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Introduction 
 

The end of seventies of the last century brought to the world a new branch of polymer 

sciences, - the chemistry and physics of polymeric liquid crystals (PLC) [Int.1-7]. The paradox 

of the situation was, that this field becomes of interest for the polymer researchers nearly after 50 

years of progress in the liquid crystalline state theory and practical applications, in the time when 

the millions of people already used the devices based on the low molecular LC in everyday life. 

However, the burst of interest in the liquid cristallinity of polymers led to the very fast practical 

progress in the creation of new materials with extremely valuable properties. The most 

impressive results were achieved, at first, in development and synthesizing of so-called “armed” 

fibers (“Nylon”, “Terlon”, “Kevlar”, etc), which immediately become vitally important in 

aerospace technology [Int.6-10]. The unique properties of the PLC materials are mainly 

connected with the specific orientational order of the molecules in mesomorphic (i.e. liquid 

crystalline) state, which combines the structural features of amorphous and crystal phase. That 

way, the problems of the orientational structure are of great interest when studying the LC 

polymers. The understanding of the orientational mechanism allows one inquiring the 

relationship between the structure and properties of the PLC-based materials.  

One of the most interesting and promising types of PLC is so-called liquid crystalline 

side-chain polymers (LCSP). Those are PLC, which contains the mesogenic units in side chains. 

The attractive properties of this class of compounds are provided by the combination of the low-

molecular LC anisotropic properties, originating from the mesogenic units (side-chains), and the 

potential of persistent macromolecules (main–chain) in creating films and fibers. The phase 

behaviour of these substances is mainly governed by the mesogenic units, but influenced also by 

the backbone. Other characteristics, for instance, glass transition, viscous and elastic properties, 

however, are determined essentially by the main chain. At molecular level, opposite tendencies 

are expected: While the mesogenic side chains generate some orientational order, the main 

chains try to maximize the entropy by forming random disoriented coils. The real molecular 

structure and dynamics are the result of a compromise, which includes a certain orientation of 

the main-chain segments and, on the other hand, a strong slowing-down of the reorientation 

process of the mesogenic director in external fields. Thus, investigations of the structure-

property relations require the information about the main-chain properties of the LCSP. The 

particular purpose of the presented work is obtaining the knowledge about the role of main-chain 

orientation and dynamics. As an object of the investigation, the side-chain polysiloxanes 

were chosen. 



State of preceding work. 

 
Most investigations of the main-chain conformation were done using the small angle 

neutron scattering (SANS) [Int.11]. The sensitivity length scale of this method lays on the level 

of the whole molecule shape (either prolate or oblate). However, the orientational order of the 

main-chain segments of large macromolecules has the sub-molecular character. That is the 

reason why Nuclear Magnetic Resonance (NMR) - the experimental technique which is 

sensitive to the microstructure and orientational properties on the level of individual atoms or 

atomic groups may extend our understanding of the main chain structure.  

The first investigations of the LC polymers main chain structure in side-chain 

polymethacrylates using the NMR were done with the selectively deuterated samples [Int.12]. 

Later the 29Si NMR measurements were performed using the chemical shift anisotropy to probe 

the orientation [Int.13]. The short review of these and other works on the subject can be found in 

Chapter I. In the NMR group of Martin-Luther University of Halle/Wittenberg the first 

investigations on the orientation behaviour of side-chain polymers was started in 1994. The 

series of mesogenic polysiloxane samples were investigated [Int.14]. The information about the 
29Si chemical shift tensor axis orientation was obtained (see Chapter I). With this knowledge it 

becomes possible to calculate the orientation degrees of main chain segments [Int.15]. For the 

comprehensive interpretation of the results, some proposals about the transversal 

isotropy/anisotropy of the molecular segments are required [Int.16]. These suggestions cannot be 

done, however, basing on the only intrinsically one-dimensional information provided by axially 

symmetrical chemical shift spin interaction. Due to this reason, the supplementary information 

about the main-chain segment orientation needs to be obtained by using an alternative type of 

orientationally dependent (anisotropic) NMR interaction. Most natural solution is to use the 

angular dependence of the direct dipolar interaction to probe the orientation distribution of the 

vectors, which connect two Si atoms in the LCSP main chain. This vector exactly coincides with 

the main-chain alignment direction. 

However, in the case of the 29Si NMR in polysiloxanes the sufficient difficulties can be 

foreseen concerned with the relatively low natural abundance of observable spins (4.7%). 

 

This makes the employment of dipolar interaction for the orientation distribution studies quite 

problematic for two reasons: 

• The low natural abundance of 29Si nuclei gives considerably low signal sensitivity 

(≈0.784% of 1H spins relative sensitivity), without any possibility to use the 

enriched samples. 



• The low probability, that two neighbored Si both are 29Si, leads to overwhelming 

part of the NMR signal arising from isolated 29Si and overlapping the weak spin-

pair signal of interest. 

 On the other hand, a low abundance of 29Si ensures us that among the spin pairs nearly no 

higher-member spin clusters affect the signal. This fact strongly justifies the using of the isolated 

spin-pair approximation. 

To overcome these problems one needs to develop and implement the special 29Si NMR 

techniques and data processing/interpretation methods. Particularly, the following targets are to 

be achieved in this work: 

1. The features of the polymeric and liquid crystalline structure should be overviewed to get 

better understanding of their mutual influence as well as the role of both of them on the 

orientational properties of the LCSP (particularly polysiloxanes). The basic results obtained in 

the previous investigations of liquid crystalline polysiloxanes with different methods have to 

be considered [Int.1-7].The special attention should be paid on methods of orientation 

distribution function analysis using NMR [Int.14-16].  

2. The specific NMR technique called β-echo (proposed in the first time by Callaghan at 

al.[Int.17]) is to be used for the selective detection of the NMR signal from coupled 29Si spin 

pairs, with simultaneous suppression of the signal from isolated spins. The design of pulse 

sequence should be modified to be adapted for using together with cross-polarization NMR 

technique to increase the signal sensitivity (which is intrinsically low for the 29Si at natural 

abundance). 

3. The relation between the β-echo time evolution behaviour (called β-function) and 

dipolar interaction strength should be found, using the isolated spin-pair approximation. The 

consideration needs to be done using the density matrix formalism [Int.18]. Further, the 

anisotropic character of dipolar interaction should give us the information of how the β-

function is influenced by the orientation of Si-Si internuclear vector with respect to NMR 

laboratory frame. The special attention should be paid on the role of dipolar coupling constant 

value. 

4. On the next stage, the orientation distribution of the silicon-to-silicon (Si-Si) vectors 

has to be taken into account. The influence of the orientation distribution function (ODF) of 

«dipolar» Si-Si vectors on β-function behaviour has to be checked using (i) Model ODF’s 

(Gaussian-like) and (ii) model-free ODFs represented by the Legendre series. The sensitivity 

of the β-function to the ODF parameters needs to be tested by using the numerical simulations. 

5. The sensitivity of the β-function method for the determination of the parameters of 

orientation distribution supposes to be increased by using the angular dependence. The 



changing of the β-function curve when the whole sample is rotating with respect to NMR 

laboratory frame is to be tested first by simulation. The procedures of the information 

extraction from several β-function curves have to be developed. The multiparametrical fitting 

has to be avoided if possible. The linear regression methods are preferable in the case when 

more than one parameter needs to be found from fitting. The accuracy of dipolar coupling 

constant determination supposed to be sufficiently increased by analysis of the Fourier 

transformed β-echo signals («β-spectrums»). 

6. The practical implementation of β-echo sequence has to be done. The critical 

experimental parameters need to be found as well as a procedure of their optimization. The 

largest care has to be taken about the calibration of the pulses duration. Because of the 

compensation character of β-echo technique the errors and imperfection of the pulses suppose 

to be critical for the whole method accuracy. 

7. The role of transversal NMR relaxation has to be investigated in two aspects: (i) 

influence of T2 on the β-echo properties and its ability to serve for the orientation distribution 

estimation and (ii) the interest about the transversal relaxation time T2 as a sensitive tool for the 

molecular dynamic investigation [Int.19-23]. The role of temperature as the basic factor which 

makes influence on the molecular mobility can be investigated. Therefore, the measurements 

of temperature dependence of the transversal relaxation time need to be done. 

8. The experiments using β-function have to be done for two different polysiloxane 

samples with different mutual orientation of side-chain and main-chain. The polydomain 

(disoriented) samples supposed to be used in testing experiments as well as in the experiments 

for dipolar coupling constant determination. Then, the monodomain (oriented) samples should 

be measured with β-echo technique. The experiments at different orientations of the sample 

suppose to require the special sensitivity calibration procedures. 

9. The obtained experimental results of β-echo measurements have to be processed to 

extract the information about ODF Legendre moments. The data preprocessing procedures 

(filtering, smoothing, etc,) suppose to be employed to reduce the noise factor influence. 

Finally, the orientation distribution function is to be reconstructed using its estimated moments. 

10. The temperature dependence of the 29Si transversal relaxation should to be considered 

and analyzed using the Anderson and Weiss approach to make a suggestion about the 

mechanisms of the transversal relaxation and to analyze the dynamic properties of the main-

chain of polysiloxane samples in glassy and liquid crystalline state [Int.23-24].  
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Chapter 1. Polymeric Liquid crystals. 
 

1.1. Polymeric Liquid crystals: general overview. 
1.1.1 Liquid crystal (LC) a thermodynamic stable phase characterized by anisotropy of 

properties without the existence of a three-dimensional crystal lattice. Generally, LC is placed in 

the temperature range between the solid and isotropic liquid phase. Therefore, the term 

mesophase is often used as a synonym of liquid crystalline phase [I.1].  

The basic characteristic of mesophase is the tendency of the molecules (mesogens) to 

orient themselves along a common axis, called the director (see Fig 1.1).  The LC phase creation 

is more prominent for the substances where the molecules have a strong asymmetry either 

prolate or oblate. It this case the anisotropy of the properties can originate from the spatial 

restriction as a consequence of the impossibility to arrange the anisotropic molecules in isotropic 

manner to fulfill the requirements of the free energy minimization [I.2]. Most of the liquid 

crystals demonstrate a polymorphism, i.e. condition where several "subphases" are observed in 

the liquid crystalline state. These subphases are formed by changing of the orientational order 

degree in the sample either by imposing order in one or two dimensions, or by allowing the 

molecules to have a degree of translational motion. More detailed information about different 

mesophases and phase transitions can be found in Appendix I (A.I). 

1.1.2 Order parameter 

To describe the measure of the orientation order of the liquid crystal, in general case, the 

molecular anisotropy tensor, or order tensor is to be used. [A.I]. However, in the case of 

threefold or higher symmetry of the molecules shape, a single number is usually enough for the 

quantification of the orientation degree, which is called order parameter. It is traditionally 

defined as: 

 Smectic liquid crystal      Nematic liquid crystal Isotrpopic liquid 

N 

Solid-state crystal 

Fig. 1.1 Liquid crystalline state of the substance: no long range order presents (opposite to the solid-state). The molecules axes have 
preferable orientation given by the local director N (opposite to the random orientation in isotropic liquid). In some subphases the LC 
exhibits an ordering of the molecules gravity centers (smectic LC).  
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2
2

3 1cos ( )
2 2 tS Pθ θ= − =                                                  (1.1) 

where θ is the angle between long molecular axis and local director, (see Fig 1.2) P2 is the 

second order Legendre polynomial and brackets means the averaging in time, which occurs 

because of the thermal motion [AI, I.3]. In some cases, however, the ensemble averaging over all 

the molecules of the sample can be suggested when speaking about the order parameter or 

orientation degree. For most of mesophases both definitions, in principle, are equivalent. 

 

 1.1.3. Polymeric Liquid Crystal 

Polymer liquid crystals (PLC) are a kind of macromolecular compounds, which combine 

the properties of polymers with those of liquid crystals. These systems show the anysotropic 

characteristic of the liquid crystals, and, in the same time, demonstrate a many of useful and 

versatile properties of polymers. The properties of the PLC mesophases can differ sufficiently 

from their analogs of the «classical» low molecular LC. In contrast to Low Molecular Liquid 

Crystals (LMLC) a number of PLC have no similarity to the classical liquids even in low 

ordered subphases and look like a solid glassy samples with melting temperature more than 

1000C. However, traditionally, the same terms are used to denote the similar states of the 

molecular ordering in both LMLC and PLC. In order to polymer molecules demonstrate the 

ordering properties, the anysotropically shaped rod-like or disk-like elements (called mesogenic 

unit) must present inside. In the same time, for creating the liquid crystalline state of the sample 

Liquid Crystalline Main-
Chain Polymer (LCMP)

Liquid Cristalline Side-Chain 
Polymer (LCSP) 

Fig 1.3 Schematic representation of the polymeric liquid crystals with mesogenic units in main 
(left) and side-chain (right). 

Long molecular axis θ 

Local director

Fig 1.2. LC order parameter S describes the orientational order of liquid crystalline material, allowing for the individual orientational 
deviation of the molecules axes (denoted as angle θ ) from the local director N, averaged either in time or over the collection. 
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these units must be decoupled from each other by the flexible segment of certain length called 

spacer. Additional factors providing the mesomorphic behavior of polymers include the certain 

polymerization degree, and regular alternation of rigid and flexible units along the main chain. 

Depending on the location of the mesogenic moieties the PLC can be separated into 

main-chain and side-chain. The first ones have the mesogenic unit as a part of the main-chain of 

the polymer molecule and for the second the mesophase is formed by the anisotropic molecular 

segments of the side-chain (see Fig 1.3). The origins of the main-chain PLC theory and 

synthesizing can be found in the classical works of de Gennes [I.4] and Roviello at al.[I.5]. 

Because the subject of this work concerns the problems of orientation order of the side-chain 

polymer liquid crystals they will be considered in more details below. 

 1.2 Liquid-Crystalline Side-chain polymers. (LCSP) 

 The attempts of synthesizing of the LC polymers with the mesogenic units in side-chain 

were stimulated by the fast progress of low molecular LC investigations. It seemed to be very 

attractive to create the polymer systems, which combine in one material the unique properties of 

the low molecular LC and macromolecular compounds with their ability to create films, tissues 

and covers. However, the first try to solve this problem by the creation of the polymers with 

side-chain units directly connected to the main-chain was not quit successful [I.7, I.8]. Finally, it 

was found that the most convenient matrices for the synthesizing of the PLC with mesogenic 

moieties in side-chain are so called comb-like polymers. The main feature of the structure of 

such a kind of macromolecules is the relatively long (usually aliphatic) side units connected 

directly to the backbone chain (see Fig 1.4a). The general approach to creating of the 

macromolecular systems based on this kind of polymers shown on Fig 1.4b,c.  Being developed 

by the different groups [I.8-I.10] it provides the possibility to synthesize the thermotropic LC 

polymers with the mesogenic units in side-chain. 

a 
b 

c 
1

2

3
+ 

Fig 1.4. Schematic view of the polymer macromolecules with the direct connection of the side-chain to the main 
chain(a), (b)- comb-like macromolecule with flexible side-chain units, (c)- liquid crystalline side-chain polymer 
with mesogenic units (1) connected to the backbone (2) via flexible spacer(3).  
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The most important point of the method is the decoupling of the backbone and mesogenic 

unit in the side-chain from each other by the flexible spacer of methylene chain. This provides 

the necessary isolation of the backbone and mesogenic groups making possible their cooperation 

in the creation of the mesophase. The example of the spacer length importance for the mesogenic 

properties of the side-chain PLC will be discussed later on the particular examples. There are 

several possibilities of how the side-chain unit can be connected to the spacer. Fig 1.5 

demonstrates the basic type of the rod-like mesogenic fragments, particularly are «end-on», 

«side-on» and «twin». 

 

1.3. Phase transitions and orientational order in LCSP. The role of the 

macromolecular properties. 

 Independently on the particular structure of the LCSP, their macromolecules generally 

have the similar design, which includes the rigid side-chain units connected in some way to the 

main-chain backbone. It is assumed that the side-chain units define the mesogenic properties 

when the backbone is responsible for the polymeric qualities of the compound. If to take into 

account the interconnecting flexible spacers both in side- and main chain it is clear that the 

nature of this kind of objects is quite complicated. The influence of each component on the 

mesophase state of side-chain PLC will be considered shortly in following. 

 

1.3.1 Backbone  

 Despite of the fact that mesogenic properties of the LCSP originate from the side-chain 

mesogenic unit, the polymer «skeleton» of main chain defines the important features of 

Fig 1.5 Possible structures of the mesogenic unit connections to the backbone in LCSP: (a) –«side-on», (b)-«end-on», (c) 

«twin-like» (d)-diskoitic. 
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mesophase forming. Especially important factor is the degree of the polymerization (DP) i.e. the 

average number of the monomer blocks in the main chain. For instance, it was established in a 

number of experiments for the side-chain polysiloxanes that the temperatures of the subphases 

transitions are strongly affected by the DP in the regime of olygomers (i.e DP<10) independently 

on the spacer length. In the same time for 10<DP<100 the transitions temperature changes much 

slowly achieving a plateau for DP>100 value (see Fig 1.6). 

10 100
240

270

300

330

360

390
isotropic state

nematic

smectic

glassy state

Phase transition temperature for polysiloxane M6

T

DP

 Fig 1.6. Phase transition temperature of the polysiloxanes samples as a function of the polymerization degree.  

 

2 3 4 5 6 7 8 9 10 11 12

20 
40 
60 
80 

100 
120 
140 
160 

180 

n

Polysiloxane with cyanobiphenil unit (PSCB) and low molecular cyanobiphenil LC 
(LMCB) phase transitions temperatures 

 
PSCB melting point 
PSCB glass transition  
 LMCB melting point  
 LMCB clearance point 

T[C] 

 Cn H2n+1 CN 

Low-molecular CB LC / side-chain 
mesogenic unit M of polysiloxane 
LCSP(see Fig 1.6) 

Fig 1.7 Dependence of the phase transition temperatures for the polysiloxane LCSP with cyanobiphenil 
mesogenic units and its low-molecular analog. The temperature range of the mesophase existence for LCSP is 
sufficiently broader than for low-molecular CB LC.  

M = 
O OCH3 

O C 

O

Si(CH3) 

H 
DP 

(CH2) 6 M  

[K] 

Polysiloxane M6 (PS) LCSP  
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 Generally, the presence of the main-chain backbone leads to much higher thermostability of the 

mesophase in comparison to the low-molecular LC. This can be seen when comparing the 

transition temperatures of the LC of alkocyanbiphenyl type with LCSP having the same 

mesogenic groups (Fig 1.7) in side chain. 

  1.3.2. Spacer 

 Spacer or flexible bridge, which connects the side-chain with the backbone, has several 

functions important for the LC properties. T he first one is providing of the independent behavior 

for mesogenic units that often define the mesophase forming. As it is seen from Table 1, the 

decrease of the spacer length leads to the narrowing of the temperature range of mesophase 

existence. Another important function is the plastification influence of the spacer. The increasing 

of the spacer length leads to decrease of the glassy state transition temperature for the LCSP 

(Table 1.1). In addition, the number of the methylene units in spacer quite often can define the 

ability of a polymer to form more than one subphase. Usually, for the other equal parameters, by 

the increasing the spacer length it is possible to turn from the nematic to smectic state. 

 1.3.3. Mesogenic unit.  

 Obviously, the side-chain mesogenic unit has the strongest influence on the character of 

mesophase formed by the particular polymer. For instance, the nematic type of LC structure is 

characteristic for the homopolymers, which have the short end-groups (CH3, OCH3 and CN) 

with 2..6 methylene groups in spacer. 

CN (CH2)n 

[∼ Si(CH3) — O ∼ ]m 

n=5, m=36          Tg14→Nsib60→I 

n=4, m=50         Tg12→S130→I 

n=3, m=50          Tg40→S152→I 

Table 1.1 Phase transition temperature of polysiloxane LCSP's 
depending on the length of the spacer 
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 Additionally, the forming of the nematic phase can be promoted by the including of a side 

substitutes into the mesogenic unit. This can be clearly seen by comparison two different series 

of the polysiloxanes:  

All the polymers of type I starting from the n=3 form only the smectic phase, while in the LCSP 

of series II the nematic phase can be observed at n=5,6 at clearance temperature TN=40-600C. 

The further increase of the spacer length (n=7-11) again leads to the smectic ordering TS=900 for 

n=7 and TS=130 for n=11. More examples of the phase transition temperature variation 

depending on the structure of the mesogenic unit can be found in [I.11]. 

 1.3.4. Mutual orientation of the backbone and the mesogenic units 

 The statistical conformation of the isotropic chain polymers is not consistent with the 

mesogenic structure [I.2]. This can be confirmed on the example of the mixture of low-molecular 

LC with linear chain polymers where even if the isotropic phases are completely miscible, the 

phase separation occurs when the low-molecular system turns to the nematic state. In the case of 

LCSP no phase separation is possible. That way, the trend of the main chain to form the random 

coils will conflict with the liquid crystalline ordering of the side-groups. This will makes the side 

chain to adopt the anisotropic conformation according to the LC phase structure. Generally, it 

leads to the different orientation character of the mesogenic groups and the backbone that was 

confirmed in the experiments. This difference seems to be determined by the number of 

structural features, including the length of the spacer and the flexibility of the main chain. The 

relation between these two parameters defines the correlation of the side- and main chain 

behavior under influence of the orientation factors. It is necessary to notice, however, that the 

effect of the mechanical field (deformation) on the orientation of LCSP is quit different from the 

CH3 

COOO (CH2)n 

Si OO 
N=50 

CH3 

CN 

COOO(CH2)n 

Si 

CH3 

OO
N=50

CN 

I 

II 
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magnetic or electric field. In the later case the orientation more selectively affecting the side-

chain, rather than main chain and, that way, a higher orientation degree with monodomain 

structure chain be achieved. In more details the problem of the orientational order in main and 

side-chain as well will be considered in the next section.  

1.4. Conformation and the orientational order of the main chain in liquid-

crystalline side-chain polymers. Backbone conformation and anisotropy.  

 
The conformation and ordering of the backbone is the question of great importance for 

characterization of the structural and dynamical properties of LCSP. The structure of main chain 

influences both on mechanical and thermodynamic properties, such as viscosity, strength, elastic 

modules, transition temperatures. During a long time the question of the conformation of the 

main chain was not discussed in literature. A priori, it was suggested that in the case of the 

smectic LCSP the main chain is located between the layers of mesogenic units. For nematic state 

a one-dimensional order of mesogenic groups with disordered conformation of main-chain coils 

was expected. In the first time the preposition about the anisotropic ordering of the main chain 

was discussed in [I.12] when studying the orientation of the polysiloxane LCSP by the external 

magnetic field. Using the neutron scattering for investigation of selectively deuterated side-chain 

polysiloxanes oriented in the magnetic field, the first information about the conformation of the 

macromolecules of the side-chain polymers in blocks was obtained.[I.13,14] There are some 

theoretical approaches to the problem of main-chain conformation. Vasilenko at al [I.15] have 

used the lattice model. It is based, however, on athermal parameters and can not give the 

comprehensive explanation of the experimental data, which include a number of temperature 

dependent results. Another theory developed by Wang and Warner uses the model of cross-

coupling between rod-like side-chain and flexible main chain to explain the different structures 

of the nematic phase in LCSP. The structures are classified by the order parameter of the 

mesogenic units SA and backbone SB. When SA>0 SB<0 the shape of the backbone supposed to 

be the oblate spheroid and the phase is called NI. The phases with prolate conformation of main-

chain with SA<0, SB>0, and SA, SB>0 are called NII and NIII respectively. The segment-segment, 

segment-mesogen, and mesogen-mesogen interactions in this case are described using the Maier-

Saupe theory potentials. Considering the conventional LCSP (with poly(meth)acrylate or 

polysiloxane main-chain) where in the sense of Maier-Saupe theory the anisotropy of 

polarizability of the backbone segments is negligible as compared to the mesogens it might be 

concluded that all mentioned kinds of LCSP have to have the same nematic phase N, that is in 

contrast to the experimental data. On the other hand, the Warner’s theory gives no explanation 
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about the influence of the spacer length on the orientational properties of the polysiloxanes 

LCSP. It can be seen on the Fig 1.8 in the case of the polymer M4 (spacer length m=4) the 

mesogenic units are aligned parallel to the segments of main chain (phase NIII), and whole 

sample is optically uniaxial. The opposite picture is observed for the samples of M3 and M6 

(m=3, and 6 respectively). The mesogenic units are oriented in the direction perpendicular to the 

main chain and the sample is biaxial (phase NI). The cross-coupling model predicts only the 

perpendicular orientation of the main- and side-chain in both cases for the realistic values of the 

volume fraction of mesogens.  

 

 1.4.1. Evaluation of the backbone anisotropy parameters using SANS. 

 A number of experimental investigations of the backbone conformations were done using 

the small angle neutron scattering method (SANS) [I.16] on the samples of polysiloxane and 

polymethacrylate series (Fig 1.9). The samples were mixed from deuterated and hydrogenated 

molecules to provide the necessary SANS neutron scattering contrast of the molecules to the 

surroundings. The mesogen induced backbone anisotropy can be described in the terms of the 

inertia radii R|| and R⊥  parallel and perpendicular to the local director. The results obtained for 

deuterated polymethacrylates and polysiloxanes samples exhibit the obvious anisotropy of the 

macromolecules in mesogenic phase. As it can be seen from the data in the Table 1.2 for the 

polymethacrylates sample in nematic phase the ratio R||>R⊥  is valid, but the anisotropy factor η= 

R||/R⊥  is quit low (η=1.1). Significantly larger anisotropy can be observed in smectic phase. This 

means the anisotropic conformation of the main chain in the direction perpendicular to the local 

Fig 1.8 Influence of the spacer length on the mesogenic unit orientation. For polysiloxane sample with 4 aliphatic units in spacer the 
mesogens are aligned parallel to the main chain exhibiting nematic NIII phase (uniaxial) ( left hand side), when for the number of
aliphatic segments 3 and 6 the polymer forms NI uniaxial nematic phase with orthogonal alignment of mesogenic units with respect 
to main chain(right hand side). 
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director. Based on the results of SANS studies the model of the macromolecular chain allocation 

within one smectic layer with multiple crossing was proposed [I.14](see Fig 1.10a).  

 

Fig 1.9 Polymethacrylate (top)(PMA) and polysiloxane(bottom)(PS) samples studied by SANS in [I.13] to determine the gyration 
radii of the macromolecules. The partial deuteration of both main chain (in the case of PMA) and spacer were done to provide the 
contrast for the neutron scattering. The model of the smectic phase ordering was build basing on the data analysis (see text). 

 

1.4.2. Bilayer model 

 Another model of the conformation of the backbone in LCSP was proposed in [I.25] with 

account of data from the work [I.14]. The basic idea of this model introduces the so-called 

anisotropy of local rigidity approach with consideration of the smectic phase like a state with 

microphase separation of the mesogenic groups and main chains. In this case the backbone is 

pushed out of the smectic layer and creates the intermediate layer (Fig 1.10b). Contrast to the 

layer crossing model, [I.14] according to this approach, the transition of the backbone through 

the smectic layers occurs very seldom. The part of the main chain, which tunnels through the 

mesogenic unit layers (called “tunneling segment”) is located perpendicular to the smectic layer 

creating a small defect in it. The details of this defect are not known, but the SANS allows one to 

estimate its density. That way, all the polymeric chain is divided into the separate two-

COO OC4H9   (CH2)6 — O 

∼ CD2— C(CD3) — O ∼  

OCO 

COO (CDH) — CD2 — O

∼ O— Si(CH3) — O ∼  

  CD2 CN

                          PMA                                                                                                        PS 
Phase transition temperature 

C45→50S110→N116→I                                                                            Tg45→36SA146→I 
      Polymerization degree 

                  680                                                                                                                  63 
Isotropic phase 

Rg                     106                                                                                                                22±2 
Nematic phase 

R||                     59±5                                                                                                                - 
R⊥                     65±5                                                                                                                - 
R⊥  /R||                1.1                                                                                                                  - 

Smectic phase 
R||                    22±3                                                                                                            9.9±0.2 
R⊥                    65±5                                                                                                           15.8±0.2 
R⊥ /R||              4.0±1                                                                                                                1.6 

Table 1.2 Gyration radii obtained by SANS for the polymethacrylate (left) and polysiloxane (right) samples (Fig 1.9) 
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dimensional coils allocated into the smectic planes. However, despite of the sufficient progress, 

which gives the application of SANS for the studying of the molecular orientation of LCSP, still 

there are some problems arises from the necessity of the sample deuteration for the purpose of 

providing a better contrast. Particularly, this takes place in the polysiloxanes because they are 

deuterated in different positions in the side groups (see Fig 1.9).  

That way, the shape of the molecule obtained by the neutron scattering is not necessarily 

to be a backbones one. The way for making corrections is shown in [I.17], where the apparent 

molecular shape was estimated for different label distance to the backbone and extrapolated to 

zero distance. Alternative possibility is given by Noirez et al. [I.18]. Here, another possible 

problem was also studied: segregation into deuterated and hydrogenated phases could occur in 

some cases. The sufficient difficulties of both synthesizing the deuterium-labeled substances and 

neutron scattering experiments, require looking for alternative methods of main-chain 

conformation studies. X-rays are effective for the smectic phase investigation [I.19]. Although in 

nematic, the information about main chain obtained from diffraction pattern is relatively poor. 2H 

NMR experiments show that in a particular polyacrelate the main chain and also spacer are 

parallel to the mesogenic unit side groups, while corresponding polymethacrylate demonstrates a 

perpendicular structure [I.20]. In the same time, SANS experiment demonstrates the oblate 

backbone conformation [I.18]. This contradiction can arise from the different length scale to 

which NMR and SANS are sensitive (will be discussed later) and also from the mentioned above 

problem concerned with molecules deuteration. However, the polysiloxanes give the additional 

possibilities for the backbone conformation investigation by using the 29Si NMR. This method 

promises to bring good results because the information about the molecular order is provided by 

R⊥  

R|| 

Intermediate layers of main chain coils

Mesogenic units layers

Tunneling segments of main chain. 

Two-dimensional subcoils 

Smectic layer 

Fig 1.10.a,b The models of the backbone and mesogenic units arrangement for the smectic phase basing on the SANS 
experiments. (a) - the model proposed in [I.14], - the backbone is placed within one smectic layer with multiple crossing. (b) 
– microphase separation model [I.26] . The backbone is pushed out of the smectic layers of mesogenic units and creates the 
own intermediate layer. The tunneling of the backbone through the side-chain layers occurs rather seldom.  

(a) 

(b) 
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the silicon atoms, which position in main chain is unambiguous. No special preparation of the 

samples is required in this case and the problems concerned with the sample deuteration needed 

for SANS and 2H NMR can be avoided. That way, in our work the polysiloxanes and 29Si NMR 

were chosen to find a reliable method of the LCSP main chain conformation study.  

1.5 Orientation of the side and main chain in side-chain liquid crystalline 
polysiloxanes  

 1.5.1 Chemical constitution of the polysiloxanes. Samples synthesizing. 

 Generally, the method of the polysiloxane-based LCSP synthesis bases on the reaction of 

the polysiloxanes with the mesogenic monomers of olefin series. The sufficient advantage of this 

method is that the samples with different polymerization degree can be obtained. Also, the 

samples with various mesogenic segment structure and desirable spacer length can be obtained. 

The main stages of the synthesis are shown on Fig 1.11. In our work the samples with spacer 

length m=4 and m=6 were used, which will be in the future denoted as M4 and M6 respectively.  

 1.5.2 Physical properties and phase transitions. 

 The basic thermodynamic properties of the polysiloxane samples chosen for the main-

chain conformation investigation measured by DSC are shown in Table 1.3. It should be noticed 

that the M4 sample has narrower temperature region of the mesophase existence as compared to 

O 

OCH3 

C 

O 

m HO OCH3 

+

 SOCl2 

m 

B
+

OH 
Spacer combining

O OCH

O C 

m 

O

H 

Si(CH3) 

Pt 

+ CH2=CH-(CH2)m-2-M 

p 

Polysiloxane chain building 

M 

Si(CH3) 

H 

p 
(CH2) m 

M = 

O OCH3 

O C 

O 

O 

HO OCH3 

H2SO4/H2O 
HO 

OCH3 

C 

Mesogenic unit design

Fig 1.11(top). The stages of the mesogenic unit and spacer synthesis for the liquid crystalline side-chain polysiloxane polymers. 
(bottom) - The backbone synthesis and assembling of the whole polysiloxane macromolecule  
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M6, but the difference is not too significant (about 5%). However, the nematic to isotropic liquid 

(NI) transition enthalpy ∆HNI differs on more than 20%. More important is the difference of the 

heat capacity for the glassy state transition. For the M6 sample it exceeds the ∆Cp of the M4 on 

more that 35%. This can be easily understood if to look at the DSC diagram, which shows the 

existence of two different mesophase for M6 sample (smectic-C and nematic 

Tg274±4→SC308±4→N377±2→I) when M4 sample demonstrates only nematic phase 

(Tg280±4→N368±4→I). The molar mass distribution parameter U=Mw/Mn-1 (where Mn is 

number averaged and Mw is weight averaged value of molar mass) obtained by the light 

scattering (LS) shows that the polymerization degree in M6 sample is sufficiently more 

homogeneous (UM6=1.16) than in the M4 (UM4=1.57). The average polymerization degree <pn> 

of the molecules estimated from the Mn gives also the higher absolute value for M6 (<pn>=97±5) 

than for M4( <pn>=87±5).  

 1.5.3 Liquid crystalline orientational properties of the polysiloxane 

samples.  

As it was mentioned, the liquid crystalline properties of the LCSP are mainly connected 

with the anisotropy of the side-chain segments ordering due to their rod-like shape. However, the 

macroscopic orientation and forming poly- or monodomain LC (see A.I) usually are defined by 

the external factors, such as electric or magnetic field. Opposite to the case of low-molecular 

liquid crystals, the homogeneous orientation of the polymers is not always possible even in 

nematic state. Therefore, the task of separation of the orientation effects on macro and micro 

level is important. One of the approaches to the macroscopic orientation studying is based on the 

estimation of the parameters of the local director orientation distribution obtained from analysis 

of the 1H NMR spectrum [I.21-22]. The orientation distribution of local directors can be 

characterized by the macroscopic order parameter SM=<P2M> or so-called orientation degree 

defined in a manner similar to the microscopic order parameter S (Eqn. 1.1, for more details see 

AI.5-8) Generally, for LCSP the procedure of the sample macroscopic orientation is the same as 

for low-molecular liquid crystals. The sample is to be heated to turn into the isotropic state, and 

then cooled down to the mesophase in presence of the external magnetic field, which provides 

PS            Tg [K]     ∆Cp[J/gK]  TNI[K]       ∆HNI[J/g] 
 
M3           287±4      0.4±0.1       347±4        1.2±0.4 
 
M4           280±4     0.32±0.04     368±4        2.0±0.3 
 
M6           274±4      0.5±0.2        377±2        2.5±0.5

Table 1.3 DSC results for different polysiloxane 
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the preferable orientation direction for the molecules over the whole sample. However, the 

specific properties of the polymer samples lead to the strong dependence of the orientation 

degree SM from (i) the field strength and (ii) kinetics of the cooling down process. The order 

parameter in this case can be different for various atomic positions. The selective order 

parameter estimation for different atomic positions in side-chain polysiloxanes using the 13C 

NMR is described in [II.23]. Discussing the questions concerning with 2H NMR studying of the 

LCSP it is necessary to mention the results obtained in [I.24]. The partial deuteration of the 

methylene groups and mesogenic units allows estimating the order parameters of the rigid and 

flexible parts of the side-chains. Binding the mesogenic units with polymer backbone has 

insignificant influence on the order parameter of the mesogenic units. However, the order 

parameter of the aliphatic chain decreases by the factor of 2 demonstrating the strong mutual 

perturbation influence of the of the polymer chain and mesogenic segments. Obviously, the 

orientation of the LCSP in the magnetic field is caused by the anisotropy of the magnetic 

susceptibility ∆χ. For the polysiloxane samples M4 and M6 it was in the first time measured in 

[I.22]. The coincidence of the ∆χ values for both samples (∆χ=(1.5±0.5)⋅107 SGSE/g] with 

known susceptibility values of the analogous low-molecular LC shows some similarity of the 

structure of LCSP and low-molecular nematics. Therefore, when studying the orientational 

properties of the LCSP, the question of the mutual influence of the mesogenic units reorientation 

by the external fields and main chain adopting to the new molecular arrangement becomes quit 

interesting and important. The first data on elastic constants determination of the polysiloxanes 

LCSP were obtained in [I.22]. The authors estimated the «splay», «bend», «twist» and elastic 

deformation coefficient (K11,K22, and K33) (Fig 1.12) and their temperature dependence for 

different samples including M4 and M6 and compared this data with one obtained for low-

molecular analogous. The experimental results show that the reducing of spacer length from 6 to 

4 units does not make a significant influence on the K11 coefficient but changes strongly K33 and 

therefore K11/K33 ratio. This can be treated like a confirmation of the backbone contribution to 

the elastic properties of the side-chain polymer LC phase. However, there was not found any 

significant influence of the main chain length (polymerization degree) on the «twist» elastic 

constant K22. In general, basing on the experimental data obtained for the polysiloxane LCSP it 

«Twist» 0div N =
�

 «Splay» rot N N
� �
�  «Bend» rot N N⊥

� �  
Fig. 1. 12 Schematic representation of the viscoelastic deformations in the nematic LC. 
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should be noticed that there can not be done any unambiguous conclusion about the influence of 

the backbone conformation on the elastic and reorientation properties of the LC phase. 

