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Abstract 

Environmental and resources problems have been the driving force behind the development 

of fuel cell technologies. The polymer electrolyte membrane fuel cell (PEMFC) is one of the 

highly promising fuel cells in terms of delivering energy requirements for a vast number of 

applications. Nevertheless, its commercialization has been restricted because of its limited 

durability and reliability. In order to enhance its performance, effective modelling, and 

diagnostic strategies are essential. Several technologies are employed to investigate the 

various degradation mechanisms occurring in the PEMFC. Among them, electrochemical 

impedance spectroscopy (EIS) is the most widely employed method. Nevertheless, it is not 

able to distinguish processes having a similar time constant, and thus alternative frequency 

response analysis (FRA) techniques have recently been developed involving non-electrical 

inputs and/or outputs, for instance, the concentration-alternating frequency response 

analysis (cFRA). However, these methodologies have required a longer period of 

experiments and their results are difficult to interpret, which requires complex models to 

understand them. 

In order to tackle such challenges, the data-driven based approach, known as the 

Loewner Framework, is adopted in this thesis. Applying the Loewner framework, a new 

methodology is developed as a complementary analysis technique for interpreting EIS and 

cFRA data of the PEMFC. This novel method allows the identification of the different 

features of the individual physicochemical phenomena in a very clear manner and facilitates 

the decoupling of processes with comparable time constants. In addition, the cFRA 

experiment data are analysed by using the Loewner framework in order to shorten the 

duration of the experiments, and the results show the feasibility of a significant amount of 

time reduction of the cFRA experiments. 
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1 Introduction 

Increasing environmental and resource concerns have inspired the development and 

commercialization of fuel cell technologies. The polymer electrolyte membrane fuel cell 

(PEMFC) is one of the most promising fuel cells to meet the power and energy needs of a 

wide variety of applications, from portable electronics to transportation, especially mobile 

applications. However, their commercialization has been constrained by their high cost and 

limited durability. PEMFCs also have many complex and strongly coupled processes that 

determine performance and durability. One way to improve the performance, reliability, and 

durability of PEMFCs for practical purposes is to prevent them from going into faulty modes 

[1]. It has been realized that effective modelling and fault diagnosis strategies are needed to 

develop a better understanding of the processes that occur in fuel cells and to identify 

improved operating conditions [2]. 

Electrochemical impedance spectroscopy (EIS) is a commonly used characterization 

technique to study the complex dynamics of PEMFC. It is based on the excitation of the cell 

at a certain steady-state by a periodic electrical input (current or cell potential) and the 

detection of the resulting electrical response at different frequencies. Using a linear 

frequency response analysis (FRA) the input /output correlation is analysed by formulating a 

transfer function in the frequency domain. Electrochemical systems involve various transient 

processes characterized by different time constants, i.e. mass transport of the reagents and 

products in the different domains of the system, chemical and electrochemical reactions at 

the electrode-electrolyte interface, and adsorption of the reacting species. Electrical 

stimulation can identify almost all of these dynamic processes with different time constants 

in the cell and facilitate the exploration in a wide frequency range (106-10-4 Hz). EIS has been 

applied to all types of electrochemical systems, such as batteries, electrolysers, and 

corrosion systems [2]–[4]. 

However, some of the phenomena involved are strongly coupled in the EIS spectra, 

so that they do not allow the de-convolution of all sub-processes that occur in the fuel cell. 

Therefore, the interpretation of the patterns observed in the impedance spectra is not 

always unambiguous, so a proper understanding of the dynamics is often not possible. For 

this reason, in addition to EIS, new FRA experimental techniques have been suggested to 

study system dynamics by applying non-electrical inputs and/or outputs [2]–[4]. For 

example, a concentration-alternating frequency response analysis (cFRA) is proposed to 

study the dynamics of the electrochemical systems. In cFRA, a periodic change of a reactant 

or even product concentration is applied as an input. The most suitable electrical variable 

(current or potential) depending on the conditions under which the experiment is carried 

out (voltastatic or galvanostatic control) was considered as the output [3], [4]. While the 

application of EIS and cFRA techniques in laboratory environments has been well developed, 

however, their commercialization is challenging due to the duration of the experiments and 
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the complexity of their results, which require the use of complicated models for interpreting 

their spectra. 

Hence, the model reduction of the dynamic system has become essential in order to 

substitute complex models (which are described by a large number of internal variables and 

processes) with less complex models that are easier to handle and have almost the same 

response characteristics with acceptable approximation errors [5]. For linear systems, there 

are several approaches available for model reduction. Among them, data-driven approaches 

have gained in importance, as they are involved in numerous applications. The central 

approach to data-driven model reduction is the Loewner framework, the details of which 

can be found in the following works [6]–[8].  

Its main characteristic is that it provides a trade-off between the accuracy of fit and 

model complexity. Also, the Loewner framework offers a natural and direct way to construct 

models from measured or computed input/output data (e.g. measurements of the 

frequency response of the system) [5]. Its application for the analysis of input and output 

data of a PEMFC system could allow a significant amount of time reduction of the frequency 

response experiments and facilitate the interpretation of the corresponding frequency 

domain spectra at the same time. In this way, the application of this methodology as an 

online diagnostics tool in mobile applications becomes feasible.  

The purpose of this master thesis is to apply the Loewner framework to the data 

collected during cFRA experiments and verify whether the duration of the test can be 

reduced. Besides, the obtained EIS and cFRA transfer functions will be used to obtain 

parameters related to the dynamic processes and degradation mechanisms that occur in the 

fuel cell during operation. 

For this reason, the following tasks are performed: 

 Development of a new methodology to analysed EIS and cFRA spectra in terms of 

distribution of characteristics frequency (DCF) analysis by using the Loewner 

framework. 

 Analysis of EIS and cFRA  experimental as well as simulated spectra. 

 Investigation of the feasibility to shorten the time of cFRA experiments. 

1.1 Outline of the thesis 

After the overview of the motivation and the aim of this thesis in Chapter 1 as an 

introduction, the rest of the report is organized as follows. 

Chapter 2 presents the theoretical background and information on the fuel cell 

technology particularly on the PEMFC, then the dynamics of the PEMFC, and the diagnostic 

and characterization techniques especially EIS and cFRA. 

Chapter 3 introduces the methodology, which includes an overview of the Loewner 

framework for linear systems, followed by the different algorithms such as calculation of 

cFRA transfer functions (TFs) from time-domain input/output signals, the Loewner 

framework for constructing state-space models and reduced state-space models, and partial 
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fraction expansion of the transfer function to obtain gains and time constants. This chapter 

also shows the validation of methodology to calculate the gains and time constants of the 

system with a simple RLC circuit. 

Chapter 4 comprises the analysis of the EIS spectra of the PEMFC employing the 

novel methodology and discussed several cases to study different dynamical processes and 

degradation phenomena that occur in the cell during operation. 

Chapter 5 includes the analysis of the cFRA spectra of the PEMFC, possibilities to 

shorten the time of cFRA experiments, and the discussion of the cFRA spectra of the 

experiments as well as a numerical model by means of the new methodology. 

