broadening of the quasiparticle states
and a fully self-consistent GW calculation is required. The first is the main result of our
calculation (Tab. 5.2, last two columns), it requires further experimental confirmation. The
fully self-consistent calculation is the possible subject of our future work.
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Fig. 5.18: Real part of the self-energy for the HOMO (solid lines) and LUMO (dashed lines)
states of the sodium clusters. Intersections of the straight lines with the curves denoted by
the dots show the solution of the Dyson equation, which gives the real part of the energy
of the HOMO and LUMO quasiparticle states.
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Fig. 5.19: Imaginary part of the self-energy for the HOMO (solid lines) and LUMO (dashed
lines) states of the sodium clusters. Intersections of the straight lines with the curves
denoted by the dots show the solution of the Dyson equation, which gives the imaginary
part of the energy of the HOMO and LUMO quasiparticle states.
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Fig. 5.20: Pt3 cluster: geometry, density of states from HF and G0W0 theory, trace of
self-energy matrix.

5.3 Pt3 cluster

The Pt3 cluster represents a system with complicated electronic structure. This is a conse-
quence of the open shell (d9s1) configuration of the platinum atom, the importance of the
spin-orbit coupling (to the extent that it even changes the ground state configuration [85]),
and correlation effects [86]. The large discrepancy between the HOMO-LUMO gap from
the HF and LDA approaches (Tab. 5.2) indicates the necessity of using the many-body
perturbation technique. We found this system also to be a very difficult case for the GW
calculations. The use of only a small number of basis functions leads to physically incorrect
results, mostly due to the wrong sign of the imaginary part of self-energy for some states.
This leads to the exchange of particle and hole states and to the wrong density matrix,
obtained from the integration of the Green function. One can improve the situation only
by adding a large number of eigenstates and increasing the energy cut-offs. We were able to
obtain physically relevant results by considering 75 eigenstates and 15 electrons (Fig. 5.20).
This is the largest system that we have studied sofar with our G0W0 approach.

To give an idea about the real amount of calculations, needed to obtain these results we
illustrate our contribution with the self-energy, resolved along both energies axis (Fig. 5.21).
The first one, parallel to the observation plane shows the usual dependence of this quantity
on the frequency, that is the argument in the formulas. The second axis, perpendicular
to the plane, shows the energy of the eigenstates, to which the self-energy belongs. Thus,
it numbers the diagonal matrix elements. To obtain a smooth graph small broadening
has been applied. Although the figure contains more information than just a trace of the
self-energy that we use to plot, it does not reveal its off-diagonal matrix elements.

The interesting observation, coming from our calculations is a very large broadening
of the HOMO and LUMO quasistates (0.058 and 0.19 eV respectively). The last one
is almost one order of magnitude larger than for the sodium clusters and indicates fast
damping of the LUMO state. The time resolved two-photon photoemission method (TR-
2PPE) [55] gives a possibility to check that prediction directly in the experiment. The
experiment comprises two pulses (Fig. 5.22): pump and probe. The pump pulse generates
electron-hole pairs in the cluster. The photon energy must be chosen to be lower than the
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Fig. 5.21: Imaginary part of the self-energy for the Pt3 cluster. It is plotted as a function
of ω and is resolved as a function of the eigenstates energies.

work function, so that no electrons are emitted. During the life-time of the excitation,
a second photon from the probe laser pulse can be absorbed. The excited electron can
be photoemitted, and, hence, the cluster becomes ionized. The efficiency of the second
process is proportional to the population of the excited state. Thus, if it is decaying with a
certain time constant, this can be monitored by varying the time delay between the pulses.
In Sec. 4.4 we estimated the life-time of the collective excitation (plasmon) and compared
it with this type of experiments, considering that the extremely short life-time (70 fs as
an upper limit) observed in experiment Ref. [55] can be attributed with the same rate
of persuasion to both collective and single-particle excitations. Our GW calculation also
demonstrates the second possibility.

Fig. 5.22: Schematic figure of two-photon processes involved in the TR-2PPE experiments.
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Summarizing, among the most important results of this chapter are:

• a partially self-consistent GW calculation on Na+
9 cluster that enables us to improve

HOMO-LUMO gap (4.5 eV – HF, 3.7 eV – G0W0, 3.37 eV GW) and to determine
plasmon width and life-time (2 eV and 4.1 fs respectively).

• a fully self-consistent GW calculation on the TBRIM that helps us to understand the
importance of the quasiparticle life-time renormalization and to check with a high
precision the theoretical prediction that the life-time of the quasiparticle states is
inversely proportional to the square of the interaction strength.

• the G0W0 calculation on a series of sodium clusters (Na+
N , N=15-25) to improve

their electronic structure obtained on the HF level and to estimate quasiparticles
life-times.

• the G0W0 calculation on the Pt3 cluster that reveals an extremely short life-time of
the HOMO and LUMO states in striking agreement with the experimental observa-
tion and shows the capability of the method to treat large systems.