 1.5.4. Relation between SANS and NMR results of the backbone 

conformation studies in polysiloxanes.  

As it was mentioned above, the conclusions, which could be done concerning the mutual 

orientation of the main and side-chain in polysiloxanes using the data obtained by different 

methods are not unambiguous. The extensive investigation of the polysiloxane samples M4 and 

M6 with the SANS method was done by Siebert in [I.24]. The gyration radii R|| and R⊥  were 

determined for different temperatures below the isotropic-to-nematic state transition. Fig 1.13 

demonstrates the variation of the parameter η=R||/R⊥  with the temperature for the M4 and M6 

samples respectively. The obvious conclusion from these data is that for the M4 sample a prolate 

shape of the molecule is characteristic in the nematic phase for the temperatures below TNI 

approximately on 10K (where η turns from the values η>1 to η<1). In the same time for the M6 

sample η goes down continuously with the temperature starting from the value η=0.63 in 

nematic state and decreasing by nearly the factor of 2 in smectic phase. However, the 

information about the shape of the polysiloxane LCSP molecules obtained by SANS does not 

allow one making an undisputable suggestion about the orientation of the main-chain there. 

Moreover, the length scales to which this method is sensitive does not allow to estimate the 

degree of the backbone orientation and to compare it with the orientation of the mesogenic units. 

As it was remarked in section 1.2 the information about the orientation properties of the 

backbone can be also obtained by the NMR. Because the NMR spectroscopy is sensitive to the 

interactions on the length scale of the chemical bonds, the orientation of the individual segments 
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Tg274±4→SC308±4→N377±2→I 
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Fig 1.13 The dependence of the gyration radii ratio η=RII/R⊥  for polysiloxane LCSP M4 and M6 as a function of reduced 
temperature Tred =T/TNI . The consequent changing from prolate to oblate conformation occurs for the M4 LCSP (η changes 
from the value >1 to <1 ) . The M6 sample demonstrates the oblate form in whole temperature range of the LC existence.  
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of the polysiloxane LCSP main chain can be, in principle, determined using the NMR spectrum 

of 29Si nuclei. Using the angular dependence of the 29Si NMR spectra the orientation degree of 

the backbone molecular segments in different polysiloxane samples was estimated in the work of 

Dr. G. Hempel and colleagues [I.25]. In details the theoretical and practical aspects of the 

method will be described in the next chapter. Here, it should be mentioned that the main result of 

the work is the issue that for the M4 sample the orientation degree of the main chain segment 

with respect to local director has positive value, <P2>S=0.18 that means parallel orientation of 

the main-chain and mesogenic units. In contrast, the orientation degree for the M6 sample is 

negative <P2>S= -0.23±0.02 i.e. the segments of the backbone are oriented preferably orthogonal 

to the side-chain. That way, the NMR measurements in this case are in qualitative agreement 

with the SANS data. However, the situation when the prolate shape of the molecule (determined 

by SANS) corresponds to the perpendicular orientation of the backbone with respect to the 

mesogenic units preferable direction (found by the 29Si NMR,) can also take place for the 

polysiloxane LCSP [I.26]. As it was mentioned already, such a strong contradiction can occur 

because of the different sensitivity length scales belonging to these methods (NMR: at maximum 

size of the monomer unit, SANS: size of a macromolecule). Fig 1.14 demonstrates one of the 

possible examples of such a backbone conformation. The largest part of the main chain can be 

compressed between mesogenic layers perpendicular to the local director even if the average 

shape of the molecule is prolate.The NMR methods are able to monitor directly the tiny details 

of the molecular arrangements with possibility to quantify the distribution in the orientation of 

the backbone individual segments. However, the features of the polysiloxanes structure make 

difficulties for extraction of the information about molecular ordering of the main-chain directly 

from NMR spectra. The detailed description of these problems will be done in the next chapter. 

That way, the task of polysiloxane LCSP backbone conformation investigation requires the 

development of special 29Si NMR techniques and data interpretation methods. The solving of 

these problems was chosen to be the main subject of the present work. 

Fig 1.14 Sketch of the possible example of the backbone arrangement. The most part of the molecular segments of the main 
chain is oriented perpendicular to the mesogenic units, when the averaged shape of the molecule is prolate.  
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Chapter II. Molecular segments orientation study using 
29Si NMR methods. 

 
2.1. NMR Spectroscopy, Anisotropic Nuclear Spin Interaction. 
 

The term Nuclear Magnetic Resonance (NMR) unifies a big variety of the quantum 

phenomena based on the interaction of the nuclear spins with magnetic fields and radiofrequency 

irradiation. Generally, NMR denotes the resonance response of the spin system polarized in the 

magnetic field on the rf-irradiation. The spectrum of the response signal reflects the picture of 

the energy levels of the atomic nuclei spins and therefore can be effectively used in many ways 

for the probing the molecular, structural, dynamical and other properties both on micro and 

macro level. The basics of the NMR spectroscopy both in theoretical and applied aspects can be 

found in many textbooks [II.1-3]. Appendix II collects some important information about the 

NMR theory, which is relevant for current work. 

The appearance of a NMR spectrum is determined by the various interactions of the 

nuclear spins with each other as well as with quantities like local and external magnetic fields, 

electric field gradient and coupling to the surroundings or lattice. In this section, the most 

attention will be given to the anisotropic spin interactions, which have a great importance for 

the NMR investigation of the structure and orientational ordering of the systems of our interest. 

The most important interaction in the NMR is the coupling of the nucleat spins to the 

applied external magnetic field. It is Zeeman interaction (see AII.2), which defines the basic 

(non-perturbed) resonance frequency of the spins system. In reality, this frequency is often 

changed due to the chemical shift and the indirect couplings. Both of them depend on the 

features of the electron shielding in the surroundings of nuclei. They are often used as «portraits» 

of the molecules chemical properties. Generally, the spin interactions have a vector properties i.e 

they are quantified with the magnitude and orientation. The interaction of two vectors is 

described by a tensor, which is normally represented by a matrix in Cartesian coordinates. Such 

kinds of properties have (i) the direct dipole-dipole coupling, (ii) the indirect coupling between 

two spins, and (iii) the coupling of the spins with a local magnetic field (chemical shift). The 

similar description has the quadrupolar coupling, which is denotes the interaction of the spins 

with the tensor of electric field gradient. In liquids the tensorial properties of the interactions, 

normally are eliminated by the averaging due to the fast molecular motion, so that only the 

orientation-independent parts corresponding to the traces of the coupling tensors are effective. 

From all the interactions mentioned above, only chemical shift and indirect coupling have non-

zero traces of tensor matrices. Nevertheless, in solids, the motional averaging is not so effective, 

and tensorial properties of the interactions lead to the resonance frequency changes, which are 

orientationally dependent. In this case the description of the interaction Hamiltonian operator in 
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terms of irreducible spherical tensors instead of Cartesian matrices is helpful [II.4] (see also 

AII.2).  

If the orientation dependence of the resonance line frequency of spin I=1/2 is determined 

only by just one type of the interaction it is possible to use it for measuring the angles of 

chemical bonds, and other structural characteristic of the molecules. In polycrystalline solid 

powder, molecular and liquid crystals, polymers and other partially oriented or disoriented 

samples the angles of the interaction tensor main axes with respect to the external magnetic field 

and, therefore, the corresponding resonance frequencies are distributed over large range of 

values. This leads to the broadening of the NMR spectrum to some pattern of the specific shape, 

so-called wideline NMR spectrum.[II.1.2] Generally, the shape of this pattern is, in addition, 

influenced by the molecular reorientation on the time scale of inverse width of the resonance 

line. Therefore, the lineshape provides the information on structural, orientational and dynamical 

properties of the solid sample. [II.5-7] 

 

2.1.1 Anisotropic chemical shift interaction tensor. 
The external magnetic field B0 applied to nuclear spins is always shielded by the 

surrounding electron clouds. The resulting local filed Bloc influencing on nuclei in this case is 

given by 

0
ˆ(1 )loc CSB Bσ= −

� �

                                                      (2.1) 

where σσσσCS is the chemical shift tensor. As it was mentioned above, the orientation dependence of 

the resonance frequencies in the most convenient manner can be treated in terms of irreducible 

spherical tensors of the second rank. In Appendix II it is shown that the offset of the resonance 

line due to the anisotropic chemical shift can be separated in isotropic, symmetric and 

antisymmetric parts. Only isotropic and symmetric parts influence on NMR spectrum [A2.2, 

II.4,8]. In principal axes system the tensor is characterized only by the combination of three 

diagonal elements σxx, σyy and σzz. The resonance frequency offset σzz caused by the anisotropic 

chemical shielding can be given as  

2 2 2(3cos ( ) 1) sin ( ) cos ( )
2 2zz iso

σ σσ σ θ η θ ϕ∆ ∆
= + − −                         (2.2) 

where σiso is the isotropic part of the frequency shift defined by the tensor trace: 

( )1
3iso xx yy zzσ σ σ σ= + +                                                     (2.2a) 

 ∆∆∆∆σσσσ is the tensors anisotropy parameter: 
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2
xx yy

zz

σ σ
σ σ

+
∆ = −                                                          (2.2b) 

 and ηηηη is the parameter of asymmetry:  

yy xx

zz iso

σ σ
η

σ σ
−

=
−

                                                                (2.2c) 

which has non-zero value if the tensor has no axial symmetry. In this case only two main values 

of tensor σxx=σyy=σ⊥  and σzz=σ|| are relevant. Here, θ and ϕ denote the polar and azimuthal 

angles between σ|| and B0, respectively. The tensor properties of chemical shift means that the 

local field influenced on nuclei differs from the external field B0 in both magnitude and direction 

due to the shielding effect of the surrounding electrons. Generally, a connection between external 

field B0 and local filed Bloc can be represented graphically as a second order surface (ovaloid). 

(see Fig 2.1). The perfect detailed explanation of the pictorial representation of CS tensor can be 

found in [II.9] 

 

More details about the expansion into the irreducible tensors and transformation between 

laboratory and the principal axes frames using Wigner matrices can be found in (AII.2). 

Expressions 2.2 allow one finding the lineshape of the NMR spectra determined mainly by 

chemical shift interaction. For the powder sample, when all the orientations of individual tensors 

main axis have equal probability the shape of the wideline NMR spectrum can be obtained by 

the integration over the whole sphere the contributions of corresponding individual resonance 

lines shifted according to 2.1. 

( ) ( ( , )) sinzzS f d dσ σ σ θ ϕ θ θ ϕ
Ω

= −∫∫                                  (2.3) 

Here f(σ) denotes the shape of the individual lines. 

B0 

Fig 2.1 Chemical shift tensor (Eqn 2.2) graphical representation. Example for symmetrical CS tensor σ11:σ22:σ33=1:1:2; 
X=R⋅sin(θ)cos(ϕ), Y=R⋅sin(θ)sin(ϕ), Z=R⋅cos(θ),R=(σzz)-1/2 , X2+Y2+Z2=R2 

Bloc=(1-σσσσzz)B0 (See [II.9] for more details.) 

θ 
«Bloc - surface» 
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 In ideal case for δ-like intristic lineshape, i.e. f(σ)=δ(σ-σzz(θ,ϕ)), for the axially 

symmetric CS tensor (η=0) after integration the characteristic spectral density pattern can be 

obtained: 

( ) 1
2 2

( )
0

if orS
for other

σ σ σ σ σ σ σ σ σσ
σ

−

⊥ ⊥ ⊥
 ∆ − ≤ ≤ ≤ ≤= 


� �                       (2.4) 

Fig 2.2 demonstrates the lineshape pattern, which is built according to Eqn 2.4. The spectral line 

has a singularity at the frequency σ=σ⊥  corresponding to the angle θ=π/2 between the magnetic 

field B0 and Z-axis of coupling tensor. For this angle, B0 lies in XY plane of the principal axes 

system. The cut-off at σσσσ|| corresponds to an orientation of B0 parallel to Z-axis. Thus, when the 

orientation of the CS tensor with respect to molecule-fixed coordinate frame is known a wideline 

CS spectrum can be used to determine the molecular orientation. On the other hand, the 

assumption of δ-like intristic lineshape f(σ) is, of course, nonrealistic. The inhomogeneity of the 

CS tensor values distribution and variety of the structural conformation leads to the finite width 

of the resonance line corresponding to some specific orientation. In this case the CS spectrum is 

represented by the convolution of the «ideal» pattern corresponding to the δ-like individual 

lineshape with Gaussian or Lorenz patterns according to Eqn 2.3 (see Fig 2.3)[II.10]. It can be 

noticed that the formula 2.3 can be reversed and the broadening lineshape function f(σ) can be 

recovered from the experimental powder spectrum. The example of such a deconvolution will be 

shown in following section. 

 

Fig 2.2. Distribution of the resonance frequencies due to the anisotropic chemical shift. Different orientations of the tensor axis 
with respect to the external field B0 contribute to the different resonance positions (Eqn 2.2). The example of the powder 
averaged wideline NMR spectrum for axial symmetric CS tensor is built according to Eqn 2.4.  
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Fig 2.3 Convolution of the «ideal» powder CS pattern with Gaussian broadening function f(σ-σ0) for realistic spectrum 
representation in simulations. The value of broadening factor b reflects the distribution of CS parameters corresponding to the 
specific tensor axis orientations. This distribution can be caused by a variety of conformations, thermal molecular motion or other 
reasons. 

 

2.2. Orientation Distribution Function (ODF)  
 2.2.1 Theoretical background. 

The state of orientation of any ordered system can be described in general manner by the 

orientation distribution function (ODF) W(θ,ϕ,ψ). This function, practically, represents a 

probability density to find an element of the system in certain orientation with respect to the 

given coordinate frame. Considering orientation of a partially ordered system (polymers, liquid 

crystals and others), the most convenient way, usually, is to use the set of Eulerian angles [II.2, 

4, 6, 11] to describe the probability that the certain element (whole molecule, molecular segment, 

chemical bond) lays within an infinitesimal interval around angles θ,ϕ,ψ, with respect to the 

local director N. (see Fig 2.4)  

 
To make further simplification it is comfortable to represent the dependence of ODF W 

from azimuthal angle θ via its cosine. The advantage of this approach is demonstrated by 

Fig 2.5. Obviously, the amount of elements in direction θ distributed according to some ODF 

U(θ) is proportional to the area of the corresponding spherical element ∆θ. Rings around the 

sphere with equal ∆θ contain more area if they correspond to larger θ. In the same time, rings 

with equal ∆cos(θ) contain equal area for any value of θ. For the particular case of the isotropic 

distribution, the cosine representation leads to constant ODF (equal to 1/4ππππ2), whereas the 

ψ

θ 
φ 

Fig 2.4 Set of Eulerian angles needed for fixing the object's orientation in space. The orientation distribution can be 
represented like a function of all or some of the angles depending on internal symmetry of the system. 
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representation through θ have to include the factor d(cosθ)=sin(θ)dθ to provide a proper 

normalization. 

 
Fig 2.5 Rings around sphere with equal ∆θ contain more area if they correspond to larger θ. Rings with equal ∆cos(θ) contain 
equal area for any θ. The orientation probability for isotropic orientation distribution U is proportional to surface element 
sinθ∆θ=∆cos(θ)⋅ while it is constant if U expressed as a function of cos(θ).  
 

It will be shown in the following section that in the case of NMR analysis it is often more 

convenient to use the representation of the ODF via series of the «moments», for example the 

generalized spherical harmonics [II.11]. 

1 1

0 1 1

( , , ) (cos( )) im im
nmk nmk

n m k

W w Y e eϕ ψθ ϕ ψ θ
∞ + +

− −

= =− =−

=∑∑∑            (2.5) 

In many cases, yet, the one or more Eulerian angles are not relevant. For example the 

bulk polymers in a shape of film or a fiber have overall orthorhombic or hexagonal symmetry, 

respectively. For different types of liquid crystals, at least an axially symmetrical ordering has to 

be always assumed. Therefore, depending on the type of system symmetry the dimensionality of 

the ODF can be reduced to one or two dimensions. Some examples of the ODF's which can be 

found in real mesogenic and other partially ordered systems are demonstrated on Fig 2.6 The 

two-dimensional orientation distribution function is denoted here like a V(ϕ,cos(θ)). For the 

particular case when only one (usually azimuthal) angle is relevant the one-dimensional function 

U(cos(θ)) will be used.  

 

ϕϕϕϕ 

cos(θθθθ) 
ϕϕϕϕ 

U=exp(-cos2(θ)) 
Planar orthogonal orientation Gaussian axialsymmetric distribution 

Cone distribution  

θθθθ θθθθ 
 

ϕϕϕϕ 
Fig 2.6 The examples of the orientation distribution functions .
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2.2 .2 Methods of ODF examination by NMR lineshape analysis. 
 

As it was shown in previous section, the anisotropic spin interaction by itself leads to 

specific pattern of the NMR lineshape. The form of the pattern is different depending on the type 

and the parameters of the interaction. The orientation distribution function enters the shape of the 

wideline spectrum in some hidden manner [II.6, 12-14]. The angular dependence of the NMR 

resonance frequency is given by the Eqn. 2.2 via the orientation of the magnetic field in principal 

axis system of the spin interaction tensor. Obviously, when some specific orientation distribution 

is present in the system, some of the angular areas and therefore the corresponding spectral 

position are more abundant. This leads to the changing of the lineshape function. It is argued that 

amount of interaction tensor main axes in the interval cos(θ) … cos(θ)+d(cosθ), ϕ, ϕ+dϕ the 

number of which is V(ϕ,cos(θ))dcos(θ)dϕ contribute to the resonance position σ..σ+dσ with 

intensity S(σ). 

( ) (cos( ), ) cos( )S d V d dσ σ θ ϕ θ ϕ=                                (2.6) 

The wideline NMR spectrum can be written as the convolution of resonance frequency offset 

with the orientation distribution function V(ϕ,cos(θ)). 
2 1

0

0 1

( ) ( (cos( ), ) (cos( ), ) cos( )S d f V d
π

σ ϕ σ σ θ ϕ θ ϕ θ
−

= −∫ ∫               (2.7) 

 Here f(σ) denotes the intrinsic shape of the individual NMR line. In ideal case f(σ) can be 

considered as δ-function. In practice, different broadening factors leads to the approximately 

Lorentz or Gaussian pattern for f(σ). It was shown in Chapter I that for the uniaxial spin 

interaction (dipolar, quadrupolar or CS with η=0) the resonance frequency position depends only 

on azimuthal angle θ. In this case the information about only the one-dimensional variant of the 

orientation distribution function U(cos(θ)) can be extracted from lineshape analysis [II.6,13,14]. 

One of the frequently used ways of estimation of the ODF is using the specific model 

function with parameters to be found from the experiments. A number of works are devoted to 

the developing of the different models of the orientation distribution [II.15-19]. On the other 

hand, the model approach needs either strong theoretical background to build the realistic sample 

function with reasonable amount of unknown parameters. Another way round is a “brute force” 

method of the molecular dynamics simulation which costs a lot of time and computer resources. 

Therefore, we concentrate in our work on the model free approaches to the orientation 

distribution, trying to make the experimental results interpretation in the direct way and using 

only the most common a priory suggestions about the system to be studied.  
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2.2.3 Model Free approaches to ODF estimation using the NMR 
There are basically three main “model free” possibilities of the U(cosθ) estimation which can 

be found in literature on this subject: 

1. Comparison of the lineshape of oriented and fully disoriented sample.   

For one dimension of the ODF, the 2.6 can be rewritten as:   

( ) (cos( )) cos( )S d U dσ σ θ θ=                                               (2.8) 

For the isotropic orientation distribution, when U(cos(θ))=1/4π the isotropic lineshape can be 

obtained as a «reference spectrum» from the same sample in disordered state. 

2

1 cos( )
( )

4iso

d
S

d

θ
σ

π σ
=                                                 (2.9) 

Therefore U(cos(θ)) can be estimated from the corresponding spectral lineshape of oriented 

sample by dividing it on reference spectrum Siso(σ) [II.20-22].  

2 ( )
(cos( )) 4

( )iso

S
U

S

σ
θ π

σ
=                                                (2.10) 

The obvious disadvantages of this method are (i) high sensitivity to the unavoidable 

experimental error (noise, phase distortions) and (ii) necessity to be able to get the spectrum of 

the isotropic sample (that is not always possible). 

2. Deconvolution procedure can be applied to the spectrum lineshape (or, sometimes, the set of 

lineshape for different sample orientation with respect to external magnetic field) described 

by Eqn. 2.7 to get the orientation function from the integral. In general, case this leads to the 

integral equation which solution is the so-called «Fredholm problem of the first kind». In 

general, it provides only the approximate and often unstable numerical solution for the 

subintegral function to be found. Nevertheless, using the specially adopted algorithms in 

some cases it is possible to restore the ODF from spectrum in the form of discrete histogram 

with reasonable solution stability and error [II.22, 23]. 

3. Method of the ODF «moments» determination [II.6] extensively developed by Hentschel, 

Sillescu and Spiess [II.11-14]. For one-dimensional ODF U(cos(θ)) the spherical harmonics 

of the expansion series in Eqn 2.5 becomes Legendre polynomials.  

0

(cos( )) (cos( ))n n
n

U u Pθ θ
=

=∑                                                (2.11) 

The orthogonality of the Pn permits the calculation of the expansion coefficients as 
1

1

2 1 2 1
(cos( )) (cos( )) (cos( ))

2 2n n n

n n
u U P d Pθ θ θ

−

+ +
= ⋅ =∫                   (2.12) 
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and can be treated like the «moments of the n-th order» of the orientation distribution function 

U(cos(θ)). For an isotropic distribution <P0>=1 and <Pn>=0 for n>1. For completely ordered 

sample <Pn>=1. Clearly, zero-moment <P0> quantifies the isotropic part of the orientation 

distribution. <P2> is the second moment also known as the orientation degree or macroscopic 

orientation order parameter. For weakly ordered samples usually the moments higher than 4 are 

not relevant for the ODF description. In the same time, with the sample ordering increase the 

higher moments become more significant. Because the expansion treats molecular order like a 

perturbation of the isotropic state, it converges for weak order. To achieve converges for high 

order the ODF may be expanded, for instance, into planar or conical distributions (see Fig 2.6).  

Because cos(θ) enters only by its square into all the types of anisotropic spin interaction 

tensor constants (see section 2.1) a negative and positive cos(θ) which means θ and π-θ cannot 

be distinguished by this method and U(cos(θ)) represents the only symmetrical part of the ODF. 

Therefore, only the coefficients un with even power of cos(θ) survive in the series (2.11).  

Turning to the one–dimensional ODF in expression 2.7 for spectral lineshape and 

substituting the Legendre series representation for U(cos(θ)) the Legendre subspectra analysis 

can be determined: 

2
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S S

S P P f d
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∞

=

+
=

′= −

∑

∫
                      (2.13) 

Here S2n(σ) represents the subspectra corresponding to different moments <P2n> of the 

orientation distribution function. Formula 2.13 demonstrates a general approach to the Legendre 

subspectra analysis. The following steps may depend on many practical aspects of the system to 

be studied. The application of this approach is restricted by the symmetry requirements 

mentioned above, that is to cylindrical molecules, macroscopically uniaxial samples and uniaxial 

tensors of anisotropic spin interactions. For many samples this conditions are fulfilled when 

using dipolar interaction between protons, deuterons in aliphatic bonds or axially symmetric 

chemical shift of 13C nuclei [II.7,14, 25]. In simplest variant when the principal axis of the spin 

interaction tensor is oriented along the molecular segment which orientation is studied, the 
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determination of the ODF moments according to 2.13 can be performed by direct fitting of the 

0
0.0

0.5

1.0

1.5

 

S0

0

-0.5

0.0

0.5

1.0

<P2n> weighted spectraODF  Legendre expansion
Legendre subspectra analysis 

 P0(cos(θθθθ))

S2

0
-0.5

0.0

0.5

1.0

P2(cos(θθθθ))

 

S4

0

9000 0

U(cos(θθθθ))=P0+<P2>P2(cos(θθθθ))+<P4>P4(cos(θθθθ)) 

P4(cos(θθθθ))

SU=S0+S2+S4

 
Fig 2.7. Method of the Legendre subspectra analysis for axial symmetric CS tensor. Left columnn: expansion terms of the ODF 

U(cosθ), Right: corresponding “P2n – weighted” subspectra. It should be noticed that the roots of the Legendre polynomial are 

directly reflected as zero-crossing in corresponding subspectra. 

 
experimental spectra with the Legendre subspectra combination varying the <P2n> parameters 

(see Fig 2.7). This method can be especially effective for moderate and weak ordering when the 

higher order moments of the ODF are not relevant.  

The examples of Legendre subspectra analysis for the wideline NMR lineshape caused 

by the uniaxial CS tensor is shown on Fig 2.7. The resonance frequency offset due to anisotropic 

chemical shift with asymmetry parameter η=0 according to consideration in section 2.1 can be 

written as:  

2
2( ) (cos( ))3iso Pσ θ σ σ θ= + ∆                                         (2.14) 

where ∆σ is CS anisotropy parameter and θ is the angle between the external magnetic field and 

CS tensor main axis. The intrinsic lineshape function f(σ0-σ(θ)) can be recovered from the 

spectrum of powder (isotropic) sample:  
1

0 2
0

2( ) ( (cos( ))) cos( )
3isoS f P dσ σ σ σ θ θ= − − ∆∫                           (2.15) 

by the deconvolution procedure or using the one-parametrical fitting with some sample function 

(normally Gaussian or Lorentz form) in the manner described in 2.1. The coefficients <P2n> 
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can be chosen to provide the best fit of the analyzed spectra with the result of the Legendre 

subspectra summation according to 2.13. Fitting may be done «by-eye» or numerically using the 

appropriate algorithms for minimization of the residuals between calculated and experimental 

spectrum. The last variant, being more precise, requires a significant amount of the computation 

recourses, especially for the case of low signal-to-noise ratio in experimental data.  

2.2.4. Relationship between NMR-concerned coordinates frames. 
 In general, , the situation with the angular dependence of spin interactions in NMR is 

rather complicated. While the orientation dependence of a resonance line position which enters 

into 2.13 as f(σ0-σ(θ)) is given via the interaction tensor axes orientation with respect to external 

magnetic field B0, the orientational distribution function specifies a distribution of the 

preferential direction N in molecule-fixed coordinate frame. Generally, for the description of the 

orientation distribution of the molecular segments with arbitrary mutual orientation of molecular 

and spin interaction tensor axes, the one Eulerian angle is not sufficient.  
Fig 2.8 shows the relationship between the different coordinate frames and the definitions 

of the mutual orientation angles. The first Euler angle α describes the azimuthal direction in 

which segment u is tilted. For the axially symmetric orientation (that is usually assumed for the 

oriented polymers and mesogenic samples) α is isotropically distributed and can be excluded 

from consideration by the integration over it. The polar angle β describes the tilt of the segment 

long axis with respect to the local director N. Angle γ describes the rotation of the segment 

around its long axis. The main axis of the spin interaction tensor is connected with the 

orientation of molecular segment by the angle ε. The spin interaction intensity, however, 

depends on the angle between the main tensor axis and the external magnetic field B0 that gives 

the laboratory frame in addition to the molecular and spin interaction axes frames. The 

orientation of the sample (by its local director) in the laboratory frame is described by the angle 

δδδδ. The general scheme of the frames interconnections is shown on Fig 2.9 [II.25] 

Principal axes frame of 
the intaraction tensor 

Molecule fixed frame: 
segment(chain) direction 

u 

Sample frame: local 
director N 

Laboratory frame : 
Magnetic field B0 

εεεε 
θθθθ 

δδδδ 

αααα,ββββ,γγγγ 

Fig 2.8 The relationship between coordinate frames relevant for the orientation ordering investigation. The 
transformation of the tensors to express it in terms of different set of angles can be performed using Wigner rotation 
matrices (see Appendix II). 
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Fig 2.9. The set of angles describing mutual orientation of laboratory (B0), local director (N) and molecular frames (u, CS). The 
polar angle β gives the tilt of the segment long axis with respect to the local director N. Angle γ describes the rotation of the 
segment around its long axis. The main axis of spin interaction tensor is connected with the orientation of the molecular segment 
by angle ε. The dependence on angle α is not relevant in axialsymmetric systems and can be averaged by the integration,   

That way, to apply the methods of the Legendre subspectra analysis, it needs to develop 

the special approach in each specific case depending on the kind of the spin interaction tensor, 

which is used to probe the orientation distribution and the relationships between the relevant 

coordinate frames in sample. Basing on the approach described above the NMR spectrum 

lineshape can be analyzed also in somewhat different manner to get the necessary information. 

Instead of the expanding into subspectra, the wideline NMR pattern can be decomposed into 

their moments: 

( )0 ( )n

nM S dσ σ σ σ
∞

−∞

= −∫                                         (2.16) 

 It was shown by the Hentschel at al [II.13] that similar to expansion of the lineshape via the 

Legendre subspectra (2.9), the moments of spectral line can be expressed via the linear 

combination of the ODF’s Legendre polynomial moments <Pn>. By reversing of this 

dependence, the moments of the orientation distribution functions can be determined. The 

application of this procedure for the investigation the orientational order in the side-chain liquid 

crystalline polysiloxanes using the 29Si NMR will be considered in the following section. 

 

2.3  Main-chain molecular segments orientation investigation using 29Si NMR 
spectra. 

 
2.3.1. Method of the spectral lineshape analysis based on CS- tensor orientation. 
 
As it was mentioned in Chapter I, the 29Si NMR has significant advantages for investigation 

of the investigation of the main-chain orientation in polysiloxanes. Particularly, it seems to be 

quite effective method because the main contribution to the spectrum comes from the main chain 

silicon nuclei. The only other line, which could be detected, arises from the end group -Si-(CH3)3 
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with intensity about less than 5% compared to the main resonance. The orientation of siloxane 

segment can be therefore monitored by means of anisotropy of the chemical shift tensor. It was 

experimentally established, that for polyalkylsiloxane chains the chemical shift tensor is axially 

symmetrical with good accuracy, i.e two of three main values has equal shift σ⊥ =(-16±1) ppm 

and the third value is shifted by σ||=(32±1) ppm with respect to isotropic position σiso= 

(σ||+2σ⊥ )/3.[II.25]. The difference between two positions gives the CS anisotropy value of 

∆σ=(48±1)ppm. The mutual orientation of the CS-tensor main axis (σ||), siloxane molecular 

segment (u), local director (N) as well as the relevant angles (particularly, the orientation of 

tensor axis with respect to external magnetic field B0) are shown in Fig 2.10 

 

 

Fig 2.10 Relation between characteristic angles of different coordinate frames applied to the polysiloxane molecular unit. The 
molecular segment direction u corresponds to Si-Si interconnection vector. The chemical shift main axis coincides with direction 
of the CH3-CH2 bond. Local director N is given by the preferable orientation of side-chain mesogenic units. 

 
The experimental 29Si spectrum of fully disordered polysiloxane sample (Fig 2.11) is, of 

course, somewhat broadened as compared to the theoretically predicted pattern (Fig 2.2). The 

reason is mainly in distribution of CS tensor main values arising from conformational and 

structural disorder (for instance the distribution of intermolecular distances). The intristic 

lineshape f(σ) of the individual resonance line recovered from the experimental spectrum by 

deconvolution procedure according to Eqn 2.15 can be fitted by the Gaussian function with 

satisfying accuracy (see Fig 2.12).[ II.24]  
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Fig 2.11. Experimental 1H decoupled 29Si NMR spectrum of disoriented (powder-like) polysiloxane M6 sample. The lineshape is 
determined by the axially symmetric CS tensor with ∆σ=48ppm. 
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Deconvolution of the wideline 29Si NMR spectrum 

of disoriented PLC M6

-40 -20 0 20 40 60
 ppm

 
σ

  Deconvoluted lineshape  
  Fitting with Gaussian lineshape

-200 0 200

ppmσ  
Fig 2.12. The example of the of powder polysiloxane 29Si CS NMR spectral pattern deconvoluting in order to obtain the intristic 
lineshape. Deconvoluted line (right) can be fitted with with the Gaussian function that is typical for the polymer samples. The 
broadening parameter and the lineshape characterize the thermal motion and tensor parameters variety because of the 
conformation distribution. 

 In oriented sample, where some orientations of CS-tensor σσσσ axes is more probable than 

others, the deformation of the lineshape pattern from the isotropic one takes place according to 

more or less abundant spectral positions corresponding to specific angular directions. The clear 

evidence of the non-isotropic ordering of σσσσ main axes in the sample comes when the CS-spectral 

patterns are recorded with different orientation of the sample local director N with respect to 

external magnetic field. Varying angle δδδδ the maxima of orientation distribution function U(θ) 

and therefore the maxima of the spectral intensity S(σ(θ)) (eqn 2.8) can be shifted to different 

positions ( see Fig 2.13.) 

 
Fig 2.13 29Si spectra of oriented polysiloxane M6 recorded under different orientation of the local director with respect to 
magnetic field. With sample rotation the maxima of the CS axes ODF is shifted to the different positions with respect to the 
external magnetic field. This is reflected in the variation of the spectral density for the same position together with angle δ 
changing. 

 
In our case we are interested in the distribution of orientations of the main-chain segments u, 

which have a perpendicular orientation with respect to the CS tensor main axis (ε=900). Hence, 

when δ=00, u can particularly has either parallel or perpendicular orientation to B0 In first case 

the σ main axis is preferably perpendicular to B0 which leads to strong enhancement of σ=σ⊥  

spectral position intensity. In the other case all angles between σ and B0 are possible. Due to the 

δ=00

δ=900 

δ=450
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axialsymmetry of the 29Si CS-tensor the wideline NMR spectrum provides only one-dimensional 

information about the distribution of the polar angles of CS main axis orientation θ, denoted as 

orientation distribution function U(θ).  

In principle, U(θ) could be obtained by the direct dividing procedure of the spectra of 

oriented and unoriented samples (2.10) or by the method of Legendre subspectra analysis 

described in previous section. However, the spectra of polysiloxanes have a strong 

inhomogeneous broadening of the intrinsic lineshape f(σ) and, therefore, the rounding-off of the 

wideline spectrum S(σ). This makes the direct analysis of the spectral pattern very complicated. 

Therefore, the method of the spectral line moments and their connection to the moments of the 

U(θ) Legendre expansion seems to be most appropriate in this case. 

Replacing the integrand of Eqn 2.16 by 2.8 and 2.14 we get  

( ) 22 3 n n
nM Pσ= ∆                                                            (2.17) 

entering the notation: 

( )2 3
n

n n
Mm
σ

=
∆

                                                             (2.18) 

The powers of the P2 (cos(θ)) can be expanded according to (2.12) via the finite sum of the 

Legendre polynomials of even order. 
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                            (2.19) 

Because of the normalization conditions, <P0>CS has the value ½ if cos(θ) has its full range from 

-1 to +1 ( θ =[π..0]) and 1 if the interval is restricted to [0..1] (θ=π/2 ..0).  

Relations 2.19 can be inverted as : 
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                                      (2.20) 

 

The moments mn can be obtained directly according to (2.18) and (2.16) using the wideline 29Si 

spectrum. To get the Legendre moments <P2n>, unambiguously characterizing the orientation 

distribution function U(θ), the equation 2.20 is then applied. In practice, an additional step is 

required due to the problem of the accuracy of the reference point determination which has to be 

chosen so that m1=0. Theoretically, m1 represents the shift of the gravity center between the 
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spectrum of oriented and disoriented sample. For a weak orientation order degree, which is 

typical for polysiloxanes, this shift is comparable to the experimental error. Therefore, the 

wideline 29Si spectrum lineshape was recorded at different values of angle δδδδ, which describe the 

tilting of the sample local director with respect to external magnetic field B0 (see Fig 2.13). 

Because of the axial symmetry of sample orientation, the angular dependence of the Legendre 

moments will be given by: 

2 2 2( ) (0) (cos( ))n n nCS CS
P P Pδ δ= ⋅                              (2.21) 

It is now possible to get the <P2n>(0) either by fitting of the <P2n>(δ) curve using relations 

(2.20). The alternative variant is to use the orthogonality conditions of the Legendre 

polynomials: 
1

1

2 1
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2l k lk
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P x P x dx δ

−

+
=∫  

which allows one to select from the linear combinations (2.19) one by one all the moments 

<P2n>to be found just by the integration with corresponding Legendre polynomial. This can be 

done with higher accuracy than by using of gravity center shift of the wideline pattern. 