Chapter 6 is a summary of the thesis as a conclusion and includes recommendations 

regarding future work. 
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2 Theoretical Background 

2.1 Fuel cell technologies 

A fuel cell is an electrochemical device that converts the chemical energy from fuel 

(hydrogen is the most common fuel) and an oxidant (mostly oxygen) into electrical energy, 

heat, and other reaction products [9]. Fuel cells offer a wide range of benefits for the 

environment and the balance of the energy structure. Due to their high efficiency and 

emission-free in-situ operation, fuel cells have the potential to drastically reduce greenhouse 

gas emissions in many applications [10]. 

There are different types of fuel cells. A very commonly used classification is based 

on the electrolyte. Basic information on these fuel cell technologies is summarized in Table 

2.1 [10]. Among these, the PEMFC is currently the more studied technology due to its 

simplicity, viability, quick start-up, and wide range of applications [11]. This thesis focuses on 

the PEMFC. 

Table 2.1: Different types of fuel cell [10]. 

Fuel cell type Mobile ion Operating 
temperature 

Applications and notes 

Alkaline (AFC) OH− 50–200◦C Used in space vehicles, e.g. Apollo, 
Shuttle 

Proton exchange 
membrane 
(PEMFC) 

H+ 30–100◦C Vehicles and mobile applications, 
and for lower power CHP systems 

Direct methanol 
(DMFC) 

H+ 20–90◦C Suitable for portable electronic 
systems of low power, running for 
long times 

Phosphoric acid 
(PAFC) 

H+ ∼220◦C Large numbers of 200-kW CHP 
systems in use 

Molten carbonate 
(MCFC) 

𝐶𝑂3
2−

 ∼650◦C Suitable for medium to large-scale 
CHP systems, up to MW capacity 

Solid oxide 
(SOFC) 

O2− 500–1000◦C Suitable for all sizes of CHP 
systems, 2kW to multi-MW 

 

2.2 Principle of PEMFC functioning 

As Figure 2.1 shows, a typical PEMFC is constituted by different components [9]–[11]:  

 A porous anode: This typically comprises catalyst particle layers and a gas diffusion 

layer (GDL). Where the gaseous fuel (hydrogen) diffuses through the anode pores to 

reach the polymer membrane interface. There, catalyst particles catalyse the 

oxidation of the fuel, electrons are conveyed by an external circuit from the anode to 
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the cathode, and the produced ions are transported to the cathode through the 

electrolyte.  

 A porous cathode: Where oxidant diffuses through the cathode pores to reach the 

polymer membrane interface and catalyst particle catalyses its reduction reaction.  

 Polymer membrane: Which is an electrolyte impermeable to gases but good 

conductor of protons. 

 The bipolar plates: Which convey the reactants to the electrodes, evacuates the 

reactants in excess and the product of the reaction (water), and also act as the 

electrical conductors and heat conductors. Moreover, they provide structural support 

for fuel cells. 

 Silicon seals: Which prevent leakage of gas and cooling fluid. 

 

Figure 2.1: The schematic representation of a PEMFC operation [9]. 

 

A running PEMFC is usually fed continuously on the anode side with hydrogen, and 

on the cathode side with air. Electrochemical reactions take place at the electrode-

membrane interfaces.  Hydrogen is oxidized on the anode side: 

𝐻2 → 2𝐻+ + 2𝑒− 

Protons transfer through the membrane, while the electrons flow through the 

external electric circuit where they perform electrical work and return to the cathode side, 

where oxygen is reduced: 

1

2
𝑂2 + 2𝐻

+ + 2𝑒− → 𝐻2𝑂 

Combined the reactions on the anode and cathode sides, the global reaction is 

1

2
𝑂2 + 𝐻2 → 𝐻2𝑂 
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With the conversion of chemical energy to electrical energy and heat, the by-product 

water is generated and mostly evacuated with the unreacted air from the cathode side.  

In general, there are three main contributors to voltage losses that determine the 

performance of the PEMFC. The first one is the activation losses, which are caused by the 

slow kinetics of the redox reactions. The main part of the kinetic activation losses in a PEMFC 

is due to the slow reduction of the oxygen at the cathode. The hydrogen oxidation at the 

anode is a fast reaction and only contributes very little to the voltage loss. However, these 

losses are dominant at low current density [12]. The second one is the Ohmic losses because 

of the resistance associated with the proton transport across the membrane and the 

electron transport through the electrodes, gas diffusion layers, bipolar plates, and the 

external circuit. This dominates at moderate current densities. The voltage drop due to this 

contribution is almost linear [9], [12]. Finally, concentration losses are a result of the drop in 

the concentration of the reactants at the electrodes, in the GDL, and along the gas channel, 

that dominates at high current density [9]. 

Figure 2.2 depicts an example of a polarization characteristic curve for a PEMFC with 

different voltage losses. The polarization characteristic curve indicates the internal voltage 

losses of the fuel cell at a specific current density. The effects of parameters such as feed 

compositions, flow rate, temperature, or the relative humidity of the feeds on the fuel cell 

performance can be investigated by measuring the polarisation characteristic curve at 

different operating conditions [13]. 

However, the voltage losses of the individual phenomena overlap at the respective 

operating point and the polarization characteristic curve can only represent the sum of these 

effects. Besides, the polarization characteristic curve reflects only the quasi-static behaviour 

of the PEMFC, which cannot give any information about the dynamic behaviour of the 

system [9].   

 

Figure 2.2: Polarization characteristic curve for a PEMFC with different voltage losses [14]. 
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2.3 Dynamics of PEMFC 

Different phenomena (electrical, electrochemical, mass transport, and thermal) occur that 

make a fuel cell a highly multi-physics object. Additionally, these phenomena have very 

different time response characteristics. The fastest concerns the electrochemical double-

layer charging or discharging at the electrode-membrane interfaces. Depending on the 

capacity, the time constant is in the range of micro- or milliseconds. Then comes the charge 

transfer associated with the electrochemical reactions (oxidation and reduction), the gas 

transport through the electrodes (or the channel and the GDL), typically on a timescale of a 

few seconds, and the membrane hydration which occurs on a timescale of seconds or 

several minutes depending on the operating conditions of the fuel cell. Among the slowest 

processes, the electrodes poisoning by impurities in the reactants (usually carbon monoxide 

(ppm range)) or by an oxide layer formed on a time-scale of minutes to hours, and the 

thermal changes which can occur within minutes or hours and are determined by the 

thermal properties of the fuel cell materials, reactant gas flow rates, ambient temperature, 

etc. Finally, structural changes to the electrodes and electrolytes can occur during the long-

term operation at certain operating conditions, leading to irreversible degradation of 

performance [9], [15]. 

Figure 2.3 describes the various dynamic processes in PEMFCs, as explained above, 

which cover the approximate time range from microseconds to years from 10-6 s to 108 s. A 

fuel cell is not only multi-physics, but also a temporally and spatially multi-scale and coupled 

object. To sum up, in one word, a fuel cell is a complex system [9]. 

 

Figure 2.3: Overview of the wide range of dynamic processes in PEMFC [15]. 
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2.4 Electrochemical impedance spectroscopy (EIS) 

In principle, there are several diagnostic and characterization techniques available to study 

the complex behaviour of PEMFCs to improve performance and durability [15], [16]. Among 

them, the most popular and widely employed method is electrochemical impedance 

spectroscopy (EIS). EIS is based on the frequency response analysis (FRA) which provides 

detailed diagnostic information on a wide range of physicochemical phenomena, such as the 

charge transfer reaction at the electrode/electrolyte interface, reaction mechanisms, state 

of charge of batteries, electrode material properties and state of health of fuel cells, etc.[12], 

[17]. 