Conclusions

Our work was devoted to ultrafast electron dynamics in metallic clusters. Nontrivial (not
just a change of the phase of the wave-function, which is not observable) electron dynamics
is a consequence of electronic correlations in the system. It manifests itself as a transition
of electrons between states or an excitation during the interaction with an external field
and, as relaxation or equilibration of the system due, first, to electron-electron collisions
and, then, due to electron-phonon interaction. In our work we use two approaches to in-
vestigate what happens to the system on the femtosecond time-scale. First, we employ the
time-dependent Hartree-Fock equation to observe phenomena resolved in real time. We
were able to see electron transitions among the states, plasmon oscillations and even plas-
mon damping. This approach also enables us to compute excited states of the system by
analyzing the power spectrum of the dipole moment and compare it with optical absorption
experiments. The first one, namely, damping of the electronic excitations is also nowadays
within experimental reach. We find good agreement between our estimate of the plasmon
life-time and experiment on platinum clusters. Platinum is not the only direction of our
work. While it shows its outreach power in the treatment of small systems with compli-
cated electronic structure that contains strongly localized d-functions, sodium clusters give
examples of large systems, which, however, are closest to the theoretical idealization of
the homogeneous electron gas model. We also illustrate our work with the example of the
two-body random interaction model, which is more flexible in the sense that it is easier to
vary its parameters to see the evolution from the non-interacting to the strongly correlated
electron system and, thus, it is easier to see the origin of many phenomena.

The second part of our work followed the line of many-body perturbational theory with,
seemingly, no direct relation to the time evolution. This is, however, not true! Even the
smallest step beyond the mean-field treatment (to include correlations), made in a proper
way by taking into account a certain class of diagrams leads to improvement of, first, our
knowledge of the electronic structure, and, second, describes the damping of the states
by a set of life-times. They manifest themselves as an imaginary part of the eigenenergy
of any electronic state, quasiparticle, or plasmon, and describe their decay due to the
electron-electron interaction. The complexity of the method (there is no realistic system
for which it has been applied in full extent at the present time) gives many approximate
ways to its implementation. For large systems, like the series of clusters from Na+

15 to Na+
25

it was reasonable to stop on the simplest G0W0 level, which is commonly used at present
to correct the electronic structure of solids. Smaller clusters are described by fewer basis
functions allowing for the self-consistent extension of the method. The advantage is the
independence of the results on the initial guess of the Green function, which bears some
reminiscence of the Hartree-Fock or DFT calculations.

A lot still remains to be done. The first approach, being almost perfect from the
computational point of view can now be applied to a larger class of materials and allows
for the exploration of a variety of experimental situations, such as four-wave mixing, second
harmonic generation, etc. The second approach requires its further development in seeking
the best computational scheme, comparing different additional approximations and finding
the optimal level of the theory for each particular class of clusters. Only then its routine
application for the design of new materials is possible.
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Appendix A

Computation of some integrals over
Gaussian basis functions

In order to make this thesis self-explanatory we present here recursive formulae for the
computation of two, three, and four-point integrals. The derivation of most of the formulae
given here can be found in Ref. [87]. The recursive expressions for the two- and three-point
electron repulsion integrals are presented here for the first time. We write the unnormalized
Cartesian Gaussian functions with the origins at R as

φ(r; ζ, n,R) = (x−Rx)
nx(y −Ry)

ny(z −Rz)
nz exp[−ζ(r −R)2] (A.1)

The three-center overlap integrals over unnormalized Cartesian Gaussian functions are of
the form:

(a|c|b) =
∫

drφ(r; ζa,a,A)φ(r; ζc, c,C)φ(r; ζb, b,B). (A.2)

The recurrence formula reads:

(a + 1i|c|b) = (Gi − Ai)(a|c|b) +
1

2(ζ + ζc)
[Ni(a)(a − 1i|c|b)

+Ni(b)(ai|c|b − 1) + Ni(c)(ai|c − 1|b)] (A.3)

where the following notations have been introduced:

ξ =
ζaζb

ζa + ζb

, (A.4)

ζ = ζa + ζb, (A.5)

P =
ζaA + ζbB

ζa + ζb

, (A.6)

G =
ζP + ζcC

ζ + ζc

. (A.7)

The integral over s-type functions is given by

(0A|0B|0C) = (
ζ

ζ + ζc

)3/2(0A|0B) exp

[
− ζζc

ζ + ζc

(P −C)2

]
. (A.8)
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This is expressed via the overlap of two s functions:

(0A|0B) =
π

ζ

3/2

exp
[
−ξ(A−B)2

]
. (A.9)

Our next target is the computation of four-point ERIs

(ab, cd) =
∫

dr1

∫
dr2[φ(r1; ζa,a,A)φ(r1; ζb, b,B)]

×|r1 − r2|−1[φ(r2; ζc, c, C)φ(r2; ζd,d,D)]. (A.10)

Introducing parameters similar to those given in the Eqs. (A.4,A.5,A.6,A.7)

η = ζc + ζd, (A.11)

ρ =
ζη

ζ + η
, (A.12)

Q =
ζcC + ζdD

ζc + ζd

, (A.13)

W =
ζP + ηQ

ζ + η
(A.14)

the recursive expression for the ERI can be obtained:

[(a + 1i)b, cd](m) = (Pi − Ai)(ab, cd)(m) + (Wi − Pi)(ab, cd)(m+1)

+
1

2ζ
Ni(a)