 

2.3.2 ODF ambiguity caused by transversal anisotropy and CS tensor 
symmetry 

It should be recollected that U(cos(θ)) is still only an intermediate result. The purpose is to 

get the orientation distribution of the molecular segments u with respect to local director N. The 

determination of latter is only possible using some additional information about the distribution 

of CS tensor axes in a plane perpendicular to u. In the case of transversal isotropy [II.25] of the 

CS tensor main axes distribution, (i.e the equal probability for all of their orientations in the 

plane perpendicular to the segment u) the estimation of segment orientation degrees <Pn>S will 

be possible simply by means of the multiplication with the corresponding Legendre polynomial 

of the cosine of interconnection angle ε. 

(cos( ))n n nCS S
P P P ε= ⋅                                              (2.22) 

Nevertheless, for the backbone segments of LCSP, the essential deviation from transverse 

isotropy can take place. A rotation of the main-chain segments around own axis requires 

different conformations of the spacer and different exluded volume space (see Fig 2.14)  

Therefore, a violation of the transverse isotropy has to be expected leading to the 

γ-dependent correction terms. In extreme cases, it can be not only a minor correction, but also 

even reversing of the sign of the orientation order degree. Consequently, because of the possible 

transversal anisotropy of the tensor axes distribution, the comprehensive approach demands 
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considering a two-dimensional distribution function V(cos(β),γ), to determine the orientation of 

the molecular segment u from the orientation of the CS-tensor. In the same time, the axially 

symmetric CS-tensor of 29Si in polysiloxanes, in generall, provides only one-dimensional 

information about the own orientation. To overcome this problem some a priory suggestions 

about the type of γ-dependent correction for the U(cos(β)), have to involved into consideration. 

For example, the analysis of two-dimensional ODF V(cos(β),γ) and the corresponding moments 

of the orientation order can done if to suggest that the correction term can be separated on the γ-

dependent and independent parts: 

V(cos(β),γ)=1/2π U0(cos(β))+U1(cos(β))⋅g(γ )                               (2.23) 

Where U0(cos(β)) is transversally independent part of V, and U1 represents the amplitude of the 

γ-dependence. The detailed analisys of this specific case can be found in [II.25]. Thus, to prove 

the correctness of different model approaches and simplifications some independent information 

about the orientation of the molecular segments is required. Such information can be obtained 

by using a method directly sensitive to the orientation of the molecular segment. This allows one 

avoiding the problems of the ambiguity of the data interpretation discussed above. Moreover, if 

the moments of the segments ODF <P2n>s could be determined directly by the method different 

from the 29Si CS-spectrum analysis, the correction terms in Eqn 2.23 caused by the transversal 

anisotropy can be estimated. The possibility for such an alternative method employing will be 

considered in the following section. 
 

2.3.3 Using direct dipolar interaction of 29Si pairs for main-chain segment 
orientation study. 
 

To get information about the orientation of the molecular segment independently from 

the methods of the CS-tensor orientation, some alternative tensor spin interaction should be used. 

γβ

B0 

side-chain 

main-chain 

Transversal anisotropy problem 
(example for side-chain PLC) 

Fig 2.14 An illustration of the transversal anisotropy problem for the main-chain segment orientation in the polysiloxanes. 
Different angles γ require different conformations even for the same angle β, that leads to the violation of the isotropic 
distribution for γ ( transversal anisotropy) 
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It can be seen on Fig 2.10 that the orientation of the segment u coincides with the 

interconnection vector of two silicon atoms. Therefore, the most natural decision is to use the 

angular dependence of direct dipolar interaction to probe the orientation distribution of these 

vectors. The dipolar interaction leads to the splitting of each energy levels (and therefore the 

resonance line) on two and the value of the splitting depends on the angle between the vector, 

which connects the involved nuclei, and the external magnetic field. In time domain NMR signal 

it appears like amplitude and, generally, the phase modulation of the resonance signal with the 

dipolar splitting frequency. The angular dependence of the dipolar splitting frequency is 

represented via the second Legendre polynomial that makes natural to perform the analysis of 

the ODF in terms of the moment expansion, as well as in the case of the CS-tensor spectrum. For 

example, the method of moment expansion similar to the one described for the 29Si CS-spectrum 

can be applied to determine the orientation order in low-molecular liquid crystals using the 

second moment of the wide-line 1H spectrum mainly determined by the direct dipolar coupling 

[II.19]. For the polysiloxane LCSP samples the dipolar interaction of the protons in phenyl ring 

was used to get the information about the ordering of the side-chain mesogenic units which 

determine the macroscopic orientation of whole sample (local director N)[II.26]. In the case of 
29Si NMR in polysiloxanes, yet, a sufficient difficulties can be foreseen, which makes 

problematic the employing of dipolar interaction for the orientation distribution studies.   

The first problem is concerned with natural abundance of the 29Si nuclei that is 4.7% of 

total amount of the silicon atoms in any sample. The rest of the atoms contain the 28Si nuclei 

which have zero spin (I=0) and, therefore, do not contribute to the NMR signal. The enrichment 

with the 29Si nuclei is technologically very problematic and expensive and applicable not to all 

the sort of the samples, especially in the case of polymers. That way, the NMR signal from the 
29Si is intrinsically low that leads to the essentially long measurement period to get reasonable 

signal-to-noise ratio in experiment. Situation becomes more difficult when the dipolar interaction 

between two 29Si nuclei needs to be observed. Obviously, at natural abundance only less than 

10% of all the 29Si nuclei (or ≈0.005% of total silicon amount) in the sample establish the 

coupling pairs (see Fig 2.15). Thus, the 90% of the NMR signal comes from non-coupled spins 

and does not give any information about the 29Si-29Si dipolar interaction. Therefore, the useful 

signal (i.e. signal of coupled spins) has to be separated, in some way, from the significantly 

higher signal of non-coupled 29Si. The second problem arises from the low strength of the 

dipolar interactions between two 29Si as compared to the interaction caused by other anisotropic 

terms of nuclear Hamiltonian, particularly the chemical shift. From the quantum, chemistry 

calculations the dipolar splitting frequency for coupled 29Si can be roughly estimated as 

200...300 Hz. In the same time, it was shown in previous section that the total width of the CS–
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pattern is of the order of CS anisotropy constant value (about 48 ppm for polysiloxanes). For the 

external magnetic field 9.4T, using to measure the spectra, this gives the value about 3000Hz, 

that is on one order of magnitude higher than dipolar splitting. In addition, the intristic line 

(obtained from the 29Si wideline spectrum deconvolution) is broadened up to 500Hz because of 

the structural conformation inhomogeneity or CS parameters distribution.  

 

These factors cover the dipolar splitting in the 29Si NMR spectrum and do not allow observing it 

directly. For this reason, the special technique has to be developed and applied to (i) separate the 

signal of coupled and non-coupled spins and (ii) to get the information about the dipolar 

coupling in presence of the resonance line inhomogeneous broadening (which may exceed the 

dipolar coupling in a factor of 10 ) due to another types of nuclear spin interactions. The solution 

of the theoretical and practical aspects of the mentioned above problems represents the main 

subject of current work and will be considered in the following chapters.  

DD

O 

28Si 
28Si 

29Si 29Si 

O O 

Fig 2.15 Only 5% of nuclei are 29Si spins, which contribute to NMR signal. The rest are 28Si (95% of 
whole Si in the sample at natural abundance) which give no signal. The non-coupled spins are, therefore,
give 90% of whole signal and the coupled ones only 10%.  

CS 
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Chapter III. Callaghan echo combination: theory and application for 
direct dipolar interaction of rare spin pair detection. 

 
Recently, Callaghan and Samulski proposed a method of the direct measurement of 

weak residual dipolar interaction [III.1,2]. The method is based on detection of the 

differential signal of the combination of three types of spin echoes. The normalized 

evolution time dependence of the combination of three types of spin echo:  

 

1 2 3 0( ) ( ( ) ( ) ( )) / 3S S S Sβ τ τ τ τ= − −                                     (3.1) 
where S0,1,2,3 represents the corresponding types of the signal 

 

( )

0

1

2

3

FID 
2 x

S ( )- - - - "solid echo" 
2 2x y

S ( )- - - - " "-Hahn echo" 
2 2 2x x

S ( )- - - - " "-Hahn echo"y2 x

S π

π π
τ τ

π π π
τ τ

π
τ τ π π

− − 
 
 

    
    
     

    
        

  
    

                                 (3.2) 

is called in [III.1] “β-function”. The square brackets symbolically denote the type of well-

known pulse sequence applied to observe the spin-echo signal [A2.2.7, III.3]. 

 For the purpose of convenience, in future the term “β-echo” will be also used in this 

work to denote the full time domain signal of the “threefold echo” combination (3.1-2). In 

the following section the theoretical consideration of this echo combination will be done 

using density matrix formalism. It will be shown that “β-echo” has the effective selective 

properties for separation of the nuclear spin interaction described by linear and bilinear 

terms of nuclear Hamiltonian (see AII.2 ). This allows one observing a weak nuclear spin 

interaction caused by bilinear terms of Hamiltonian, in presence of strong linear 

interactions such as isotropic and anisotropic chemical shift, magnetic field inhomogeneity, 

etc).  
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3.1 Callaghan echoes combination: theoretical consideration using density 

matrix formalism 

 In following, we consider the effect of the described above echo combination, using 

the ab intio density operator approach for the case of a homonuclear system of two isolated 

spins 1=  2I = S . 

 

  
Fig 3.1 Calculation of the “β-echo” evolution using density matrix formalism. The rotation operator R0 creates non-
equilibrium coherences ˆ (0+) ρ (rf π/2 pulse is phase “x”). On the next stage the propagator S influences on density 
matrix, to describe its time evolution under the spin Hamiltonian. After application of the second rf-pulse operator for 
each echo (R1, R2, R3) and influencing onto each resulted density matrix ( )iρ τ +  by the propagator of refocusing period  

the differential magnetization M1-M2-M3 , (where Mi=Tr[I+ρi]) can be calculated. 
 

3.1.1 Density matrix and spin operators.  
 
 The standard high-temperature approximation for the density operator is used: 

 
0

0
1 ˆˆ ˆ( )z z

BE I S
Z k T

γρ = + +�
 (3.3) 

Where Ê  denotes unity matrix (for other notations see Chapter.II and A2.3) Further, we 

omit the entire constants and only the behavior of ˆ
Z zI S+ will be the subject of interest. 

The matrices of spin operators can be derived using the standard product operator 

formalism (see for detailed explanation (A2.3), [III.4,5]).  

 3.1.2.. Hamiltonians. 

 For the demonstration of the most important properties of “β-echo” the 

homonuclear spin system with two kinds of spin interactions will be considered. All the 
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types interaction linear with respect to the spin operator (that is Zeeman interaction, 

chemical shift interaction, magnetic field inhomogeneity) can be combined together as: 

 ˆˆ ˆ ˆ( )L z z zH J I S= −Ω = −Ω +  (3.4) 
 
The indirect scalar interaction of nuclear spins does not depend on the orientation of the 

spin system and therefore is not the subject of interest. The description of quadrupolar 

interaction for the spins I=1 is fully equivalent to the system of two spin ½ [II.2]. The case 

of I>1 should be considered separately and some aspects of quadrupolar “β-echo” theory 

will be mentioned later. That way, the only direct dipole-dipole interaction will be included 

in spin Hamiltonian (see A2.2). 
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D D D
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 (3.5) 

 

3.1.3. Rotation and evolution 
 
 To express the effect of different r.f-pulses on the density matrix, the rotation 

operators ˆ ψR ( ) a are used, describing the rotation of the magnetisation vector on the angle 

ψ around axis α. The time evolution of density operator during the period τ under the 

influence of some Hamiltonian Ĥ can be expressed by the corresponding evolution 

operator or so called propagator (see A2.3, [III.4,5]). 

 
ˆˆ ( ) iHS e ττ =  (3.6) 

The influence of the rotation and evolution on density operator can be described with its 

matrix subjected by the unitary transformation with corresponding operator matrix ˆ ( ) Rα ψ  

or ˆ( )S τ : 

 ˆ ˆˆ ˆˆ ˆ ˆ ˆ( ) ( ) ,  ( ) ( ) (0) ( ),R R R S Sα αρ ψ ρ ψ ρ τ τ ρ τ+ += =  (3.7) 
To make the expressions shorter the standard Liouville space superoperator notation will be 

used (A2.3):  

 
ˆˆ ˆˆ ˆ ˆRAR RA+

⇒  (3.8) 
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3.1.4. Initial condition 
 We start from the equilibrium density matrix taken according to (3.3) as 

0
ˆˆˆ ( )z zI Sρ = + . As we deal with the homonuclear case, further we will consider the 

combined spin operator ˆˆ ˆ ,  , , . i i iJ I S i x y z= + = The first pulse Rx(π/2) rotates the 

magnetization into the direction of the y axis preparing non-equilibrium density matrix 

ρ(0+):  

 0
ˆ̂ ˆˆ ˆ(0 )

2x yR Jπρ ρ + = = 
 

 (3.9) 

 
Then the propagator (3. 6) has to be applied to find the resulting density matrix in the end 

of the first evolution period t1- (see Fig 3.1). 

 1
ˆ̂ˆ ˆ( ) ( ) (0 )t Sρ τ ρ− = +  (3.10) 

 On the next step the corresponding rotation operators ˆ̂ ( )iRα ψ (see eqn. (3.7)) should 

be employed for each component (i=1,2,3) of β-echo combination individually to 

implement the second pulse influence on density matrix.  

 1 1
ˆ̂ˆ ˆ( ) ( ) ( )i

i it R tαρ ψ ρ+ = −  (3.11) 
 
Finally, the evolution operator being applied to the new coherence state after the second 

pulse provide us the picture of all 3 variants of density matrix time development in the 

refocusing period t2. (Fig 3.1) Considering moment t1=τ and t2=τ+t the resulting states of 

the spin system for each echo pulse sequence can be represented as: 
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 (3.12) 

 
The observable transversal magnetization Mi(2ττττ+t) is given by: 

 ˆ ˆ( 2 ) ( 2 ) [ ]k k k
k kM t M T r Mατ ρ τ ρ± ±+ = = � �  (3.13) 

where 1 , 2 , 3;k k k kM J iJα α± == ±�  represents the matrices of the corresponding 

spin operators (AII.3,III.6)  

 Combining all three terms according to (3.1) the real component of the β-echo 

amplitude dependence on the echo delay time τ can be expressed as: 
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1 2 3

03
x x x

x

M M M
M

M
β − −
=                                            (3.14) 

 

2 2
sin( ) sin( ) sin( ) cos( ( ))

3 3 2x D D D D D DM t tβ π
ω τ ω τ ω ω τ ω ωτ= + = −−         (3.15)  

For the simplicity, the frequency offset Ω is set to 0 in the expression 3.15. The case when 

it plays a role will be considered in the last sections of this chapter. The “β-function” 

introduced by Callaghan can be obtained by substituting in (Eqn 3.15) value t=0: 

 [ ]1(2 ) 1 cos(2 )
3 Dβ τ ω τ= −  (3.16) 

From the first part of 3.15 it is also can be seen why “β-function” was sometimes named 

“sine correlation function”. Both amplitude and phase of the “β-echo” signal depends on 

the correlation of the bilinear (dipolar) interactions in first and second evolution period. 

This feature as well as the other properties of the β-echo, which make it valuable for the 

practical application in the present work will be considered in the following section. 

 

3.2 General properties of “ββββ-echo” and “ββββ-function”. 

  Generally, the following interpretation of β-echo can be done: All three types of 

echo involved into the combination 3.1 are able to “refocus” the linear interaction making 

the “time reversing” operation for the corresponding terms of Hamiltonian. And only “solid 

echo” has the same properties also with respect to bilinear terms. Remembering, that for 

linear terms of Hamiltonian the refocusing pulse flipping angle 2
πψ =  is exactly by a 

factor of 2 less effective as compared to the ψ π= , and combing the signals in the manner 

shown by (3.1-2) the result influenced only by the bilinear terms of Hamiltonian can be 

obtained. Considering equation (3.15) the following conclusion about the “β-echo” signal 

can be issued: 

  The differential signal of the three echoes is not symmetrical with respect to the 

moment t=0, which denotes the equal time of evolution and refocusing period for each 

individual echo. Both amplitude and phase of the “β-echo” signal depends on the 

correlation of the bilinear (dipolar) interactions in first and second evolution period. In our 

case the dipolar interaction modulates the resulted signal following the moment t=0 by 
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amplitude with a factor of 2 sin
3 Dω τ  and by phase with a factor of 

2 D
π ω τ− . From this fact 

originates two practically important consequences concerning β-function properties: 

1. The intensity of the β-echo and so the value of β-function is always equal zero if no 

bilinear interaction terms present in nuclear spin Hamiltonian. 

2. The amplitude of “β-echo” will be zero if there is no opportunity for the spin system 

to evolve under the bilinear Hamiltonian i.e. evolution period τ=0. 

  The property (1) means that β-echo has effective selective properties with respect to 

different type of nuclear interactions. Only the spins undergoing the interactions, which are 

described by the Hamiltonian containing bilinear terms will contribute to the β-echo. The 

property (2) is important for the practical implementation of the β-echo in experiment, 

because, as well as many of other compensation schemes in NMR, it is sensitive to the 

pulse duration errors. The role of pulse imperfections in β-echo experiment will be 

discussed in Chapter IV. 

   The above consideration shows, that combining together three kinds of spin echo it 

is possible to separate the NMR signals, which originate from the spins involved into 

different types of spin interactions – linear and bilinear. However, it still does not take into 

account two important facts: 

  1. The transversal relaxation, which makes influence on the spin system during the 

evolution period. 

  2.The macroscopic distribution of the orientation of internuclear vectors for 

individual spin pairs with respect to the magnetic filed, which leads to distribution of the 

dipolar coupling strength for different spin pairs (3.5). According to Eqn 3.15 one can 

expect that the resulting β-echo will be a superposition of the signals modulated by 

amplitude and phase in different manner. In following sections both this aspects, important 

for comparison the theory and experimental results of β-echo application, will be 

considered. 

 

3.3 The role of spin-spin relaxation  
 In each echo experiment, which contribute to “β-echo”, both in evolution and 

refocusing period (Fig 3.1) the spin system is influenced by the random fluctuation of the 

local magnetic fields. This process irreversibly destroys the coherence (i.e. off-diagonal 

elements of density matrix) order, leading to the spin-spin relaxation and manifest itself as 
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a decay of transversal components of macroscopic (observable) magnetization. The 

characteristic time of this decay is defined by the intensity the spin-spin interactions and by 

the rate of its fluctuation. It is also strongly connected to the parameters of the intra and 

intermolecular motions [III.8-12]. In more details the questions of spin-spin relaxation 

theory and its application for the investigation of the parameters of the molecular motion 

will be considered in Chapter V. Generally, it should be mentioned that transversal 

relaxation effect in β-function (Eqn 3.16) can be taken into account by multiplication the 

resulted expression for the transversal magnetization amplitude with a “relaxation 

function” (2 )R τ . The actual expression for this function depends on a number of factors 

and parameters of the molecular dynamics into which the spins are involved. However, for 

big amount of practical cases the transversal relaxation leads to the exponential decay and 

can be characterized with only one parameter - transversal relaxation time T2: 

 2
2

(2 ) (2 ) T
R e

τ
β τ β τ

−
=  (3.17), 

where β(2τ)-“non-relaxed β-function” which comes from (Eqn 3.16). 
  
3.4 Spatial orientation distributions and ββββ-function. 

  In the previous consideration in was shown that the β-echo intensity time 

dependence (β-function) in the case of homonuclear two spin I=½ system is governed by 

the intensity of the dipolar interaction, via the magnitude of dipolar coupling constant in 

(3.16). As it was discussed above the value of the ωD pre-factor includes the spatial part of 

dipolar Hamiltonian and depends on both distance between involved spins and the 

orientation of the interconnection vector of the spin pair with respect to external magnetic 

filed B0 (Eqn 3.5). However, in practice the orientation distribution of the internuclear 

vectors connected to the molecular orientation is never uniform even in macroscopically 

ordered sample with molecular segments containing perfectly isolated spin pairs. 

(Fig 2.15). Hence, the orientation distribution function (see Chapter II) U(cos(θ)) should be 

included into consideration to take into account the amount of the spin pairs with specific 

orientation of internuclear vector. Thus, the contribution of the spin pairs for which 

internuclear vector lies within angular limits , dθ θ θ+ can be expressed as: 

 ( ( ) ) ( c o s ( ) ) c o s ( )Dd U dθβ β ω θ θ θ= ⋅  (3.18) 
To get the resulted expression for the β-function evolution, the eqn (3.18) should be 

integrated over all possible orientation of the internuclear vectors. Finally, with account of 

transversal relaxation we come to the following result for the β-function evolution: 
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∫   (3.19) 

For the exponential transversal relaxation function R(2τ) (which is valid for big amount of 

cases) we get: 
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∫ (3.20) 

The influence of the orientation distribution on the β-function evolution behavior will be 

considered in the following sections.  

 

3.4.1 Powder averaging 
 One of the most frequent situations, which also have significant practical 

importance, is the full disorder of the molecular segment orientation leading to the isotropic 

orientation distribution. In this case the normalized ODF has no angular dependence 

U(cos(θ))=1/4π. For such an occurrence, the integral 3.20 can be evaluated analytically:  
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where 0
2 , ( ) c o s ( ) , ( ) s i n ( )

D
y C y y S y yω τ= = = and  

1 1
2 2

0 0

cos( ) ( ), sin( ) ( ) Fresnel integrals
2 2c sax dx F a ax dx F a

a a

π π
= = −∫ ∫  

In this expression, the only parameter which directly depends on the spin interaction 

properties is the value of dipolar coupling constant ω0D (we don't discuss the question 

concerning T2 in the moment). This parameter (see Eqn 3.5) includes the distance between 

coupled spins and its gyromagnetic ratio. Thus, it gives us a way to estimate the ω0D from 

experiment just by the one-parametrical fitting with β-function the experimental data 

obtained from disordered sample. This will be of great importance for the next stage, when 

the β-function experimental data of the sample with some unknown orientation distribution 

function needs to be examined.The results of the simulation of the β-function evolution are 

represented on the Fig 3.2. Here, β-function was integrated with isotropic ODF (“powder 

averaging”) according to equation 3.20. The value of the dipolar coupling constant ν0D 

=ω0D/2π has been varied from 50 to 350Hz, (preliminary estimation for the samples of 

interest gives ν0D≈220Hz).  
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β-function for isotropic ODF, U(θ)=1/4π
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Fig 3.2 The result of simulation of β-function evolution for isotropic orientation distribution U(θ)=1/4π according to 
(Eqn 3.20). The value of dipolar coupling constant ω0=2πν0 has been varied within frequency range 50-350Hz. 
Simulations have shown that the value of ω0 makes considerable effect on the positions of the first and second maxima of 
the β-function. 
Simulation shows that variation of ω0D within 20-30%-provides a considerable effect on the 

behavior of β-function, which can be identified, visually by the shift of the position of the 

first and second maxima. That way, the dipolar coupling constant value can be determined 

from the powder averaged β-function experiment either with “by- 

eye” fitting or using nonlinear regression (with eqn. 3.21) methods. 

3.4.2 Non-isotropic orientation distribution.  
The simulation performed for the isotropic orientation distribution shows that the behavior 

of β-function changes significantly with the variation of the dipolar interaction strength. 

However, considering eqn. (3.20) it can be shown, that the role of the orientation 

distribution in the resulted function βΣ(2τ) can be also sufficient when the orientation 

probability density differs for individual spin subsystems. The orientation distribution 

density U(θ)dθ in 3.20 gives us the amount of spin subsystems, which internuclear vectors 

preferable orientation lay within angular range θ -θ+dθ with respect to magnetic field B0. 

These subsystems contribute to the resulting β-function with own individual frequency 

component dβθ(2ωD(θ)τ) (3.18). If any orientation of the molecular segments presents in 

our system, some angular direction dθ will be more abundant with the spin subsystems than 

another. This leads to the variation of the contribution of these components into the shape 

of the curve βΣ(2τ). Thus, the stronger orientation function U(θ) differs from the isotropic 

one the stronger resulting curve deviates from the presented in Fig. 3.2 [III.1,2]. Fig. 3.3 
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represents the result of the simulation of such a “non-isotropic β-function” behavior for the 

case of the different modeling ODF's.  

0,0 1,0 2,0 3,0

 <P2>=0.05
 <P2>=0.1
 <P2>=0.15
 <P2>=0.25
 <P2>=0.45
 <P2>=0.75

ββββ(t) for non-isotropic ODF 
U(θθθθ) =exp(ααααP2(cos(θθθθ)))

with differen orientation degree 

τ  
Fig 3.3 (a)-Examples of the orientation distribution for Gaussian-like orientation distribution function (3.22) of the 
internuclear vectors. The variation of the orientation degree parameter <P2> describes the different systems ordering state: 
from nearly isotropic (<P2>≈0) to perfectly ordered (<P2>≈1). 
(b)-Numerical simulation of β-function dependence on the orientation degree parameter of the internuclear vectors 
distribution. Gaussian-like function U(cos(θ))=exp(αP2(cos(θ))( see Fig 3.3a) was used for calculations according to 
(3.20). The orientation degree was varied by manipulation with parameter α. Dipolar coupling constant was set to 
νD=250Hz. Simulation shows a significant sensitivity of β-function time evolution on the orientation degree parameter. 
  
As an example the Gaussian-like distributions function: 

 2(cos( )) exp( (cos( ))GU Pθ α θ=  (3.22) 

where 2 (cos( ))P θ − is the second order Legendre polynomial, was used in simulations. The 

form of the UG(cos(θ)) both in polar and Cartesian system are represented below on 

Fig 3.3a. Fig. 3.3 shows that the form of the β-function curve evolves remarkably with 
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changing of the parameter α, which regulates the orientation degree parameter 2P  of the 

current distribution (see Chapter II about orientation degree). For comparison the β-

function corresponding to the uniform alignment of the internuclear vectors along the z-

axis of the laboratory frame (magnetic field B0) and, thus, described by the δ-like 

orientation distribution function U(θ), is shown. The results of the numerical simulation 

show us that “non-isotropic” β-function is sensitive to the variations of the order parameter 

of the orientation distribution within full range of its possible values from 0 to 1. The non-

linear regression methods can not be applied directly to the (3.20), because for the arbitrary 

form of U(cos(θ)) the analytical solution of the integral is not always possible. However, 

for the one or two parametrical ODF model a “by-eye” fitting or minimization procedure 

can give the approximation of the experimental data with reasonable error. Gaussian-like 

ODF model in some cases provides a good resemblance of the theoretically predicted and 

experimental values of different parameters concerned with the orientation properties of 

liquid crystals and polymers. However, the “fixed-model” approach in each special case 

requires a strong theoretical background for the model used for interpretation of the 

experimental data. For the liquid crystalline polymers, which are the subject of our interest, 

the building of ab initio model of the orientation distribution seems to be a difficult task. 

That way, the «model-free» approach based on Legendre series described in Chapter II, 

appears to be more effective way to estimate the orientation distribution of our interest. 

The application of this approach to describe the β-function evolution for the system with 

arbitrary orientation degree and distribution is demonstrated by the Fig 3.4.  

 2 2
0

(cos( )) (cos( ))n n
n

U P Pθ θ
=

= < >∑  (3.23) 

Because of the axial symmetry of the orientation distribution U(cos(θθθθ)) only even terms are 

relevant (Chapter. II). The expected values of the orientation degrees for the internuclear 

vectors distribution which can be estimated from the ODF's of the CS tensors main axes 

allows one restricting the series with maximum 4-order term without significant lost of the 

generality [III.13]. The normalization requires that the <P0> has the constant value ½. The 

region of the values of <P2> and <P4> was chosen according the estimation which has 

been done in [III.13] for our samples and covers the one decade of relative variation. The 

variations of the ODF form for different values of <P2> and <P4> coefficients are shown 

on (Fig 3.5). 
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Legendre coefficient <P2>(left) and <P4>(right) values were varied within one decade to estimate their roles in the forming of the 
β-function curve shape. 

 Fig 3.5 Variation of the orientation distribution function U(cos(θ)) with changing of its Legendre expansion coefficients 
<P2> and <P4>. The relative influence of <P4> on the form of ODF looks insignificant as well as on the β-function 
(Fig3.4) 
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  To characterize the deviation between the values of ββββ(t) corresponding to different 

orientation parameters the relative residual function (RRF)  

 

2,4 2 ,4

2 ,4

2 ,4

max min

max

( ) ( )
( )

( )

P P

P

P

t t
R t

t

β β

β

−
=  (3.24) 

. 

can be introduced. Here 2,4
max,min ( )P tβ  corresponds to the values of β-function calculated for 

the maximal and minimal values of the Legendre coefficients <P2>max,min and <P4>max,min in 

ODF U(cos(θ)) given by (3.23), respectively. The exceeding by the residual function 

2,4 ( )PR t  the level of typical experimental error 0.1 (10%) can be considered like a sufficient 

criterion of our ability to resolve between parameters <P2,4>max  and <P2,4>min related 

Fig 3.6 Relative residual β-function (3.24) for different values of the ODF Legendre coefficients variation. Acquiring 
more points in the time regions where R<P

2
> is maximal (and exceeds the experimental error), the necessary standard 

deviation of <P2> determination can be succeeded rather fast. However, within preliminary estimated range of the <P2> 
and <P4> values, the 10% relative experimental error will prevent to resolve the <P2> values smaller than 0.1.  The 
situation is even worse for <P4> values (see «solid square» curve) because the RRF for the whole region of expected 
values (0.01..0.1)  lays nearly completely under 10% level.  

with the corresponding curves. 

  The variation of <P2> coefficient within one decade shows the sufficient influence 

on the shape of the β-function (Fig 3.4 left). For preliminary estimation, the residual 

function 2 ( )PR t< >  was calculated using <P2>min=0.05 in 2<P
min ( )tβ > . Calculation shows that 

for the values of <P2>max>0.1, the RRF (3.24) 2 ( )PR t< >  exceeds or at least achieve the level 

10% of maximum during the sufficient part of the evolution period between 0 and 2ms 
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(Fig 3.6). On contrary, the influence of the <P4> on evolution of β(t) in the same time scale, 

for variation of <P4>within one decade (<P4>min=0.01, <P4>max=0.1) is nearly negligible. 

For the evolution period (te<2ms) the residual function 4 ( )PR t< >  in its maximum exceeds 

level 4 ( ) 0.1PR t< > =  for only very small period. Practically it means that the only very reliable 

experimental measurements of β-function allows one estimating independently two 

coefficients of the U(cos(θ)) Legendre expansion. The estimation of the typical values of the 

ODF moments expected for the object of our interest gives 20.35 0.05P≥ ≥ − . and 

40.05 0P≥ ≥ , respectively. Therefore, according to the Fig 3.6 the difficulties of 

estimation of the orientation degree values smaller than <P2>=0.1 can be expected already 

at the moderate experimental signal-to-noise ratio S/N≈0.1. For the same level of 

experimental error the <P4> value can be estimated from fitting of the single β-function 

curve only by the order of magnitude. However, the situation can be improved if to study the 

evolution of β-function under rotation of whole sample (and hence whole distribution of 

spin subsystems inside) with respect to the magnetic field B0. It will be shown that this can 

provide us additional information about the orientation distribution and improve the 

reliability of the data analysis. 

 

3.5 Angular dependence of ββββ-function for non-isotropic ODF. 
  Generally, the orientation distribution describes the state of the internal macroscopic 

orientation of the subsystems the whole macrosystem consists of. The ODF of whole system 

is defined with respect to some intrinsic principal axes system (“molecular frame”) of the 

sample (shown like axis N on Fig 3.7a). In our previous consideration we suggested for 

convenience that the principal axis of the orientation distribution and NMR “laboratory 

frame” axis (external magnetic field B0) are parallel each other. In such a case the only one 

angle θ characterize both the (i) probability of some partial orientation of the molecular 

segment s� and (ii) the intensity of anisotropic interactions of the nuclear spins of this 

segment. However, in general, it is not necessary that these two axes are collinear (see 

Fig 3.7b). Moreover, in a number of experiments [III.14, 15], measurements of the 

parameters of spin interaction with variation of angle between laboratory and molecular 

frame provide the information about the orientation properties. 
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Fig.3.7 Mutual orientation of the coordinate frames for molecular chain. Three coordinate system and angles connecting 
them are relevant: 1) laboratory frame (defined by external magnetic field B0), 2) molecular frame (N) defined by 
molecular segments preferable orientation (ODF reference axis) 3) principal axis of nuclear Hamiltonian (S) 

 
When molecular axis, which is reference one for the orientation distribution (ODF-axis in 

following) is tilted with respect to laboratory frame axis defined by external magnetic field 

B0, another two angles (among ODF angle θ) become relevant for β-function consideration. 

The first one is the tilting angle δδδδ between molecular frame and ODF axes. The second is the 

angle ΘΘΘΘ between the external magnetic field B0 and individual molecular segment s
�

, which 

define the intensity of dipolar interaction according to equation (3.5) (cos(θ) now should be 

replaced with cos(Θ)). For the orientation distribution, function the transformation between 

“tilted” molecular and reference laboratory frame (cos( )) (cos( ), )tU Uθ δ→ Θ can be 

performed using standard Euler rotation matrix formalism: 
(cos( ))cos( ) cos( );

cos( ) sin( ) sin( ) sin( ) cos( ) cos( )

R δθ

θ ϕ δ δ

Θ

= − Θ + Θ

   →
            (3.25) 

Because, the azimuthal angle ϕ is now also sufficient for the averaging over all possible 

orientation, the surface integration has to be used to calculate ”tilted” β-function, which 

becomes now dependent on the value of δ: 

(2 , ) [1 cos(2 ( ) )] (2 ) ( , ) , cos( )t
D x R U x dxd xβ τ δ ω τ τ δ ϕΣ

Ω

= − = Θ∫∫  (3.26)  
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Fig 3.8 Simulation of the angular dependence of β-function evolution for Gaussian ODF with different orientation degree. 
Parallel, orthogonal, and «magic angle» mutual orientation of laboratory and molecular axes were considered. 
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polar view projection
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Fig 3.9 Example of polar view of «tilted» ODF's with different orientation degree parameter. Gaussian ODF with 
orientation degree 0.1,0.25 and 0.5 have been used. Coordinate angle transformations have been performed according to 
eqn. (3.25) for tilting angle δ=900 . «Plane projections» for ϕ=0 are shown. 

Fig 3.8 shows the variation of β-function form calculated by formula (3.26) with changing 

of tilting angle δ. As before, the Gaussian ODF (3.22) with different orientation degree 

parameter <P2> (see Fig. 3.9) was used. The relation between referenced 

Ut(cos(Θ),δ=0))=U(cos(θ) and “tilted” Ut(cos(Θ),δ=900)) is shown on Fig 3.9. Some 

important conclusions can be done basing on the simulation of the β-function angular 

dependence using one-parametrical Gaussian ODF:  
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(i) «Magic angle» orientation (δ=540)of ODF reference axis with respect to 

laboratory frame gives the same dependence β(t) for any orientation degree 

parameter <P2> (Fig 3.8, «solid triangles»).  

(ii) For «orthogonal orientation» (δ=900)  only maximal amplitude of the β-

function curve increases together with orientation degree (Fig 3.8, «open 

squares»). It is remarkable, that the absolute and relative positions of maximums 

and minimums of the β-function keep constant for any <P2> value in this case. 

(iii) Collinear orientation (δ=0) of ODF reference axis and laboratory frame leads to 

considerably strong changes in β(t) with variation of the ODF parameters. These 

facts can be explained if to recollect that the second Legendre polynomial 

P2(cos(δ))=(3cos2(δ)-1)/2, which basically defines the β-function numerical 

properties (via angular dependence of coupling constant ωD (3.5) and via the 

parameters of the ODF) is equal to 0 at δ≈540, maximal at δ=0 and minimal at 

δ=900.  

Finally, the sufficient fact should be noticed: the variation of the ODF parameters has the 

strongest influence on β-function curve in the region of its first maximum. For the 

evolution periods which are long in comparison with the ττττmax, the superposition of many 

components of different subsystems βθ(t) (Eqn 3.18) leads to averaging and smoothing of 

the orientation effects. 

 In the following section it will be shown that, the angular dependence of the β-

function (3.26) gives more effective methods of the orientation parameter evaluation in the 

case of model-free «Legendre series» approach than the direct fitting procedure described 

in 3.4.2. 