The principle of the EIS is displayed in Figure 2.4. In the EIS, an electrochemical 

system is excited using a sinusoidal electrical input (current or cell potential) over the 

frequency range of interest, usually from 1 mHz to 100 kHz, and the resulting electrical 

output is measured [17]. Thus, the corresponding transfer functions can be determined, 

commonly known as impedance/admittance. The analysis of the resulting EIS spectra reveals 

information on specific electrochemical phenomena that occur there. For a valid analysis, 

the amplitude of the electrical stimulation has to be sufficiently small to produce a linear 

response.  

However, the EIS is often not able to distinguish the individual contribution of 

processes with similar time constants, thus it complicates the interpretation of the spectra 

and useful quantitative analysis. Because of this, other alternative approaches have been 

suggested, which are intended to decouple the individual contribution of the processes. For 

example, the distribution of the relaxation time (DRT) [18]–[22], the nonlinear EIS [23], [24], 

and total harmonic distortion analysis [25].  Among them, DRT has gained popularity in the 

past few years. 

 

Figure 2.4: Principle of the EIS [15]. 
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2.5 Concentration-alternating frequency response analysis (cFRA) 

In recent years several groups have suggested FRA techniques based on non-electrical inputs 

and/or outputs to study the dynamics of the PEMFC system [2]–[4], [16], [26]. The use of 

back pressure as an input variable has recently been proposed to study the transport 

phenomena in the PEMFC [2], [26]. Among the others, the work of Engebretsen et al. [2] 

who suggested a transfer function involving perturbations of the cathode backpressure as 

input and the cell potential as output. It is shown that the technique can be used to 

distinguish the explicit effect of water management from reactant starvation when a PEMFC 

is operated at different reactant humidification conditions. 

Recently, a new FRA technique named concentration-alternating frequency response 

analysis (cFRA) has proposed by Sorrentino et al. [3], [4], which is based on transfer 

functions depending on partial pressure perturbations of specific reactants . It was in their 

theoretical work shown that cFRA spectra could discriminate the different dynamic 

processes occurring in the cell, depending on the type of concentration perturbation (oxygen 

or water partial pressure), and electric control (voltastatic or galvanostatic) applied. In 

another communication by the same group [4], first experiments with the cFRA technique 

were reported with a laboratory-scale PEMFC. The analysis of the measured transfer 

functions unravels various aspects related to gas and water transport in the different layers 

of the cell. And it has also been shown that the cFRA method can be used to diagnose 

problems associated with cathode humidification state. 

2.5.1 Theoretical background and data analysis of cFRA 

The schematic diagram of the cFRA experimental setup including the cathode feed 

conditioning section is displayed in Figure 2.5. In addition, the periodic input signals (oxygen 

pressure) and electric output signals (cell potential or current) at two different frequencies 

are shown in the insets. Here all experimental tests were performed using a single PEMFC 

having an active area of 25.8 cm2 and a detailed description about cFRA experimental setup 

can be found in Sorrentino et al. [4]. 

The correlation between pressure input and electric output at different frequencies is 

analysed through linear FRA by determining a proper transfer function. The cFRA transfer 

functions for the perturbation of a specific component α under voltastatic or galvanostatic 

control read as follows: 

 𝜁𝛼
𝑉 =

∆𝐼(𝑗𝜔)

∆𝑃𝛼(𝑗𝜔)
 (2.1) 

 

 𝜁𝛼
𝐼 =

∆𝑉(𝑗𝜔)

∆𝑃𝛼(𝑗𝜔)
 (2.2) 
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Figure 2.5: Scheme of the cFRA experimental setup [4] 

When analysing the data, however, it must be taken into account that in the present 

experimental setup (see Figure 2.5) the periodic addition of the small oxygen flow after the 

bubble humidifier induces not only a change in the oxygen pressure but also a variation in 

the water vapour pressure. An increase in the oxygen partial pressure leads to a 

complementary decrease in the partial pressure of water and vice versa, which leads to a 

simultaneous periodic stimulation in which both concentration inputs (O2 and H2O) are in 

antiphase. This further shows that the experimentally obtained cFRA transfer functions are 

mixed transfer functions that contain contributions of the pure transfer functions of both O2 

and H2O [4]. 

By measuring the variation of the oxygen pressure and the electrical output at each 

frequency 𝑓 according to the disclosed facts in place of the theoretical cFRA transfer 

functions (eqs. (2.1) and (2.2)), the following mixed oxygen cFRA transfer function 𝜁𝑂2
𝑉 ′ and 

𝜁𝑂2
𝐼 ′ were calculated: 

 𝜁𝑂2
𝑉 ′(𝑗𝜔) =

∆𝐼(𝑗𝜔)

∆𝑃𝑂2(𝑗𝜔)
= 𝜁𝑂2

𝑉 (𝑗𝜔) + 𝛽𝜁𝐻2𝑂
𝑉 (𝑗𝜔) (2.3) 

 

 𝜁𝑂2
𝐼 ′(𝑗𝜔) =

∆𝐼(𝑗𝜔)

∆𝑃𝑂2(𝑗𝜔)
= 𝜁𝑂2

𝐼 (𝑗𝜔) + 𝛽𝜁𝐻2𝑂
𝐼 (𝑗𝜔) (2.4) 

 

The variable 𝛽 = ∆𝑃𝐻2𝑂 ∆𝑃𝑂2⁄  quantifies the fraction of the water transfer function 

that overlaps with the oxygen transfer function. The value of β depends on the specifications 

of the main flow and it is assumed to be constant over all frequencies [4]. 
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2.5.2 Strategy to decouple concentration inputs contribution 

As mentioned before, the simultaneous excitation of the system by water and oxygen partial 

pressures does not enable to measure the pure transfer functions, but only coupled ones. 

Consequently, the possibility of selectively detecting the dynamics related to gas and water 

transport in a PEMFC as predicted by theoretical studies of Sorrentino et al. [3] cannot be 

fully verified by mixed transfer functions. 

One method that is proposed by Sorrentino et al. [4] to decouple the contributions of 

the two concentration inputs and to get the pure transfer functions is to measure two 

linearly independent sets of cFRA data for the system. Considering the cell at the certain 

steady-state condition and fixed specifications of the inlet flow rate, two cFRA experiments 

can be performed using different flow variations characterized by two different oxygen-

water ratios, β’, and β”. This gives two coupled transfer functions that are linear 

combinations of the pure ones: 

 𝜁𝑂2
𝑉(𝐼)′(𝑗𝜔) =

∆𝐼(𝑉)′(𝑗𝜔)

∆𝑃𝑂2′(𝑗𝜔)
= 𝜁𝑂2

𝑉(𝐼)(𝑗𝜔) + 𝛽′𝜁𝐻2𝑂
𝑉(𝐼)(𝑗𝜔) (2.5) 

 

 𝜁𝑂2
𝑉(𝐼)"(𝑗𝜔) =

∆𝐼(𝑉)"(𝑗𝜔)

∆𝑃𝑂2"(𝑗𝜔)
= 𝜁𝑂2

𝑉(𝐼)(𝑗𝜔) + 𝛽"𝜁𝐻2𝑂
𝑉(𝐼)(𝑗𝜔) (2.6) 

 

The mathematical system constituted by equations (2.5) and (2.6) can be solved for 

each frequency and thus the pure oxygen and water transfer function ( 𝜁𝑂2
𝑉(𝐼) and 𝜁𝐻2𝑂

