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Abstract

Generalized linear and nonlinear mixed effects models have been used in many
fields of application, such as psychology, medicine, and engineering, etc. There
are multiple observations within subjects over time. Hence, the structure of the
data in these models is longitudinal. This means that data within each subject
are correlated and between the subjects are uncorrelated. In this dissertation, we
treat the binary and ordinal mixed effects regression model, where the response
variable includes two or more than two levels, respectively. Moreover, a nonlin-
ear longitudinal Poisson regression model is considered to test the ability of the
subjects.

For estimating the model parameters, we intend to use the maximum likeli-
hood estimator of the parameters due to its well behaved asymptotic properties;
however, because the form of the log-likelihood function does not have a closed
form, we have to choose an alternative estimation method. The quasi maximum
likelihood estimation method is a suitable suggestion for this aim. To determine
this estimate, it is required to build the quasi log-likelihood function. This function
depends on the marginal first and second order moments of the response variable.
These moments do not have an explicit closed form in the binary and ordinal
mixed effects models, either, and have to be approximated, too. In contrast to
that in the longitudinal Poisson regression model the required moments have an
explicit analytical Under sufficient conditions for the quasi maximum likelihood
estimate of the parameters, we aim to achieve the D-optimum designs for the ex-
perimental settings. Therefore, we construct the quasi Fisher information matrix
and establish the corresponding D-optimality criterion. In the binary and ordi-
nal mixed effects models, the quasi Fisher information matrix lacks the analytical
form. Hence, we approximate it for particular cases of the models. On the other
hand, in the longitudinal Poisson regression model, the quasi Fisher information
matrix has the closed form and can be used directly.

Finally, the D-optimum designs based on the quasi Fisher information matrix
are computed and their sensitivity is investigated with respect to various values of
model parameters is investigated. Further, in the longitudinal Poisson model, an
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equivalence theorem for the evaluation of D-optimum designs is derived and the
efficiency of D-optimum designs with respect to parameter misspecification is com-
puted. In this model, these designs are quite robust over the settings considered.
In contrast, in binary mixed effects model they are truly sensitive with respect to
some changes of model parameters. In ordinal mixed effects model, the two point
D-optimum designs are transformed to one point D-optimum design under some
initial values of model parameters.
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Zusammenfassung

Verallgemeinerte lineare und nichtlineare Modelle mit gemischten Effekten werden
in vielen Anwendungsbereichen wie Psychologie, Medizin, Ingenieurwesen usw.
verwendet. Die Struktur der Daten in diesen Modellen ist longitudinal. Das
bedeutet, dass dass wiederholt Daten innerhalb jedes Subjekts erhoben werden
und damit die Daten innerhalb jedes Subjekts korreliert und zwischen den Sub-
jekten unkorreliert sind. In dieser Dissertation untersuchen wir das binäre und
ordinale Regressionsmodell mit gemischten Effekten, bei dem die Antwortvariable
zwei beziehungsweise mehr als zwei Stufen umfasst. Außerdem wird ein nicht-
lineares longitudinales Poisson-Regressionsmodell betrachtet, um die Entwicklung
Fähigkeit von Probanden über einen längeren Zeitraum zu testen.

Für die Schätzung der Modellparameter wird üblicherweise, die Maximum-
Likelihood-Schätzung der Parameter aufgrund ihrer guten asymptotischen Eigen-
schaften verwendet. Da die Log-Likelihood-Funktion jedoch keine geschlossene
Darstellung besitzt, müssen wir ein alternatives Schätzverfahren wählen. Die
Methode der Quasi-Maximum-Likelihood-Schätzung ist ein geeignetes Verfahren
für diesen Zweck. Um diese Schätzung zu bestimmen, ist es erforderlich, die
Quasi-Log-Likelihood-Funktion aufzustellen. Diese Funktion ist abhängig von den
marginalen Momenten erster und zweiter Ordnung der Antwortvariablen. Diese
Momente haben in den binären und ordinalen Modellen mit gemischten Effekten
ebenfalls keine explizite geschlossene Form. Im Gegensatz hierzu besitzen im betra-
chteten longitudinalen Poisson-Regressionsmodell die benötigten Momente eine ex-
plizite analytische Form, so dass die Quasi-Likelihood-Funktion direkt angegeben
werden kann. Unter Annahmen für die Quasi-Maximum-Likelihood-Schätzung
der Parameter können wir dann D-optimale Designs bestimmen. Dafür konstru-
ieren wir die Quasi-Fisher-Informationsmatrix und führen das entsprechende D-
Optimalitätskriterium ein. Bei binären und ordinalen Modellen mit gemischten
Effekten hat die Quasi-Fisher-Informationsmatrix keine analytische Form; da-
her approximieren wir diese für einige Spezialfälle dieser Modelle. Die Quasi-
Fisher-Informationsmatrix für das longitudinale Poisson-Regressionsmodell eine
geschlossene Form was eine direkte bestimmung erlaubt.
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Schließlich werden das D-optimale Design auf der Grundlage dervorliegenden
Ergebnisse bestimmt und deren Sensitivität in Bezug auf verschiedene Werte der
Modellparameter untersucht. Ferner wird für das longitudinale Poisson-Modell
ein Äquivalenzsatz zur Valisierung D-optimalen Designs aufgestellt und die Ef-
fizienz optimaler Designs unter Misspezifikation der Modellparameter berechnet.
In diesem Modell sind diese Designs über die betrachteten Einstellungen ziemlich
robust. Im Gegensatz, in binären Mischwirkungen modellieren sie sind in Bezug
auf einige Änderungen von Musterrahmen aufrichtig empfindlich. Im gemischten
Wirkungsmodell der Ordnungszahl werden die zwei Punkt-D-Optimum-Designs
in ein Punkt-D-Optimum-Design unter einigen Anfangswerten von Musterrahmen
umgestaltet.
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Chapter 1

Introduction

Generalized linear mixed effects models and nonlinear mixed effects models are
applied in different fields of applications; such as psychology, medicine, etc. The
data have clustered structure form, which means that the observations within the
clusters are correlated and between the clusters are uncorrelated. Therefore, there
is over-dispersion among outcomes and we use the clusters as independent sub-
jects which impacts randomly on the response variable. In addition, there are
fixed unknown parameters among all subjects, which are the coefficients of the
explanatory variables. They affect on the response variable and we are interested
in their estimation. The explanatory variables are design variables and they are
chosen by the experimenter to take observation from. In generalized linear mixed
effects models, the response variable does not follow the Normal distribution. In
the maximum likelihood analysis of these models, the marginal likelihood function
needs numerical integration with respect to the random effects. As the number
of the random effects exceeds, the dimension of the integrals increases. There-
fore, it requires higher numerical computations, which may decrease the overall
certainty. As a result, the maximum likelihood estimation of the model will be
gained numerically and the statistician should be concerned about the behavior of
the estimation in extreme values of the random effects.

Breslow and Clayton 1993 utilized two procedures for the analysis of the gen-
eralized linear mixed models. The first methodology is considered as the penal-
ized quasi-likelihood (PQL) method exploited by Green 1987 in semi-parametric
regression analysis. This method is available for GLMM’s where the shrinkage
estimation of the random effects is on focus (Robinson 1991). The other method
is the marginal quasi-likelihood (MQL), which was named by Breslow and Clay-
ton (1993) and was proposed by Goldstein 1991. In this dissertation, we use the
quasi-likelihood approach which was firstly represented by Wedderburn 1974. This
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procedure only needs the marginal first and second order moments of the response
variable. The second order moment is required to construct the marginal variance
of the response variable. However, this term in some types of GLMM’s is not
straightforward to achieve and we need some approximation procedures. Since in
this dissertation we study two types of generalized linear mixed models, as binary
mixed effects regression model and ordinal mixed effects regression model with the
probit and logit link functions, the second order moment of the response variable
does not have an analytical explicit form. As a result we approximate them with
the approximation of the logistic distribution with the standard Normal distribu-
tion when considering the logit link functions. This method is the modification of
the method in Zeger, Liang, and Albert 1988 used for the computation of the first
order moment of the response variable in the binary mixed logistic model. More-
over, there is a final approximation of one dimensional integral with the Simpson’s
rule considering both link functions. Afterwards this new approximation of the
variance is compared with the direct numerical approximation of the variance ma-
trix, which is only based on the numerical Simpson’s rule. In addition, in the
binary mixed regression model which is less complicated than the ordinal mixed
regression model, the third approximation is obtained by approximating the final
integrand via the computation. This method will be discussed later in Section 3.1.
The interesting point was that this approximation also worked well in the special
case of the model in comparison to the direct numerical approximation.

According to the new approximations, we construct the quasi log-likelihood
function of the model and maximize it with respect to the parameters. It was in-
formed that in most family of distributions, the quasi log-likelihood behaves like the
ordinary log likelihood function. By setting the quasi log-likelihood function equal
to zero, the generalized estimating equation is obtained. The quasi maximum-
likelihood estimate of the parameters is the root of the considered equation. Mc-
Cullagh 1983 examined the asymptotic properties of the quasi-likelihood function
and showed that the estimators enjoy certain asymptotic optimality properties
in some linear regression models. Sutradhar 2004 demonstrated that the quasi
maximum-likelihood estimates in GLMM’s are consistent and highly efficient.

The third type of model, which is considered in this dissertation, is a nonlinear
longitudinal Poisson regression model. It has the closed form of the first and second
order moments of the response variable. Therefore, the quasi maximum likelihood
estimate is based on the explicit forms.

One type of optimum design is the D-optimum design. It is obtained from the
maximization of the D-optimality criterion (Silvey 1980) which is the determinant
of the Fisher information matrix. The aim of this dissertation is to achieve D-
optimum design for the considered three types of models. It is actually needed
to calculate the Fisher information matrix at first. In general the Fisher informa-
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tion matrix is the measure of the amount of information the observable response
variable carries about the unknown model parameters. One interest is to maxi-
mize the information of parameters. Then, one recommendation would be to take
the determinant of the Fisher information matrix and maximize it with respect
to covariates (experimental settings) and the weights relevant to each level of the
covariate in the model. More generally, the Fisher information matrix includes
design which covers the experimental settings (support points) and their relevant
weights. The definition, theory and application of optimum design and its types
can be found in V. V. Fedorov 1972 and Silvey 1980. Actually, there is no explicit
closed form of the Fisher information matrix in the considered models. The reason
for this is that in the longitudinal Poisson regression, the log-likelihood function of
the response lacks an explicit form. This problem is discussed later in Section 2.1.
Furthermore, in the binary and ordinal mixed regression models, the marginal like-
lihood function lacks the analytical closed form and hence the Fisher information
lacks the analytical closed form as well.

Breslow and Clayton 1993 suggested an approximation of the Fisher informa-
tion matrix based on the PQL method. Also, Mielke and Schwabe 2010 noted the
approximation of the Fisher information matrix based on the linearization of the
model function in the fixed effects of the mixed effects model. They showed that
this approximation is not reliable. Quasi Fisher information matrix is the other
approximation of the Fisher information. It is based on the quasi log-likelihood
function and it was introduced firstly by Wedderburn 1974. The quasi Fisher
information matrix is asymptotically equivalent to the inverse of variance of the
quasi maximum-likelihood estimate of the model parameters (P. McCullagh and
Nelder 1983). The relevant literature is found in P. McCullagh and Nelder 1983,
Chapter 9. As it was mentioned above, the quasi likelihood function and hence
the construction of the quasi Fisher information matrix needs the computation of
the first and the second order moments of the response variable. There are several
articles who considered the quasi Fisher information matrix for the type of gen-
eralized linear mixed effects (GLMM’s) model. Niaparast 2010 noticeably utilized
the quasi Fisher information matrix in the Poisson regression model with one and
two random effects, which went beyond its use in the generalized linear models.
Niaparast and Schwabe 2013 obtained the quasi Fisher information matrix for the
estimation of parameters in the Poisson regression with random coefficients.

The structure of the dissertation is determined as follows: 1) In chapter 2,
the three models, as binary mixed effects model, ordinal mixed effects model and
nonlinear longitudinal Poisson regression model are introduced, and their proper-
ties are revealed. Moreover, different methods of parameter estimation, such as the
maximum likelihood estimate, the generalized least squares estimate and the quasi
maximum likelihood estimate are represented. Then, the quasi Fisher information
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matrix, definition of design and the general equivalence theorem to evaluate the
optimum design are stated.
2) In chapter 3, the binary mixed effects regression model, its further properties to
form the quasi Fisher information matrix is obtained. The quasi Fisher informa-
tion matrix for the binary mixed effects regression model with one and two random
effects is approximated and in the random intercept binary regression model the
D-optimum design with treatment-control group is computed for different values
of the model parameters.
3) In chapter 4, the ordinal mixed effects regression model, its further properties
to form the quasi Fisher information matrix is obtained. The quasi Fisher infor-
mation matrix for the random intercept ordered regression model is approximated
and the D-optimum design with control-treatment group for different values of the
model parameters is subsequently obtained.
4) In chapter 5, the nonlinear longitudinal Poisson regression model, its further
properties to form the quasi Fisher information matrix is obtained. The quasi
Fisher information matrix is formulated, its properties are achieved and the gen-
eral equivalence theorem is constructed to evaluate the D-optimum design. Finally,
the D-optimum design is calculated for different initial values of model parameters
and the D-efficiency criterion is calculated.
5) Chapter 6 is dedicated to the conclusion and further research related to the
topic of the dissertation and the general possible methods would be proposed.

The three types of models are introduced briefly in the next subsections and
their general applications are discussed.

Binary mixed effects regression model

The first considered model in the current project is the binary mixed regression
model. This model is used to analyze binary data in the sense of calculation and
estimation of the probability of success coded as: 1 and correspondingly the calcu-
lation of the probability of failure coded as: 0. This model can be used in different
applications; such as the outcome of an experiment in consideration of remedy for
such disease or the success of a particular method of teaching used at a school to
enhance the efficiency of learning among students. The considered probability may
depend on such population parameters which are unknown and fixed among all ob-
servations. However, there may be random effects which impact on the probability
of success randomly. This effect is actually a latent variable which means that it is
unknown to the experimenter. It may be due to some unknown features regarding
each subject (patients, students) or each cluster (clinic, schools). Therefore, the
experimenter assume a probability distribution for the considered parameter. In
chapter 3, we assume Normal distribution for the random effect as the traditional
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methodology. We deal with the general form of the binary mixed effects regression
model.

More information regarding the general form of the model is stated in Chap-
ter 2. There are some works in the field of optimum design in the noted model.
Tekle, Tan, and Berger 2008 obtained maximin D-optimum designs for binary
longitudinal responses. They used the approximate Fisher information matrix un-
der the penalized quasi-likelihood. Tommasi, Rodriguez-Diaz, and Santos-Martin
2014 constrained the assumptions on the repeated measurement logistic regression
model. In other words, they assumed one observation within each cluster. Then,
they calculated the Fisher information matrix. Also, they proved that the Fisher
information matrix for the random effect logistic regression model is equivalent to
the Fisher information matrix in the linearized model. The corresponding Fisher
information matrix depends on some integrals. They obtained some algebraic ap-
proximations for these integrals, which are consistent. At the end, they computed
D-, A- and c- optimum designs and also the optimum design to estimate the per-
centile. Abebe et al. 2014 obtained Bayesian D-optimum designs based on the
Fisher information matrix which is approximated based on two approaches. The
first one was the first order penalized quasi-likelihood and the second one was based
on the extended version of the generalized estimating equation. Seurat, Nguyen,
and Mentré 2020 computed several optimality criteria based on Fisher information
matrix evaluated by the new method of Monte-Carlo/Hamiltonian Monte-Carlo.

In this dissertation, D-optimum design is calculated numerically based on the
new approximation of the quasi Fisher information matrix in the random intercept
binary model which has been mentioned previously.

Ordinal mixed effects regression model

The second type of model in this dissertation is the ordinal mixed effects regression
model. The analysis of the ordinal variables have been considered in the second
have of the 20th century. When the data are categorized or more clearly when
an unobservable latent variable is linearly a function of a categorized observable
random variable, it is of interest to analyse the categorized data. Since there is
the transformation between the latent variable and the discrete random variable,
the latter variable is ordinal (Winship and Mare 1984). In experiments, there are
covariate(s) affecting the latent random variable, which means as the covariate
changes in one scale how much will be the impact on the latent response variable.
This variable is classified by thresholds and creates the sets of increments. As
each increment happens, the observed ordered random variable with the index
equivalent to the index of the increment takes 1 and the other categories of the
ordered random variables with different index rather than the observed increment,
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take zero value. The experimenter is interested in the estimation of the probability
of each increment. These probabilities depend on the covariates. Their effect on
the probability is specified by parameters. The relation between the probabilities
and the linear predictors is determined by a link function. Based on the choice
of the logit or the probit function, the corresponding models are built as ordered
probit and ordered logit models, respectively (Agresti 2003). Moreover, the models
including the random effects in addition to the fixed effects are called ordinal
mixed effects models. They include some effects which cannot be controlled by the
experimenter. In this dissertation, we consider the ordinal models with random
effects, and analyze them.

Winship and Mare 1984 reviewed methods of the analysis of mixtures of or-
dered, dichotomous, and continuous variables in structural equation models and
used maximum likelihood estimation procedure. Tutz and Hennevogl 1996 con-
sidered the ordinal regression model including random effects in the linear pre-
dictor. They used three alternative estimation procedures according to the EM
type algorithm and applied numerical integration techniques (Gauss-Hermit or
Monte Carlo), and a EM type algorithm based on posterior modes. Agresti and
Lang 1993 considered a proportional odds model with subject-specific effect for
repeated ordered categorical responses. They found that the unconditional maxi-
mum likelihood estimate for the parameters is inconsistent. Therefore, they used
the conditional maximum likelihood estimation of the parameters, given sufficient
statistics for the random effect.

Nonlinear longitudinal Poisson regression model

The third type of model is named as nonlinear longitudinal Poisson regression
model. In order to introduce the model, consider an experiment where each subject
is tested several times using the same instrument, e.g. an intelligence test or a test
for working memory. The results of the experiment enhances as the time increases.
However, this reaches a plateau. Provided that a task is given at several times to
each subject, then, the number of correct answers (scores) to the questions at each
time could be of importance. In other words, we are interested in the prediction
of the mean score of the number of correct answers at each time. This term is
called the mean of the response variable. The ability of the subjects to do the task
is rising up exponentially. Also, the expected number of scores is an exponential
function of the ability parameter (See section 2.1). Each subject and each time
affect as a random effect on the expectation of the response variable.

The response variable conditioned on the random ability parameter is assumed
to follow the Poisson distribution. This model is called the longitudinal Poisson
regression model. More details on this model and its properties are found in Section

13



2.1 and Chapter 5.
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Chapter 2

Nonlinear and generalized
linear mixed effects models

Generalized linear and Nonlinear mixed effects models have been widely used in
many fields, such as biomedical medicine, psychology, etc. (see the works of Sheiner
and Beal 1983, Bono, Alarcón, and Blanca 2021). In the literature, two groups of
regression models with random effects have been used; the first is the generalized
linear mixed effects model and the second is the Nonlinear mixed effects models.
The types of the two models and their properties are specified in this chapter.
Additionally, the definition of the quasi Fisher information matrix, the design and
the relevant equivalence theorem to assess the D-optimality of D-optimum designs
are represented briefly with reference to the literature.

2.1 Model specification

To introduce the models respectively, consider N individuals, i = 1, ..., N . J
settings, as xij ’s or time points tij ’ s, where j = 1, ..., J . Also, nij is the number
of replications (k = 1, ..., nij) of observations yijk as a realization for random
variable Yijk for individual i at setting xij . The number of observations within

each individual is denoted as ni =
∑J

j=1 nij .
Yijk is considered as the response variable for the kth replication at jth setting

xij for subject i. Also, let ζi = (ζi0, ..., ζi(q−1))
⊤ be the random effect with q

dimension. We define h(x) = (1, h1(x), ..., hq−1(x))
⊤ as the continuous function of

experimental setting x regarding the random effect. We also assume that ζi ∼ Fζ ;
and Yijk given ζi’s are (conditionally) independent given ζi. Moreover, f(x) =
(1, f1(x), ..., fp−1(x))

⊤ is the continuous function of the experimental setting x
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regarding the population parameter β = (β0, ..., βp−1)
⊤ with p-dimension. B is

denoted as the parameter space of all β.
Then, by setting ηij = f⊤(xij)β + h⊤(xij)ζi, as the individual linear compo-

nent, the generalized linear mixed model is formulated as follows:

g(E(Yijk | ζi = zi)) = ηij ; (2.1)

where g is the link function. For a realization of ζi at zi means g : E(Yijk | ζi =
zi) → g(E(Yijk | ζi = zi)) = ηij , that E(Yijk | ζi = zi) can be any potential
mean value of Yijk, such as µ. Then, g has to be defined on the whole range of µ.
This model is the general form of the models used in Chapters 3 and 5, where the
response variable is a univariate random variable. However, in Chapter 4, which
states the ordinal mixed effects models, we work with a multivariate response
variable.

Let h be the inverse of link function g. Then, model (2.1), is reformed in the
following form as:

E(Yijk | ζi) = h(ηij). (2.2)

Two types of generalized linear mixed effects models as the binary and ordinal
mixed effects models are discussed in the subsequent sections.

Binary mixed effects regression model

In binary models the response Yijk may only take values 0 and 1 which are often
interpreted as ”success” (Yijk = 1) or ”failure” (Yijk = 0). In order to form
the binary mixed effects regression model, let Yijk | ζi ∼ Ber(pij(ζi)), where
pij(ζi) = P (Yijk = 1 | ζi). According to the choice of the link function g, the
probit and the logit binary mixed effects models are used. Let the unobservable
latent variable Uijk be defined as:

Uijk = ηij + ϵijk, (2.3)

as the linear mixed effects model, where ϵijk’s are identically and independently
distributed, with constant dispersion parameter σ2ϵ = 1.

Actually the link function is implied by the distribution of ϵijk, stated in for-
mula (2.3). The response variable Yijk = 1, if Uijk ≥ 0 and Yijk = 0, if Uijk < 0.
More precisely, the inverse link function is equal to the distribution function of the
ϵijk. In particular,
1) As g(µ) = Φ−1(µ), the binary mixed effects model with the probit link function
is assumed. This situation is when ϵijk follows the Normal distribution.
2) As g(µ) = log( µ

1−µ), the binary mixed effects model with the logit link function
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is assumed. This situation is when ϵijk follows the Logistic distribution (Agresti
2003).

The two link functions are applied when the probability of success against the
covariate rises (falls) slowly for small and high values of the covariate and rise
(falls) fast in the corresponding middle values.

In these models, we assume ζi ∼ N(0,Σ).
In order to show the visual description of the special case of these models, let

ζi = ζi0, f(x) = (1,x)⊤, where x be one dimensional, x ∈ RR. β = (β0, β1)
⊤ =

(−1, 1)⊤, which means p = 2, q = 1. g(µ) = Φ−1(µ); then, the model is reduced
to the random intercept probit regression model as:

g(E(Yijk | ζi0)) = Φ−1(E(Yijk | ζi0)) = ηij , (2.4)

where ηij = β0 + β1xij + ζi0; therefore, the conditional probability of success is
defined as:

P (Yijk = 1 | ζi0) = Φ(β0 + β1xij + ζi0). (2.5)

ζi0 ∼ N(0, σ2); σ2 = 1, for standardization. The conditional probability curves
(mean response curves) for different individuals indicated by different values of ζi0
against x are illustrated in Figure 2.1. For the realization of the random intercepts
ζ10 = −1.5, ζ20 = −1, ζ30 = −.5, ζ40 = 0, ζ50 = .5, ζ60 = 1, ζ70 = 1.5, From right
to left, the right most red curve denotes the conditional cumulative probability
conditioned on ζ10 = −1.5, and the largest random effect is ζ70 = 1.5, which is
shown with brown curve. As the value of the random effect increases, the function
is shifted to the left.
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Figure 2.1: The inverse probit link function, P (Yijk = 1 | ζi), against x.

Figure 2.2: The inverse logit link function, P (Yijk = 1 | ζi), against x.
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Moreover, considering the link function as:

g(E(Yijk | ζi0)) = log

(
pij(ζi0)

1− pij(ζi0)

)
, (2.6)

the conditional probability curve pij(ζi0) against xij is shown in Figure 2.2. It
shows as the value ζi0 increases, the function is shifted to the left”.

We are interested in the estimation of the probability curve and also the esti-
mation of the marginal first and second order moments of response variable.

The marginal first and second order moments of the response variable are
shown as:

E(Yijk) =

∫
Rq

pij(ζi)f(ζi)dζi, (2.7)

Var(Yijk) = E(Y 2
ijk)− E2(Yijk), (2.8)

where f(ζi) is the density function of ζi.
In the binary probit mixed model, equations (2.7) and (2.8) have explicit closed

forms (Zeger, Liang, and Albert 1988); however, cov(Yijk,Yijk′); k ̸= k′ in (3.3) and
cov(Yijk,Yij′k′), j ̸= j′,∀k, k′ in (3.4) do not have any closed form and it needs to
be approximated. In the Logistic mixed effects model, both first and second order
moments of Yijk lacks the analytical closed form. The approach of the achievement
of the above terms in the considered models is stated completely in Section 3.1.