 

3.6. ODF parameters evaluation for Legendre series approach. Using ββββ-

function angular dependence  
  It was shown in 3.4.2, that the coefficients of Legendre representation of the ODF 

can be estimated by the direct fitting of the β-function time evolution dependence. However, 

the estimation by means relative residual function (RRF) of this method efficiency, under 

conditions of the real experimental signal-to-noise ratio, shows us, that the only few parts of 

the β-function curve can be effectively used for the fitting. Moreover, for the low-oriented 

systems, with <P2> < 0.1 and <P4> < 0.05 the relative error can exceed 50%. The problem 
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becomes more complex if to take into account that the integral (3.20) does not give an 

analytical solution even for restricted amount of Legendre series terms to represent U(θ). 

Therefore, it is impossible in this case to apply the standard methods of non-linear 

regression for the β-function curve approximation. Another alternative that is using the 

methods of the numerical minimization of the difference between model and experimental 

curves requires a lot of calculation resources even in the case of only two fitting parameters. 

In addition, the minimization methods quite often give an ambiguous result, especially for 

oscillating functions.  

  The situation can be improved by using the β-function angular dependence 

properties described qualitatively in section 3.5. Using of the “tilted ODF” concept allows 

one (i) employing more effectively the parts of β-function curve most sensitive to the 

orientation properties, and (ii) to find faster and more accurate method of the ODF 

parametrical approximation. 
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Fig 3.10. Polar view projection of the mutually tilted Legendre series ODF. 0,2,4-order terms were used for calculation of 
reference ( solid line) and 900 - tilted ( dotted line) ODF’s with different orientation order degree <P2>. The value of <P4> 
coefficient was set to 0.01. <P0>=1/4π because of the normalization requirements 

The transformation between two mutually tilted ODF’s represented by Legendre 

series is performed using the approach shown in (3.5). The examples of the polar view 

projection of the functions characterized with the different orientation degrees <P2> for the 

case of mutually orthogonal ODF reference axes are shown on Fig.3.10. 
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Fig. 3.11 Estimation of the orientation degree for weakly anisotropic ODF. The fact of the anisotropy presence and the 
sign of the close-to-zero <P2> parameter can be determined from the comparison of the β-functions evolution, observed 
with two orthogonal orientation of the ODF reference axis with respect to laboratory frame.. 
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Fig 3.12 Using the β-function angular dependence to increase the effectiveness of ODF parameters determination. The 
“magic angle” orientation of the ODF main axis provides the same curve for various <P2> value. The time moment τ0 
when β(τ0,δ=540) achieve its first maximum βmax (δ=540) can be chosen like a reference point to define the calibration 
function ∆β. (see Fig 3.13-14). 

One of the simplest but important example when the β-function angular dependence 

employing can be considerably valuable is the case of the «nearly isotropic» ODF. 

Practically, it means that the orientation degree <P2> is close to zero by absolute value and 

it becomes important to know the sign of the anisotropy i.e. if the <P2> >0 or<0. The 

insignificant relative deference (RRF does not exceed 5%), between the β-functions 

corresponding to small positive and negative values of <P2> (less than 0.1) does not allow 

finding unambiguously the sign of orientation degree. Fig 3.11 illustrates the comparison of 

β-function curves β(t,δ) corresponding to the equal by absolute value (|<P2>|=0.03) but 
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opposite by sign orientation degrees calculated for the two mutually orthogonal orientation 

of the ODF reference axis (δδδδ=00, and 900 respectively). It can be seen that in the region of 

first maximum (i.e. ττττ1 <tm<ττττ2 )  the values RRF βR≡ (β(tm,00)-β(tm,900)) have the same sign 

as the sign of corresponding <P2>. That means βR>0 if <P2>>0 and vice versa. The 

difference between «positive» and «negative» βR exceeds 10% at maximum that gives the 

criteria for the evaluation of the <P2 > with good reliability using the relatively small 

amount of experimental data (the only part of the curve between ττττ1 and ττττ2  is used) at 

reasonable signal-to-noise ratio. 
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Fig 3.13, 3.14 Calibration function ∆β (<P2>)=β(τ0,β=900)-β(τ0,β=00), gives the convenient way for increasing of the <P2> 
values estimation exactness. The dependence is linear within all possible range of the ODF coefficient <P2>∈ [0..1]. 
Choosing τ0 as the point of first maximum β(t,δ=540) provides the maximal tangent of ∆β(<P2>), line and, therefore, 
minimize the relative error of <P2> estimation.  

 The similar to the described above idea, with some modifications, can be employed 

to increase the efficiency and accuracy of the ODF parameters numerical estimation by 

means the β-function. Fig 3.12 shows the calculation of the β-function angular dependence 

for several various <P2> coefficient used to represent the ODF function with Legendre 

series. The <P4> value was set to 0.01 for all the cases (Fig 3.10). It can be seen from the 
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Fig 3.12 that the β(t,δ) curve corresponding to the δ=540 has the same form for any value of 

the ODF orientation degree. This aspect of the β(t,δ) behavior was already shortly 

discussed above in 3.5 on example of the Gaussian-like ODF. The fact that the values of 

β(t,δ=540) is the same for the curves corresponding to any <P2> (see Fig 3.12) allows one 

to define the function ∆β=β(τ0,δ=900)-β(τ0,δ=00) (see Fig 3.13,14)-which will depend only 

on the value of <P2>. The calculation shows that the dependence ∆β(<P2>) is perfectly 

linear. Choosing ττττ0 like a position of first maxima of β(t,δ=540), i. e 

β(τ0,δ=540)=βmax(δ=540) one can provide the maximal tangent 2d d Pβ∆  and therefore 

the highest accuracy of the <P2> determination by this method. Employing this technique 

gives three basic advantages as compared to the direct fitting procedure (i) the only few 

amounts of data points needs to be acquired in the region of β-function are the most 

experimentally reliable (the time period of when it achieves the first maximum), (ii) the 

method of the <P2> is purely numerical and does not require either not completely reliable 

minimization procedures or “by eye” fitting approach. 
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Fig 3.15 The linear correlation for between <P4> and the parameters of the β-function curves corresponding to “tilted” 
ODFs. The crossing point of the β(t, δ=00) and β(t, δ=540) is used to define the linear calibration function for the <P4> 
coefficient. 

  It was shown in the section (3.4) that the procedure of the numerical evaluation of 

the <P4> coefficient of the ODF is especially difficult task for the experimentally relevant 

ranges of signal to noise ration and the expected value of <P4> within [0.01..0.1]. However, 

using the angular dependence of β-function the linear correlation can be found between the 

parameters of the curves corresponding to the different ODF tilting angles and the value of 

its <P4> coefficient. In this case the linear dependence can be found if to use the function ∆τ 
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defined like a time period which fulfill the “crossing” conditions for the β-function curves 

corresponding to the angles δ=00  and δ=540. ∆τ=τ1-τ2, where β(τ1,δ=00)=β(τ1,δ=540 ) and 

β(τ2,δ=00)=β(τ2,δ=540 ). It can be seen from Fig 3.15 that the distance between the points of 

crossing of two curves increases linearly with the <P4> value (Fig 3.15b). Similar to the 

case of the <P2> coefficient the criteria of <P4> determination allows one using the most 

reliable part of the β-function data. It also provides the enhancement of the numerical 

evaluation procedure efficiency by connection of the parameters of the angularly dependent 

β-function curves directly with the ODF properties by means the simple and obvious linear 

dependence. 

 

3.7. Determination of the dipolar coupling constant using “ββββ-spectrum” analysis. 

  

 3.7.1. ββββ-echo spectrum for the spin-1/2 pair system. Combined influence of the 

anisotropic chemical shift and dipolar interactions.  

So far our consideration of the β-echo combination was restricted with the «β-

function» i.e. the amplitude of the threefold echo signal at the moment when evolution 

period is equal to refocusing period (see Fig 3.1), t1=t2=τ. It was shown in previous 

sections that the time evolution of function β(2τ) is highly sensitive to the anisotropic 

bilinear spin interactions and therefore to the spatial orientation of its principal axes. 

However, the additional information can be obtained by the analysis of the FID signal 

followed by this moment of the spin system evolution. The β-function evolving in presence 

of orientation distribution of the principal axes of the bilinear interactions represents the 

integral sum of the individual harmonics corresponding to the specific interaction intensity 

defined by the orientation of the interaction axis with respect to external magnetic field (see 

Eqn 3.18-3.20). The situation is quite analogous to the case of the standard FID following 

the single excitation pulse–the individual harmonics behavior can be probed by the Fourier 

transformation of the time-domain signal of the β-echo. Similarly to the case of 2D NMR it 

can be expected, that the resulted «β-spectrum» will be modulated by amplitude and phase 

depending on the duration of the preceding echo period te=2τ.  

The analytical expression for the «β-echo» is given by the eqn 3.13. Combining 

together all three contributing terms corresponding to the individual echoes, the resulted 

observable magnetization can be found as: 
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Here, Ω denotes the frequency offset due to the linear terms of Hamiltonian and ωD 

means the coupling factor which characterize the bilinear (for example dipolar) 

interactions. For the case of the β-function, (the value of M± at t=0 ), the value of Ω 

obviously plays no role and was omitted in previous consideration. However, if the full “β-

echo” signal and the information about the spin system which can be derived from its 

spectrum are considered, the linear interactions are important factor of the lineshape 

forming. It was discussed in the chapter II that in solid matters the interactions of the spins 

with their surroundings has an anisotropic character. The important type of linear 

interaction - anisotropic chemical shift characterizes the asymmetry of the chemical 

surroundings provide a resonance frequency offset dependent on the orientation of the 

principal axes of the CS tensor with respect external magnetic field (see Chapter II). 

Therefore analyzing the “β-echo” signal (3.27) for the case when the probed sample has a 

particular orientation of the spin subsystems, the angular dependence of both Ω and ωD has 

to be taken into account. 

 

Fig 3.16 Mutual relations between principal axes of the dipolar and chemical shift spin interactions. The 900 angle 
between σ|| and RDD is typical for the polysiloxanes (Si-C and Si-Si bonds in polysiloxanes). The CS interaction leads to 
the offset of the resonance, when the dipolar one is responsible for splitting of the spectral line in two. Both the offset and 
splitting depends on the orientation of the principal axis of the interaction with respect to magnetic field B0, However, the 
effect is masked by the inhomogeneous CS-broadening which exceeds the dipolar splitting.  

Here, we restrict our examination of the “β-spectrum” by the case important for 

particular purposes of our work: (i) the CS tensor is symmetrical, (ii) the value of the 

chemical shift anisotropy ∆σ is much bigger than the expected dipolar coupling constant 

RDD 

σ|| 

900 

B0 

ϑ

θ ϕ
ΩΩΩΩ

ω

ω 



 59

ω0D and (iii) the dipolar interactions takes place between two spins I=½ so the formula 3.27 

is relevant to describe the «β-echo» signal. 

To consider the behavior of the spin system under two angularly-dependent types of 

interactions the mutual orientation of their principal axes has to be taken in to account. 

Fig 3.16a illustrates the relation between the three principal axes of interactions connected 

with the spin system which define its NMR spectrum. The axis σ|| define direction the main 

axis of symmetrical tensor of chemical shift (CS). According to the (Eqn 2.1-5) this 

interaction leads to the shift of the resonance line Ω dependent on the CS-anisotropy 

parameter ∆σ and the angle between main axis of the CS tensor and magnetic field (see 

also A2.2).The vector RDD gives the orientation of the internuclear vector which connects 

the spin pair involved into dipolar interaction. This leads to splitting of each resonance line 

into two, separated by the spectral distance ωD proportional to the dipolar coupling constant 

ω0D and the second Legendre polynomial of the angle between RDD and B0. (Fig 3.16b). 

Generally, the mutual orientation of the dipolar and chemical shift principal axes RDD and 

σσσσ|||||||| depends on the local environment and the structure of the molecular segment. We 

consider the situation when these axes are preferably orthogonal as it takes place in the 

systems of our interest. Finally, the frequency offset and splitting parameters described by 

the CS and dipolar interaction with account of the angular dependence can be expressed as: 

D 0D 2

2 2

 = P (cos(  ))
=  P (cos( ))  P (sin(  )cos(  ))

ω ω ϑ
σ θ σ ϑ ϕΩ ∆ = ∆                     (3.28) 

Substituting the 3.28 into 3.27 and applying the Fourier transformation the subspectra 

corresponding to the defined orientation can be obtained 

( , 2 ) (2 , ( ), ( )) i t

DS M t e dtω
β ω τ τ ω ϑ

+∞
Θ

±

−∞

= + Ω Θ∫                                 (3.29) 

Here Θ denotes the set of polar and azimuthal space angles Θ(ϑ ,ϕ).To get the full spectrum 

the integration over all possible orientation has to be performed with account of the 

orientation distribution function: 

( , 2 ) (2 , ( ), ( )) ( ) , cosDS S U d d d dβ βω τ τ ω ϑ ϑ ϕΘ

Θ

= Ω Θ Θ Θ Θ =∫∫          (3.30) 

According to (3.27-3.30) it can be expected that the spectral line shape of β-echo will differ 

from the spectrum of «normal» FID or single echo. The intensity of individual subspectrum 

corresponding to the particular orientation of internuclear vector RDD will be modulated 
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both by amplitude and phase by the β-function (see 3.2). Generally, the position of each 

subspectrum will be defined by the frequency offset Ω corresponding to the angle ϑ . 

Because both CS and dipolar interaction are determined by only one angular parameter (ϑ  

and θ respectively), the contribution of each spin pair with particular ωD to the spectral 

position corresponding to the chemical shift offset ∆Ω is not unambiguous even for the 

case of transversal isotropy of the CS-main axes distribution with respect to dipole-dipole 

internuclear vectors. Thus, obtaining the information from the “β-spectrum” is, generally, a 

more difficult task than the β-function analysis. However, using a combined the time and 

frequency domain analysis, allows one to estimate the parameters of spin interactions 

(particularly the dipolar coupling constant ω0D) with higher accuracy than it is possible 

from pure β-function analysis. 

 

3.7.2 ββββ-spectrum lineshape evolution.  

 The lineshape of the NMR spectrum of a spin system generally depends on the 

relation between the properties of the individual Hamiltonians of the spin interactions. The 

situation which takes place in the system of our interest is characterized by the strong linear 

interaction (anisotropic CS) which prevails over bilinear (dipole-dipole interaction)). 

According to the preliminary estimation, the CS-anisotropy ∆σ exceeds dipolar coupling 

constant ω0D on the order of magnitude in the magnetic field used in our experiments 

(9.4T). On the other hand, the deconvolution of the experimental spectrum shows that the 

intrinsic lineshape of the individual subspectra in «CS-pattern» is described with the 

Gaussian function with the characteristic width about 20% of CSA value (see 

Fig 3.17).Under these conditions, the splitting of the spectral lines caused by dipolar 

interactions is completely masked by the convolution with CS-broadening line. It was 

shown above that in the case when the spectrum will be obtained using β-echo technique 

the individual position defined by the CS-offset will be modulated with the by the dipolar 

interactions represented in a form of β-function. 
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∆σ=48ppm

a2=0.2∆σ
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Dipolar splitting ∆ω0D=250Hz
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Fig 3.18 illustrates evolutions of the spectral line shape with variation of β-echo delay time 

te=2τ, calculated according to equation (3.27-3.30). The case of the isotropic orientation of 

CS-tensor axes σ|| and internuclear vectors RDD was considered (U(Θ)=1/4π)). The 

following conclusions can be done based on the analysis of the numerical simulations of 

the β-echo spectra:.  

1. The integral intensity of the whole spectrum corresponds to the β-function 

dependence of the time domain β-echo signal (Fig 3.18b). 

Fig 3.17 Relation between characteristic scales of the spin interactions for the polysiloxanes LCSP. (i) Anisotropic 
chemical shift pattern with ∆σ=48ppm (solid line). (ii) Broadening of the intrinsic spectral line because of the CS –
inhomogeneity – Gaussian function with broadening factor ≅  0.2∆σ (dashed line) (iii) Dipolar splitting ω0D≅ 250Hz  

-5 0 5

(a) (b)

ω
0
=79 Mhz

∆σ=48ppm
ω0D/ 2π=250Hz
CS broadening - 0.2∆σ 

β-spectra S
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1.5 ms
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S
β
(ω,τ) integral intensity

Fig.3.18 Evolution of the β-echo spectrum lineshape depending on the echo delay time. Numerical simulation was done 
according to eqn.3.27-3.30. The parameters of the chemical shift anisotropy and dipolar coupling constant as well as 
chemical shift broadening characteristic for the spin systems of interest (polysiloxanes, 29Si nuclei ) were used ( see Fig 
3.17). 
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2. The individual position of the spectrum corresponds to different orientation of CS 

and dipolar interaction principal axes. Therefore, β-function modulates each individual 

spectral position in different manner. 

3. Because of the axial symmetry of both CS and dipolar interaction, more that one 

orientation ϑ of dipolar vector RDD is possible for specific orientation of CS main axis θ. 

(see Fig 3.16) Thus, the amount of β-function harmonics β(ωD(ϑ),2τ) which contributes to 

the evolution of the spectral lineshape are different for each subspectra 

Sβ(Ω(θ),τ).(Fig 3.19a) Here Ω(θ)=ω(θ)-ω0 denotes the resonance offset caused by 

anisotropic CS interaction. More remarks can be done concerning with the last item. It can 

be expected, that because of the mutual orthogonality of the CS and main axis and dipolar 

vector the position Ω(π/2)=σ⊥  is always more abundant with “fast” β-function harmonics 

corresponding to the ωD(ϑ=0))=ω0D. On contrary, for the spectral positions corresponding 

to σ|| > Ω(θ) >0 (0<θ<540) the contribution of the β-function harmonics with maximal 

value of ωD(ϑ) are very small or completely excluded.  

β-echo subspectra   intensity evolution S
β
(∆ω,τ)

σ
⊥
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⊥σ

⊥
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||σ||σ
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 β(ωD (ϑ ),τ) ϑ=0
 β(ωD (ϑ ),τ) ϑ=π/2

 

Fig 3.19 β-echo subspectra analysis. The intensities of the spectral components in CS-pattern are modulated by β-
function. (see 3.27-3.29). Because of the arbitrary distribution of the CS main axes around dipolar vector, different 
spectral positions are abundant with superposition of β-function harmonics in different manner (see details in text). The β-
function harmonics corresponding to values of ωD(ϑ) at ϑ=0 and π/2 are shown for the illustration. 

Fig 3.19 demonstrates the behavior of the individual β-echo spectrum components at three 

character positions mentioned above, depending on the echo time delay. It can be seen that 

the spectral component with the offset value σ⊥   includes a multiple β-function harmonics 

corresponding to the wide range of dipolar vector orientation (ω0D >ωD(ϑ)>0). In the same 

time, the evolution of the spectral positions ω-ω0=0 and ω-ω0=σ|| can be described with 

more limited amount of the β-function components with the value of ωD(ϑ) from 0 
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(ϑ=54.70) to ½ ω0D (ϑ=π/2). The contribution of the “slow” harmonics in all the cases can 

be minimized by the restricting of the consideration of the spectral components evolution 

with time period preceding the first maximum of the corresponding component Sβ.. 
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Fig 3.20 (a)- Fitting of the subspectra intensities with β-function «harmonics» for the short β-echo evolution time τ. The 
deviation from the «β-like»dependence is relatively small for spectral components 0<ω-ω0<σ||, and maximal for 
ω-ω0=σ⊥ . (Fig b,c) For the first case, perfectly linear (with relative error within 1%) correlation between «reference» 
parameter ω0D and value ωeff, shows the that one-parametrical β-function approximation of the spectral components 
allows the sufficient increasing of the accuracy of the dipolar coupling constant determination in comparison to the β-echo 
FID amplitude analysis. 

Under these conditions the individual spectral components can be fitted by the single β-

function harmonic with defined value of the ωeff  proportional to the dipolar coupling 
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constant ω0D. Fig 3.20a represents the example of such a one-parameter non-linear fitting 

of each β-echo spectra intensities at three characteristic positions. (The amplitude S0 was 

defined for the minimal value of “referenced” ω0D used in calculation for each spectral 

position and was fixed for the other values). It can be noticed that the mean square 

deviation (and therefore relative error of the fitting parameter determination) is minimal for 

the spectral position ω-ω0=σ|| and increases slowly for the Sβ at ω-ω0=0. In the same time 

the evolution of the β-echo spectral components for the frequency values around ω-ω0=σ⊥   

obviously is characterized by the contribution of multiple β-function harmonics also with 

ωD close to the ω0D, and therefore the one-parameter fitting is not so successful. The mean 

square deviation for the last case is nearly on the one order of magnitude higher than for 

single β-function harmonic fitting of the spectral components Sβ(ω-ω0,τ) at σ||>ω-ω0>0. 

The correlation between the reference parameter ω0D (used in the simulation of the β-echo 

spectra according to the eqn. (3.27-3.30)) corresponding to “fastest” β-function harmonic 

and the “effective” β-function harmonic frequency values ωeff
D is demonstrated by the 

Fig 3.20b,c. It can be seen, that the relation between ωeff
D  and ω0D can be characterized by 

linear dependence with the relative error less than 1% for the spectral positions σ||>ω-ω0>0 

and within 5% for the ω-ω0=σ⊥  . In the same time, because of the geometry factors the 

amplitude of the spectral components at the position σ⊥  is in 2-3 times larger than for the 

σ||>ω-ω0>0, which leads to the larger relative accuracy of the spectral intensities 

determination and therefore better fitting accuracy when the signal-to-noise factor is taken 

into account. Therefore, for the experimental data processing the reasonable compromise 

should be found between experimental and methodological errors to choose the set of the 

spectral components for the fitting procedure.  

That way the value of the dipolar coupling constant ω0D, which plays the basic role 

for the determination of the orientation parameters by the β-function, can be evaluated from 

the analysis of the β-spectra of the disordered samples with sufficiently better accuracy 

than it is possible from the pure time domain β-function analysis.  
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Chapter IV. Experimental. Determination of the orientation 

distribution parameters for the polysiloxane PLC samples using ββββ-echo. 
 

All the NMR experiments were performed using the VARIAN™ solid-state spectrometer 

(«Unity-400» console) with superconductive magnet, providing a magnetic field of 9.4T that 

corresponds to 400MHz and 79MHz NMR working frequency for 1H and 29Si nuclei 

respectively. The π/2 pulse had a duration of about 4µs for 1H channel at maximal available r.f. 

power. The π/2 pulse length for the 29Si channel was adjusted depending on the particular r.f. 

probe tuning (see description below). The FID was digitized with the time interval 2.5 µs for 1H 

signal and 25 µs for 29Si spectrum that corresponds to a spectral width 400 KHz and 40 KHz 

respectively. About 2500 (for 1H) and from 256 to 360 (for 29Si) complex FID data points were 

acquired, using the quadrature detection.  

The sample temperature manipulation during experiment was performed using the 

«coldfinger” device in combination with standard temperature control unit providing the 

temperature stability within 0.10C during 24-48 hours. For the NMR signal recording at different 

orientation of the sample with respect to external magnetic field the stepper motor controlled by 

the spectrometer computer was used.  

 

4.1 Basic pulse sequences.  
To observe the β-echo within single experiment the specific pulse sequence was 

used.[IV.1] Basically, the necessary combination of the NMR signals can be obtained using the 

appropriate phase cycle both for the receiver and transmitter. An efficient pulse sequence, which 

generates the β-echo is shown on (Fig 4.1). The composition of one 900
α and two 450

β pulses can 

be used to generate «zero», 900
 and 1800 pulse depending on the phases α and β. The appropriate 

Acquire 

P1(900) P2(900),P3(450)P4(450) 

Fig. 4.1 Composite pulse sequence for β-echo signal generation. The combination of one 900
α and two 450

β 
pulses can be used to produce «zero», 900

 and 1800 pulse depending on the phases α and β. 
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phase cycle is shown it Table 4.1. The triple units of the β-echo pulses are incorporated into the 

eight-step CYCLOPS sequence of Hoult and Richards [IV.2]. That way, it is possible to 

generate the necessary echo superposition using a single pulse sequence in one experiment. This 

allows one minimizing possible errors due to variation of the hardware parameters. Such an 

implementation of the pulse sequence for the β-echo generation has obvious advantage in the 

case of 29Si NMR signal acquiring, which requires sufficiently longer total experiment time in 

comparison to the 1H NMR (see the discussion of the sensitivity problems in the Chapter II). To 

increase the experiment sensitivity the 29Si NMR signal is generated by the RAMP-ed cross-

polarization transfer from the protons (see Fig 4.2).[IV.3]  

The Hartman-Hahn [IV.4] contact is established for 3 ms under rf. field strengths in 29Si 

channel of about 29

29 1
Si

SiBγ ≈ 40 KHz. For 1H channel the r.f. irradiation strength was varied with 

the modulation depth of about 15% (≈6KHz) to compensate the r.f. field distribution 

inhomogeneity and provide the maximal coverage with the Hartmann-Hahn conditions 

(
29 1

29 11 1
Si H

Si HB Bγ γ= ) for the whole sample volume. During the echo-signal excitation and 

acquisition in 29Si channel, the 1H spins were decoupled from the 29Si ones by the strong CW 

irradiation in the proton channel to avoid the additional line broadening due to 1H-29Si dipolar 

interaction. The intensity of the decoupling pulse was set according to γHH1 ≈ 60KHz that 

significantly overcome the strength of the dipolar coupling between the 29Si and 1H spins [IV.5]. 

Fig 4.2.  Pulse sequence scheme for Callaghan echo combination combined with RAMPed 
cross polarization for the experiment sensitivity enhancement.  

τ 2τ 

29Si 

1H 

Cross polarization 

RAMP 

Decoupling 

Table 4.1                                                                Phase cycling scheme 
 

P1    0,    0,     0       0       0       0        2     2     2       2      2      2       1     1     1      1     1     1         3     3     3      3     3     3
    
P2    1,     0,    1       3       2       3         1     0     1       3      2      3       2     1     2       0      3    0       2     1     2      0     3     0
P3    1,     1,    1       3       3       3         1     1     1       3      3      3       2     2     2       0      0    0       2     2     2      0     0     0 
P4    3,     3,    1       1       1       3         3     3     1       1      1      3       0     0     2       2      2    0       0     0     2      2     2     0
 
PA   0,     2,    2      0       2       2         2,     0,   0       2       0      0       1     3     3      1      3     3      1      1    3      1      1     3
 

24 step «CYCLOPS»{P1= 0, 2, 1, 3 } Phases notation is standard, i.e { 0=x, 1=y, 2=-x, 3=-y} 
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The detailed consideration of the CP and “ramped” CP processes as well as 1H decoupling 

procedure can be found elsewhere [IV.5-11].  

Example of the pulses “unit” generating ββββ-echo: 
  
Step  1  P1=(90)x        P2+P3+P4={(900)y+(450)y+(450)-y}=(900)y   -   «Solid echo»  acquired as         (+x)   →   S1 

Step  2  P1=(90)x           P2+P3+P4={(900)x+(450)y+(450)-y}=(900)x     -  «Hahn echo   -1»  acquired as   (-x)   →   -S2 

Step  3  P1=(90)x           P2+P3+P4={(900)y+(450)y+(450)y}=(1800)x     - «Hahn echo -2»   acquired as   (-x)   →   -S3 

 
Sβ=S1+(-S2)+(-S3) 

 
4.2 Testing ββββ-echo pulse sequence. 

In the first stage of the experiments on β-echo some testing measurement were performed 

with the intention to confirm the correctness of the β-echo generation by implementing of the 

threefold pulse scheme described above. For the demonstration purposes the experiment was  

 

setup so that 3 echoes contributing to the β-echo combination can be acquired subsequently 

together with the «threefold pulse» experiment. To be able making a comparison of the signal 

intensities, the number of signal scan averaging blocks was set for the β-echo combination in 3 
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Fig. 4.3a. Comparison of β-echo generated in three independent experiments (plot 1-3) and, single 
“composite” (plot 4) respectively. Plot 4 shows that threefold composite pulse combination (thick line)  gives 
the same result as numerical combining of the individual echoes obtained in separate experiments (thin line). 
The magnitude of the β-echo signal (10% of “normal Hahn echo”) is in agreement with estimation for the 
relative share of the coupled spin pairs.  
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times larger than for the individual echoes (5x24=120 and 5x8=40 respectively). The echo delays 

time was set to (i) τ→0 and (ii) τ≈τmax, where β(τmax)=βmax  i.e. according to the estimation of 

possible β-echo maximum for the expected 29Si pairs dipolar coupling intensity (see Chapter. 

III) in the polysiloxanes. The result of the experiment is shown on Fig 4.3 a,b. 

 It can be seen (Fig 4.3a), that the signal shape and intensity of β-echo at τ≈τmax obtained 

numerically from the signals of the contributing echoes S1,S2,S3 are the same as for the β-echo 

generated by the pulse sequence (taking into account the noise level). 

 For echo delay time τ0→0 (τ0=25 µs) (Fig 4.3b) the β-echo generates the signal which is 

in 50 times lower than an FID (or S3 echo)[IV.1]. This value differs insignificantly from the 

noise level and corresponds to the error residual signal coming from the rf-pulse imperfections 

(see details below and in Appendix III). 

 

The absolute intensity of the β-echo signal for the τ0=τmax≈1.2ms is approximately 10% 

of the Hahn echo S3 (π/2-τ-π) amplitude [IV.12]. This corresponds to the theoretically expected 

share of the 29Si pairs in the polysiloxane sample in comparison with the total amount of 29Si 

nuclei at natural abundance (see  3.3 ). That way, it is confirmed experimentally that β-echo 
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 Fig 4.3b. Both combined and separate β-echo experiments demonstrates echo signal mutual compensation when β-echo evolution 
period goes to 0. The residual signal comes from the magnetization flip angles deviation from the theoretically required (AIII) 
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sequence are able to select the signal of spin pairs coupled with the dipolar mechanism 

suppressing the signal from non-coupled spins [IV.1].  

 

4.3 Pulse length calibration 
 

It is shown in Appendix III that the uncertainties of the magnetization flip angle produced 

by the r.f. pulse leads to the appearance of the residual signal of β-echo even for the case when 

no bilinear terms present in the spin Hamiltonian. Therefore, the combination cannot perform its 

filtering function completely and the signal evolving under linear terms of the Hamiltonian 

brings an error signal distorting the β-function behavior. Particularly, a clear evidence of the 

non-complete compensation of the linear spin interactions due to the pulses errors is the presence 

of (i) non-zero real component for the evolution time τ=0 and (ii) non-zero imaginary component 

of the β-echo for any other value of τ (see Appendix III). That way, the process of calibration of 

the pulse sequence parameters can be separated into «coarse» and «fine» tuning stages: 

For the coarse tuning the combination of cross-polarization with immediately followed 

900
 -pulse is used. Such a r.f-pulses group, demonstrated on Fig 4.4, in ideal case is equivalent to 

the 1800-pulse and therefore should not produce any observable transversal magnetization. 

However, the spectral line broadening (due to the anisotropic CS) leads to the different effective 

length of the pulses for different resonance frequency offset (see Appendix III) and therefore 

brings some amount of transversal magnetization discovering itself as an observable NMR 

signal. That way, the duration τp of the «effective 900 –pulse» is determined by the minimization 

of the «residual» signal S(α), varying α=γB1τp - the flip angle corresponding to τp. The 

τp

29Si 

1H 

Cross polarization 

RAMP 

α =γ B1τp –pulse flip angle 

Fig 4.4 Pulse duration coarse calibration for β-echo experiment. At α=900  a total flip angle of 
the CP+pulse supposed to be 1800 producing the minimal ( in ideal case zero) signal in 
comparison with the «pure CP signal» S0 (τp=0) 

β=900+α - total flip angle 
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dependence of the residual signal magnitude (absolute value) as a function of pulse length τp is 

shown on Fig 4.5a.  

  The signal intensity Sabs(α) was normalized on the maximal FID absolute value detected 

without the second pulse (τp=0). Using the absolute value of the signal 

[ ]{ } [ ]{ }2 2
( ) Re ( ) Im ( )absS S Sα α α= + 2 allows one avoiding the problems concerned with 

choosing of the proper FID phasing. When the region of the pulse length corresponding to the 

minimum of the observable signal is roughly localized, the fine calibration of the pulse duration 

can be done.  

 
In turn, the fine tuning of the 900 pulse is performed using the β-echo properties. It was 

shown in Appendix III that the small r.f-pulses imperfections lead to linear dependence of the 

non-compensated magnetization from the tilting angle (and therefore from the rf-pulse duration) 

error. For the echo time τ=0 the only «residual» β-echo signal resulted from the pulse length 

error will be observed. Similarly to the first stage, the absolute value of the FID is used to find 

the pulse duration bringing the minimal «error signal». Due to the linear dependence of errSβ (α) 

the linear regression can be applied to provide the maximal exactness for the pulse calibration. 

An example of the pulse fine-tuning procedure, using the β-echo signal at zero echo time τ is 

shown on Fig 4.5b.  
 

4.4 Molecular mobility influence on ββββ-echo.  
 4.4.1 Dipolar interactions averaging and CS inhomogeneity. 

 The important factor influencing on the effectiveness of the β-echo experiment in the 

4.0 4.5 5.0 5.5 6.0
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Fig. 4.5(a) Coarse calibration of 900 -pulse for β-function measurements. The compensation of the signal generated by 
cross-polarization (equivalent to 900 pulse) by an additional pulse with the variable flip angle α is used. The maximal 
signal suppression corresponds to flip angle β=1800  

 and therefore to α=900. (b)Fine tuning of the 900 pulse for the β-echo 
measurements by minimization of the “error signal” for the β-echo evolution time equal τ=0 (see also Fig.  4.2b) 

(a) (b)
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case of polysiloxanes is a dynamics of the spin system, particularly the molecular mobility. The 

strength of dipolar interactions, which determine the β-function behavior is strongly dependent 

on the character of its averaging by the thermal motion of the molecules [IV.13-18]. For the case 

of the polysiloxane LCSP, it becomes especially important because of the intrinsically weak 

dipolar coupling between the 29Si nuclei and significant difference in the character of the 

molecular dynamics in different LC subphases.  

 

Fig 4.6 demonstrates a difference of the intensities of β-echo signals acquired at various 

sample temperatures. It can be expected that the freezing of the sample down to the glassy state 

leads to restriction of the molecular mobility and, therefore, increasing of the effective dipolar 

coupling constant. This can be observed on Fig 4.6 as an increase of the relative intensities of β-

echo spectra (taken with respect to the noise level). Moreover, the decrease of the spectral line 

broadening due to smaller effective CS distribution at slower molecular motion brings additional 

contribution to the β-echo signal intensity. 

 

4.4.2 Transversal relaxation  
Another important aspect of the thermal motion influence on the β-echo is a transversal 

relaxation factor. It was already mentioned in the Chapter III that to reproduce the realistic 

picture of β-echo evolution, the decay of transversal magnetization due to the spin-spin 

relaxation should be taken into account. In our consideration this have been done in quite simple 

-5 0 5

β-spectrum intesity at different temperatures.

KHzν

 +250 C
 +50 C
 -50 C

Fig 4.6 Temperature dependence of the Fourier transformed β-echo signal (β-spectrum). The thermal motion leads to the 
averaging of the dipolar interaction that effectively corresponds to the smaller dipolar coupling constant ω0D and   therefore, to 
decrease of the β-signal intensity (see Chapter III). 

β-spectrum intensities at different temperatures 
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manner by introducing the exponential relaxation factor R=exp(-τ0/T2) into β-function, where T2 

is the transversal (or spin-spin) relaxation time and τ0  is the echo time. This simplification can 

be done if to suggest that all three components of β-echo subdue the same transversal relaxation 

behavior, namely, – the exponential decay with one characteristic relaxation time T2. It is known 

from literature that for the polymer samples and especially for the liquid crystalline ones the 

transversal relaxation behavior can depend strongly on the intensity of molecular thermal motion 

[IV.19-22]. That way, the detailed transversal relaxation measurements have been done for the 

samples of our interest with three main purposes: 

(i) determination the transversal relaxation time T2 which is required for the 

proper comparison of the β-function simulation results with the 

experimental data,   

(ii) finding the temperature range where the single exponential description 

of the transverse relaxation is valid and, 

(iii) the last but not least - where the relaxation disturbing of β-function 

behavior still allows the extraction of the necessary information from it. 
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Fig 4.7. Transversal magnetization decay for each component of β-echo at low temperature. 
Monoexponential relaxation is demonstrated. Echo amplitude was normalized on maximal value.
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For this purposes, the transversal relaxation was measured by a standard spin-echo technique, 

(i.e. by measuring the time evolution of spin-echo denoted as the component S3 of β-echo). In 

practice, this was done using the same pulse sequence that was described above for the β-echo, 

with the threefold pulse combination replaced by the single πy pulse. However, one can notice 

that using both other components of the β-echo with the pair of 900 pulse would lead to exactly 

the same results for the relaxation dependence (see Fig 4.7) The relaxation experiments have 

covered the temperature range from +550 C to -350 C. The resulted experimental curves are 
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Fig 4.8b At both utmost ends of the probed temperature area (T=-35..+55C) the relaxation decay curves have an 
asymptotic limit where T2 (T) dependence is very weak as compared to the relatively narrow central region (-5..+15C) 
with fast T2  changing by the temperature 
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Fig 4.8a Transversal relaxation time temperature dependence for the polysiloxane M4 PLC sample. Three different 
characteristic temperature ranges can be selected corresponding to different regimes of thermal motion.  
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presented on (Fig 4.8a,b) It can be seen that the transversal relaxation time changes dramatically 

decreasing in temperature range from 00 C to +250 C in a factor of 4.  