𝑉(𝐼) ) are 

obtained: 

 𝜁𝑂2
𝑉(𝐼)(𝑗𝜔) = (

𝛽"

𝛽" − 𝛽′
) 𝜁𝑂2

𝑉(𝐼)′(𝑗𝜔) + (
−𝛽′

𝛽" − 𝛽′
) 𝜁𝑂2

𝑉(𝐼)"(𝑗𝜔) (2.7) 

 

 𝜁𝐻2𝑂
𝑉(𝐼)(𝑗𝜔) = (

−1

𝛽" − 𝛽′
) 𝜁𝑂2

𝑉(𝐼)′(𝑗𝜔) + (
1

𝛽" − 𝛽′
) 𝜁𝑂2

𝑉(𝐼)"(𝑗𝜔) (2.8) 

 

The main criterion for applying this calculation scheme to experimental data is the 

linear independence of equations (2.5) and (2.6). In this thesis, the spectra of the pure cFRA 

transfer functions will be analysed. 
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3 Methodology 

3.1 The Loewner framework for linear systems 

In some applications, input-output measurements are useful because they replace an explicit 

model of a dynamic system. In such cases, it is crucial to construct state-space models and 

reduced state-space models effectively from the available data. The approach being 

discussed here is data-driven. It consists of collecting input/output measurements (e.g. 

frequency response measurements) for a suitable frequency range. The method known as 

the Loewner framework will be used to construct models that fit (or approximately fit) the 

data and have a reduced dimension. The idea is that, unlike current interpolatory methods, 

greater quantities of data are collected than required, and the basic underlying system 

structure is extracted. Therefore, a fundamental advantage of this method is that it can offer 

the user a trade-off between the accuracy of the fit and the complexity of the model. The 

Loewner framework was developed in several articles. For details refer to this literatures 

[5]–[8], [27]. 

3.1.1 Development of the Loewner interpolation framework: 

The transfer function of linear systems is a rational function. With the help of the rational 

functions, it can be explained that it is possible to compute models that fit (interpolate) to 

the given measurement data sets. In the context of linear dynamic systems, the starting 

point is provided by data sets consisting of the frequency response measurements.  

In order to find the rational function that fits these measurements, attention is 

currently directed to the so-called Lagrange rational interpolation method, it uses a Lagrange 

basis for the numerator and denominator polynomials and builds rational interpolant 

(function) that fit original interpolation conditions. In ([28]), it was shown that this basis 

choice leads to numerically robust algorithms.  

3.1.1.1 Polynomial interpolation: 

Let us begin with a classical problem of fundamental mathematics, the so-called polynomial 

interpolation problem (mentioned in [27]).  

Given pairs  𝑆 = {(𝑥𝑖, 𝑓𝑖)|𝑥𝑖, 𝑓𝑖 ∈ ℝ, 𝑖 = {1, 2, … , 𝑛 + 1}} of nodes, i.e. 𝑥𝑖 's, and 

points, i.e. 𝑓𝑖 's, we are looking for an n degree polynomial with real coefficients that 

interpolates this given set of data. Thus, one has to calculate the polynomial coefficients 

𝑐𝑘, 𝑘 ∈ {0, 1, … , 𝑛} to satisfy the following 𝑛 + 1 interpolation conditions 

 𝑝(𝑥𝑖) = 𝑓𝑖 , 𝑖 ∈ {1,2, … , 𝑛 + 1} 𝑤ℎ𝑒𝑟𝑒 𝑝(𝑥) = ∑𝑐𝑘

𝑛

𝑘=0

𝑥𝑘  (3.1) 
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This task turns out to be more or less straightforward; by writing the 𝑛 + 1 

interpolation conditions in a matrix format, note that the following linear equation needs to 

be solved to recover the polynomial coefficients 𝑐𝑘, 𝑘 ∈ {0, 1, … , 𝑛} 

[

1 𝑥1
1 𝑥2

⋯ 𝑥1
𝑛

⋯ 𝑥2
𝑛

⋮ ⋮
1 𝑥𝑛+1

⋱ ⋮
⋯ 𝑥𝑛+1

𝑛

]

⏟              
𝒱

[

𝑐0
𝑐1
⋮
𝑐𝑛

]

⏟
𝑐

= [

𝑓1
𝑓2
⋮

𝑓𝑛+1

]

⏟  
𝑓

 

or in short 𝒱𝑐 = 𝑓 where 𝒱 ∈ ℝ(𝑛+1)×(𝑛+1) is a Vandermonde matrix (each of its 

rows contains the monomial basis {1, 𝑥, … , 𝑥𝑛} evaluated at one of the node 𝑥𝑖  

corresponding to the index of the row, i.e., 𝒱(ℓ, ℎ) = 𝑥ℓ
ℎ−1, ∀ ℓ, ℎ ∈ {1,2, … , 𝑛 + 1}. Then, 

obtain the vector of polynomial coefficients as 𝑐 = 𝒱−1𝑓. 

Note that, one should usually avoid inverting a Vandermonde matrix since the 

condition number of such matrix increases exponentially, causing extreme ill-conditioning 

problems. Solving this linear system needs specialized algorithms that try to fix this issue. 

An alternative way to solve the problem in (3.1) is to avoid the use of the monomial 

basis 𝑚𝑖(𝑥) = 𝑥
𝑖  and thus inverting the Vandermonde matrix 𝒱. Then, the so-called 

Lagrange polynomials ℒ𝑖(𝑥) can be used to determine the same polynomial interpolant p as 

before. These polynomials are of degree n and they form a Lagrange basis 

ℒ1(𝑥) = (𝑥 − 𝑥2)(𝑥 − 𝑥3)⋯ (𝑥 − 𝑥𝑛+1) = ∏ (𝑥 − 𝑥𝑘)

𝑛+1

𝑘=1,   𝑘≠1

 

ℒ2(𝑥) = (𝑥 − 𝑥1)(𝑥 − 𝑥3)⋯ (𝑥 − 𝑥𝑛+1) = ∏ (𝑥 − 𝑥𝑘)

𝑛+1

𝑘=1,   𝑘≠2

 

ℒ𝑛+1(𝑥) = (𝑥 − 𝑥1)(𝑥 − 𝑥2)⋯ (𝑥 − 𝑥𝑛) = ∏ (𝑥 − 𝑥𝑘)

𝑛+1

𝑘=1,   𝑘≠𝑛+1

 

 

Note that ℒ𝑖(𝑥𝑘) = 0, ∀ 𝑘 ≠ 𝑖, 𝑘, 𝑖 ∈ {1,2, … , 𝑛 + 1}. Based on this basis, directly 

construct a polynomial p that meets the requirements set out in (3.1) 

 𝑝(𝑥) = ∑
𝑓𝑖

ℒ𝑖(𝑥𝑖)⏟  
𝑏𝑖

 ℒ𝑖(𝑥) = ∑𝑏𝑖ℒ𝑖(𝑥)

𝑛+1

𝑖=1

 

𝑛+1

𝑖=1

 (3.2) 

 

Consider that the same polynomial 𝑝(𝑥) can be written differently, either as 

∑ 𝑐𝑖𝑚𝑖(𝑥)
𝑛+1
𝑖=1  or ∑ 𝑏𝑖ℒ𝑖(𝑥)

𝑛+1
𝑖=1  , depending on the basis we work on. The reason for using the 

Lagrange basis instead of the monomial basis is that solving a large (in general) possibly ill-
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conditioned linear system is avoided. In addition, the coefficients 𝑏𝑖 =
𝑓𝑖

ℒ𝑖(𝑥𝑖)
 are determined 

directly from a given data set Ɗ.  