To define the marginal likelihood function, let the vector of nij observations
yij = (yij1, ..., yijnij )

⊤ of subject i at setting xij . All ni observations yi =

(y⊤
i1, ...,y

⊤
iJ)

⊤ of subject i, all n =
∑N

i=1 ni observations y = (y⊤
1 , ...,y

⊤
N )

⊤ over all
subjects. Then,

L(β | yi) =
∫
Rq

J∏
j=1

nij∏
k=1

f(yijk | ζi)f(ζi)dζi, (2.9)

where Rq is the defined domain of ζi and f(yijk | ζi) = (pij(ζi))
yijk(1−pij(ζi))1−yijk

is the conditional density of Yijk conditioned on ζi; hence, the population marginal
likelihood function is denoted as:

L(β | y) =
N∏
i=1

L(β | yi), (2.10)

In fact, in these models the marginal likelihood function may not have the explicit
closed form, and we need to compute the integrals numerically.
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Numerical integration

One numerical method of integration is the quadrature rule based on interpolating
functions that are easy to integrate. If we are interested in integrating a well
behaved function s(.), (i.e.: piecewise continuous and bounded variation) against
t ∈ [a1, a2], where a1 and a2 are constant, the composite trapezoidal rule can be
stated, which is denoted as follows (Jefferson 2019):∫ a2

a1

s(t)dt ≈ a2 − a1
n

[
s(a1)

2
+

n−1∑
k=1

(s(a1 + k
a2 − a1
n

)) +
s(a2)

2
], (2.11)

where we have assumed that the interval [a1, a2] is broken up into n subintervals.
The subintervals have the form [a1 + kh, a1 + (k + 1)h] ∈ [a1, a2], with h = a2−a1

n
and k = 1, ..., n−1. Here, we used subintervals of the same length h but one could
also use intervals of varying length (hk)k.

An alternative method for the numerical integration is the Simpson’s rule. The
Simpson’s rules are several approximation for definite integrals, which we show two
of them here. The most basic rule is called Simpson’s 1/3 rule, or just Simpson’s
rule, ∫ a2

a1

s(x)dx ≈ a2 − a1
6

[s(a1) + 4s(
a1 + a2

2
) + s(a2)]. (2.12)

Now, suppose that the interval [a1, a2] is split up into n subintervals, with n an
even number. Then, the composite Simpson’s rule is given by:∫ a2
a1
s(x)dx ≈ h

3

∑n/2
j=1[s(x2j−2) + 4s(x2j−1) + s(x2j)]

=
h

3
[s(x0) + 2

n/2−1∑
j=1

s(x2j) + 4

n/2∑
j=1

s(x2j−1) + s(xn)], (2.13)

where xj = a1 + jh for j = 0, 1, ..., n− 1, n with h = a2−a1
n ; x0 = a1 and xn = a2.

Moreover, Monte Carlo methods and quasi-Monte Carlo methods are easy to
apply to multi-dimensional integrals. They may yield greater accuracy for the same
number of function evaluations than repeated integration using one-dimensional
methods.

In this dissertation, we use the Simpson’s rule to compute the integral, where
necessary, since we only come across one dimensional integrals in Sections 3.1, 4.1.

In the next subsection, the ordinal mixed effects regression model is introduced.
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Ordinal mixed effects regression model

In the ordinal mixed effects regression model, the response variable is presumed to
be ordinal with M categories based on an unobservable latent variable Uijk, which
is defined in (2.3).

The response variable is categorized by γm; m = 1, ...,M − 1 thresholds; such
that, γ1 < ... < γM−1. Also, γ0 = −∞ and γM = +∞.

Denote the M -dimensional random vector as Yijk = (Y
(1)
ijk , ..., Y

(M)
ijk )⊤, where

Y
(m)
ijk =

{
1 ; γm−1 ≤ Uijk < γm,
0 ; o.w.,

(2.14)

such that m = 1, ...,M . In fact, each Yijk is a vector consisting of one element
equal to 1 and other elements equal to 0. The Yijk here is already a mathematical
construct. In practice, people do not observe the vector Yijk, but equivalently the
value of the category, i.e. a (one-dimensional) random variable Ỹijk which may
attain values m ∈ {1, ...,M}. Then, the observations Ỹijk are related to the latent
variable Uijk by the condition Ỹijk = m if γm−1 ≤ Uijk < γm. The combination of
these two relations yield (2.14).

Moreover, Yijk | ζi ∼Multinomial(p
(1)
ij (ζi), ..., p

(M)
ij (ζi)); where

p
(m)
ij (ζi) := E(Y

(m)
ijk | ζi), (2.15)

with E(Y
(m)
ijk | ζi) = P (Y

(m)
ijk = 1 | ζi). Also,

∑M
m=1 p

(m)
ij (ζi) = 1.

Now, define

δ
(m)
ij (ζi) = γm − ηij . (2.16)

Also, Y
(m)
ijk = 1 means that,

γm−1 ≤ Uijk < γm (2.17)

γm−1 ≤ ηij + ϵijk < γm (2.18)

δ
(m−1)
ij (ζi) ≤ ϵijk < δ

(m)
ij (ζi), (2.19)

where δ
(m)
ij (ζi) = γm − ηij . Then,

P (Y
(m)
ijk = 1 | ζi) = P (ϵijk < δ

(m)
ij (ζi))− P (ϵijk < δ

(m−1)
ij (ζi)). (2.20)

if g−1 is the distribution function of ϵijk; then, this construction implies

p
(m)
ij (ζi) = g−1(δ

(m)
ij (ζi))− g−1(δ

(m−1)
ij (ζi)). (2.21)
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In the special case M = 2, γ1 = 0 leads to the binary case, which is treated in
the previous subsection. Considering the special case of the ordered probit mixed
effects regression model, as the random intercept model, let M = 3, ζi = ζi0, β =
(β0, β1)

⊤ = (−1, 1)⊤. For realization of random effect ζ10 = −.5, ζ20 = 0, ζ30 = .5,

Figure 2.3 shows Φ(δ
(m)
ij (ζi)) for each m = 1, 2, 3. Each plot demonstrates the

considered cumulative distribution function conditioned on each ζi0. Figure 2.4

reveals the conditional probability P (Y
(m)
ijk = 1 | ζi0); m = 1, 2, 3 for the same ζi0.

Figure 2.3: Cumulative probability curve, against xij, the inverse probit link
function.
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Figure 2.4: Conditional probability curve, P (Y
(m)
ijk = 1 | ζi), against xij, the

inverse probit link function.

We are interested in the estimation of each curve. Therefore, it is required
to estimate parameter β. Moreover, similar to the binary mixed model, we are
interested in the estimation of the marginal first and second order moments of the
response variable. They are shown as:

πij = E(Yijk) = (E(Y
(1)
ijk ),E(Y

(2)
ijk ), ...,E(Y

(M)
ijk ))⊤

= (π
(1)
ij , π

(2)
ij , ..., π

(M)
ij )⊤, (2.22)

where

π
(m)
ij =

∫
Rq

E(Y
(m)
ijk | ζi)f(ζi)dζi. (2.23)

Var(Yijk) = [cov(Y
(m)
ijk , Y

(m′)
ijk )]Mm,m′=1, (2.24)

in which πij is with dimension M × 1 and Var(Yijk) is with dimension M ×
M . Similar to the binary mixed model, πij has the explicit closed form in the
ordered mixed effects probit regression model; however, it does not form an explicit
closed form in the ordered mixed effects logit regression model. Variance matrix
(2.24) requires approximation in both considered models. More details on the
achievement of general mean and variance matrix of Y are asserted in Section 4.1.

In general, the marginal likelihood function for the ordinal mixed effects model
is regarded as:
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L(β | yi) =
∫
Rq

M∏
m=1

J∏
j=1

nij∏
k=1

[Φ(δ
(m)
ij (ζi))− Φ(δ

(m−1)
ij (ζi))]

y
(m)
ijk f(ζi)dζi, (2.25)

and

L(β | y) =
N∏
i=1

L(β | yi). (2.26)

The marginal likelihood function lacks the analytical closed form. In order to
obtain the integral, it is required to compute them numerically with the procedures
which have already been stated in Section 2.1.

The third type of model, which is contemplated in this dissertation is the
nonlinear longitudinal Poisson regression model. The definition, application and
some properties of this model are stated in the next subsection. The process of
the foundation of the model properties is different from the current stated models
already.

Nonlinear longitudinal Poisson regression model

Consider a study where there are N subjects. Tasks are given at J time points to
each subject. The sequence of the times is denoted as {tj}Jj=1; and at each time
there are nij items.

At each item in the jth time, the number of correct answers to the questions is
of interest. We suppose that it follows the Poisson distribution and it is called the
response variable. We are interested in the estimation of the ability of subjects
in the response to the questionnaire. Therefore, we observe the outcomes in the
line of the time. The mean ability is denoted by θ(t,β) = (θ(t1,β), ..., θ(tJ ,β))

⊤

and it is presumed to increase and approach exponentially to a saturation level by
increasing the time. It is also a function of unknown parameter β. The attended
relation regarding the jth time point is shown in the following:

θ(tj ,β) = β0 − β1 exp{−β2tj}, (2.27)

where β0 represents the saturation level, β0 − β1 reveals the offset as tj → 0 and
β2 is the scale parameter. Figure 2.5 shows the mean ability θ(tj ,β) against time
point tj . Plot (a) shows the exponential curve of θ(tj ,β) for different values of β2,
as (—): β2 = 1, (– –): β2 = 2, (. . .) :, β2 = 3, (– · –), β2 = 4, when β0 = 3, β1 = 2.
plot (b) shows the curve θ(tj ,β) for different values of β1, as (—): β1 = 1, (– –):
β1 = 1.5, (. . .) :, β1 = 2, (– · –), β1 = 2.5, when β0 = 3, β2 = 1. Plot (a) illustrates
that as β2 increases, the mean ability curve tends to the saturation level faster.
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However, plot (b) shows as β1 rises up, the range β0 − β1 as tj → 0 increases. In
fact, the choice of the model parameters depends on the application in use.

In addition, mean ability is not only fixed among subjects and times, but it also
varies randomly across subjects and times. The random part of the ability related
to the ith subject and jth time point is denoted by Λij , and the random effect
related to the ith subject is denoted by Λi = (Λi1, ...,ΛiJ)

⊤. In this dissertation,
it is assumed that Λi follows a multivariate Gamma distribution with correlated
random elements.

The considered multivariate Gamma distribution is built up as follows (Mathai
and Moschopoulos 1991):

Let
Λij = Si0 + Sij , (2.28)

where Si0 is a kind of individual block effect being constant over time and Sij is
the random effect within the ith individual related to the jth time point. The
elements of the sequence {Sij}Jj=0 are considered to be independent.

Suppose
Si0 ∼ Γ(c0, τ); (2.29)

Sij ∼ Γ(c, τ); (2.30)

where c0, c ≥ 0, τ > 0. c0 and c are shape parameter and τ is the common scale
parameter. E(Si0) = c0τ , E(Sij) = cτ . Λij ∼ Γ(c0 + c, τ), with E(Λij) = (c0 + c)τ .
The multivariate density function of the random effect Λi = (Λi1, ...,ΛiJ)

⊤ is
obtained in Appendix A, Section A.7. Additionally, we presume the random effects
Λij ’s are centered, which means E(Λij) = 1, then, it can be reparametrized in terms
of the scale parameter τ and the intra-class correlation ρ = c0τ . Then, c0+ c = 1

τ ,
and the second order moment of Λij is:

Var(Λij) = τ, (2.31)

cov(Λij ,Λij′) = Var(Si0) = ρτ ; j ̸= j′. (2.32)

where ρ = corr(Λij ,Λij′); j ̸= j′ is the intraclass correlation.
In general, the longitudinal Poisson regression model for the considered study

is constructed as follows:

E(Yijk | Λij = λij) = λij exp(θ(tj ,β)− σij), (2.33)

Conditionally on the random ability Λij = λij , the response variable Yijk follows
a Poisson distribution with mean E(Yijk | Λij = λij) in (2.33). σij is the difficulty
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Figure 2.5: Exponential mean ability curves for various value of the param-
eters.

parameter and it is set to be σij = 0. In this Chapter, we are interested in the
estimation of parameter β. The marginal first and second order moments of the
response variable are obtained as follows:

E(Yijk) = exp(θ(tj ,β)) (2.34)

Var(Yijk) = Var(E(Yijk | Λij)) + E(Var(Yijk | Λij))

= µj(µjτ + 1), (2.35)

where µj := E(Yijk). More information on the construction of variance matrix of
the response variable is given in Chapter 5. The marginal likelihood function for
the considered model is stated as:

L(β | yi) =
∫
RJ

J∏
j=1

nij∏
k=1

fYi|Λi=λi
(yi)fΛi(λi)dλi, (2.36)

and

L(β | y) =
N∏
i=1

L(β | yi), (2.37)
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where λi = (λi1, ..., λiJ)
⊤. This integral has an explicit form. The procedure is

stated in Appendix A, Section A.8, for J = 3. However, the analytical result
cannot be applied for the calculation of the maximum likelihood estimation of β
due to the complexity of the final formulation. In the following section, we state
the definition of the maximum likelihood estimation of the model in general.

The difference between this model and the models in the binary and ordinal
mixed effects models is that the model in (2.33) is based on the structure of the
Nonlinear dependence of E(Yijk | Λij = λij) on parameter β; however, models of
binary mixed effects model (2.1) and ordered mixed effects model (2.2) belong to
the class of generalized linear mixed effects models.

2.2 Estimation of population parameter

In this section, some methods of parameter estimation, as the maximum likelihood
estimation, generalized least squares estimation and the quasi maximum-likelihood
estimation are represented. Some of their properties, such as asymptotic behaviour
and unbiasedness are discussed. Then, in accordance with the structure and prop-
erties of the models, the quasi maximum likelihood estimation method is chosen
to be used in the rest of the dissertation.

Maximum likelihood estimation

In accordance with the literature, the maximum likelihood estimate of model pa-
rameter is defined as follows:

Definition 2.2.1. Maximum likelihood Estimation. β̂(y) is a maximum-likelihood
estimate given y, if L(β̂(y)|y) ≥ L(β|y) for all β ∈ B, where B is the space of
parameter β.

Indeed, maximum likelihood estimate of the parameter is a function over the
elements y in the sample space and it involves maximizing the marginal likelihood
function in order to search for the probability distribution and parameters that
best fits the observed data. In some models the maximum likelihood estimates of
the model parameters can be obtained analytically. However, in some other models
this aim is not achievable and the numerical computation should be used. In this
dissertation, for the models of consideration, the numerical integration techniques
are also required, since the integral in (2.9), (2.25) and (2.36) do not have the
analytical closed form (For example see the Markov chain Monte Carlo techniques
(e.g., Zeger and Karim 1991; Booth and Hobert 1999)). Furthermore, Butler and
Louis 1997 established the consistency of the maximum likelihood estimators of
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the fixed effects and the probability density function of the random effects in the
binary mixed effects model. Cramér 1946 and Wald 1949 proved the consistency
of maximum likelihood estimator when the observations are independent random
samples from the same population, i.e. random samples are independent and
identically distributed.

Bradley and Gart 1962 and Hoadley 1971 proved weak consistency when the
observations are sampled from independent associated populations, i.e., random
samples are independent but not identically distributed. Andrews 1987 estab-
lished the asymptotic properties of maximum likelihood estimator using uniformly
law of large numbers. Nie 2006 presented some easily verifiable conditions for
the strong consistency of the maximum likelihood estimator in generalized linear
and nonlinear mixed effects models. Accordingly, they proved that the maximum
likelihood estimator is consistent for some frequently used models such as mixed
effects logistic regression models and growth curve models.

However, in the considered models in this dissertation the achievement of the
maximum likelihood estimate of β’s gets more complexity as the number of ran-
dom effects rises up. Since the dimension of the integrals increases and more
numerical computations are required. As a result, we encourage the other method
of estimation, as the generalized least square estimation, which is stated in the
next subsection.

Generalized least squares estimation

The construction of the generalized least square estimation goes back to Liang and
Zeger 1986, who used a working generalized linear model for the marginal distri-
bution of Yijk. They do not specify a form of the joint distribution of the repeated
measurements. Instead, they introduced estimating equations that gave consistent
estimates of the parameters and of their variances under weak assumptions about
the joint distribution. They modeled the marginal rather than the conditional dis-
tribution given previous observations although the conditional approach may be
more appropriate for some problems. In fact to find the generalized least square
estimates of model parameters, it is needed to form the first and second order
moments of the response variable.

For the complete illustration of finding the generalized least square estimate of
parameters, we start by the exponential family of distribution with independent
observations within each subject. This means that the random effect related to
each subject or cluster is zero; then, the likelihood function does not rely on the
unclosed integral over the random effect and it belongs to the exponential family
of distributions. Indeed, we consider fixed effects model. More precisely, the
elements of Yij = (Yij1, ..., Yijnij )

⊤ are unconditionally independent. The general
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exponential family of distribution can be indicated in the form:

f(yijk) = exp{[yijkbij − a(bij) + b(yijk)]ϕ}, (2.38)

where bij = r(ηij); ηij = f⊤(xij)β or it can be a Nonlinear function of β in
Nonlinear models. r(.), a(.) and b(.) are suitably chosen functions and ϕ is an
additional parameter. By this formulation, the first two moments of Yijk are given
by:

µij(β) = E(Yijk) = a′(bij), (2.39)

Var(Yijk) = a
′′
(bij)/ϕ. (2.40)

For simplicity, we set µij(β) = µij . Consider µij = E(Yij); j = 1, ..., J , then,
µi = (µ⊤

i1, ...,µ
⊤
iJ)

⊤ is the mean vector of the response variable Yi with ni × 1

dimension. The independence estimating equation in order to achieve β̂I as the
least square estimate of β is constructed from the root of the underlying equation:

UI(β) =

N∑
i=1

F⊤
i ∆i(Yi − µi(β)) = 0, (2.41)

where Fi = (f(xi1)1
⊤
ni1
, ...,f(xiJ)1

⊤
niJ

)⊤; f(x) = (1,f1(x), ...,fp−1(x))
⊤ for the

general experimental setting x. ∆i = diag(r′(ηij)) is an ni×ni matrix and 1nij is
the column vector of 1’s with nij dimension. We further assume the identifiability,
in the sense that distinct β’s imply distinct µ’s. The rank of the model matrix
F = (F⊤

1 , ...,F
⊤
N )

⊤ depends on the choice of f(x).

Theorem 2.2.1. Liang and Zeger 1986. Let Ai = diag(a
′′
(bij)Inij )j=1,...,J , with

ni × ni dimension. The estimator β̂I of β is consistent and N1/2(β̂I − β) is
asymptotically multivariate Gaussian as N → ∞ with zero mean and covariance
matrix VI given by

VI = lim
N→∞

N(
N∑
i=1

F⊤
i ∆iAi∆iFi)

−1(
N∑
i=1

F⊤
i ∆iCov(Yi)∆iFi)

(

N∑
i=1

F⊤
i ∆iAi∆iFi)

−1 (2.42)

where the moment calculations for the Y ′
i s are taken with respect to the underlying

model.
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The precision of β̂I is evaluated by Var(β̂I), which is consistent given only a
correct specification of the regression. Moreover, β̂I can be shown to be reasonably
efficient for a few simple designs, (Liang and Zeger 1986, section 5).

The principal disadvantage of β̂I is that it may not be highly efficient in sit-
uations where the correlation between repeated measurements is large and it is
actually neglected. However, generalized estimating equation leads to estima-
tors with higher efficiency, since they take the correlation of observations within
each subject into account. The resulting estimator from the considered equation
remains consistent (Liang and Zeger 1986). In addition, consistent variance es-
timates are available under the weak assumption that a weighted average of the
estimated correlation matrices converges to a fixed matrix.

Let R(α) be an ni × ni symmetric matrix which fulfills the requirement of
the construction of a correlation matrix, and let α be an S × 1 vector which fully
characterizes R(α). Suppose matrix Vi can be decomposed as:

Vi = A
1/2
i R(α)A

1/2
i /ϕ, (2.43)

with ni × ni dimension, which will be equal to Cov(Yi) as the variance matrix for
the ith subject, if R(α) is indeed the true correlation matrix for the Y ′

i s.
We define the quasi-score function as:

U(β,α) =
N∑
i=1

Ui(β,α) (2.44)

where
Ui(β,α) = D⊤

i V
−1
i (Yi − µi(β)), (2.45)

in which α is the parameter of correlation and

Di = (Di11
⊤
ni1
, ...,DiJ1

⊤
nij

)⊤, (2.46)

that Dij = (
∂µij
∂β0

, ...,
∂µij
∂βp−1

)⊤; j = 1, ..., J with dimension p× 1. Further, (Yi−µi)

is of order ni × 1 for the ith subject. This equation does not depend on ϕ, hence,
β̂ is the same whether ϕ is known or not.

The general estimating equation is presented as follows:

U(β,α) = 0. (2.47)

Two remarks are worth mentioning:
(1) If we specify R(α) as the identity matrix, equation (2.44) reduces to inde-

pendent equation (2.41).
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(2) For each i, Ui(β,α) is analogous to the score function derived from the
quasi-likelihood approach advocated by Wedderburn 1974, (see section 2.2) except
that in this case Vi is not only a function of β but also of α as well. We can
replace α with α̂(y,β, ϕ), a N1/2-consistent estimator of α when β and ϕ are
known, that α̂ for which N1/2(α̂ − α) = Op(1). Except for particular choices of
R and α̂, the scale parameter ϕ will generally remain in (2.44). To complete the
process, we replace ϕ by ϕ̂(y,β), a N1/2-consistent estimator when β is known.
As a result, (2.44) has the form,

N∑
i=1

Ui[β, α̂(β, ϕ̂(β))] = 0, (2.48)

and β̂G is defined to be the solution to equation (2.48). The large-sample property
for β̂G is stated in the next theorem.

Theorem 2.2.2. Liang and Zeger 1986 Under mild regularity conditions and given
that:
(i): α̂ is N1/2-consistent given β and ϕ
(ii): ϕ̂ is N1/2-consistent given β; and

(iii): | ∂α̂(β,ϕ)
∂ϕ |≤ H(y,β) which is Op(1), for an optional function H(., .);

then, N1/2(β̂G − β) is asymptotically multivariate Gaussian with zero mean and
covariance matrix VG given by

VG = lim
N→∞

N(
N∑
i=1

D⊤
i V

−1
i Di)

−1{
N∑
i=1

D⊤
i V

−1
i Cov(Yi)V

−1
i Di}(

N∑
i=1

D⊤
i V

−1
i Di)

−1

(2.49)

The variance estimate V̂G of β̂G can be obtained by replacing Cov(Yi) by
SiS

⊤
i as the sample variance and β, ϕ, α by their estimates in the expression VG.

Connection with Gauss-Newton method

To compute β̂G, Liang and Zeger (1986) suggested a modified Fisher-scoring for
β and moment estimation for α and ϕ.

Given current estimates α̂ and ϕ̂ of the nuisance parameters, the modified
iterative procedure for β is formed as:

β̂(m+ 1) = β̂(m)− {
N∑
i=1

D⊤
i Ṽ

−1
i Di}−1

(m).{
N∑
i=1

D⊤
i Ṽ

−1
i (yi − µi)}(m) (2.50)
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where β̂(m) is the given value at the mth iteration. {.}m indicates the term
occurring at the mth iteration. Ṽi = Vi[β, α̂(β, ϕ̂(β))]. This procedure is viewed
as a modification of Fisher’s scoring in that the limiting expectation value of the
derivative of

∑
Ui(β, α̂(β, ϕ̂(β))) is used for correction.

Estimators of α and ϕ

At a given iteration the correlation parameters α can be estimated from the current
Pearson residuals defined by

r̂ijk =
yijk − a′(b̂ij)

(a′′(b̂ij))1/2
, (2.51)

where b̂ij depends upon the current value for β. We can estimate the scale param-
eter ϕ by

ϕ̂−1 =

N∑
i=1

J∑
j=1

r̂2ijk
n− p

(2.52)

where n =
∑N

i=1 ni. It is shown to be N1/2-consistent given that the fourth
moments of the yij ’s are finite. The estimate of α depends on the choice of R(α)
by a simple function of

R̂uvk =
N∑
i=1

r̂iukr̂ivk
n− p

, (2.53)

Liang and Zeger 1986.
All in all, the variance matrix Vi is estimated as a function of β.
In this dissertation, the nuisance parameter ϕ and the correlation parameter

α are assumed to be known. The variance matrix is calculated based on the
first and second order moments of the response variable. Actually, by setting
nuisance parameter σ2 = 1 and β known in models (2.1), (2.2) and (2.33) for the
computation of D-optimum design, the considered aim is fulfilled.