 The increase of the temperature from 250 to 550 C makes practically no further influence 

on the relaxation time, which keeps the constant value T2=0.8ms. Similarly, the lowering 

temperature from -150 C to -350 C also shows an asymptotic dependence where the relaxation 

ratio remains nearly constant (T2=6.5ms). An intermediate case is represented by the temperature 

region 00 .. -150 C within which the relaxation time T2 increases by a factor of 1.5.  

That way, one can conclude that at least three regimes of the molecular motion can be 

selected in the probed region of temperatures for the polysiloxane sample. More details on the 

interpretation of the transversal relaxation measurements results can be found in Chapter V. 

Here, it is only necessary to pay attention that for the temperatures over +100 C the transversal 

relaxation time is shorter or comparable with the characteristic time of the dipolar correlations 

for the 29Si pairs (estimated as the evolution period preceding the first maximum of β-function in 

absence of the transversal relaxation Fig 4.9a). This means that the information about the low 
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Influence of the transversal relaxation time T2 on ββββ -function.

1000ms

τ0

1000ms

10ms

5ms

2ms

1ms

Fig 4.9.a. Influence of the transversal relaxation on the β-function maximal amplitude and time position of first 
maximum. It can be seen, that for the T2 shorter than the certain characteristic time of the dipolar correlations 
(approximately equal to the time position of the β-function first maximum in the case of infinitely long T2) the maximal 
β-function intensity decrease rather quickly. For the dipolar coupling, constant equal to 200-250Hz the T2 should be 
longer than 2-2.5 ms that in the case of M4 sample corresponds to the temperature of T≈+50 C.  

(b) Influence of the transversal relaxation on the possibility to differentiate the β-functions corresponding to different 
orientations. Obviously, for the T2 value shorter than the characteristic dipolar correlations time, the orientation features 
of β-function degenerate and the curves becomes indistinguishable from the ones corresponding to the isotropic sample 
orientation.  
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frequency β-function harmonics (i.e. with long evolution period) will be lost due to the 

relaxation decay. Due to the same reason the sufficient decrease of the available signal intensity 

will occur. These two factors make very difficult or nearly unsolvable the problem of 

distinguishing and analysis of β-function curves corresponding to the different orientation 

parameters in the case of short transversal relaxation time (see Fig 4.9b).  

Summarizing, one can say, that the temperature range above 00 C was found 

inappropriate for the β-echo investigation in the available polysiloxane LCSP samples because 

of the irrecoverable loses of the observable magnetization. This loses come from the molecular 

thermal motion, which produces the dephasing effect on dipolar coherences via the (i) dipolar 

interaction averaging and (ii) spin-spin relaxation.  

 Additionally, the transversal magnetization decay for the temperatures T>+150C becomes 

non-exponential, that makes the task of β-function analysis much more complicated than under 

the exponential relaxation conditions perfectly fulfilled for the low-temperatures. Therefore, it 

would be optimal to perform measurements in the temperature range of -250 C –350 C providing 

the maximal achievable transversal relaxation time. However, due to the technical reason the 

supporting of such a low temperatures during the 48-72 hours, which is required for the β-echo 

experiments, could be problematic. That way, the regular measurements with polysiloxanes 

LCSP were performed at the temperature from -50 C to -100 C depending on the duration and 

particular purposes of the measurements. More detailed discussion of the transversal relaxation 

measurements results will be done in Chapter V.  

4.5  Dipolar constant determination using «ββββ-spectrum» analysis.  
 

 It can be seen from the theoretical consideration of β-function properties that the initial 

point of a way, which, brings us from the nuclear spin interactions to the parameters of the 

orientation distribution of the molecules, is the value of dipolar coupling constant ω0D. 

Obviously, due to the large number of intermediate steps the accuracy of this parameter 

estimation is of critical importance for all the subsequent calculations. In the section (3.3) it was 

shown that the most reliable results of the ω0D evaluation can bring the complex analysis of the 

β-echo subspectra evolution. The corresponding β-echo experiments were performed on the 

sample of polysiloxane M4 with polydomain (unoriented) structure. Initially, for the rough 

estimation of the maximum of β-function from 10 to 20 signals of β-echo were acquired varying 

the echo delay time τ0 from 0 to 3-4 ms with the step 100..500 µs. The longitudal relaxation time 

of the 29Si (T1≈1 sec) requires the relatively long magnetization recovery delays (pause between 

the subsequent averages had to be set to 4 sec in our measurements). To estimate roughly the β-
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function maximum the number of averages of each echo signal was varied from 480 to 720 that 

lead to the total experiment duration of about 5-8 hours providing moderate signal-to-noise ratio 

(S/N=3..5). The β-function, in principle, might be established in dependence on chemical shift 

position for each point of the spectrum. However, because of the spectral broadening (see 3.7.2 

0 1 2

 β1
 β2
 βa=average(β1,β2)
 Fourier filtered βa 

βmax

Experimental β-function maximum position evaluation 
for the M4 sample

β(τ
0
)

τ0
Fig 4.10. Experimental results on β-function maximum rough estimation for the M4 sample. The result of the 
experiments using different sets of the evolution time τ0 are then combined by the averaging. Finally, the low-
pass Fourier filtration can be applied to reduce the noise factor influence (see below) 

Fig 4.11. Fourier transformed β-echo signals (“β-spectra”) acquired for the polysiloxane M4 sample. The evolution of 
the lineshape is observed due to the different position in spectrum defined by the anisotropic chemical shift corresponds 
to the different dipolar coupling intensity related with the different orientation of the internuclear vector (see Chapter 3 
for more details). 
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and Fig 2.12, Fig 3.17) it is reasonable to use the spectral intervals of the order of intristic line 

broadening width (Fig 2.12). This also gives the additional advantage of certain improvement of 

S/N ratio. 

An example of the results of β-function maximum search experiments is presented by the 

Fig 4.10. Function β(τ0) represents amplitude of the time domain β-echo signal in the moment 

τ0. To make sure about the results reproducibility, the experiments were repeated using different 

arrays of the values for the evolution time τ0 (denoted as β1 and β2 on Fig 4.10). The curves of 

the several measurements then can be then combined together by deriving an averaged curve. 

Finally, the low-pass Fourier filter can be applied to reduce the noise influence (see below). By 

comparison of these experimental data with the β-function simula,tion results from Chapter III 

the dipolar coupling constants can be estimated roughly within value of 200..250Hz, that is in 

agreement with a priori theoretical estimation. That way, according to the consideration has been 

done in (3.7.2) for the optimal β-spectra analysis the β-echo evolution time period of τ0=0...1.5 

ms was chosen (see Fig 4.10).  

The following measurements, with final aim of the ω0D estimation from the β-spectrum, 

requires higher accuracy and, therefore, were done acquiring from 1920 to 2400 scans for each 
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The evolution of the β-spectrum intensity at the the characteristic positions.
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Fig 4.12. The evolution of the spectral density of the β-echo signal at the characteristic 
positions corresponding to the main values of the CS tensor. The points represent the integral 
S(i)

β (see text) for each position. 
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echo signal that increases the signal-to-noise ratio approximately by the factor of 2 ( S/N ∼ Na
1/2 

,  

where Na is the number of averaging of the signal). 

Afterwards, obtained β-spectra Sβ(σ,τ0) (Fig 4.11) were integrated over the limits σi±δ, 

where σi are the characteristic positions of CS spectrum (σ=σ||, σ=0, σ=σ⊥ ) and δ=0.1∆σ 

(taken from the estimation of broadening factor by the CS spectrum deconvolution 

(see Fig 2.12a,b).  

The obtained integral values ( )
0 0( , ) ( , )

i

i

i
iS d

σ δ

β β
σ δ

σ τ σ τ σ
+

−

′ ′= Ω∫ , where Ωβ 

denotes β-spectrum, are presented on (Fig 4.12). The curves Sβ
(i) then were fitted with the 

corresponding β-function harmonics (see 3.7.2) to get the effective dipolar coupling 

constants ( )i
effω . The results of this procedure for all tree characteristic spectrum positions are 

presented on the (Fig 4.13). Finally, the coupling constant 
3
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Dω  determined, 

where ( )
0

i
Dω  values were taken from linear «calibration» dependence ( ) ( )

0 ,
i i
D i D eff ia bω ω= +  for each 

of three spectral positions have been used (see 3.7.2 and Fig 3.20 for explanation). The results of 

the ω0D evaluations are presented in the Table 4.2 

 
Table 4.2 Dipolar coupling constant evaluation results 

------------ σσσσ=σσσσ|| σσσσ=0 σσσσ=σσσσ⊥⊥⊥⊥ 

ωeff/2π 110 115 210 

ω0D/2π 225 222 230 

∆ωeff/2π (fitting) 8 9 14 

∆ω0D/2π 

(callibration) 6 7 10 
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Fig 4.13. The experimental curves, obtained by the integration of β-spectrum for the characteristic values of CS 
tensor (Fig 4.12), are fitted with the β-function parametrically dependent on the effective dipolar coupling 
constant ωeff.  
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 Here, ∆ωeff means the error of the experimental data fitting with β-functions. The value ∆ω0D 

represents an error introduced by the intristic calibration curve ω0D(ωeff), uncertainty, which 

arises from the fact that small but finite region of spectral density of β-echo signal is treated as a 

corresponding to the single β-function harmonic described with single parameter ω0D. However, 

the error of calibration does not exceed a fitting procedure error, which includes also the 

experimental noise contribution.   

 

4.6  Using FFT filters for the noise factor minimization.  
The methods of the ODF moments determination described in (3.7) allows one reducing the 

influence of the noise factor by using the specific properties of β-function orientation 

dependence. Practically, it means that the characteristics of the β-function curves used for the 

orientation parameters analysis, provide the sensitivity, which exceeds the experimentally 

relevant signal-to-noise ratio. However, these methods, being based on the evaluation of the β-

functions maximums and crossing points, needs rather accurate interpolation to obtain the 

continuous curves from the discrete experimental data points. The “brought-in” distortion due to 

the incorrect experimental smoothing can eliminate all advantages of the curves comparison 
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Application of FFT low-band 
filtering for interpolation and noise factor reducing in β-function
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Fig 4.14. Application of the low-band Fourier filtration for the controllable data smoothing and noise factor reducing. The 
experimental β-function data passes the FFT procedure with subsequent cutting-off the high-frequency part of the spectrum 
which is supposed to does not contain the useful signal due to the absence of higher frequencies in the dipolar interaction 
spectrum for the 29Si pairs. 

Experimental data Reverse FFT 



 80

analysis. In contrast, the proper methods of the data pre-processing allow one to increase the 

accuracy of the targeting parameters determination. Two factors are important when choosing 

the interpolation procedure for the data point: 

1. Exact knowledge about the part of information, which can be lost from data set after 

procedure performing. (and the possibility of its control) 

2. The procedure should be as much as possible selective for the separation the noise 

and “useful” signal.  

Both these criteria are well satisfied by employing of the low-band FFT filter [IV.23-25] for the 

data pre-processing. The useful information in this case can be selected from the signal (and then 

separated from the noise) using the knowledge about a highest possible harmonic of β-function. 

An example of the low-band FFT filtering/interpolation procedure of β-function data is 

demonstrated on Fig 4.14. 

 As it can be expected the intensity of β-function spectrum (should not be confused with 

“ββββ-spectrum”) decreases rather fast for the frequencies higher than dipolar coupling constant 

ω0D. That way, the higher frequency harmonics will contain only the noise signal, which can be 

cut off. The interpolation of the data curve in the case of FFT filtration procedure can be done by 

zero-filing in the frequency domain (fully analogous to the zero-filing of the time domain FID 

signal to get the spectrum smoothed)  

 

4.7 Determination of the Orientation Distribution Function for the 

polysiloxane M4 sample using the ββββ-function technique. 
 

It was shown in Chapter III, that the shape of β-function curves is determined by 3 basic 

factors: (i) the intensity of bilinear interaction (expressed via the dipolar coupling constant value 

ω0D), (ii) microscopic orientation distribution of the principal axes of these interactions 

(internuclear vectors for the 29Si nuclei coupling) and (iii) macroscopic orientation of the sample 

with respect to the NMR laboratory frame (external magnetic field). The value of ω0D can be 

determined independently using the sample in disoriented (multidomain) state and then can be 

used in the analysis of the data of β-function experiments over the oriented samples as the 

known fixed value. According to consideration has been done in (3.6), the comparison of β-

function curves obtained for the different sample macroscopic orientation with respect to the 

NMR laboratory frame allows one estimating its microscopic ordering parameters. Particularly, 

the characteristic of β-function curves corresponding to the zero, right and “magic” tilting angles 

can be directly connected with the 2-nd and 4-th Legendre expansion moments of the sample 
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ODF. However, the methods used for the <P2> and <P4> determination requires the analysis of 

the slightly different parts of the β-function curves (corresponding to the different periods of β-

echo evolution respectively). Moreover, the <P4> evaluation requires a higher accuracy of the 

experimental data treating because the sensitivity of β-function to the orientation distribution 

features decreasing strongly with the signal-to-noise ratio (see 3.6). Particularly, the <P4> 

evaluation needs rather precise determination of the crossing points of the different β-function 

curves, that in turn requires the sufficient amount of  experimental data points for correct and 

unambiguous curve interpolation. On the other hand, the intrinsically low intensity of β-echo for 
29Si dipolar coupling requires the relatively large amount of signal averaging. That way, to fit the 

reasonable duration, the experiments on β-function orientation dependence were done in two 

steps. At first the “region of interest” (ROI) for the β-function curves is to be found. This 

particularly means, that the time positions of the β-function curves, which are important for the 

<P2>  and <P4> evaluation should be roughly estimated by the scanning of relatively large 

period of β-echo evolution. On this stage, a moderate amount of the averaging can be used for 

each point. The value of <P2> can be then roughly estimated from the amplitude of the curves 

corresponding to characteristic sample orientations. On the second stage the selected ROI for 

each orientation have to be explored in details acquiring the β-echo amplitude through the 

minimal periods and using the maximal (possible within the reasonable experimental timeframe) 

amount of scans for each point. For the first measurements, the sample of oriented polysiloxane 

LCSP M4 was chosen. As it was mentioned in Chapter I, this LCSP has preferably parallel 

orientation of main chain and local director (given by the side-chain). This allows one evaluating 

Determination of the sample director orientation with respect to magnetic field 
using 1H NMR spectrum

-orthogonal 
orientation (δ=900)

-"magic angle"
 orientation (δ=540) 

-pararllel orientation (δ=00)

ν KHz
20-2040 400

Fig. 4.15. Determination of the monodomain M4 sample local director orientation using 1H NMR wideline spectra 
orientation dependence. The maximal line splitting caused by dipolar interactions of aliphatic protons corresponds to the 
parallel orientation of the mesogenic unit with respect to magnetic field.  
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this orientation direction considerably quickly and accurately using the 1H spectrum determined 

mainly by the coupling of the aliphatic protons in the side-chain [IV.26-27]. In practice, the 

reference orientation at which the sample local director is parallel to the external magnetic field 

H0 was found by the angular dependence of 1H spectrum second moment. The dipolar coupling, 

similarly to the axial symmetric CS interaction is proportional to the P2(cos(β)), where β is angle 

between interaction axis and magnetic field. Recollecting the consideration has been done for the 
29Si spectra angular dependence in Chapter I,II one can conclude that the lineshape second 

moment angular dependence maximum (arising from the maximal NMR linewidth, see Fig 4.15) 

corresponds to the parallel orientation of dipolar interaction axis (corresponding in turn to the 

orientation of sample local director). 

 

 

 4.7.1 Data normalization procedure. 

Another problem arising from the long time needed for measurements with β-function is 

that the curves corresponding to the different orientation cannot be recorded during the one 

experiment session. This means that for comparison of the curves from different measurements 

some normalization or reference is needed. For this purposes each angle-dependent experiment 
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Fig 4.16. The results of the estimation stage of the experiments over the β-function orientation 
dependence in monodomain M4 sample. Three characteristic orientations of the sample local 
director with respect to the magnetic field were probed.   
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was started with recording of some amount of data points for the parallel orientation of the 

sample on the initial (prior β-function maximum) part of the β-echo evolution. The 

normalization coefficient can be found by the averaging of the ratios of the corresponding 

elements of two sets: 

1

( )
( )

N
k

k kR
N

β τ
β τ=

′
′′

=
∑

 

where ( ), ( )k kβ τ β τ′ ′′  denotes β-function values defined in two different experiments at 

the same moment of evolution time τk and N – the amount of points used for the averaging. The 

resulted coefficient R has been used to bring the dataset of two different experiments to the same 

relative intensities.  

The results of the “estimation stage” of the experiments of beta-function orientation 

dependence are shown on (Fig 4.16). Three characteristic orientation of the local LC-director 

with tilting angles of δ=00, 540
 (“magic angle”) and 900 with respect to the external magnetic 

field were measured. The 600 scans were acquired for each point leading to the 16 hours of 

experiment time for each orientation of the sample. In the presented plot the β-function curve 

recorded at the “magic angle” orientation was used as the referencing i.e. all the curves were 

normalized to get the maximum of β(τ0, δ=540) equal 1. It can be seen that the relation between 

the curves obtained at characteristic orientations of the sample LC-director with respect to the 

magnetic field B0 qualitatively reproduces the theoretically predicted picture (see Chapter III). In 

the same time, due to the moderate amount of signal averaging scans used in the estimation stage 

of the experiment, the signal-to-noise ratio does not exceeded 5 (i.e. noise level is about 20% of 

total signal). This allows one only quite rough estimating of the curves parameters required for 

the orientation parameters evaluation (particularly, the position of the β(τ0, δ=540) curve 

maximum which is needed to determine the <P2> value). The situation is improved after 

application of the described above FFT low-band data filtering. The results of this procedure for 

different cut-off frequencies of FFT-filter are shown on (Fig 4.17). 
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As it can be expected when considering the simulation results (Fig 4.14), the best effect 

for data interpolation with simultaneous smoothing (and therefore reducing of the noise effect) 

gives the filtration with the cut-off frequency which is close to the frequency of the highest 

signal harmonic contributed to the total β-function (fmax≈ω0D /2π). For the higher and lower cut-

off frequencies, the noise suppression and data interpolation are not effective respectively. For 

Noise influence reducing by the low - band FFT-filters; 
the cut-off frequency adjustment for the β−function experimental data
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Fig. 4.17. Application of the low-pass Fourier filtration to the β-function data for curve smoothing and reducing of the noise factor. The 
cut-off frequency has to be adjusted according the maximal observed harmonic in β-function spectrum to make the filtration procedure 
the mos effective. 
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Fig 4.18. Fourier filtered data of the «estimation experiment» for the β-function or orientation dependence 
(see Fig 4.16). The cut-off frequency for low-pass filtration was set to νc=300Hz.  
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the “evaluation” stage the number of scans used for NMR signal averaging was increased in 4 

times (Nav=2880) that gives increasing the signal-to-noise ratio approximately in the factor of 2 

in comparison to the evaluation stage. The β-echoes were probed within the β-function ROI 

evolution period found in the estimation measurement stage. Twenty β-echo signals were 

acquired for each sample orientation that gives the total experiment time duration of about 48 

hours. On the preprocessing stage, all the data sets were normalized using the preceding 

reference β-function measurements (see the method described above). Afterwards, the low-band 

FFT filtration with cut-off frequency νc=300Hz were applied to reduce the noise factor influence.  

The ODF's moments were estimated by the comparison of the curves parameters 

according to the method described in (3.6). The maximum value of β(δ=540) is achieved at the 

moment τmax=1.7ms. 

For the subsequent analysis, the following iteration scheme was used: 

1. The difference of the β-function values of parallel and orthogonal sample orientation 

∆β(τmax)=β(τmax, δ=900)-β(τmax, δ=00) is determined from the β-function curves plot.  

2. The ODF's second moment value <P2> is estimated from the calibration dependence 

∆β(<P2>) (see 3.6). To build the calibration dependence in zero approximation the value 

<P4> was taken equal to <P4>= 0.01. 

3. The period ∆τ=τ1-τ2 is determined (see Fig 4.18). Here τ1 and τ2 denotes the time 

moments which fulfill the condition ∆β(τ1)=∆β(τ2)=0, (i.e. the time moments 

corresponding to the crossing of the β-function curves with parallel and orthogonal 

sample orientation). 

4. The value of the ODF 4-th moment < P4> is evaluated from the calibration dependence 

3.14. ∆τ(<P4>), calculated using the <P2> value determined on stage 2.  

5. Returning to stage 2. The obtained <P4> value is used to build the next approximation of 

the calibration dependence ∆β(<P2>).  

The described iteration cycle is performed until the achieving of the pre-chosen convergence 

condition for the <P2> and <P4>. Particularly, in our case the process was stopped when the 

relative error of the iteration step became smaller than the relative noise level of β-echo signal: 
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The linear dependence which has been found for the calibration functions ∆β(<P2>) and 

∆τ(<P4>) (see Chapter III) allows one to recalculate it rather fast for each iteration step 

(obviously the only 2 points are needed to determine the linear dependence equation and to find 

the new value of the <P2> from it). 
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 Table 4.3 shows the results of the iteration procedure performed for the β-function 

orientation dependence. It can be seen that both <P2> and <P4> iteration sequences converge to 

get the predefined limit of the error already after 3 steps. The <P2> and <P4> obtained in steps 

number 4 and 5 can be considered as a demonstration of the iteration process convergence trend 

(the estimated values remains within the experimental error «gap» defined by the noise level ).  

Table 4.3 Iteration procedure results for the orientation distribution function moments estimation using ββββ-
function orientation dependence. (M4 sample) 

N <P2> <P4> ∆P2 ∆P4 

1 0.097 - - - 

2 0.087 0.0032 0.04598 - 

3 0.083 0.0035 0.00723 0.05714 

4 0.0824 0.0037 0.00485 0.05405 

5 0.082 0.0039 0.00488 0.05128 

 

4.8 Determination ODF moments for the monodomain sample of polysiloxane 

M6. 
On the next stage of the work, the technique of the ODF's evaluation tested on the 

polysiloxane PLC M4 was applied for the investigation of the main-chain orientation parameters 

of the sample denoted in Chapter I as M6. This LCSP has both the backbone and side-chain 

molecular structure, which are identical to the M4 sample. The structural difference concluded 

into the spacer length (two more CH2 groups are present). This, however, leads to the dramatic 

changing of the preferable orientation of the side-chain with respect to the backbone from 

parallel (M4) to the orthogonal (M6) that is confirmed by the analysis of the CS spectrum 

orientation dependence (see Chapter II). This structural feature makes the LCSP M6 a very 

interesting object for the investigation of the orientation distribution using the β-echo and β-

function.  

 4.8.1 Preferable main-chain segments alignment direction determination. 

Most of the technical procedures of the measurements with M6 sample were the same as 

for the M4 sample. However, because the orientation of the main-chain segments was not known 

a-priori, a preliminary search of the characteristic angular positions has been needed for the β-

function analysis. It was already mentioned, that for the moderate orientation degree 

2 4P P� the simulation shows that the β-function corresponding to the parallel orientation of 

the preferable segment's alignment direction (also was referred as “segment’s ODF reference 

axis”) with respect to magnetic field, has the biggest derivation in the initial evolution period in 
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comparison to all others sample orientations (see Chapter III). Using this circumstance, a sample 

position corresponding to the perpendicular orientation of the main-chain segments with respect 

to the magnetic field can be found by comparison of the grow up ratios of β-echo amplitude for 

different tilting angles δ using 4-5 points of the initial evolution period. The tilting angles region 

for this search was chosen using the 29Si CS spectral lineshape orientation dependence data (see 

Chapter II). Particularly, the orientation of the 29Si CS tensor main axis perpendicular to the 

magnetic field can be used as the starting point to find the preferably parallel orientation of 

chain-segment alignment (of course, if to take into account the suggestions concerning the 

transversal anisotropy) . 

 To avoid the problems concerned with the different probe sensitivity calibration for 

different sample orientations the processing of the results of the orientation estimation 

measurements were done in following manner: 

1. The angular region preliminary estimated as parallel orientation of main-chain segments 

with respect to the external magnetic field (using 29Si CS tensor axis orientation) was 

chosen.  

2. 5-6 points of the initial period of β-echo evolution τ=τmin…τmax were recorded for several 

different sample orientations δi within above-mentioned angular region.  

3. Each curve were normalized on the maximal value so that β(δi ,τmax)=1. Then, the 

derivation 0 0( , ) ( , )i iD d dtδ τ β δ τ=  of each curve was calculated in the time moments 

τmin and τmax. .  

4. The curve providing the maximal value of the parameter ∆D(δi)= D(δI,τmax)- D(δI,τmin) is 

considered like the one corresponding to the parallel alignment of main-chain segments 

with respect to the magnetic field. (δi=0). 

An example of this process demonstrated on Fig 4.19 a,b. The experimental β-echo data points 

corresponding to several different sample-tilting angles δi are plotted on Fig 4.19a. Due to the 

artificial normalization the difference between the curves are not apparent. However, the 

derivation curves (Fig 4.19b) show the clear difference in the β-functions corresponding to 

different orientations δi. Particularly, the curve β(δ2,τ0) with fastest grow up ratio in the probed 

evolution period can be easily identified.  

 

4.8.2 Orientation distribution parameters determination  

The coincided structure of the most of molecular fragments allows one using the 

experimental results obtained for the LCSP M4 in analysis of β-echo experiments on the LCSP 

M6. Particularly, the value of dipolar coupling constant ω0D determined for the M4 suppose to be 
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the same for the LCSP M6 (due to the identical backbone structure). That way, the β-echo 

experiments with the latter sample were started directly from the orientation dependence 

investigation. Due to the less amount of the substance available, the number of signal averaging 

scans (and therefore the duration of the experiment) for the M6 sample had to be increased in 

comparison to M4 to get the same signal-to-noise ratio. However, the β-echo measurements of 

the orientation dependence of the M4 sample allowed one saving the experimental time and to 

concentrate directly on the β-function ROI for the corresponding experiments on the M6.  

The initial point of the measurements with β-function orientation dependence for the M6 

sample were described in previous section. When the sample orientation, corresponding to the 

parallel alignment of main-chain segments and magnetic field, were found, the regular 

measurements of β-function have been performed in the same manner as it was described for the 

“evaluation” stage of the experiments with M4 sample. Three characteristic orientations 

“parallel”, “orthogonal” and “magic angle” were probed acquiring 20 β-echo points in each case. 

From 2880 to 3200, signals averaging were used for each point. Additionally, the conventional 
29Si and 1H spectra were recorded during the orientation search measurements to be able to relate 

the orientation parameters of main-chain with the orientation of local director (determined by 

mesogenic units of side-chain). The procedures of the data preprocessing (normalization, 

filtering, etc) were preformed according to the procedures described for the M4 sample in 

previous sections. 

The results of the measurements on β-function orientation dependence for the M6 LCSP 

polysiloxane is shown on Fig 4.20a,b. It can be seen even qualitatively that M6 sample 

demonstrates stronger orientation character than the M4. Particularly, it can be seen by 

appearance of the additional features in the β-function curve corresponding to “parallel” 

orientation which was not observed in the case of M4. The results of the data processing with the 

aim of determination of the ODF’s Legendre expansion moments by the iteration procedure (see 

description above) are summarized in Table 4.4  

The supplementary data of the 1H and 29Si spectra and its relation with the β-function 

“orientation search” results are shown in Fig. 4.21. Being evaluated in previous experiments (see 

Chapter II), the values of the ODF's second moments, as well as the spectral lineshapes of 29Si 

and 1H spectra, allows one determining perfectly well a current angular position of the sample 

with respect to magnetic field. For this purpose, the values of the first moment of 29Si spectra 

M1(δi) recorded at corresponding angular positions δi during the orientation search with β-

function was fitted with the calibration curve f(δ)=<P2>CS P2(δ), where <P2>CS  is the second 

moment of the CS main axis ODF. That way, the preferable alignment of the CS main axis 
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(defined from M1(δ)) can be correlated with the main-chain segment orientation (defined from 

β(δi) derivation).  

Additionally, the acquired 1H spectra allow one relating the backbone segments 

orientation straightforwardly with the sample local director (see above). For the calculation of 
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Fig 4.19. Determination of the main-chain segments alignment orientation with respect to the magnetic field for the 
M6 monodomain sample using β-function orientational properties. Particularly, the β-function curve corresponding 
to the searched parallel segment orientation has to provide the maximal grow up ratio of the β-echo amplitude in the 
initial evolution period (due to the maximal contribution of the high frequency β-function harmonics, see (3.5-3.7)). 
The β-echo signal amplitudes were normalized on its maximal values (Fig a) for each orientation. As the 
characteristic of the β-echo amplitude grow up ratio, the β-function curvature in the initial evolution period had 
been used.. The curvature evaluation has been done, in turn, by the estimation of the β-function first derivation 
changes (Fig b)   

Fig 4.20. Evaluation of the ODF moments for the monodomain oriented M6 PLC using β-function orientation dependence.  
Raw β-echo signal contains more noise than in the case of M4 sample measurements due to less sample's mass available. The 
number of signal averaging had to be increased up to Nav=3200 for each point. The main chain segment alignment has been 
estimated in separate experiment and correlated with the 29Si CS main axis and sample local director orientation. The β-function 
curves particularly show that the orientation degree of M6 sample is significantly higher than for M4.  
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the second moment orientation dependence M2(δ) of the 1H absolute (power) spectrum were 

used. This allows one avoiding the phasing problem and increases the accuracy sufficiently (the 

details about the possibility of using the power spectrum instead of real one in the case of M2 

estimation can be found in [IV.27]). As the M2(δ) of 1H spectrum has the local maximum at 

δ=900, the scaled values of |M2(0)-M2(δ)| are plotted to make the convenient comparison with 

M1(δ) of 29Si spectrum dependence, which has the minimum there.  
Table 4.4 Orientation distribution function moments determination for the monodomain M6 sample 

N <P2> <P4> ∆P2 ∆P4 

1 0.285 - - - 

2 0.245 0.0055 0.16 - 

3 0.233 0.0067 0.051 0.17 

4 0.224 0.0071 0.04 0.056 

5 0.221 0.0072 0.03 0.0042 

 

That way, the results of the main-chain segments orientation distribution evaluation, performed 

by using of the 29Si-29Si dipolar coupling and β-echo can be combined together with the results 

of the conventional 29Si spectrum orientation dependence studying. This provides us the 

information about the 29Si chemical shift tensor main axis orientation. Additionally, the 

orientation distribution functions of mentioned above molecular frames can be correlated with 

the sample local director orientation. The latter can be estimated from the orientation dependence 

of the 1H spectrum.  

  In the conclusion chapter the results of the described above β-function experiments will 

be discussed and summarized.  
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Fig 4.21. Finding the mutual relation between the characteristic orientations of the different molecular frames of the M6 LCSP. 
Supplementary to the β-echo recording for the angular positions δ1..δ5, the conventional 29Si and 1H spectra were acquired.  This 
allows one obtaining the information about the orientation of the 29Si CS tensor axis and local director orientation for these 
positions using the preliminary known angular dependence of the lineshape first moment. (see Chapter II). The angular shift δβ 
shows that main-chain «parallel» alignment position found using β-function  
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Chapter V. Results and Discussion. 
 
5.1. Legendre expansion method of the ODF analysis.  
 The model-free approach to the orientation parameters evaluation leads us to the 

expansion of the orientation distribution function (ODF) in to the Legendre series. Due to the 

symmetry principles only even order of Legendre polynomial and corresponding coefficients are 

relevant for the ODF description (by probing the anisotropic spin interactions with NMR 

methods it is not possible to distinguish between angle θ and its complement i.e. θ and (π-θ ). 

These coefficients called “moments” of the 2-nd, 4-th, etc order, in principle, provide full 

information about the orientation distribution. [V.1,2] The advantage of such an approach is that 

no a priory knowledge and assumptions about the character of the ODF are required. That way, 

the estimated ODF suppose to be more “honest” in comparison with the one based on specific 

model which parameters have to be found. Another positive side of this method becomes 

obvious when the connection between the moments of NMR wideline spectrum (determined by 

the anisotropic CS interactions) and the moments of the ODF are demonstrated. Particularly, it is 

shown that the moments of the spectrum can be represented by the linear combination of the 

Legendre moments [V.3] (see Chapter II). The application of the moment-analysis method 

makes possible the subsequent estimation of the ODF moments by using one-parametrical fitting 

on each stage of the analysis. This makes the results more stable and reliable in comparison with 

the situation when two or more parameters have to be fitted simultaneously in “model-specific” 

cases. The corresponding approach has been applied to estimate the parameters of the ODF for 

the CS main axis of the 29Si nuclei in the polysiloxane samples.  

 Unfortunately, the transversal anisotropy problem does not allow making unambiguous 

conclusion about the main chain orientation using the simplest one-dimensional ODF analysis. 

To describe the orientation distribution in this case two angles are needed (the direction of axis 

and rotation around it, see 2.3.2 and Fig 2.15). However, in the case of polysiloxane the 

symmetrical CS tensor provides only one-dimensional data about its main axis orientation. To 

get the information about the second dimension the dipolar coupling of the 29Si pairs can be 

used. This angle-dependent spin interaction characterizes the orientation distribution of the 

internuclear vectors and, therefore, the main chain molecular segments with respect to the NMR 

laboratory frame. However, to be able to detect the dipolar coupling at low natural abundance of 
29Si the specific technique called β-echo needs to be employed [V.4].  

5.2 Using ββββ-echo properties. 

 It was shown in Chapter III that the Callaghan echo combination generates the NMR 

signal, which has two important properties: 
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Fig 5.1 Important properties of β-echo employed for the purposes of the presented investigation.  

 

1. Bilinear interaction selective – the only coherences which evolved under the bilinear spin 

Hamiltonian survive in the generated signal 

2. Linear interaction refocusing –in the time moment t =2τ where τ is the delay, between 

excitation and refocusing pulses the linear interactions are «time-reversed» completely to 

the state t=0 (if not to take into account the transversal relaxation) (see Fig 5.1).   

 

The testing measurements were performed on the polysiloxanes samples to probe the 

dipolar interactions of 29Si pairs at natural abundance. The mentioned above properties of β-echo 

were demonstrated in practice both qualitatively and quantatively (see 4.2). The specific 

calibration procedure, however, has to precede each experiment to determine the duration of 900-

pulse due to the high sensitivity of the β-echo effectiveness to the deviations of r.f. pulses length 

from required values.  

Thus, using the first property we select the part of the NMR signal which contains the 

information about bilinear interaction Hb and, therefore, about the orientation of the 

corresponding principal axes (see Fig 5.1 right). In our particular case, the information about 

angular dependence brings the 29Si nuclei involved into dipolar coupling with the neighbor spin. 

This interaction strength depends on the orientation of the internuclear vector in the NMR 

laboratory frame. The signal from “single” 29Si nuclei is suppressed that vitally is important due 

to the low share of the coupled spins among its total amount. That way, the influence of the 

dipolar interactions can be observed even in presence of much stronger anisotropic interactions 

(namely – anisotropic chemical shift) in a form of spectral line shape specific modulations (see 

“β-spectrum”). On the other hand the CS interaction influence can be excluded completely if to 
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use the “refocusing property» of β-echo. Due the fact that the moment t=2τ is equivalent to the 

t=0 for the linear spin interactions the dependence β(2τ) called «β-function» contains the 

information only about the bilinear part of spin Hamiltonian. Therefore, there are three principal 

ways of using β-echo combination: 

• «Pure» β-function evolution analysis. 

• «β-spectrum» evolution analysis. 

• «β-spectrum» orientation analysis. 

 

5.3 Simulation of the ββββ-function orientation dependence. 

 Unfortunately, the applicability of the spectral lineshape analysis in the case of β-echo is 

limited. When the spectral positions intensities become dependent on two ODF’s simultaneously 

(namely, of the CS tensor main axis and the Si-Si internuclear vector) the two-dimensional 

spherical harmonics have to be used for the adequate description of the spectral lineshape form 

dependence on the orientation parameters. In this case the analysis become rather complicated 

and will require three-dimensional experiment (in the case of one-dimensional ODF two 

dimensions - one spectral and one angular were to be used). That way, it is worthwhile to use the 

Fourier transformed β-echo only for the isotropic orientation distribution to determine the 

dipolar coupling constant. In this case, the ω0D value will be fixed for the subsequent analysis of 

the oriented sample making β-function dependent only on the orientation parameters to be 

determined. Because the information about the orientation distribution of Si-Si vectors is 

contained in the intensity of dipolar interactions of the 29Si pairs, it is reasonable not to include 

other anisotropic interactions (the CS tensor orientation) into consideration. That means, in 

practice, using the «pure» β-function, i.e. evolution dependence β(2τ).   