Using the Lagrange polynomials, define the n degree polynomial 

 𝑔(𝑥) = ∑
1

ℒ𝑖(𝑥𝑖)
 ℒ𝑖(𝑥) 

𝑛+1

𝑖=1

 (3.3) 

Note that 𝑔(𝑥𝑖) = 1 ∀ 𝑖 ∈ {1,2, … , 𝑛 + 1} and let �̂�(𝑥) = 𝑔(𝑥) − 1. Therefore, the 

�̂�(𝑥) = 0 ∀ 𝑥 ∈ {𝑥1, 𝑥2, … , 𝑥𝑛+1}. Since �̂�(𝑥) is a degree at most n polynomial with at least 

𝑛 + 1 roots, it follows that �̂�(𝑥) = 0 ∀ 𝑥 ∈ ℝ Then, conclude that 𝑔(𝑥) = 1 ∀ 𝑥 ∈ ℝ and 

hence 𝑝(𝑥) =
𝑝(𝑥)

𝑔(𝑥)
 ∀ 𝑥 ∈ ℝ. 

We derive the so-called barycentric formula by adding together (3.2) and (3.3):  

 𝑝(𝑥) =

∑
𝑓𝑖

ℒ𝑖(𝑥𝑖)
 ℒ𝑖(𝑥) 

𝑛+1
𝑖=1

∑
1

ℒ𝑖(𝑥𝑖)
 ℒ𝑖(𝑥) 

𝑛+1
𝑖=1

 (3.4) 

 

3.1.1.2 Rational interpolation:  

In this section, the rational Lagrangian interpolation is discussed, which has proven to be a 

strong alternative to classic polynomial interpolation. For more information on this section, 

see [27], [28] and the references contained within. 

A rational function 𝑟(𝑥) =
𝒩(𝑥)

𝒟(𝑥)
 is defined as the ratio between two polynomials, 

namely as the ratio between the numerator polynomial 𝒩(𝑥) and the denominator 

polynomial 𝒟(𝑥). It is said that r is in the order n since 𝑑𝑒𝑔(𝒩) = 𝑑𝑒𝑔(𝒟) = 𝑛 (and it is 

assumed that the two polynomials have no common roots). Generally, write 

𝑟(𝑥) =
𝛽𝑛𝑥

𝑛 + 𝛽𝑛−1𝑥
𝑛−1 +⋯+ 𝛽1𝑥 + 𝛽0

𝛼𝑛𝑥𝑛 + 𝛼𝑛−1𝑥𝑛−1 +⋯+ 𝛼1𝑥 + 𝛼0
=
𝒩(𝑥)

𝒟(𝑥)
 

Where 𝛽𝑘, 𝛼𝑘 ∈ ℝ, 𝑘 ∈  {0,1…𝑛}  and 𝛽𝑘, 𝛼𝑘 ≠ 0. 

Consider that a rational function is usually more effective than a polynomial, because 

it has both poles (roots of the denominator) and zeros (roots of the numerator). Therefore, a 

rational function can model functions with singularities and strongly oscillating behaviour 

quite effectively than polynomials. Besides, rational functions have a strong theoretical 

importance because they represent a natural way for modelling linear dynamic systems in 

the frequency domain. 

In the case of polynomial interpolation, n + 1 pairs of sampling nodes / points are 

required to recover a nth degree polynomial p(x) (because a polynomial p(x) of degree n is 

represented by n + 1 coefficients 𝑐𝑘, 𝑘 ∈  {0,1…𝑛}). Based on this consideration, it would be 

assumed that in order to recover a rational nth-order function r(x), 2(n + 1) pairs of sampling 
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nodes / points are required (because r(x) is represented by 2(n + 1) coefficients 𝛼𝑘, 𝛽𝑘, 𝑘 ∈

 {0,1…𝑛}).  

However, one degree of freedom is redundant because one of these coefficients can 

be set to 1. Dividing the numerator and the denominator by αn, get a new set of normalized 

coefficients �̂� = 𝛼𝑘 𝛼𝑛⁄ , �̂� = 𝛽𝑘 𝛼𝑛⁄  (hence �̂� = 𝛼𝑘 𝛼𝑛⁄ = 1). 

To be able to calculate a rational interpolant of order n, it is necessary to determine 

2n+1 coefficients such that the following 2n+1 interpolation conditions are satisfied. 

 𝑟(𝑥ℎ) = 𝑓ℎ, ℎ 𝜖 {1, 2, … ,2𝑛 + 1}  Where  𝑟(𝑥) =
∑ �̂�𝑘𝑥

𝑘𝑛
𝑘=0

∑ �̂�𝑘𝑥𝑘
𝑛
𝑘=0

  (3.5) 

 

Therefore, the data set must include (at least) 2n + 1 pairs. Firstly, partition the set of 

interpolation nodes {𝑥ℎ|1 ≤ ℎ ≤ 2𝑛 + 1} in two disjoint sets.  

{𝑥1, 𝑥2, … , 𝑥2𝑛+1} = {𝜇1, 𝜇2, … , 𝜇𝑛} ∪ {𝜆1, 𝜆2, … , 𝜆𝑛+1} 

Secondly, partition the set of interpolation points {𝑓ℎ|1 ≤ ℎ ≤ 2𝑛 + 1} in two 

disjoint sets (similar to nodes partitioning). 

{𝑓1, 𝑓2, … , 𝑓2𝑛+1} = {𝑣1, 𝑣2, … , 𝑣𝑛} ∪ {𝑤1, 𝑤2, … , 𝑤𝑛+1} 

Alternatively, use the Lagrangian basis instead of the monomial basis used in (3.5) 

and rewrite the rational interpolation problem using the barycentric formula in (3.4). 

 𝑟(𝑥ℎ) = 𝑓ℎ, ℎ 𝜖 {1, 2, … ,2𝑛 + 1}  Where  𝑟(𝑥) =
∑ 𝑏𝑖ℒ𝑖(𝑥)
𝑛+1
𝑖=1

∑ 𝑎𝑖ℒ𝑖(𝑥)
𝑛+1
𝑖=1

  (3.6) 

 

Where the Lagrange polynomials are given ℒ𝑖(𝑥) = ∏ (𝑥 −𝑛+1
𝑘=1,𝑘≠𝑖

𝜆𝑘) , 𝑖 𝜖 {1, 2, … ,2𝑛 + 1}.   

Therefore, one need to find the coefficients 𝑎𝑖 and 𝑏𝑖  to restore the function r(x), so 

that 𝑟(𝜇𝑗) = 𝑣𝑗 , 𝑗 𝜖 {1, 2, … , 𝑛} and 𝑟(𝜆𝑖) = 𝑤𝑖, 𝑖 𝜖 {1, 2, … ,2𝑛 + 1}. 

Since, ℒ𝑗(𝜆𝑖) = 0, ∀ 𝑗 ≠ 𝑖, by evaluating r(x) as defined in (3.6) at the nodes 𝜆𝑖, it 

follows that 𝑟(𝜆𝑖) = 𝑏𝑖 𝑎𝑖⁄ ⇒ 𝑤𝑖 = 𝑏𝑖 𝑎𝑖⁄ ⇒ 𝑏𝑖 = 𝑤𝑖𝑎𝑖 , ∀ 𝑖 ∈ {1,2, … , 𝑛 + 1}. 