Quasi maximum-likelihood estimation

The quasi-likelihood function was firstly introduced by Wedderburn 1974. To
define the likelihood function, it is needed to specify the form of the distribution
of observations, but to define a quasi-likelihood function we need only specify a
relation between the mean and variance of the observations. This function will then
be applied for estimation. Wedderburn 1974 proposed that the quasi log-likelihood
function for a one-parameter exponential family is the same as the log-likelihood
function.
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Assume there is one observation for each individual, and since individuals are
assumed to be independent, all observations are independent. The quasi-likelihood
function for each observation is defined by the relation in the following definition:

Definition 2.2.2. For each observation yi the quasi-likelihood function ql(yi, µi)
is defined by the relation

∂ql(yi, µi)

∂µi
=
yi − µi
Vi

, (2.54)

or equivalently,

ql(yi, µi) =

∫ µi yi − t

V(t)
dt+H(yi), (2.55)

where H(yi) is a function of yi.

According to the above definition of ql(., .), has the following properties (Wed-
derburn 1974):

1) E[∂ql(Yi,µi)∂µi
] = 0,

2) E[∂ql(Yi,µi)∂βj
] = 0; j = 1, ..., J

3) E[∂ql(Yi,µi)∂µi
]2 = −E[∂

2ql(Yi,µi)
∂µ2i

] = 1
Vi

4) E[∂ql(Yi,µi)∂βj

∂ql(Yi,µi)
∂βj′

] = −E[∂
2ql(Yi,µi)
∂βj∂βj′

] = 1
Vi

∂µi
∂βj

∂µi
∂βj′

; j, j′ = 1, ..., J

Corollary 2.2.2.1. [Wedderburn 1974] If the log-likelihood of observations yi is
defined as ℓi, then

−E(
∂2qli
∂µ2i

) ≤ −E(
∂2ℓi
∂µ2i

). (2.56)

Now, let

Ui(β) =
∂µi
∂β⊤

∂ql(yi, µi)

∂µi
, (2.57)

and

U(β) =

N∑
i=1

Ui(β). (2.58)

Thus, the generalized estimating equation for the considered model is stated as:

U(β̂) = 0. (2.59)

Then the quasi maximum-likelihood estimate is obtained from the root of above
equation (Wedderburn 1974). This definition was also stated in (2.45) and (2.46)
with an additional parameter α to state the generalized estimating equation, that
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here we assume it is hidden in the construction of Vi. Similar to section 2.2,
the quasi maximum likelihood estimate β̂QL can be obtained from the iterative
equation (2.50), in which Ṽi is obtained from equations (3.1)-(3.7), Chapter 3.

In case Vi = 1, the quasi-score function in (2.58) reduces to least square
equation, and therefore, the quasi maximum-likelihood estimation is transformed
to the least square estimation (see formula (2.41). It is well-known that if the
likelihood function has the exponential form, maximum likelihood estimates of
regression parameters will often be used to find the least square estimation.

In fact the method of weighted least squares can be applied to find maximum
likelihood estimates even in some situations where the likelihood function does not
have the exponential family form (Jørgensen 1983). McCullagh 1983 suggested
a wider class of problems for which the least square approach can be used to
maximize the likelihood function of the data, and he examined the asymptotic
properties of the quasi-likelihood function. He also showed that the estimators
enjoy a certain asymptotic optimality property.

In the following subsection, the properties of the quasi maximum-likelihood
estimation are stated.

Properties of quasi maximum-likelihood estimation

Consider the general exponential family of distributions (2.38). The systematic
component may be expressed as a regression function as follows:

E(Yij) = µij(β), (2.60)

which is called the linear regression.
A more general regression function that implicitly involves dispersion param-

eter ϕ is denoted by McCullagh 1983:

E[℧(Yij)] = ψi(β), (2.61)

where ℧(.) is a known Nonlinear function of the data.
If ϕ is known, the expression on the left side of (2.61) is a function of µ

alone, and subject to reasonable monotonicity, we can express (2.61) in terms of
(2.60). Weighted least squares may be applied to compute the maximum likelihood
estimates in (2.60) and (2.61), (Bradley 1973).

The generalized least squares equation is shown in (2.59). The extension of
the quasi log-likelihood definition to the vector yi = (y⊤

i1, ...,y
⊤
iJ)

⊤ is shown as
(McCullagh 1983):

ql(yi,µi)

∂µi
= V−1

i (yi − µi). (2.62)
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There is no guarantee that the quasi maximum-likelihood estimate of β is analo-
gous to the maximum likelihood estimate of β. Under weak conditions on the third

derivative of (2.60) and assuming that N−1iβ = [−∂2ql(yi,µi)
∂βj∂βj′

]pj,j′=1 has a positive

definite limit, and that the third moments of Y are finite, the following asymptotic
results apply:

N
−1
2 U(β) ∼ Np(0,

iβ
N

) +Op(N
− 1

2 ), (2.63)

E(β̂ − β) = O(N−1), (2.64)

N
1
2 (β̂ − β) ∼ Np(0, N i−1

β ) +Op(N
− 1

2 ) (2.65)

If the third moment is infinite, the error term in results (2.63) and (2.65) above
are Op(1).

It can be shown that among all estimators of β for which the influence function
is linear, i.e., estimator β̃ satisfying

β̃ − β = Lµ(y − µ) +Op(N
−1/2), (2.66)

where Lµ is a p×n matrix of influences, quasi maximum-likelihood estimates have
minimum asymptotic variance (McCullagh 1983).

Now, consider the generalized linear mixed model (2.1). The random effect
ζi ̸= 0. As it was mentioned, the observations within each cluster (subject) are
correlated and they are independent between clusters. Moreover, an alternative
approach to derive the considered moments, was a BLUP (best linear unbiased
predictor approach). In this method, ζi is assumed to be fixed like β, and we try
to estimate it along with β, by using certain modified likelihood approaches, such
as penalized quasi-likelihood approach of Breslow and Clayton 1993. Sutradhar
2004 considered the generalized linear mixed model with random intercept. He
used the simulation approach of Jiang 1998, to compute the marginal first and
second order moment of the response variable. This approach is different from
the one which is introduced in this dissertation. Moreover, he assumed that each
random effect ζi; i = 1, ..., N , has distinctive variance σi, and he was interested in
the estimation of φ = (β, σ1, ..., σq), with (p+q)×1 dimension. In this dissertation,
Y = (Y ⊤

1 , ...,Y
⊤
N )⊤ is attended as the estimator for population parameter φ =

(β, σ2)⊤ with p × 1 dimension, and we utilized the considered vector estimator
in generalized estimating equation (2.44). Due to the work of Jiang and Zhang
2001, Sutradhar 2004 utilized the base statistic based on the sum of the first and
second order of yijk’s with coefficients as the design predictors. According to this
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assumption he formed the variance of the base statistic. He confirmed that it is
not diagonal, since the two elemental statistics are correlated.

After the construction of the generalized estimating equation (2.47), he used
the Newton-Raphson method to obtain the quasi maximum-likelihood estimate of
φ and stated some general properties of the considered estimator.

Following the relevant results, the properties of β̂QL for model (2.1) is stated
as:
1) N1/2(β̂QL − β) is asymptotically (as N → ∞) multivariate Normal, with zero
mean and the covariance matrix that can be consistently estimated by:

V̂ar(β̂QL) = lim
N→∞

N [
N∑
i=1

D⊤
i V

−1
i Di]

−1
β , (2.67)

where Di is the derivative of the mean of the base statistic with respect to φ and
[.]β̂QL

denotes that the expression within the bracket is evaluated at β̂QL.

2) Note that as the variance matrix Vi in QL estimating equation (2.47) is the
true covariance matrix of the base statistic Yi, β̂QL is both consistent as well as
highly efficient.
3) In an example of the binary logistic regression model, it is shown that the quasi
maximum-likelihood estimate of φ has lower variance, (higher efficiency) than the
variance of the improved method of moments (Jiang and Zhang 2001).

In Section 3.2, the quasi maximum likelihood estimate of the parameters in
the specific case of the binary mixed effects model is evaluated by simulation.

2.3 Quasi Fisher information matrix

Since the Fisher information matrix in the three types of models (2.1), (2.2) and
(2.33), does not have an analytical explicit form, we approximate it with the quasi
Fisher information matrix.

The quasi Fisher information matrix is obtained from the definition of the
quasi score function (2.44) as (P. McCullagh and Nelder 1983):

Cov(U(β)) =
N∑
i=1

D⊤
i V

−1
i Di, (2.68)

We set
MQ

i (β) = D⊤
i V

−1
i Di, (2.69)

as the individual quasi Fisher information matrix. Also,

MQ(β) =
N∑
i=1

MQ
i (β), (2.70)
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where MQ(β) is the population quasi Fisher information matrix.
Hence, the population quasi Fisher information with D⊤ = (D⊤

1 , ...,D
⊤
N ), and

V = diag(V1, ...,VN ) can be shown as:

MQ(β) = D⊤V−1D. (2.71)

Therefore, following equation (2.67) we obtain:

Var(β̂) ≈ (MQ(β))−1. (2.72)

Now, we present M as the set of quasi Fisher information matrices.
The set M. Each element of M is a symmetric non-negative definite p × p

matrix which can be represented by a point in R
1
2
p(p+1), the points with coordinates

{MQ
ij ; 1 ≤ i ≤ j ≤ p}, when MQ = (MQ

ij).

2.4 Design

In general, the discrete individual design ξ
(d)
i is indicated as (Atkinson et al. 2007):

ξ
(d)
i =

(
xi1 . . . xiJ
ni1 . . . niJ

)
; ξ

(d)
i ∈ Ξ

(d)
i , (2.73)

where xij ; j = 1, ..., J is the jth experimental setting of the ith individual. Fur-

thermore, Ξ
(d)
i is the convex set of all possible designs for the ith individual. In

model (2.33), the support of the design is denoted by tij as the jth time point, in
the ith individual.

Moreover, the discrete population design is defined in the following:

ξ(d) =

(
ξ
(d)
1 . . . ξ

(d)
N

n1 . . . nN

)
; ξ(d) ∈ Ξ(d), (2.74)

where each ni represents the number of replication taken at the ith individual
design and

∑N
i=1 ni = n. Furthermore, Ξ(d) is the convex set of all population

designs.
The quasi Fisher information matrix is not only a function of population pa-

rameter β, but it is also a function of the discrete design ξ(d). In the next subsection
the D-optimality criterion is presented.

D-optimum design

In general, the D-optimality criterion based on the population quasi Fisher infor-
mation matrix is defined as follows (Atkinson et al. 2007):

DQ(ξ(d),β) = log(det(MQ(ξ(d),β))). (2.75)
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Also, the individual D-optimality criterion is revealed based on the individual quasi
Fisher information matrix, as

DQ(ξ
(d)
i ,β) = log(det(MQ(ξ

(d)
i ,β))), (2.76)

The D-optimum design ξ⋆(d) is obtained by the maximization of D-optimality
criterion (2.75) with respect to design, in other words,

ξ⋆(d) = argmax
ξ(d)

{DQ(ξ(d),β)} (2.77)

Equal individual designs

In this dissertation, we assume all individuals take the same design, i.e. ξ
(d)
1 =

... = ξ
(d)
N = ξ

(d)
0 (see Appendix A, Section A.1). Therefore, the support points,

xij = xj , and nij = nj . Also, ni = n; ∀i.

MQ(ξ(d),β) =

N∑
i=1

MQ(ξ
(d)
i ,β) = NMQ(ξ

(d)
0 ,β) (2.78)

and also the population D-optimality criterion can be denoted as a function of the
individual D-optimality criterion as follows:

log(det(MQ(ξ(d),β))) = log(det(NMQ(ξ
(d)
0 ,β)))

= p log(N) + log(det(MQ(ξ
(d)
0 ,β))); (2.79)

hence, the maximization of the individual D-optimality criterion with respect to

ξ
(d)
0 is equal to the maximization of the population D-optimality criterion with
respect to ξ(d).

D-optimum design ξ(d) for models (2.1) and (2.2) determines that for each
subject or cluster, how many replication we take at each experimental setting
xj ; j = 1, ..., J , in order that the determinant of the quasi Fisher information

matrix MQ(ξ(d),β) is maximized. In other words, det(Cov(β̂QL)) is minimized.
In model (2.33) the D-optimum design states that at each subject how many

replications of the experiment is performed at each time, tj ; j = 1, ..., J in or-
der that the determinant of the quasi Fisher information matrix, MQ(ξ(d),β) is
maximized, in other words, det(Cov(β̂QL)) is minimized.

In this dissertation, we assume that the support points of the design are known;
thus, to obtain the D-optimum design we only need to obtain the optimum nj ’s.
However, since nj ’s are discrete, the achievement of the D-optimum design will be
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complex. Therefore, we need to represent the approximate design as (Silvey 1980):

ξ =

(
x1 . . . xJ
w1 . . . wJ

)
; ξi ∈ Ξi, (2.80)

where wj =
nj

n ;
∑J

j=1wj = 1, wj ∈ (0, 1). Ξi is the convex set of all designs ξi.
However, still care has to be taken about the total number ”n” of observations per
individual.

Now finding D-optimum design ξ⋆ is equal to the achievement of w⋆j ; j =

1, ..., J , where MQ(ξ,β) is maximized.

Equivalence theorem

The optimality of D-optimum design ξ⋆ can be checked by the equivalence theorem.
Since D-optimality criterion (2.75) is a function of the approximate design ξ, the
directional derivative FDQ(ξ1, ξ2) is used to check the optimality. It is defined as
follows:

FDQ(ξ1, ξ2) = lim
ϵ→0+

1

ϵ
[DQ(MQ((1− ϵ)ξ1 + ϵξ2))−DQ(MQ(ξ1))]. (2.81)

This function gives the rate of increase of DQ per unit of distance moved in the
direction given by ξ2.

Moreover, it can be written as,

FDQ(ξ1, ξ2) =
d

dϵ
DQ(MQ((1− ϵ)ξ1 + ϵξ2)) |ϵ=0+ . (2.82)

For design measures ξ1 and ξ2, and ϵ ∈ (0, 1), ϵξ1 + (1 − ϵ)ξ2 is also a design
measure. Therefore, the set of the design measures is a convex set. Based on the
form of the quasi Fisher information matrix, we could conclude

MQ(ϵξ1 + (1− ϵ)ξ2) ≥ ϵMQ(ξ1) + (1− ϵ)MQ(ξ2). (2.83)

Hence the quasi Fisher information matrix is included in a convex set of quasi
Fisher information matrices.

Definition 2.4.1. (Silvey 1980) Differentiablity of DQ at MQ implies that, if∑N
i=1 ai = 1,

FDQ(ξ1,
N∑
i=1

aiξi) =

N∑
i=1

aiFDQ(ξ1, ξi). (2.84)

If MQ is convex then, DQ is differentiable. The differentiability is the assump-
tion of the following theorem.
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Theorem 2.4.1. Equivalence Theorem. (Silvey 1980). If DQ is differentiable

at all points of MQ+
= {MQ ∈ MQ,DQ < ∞}, ξx is the one-point design which

assigns weight 1 to x and a DQ− optimum measure exists, then ξ⋆ is DQ− optimum
if and only if

max
x∈X

FDQ(ξ⋆, ξx) = min
ξ

max
x∈X

FDQ(ξ, ξx), (2.85)

where the minimum with respect to ξ is the minimum over {ξ : MQ(ξ) ∈ MQ+}.

D-efficiency criterion

In general, the efficiency of the D-optimum design is evaluated by the D-efficiency
criterion as:

effD(ξ;β) =

(
det(MQ(ξ;β))

det(MQ(ξ⋆β;β))

) 1
p

, (2.86)

where ξ∗β is the D-optimum design assuming the specific value of β. Also, ξ is an
arbitrary design. For example, if the D-efficiency is 0.5 for design ξ, we would take
as twice as the sample size when the true D-optimum design (ξ⋆β) would be used.

In this chapter, some specific definitions and theories regarding the model
equations, their properties and estimation have been discussed. Moreover, the
reason for considering the quasi Fisher information matrix for the further analysis
has been explained. The definition of D-optimum design and its brief theory have
been provided. In addition, some references for further studies, new ideas and
investigations have been given.
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Chapter 3

Optimum Design in a Binary
Mixed Effects Model

In this chapter, the D-optimum design is aimed to be obtained for the binary mixed
effects model. For this aim, the Fisher information matrix of the model needs to
be constructed. As the Fisher information matrix in the model of consideration
does not have the analytical closed form (as indicated in Section 2.1), it is approx-
imated by the quasi-Fisher information matrix (Wedderburn 1974). To derive this
matrix, it is required to obtain the marginal first and second order moments of the
response variable. These moments do not have the explicit form either, in some
situations of the model. Thus, they are approximated, and they are evaluated by
numerical computations. According to this, the D-optimum design is achieved for
a treatment-control model for the two settings for the design. Since the individuals
take the same design, the D-optimum design is obtained for individual and it is
extended to the population D-optimum design. These designs are constructed for
the quasi-maximum likelihood estimate of the model parameters. Therefore, the
asymptotic behaviour of these estimates is evaluated by simulation. Because the
quasi-Fisher information matrix does not have an explicit form, there cannot be
made direct use of an equivalence theorem. Then, D-optimality of the considered
designs are evaluated directly by the second derivative of the D-optimality crite-
rion with respect to the design. At last, the D-optimum design for the random
intercept binary model is obtained for different values of model parameters and the
sensitivity of D-optimum design with respect to parameter changes is investigated.
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3.1 Binary mixed effects model

The binary mixed effects model have been represented in Section 2.1. The response
variable Yijk takes values 0 and 1. The success probability pij(ζi) for Yijk = 1 de-
pends on the setting xj and on the random effect ζi. It is assumed ζi ∼ N(0,Σ),
where Σ = σ2Iq , which means that the elements of the random effect ζi are as-
sumed to be independent and have the same distribution. The marginal density
function of Yijk does not have the closed form. Therefore, marginal likelihood func-
tion of the considered model, shown in (2.10), does not have analytical closed form.
According to this, the Fisher information matrix cannot be attained analytically.

As it was mentioned, the quasi Fisher information matrix is one suggestion
of the approximation of Fisher information matrix, and therefore, it is needed
to obtain the first and second order moments of the response variable; they are
indicated as follows:

Let πj = E(pij(ζi)); where pij(ζi) = P (Yijk = 1|ζi) = E(Yijk|ζi); then,

πj := E(Yijk). (3.1)

Also, because Yijk is binary that

Var(Yijk) = πj(1− πj). (3.2)

The marginal covariance elements of the response variable are written as:

cov(Yijk, Yijk′) = cov(E(Yijk|ζi),E(Yijk′ |ζi)) + E(cov(Yijk, Yijk′ |ζi)),

and the second term above is zero; therefore, by defining vj := Var(pij(ζi)),

cov(Yijk, Yijk′) = vj ; k ̸= k′, (3.3)

since cov(E(Yijk | ζi),E(Yijk′ | ζi)) = Var(pij(ζi)). In addition,

cov(Yijk, Yij′k′) = cov(E(Yijk|ζi),E(Yij′k′ |ζi)) + E(cov(Yijk, Yij′k′ |ζi)),

and the second term above is zero; as a result, by defining cjj′ := cov(pij(ζi), pij′(ζi)),

cov(Yijk, Yij′k′) = cjj′ ; j ̸= j′, k, k′, (3.4)

since cov(E(Yijk | ζi),E(Yij′k′ | ζi)) = cov(pij(ζi), pij′(ζi)). The variance-covariance
matrix in the same setting j is equal to:

Vjj = vj1nj1
⊤
nj

+ (πj(1− πj)− vj)Inj , (3.5)
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with dimension nj × nj and the variance-covariance matrix between the jth and
j′th experimental settings is given by:

Vjj′ = cjj′1nj1
⊤
nj′
. (3.6)

with dimension nj × nj′ . In total, the individual variance-covariance matrix of Yi
is constructed as follows:

V =


V11 . . . V1J

V21 . . . V2J
...

. . .
...

VJ1 . . . VJJ

 , (3.7)

with dimension n× n.
In the next subsections, the variance matrix V is established for a specific

case of the binary mixed effects model to form individual quasi Fisher information
matrix (2.69).

Quasi Fisher information matrix in model with probit
link function

In this subsection, we consider the probit link function g(p) = Φ−1(p). In order to
construct πj in (3.1), we need to obtain the following integral:

πj =

∫
Rq

Φ(ηij)fN(0,σ2Iq)(ζi)dζi, (3.8)

where ηij = f⊤(xij)β+h⊤(xij)ζi, fN(µ,Σ) denotes the density of the multivariate
Normal distribution with mean µ and covariance matrix Σ. This integral was
solved in Zeger, Liang, and Albert 1988, and the regarding result is shown in the
following lemma.

Lemma 3.1.1. Zeger, Liang, and Albert 1988. Set

αj = (1 + σ2h⊤(xj)h(xj))
− 1

2f⊤(xj)β.

Then, in the binary mixed probit regression model,

πj = Φ(αj). (3.9)

Furthermore, following (3.2),

Var(Yijk) = Φ(αj)(1− Φ(αj)). (3.10)

In order to find off-diagonal elements of Vi, we consider the special case of the
binary mixed probit regression model with a random intercept.
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Lemma 3.1.2. Let αj0 = (1 + σ2)−
1
2f⊤(xj)β and

qj0(z) :=
(1 + σ2)

1
2

(1 + 2σ2)
1
2

(
f⊤(xj)β − σ2z

(1 + σ2)
1
2

)
. (3.11)

In the random intercept binary regression model,

cov(Yijk, Yijk′) =

∫ αj0

−∞
ϕ(z)Φ(qj0(z))dz − (Φ(αj0))

2; k ̸= k′, (3.12)

and

cov(Yijk, Yij′k′) =

∫ αj0

−∞
ϕ(z)Φ(qj′0(z))dz − (Φ(αj0))(Φ(αj′0)); j ̸= j′, k, k′. (3.13)

Proof.
Consider the random intercept probit model,

Φ−1(pij(ζi0)) = f⊤(xj)β + ζi0. (3.14)

Firstly, it is attempted to obtain (3.13), then the result is reduced to the case,
j = j′.

As cov(Yijk, Yij′k′) = cjj′ in (3.4), it is needed to obtain E[pij(ζi0)pij′(ζi0)];
and, the first order moment of the response variable has already been obtained in
Lemma 3.1.1.

E[pij(ζi0)pij′(ζi0)] =
∫ +∞
−∞ Φ(f⊤(xj)β + ζi0)Φ(f

⊤(xj′)β + ζi0)ϕ0,σ(ζi0)dζi0,

=

∫ +∞

−∞

(∫ f⊤(xj)β

−∞
ϕ−ζi0,1(v)dv

)
.

(∫ f⊤(xj′ )β

−∞
ϕ−ζi0,1(t)dt

)
ϕ0,σ(ζi0)dζi0, (3.15)

where ϕµ,σ(.) indicates the density function of the Normal distribution. The last
equality above is obtained by the variable change principle.

At last, by considering qj′0(z) =
(σ2+1)

1
2

(2σ2+1)
1
2

(
f⊤(xj′)β − σ2z

(σ2+1)
1
2

)
,

E[pij(ζi0)pij′(ζi0)] =
∫ f⊤(xj)β
−∞ ϕ0,(1+σ2)(v)

∫ f⊤(xj′ )β
−∞ ϕ σ2v

1+σ2 ,(1+
σ2

1+σ2 )
(t)dtdv
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=

∫ αj0

−∞
ϕ(z)Φ(qj′0(z))dz, (3.16)

By the substitution of (3.16) for the first term in (3.4) and using lemma 3.1.1 for
the replacement of πj (3.13) is obtained.

Finally, (3.12) is gained by setting j = j′. ■
From the above lemma it is observed that cov(Yijk, Yijk′) and cov(Yijk, Yij′k′)

do not have explicit closed form due to the unclosed integral in their first term.
Later, in the next subsection, we utilize an additional approximation of the current
unclosed integral in the first terms, and its outcomes are evaluated and compared
with the results of Lemma 3.1.2.

Lemma 3.1.3. The columns of matrix D in (2.46) for the binary mixed probit
regression model is as follows:

Dj = (1 + σ2h⊤(xj)h(xj))
− 1

2f(xj)ϕ(αj); j = 1, ..., J. (3.17)

Proof.
Since πj = Φ(αj),

∂

∂β⊤πj =
∂

∂β⊤Φ(αj), (3.18)

and the result is obtained. ■
Remark. By considering the special case of the model as the random intercept

probit regression model,

Dj = (1 + σ2)−
1
2f⊤(xj)ϕ(αj0) (3.19)

Approximation of covariance matrix

In order to approximate the first term integral in (3.12) and (3.13) of Lemma 3.1.2,
it is needed to approximate Φ(qj(z)), ∀j. One approximation of this function is
stated in Lin 1989, which is used for Approximating the Normal tail probability
and its inverse for use on a pocket calculator. It is denoted as:

ΦLin(z) =
1

2
exp{−τz − αz2}, (3.20)

where α = 0.416, τ = 0.717. This approximation is modified to the following term:

Φ(z) ≈ Φ∗(z) =

{
1− 1

2 exp(−τz − αz2) ; z ≥ 0,
1
2 exp(−τ(−z)− α(−z)2) ; z ≤ 0,

(3.21)

which overlaps the true standard Normal cumulative distribution function on the
interval z ∈ [−3, 3]. This approximation shares the symmetry property, i.e. Φ∗(z)+
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Figure 3.1: (a) Exact standard Normal Cumulative Distribution Function,
(b) Modified Lin’s approximation of standard Normal Cumulative Distribu-
tion Function, (c) Overlapping of the two functions.