{
[(a− 1i)b, cd](m) − ρ

ζ
[(a− 1i)b, cd](m+1)

}

+
1

2ζ
Ni(b)

{
[a(b− 1i), cd](m) − ρ

ζ
[a(b− 1i), cd](m+1)

}

+
1

2(ζ + η)
Ni(c)[ab, (c− 1i)d](m+1)

+
1

2(ζ + η)
Ni(d)[ab, c(d− 1i)]

(m+1)(i = x, y, z). (A.15)

Here, the ERI (ab, cd) is a special case of the auxiliary electron repulsion integral defined
as

(ab, cd)(m) =
2

π1/2

∫ ∞

0
du

(
u2

ρ + u2

)m

(ab, cd) (A.16)

when m = 0.
To perform the calculation according to the given formula one needs to know the ex-

pression for the auxiliary ERI over s function:

(0A0B,0C0D)(m) = 2(
ρ

π
)1/2(0A|0B)(0C |0D)Fm(T )

= (ζ + η)−1/2K(ζa, ζb, A,B)K(ζc, ζd, C, D)Fm(T ) (A.17)
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where

Fm(T ) =
∫ 1

0
dtt2m exp[−Tt2], (A.18)

T = ρ(P −Q)2, (A.19)

K(ζ, ζ ′, R, R′) = 21/2 π5/4

ζ + ζ ′
exp

[
− ζζ ′

ζ + ζ ′
(R−R′)2

]
. (A.20)

For the GW calculations it is also necessary to have formulae for the computation of the
three point electron repulsion integral defined as:

(a, cd) =
∫

dr1

∫
dr2φ(r1; ζa,a,A)|r1 − r2|−1[φ(r2; ζc, c,C)φ(r2; ζd,d,D)]. (A.21)

Two recursive formulae can be obtained from Eq. (A.15) by putting b = 0 and ζb = 0.

[(a + 1i), cd](m) = (W̄i − Ai)(a, cd)(m+1)

+
1

2ζa

Ni(a)

{
[(a− 1i), cd](m) − ρ̄

ζa

[(a− 1i), cd](m+1)

}

+
1

2(ζa + η)
Ni(c)[a, (c− 1i)d](m+1) +

1

2(ζa + η)
Ni(d)[a, c(d− 1i)]

(m+1), (A.22)

[0, (c + 1i)d](m) = (Qi − Ci)(0, cd)(m) + (W̄i −Qi)(0, cd)(m+1)

+
1

2η
Ni(c)

{
[0, (c− 1i)d](m) − ρ̄

η
[0, (c− 1i)d](m+1)

}

+
1

2η
Ni(d)

{
[0, c(d− 1i)]

(m) − ρ̄

η
[0, c(d− 1i)]

(m+1)

}
. (A.23)

The auxiliary integrals are defined as before (Eq. (A.16)) with the replacement ρ → ρ̄, and
we used the notations:

ρ̄ =
ζaη

ζa + η
, (A.24)

W̄ =
ζaA + ηQ

ζ + η
. (A.25)

The three point electron repulsion integral over s functions is given by

(0A,0C0D)(m) = 2(
ρ̄

π
)1/2(

π

ζa

)3/2(0C |0D)Fm(T̄ )

= 21/2π5/4

ζa

(ζa + η)−1/2K(ζc, ζd, C, D)Fm(T̄ ) (A.26)

with
T̄ = ρ̄(A−Q)2. (A.27)

The third kind of electron repulsion integrals we need is a two point integral:

(a, b) =
∫

dr1

∫
dr2φ(r1; ζa, a,A)|r1 − r2|−1φ(r2; ζb, b,B). (A.28)
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Putting b = 0 , ζb = 0 , c = 0 , ζc = 0 in Eq. (A.15) and changing variables from d to b
we get the recursive formula:

[(a + 1i), b](m) = (P̄i − Ai)(a, b)(m+1)

+
1

2ζa

Ni(a)

{
[(a− 1i), b](m) − ξ̄

ζa

[(a− 1i), b](m+1)

}

+
1

2ζ
Ni(b)[a, (b− 1i)]

(m+1). (A.29)

Computations are initialized by the integral over the s functions

(0A,0B)(m) = 2(
ξ

π
)1/2(

π

ζa

)3/2(
π

ζb

)3/2Fm(T̃ ) (A.30)

T̃ = ξ(A−B)2, (A.31)

and auxiliary integrals are similar to Eq. (A.16), with ξ instead of ρ. From the given for-
mulae we can see that all integrals can be evaluated analytically by means of the recursion
relations Eqs. (A.3, A.15, A.22, A.23, A.29). We use the two stage method of Head-Gordon
and Pople (Ref. [88]) to implement the recurrence relation Eq. (A.15) via vertical (VRR)
and horizontal (HRR) recurrence relations. The three point ERIs are also computed in two
stages. The computation of the electron repulsion integrals also requires a fast algorithm
for the calculation of the non-elementary function Fm(t). We refer to Ref. [87] for further
explanation.