By dividing both of the numerator and denominator of r(x) from (3.6) with the 

polynomial ℒ(𝑥) = ∏ (𝑥 − 𝜆𝑘)
𝑛+1
𝑘=1  . The barycentric formula is then rewritten as 

 𝑟(𝑥) =
∑

𝑏𝑖
𝑥 − 𝜆𝑖

𝑛+1
𝑖=1

∑
𝑎𝑖

𝑥 − 𝜆𝑖
𝑛+1
𝑖=1

 (3.7) 

 

Therefore, by selecting the numerator coefficients 𝑏𝑖 to meet the condition 𝑏𝑖 =

𝑤𝑖𝑎𝑖, it turns out that the function r (x) automatically matches the values at the Lagrangian 

nodes 𝜆𝑖, i.e., by construction. By eliminating the 𝑏𝑖’s, rewrite the formula in (3.7) as follows 
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 𝑟(𝑥) =
∑

𝑤𝑖𝑎𝑖
𝑥 − 𝜆𝑖

𝑛+1
𝑖=1

∑
𝑎𝑖

𝑥 − 𝜆𝑖
𝑛+1
𝑖=1

 (3.8) 

3.1.1.3 The Loewner matrix 

As mentioned in the previous section, the problem of rational interpolation was simplified to 

calculate the remaining n + 1 denominator coefficients {𝑎1, 𝑎2, … , 𝑎𝑛+1} such that 𝑟(𝜇𝑗) =

𝑣𝑗   for all 𝑗 𝜖 {1, 2, … , 𝑛}. By evaluating the function r(x) (as defined in (3.7)) at the remaining 

nodes µ𝑗, we write  

𝑟(𝜇𝑖) = 𝑣𝑗 ⇔ 

∑
𝑤𝑖𝑎𝑖
𝜇𝑗 − 𝜆𝑖

𝑛+1
𝑖=1

∑
𝑎𝑖

𝜇𝑗 − 𝜆𝑖
𝑛+1
𝑖=1

= 𝑣𝑗 , ∀ 1 ≤ 𝑗 ≤ 𝑛 ⇔ ∑∑
𝑣𝑗 − 𝑤𝑖

𝜇𝑗 − 𝜆𝑖
𝑎𝑖 = 0 ⇔  𝕃𝑎 = 0,

𝑛+1

𝑖=1

𝑛

𝑗=1

 

where the Loewner matrix is defined as  

 𝕃 =

[
 
 
 
 
 
 
𝑣1 − 𝑤1
𝜇1 − 𝜆1

𝑣1 − 𝑤2
𝜇1 − 𝜆2

𝑣2 − 𝑤1
𝜇2 − 𝜆1

𝑣2 − 𝑤2
𝜇2 − 𝜆2

⋯
𝑣1 − 𝑤𝑛+1
𝜇1 − 𝜆𝑛+1

⋯
𝑣2 − 𝑤𝑛+1
𝜇2 − 𝜆𝑛+1

⋮ ⋮
𝑣𝑛 − 𝑤1
𝜇𝑛 − 𝜆1

𝑣𝑛 − 𝑤2
𝜇𝑛 − 𝜆2

⋱ ⋮

⋯
𝑣𝑛 − 𝑤𝑛+1
𝜇𝑛 − 𝜆𝑛+1]

 
 
 
 
 
 

 ͼ ℝ𝑛×(𝑛+1), (3.9) 

and the coefficients 𝑎𝑖 are collected in the vector 𝑎 = [𝑎1, 𝑎2, … , 𝑎𝑛+1]
𝑇. Therefore, 

one can effectively obtain the 𝑎𝑖 coefficients by determining the null space of the Loewner 

matrix. The next step is then to calculate the 𝑏𝑖 coefficients (using the relationship 𝑏𝑖 =

𝑤𝑖𝑎𝑖, ∀ 𝑖 ∈ {1,2, … , 𝑛 + 1}. In this way, the rational function r(x) can be estimated uniquely 

[6], [27]. 

3.1.2 The Loewner pencil 

Consider a full-order linear system defined by 𝐸 𝜖 ℝ𝑛×𝑛, 𝐴 𝜖 ℝ𝑛×𝑛, 𝐵 𝜖 ℝ𝑛×1, 𝐶 𝜖 ℝ1×𝑛, and 
its transfer function 𝐻(𝑠) = 𝐶(𝑠𝐸 − 𝐴)−1𝐵. Here the input / output data is provided, which 
is either measured or generated through numerical simulation. Given a set of input-output 
measurements specified by frequencies (𝜔 𝜖 ℂ𝑛) and corresponding responses (ℋ 𝜖 ℂ𝑛). 
The aim is to find system matrices with lower order k, which are described by 
𝐸𝑘𝜖 ℝ

𝑘×𝑘, 𝐴𝑘  𝜖 ℝ
𝑘×𝑘, 𝐵𝑘 𝜖 ℝ

𝑘×1, 𝐶𝑘 𝜖 ℝ
1×𝑘, so that the resulting transfer function 𝐻𝑘(𝑠) =

𝐶𝑘(𝑠𝐸𝑘 − 𝐴𝑘)
−1𝐵𝑘 interpolates the given measurements.  

 
The data can be organized into any two disjoint sets as follows:  

 
{(𝜔𝑖,ℋ𝑖)} = {(𝜆𝑗, 𝑊𝑗)} ∪ {(𝜇𝑘, 𝑉𝑘)}, 

 

Where 𝑗 = 1, … ,𝑚 and 𝑘 = 1,… , 𝑛 − 𝑚. For simplicity, take and define the 
partitioning 
 

𝜆 = 𝜔(1: 2: 𝑛), 𝑊 = ℋ(1: 2: 𝑛), 
𝜇 = 𝜔(2: 2: 𝑛), 𝑉 = ℋ(2: 2: 𝑛),  
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Then, the associated Loewner pencil, consists of the Loewner and shifted Loewner 

matrices (mentioned in [6], [27]). The Loewner matrix 𝕃 is defined as: 
 

 𝕃 =

[
 
 
 
 
𝑣1 − 𝑤1
𝜇1 − 𝜆1

⋯
𝑣1 − 𝑤𝑘
𝜇1 − 𝜆𝑘

⋮
𝑣𝑞 − 𝑤1

𝜇𝑞 − 𝜆1

⋱ ⋮

⋯
𝑣𝑞 − 𝑤𝑘

𝜇𝑞 − 𝜆𝑘 ]
 
 
 
 

 (3.10) 

 

And the shifted Loewner matrix 𝕃s is defined as:  
 

 𝕃𝑠 =

[
 
 
 
 
𝜇1𝑣1 − 𝜆1𝑤1
𝜇1 − 𝜆1

⋯
𝜇1𝑣1 − 𝜆𝑘𝑤𝑘
𝜇1 − 𝜆𝑘

⋮
𝜇𝑞𝑣𝑞 − 𝜆1𝑤1

𝜇𝑞 − 𝜆1

⋱ ⋮

⋯
𝜇𝑞𝑣𝑞 − 𝜆𝑘𝑤𝑘

𝜇𝑞 − 𝜆𝑘 ]
 
 
 
 

 (3.11) 

 

3.1.3 Construction of reduced order models 

Two cases are differentiated here, namely, the right amount of data and the more practical 
redundant amount of data. For more details on this section, (see in [5], [6], [27]). 