Φ∗(−z) = 1. Figure 3.1 shows the curve of Φ⋆(z) and Φ(z) in plot (a) and plot
(b), respectively. Plot (c) shows that the two functions overlap against z ∈ [−3, 3].
Moreover, by considering interval z ∈ [−3, 3] with 200 points and the calculation of

Φ(z) and Φ⋆(z) at the corresponding points, we obtain
∑200

i=1|Φ(zi)−Φ⋆(zi)|
200 = 0.002.

This term yields small value, which can be negligible.
Hence, we can substitute Φ⋆(qj(z)) for Φ(qj(z)) in (3.12) and (3.13), respec-

tively and solve the integrals. The results are given in Appendix A, Section A.2.
In the next subsection, the approximation of the covariance elements in a specific
example of the binary random intercept probit model is evaluated.

Assessment of new approximations

In this section, an example of the binary probit mixed effects model is considered.
Assume that β = (β0, β1)

⊤, ζi = ζi0, f(xj) = (1, xj)
⊤; j = 1, 2, h(xj) = 1;

(x1, x2) = (0, 1), σ2 = 1. Then, the model is called the binary random intercept
probit regression model. The marginal covariances of the response variable (3.3)
and (3.4) are computed based on the three methods of approximations as:
1) Numerical approximation. The numerical computation of (3.3) and (3.4)
based on the Simpson’s rule.
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2) First new approximation. Firstly, covariances (3.3) and (3.4) are obtained
in correspondence with Lemma 3.1.2. Then, the results, which are in terms of
unclosed integrals, are computed by the Simpson’s rule.
3) Second new approximation. The unclosed integrals in (3.12) and (3.13) are
approximated by Rule 2 and Rule 1 in Appendix A.2, respectively.

Figure 3.2 shows cov(Yijk, Yijk′); j = 1, 2 in Plots (a) and (b) against β0 ∈
[−3, 3] at β1 = 1. The black curve indicates the numerical approximation method.
The red curve indicates the first new approximation method, and the blue curve
shows the second new approximate covariance. It illustrates that for most values
of β0 ∈ [−3, 3], the three methods of the computation of the covariance over-
lap. However, for β0 near to zero, the second approximation of the covariances
cov(Yi1k, Yi1k′), cov(Yi2k, Yi2k′) and cov(Yi1k, Yi2k′) exceed the other two methods.
The reason for this is due to the approximation of Φ(.) by Φ⋆(.) in (3.21).

Moreover, the corresponding covariance elements are computed against β1 ∈
[−3, 3] at β0 = 1. They are shown in Figure 3.3. Plot (a) shows that cov(Yi1k,Yi1k′)
is constant for all β1 ∈ [−3, 3]. The reason for this is that x1 = 0 and β1 is
the slope parameter. The numerical approximation and the first approximation
of cov(Yi1k, Yi1k′) overlap, whereas, the second approximation deviates slightly
from the first two methods, which takes slightly larger values. Plot (b) illustrates
cov(Yi2k, Yi2k′). It is obvious that the three methods overlap in more frequent
cases of β1 ∈ [−3, 3]; however, similar to Figure 3.2 for β1 close to zero the second
approximations slightly shows different values than the first two approximations.
This result also happens for cov(Yi1k, Yi2k′).

Furthermore, the determinant of variance matrix V is also computed based on
the three methods. For this aim, we consider a fixed approximate design such as:

ξi =

(
0 1
0.5 0.5

)
, (3.22)

where n = 50, n1 = n2 = 25. The determinant of V in power of 1
n = 1

50 is
computed against β0 ∈ [−3, 3] at β1 = 1 according to the three methods. The
results are displayed in Figure 3.4. It shows that the three methods overlap to
high extend. Moreover, the determinant of the individual quasi Fisher information
matrix against β0 ∈ [−3, 3] at β1 = 1 is computed and it is shown in Figure 3.5. It
shows that the first two approximations overlap to high extent. However, this is not
right for the second approximation and it rises above the first two approximations
for β0 ∈ (−1, 2).

Furthermore, the determinant of the individual variance matrix in power of
[ 150 ] against β1 ∈ [−3, 3] at β0 = 1 is outlined in Figure 3.6. It shows that this
quantity obtains its higher values at β1 ∈ (−2, 0). Figure 3.7 illustrates the de-
terminant of the individual quasi Fisher information matrix against β1 ∈ [−3, 3]
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at β0 = 1. This Figure shows that the numerical approximation and first new ap-
proximation overlap. However, the second new approximation deviates from the
first two methods and it shows slightly a different trend.

Figure 3.2: Entries of the covariance matrix in dependence on β0 (probit
link)

.

Figure 3.3: Entries of the covariance matrix in dependence on β1 (probit
link)

.
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Figure 3.4: Variance matrix determinant in power of 1
50

in dependence on β0,
(probit link)

Figure 3.5: Quasi Fisher information matrix determinant in dependence on
β0 (probit link).
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Figure 3.6: Variance matrix determinant in power of 1
50

in dependence on β1,
(probit link)

Figure 3.7: Quasi Fisher information matrix determinant in dependence on
β1 (probit link).
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In general, we conclude that the first two approximations for the approximation
of the quasi Fisher information matrix for the special case of the random intercept
model work well. The third method deviates hardly in non extreme values of the
population parameters.

In the next subsection, the components of the quasi Fisher information matrix
are built for the binary random intercept logistic regression model.

Quasi Fisher information matrix in model with logit link
function

In this section, the binary mixed effects model with the logit link function is
considered. We demonstrate the methods to approximate the variance matrix and
also the quasi Fisher information matrix. First of all, we deal with the achievement
of the marginal first order moment of the response variable. This term was already
discussed in Zeger, Liang, and Albert 1988 and was eventually approximated based
on the following approach:

πj =
∫
Rq

exp(f⊤(xj)β+h
⊤(xj)ζi)

1+exp(f⊤(xj)β+h⊤(xj)ζi)
ϕ0,σ2Iq(ζi)dζi

≈
∫
Rq

∫ f⊤(xj)β+h
⊤(xj)ζi

−∞ ϕ0, 1
c2
(u)duϕ0,σ2Iq(ζi)dζi

≈ Φ(αj(c)). (3.23)

where αj(c) = (1 + c2σ2h⊤(xj)h(xj))
− 1

2f⊤(xj)β, in which c = 16
√
3

15π . The second
approximate equality is gained from the approximation of the logistic cumula-

tive distribution function
exp(f⊤(xj)β+h

⊤(xj)ζi)

1+exp(f⊤(xj)β+h⊤(xj)ζi)
with the cumulative distribution

function of the Normal distribution Φ0, 1
c
(f⊤(xj)β + h⊤(xj)ζi), with zero mean

and standard deviation 1
c . The third approximate equality is obtained from the

direct calculation of the corresponding integral, in the second approximate equal-
ity. Further, Var(Yijk) ≈ πj(1 − πj) in (3.2). In order to approximate covariance
elements (3.3) and (3.4), which are based on the second order moment of pij(ζi),
we concise the model to the binary random intercept Logistic model. The corre-
sponding covariance elements are already obtained in Lemma 3.1.2, Appendix A.2
for the binary random intercept probit regression model. The only difference to
this situation is that σ2 in the previous results is transformed to c2σ2; however, the
final form of the covariance elements in the binary logistic mixed effects regression
model is stated in Appendix A, section A.3.

In addition, matrix D is constructed in correspondence with Lemma A.3.2,
Appendix A. According to this lemma, matrix D for the specific case of the model
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as the random intercept logit model is obtained based on the form of Dj as follows:

Dj ≈ (c2σ2 + 1)−
1
2f(xj)ϕ(αj(c)). (3.24)

Checking the properties of quasi Fisher information matrix

In each specific example of the considered models, it is required to evaluate the
positive-definiteness of the individual variance matrix, V. For the proof of the
following lemma, let

Υ =

(
π1(1− π1) + (n1 − 1)v1 n1c12

n2c21 π2(1− π2) + (n2 − 1)v2

)
,

where vj = cov(Yijk, Yijk′); k ̸= k′ and cjj′ = cov(Yijk, Yij′k′); j ̸= j′, k, k′.

Lemma 3.1.4. In binary mixed effects regression model, considering the two point
design, individual variance matrix V is positive definite, if
1) det(Υ) > 0
2) For j = 1, 2, (πj(1− πj)− vj) > 0

Proof.
The proof is stated in Appendix A, Section A.4 ■

In case condition (1) in Lemma 3.1.4 is satisfied for two point design; then,
det(MQ(ξ,β)) > 0. Since det(MQ(ξ,β)) is written in correspondence with

det(MQ(ξ,β)) = 1
[det(Υ)]2

det(Q)[det(D(0))]2,

where D(0) = (D1, ...,DJ)
⊤ with p × J dimension and Dj = (

∂πj
∂β0

, ...,
∂πj
∂βp−1

)⊤;

j = 1, ..., J and

Q = n1n2

(
v2 −c12

−c21 v1

)
+

(
n1(π2(1− π2)− v2) 0

0 n2(π1(1− π1)− v1)

)
,

(3.25)
Here, p = 2. det(Q) = n1n2 det(Υ). Thus,

det(MQ(ξ,β)) = n1n2
det(Υ) [det(D

(0))]2 > 0.

which is a 2× 2 matrix.
On the other way around, to verify the positive definitness of the quasi Fisher

information matrix, it is also possible to check the positiveness of the corresponding
eigenvalues. Under condition (2) in Lemma 3.1.4, it is shown that the diagonal
elements of the quasi Fisher information matrix are positive (See formula 3.25,
Appendix A, Section A.5). Hence, we conclude that the eigenvalues of the quasi
Fisher information matrix are positive and therefore the quasi Fisher information
matrix is a positive definite matrix.
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3.2 Evaluation of quasi maximum-likelihood

estimation

In this section, the performance of the quasi maximum likelihood estimate of
parameter β is evaluated in a special case of the binary random intercept probit
regression model. For this aim, 10000 random samples are taken from model
(2.4), with the basic assumptions of β = (β0, β1)

⊤ = (1,−1)⊤, f⊤(xj) = (1, xj);
(x1, x2) = (0, 1). h⊤(xj) = 1, and ζi = ζi0, σ

2 = 1. Furthermore, i = 1, ..., 120,
which means that N = 120. Uniform design (3.22) is used with equal weights 1

2 at
support points 0 and 1. For instance, n = 50 is the number of replication within
each subject. n1 = n2 = 25 are the number of replication at the experimental
settings x1 and x2 respectively. Therefore, there are 120× 50 observations at each
time of sampling. The quasi maximum-likelihood estimate of β is obtained from
the Newton-Raphson method. The mean and variance of β̂QL are obtained as
follows:

β̂QL =
∑10000

i=1
β̂QL(i)

10000 = (1.002,−1.003)⊤

Var(β̂QL) =

(
0.011 −0.002
−0.002 0.003

)

and [det(Var(β̂QL))]
1
2 = [2.7×10−5]

1
2 = 5.2×10−3. Moreover, by settingN⋆ = nN ,

[det(Var(N
1
2 β̂QL))]

1
2 = [104 × 2.7× 10−5] = 0.52.

Figure 3.8 illustrates that the scatter plot of β̂QL follows an elliptical shape

which calls for the bivariate Normal distribution. Moreover, the qq-plots of β̂QL0
and β̂QL1 in Figures 3.9 and 3.10 show that the 10000 simulated estimators are
following the Normal distribution. Finally, Anderson-Darling test for Multivariate
Normality (Thode 2002) is done and the result shows that it is not rejected that
β̂QL does not follow the bivariate Normal distribution, as p − value = 0.41. The
test is done by statistical software R, package mvnTest.
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Figure 3.8: Scatter plot of the quasi maximum-likelihood estimates of β
(probit link)

Figure 3.9: qq plot of the quasi maximum likelihood estimate of β0 (probit
link)
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Figure 3.10: qq plot of the quasi maximum likelihood estimate of β1 (probit
link)

3.3 D-optimum design

In this section, we aim to obtain two point D-optimum design for the special
case of the random intercept probit regression model. In the subsequent Theorem
the direct approach from the mathematical calculus is attempted to gain the D-
optimum design.

Theorem 3.3.1. In the random intercept binary regression model, with two fixed
experimental settings, as x1 = 0 and x2 = 1, and with sample size n, the D-
optimum weight w⋆1 at x1 and w⋆2 at x2 are given by:

ξ⋆ =

(
x1 x2
w∗
1 w∗

2

)
, (3.26)

where

w∗
1 =

−λn1 +
√
λn2

nλd
, w∗

2 = 1− w∗
1, (3.27)

with

λn1 = (π1(1− π1)− v1)(π2(1− π2) + (n− 1)v2),
λn2 = (π1(1− π1)− v1)(π2(1− π2)− v2)(π1(1− π1) + (n− 1)v1)(π2(1− π2) + (n− 1)v2),
λd = v1π2(1− π2)− v2π1(1− π1),
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where λd ̸= 0 and w⋆1 ∈ [0, 12) ∪ (12 , 1].
Moreover,

w⋆1 =
1

2
;w⋆2 = 1− w⋆1, (3.28)

where λd = 0.
The above results show that the D-optimum weight does not depend on cjj′ ; j ̸=

j′.

Proof.
The proof is stated in Appendix A, Section A.5. ■
Examples.

Considering the random intercept probit regression model with β0 ∈ [−3, 3], as
β1 = 1, σ2 = 1, fixed at x1 = 0, x2 = 1; the D-optimum weights are aimed to be
gained by the maximization of D-optimality criterion (2.75), with respect to the
weight w1. For this reason, Theorem 3.3.1 is applied. The three approximations
of the covariance elements in Section 3.1 are utilized and the D-optimum weight
w⋆1 is sketched against β0 ∈ [−3, 3], fixed at β1 = 1 in Figure 3.11. Furthermore,
the D-optimum weight w⋆1 against β1 ∈ [−3, 3], fixed at β0 = 1 is shown in Figure
3.12. The three approximations are somehow overlay in both figures. The slight
difference can be shown for the first approximation for higher values of β0 and β1
near to 3.

Moreover, the D-optimum design ξ⋆ is already calculated for different values
of n = {50, 100, 300, 500, 800, 1000} using Theorem 3.3.1. Figure 3.13 shows the
D-optimum wight w⋆1 against β0 ∈ [−3, 3], fixed at β1 = 1. For β0 ∈ (−1, 1),
the D-optimum weights are virtually overlapping for all n′s. However, for more
extreme values of β0 ∈ [−3,−1)∪(1, 3], the D-optimum weights regarding different
n give a slight different answer. For more extreme values of β0 we consider that n
can affect on the value of w⋆1, which means that w⋆1 is quite sensitive with respect
to the changes of the sample size n for extreme values of β0 ≤ 3.

Figure 3.14 reveals the D-optimum weight against β1 ∈ [−3, 3] fixed at β0 = 1.
. For most values of β1 ∈ [−3, 1] the D-optimum weights coincide; however, as
β1 exceeds one, the D-optimum weight for larger n should be taken much less at
x1 = 0 and therefore more at x2 = 1.

Finally, D-optimum weights are obtained For the considered different n and
for different β0 = −3,−2,−1, 0, 1, 2, 3 at β1 = 1. The results are shown in Table
3.1. For all n as β0 rises up, the D-optimum weight decreases and for larger n,
the degree of the decrease is sharper. Moreover, w⋆1 for β1 = {−3,−2,−1, 1, 2, 3},
fixed at β0 is obtained and it is illustrated in Table 3.2 for different n. The higher
values of w⋆1 is achieved in the middle values of β1.
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Figure 3.11: D-optimum weight w⋆
1 in dependence on β0, (probit link)

Figure 3.12: D-optimum weight w⋆
1 in dependence on β1, (probit link)
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Figure 3.13: D-optimum weight w⋆
1 in dependence on β0, (probit link)

Figure 3.14: D-optimum weight w⋆
1 in dependence on β1, (probit link)
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Table 3.1: D-optimum weight, random intercept probit model
n | β0 −3 −2 −1 0 1 2 3

50 0.567 0.544 0.515 0.484 0.455 0.429 0.406
100 0.570 0.545 0.515 0.484 0.454 0.426 0.398
300 0.572 0.546 0.516 0.484 0.453 0.424 0.391
500 0.572 0.546 0.516 0.484 0.453 0.423 0.390
800 0.573 0.546 0.516 0.484 0.453 0.423 0.389
1000 0.573 0.546 0.516 0.484 0.452 0.423 0.389

Table 3.2: D-optimum weight, w⋆
1, random intercept probit model

n | β1 −3 −2 −1 1 2 3

50 0.457 0.501 0.516 0.455 0.385 0.300
100 0.456 0.501 0.516 0.454 0.381 0.289
300 0.455 0.501 0.516 0.453 0.378 0.281
500 0.455 0.501 0.516 0.453 0.378 0.279
800 0.455 0.501 0.516 0.453 0.377 0.278
1000 0.455 0.501 0.516 0.452 0.377 0.278

Further research

In this dissertation, we only consider the random intercept binary regression model
and achieve the two point D-optimum design with fixed design points {0, 1}. In
order to approximate the covariance elements and the quasi Fisher information
matrix for the general case of the binary mixed effects model, we obtain the ap-
proximation of covariance elements cov(Yijk, Yijk′) and cov(Yijk, Yij′k′);∀j, j′, k, k′,
in the binary mixed effects model with two random effects, as:

Φ−1(pij(ζi)) = f⊤(xj)β + ζi0 + ζi1xj , (3.29)

where ζi = (ζi0, ζi1)
⊤.

This target, may helps to have more precise result and a general overview of the
covariance element in a more extended case of the binary mixed effects regression
model.

Lemma 3.3.2. Let αj1 = (1+(1+x2
j )

− 1
2σ2)f⊤(xj)β and φj,j′ = (x2

j +x2
j′ +

1
σ2 −

(xj+xj′ )
2

2+ 1
σ2

). In the binary mixed effects regression model with two random effects,

cov(Yijk, Yij′k′) =
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∫ f⊤(xj′ )β
−∞

∫ f⊤(xj)β
−∞

1
2π

1√
φj,j′ (2+

1
σ2 )

exp(u2 + v2 − (u+v)2

2+ 1
σ2

− (a1,j,j′u+a1,j′,jv)
2

φj,j′
)dudv

−Φ(αj1)Φ(αj′1), (3.30)

where a1,j,j′ = (xj(1 +
1
σ2 )− xj′).

Proof.
Based on the form of cov(Yijk, Yij′k′) in (3.4), E[pij(ζi)pij′(ζi)] is needed to be

obtained. It is stated as:

E[pij(ζi)pij′(ζi)] =

∫ ∞

−∞

∫ ∞

−∞
Φ(f⊤(xj)β+ζi0+ζi1xj)Φ(f

⊤(xj′)β+ζi0+ζi1xj′)f0,Σ(ζi)dζi0dζi1,

(3.31)
in which f(.) denotes the density of random effect ζi, Σ = σI2, and

Φ(f⊤(xj)β + ζi0 + ζi1xj) =

∫ f⊤(xj)β+ζi0+ζi1xj

−∞
ϕ(t)dt.

=

∫ f⊤(xj)β

−∞
ϕ−(ζi0+ζi1xj),1(u)du (3.32)

The last equality above is obtained by changing variable, u = t− ζi0 − ζi1xj .
By the substitution of (3.32) for Φ(f⊤(xj)β + ζi0 + ζi1xj); j, j

′ in (3.31),

E[pij(ζi)pij′(ζi)] =

∫ ∞

−∞

∫ ∞

−∞

∫ f⊤(xj)β

−∞

∫ f⊤(xj′ )β

−∞
exp(r(ζi0, ζi1))f0,Σ(ζi)dudvdζi0dζi1

(3.33)

r(ζi0, ζi1) = −1
2ζ

2
i1(x

2
j + x2

j′ +
1
σ2 )− 1

2ζ
2
i0(2 +

1
σ2 )− 1

22ζi1(uxj + vxj′)

−1
22(u+ v + ζi1(xj + xj′))ζi0 − 1

2(u
2 + v2)

By solving integral (3.33) with respect to ζi0 and ζi1, the first term in (3.30) is
obtained. Finally, considering the second term in (3.4), E(pij(ζi)) is required to
be obtained. Due to Lemma 3.1.1, E(pij(ζi)) = Φ(αj1). Then, The result in (3.30)
is obtained. ■

Actually, by setting j = j′, cov(Yijk, Yijk′) can be obtained. Due to Lemma
(3.1.3), the elements of matrix D can be obtained and at last quasi information
matrix can be approximated.

The last question is that whether it is possible to generalize (3.30) for the
general binary mixed effects regression model. To my mind, there should be more
effort to find a general form of the covariance element for the general form of the
binary mixed effects regression model.
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Chapter 4

Optimum Design in Ordinal
Mixed Effects Model

In this chapter, the D-optimum design is aimed to be achieved in the ordinal
mixed effects model. For this purpose, the Fisher information matrix of the con-
sidered model has to be constructed. Since the Fisher information matrix lacks
the analytical closed form, the quasi-Fisher information matrix is suggested to be
obtained. It was firstly introduced by Wedderburn 1974. This matrix is based on
the construction of the quasi log-likelihood function, which is built up in terms
of the marginal first and second order moments of the response variable. We at-
tempt to obtain the closed form of the considered moments. However, they lack
the analytical explicit form. Therefore, we consider new approximations for them.

At last, the approximation of the quasi Fisher information matrix is set up and
the relevant D-optimum design is obtained. This approach parallels the approach
in Chapter 3 withe difference that now observations are multinomial (multivari-
ate) instead of binomial (univariate binary). Since the individuals take the same
design, the D-optimum design is obtained for individual and it is extended to the
population D-optimum design.

4.1 Ordinal mixed effects model

The ordinal mixed effects model and the regarding link functions have already
been stated in Section 2.1 (See formula (2.21)). In this section, we present the
properties of the model in order to form the quasi log-likelihood function and the
quasi Fisher information matrix.

Consider the response variable Yij = (Y ⊤
ij1, ...,Y

⊤
ijnj

)⊤, where Yijk = (Y
(1)
ijk , Y

(2)
ijk ,
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..., Y
(M)
ijk )⊤. Therefore, the response variable Yij is with dimension Mnj × 1 and

the response Yi = (Y⊤
i1, ...,Y

⊤
iJ)

⊤ is with dimension Mn× 1.
We define π̃j := E(Yij); then,

π̃j = (E⊤(Yij1),E
⊤(Yij2), ...,E

⊤(Yijnj ))
⊤

= (π⊤
j ,π

⊤
j , ...,π

⊤
j )

⊤

= 1nj ⊗ πj . (4.1)

where πj = (π
(1)
j , ..., π

(M)
j )⊤ is anM -dimensional vector of probabilities; such that,

π
(m)
j = E(Y

(m)
ijk ) = P (Ỹijk = m),

∑M
m=1 π

(m)
j = 1. Then, considering π̃ := E(Yi),

we write
π̃ = (π̃⊤

1 , π̃
⊤
2 , ..., π̃

⊤
J )

⊤. (4.2)

In order to build up the individual variance matrix V of the response variable Yi,
the variance components of the response variable are formulated as follows:

Var(Yijk) = [cov(Y
(m)
ijk , Y

(m′)
ijk )]Mm,m′=1, (4.3)

Cov(Yijk,Yijk′) = [Cov(Y
(m)
ijk , Y

(m′)
ijk′ )]Mm,m′=1; k ̸= k′ (4.4)

is an M ×M covariance matrix of rank M − 1 (as long as π
(m)
j > 0 for all m).

Cov(Yijk,Yij′k′) = [Cov(Y
(m)
ijk , Y

(m′)
ij′k′ )]

M
m,m′=1; j ̸= j′, k, k′ (4.5)

where each matrix (2.24), (4.4) and (4.5) is with dimension M ×M . Each element
of these matrices are obtained from the following terms:

For the computation of Vj := Var(Yijk), the diagonal elements are obtained
as:

Var(Y
(m)
ijk ) = π

(m)
j (1− π

(m)
j );m = 1, ...,M, (4.6)

and for m ̸= m′ the off-diagonal elements are obtained as:

Cov(Y
(m)
ijk , Y

(m′)
ijk ) = −π(m)

j π
(m′)
j ,m,m′ = 1, ...,M. (4.7)

For the computation of Cj := Cov(Yijk,Yijk′); k ̸= k′, each element is obtained as
follows:

Consider cov(Y
(m)
ijk , Y

(m′)
ijk′ ) := c

(mm′)
j ; then,

c
(mm′)
j = cov(p

(m)
ij (ζi), p

(m′)
ij (ζi)),m,m

′ = 1, ...,M. (4.8)
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For the computation of Cjj′ := Cov(Yijk,Yij′k′); j ̸= j′, k, k′, the diagonal and the
off-diagonal blocks can be obtained from the following equation.

