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Chapter 1

Introduction

Research of clusters and other nanoparticles has generated a new rapidly devel-

oping interdisciplinary branch, in which knowledge and methodologies from atomic,

molecular and solid state physics have been extensively combined. Alkali metal clus-

ters were the first systems for which the electronic shell structure was observed. Many

properties of these clusters can be explained by delocalized valence electrons. On the

other hand, noble gases form structures with icosahedral symmetry, also typical for

the clusters of fullerene family. In all these systems the account of inter-electron

interaction can modify or drastically change the simple independent-electron theory

results. The catch-all phrase ’electron correlation effects’ is often used to describe the

resulting new phenomena.

During the last decade scattering experiments based on the coincidence techniques

have emerged as a powerful tool for getting valuable and sometimes even unique infor-

mation about electron dynamics in atoms, molecules and solids. Theoretical support

of such correlation-accented experiments represents a real challenge for the scientific

community, because it has to deal with the solution of the many-body problems for
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the systems with a large number of electrons, but not too large to make solid-state

approximations possible. Therefore the development of new analytical methods and

numerical techniques becomes vital.

Hartree-Fock approximation provides the necessary background for the treatment

of correlations in the perturbative theories. Its main feature is that it is based on the

solution of the nonlocal potential problem, representing severe numerical difficulties.

The first part of our work is devoted to the development of the new framework spe-

cially suited for this purpose. We extend the Variable Phase Approach [7, 21] onto the

nonlocal potential problems. Namely, we derive the equation for the scattering ampli-

tude function, which allows to solve both the eigenvalue and the scattering problems.

Then we reformulate the Hartree-Fock problem in terms of this approach. Next, we

propose the efficient finite-difference scheme for its numerical solution, providing the

calculation efforts which are of the same order as those for the local potential case.

Having prepared this analytical and practical support, we are able to go beyond the

mean-field concept and to apply the Random Phase with Exchange Approximation

for the rigorous treatment of screening in clusters, which is crucial for the evaluation

of dynamic properties in terms of collective excitations. We consider the electron-

impact ionization of C60 and metal clusters and show that the account of the dynamic

polarizability of clusters allows to explain certain features of (e,2e) spectra, hitherto

not reproduced in the calculations. The effect of exchange interaction is considered

by the positron-impact ionization of clusters.

Next scattering reaction dominated by electron correlations is double or multiple

photoionization, in which a single photon with sufficient energy ionizes two or more

electrons simultaneously. In order to be involved in such reactions, electrons of the
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target have to be strongly correlated. We use the Statistical Energy Deposition Model

for the calculation of the different multiple photoionization cross sections of fullerene.

It allows to estimate, in average, the strength of correlations through the comparison

of the magnitudes of the single-, double- and n-fold photoionization cross sections.

The detailed knowledge on the multi-electron behavior of the system is most

readily incorporated into the exact many-electron wave function. The narrow class

of exactly solvable problems in few-body physics gives a unique opportunity to test

approximate theories and to clarify the hidden features of the many-body processes.

As an alternative to different approximate treatments of the previous chapters, at

the end we derive the double photoionization matrix element for the systems, admit-

ting the description by the parabolic confinement, using the exact two-electron wave

function.

In Chapter 2 an overview of the electronic properties and the spectroscopic inves-

tigations of correlations in clusters and fullerenes is given.

Variable Phase Approach is extended to the solution of the nonlocal potential

problems in Chapter 3, where we also derive the finite-difference scheme for their

numerical solution.

Using these results, in Chapter 4 we reformulate the Hartree-Fock problem and

provide an example of the calculations.

The essence and the equations of the Random Phase Approximation are discussed

in Chapter 5.
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Electronic correlation as revealed by the electron- and positron-impact ionization

of fullerene and metal clusters is considered in Chapter 6 basing on the Random Phase

calculations.

Chapter 7 deals with the single- and multiple photoionization of C60. The diffrac-

tion of the photoelectron wave on the fullerene shell is shown to be a prominent

feature of these processes.

The exact two-electron wave function and the double photoionization cross section

of the quantum dot are calculated in Chapter 8. The mapping of the two-electron

density onto the double photoionization spectra is suggested.

Chapter 9 summarizes the results of the dissertation.



Chapter 2

Clusters and fullerenes

2.1 Experiments and theories

In the past decades, an enormous progress in the miniaturization of electronic and

mechanical devices caused an increasing amount of research dedicated to the physics

of clusters. Among many important contributions of cluster science, one of the most

significant is that a cluster in itself can serve as a unique test system for checking the

validity of new theories developed for the mesoscopic physics.

The role of size effects has been a primary motivating factor in metal clusters

research. It is based on the understanding that the shape of the clusters will be

reflected in the electronic structure, especially at the spatial dimensions that are of

the same order of magnitude as the Fermi wavelength. It was found out that metal

clusters composed of a specific number of atoms are much more stable. Such clusters,

called ’magic number clusters’, are well described by the so-called shell model. In this

model, the electron-nucleus many-body problem is reduced to that for a system of

delocalized valence electrons, placed in the uniform positively-charged background.

The density of the latter is a parameter that is usually chosen to be the bulk density

or to reproduce the experimentally established ionization potentials of the clusters.
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In doing this, all electrons are confined to a spherical potential well, as if the cluster

were a single atom. Correspondingly, their electronic structure [25] consists of shells,

where electrons on a given shell have the same radial and angular momentum quantum

numbers. Each shell can contain 2(2` + 1) electrons. The clusters in which all shells

are closed represent the magic number objects and are easily distinguishable via mass-

spectrometry techniques (see e.g. [76]).

The optical response of alkali-metal clusters has been measured for a large variety

of systems (see e.g. [16, 25, 26, 63, 79]). The energy dependence of the photoioniza-

tion cross section of clusters with filled electronic shells is especially simple and shows

a broad resonance around a frequency typical for the corresponding bulk metals. This

has also lead to an interpretation in terms of the jellium model.

On the other hand, a typical example of magic number semiconductor clusters is

fullerene (C60, C70, C74, C80, ...). It is not only the high symmetry and the unusual

structure that makes these molecules extremely attractive objects to study. Fullerene

family exhibits rich variety of physical and chemical properties [22, 35, 69], which

are defined, to a large extent, by characteristics and interactions of the electrons in

the valence electronic shells. Being good electron acceptors, fullerenes are capable

of forming a great number of new compounds. Their shell-like structure provides

enough space for introducing another atoms inside, thus changing the properties of

the molecule.

As a many-electron system the single fullerene molecule demonstrates the collec-

tion of phenomena, arising due to the electronic correlations. Because of the unsatu-

rated character of the C-C bonds on the fullerene, there are plenty of electronic states

delocalized over the molecular surface and freely available not only for donors but also
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for interaction with each other. Electron-electron and electron-hole interactions deter-

mine, for example, electric dipole polarizability [23], giant plasmon resonances [13, 39],

anomalously strong screening upon collision with ions [61], non-linear dipole response

and ionization upon femtosecond laser pulses [9], on-site Coulomb energy [18, 53],

i.e. the energy cost of placing two electrons on the same fullerene molecule. This

last quantity, characterizing a single molecule, is responsible for metallic or insulating

behavior of the materials [35].

All known electron spectroscopies (for the review see e.g. [69]), such as direct and

inverse photoemission spectroscopy [11, 68], X-ray absorption, resonant photoemis-

sion, Auger electron spectroscopy, electron energy loss spectroscopy and (e,2e) (or

electron-momentum) spectroscopy, have been applied for studying cluster properties.

All of them, and especially those from the new generation of experiments, based on

coincidence techniques [88], stimulate the development of reliable theoretical models

describing the phenomena under consideration.

The spherical jellium model is the starting point for electronic structure calcula-

tions. Theoretical approaches, developed in atomic, molecular and nuclear physics

and now used in the cluster science, are as follows: the Hartree-Fock approxima-

tion for the calculation of the electronic states and structural optimization [44, 54];

different density functional approaches for the description of the ground-state prop-

erties [15, 78]; Monte-Carlo [60] and molecular dynamics [51] simulations of the ther-

modynamical and other physico-chemical properties; random phase approximation

for the calculation of the dielectric response to external fields [24, 38], and the list

continues.
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2.2 Density functional and Hartree-Fock methods

The density functional theory (DFT), that originated from the pioneer work of Kohn

and Hohenberg [40], proved to be very successful in describing the ground state of

finite many-electron systems. DFT is based on the one-to-one correspondence be-

tween particle densities of the considered systems and external potentials acting upon

these particles. In application to the calculations of the electronic structure of clus-

ters [10, 30, 90], DFT is usually used in the local density approximation (LDA), i.e. it

is assumed that the exchange and correlation terms should be treated locally and on

equal footing, and thus cast into a local density-dependent potential. The construc-

tion of the ground state is then easily performed within an effective mean-field theory.

For bulk metal, the LDA seems indeed to be more natural than the HF approxima-

tion, which fails to reproduce a finite density of states at the Fermi level. However,

for finite systems, neither of two methods has proven its superiority. In spite of the

significant differences in the theoretical justification of both theories, they provide

rather close results, and a comparison of calculations is a matter of detailed investi-

gations [55, 65, 66]. When choosing between the two theories, one should be aware

of two systematic differences. First, due to the presence of the Fock exchange term,

compensating for the interaction of an electron with itself, the HF theory provides

the correct 1/r asymptotic behavior of the one-electron mean-field potential. This

is extremely important for the calculation of the observables, sensitive to the long-

range potential slope and to the outer parts of the electronic wave function. As for

the LDA, it fails to provide the asymptotic fall-off of the mean-field potential, and the

additional self-interaction corrections are required [62]. However, the latter represent

an adhoc prescription and can not be improved or extended in terms of perturbation
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theory. Second, in DFT only the existence of the unique exchange-correlation func-

tional is established. A question on how one can construct it for any given system

is left aside. Therefore, the results strongly depend on the availability of good ap-

proximations for the exchange-correlation functionals and their interpretation is not

straightforward. In contrast, the HF approximation can serve as a background for a

systematic development of many-body theories and allows one to construct models on

the basis of fundamental physical principles, which can then be refined by extending

the quality of the approximations. Due to the nonlocal nature of the Fock exchange

term (see Appendix), the calculations become considerably more complicated and

time consuming than in the LDA approach. Therefore the next chapter deals with

the development of the new conceptual framework and the numerical algorithms for

the calculation of the nonlocal potential problems. In chapter 4 we will apply these

results to the solution of the HF problem.



Chapter 3

Variable phase approach and its
application to the nonlocal
potential problems

3.1 General overview

In the early sixties, an elegant approach was developed independently by Calogero [21]

and Babikov [7], in which the solution of the quantum-mechanical problems was for-

mulated in terms of observables (e.g. scattering phase shifts and scattering ampli-

tudes), rather than by means of the wave functions. According to this, the approach

was referred to as the variable phase approach (VPA), or phase-amplitude method.

The VPA relies on the fact that any second order differential equation (DE), in partic-

ular, the Schrödinger equation, is equivalent to a pair of first-order DE’s for the phase

and the amplitude functions. In [21, 7] it is shown that one can separate one of these

two equations so that it becomes independent of the second one. It may happen that

the solution of only one of the two DE’s is enough for the solution of the problem,

e.g. it is sufficient to know only the scattering phase shifts in order to calculate the

scattering cross section. The solution of the second DE allows to completely restore

10
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the wave function and to get information equivalent to the traditional solution of the

Schrödinger equation.

Due to its generality the VPA has been applied in various fields [8, 14, 2, 64,

48, 49]. E. g. the scattering of positrons from rare atomic gases has been treated

by means of the VPA [8], doubly excited states of He have been described by VPA

[14], and the quasi-particle lifetimes in a charged Bose gas and in cuprates have been

determined using the VPA [2]. Furthermore, for the calculations of the degree of

ionization of a non-degenerate two-dimensional electron-hole plasma, the VPA has

been employed [64] to account simultaneously for all bound and unbound states in a

screened Coulomb potential. Recently, we utilized the VPA for the description of the

scattering and the bound states of metal clusters and fullerenes [48].

Different many-body problems often contain nonlocal potentials (NLP), arising

either from the physical aspects of the problem (e.g. energy-dependent potentials),

or due to the particular approximation (e.g. in the mean-field treatment). Presence of

the NLP essentially complicates the calculations, so that the competition between the

reliability of the results and the time expenses becomes an important, if not decisive,

question. Therefore the right choice of the calculation procedure or method may

become a key question when solving NLP problems. In the present work we propose

and develop a new framework for the solution of the NLP problems, based on the VPA.

We give the basic concepts of the VPA in Sec. 3.2 and derive the phase-amplitude

equations for the NLP in Sec. 3.3. The local version of the equation for the SA and the

nonlocal version of the equation for the scattering phase (Eq. 3.2.6) have been already

published [6, 20]. In Sec. 3.4 we derive the equation for the scattering amplitude for

the NLP and demonstrate how to use this equation for the solution of both the
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eigenvalue and the scattering problems. Practical implementation of the solution of

the SA equation into the computer codes is performed via the finite-difference scheme

(FDS), suggested in Sec. 3.5. The intrinsic property of the FDS applied to VPA is

that all calculations require only the diagonal (local) part of the potential, and this

does not introduce an approximation as regards the physical content of the problem.

Under this condition, the numerical efforts for local and nonlocal problems become

comparable. In Sec. 3.5 the numerical errors of the FDS are also discussed.

3.2 Phase-amplitude equations

Consider a spinless particle with energy k2 in the spherical coordinate system in the

presence of the Hermitian (V (r, r′) = V (r′, r)) nonlocal potential 1:

4Ψ(r) + k2Ψ(r) =

∫
dr′V (r, r′)Ψ(r′) (3.2.1)

In the absence of a preferential direction in the system, the potential V (r, r′) is a

function of only the scalar variables r2, r′2, (r, r′) = rr′ cos Θ, and Eq. (3.2.1) admits

separation of variables. The radial Schrödinger equation for the radial part u`(r) of

the wave function reads

d2

dr2
u`(r) +

(
k2 − `(` + 1)

r2

)
u`(r) =

∞∫

0

dr′V`(r, r
′)u`(r

′), (3.2.2)

where V`(r, r
′) = V`(r

′, r) = 2πrr′
1∫
−1

V`(r, r
′)P`(cos Θ)d(cos Θ), ` is the orbital quan-

tum number.

1we use units in which 2m = ~ = e = 1 throughout
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We now introduce new functions α`(r) and δ`(r) such that:

u`(r) = α`(r)[cos δ`(r)j`(kr)− sin δ`(r)n`(kr)] ≡ α`(r)F`(r), (3.2.3)

and impose the additional condition on the derivative:

d

dr
u`(r) = α`(r)[cos δ`(r)

d

dr
j`(kr)− sin δ`(r)

d

dr
n`(kr)]. (3.2.4)

Here j`(kr) and n`(kr) are Riccati-Bessel functions defined as regular and irregular

solutions of the Schrödinger equation for a free particle. The need of the second

condition, Eq. (3.2.4), is clear, since we introduced two functions instead of one. It

is straightforward to show that this condition is equivalent to

dα`(r)

dr
F`(r) = α`(r)

dδ`(r)

dr
G`(r), (3.2.5)

where G`(r) ≡ sin δ`(r)j`(kr) + cos δ`(r)n`(kr). The functions δ`(r) and α`(r) are

conventionally referred to as the phase and wave-amplitude functions, respectively.

They have the following property, which we will refer to as ′additivity′ property.

At each radial position R the values of the functions δ`(R) and α`(R) have a precise

physical meaning: they coincide correspondingly with the partial scattering phase

δ̂`

(R)
and with the asymptotic amplitude α̂

(R)
` of the wave function of the particle

subjected to the potential V
(R)
` (hat denotes observables). The potential V

(R)
` is

obtained from a cut-off of the potential V`(r, r
′) at the position R, i.e. V

(R)
` (r, r′) =

V`(r, r
′)θ(R−r)θ(R−r′), where θ is the step function θ(x > 0) = 1, θ(x < 0) = 0. This

property allows a detailed investigation of the accumulation of the phase shift and the

asymptotic wave-amplitude due to the structure of the potential. Correspondingly,

the asymptotic value of δ`(r) at r −→ ∞ gives the scattering phase for the genuine

potential V`(r, r
′): δ`(∞) = δ̂`.
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Substitution of (3.2.3) and (3.2.5) into (3.2.2) leads2 to

dδ`(r)

dr
= −F`(r)

k

∞∫

0

dr′V`(r, r
′)F`(r

′) exp


−

r∫

r′

G`(s)

F`(s)
· δ̇`(s)ds


 . (3.2.6)

Here the upper dot denotes d
ds

. The initial condition for this equation reads: δ`(0) = 0,

corresponding to the absence of the irregular solution at the origin.

Equations (3.2.5) and (3.2.6) represent a system of coupled integro-differential

equations, the solution of which allows to restore the wave function using Eq. (3.2.3).

Note that the equation for the phase function δ`(r) does not contain the wave-

amplitude function α`(r). This has a profound physical meaning and stems from the

fact that the normalization of the wave function is inessential for the scattering and

eigenvalue problems. The determining equation for derivative of α`(r), (Eq. (3.2.5)),

can be explicitly integrated as soon as δ`(r) is known:

α`(r) = α`(0) exp




r∫

0

G`(s)

F`(s)
· δ̇`(s)ds


 . (3.2.7)

α`(0) plays the role of the normalization constant of the wave function and is chosen

according to the physical content of the problem .