3.1.3.1 The first case 

Assume that (𝕃𝑠, 𝕃), be a regular pencil, so that none of the interpolation points 𝜆𝑖 , µ𝑗 are its 

eigenvalues. Then 𝐸 = −𝕃, 𝐴 = −𝕃𝑠, 𝐵 = 𝑉, 𝐶 = 𝑊, is a minimal realization of an 
interpolant of the data, i.e., the rational function 𝐻(𝑠) = 𝑊(𝕃𝑠 − 𝑠𝕃)

−1𝑉, interpolates the 
data. 

3.1.3.2 The second case 

If the pencil (𝕃𝑠, 𝕃) is singular, it is the case of redundant data. In this case, the following 
assumption is made. 
 

 𝑟𝑎𝑛𝑘(𝑥𝕃 − 𝕃𝑠) = 𝑟𝑎𝑛𝑘 [
𝕃
𝕃𝑠
] = 𝑟𝑎𝑛𝑘[𝕃 𝕃𝑠] = 𝑘 ≤ 𝑛, (3.12) 

for all 𝑥 ∈ {𝜆𝑖} ∪ {µ𝑗}, we consider the following SVD factorizations: 

 

 [𝕃 𝕃𝑠] = 𝑌1𝑆1𝑋1
𝑇 , [

𝕃
𝕃𝑠
] =  𝑌2𝑆2𝑋2

𝑇 ,   (3.13) 

where 𝑌1, 𝑋2 ∈ ℂ
𝑛×𝑛. By selecting the first k columns of the matrices Y1 and X2, one 

can get projection matrices 𝑌, 𝑋 ∈ ℂ𝑛×𝑘. The following result is used in practical applications. 
 

A realization (𝐸𝑘, 𝐴𝑘, 𝐵𝑘, 𝐶𝑘) of an approximate interpolant is given by the system 
matrices 
 

 𝐸𝑘 = −𝑌𝑘
∗𝕃𝑋𝑘 , 𝐴𝑘 = −𝑌𝑘

∗𝕃𝑠𝑋𝑘, 𝐵𝑘 = 𝑌𝑘
∗𝑉, 𝐶𝑘 = 𝑊

𝑇𝑋𝑘 (3.14) 
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Hence, the rational function 𝐻(𝑠) = 𝑊𝑋(𝑌𝑇𝕃𝑠𝑋 − 𝑠𝑌
𝑇𝕃𝑋)−1𝑌𝑇𝑉 approximately 

matches the data. So if there is more data than required, one can consider (𝕃𝑠, 𝕃, 𝑉,𝑊) as a 

singular model of the data. A suitable projection then leads to a reduced system of order k. A 

significant outcome is that the Loewner framework provides a compromise between 

accuracy and complexity of the reduced-order system using the singular values of 𝕃. 

3.2 Algorithm 

This section is discussed the systematic approach in terms of algorithms that can be used for 

analysing EIS and cFRA experimental data. All algorithms described in this section are 

implemented in the MATLAB environment. 

Algorithm 1: Calculation of Transfer function (in frequency domain) from time             
domain data/signals 

Input: Experimentally measured data sets in the time domain. Each data set consists of the 
perturbation of the input (oxygen and/or water partial pressure) at different frequencies and 
the corresponding output response (electrical potential or current) as signals. 
Output: Transfer functions (frequency response measurements). 

1. Apply Fast Fourier Transform (FFT) to the inputs and output signals for 1st data set 

(see section 8.1.2 in the Appendix). 

2. Calculate frequency domain by using length of the signal and sampling frequency for 

all signals (as described in section 8.1.3 in the Appendix). 

3. Calculate amplitude spectrum from FFT spectrum for all (see section 8.1.3.1 in the 

Appendix). 

4. Collect the dominant harmonics and the corresponding FFT spectrum of input and 

output. 

5. Calculate the spectrum ratio (transfer function) between output and input (as 

mentioned in eqs. (2.1) and (2.2)) at the frequency of collected harmonics. 

6. Repeat above steps for all the data sets.  

 

After obtaining frequency response measurements at frequencies of interest, an 

appropriate state-space model is determined for further analysis. In order to construct a 

descriptor-state-space model that interpolates these frequency response measurements, 

here the Loewner framework has been employed. 

 

 

Algorithm 2: Loewner framework for constructing state-space models and 
reduced state-space models 
Input: The vector 𝜔 𝜖 ℂ𝑁 contains N points on the 𝑗𝜔 axis, 𝜔(𝑖) 𝜖 [0,∞), and the entries of 
𝐻 𝜖 ℂ𝑁 are frequency response measurements computed as 
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𝐻(𝑖) = 𝐶(𝜔(𝑖)𝐸 − 𝐴)−1𝐵 
for an unknown system  𝐸, 𝐴 𝜖 ℝ𝑛×𝑛, 𝐵 𝜖 ℝ𝑛×1, 𝐶 𝜖 ℝ1×𝑛, of unknown order n. 
Output: To construct a reduced model of order k, given by 
𝐸𝑘, 𝐴𝑘  𝜖 ℝ

𝑘×𝑘, 𝐵𝑘 𝜖 ℝ
𝑘×1, 𝐶𝑘𝜖 ℝ

1×𝑘, that interpolates the given measurements 
𝐻𝑘(𝜔(𝑖)) = 𝐻(𝑖) 

With  𝐻𝑘(𝑠) = 𝐶𝑘(𝑠𝐸𝑘 − 𝐴𝑘)
−1𝐵𝑘. 

1. Partition the given measurements into any two disjoint sets 

{(𝜔𝑖, 𝐻𝑖)} = {(𝜆𝑗,𝑊𝑗)} ∪ {(𝜇𝑘, 𝑉𝑘)}, 

 
For 𝑗 = 1, … ,𝑀 and 𝑘 = 1,… ,𝑁 −𝑀. for simplicity, take 𝑀 = 𝑁/2, and define the 
partitioning 

𝜆 = 𝜔(1: 2: 𝑛), 𝑊 = 𝐻(1: 2: 𝑛), 
𝜇 = 𝜔(2: 2: 𝑛), 𝑉 = 𝐻(2: 2: 𝑛),  

2. Next, to ensure that our reduced models are real, i.e. matrices 𝐸𝑘,  𝐴𝑘, 𝐵𝑘 , 𝐶𝑘 have 

real entries, we also need to use the complex conjugate values of the measurements. 

Thus, define vectors 

𝜆 ← [𝜆1, �̅�1, 𝜆2, �̅�2, … ], 𝑊 ← [𝑊1, �̅�1,𝑊2, �̅�2, … ], 

𝜇 ← [𝜇1, �̅�1, �̅�2, 𝜇2, … ], 𝑉 ← [𝑉1, �̅�1, 𝑉2, �̅�2, … ], 

From these measurements, form the Loewner matrix 𝕃 and shifted-Loewner matrix 
𝕃s defined as  

𝕃(𝑖, 𝑗) =
𝑉𝑖 −𝑊𝑗

𝜇𝑖 − 𝜆𝑗
, 𝕃𝑠(𝑖, 𝑗) =

𝜇𝑖𝑉𝑖 − 𝜆𝑗𝑊𝑗

𝜇𝑖 − 𝜆𝑗
. 