Consider cov(Y
(m)
ijk , Y

(m′)
ij′k′ ) := c

(mm′)
jj′ ; then,

c
(mm′)
jj′ := cov(p

(m)
ij (ζi), p

(m′)
ij′ (ζi));m,m

′ = 1, ...,M, (4.9)

in which cov(p
(m)
ij (ζi), p

(m′)
ij′ (ζi)). Then,

Vjj = 1nj1
⊤
nj

⊗Cj + Inj ⊗ [Vj −Cj ], (4.10)

with Mnj ×Mnj dimension and

Vjj′ = 1nj1
⊤
nj′

⊗Cjj′ , (4.11)

with dimension Mnj ×Mnj′ . The marginal variance co-variance matrix of the
response variable is stated as:

V =


V11 . . . V1J

V21 . . . V2J
...

. . .
...

VJ1 . . . VJJ

 , (4.12)

where the dimension of the variance matrix is Mn×Mn.
Since the variance-covariance matrix is singular, we remove the last element

of the response variable Y
(M)
ijk = 1 −

∑M−1
m=1 Y

(m)
ijk . Then, it becomes non-singular

and we could calculate the inverse of the reduced form of V with dimension (M −
1)n× (M − 1)n, which is needed to obtain the quasi Fisher information matrix.

Referring to matrix D with Mn× p dimension as:

D = (D11
⊤
n1
, ...,DJ1

⊤
nj
)⊤, (4.13)

such that, Dj = (
∂πj

∂β0
, ...,

∂πj

∂βp−1
)⊤; j = 1, ..., J with dimension p ×M , and

∂πj

∂β⊤ =

(D
(1)
j

⊤
, ...,D

(M)
j

⊤
)⊤, where D

(m)
j =

∂π
(m)
j

∂β⊤ with dimension 1 × p. Matrices D and

Dj have to be reduced by the corresponding D
(M)
j in the last row, due to the

singularity problem of the individual variance matrix.

Quasi Fisher information matrix in model with probit
function

In this section, the quasi Fisher information matrix is set up for the ordinal mixed
effects probit regression model. We begin by constructing the relevant first and
second order moments of the response variables.
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Let

α
(m)
j = (1 + σ2h⊤(xj)h(xj))

− 1
2 (γm − f⊤(xj)β);m = 1, ...,M − 1,

and α
(0)
j = −∞, α

(M)
j = +∞ The marginal expectation of the mth level of the

response variable is obtained in the subsequent lemma:

Lemma 4.1.1. In ordinal mixed effects regression model with probit link function,

π
(m)
j = Φ(α

(m)
j )− Φ(α

(m−1)
j );m = 1, ...,M. (4.14)

Proof.
Since

E[Y
(m)
ijk ] = E[E(Y

(m)
ijk | ζi)]

= Eζi [g
−1(δ

(m)
ij )− g−1(δ

(m−1)
ij )]

= Φ(α
(m)
j )− Φ(α

(m−1)
j ), (4.15)

where
δ
(m)
ij (ζi) = γm − ηij .

and the last equality is obtained from Zeger, Liang, and Albert 1988, which is
obtained from the direct calculation of the integral. ■

The diagonal variance components, Vj is directly obtained from π
(m)
j , and it

is only needed to substitute Φ(α
(m)
j )− Φ(α

(m−1)
j ) for π

(m)
j in (4.6) and (4.7).

To calculate the covariance elements, we now calculate E[p
(m)
ij (ζi)p

(m′)
ij′ (ζi)];∀j, j′,m,m′

using equations (4.8) and (4.9) and state them in Lemma 4.1.2.
To obtain the second order moment of the response variable, we note that

the answer can be obtained from the simpler model (2.21), which is a random
intercept ordered regression model. Since it is more straightforward to obtain the
results in a special case. Later in this chapter, we discuss on the achievement of
the covariance elements in the more general case of the model.

Lemma 4.1.2. Let q
(m)
j0 (z) = (1+σ2)

1
2

(1+2σ2)
1
2
(γm − f⊤(xj)β − σ2z

(1+σ2)
1
2
); then, in the

random intercept ordered probit model for all j, j′ = 1, ..., J,m,m′ = 1, ...,M .

E[p
(m)
ij (ζi0)p

(m′)
ij′ (ζi0)] =

∫ α
(m)
j0

−∞
ϕ(z)Φ(q

(m′)
j′0 (z))z (4.16)
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Proof.
The proof is the same as the proof in Lemma 3.1.2 for the computation of

E[pij(ζi0)pij′(ζi0)] for binary mixed effects regression models, except for the sub-
stitution of (γm − f⊤(xj)β) for f

⊤(xj)β. ■

Due to the form of π
(m)
j in (4.14), variance elements (4.6) and (4.7) can be

calculated. The variance matrix can be constructed in terms of the new terms.
As the marginal second order moment of the response variable in the random
intercept ordered probit model is in terms of the one dimensional integral, we
need to compute it with numerical Simpson’s rule method. The components of
matrix D are constructed in the subsequent lemma.

Lemma 4.1.3. The components of matrix D in (2.46) for the ordinal mixed effects
probit regression model, is formulated as follows:

D
(m)
j = −f⊤(xj)(1 + σ2h⊤(xj)h(xj))

− 1
2 [ϕ(α

(m)
j )− ϕ(α

(m−1)
j )], (4.17)

with dimension 1× p.

Proof. The proof is obtained from ∂
∂β⊤π

(m)
j in (4.14). ■

The dimension of matrix D is with dimension Mn× p. As for the covariance
matrix V, also the matrix D has to be reduced accordingly by omitting the same
class; then, it contains (M − 1)n× p dimension.

According to Lemma 4.1.2, the second order moment of the response variable
is dependent upon the unclosed integral. In the random intercept binary regres-
sion model (Chapter 3), this integral is approximated based on the modified Lin’s
method. However, this approach is not valid for the random intercept ordered
regression model. Since using M levels, there is a need to approximate the second
order moment of the response variable at each level; therefor applying the modi-
fied Lin’s method leads to less precise approximation of the off-diagonal covariance
elements. Because of this, it is decided to utilize two approximations of the co-
variance elements, which are stated subsequently:

1-Numerical approximation. The numerical computation of E[p
(m)
ij (ζi0)p

(m′)
ij′ (ζi0)]

based on the Simpson’s rule.
2- First new approximation. Firstly the covariance elements are obtained based
on Lemma 4.1.2; then, the unclosed integral in (4.16) is computed based on the
Simpson’s rule.

Finally, by the substitution of the new approximations of covariance and for-
mula (4.17) for the components ofD, the quasi Fisher information matrixMQ(ξ,β)
in (2.69) is formulated.
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Figure 4.1: Variance matrix determinant of Yijk, Vj (probit link) (a): j = 1,
(b): j = 2

Assessment of new approximation

In this section, the components of variance matrix V and the quasi Fisher informa-
tion matrixMQ(ξ,β) are computed based on the numerical approximation and the
first new approximation methods, in a specific case of ordinal mixed effects regres-
sion model. It is assumed that β = (β0, β1)

⊤ and consider a special case, where x
is the one dimensional straight line regression as the general experimental setting;
then, f⊤(x) = (1, x), ζi = ζi0 and h(x) = 1. In addition, the dispersion parameter
σ2 = 1. We consider the two-point design, with fixed support points x1 = 0 and
x2 = 1, and n1 = n2 = 25. Therefore, n = 50. Regarding the response variable,

we presume M = 3, γ1 = −1 and γ2 = 1. Therefore, Yijk = (Y
(1)
ijk , Y

(2)
ijk , Y

(3)
ijk )

⊤.
Also, we choose γ0 as an absolute small value and γ3 as an absolute large value.
Each component Vj , Cj and Cjj′ in (2.24), (4.4) and (4.5), respectively contains
3× 3 dimension and due to the singularity problem, the last level of the response
variable is omitted. Figure 4.1 shows the determinant of Vj ; j = 1, 2 against β0,
when β1 = 1. In order to search that variance matrix V in (4.12) is nonsingular,
we obtain

det(V) = det

(
V11 V12

V21 V22

)
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Figure 4.2: Covariance matrix determinant of Yijk and Yijk′ , Cj (probit) (a):
j = 1, (b): j = 2

= det(V11)
(
det(V22 −V12V

−1
11 V21)

)
In case det(V) > 0; then, the result is gained. Its maximum value is 0.030. For
extreme values of β0, which tends to −3 or 3, the variance tends zero.

Figure 4.2 illustrates the determinant of Cj ; j = 1, 2, ∀k ̸= k′; against β0,
when β1 = 1. Its highest value occurs approximately in the center of β0 interval,
and its lowest values are near to zero, which occurs at the most extreme values
of β0 ∈ [−3, 3]. Subsequently, the determinant of Cjj′ ; j = 1, 2,∀j ̸= j′, k, k′ is
plotted in Figure 4.3. Note that C21 = C⊤

12. Hence, the determinants coincide,
which means that det(C21) = det(C12). Its maximum value is considerably low
and also, similar to the previous two graphs, its minimum values take place at the
extreme points of β0 ∈ [−3, 3]. Finally, the determinant of the general variance
matrix V in power of ( 1

100) is sketched in Figure 4.4. The whole dimension of
matrix V is 100 × 100. It takes its maximum value at around β0 = 0 and its
minimum values at the edge of the interval of β0. Moreover, the determinant of
the individual quasi Fisher information matrix against β0 ∈ [−3, 3], as β1 = 1 is
sketched in Figure 4.5. It takes its highest values on the interval (−1, 0). In all of
these figures the two methods of approximations overlap.

On the other side, the variance components, and the quasi Fisher information
matrix against β1 ∈ [−3, 3], fixed at β0 = 1 are plotted in Figures 4.6-4.10. Figure
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Figure 4.3: Covariance matrix determinant of Yijk and Yij′k′ , Cjj′ j ̸= j′

(probit) (a): j = 1, j′ = 2, (b): j = 2, j′ = 1

Figure 4.4: Determinant of variance matrix V in power of 1
100

(probit)
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Figure 4.5: Quasi Fisher information matrix determinant (probit)

4.6 shows det(Vj). Since x1 = 0, det(Vj) is constant against β1; however, the
component in plot (b) shows a constant curve over β1. Figure 4.7 illustrates
det(Cj); j = 1, 2; k ̸= k′ against β1 ∈ [−3, 3]. It is also constant at 6 × 10−4, due
to the similar reason for obtaining det(Vj) in Figure 4.6. However, the considered
component with j = 2 takes its maximum value at around β1 = −1.

Furthermore, we observe in Figure 4.8 that det(C12) = det(C21). It takes its
maximum value at around the middle of the interval of β1. At last, the determinant
of matrix V in power of 1

100 and MQ(ξ,β) are computed and they are plotted
respectively in Figures 4.9 and 4.10.

In Figure 4.9, (det(V))
1

100 takes its maximum value at around β1 = −1, and it
drops to values close to zero fast as β1 deviates from zero. Figure 4.10 indicates
the values of det(MQ(ξ,β)) against β1. It takes its highest value at negative β1
close to zero at around the value 7. As β1 tends to 3, det(MQ(ξ,β)) tends to zero.

In the next subsection, we obtain the approximation of the quasi Fisher infor-
mation matrix in a special case of ordered mixed logit model.
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Figure 4.6: Variance matrix determinant of Yijk (probit) (a): j = 1, (b):
j = 2
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Figure 4.7: Covariance matrix determinant of Yijk and Yijk′ (probit) (a):
j = 1, (b): j = 2

Figure 4.8: Covariance matrix determinant of Yijk and Yij′k′ , j ̸= j′ (a):
j = 1, j′ = 2, (b): j = 2, j′ = 1
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Figure 4.9: Determinant of variance matrixV in power of ( 1
100

) in dependence
on β1 (probit)

Figure 4.10: Quasi Fisher information matrix determinant in dependence on
β1 (probit)
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Quasi Fisher information matrix in model with logit
function

In this subsection, the approximation of the quasi Fisher information matrix for
the random intercept ordinal regression model with the logit link function is es-
tablished. The general procedure is related to the corresponding method in the
random intercept binary model with the logit link function (See Section 3.1). Re-

garding the formulation of π
(m)
j in (2.22),

π
(m)
j = E[p

(m)
ij (ζi)]− E[p

(m−1)
ij (ζi)]; (4.18)

then,

E[p
(m)
ij (ζi)] ≈

∫
Rq

exp(γm − (f⊤(xj)β + h⊤(xj)ζi))

1 + exp(γm − (f⊤(xj)β + h⊤(xj)ζi))
ϕ0,σ2Iq(ζi)dζi

≈
∫
Rq

∫ γ(m)−(f⊤(xj)β+h⊤(xj)ζi)
−∞ ϕ0, 1

c2
(u)duϕ0,σ2Iq(ζi)dζi

≈ Φ(αj(c)). (4.19)

where α
(m)
j(c) = (1 + c2σ2h⊤(xj)h(xj))

− 1
2 (γm − f⊤(xj)β), in which c = 16

√
3

15π . The
first approximate equality is gained from the approximation of the logistic cumula-

tive distribution function
exp(γm−(f⊤(xj)β+h⊤(xj)ζi))

1+exp(γm−(f⊤(xj)β+h⊤(xj)ζi))
with the Normal cumulative

distribution function, Φ0, 1
c2
(γm − (f⊤(xj)β+h⊤(xj)ζi)). The third approximate

equality is gained from the direct calculation of the corresponding integral, in the
second approximate equality (Zeger, Liang, and Albert 1988). Subsequently, for
the computation of Vj , we require to compute (4.6) and (4.7). They are a func-

tion of π
(m)
j ; ∀m. Therefore, they are easily computed by (4.19). Additionally,

in view of the approximation of C
(mm′)
j ; k ̸= k′ and Cmm

′
jj′ ; j ̸= j′, ∀k, k′, we apply

the procedure in lemma 4.1.2 to obtain the second order moment of the response
variable. The only difference is that σ2 is transformed to c2σ2. Nevertheless, the
relevant results are shown in Appendix A, Section A.6.

Also, to find the components of matrix D, it is only needed to transform σ2 to
c2σ2, similar to lemma 4.1.3 (See Appendix A, Section A.6).

4.2 D-optimum design

In this section, we attempt to obtain the two point D-optimum design in the special
case of the ordinal mixed effects model. In the following example, the determinant
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Table 4.1: D-optimum weight, random intercept ordered probit model
n | β0 −3 −2 −1 0 1 2 3

50 0.54 0.52 0.50 0.50 0.48 0.46 0.44
100 0.49 0.49 0.49 0.49 0.49 0.47 0.45

of the quasi Fisher information matrix against the w1 for different values of model
parameters is obtained.

Example.
In this example, a specific case of the model with β = (β0, β1)

⊤, (x1, x2) = (0, 1),
M = 3, σ2 = 1 and γ0 = −2000, γ1 = −1, γ2 = 1, γ3 = 2000 is considered. The
D-optimum weight w⋆1, when β0 ∈ {−3,−2,−1, 0, 1, 2, 3}, β1 = 1 and n = 50, 100
is calculated. The D-optimum weight w⋆1 is obtained based on the number of
replication at x1 = 0. The result is shown in Table 4.1. It illustrates that as β0
increases from −3 to 3, the D-optimum weight w⋆1 decreases, which means that
at x1 = 0 less replication is required to take in comparison to x2 = 1. Figure
4.1 shows the determinant of the quasi Fisher information matrix against weight
w1 for n = 50. This reveals that approximately in the middle of the interval
w1 ∈ [0, 1], the determinant of the quasi Fisher information matrix is maximized.
The individual two point D-optimum design can be extended to the population
D-optimum design following Schmelter 2007, Theorem 1. The achievement of the
D-optimum weight w⋆1 is directly conducted by the computation of the determinant
of the quasi Fisher information matrix at different values of w1 and then choosing
a weight which maximizes the corresponding determinant.

In the situation where β1 ∈ {−3,−2,−1, 0, 1, 2, 3}, β0 = 1 and n = 50, 100 the
D-optimum weight w⋆1 is obtained. The results are indicated in Table 4.2. More-
over, as n increases from 50 to 100, the D-optimum weight w⋆1 remains constant
or decreases so slightly. When n becomes large, it is time consuming to compute
the D-optimum design. More calculation regarding the achievement of D-optimum
design is postponed to the further research. In Figure 4.12 shows the determinant
of the quasi Fisher information matrix for each w1 ∈ [0, 1] for different values of
β1 ∈ {−3,−2,−1, 0, 1, 2, 3}. Like in the previous plot, the maximum value of the
determinant of the quasi Fisher information matrix occurs approximately in the
middle of the interval of w1. Overall, the computation can be complex and in our
work, we hope to simplify our approach.

Finally, further research regarding the achievement of D-optimum design for
the aim of creating the simplicity in the method is required. Accordingly the
quasi Fisher information matrix could be viewed in more transparent way and
more transparent ideas and theories considering the D-optimum design can be
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Figure 4.11: Determinant of the quasi Fisher information matrix in depen-
dence on w1 for different β0, (probit link)

Table 4.2: D-optimum weight, w⋆
1, random intercept ordered probit model

n | β1 −3 −2 −1 0 1 2 3

50 0.48 0.50 0.50 0.50 0.48 0.46 0.42
100 0.48 0.49 0.49 0.50 0.49 0.48 0.42
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Figure 4.12: Determinant of the quasi Fisher information matrix in depen-
dence on w1 for different β1, (probit link)

reformed. This perspective can be done in further research and investigation.
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Chapter 5

Optimum Design in a
Nonlinear Longitudinal Poisson
Regression Model

The aim of this chapter is to obtain D-optimum design for the estimation of the
mean ability parameter in a nonlinear longitudinal Poisson regression model. The
reason for using the considered model has already been stated in Section 2.1. In
this chapter, we draw the conclusion that due to the complex form of the marginal
likelihood function, the maximum likelihood estimate of the model parameters are
not explicitly achievable, and the Fisher information matrix is rather impossible
to obtain and then we need to approximate the Fisher information matrix by the
quasi Fisher information matrix (Wedderburn 1974). Additionally, the properties
of this model and the relevant quasi Fisher information matrix are seeking to be
obtained. Then, based on these properties, the equivalence theorem is constructed.

Finally, the D-optimum design for the quasi maximum likelihood estimate of
the model parameters is calculated. Since the individuals take the same design, the
D-optimum design is obtained for individual and it is extended to the population
D-optimum design. This design depends on the unknown parameters, we assume
some initial values for them. Therefore, the resulting D-optimum design is called
a local D-optimum design. Moreover, the D-efficiency of the D-optimum design is
computed. Since this criterion is close to one at the end, we conclude that it is not
needed to take more sample to gain the same D-efficiency, if the true population
parameter is not chosen.
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5.1 Properties of the nonlinear longitudinal

Poisson regression model

In this section, the nonlinear longitudinal Poisson regression model is represented
briefly. The response variable Yijk conditioned on the random ability parameter
Λij = λij follows the Poisson distribution. The random ability parameter Λij
follows the multivariate Gamma distribution. The conditional mean response is
dependent upon the random ability λij and the exponential function of the mean
ability parameter θ(t,β), where tj is the jth time point and β is the population
parameter.

In this section, the properties of the model in order to form the quasi Fisher
information matrix are obtained. The marginal response mean µj = E(Yijk), where
E(Yijk) = exp(θ(tj ,β)) and marginal variance Var(Yijk) = µj(µjτ +1) are already
obtained in formulas (2.34) and (2.35). Additionally, the marginal covariance
elements of the response variable are gained as follows:

cov(Yijk, Yijk′) = cov(E(Yijk | Λij),E(Yijk′ | Λij))+E(cov(Yijk, Yijk′ | Λij))

= µ2jτ ; k ̸= k′, (5.1)

since the second term is zero and the first term is

cov(E(Yijk | Λij),E(Yijk′ | Λij)) = cov(Λij exp(θ(tj ,β)),Λij exp(θ(tj ,β)))

= µ2jvar(Λij).

For different experimental settings, tj and tj′ ,

cov(Yijk, Yij′k′) = cov(E(Yijk | Λij),E(Yij′k′ | Λij′))+E(cov(Yijk, Yij′k′ | Λij ,Λij′)),

= ρµjµj′τ ; j ̸= j′, k, k′, (5.2)

since the second term is equal to zero and the first term is written as:

cov(E(Yijk | Λij),E(Yij′k′ | Λij′)) = cov(Λij exp(θ(tj ,β)),Λij′ exp(θ(tj′ ,β)))

= µjµj′cov(Λij ,Λij′),

and according to (2.32) cov(Λij ,Λij′) = ρτ .
Let 1m be the vector of length m with all entries equal to 1. For the con-

struction of covariance matrix for each subject, consider Vjj = Cj + ρτµjµ
⊤
j ,

with dimension nj × nj and Vjj′ = ρτµjµ
⊤
j′ with dimension nj × nj′ , where

Cj = µjInj + (1− ρ)τµjµ
⊤
j , such that µj = µj1nj . Moreover,
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C = diag(Cj); j = 1, ..., J,

then,
V = C+ ρτµµ⊤, (5.3)

with dimension n × n. diag(.) represents the diagonal matrix in general. Yi =
(Y ⊤

i1 , ...,Y
⊤
iJ )

⊤, Y = (Y ⊤
1 , ...,Y

⊤
N )⊤, µ = (µ⊤

1 , ...,µ
⊤
J )

⊤. E(Yi) = µ and E(Y ) =
1N ⊗ µ and since subjects are presumed to be independent for all observations,
Cov(Y ) = IN ⊗V.

Quasi Fisher information matrix

In this section, we construct the quasi-Fisher information matrix for model (2.33).
In order to build the general form of the individual quasi Fisher information

matrix, the subsequent lemmas and theorem are stated.
Let ψj(ξ) =

njµj
1+(1−ρ)τnjµj

as weighting factor and

dj = (1,− exp(−β2tj), β1tj exp(−β2tj))⊤ exp(θ(tj ,β))

be the gradient of µj with respect to β with dimension 3 × 1. Then, D =
(D⊤

1 , ...,D
⊤
J )

⊤, where D⊤
j = dj1

⊤
nj
.

Further, consider d0j =
1
µj
dj , as the scale gradient,

d0j = (1,− exp(−β2tj), β1tj exp(−β2tj))⊤,

Let D0 = (d⊤
01, ...,d

⊤
0J)

⊤ be the J × p essential scaled design matrix.

Lemma 5.1.1. The inverse of the individual variance covariance matrix (5.3) is
obtained as:

V−1 = C−1 − ρτ

1 + ρτ
∑J

j=1 ψj
C−1µµ⊤C−1. (5.4)

Lemma 5.1.2. The individual quasi Fisher information matrix based on (2.69)
for model (2.33) is written as follows:

MQ(ξ) = (

J∑
j=1

ψjd0jd
⊤
0j)−

ρτ

1 + ρτ
∑J

j=1 ψj(ξ)
(

J∑
j=1

ψj(ξ)d0j)(

J∑
j=1

ψj(ξ)d
⊤
0j) (5.5)

Proof.
The proof is stated in Appendix A, Section A.9 ■
Lemma 5.1.2 is still valid when some of the nj ’s are equal to zero. To process the

following Lemmas and Theorem, let e1 be the first p-dimensional unit vector; such
that D0e1 = 1J . Also, Ψ(ξ) = diag(ψ1(ξ), ..., ψJ(ξ)) and M(ξ) = D⊤

0 Ψ(ξ)D0.
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Remark to Lemma 5.1.2.
This representation of the quasi information matrix can be used for general-

ization to approximate designs. With the notation introduced before, it can be
written as

MQ(ξ) = D⊤
0 Ψ(ξ)D0 −

ρτ

1 + ρτ1⊤JΨ(ξ)1J
D⊤

0 Ψ(ξ)1J1
⊤
JΨ(ξ)D0, (5.6)

where only the weighting matrix Ψ depends on the design and the restriction to
integer nj can be relaxed.

Theorem 5.1.3. In longitudinal Poisson regression model (2.33), the individual
quasi Fisher information matrix is obtained as follows:

MQ(ξ) = (M(ξ)−1 + ρτe1e
⊤
1 )

−1 (5.7)

Proof.
The proof is stated in Appendix A, Section A.9. ■
In case where there is no random effect in model (2.33), the quasi Fisher

information matrix can be constructed in the following lemma.