Another useful form of the phase equation is

dδ`(r)

dr
=

(
−1

k

)
F 2

` (r)

∞∫

0

dr′V`(r, r
′) exp


−

r∫

r′

N`(s)

F`(s)
ds


 , (3.2.8)

with N`(s) = cos δ`(s) · dj`(ks)/ds− sin δ`(r) · dn`(kr)/ds. It can be readily obtained

from the following identity, which will be useful below:

dF = Nds−Gdδ ⇒
r∫

r′

(
−G

F
dδ

)
=

r∫

r′

(
dF

F
− Nds

F

)
= ln

(
F (r)

F (r′)

)
−

r∫

r′

N(s)

F (s)
ds. (3.2.9)

2see Sec. 3.3 for details
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3.3 Derivation of the phase-amplitude equations

We start from the Schrödinger equation for the radial wave function u` :

d2

dr2
u`(r) +

(
k2 − `(` + 1)

r2

)
u`(r) =

∞∫

0

dr′V`(r, r
′)u`(r

′), (3.3.1)

and make the replacement u → α, δ: 3

{
u = αF

dα
dr

F = αdδ
dr

G

∣∣∣∣∣ with

α ≡ α`(r), δ ≡ δ`(r) new functions

j ≡ j`(kr), n ≡ n`(kr) Riccati− Bessel functions

F = j cos δ − n sin δ auxiliary

G = j sin δ + n cos δ functions

(3.3.2)

Using the identity

dF

dr
=

d

dr
[j cos δ − n sin δ] =

[
dj

dr
cos δ − j sin δ

dδ

dr
− dn

dr
sin δ − n cos δ

dδ

dr

]
=

=

[
dj

dr
cos δ − dn

dr
sin δ

]
− dδ

dr
G, (3.3.3)

we get the first derivative of u:

du

dr
=

d(αF )

dr
= α

dF

dr
+

dα

dr
F = α

dF

dr
+ α

dδ

dr
G = α

[
dj

dr
cos δ − dn

dr
sin δ

]
(3.3.4)

The second derivative of u transforms to:

d2u

dr2
=

d

dr

(
α

[
dj

dr
cos δ − dn

dr
sin δ

])
=

=
dα

dr

[
dj

dr
cos δ − dn

dr
sin δ

]
+ α

[
d2j

dr2
cos δ − d2n

dr2
sin δ

]
−

−α
dδ

dr

[
dj

dr
sin δ +

dn

dr
cos δ

]
=

3orbital momentum index is omitted for brevity
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= α
dδ

dr

G

F

[
dj

dr
cos δ − dn

dr
sin δ

]
+ α

[
d2j

dr2
cos δ − d2n

dr2
sin δ

]
−

−α
dδ

dr

[
dj

dr
sin δ +

dn

dr
cos δ

]
=

= α
dδ

dr

(
G

F

[
dj

dr
cos δ − dn

dr
sin δ

]
−

[
dj

dr
sin δ +

dn

dr
cos δ

])
+

+α

[
d2j

dr2
cos δ − d2n

dr2
sin δ

]
≡

≡ α
dδ

dr

W

F
+ α

[
d2j

dr2
cos δ − d2n

dr2
sin δ

]
. (3.3.5)

Let us look at W :

W

F
=

G

F

[
dj

dr
cos δ − dn

dr
sin δ

]
−

[
dj

dr
sin δ +

dn

dr
cos δ

]
=

=
1

F

(
G ·

[
dj

dr
cos δ − dn

dr
sin δ

]
− F ·

[
dj

dr
sin δ +

dn

dr
cos δ

])
=

=
1

F

(
n

dj

dr
− j

dj

dr

) (
cos2 δ + sin2 δ

)
. (3.3.6)

Thus, W is a Wronskian of the functions n(kr) and j(kr) and is equal to −k:

W = n
dj

dr
− j

dn

dr
= −k. (3.3.7)

The substitution of (3.3.5) into the Schrödinger equation gives

−α
dδ

dr

k

F (δ(r))
+

+

{
α

[
d2j

dr2
cos δ − d2n

dr2
sin δ

]
+ α

(
k2 − `(` + 1)

r2

)
[j cos δ − n sin δ]

}
=

=

∞∫

0

dr′V (r, r)′α(r′)F (δ(r′)). (3.3.8)

Expression in the curly brackets, corresponding to the equation for the free particle,

is identically zero, and therefore

dδ

dr
= −F (δ(r))

k

∞∫

0

dr′V (r, r′)
α(r′)
α(r)

F (δ(r′)). (3.3.9)
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The differential equation for α(r) from the system (3.3.2) may be explicitly integrated

when δ is known:

dα

dr
F (δ) = α

dδ

dr
G(δ) ⇒ α(r′)

α(r)
= exp


−

r∫

r′

ds
dδ(s)

ds

G(δ(s))

F (δ(s))


 . (3.3.10)

Hence, the equation for δ(r) has the final form:

dδ(r)

dr
= −1

k
F (r)

∞∫

0

dr′V (r, r′)F (r′) exp


−

r∫

r′

δ(s)

ds

G(s)

F (s)
ds


 . (3.3.11)

Substituting V (r, r′) = V (r′)δ(r − r′) in the Eq. (3.3.11), we obtain the equation,

coinciding with the phase equation for the local potential case [21, 7]:

dδ(r)

dr
= −V (r)

k
F 2(r) = −V (r)

k
[j cos(kr)δ(r)− n(kr) sin δ(r)]2 . (3.3.12)

3.4 Transition to the scattering amplitude repre-

sentation

In this section we apply the VPA concepts for the derivation of the equation for the

scattering amplitude (SA) in the NLP case and show how to use this equation for the

solution of both the eigenvalue and the scattering problems.

The relation between the partial SA F` and the partial scattering phase is well-

known [31]: F` = 1
k

sin δ`e
iδ` . According to this, the SA function, defined as

F`(r) ≡ 1

k
sin δ`(r) eiδ`(r), (3.4.1)

has the same ’additivity’ property, as the wave-amplitude and phase functions in

Sec. 3.2: at any point it coincides with the value of the SA for the potential cut off at

this point. Now we derive the integro-differential equation for the SA function and
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then regularize it in order to make it suitable for the determination of bound state

energies in the NLP.

Let us define the auxiliary functions

f(r) ≡ kF(r) = eiδ(r) · sin δ(r),

F̂ (r) ≡ F (r)eiδ(r) = j(kr) + ih(1)(kr)f(r), (3.4.2)

Ĝ(r) ≡ G(r)eiδ(r) = n(kr) + h(1)(kr)f(r). (3.4.3)

Expressing δ(r) through f(r), noticing the relation relation between their derivatives

dδ(r)

dr
=

1

2if(r) + 1

df(r)

dr
, (3.4.4)

and using the definitions Eq. (3.2.5), we transform the phase equation (3.2.6) to the

equation for the function f(r):

df(r)

dr
=

(
−1

k

) √
2if(r) + 1 · F̂ (r) ·

∞∫

0

dr′V (r, r′)
F̂ (r′)√

2if(r′) + 1
×

× exp


−

r∫

r′

ḟ(s)ds

(2if(s) + 1)
· Ĝ(s)

F̂ (s)


 , (3.4.5)

with the initial condition f(0) = 0. Note that upon transition to the local potential

case, Eq. (3.4.5) reduces to the following equation, published in [6, 20]:

df(r)

dr
= −1

k
· V (r)F̂ 2(r). (3.4.6)

In terms of the scattering amplitude function, equations for the wave-amplitude

function (3.2.7) and for the radial wave function (3.2.3) get the following form:

α`(r) = α`(0) exp




r∫

0

Ĝ`(s)

F̂`(s)
· ḟ`(s)ds

2if`(s) + 1


 , (3.4.7)
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u`(r) = α`(r)
F̂`(r)√

2if`(s) + 1
. (3.4.8)

In the complex plane of the wavevector k each partial SA describes stationary

and quasi-stationary states characterized by a certain orbital momentum `. When

SA has a pole on the positive imaginary semi-axis (k = iκn , κn ∈ < > 0), then this

value of k corresponds to the energy of the stationary state in the discrete spectrum:

En = (iκn)2 < 0.

The condition, from which the bound state energy can be determined, reads:

f(∞; κn) = ∞. (3.4.9)

The pole of the scattering amplitude for the complex wavevector corresponds to the

quasibound state with a finite lifetime, for example, the wave penetrating through

the potential barrier. For the real positive values of the wavevector the SA function

describes the scattering states.

Thus, all quantum-mechanical problems are reformulated in the VPA as follows:

• The bound state energies are defined by the solution of a single equation for the

SA function, Eq. (3.4.13);

• The wave function of the particle may be found from equations (3.4.7) and (3.4.8).

Now we want to adapt Eq. (3.4.5) for the eigenvalue problems. We rewrite it for

k = iκ , κ > 0. The Riccati-Bessel functions of the imaginary argument can be

expressed through the modified Riccati-Bessel functions of the real argument p`(κr)

and q`(κr) [1]:

j`(iκr) = βp`(κr); n`(iκr) =
i

β

[
β2p`(κr)− q`(κr)

]
; h

(1)
` (iκr) =

1

β
q`(κr) (3.4.10)
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with β = (i)`+1. Then the integrand in the last line of Eq. (3.4.5) becomes:

df(s)

2if(s) + 1
· Ĝ(s)

F̂ (s)
=

df(s)

2if(s) + 1
· i [β2p(κs)− q(κs) (if(s) + 1)]

[β2p(κs) + q(κs) (if(s))]
=

=
1

2
· d(2if(s) + 1)

2if(s) + 1
− q(κs) · d (if(s))

q(κs) · if(s) + β2p(κs)
. (3.4.11)

The integration of the first term gives:

exp

(
−1

2
ln

[
2if(r) + 1

2if(r′) + 1

])
=

√
2if(r′) + 1√
2if(r) + 1

, (3.4.12)

which cancels the the analogous square roots in the first line of Eq. (3.4.5). Finally,

using the identity (3.2.9) we obtain the integro-differential equation for the function

if(r):

d(if(r))

dr
= − 2

β2κ

[
if(r)q(κr) + β2p(κr)

]2 ×

×
r∫

0

dr′V (r, r′) cosh



−

r∫

r′

ds
if(s)q̇(κs) + β2ṗ(κs)

if(s)q(κs) + β2p(κs)



 . (3.4.13)

The coefficient 2 and the finite upper limit of the external integral on the right-hand

side of (3.4.13) originate from the symmetrization of the integrand with respect to

the interchange of r and r′. After the substitution if(r) ≡ β2y(r) Eq. (3.4.13) is

transformed to an equation for the real function y(r):

dy(r)

dr
= −2

κ
[y(r)q(κr) + p(κr)]2 ×

×
r∫

0

dr′V (r, r′) cosh



−

r∫

r′

ds
y(s)q̇(κs) + ṗ(κs)

y(s)q(κs) + p(κs)



 . (3.4.14)

Since V (r, r′) is assumed Hermitian and the functions p`(κr) and q`(κr) are real, the

initial condition y`(0, κ) = 0 implies that y`(r, κ) is real everywhere. Bound state

exists at the eigenvalue E = −κ2 when y`(∞, κ) has a pole.
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The regularization of Eq. (3.4.14) can be made in two different ways: 1. By

introducing an inverse function y = 1/φ, or 2. Using a tangent function y = tan γ.

The first option yields the equation:

dφ(r)

dr
=

2

κ
[q(κr) + φ(r)p(κr)]2 ×

×
r∫

0

dr′V (r, r′) cosh



−

r∫

r′

ds
q̇(κs) + φ(s)ṗ(κs)

q(κs) + φ(s)p(κs)



 . (3.4.15)

Then the eigenvalue problem reduces to finding the zeros of φ`(∞, κ).

In the second case we obtain an equation with the initial condition γ`(0, κ) = 0

dγ(r)

dr
= −2

κ
[q(κr) sin γ(r) + p(κr) cos γ(r)]2 ×

×
r∫

0

dr′V (r, r′) cosh



−

r∫

r′

ds
sin γ(s)q̇(κs) + cos γ(s)ṗ(κs)

sin γ(s)q(κs) + cos γ(s)p(κs)



 .(3.4.16)

The condition for the bound state is γ`(∞, κ) = (2n + 1)π/2, n ∈ Z. It is useful to

note that the sign of the derivatives of the functions δ`(r), y`(r), φ`(r), γ`(r), as can

be seen from the equations (3.2.8), (3.4.14 – 3.4.16), is fully specified by the sign of

the potential V`(r, r
′).

To illustrate the method we calculate the scattering amplitude function for zero

orbital momentum (` = 0). Consider a neutral atom and a negative hydrogen ion as

simple physical systems.

In Fig. 3.1 the physical meaning of the function γ0(r) = arctan(κF0(r)) is illus-

trated for the attractive Coulomb potential for particle with the energy E = −0.0556

Hartree. The integration of the Eq. (3.4.16) (together with the initial condition this

equation forms Cauchy problem) is perfomed from r = 0 to r = ∞. The original po-

tential V (r) = −1/r is nonzero everywhere (see upper plot) and affects the derivative
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Figure 3.1: The behavior of arctangent of the scattering amplitude function γ0(r)
built for the Coulomb potential V (r) = −1/r (upper plot) and for the Coulomb cut-
off at R = 10 (lower plot). At the radial distance R the value of γ0(r = R) coincides

with arctangent of the scattering amplitude γ̂0
(R) = arctan(κF̂0

(R)
), associated with

cut-off potential V (R)(r).
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of γ0(r) along the whole radial axis. The asymptotic value of the arctangent of the SA

function gives the arctangent of the scattering amplitude: γ0(∞) = γ̂0 = arctan F̂0.

For the potential cut-off at R, the value of the derivative of γ0(r) is zero from

R to ∞, and the value of the function γ0(r) coincides with the asymptotic value

γ̂0
(R) ≡ γ0(∞) = γ0(R) (see lower plot).

0 50 100 150 200
r
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5/2 π  

(a)
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Figure 3.2: Function γ0(r) for different negative energies for the attractive Coulomb
potential. (a) E = −0.5 × 10−10, (b) E = −0.01, (c) E = −0.0556, (d) E = −0.5
(energies are given in Hartree). Inset: the behavior of γ0(r) in the vicinity of γ0(r) =
5
2
π.

The behavior of γ0(r) for the different energies (plots (a)–(d)) is shown in Fig. 3.2.

The ns-eigenstate with a given energy appears when the value of the function γ0(r)

becomes equal to (n−1/2)π. If it happens at a finite distance R, then this eigenstate

is associated with the cut-off potential V (R). If this distance is infinite the eigenstate
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corresponds to a genuine potential. The blow-up of the vicinity of γ0(r) = 5
2
π is

depicted in the inset: in cases (a) and (b) the eigenstate arises at the finite distance

ra(rb); in case (c) γ0 will reach 5
2
π at the infinity (therefore Ec is the energy of

the 3s-state of the original Coulomb potential); the energy Ed will never be the 3s-

eigenenergy of any (cut-off or genuine) Coulomb potential. Indeed, Ed is a ground

state energy of the latter and γ0(r, Ed) reaches the value π/2 at the infinity.

3.5 Finite-difference scheme.

The main difference between the numerical treatments of the local and the nonlocal

potential is that, instead of an ordinary differential equation (c.f. (3.4.6)) in the first

case, one has to deal with the integro-differential equation (c.f. (3.4.15) or (3.4.16)).

For concreteness, let us consider Eq. (3.4.16). While for local potentials rather fast,

well-known methods (e.g. Runge-Kutta method) can be applied, for nonlocal poten-

tials one has to perform two additional integrations at each step of the calculations

of the derivatives. Evidently, the numerical efforts grow substantially with the total

number of mesh points used for the representation of the desired function, moreover,

it quickly grow together with the order number of a mesh point inside the same mesh.

In this section we suggest an algorithm for the numerical solution of the first-

kind Volterra integro-differential equation. The essence of our algorithm is based

on the ’additivity ’ property of the function γ(r): For a given set of mesh points

(r1 = 0, ..., rn = r, rn+1 = r + δr, ...) for the calculation of γn+1 = γ(r + δr) one

needs to integrate over all values of γ, calculated at the previous n points. It is this

integration which comprises the main difficulty of the numerical solution and makes

the main difference to the local potential case. We develop an approximate scheme,
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in which the calculation of the (n + 1)-th point requires only the information, stored

on the n-th step, and few additional algebraic operations.

We start by considering the integrals of Eq. (3.4.16) of the following form

J [r] ≡
r∫

0

dr′V`(r, r
′) exp



−

r∫

r′

Q(s)ds



, (3.5.1)

and

J [r + δr] ≡
r+δr∫

0

dr′V`(r + δr, r′) exp



−

r+δr∫

r′

Q(s)ds



, (3.5.2)

where

Q(s) =
sin γ(s)q̇(κs) + cos γ(s)ṗ(κs)

sin γ(s)q(κs) + cos γ(s)p(κs)
. (3.5.3)

Our aim is to express J [r + δr] through J [r], r and δr. For the numerical estimation

of the integrals below we will use the rectangular scheme with an arbitrary mesh,

which gives the integral value with the numerical error of the 2-nd order in δr:
rN∫

r1

f(r)dr = (f1 + f2 + ... + fN−1)δr + max
x∈[r1,rN ]

|f ′(x)|(N − 1)(δr)2

2
. (3.5.4)

The simplicity of the rectangular scheme, without loss of generality, allows to clear

the calculation procedure, described below. Of course, application of the higher order

integration schemes will increase the accuracy of this procedure.