Appendix B

Optimization of basis functions

Two improve the representation of the virtual states close to Fermi level we add diffusive
functions to the lanl2dz (Ref. [72]) basis sets for Na and Pt atoms. Short information
about them is given in Tab. B.1. In Fig. B.1 the trace of the imaginary part of Green’s
function for Na+

9 and Pt3 clusters is shown for different basis sets.
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Fig. B.1: Left panel: the trace of Green’s function for the Na+
9 cluster computed from the

quasiparticle states in the HF approximation. Dash-dotted line — lanl2dz basis set, dashed
line — lanl2dz1, solid line — lanl2dz2. Right panel: the trace of Green’s function for the
Pt3 cluster computed from the quasiparticle states in HF approximation. Dash-dotted line
— lanl2dz basis set, solid line — lanl2dz1.

Basis functions were optimized by performing a series of HF calculations for different
scaling parameters of the gaussian exponents and comparing the density of states above
the Fermi level.
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Atom Name Number Type Exp. Contr.Coeff.

Na

lanl2dz 8

S
0.4972 -0.2753574
0.56 1.0989969

S 0.0221 1.0

P
0.6697 -0.06833845
0.0636 1.014055

P 0.0204 1.0

lanl2dz1 12
lanl2dz

S 0.005525 1.0
P 0.009996 1.0

lanl2dz2 15

lanl2dz

S
0.011187 -0.2753574
0.00126 1.0989969

S
0.031075 -0.2753574
0.0035 1.0989969

S 0.00447525 1.0
S 0.00668525 1.0
P 0.009996 1.0

Pt

lanl2dz 24

S
2.547 -1.473918
1.614 1.911572
0.5167 0.3922319

S

2.547 1.438817
1.614 -2.091182
0.5167 -1.092132
0.2651 1.34266

S 0.058 1.0

P
2.911 -0.5247438
1.836 0.9671884
0.5982 0.5438632

P
0.6048 -0.1061438
0.0996 1.03831

P 0.029 1.0

D
1.243 0.559815
0.4271 0.551109

D 0.137 1.0

lanl2dz1 37

lanl2dz
S 0.00522 1.0
P 0.00261 1.0

P
0.054432 -0.1061438
0.008964 1.03831

D 0.01233 1.0

Tab. B.1: Basis sets for Na and Pt atoms. The largest basis set for Na was used only for
small clusters NaN (N ≤ 9).



Appendix C

Simplified derivation of Hedin’s
equations

The system of Hedin’s equations is obvious from their diagrammatic representation, fol-
lowing then just from the rules for summation of the infinite sequences of certain graphs.
This approach, also being very useful in deriving further approximations and building rela-
tions with mathematics, bears little information about the physics of the problem. To lend
physical meaning to each of the functions entering the Hedin’s equation it is helpful to use
the method of functional differentiation. We closely follow the work of Hedin (Ref. [16]),
however using our notations and completing missing places in the derivations. The main
idea (similar to what was used to derive the expression for the dielectric function p. 20) of
the approach is to consider the system subject to some vanishing time-dependent external
potential φ(r1, t1) = φ(1). It is only an auxiliary quantity and should be set equal to
zero in the final expressions. We start from the most general equation of motion for the
single-particle Green function in the presence of the auxiliary external potential φ(1). Its
rigorous derivation is quite long and lies beyond the scope of this appendix (The interested
reader is referred to the original work of Martin and Schwinger Ref. [89]).

(
i

∂

∂t1
−H0(1)− V (1)

)
G(12)− i

∫
v(1+3)

δ

δφ(3)
G(12)d(3) = δ(12) (C.1)

Here V (1) is the average potential that acts on the electrons of the system. It consists
of the external potential φ(1) and the contribution due to the total electronic density, in
other words, just the direct term of the Hartree-Fock potential introduced before (p. 26,
p. 35).

V (1) = φ(1) + Hd(1) = φ(1)− i
∫

v(13)G(33+)d(3) (C.2)

The next equation is the generalization of Eq. (3.19) for the presence of the external
potential: (

i
∂

∂t1
−H0(1)− V (1)

)
G(12)−

∫
Σ(13)G(32)d(3) = δ(12). (C.3)
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To obtain an explicit expression for the self-energy we also need the inverse Green function,
defined as: ∫

G(13)G−1(32)d(3) = δ(12). (C.4)

From the chain-rule differentiation we obtain the identity:

δG(12)

δφ(3)
= −

∫
G(14)

δG−1(45)

δφ(3)
G(52)d(45). (C.5)

Putting the last expression into Eq. (C.1) and comparing it with Eq. (C.3) we arrive at:

Σ(12) = −
∫

v(13+)G(14)
δG−1(42)

δφ(3)
d(34) (C.6)

Now we proceed in a similar way to obtain the expression for the screened Coulomb in-
teraction. Before (p. 20) we defined the dielectric function as a quantity that shows the
change of the average potential in the system due to the change of the external potential.
Therefore we can rewrite it in functional form as:

ε−1(1, 2) =
δV (1)

δφ(2)
. (C.7)

The screened potential W (12) was defined (p. 36) as a frequency dependent quantity that
describes the interaction between the electrons, surrounded by the electron gas. One can
consider it as the average potential that acts on the electron as if the Coulomb interaction
were an external field:

W (12) =
∫

v(13)ε−1(32)d(3) =
∫

v(13)
δV (2)