  There are three circumstances however which have to be taken into account in our case.  

• Dipolar coupling for the 29Si-29Si pair in polysiloxanes is expected to be at least on the 

order of magnitude weaker than the anisotropic CS interaction. 

• The orientation degree of the main-chain is lower than the LC order parameter in the 

same sample (related to the side-chain orientation).  

• A low natural abundance of 29Si leads to a small amount of coupled spin pairs. The 

signal-to-noise ratio will of about 10-20 (5-10% noise level) for the reasonable 

experiment time. 

 

Generally, for the arbitrary oriented sample with ODF of the internuclear vectors described by 

U(cos(θ)), β-function will be represented by an integral sum of the individual harmonics βθ:  
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∫                                (5.1), 

where R(τ) is the function, which describes the transversal relaxation (see Eqn. 3.20). There are 

obvious methodological difficulties to analyze a function under the integral. Even in the case of 

isotropic sample the analytical solution of (3.20), include the Fresnel integrals. For the U(θ) 

which differs form isotropic it becomes much more complicated and the non-linear regression 

method will certainly fail to get even single fitting parameter. To test the character of the β-

function dependence on the orientation distribution a detailed simulations for the relatively 

simple case of one-parametrical Gaussian-like ODF U(θ) have been performed. It was shown 

that for the strong orientation (i.e. high orientation degree) even «by-eye» fitting might be 

effective. In addition, good results could be obtained by using different minimization procedures. 

However, the sensitivity of β-function to the orientation distribution decreases non-linearly with 

the orientation degree (3.4.2, 3.5). For weak orientation, the diversity between curves is smaller 

than the fluctuations due to the noise level (10 to 20%) even if corresponding orientation degrees 

differing in more than 2 times by absolute value. The minimization methods are usually also not 

stable in the case when more than one parameter needs to be adjusted. Especially, the question of 

stability is critical for the case when more than one parameter is responsible for the orientation. 

Therefore, applying a model free approach based on the Legendre polynomial expansion to the 

orientation distribution function one should take care about the sensitivity of the β-function to 

the variation of the expansion coefficients (i.e. “ODF moments” <Pn>). It is also important to 

have the method, which gives the reliable and stable results of estimation of these parameters. 

For this purposes the analysis of the β-function dependence on the coefficients of the Legendre 

expansion of the ODF was done using the concept of relative residual function (RRF) (see 3.4).  

It was shown that using just plain β-function data when estimating the orientation degree values 

<P2><0.15 for any fitting procedure the significant difficulties can be expected already at the 

moderate experimental signal-to-noise ratio S/N≈0.1. For the same level of experimental error 

the expected <P4> value can be directly estimated from fitting of the single β-function curve 

only by the order of magnitudea.  

 Moreover, the procedure of non-linear fitting/minimization of simultaneously two 

parameters is rather unstable. Assuming the 10% error due to the noise fluctuations leads us to 

the possible deviation about 50% for <P2> and up to 100% for <P4> (3.4). The situation is 

                                                 
a Obviously, for the higher ODF moments, the situation is much worse. However, for a moderately ordered 
polysiloxane samples the contribution of the highest moments n>4 into ODF is negligible, their influence on β-
function were not considered at all. 
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improved by the considering the behaviour of the β-function under the reorientation of the whole 

sample (and therefore the ODF's reference axis) with respect to the NMR laboratory frame. The 

simulation shows that in this case it is possible to achieve much higher resolution of the ODF 

moments estimation by comparison of the curves corresponding to different sample tilting 

angles. Particularly, for the constant value of <P2> the largest absolute difference shows the β-

function curves corresponding to parallel and orthogonal orientation of the ODF's reference axis 

with respect to the laboratory frame (external magnetic field). On the other hand, β-function 

curve corresponding to the tilting of the sample on “magic angle” (δm≈540) is, practically, 

insensitive to the variation of <P2> due to the fact that P2(δm)=0. This automatically provides us 

a reference for the comparison of two other curves. Particularly, this allows one finding the 

linear correlation between the difference of two β-function's curves (corresponding to “parallel” 

and “orthogonal” orientation) and related values of the <P2>. In similar manner the linear 

parameter, which connects the period between the crossings of two β-functions (in this case for 

“parallel” and “magic angle” orientation) and the value of the <P4> was found. That way, there 

are three critically important aspects, which allow one proposing the improvement of the ODF 

parameters estimation effectiveness by using the orientation dependence methods.  

 

They are: 

• The specified parameters of β-functions has linear relation with the ODF moments to be 

estimated. 

• The pairs of β-functions which are used in the procedures are different for the <P2> and 

<P4> estimations 

• The ODF's moments are “decoupled” with respect to the parameters used for their 

evaluation. This means that a variation of <P4> has very insignificant influence on the 

parameter which is used for the <P2> estimation (if the latter one is fixed) and vice versa. 

These three aspects make possible to implement a quite simple and intuitively clear iteration 

procedure of the <P2> and <P4> estimation. It has the sufficient advantages in comparison with 

the other possible methods (for example non-linear, “by-eye” or other “direct” fitting methods): 

• Requires reasonable amount of data points to be acquired in the experiment. 

• In each approximation step only one parameter needs to be adjusted.  

• Bases on linear dependences and therefore provide a good stability of the results even 

under condition of a significant noise factor  
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• Being transparent on each step allows the control over the errors. Does not require the 

sophisticated calculation procedures and therefore makes possible the fast achieving of 

necessary convergence of the results.  

The proposed technique was tested and the effectiveness was proved on the example of two 

polysiloxane samples with different character of the orientation distribution functions (see 

below). 

 
5.4 Determination of the dipolar coupling constant for 29Si pair in 
polysiloxanes using ββββ-echo.  
  

The results of the measurements using the β-echo using the isotropic polysiloxane sample 

allows one to determine the value of static dipolar coupling constant of for the 29Si pairs ω0D. 

The procedure is based on the analysis of the time evolution of the“β-spectrum” i.e. Fourier 

transformed β-echo signal, 1 1( ,2 ) (2 ) ti tS t e dtω
β ω τ β τ

+∞
−

−∞

= +∫ (Fig 5.1). Particularly, the evolution 

behavior of the spectral density at some characteristic spectral positions, determined by the 

anisotropic chemical shift is used. The individual position of the 29Si NMR spectrum 

corresponds to the different orientation of CS and dipolar interaction principal axes. Therefore β-

function modulates each individual spectral position in different manner. This allows one 

minimizing the amount of the harmonics with different dipolar correlation frequencies which 

have to be taken into account in the β-function curve analysis. 

Practically it becomes possible to make the one-parametrical fitting of the behavior of 

each component using the β-function corresponding to the one particular frequency. The 

systematic error caused by the contribution of more than one β-function harmonic will depend 

on the spectrum position, which is analyzed. Particularly, the simulation shows that the time 

evolution of 29Si CS spectrum positions corresponding to the σ=0 and σ=σ|| due to the dipolar 

correlations generated by the β-echo can be described by the single “effective” β-function 

harmonic. The correlation between “effective” and real coupling constant values is linear with 

less than 5% systematic fitting error (see Chapter 3) that confirms the methodological 

correctness of the proposed method. Analysis of the spectral density at σ=σ⊥ leads to the larger 

systematic error caused by the intrinsically higher amount of the β-function harmonics which 

may contribute at this spectral position. However, the absolute intensity of the β-spectrum at 

σ=σ⊥ due to the geometry factors is more than in 3 times higher than for the other two position 

under consideration. Therefore, better signal-to-noise ratio makes reasonable to include this 
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position into the analysis of the spectral data to make the results more stable with respect to the 

noise perturbations. 

The experimental data obtained from the β-spectrum analysis of the isotropic M4 sample 

confirms a good functionality of the proposed technique of the dipolar coupling constant 

determination, even in the case of low signal-to-noise ratio caused by low natural abundance of 
29Si nuclei. Estimation of the dipolar coupling constant for the 29Si spin pairs in the polysiloxane 

M4 sample gives us the value ω0D/2π= ν0D= (225±10)Hz that is in on the order of magnitude 

smaller than the CS anisotropy  (∆=48.4ppm≈3.2KHz at 9.4T).  The obtained value of ω0D can be 

used to estimate the geometrical parameters of the Si-O-Si chemical group configuration in 

polysiloxanes (see Fig 5.2). 

Using the Eqn. 3.5 the internuclear distance RSi-Si can be estimated as.  

R Si-Si = 33
07101Hz Å ( 0.D mν⋅ ⋅ = ± ⋅ -103.15 15) 10 .                                  (5.2) 

Taking into account the cosine theorem: 

( )
2

2cos Si- O-Si 1
2

SiSi

SiO

r
r

= −� ,                                                   (5.3) 

Using the known from literature value for RSi-O=1,619⋅10-10 m one can find the value of 

S i- O - Si� =(155°±2)°. This number is in a perfect agreement with the estimations obtained 

from quantum chemistry calculations ( Si- O- Si� =156.9°). 

The alternative suggestions had been discussed, predicted the tetragonal symmetry of the Si-O-Si 

bond (i.e Si- O- Si� =109.28°), leading us to the dipolar coupling constant ν0D= 384,2 Hz that is 

far out from the experimentally found with β-function measurements.  

That way, the method of the dipolar coupling constant estimation using the analysis of 

the Fourier transformed spectrum of the β-echo signal shows a good effectiveness being applied 

in the case of 29Si nuclei at natural abundance. The method allows one overcoming the 

difficulties concerned with both dominating of the CS interaction in the NMR spectrum (as well 

as other types of linear interactions) and the low relative fraction (about 10%) of the observable 

coherences, which contains the information about the dipolar coupling. The obtained value of 

Si 

O

Si
RSi-Si 

RSi-O

Fig 5.2 Geometry of the Si-O-Si group in polysiloxane. The dipolar coupling constant ω0D obtained in β-functions 

experiment allows estimating the RSiSi   distance and therefore the angle of the Si-O-Si bond. 
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ν0D has been used in all following calculations concerned with the determination of orientation 

distribution parameters using the β-function, where it plays the critically important role.  

  

 
5.5 Orientation distribution investigation with ββββ-function. Polysiloxane M4 
and M6 sample. 
 

To test the methods developed for the estimation of the ODF parameters with β-function, 

the monodomain polysiloxane M4 sample has been used. The a priory knowledge about the 

preferable orientation of the main-chain segments allows one avoiding the preliminary 

measurements needed for this direction estimation (see 4.5.1). The orientation degree expected 

for the main-chain orientation in M4 sample is rather small and all the procedures of its 

estimation, therefore, required as small as possible experimental and methodological error. The 

separation of the measurements into two stages was done to obtain the maximal possible signal-

to-noise ratio for the region important for the orientation parameters estimation (see region of 

interest= ROI in Chapter IV). The special calibration procedure should precede each experiment 

with orientation dependence to make a comparison of the absolute signal intensities for the 

measurements with various sample orientation and different hardware settings.  

Additionally, the low-pass Fourier filtering procedure was implemented and tested to 

reduce the noise influence and to provide the controllable experimental data smoothing and 

interpolation required for the <P2> and <P4> evaluation procedure. The filtration is based on 

the knowledge about the highest possible β-function harmonic frequency which is equal to the 

0 15 30 45 60 75 90

Main-chain ODF reconstruction for the M4 sample
U(θ)

θ

Fig. 5.3 Reconstruction of the main-chain orientation distribution function using the values of the 
moments <P2> and <P4> obtained by the β-function measurements. Error bars includes both 
uncertainty of the iteration procedures and experimental error due to the noise factor.    
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dipolar coupling constant value. Using the developed experimental and calculation procedures 

the orientation dependence of β-function curves has been measured and the parameters of 

orientation distribution function were evaluated.  

It was found that the values of the ODF moments evaluated by the iteration procedure 

converge considerably fast. The approximation error of 5% is achieved in only 3 steps both for 

<P2> and <P4>. The reconstruction of the ODF using the obtained values for polysiloxane M4 

is shown on Fig 5.3. The maximal error is estimated to be about 10% that includes the 

experimental noise factor (reduced however by filtering) and methodological error of the 

calculation procedure. It should be noticed that in the reconstructed ODF the contribution of 

highest Legendre expansion coefficients (n>4) is omitted. Therefore, the increase of U(θ) near 

the angular position θ=900  most probably does not reflect the reality and with account of higher 

degree moments would be smoothed. However, despite of intrinsic imperfections, the 

representation of the ODF with only two Legendre moments provides valuable information 

about the main-chain orientation character in polysiloxanes.  

Preparing the experiments on the ODF analysis of the polysiloxane M6 sample some data 

obtained in the β-function measurements of M4 was used. Due to the equivalent chemical 

structure of the main chains, the 29Si dipolar coupling constant is the same for both samples. The 

β-function ROI was extended in both directions of the time scale on 10% in comparison with the 

M4 sample measurements. The preliminary stage, however, required the orientation evaluation 

experiment in order to determine the preferable direction of main chain alignment. This was 

done by using the procedure based on the β-function behaviour in the initial period of its 

evolution. For the preferably parallel orientation of the main-chain segments (and therefore 

internuclear vectors) the contribution of the β-function harmonics with the frequency close to ν0D 

is maximal (obvious from the fact that dipolar frequency νD= ν0D⋅ P2 (cos(θ)) → ν0D, when 

θ→0). Therefore, the β-function curve with maximal grow up ratio at the initial evolution period 

will correspond to searched parallel orientation. In practice, the absolute increase of the β-

function derivation in the initial evolution period (te<(2/3)ν -1
0D) is used as the measure of 

maximal fast harmonics contribution. In parallel, the measurements of the conventional 1H and 
29Si NMR spectra were done. That way, the mutual orientation of the CS tensor main axis (29Si 

CS spectrum), main-chain segment (via Si-Si «dipolar vector») and side-chain mesogenic units 

(by the 1H spectrum determined by dipolar interactions of the aliphatic protons) becomes 

obvious. It can be seen on the (Fig 4.21) that the parallel alignment of the main-chain with 

respect to magnetic field differs slightly both from the orthogonal orientation of the 29Si CS main 

axis and the local director (mesogenic units orientation). This deviation can be estimated as 
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δβ=70±20. After establishing the «parallel» orientation direction of the main-chain segments with 

respect to laboratory frame, the procedure of ODF moments evaluation repeats completely the 

one used for the polysiloxane M4 sample. The resulting reconstruction of the ODF using 

obtained values of the Legendre moments can be seen on Fig 5.4. 

 As it was expected from the experiments with 29Si CS spectra orientation dependence, the 

orientation degree of the main-chain segments for the M6 polysiloxane is obviously higher than 

for the M4. The value of second ODF moment differs in nearly 3 times for this samples (see 

Table 4.3,4.4). On the other hand, the value of <P2> for the M6 sample obtained using the β-

function deviates from the one estimated from the CS main axis ODF evaluation (see Chapter I). 

The last fact brings an additional evidence of the transversal anisotropy characteristic for the 

main chain segments orientation in polysiloxanes.  

 

 5.6.1 Relaxation measurements and simulations. 
The results of the spin-spin (transversal) relaxation experiments were shortly discussed in 

Chapter IV as much as they are relevant for the β-function measurements of the orientation 

distribution of the main chain segments in polysiloxanes. From this point of view, it was only 

important to find the temperature range where (i) the relaxation behavior has an exponential 

character which can be easily taken into account in the simulation procedures [V.4,5] and (ii) 

where the relaxation time is long enough as compared to the characteristic time of dipolar 

correlations to make possible the analysis of the orientation specific features of the β-function. 

These conditions are well fulfilled below the temperatures of the glass transition for the 

polysiloxane LCSP.  

Fig 5.4. The reconstruction of the ODF using the <P2>  and <P4> values estimated by β-function orientation 
dependence for the polysiloxane M6 sample. 
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However, the temperature dependence of the transversal relaxation found in the 

experiments with M4 sample themselves represents the separate interesting topic for the 

investigation. Particularly, as it could be seen from the data showed in Chapter IV, the 

transversal relaxation rate increases with the temperature at least when the last one varies from -

100C to +45-500 C. For the temperatures below -100C the relaxation ratio changes very slowly 

with obvious trend for the transversal magnetization decay come to some limiting curve 

described by the typical monoexponential function. In the same time, for the higher temperatures 

the relaxation curve has more complicated character. Therefore, it is not completely correct in 

this case, to speak about the “relaxation time” that refers to the exponential function. Moreover, 

for the temperatures above 450C the slow decrease of the relaxation rate is observed. Such a 

picture is not typical for liquid or low-molecular LC, where the transversal relaxation rate is 

normally more or less monotonously decreases with the temperature.  

The explanation for these features of the transversal relaxation behavior can be done if to 

use the Anderson-Weiss approach [V.6] to describe the transversal relaxation processes caused 

by the slow molecular motion modulating the spin interactions [V.7-14]. 

 The starting points of the consideration of the molecular system behavior which leads to 

the relaxation processes of the transversal nuclear magnetization in this case are: 

 

1. The system consists of a continuous distribution of oscillators which oscillate at any 

frequency ω in the interval ωl ≤ ω ≤ ωu. The static (“instantaneous”) spectrum is denoted by 

S(ω), i.e. the probability to find an oscillator in ω ... ω+dω is S(ω)dω. 

2. The time interval 0... t is divided into N sub-intervals which have the length ∆t. All frequency 

changes caused by thermal motion take place as jumps only at the ends of these intervals. 

The conditioned probability that an oscillator is at ω2 if it was at ω1 in the preceding interval 

is denoted by P(ω1,ω2). 

3. The system is stationary, that means S(ω) as well as P(ω1,ω2) do not depend on time and on 

the number of the interval. 

The decay of the transversal magnetization in this case is described by the accumulating of phase 

shift by each oscillator with the time:  

                                        
0

( ) exp ( ) ( )
t

iF t i t dt Q e dω
+∞

Φ

−∞

 
′ ′= = Φ Φ 

 
∫ ∫                                         (5.4.1) 

with 
0

( ') '
t

t dtωΦ= ∫  (accumulated phase); Q(ΦΦΦΦ) is its probability distribution. 
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The essential part of Anderson-Weiss approach is the assumption of Gaussian-like probability 
distribution, i.e. : 

2

22

1 2( ) exp
22

Q
π

 − Φ Φ =  ΦΦ   

                                                                    (5. 4.2) 

Integration corresponding to Eq. (5.1) gives 

( ) 21exp
2

F t  = − Φ 
 

                                                                        (5. 4.3) 

The general solution is now coming after the calculating of the time dependence of 〈Φ2
〉. This 

leads to the autocorrelation function of ω(t): 

( ) ( ) ( ) ( )
0

; CK t t K dτ ω ω τ τ τ τ
∞

= + ∫�                                        (5. 4.4) 

 
Fig 5.5. Transversal magnetization decay measuring by Hahn echo. The decrease of the transversal magnetization F(2∆) after the 
refocusing of the linear spin interaction dephasing factors (offset/chemical shifts, heteronuclear dipolar couplings) among bilinear 
factors as homonuclear dipolar comes also from the cumulating phase shift of different spin subsystems caused by the slow 
molecular motion/diffusion during the period 2∆. 
 
Application to FID 
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∫                 (5. 4.5) 

 
Application to Spin Echo 

A refocusing pulse following at moment ∆ after initializing the FID corresponds to a flip angle 

of π (with 0 or 900 phase shift with respect to excitation pulse) for offset/chemical shifts/ 

heteronuclear dipolar couplings. For bilinear (homonuclear dipolar or quadrupolar) interactions 

the refocusing pulse flip angle should be π/2 (with 900 phase shift). The target, therefore, is to 

determine the echo amplitude after the time-reversing period i.e. the value of F(2∆). (see Fig 5.5) 

Expectations: 

• Weak correlation: The echo amplitude will not differ from the normal FID signal.(Eqn 5. 4.5) 

• Strong correlation: The initial dephasing will be refocused completely → F(2∆)=1. 

• Intermediate case: τC ≈ ∆: Minimum of F(2∆). 

Calculation: 

In Eq. (5.4), ω has to be replaced by another function, which changes at t = ∆ its sign: 

FID

Excitation pulse  Refocusing pulse 

Spin Echo

∆ ∆ 

F(2∆)
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 (5. 4.6) 

where ω exhibits the normal correlation behaviour. Then it follows 
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∫ ∫ ∫ ∫                  (5. 4.7) 

The evaluation of the expression is omitted for shortage. Finally, the echo amplitude is given by 

 ( ) ( ) ( ) ( ) ( )

{ }

2

0

1 1 2 2

2 exp 2 3 2

exp 2 3 2

F K d K d

I J I J

τ τ τ τ τ τ
∆ ∆

∆

 
∆ = − ∆ − + ∆ − 

 

= − + + −

∫ ∫  (5. 4.8) 

With the definitions 

 ( ) ( )
( 1) ( 1)

;
n n

n n
n n

I K d J K dτ τ τ τ τ
∆ ∆

− ∆ − ∆

⋅∫ ∫� �  (5. 4.9) 

Limiting cases: 

• Very shortly decaying K(τ): 
 2

1 ; 0 2 ; 0  for  for all C n nI I n J nω τ= ∆ = ≥ =  (5. 4.10) 

• Constant K: 

 2 2 2 2 21: ;
2n nK I J nω ω ω

 ≡ = ∆ = − ∆  
 (5. 4.11) 

Particular cases: 

• Weak correlation 
 K decays already when τ τ∆ → ∆ − ≈ ∆∩ . Together with (Eqn 5.4.4) it follows 

 ( ) ( ){ }22 exp 2CF ω τ∆ = − ⋅ ∆  (5. 4.12) 

 For short τC this is quite close to unity. 

• Strong correlation  

 (τC >> ∆):Dependence on third power of time. ( ) ( )312 exp '(0) 2
12

F K ∆ = ⋅ ∆ 
 

                           (5.4.13) 

• Very Strong correlation 

 K remains constant. Then both integrals have the amount (5/2)∆2 and thus cancel another.  

� ( )2 1F ∆ =  

• Exponential correlation 

 ( ) ( ) ( ){ }/ 2 /22 exp 2 3 4e eC C
C CF τ τω τ τ −∆ − ∆ ∆ = − ∆ − − + 

     (5.4.14) 

Discussion: 
- For Weak correlation Eq. (5.14) follows immediately. 
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- For strong correlation (τC >> ∆) the echo amplitude contains the time to third power in the 
exponent. (Similarity to description of the relaxation caused diffusion)  

 ( )
2

31(2 ) exp 2
12 C

F
ω
τ

  ∆ ≈ − ∆ 
  

 (5.4.15) 

- For very strong correlation the exponent vanishes. That means ( )2 1F ∆ =  is indeed 
fulfilled.  

- Minimum: This is that τC for which the exponent without the factor -〈ω2
〉 has a maximum  

 min 0.5284
1.89262Cτ ∆= = ∆  (5.4.16) 

 Thus, the relaxation curves around the temperature providing the correlation time of the 

molecular motion equal to τCmin must cross one another (see Fig 5.6). 

Relaxation mechanism  

 The practical issues and simulations based on the consideration shown above require 

some suggestion about the spin interactions, which dominates in the transversal relaxation 

mechanism. That means, it is important to know which spin interactions are modulated by the 

slow molecular motion, leading to the accumulation of the dephasing effect and, therefore, to 

incomplete refocusing of the transversal magnetization in Hahn-echo or CPMG experiments. To 

make the reasonable suggestion, the following factors are to be taken into account: 

1. The spin-echo experiment is performed under the 1H decoupling. Therefore, 

the dipolar interaction between the 1H and 29Si plays no role in relaxation (at 

least in the first order perturbation theory). 

2. The dipolar interaction between 29Si nuclei is relatively weak and only about 

10% of all 29Si nuclei are coupled (see Chapter I, and IV). 

3. The chemical shift interaction, which dominates in the NMR spectrum of 29Si 

in polysiloxanes, is anisotropic with ∆σ≈48ppm that gives about 3.2 KHz in 

the magnetic field of 9.4 T and exceeds sufficiently the dipolar interactions.  

This means that most realistic suggestion about the transversal relaxation mechanism 

would be the reorientation of the 29Si CS tensor main axis caused by the slow molecular motion. 

This process leads to the modulation of the CS interaction intensity due to its dependence on the 

orientation of the CS principal axes system in the laboratory coordinate frame.  

The simulation of the transversal magnetization behavior according to the model 

approach described above is shown on (Fig 5.6). The values of the chemical shift anisotropy 

∆σ=48.3ppm was used for estimation of the second moment of polysiloxane 29Si spectrum to be 

substituted in Eqn 5.14.  
22-6 6 -1 8 -2

048.3 10  ; 79.4 10 s = 1.16 10 sσ σ ω π ω
⊥

− = ⋅ = ⋅ ⋅ → ⋅↙                  (5.4.17) 
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Fig 5.6 Results of the transversal magnetization decay simulation for the anisotropic CS interaction dominated in the transversal 
relaxation mechanism.  
 
5.6.2 Additional factors: intrinsic linewidth relaxation limit. 

The comparison of the simulated and experimental data of the transversal magnetization 

decay shows that they are in well agreement for the high and moderate temperatures. In this case 

the “weak” and “exponential” correlation regimes of the molecular motion are expected and 

observed in practice (see Eqn 5.4.12-5.4.14) for the polysiloxane sample. The “returning back” 

of the relaxation curve (than means a decrease of the relaxation ratios after passing a minimum 

predicted by Eqn 5.4.16) is observed at the end of the probed temperature range (T≈500C). 

Unfortunately, the effectiveness of the cross-polarization decreases strongly with the temperature 

(again, due to intensive molecular reorientation) and, therefore, it became technically 

problematic to perform the further measurements with higher temperature being restricted in the 

available experimental time. On the other hand, at low temperatures, due to the turning the 
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Fig 5.7. Simulation of transversal magnetization relaxation in t he M4 PLC sample caused by CS tensor 
reorientation with account of the dipolar coupling in 29Si-29Si and 29Si-13C pairs. The magnetization decay curve 
tends to the monoexponential curve in strong correlation (i.e. slow motion) limit achieved at the low 
temperatures of the sample. 
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sample from LC to glassy state and, the strong correlation motional regime (τC>>∆) is 

expected. However, the behaviour of the transversal magnetization does not show agreement 

with the simulation results, which predict the extremely long or infinite transversal relaxation 

period in this case (Eqn. 5.13). In the same time, the experimental data shows that there is an 

obvious limit of the elongation of the transversal relaxation time. This means that the relaxation 

curves do not change any more, becoming the same fair monoexponential function with T2≈7ms 

for all the temperatures below -150C. This shows, that another mechanism presents being 

responsible for the transversal relaxation when the CS tensor reorientations become too slow and 

not effective. This mechanism appears in strong correlation motional regime achieved at low 

temperatures for the polysiloxane sample. The role of this additional mechanism can play the 

dipolar interaction between (i) 29Si and (ii) between the 13C and 29Si spins. The so-called 

intrinsic 29Si spectrum line broadening caused by the coupling of these nuclei can be expressed 

according to [V.15] 

20

6 3 Si Sinπµν γ∆ = � -for 29Si -29Si coupling 

02
18 3 Si C Cnπµν γ γ∆ = � -for 13C-29Si coupling                                                            (5.5) 

where γSi,C is the gyromagnetic ratio of 29Si and 13C spins respectively, � -is a Plank 

constant and nC,Si are the spin density for the 29Si and 13C nuclei. The M4 polysiloxane sample 

with brutto-formula (SiC19H22O5)p has the density of 1..1.2 g/cm3 that leads to: 

nSi=(7.8..9.422)*1025 for 29Si (4.7% natural abundance) and nC=(3.492 ..4.190)*1025 for 13C 

(1.1% natural abundance) spins per m3. This brings us the intrinsic linewidth of the 29Si 

resonance ∆νCSi =(33…40)KHz and ∆νSiSi=(9..11)KHz . Totally, this gives the linewidth 

∆ν=40..50Hz that corresponds to the transversal relaxation time T2=1/(π∆ν)=6.3..7.9ms being in 

perfect agreement with the experimental data at low temperatures (see Chapter 4). The results of 

the simulations of the relaxation curves, which have been performed with account of the dipolar 

coupling mechanism, are shown on Fig (5.7). Obviously, a nearly complete agreement with the 

experimental data is achieved.   

 Summarizing the aspects concerned with the topic of transversal relaxation the following 

issues can be done: 

• The transversal relaxation of the 29Si nuclei in the polysiloxane M4 sample is mainly 

determined by the reorientation of the 29Si CS tensor axes due to the molecular motions.  

• The system behavior leading to transversal relaxation can be described in the frame of 

Anderson-Weiss approach using the «cumulant» theory. 
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• The fast, moderate and slow relaxation decay of the magnetization can be related with the 

corresponding «weak», «exponential» and «strong» correlations of the molecular motions 

that in turn refers to the fast, moderate and slow regimes of the molecular dynamics.  

� The «exponential» correlation regime dominates in the temperature range from 00 C to 

+400C. Turning to the «weak» correlations is to be expected for the temperatures above 

500C.  

• For the temperature far below glass transition T< -150C the relaxation curve does not 

have any temperature dependence and its monoexponential behavior can not be explained 

by the strong correlations of the CS tensor orientation fluctuations.  

• The transversal relaxation behaviour at low temperatures can been described properly by 

taking into account the dipolar interactions of 29Si spins as well as the interactions 

between 29Si and 13C nuclei. A perfect agreement between the experimental and 

simulation results can be achieved in this case. The details about the relaxation limit 

caused by dipolar interactions can be found in the classic description of Abragam [V.15].  



Conclusion and Summary 
 

In conclusion the following basic items and «milestones» of the presented work can be 
summarized: 
 
� The outline of basic aspects of the liquid crystallinity in polymers has been made. The main 

attention was paid to the features of the orientation structure in side-chain LC polymers and 

particularly to the determination of the Orientation Distribution Function (ODF) of main-

chain segments. The basic models proposed to explain the results of SANS, X-ray and NMR 

investigation were overviewed. The special interest was concentrated on the investigation of 

the side-chain polysiloxanes [C.1]. 

� The survey of the NMR techniques, which makes possible estimating of the ODF, has been 

done. The basic anisotropic spin interactions, which make the NMR sensitive to the 

molecular orientation both in micro and macro levels, were overviewed (Appendix II, 

Chapter II). The methods of the lineshape analysis, proposed by Spiess at al., which relate the 

moments of the spectral density function to the Legendre polynomial expansion moments of 

the ODF [C.2], were considered. 

� The previous stages of the work on the project of liquid crystalline side-chain polysiloxanes 

investigation in NMR group of University Halle/Wittenberg performed by Günter Hempel 

and colleagues were analyzed [C.3]. The method of ODF Legendre moments estimation 

based on the lineshape orientation dependence of the 29Si spectrum determined by the 

anisotropic CS was discussed in detail. The main advantages of the method are relatively 

simple experimental and calculation techniques. However, the sufficient disadvantage is an 

ambiguity of the results caused by (i) intrinsically one-dimensional information provided by 

the axially symmetrical 29Si CS tensor and (ii) the uncertain factor of the transversal 

anisotropy of the main-chain segments orientation distribution. To uncover this ambiguity it 

was proposed to probe the orientation of the Si nuclei interconnection vector (coincided with 

the segment of main chain), using the direct dipolar interaction between the 29Si spins. 

However, due to the low natural abundance of 29Si in polysiloxanes (4.7%) the essential signal 

sensitivity problems can be anticipated. The small amount of the observable spins makes the 

detection of the dipolar interaction for the orientation distribution studies quite problematic 

basicaly because of two reasons: 

1. The 4.7% of natural abundance of 29Si nuclei give considerably low signal absolute 

sensitivity (≈3.7⋅⋅⋅⋅10-4). There are nearly no possibilities to use the enriched samples in the 

case of 29Si. 

2. The low probability that two-neighbored Si are both 29Si leads to the overwhelming part of 

the signal arising from isolated 29Si overlapping the weak spin-pair signal of interest. 



 On the other hand, the low abundance of 29Si has a positive consequence, providing the 

possibility to consider only isolated spin pairs without taking into account higher-member spin 

clusters. This simplifies significantly the approach to the experimental data interpretation.  

 To overcome the problems originating from low natural abundance, the special 29Si 

NMR technique proposed by Callaghan at al.[C.4] has been used. The implementation of the β-

echo combination for the detecting of dipolar interaction between 29Si spins in polysiloxanes 

required solving a significant amount of both theoretical and practical problems. The body of the 

work on employing of β-echo for the purposes of the work consisted of the following tasks: 

1. The theoretical consideration of the β-echo in the case of the homonuclear system of 

isolated spins I=½ has been done using the density matrix formalism. The relation between the 

β-echo evolution behaviour (called β-function) and the homonuclear dipolar interaction 

intensity was found. The selective property with respect to bilinear part of spin Hamiltonian 

was confirmed. The special attention was paid on role of the dipolar coupling constant value. 

2. The effect of the non-isotropic orientation distribution function of dipolar vectors on 

the β-function was taken into account on the next stage. Both model (Gaussian) and model-free 

(Legendre series representation) approaches to the ODF were considered. The effect of the 

ODF parameters on the character of the β-function evolution was tested with numerical 

simulation. The special efforts were applied for testing of the possible accuracy of the ODF 

Legendre moments estimation using the β-function. 

3. The procedure of the β-function sensitivity enhancement with respect to the ODF 

parameters was developed using the rotation of whole sample with respect to NMR laboratory 

frame. The method allows one avoiding the non-reliable multiparametrical fitting procedures 

for the extraction of the ODF parameters. The linear regression can be used in combination 

with the iteration procedure. Each approximation step allows estimating the <P2> and <P4> 

moments individually, making the whole technique much more stable with respect to the input 

data noisiness and uncertainties. 

4. Due to the critical influence of the dipolar coupling constant value on the β-function the 

special method of evaluation accuracy increasing was proposed. The Fourier transformed β-

echo (“β-spectrum”) has been used for this purpose. The selective analysis of the spectral 

components evolution allows one applying the one-parametrical fitting with single β-function 

harmonic that makes the dipolar coupling constant evaluation procedure much more 

transparent and precise. In our knowledge, the method of Fourier transformation and spectrum 

analysis has been never applied so far in combination with β-function.  

 



5. The β-echo pulse sequence was implemented in combination with the cross-

polarization from 1H to 29Si which is used to increase the signal sensitivity (intrinsically low 

for the 29Si at natural abundance). The selective detection of the signal NMR from the coupled 
29Si spin pairs, with suppression of the signal from non-coupled spins was successfully 

realized. The test measurements demonstrated both qualitative and quantative agreement with 

theory.  

6. The essential influence of the imperfection of the experimental parameters on the β-

function, (particularly the errors in duration of the rf-pulses) was found (Appendix III). The 

special procedures of the 900 pulse calibration have been implemented to minimize the errors 

originated from the improper pulse length. 

7. The role of transversal NMR relaxation has been investigated in two aspects: 

(i) influence of transversal relaxation time T2 on the β-echo properties and its ability 

to serve for the orientation distribution estimation and 

(ii)  the interest about the transversal relaxation time T2 as a sensitive tool for the 

molecular dynamics investigation [C.5-8]. 

 The role of temperature as the basic factor, which has influence on the molecular mobility has 

been investigated. Measurements of the temperature dependence of transversal relaxation time 

have been done in wide temperature range. Three characteristic temperature regions of the 

relaxation time behaviour have been found. Particularly, the transversal relaxation rate increases 

for the temperatures from -100C to +45-500 C. For the temperatures below -100C the relaxation 

ratio changes very slowly and the transversal magnetization decay tends to the typical 

monoexponential curve. For the higher temperatures the relaxation curve has non-exponential 

character. For the temperatures above 450C the slow decrease of the relaxation rate is observed. 

Such a picture is not typical for liquids or low-molecular LC, where the transversal relaxation 

rate normally decreases more or less monotonously with the temperature. The analysis of the 

relaxation data was done in a frame of Anderson-Weiss [C.8] approach supposing the 29Si CS 

tensor axis reorientation as the primary relaxation mechanism. It was found that different 

behaviour of the transversal relaxation at different temperatures can be explained using the 

strong, exponential and weak model of the molecular motion correlations. Additionally, the 

influence of the 29Si-29Si and 29Si-13C dipolar interactions has to be taken into account to explain 

the relaxation behaviour at temperatures far low than glass transition point. This conclusion was 

additionally supported with the relaxation experiments using Curr-Purcell-Meiboom-Gill pulse 

sequence (CPMG) [C.9,10] 

However, this is the topic of the separate work to be published as an independent research. 