For the exponent from (3.5.2) we write

exp



−

r+δr∫

r′

Q(s)ds



 = exp



−

r∫

r′

Q(s)ds



 exp



−

r+δr∫

r

Q(s)ds



 .

The last factor does not contain r′ and is equal to

exp

(
−Q(r)δr + max

x∈[r,r+δr]
| − Q̇(x)|(δr)

2

2

)
=

= exp (−Q(r)δr)

(
1 + max

x∈[r,r+δr]
|Q̇(x)|(δr)

2

2
+ ...

)
.
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Hence, the target integral (3.5.2) approximately equals

J [r + δr] ' exp(−Q(r)δr)

r+δr∫

0

dr′V (r + δr, r′) exp



−

r∫

r′

Q(s)ds



 . (3.5.5)

with the upper value of the 2-nd order error Rexp

Rexp ≤ max
x∈[r,r+δr]

|Q′(x)|(δr)
2

2
× max

x∈[0,r+δr]
|J(x)| (3.5.6)

In the same way the integral in Eq. (3.5.5) can be divided into two parts

r∫

0

dr′V (r + δr, r′) exp



−

r∫

r′

Q(s)ds



 +

+

r+δr∫

r

dr′V (r + δr, r′) exp



−

r∫

r′

Q(s)ds



 . (3.5.7)

The second term of this expression is approximated up to the error Rint

Rint ≤ max
x∈[r,r+δr]

∣∣∣∣
∂V (r + δr, x)

∂x

∣∣∣∣
(δr)2

2
(3.5.8)

by

r+δr∫

r

dr′V (r + δr, r′) exp



−

r∫

r′

Q(s)ds



 '

' δrV (r + δr, r + δr) exp



−

r∫

r+δr

Q(s)ds



 =

= δr V (r + δr, r + δr) exp(Q(r)δr). (3.5.9)

The first term of Eq. (3.5.7)

r∫

0

dr′V (r + δr, r′) exp



−

r∫

r′

Q(s)ds



 (3.5.10)
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differs from J [r] only in that the potential V is evaluated at the point (r + δr, r′)

instead of (r, r′). Therefore, we can proceed in two different ways.

• The expansion of V (r + δr) in Taylor series yields

V (r + δr, r′) ' V (r, r′) +
∂V (r, r′)

∂r
δr +

1

2

∂2V (r, r′)
∂r2

δr2 + · · · . (3.5.11)

The first terms yields the following approximate expression for J [r + δr]

J [r + δr] ' J [r] e−Q(r)δr + V (r + δr, r + δr)δr. (3.5.12)

For the complete account of all first-order in δr terms for J [r + δr] it is necessary to

estimate the term with the first derivative of the potential

J (1)[r] ≡
r∫

0

dr′
∂V (r, r′)

∂r
exp


−

r∫

r′

Q(s)ds


 . (3.5.13)

This integral can be treated, in the same way as previously described in Eqs. (3.5.1 –

3.5.12), by calculation of increments. For the term containing the first derivative we

obtain

J (1)[r] ' J (1)[r − δr]e−Q(r−δr)δr +
∂V (x, y)

∂x

∣∣∣∣
x,y=r

δr; (3.5.14)

J [r + δr] ' J [r]e−Q(r)δr + V (r + δr, r + δr)δr +

+ J (1)[r − δr]e−(Q(r−δr)+Q(r))δrδr +
∂V (x, y)

∂x

∣∣∣∣
x,y=r

e−Q(r)δrδr2. (3.5.15)

In terms of finite differences we write

Jn+1 ' Jn e−Qn∆rn +
(
Vn+1,n+1+ J

(1)
n−1e

−(Qn−1+Qn)∆rn

)
∆rn, ∆rn = rn+1− rn. (3.5.16)

As can be seen from the structure of the equations (3.5.12), (3.5.15), only the diagonal

parts of the nonlocal potential – V (r, r) and ∂V (x,y)
∂x

∣∣∣
x,y=r

– enter all FDS expressions.
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This locality is a principal property of the FDS, which arises from the Taylor expansion

of the potential V (r + δr, r′) in the vicinity of r. Whereas the ’localization’ of the

potential in the traditional HF treatments introduces an approximation and often

reduces the physical quality of the problem, in the present approach the locality of

the potential is intrinsic inapproximate property of the FDS applied to the VPA

equations.

Accounting for terms in the potential expansion up to those containing the 1-st

derivative implies an accuracy of the calculation of J [r + δr] of the 1-st order in δr

with the numerical error of the second order.

• The second way is useful when the potential is a product of two parts, separately

depending on r and r′: V (r, r′) = U(r) W (r′). In this case the finite-difference scheme

becomes exact (in the second order in δr), since we can write

Jn+1 =
Un+1

Un

Jn exp(−Qn∆rn) + Un+1Wn+1∆rn. (3.5.17)

We conclude this part by noting the features of the finite-difference scheme based

on Eq. (3.5.16) or on Eq. (3.5.17):

i) It has a simple form;

ii) At each step it reduces the integration to the evaluation of the potential at the

last point (Vn+1,n+1 in Eq. (3.5.16) with all the other data stored at the previous n

and n− 1 steps;

iii) The dependence on only the diagonal in r and r′ part of V (r, r′) significantly

simplifies the calculations;

iv) It can be directly used for the numerical implementation and built into the stan-

dard packages of the numerical solution of the ordinary differential equations. This

FDS corresponds to the 1-st order integration method, but basing on the same idea
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it can be easily generalized to the next order methods with the higher integration

accuracies.

3.6 Conclusions

Traditional treatments of the eigenstate problem for the nonlocal potential imply the

expansion over the basis set. In this chapter, based on the Variable Phase approach we

proposed a new method that avoids the basis-set expansion ansatz by the solution of a

first-order Volterra integro-differential equation. Therefore the method is independent

of the choice of the basis. Furthermore, we proposed a fast numerical scheme for the

numerical solution of such integro-differential equations and demonstrated that the

algorithm involves numerical efforts that are of the same order as those required for

the local potential case.



Chapter 4

Hartree-Fock approximation within
the variable phase approach

Based on the results of the previous chapter, we reformulate the Hartree-Fock ap-

proach in the VPA language (Sec. 4.1). The feature and the advantage of this treat-

ment is that for the numerical solution of the HF equation only the diagonal part of

the nonlocal HF potentials is required (Sec. 4.2). This is an essential improvement in

the calculational efforts and it does not imply any additional approximation.

4.1 VPA equations of the HF problem

The Hartree-Fock single-electron wave functions Ψi(ri) are the self-consistent solu-

tions of the HF system of coupled equations




−4Ψi(ri) + V ion(ri)− k2
i Ψi(ri) =

= −∑
k 6=i

∫
d3r′Ψ

∗
k(r′)Ψk(r′)−Ψ∗k(r′)Ψk(ri)

|ri−r′| Ψi(r
′)

∣∣∣∣∣∣∣∣
i=1..n

(4.1.1)

where the left-hand side of i-th equation is the Hamilton operator of the i-th electron

in the local ionic field V ion, the right-hand side corresponds to the nonlocal interaction

with the field of other electrons of the system.
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In the terms of the VPA, each wave function Ψε`µ(ri) characterized by the quan-

tum numbers (ε`µ) is related to the corresponding scattering-amplitude and wave-

amplitude functions fε`(r) and αε`(r) by

Ψε`µ(r) =
uε`(r)

r
Y`µ(θ, φ) =

αε`(r)F̂ε`(r)

r
√

2ifε`(r) + 1
Y`µ(θ, φ), (4.1.2)

F̂ε`(r) = j`(kr) + ih
(1)
` (kr)fε`(r); N̂ε`(r) =

dj`(kr)

dr
+ i

dh
(1)
` (kr)

dr
fε`(r). (4.1.3)

The system of the coupled integro-differential equations on the functions αε`(r) and

fε`(r), corresponding to the Hartree-Fock system, has the form (c.f. Eqs. 3.4.7, 3.4.13)



iḟ`1(r1) = − 2
k1

F̂ 2
`1

(r1)

[
V ion

`1
(r1) +

r1∫
0

dr′1V`1(r1, r
′
1) exp

(
−

r1∫
r′1

bN`1
(s1)bF`1
(s1)

ds1

)]

α`1(r1) = α`1(0) exp

(
r1∫
0

bG`1
(s1)bF`1
(s1)

· ḟ`1
(s1)ds1

2if`1
(s1)+1

)

. . .

iḟ`n(rn) = − 2
kn

F̂ 2
`n

(rn)

[
V ion

`n
(rn) +

rn∫
0

dr′nV`n(rn, r′n) exp

(
−

rn∫
r′n

bN`n(sn)bF`n(sn)
dsn

)]

α`n(rn) = α`n(0) exp

(
rn∫
0

bG`n(sn)bF`n(sn)
· ḟ`n(sn)dsn

2if`n (sn)+1

)
.

(4.1.4)

Initial conditions for 2n unknown functions are chosen as: f`i
(0) = 0, α`i

(0) = 1, i =

1 ... n. The coupling between the equations is incorporated into the HF potentials

V`i
(ri, r

′
i).

4.2 The Hartree-Fock potential

The mean-field potential of the Hartree-Fock problem1 provides an example of a

nonlocal potential, namely

V (r, r′) =
∑

ε`µ

Ψ∗
ε`µ(r′)Ψε`µ(r′)−Ψ∗

ε`µ(r′)Ψε`µ(r)

|r− r′| . (4.2.1)

1see, for example, [5] Eq. (17.15), p.333
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It’s `-th orbital part [19] is determined by

V`(r, r
′) = 2πrr′

1∫

−1

V (r, r′)P`(x)dx, with x = cos Θ, (4.2.2)

Θ is the angle between r and r′ and cos Θ = cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′).

Now we want to use the property of the finite-difference scheme (FDS), discussed

in Sec. 3.5. According to the FDS, it is sufficient to consider only the diagonal (in r

and r′) part of the potential V (r, r′) (c.f. Eq. 3.5.15). For this purpose we will find

the diagonal parts of the Hartree and Fock terms.

First, the Slater expansion of the inter-electron Coulomb repulsion in terms of the

Legendre polynomials has the form 2:

1

|r− r′| =
∞∑

λ=0

1

r

(
r′

r

)λ

Pλ(x) (4.2.3)

We assume that all orbital shells of the system are closed, that is equivalent to impos-

ing the spherical symmetry on the system. Then, the Hartree and the Fock potentials

read:

V H(r, r′) =
∑

ε α β

Ψ∗
εαβ(r′)Ψεαβ(r′)

|r− r′| =

=
∑

ε α β

u2
εα(r′)
(r′)2

|Yαβ(θ′, ϕ′)|2 ·
∞∑

λ=0

1

r

(
r′

r

)λ

Pλ(x), (4.2.4)

V F (r, r′) =
∑

ε α β

Ψ∗
εαβ(r′)Ψεαβ(r)

|r− r′| =

=
∑

ε α β

uεα(r′)uεα(r)

rr′
Y ∗

αβ(θ′, ϕ′)Yαβ(θ, ϕ) ·
∞∑

λ=0

1

r

(
r′

r

)λ

Pλ(x). (4.2.5)

2in [87] see Eq. 5.17.4.(21), p.165 and Eq. 5.17.2.(9), the product definition can be found in [10],
Eq. (5.16.1)
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Using the known sum rules3:

∑

β

|Yαβ(θ, ϕ)|2 =
2α + 1

4π
, (4.2.6)

∑

β

Y ∗
αβ(θ′, ϕ′)Yαβ(θ, ϕ) =

2α + 1

4π
Pα(x), (4.2.7)

the potentials are transformed to

V H(r, r′) =
∑
ε α

u2
εα(r′)
(r′)2

2α + 1

4π

∞∑

λ=0

1

r

(
r′

r

)λ

Pλ(x), (4.2.8)

V F (r, r′) =
∑
ε α

uεα(r′)uεα(r)

rr′
2α + 1

4π
Pα(x)

∞∑

λ=0

1

r

(
r′

r

)λ

Pλ(x), (4.2.9)

and their `-th orbital parts take the form:

V H
` (r, r′) =

∑
ε α

2α + 1

2

u2
εα(r′)
r′

∞∑

λ=0

(
r′

r

)λ
1∫

−1

Pλ(x)P`(x)dx, (4.2.10)

V F
` (r, r′) =

∑
ε α

uεα(r′)uεα(r)
2α + 1

2

∞∑

λ=0

1

r

(
r′

r

)λ
1∫

−1

Pα(x)Pλ(x)P`(x)dx. (4.2.11)

Integrals of two4 and three5 Legendre polynomials

1∫

−1

Pλ(x)P`(x)dx =
2δλ`√

(2λ + 1)(2` + 1)
, (4.2.12)

1∫

−1

Pα(x)Pλ(x)P`(x)dx = 2

(
α λ `

0 0 0

)2

=
2

2` + 1

(
C`0

α0λ0

)2
(4.2.13)

3in [87]: Eq. 5.10.1.(1), p.150; Eq. 5.17.2.(9) together with 5.16.1.(10)
4in [87]: Eq. 5.9.3.(10)
5in [87]: Eq. 5.9.(5); Eq. 8.1.2.(11)
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reduce Eq. (4.2.10) and (4.2.11) to

V H
` (r, r′) =

∑
ε α

2α + 1

2` + 1

u2
εα(r′)
r′

(
r′

r

)`

(4.2.14)

V F
` (r, r′) =

∑
ε α

2α + 1

2` + 1

uεα(r′)uεα(r)

r

∞∑

λ=0

(
r′

r

)λ (
C`0

α0λ0

)2
. (4.2.15)

Their diagonal in r and r′ parts amount to

V H
` (r, r) = V H

` (r, r′ = r) =
∑
ε α

2α + 1

2` + 1

u2
εα(r)

r
, (4.2.16)

V F
` (r, r) = V F

` (r, r′ = r) =
∑
ε α

2α + 1

2` + 1

u2
εα(r)

r

∞∑

λ=0

(
C`0

α0λ0

)2
, (4.2.17)

V H
` (r, r)− V F

` (r, r) =
∑
ε α

2α + 1

2` + 1

u2
εα(r)

r

(
1−

∞∑

λ=0

(
C`0

α0λ0

)2

)
. (4.2.18)

Using the expressions for the Clebsh-Gordan coefficients for ` = α + λ > α (6)

Cα+λ0
α0 λ0 =

(α + λ)!

α!λ!

√
(2α)!(2λ)!

(2α + 2λ)!
=

`!

α!(`− α)!

√
(2α)!(2`− 2α)!

(2`)!
, (4.2.19)

and for ` = α− λ < α (7)

Cα−λ0
α0 λ0 =

(−1)λα!

λ!(α− λ)!

√
(2λ)!(2α− 2λ + 1)!

(2α + 1)!
=

=
(−1)(α−`)α!

(α− `)!`!

√
(2α− 2`)!(2` + 1)!

(2α + 1)!
, (4.2.20)

only one term remains from the inner sum of Eq. (4.2.18):

∞∑

λ=0

(
C` 0

α0 λ0

)2
=

(
C`0

α0(A−B)0

)2
=

(
CB

A√
C2B

2A

)2

, (4.2.21)

6in [87]: Eq.8.5.2.(33)
7in [87]: Eq.8.5.2.(34)
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where Ck
n are binomial coefficients, A = max(`, α), B = min(`, α). Finally, the

diagonal part of the HF potential becomes:

V H
` (r, r)− V F

` (r, r) =
∑
ε α

2α + 1

2` + 1

u2
εα(r)

r

(
1−

(
CB

A

)2

C2B
2A

)
. (4.2.22)

4.3 Self-consistency cycle

Now we can, of course, solve the system (4.1.4) in the way, equivalent to the conven-

tional HF solution: since the functions α`i
and f`i

completely and uniquely restore the

wave function, the usual self-consistency procedure (SCP) can be applied. Namely,

at the first run of the integration procedure all n pairs of equations (4.1.4) are solved

for V ext(r). Then the obtained wave functions, constructed from α`i
, f`i

, are used to

build the first iteration of the HF potential, in which the new set of eigenenergies

and the new set of functions α`i
, f`i

can be calculated, and so on. In other words, the

cycles of the SCP are external with respect to the integration of the system (4.1.4).

In case the energy spectrum of the HF problem is already known, it is possible

to suggest a faster calculation scheme. Its main feature consists of performing the

SCP inside the integration of the system (4.1.4). For this we use the property of

the equation for the SA function, that the nonlocality has to be integrated on the

finite (rather than infinite, as in conventional HF techniques) interval [0 ... r]. For

the calculation of the derivative ḟ(R) at a certain point R it is not required to know

the values of the function f(r) at r > R . In other words, the value of the SA

function f(R) =
R∫
0

ḟ(r)dr at a certain point R is not affected by the potential V (r, r′)

(and, obviously, by any changes of V (r, r′) due to SCP) at r, r′ > R. Basing on this

property, it is possible to perform SCP inside any interval [0 ... R], in particular,
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within the first mesh interval [r0, r1].