δφ(3)
d(3). (C.8)

Using Eqs. (C.2), (C.2) and (C.2) we can write W (12) as

W (12) = v(12) + i
∫

v(13)v(24)G(45)
G−1(56)

δφ(3)
G(64+)d(3456). (C.9)

Using the identity
δ

δφ(1)
=

∫ δV (2)

δφ(1)

δ

δV (2)
d(2), (C.10)

W (12) can be written

W (12) = v(12) +
∫

W (13)P (34)v(42)d(34), (C.11)

where

P (34) = i
∫

G(45)G(64+)
δG−1(56)

δV (3)
d(56). (C.12)

Introducing the vertex function Γ(12, 3),

Γ(12, 3) = −δG−1(12)

δV (3)
= δ(12)δ(13) +

δΣ(12)

δV (3)
, (C.13)
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we finally obtain the following expressions (compare p. 36) for Σ and P :

Σ(12) = i
∫

W (1+3)G(14)Γ(42; 3)d(34) (C.14)

P (12) = −i
∫

G(23)G(42+)Γ(34, 1)d(34). (C.15)

The functional derivative of Green’s function with respect to the average potential follows
from Eq. (C.5) by replacing φ(3) with V (3) and using the definition of the vertex function
Eq. (C.13):

δG(12)

δV (3)
=

∫
G(14)G(52)Γ(45, 3)d(45). (C.16)

This identity can be used to complete the system of Hedin’s equations. Using the chain-
differentiation rule and the fact that the self-energy can be regarded as a functional of
Green’s function only (p. 36) we can express the vertex function as:

Γ(12, 3) = δ(12)δ(13) +
δΣ(12)

δV (3)
=

= δ(12)δ(13) +
∫ δΣ(12)

δG(45)

δG(45)

δV (3)

= δ(12)δ(13) +
∫ δΣ(12)

δG(45)
G(46)G(75)Γ(67, 3)d(4567). (C.17)

Q.E.D.
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Summary

Our work was devoted to ultrafast electron dynamics in metallic clusters. Our in-
terest in metallic clusters is raised by the recent advances in nanotechnology, fabrication
and investigation of quantum dots, improvement of quantum chemical ab initio methods
as well as of computational facilities, which enable the modelling of hundreds of atoms.
On the other hand progress in technology with its steady tendency to the miniaturization
is constantly demanding for novel materials. Clusters, that may be considered to form a
new phase of materials lying between macroscopic solids and microscopic particles such
as atoms and molecules, possess a large number of physical properties making them so
attractive for future applications. Among them stands out a large flexibility in changing
their qualities by varying their geometry and size. Addition of even a single atom may
change the electronic structure of the cluster drastically. Clusters with certain numbers
of atoms (magic numbers) are very stable due to the completion of atomic-like electronic
shells. Increasing the number of atoms by one then leads to the formation of a new incom-
plete shell, lowering the stability. Metallic clusters inhere the high density of electronic
states from their bulk material counterparts combining it with a seemingly contradictory
large band-gap peculiar to insulators and semi-conductors.

Nontrivial (beyond a change of the phase of the wave-function, which is not observable)
electron dynamics is a consequence of electronic correlations in the system. It manifests
itself as a transition of electrons between states or an excitation during the interaction with
an external field and, as relaxation or equilibration of the system due, first, to electron-
electron collisions and, then, due to electron-phonon interaction. In the present work two
approaches are used to study the electron dynamics in metallic clusters:

• the solution of the time-dependent Hartree-Fock (TDHF) equation in order to mon-
itor the time evolution of the system upon ultrashort laser pulse excitation and

• a Green’s function technique, namely the GW method to compute the correction to
the eigenstates energies and to obtain decay constants for the plasmon excitations
and quasiparticles.

In order to make our thesis self-explanatory we first discuss:

• the description of the electron wave-functions in the clusters by means of linear
combination of atomic orbitals.

• the stability of the clusters

• two different electronic states in the electron gas:



- quasiparticles

- plasmons

We demonstrate that the properties of the first are very similar to that of the usual
particles. They can be analyzed considering the one-particle Green function. The
plasmon oscillation is a collective effect, that is most easily studied using the dielectric
function.

Furthermore, we explain our implementation of the TDHF and GW methods from a unified
point of view. In our work these approaches were applied for the first time to localized
systems (such as clusters) using Gaussian basis functions. As a starting point we consider
diagrammatic expansions within many-body perturbation theory. Based on that we rewrite
the equations in the form suitable for numerical calculations. This is achieved by expanding
all operators and functions in a certain basis set (Gaussian in our case, although the
formulae are valid in general). In order to achieve high numerical performance every
operation is rewritten in matrix form. Because of this the form of some equations differs
from the usual notations. That is why we spend additional efforts to clarify relations
between different representations of the main results.

Although both approximations are known for a long time (TDHF was established by
Dirac in the early 1930s and GW originates from the work of Hedin published in 1965)
their numerical implementation became possible only with the development of modern
computers. On the first stages a lot of additional approximations were used to facilitate
computations. Thus we consider our implementations in the light of previous works.

In parallel we consider the computation of the non-linear optical properties of clusters,
in particular, second harmonic generation. Symmetry properties of the SHG tensor are
discussed and numerical results for a Na4 cluster based on the Hartree-Fock eigenstates are
shown.