 It was shown, that for the β-function experiments the low temperatures, which provides 

a relatively slow transversal relaxation, are most appropriate when studying the polysiloxane 

LCSP samples because of the following reasons:  

(i) Fast transversal relaxation destroys the most part of the signal before β-function 

achieves its maximum and, therefore, the experimental data suffers from low signal-

to-noise ratio. 

(ii) When the relaxation time is shorter than the characteristic time of dipolar correlations 

the β-function loses its features corresponding to the orientation effects. The reason is 

that in this case the most part of the low frequency β-function harmonics, which 

contain the orientational information are destroyed before they can produce a 

detectable contribution to the β-function.  

(iii) The relaxation behaviour at low temperatures has the monoexponential behaviour that 

can be taking into account in the easiest manner in theoretical consideration. 

8. The experiments on a disordered (polydomain) sample of polysiloxane M4 have been done with 

purpose to estimate the value of dipolar coupling constant ω0D. The method of the β-spectra 

analysis has been applied. The obtained value of ω0D was employed for the data analysis of the 

experiments with oriented (monodomain) samples. Additionally, the obtained value has been 

used to determine the angle at oxygen atom in Si-O-Si bonds, which was found to be in perfect 

agreement with the results of quantum chemistry calculations. 

9. The experiments on orientation dependence of β-function were done on monodomain 

polysiloxane M4. The special procedures of the signal intensity calibration had to be used to 

make possible the comparison of the β-functions recorded at different sample orientation. The 

low-passing Fourier filtering has been applied (with preliminary tests and simulations) to reduce 

the noise factor influence and performing a curve smoothing, that is important for the orientation 

parameters estimation with minimal error. The parameters of the ODF Legendre expansion were 

extracted from the 3 characteristic β-function orientation dependences. The iteration procedure 

of the subsequent approximation has shown a good convergence. The total error of the ODF 

reconstruction using the obtained value of <P2> and <P4> does not exceed 10% if not to take 

into account the systematic error originating from the omitting of the higher ODF moments 

influence.  

10. The β-function experiments on the polysiloxane M6 required an additional measurements in 

order to find such an orientation of the sample at which the main chain segments are aligned 

preferably parallel to the magnetic field (NMR laboratory frame). This was done using the initial 

stage of β-echo evolution when the highest frequency β-function components dominate. The 



following procedure of the <P2> and <P4> ODF moments estimation was completely analogous 

to the one used for the M4 sample. Due to the less amount of substance available and, therefore, 

worse signal sensitivity in the experiments, the error of the ODF reconstruction in the case of M6 

is higher for the M4 sample. However, the orientation degree (<P2>) is higher (in a factor of 

≈2.5) for the M6 as well, so the ODF reconstruction quality is more or less equal in both cases. 

Simultaneously, the conventional 29Si and 1H spectra were recorded. This allows one finding the 

mutual relation between basic molecular frames of the sample. Particularly, the preferable 

orientation of the main-chain segments in the M6 sample was found to be orthogonal to the local 

director (side-chain). In addition, the small difference was found between the orientation of main 

chain obtained by from 29Si CS spectrum angular dependence and from the β-function.  

 The sufficient novelty of the presented work, by our knowledge, is the application of β-

echo for the case of non-enriched, low-abundant spins as 29Si in the case when weak bilinear 

anisotropic spin interaction are masked by presence of the strong linear ones. It can be concluded 

that β-echo can be considered as an effective selective method for the NMR signal of the spins 

coupled via homonuclear dipolar interaction, providing the suppression of the signal from non-

coupled spins. Equally, this technique can be employed for the detection of the quadrupolar 

interaction. The theoretical consideration of β-echo evolution for quadrupolar interaction with 

spin I=1 will be equivalent to the case of two spins I=1/2. 

  Most of the similar techniques used for weak dipolar interaction detection are based on 

double quantum filtering (INADEQUATE, C7, DRAMA, etc) [C.11-13]. The sufficient 

advantage of the β-echo is that single quantum coherence is detected and therefore the double 

quantum filter loses are avoided. Also, the β-echo does not require the MAS rotation which is 

used in most of the double quantum (including the «r.f. dipolar recoupling») methods to 

overcome the line broadening due to CS anisotropy. [C.14-16]. That way, it can be applied for 

the ODF estimation using the sample reorientation with respect to magnetic field that would be 

not possible together with MAS. A relatively long experimental time, which were required for 

the measurements have been done in the present work is not an intrinsic property of β-echo 

technique itself, but concerned with the low-natural abundance of the 29Si spins.  

 The simplicity of the β-echo pulse sequence allows one, in principle, implementing a 

number of different extensions of the basic experimental technique. Particularly, the combination 

of the β-echo signal selection with the further detection of dipolar interaction by the Carr-Purcell 

echo track was tested. The results of these measurements have shown that a rough estimation of 

dipolar coupling constant can be done rather fast with this technique. However, this method 

faces with a number of experimental and theoretical problems, which have to be solved before its 

application in practice.  
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 A-1

Appendix I. Liquid Crystals 
 
A1.1 Liquid Crystals. General Overview. 
 The properties of the substance in the liquid crystalline state are intermediate between the 
properties of the isotropic liquid and solid state crystal. As in liquid state there is no long-range 
translational order in the liquid crystals. In the same time the molecules still keep the long-range 
orientational order i.e. similarly to the solid-state, the liquid crystals demonstrate the anisotropy of the 
optical, electrical, magnetic and other properties.[A1.1]  

Generally, the trend to create a LC phase is inherent to those substances the molecules of which 
have the anisotropy of the shape like rods, disks, etc. In this case the anisotropy of the properties can 
follows from the sterical reasons–there is no possibility to allocate spatially the relatively dense system of 
the anisotropic particles in the isotropic manner. The characteristic orientational order of the liquid crystal 
state is between the «normal» solid and liquid phases and this is the origin of the term mesogenic state (or 
mesophase), iused synonymously with liquid crystal state.  

A1.2 Characterizing Liquid Crystals 
 The following parameters describe the liquid crystalline structure: (1) Positional Order, 
(2)Orientational Order, (3)Bond Orientational Order  
Each of these parameters describes the extent to which the liquid crystal sample is ordered. Positional 
order refers to the extent to which an average molecule or group of molecules shows translational 
symmetry (as crystalline material shows). Orientational order, represents a measure of the tendency of 
the molecules to align along some preferable direction on a long-range basis. Bond Orientational Order 

describes a line joining the centers of nearest-neighbor molecules without requiring a regular spacing 
along that line [A1.1].  

A1.3 Orientational order tensor and order parameter. 

 The distinguishing characteristic of the liquid crystalline state is the tendency of the molecules 
axes to point along a common axis, called the director. This is in contrast to molecules in the liquid 
phase, which have no long distance order. Due to the intrinsic anisotropy of the liquid crystalline state it 
is natural to characterize the ordering of the molecules with some tensor. In the first time it was done in 
the Mayer-Saupe theory of the liquid crystalline state [A1.2] and in the works of Landau. The most 
common approach to the orientational order tensor was developed later in de Gennes treatment [A1.3]. 
The tensor description gives the orientation of the macroscopic local director (usually it is the optical axis 
of the LC) with respect to molecular frame axes (see Fig A.1.). In Mayer-Saupe approach the order tensor 
is given as: 

3 1
cos cos 1

2 2ij i j ijS θ θ δ= − −                                                     (A1.1) 

where θi i=x,y,z denotes the angle between the local director and the corresponding axis of the molecular 
frame. The brackets mean thermal motion averaging in time. For the threefold o higher symmetry of the 
molecule the only one angle remains relevant. In this case the order tensor Ŝ  has no off diagonal 
elements: 

Smectic A Smectic C 

Fig A1.1. The examples of different LC phases. (a)-nematic: the long molecular axes have the preferred orientation 
along the local director. The phase exhibits no translational order for the centers of gravity of the molecules. 
(b)Smectics: the molecules are arranged in layers demonstrating orientational and translational ordering inside of 
them. Normally no correlation in the ordering of two different layers can be found.  

Nematic 
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where P2(cos(θ)) means the second order Legendre polynomial. The scalar factor S usually is called the 
order parameter of the liquid crystalline phase. S=1 corresponds to the absolutely ordered system where 
all the long molecular axes are parallel to the local director. S=0 means fully disordered isotropic state. 
Typical value of the order parameter of the LC varies from 0.4 to 0.9.  

A1.4 Polymorphism. Liquid crystalline subphases.  
 The significant part of the mesomorphic substances demonstrates the ability to exist in more than 
one liquid crystal structure i.e. the shows the LC phase polymorphism. The subphases of the LC state 
differs by the type of the both orientational and positional orders of the molecules. Usually the following 
main types of the LC can be distinguished: 

 A. Nematic Phases The nematic liquid crystal phase is characterized by molecules that have no 
positional order but tend to point in the same direction (along the director). In the Fig A1.1, it can be 
noticed that the molecules point vertically but are arranged with no particular order. The nematic state is 
the most low-ordered possible state of the LC and is characterized with the order parameter from 0.4 to 
0.7 for low molecular LC.  

B. Smectic Phases The smectic state is another distinct mesophase of liquid crystal substances. 
Molecules in this phase show a degree of translational order not present in the nematic. In the smectic 
state, the molecules maintain the general orientational order of nematics, but also tend to align themselves 
in layers or planes. The smectic state is more ordered than the nematic with order parameter achieving the 
value S=0.9. Many LC compounds are observed to form more than one type of smectic phase. As many 
as 12 of these variations have been identified, however only the most distinct phases are discussed here. 
In the smectic-A mesophase, the director is perpendicular to the smectic plane, and there is no particular 
positional order in the layer. The smectic-B mesophase orients with the director perpendicular to the 
smectic plane, but the molecules are arranged into a network of hexagons within the layer. In the 
smectic-C phase, molecules are arranged as in the smectic-A, but the director is tilted at a constant angle 
to the smectic plane. In some smectic mesophases, the molecules are affected by the various layers above 
and below them. Therefore, some three dimensional order is observed. Smectic-G is an example 
demonstrating this type of arrangement. 

A1.5. Macroscopic ordering of LC. Monodomain and polydomain samples.  
 As it was mentioned above the local director gives the preferable orientation of the molecules of 
the liquid crystals. However, the director orientation itself is not necessary to be the same within whole 
LC sample. Usually, the part of the LC sample where the local director field is homogeneous (i.e the 
director orientation does not fluctuate significantly from point to point) is called the LC-domain. If the 
director field orientation is homogeneous within the whole sample it is called «homogeneously oriented» 
or monodomain. In other case, when the orientation of the director fluctuates significantly within the 
sample it is named polydomain . To describe the probability of the director orientations distribution 
function P(α) can be used. One of the frequently used in different works model of P(α) based on so called 
Mayer-Saupe potential approach is shown on Fig A1.3 [A1.6]. Similarly to the microscopic order 
parameter S which quantify the ordering of the molecular axes with respect to the director, the ordering of 
the director field itself can be described in the term of the orientation degree represented by the second 
Legendre polynomial averaged with the orientation distribution function P(α). To distinguish this 

θi=∠ (N,Yi) 

Y3 

 

Y2 

Y1 

N 

Fig A1.2 Representation of the relationship between the molecular and local director frame to introduce the LC order parameter tensor.  
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orientation parameter of the macroscopic domains from the local molecular order parameter it is usually 
called the orientation degree : 

2

0

1
( ) (3cos ( ) 1)

2
M

S P d
π

α α α= ⋅ −∫                                            (A1.3) 

A1.6 Influence of the external electric and magnetic fields on the orientation and structural 
properties of liquid crystals. 

On of the specific and important properties of the LC state of the substance is the ability to 
change the structure and the molecular ordering under influence of the electric and magnetic fields. The 
background of the most of the known electric and magnetic effects in the LC is the reorientation of the 
director of the LC domains under the influence of the external field or the flow caused by it. The direct 
reason of the reorientation lays in the anisotropy of the electric and magnetic properties of the LC 
(electric and magnetic anisotropy ∆ε=ε||-ε⊥  and ∆χ=χ||-χ⊥  denoting the difference of the corresponded 
magnetic and electric constants in parallel and transversal direction with respect to local director). The 
processes of the molecular rearrangement depend on the initial orientation of the molecules as well as the 
from the viscoelastic properties of the LC. [A1.1]. The process of the reorientation has the step character 
The corresponding values of the barrier voltage and magnetic field strength can be expressed as: 

0 0
4 4

ii ii
U K H d Kπ ε π π χ= ∆ = ∆ ,                                      (A1.4) 

where Kii the elastic constants of the corresponded deformation type, d is the liquid crystalline layer.  

 A1.7 Obtaining the monodomain LC samples with external magnetic field. Determination of the 
LC orientation degree by means of NMR. 

The orientational influence of the external fields on the LC can be used to obtain the samples with 
monodomain structure. When the electric or magnetic field is applied to the LC sample, all the domains 
will get the same orientation of the local director forming the monodomain sample. However, the 
fulfilling of the conditions A1.4 can require the extremely large magnitude of the electric or magnetic 
field for the highly viscous LC subphases like smectic. That way in practice, to be oriented, the sample 
have to be turned by heating into low viscous nematic phase or the state of isotropic liquid and then 
cooled down (or quenched) to the high viscous state in presence of the external orientation field. In this 
case the orientation achieved into the low-viscous case will be fixed and remains unchanged even if to 
switch off the external orientation field. For the low-molecular LC normally the nematic state is low-
viscous enough to obtain the homogeneous orientation of the entire sample. However, for the part of 
polymer LC the orientation by the external field is not possible even in the nematic state. In this case the 
orientation degree achievable by the cooling down the sample from isotropic state can sufficiently low 
than the (molecular) microscopic order parameter SM. The situation is more entangled in the case of side-
chain polymers where the ordering of main chain is quite different form the order of mesogenic units (see 
Chapter I). 

 
 

N 

Monodomain LC  Polydomain LC  

Fig A1.3. The domain structure in liquid crystals. Monodomain sample (left) exhibits the homogeneous orientation of the 
director field within entire sample volume, while polydomain (right) sample demonstrates the distribution of the directors 
orientation of different sample regions.  
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A1.8 Macroscopic orientation degree estimation using the scaling of the NMR interaction by the 
molecular ordering. 
 One of the approaches to the estimation of the macroscopic orientation characteristic of the LC is 
based on the analysis of the angular dependence of the NMR spectra of the completely or partially 
oriented LC sample [A1.6]. According to Appendix II the parameters of the NMR wideline spectrum 
(particularly the second moment M2) depends on the orientation of the sample director with respect to the 
external magnetic field in which the spectrum is recorded. For the case of the monodomain sample the 
local (microscopic) and macroscopic order parameters are the same, so the orientation degree can be 
estimated by the analysis of the angular dependence of the NMR spectrum. The corresponded NMR 
experiment is only possible in the case when the LC has the high-viscous state in which the orientation 
structure created in the initial position remains unperturbed when the sample is turned on some angle in 
the magnetic field. For the partially oriented sample (polydomain) the directors orientation distribution 
P(α) have to be taken into account. The NMR spectrum S(ω) in this case represents the superposition of 
the subspectra Sα(ω) from the domains with different orientation of the local director scaled according to 
its local tilting angle α: 

0

( ) ( ) ( ( ))S P S d
π

αω α ω α α= ∫                                               (A1.5) 

The orientation degree can be found using (i) some model function (see A1.7) or (ii) by the deconvolution 
of the NMR spectral density function (A1.7) to extract the numerical (usually) representation of P(αααα) by 
the special calculation procedure. The example of the orientation degree estimation based on the 
Gaussian-like model function P(α)=A⋅exp(K⋅cos2(α))is shown on (Fig A1.3). The orientation “quality” 
factor K was estimated using the angular dependence of the second moment of the NMR wideline 1H 
spectrum M2(β) (Fig. A1.5). The orientation quality was estimated for the polyacrelate LC sample 
oriented in the magnetic field of different magnitude. As it was expected, the orientation degree increases 
with the field strength. The plateau of the K(H0) dependence is achieved at H0=1.4T. However, the 
orientation quality depends strongly on the ratio of the sample cooling down from the melting point. The 
smaller temperature decrease speed the better orientation can be achieved. This can be obviously seen by 
the Fig 1.5 where most prominent angular dependence of M2(β) corresponds to the lowest sample cooling 
ratio.  
                                                 
 

0.0 1.0 2.0 

10 

H 

β 

0 90 0.0 

1.0 
M2(β)/M2(0) K 

Fig A1.5. Angular dependence of the NMR wideline spectrum cooled down at different intensity of the external 
orientation field and with different temperature decrease ratio.  
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Fig A1.4. NMR experiment on orientation degree evaluation. The NMR spectrum is recorded at different orientations of the sample 
director N(β) (defined by the initial sample orientation N(0)) with respect to the magnetic field H0 ). The directors’ reorientation 
scales the corresponded nuclear spin interaction leading to the corresponded changes in the NMR spectrum lineshape (right). 
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A2A Appendix II 
 A2.1. NMR basics. 

The phenomenon of Nuclear Magnetic Resonance (NMR) [A2.1,A2.2] is widely used in 
a great amount of the researches of a various class of objects. It is employed for the dynamical 
and structural investigation, qualitative and quantitative analysis both on micro and macro levels. 
Each special branch of the NMR applications has a great number of features and requires the 
individual description, which, of course, has been done in many textbooks [A2.3-6]. However, 
basic principles of the NMR are common for all kinds of its applications. These principles can be 
considered in two different manners. The dynamic of the isolated nuclear spins can be understood 
in terms of classical motion of the magnetization vector. To describe the coupled spins, however, 
it is necessary to have recourse to the quantum mechanical formalism where the state of the 
system is expressed in terms of wave functions or more generally by a density operator [A2.6,7]. 
In following section some theoretical foundation of both approaches will be introduced.  

A2.1.1 Nuclear magnetization 
To understand the origins of the nuclear magnetization the one should refer to the basics 

of quantum mechanics [A2.8], particularly the property named angular momentum or spin. The 
spin is quantum mechanical operator which eigenvalues can be integer or half-integer. Often the 
spin quantum number I is referred as to spin. For example, 1H, 13C, 29Si are often called «spin ½ 
nuclei». Almost for all elements in the periodic table has isotope with non-zero spin. The 
magnetic moment is proportional to the spin I of the nucleus: I Iµ γ= � , where � is Plank 
constant and γ defines the gyromagnetic ratio of the nucleus, and can assume both positive and 
negative values. 

A2.1.2 Bloch equations 
In the case of independent spin I=1/2 nuclei the motion of the ensemble of nuclear spins may be 
described in terms of the precession of the spin magnetization vector that is the macroscopic 
sum of the individual nuclear magnetic momentum: 

  
1

N

k
k

M µ
=

=∑ ,                                                (A2.1.1) 

Equating the magnetic torque for the angular momentum γM connected with macroscopic 
magnetization we obtain: 

d dt γ= ×M M B ,                                           (A2.1.2) 

The solution to eqn. A2.1.2 where the B0 corresponds to a precession of the magnetization about 
the external field direction at the rate called the Larmour frequency =γB0.[A2.1] The resonant 
phenomenon arises from the application of the oscillated r.f. field on frequency ω0. To obtain the 
expression for the spin evolution we need the circularly polarized component of the oscillating 
transverse field: 

 1 1 0 0( ) cos sinx yB t k B t k tω ω= ⋅ +                                          (A2.1.3) 

where kx,ky,kz, denotes the unit ort of the coordinate frame. Under the initial condition M(t)=M0kz 
the solution of A2.1.2  can be written as :  

0 1 0 0 1 0 1sin sin sin cos cosx y zM M t t M M t t M tω ω ω ω ω= = =                    (A2.1.4) 

       where ω1=γB1.  The expression A2.1.4 describes the simultaneous nutation about the 
stationary field B0 at the Larmour frequency ω0 and precession around the field B1 at the 
frequency ω1=γB1. For the purposes of illustration it is convenient to turn into the rotating frame, 
which coordinated axis x and y rotates with the frequency ωR about z directionю 
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In this case the magnetization vector “feels” the effective longitude field Beff=B0-ω/γ. obviously, 
at resonance conditions ω=ω0, the B1 field is also stationary and only the precession around B1 
field is apparent. It is now easy to visualize the influence of the of a short burst pulse of the 

resonant field B1 known in NMR as “rf-pulse” (Fig A2.1.2).. If the duration of the pulse is τ the 
rotation angle of the magnetization vector will be ω1τ=γB1τ. It is also important that the initial 
phase of the r.f. field B1 establish the direction of the magnetization vector rotation. The 
significance of the initial phase angle becomes important when the second pulse is applied after 
the first one. If to denote the initial direction of the magnetization tilting as X-axis then the r.f. 
pulse is usually called θ±y, where θ means turning angle and index “y” labels the axis about which 
the rotation is performed. Obviously, if the next r.f.-pulse is phase shifted on 900 it corresponds to 
the rotation in the direction of y-axis and will be called θ±x. 

A2.1.3 Relaxation 
The effect of the resonant r.f. pulse is to disturb the spin system from its thermal 

equilibrium state. Then, the equilibrium will be restored by a process called NMR relaxation. 
This process involves the exchange of the energy both inside the spin system and between spins 
and external thermal reservoir known as “lattice”. The phenomenological description of this 
process is given by equation: 

( )0 1z zdM dt M M T= − − ,                                         (A2.1.5) 

where T1 is known as the spin-lattice (or “longitudinal” ) relaxation.  Similarly, the transverse 
magnetization, being disturbed by the r.f. resonant excitation, returns to the equilibrium state 
(equal to 0) with characterized time T2 called spin-spin (or transversal) relaxation time. Despite 
of the apparent similarity, the nature of transversal and longitudinal relaxation is different. As 
indicates the name the spin-spin relaxation leads to the establishment of the thermal equilibrium 
within the spin system and corresponds to the dephasing of the coherent quantum state [A2.6]. 
The phenomenological description of the transverse relaxation subdues the equation similar to the 
eqn (A2.1.5), namely: 

, , 2x y x ydM dt M T= −                                                (A2.1.6) 

This is expression is valid in Blombergen Purcell and Pound (BPP)[A2.10] theory approach 
which works well for spins residing in liquid state molecules. 

Combining the equations A2.1.6 and A2.1.7 we obtain the complete view of Bloch equations: 

θ=ω1τ 

B1 

x 

y

z

Fig A2.1.1 In the rotating frame where B1 is stationary the effective longitudal field is zero on resonance and only the 
precession about B1 is apparent.   
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                             (A2.1.7) 

which provides the classical description of the many phenomena important in NMR applications.  

A2.1.4 Signal detection. 
Suppose the coil of the r.f. resonant circuit tuned on the Larmour frequency is placed 

around the sample with the symmetry axis transverse to the polarizing external field B0.  In 
laboratory frame the transverse magnetizations precessing around B0 will induce an oscillatory 
e.m.f. at Larmour frequency ω0. The transversal magnetization following the excitation r.f. pulse 
can be found as the solution of Bloch equations: 

0 0 0 0
2

( ) cos sin exp( )y
tt M t M t Tω ω = + ⋅ − xM k k                           (A2.1.8) 

To be observed the high-frequency NMR signal is mixed with heterodyne signal with frequency 
offset ∆ω. As the result we get an output signal (in complex form): 

0
2

( ) exp( ) exp( ) exp( )tS t S i t i Tω φ −= ∆ ⋅ ⋅ ,                       (A2.1.9) 

where ϕ is absolute receiver phase (adjustable parameter) and S0  is the initial signal amplitude 
immediately following the r.f. pulse. The NMR signal measured as decaying voltage is therefore, 
known as Free Induction Decay (FID). With the Fourier transformation the signal can be 
represented in frequency domain. The real part of the Fourier image of S(ω) is usually called 
absorption line. At phase ϕ=0 the absorption represents the Lorenz line with width at half-
maximum equal to 21 Tπ . The imaginary part called dispersion at ϕ=0 is symmetrical with 
respect to the ∆ω=0 (See Fig A2.1.5). 

A2.1.5. Simple (Hahn) spin echo. 
 The inhomogeneity of the external magnetic field as well as local fields leads to the differing of 
the precession frequency for different locations in the sample.  The frequency spread leads causes 
the dephasing of the FID following the 900 pulse. The transverse magnetization coherence state, 

therefore, has the lifetime T2
* =(γ∆B0)-1 which is smaller than the “true T2” 

Imaginary spectrum 

t 

Re {S(t)} (a) Im{S(t)} (b) 

∆ω 

Real spectrum  

Re {S(ω)} 

Im{S(ω)} 

A2.1.5 FID following the excitation r.f. pulse. The real and imaginary phase correspond to receiver-phase (ϕ=0). 
The complex Fourier transformation gives absorption and dispersion components at heterodyne offset frequency 
∆ω. 
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 originated from the spin-spin interactions. Here ∆B0 denotes the maximal external field 
inhomogeneity (of all the types). However, already in the first years of NMR development 
Hahn[A2.23] shown that the losses of coherences are reversible. By applying the 1800 after the 
time delay t=τ, one can obtain the signal of “spin-echo” in the moment of t=2τ after the first 

pulse 900 pulse sequence is shown on Fig A2.1.6.   

 

It is important to notice that the phase and duration of refocusing pulse can be set more or less 
arbitrary. The first echo observed by Hahn was obtained using the pair of 900 pulses. However, in 
such a case the refocusing will be incomplete and echo amplitude will be only ½ of maximal 
possible achieved by the 1800 refocusing pulse. Particularly, this property is used in the β-echo to 
provide the compensation scheme. The precise consideration using the classical approach is done 
in Appendix III and with density matrix formalism in Chapter III.  

FID 

Excitation pulse  Refocusing pulse 
Spin Echo

τ τ 

„T2
* decay“ 

„True T2“ – transversal 
relaxation decay 

Fig A2.1.7 Spin-echo signal.  The transverse magnetization after the 900 pulse falls down with the 
characteristic time T2* being dephased in isochromats. (Fig A2.1.6) The refocusing pulse perform 
”time reversing” and brings all the components back excepting loses due to spin-spin (transversal) 
relaxation. The sign and amplitude of echo depend on phase and duration of the refocusing pulse. 

X 

X 
1800

X 

1800
Y 

Excitation (900
X) Refocusing  Spin-echo 

Fig A2.1.6 Spin echo classical illustration in the rotating frame system. The excitation by 90x pulse turn the 
magnetization along y-axis. The inhomogeneity of the magnetic field makes different components 
(isochromats) of the magnetization rotate with different frequencies (either faster or slower than rotating frame
depending on the local field offset) leading to dephasing. The 1800 pulse turns magnetization depending on its 
phase around x, or y axis. In both case the direction of the isochromats rotation changes on opposite. 
Therefore, after the time period exactly equal to the dephasing one all the isochromats will concentrate in one 
vector producing the spin-echo-signal. (see Fig A2.1.7) 

Dephasing stage Time reverse stage 

ω0=γB0 ϕi=τ∆ωi=γ∆Biτ 

∆ωi→-∆ωi ϕi-dephasing angle τ τ 
T2 
decay 

ϕi 

ϕi+-ϕi→0 
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A2.2 Spin interactions 
The intensity of the nuclear spins interaction determines the separation of the energy levels of 

the spin system and, therefore, the corresponding resonance frequencies. The full Hamiltonian of 
the spin system is the sum of the individual contributions responsible for the specific kind of the 
interaction of spins inside the system or with surrounding (“lattice”). In the following the 
individual spin interactions which are the most important for the solid-state NMR and especially 
for the investigation of the orientation of the molecular order will be considered. 

A2.2.1 Zeeman interaction.  

Zeeman interaction, i.e. interaction of the spins with external magnetic field is usually a largest 
one in NMR spin system Hamiltonian. It is essentially defines the level of the nuclear polarization 
(see A2.1).  

0

Z

Z zH C I B=                                                                 (A2.2.1) 

Here Iz denotes the matrix of the z-projection of spin operator. B0 – the external magnetic field. 
The prefactor CZ can be found in table A2.2.1. The energy level splitting resulting from HZ 
defines the NMR Larmour frequency (see Eqn A2.1.2). It is important to notice that the other 
nuclear spin interactions in NMR are normally considered like a mere perturbation of the Zeeman 
interaction. The first-order perturbation theory is usually used in NMR to calculate the frequency 
shift arising from other types of interactions excepting the case of strong quadrupolar coupling.  

A2.2.2 Quadrupole interaction 
The second largest interaction in NMR Hamiltonian is usually the quadrupolari that is the 

interaction of the electric quadrupolar momentum of nuclei and local electric field gradient 
established by the electron surrounding. It is important, that only the spins with I ≥1 exhibit the 
quadrupolar momentum and therefore it plays no role for the 1H, 29Si, 13C and other nuclei with 
spin I=1/2. The quadrupolar Hamiltonian is expressed by the operator: 

ˆˆ ˆ ˆQ

QH C IQI=                                                                        (A2.2.2) 

Where I is the matrix of full spin operator Q is the quadrupolar coupling tensor. Obviously, the 
quadrupolar Hamiltonian is bilinear with respect to the nuclear spin operator. The tensor Q is 
proportional to the tensor of electric field gradient. The quadrupole interaction can not be 
observed in the case of the averaging by the fast molecular motion which takes place in liquids. 
The quantity CQ is a proportionality factor defined in Table A2.2.1. 

A2.2.3 The direct dipole-dipole interaction 
The dipole-dipole interaction describes the through-space coupling of magnetic moments 

(Fig A2.2.1b). The Hamiltonian for the homonuclear dipole-dipole coupling of two spins I=1/2 
looks similar that one for the quadrupole coupling for the spin I=1, because in both cases the total 
spin number of the system is equal 1. However the energy levels perturbation for the dipolar 
interactions is sufficiently smaller than the quadrupolar and usually varies from 10 to 100 KHz 
for 1H in solids but can be significantly smaller for other nuclei. The Hamiltonian operator for the 
coupling between two spins can be written as:  

ˆˆ ˆD

DH C IDS=                                                   (A2.2.3) 

where I and S are the spin vector operators of the coupled nuclei. The prefactors displayed in 
Table A2.2.1 shows that the coupling energy is reverse proportional to the cube of the distance 
between nuclei. This dependence provides highly valuable information about internuclear 
distances in solids. Similarly to the quadrupolar tensor the trace of the dipolar is zero. So the 
dipolar coupling places no role in liquids under fast motional averaging conditions. 
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A2.2.4 Magnetic shielding (Chemical shift) 
 The externally applied magnetic field is shielded at the site of the nucleus by the 
surroundings electrons. As the result local fields influenced on nuclei differs from the external 
both in magnitude and direction can be written as:  

0
ˆ(1 )locB Bσ= −                                                          (A2.2.4) 

where σ is chemical shift (CS) tensor [A2.11]. Differently from the quadrupole and the dipole-
dipole interactions, the shielding is dependent on the strength of magnetic field B0. It is also 
linear interaction with respect to spin operator contrary to the bilinear dipolar and quadrupolar: 

0
ˆ ˆ ˆH C I Bσ

σ σ=                                                        (A2.2.5) 

The principal values of the CS tensor are established for a great number of compounds and can be 
found in literature [A2.12-14]. The averaging of tensor gives isotropic chemical shift constant: 

{ }1
ˆ

3iso Spσ σ=                                                            (A2.2.6) 

Practically σiso shows the difference between the Larmour frequency of shielded and non-shielded 
nuclei.  Because of the sensitivity to the properties of the electron clouds of atom and features of 
the chemical bonds the chemical shift is the standard tool used for structure elucidation, 
qualitative and quantitative analysis and many other chemical applications. Because of the 
dependence on the magnitude of the applied external field it is convenient to measure the 
chemical shift value in relative units with respect to some standard NMR frequency: 

0

0

Lω ω
δ

ω
−

=                                                                  (A2.2.7) 

Here δδδδ denotes the relative chemical shift, ωL – observed resonance Larmour frequency and ω0 is 
the reference standard frequency. In literature the value of relative chemical shift is usually given 
in ppm (parts per million). For example, the range of chemical shift for 1H nuclei in different 
substances covers 13ppm, while that of 13C achieve 250ppm [A2.15]. The highest known 
chemical shift has the 129Xe nuclei which can extend up to 8000 ppm.  

A2.2.5 General formalism 
The important point making the consideration of all kinds of anisotropic spin interaction 

very similar is that the corresponded Hamiltonian can be separated in spin depended and spatial 
(angular) depended part [A2.16,17]. First, the common properties of the spatial part will be 
considered as the most important for the aims of our work.  For each type of the interaction 
mentioned above the spatial part of Hamiltonian expressed by the corresponded tensor Pλλλλ (where 
λ indexes the specific type of the interaction) can be expanded  in isotropic part Pλλλλ

(0), 
antisymmetric part P(1)

λλλλ
  and symmetric part P(2)

λλλλ, with zero trace. Omitting in following index λ 
for simplicity the tensor components can be written in principal axes system XYZ of the 
symmetric part as: 

( 0 ) (1 ) ( 2 )

1 (1 ) 0 021 0 0 0
ˆ 10 1 0 0 0 (1 ) 02

0 0 1 0 0 0 1

xy xz

xy yz

xz yz

P P
P R P P

P P

P P P

η

δ η

 − +
    
   − = + − + −    
 − −      

 

+ +

(A2.2.8) 
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Because angular representation of the spin interaction anisotropic character is more convenient, 
the spherical coordinates instead of Cartesian is preferred [A2.18 The expression (A2.2.8) will 
represent the sum of the second rank irreducible tensors with corresponded components {Plm}: 

00 10 1 1 20 2 1 2 2

3 1
, 2 ; ; 0;

2 2xy xy yzP R P i P P P P P P Pδ δη± ± ±= = − = + = = = −       (A2.2.9) 

The isotropic part which is always observable even in fast motional averaging regime is defined 
as: 

{ }1 1 ˆ( )
3 3xy yy zzR P P P Sp P= + + =                                                 (A2.2.10) 

In first order of the perturbation theory the NMR frequency is determined by the only isotropic 
and symmetric terms. The effect of antisymmetric is not observable [A2.11]. Two parameters are 
sufficient in symmetric parts which defines the anisotropic part of the frequency changes due to 
the spin interactions. These are the principal value of the anisotropy δδδδ or ∆∆∆∆: 

( 2 ) 2 2

3 3 2
xx yy

zz zz

P P
P Pδ

+∆
= = = − 

  
                                 (A2.2.11) 

and the asymmetry parameter ηηηη : 

yy xx yy xx

zz

P P P P

P R
η

δ

− −
= =

−
                                                    (A2.2.12) 

where the principal values are ordered according to Haeberlen [A2.19].  

For different interaction λ the expressions for R, δ and η are listed in Table A2.2.1 [A2.18,20] 
Using the tensor representing the different interactions λ, the generic Hamiltonian can be 
expressed in terms of the irreducible spherical tensors: 

2
( )

,
0

ˆ ( 1) ( , , )
l l

m l

lm lk k m
l m l k l

H C T P Dλ λ λ

λ ϕ θ ψ−
= =− =−

= −∑∑ ∑                  (A2.2.14) 

Here Plm and Tlm describe the space- and spin-depended parts of the Hamiltonian respectively. 
The components of Tlm can be found in table A2.2.2. Equation A2.2.14 is valid in laboratory 
frame system connected with external magnetic field B0. However, the principal values of the 
spin interaction tensors R, δ, η, are expressed in the principal axes frame. To recalculate the 
tensors component of two systems connected with the set of Eulerian angles ϕ,θ,ψ, the Wigner 
matrices D(l)

km (ϕ,θ,ψ) are used. The elements of the matrices of different order can be found in 
literature[A2.12]. 

A2.2.6. Strong magnetic field approximation. 
In strong magnetic field the resonance frequencies are determined mostly by the Zeeman term of 
the NMR Hamiltonianii. All other terms can be considered as a perturbation of the energy levels. 
In secular approximation of the perturbation theory only the terms of interaction Hamiltonian 
which are diagonal in eigenbasis of the Zeeman Hamiltonian are relevant. These are the 
components of T00 and T20 [A2.12, A2.21]. The anisotropic part of the Hamiltonian can be then 
written as: 

2 2

20

1 3
3cos 1 sin cos(2 )

2 2
H C Tλ λ

λ λ λδ θ η θ ϕ= − −                           (A2.2.15) 
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 The Euler angles θ and ϕ are the polar angles which determine the orientation of the magnetic 
field B0 in principal axes system of tensor P. (see Fig A2.2.1).  

Within first order perturbation theory the only transitions between levels with difference of 
magnetic quantum number m=±1 are allowed. This gives 2I+1 lines for the interaction of a spin I 
nucleus. Therefore, dipolar (for 2 spins I=1/2) and quadrupolar couplings (for I=1) appears like a 
splitting of the resonance line in two. For CS interaction of I=1/2 the only one line is observed 
shifted at the position defined by the perturbation Hamiltonian Hσσσσ . The coupling tensor of the 
dipolar interaction is always axially symmetric. The symmetry of the quadrupolar tensor and the 
tensor of chemical shift depends on the electron density configuration in the surroundings of the 
nuclei. The summary of the frequency and lineshape changes due to the different spin interactions 
are shown in Table A2.2.3.  