The numerical algorithm is the following. For the arbitrary mesh

(r0 = 0, r1, ... rk, ... rN−1, rN = ∞) one calculates the first pair f1(r1), α1(r1) in the ab-

sence of the inter-electron interaction. Then one starts the SCP: using V (r, r′)|r,r′≤r1
,

produced by the first pair, we calculate the functions of the second electron f2(r1), α2(r1)

at the same mesh point r1. Using V (r, r′)|r,r′≤r1
, produced now by the first and the

second pairs, one calculates f3(r1), α3(r1) and so on. After the calculation of the last

pair fn(r1), αn(r1) we return to the first pair and repeat the process until conver-

gency. After that we come to the the next point of the mesh and repeat previous

manipulations. The physical sense of the found solution is the following. Consider

the potential for i-th electron, created by all the other electrons in the k-th mesh

point. Consider the self-consistent set Ak = {fj(rm), αj(rm)}m=0..k
j 6=i . Wave functions,

constructed from it, coincide with the true single-electron HF wave functions up to

the point rk. The nonlocal potential V
(k)
i (r, r′), produced by Ak, coincides with the

exact HF potential cut-off at r = r′ = rk and is not defined at larger distances. Going

to the (k + 1)-th mesh point, one needs to calculate fj(r) and αj(r) only in this very

point, because, as mentioned above, their values in the previous k points have been

already calculated and will be not affected by the potential in the last, (k + 1)-th,

point. Finally, the potential produced by the set An, given on the whole mesh, is

nothing but the true HF potential.

Fast convergence of the SCP is due to the following reasons:

i) the SCP starts almost from the very beginning of the integration, the inter-

electron potential is added already for the wave-amplitude and scattering-amplitude

functions of the second electron of the system. Even in the first cycle of the SCP,
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as the number i of the pair (f`i
, α`i

) in (4.1.4) grows, the accounted inter-electron

potential becomes more and more close to exact;

ii) moving along the mesh does not change the values of the functions, calculated in

the previous points. The inter-electron potential, used for the calculations at each

mesh point, differs from the exact potential only in the last mesh point.

Although it is hard to expect that the eigenenergies of the HF problem may be known

in advance, we would like to emphasize that the proposed idea of the self-consistent

solution of the systems of differential equations within the integration mesh deserves

further consideration for different physical problems (especially those with rapidly

changing or fast oscillating solutions).

As a numerical example, consider the case of the nonlocal mean-field potential for

the case of negative hydrogen ion, arising on the first step of the Hartree-Fock SCP.

Suppose one electron occupying 1s-state and the other one – some another s-state, i.e.

hydrogen ion is excited (this choice is made solely for the simplicity of the potentials).

The Slater expansion of the interelectron interaction reads

1
|r−r′| = 1

r

∞∑
λ=0

( r′
r
)λPλ(cos(r̂r′)). Together with the nonlocal density of 1s-electron

ρ(r, r′) = (e−2r′ − e−re−r′)/4π and with the selection rule
1∫
−1

P`(cos(r̂r′))Pλ(cos(r̂r′))d(r̂r′) = δ`λ, which leaves only one term in the Slater

expansion, it gives the nonlocal potential for the ns-electron W = 1
r

[
e−2r′ − e−re−r′

]
.

In Fig. 4.1 we explore the role of the nonlocality as introduced by the potentials

VF =−e−re−r′/4π and VH = e−2r′/4π corresponding to the Fock and Hartree terms re-

spectively. Function γ0(r) for the bare Coulomb electron-ion interaction (C), Coulomb

plus Fock-term (CF), Coulomb plus Hartree-term (CH) and all three terms together

(CHF) is depicted. The inset shows the corresponding cut-off distances, at which



38

these potentials acquire the 8-th s-state (γ0(r)=
15
2
π). The smaller is this distance

the larger is the strength of the potential. The strongest is the potential VCF , which

contains two attractive terms, then comes the bare Coulomb potential. Slightly more

shallow is the total potential VCHF , containing two attractive and one repulsive term.

This is reflected, for example, in the extrusion of the highest Coulomb bound states

in the continuum when the interelectron interaction is switched on. The most weak

is VCH , lacking the attractive exchange term.

0 50 100 150 200
r

0

π

2π

3π

4π

5π

6π

7π

8π

9π

γ 0 (
r)

(CF)

(C)

(CHF) (CH)

125 175

7π

8π

15
/2 π

rCF rCrCHF

rCH

Figure 4.1: Function γ0(r) for the local VC = −1/r, and for the different nonlocal
potentials VCF , VCH , VCHF (for the explanation see text). In all cases the energy is the
same: E = −0.5× 10−10. Inset: the behavior of γ0(r) in the vicinity of γ0(r) = 15

2
π.



Chapter 5

Random phase approximation as a

tool for correlation studies

This chapter describes the electronic correlation effects in terms of the first-order

response of the system to the external perturbation. The relation between the static

and the dynamic screening in the Thomas-Fermi model and in the Random Phase

approximation with Exchange (RPAE) is discussed in Sec. 5.1. Sec. 5.2 contains the

derivation and the explanation of the physical essence of the RPAE equations.

5.1 Static and dynamic screening

The primary source of knowledge on the structure and the dynamics of electronic

systems is provided by their characteristic response to external perturbations. For

systems with a large number of active electrons, such as clusters and surfaces, the

collective response is determined basically by the cooperative behavior of the system’s

constituents, e.g. the delocalized electrons in a metallic surface shield, by an organized

39
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rearrangement, an external electric field which might be induced by an approaching

test charge. These correlated fluctuations of the electronic density, i.e. the excitation

and de-excitation of electron-hole pairs, can be described by the so-called polarization

operator Π (or the particle-hole propagator) [32]. The charge density fluctuations of

the medium modify the properties of the electron-electron interaction U . The way

how the modified potential Ueff emerges from the naked interaction U is determined

by Π through the integral equation [32]

Ueff = U + UΠUeff . (5.1.1)

This relation can be formally written as

Ueff = κU, (5.1.2)

where κ := 1/(1 − UΠ), referred to as the inverse dielectric function [32], plays a

central role in a variety of phenomena. To name one, the frequency (ω) and wave

vector (p) dependent electrical conductivity σ(p, ω) of a plasma is obtained from

κ(p, ω) as σ(p, ω) = iω(1 − κ). This is just one of numerous examples for the

fundamental interest in the study of the dynamical screening in electronic systems.

The determination of the renormalized interaction Ueff and of the dielectric func-

tion κ entails the knowledge of Π. In essence, Π is a two-point Green function that de-

scribes the particle-hole excitations. Its lowest order approximation Π0 is provided by

the so-called random phase approximation with exchange (RPAE) [32], diagrammat-

ically represented in Fig. 5.1. For a homogeneous system and in the long wave-length

limit (λ À λF , where λF is the Fermi wave length) one obtains Π0 ≈ −2N(µ). Here

N(µ) is the density of states at the Fermi level µ. Hence, for λ À λF , the screened

potential of the bare electron-electron interaction U(q) = 4π/q2 is readily derived
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= + + + … 

Figure 5.1: Diagrammatic description of relaxation of electron-electron interaction
through screening: a) screened interaction; b) bare interaction; c) and d) lowest
order dynamic screening corrections via particle-hole excitations.

as UTF = 4π/[q2 + 8πN(µ)]. In configuration space we recover thus the well-known

Thomas-Fermi potential UTF = e−r/r0/r (r0 = 1/
√

8πN(µ)). This form of the inter-

action gives a first hint on the nature of electronic collisions in extended many-particle

systems: In an isolated scattering of two charged particles, events with a small mo-

mentum transfer q (far collisions) are predominant, for the naked potential behaves

as U ∝ 1/q2. In contrast, these events are suppressed in the presence of a polarizable

medium due to the finite range of the renormalized scattering potential Ueff which dic-

tates that scattering can occur only at distances close enough such that the medium is

not able to screen the external field (limq¿1 UTF ∝ 1/[8πN(µ)] = constant). Hence,

we conclude that the scattering probability as a function of the impact parame-

ter saturates at a distance d determined by the extent r0 of the scattering region

(limr0→∞ d → ∞). It is not clear from the outset that these calculations are also

valid for finite size systems, such as metal clusters, for the eigenstates of these sys-

tems are not simply plane waves, and the properties of Π are still to be clarified.
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5.2 RPAE matrix elements for finite systems

In this section we give the derivation of the expression for the RPAE matrix element [4]

for the ionization of a system by an external perturbation, in particular, by a charged

particle. Let Ĥ0 be the Hamiltonian of a cluster. Under the action of an external field

δU(r, t) the self-consistent cluster potential is changed and the Hamiltonian becomes:

Ĥ(r, t) = Ĥ0(r) + δU(r, t). Then, the ionization amplitude is given as a sum of

two terms: first term corresponds to the removal of the electron due to the direct

interaction with the external field, second one arises from the change of the cluster

potential.

The total wave function is described as an antisymmetrized product of single-

electron wave functions: Ψ(r1, r2 . . . rn, t) = e−iE0t det ‖ψi(rj, t)‖, where

E0 =
∑

i

〈
φi

∣∣∣− 5i

2
− V ion

∣∣∣φi

〉
+

1

2

∑

i,k

〈
φiφk

∣∣∣u
∣∣∣φiφk − φkφi

〉
(5.2.1)

is the Hartree-Fock ground state energy of the system and u ≡ 1
|ri−rk| is the bare

Coulomb inter-electron interaction. Time-dependent single-electron wave functions

ψi(r, t) can be expanded over the set of time-independent Hartree-Fock solutions

φ(r):

ψi(r, t) = Ai

[
φi(r) +

∑
m

Cmi(t)φm(r)

]
. (5.2.2)

Here indices m and i label the states above and below the Fermi level, A is a nor-

malization coefficient, Cmi(t) is the probability amplitude for the creation of the m-i

electron-hole pair. The sum describes an admixture of the excited states m to the ini-

tial state i and implies a summation over unoccupied discrete levels and an integration

over continuum.
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Coefficients Cmi(t) can be calculated by the solution of the Schrödinger equation

for the total wave function:

〈
Ψ(r1, r2 . . . rn, t)

∣∣∣ Ĥ − i
∂

∂t

∣∣∣Ψ(r1, r2 . . . rn, t)
〉

= 0. (5.2.3)

In the presence of the external field Cmi(t) 6= 0. Expanding Eq. 5.2.3 over these

coefficients and taking into account the first non-vanishing terms, one gets

i
∑

i≤εF <m

C∗
mi(t)

∂

∂t
Cmi(t) =

∑

i≤εF <m



(εm− εi) |Cmi(t)|2 + Cmi(t)

〈
i
∣∣∣ δU

∣∣∣m
〉

+ C∗
mi(t)

〈
m

∣∣∣ δU
∣∣∣ i

〉
+

+
∑

j≤εF <k

[
1
2
C∗

mi(t)C
∗
kj(t)

〈
mk

∣∣∣u
∣∣∣ ij

〉
+

1
2
Cmi(t)Ckj(t)

〈
ij

∣∣∣u
∣∣∣mk

〉
+ C∗

mi(t)Ckj(t)
〈
mi

∣∣∣u
∣∣∣kj

〉]
 .

Here
∣∣∣α

〉
≡

∣∣∣φα

〉
.

Terms linear in Cmi(t), excluding an external time-dependent field δU , disappear

as a solution of the Hartree-Fock equation:

〈
m

∣∣∣− 5
2
− Vions

∣∣∣i
〉

+
∑
j≤εF

〈
mj

∣∣∣ u
∣∣∣ij

〉
= 0. (5.2.4)

Variation over C∗
mi(t) gives

i
∂

∂t
Cmi(t) = (εm− εi) Cmi(t) +

〈
m

∣∣∣ δU
∣∣∣i
〉

+

+
∑

j≤εF <k

[
C∗

kj(t)
〈
mk

∣∣∣ u
∣∣∣ij

〉
+ Ckj(t)

〈
mj

∣∣∣ u
∣∣∣ik

〉]
. (5.2.5)

We search for the solution of this system in the form: Cmi(t) = Xmie
−iε0t + Y ∗

mie
iε0t

with ε0 being the energy transferred to the system. Finally, the system of coupled

equations for these coefficients reads:

(εm− εi− ε0) Xmi +
〈
m

∣∣∣ δU
∣∣∣i
〉

+
∑

j≤εF <k

[〈
mj

∣∣∣ u
∣∣∣ki

〉
Xkj +

〈
mk

∣∣∣ u
∣∣∣ji

〉
Ykj

]
, (5.2.6)
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(εm− εi+ ε0) Ymi +
〈
i
∣∣∣ δU

∣∣∣m
〉

+
∑

j≤εF <k

[〈
ij

∣∣∣u
∣∣∣km

〉
Xkj +

〈
ik

∣∣∣u
∣∣∣jm

〉
Ykj

]
. (5.2.7)

If both the time-independent part of the field δU and the inter-electron interaction

u are absent, X and Y , which become independent solutions, describe the electron

excitation (de-excitation) from i to m, respectively. Representing the unknown coef-

ficients Xmi and Ymi through the matrix elements of the effective field operator δUeff

−(εm− εi− ε0)Xmi ≡
〈
m

∣∣∣ δUeff

∣∣∣i
〉

and −(εm− εi+ ε0)Ymi ≡
〈
i
∣∣∣ δUeff

∣∣∣m
〉
,

we can write down the required equation for the ionization amplitude

〈
m

∣∣∣ δUeff

∣∣∣i
〉

=
〈
m

∣∣∣ δU
∣∣∣i
〉

+

+
∑

j≤εF <k




〈
k
∣∣∣ δUeff

∣∣∣j
〉〈

mj
∣∣∣ u

∣∣∣ki
〉

ε0 − εk + εj + iν
−

〈
j
∣∣∣ δUeff

∣∣∣k
〉〈

mk
∣∣∣u

∣∣∣ji
〉

ε0 + εk − εj − iν


 . (5.2.8)

Eq. (5.2.8) is the main RPAE equation for the transition amplitude under the action

of the effective external field. It can be viewed as a generalization of the HF equa-

tions, allowing to take into account the response of the cluster electrons to the bare

external perturbation. The first term in the right-hand side of (5.2.8) describes the

direct excitation of the electron by the bare external field. The second and the third

terms, referred to as correlation terms, describe more complex transitions with the

participation of another electrons of the system, in which the ionization of the elec-

tron is mediated by the creation/annihilation of all possible electron-hole pairs. In

this way, the correlations are included as a modification of the external perturbation,

acting on the ionized electron, by the mobile electronic cloud of the system and enter

the matrix elements of the form
〈
k
∣∣∣ δUeff

∣∣∣j
〉
. Along with this, the creation of the

electron-hole pairs occurs under the action of the naked electron-electron interaction:
〈
mj

∣∣∣u
∣∣∣ki

〉
. Due to the long-range character of u, there is a certain difficulty in the

calculation of the numerous Coulomb matrix elements of these transitions, because
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in Eq. (5.2.8) one should sum over all possible electronic excitations. There is an-

other useful form of this equation, where the renormalization of the external field is

expressed in terms of a renormalized two-particle interaction in the system

〈
m

∣∣∣ δUeff

∣∣∣i
〉

=
〈
m

∣∣∣ δU
∣∣∣i
〉

+

+
∑

j≤εF <k




〈
k
∣∣∣ δU

∣∣∣j
〉〈

mj
∣∣∣ ueff

∣∣∣ki
〉

ε0 − εk + εj + iν
−

〈
j
∣∣∣ δU

∣∣∣k
〉〈

mk
∣∣∣ ueff

∣∣∣ji
〉

ε0 + εk − εj − iν


 . (5.2.9)

Here U is the bare external field and ueff is the effective electron-electron interaction.

Its matrix elements can be found from

〈
mj

∣∣∣ ueff

∣∣∣ki
〉

=
〈
mj

∣∣∣u
∣∣∣ki

〉
+

+
∑

p≤εF <q




〈
qj

∣∣∣ u
∣∣∣kp

〉〈
mp

∣∣∣ ueff

∣∣∣qi
〉

ε0 − εp + εq + iν
−

〈
pj

∣∣∣u
∣∣∣kq

〉〈
mq

∣∣∣ ueff

∣∣∣pi
〉

ε0 + εp − εq − iν


 . (5.2.10)



Chapter 6

Electron and proton impact

ionization of C60 and metal clusters

In the first part of this chapter we describe model potentials for the systems under

study and their energy structure. In Sec. 6.2 the fluctuations in the electronic charge

density of the clusters in response to an approaching electron are investigated for

the electron impact ionization of C60 and Lin clusters. The suppression of the single

ionization channel is revealed by RPAE calculations and analyzed in the Thomas-

Fermi model of screening. The interplay between finite size and nonlocal screening

effects is studied by tracing the changes in the ionization cross sections for Li clusters

with an increasing cluster radius. In Sec. 6.7 the role of exchange correlation is

revealed by comparing the cross sections for proton and electron impact collisions.

46
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6.1 Confining potentials

Due to the large number of electrons in the fullerene molecule, ab initio calculations

even of the single-particle wave functions and of the energy levels are practically

impossible. They are performed, as a rule, within the frame of some phenomenological

approach in which a model potential of fullerene shell is used, see e.g. [3, 15, 57, 89].

Naturally, preference should be given to a model that has the minimal set of fitting

parameters. We employ the model having three experimentally observed parameters,

namely, radius and thickness of the fullerene shell and the affinity energy of the

electron to the singly charged fullerene.