Lemma 5.1.4. Let E(ξ) = diag(µ1n1, ..., µJnJ), the quasi Fisher information
matrix for fixed effect Poisson model is:

MQ(ξ) = D⊤
0 E(ξ)D0 (5.8)

Proof.
The proof is stated in Appendix A, Section A.9. ■
The quasi Fisher information matrix in the fixed effects Poisson model, can be

obtained in the corresponding mixed effects model, when τ tends to zero in (5.6).

Lemma 5.1.5. LetW (ξ) = diag(1/(1+(1−ρ)τµjnj(ξ)))j=1,...,J . The D-optimality
criterion (2.75) for model (2.33) based on quasi Fisher information matrix (5.7)
is differentiable.

Proof.
The proof is stated in Appendix A, Section A.9 ■

5.2 D-optimum design

The individual D-optimality criterion is revealed based on the individual quasi-
Fisher information matrix, as

DQ(ξ,β) = log(det(MQ(ξ,β))).

Now, we seek for some properties of the D-optimality criterion.
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Lemma 5.2.1. Monotonicity property. If ξ1 dominates ξ2, i.e. ξ1 ≻ ξ2
if MQ(ξ1) ≥ MQ(ξ2); then, the following inequality holds for the individual D-
optimality criterion:

DQ(ξ1,β) ≥ DQ(ξ2,β).

Lemma 5.2.2. Concavity property. The quasi Fisher information matrix MQ(ξ)
is concave, i.e. MQ((1−ϵ)ξ1+ϵξ2) ≥ (1−ϵ)MQ(ξ1)+ϵM

Q(ξ2) for every ϵ ∈ (0, 1)
and every ξ1, ξ2.

Proof.
The proof is stated in Appendix A, Section A.9 ■
In the following, we state the equivalence theorem for the corresponding D-

optimality criterion for model (2.33).

Theorem 5.2.3. (Equivalence Theorem)

Let D0e1 = 1J and denote by W(ξ) = diag
(

1
1+(1−ρ)τnj(ξ)µj

)
j=1,...,J

. Then ξ∗

is D-optimum if and only if

nµj
(1 + (1− ρ)τnj(ξ∗)µj)2

d⊤
0jM

−1(ξ∗)MQ(ξ∗)M−1(ξ∗)d0j

≤ tr
(
W(ξ∗)Ψ(ξ∗)D0M

−1(ξ∗)MQ(ξ∗)M−1(ξ∗)D⊤
0

)
(5.9)

for all j = 1, . . . J .

Proof.
The proof is stated in Appendix A, Section A.9. ■

Corollary 5.2.3.1. The equality in (5.9) holds, at any j for which nj > 0, i.e.

FDQ(ξ∗, ξj) = 0, (5.10)

where ξj is the one-point design which assigns all n observations to time point tj.

We can obtain the D-optimality criterion in the subsequent lemma for the
purpose of optimization with statistical software R (R Core Team 2021) with
respect to design. Using the D-optimality criterion in the subsequent Lemma may
ease the computation in the satatistical software R.

Lemma 5.2.4. The D-optimality criterion as a function of quasi Fisher informa-
tion matrix (5.7) for model (2.33) is as follows:

DQ(ξ) = log(
det(M(ξ))

1 + ρτ1⊤JΨ(ξ)1J
) (5.11)
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Table 5.1: Locally D-optimum designs for J = 3 periods, β0 = 3,β1 = 2,
ρ = 0.9, τ = 1, n = 120

β2 1.0 1.5 2.0 2.5 3.0 3.5

w1 0.511 0.541 0.556 0.564 0.569 0.571
w2 0.272 0.249 0.235 0.226 0.221 0.217
w3 0.216 0.210 0.209 0.210 0.211 0.211

Proof.
The proof is stated in Appendix A, Section A.9. ■
In this section, we aim to obtain D-optimum design in special cases of model

(2.33). In fact, as ξ⋆ may change in terms of parameter β, some specific values of
β are considered as:

β0 = 3, 6, β1 = 2, β2 = {1, 1.5, 2, 2.5, 3, 3.5}

The weight wj =
nj

n is allocated to the jth time point. Furthermore, the D-
optimum weight w⋆j depends on the total number n. Actually, the weight distri-
bution of the D-optimum design for the model is asserted. We seek to find the
D-optimum design in terms of maximizing D-optimality criterion DQ(ξ) (5.11)
with respect to wj ;

∑J
j=1wj = 1; wj > 0 with fixed tj = j − 1.

For this aim we use the statistical software R (R Core Team 2021) with the
class of indirect solvers and implement the augmented Lagrange multiplier method
with an SQP interior algorithm (Ye 1987). This method is used in the package
Rsolnp. For the aim of the computation, the total number of items is needed to be
specified. It is here fixed with n = 120. Further, J ≥ p is required for estimability
of the ability parameter. At the end, the true choice of the weights determines
nj in the rest. Moreover, the assumed values of hyper parameters are set to be
ρ = 0.9, since ρ = c0τ ; c0 = 0.9, c = 0.1 and τ = 1.

The locally D-optimum designs for β0 = 3, 6, β1 = 2 are shown in Tables 5.1
and 5.2. For all β2 ranging from 1 to 3.5, it shows a decreasing trend from w1

to w3, which means for each β2 we need smaller number of replications at higher
indices of time points. Also, in higher values of β2, the more value of w1 is required,
in other words, as β2 rises up w1 is also increasing. All in all, these tables reveal
an ascending trend through weights when β2 changes for fixed β0 and β1. Also,
Figure 5.1 reveals the corresponding consequences. It illustrates that w3 interacts
slightly with w2 for β2 = 2.5, 3.0, 3.5.

Tables A.1 and A.2 (Appendix A, Section A.11) show the D-optimum design
with J = 4, with the same parametrization as the above situation. In both ta-
bles w1 takes the highest values. w2 takes the second highest value among wj ’s,
j = 1, ..., 4. Then, w4 and w3, respectively. The values in both tables are quite
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Table 5.2: Locally D-optimum designs for J = 3 periods, β0 = 6,β1 = 2,
ρ = 0.9, τ = 1, n = 120

β2 1.0 1.5 2.0 2.5 3.0 3.5

w1 0.512 0.542 0.557 0.565 0.570 0.572
w2 0.272 0.249 0.235 0.226 0.220 0.217
w3 0.216 0.209 0.209 0.209 0.210 0.211

Figure 5.1: Local D-optimum designs, J = 3 periods, ρ = 0.9, τ = 1, red
line: w⋆

1, blue line: w⋆
2, green line: w⋆

3
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analogous, which means that the D-optimum design is not sensitive with respect
to increasing β0 from 3 to 6. Figure A.1 illustrates the corresponding changes and
trends.

Tables A.3 and A.4 (Appendix A, Section A.11) show the D-optimum design
for J = 7 for the same model parametrization. w1 in both situations for β0 = 3, 6
takes the highest value and it rises up as β2 increases, and w2 takes the second
highest value. The rest of the weights take on a ration of less than 0.1. The weight
values are quite the same between two tables similar to the four point D-optimum
design. Figure A.2 illustrates the corresponding consequences.

We then use (2.86) and compute the D-efficiencies of ξ⋆β for various values of

β0. This means that after we provide the true population parameter β0, we can
assess how ξ⋆β deviates from ξ⋆β0

in terms of the determinant of the quasi Fisher

information matrix. What is shown is that when assuming β0 = (β0, β1, β2m′)
and β = (β0, β1, β2m), as β0 and β1, takes values from the sets {3, 6}, {2} respec-
tively and β2m, β2m′ take value from {1.0, 1.5, 2.0, 2.5, 3.0, 3.5}; m ̸= m′ = 1, ..., 6,
then the D-efficiency criterion obtains values more than 0.98, which means as the
true population parameter is not the value we are considering and obtain the D-
optimum design based on the assumed β0, then we will be able to neglect taking
more sample based on ξ⋆β. According to this, there does not exist substantial
sensitivity of the D-optimum design with respect to changes of parameter β.

5.2.1 Special cases

Considering model (2.33), and the corresponding intraclass correlation ρ = c0
c0+c

,
we consider special cases where:

1) c0 = 0, then ρ = 0 and ψj0 =
njµj

1+τnjµj
, which means that there is no

correlation of the response variable among time points.
2) c = 0, then ρ = 1 and ψj1 = njµj , which means that there is the block effect

consistent regarding each subject.
n is the total number of observations in the ith individual. µj is the marginal

response mean for the jth time point, nj is the number of replication at the jth
time point. c and c0 are shape parameters for the Gamma distribution of the ran-
dom ability parameters. Each situation is probed in two different subsections and
the results regarding the achievement of D-optimum design and the equivalence
theorem are obtained.
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1. Special case ρ = 0

Corollary 5.2.4.1. The quasi-Fisher information matrix for model (2.33) is writ-
ten as:

MQ(ξ) = M(ξ) (5.12)

where M(ξ) = D⊤
0 Ψ0(ξ)D0 with Ψ0(ξ) = diag(ψ10, ..., ψJ0).

Corollary 5.2.4.2. (Equivalence Theorem)

Let D0e1 = 1J and denote by W(ξ) = diag
(

1
1+τnj(ξ)µj

)
j=1,...,J

; Then, ξ⋆ is

D-optimum if and only if

nµj
(1 + τnj(ξ∗)µj)2

d⊤
0jM

−1(ξ∗)MQ(ξ∗)M−1(ξ∗)d0j (5.13)

≤ tr
(
W(ξ∗)Ψ0(ξ

∗)D0M
−1(ξ∗)MQ(ξ∗)M−1(ξ∗)D⊤

0

)
(5.14)

for all j = 1, . . . J .

Corollary 5.2.4.3. The D-optimality criterion as a function of quasi Fisher in-
formation matrix (5.7) for model (2.33) is illustrated as follows:

DQ
0 (ξ,β) = log(det(M(ξ))). (5.15)

2. Special case ρ = 1

Corollary 5.2.4.4. The quasi-Fisher information matrix for model (2.33) is writ-
ten as:

MQ(ξ) = (M−1(ξ) + τe1e
⊤
1 )

−1 (5.16)

where M(ξ) = D⊤
0 Ψ1(ξ)D0 with Ψ1(ξ) = diag(ψ11, ..., ψJ1).

Corollary 5.2.4.5. (Equivalence Theorem)
Let D0e1 = 1J . Then, ξ⋆ is D-optimum if and only if

nµjd
⊤
0jM

−1(ξ∗)MQ(ξ∗)M−1(ξ∗)d0j (5.17)

≤ tr
(
Ψ1(ξ

∗)D0M
−1(ξ∗)MQ(ξ∗)M−1(ξ∗)D⊤

0

)
(5.18)

for all j = 1, . . . J .

Remark. In above Corollary W(ξ) = IJ .

Corollary 5.2.4.6. The D-optimality criterion as a function of quasi Fisher in-
formation matrix (5.7) for model (2.33) is:

DQ
1 (ξ,β) = log(

det(M(ξ))

1 + τ1⊤JΨ1(ξ)1J
). (5.19)
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Table 5.3: Locally D-optimum designs for J = 3 periods, β0 = 3,β1 = 2,
ρ = 0, τ = 10, n = 120

β2 1.0 1.5 2.0 2.5 3.0 3.5

w1 0.536 0.565 0.580 0.583 0.592 0.594
w2 0.243 0.220 0.204 0.199 0.189 0.185
w3 0.221 0.216 0.216 0.218 0.219 0.220

Table 5.4: Locally D-optimum designs for J = 3 periods, β0 = 3,β1 = 2,
ρ = 1, τ = 10, n = 120

β2 1.0 1.5 2.0 2.5 3.0 3.5

w1 0.471 0.493 0.505 0.511 0.515 0.517
w2 0.290 0.272 0.260 0.252 0.248 0.245
w3 0.238 0.235 0.235 0.237 0.238 0.239

D-optimum design

In the case of ρ = 0, which means that there is no intraclass correlation among
the random effects of each time point, the D-optimum designs are calculated. As
it is shown in Table 5.3, the D-optimum design is obtained with β0 = 3, β1 = 2,
β2 = {1, ..., 3.5}. As β2 changes from 1 to 3.5, w1 increases from .536 to .594. For
β2 = 1, 1.5, w2 takes the second highest value, and w2 w3 interact at β2 = 2. Tables
A.5 and A.6 (Appendix A, Section A.11) illustrate the four-point and seven-point
D-optimum designs, in turn for the same case. There is the significant decrease
from w1 to w2 for all considered parameter values. w1 rises up as β2 increases
from 1 to 3.5 in both cases, and the second highest values are allocated to w2

in all considered parameter values. For seven-point D-optimum design, w3 to w7

take less than 0.1. correspondingly, Figure A.3 illustrates the trends for the three
scenarios.

For the case of block effect, i.e. ρ = 1, D-optimum designs are computed
and they are indicated in Tables 5.4, A.7 and A.8 (Appendix A, Section A.11)
for J = 3, 4, 7, respectively. In Table 5.4 wj decreases as j increases for all β2.
In Table A.7 w3 takes nearly zero value for all β2’s. In fact the four point D-
optimum design is transformed to three point D-optimum design. In Table A.8,
w1 takes the highest value. Then, w2 takes the second highest value. The other
time points take the weights less or equal to 0.1, mostly. Figure A.4 shows the
corresponding trend and changes. The D-efficiency criterion is calculated. Each
time we assume that one specific value of β2 is true and the D-efficiency of the
D-optimum design is computed if the true value of β2 is not correctly specified.
Similar to the previous situation, the D-efficiency criterion take the values greater
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than or equal to 0.98. This means that it is not required to take more samples to
obtain the same D-efficiency if the true parameter of β2 is not chosen.
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Chapter 6

Discussions and Conclusions

In this dissertation, three types of models are considered as:
1) The binary mixed effects regression model
2) The ordinal mixed effects regression model
3) The nonlinear longitudinal Poisson regression model,

which are used to model longitudinal data, when they follow Bernoulli, Multi-
nomial and Poisson distribution in each subject, respectively. The binary and
ordinal mixed effects models belong to the class of generalized linear mixed effects
models. They have been specified. Their properties have been investigated. We
drew a conclusion that the Fisher information matrix lacks the analytical closed
form. As the likelihood function of these models do not have any closed form
expression, no closed form of the Fisher information matrix existed. Therefore,
the quasi Fisher information matrix was decided to be used for further analysis
(Wedderburn 1974). Since this matrix is based on the marginal first and second
order moments of the response variable, we need to obtain them. This function
relies on the marginal first and second order moments of the response variable.
These moments in most situations do not have explicit closed forms. Therefore,
firstly special cases of the models, as the random intercept binary and ordinal
mixed model and the binary model with two random effects were considered and
then the considered moments were approximated. The new approximations were
then evaluated by comparing them with numerical results.

The quasi Fisher information matrix which is based on the quasi log-likelihood
function, is obtained from the new approximation of the first and second order
moments of the response variable. Accordingly, the two point D-optimum design
with treatment control support points for different values of the model parameters
is calculated numerically and its sensitivity with respect to parameter changes is
investigated.
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The third type of model which is the Nonlinear longitudinal Poisson regression
model was specified in Chapter 2. The properties of this model were discussed and
the form of the quasi Fisher information matrix was built up in chapter 5. The
quasi Fisher information matrix had the analytical closed form and its properties
could be investigated analytically. The general equivalence theorem in order to
evaluate the D-optimality of D-optimum design was built up and D-efficiency of
D-optimum design was calculated. The D-efficiency of D-optimum design showed
that as the model population parameter is not correctly specified, and we obtain
the D-optimum design, it is not required to take more sample in order to gain
the same D-efficiency as the population parameter was correctly specified. The
likelihood for this model had an explicit form, even for small J as the number
of time points. Hence we could not obtain the maximum likelihood estimate of
the parameters explicitly. As a result the Fisher information matrix lacked the
analytical explicit form. For this reason the quasi Fisher information matrix was
chosen for further analysis.

Finally, the sensitivity of the D-optimum design is investigated by its calcula-
tion based on different values of the model parameters.

One question which arise here is that how the quasi maximum likelihood esti-
mate of the models perform and which properties do they carry? Is it worth using
the quasi Fisher information matrix? For this reason, some general methods of
estimation as the maximum likelihood estimation, generalized least square estima-
tion and the quasi maximum-likelihood estimation have been compared and their
properties were investigated.

In principle, we conclude that the quasi maximum-likelihood estimate of pa-
rameters follow some well behaved asymptotic properties. However, it was not
adequate due to the lack of sufficient analytical proof in the random effects regres-
sion model.

In this dissertation, we expect that the quasi maximum-likelihood estimate
of the parameters, follow well behaved asymptotic properties. In Chapter 2, the
asymptotic properties of these estimates in a special case of the binary mixed ef-
fects model was investigated by numerical computation, and it showed satisfying
properties. For additional research, we can investigate the same properties numeri-
cally in some specific situations of ordinal mixed model and Nonlinear longitudinal
Poisson model.

Moreover, regarding the achievement of the approximate quasi Fisher infor-
mation matrix in the binary mixed effects model with two random effects, it is
possible to compute D-optimum design and then to observe the changes in D-
optimum design when it was gained in the random intercept binary regression
model.

It is also suggested to form the approximate quasi Fisher information matrix
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in the ordinal mixed effects model with two random effects. Then, it is recom-
mended to compute the respective D-optimum design, to observe whether there
are significant changes in the form of D-optimum design in the random intercept
ordered regression model.

Considering the binary and ordinal mixed models with the logit function, all
the procedures to achieve the D-optimum design is the same as the corresponding
models with the probit link function, except that the dispersion parameter σ2 is

transformed to c2σ2, where c = 16
√
3

15π .
All in all, the other suggestion is to find A, DA and Ds optimum designs in

the models of consideration. These criteria are represented in Silvey 1980. These
designs and their theory can be compared and their relations and properties can
be investigated.
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Appendix A

Appendix

A.1 Individual D-optimum design to popula-

tion D-optimum design

Assumption 1. 1) DQ is a real-valued function on the whole set M of symmetric
non-negative definite matrices of dimension p: DQ : M → (−∞,+∞].

2) DQ is monotone with respect to Loewner ordering on M in the sense that
MQ(ξ1) >MQ(ξ2); then, D

Q(MQ(ξ1)) ≥ DQ(MQ(ξ2)).

Theorem A.1.1. (Schmelter 2007) Let

ξ⋆ =

(
ξ⋆i
1

)
∈ Ξi

be a D-optimum design in the class of single group designs Ξi, where DQ is a
criterion satisfying Assumption 1. Then, ξ⋆ is also D-optimum in the larger class
of group designs Ξ(p).

A.2 Second approximation of covariance (bi-

nary mixed probit model)

For the achievement of the subsequent rules, consider the following terms:
Let

uj0 =
√
a2j0 + 2α,

aj0 = − (2σ2+1)
1
2

σ2 ,
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bj0 =
(σ2+1)

1
2

σ2 f⊤(xj)β,

sj0(±τ) = aj0bj0±τ
u2j0

, rj0(±τ) = exp (12
(aj0bj0±τ)2

u2j0
− 1

2b
2
j0),

and

I1,j,j′ = Φ(bj′0) + rj′0(+τ)
aj′0
2uj′0

(1− Φ(sj′0(+τ)))

I2,j,j′ = Φ(0) + rj′0(+τ)
aj′0
2uj′0

[1− Φ(uj′0(−
bj′0
aj′0

+ sj′0(+τ)))]

I3,j,j′ = −aj′0
rj′0(−τ)
2uj′0

[Φ(
aj′0bj′0−τ

uj′0
)− Φ(uj′0(−

bj′0
aj′0

+ sj′0(−τ)))]

I4,j,j′ = −aj′0
rj′0(−τ)
2uj′0

[Φ(
aj′0bj′0−τ

uj′0
)− Φ(uj′0(

αj0

aj′0
+ sj′0(−τ)))]

I5,j,j′ = −aj′0
rj′0(−τ)
2uj′0

[Φ(
aj′0bj′0−τ

uj′0
)− Φ(uj′0(

αj0−bj′0
aj′0

+ sj′0(−τ)))]

I6,j,j′ = Φ(αj0) + rj′0(+τ)
aj′0
2uj′0

[1− Φ(uj′0(
αj0−bj′0
aj′0

+ sj′0(+τ)))]

I7,j,j′ = Φ(αj0 + bj′0) + rj′0(+τ)
aj′0
2uj′0

[1− Φ(uj′0(
αj0

aj′0
+ sj′0(+τ)))]

Rule 1. Let 1{.} be an indicator function; and



A1 :

{
f⊤(xj)β = 0 ⇒ αj0 = 0
f⊤(xj′)β = 0 ⇒, bj′0 = 0

⇒

 t ∈ [0,∞), t ∈ [
αj0−bj′0
aj′0

,∞) ⇒ t ∈ [0,∞)

t ∈ (−∞, 0), t ∈ [
αj0−bj′0
aj′0

,∞) ⇒ t ∈ {}

A2 :

{
f⊤(xj)β = 0 ⇒ αj0 = 0
f⊤(xj′)β > 0 ⇒, bj′0 > 0

⇒


t ∈ [0,∞), t ∈ [

−bj′0
aj′0

,∞)

−bj′0
aj′0

>0

−−−−−→ t ∈ [
−bj′0
aj′0

,∞)

t ∈ (−∞, 0), t ∈ [
−bj′0
aj′0

,∞)

−bj′0
aj′0

>0

−−−−−→ t ∈ {}

A3 :

{
f⊤(xj)β = 0 ⇒ αj0 = 0
f⊤(xj′)β < 0 ⇒, bj′0 < 0

⇒


t ∈ [0,∞), t ∈ [

−bj′0
aj′0

,∞)

−bj′0
aj′0

<0

−−−−−→ t ∈ [0,∞)

t ∈ (−∞, 0), t ∈ [
−bj′0
aj′0

,∞)

−bj′0
aj′0

<0

−−−−−→ t ∈ [
−bj′0
aj′0

, 0)
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Assume cj,j′ = [(σ2 + 1)−
1
2f⊤(xj)β − (σ2+1)

1
2

σ2 f⊤(xj′)β],
αj0−bj′0
aj′0

=
cj,j′
aj′0

A4 :

{
f⊤(xj)β > 0 ⇒ αj0 > 0
f⊤(xj′)β = 0 ⇒, bj′0 = 0

αj0
aj′0

<0

−−−−→

{
t ∈ [0,∞), t ∈ [

αj0

aj′0
,∞) ⇒ t ∈ [0,∞)

t ∈ (−∞, 0], t ∈ [
αj0

aj′0
,∞) ⇒ t ∈ [

αj0

aj′0
, 0]

A5 :

{
f⊤(xj)β > 0 ⇒ αj0 > 0
f⊤(xj′)β > 0 ⇒, bj′0 > 0

⇒


A51 : cj,j′ = 0 ⇒ αj0−bj′0

aj′0
= 0

A52 : cj,j′ > 0 ⇒ αj0−bj′0
aj′0

< 0

A53 : cj,j′ < 0 ⇒ αj0−bj′0
aj′0

> 0

A6 :

{
f⊤(xj)β > 0 ⇒ αj0 > 0
f⊤(xj′)β < 0 ⇒, bj′0 < 0

αj0−bj′0
aj′0

<0

−−−−−−−→

 t ∈ [0,∞), t ∈ [
αj0−bj′0
aj′0

,∞) ⇒ t ∈ [0,∞)

t ∈ (−∞, 0), t ∈ [
αj0−bj′0
aj′0

,∞) ⇒ t ∈ [
αj0−bj′0
aj′0

, 0]

Also, 

A51 :

 t ∈ [0,∞), t ∈ [
αj0−bj′0
aj′0

,∞) ⇒ t ∈ [0,∞)

t ∈ (−∞, 0), t ∈ [
αj0−bj′0
aj′0

,∞) ⇒ t ∈ {}

A52 :

 t ∈ [0,∞), t ∈ [
αj0−bj′0
aj′0

,∞) ⇒ t ∈ [0,∞)

t ∈ (−∞, 0), t ∈ [
αj0−bj′0
aj′0

,∞) ⇒ t ∈ [
αj0−bj′0
aj′0

, 0)

A53 :

 t ∈ [0,∞), t ∈ [
αj0−bj′0
aj′0

,∞) ⇒ t ∈ [
αj0−bj′0
aj′0

,∞)

t ∈ (−∞, 0), t ∈ [
αj0−bj′0
aj′0

,∞) ⇒ t ∈ {}



A7 :

{
f⊤(xj)β < 0 ⇒ αj0 < 0
f⊤(xj′)β = 0 ⇒, bj′0 = 0

αj0
aj′0

>0

−−−−→

{
t ∈ [0,∞), t ∈ [

αj0

aj′0
,∞) ⇒ t ∈ [

αj0

aj′0
,∞)

t ∈ (−∞, 0], t ∈ [
αj0

aj′0
,∞) ⇒ t ∈ {}

A8 :

{
f⊤(xj)β < 0 ⇒ αj0 < 0
f⊤(xj′)β > 0 ⇒, bj′0 > 0

αj0−bj′0
aj′0

>0

−−−−−−−→

 t ∈ [0,∞), t ∈ [
αj0−bj′0
aj′0

,∞) ⇒ t ∈ [
αj0−bj′0
aj′0

,∞)

t ∈ (−∞, 0), t ∈ [
αj0−bj′0
aj′0

,∞) ⇒ t ∈ {}

A9 :