In last two chapters of the thesis numerical results of apllication of TDHF and GW
methods to real systems are presented.

Electron dynamics from TDHF theory. First we apply the TDHF method to
the simple, molecule-like systems in order to better understand the time evolution in this
approach and to test the numerical precision of our method. We start our investigation
with Na4 – one of the most widely studied cluster in the literature. The small number of
atoms made it accessible to almost all known ab initio methods including Configuration
Interaction (CI), GW, and TDLDA. As an example regimes of low and high frequency
excitations are considered and compared with the adiabatic solution. We find that for
excitations of an energy considerably lower than the energy of transitions between different
states the dynamics of the system obtained from the full time-dependent treatment differs
only slightly from that in the adiabatic approach. After the excitation it returns almost to
the initial state, preserving only some small oscillations. By contrast, a completely different
behavior is found at higher frequencies. Our calculations indicate that, in the case of a
Na4 cluster, for an excitation energy above 0.5 eV the adiabatic approximation ceases to
be valid and one has to resort to methods that explicitly account for the time dependence.

On the second step we study properties of the collective excitations by analyzing the
power spectrum of the metallic clusters subject to an ultrafast laser pulse.The application
of the TDHF method to the Na+

9 cluster, previously intensively studied theoretically with



different methods, and the Pt3 cluster already accessible to experimental investigation
revealed the following capabilities of our approach:

• The method is able to accurately predict the position of the plasmon peak (2.7 eV)
for the Na+

9 cluster, although its oscillator strength differs considerably from the
TDLDA result.

• The calculation on the open-shell transition metal cluster Pt3 allowed us not only to
determine the position of the plasmon resonance (3.7 eV), but also to estimate its
life-time by fitting the power spectrum to a set of Lorentzians. Our value for the
decay constant (τpl = 24 fs) supports the experimental evidence in favor of a bulk-
like lifetime (< 70 fs) of the electronic excitations in this cluster despite an electronic
structure that strongly differs from bulk Pt.

• The calculation on the two-body random interaction model (TBRIM) supports the
possibility to determine the life-time of collective excitations from time-dependent
mean-field theory.

Numerical results of GW calculation. An algorithm developed by us for the cal-
culation of the electronic structures of clusters within the GW approximation was applied
to a variety of metallic clusters. To our main results belongs:

• a partially self-consistent GW calculation on Na+
9 cluster that enables us to improve

HOMO-LUMO gap (4.5 eV – HF, 3.7 eV – G0W0, 3.37 eV GW) and to determine
the plasmon width and life-time (2 eV and 4.1 fs respectively).

• a fully self-consistent GW calculation on the TBRIM that helps us to understand
the importance of the quasiparticle life-time renormalization and to check with high
precision the theoretical prediction that the life-time of the quasiparticle states is
inversely proportional to the square of the interaction strength.

• the G0W0 calculation on a series of sodium clusters (Na+
N , N=15-25) to improve their

electronic structure obtained on the HF level and to estimate quasiparticle life-times.

• the G0W0 calculation on the Pt3 cluster that reveals an extremely short life-time of
the HOMO (70 fs) and LUMO (20 fs) states in striking agreement with the experi-
mental observation and shows the capability of the method to treat large systems.

A lot still remains to be done. The first approach, being almost perfect from the
computational point of view can now be applied to a larger class of materials and allows
for the exploration of a variety of experimental situations, such as four-wave mixing, second
harmonic generation, etc. The second approach requires its further development in seeking
the best computational scheme, comparing different additional approximations and finding
the optimal level of the theory for each particular class of clusters. Only then its routine
application for the design of new materials is possible.



Zusammenfassung

Unsere Arbeit wurde der ultraschnellen Dynamik von Elektronen in metallischen
Clustern gewidmet. Geweckt wurde unser Interesse an metallischen Clustern durch die
neuesten Fortschritte der Nanotechnologie, die Herstellung und Untersuchung von Quan-
tenpunkten, die Verbesserung von quanten-chemischen ab initio Methoden sowie durch die
computertechnischen Möglichkeiten, welche die Modellierung von hunderten von Atomen
ermöglichen. Andererseits erfordert der technische Fortschritt mit seiner Neigung zur
stetigen Miniaturisierung neue Materialien. Cluster, die man als neue Zustandsform der
Materie, zwischen makroskopischen Festkörpern und mikroskopischen Teilchen wie etwa
Atomen oder Molekülen gelegen, ansehen kann, verfügen über eine Anzahl von Eigen-
schaften, die sie besonders attraktiv für zukünftige Anwendungen machen. Herausragend
dabei ist die Flexibilität ihrer Eigenschaften bei Veränderung von Größe und Geometrie.
Hinzufügen von nur einem Atom kann die elektronische Struktur von Clustern drastisch
verändern. Cluster mit einer ganz bestimmten Anzahl von Atomen (sog. magische Zahl)
sind sehr stabil aufgrund der Vervollständigung von Schalen, ähnlich den elektronischen
Schalen in Atomen. Wird ein weiteres Atom hinzugefügt, entsteht dadurch eine neue aber
unvollständige Schale und der Cluster verliert an Stabilität. Die metallischen Cluster haben
ihre hohe elektronische Zustandsdichte von ihren massiveren Pendants, den Festkörpern,
und verbinden diese mit der scheinbar widersprüchlich großen Bandlücke, wie sie Halbleit-
ern und Isolatoren eigen ist. Die nicht-triviale (nicht nur ein unbeobachtbarer Wechsel
der Phase der Wellenfunktion) Elektronendynamik ist eine Konsequenz der elektronischen
Korrelationen im System. Das zeigt sich als Übergang von Elektronen zwischen Zuständen
oder auch an der Anregung während der Wechselwirkung mit externen Feldern sowie an
der Relaxierung oder Equilibrierung des Systems aufgrund von Elektron-Elektron Stössen
oder Elektron-Phonon Wechselwirkungen. Die vorliegende Arbeit untersucht die Elekro-
nendynamik in metallischen Clustern mit zweierlei Herangehensweisen:

• die zeitabhängige Hartree-Fock Gleichung (time-dependent Hartree-Fock –TDHF)
wird gelöst um damit die zeitliche Entwicklung des Systems nach Anregung mit
einem ultrakurzen Laserpuls zu beobachten

• die Methode der Greensfunktionen, und zwar die GW Methode, um die Korrektur der
Eigenzustände zu berechnen und um die Zerfallskonstanten von Plasmon Anregungen
und Quasiteilchen zu erhalten.

Damit diese Arbeit leicht verständlich wird, diskutieren wir als Erstes:

• die Beschreibung der Wellenfunktionen der Elektronen in Clustern mit Hilfe von
Linearkombinationen von atomaren Orbitalen.



• die Stabilität der Cluster.

• zwei unterschiedliche elektronische Zustände im Elektronengas:

- Quasiteilchen

- Plasmonen

Wir zeigen, dass die Eigenschaften der Ersteren denen von normalen Teilchen sehr
ähnlich sind. Sie können unter Betrachtung der Einteilchen-Greenfunktion untersucht
werden. Die Plasmonenoszillation ist ein kollektiver Effekt, welcher am einfachsten unter
Zuhilfenahme der dielektrischen Funktion untersucht wird.

Des weiteren erklären wir unsere praktische Durchführung der TDHF und der GW
Methode aus einer vereinheitlichten Perspektive. In unserer Arbeit wurden diese Herange-
hensweisen unter Benutzung von Gauss’schen Basisfunktionen zum ersten Mal auf lokalisierte
Systeme (wie z.B. Cluster) angewendet. Wir fangen an mit einer diagrammatischen En-
twicklung der Vielteilchenstörungstheorie. Davon ausgehend schreiben wir die Gleichungen
in eine für numerische Berechnungen passende Form um. Das erreichen wir dadurch, dass
wir alle Funktionen und Operatoren nach bestimmten Basissätzen entwickeln (wir benutzen
Gauss’sche Basisfunktionen, obwohl die Gleichungen allgemein gültig sind). Um hohe nu-
merische Leistungen zu erreichen, sollten alle Operationen in Matrizenform umgeschrieben
werden. Deshalb kann sich das Aussehen einiger Gleichungen von ihrer herkömmlichen
Schreibweise unterscheiden und wir haben besondere Anstrengungen unternommen um die
Beziehungen zwischen verschiedenen Darstellungen der Hauptergebnisse zu verdeutlichen.
Obgleich beide Näherungen seit Langem bekannt sind (TDHF wurde von Dirac in den
frühen Dreißigern eingeführt während GWA auf die von Hedin 1965 veröffentlichte Arbeit
zurückgeht), wurde ihre numerische Umsetzung erst mit der Entwicklung moderner Com-
puter möglich. In den Anfängen wurden eine Vielzahl zusätzlicher Näherungen benutzt,
um Berechnungen überhaupt zu ermöglichen, weshalb wir unsere Umsetzung im Lichte der
vorhergegangenen Arbeiten betrachten wollen. Parallel dazu betrachten wir Berechnun-
gen der nichtlinearen optischen Eigenschaften von Clustern, insbesondere die Frequenzver-
dopplung (second harmonic generation – SHG). Wir diskutieren Symmetrieeigenschaften
des SHG Tensors und zeigen numerische Ergebnisse von Na4 Clustern, basierend auf den
Hartree-Fock Eigenzuständen. In den zwei letzten Kapiteln der Arbeit werden numerische
Ergebnisse der an realen Systemen angewandten TDHF und GW Methode präsentiert.