The potential of C60, formed by carbon ions and localized core electrons, is re-

placed by a shifted potential well: V (r) = V0 within the interval R − ∆R < r <

R + ∆R, and V = 0 elsewhere. Here R ≈ 6.65 a0 is the radius of the fullerene [85],

the thickness of the shell is 2∆R ≈ 2a0 , a0 being the Bohr radius. The depth of

the well is chosen such that to reproduce the experimental value of first ionization

potential of C60, which is 7.1 eV [52, 75, 80] and to encompass 240 valence electrons.

Despite the simple potential structure this model is a good tool for analytical esti-

mations providing clear insight into phenomenology of the object and the processes

under consideration. Moreover, as it will be shown in Sec. 6.2, the simple many-body

improvement of this model done by the Hartree-Fock description of the eigenstates

of the target together with the Thomas-Fermi approach for the interaction with the

probe particle yields encouraging results when compared with available experimental

data for electron impact ionization of C60 clusters.

Due to the shift R of the potential well from the origin (the center of spherical

symmetry) the energy structure of the levels has an interesting form. An example of
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this energy structure for the shifted square well is shown in Fig. 6.1. It consists of

several branches, each branch is characterized by the fixed number of nodes of the

corresponding wave function. Namely, the wave functions of the zero-branch (black

curve in Fig. 6.1) have no nodes, states on the next branch (blue curve) have one

node, etc. The levels belonging to the different branches are well separated in
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Figure 6.1: Example of the energy structure of the shifted rectangular well as a
function of orbital momentum. Each branch of eigenstates is characterized by the
fixed number of nodes nr of the corresponding wave function (black curve: nr = 0,
blue curve: nr = 1, etc.)

energy, at least for the small orbital momenta. The energy of the level on the same

branch grows with the orbital number. With increase of the shell radius R (with the

constant potential width 2∆R) the energy structure changes: the larger is the shift

the more flat are the branches. In the limit, when the shift goes to infinity all branches

transform to lines parallel to x-axis because all levels with the same number of nodes
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Figure 6.2: Effect of the centrifugal term on the shell potential for different shell radii.
In the large R limit the centrifugal term gives negligible contribution.

become degenerate in energy E = E`=0. This behavior is clear from the Shrödinger

equation. At large distances and large R the centrifugal term becomes negligible

with respect to V0 (see Fig. 6.2) and the equation transforms to the one-dimensional

equation for the finite square well:

−d2ψ`(r)

dr2
+

(
`(` + 1)

r2
− V0(r ∈ [R±∆R])

)
ψ`(r) = Eψ`(r) −→R→∞

−→ −d2ψ`(r)

dr2
− V0(r ∈ [R±∆R])ψ`(r) = Eψ`(r). (6.1.1)

The quantum states of the clusters are constructed within the HF approximation.

Hartree-Fock model is principally the best out of single-particle theories in a sense

that it is able to incorporate part of electron-electron interactions and exchange. In

this model each electron moves in a self-consistent averaged electric field of all the

other electrons of the system, obeying Pauli principle. The one-electron potential

then represents a sum of the ionic background and self-consistent electronic density
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of the valence electrons. The bound state wave functions are calculated in the frame

of the nonlocal variable phase approach (Sec. 3.4). The eigenenergies are determined

by finding the poles of the partial scattering amplitude on the imaginary semi-axis of

the wavevector k = iκ, κ ∈ <. (c.f. Eq. 3.4.14).

In total, there are 16 occupied orbitals in C60. The lowest 10 of them are such

that their wave functions with the orbital momenta 0 ≤ ` ≤ 9 have no nodes. Then

4 orbitals with 0 ≤ ` ≤ 3 have one node and two highest occupied orbitals with

0 ≤ ` ≤ 1 have two nodes. Each orbital is 2 · (2`+1) degenerate. All shells are closed

and the total number of the electrons is equal to 240. Lithium clusters with different
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Figure 6.3: The local part of one-electron HF potential of a) Li44 and b) C60, calcu-
lated in the spherical jellium and jellium shell models.

number of atoms were chosen as an example of typical metallic particles. Basing on

the same jellium potential model and within the VPA we performed the Hartree-

Fock calculations of the eigenstates of Li4, Li8, Li18, and Li44. The parameters

of the rectangular well were again taken such that to reproduce the first ionization

potential [29] and to contain all delocalized electrons.
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The self-consistent electronic density smoothes the sharp potential edges and intro-

duces slight oscillations in the potential profile. The local parts of the self-consistent

nonlocal one-electron potentials for the ground states of C60 and Li44 clusters are

shown in Fig. 6.3

6.2 Manifestation of charge density fluctuations in

metal clusters: suppression of the ionization

channel

In this section we consider the influence of nonlocal screening on the single ionization

of fullerene clusters by electron impact and show that the fluctuations of the electronic

charge density of metallic clusters in response to an approaching electron suppress

the single ionization channel. The present numerical results performed in the random

phase approximation and analyzed by means of the Thomas-Fermi model of screening

explain the behavior of the measured total ionization cross section for C60. In addition,

we investigate the interplay between quantum size and non local screening effects by

tracing the changes in the ionization cross sections for Li clusters with an increasing

cluster radius.

The ideas sketched in the previous chapter are the key to resolve a yet open ques-

tion of how metal clusters ionize in response to an external perturbation induced

by an approaching electron. In the experiments, which have been performed using

free C60 clusters, one measures the absolute total ionization cross sections W (ε0),

i.e. the yield for the C+
60 production, as function of the energy (ε0) of an incoming
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electron [58, 34, 81]. These measurements confirmed repeatedly that the cross sec-

tion W (ε0) possesses a plateau shape: Near the ionization threshold it rises strongly

with increasing ε0 and then falls off slowly at higher energies. This saturation effect

is markedly different from what is known for atomic targets where W (ε0) shows a

pronounced peak at low ε0 (c.f. Fig. 6.4a).

Theoretical attempts to explain the behavior of W (ε0) for C60 are scares. For

the energy region ε0 < 100 eV only semi empirical models exist [27, 81] whereas for

ε0 > 100 eV a quantum scattering approach has been proposed in Refs. [46, 45].

All of these previous theories [81, 27, 46, 45] were unable to explain the energy

dependence of W (ε0), basically because the problem has been approached from an

atomic scattering point of view without account for the influence of the fluctuating

electron density on the scattering process which is of a key importance at low energies

(ε0 < 1000 eV ), as shown here in details: The central quantity that determines W (ε0)

is the transition matrix element T (k0, φν ;k1,k2). This matrix element is a measure

for the probability that an incoming electron with momentum k0 ionizes a valence

electron bound to the state φν of the cluster with a binding energy εν , where ν

stands for a collective set of quantum numbers that quantify uniquely the electronic

structure of the cluster. The emitted and the scattered electrons’ states are labelled

by the momenta k1 and k2. As outlined above the renormalized electron-electron

interaction Ueff is determined by an integral equation with a kernel describing the

particle-hole (de)excitation. Therefore, the evaluation of the T matrix entails a self-

consistent solution of an integral equation. In the random-phase approximation with

exchange [32] and within the post formulation [84] the T matrix has the form TRPAE =
〈
k1k2

∣∣∣ Ueff

∣∣∣φνk0

〉
where (c.f. Eq. 5.2.9)
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〈
k1k2

∣∣∣Ueff

∣∣∣φνk0

〉
=

〈
k1k2

∣∣∣U
∣∣∣φνk0

〉
+

+
∑

εp≤µ<εh




〈
ϕpk2

∣∣∣Ueff

∣∣∣φνϕh

〉〈
ϕhk1

∣∣∣U
∣∣∣k0ϕp

〉

ε0 − (εp − εh − iδ)
−

−

〈
ϕhk2

∣∣∣ Ueff

∣∣∣φνϕp

〉〈
ϕpk1

∣∣∣ U
∣∣∣k0ϕh

〉

ε0 + (εp − εh − iδ)


 . (6.2.1)

The spin averaged cross section W (ε0) is obtained from the weighted average of the

singlet ∝ |T (S=0)|2 (vanishing total spin (S = 0) of the electron pair) and the triplet

∝ |T (S=1)|2 cross sections (we assume spin-flip processes to be irrelevant)

W (ε0) =
(2π)4

k0

∫
d3k1d

3k2

{∑
ν

1

4

∣∣T (S=0)(k0, φν ;k1,k2)
∣∣2 +

+
3

4

∣∣T (S=1)(k0, φν ;k1,k2)
∣∣2

}
δ
(
ε0 + εν − (k2

1/2 + k2
2/2)

)
. (6.2.2)

In Eq. (6.2.1) ϕp and ϕh are respectively the intermediate particle’s and hole’s states

with the energies εp, εh whereas δ is a small positive real number. The first line

of Eq. (6.2.1) amounts to a neglect of the electron-hole (de)excitations, as done

in Ref. [45]. If UTF is employed as an effective potential only the first line of

Eq. (6.2.1) has to be evaluated and we obtain the much simpler expression TTF =
〈
k1k2

∣∣∣ UTF

∣∣∣φνk0

〉
from which the cross section WTF follows according to Eq. (6.2.2).

In contrast, as evident from Eqs. (6.2.1, 6.2.2), the numerical evaluation of W (ε0)

within RPAE is a challenging task. To tackle this problem we proceeded as follows:

The quantum states of the metal clusters are constructed within the Hartree-Fock

approximation and within the spherical jellium model. Alternatively, one can em-

ploy a model cluster potential as derived from the density functional theory (DFT)
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within the local density approximation [45]. As shown below the DFT potential leads

basically to the same conclusions as the model potential outlined above.

As remarked in Refs. [45, 46], the relatively large size of the cluster leads to severe

convergence problems in evaluating the transition matrix elements. To circumvent

this situation we utilized the nonlocal variable phase approach [7, 21, 47] for the

numerical calculation of the Hartree-Fock states. We find that this choice for the

numerical realization renders a rapid and a reliable convergence of the self-consistent

calculations. Upon the numerical summation over the states φν in Eq. (6.2.2) we

carry out the six-dimensional integral over the momenta k1 and k2 using a Monte-

Carlo procedure. To get an insight into the effect of the screening we calculated

WTF (ε0) for different values of the screening length r0. As seen in Fig. 6.4(a), when

approaching the unscreened limit (r−1
0 = 0.01 a.u.), the calculated WTF (ε0) agree

well both in shape and magnitude with the finding of Ref. [27] at lower energies. At

higher energies, the present model and the DFT calculations [45, 46] yield basically

the same results. To simulate experimentally this atomic case let us assume the C60

molecule to be simply an ensemble of 60 independent carbon atoms in which case

the cross section for C60 is a factor 60 larger than W (ε0) for atomic carbon [17]. The

experimental cross sections we obtain by this procedure (Fig. 6.4(a)) agree very well

with the shape of the calculated WTF (ε0) at low screening. On the other hand, all of

the theoretical models shown in Fig. 6.4(a) are clearly at variance with the measured

W (ε0) for C60 (note the measured and the calculated cross sections are on an absolute

scale). Fig. 6.4(b) sheds light on the underlying reasons for the shortcomings of the

theories shown in Fig. 6.4(a): with increasing screening the region where scattering

may take place shrinks. This results in a suppression of the ionization cross section
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FIG. 1. (a) The total ionization cross section [Eq. (2)] for the
electron impact single ionization of C60 as a function of pro-
jectile energy. The absolute experimental data (full squares) for
the production of stable C

1
60 ions [2,3] are shown along with the

experimental electron-impact total ionization cross sections for
atomic carbon (open circles) [13] multiplied by a factor of 60
(cf. text). The solid line with crosses is the result of the DFT
calculations [6], whereas the dashed line is due to the model of
Ref. [5]. The dotted line indicates the present calculations with
very small screening (r21

0 � 0.01 a.u.). (b) The RPAE results
(solid line) are shown together with calculations employing the
Thomas-Fermi model of screening with varying values of the
screening length, as shown in the figure. Full squares as in (a),
whereas the open squares are the absolute experimental total
counting cross section for the emission of one electron from the
initially neutral cluster (cf. text for details) [2,3].

theories shown in Fig. 1(a): As alluded to in the introduc-
tion, with increasing screening the region where scatter-
ing may take place shrinks. This results in a suppression
of the ionization cross section with increasing screening
length, as is evident from Fig. 1(b). This effect is not a
simple scaling down of W�e0�, but the shape is also af-
fected. The peak of W�e0� is shifted to higher energies
and W �e0� is generally flattened. In fact, for extremely
high screening the cross section is very small and shows
basically very weak dependence on e0. This can be under-
stood from the behavior of the form factor of the potential
UTF which for large screening is independent of e0, i.e.,
UTF�q� ~ r

2
0 � const, ; e0 [14]. Another extreme limit

that shows up in Fig. 1 (cf. also Fig. 2) is that when e0

is very large the electronic density of the cluster cannot
react within the very short passage time of the electron
through the interaction region and hence only small de-
viations between all the models are observed in the high
energy regime.

The full numerical RPAE calculations for the cross sec-
tion WRPAE�e0� confirm the trends we pointed out by
means of the locally screened potential UTF. In fact, by
comparing the WRPAE�e0� and WTF�e0� one may deduce
a rough estimate of the screening length which is of im-
portance for the consideration of the relaxation time due
to electron-electron collisions [15]. We obtain a quali-
tative agreement between WRPAE�e0� and WTF�e0� when
r

21
0 � 0.3 a.u. is used to evaluate WTF�e0�, however, it

should be stressed that we were not able to reproduce cor-
rectly the RPAE calculations by simply adjusting r0, as can
be concluded from Fig. 1(b).

For a comparison of WRPAE�e0� with the experiments
we recall the remarks of Ref. [5] that, experimentally the
electron impact on C60 may lead not only to the formation
of stable C

1
60 but also may produce unstable C

1
60 that within

a certain lifetime, not resolved by the experiment, decay
subsequently into various fragmentation channels. There-
fore, we show in Fig. 1(b) the experimental total counting
rates, i.e., the total electron-impact ionization cross sec-
tions for the emission of one electron from C60 along with
the experimental total cross section for the ionization of
C60 and for the formation of the stable C

1
60 ion. We re-

gard the agreement between the parameter-free WRPAE�e0�
and the experimental results as satisfactory, in view of
the fact that the RPA is the first order approximation to
the two-point particle-hole Green function, as outlined in
the introduction.

To study the interplay between quantum-size effects and
the nonlocal screening as described by RPAE we calcu-
lated within the spherical jellium model the cross section
WRPAE�e0� for Li clusters with varying sizes. For a judi-
cious conclusions we normalized the cross sections to the
number of electrons in the respective cluster. Figures 2(a)
and 2(b) reveal a striking influence of charge density fluc-
tuation on W�e0�, in particular at low energies: The RPAE
model predicts a suppression of WRPAE�e0� with an in-
creasing cluster size due the increasing phase space for
the particle-hole creation [cf. inset of Fig. 2(a)]. In con-
trast the neglect of charge density fluctuations results in
increased peak values of W �e0� for larger clusters. Further-
more, according to the RPAE, the peak in W �e0� is consid-
erably broadened and shifted towards higher energies when
the cluster size is increased (for the cluster with a radius
RLi � 4a0 the peak is at e0 � 200 eV whereas this peak
is shifted to e0 � 700 eV for RLi � 10a0) [cf. Fig. 2(a)
and inset]. As explained above, this is consistent with
the behavior of W �e0� with increased screening length
[14]. In contrast, the neglect of the particle-hole (de)exci-
tations leads to cross sections with the peak positions be-
ing shifted towards lower energies as the cluster size grows
[cf. Fig. 2(b) and inset]. For small clusters or for e0 ¿ 1

there is hardly an influence of charge density fluctuations
[cf. heavy solid lines in Figs. 2(a) and 2(b)].

Summarizing the above results, we have seen how
the particle-hole (de)excitations suppress and modify the

263401-3 263401-3

Figure 6.4: (a) The total ionization cross-section (Eq. 6.2.2) for the electron impact
single ionization of C60 as function of projectile energy. The absolute experimental
data (full squares) for the production of stable C+

60 ions [58, 34] are shown along with
the experimental electron-impact total ionization cross sections for atomic carbon
(open circles) [17] multiplied by a factor of 60 (c.f. text). The solid line with crosses is
the results of the DFT calculations [46] whereas the dashed line is due to the model of
Ref. [27]. The dotted line indicates the present calculations with very small screening
(r−1

0 = 0.01 a.u.). /newline (b) The RPAE results (solid line) are shown together with
calculations employing the Thomas-Fermi model of screening with varying values of
the screening length, as shown on the figure. Full squares as in (a) whereas the open
squares are the absolute experimental total counting cross-section for the emission of
one electron from the initially neutral cluster (c.f. text for details) [58, 34].
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with increasing screening length, as evident from Fig. 6.4(b). This effect is not a

simple scaling down of W (ε0), but the shape is also affected. The peak of W (ε0) is

shifted to higher energies and W (ε0) is generally flattened. In fact for extremely high

screening the cross section is very small and shows basically very weak dependence on

ε0. This can be understood from the behavior of the form factor of the potential UTF

which for large screening is independent of ε0, i.e. UTF (q) ∝ r2
0 = constant, ∀ ε0. This

behavior and the rough positions of the peaks in W (ε0) can be explained analytically

if we write TTF =
∫

d3p1d
3p2

〈
k1k2

∣∣∣UTF

∣∣∣p1p2

〉
B, where B = 〈p1p2|φνk0〉, and

assume B to vary slowly with p1,p2 on the scale of the variation of the form factor

of UTF (see Fig. 6.5 for illustration). Another extreme limit that shows up in Fig. 6.4

(c.f. also Fig. 6.6) is that when ε0 is very large the electronic density of the cluster can

not react within the very short passage time of the electron through the interaction

region and hence only small deviations between all the models are observed in the

high energy regime.