{
f⊤(xj)β < 0 ⇒ αj0 < 0
f⊤(xj′)β < 0 ⇒, bj′0 < 0

⇒


A91 : cj,j′ = 0 ⇒ αj0−bj′0

aj′0
= 0

A92 : cj,j′ > 0 ⇒ αj0−bj′0
aj′0

< 0

A93 : cj,j′ < 0 ⇒ αj0−bj′0
aj′0

> 0
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Moreover,

A91 :

 t ∈ [0,∞), t ∈ [
αj0−bj′0
aj′0

,∞) ⇒ t ∈ [0,∞)

t ∈ (−∞, 0), t ∈ [
αj0−bj′0
aj′0

,∞) ⇒ t ∈ {}

A92 :

 t ∈ [0,∞), t ∈ [
αj0−bj′0
aj′0

,∞) ⇒ t ∈ [
αj0−bj′0
aj′0

,∞)

t ∈ (−∞, 0), t ∈ [
αj0−bj′0
aj′0

,∞) ⇒ t ∈ {}

A93 :

 t ∈ [0,∞), t ∈ [
αj0−bj′0
aj′0

,∞) ⇒ t ∈ [0,∞)

t ∈ (−∞, 0), t ∈ [
αj0−bj′0
aj′0

,∞) ⇒ t ∈ [
αj0−bj′0
aj′0

, 0]

Then, in the binary mixed probit regression model

cov(Yijk, Yij′k′) ≈ E(p)[pij(ζi0)pij′(ζi0)]− Φ(αj0)Φ(αj′0); j ̸= j′, k, k′ (A.1)

where

E(p)[pij(ζi0)pij′(ζi0)] ≈ I1,j,j′1{A1} + I2,j,j′1{A2} + (I1,j,j′ + I3,j,j′)1{A3}

+(I1,j,j′ + I4,j,j′)1{A4} + I1,j,j′1{A51} + (I1,j,j′ + I5,j,j′)1{A52}

+I6,j,j′1{A53} + (I1,j,j′ + I5,j,j′)1{A6} + I7,j,j′1{A7} + I6,j,j′1{A8}

+I1,j,j′1{A91} + I6,j,j′1{A92} + (I1,j,j′ + I5,j,j′)1{A93}.
(A.2)

Proof.
In order to gain E(p)[pij(ζi0)pij′(ζi0)] in (3.4) for the computation of cov(Yijk, Yij′k′),

and according to (3.13) it is needed to solve∫ αj0

−∞
ϕ(z)Φ(qj′0(z))dz. (A.3)

By changing variable principle,∫ αj0

−∞
ϕ(z)Φ(qj′0(z))dz ≈ −

∫ +∞

αj0−bj′0
aj′0

aj′0ϕ(aj′0t+ bj′0)Φ
⋆(t)dt. (A.4)

According to the approximation of the cumulative distribution function of the
standard Normal distribution in (3.21), for positive and negative signs of t, and the
integral bound in the right hand side of (A.4), there exist nine different conditions
A1, ..., A9. Therefore, there are different integral calculations for the achievement
of E(p)[pij(ζi0)pij′(ζi0)] based on the corresponding sets. They are illustrated as
follows:
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A1 : E(p)[pij(ζi0)pij′(ζi0)] ≈ −
∫∞
0 aj′0ϕ(aj′0t+ bj′0)(1− 1

2 exp(−τt− αt2))dt

A2 : E(p)[pij(ζi0)pij′(ζi0)] ≈ −
∫∞

−bj′0
aj′0

aj′0ϕ(aj′0t+ bj′0)(1− 1
2 exp(−τt− αt2))dt

A3 : E(p)[pij(ζi0)pij′(ζi0)] ≈ −
∫∞
0 aj′0ϕ(aj′0t+ bj′0)(1− 1

2 exp(−τt− αt2))dt

−
∫ 0

−bj′0
aj′0

aj′0ϕ(aj′0t+ bj′0)(
1
2 exp(−τ(−t)− α(−t)2))dt

A4 : E(p)[pij(ζi0)pij′(ζi0)] ≈ −
∫∞
0 aj′0ϕ(aj′0t+ bj′0)(1− 1

2 exp(−τt− αt2))dt

−
∫ 0

αj0
aj′0

aj′0ϕ(aj′0t+ bj′0)(
1
2 exp(−τ(−t)− α(−t)2))dt

A5.1 : E(p)[pij(ζi0)pij′(ζi0)] ≈ −
∫∞
0 aj′0ϕ(aj′0t+ bj′0)(1− 1

2 exp(−τt− αt2))dt

A52 : E(p)[pij(ζi0)pij′(ζi0)] ≈ −
∫∞
0 aj′0ϕ(aj′0t+ bj′0)(1− 1

2 exp(−τt− αt2))dt

−
∫ 0

αj0−bj′0
aj′0

aj′0ϕ(aj′0t+ bj′0)(
1
2 exp(−τ(−t)− α(−t)2))dt

A53 : E(p)[pij(ζi0)pij′(ζi0)] ≈ −
∫∞

αj0−bj′0
aj′0

aj′0ϕ(aj′0t+bj′0)(1− 1
2 exp(−τt−αt

2))dt

A6 : E(p)[pij(ζi0)pij′(ζi0)] ≈ −
∫∞
0 aj′0ϕ(aj′0t+ bj′0)(1− 1

2 exp(−τt− αt2))dt

−
∫ 0

αj0−bj′0
aj′0

aj′0ϕ(aj′0t+ bj′0)(
1
2 exp(−τ(−t)− α(−t)2))dt

A7 : E(p)[pij(ζi0)pij′(ζi0)] ≈ −
∫∞

αj0
aj′0

aj′0ϕ(aj′0t+ bj′0)(1− 1
2 exp(−τt− αt2))dt

A8 : E(p)[pij(ζi0)pij′(ζi0)] ≈ −
∫∞

αj0−bj′0
aj′0

aj′0ϕ(aj′0t+bj′0)(1− 1
2 exp(−τt−αt

2))dt

A9.1 : E(p)[pij(ζi0)pij′(ζi0)] ≈ −
∫∞
0 aj′0ϕ(aj′0t+ bj′0)(1− 1

2 exp(−τt− αt2))dt

A9.2 : E(p)[pij(ζi0)pij′(ζi0)] ≈ −
∫∞

αj0−bj′0
aj′0

aj′0ϕ(aj′0t+bj′0)(1− 1
2 exp(−τt−αt

2))dt

A9.3 : E(p)[pij(ζi0)pij′(ζi0)] ≈ −
∫∞
0 aj′0ϕ(aj′0t+ bj′0)(1− 1

2 exp(−τt− αt2))dt
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−
∫ 0

αj0−bj′0
aj′0

aj′0ϕ(aj′0t+ bj′0)(
1
2 exp(−τ(−t)− α(−t)2))dt

where ϕ(.) is the density function of the standard Normal distribution. Then, by
calculating the integrals in each condition above, the following terms are obtained
for the achievement of E(p)[pij(ζi0)pij′(ζi0)].

Under A1 : E(p)[pij(ζi0)pij′(ζi0)] ≈ I1,j,j′

Under A2 : E(p)[pij(ζi0)pij′(ζi0)] ≈ I2,j,j′

Under A3 : E(p)[pij(ζi0)pij′(ζi0)] ≈ I1,j,j′ + I3,j,j′

Under A4 : E(p)[pij(ζi0)pij′(ζi0)] ≈ I1,j,j′ + I4,j,j′

Under A51 : E(p)[pij(ζi0)pij′(ζi0)] ≈ I1,j,j′

Under A52 : E(p)[pij(ζi0)pij′(ζi0)] ≈ I1,j,j′ + I5,j,j′

Under A53 : E(p)[pij(ζi0)pij′(ζi0)] ≈ I6,j,j′

Under A6 : E(p)[pij(ζi0)pij′(ζi0)] ≈ I1,j,j′ + I5,j,j′

Under A7 : E(p)[pij(ζi0)pij′(ζi0)] ≈ I7,j,j′

Under A8 : E(p)[p
(ζi0)
ij p

(ζi0)
ij′ ] ≈ I6,j,j′

Under A91 : E(p)[pij(ζi0)pij′(ζi0)] ≈ I1,j,j′

Under A92 : E(p)[pij(ζi0)pij′(ζi0)] ≈ I6,j,j′

Under A93 : E(p)[pij(ζi0)pij′(ζi0)] ≈ I1,j,j′ + I5,j,j′

Finally, cov(Yijk, Yij′k′) is approximated. ■
Rule 2. Let 1{.} be an indicator function; and

B1 : f
⊤(xj)β = 0 ⇒ αj0 = 0, bj0 = 0.⇒

{
t ∈ [0,∞), t ∈ [

αj0−bj0
aj0

,∞) ⇒ t ∈ [0,∞)

t ∈ (−∞, 0), t ∈ [
αj0−bj0
aj0

,∞) ⇒ t ∈ {}

B2 : f
⊤(xj)β > 0 ⇒ αj0 > 0, bj0 > 0 ⇒


B21 : cj,j = 0 ⇒ αj0−bj0

aj0
= 0

B22 : cj,j > 0 ⇒ αj0−bj0
aj0

< 0

B23 : cj,j < 0 ⇒ αj0−bj0
aj0

> 0

B3 : f
⊤(xj)β < 0 ⇒ αj0 < 0, bj0 < 0 ⇒


B31 : cj,j = 0 ⇒ αj0−bj0

aj0
= 0

B32 : cj,j > 0 ⇒ αj0−bj0
aj0

< 0

B33 : cj,j < 0 ⇒ αj0−bj0
aj0

> 0
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Moreover, 

B21 :

{
t ∈ [0,∞), t ∈ [

αj0−bj0
aj0

,∞) ⇒ t ∈ [0,∞)

t ∈ (−∞, 0), t ∈ [
αj0−bj0
aj0

,∞) ⇒ t ∈ {}

B22 :

{
t ∈ [0,∞), t ∈ [

αj0−bj0
aj0

,∞) ⇒ t ∈ [0,∞)

t ∈ (−∞, 0), t ∈ [
αj0−bj0
aj0

,∞) ⇒ t ∈ [
αj0−bj0
aj0

, 0]

B23 :

{
t ∈ [0,∞), t ∈ [

αj0−bj0
aj0

,∞) ⇒ t ∈ [
αj0−bj0
aj0

,∞)

t ∈ (−∞, 0), t ∈ [
αj0−bj0
aj0

,∞) ⇒ t ∈ {}

and 

B31 :

{
t ∈ [0,∞), t ∈ [

αj0−bj0
aj0

,∞) ⇒ t ∈ [0,∞)

t ∈ (−∞, 0), t ∈ [
αj0−bj0
aj0

,∞) ⇒ t ∈ {}

B32 :

{
t ∈ [0,∞), t ∈ [

αj0−bj0
aj0

,∞) ⇒ t ∈ [0,∞)

t ∈ (−∞, 0), t ∈ [
αj0−bj0
aj0

,∞) ⇒ t ∈ [
αj0−bj0
aj0

, 0]

B33 :

{
t ∈ [0,∞), t ∈ [

αj0−bj0
aj0

,∞) ⇒ t ∈ [
αj0−bj0
aj0

,∞)

t ∈ (−∞, 0), t ∈ [
αj0−bj0
aj0

,∞) ⇒ t ∈ {}

then, in the binary mixed probit regression model

cov(Yijk, Yijk′) ≈ E(p)[p
2
ij(ζi0)]− [Φ(αj0)]

2; k ̸= k′, (A.5)

where

E(p)[p
2
ij(ζi0)] ≈ I1,j,j1{B1} + I1,j,j1{B21} + (I1,j,j + I5,j,j)1{B22}

+I6,j,j1{B23} + I1,j,j1{B31} + (I1,j,j + I5,j,j)1{B32} + I6,j,j1{B33}. (A.6)

Proof.
For the proof of this Corollary, it is merely needed to substitute j′ for j in

Rule 1. Therefore, the following results under the sets B1, ..., B33 are obtained.

Under B1 : E(p)[p
2
ij(ζi0)] ≈ I1,j,j

Under B21 : E(p)[p
2
ij(ζi0)] ≈ I1,j,j

Under B22 : E(p)[p
2
ij(ζi0)] ≈ I1,j,j + I5,j,j

Under B23 : E(p)[p
2
ij(ζi0)] ≈ I6,j,j

Under B31 : E(p)[p
2
ij(ζi0)] ≈ I1,j,j

Under B32 : E(p)[p
2
ij(ζi0)] ≈ I1,j,j + I5,j,j

Under B33 : E(p)[p
2
ij(ζi0)] ≈ I6,j,j

Finally, cov(Yijk, Yijk′) is approximated.
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A.3 First approximation of covariance (binary

mixed logit model)

Lemma A.3.1. Let αj0(c) = (1 + c2σ2)−
1
2f⊤(xjβ) and

qj0(c)(z) =
(c2σ2 + 1)

1
2

(2c2σ2 + 1)
1
2

(f⊤(xj)β − c2σ2z

(c2σ2 + 1)
1
2

); (A.7)

then,

Var(Yijk) ≈ [Φ(αj0(c))][1− Φ(αj0(c))], (A.8)

cov(Yijk, Yijk′) ≈
∫ αj0(c)

−∞
ϕ(z)Φ(qj0(c)(z))dz − {Φ(αj0(c))}2; k ̸= k′ (A.9)

and

cov(Yijk, Yij′k′) ≈
∫ αj0(c)

−∞
ϕ(z)Φ(qj′(c)(z))dz − {Φ(αj0(c))}{Φ(αj′(c))}; j ̸= j′, k, k′

(A.10)

The proof is the same as for the proof in Lemma 3.1.2 except for the approx-
imation of the cumulative distribution function of the logistic distribution with
cumulative distribution function of the Normal distribution, N(0, 1

c2
) in the inte-

grand of E[p2ij(ζi0)], and E[pij(ζi0)pij′(ζi0)].
The second approximation of covariance elements (3.3) and (3.4) for the binary

mixed logistic regression model is obtained in the same way as the results in
Rule 1 for the random intercept probit regression model, where αj0 = αj0(c),
aj0 = aj0(c), uj0 = uj0(c), bj0 = bj0(c), rj0 = rj0(c)(±τ) and sj0(±τ) = sj(c)(±τ),
uj0(c) =

√
a2j0(c) + 2α, in which

aj0(c) = − (2c2σ2+1)
1
2

c2σ2 ,

bj0(c) =
(c2σ2+1)

1
2

c2σ2 f⊤(xj)β,

rj0(c)(±τ) =
aj0(c)
2uj0(c)

exp (12
(aj0(c)bj0(c)±τ)2

a2
j0(c)

+2α
− 1

2b
2
j0(c)),

sj(c)(±τ) =
aj0(c)bj0(c)±τ
a2
j0(c)

+2α
.
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Theorem A.3.2. The components of matrix D in (2.46) for the binary logit mixed
regression model is formed as follows:

D⊤
j ≈ (c2σ2 + 1)−

1
2f⊤(xj)ϕ(αj(c)) (A.11)

Proof. By the definition of D in (2.46) and Dj , the following equation leads to
the result in (A.11).

∂

∂β⊤πj ≈
∂

∂β⊤Φ(αj(c)), (A.12)

since E(Yijk) ≈ Φ(αj0(c)). ■

A.4 Proof of Lemma 3.1.4.

V =

(
v11n11

⊤
n1

c121n11
⊤
n2

c211n21
⊤
n1

v21n21
⊤
n2

)
+

(
(π1(1− π1)− v1)In1 0

0 (π2(1− π2)− v2)In2

)
.

(A.13)
The eigenvalues of the matrix are stated as follows:

ej1 =
1
2{(π1(1− π1) + π2(1− π2) + (n1 − 1)v1 + (n2 − 1)v2)±

([(π1(1− π1)− π2(1− π2)) + ((n1 − 1)v1 − (n2 − 1)v2)]
2 +4n1n2c12c21)

1
2 }; j = 1, 2,

ejk = πj(1− πj)− vj ; j = 1, 2, k = 2, ..., nij .

In order to evaluate the positive definiteness of the approximate variance matrix, it
is sufficient to check the positiveness of the eigenvalues for j = 1, 2, k = 1, 2, ..., nij ;
therefore,
1- e11 > 0, e21 > 0 ⇔ det(Υ) > 0, since

e11 > 0, e21 > 0 ⇔ (π1(1− π1) + π2(1− π2) + (n1 − 1)v1 + (n2 − 1)v2)
2 ≥

(π1(1− π1)− π2(1− π2) + (n1 − 1)v1 − (n2 − 1)v2)
2 + 4n1n2c12c21

⇔ 4π1(1− π1)π2(1− π2) + 4π1(1− π1)(n2 − 1)v2 + 4π2(1− π2)(n1 − 1)v1

+4(n1 − 1)v1(n2 − 1)v2 − 4n1n2c12c21 > 0

⇔ det(Υ) > 0

.
2- ejk > 0 ⇔ [πj(1− πj)− vj ] > 0; j = 1, 2, k = 2, ..., nj . ■
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A.5 Optimum design in binary mixed model

Proof of Theorem 3.3.1.
In accordance with the ith quasi Fisher information matrix in (2.69), matrix

D and V are constructed. The inverse of matrix V, which is a block matrix
with reference to (Schott 1997, Corollary 1.7.2 in Appendix A, Section A.10 and
Puntanen 2007, Section 3.4), is indicated as follows:

V−1 =(
1

π1(1−π1)−v1 [In1 − 1
n1

detΥ∗∗

detΥ 1n11
⊤
n1
] − c12

detΥ1n11
⊤
n2

− c21
detΥ1n21

⊤
n1

1
π2(1−π2)−v2 [In2 − 1

n2

detΥ∗

detΥ 1n21
⊤
n2
]

)
,

where

Υ∗∗ =

(
n1v1 n1c12
n2c21 π2(1− π2) + (n2 − 1)v2

)
,

Υ∗ =

(
π1(1− π1) + (n1 − 1)v1 n1c12

n2c21 n2v2

)
.

Substitution of V−1 and D into (2.69) leads to:

MQ(ξ,β) =
1

detΥ
D(0)⊤QD(0). (A.14)

Furthermore, given the design points (x1, x2) and model parameters, it is aimed
to maximize individual D-optimality criterion (2.76) with respect to w1.

Since det(D(0)⊤) = det(D(0)),

det(MQ(ξ,β)) =

(
1

detΥ

)2

[det(D(0))]2 det(Q). (A.15)

We set d
dw1

det(MQ(ξ,β)) = 0, which is analogous to d
dw1

n2w1(1−w1)
det(Υ) = 0.

By algebraic calculation, it was obtained that

n3λd + 2n2λn1w1 − n2λn1
[det(Υ)]2

= 0. (A.16)

As λd ̸= 0, the root w∗
1 from the latter equation causes the expression in (3.27).

As λd = 0; then, w⋆1 = 1
2 . Also, it was checked that w⋆1 ∈ [0, 1].

Finally, the optimality of det(MQ(ξ,β)) is checked by the second derivative of
the corresponding function at w⋆1 and it is shown that for all w1 ∈ [0, 1] the second
derivative is negative. ■
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A.6 Covariance approximation in ordinal mixed

logit model

Lemma A.6.1. Let q
(m)
j0(c)(z) = (1+c2σ2)

1
2

(1+c22σ2)
1
2

(
γm − f⊤(xj)β − c2σ2z

(1+c2σ2)
1
2

)
; then,

in the ordinal mixed effects regression model with the logit link function, for all
j, j′ = 1, ..., J,m,m′ = 1, ...,M ,

E[p
(m)
ij (ζi0)p

(m′)
ij′ (ζi0)] ≈

∫ α
(m)
j0(c)

−∞
ϕ(z)Φ(q

(m′)
j′0(c)(z))dz (A.17)

A.7 Density function of random effect in Non-

linear longitudinal Poisson model

The multivariate density function ofΛi using the approach of Mathai and Moschopou-
los 1991 is given as follows:

fΛi(λi; ρ, τ) = (J − 1)

J∑
m=1

fm(λi1, ..., λiJ ; ρ, τ)1{λm=min{λi1,...,λiJ}}, (A.18)

fm(λi1, ..., λiJ) =

C{
∏J
j=1 λij}

(( 1−ρ
τ

)−1)λ
ρ
τ
im

∑∞
r0,...,rJ=0[

(−λim)r0

r0!
. (−λim)rm

rm! . E(
∏
j ̸=m

(−λij)rj0
rj0!

).

Beta( ρτ + r0, (
1−ρ
τ ) + rm).FD(

ρ
τ + r0, (

1−ρ
τ ) + r1, ..., (

1−ρ
τ ) + rm−1, (

1−ρ
τ ) + rm+1, ...

..., (
1− ρ

τ
)+rJ ;

ρ

τ
+r0+(

1− ρ

τ
)+rm;

λim
λi1

, ...,
λim

λi(m−1)
,

λim
λi(m+1)

, ...,
λim
λiJ

)], (A.19)

where

C = (τ)J((
1−ρ
τ

)−1){Γ( ρτ )(τρτe1e
⊤
1 )

J( 1−ρ
τ

)Γ(1−ρτ )J}−1,

and FD is the Lauricella function (A. M. Mathai and Saxena 1978) having a
convergent series representation for | λim

λij
|< 1;λij > 0; j = 1, ..., J ; j ̸= m and

positive domain of ρ
τ and (1−ρτ ). λim is unique with probability one.

101



A.8 Marginal density function of response in

Nonlinear longitudinal Poisson model

The marginal density function of model (2.33) is calculated from equations (2.37)
and (2.36)

For finding the marginal density L(β,yi), the conditional density of Yi, is
firstly calculated:

fYi|Λi=λi,β(yi) =
J∏
j=1

nj∏
k=1

µj(λij)
yijk

yijk!
exp(−µj(λij)), (A.20)

where µj(λij) = λij exp(θj0 + σij).

Lemma A.8.1. The marginal density function of the repeated Poisson model
(2.33) in terms of the ith subject with J = 3 is obtained as:

fYi;β(yi) =

2{
∏3
j=1 exp(θjnj ȳj.)}{

∏3
j=1

∏nj

k=1
1

Yijk!
}C
∑∞

r0,...,r3=0

∏
n1,n2,n3

∑
nj ̸=nm

(−1)
∑3

j=0 rj0∏3
j=0 rj0!

Beta( ρτ + r0, (
1−ρ
τ ) + rm).

∏
j ̸=m

(−((
1− ρ

τ
) + rj0 − 1))nj (

ρ

τ
+ r0)∑

j ̸=m
nj

( ρ
τ
+r0+( 1−ρ

τ
)+rm)∑

j ̸=m
nj

∏
j ̸=m

nj !

Γ(nmȳm. +
ρ
τ + r0 + rm + (1−ρτ ) +

∑
j ̸=m

nj)(nm exp(θm))

−(nmȳm.+
ρ
τ
+r0+rm+( 1−ρ

τ
)+

∑
j ̸=m

nj)

∏
j ̸=m

Γ(nj ȳj.+(
1− ρ

τ
)+rj0−mj)(njµj0)

−(nj ȳj.+( 1−ρ
τ

)+rj0−mj). (A.21)

Proof.
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The marginal density function of the response variable in (2.36) for model
(2.33) is obtained from the following calculation:

fYi;β(yi) =

∫ ∞

0

∫ ∞

0

∫ ∞

0
fYi|Λi,β(yi;β | λ).[2

3∑
m=1

fm(λi1, λi2, λi3)]dλi1dλi2dλi3,

(A.22)
the multivariate density function of λi is defined in (A.18) and (A.19). Substituting
this term and the conditional density of the response variable (A.20) above into
(A.22), and solving the integral using the application of the Gamma function leads
to (A.21). ■

A.9 Proofs of Lemmas and Theorem in Chap-

ter 5

Proof of Lemma 5.1.1.
We will make repeated use of the inversion formula from corollary 1.7.2 (Schott

1997), Appendix A, Section A.10.
For positive definite A = µjInj and b = c =

√
(1− ρ)τµj =

√
(1− ρ)τµj1nj ,

we obtain

C−1
j =

1

µj
Inj −

(1− ρ)τ

1 + (1− ρ)τµjnj
1nj1

⊤
nj

and hence, C−1 = diag(C−1
1 , . . . ,C−1

J ).
Next, we note that C−1

j µj =
1

1+(1−ρ)τµjnj
1nj and µ⊤

j C
−1
j µj =

µjnj

1+(1−ρ)τµjnj
=

ψj .
Now, with A = C and b = c =

√
ρτµ, we obtain by the inversion formula that

V−1 = C−1 − ρτ

1 + ρτ
∑J

j=1µ
⊤
j C

−1
j µj

C−1µµ⊤C−1

which proves the Lemma.
■
Proof of Lemma 5.1.2.
First of all, we obtain C−1 = diag(C−1

1 , ...,C−1
J ), in which C−1

j = 1
µj
[Inj −

ιj01nj1
⊤
nj
], in which ιj0 =

(1−ρ)τµj
1+(1−ρ)τµjnj

. Cj
−1 is obtained from corollary 1.7.2

Schott 1997, Appendix A, Section A.10.
Then, by the substitution of V−1 in (5.4) in the individual quasi-Fisher infor-

mation matrix, we result in the following form:

MQ = D⊤C−1D−D⊤ ρτ

1 + ρτ
∑J

j=1 ψj
C−1µµ⊤C−1D. (A.23)
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Note that D⊤
j C

−1
j = 1

µj(1+(1−ρ)τnjµj)
dj1

⊤
nj
, since

D⊤
j C

−1
j = µjD

⊤
0j

1
µj
[Inj − ιj01nj1

⊤
nj
]

= d0j1
⊤
nj
[Inj − ιj01nj1

⊤
nj
]

= d0j [1
⊤
nj

− ιj0nj1
⊤
nj
]

= d0j [1− ιj0nj ]1
⊤
nj

= 1
1+(1−ρ)τµjnj

d0j1
⊤
nj

= 1
(1+(1−ρ)τµjnj)µj

dj1
⊤
nj
.