 

                            Cλ                                  R                        δ                δ                   η 

Zeeman               Z                       -γ                         1                 -                  - 

Quadrpolar        Q                   eQ / [2I(2I-1)]        0                  eq               ηQ 

Dipolar              D                   -µ0γIγS / 4π              0                 1 / r3 
IS            - 

CS                     σ                      γ                          σ                 2∆σ /3               ησ 

γ- giromagnetic ratio, r – distance between coupled spins I and S, eq and eQ – electric field gradients and 

Table A2.2.1 Factors and constants of the couplings Hamiltonian

θθθθ B0 

z 

y 

x 
ϕϕϕϕ 

Fig A2.2.1 Polar Euler angles θθθθ and ϕϕϕϕ defined via the orientation of the magnetic field B0 in 
principal axes of coupling tensor P. 

λ                       T00                                                  T20 

Z                       IzB0                                         - 
Q                       -                                      6-1/2[3I2

z-I(I+1)] 
D                       -                                      6-1/2[3IzSz-IS] 
σ                       IzB0                                                   (2/3)1/2 IzB0 

Table A2.2.2 Spin operators Tλ
lm in laboratory frame diagonal in the egenbasis of Zeeman Hamiltonian 

(relevant for secular approximation) The full table of Tlm  can be found elsewhere [A2.12, A2.21]  
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A2.3 Density operator formalism 

A2.3.1 Density operator 
The density operator [A2.7] permits the most convenient and general description of the 

quantum mechanical system dynamics. The extensive treatment of this question is widely 
presented in literature. Here, the only basic properties of this approach to the QM description of 
the system will be done. We start with the time- independent Schrödinger equation of the wave 
function ψ(t). 

( ) ( ) ( )d t i H t t
dt

ψ ψ= − �                                            (A2.3.1) 

where H(t) is the Hamiltonian or total energy operator of the system. The Plank constant 
ћ in following consideration will be omitted for convenience and the energy will be measured in 

circular frequency units. The state function can be expanded in terms of the full orthonormal basis 

as: 
1

( ) ( )
N

i
i

t c t iψ
=

=∑                                        (A2.3.2) 

 

where the time-dependence of ( )tψ  is expressed in terms of time dependent coefficients ( )c t  
and N is the dimension of the vector space or of all admissible functions called Hilbert space (H-
space). Two cases can be distinguished for the quantum system: 

1. Pure state: all spins of the ensemble are described with the same wave-function The 
corresponding density operator ρ is defined as a product of the ket and bra vectors 

,

( ) ( ) ( ) ( ) ( )i j
i j

t t t c t c t i jρ ψ ψ= =∑                           (A2.3.3) 

2. Mixed state (ensemble in thermal equilibrium). The density operator is then understood as an 
average over the all-possible state of the ensemble with corresponding probabilities weighting: 

0 ω+ ω- 

σzz σyy σxx 

σ|| σ⊥  

Dipolar coupling of to two spins I=S=1/2 (homonuclear case) 
2

2

23

3
( 3 c o s 1 ) ( c o s ( ) )

2 2
D P

r

γ
ω θ θ

±

∆
= − =

�

Here P2(cos(θ)) – second order Legendre polynomial 

Individual lineshape Powder averaging Perturbation from Zeeman frequency 

Chemical shift 
2 2(3cos 1 sin cos2 )

2
σ

σσ θ η θ α∆= − −  

( )
2

1 ( )
3

xx yy
zz

iso xx yy zz

xx yy

zz iso

CS anisotropy

R isotropic CS

CS asymmetry

σ

σ

σ σ
σ σ

σ σ σ σ

σ σ
η

σ σ

+
∆ = − −

= = + +

−
= −

−

 

2

2
( c o s )

3i s o Pσ σ σ θ= + ∆      for σxx=σyy=σ⊥  and σzz=σ|| 

Table A2.2.3   NMR lineshape and frequency changes due to the anisotropic spin interaction summary. [A2.22] 

0
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* *

, ,

( ) ( ) ( ) ( )k k
k i j i j

i j i j
t p c t c t i j c t c i jρ = =∑ ∑ ∑                     (A2.3.4) 

For the pure state we obtain: 
*( ) ( ) ( )r sr t s c t c tρ =                                   (A2.3.5) 

whereas for the mixed states we find 
* *( ) ( ) ( ) ( ) ( )k k k

r s r s
k

r t s p c t c t c t c tρ = =∑                                   (A2.3.6) 

The interpretation of the density matrix is possible in the eigenbasis of the Hamiltonian H. The 
diagonal element ρrr is to be treated as the probability to find  system in the eigenstate r  i.e 
ρrr=Pr is the population of the energy level of state r . The off-diagonal element  

*( ) ( ) ( )rs r sr t s c t c tρ ρ= =                                              (A2.3.7) 

Indicates a “coherent superposition” of eigenstates ( ) ( )r sc t r c t s+  in ψψψψ(t) that means that 

the phase of various members of the ensemble are correlated with respect to r  and s . Such a 
coherent superposition, or simply “coherence”, can be associated with the transition between two 
eigenstates r  and s . Particularly, if two states span an allowed transition with a difference in 
magnetic quantum numbers ∆Mrs=Mr-Ms=±1, the coherence ρrs is related to the transverse 
magnetization components M± rs.=M(rs) x- i⋅M(rs) y 

 

A2.3.2 Density operator equation. 
 

 From the time-dependent Srödinger equation the equation of motion for the density 
operator can be derived. 

 [ ]( ) ( ), ( )
d

t i H t t
dt

ρ ρ= − ,                                              (A2.3.8) 

This differential equation called Liouville-von Neumann equation has the formal solution in form 
of: 

1

0

( ) ( ) ( 0 ) ( ) , ( ) e x p ( )
t

t U t U t U t T i H t d tρ ρ −
  ′ ′= = ⋅ − 
 

∫
    (A2.3.9) 

where the Dyson time-ordering operator T prescript the evaluating of the exponents in cases when 
the Hamiltonians at different time moments do not commute [ ]( ), ( ) 0H t H t′ ′′ ≠ .  

A2.3.3 Expectation values 
 For normalized wave function the expectation value A  of an operator A : 

 *( ) ( ) ( )kk k
k

A p t t A tψ ψ=∑                       (A2.3.10) 

with account of eqn A2.3.7 for ( )tρ , the expectation value of an operator can be found by 
evaluating the trace of its matrix representation product with matrix of density operator: 

{ }( )A Tr A tρ= ⋅                               (A2.3.11) 
A2.3.4 Reduced spin density operator. 
 
 The previous consideration has been done for the entire quantum mechanical system. The 
basis wave functions of H-space depend both on spatial and spin variables. However for the most 
of NMR application it is usually sufficient to evaluate the restricted amount of operators acting 
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separately on nuclear and electron spins. The rest of the freedom degrees can be referred to as the 
“lattice” reservoir.  

{ }( ) ( ) ( )ss f
f

t s f t fs Tr tσ ρ ρ′ ′= =∑ .                     (A2.3.12) 

Where s and f-denotes the spin and spatial wave functions respectively. The full Hamiltonian will 
be reduced to sH  which is the spin part acting only on spin variables, (obtained by the averaging 
of the full Hamiltonian over the spatial coordinates) 

{ }s
f

f
H f H f Tr H= =∑ .                         (A2.3.13) 

A2.3.5 Explicit matrix representation of the master equation. 
 
 The direct way of solving the master equation is to follow the explicit matrix 
representation of the density operator. 

( )rs rk ks rk ks
k

d i H H
dt

σ σ σ= − −∑                       (A2.3.14) 

The terms originating from the commutator with Hamiltonian H may be expressed by 

supermatrix element rstuH  of the commutator superoperator ˆ̂H  ( see following section). 
If the elements of density operator are arranged in the form of a column vector σ. , eqn A2.3.14 
can be written as 

ˆ̂d iH
dt

= −σ σwith the formal solution: ( ){ }ˆ̂( ) exp (0)t iH t= −σ σ         (A2.3.15) 

where (0)σ  denotes the initial state of density operator. The H-space form of the solution can be 
obtained immediately as: 

1( ) ( ) (0) ( )t R t R tσ σ −=  with { }( ) expR t iHt= − .                   (A2.3.16) 
Schematically the unitary transformation A2.3.16 can be replaced with the multiplication on 
matrix of dimension n2× n2 with column vector σ(0) 

ˆ̂( ) ( ) (0)t t=σ R σ                                    (A2.3.17) 

The supermatrix ˆ̂R can be built according (A2.3.27) 
 
A2.3.6. Liouville operator space 
 
 From previous analysis of the master equation solution it can be noticed that the 
commutator or unitary transformation influencing on density operator has the strong analogy with 
the transformations which Hilbert space operators make over its elements i.e. wave-functions on 
vectors of the state. The analogy can be preceded by introducing the superoperator space called 
Liouville space (L-space) over the space of Hilbert (H-space) operators. An example of such an 
operator relation is the commutator: 
[ ],H H Hσ σ σ= ⋅ − ⋅  it can be written in the abbreviated superoperator notation 

[ ]ˆ̂ ,H Hσ σ≡ .                                      (A2.3.18) 

An operator acting on the operators is called superoperator when: 1. ˆ̂SA L∈  and 

2. ˆ ˆ ˆˆ ˆ ˆ( )S aA bB SaA SbB+ = +  We denote supeoperators by capital letters with a double hat.  
Important classes of the superoperators. 
1.Commutator  

For each operator C a commutator superoperator ˆ̂C  may be defined by [ ]ˆ̂ ,CA CA AC C A= − = . 

When C is hermitian operator the ˆ̂C is hermitiant as well.  
2. Unitary transformation superoperator. 
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The unitary transformation 1RAR−  with { }expR iHt= −  may be expressed by the unitary 

superoperator ˆ̂R  : ˆ ˆˆ ˆ( ) exp( )R iHtτ = −  
Therefore,  

ˆ ˆˆ ˆ( ) ( ) e x p ( ) ( ) e x p ( ) ( ) e x p ( ) ( )R t iH t iH t iH tτ σ τ σ τ σ τ σ τ= − = − + = +  (A2.3.21) 
Shortly it can written schematically as: ( ) ( )Ht tτσ σ τ → +  In this notation the series of 
transformation can be written chronologically: 

1 2
1 2( ) ( ) ( )H Ht t tτ τσ σ τ σ τ→ +  → +                 (A2.3.22) 

A2.3.7. Matrix representation of the superoperators 
 By giving the complete operator basis {Bs s=1..n2} it is possible to represent any 

superoperator ˆ̂S  influencing operator A in the form 

( ) , , ,
ˆ̂

jk j pl k mq pq lm lm
pq lm jk lm

SA s B B S A= =∑ ∑ ∑                      (A2.3.23) 

where Bj and Bk is left and right translation basis superoperators, with the supermatrix elements 

, , ,pq lm jk j pl k mq
jk

S s B B=∑ = ( )
,

t
jk j k pq lm

jk
s B B⊗∑ ,                (A2.3.24) 

where ⊗ means the direct outer product of two matrices. This representation can be used to 
calculate the supermatrices for any superoperator. For example for the commutator we obtain: 

ˆ̂CA CAE EAC= −  ,                                     (A2.3.25) 
where E represents the unity matrix. This leads to the following expression for the supermatrix:  

( )ˆ̂( ) ( ) ( ) ( )tC C E E C= ⊗ − ⊗ .                            (A2.3.26) 

The matrix representation of the unitary transformation 1ˆ̂RA RAR−= , is obtained in form : 

( ) ( )ˆ̂ ( )R R R= ⊗                                                 (A2.3.27) 

A2.3.8. Application of the superoperator algebra for the spin system density matrix 
evolution calculation in the NMR experiments. Rotation in spin space. 
 
 The unitary transformation A2.3.26-27. can be used to describe the rotation of the density 
operator in three-dimensional spin space. For example the evolution under chemical shift or rf-
pulses is described by the linear combination of the Cartesian spin operators 
(Ix, Iy, Iz). Thus the transformation: 

cos sinkI
k k kI I Iαφ
β β γφ φ → + ,                      (A2.3.28) 

whrere α,β,γ =x,y,z and cyclic permutations, express a rotation through an angle φ=-γBατ in 
physical space around α-axis. Rotation about tilted axes can be decomposed: for example the 
effect of an rf-pulse with arbitrary phase angle φ (defined as an excursion from the x- towards the 
y-axis of the rotating frame) is described by the tree steps: 

( ) ( )
kz kz kz

k k k

I I I

t t
ϕ β ϕ

σ σ
− +

− +

∑ ∑ ∑
 → →  →                        (A2.3.29) 

                                                 
i. In some cases the quadrupolar coupling can be stronger than Zeeman. It is pure quadrupolar resonance (NQR) when the extremely 
high quadrupolar coupling constant ( up to hundreds MHZ) allows to observe the transitions in spin system without external magnetic 
field.   
ii Excepting the case of  NQR (see (i)) 
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Appendix III ββββ-echo classical illustration 
Here, we consider the important properties of the β-echo combination basing on the classical 

vector model. For the demonstration purposes, only the case when no bilinear terms are present in spin 
Hamiltonian will be analyzed. The full consideration using density matrix formalism is done in Chapter 
III. Initial state of the magnetization vector M supposed to be the thermal equilibrium value Mz=M0, 
Mx=0, My=0 , with z-axis corresponding to the magnetic field direction B0. (Fig A3.1.)  

 
Fig A3.1(a) The magnetization vector of the system in thermal equilibrium state is aligned with the external magnetic field 
direction. (b) Magnetization is prepared in «y» direction by means of (π/2)x  rf-pulse.(c) Evolution during τ0/2 period under linear 
Hamiltonian. 
 
Step I Preparation. The magnetization is prepared in y-direction by applying the (π/2)x pulse.   My=M0  
(Fig A3.1,a,b). 
Step II Evolution time. The system evolves under the linear terms of the Hamiltonian (summarized as an 
offset frequency Ω ) during the period τ0/2. The state of the magnetization can be described with 
M⊥ (τ0/2)=M0exp(-iΩ τ0/2) that is equivalent to (Mx=M0sin(Ω τ0/2), My=M0cos(Ω τ0/2), Mz=0) 
.(Fig A3.1.c) 
Step III Second (refocusing) pulse  

1.  (π/2)x the y-component is destroyed. The x-component is conserved. Mx=M0cos(Ω τ0/2) 
2.  (π/2)y the x-component is destroyed. The y-component is conserved. My=M0sin(Ω τ0/2) 
3.  (π)y  the y-component is conserved, x-component changes the sign Mx=M0cos(-Ω τ0/2) 

(Fig A3.2 (1),(2),(3)) 
Step IV. Refocusing Time The system continue to evolve after refocusing pulse under the influence of 
Hamiltonian during the time period exactly equal to the evolution period: M⊥ (τ0)=M⊥  (τ0/2)exp(-iΩτ0/2) 
forming the corresponding spin echoes: 

S1(τ0)=M0⋅cos(Ωτ0/2) cos(Ωτ0/2),  S2(τ0)=-M0⋅sin(Ωτ0/2) ⋅sin(Ωτ0/2), S3(τ0)=M0. 
«Callaghan echo» is formed by combination of three echoes as: Sβ(τ0)=[S2(τ0)-S1(τ0)-S3(τ0)]. Combining 
eqn. (1,2,3) we obtain : Sβ (τ0)=[M0 (sin2 (Ω τ0 /2) + cos2 (Ω τ0 /2)-M0]=0. That way, the Callaghan echo 
combination destroys completely the magnetization evolving under the linear terms of the Hamiltonian 
described by the offset of the resonance frequency (for example magnetic field inhomogeneity, chemical 
shift, etc).  

The role of the off-resonance offset and R.F. pulse imperfections.  
Because of the signal compensation scheme the β-echo combination, it can be expected that it 

will be rather sensitive to the different experimental parameters imperfections which always takes place 
in practice.  

y 

x 

z 
B0 

M0 

y 

x 

z 

Ωτ0/2 
y 

x 

z a b c 

y 

x 

-Ωτ0/2 

y 
x 

y y 

x 

Fig 3A.3 Refocusing pulses (1) (π/2)y – (preserves x-component),  (2) (π/2)x (preserves y-component) 
(3) πy changes the sign of x-component, preserving y-component. 
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There are two basic reasons of the experimental errors in the magnetization flip angle. First 
reason is the imperfections of the r.f-pulses produced by the experimental hardware. However, the role of 
these errors can be significantly reduced when using the appropriate phase cycle (for example 
CYCLOPS). Another reason arises from the resonance frequency offset leading to the tilting of the 
«effective» magnetic field direction (Fig A3.3) and therefore to the changing into the effective tilting 
angle produced by the r.f. pulse. This reason is especially important in our case because of the sufficiently 
wide spectrum of the 29Si in polysiloxanes caused by anisotropic chemical shift distributions (anisotropy 
parameter ∆σ=48ppm leads to ≈3000Hz spectrum width at H0= 9.4T, therefore, the significant part of 
spins will generate the off-resonance NMR signal)  

 
Fig A3.3. The resonance frequency offset leads to the changing of the effective field direction Beff. and therefore 

altering the  resulted magnetization flip angle. 
 

If the magnetization tilting angles differs from the 900  for the “solid-echo” and “Hahn-echo-I” this leads 
to the non-complete destroying the “y” and “x” components of the magnetization respectively, after 
second pulse (see Fig A3.3). Therefore, despite of the theoretical expectation, after second evolution 
period and summation of echoes into the Callaghan combination the non-zero signal will be observed due 
to the non-compensated magnetization. 

Due to the using of the cross-polarization for the initial excitation (see Chapter IV) the only error 
in second pulse of each echo becomes important. To calculate the resulting non-compensated signal the 
rotation matrix formalism can be used. The Cartesian matrix performing the rotation of the vector M 
around all three axes, on arbitrary angle ϕ is given by: 

cos sin 0 cos 0 sin 1 0 0

( ) sin cos 0 ( ) 0 1 0 ( ) 0 cos sin

0 0 1 sin 0 cos 0 sin cos
z y xR R R

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

−

= − = = −

−

     
     
     
          

 

The resulted magnetization after the application of the r.f. pulses and two evolution periods will be 
described by the multiplication on corresponded matrices.  

1 0 0

0 0

0 0

( / 2) ( / 2 ) ( / 2)

( / 2) ( / 2 ) ( / 2)

( / 2) ( 2 ) ( / 2)

z x z

z y z

z y z

R R R
R R R

R R R

τ π ε τ
τ π ε τ

τ π ε τ

= Ω ⋅ + ⋅ Ω ⋅

= Ω ⋅ + ⋅ Ω ⋅

= Ω ⋅ + ⋅ Ω ⋅
2

3

M M
M M

M M

 

Where echoes values M1,2,3 have the same sense as, S2, and S3  in previous section, and εεεε  describes the 
error of the tilting angle due to the r.f. pulse imperfection. Starting from magnetization value M just after 
the initial excitation i.e M=(0,M0,0) (see Fig A3.2) the following result can be obtained for the error 
signal of β-echo: 

(S(β)
err )y=M0⋅[cos2Ωτ0 ⋅sin2(ε)-sin2(ε)-sin(ε)]→O(ε) 

(S(β)
err)x=M0⋅[-sin2Ωτ0 sin2(ε)+sin2(ε)]→=O(ε2) 

 
This means that the errors in the rf-pulses leads to the (i) generation of the additional component 
contributing to the echo amplitude Sy which is proportional to the flip angle error, and (ii) appearing the 
imaginary component of echo which is equal to 0 in the ideal case and depends quadratic on error value. 
This allows one a two stage adjustment of the pulse length in experiment, making, at first, the imaginary 
component equal 0 during the coarse tuning, and then, for fine tuning, minimizing the real component for 
the echo time period τ0=0.  

y 

z 

ε 

900-
l



Zusammenfassung 
 

 Das entstehende Interesse an der Flüssigkristallinität von Polymeren gegen Ender der 70er 
Jahre des vorigen Jahrhunderts führte zu einem schnellen Fortschritt bei der Herstellung neuer 
Materialien mit sehr wertvollen Eigenschaften. Die eindrucksvollsten Ergebnisse wurden zunächst 
mit der Synthese von selbstverstärkenden Materialien (Terlon, Kevlar u. a.), die insbesondere in der 
Luft- und Raumfahrttehnik unverzichtbar wurden, erzielt. Die besonderen Eigenschaften von 
polymeren Flüssigkristallen (PLC) beruhen auf der Kombination der Merkmale, die für 
flüssigkristalline bzw. für makromolekulare Systeme typisch sind.  
Eine spezielle Möglichkeit des molekularen Aufbaus ist in den sog. flüssigkristallinen 
Seitenkettenpolymeren realisiert. Dabei handelt es sich um PLC, die die mesogenen Einheiten in den 
Seitenketten enthalten. Die attraktiven Eigenschaften dieser Verbindungen entstehen aus der 
Kombination der für niedermolekulare Flüssigkristalle typischen anisotropen Eigenschaften 
(Seitenkette) mit der Fähigkeit von Makromolekülen (Hauptkette) zur Bildung von Filmen und 
Fasern. Das Phasenverhalten dieser Substanzen wird hauptsächlich durch die mesogenen Einheiten, 
in gewissem Maße aber auch durch das Rückgrat, festgelegt. Andere Merkmale werden im 
wesentlichen durch die Hauptkette bestimmt, wie zum Beispiel Glasübergang sowie viskose und 
elastische Eigenschaften. Auf molekularer Längenskala werden gegensätzliche Tendenzen erwartet: 
Während die mesogenen Seitenketten bestrebt sind, eine gewisse Orientierungsordnung 
aufrechtzuhalten, versuchen die Hauptketten, die Entropie zu maximieren, indem sie ungeordnete 
Knäuel bilden. Die reale molekulare Struktur und Dynamik sind das Resultat eines Kompromisses, 
der eine gewisse Orientierung der Hauptkettensegmente und eine Verlangsamung der Reorientierung 
des mesogenen Direktors in externem Feldern beinhaltet. Daher sind Fragen der molekularen 
Orientierung bei der Untersuchung von PLC von großer Bedeutung. 

Der eigentliche Zweck der vorgestellten Arbeit ist die Erzielung von Erkenntnissen über die 
Hauptkettenorientierung und -dynamik. Als Untersuchungsgegenstand sind Polysiloxane mit 
mesogenen Seitenketten gewählt worden. In der NMR-Gruppe des Fachbereiches Physik der Martin-
Luther Universität Halle wurden 1994 die ersten Untersuchungen über das Orientierungsverhalten 
der Seitenkettenpolymere begonnen. Dabei wurden Polysiloxan-Probenserien mit systematisch 
veränderten Strukturmerkmalen untersucht. Als Grundlage hierzu musste zuvor der Tensor der 29Si-
chemischen Verschiebung inschließlich seiner Ausrichtung im Molekül bestimmt werden, mit dessen 
Kenntnis der Orientierungsgrad der Hauptkettensegmente erst bestimmt werden konnte.  

Eine vollständige und eindeutige Charakterisierung des Orientierungszustandes der 
Hauptkettensegmente erfordert jedoch eine Angabe über die transversale Anisotropie der 
molekularen Segmente. Diese kann nicht allein aus der eindimensionalen 
Orientierungsverteilungsfunktion gewonnen werden, die mit man Hilfe des axialsymmetrischen 
Tensors der chemischen Verschiebung erhalten hatte. Zusätzlich ist hierfür die Nutzung einer 
weiteren anisotropen NMR-Wechselwirkung erforderlich. Hier wurde die direkte dipolare 
Wechselwirkung verwendet, um die Orientierungsverteilung der Verbindungsvektoren benachbarter 
Si-Atome zu bestimmen. Diese Vektoren weisen in Segment-Längsrichtung. Wegen der geringen 
natürlichen Häufigkeit der 29Si-Kerne (4.5%) ist jedoch die Nutzung der dipolaren Wechselwirkung 
aus zwei Gründen problematisch: (i) ist die Gesamt-Signalintensität gering, und (ii) ist die 
Wahrscheinlichkeit, daß zwei benachbarte Si-Atome beide einen 29Si-Kern enthalten, sehr gering, 
was dazu führt, dass der überwältigende Teil des Signals von isolierten 29Si-Spins stammt, das den 
schwachen Anteil der Spinpaare überdeckt. Dieses Problem kann durch die Implementierung 
spezieller NMR-Experimente und Auswertemethoden überwunden werden. Die folgenden Ziele 
wurden in der vorgestellten Arbeit angestrebt und erreicht:  
1. Eine spezielle NMR-Methode, "β-Echo" genannt, wurde für die selektive Aufnahme derjenigen 
Signalkomponente verwendet, die von dipolar gekoppelten 29Si-Paaren herrührt. Gleichzeitig 
unterdrückt dieses Verfahren das Signal der nichtgekoppelten 29Si-Spins. 
2. Mittels Zwei-Spin-Näherung wurde eine Beziehung zwischen der zeitlichen Entwicklung des β-
Echos (β-Funktion) und der Stärke der dipolaren Wechselwirkung hergeleitet. Weiterhin liefert die 
Anisotropie der dipolaren Kopplung eine Verbindung zwischen der β-Funtion und der Orientierung 
des Si-Si-Vektors. Der Einfluß der Orientierungsverteilungsfunktion (ODF) der Si-Si-Vektoren auf 



das Verhelten der β-Funktion wurde mit (i) Modell-ODFs und (ii) "modellfreien" ODFs überprüft, 
letztere beschrieben durch eine Legendre-Reihe. Die Empfindlichkeit der β-Funktion bezüglich der 
ODF-Parameter wurde durch eine Computersimulation geprüft. 
3. Die Empfindlichkeit der β-Funktion bezüglich der ODF Parameter wurde durch das Verwenden 
ihrer Winkelabhängigkeit verbessert. Dabei wurden spezielle Methoden der Datenauswertung 
vorgeschlagen, um eine multiparametrische nichtlineare Anpassung zu vermeiden; die lineare 
Regresion wurde im Falle mehrerer Anpassparameter vorgezogen. 
4. Die selektive Analyse der Subspektren gestattet die Verwendung einparametriger Fitmethoden, 
wodurch sich das ω0D-Auswerteverfahren transparenter und exakter gestaltet. Nach unserer Kenntnis 
sind Fouriertransformation und Spektrenanalyse bislang nie im Verbindung mit der β-Funktion 
angewandt worden.  
5. Die Rolle des transversalen NMR-Relaxation ist hinsichtlich zweier Aspekte untersucht worden: 
(i) Einfluss der transversalen Relaxationszeit T2 auf die β-Funktion und (ii) Nutzung der 
transversalen Relaxation als Mittel für molekular-dynamische Untersuchung. 
DieTemperaturabhängigkeit von T2 ist in einem breiten Bereich gemessen worden. Drei 
charakteristische Temperaturregionen des T2-Verhaltens wurden dabei gefunden. Die Analyse der 
Relaxationsdaten wurde im Rahmen der Anderson-Weiss Näherung ausgeführt, wobei die 
Reorientierung des Tensors der  29Si-chemischen Verschiebung als primärer 
Relaxationsmechanismus angenomen wurde. Das unterschiedliche Verhalten der transversalen 
Relaxation in den drei Temperaturregionen konnte mit dem Modell der starken, exponentiellen bzw. 
schwachen Korrelation der molekularen Bewegung erklärt werden.  
6. Um die dipolare Kopplungkonstante ω0D abzuschätzen, sind Experimente an einer Polydomänen-
Probe des Polysiloxans M4 ausgeführt worden. Der erhaltene Wert von ω0D wurde verwendet, um 
die Daten der Experimente mit Monodomänen-Proben zu verarbeiten. Zusätzlich ist ω0D verwendet 
worden, um den Bindungswinkel Si-O-Si am Sauerstoffatom festzustellen. Das erreichte Resultat 
stimmte gut mit quantenchemischen Berechnungen überein. 
7. Die Experimente zur Orientierungsabhängigkeit der β-Funktion waren an den Monodomänen-
Polysiloxanproben M4 und M6 erfolgt. Die Legendre-Koeffizienten der ODF wurden aus den β-
Funktionen dreier charakteristischer Orientierungen ermittelt. Die Rekonstruktion der ODF mittels 
dieser Koeffizienen führte zu Abweichungen vom experimentellen Ergebnis, die 10% nicht 
überstiegen. Aus den Werten ergab sich, dass die Hauptkettensegmente in der Probe M6 
vorzugsweise senkrecht zum lokalen Direktor (Seitenkette) ausgerichtet sind. Zwischen den Werten, 
die sich aus der Orientierungsabhängigkeit des 29Si-Spektrums und denen, die sich aus der β-
Funktion ergeben, besteht jedoch ein quantitativer Unterschied. 
 
Die wesentliche Neuheit der dargestellten Arbeit ist nach unserer Kenntnis die Anwendung des β-
Echos auf den Fall nicht angereicherter Spins geringer natürlicher Häufigkeit, wie 29Si, wo zudem die 
schwache bilineare anisotrope Spin-Wechselwirkung durch eine starke lineare überdeckt wird. Es 
kann geschlussfolgert werden, dass das β-Echo eine wirkungsvolle Methode zur Gewinnung des 
NMR-Signals solcher Spins ist, die einer homonuklearen dipolaren Wechselwirkung unterliegen, 
indem das Signal der nicht-gekoppelten Spins abgetrennt wird. Die meisten Techniken mit ähnlicher 
Zielstellung basieren auf Doppelquanten(DQ)-Filtern (INADEQUATE, C7, DRAMA, usw.). Der 
Vorteil des β-Echos ist, daß eine Einquantenkohärenz benutzt wird und folglich DQ-Filter-Verluste 
vermieden werden. Gegenüber den meisten DQ-Methoden erfordert das β-Echo keine schnelle 
Probenrotation und kann für die Bestimmung der ODF mittels einer Winkelabhängigkeit verwendet 
werden.  

Die Einfachheit der β-Echo-Impulsfolge erlaubt eine Anzahl unterschiedlicher Erweiterungen 
des Grundverfahrens. Insbesondere wurde die Kombination der β-Echo-Signalselektion mit einem 
weiteren Detektion der dipolaren Wechselwirkung durch eine Carr-Purcell-Echosequenz geprüft. 
Jedoch birgt diese Methode weitere experimentelle und theoretische Probleme in sich, die vor ihrer 
Anwendung gelöst werden müssen. 



Abstract 
 
 The unique properties of the PLC material are connected with the orientation of the molecules in 
liquid crystalline state which combines the amorphous and liquid-crystal phase structural 
features. That way, the problems of the orientation structure are of great interest when studying 
the LC polymers.  
One of the most interesting types of the PLC is side-chain LC polymers. Those are PLC which 
contains the mesogenic units in side chains. The attractive properties of these compounds are 
provided by the combination of the low-molecular LC anisotropy properties originated from the 
mesogenic units (side-chain) and the potential of persistent macromolecules (main–chain) in 
creating of the films and fibers. The phase behavior of these substances is mainly governed by 
the mesogenic units but influenced also by the backbone. Other properties, are determined 
essentially by the main chains, for instance glass transition, viscous and elastic properties. At 
molecular level opposite tendencies are expected: Whereas the mesogenic side chains generate 
some orientation order, the main chains try to maximize the entropy by forming random coils. 
The real molecular structure and dynamics are the result of a compromise which includes a 
certain orientation of the main-chain segments and a slowing-down of the reorientation of the 
mesogenic director in external fields.  
The particular purpose of the presented work is the obtaining of knowledge about the role of 
main-chain orientation and dynamic. As an object of the investigation the side-chain 
polysiloxanes was chosen. In the NMR group of Martin-Luther University Halle the first studies 
on the orientation behavior of side-chain polymers was started in 1994. A series of mesogenic 
polysiloxanes samples were investigated. The information about the 29Si chemical shift (CS) 
tensor axis orientation was obtained. With this knowledge it becomes possible to calculate the 
orientation degrees of main chain segments. For the unambiguous interpretation of the results, 
however, the suggestion about the transversal isotropy/anisotropy of the molecular segments is 
required which can not be done using the one-dimensional information provided by axial-
symmetrical CS spin interaction. In order to get the supplementary information about the main-
chain segment orientation another type of orientationally depended (anisotropic) NMR 
interaction is required. Therefore, the angular dependence of direct dipolar interaction was used 
to probe the orientation distribution of the vector which connects two Si atoms in main chain. 
This vector coincides with the main-chain alignment direction. 
 However, in the case of 29Si NMR the sufficient difficulties are foreseen due to the low 
natural abundance of observable spins (4.5%). This makes the probing of dipolar interaction 
rather problematic for two reasons: (i) the low natural abundance of 29Si nuclei gives 
considerably low signal sensitivity and (ii) the low probability that two neighbored Si are both 
29Si leads to overwhelming part of the signal arisen from isolated 29Si which overlaps the weak 
spin-pair signal of interest. To overcome these problems one needs to implement the special 29Si 
NMR techniques and data processing/interpretation methods. The following goals were aimed 
and achieved in the presented work: 
The special NMR technique called “β-echo” was used for the selective detection of the NMR 
signal from the coupled 29Si spin pairs, with simultaneous suppression of the signal from 
isolated spins.  
The relation between the β-echo time evolution (β-function) and the dipolar interaction intensity 
was found using two-spin approximation. Further, the anisotropy of dipolar coupling gave us the 
relation between the β-function and the orientation of Si-Si vector. The influence of the 
orientation distribution function (ODF) of the Si-Si vectors on the β-function behavior was 
checked using (i) Model ODF’s and (ii) “model-free” ODF’s represented by Legendre series. 
The sensitivity of the β-function to the ODF parameters was tested by the computer simulations. 
The sensitivity of the β-function to the ODF parameters was improved by using its angular 
dependence. The special methods of the information extraction from the several β-functions have 



been proposed to avoid the multiparametrical non-linear fitting. The linear regression methods 
are preferable in the case when more than one parameter needs to be found from fitting.  
The selective analysis of the subspectra allows one using the one-parametrical fitting that makes 
the ω0D evaluation procedure more transparent and precise. In our knowledge, the method of 
Fourier transformation and spectrum analysis has been never applied so far in combination with 
β-function.  
The role of transversal NMR relaxation has been investigated in two aspects: (i) influence of 
transversal relaxation time T2 on the β-function and (ii) using the transversal relaxation as a tool 
for the molecular dynamic study. The temperature dependence of the T2 was measured in wide 
temperature range. Three characteristic temperature regions of the T2 behavior have been found. 
The analysis of the relaxation data was done in the frame of Anderson-Weiss approach 
supposing the 29Si CS tensor axis reorientation as the primary relaxation mechanism. It was 
found that the behaviour of the transversal relaxation at various temperatures can be explained 
by the strong, exponential and weak correlations of the molecular motion. 
The experiments on polydomain sample of polysiloxane M4 have been done in order to estimate 
the dipolar coupling constant ω0D. The obtained value of ω0D was used to process the data of 
the experiments with monodomain samples. In addition, the ω0D was used to determine the 
angle at oxygen atom in Si-O-Si bond. The obtained result is well agreed with the quantum 
chemistry calculations. 
The experiments on orientation dependence of the β-function were done on two monodomain 
polysiloxanes with different spacer lengths (4 and 6 methylene units), denoted as M4 and M6. 
The parameters of the ODF Legendre expansion were extracted from the 3 characteristic β-
function orientation dependences. The ODF reconstruction error does not exceed 10%. The 
preferable orientation of the main-chain segments in the M6 sample was found orthogonal to the 
local director (side-chain). Also, some difference was established between the orientation of 
main chain obtained by from 29Si spectrum angular dependence and from the β-function.  
 
The sufficient novelty of the presented work, by our knowledge, is the application of β-echo for 
the case of non-enriched, low-abundant spins as 29Si in the case when weak bilinear anisotropic 
spin interaction are masked by presence of the strong linear ones. It can be concluded that β-echo 
is an effective method of the detection of the NMR signal of the spins coupled via homonuclear 
dipolar interaction with separation it from the signal of non-coupled ones. Most of the similar 
techniques are based on double quantum (DQ) filtering (INADEQUATE, C7, DRAMA, etc). 
The advantage of the β-echo is that a single quantum coherence is detected and, therefore, the 
DQ filter loses are avoided. Contrary to the most of DQ-methods the β-echo does not require the 
sample MAS rotation and can be applied for the ODF estimation using the sample reorientation 
with respect to magnetic field. 
 The simplicity of the β-echo pulse sequence allows a number of different extensions of 
the basic experimental technique. Particularly, the combination of the β-echo signal selection 
with the further detection of dipolar interaction by the Carr-Purcell echo trend was tested. 
However, this method faces with more experimental and theoretical problems which have to be 
solved before its application in practice.  
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