The full numerical RPAE calculations for the cross section WRPAE(ε0) confirm

the trends we pointed out by means of the locally screened potential UTF . In fact

by comparing the WRPAE(ε0) and WTF (ε0) one may deduce a rough estimate of the

screening length which is of importance for the consideration of the relaxation time

due to electron-electron collisions [28]. We obtain a qualitative agreement between

WRPAE(ε0) and WTF (ε0) when r−1
0 = 0.3 a.u. is used to evaluate WTF (ε0), however it

should be stressed that we were not able to reproduce correctly the RPAE calculations

by simply adjusting r0, as can be concluded from Fig. 6.4(b).

For a comparison of WRPAE(ε0) with the experiments we recall the remarks of

Ref. [27] that, experimentally the electron-impact on C60 may lead not only to the
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Figure 6.5: Schematic illustration of the variation of the electron-impact ionization
cross section as a function of the impact energy E0 and the screening length λ:

σ ∼ ∫
d3k1d

3k2|Ueff (q)|2 · |Φ̃(p)|2 ∼ ∫
d3k1d

3k2

∣∣∣ 1
q2+1/λ2

∣∣∣
2

|Φ̃(p)|2, p = k0 − k1,

q = k0 − k1 − k2.

formation of stable C+
60 but also may produce unstable C+

60 that within a certain life-

time, not resolved by the experiment, decay subsequently into various fragmentation

channels. Therefore, we show in Fig. 6.4(b) the experimental total counting rates,

i.e. the total electron-impact ionization cross sections for the emission of one elec-

tron from C60 along with the experimental total cross section for the ionization of

C60 and for the formation of the stable C+
60 ion. We regard the agreement between

the parameter-free WRPAE(ε0) and the experimental results as satisfactory, in view of

the fact that the RPAE is the first order approximation to the two-point particle-hole

Green function. To study the interplay between quantum-size effects and the nonlocal

screening as described by RPAE we calculated within the spherical jellium model the

cross section WRPAE(ε0) for Li clusters with varying sizes. For a judicious conclusions
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FIG. 2. The total electron-impact cross section for the ion-
ization of spherical Li clusters with varying radius size RLi.
(a) shows the RPAE calculations. (b) shows the results when
the particle-hole (de)excitation is neglected [the first term of
Eq. (1)]. The insets in (a) and (b) highlight the low-energy re-
gion.

ionization cross sections for the electron scattering from
neutral metal clusters. The simple Thomas-Fermi (TF)
model of screening provided a useful tool to obtain global
views on the role of delocalization of the electrons. The
more elaborate random phase approximation confirmed
and specified more precisely the understanding gained
from the TF model. We also envisaged the interrelation
between quantum-size and screening effects. From a for-
mal point of view, we note that to treat scattering processes
in isolated few charged particle systems, such as in atoms
or small molecules, one has to deal with the infinite-range
tail of the Coulomb interaction that precludes the use of
standard methods [16] and induces multiple scattering

between the collision partners up to very large distances.
In contrast, the presence of the screening in systems with
a large number of delocalized active electrons renders
possible the use of standard scattering theory but on the
considerable expense of actually calculating the nonlocal
screening properties of the medium, e.g., as described by
the polarization propagator P. The crossover between
the two cases is marked by a breakdown of the RPAE
for dilute systems, where other methods such as the
ladder approximation become more appropriate. In any
case one has to bear in mind that, both from a practical
and a conceptual point of view, approximate methods
that perform well for few particle scattering may not be
suitable for the treatment of delocalized many-particle
systems (and vice versa).
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we normalized the cross sections to the number of electrons in the respective clus-

ter. Figs. 6.6(a,b) reveals a striking influence of charge density fluctuation on W (ε0)

in particular at low energies: The RPAE model predicts a suppression of WRPAE(ε0)

with an increasing cluster size due the increasing phase space for the particle-hole cre-

ation (c.f. inset of Fig. 6.6(a)). In contrast the neglect of charge density fluctuations

results in increased peak values of W (ε0) for larger clusters. Furthermore, according

to the RPAE, the peak in W (ε0) is considerably broadened and shifted towards higher

energies when the cluster size is increased (for the cluster with a radius RLi = 4 a0 the

peak is at ε0 ≈ 200 eV whereas this peak is shifted to ε0 ≈ 700 eV for RLi = 10 a0)

(c.f. Fig. 6.6(a) and inset). As explained above, this is consistent with the behavior

of W (ε0) with increased screening length. In contrast, the neglect of the particle-hole

(de)excitations leads to cross sections with the peak positions being shifted towards

lower energies as the cluster size grows (c.f. Fig. 6.6(b) and inset). For small clusters

or for ε0 À 1 there is hardly an influence of charge density fluctuations (c.f. heavy

solid lines in Fig. 6.6(a,b)).

Summarizing the above results, we have seen how the particle-hole (de)excitations

suppress and modify the ionization cross sections for the electron scattering from neu-

tral metal clusters. The simple Thomas-Fermi (TF) model of screening provided a

useful tool to obtain global views on the role of delocalization of the electrons. The

more elaborate random phase approximation confirmed and specified more precisely

the understanding gained from the TF model. We also envisaged the inter-relation be-

tween quantum-size and screening effects. From a formal point of view, we note that

to treat scattering processes in isolated few charged particle systems, such as in atoms
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or small molecules, one has to deal with the infinite-range tail of the Coulomb interac-

tion that precludes the use of standard methods [84] and induces multiple scattering

between the collision partners up to very large distances. In contrast, the presence of

the screening in systems with a large number of delocalized active electrons renders

possible the use of standard scattering theory but on the considerable expense of ac-

tually calculating the nonlocal screening properties of the medium, e.g. as described

by the polarization propagator Π. The crossover between the two cases is marked

by a breakdown of the RPAE for dilute systems, where other methods such as the

ladder approximation become more appropriate. In any case one has to bear in mind

that, both from a practical and a conceptual point of view, approximate methods

that perform well for few particle scattering may not be suitable for the treatment of

delocalized many-particle systems (and vice versa).

6.3 Ionization by proton impact: estimation of ex-

change effects

With the use of particles and antiparticles as projectiles in collision experiments,

many effects related to the projectile charge and mass have been identified, and a de-

tailed picture of phenomena influencing single and multiple ionization of atoms have

been obtained [50, 77]. Complete set of data for ionization of the system by e+, e−,

p+, p− allows to trace the role of polarization and exchange effects. At high impact

velocities, much greater than the characteristic velocity of target electrons, all four

particles have the same ionization cross section. Therefore in the high energy limit

the cross sections should merge. At lower velocities the positive particles generally
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have higher ionization cross sections, as expected from polarization effects. Electron-

impact ionization differs from the other three collisions in the indistinguishability of

the projectile and the target electrons. Exchange interaction is a part of Coulomb

interaction, originating from specific correlation in the movement of electrons caused

by the symmetry of the coordinate part of the electronic wave function. Mathemati-

cally, in the case of e− and e+ scattering the only difference in the ionization matrix

element is the exchange term, which is absent for the proton impact. As for electrons

of the target, they, of course, have exchange interaction in both cases. In Fig. 6.7 the
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Figure 6.7: Electron and proton impact ionization of C60: black curve – RPA calcu-
lations for proton impact; red curve – RPAE calculations for electron impact; filled
symbols – experimental data for proton impact [86]; open symbols – experimental
data for electron impact ionization of C60 [34, 58]; blue curve – calculations of [67]
with one adjustable parameter.

single-ionization cross sections for electron- and proton-impact ionization of C60 are

shown as a function of the projectile velocity (in atomic mass units). The polarization



62

of the fullerene molecule is accounted by RPAE. The electron-hole excitations are ac-

counted by summation over all possible states of the discrete and continuum spectra

of C60 obeying the energy conservation. As discussed above, at high impact energy

∼ 1 keV the two curves begin to merge. At the intermediate energies due to different

polarization of the fullerene by proton and electron, the difference between the cross

sections is most prominent and maximal at ∼ 170 eV , where the curves differ by

∼ 30%. Interesting to note very close low-energy behavior of the cross sections.



Chapter 7

Single and multiple

photoionization of fullerene

In this chapter we consider the single and multiple photoionization processes in a sin-

gle fullerene molecule. The diffraction of the photoelectron wave on the fullerene shell,

displaying itself in the oscillations of the photoionization cross section, is discussed.

We calculate the ionization probabilities within the Hartree-Fock and frozen-core

approximations. For the description of multiple photoionization, statistical energy

deposition (SED) model is used in addition. The advantage of the SED model is that

it is simple enough to be applied to the polyatomic systems, where more elaborate

calculations are hardly feasible. As a result, different multiple photoionization cross

sections of C60 in the photon energy range ∼ 10 - 250 eV are compared and analyzed,

their order of magnitude is estimated.

63
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7.1 Single photoionization

It is well known that the collision time with photons is much shorter than the charac-

teristic time of any vibrational motion of the molecule. To a good approximation one

can assume that photon transfers energy to a fixed in space molecule. In the sudden

approximation, the wave function of the N -electron system, irradiated by the photon

field, is represented as a product of the wave function of the ionized electron and the

(N − 1)-electron wave function of the other electrons:

Ψ(x1, ..., xN−1, xN) = ψ(xN)Φ(x1, ..., xN−1), (7.1.1)

The photoionization cross section as a function of the photon energy Eph is given by

σ(Eph) = 4π2 e2

~c
~ω|erfi|2, (7.1.2)

where ω and e are the photon frequency and polarization vector, respectively. The

photoionization matrix element rfi in the length form

rfi =
〈
ψf

∣∣∣ r
∣∣∣ψi

〉
(7.1.3)

describes the transition of the electron from the bound state ψi to the continuum

state ψf . If the latter are the eigenstates of the spherically symmetric potential, i.e.

have the form ψ = u`(r)Ylm(Ω)/r, one can reduce the matrix element to an integral

over the radial wave functions times a product of three spherical harmonics:

r
(ν)
fi =

∫ ∞

0

u∗`f
(r) r u`i

(r) dr

√
4π

3

∫
dΩY ∗

lf mf
(Ω)Y1ν(Ω)Ylimi

(Ω), ν = 0,±1.(7.1.4)

For the calculation of the single photoionization of C60 we used one-electron

Hartree-Fock wave functions of the shifted-square-well potential, described in the

previous chapter. One of the features of the photoionization cross section of C60,
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discussed in the literature (see e.g. [11, 68, 36]) and related to this particular shape of

the confining potential, is the diffraction of the photoelectron waves between the well

boundaries. In a simplified picture, if we forget for the moment about the Hartree-

Fock corrections to the one-electron potential, the photoelectron wave emitted from

the origin meets on its way to infinity two sharp potential edges, where it can absorb a

photon. Consequently, there will be four resonant frequencies in the photoionization

cross section (see discussion in [36]).

Indeed, the oscillations in the photoionization cross section are clearly visible

(Fig. 7.1). However, smoothing of the abrupt potential edges by the mean-field elec-

tronic density smears out the idealized four-frequency behavior. The results of the
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Figure 7.1: Single photoionization cross section of the highest occupied C60 orbital,
present calculations.

calculations, presented in Fig. 7.1, correspond to the photoionization of the highest

occupied orbital with energy EHOMO ∼ −7.1 eV . Despite the simplicity of the model,

the theoretical curves are in good agreement with the available experimental data,
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Figure 7.2: Experimental partial cross-sections of the highest occupied molecular or-
bitals HOMO and HOMO-1 of C60 with a total photoionization cross-section (taken
from [11]).

see Fig. 7.2 (note the logarithmic scale there).

7.2 Multiple photoionization

Upon photoionization the photon energy is transferred to the electronic degrees of

freedom of the target. The deposited energy is partly spent for ionization (binding

energy of electrons and their kinetic energy). However, some part of the deposited

energy is transferred to the vibrational degrees of freedom, i.e. to the internal en-

ergy of the molecular ion. The subsequent dissociation of the excited molecular ion

may include emission of photons, delayed electrons or small fragments. A theoreti-

cal description of the photo- and electron-induced multiple ionization is complicated

mainly due to the variety of mechanisms that may contribute to it as well as its

multielectron nature, strongly related to electron-electron correlations. In addition

to the direct knock-out of electrons, processes such as shake-off, fast Auger cascades



67

after inner-shell ionization, excitation and multiple excitations followed by autoion-

ization can contribute. Due to the complexity of the problem, to the best of our

knowledge there is no theoretical description of the process of multiple photoioniza-

tion of fullerenes. However, in the field of ion-fullerene collisions there exists a model,

adopted from the early stage of investigation of atomic multiple ionization [67]. This

model, referred to as statistical energy-deposition model (SED) [73, 74, 71, 70, 72],

implies that the process is viewed to proceed in two stages. First, part of the kinetic

energy of the projectile is transferred to electronic excitations of the target atom. In

the second stage, the deposited energy is distributed among all target electrons and

the system subsequently autoionizes to reach its final ionization state. In the case of

collisions with charged particles, the deposited energy is considered as a fluctuating

quantity [67], characterized by a certain distribution, and the ionization probability

is then calculated as a weighted average over this distribution. Adapted to the mul-

tiple photoionization, the deposited energy is well defined at is equal to the photon

energy. Then the probability of n-fold ionization for certain deposited energy Eph can

be expressed as

P (N)
n (Eph) =

Cn
NgnSn(Ek/ε1)∑N

i=1 C i
NgiSi(Ek/ε1)

. (7.2.1)

Here N is the total number of target electrons, Cn
N is the binomial coefficient, and

Ek is the kinetic energy carried off by the photoelectrons if the residual ion is left in

the n-th ionization state. The energy conservation implies that

Ek = Eph −
n∑

i=1

εi − ER(n), (7.2.2)
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where ER(n) is the residual excitation of the ion and εi is the i-th ionization energy.

Parameter g is proportional to the mean-square matrix element of a single ioniza-

tion and it is supposed that for multiple ionization the mean-square matrix element

behaves according to the power law.

For the factor Sn(Ek/εi) characterizing the density of final states a simple expres-

sion was obtained [72]:

Sn(Ek) = 2{(n−1)/2}π{n/2}E(3n−2)/2
k /(3n− 2)!! , (7.2.3)

where {a} stands for the integer part of a. All possible ways to reach the final

state with n electrons in the continuum are considered as being equivalent. For

example, inner-shell ionization followed by fast Auger process is also included into

consideration.

In [72, 67] the SED model was used in a semiphenomenological way in a sense

that the mean-square matrix element g was considered as a (free) parameter. In our

calculations we extend the model in this respect. Namely, we calculate the single

photoionization matrix element of the fullerene cluster in the Hartree-Fock approx-

imation (c.f. Sec. 7.1). Here it is assumed that removal of the electron(s) from the

single-particle Hartree-Fock levels does not affect the states of the remaining elec-

trons, i.e. the fullerene ion has zero residual excitation energy ER. In more elaborate

calculations using RPAE this step may be further improved, since then the energy

conservation requirement will imply certain energy spent to the electronic excitations

of the residual ion.

Examples of the multiple photoionization of the highest occupied fullerene state

are given in Fig. 7.3. One can note that the qualitative and quantitative behavior

of the presented double, triple and 5-fold ionization cross sections is determined by
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several circumstances. The oscillations in the cross sections are due to the oscillating

nature of the single photoionization matrix element (c.f. Fig. 7.1), i.e. it is a con-

sequence of the interference of the electronic waves within the fullerene shell. The

dependence on the n-th power of the SPI square matrix element in the expression

for the probability Eq. (7.2.1) makes the oscillations more pronounced when going to

larger n. Difference in the order of magnitude for different n is mainly governed by

the denominator in Eq. (7.2.3), making the n-fold ionization rapidly decreasing with

increasing n. Note also the difference in the orders of magnitude of the cross sections

for different n. For example, the double photoionization of C60 is approximately fac-

tor 20 less probable than the single photoionization. The possibility to estimate the

order of magnitude of different multiple ionization processes can be viewed as a main

practical achievement of the present calculations.
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Figure 7.3: Double, triple and 5-fold photoionization cross sections of C60, calculated
in the SED model and in the HF approximation.



Chapter 8

Double photoionization of

quantum dots and metal clusters

Semiconductor quantum dots and metal clusters have similar electronic structure,

which to a good approximation can be modelled by an oscillator potential [25, 42].

In this chapter we use the exact two-electron states of the parabolic potential well

to calculate the double photoionization (DPI) spectra of such nanoparticles. Being

exactly solvable, the problem of two electrons coupled by Coulomb interaction in the

oscillator confinement provides a unique test for any approximate theories, dealing

with the few-body systems and the related experiments. An instructive treatment

based on a direct mapping of a two-electron initial state density onto the DPI ob-

servables is proposed, which clearly explains how the DPI spectra are organized and

gives useful hints for possible experimental measurements.