Then,

D⊤
j C

−1
j Dj =

1
(1+(1−ρ)τµjnj)µj

dj1
⊤
nj
1njd

⊤
j

= 1
1+(1−ρ)τµjnj

d0j1
⊤
nj
1njµjd

⊤
0j

=
njµj

1+(1−ρ)τµjnj
d0jd

⊤
0j

and therefore, D⊤
j C

−1
j Dj =

ψj

µ2j
djd

⊤
j . Now, D⊤C−1 = (D⊤

1 C
−1
1 , . . . ,D⊤

JC
−1
J ),

and, hence, D⊤C−1D =
∑J

j=1
ψj

µ2j
djd

⊤
j .

Further D⊤
j C

−1
j µj =

ψj

µj
dj and, hence, D

⊤C−1µ =
∑J

j=1
ψj

µj
dj

Combining these results we obtain

MQ =
J∑
j=1

ψj
µ2j

djd
⊤
j − ρτ

1 + ρτ
∑J

j=1 ψj

 J∑
j=1

ψj
µj

dj

 J∑
j=1

ψj
µj

dj

⊤

which proves the Lemma because of d0j =
1
µj
dj . ■

Proof of Theorem 5.1.3.
We proof the following version of the representation of the inverse quasi-

information matrix
MQ−1

= M−1 + ρτe1e
⊤
1 (A.24)

which is also valid for approximate designs.
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With A = M−1 and b =
√
ρτe1 we obtain by the inversion formula for the

inverse of the right hand side(
M−1 + ρτe1e

⊤
1

)−1
= M− ρτ

1 + ρτe⊤1 Me1
Me1e

⊤
1 M.

Remember that M = D⊤
0 ΨD0. Now D0e1 = 1J for the scaled essential design

matrix D0. Hence, Me1 = D⊤
0 Ψ1J and e⊤1 Me1 = 1⊤JΨ1J .

Thus, the inverse of the right hand side of (A.24) is equal to the quasi-
information matrix MQ which proved the Theorem.

■

Proof of Lemma 5.1.4.
In the form of individual quasi Fisher information matrix (2.69), it is required

to obtain matrices D and V. As µj = exp(θj), matrix D is constructed as (2.46).
Furthermore, based on matrixV and due to the independence of response variables
between subjects and repetitions, V is gained as follows:

V = diag(exp(θ1)In1 , ..., exp(θJ)InJ ). (A.25)

Therefore, the inverse of the diagonal block matrix is:

V−1 = diag(exp(−θ1)In1 , ..., exp(−θJ)InJ ). (A.26)

Substitution of matrices D and V−1 into (2.69) leads to

MQ =
J∑
j=1

djd
⊤
j exp(−θj)nj ,

=
J∑
j=1

d0jd
⊤
0j exp(θj)nj , (A.27)

Since dj = d0jµj , the last equality can be written in the form of (5.8). ■

Proof of Lemma 5.1.5.

FDQ(ξ, η) = limϵ→0
1
ϵ [log(det(M

−1((1− ϵ)ξ + ϵη) + ρτe1e
⊤
1 )

−1)

− log(det((M(ξ))−1 + ρτe1e
⊤
1 )

−1)]

= d
dϵ log(det(M

−1((1− ϵ)ξ + ϵη) + ρτe1e
⊤
1 )

−1) |ϵ=0+
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Since for any matrix A which is a differentiable map from real numbers to p × p
matrices,

d

dt
det(A(t)) = det(A(t)).tr(A−1(t)

dA(t)

dt
), (A.28)

and

A(ϵ) = MQ−1
((1− ϵ)ξ + ϵη) = M−1((1− ϵ)ξ + ϵη) + ρτe1e

⊤
1 ,

the following equality is

FDQ(ξ, η) = −tr(MQ((1− ϵ)ξ + ϵη)

d
dϵ [(M

−1((1− ϵ)ξ + ϵη) + ρτe1e
⊤
1 )] |ϵ=0+

= tr

(
MQ(ξ)M−1(ξ)

d

dϵ
M(ξ + ϵ(η − ξ))M−1(ξ)

)
Because M(ξ) = D⊤

0 Ψ(ξ)D0 and Ψ(ξ) is a diagonal matrix, we have

d

dϵ
M(ξ + ϵ(η − ξ)) = D⊤

0

d

dϵ
Ψ(ξ + ϵ(η − ξ))D0

and
d

dϵ
Ψ(ξ + ϵ(η − ξ)) = diag

(
d

dϵ
ψj(ξ + ϵ(η − ξ))

)
j=1,...,J

.

Finally, as ψj(ξ) =
nj(ξ)µj

1+(1−ρ)τnj(ξ)µj
and

nj(ξ + ϵ(η − ξ)) = nj(ξ) + ϵ(nj(η)− nj(ξ)),

we obtain

d

dϵ
ψj(ξ + ϵ(η − ξ)) =

(nj(η)− nj(ξ))µj
(1 + (1− ρ)τnj(ξ)µj)2

=
nj(η)µj

(1 + (1− ρ)τnj(ξ)µj)2
− 1

1 + (1− ρ)τnj(ξ)µj
ψj(ξ)

Hence,

FDQ(ξ, η) =

tr(MQ(ξ)M−1(ξ)D⊤
0 W (ξ)diag(n1(η)µ1, ...., nJ(η)µJ)W(ξ)D0M

−1(ξ))−

tr(MQ(ξ)M−1(ξ)D⊤
0 W (ξ)Ψ(ξ)D0M

−1(ξ)),

106



which is linear in η. ■

Proof of Lemma 5.2.2
Assume bj = (1−ρ)τµj , we can rewrite ψj ; j = 1, ..., J as a function of ξ as follows:

ψj(ξ) =
µj
bj
(1− b−1

j

b−1
j +nj

).

Since
nj = (1− ϵ)n1j + ϵn2j , (A.29)

where n1j is the number of replication at the jth experimental setting for design
ξ1 and n2j is the number of replication at the jth experimental setting for design
ξ2.

b−1
j + nj = (1− ϵ)(b−1

j + n1j) + ϵ(b−1
j + n2j) (A.30)

1

b−1
j + nj

≤ (1− ϵ)
1

b−1
j + n1j

+ ϵ
1

b−1
j + n2j

. (A.31)

Therefore,
ψj(ξ) ≥ (1− ϵ)ψj(ξ1) + ϵψj(ξ2), (A.32)

which means ψj(ξ) is concave in ξ. It shows that

J∑
j=1

d0jd0j
⊤ψj(ξ) ≥ (1− ϵ)

J∑
j=1

d0jd0j
⊤ψj(ξ1) + ϵ

J∑
j=1

d0jd0j
⊤ψj(ξ2). (A.33)

In other words,

D⊤
0 Ψ(ξ)D0 ≥ (1− ϵ)D⊤

0 Ψ(ξ1)D0 + ϵD⊤
0 Ψ(ξ2)D0, (A.34)

where Ψ(ξ) = diag(ψ1(ξ), ..., ψJ(ξ)). Now, let M(ξ) = D⊤
0 Ψ(ξ)D0. It follows that

M(ξ) ≥ (1− ϵ)M(ξ1) + ϵM(ξ2),

M−1(ξ) ≤ ((1− ϵ)M(ξ1) + ϵM(ξ2))
−1

In order to show that MQ is concave, we form MQ from each side of inequality.

M−1(ξ) + ρτe1e
⊤
1 ≤ ((1− ϵ)M(ξ1) + ϵM(ξ2))

−1 + ρτe1e
⊤
1

(M−1(ξ) + ρτe1e
⊤
1 )

−1 ≥ (((1− ϵ)M(ξ1) + ϵM(ξ2))
−1 + ρτe1e

⊤
1 )

−1
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Matrix ρτe1e
⊤
1 is not invertible; hence, we use some regularization in the right

hand side of the above inequality.

lim
ν→0+

[((1− ϵ)M(ξ1) + ϵM(ξ2))
−1 + (ρτe1e

⊤
1 + νIp)]

−1 (A.35)

= limν→0+ [(ρτe1e
⊤
1 + νIp)

−1 − (ρτe1e
⊤
1 + νIp)

−1

((1− ϵ)M(ξ1) + ϵM(ξ2) + (ρτe1e
⊤
1 + νIp)

−1)−1

(ρτe1e
⊤
1 + νIp)

−1]

= limν→0+ [(ρτe1e
⊤
1 + νIp)

−1 − (ρτe1e
⊤
1 + νIp)

−1

((1− ϵ)(M(ξ1) + (ρτe1e
⊤
1 + νIp)

−1)+

ϵ(M(ξ2) + (ρτe1e
⊤
1 + νIp)

−1))−1(ρτe1e
⊤
1 + νIp)

−1]

≥ limν→0+ [(ρτe1e
⊤
1 + νIp)

−1 − (ρτe1e
⊤
1 + νIp)

−1

((1− ϵ)(M(ξ1) + (ρτe1e
⊤
1 + νIp)

−1)−1+

ϵ(M(ξ2) + (ρτe1e
⊤
1 + νIp)

−1)−1(ρτe1e
⊤
1 + νIp)

−1].

= limν→0+(1− ϵ)(M(ξ1)
−1 + (ρτe1e

⊤
1 + νIp))

−1+

ϵ(M(ξ2)
−1 + (ρτe1e

⊤
1 + νIp))

−1

The first and the last equality are obtained from Corollary 1.7.1 in Schott 1997,
which is stated in Lemma A.9.1.

Lemma A.9.1. (Schott 1997) Suppose that A, B and A+B are all m×m non-
singular matrices. Then,

(A+B)−1 = A−1 −A−1(B−1 +A−1)−1A−1

The third inequality is obtained from the following:

((1− ϵ)(M(ξ1) + (ρτe1e
⊤
1 + νIp)

−1) + ϵ(M(ξ2) + (ρτe1e
⊤
1 + νIp)

−1))−1 ≤

(1− ϵ)(M(ξ1) + (ρτe1e
⊤
1 + νIp)

−1)−1 + ϵ(M(ξ2) + (ρτe1e
⊤
1 + νIp)

−1)−1,
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which is gained from ((1 − ϵ)A + ϵB)−1 ≤ (1 − ϵ)A−1 + ϵB−1, for nonsingular
matrices A and B. (Fedorov and Hackl 1997, p. 107). Thus,

(M−1(ξ) + ρτe1e
⊤
1 )

−1 ≥ (1− ϵ)(M−1(ξ1) + ρτe1e
⊤
1 )

−1 + ϵ(M−1(ξ2) + ρτe1e
⊤
1 )

−1

(A.36)
and the D-optimality criterion is concave.

■

Proof of Theorem 5.2.3.
According to Lemma 5.1.5, the directional derivative is linear in ξ, and we can

restrict in the equivalence theorem to one-point designs η = ξj which assign all n
observations to the time point tj , i.e. nj(ξj) = n and nj′(ξj) = 0 for j ̸= j′.

For these one-point designs, we observe that
nj′ (ξj)µj′

(1+(1−ρ)τn′
j(ξ)µj′ )

2 is non-zero only

for j = j′. Hence, the directional derivative of M(ξ) in the direction of ξj can be
written as

d

dϵ
M(ξ + ϵ(ξj − ξ)) =

nµj
(1 + (1− ρ)τnj(ξ)µj)2

d0jd
⊤
0j −D⊤

0 W(ξ)Ψ(ξ)D0.

In view of the general equivalence theorem (see Silvey 1980), the design ξ∗ is
optimal if and only if the directional derivative

FDQ(ξ∗, ξj) =

tr

(
MQ(ξ∗)M−1(ξ∗)

(
nµj

(1 + (1− ρ)τnj(ξ∗)µj)2
d0jd

⊤
0j −D⊤

0 W(ξ∗)Ψ(ξ∗)D0

)
M−1(ξ∗)

)
(A.37)

is less or equal to zero for all j = 1, . . . , J . Rewriting this condition completes the
proof of the Theorem.

■

Proof of Lemma 5.2.4.
By taking the determinant of MQ(ξ) in (5.7), and using matrix determinant

lemma (Harville 1997), we can obtain

det(MQ(ξ)) = det(M(ξ))(1 + ρτe⊤1 M(ξ)e1)
−1.

Since

e⊤1 M(ξ)e1 = 1⊤JΨ(ξ)1J ,

in the case that D0e1 = 1n, (5.11) will be obtained. ■
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A.10 Corollary 1.7.2

Schott 1997. Let A be an m×m nonsingular matrix. If b and c are both m× 1
vectors and (A+ bc⊤) is nonsingular; then,

(A+ bc⊤)−1 = A−1 − 1

1 + c⊤A−1b
A−1bc⊤A−1.

A.11 D-optimum design in Nonlinear longi-

tudinal Poisson model

In this section, the D-optimum design with four and seven support points for model
(2.33) are obtained. The results are shown in frame of tables and Figures.

Table A.1: Locally D-optimum designs for J = 4 periods, β0 = 3,β1 = 2,
ρ = 0.9, τ = 1, n = 120

β2 1 1.5 2 2.5 3 3.5

w1 0.478 0.501 0.513 0.520 0.523 0.526
w2 0.234 0.223 0.214 0.207 0.203 0.200
w3 0.123 0.118 0.122 0.127 0.130 0.133
w4 0.166 0.157 0.151 0.146 0.143 0.141

Table A.2: Locally D-optimum designs for J = 4 periods, β0 = 6,β1 = 2,
ρ = 0.9, τ = 1, n = 120

β2 1 1.5 2 2.5 3 3.5

w1 0.478 0.501 0.513 0.520 0.524 0.526
w2 0.235 0.224 0.215 0.208 0.203 0.200
w3 0.123 0.119 0.122 0.127 0.130 0.133
w4 0.165 0.156 0.150 0.146 0.143 0.141
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Table A.3: Locally D-optimum designs for J = 7 periods, β0 = 3,β1 = 2,
ρ = 0.9, τ = 1, n = 120

β2 1 1.5 2 2.5 3 3.5

w1 0.410 0.431 0.442 0.448 0.452 0.453
w2 0.179 0.185 0.182 0.178 0.175 0.173
w3 0.097 0.077 0.069 0.068 0.070 0.071
w4 0.068 0.070 0.074 0.075 0.075 0.075
w5 0.074 0.077 0.077 0.077 0.076 0.076
w6 0.083 0.080 0.078 0.077 0.076 0.076
w7 0.088 0.081 0.078 0.077 0.076 0.076

Table A.4: Locally D-optimum designs for J = 7 periods, β0 = 6,β1 = 2,
ρ = 0.9, τ = 1, n = 120

β2 1 1.5 2 2.5 3 3.5

w1 0.411 0.431 0.443 0.448 0.451 0.453
w2 0.179 0.184 0.182 0.178 0.175 0.173
w3 0.097 0.077 0.069 0.069 0.070 0.072
w4 0.068 0.070 0.074 0.075 0.075 0.075
w5 0.074 0.077 0.077 0.076 0.076 0.075
w6 0.083 0.080 0.078 0.077 0.076 0.076
w7 0.088 0.081 0.078 0.077 0.076 0.076

Table A.5: Locally D-optimum designs for J = 4 periods, β0 = 3,β1 = 2,
n = 120, ρ = 0, τ = 10

β2 1 1.5 2 2.5 3 3.5

w1 0.479 0.503 0.511 0.517 0.521 0.523
w2 0.232 0.221 0.204 0.197 0.193 0.191
w3 0.123 0.119 0.139 0.145 0.147 0.148
w4 0.165 0.157 0.146 0.142 0.140 0.138
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Table A.6: Locally D-optimum designs for J = 7 periods, β0 = 3,β1 = 2,
n = 120, ρ = 0, τ = 10

β2 1 1.5 2 2.5 3 3.5

w1 0.416 0.439 0.450 0.456 0.459 0.461
w2 0.172 0.176 0.174 0.171 0.168 0.166
w3 0.097 0.076 0.067 0.066 0.068 0.070
w4 0.067 0.068 0.073 0.074 0.075 0.074
w5 0.074 0.077 0.077 0.077 0.076 0.075
w6 0.082 0.079 0.077 0.076 0.075 0.075
w7 0.091 0.085 0.082 0.080 0.080 0.079

Table A.7: Locally D-optimum designs for J = 4 periods, β0 = 3,β1 = 2,
n = 120, ρ = 1,τ = 10/9

β2 1 1.5 2 2.5 3 3.5

w1 0.327 0.343 0.352 0.358 0.361 0.363
w2 0.174 0.158 0.149 0.143 0.140 0.138
w3 0.048 0.000 0.000 0.000 0.000 0.000
w4 0.498 0.499 0.499 0.499 0.499 0.499

Table A.8: Locally D-optimum designs for J = 7 periods, β0 = 3,β1 = 2,
n = 120, ρ = 1, τ = 10/9

β2 1 1.5 2 2.5 3 3.5

w1 0.396 0.417 0.426 0.429 0.431 0.432
w2 0.199 0.215 0.209 0.202 0.198 0.195
w3 0.094 0.048 0.042 0.050 0.058 0.064
w4 0.047 0.060 0.072 0.076 0.077 0.077
w5 0.066 0.080 0.082 0.081 0.079 0.077
w6 0.091 0.088 0.084 0.081 0.079 0.077
w7 0.106 0.091 0.085 0.081 0.079 0.077
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Figure A.1: Local D-optimum designs for J = 4 periods, ρ = 0.9, τ = 1,
tj = j − 1, red line: w⋆

1, blue line: w⋆
2, green line: w⋆

3, purple line: w⋆
4

Figure A.2: Local D-optimum designs for J = 7 periods, ρ = 0.9, τ = 1,
tj = j − 1, red line: w⋆

1, blue line: w⋆
2, green line: w⋆

3, purple line: w⋆
4, pink

line: w⋆
5, brown line: w⋆

6, gold line: w⋆
7
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Figure A.3: Local D-optimum designs for J = 3, 4, 7 periods, ρ = 0, τ = 10,
tj = j − 1, red line: w⋆

1, blue line: w⋆
2, green line: w⋆

3, purple line: w⋆
4, pink

line: w⋆
5, brown line: w⋆

6, gold line: w⋆
7

Figure A.4: Locally D-optimum designs for J = 3, 4, 7 periods, ρ = 1, τ =
10/9, tj = j − 1, red line: w⋆

1, blue line: w⋆
2, green line: w⋆

3, purple line: w⋆
4,

pink line: w⋆
5, brown line: w⋆

6, gold line: w⋆
7
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List of Symbols

α Parameter vector characterizing R(α), 30

β Population parameter with p dimension, 16

Λi Vector of random ability parameter for individual i, 25

Di Matrix of the derivative of the ith response mean, 30

MQ(β) Population quasi Fisher information matrix, 37

MQ
i (β) ith individual quasi Fisher information matrix, 37

U(β,α) Population score function, 30

Ui(β,α) ith individual score function, 31

VG Variance of β̂G, 32

VI Variance of β̂I , 30

Vi Marginal variance of the ith individual response variable, 30

Vjj′ Marginal variance matrix of Yi at xij and xij′ , 43

µi Mean vector E(Yi) of Yi, 31

πij Marginal expectation of the response variable in binary and
ordinal mixed effects model, 24

Σ Dispersion parameter of the ith random effect, 17

θ(t,β) Vector of ability parameter, 24

ζi Random effect with q dimension for individual i, 16
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f(x) Vector of regression functions of experimental setting x regard-
ing population parameter f(x) = (1, f1(x), ..., fp−1(x))

⊤, 16

h(x) Vector of regression functions of experimental setting x regard-
ing random effect h(x) = (1, h1(x), ..., hq−1(x))

⊤, 16

R(α) Correlation matrix, 31

x Experimental setting in general, 16

xij jth experimental setting at the ith individual, j = 1, ..., J , i =
1, ..., N , 16

Y Vector of response variable of all observations with n dimension,
26

y Observational vector of response variable with n dimension, 20

Yijk Vector of response variable of the kth replication for individual
i at setting xij (ordinal case), 21

Yij Vector of response variables for individual i at setting xij , 29

yij Observational vector of response variables for individual i at
setting xij , 17

Yi ith vector of response variable, 26

yi Observational ith vector of response variable with ni dimension,
20

δ
(m)
ij (ζi) Individual standardized thresholds for individual i at setting

xij (ordinal case), 22

ϵijk Random error of latent variable, 17

ηij Individual linear component for individual i at setting xij , 16

γm Threshold regarding the mth level of the response variable, 21

β̂G Generalized least square estimate of population parameter, 32

β̂I Least square estimate of the population parameter, 29

β̂QL Quasi maximum-likelihood estimate of population parameter,
34
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Λij Random ability parameter for individual i at setting tj , 25

λij realization of random ability parameter for individual i at set-
ting tj , 27

λi Realization of the random ability regarding ith individual, 25

e1 p-dimensional unit vector with first entry equal to 1, 85

iβ Fisher information matrix of the linear model, 35

B Parameter space of all β, 16

DQ(ξ(d),β) Population D-optimality criterion, 38

DQ(ξ
(d)
i ,β) Individual D-optimality criterion, 38

Pi Weight regarding ith individual approximate design ξi, 39

effD(ξ) D-efficiency criterion, 41

f(ζi) Multivariate density function of the random effect, 20

f(Yijk | ζi) Conditional density of response variable conditioned on random
effect, 20

µ Any potential mean value of Yijk, 17

µij Mean vector of the response variable Yij , 31

µj Marginal response mean of the response variable regarding jth
time point, 26

Φ(.) Cumulative distribution function of the standard Normal dis-
tribution, 17

ϕ Additional parameter, 29

Φ⋆(.) Modified Lin’s approximate cumulative standard Normal dis-
tribution, 46

ΦLin(.) Lin’s approximate cumulative standard Normal distribution, 45

π
(m)
ij Marginal expectation of the response variable at the mth level,

24
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ρ Intra-class correlation, 26

σ2 Variance of one element of the ith random effect, 17

σ2ϵ Variance of error ϵijk, 21

τ Scale parameter, 26

θ(tj ,β) Ability parameter at the jth time point, 25

ξ Approximate population design, 39

ξ(d) Discrete population design design, 38

ξ⋆(d) Discrete D-optimum design, 38

ξ
(d)
i ith individual discrete design, 37

bij Suitably chosen function of individual linear predictor, 29

c0, c Shape parameters, 26

FDQ(ξ1, ξ2) Directional derivative from ξ1 in the direction of ξ2, 40

g(.) Link function, 17

i Index for the individual, 16

J The number of experimental settings or time points, 16

j Index for experimental setting, 16

k Index for the replication, 16

L(β | y) Population marginal likelihood function, 20

L(β | yi) Individual marginal likelihood function, 20

M The total number of the level of response variable, 21

m index for the thresholds of the response variable, 21

N The total number of individuals, 16

n The total number of observations, 38

nij The number of replication within each experimental setting or
time point, 16
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ni The number of observations within each individual, 16

p Dimension of the fixed effects parameter β, 15

pij(ζi) Probability of success in binary mixed effects model conditioned
on the random effect, 17

p
(m)
ij (ζi) Probability of success of the mth level of the response variable

conditioned on the random effect, 21

q Dimension of the random effect ζi, 16

ql(., .) Quasi likelihood function, 33

Si0 Individual block effect being constant over time (Nonlinear lon-
gitudinal Poisson regression model), 25

Sij Random effect within the ith individual related to the jth time
point (Nonlinear longitudinal Poisson regression model), 25

tij jth time point at the ith individual, 16

Uijk Latent variable, 21

wij Weight regarding xij , 39

Yijk Response variable for the ith individual at experimental setting
xij (or time point tij) for the kth replication, 16

Yijk Response variable of the kth replication for individual i at set-
ting xij , 16

yijk Observations of the kth replication for individual i at setting
xij , 17

Y
(m)
ijk Response variable at the mth level (ordinal case), 21

Y
(m)
ijk Response variable regarding the mth level, 21
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