TDHF und Elektronen Dynamik. Zuerst wenden wir TDHF auf ein einfaches,
molekülartiges System an, um die zeitliche Entwicklung besser verstehen zu können und
um die numerische Genauigkeit unsere Methode zu untersuchen. Wir beginnen unsere
Untersuchung an Na4, einem der am häufigsten in der Literatur untersuchten Cluster.
Die nur kleine Anzahl von Atomen macht es fast allen bekannten ab initio Methoden
zugänglich, darunter Konfigurations-Wechselwirkung (configuration interaction – CI), GW
und TDLDA. Als Beispiel werden Bereiche der Hoch und Niederfrequenzanregung un-
tersucht und mit den adiabatischen Lösungen verglichen. Dabei fanden wir heraus, dass
sich die Dynamik des Systems bei vollständig zeitabhängiger Behandlung und Anregung
mit Energien deutlich unterhalb der Übergangsenergie zwischen Zuständen nur geringfügig
vom adiabatischen Ansatz unterscheidet. Nach der Anregung kehrt das System fast wieder
in den Ausgangszustand zurück und behält nur einige kleine Oszillationen. Bei hohen Fre-



quenzen wurde hingegen ein vollständig anderes Verhalten beobachtet. Unsere Berechnun-
gen deuten für den Fall von Na4 Clustern und für Anregungsenergien oberhalb 0.5 eV an,
dass die adiabatische Näherung ihre Gültigkeit verliert und man auf Methoden angewiesen
ist, die die Zeitabhängigkeit explizit beinhalten. In einem zweiten Schritt untersuchen wir
die kollektiven Anregungen indem wir die metallischen Cluster ultraschnellen Laserpulsen
aussetzen und dann deren Spektraldichte analysieren. Die Anwendung der TDHF Methode
auf Na+

9 Cluster, welche zuvor bereits intensiv theoretisch mit anderen Methoden unter-
sucht wurden, und Pt3 Cluster, welche bereits dem Experiment zugänglich sind, offenbaren
die folgenden Möglichkeiten unserer Methode:

• sie ermöglicht eine akkurate Vorhersage der Position des Plasmonen-Maximums für
Na+

9 Cluster (2.7 eV), obgleich die Stärke ihrer Oszillation erheblich von dem TDLDA
Ergebnis abweicht.

• Die Berechnungen an dem offenenschaligen Übergangsmetall Cluster Pt3 erlaubt uns
nicht nur die Position der Plasmonen Resonanz zu bestimmen (3.7 eV) sondern lässt
uns auch die Lebensdauer abschätzen, indem wir die Spektraldichte an einen Satz
von Lorentzfunktionen anfitten. Unser Wert für die Zerfallskonstante (τpl = 24 fs)
bekräftigt den experimentellen Nachweis zugunsten der Lebenszeit der elektronisch
angeregten Zustände innerhalb des Clusters wie sie in Festkörpern zu finden ist (< 70
fs) trotz der elektronischen Struktur, die ja sich stark von Pt im Festkörper unter-
scheidet.

• Die Berechnungen am zufälligen Zwei-Körper Wechselwirkungsmodell (two-body ran-
dom interaction model – TBRIM) unterstützen die Möglichkeit, die Lebensdauer der
kollektiven Anregungszustände mit der zeitabhängigen Molekularfeld-Theorie bes-
timmen zu können.

Numerische Ergebnisse der GW Berechnungen. Wir haben den von uns ent-
wickelten Algorithmus zur Berechnung der elektronischen Zustände von Cluster innerhalb
der GW Näherung auf eine Vielzahl von metallischen Clustern angewandt. Zu unseren
Hauptergebnissen zählen:

• eine teilweise selbst-konsistente GW Berechnung der Na+
9 Cluster, welche es uns

erlaubt, die HOMO-LUMO Lücke zu verbessern (4.5 eV – HF, 3.7 eV – G0W0, 3.37
eV – GW) und die Linienbreite und Lebensdauer der Plasmonen zu bestimmen (2
eV bzw. 4.1 fs).

• eine vollständig selbst-konsistente GW Berechnung der TBRIM, welche uns die Be-
deutung der Renormierung der Lebensdauer der Quasiteilchen zu verstehen hilft,
und mit Hilfe derer wir die theoretische Vorhersage, dass die Lebensdauer der Qu-
asiteilchenzustände umgekehrt proportional zum Quadrat der Stärke der Wechsel-
wirkung ist, mit grosser Genauigkeit überprüfen können.

• die G0W0 Berechnungen an einer Reihe von Natrium Clustern (Na+
N , N = 15− 25),

um die elektronische Strukturen, wie sie HF Berechnungen ergaben, zu verbessern
und um die Lebensdauer der Quasiteilchen abzuschätzen.



• G0W0 Berechnungen am Pt3 Cluster offenbaren eine extrem kurze Lebensdauer der
HOMO (70 fs) und LUMO (20 fs) Zustände, welche in bemerkenswerter Übereinstimmung
mit der experimentellen Beobachtung stehen und die Leistungsfähigkeit der Methode
angewandt auf große Systeme bezeugen.

Es bleibt noch viel zu tun. Der erste Ansatz, vom rechnerischen Gesichtspunkt aus na-
hezu perfekt, kann jetzt auf eine größere Gruppe von Materialien Anwendung finden und
erlaubt die Erforschung einer Vielzahl von experimentellen Situationen, wie zum Beispiel
vierwellen-Mischung, Frequenzverdopplung etc. Der zweite Ansatz erfordert eine Weit-
ereentwicklung und Suche nach der besten rechnerischen Vorgehensweise. Hierbei müssen
verschiedene zusätzliche Näherungen verglichen werden, um für jede Gruppe von Clustern
eine optimale Theorie zu finden. Nur damit wird diese Methode in der Entwicklung neuer
Materialien Anwendung finden.
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