71
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8.1 Double photoionization

Evaluation of the effects of electronic correlations has to be included in most of

the theories dealing with the electronic excitations by external fields. While for

some processes (e.g. single photoemission [41, 56]) the account of correlations leads

only to a refinement of the calculated transition probabilities (which otherwise can

be calculated in the independent-electron approximation), for some other processes

(e.g. [12, 59]) it is a vital ingredient of the theoretical description, playing a major

role in determining the characteristics of the process. In the latter case the careful

use of approximations is important, for it can happen that the features introduced

by some aggressive approximations may become even more pronounced than those,

inherent to a very physical process. Therefore, it is important to have a reference

among the exactly solvable models to be able to judge the quality of the approximate

solutions.

One such process, which occurs as a result of the electron-electron interaction and

is impossible in the independent-electron picture [12], is the double photoionization

(DPI). In DPI the absorption of a photon by a system results in the simultaneous

emission of a pair of electrons. In a schematic way it can be described by a diagram,

Fig. 8.1, where the bold line represents the exact two-electron initial and final states

Φ2 and Ψ2, respectively, wavy line depicts a photon with energy ωph. For a particular

case of a parabolic potential well the two-electron eigenstates can be found without

approximations [82, 83]. Physical systems showing the electronic structure, well re-

produced by the oscillator confinement, are the semiconductor quantum dots [42] or

metal clusters [?]. Here for concreteness we consider the DPI from a single quantum

dot.
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Figure 8.1: Diagrammatic representation of DPI: two-particle state Φ2 evolves into
the two-particle state Ψ2 by absorbing photon with the energy ωph.

8.2 Exact solution

For the description of a semiconductor medium we assume the effective mass ap-

proximation (m∗ is taken in units of the bare electron mass) and the weakening of

the Coulomb interaction by the static dielectric constant ε. Atomic units are used

throughout.

Upon the transformation to the center-of-mass and relative coordinates

R =
1

2
(r1 + r2) , r = r1 − r2, (8.2.1)

the Hamiltonian for two interacting electrons in the parabolic well

H = − 1

2m∗∇2
r1
− 1

2m∗∇2
r2

+
1

2
m∗ω2r1

2 +
1

2
m∗ω2r2

2 +
1

ε|r1 − r2| . (8.2.2)

can be expressed as a sum of two independent parts:

H = − 1

4m∗∇2
R −

1

m∗∇2
r +

m∗

4
ω2r2 + m∗ω2R2 +

1

εr
≡ HR + Hr, (8.2.3)

with the two-electron wave function being also separable in these coordinates:

Φ2 (1, 2) = ϕ (r) · ξ (R) · χ (s1, s2) . (8.2.4)

The total energy is then given by the sum of the eigenenergies ER and Er of HR and
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Hr, respectively:

E = ER + Er. (8.2.5)

As is usual for the spin-independent Hamiltonians, the Pauli principle is guaranteed

in that the spin part of the wave function χ (s1, s2) has to be chosen symmetric or

antisymmetric (with respect to particle exchange) in accordance with the symmetry of

its coordinate part. The Schrödinger equation for the center-of -mass (CM) motion

coincides with the equation for the 3D harmonic oscillator

[
− 1

2m∗∇2
R +

1

2
m∗ω2

RR2

]
ξ (R) = E ′

Rξ (R) , ωR ≡ 2ω, E ′
R ≡ 2ER, (8.2.6)

and has analytical solutions [33], classifiable according to the node number N and

orbital momentum quantum number L

ξNLM (R) =
UNL(R)√

m∗R
YLM(R̂), N = 0, 1, 2..., L = 0, 1, 2..., (8.2.7)

where the radial function is given in terms of the confluent hypergeometric func-

tions [1]

UNL (R) = (
√

m∗R)L+1 exp

(
−m∗ω

2
R2

)
F

(
−N, L +

3

2
; m∗ωR2

)
. (8.2.8)

The equation for the relative motion, like the one for the CM motion, also possesses

a spherical symmetry:

[
− 1

2m∗∇2
r +

1

2
m∗ω2

rr
2 +

1

2εr

]
ϕ (r) = Erϕ (r) , ωr ≡ 1

2
ω, E ′

r ≡
1

2
Er. (8.2.9)

It’s eigenstates are classified in the same way as the oscillator wave functions (8):

ϕn`m (r) =
un`(r)√

m∗r
Y`m(r̂), n = 0, 1, 2..., ` = 0, 1, 2... . (8.2.10)
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The radial function un` (r) is a solution of the radial Schrodinger equation

[
− 1

2m∗
d2

dr2
+

1

2
m∗ω2

rr
2 +

1

2

1

εr
+

`(` + 1)

2m∗
1

r2

]
un`(r) = ε′un`(r), (8.2.11)

which can be integrated numerically and in some special cases has analytical solu-

tion [82].

Summarizing this part, the motion of the pair of electrons is described by inde-

pendent motions of two quasi-particles, described by the wave functions ξ(R) and

ϕ(r) and moving in R− and r−subspaces, respectively. The two-electron wave func-

tion is defined by six quantum numbers (N,L, M, n, `, m). The ground state of the

two-particle system is constructed from the ground states of the quasi-particles, the

excited state is reached whenever any or both of the motions are excited. For simplic-

ity, in the following we restrict our calculations by the quasi-particle wave functions

with M=m=0. In Fig. 8.2 the two-electron wave function characterized by different

combinations of (N,L, n, `) is shown as a function of (r,R). The number of extrema

corresponding to a different degree of excitation of the CM and ’relative’ motions can

be easily seen. The calculations are made for the confinement frequency ω = 0.32 a.u.

Then the spatial extent of the ground state wave function is of the order of 100Å,

which is, in turn, of the order of a typical size of a quantum dot. We used GaAs

effective mass and dielectric constant (m∗ = 0.067, ε = 12.4).

8.3 DPI probability

In the dipole approximation, the DPI amplitude describing the photon-induced tran-

sition between two-electron initial and final states reads:

T = 〈Ψ2 e · (∇1 +∇2) Φ2〉 , (8.3.1)
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Figure 8.2: Ground (0,0,0,0) and excited (3,3,3,3) two-particle states of a quantum
dot (for it’s parameters see text) in the CM and relative coordinates.

where e is the photon polarization vector, (∇1 +∇2) is a two-particle dipole operator

in the velocity form.

Although the representation of a quantum dot or metal cluster potential in the

form of the infinite harmonian is an idealization, we assume that its low-lying eigen-

states reproduce the two-electron states of the real systems qualitatively correctly.

Such approximation significantly simplifies the description of the initial state wave

function Φ2, since for the finite oscillator well the same problem loses separability.

To single out the effect of the initial state correlations, we start from the simplest

two-electron final state, constructed as a product of plane-wave asymptotic detector

states:
∣∣∣Ψ2

〉
=

∣∣∣k1

〉
⊗

∣∣∣k2

〉
. The physical justification of this approximation is

that after the emission of electrons quantum dot becomes quickly neutralized by

the substrate, so that the final-state three-body interaction between two electrons

and an ion effectively reduces to a two-body interaction between electrons. With

this approximation, the DPI amplitude factorizes in (r,R) space and reduces to the
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product of the Fourier-transformed wave functions for the CM and relative motion:

Tk1k2 =
〈
k1,k2

∣∣∣ e · (∇1 +∇2)
∣∣∣Φ2

〉
=

= 〈k1 + k2 e · ∇ ξ(R)〉 · 〈(k1 − k2)/2 ϕ(r)〉 =

= e ·Q ξ̃(Q) ϕ̃(q), (8.3.2)

where we have introduced CM and ’relative’ momenta Q = k1 + k2 and q =

(k1−k2)/2, wavy line denotes the Fourier transform, ∇ is a two-electron momentum

operator in (r,R) space. In Fig. 8.3(a,b) we plot the square modulus of the transition

amplitude as a function of (q,Q). The number of nodes of the wave function in the

momentum space is the same as in the configuration space, therefore the number of

maxima in Fig. 8.3(a,b) can be easily identified with the quantum numbers n and N

of the corresponding wave functions.

Next, to simulate final state two-body Coulomb interaction, we introduce the two-

electron density of final states in the form ρ(k1,k2) = ρ(q) = 2πα/(exp(2πα) − 1),

α = 1
2|q| [43]. It monotonously suppresses the emission of the pairs, having small

relative momentum, and ’blows off’ the positions of the maxima of |Tk1k2|2 towards

higher q, as can be seen from Fig. 8.3(c,d).

Finally, apart from a constant normalization factor, 6-fold differential DPI cross

section reads:

dσ

dE1dE2dΩ1dΩ2

∼ |Tk1k2|2 ρ(k1,k2) δ(ER + Er + ~ω − E1 − E2) =

=
∣∣∣e ·Q ξ̃(Q)

∣∣∣
2

·
∣∣∣ϕ̃(q)

∣∣∣
2

ρ(q) δ(ER + Er + ~ω − E1 − E2). (8.3.3)

Note that the photon transition is contained entirely in the CM part, while the effects

of electronic correlation are included only in the ’relative’ part of the cross section.

Evident experimental use of this factorization is that keeping one of the vectors, Q or



78

0.00 0.05 0.10 0.15 0.20

0.05

0.10

0.15

0.20

0.00 0.05 0.10 0.15 0.20

0.05

0.10

0.15

0.20

0.00 0.10 0.20 0.30 0.40

0.10

0.20

0.30

0.40

0.00 0.20 0.40 0.60 0.80

0.10

0.20

0.30

0.40

Q

Q

Q

Q

q

qq

q

1.0

0.0

0.5

a) b)

c) d)
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multiplied by the density of final states ρ(k1,k2). Black-and-white scale corresponds
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q, fixed, one can investigate the behavior of the DPI cross section separately either

with respect to correlations, or with respect to the dipole transition.

Let us mention the properties of the transition amplitude, Eq. (8.3.1).

• First, the scalar product e · (k1 + k2) in Eq. (8.3.1) originates from the approx-

imation used for the final state and serves as a selection rule when e · (k1 + k2) = 0.

The electrons, which are emitted with k1 = −k2, or whose total momentum is normal

to the polarization vector e, will not contribute to the cross section.

• Second, the CM wave function ξ(R) is always symmetric with respect to particle

exchange. Therefore the singlet (triplet) spin part for the two-electron state has to

be taken whenever ϕ(r) is even (odd) function. The latter, in turn, is fully specified

by the orbital quantum number ` in Eq. (8.2.10): even (odd) `’s correspond to singlet

(triplet) two-electron states. From this we note another selection rule: two electrons

in the triplet state can not be emitted with k1 = k2. This is just a consequence of

the Pauli principle.

• Third property of the transition amplitude arises from the symmetry constraints

on the dipole transition. Namely, the single photoionization dipole selection rules [4,

37] are valid for the matrix element 〈k1 + k2 e∇ ξ(R)〉. For the given quantum

numbers (L,M) of the ξNLM(R), only components of the final-state CM plane wave

with the orbital momenta L′ = L±1 will be selected. The magnetic quantum numbers

M and M ′ of initial and final CM states will be connected through the polarization

of the photon: M + µ = M ′ (the projection of the photon angular momentum µ = 0

for linear and µ = ±1 for circular polarization).

• It is only the relative motion that depends on the interaction between electrons.
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Black point corresponds to θ1 + θ2 = 900, left(right) arrow shows the direction of
changing the (q, Q)-momenta participating in ESD with decrease(increase) of θ1 + θ2.

Varying the strength of this interaction leads to the change of the shape of the poten-

tial well in Eq. (8.2.8) and causes the corresponding change of the localization of ϕ(r)

and ϕ̃(q): the more strong is the Coulomb interaction, the more localized becomes

the momentum density distribution along q-coordinate.

8.4 Angular distributions

We present the results in the form of angular (AD) and energy sharing (ESD) distri-

butions. In the first case, the DPI cross section is plotted as a function of emission
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Figure 8.5: ADs from the ground (left panel, Etot = 0.16 a.u.) and excited (2,2,2,2)
states (right panel, Etot = 0.06 a.u.) for different θ2. Plots (a)-(d) correspond to
θ2 = 850, 650, 450, 00, respectively. Dotted arrow marks the emission direction of the
’fixed’ electron, light is polarized along the (00, 00) direction. E1 = E2 = Etot/2.

angles (θ1, φ1) of one electron at fixed emission angles (θ2, φ2) of the second electron

and fixed final state energies E1 and E2. In the second case, the DPI cross section

is given as a function of the energy difference (E1 −E2) for fixed emission directions

and fixed total energy Etot = E1 + E2. We assume that electron detectors are always

placed in the azimuthal plane, i.e. azimuthal emission angles are φ1 = φ2 = 00.

Polarization vector e of linearly polarized light is chosen along (θph, φph) = (00, 00)

direction.

Before coming up to the results, it is helpful to visualize the distribution of the

final-state momenta, taking part in ADs and ESDs, Fig. 8.4a and 8.4b, respectively.

The relation between the wave vectors Q and q implies, that points with coordinates

(q, Q), corresponding to a fixed total final-state energy Etot = (k2
1 +k2

1)/2, are located

on a quarter of an ellipse. The length of it’s axes differs by factor 2 due to the

difference in the scaled oscillator frequencies, c.f. Eq. (8.2.5) and (8.2.8). Curves 1
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and 2 correspond to Etot = 0.16 a.u. and Etot = 0.06 a.u., respectively. Depending on

the experimental setup, final states with momenta (q,Q) arising from the different

parts of the ellipse participate in the angular distribution. For example, solid lines

in Fig. 8.4a depict the pairs (q,Q), corresponding to the grazing emission angle for

the ’fixed’ electron (θ2 = 800), while the first electron is emitted in the range θ1 =

00 ... 1800. Kinetic energies of the two electrons are equal. By decreasing angle θ2, the

participating arch of the ellipse is made shorter, e.g. at normal emission of the ’fixed’

electron (θ2 = 00) only the part of the ellipse, shown by squares in curve 1, is left.

Making the kinetic energies of the electrons unequal also cuts off the part of the ellipse.

In curve 2 the solid line corresponds to E1 = E2 = 0.03 a.u., the square symbols show

the range (q,Q) for E1 = 0.01 a.u., E2 = 0.05 a.u. (for θ2 = 800, θ1 = 00 ... 1800).

Using these parameters (total kinetic energy, it’s distribution between electrons, angle

of emission) as levers, one can tune through any required region on a (q,Q) map.

To probe the ground state (c.f. Fig. 8.3(c)), we chose Etot = 0.16 a.u. (curve

1, Fig. 8.4a). In Fig. 8.5, left panel, ADs for different θ2 = 850, 650, 450, 00 and for

E1 = E2 = Etot/2 are presented. Two maxima on the ADs originate from a single

maximum in the ground state wave function, damped in the middle by the factor

e · (k1 + k2), which becomes equal to zero at θ1 = π + θ2. Another example is shown

in Fig. 8.5, right panel: for the same choice of angles and for Etot = 0.06 a.u. (curve

2, Fig. 8.4a) we plot the DPI ADs from the initial two-particle state (2,2,2,2)(c.f.

Fig. 8.3(d)).
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8.5 Energy sharing distributions

ESD shows how the DPI probability depends on the difference between individual

kinetic energies of two electrons, at all the other parameters fixed. First, we note

that if the angle between outgoing electrons is equal to π/2, only one point on the

(q, Q)-map contributes to the cross section (see Fig. 8.4b, black point). By decreasing

or increasing the relative angle, the arches to the left or to the right from this point

become ’visible’, as is shown in Fig. 8.4b. In Fig. 8.6, left panel, this trend is shown for

the case of emissionionization from the (2,2,2,2)-state. The angle between electrons is

decreasing (θ1 = −θ2 = 850, 750, 550, 450), that gradually excludes the maxima of the

initial-state density out of the allowed (q, Q)-region. This shows up in vanishing of

the oscillations in the ESDs, and also in decrease of its magnitude. In Fig. 8.6, right

panel, the role of choice of Etot is demonstrated for the ionization from the ground

state. Scanning through the single maximum on a (q, Q)-map results in the change of

the intensity of the sharing distribution without changing it’s shape. The minimum

in the middle of ESD is again due to the selection rule, when at equal energies vector

(k1 + k2) becomes normal to the polarization vector of light.

In conclusion, we note that the reconstruction of the two-electron density on

the (q, Q)-grid, using experimental data, would be straightforwardly tractable in the

frames of given approach. Obviously, the present problem can be generalized to

another forms of electron-electron interaction, dependent only on the distance between

the electrons.
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Figure 8.6: ESDs from the excited (2,2,2,2) (left panel) and the ground (right panel)
state. Plots (a)-(d), left panel, correspond to θ1 = θ2 = 850, 750, 550, 450. Four
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Chapter 9

Conclusions

In the present work we investigated the correlation effects in the alkali-metal clusters,

fullerenes and semiconductor quantum dots. Both approximate many-body methods

and exactly solvable problems were employed for the description of the electronic

structure of the systems under study. We use the HF theory as a basis for the

systematic account of electron-electron interactions in the perturbative framework,

which was performed in the random phase approximation.

Application of the Hartree-Fock formalism to the systems with the large number

of electrons, although formally established, represents severe technical difficulties due

to the presence of a huge number of the nonlocal exchange integrals. To increase the

efficiency of such calculations, we developed a new conceptual framework, based on

the extension of the variable phase approach to the nonlocal potentials and showed

how the Hartree-Fock problem is reformulated in terms of our method. We also

proposed the efficient finite-difference scheme for its numerical implementation. The

advantage of this scheme stems from the fact that for the calculation of the Hartree-

Fock integrals only the diagonal part of the nonlocal one-electron potential is required.
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We would like to emphasize that this is a property of the variable phase approach

rather than a consequence of any approximations.

The ionization of the many-electron system by a charged particle is a fundamental

physical process, allowing a direct information on the correlated electron dynamics.

The fluctuations of the electronic charge density of the clusters, accounted in the

random phase approximation with exchange, were shown to suppress the single ion-

ization channel in the low-energy region, while at large impact energies they are not

essential. This tendency is in full agreement with the experimental data for fullerene

clusters. In contrast, the calculations performed without the account of the dynamic

screening were unable to reproduce the experimental data, giving a wrong low-energy

behavior of the ionization cross section. Our first principle numerical results were

interpreted with the help of the Thomas-Fermi model of screening. The qualitative

conclusion of this study is that the change of the effective radius of the inter-electron

interaction does not lead to a simple scaling of the ionization probability, as it could

be supposed, but modifies also its energy dependence. In addition, we investigated the

interplay between quantum size and nonlocal screening effects by tracing the changes

in the ionization cross sections for Li clusters with an increasing cluster radius. The

particle-hole excitations proved to play a decisive role in the evolution of the ioniza-

tion cross sections of the clusters with the increase of their size and, consequently,

with the increase of the number of delocalized electrons. Actually, we observed that

the inclusion of the dynamic screening leads to the flattening of the ionization cross

section as the cluster size grows, while the disregard of this phenomenon gives the

opposite tendency. What is less obvious, the energy position of the maximum in

the cross section also shifts in the opposite directions. Experimental measurements
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clarifying these size effects would be very helpful.

A specific sort of correlations arising from the exchange interaction was traced via

a comparison of the proton and the electron impact ionization of C60. The absence

of the exchange between the proton and the target electrons qualitatively plays the

same role as the disregard of the particle-hole (de)excitations in the many-electron

system. Namely, the ∼ 30% increase of the proton impact ionization probability as

compared to the electron impact was observed.

For the description of the multiple ionization of fullerenes by a single photon,

the statistical energy deposition model was used for the first time. Usually, the

calculations based on this model employed adjustable or semiempirical parameters

for the estimation of the single ionization transition amplitude, which enters the

expression for the multiple ionization probability. We improve this step by performing

the first principle calculations of this quantity. In doing this we get a natural access to

the material, structural and energy dependence of the multiple ionization processes.

For the first time the probabilities of different multiple photoionization reactions in

C60 were estimated and compared. The diffraction of the photoelectron wave on the

fullerene shell was shown to be a prominent feature of these processes.

One of the few exactly solvable quantum-mechanical problems is the problem of

two electrons, coupled via bare Coulomb repulsion, in the parabolic confinement. Us-

ing the exact two-electron wave function, the double photoionization cross section of a

quantum dot was derived and the various angular and energy spectra were calculated.

The mapping of the two-electron density onto the double photoionization spectra was

suggested as a promising tool for the visualization of subtle correlation effects.
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The results of this work may be applied to the problems dealing with the ar-

bitrary nonlocal or momentum-dependent potentials, to the arbitrary systems of

integro-differential equations and as a theoretical background for the experimental

investigations of the influence of the quantum size effects on the strength of the elec-

tronic correlations.



Appendix A

Hartree-Fock equations

Consider the Hamiltonian of the a system of N electrons moving in an external

confining potential V ion and interacting through the Coulomb two-body potential

Ĥ0 =
N∑

i=1

{
−52

i +V ion(ri) +
N∑

j 6=i

1

|ri − rj|

}
. (A.0.1)

The ground state wave function Ψ of an N -electron system is approximated by a Slater

determinant constructed as an antisymmetrized product of orthogonal single-particle

wave functions

Ψ(r1, r2 . . . rN) =
1√
N !

det ‖ψi(rj, t)‖, i, j = 1, 2, ..., N. (A.0.2)

Obviously, Ψ satisfies the antisymmetrization condition, since the interchange of two

particles is equivalent to the interchange of two lines (or two rows) of the determinant,

which changes its sign.

According to the Ritz variational principle, the best possible wave function Ψ

minimizes the mean value of the total energy of the system. The variation of the

expectation value of the Hamilton operator (A.0.1)
〈
Ψ

∣∣∣ Ĥ0

∣∣∣Ψ
〉

leads to the system
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of the single-particle Hartree-Fock equations

−4 ψi(ri) + V ion(ri)− k2
i ψi(ri) =

= −
∑

j 6=i

∫
d3r′

ψ∗j (r
′)ψj(r

′)− ψ∗j (r
′)ψj(ri)

|ri − r′| ψi(r
′), i = 1, ... , N (A.0.3)

Thus, the N -electron system is described by the system of N coupled integro-differential

equations. The first term on the right-hand side of Eq. (A.0.3) represents the electro-

static potential for the i-th electron in the field of all other electrons. The second term

is an integral operator, introducing a specific (exchange) correlation in the motion

of the fermions, originating from their indistinguishability. The contributions from

these two terms at i = j compensate each other, thus preserving the electron from

the interaction with itself.
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Elektronische Korrelationen in Nanostrukturen

Dissertation

von Oleg Kidun

Zusammenfassung

Zielen: Fortschritte bei der Entwicklung, Herstellung und Nutzung von Ma-

terialien, Instrumenten im Nanobereich hängen entscheidend davon ab, in wieweit

man die Struktur und das Verhalten solcher Systeme auf der Ebene von Atomen,

Molekülen und Clustern, kontrollieren und vorhersagen kann. Diese Doktorarbeit

beschäftigt sich mit der theoretischen Behandlung der durch äußere Störungen in-

duzierten charakteristischen Antwort von Nanosystemen, wie von Alkalimetall-Clustern,

Fullerenen und Halbleiterquantenpunkten. Es wird gezeigt, daß das Verhalten solcher

Systeme in externen Feldern durch ein Wechselspiel der Elektronenkorrelationen und

der Finite-Size-Effekte bestimmt ist. Insbesondere wird der Einfluss der Polarisier-

barkeit des Systems als Reaktion auf ein sich näherndes geladenes Teilchen, wie ein

Elektron oder Proton, studiert. Zum Vergleich mit vorhandenen experimentellen

Daten studieren wir den Ionisationskanal. Die Rolle von Austauscheffekten wird

durch einen Vergleich der Ionisierungswahrscheinlichkeit des Systems durch Protonen

oder Elektronen als Testladung aufgedeckt. Weiterhin untersuchen wir die Einzel-

und multiple Photoionisation von Clustern.

Methoden: Sowohl approximative Methoden aus der Vielteilchentheorie als auch

exakt lösbare Probleme werden für die Beschreibung der elektronischen Struktur

des Systems herangezogen. Wir verwenden die Hartree-Fock-Theorie als Grund-

lage zu einer systematischen Behandlung der Elektron-Elektron-Wechselwirkungen.

Dies geschieht störungs-theoretisch auf der Basis der random-phase approximation
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für endliche Systeme. Die Anwendung der Hartree-Fock-Methode auf Systeme mit

einer großen Anzahl von Elektronen erfordert die Berechnung einer immensen Zahl

nichtlokaler Austauschintegrale und ist somit eine ernste technische Schwierigkeit.

Somit ist das Finden einer Balance zwischen der Zuverlässigkeit der Ergebnisse und

dem Rechenaufwand von entscheidender Bedeutung. Eine richtige Wahl des Rechen-

verfahrens ist deshalb der Schlüssel zur Behandlung von Systemen mit nichtlokalen

Potentialen und mit einer großen Anzahl von Elektronen. Vor diesem Hintergrund

wird in dieser Doktorarbeit ein neuer konzeptueller Zugang entwickelt, der es er-

laubt, Systeme mit nichtlokalen Potentialen im Rahmen der variable phase approxi-

mation (VPA) zu behandeln. Zur numerischen wird weiterhin eine effiziente Finite-

Differenz-Methode vorgeschlagen und angewendet. Es wird gezeigt, dass im Rah-

men der vorgeschlagenen Methode nur der diagonale Bestandteil des nichtlokalen

Ein-Elektron-Potentials zur Berechnung der Hartree-Fock-Integrale erforderlich ist.

Basierend auf dem entwickelten VPA-Verfahren wird das Hartree-Fock-Problem für

Systeme in Nanobereich neu formuliert and numerisch umgesetzt.

Hauptresultate: Die Ionisation von Vielelektronensystemen durch eine sich

nähernde Testladung ist ein fundamentaler physikalischer Prozess, der direkte Ein-

blicke in die Eigenschaften der korrelierten Elektronendynamik erlaubt. Die Ergeb-

nisse der vorliegenden theoretischen Arbeit belegen, dass die Fluktuationen der elek-

tronischen Ladungsdichte im Cluster den Ionisationswirkungsquerschnitt im nieder-

energetischen Regime unterdrücken. Diese Tendenz ist in völliger Übereinstimmung

und erklärt zum ersten mal die experimentellen Daten für Fullerenen. Um das Wech-

selspiel zwischen dem Effekt endlicher Größe des Systems und nichtlokaler Abschirm-

effekte zu beleuchten, werden Ionisationswirckungquerschnitte von Li-Clustern ver-

schiedener Abmessungen und Elektronenzahl miteinander verglichen. Es stellte sich

heraus, daß mit zunehmender Größe - und demzufolge auch mit einer anwachsenden

Zahl von delokalisierten Elektronen - die Teilchen-Loch-Anregungen eine wichtige
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Rolle in der Bestimmung der Ionisationswirkungsquerschnitte der Cluster spielten.

Tatsächlich beobachten wir, daß der Einschluß dynamischer Abschirmung zu einer

Glättung des Ionisationswirkungsquerschnitts bei zunehmender Cluster-Größe führt,

während die Vernachlässigung dieses Phänomens eine gegenteilige Tendenz zeigt.

Die Rolle der Austauschwechselwirkung wird durch den Vergleich der Proton- und

Elektronstoßionisation von C60 untersucht. Die Abwesenheit der Austauschwechesel-

wirkung zwischen dem Proton und den Targetelektronen führt dazu, dass ein Teil

der Teilchen-Loch-Anregungen ausfallen. Als Folge stellen wir fest, dass Protonen

Metallcluster und Fullerene effektiver als Elektronen ionisieren.

Für die Beschreibung der mehrfachen Ionisation von Fullerenen durch ein einzelnes

Photon wird zum ersten Mal das statistische Energiedepositionsmodell herangezogen.

Dazu werden die o.g. ab-initio-Berechnungen der einfachen Ionisation verwendet. Die

Theorie erlaubt einen relativ einfachen Zugang zu den materiellen, strukturellen und

energetischen Abhängigkeiten der mehrfachen Ionisationsprozesse. In dieser Arbeit

werden erstmals die Wahrscheinlichkeiten von verschiedenen mehrfachen Photoioni-

sationsreaktionen in C60 berechnet.

Eines der wenigen genau lösbaren quantenmechanischen Probleme ist das Problem

von zwei wechselwirkenden Elektronen im parabolischen Potential. Unter Verwen-

dung der Zweielektronen-Wellenfunktion wird der Doppelphotoionisationsquerschnitt

eines Quantenpunkts berechnet und die Winkel- und Energieverteilungen untersucht.

Es wird gezeigt, dass die Doppelphotoionisationsspektren direkte Informationen über

die korrelierte Zweielektronen-Dichte enthalten und dazu geeignet sind, Korrelationen

in Quantenpunkten abzubilden.
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Zukünftige Anwendungen: Die Resultate dieser Arbeit sind auf Probleme an-

wendbar, die sich mit beliebigen nichtlokalen oder impuls-abhängigen Potentialen

befassen und auf beliebige Systeme von Integro-Differentialgleichungen. Desweiteren

sind sie eine theoretische Basis für die experimentellen Untersuchungen des Einflusses

von Finite-Size-Effekten auf die Stärke der elektronischen Korrelationen. Die meis-

ten unserer Resultate können mit Hilfe moderner Koinzidenzspektroskopiemethoden

direkt experimentell überprüft werden.



Summary

Advances in the development, fabrication and utilization of nano-scale materials,

devices and systems are driven by the ability to control their structure and response

on the nano-meter scale, that is at the level of atoms, molecules and clusters. This

thesis deals with the theoretical treatment of the characteristic response to external

perturbations of nanosystems, such as alkali-metal clusters, fullerenes and semicon-

ductor quantum dots. It is shown that this response is determined by an interplay

between electronic correlations and finite-size effects. Particular attention is devoted

to the following many-body phenomena and collision processes: The polarization

of the system in response to an approaching charged particle, such as electrons or

protons. For a comparison with available experiments we considered the ionization

channel. The role of exchange effects is revealed upon a comparison of ionization

probability of the target by protons and electrons. We also investigate the single and

the multiple photoionization of clusters.

Both approximate many-body methods and exactly solvable problems are em-

ployed for the description of the electronic structure of the systems. We use the

Hartree-Fock (HF) theory as a basis and account systematically for the electron-

electron interactions in a perturbative way using the random phase approximation

with exchange.

The Hartree-Fock method, while formally well-established, represents severe tech-

nical difficulties in the application to the systems with a large number of electrons due

to the presence of a huge number of the nonlocal exchange integrals. This essentially

complicates the calculations, so that the finding a balance between the reliability of

the results and the computational costs becomes an important, if not a decisive, issue.

Therefore the right choice of the calculational procedure is the key question for solving

nonlocal potential problems for systems with large number of electrons. To increase
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the efficiency of Hartree-Fock calculations, we develop in this thesis a new conceptual

framework, based on the extension of the variable phase approach (VPA) to nonlocal

potentials. In the VPA the solution of quantum-mechanical problems is formulated

in terms of observables, e.g. scattering phase shifts and scattering amplitudes, rather

than by means of the wave functions. We also propose the efficient finite-difference

scheme for a numerical implementation. The advantage of this scheme stems from the

fact that for the calculation of the Hartree-Fock integrals only the diagonal part of

the nonlocal one-electron potential is required. Based on the developed VPA scheme,

we reformulate the Hartree-Fock problem for nano-size systems.

The ionization of many-electron systems by a charged particle is a fundamental

physical process, allowing a direct information on the correlated electron dynamics.

The fluctuations of the electronic charge density of the clusters, accounted for within

the random phase approximation with exchange, are shown to suppress the single

ionization channel in the low-energy region, while at large impact energies they are not

essential. This tendency is in full agreement with the experimental data for fullerene

clusters. In contrast, the calculations performed without the account of the dynamic

screening were unable to reproduce the experimental data, giving a wrong low-energy

behavior of the ionization cross section. Our first principle numerical results are

interpreted with the help of the Thomas-Fermi model of screening. The qualitative

conclusion of this study is that the change of the effective radius of the inter-electron

interaction does not lead to a simple scaling of the ionization probability, as it could

be supposed, but modifies also its energy dependence. In addition, we investigate

the interplay between quantum size and nonlocal screening effects by tracing the

changes in the ionization cross sections for Li clusters with an increasing cluster

radius. The particle-hole excitations proved to play a decisive role in the evolution

of the ionization cross sections of the clusters with the increase of their size and,

consequently, with the increase of the number of delocalized electrons. Actually,
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we observe that the inclusion of the dynamic screening leads to the flattening of

the ionization cross section as the cluster size grows, while the disregard of this

phenomenon gives the opposite tendency. What is less obvious, the energy position

of the maximum in the cross section also shifts in the opposite directions. It is hoped

that these striking size effects will stimulate further experimental measurements. A

specific sort of correlation effects arising from the exchange interaction is traced down

via a comparison of the proton and the electron impact ionization of C60. The absence

of the exchange between the proton and the target electrons qualitatively plays the

same role as the disregard of the particle-hole (de)excitations in the many-electron

system. In particular, the ∼ 30% increase of the proton impact ionization probability

as compared to the electron impact is observed.

For the description of the multiple ionization of fullerenes by a single photon, the

statistical energy deposition model is used for the first time. Usually, the calcula-

tions based on this model employed adjustable or semi-empirical parameters for the

estimation of the single ionization transition amplitude, which enters the expression

for the multiple ionization probability. We improve this step by performing the first

principle calculations of this quantity. In doing this we get a natural access to the ma-

terial, structural and energy dependence of the multiple ionization processes. For the

first time the probabilities of different multiple photoionization reactions in C60 are

estimated and compared. The diffraction of the photoelectron wave on the fullerene

shell is shown to be a prominent feature of these processes.

One of the few exactly solvable quantum-mechanical problems is the problem of

two electrons, coupled via bare Coulomb repulsion, in the parabolic confinement.

Using the exact two-electron wave function, the double photoionization cross section

of a quantum dot is derived and the various angular and energy spectra are calculated.

The mapping of the two-electron density onto the double photoionization spectra is

suggested as a promising tool for the visualization of subtle correlation effects.
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The results of this work are applicable to problems dealing with arbitrary non-

local or momentum-dependent potentials, to arbitrary systems of integro-differential

equations and as a theoretical background for the experimental investigations of the

influence of finite size effects on the strength of the electronic correlation. Most of

our results can be directly verified experimentally using modern many-particle coin-

cidence spectroscopic techniques.
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