Notice that the Loewner matrices still have complex entries.  
3. To obtain matrices with real entries, apply the following transformation 

 
𝕃 ← 𝑃∗𝕃𝑃,       𝕃𝑠 ← 𝑃∗𝕃𝑠𝑃, 𝑊 ← (𝑊𝑇𝑃)𝑇 ,        𝑉 ← 𝑃∗𝑉,  

 
Where P is a block-diagonal matrix, with each diagonal block given by the matrix 

1

√2
[
1 𝑗
1 −𝑗

]. 

4. Then, the order k of the reduced order interpolant 𝐻𝑘 is given by the rank of 𝕃. 

Let 𝕃 = 𝑌𝑆𝑋∗ be the singular value decomposition (SVD) of the Loewner matrix 𝕃. 
Define 

𝑌𝑘 = 𝑌(: ,1: 𝑘), 
𝑋𝑘 = 𝑋(: ,1: 𝑘), 

Note that, here, the projection matrices are chosen differently than in (3.13), by 
employing only one SVD, i.e., of the Loewner matrix 𝕃. 

5. Then the reduced order model HK is given by 

𝐸𝑘 = −𝑌𝑘
∗𝕃𝑋𝑘,  𝐴𝑘 = −𝑌𝑘

∗𝕃𝑠𝑋𝑘, 𝐵𝑘 = 𝑌𝑘
∗𝑉, 𝐶𝑘 = 𝑊

𝑇𝑋𝑘. 
 

Now, we have a state-space model (where  𝐸𝑘 , 𝐴𝑘 , 𝐵𝑘, 𝐶𝑘 are the system matrices). In 

order to determine poles and residuals of the system, one needs to perform a partial 

fraction expansion of the associated transfer function, for details refer to [29], [30]. 
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Algorithm 3: Partial fraction expansion of the associated transfer function 
Input: System [𝐸𝑘, 𝐴𝑘 ∈ 𝑅

𝑘×𝑘, 𝐵𝑘 ∈ 𝑅
𝑘×1, 𝐶𝑘 ∈ 𝑅

1×𝑘] with transfer function 𝐻𝑘(𝑠) =
𝐶𝑘(𝑠𝐸𝑘 − 𝐴𝑘)

−1𝐵𝑘, 𝑤ℎ𝑒𝑟𝑒 𝑠 = 𝑗𝜔.  
Output: Residues (𝑅𝑖) and Poles (𝜆𝑖) 

1. The eigenvalue decomposition (EVD) of the matrix pencil (𝐴𝑘, 𝐸𝑘), or equivalently of 

𝐸𝑘
−1𝐴𝑘; let  

𝐸𝑘
−1𝐴𝑘 = 𝑉𝑘Ʌ𝑘𝑉𝑘

−1, 
Where the columns of 𝑉𝑘 = [𝑣1, … , 𝑣𝑘] are the eigenvectors, Ʌ𝑘 = 𝑑𝑖𝑎𝑔[𝜆1, … , 𝜆𝑘] 
are the eigenvalues of the reduced system (poles of 𝐻𝑘(𝑠)), and [�̃�1; … ; �̃�𝑘] are the 
rows of 𝑉𝑘

−1. 
2. Residues of 𝐻𝑘(𝑠) 

𝑅𝑖 = [𝐶𝑘𝑣𝑖][�̃�𝑖(𝐸𝑘
−1𝐵𝑘)], 

Where 𝑖 = 1 ∶ 𝑘. 
3. The new representation of Transfer function can be represented as: 

 𝐻(𝑠) =∑
𝑅𝑖 

𝑠 −  𝜆𝑖

𝑘

𝑖=1

 (3.15) 

 

 

Since the aim is to understand and decouple the various dynamics of a complex 

system (here a PEMFC), it becomes important to identify the gains and time constants that 

are related to the different phenomena of the system from the poles and the residues. 

Alternatively, the transfer function can be expressed in terms of gains (𝐺) and time 

constants (𝜏), as shown in eq. (3.16). 

 𝐻(𝑠) =∑
𝐺𝑖 

1 + 𝜏𝑖𝑠

𝑘

𝑖=1

 (3.16) 

 

By comparing these two equations ((3.15) and (3.16)) one can get, 

𝐺𝑖 = −
𝑅𝑖
𝜆𝑖

 

And  

𝜏𝑖 = −
1

𝜆𝑖
 

Since residues (𝑅𝑖) and poles (𝜆𝑖) have a complex values, the absolute values of Gains 

(𝐺𝑖) and time constants (𝜏𝑖) will be used for the later representation. 

Here, pole (𝜆𝑖) = 𝜎𝑖 + 𝑗𝜔𝑖 where 𝜎𝑖 is the decay (or growth) rate and 𝜔𝑖 is the 

frequency of the 𝑖𝑡ℎ oscillation. Thus, one can also get the time constant from the real part 

of the pole ( 𝜏𝑖 = |
1

𝜎𝑖
| ). Besides, the characteristic (or break point) angular frequency 𝜔𝑐 =

√𝜎2 + 𝜔2 or 𝜔𝑐 = |𝜆|. So, the time constant 𝜏 =
1

𝜔𝑐
. 
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3.3 Method validation with simple RLC circuit 

In this section, the novel approach to obtain gain and time-constant distribution of the 

system from its state-space model is validated by means of a simple RLC circuit. 

Consider a simple RLC circuit containing four different resistors (R1=200 Ω, R2=100 Ω, 

R3=50 Ω, R0=70 Ω), two capacitors (C1=2.5 × 10-3 F, C2=10-4 F) and one inductor (L1=3 × 102 

H) as shown in Figure 3.1. Moreover, time constants for this specific RLC circuit are τ1 = R1 × 

C1 = 0.5 s, τ2=R2 × C2 = 0.01 s and τ3=L1/R3 = 6 s. 

 

Figure 3.1: RLC circuit 

The circuit is excited at a certain steady state by a periodic electrical current as input 

between frequency range 0.01 Hz and 100 Hz. The resulting voltage response is calculated in 

MATLAB environment. After applying FFT to the input and output signals, a transfer function 

is determined. The Bode and Nyquist plots of the RLC circuit are shown in the Figure 3.2 (a-

b). The plot in Figure 3.2 (c) shows the decay of the singular values of the Loewner matrix. 

This representation is a very useful way to specify the order of the model k (by observing the 

decay of the singular values) so that one can make a trade-off between model accuracy and 

complexity. Note that, by truncating at the order k = 4, one can achieve an accuracy of about 

10-11. The response is well approximated by a reduced state-space model of order 4 as 

shown in Figure 3.2 (d).  

In addition, to verify the accuracy of the fitted model with the measured or simulated 

spectra, the corresponding deviation of the fitted model Hk from the measured spectra is 

calculated as relative residuals with equations (3.17) and (3.18), and the corresponding 

relative residuals are plotted in Figure 3.2 (e), which is below 1 % for the whole frequency 

range. Thus, further analysis is justified [20], [31]. 

 ∆𝑅𝑒(𝑗𝜔) =
𝑍𝑅𝑒(𝑗𝜔) − 𝐻𝑅𝑒(𝑗𝜔)

|𝑍(𝑗𝜔)|
× 100% (3.17) 

 

 ∆𝐼𝑚(𝑗𝜔) =
𝑍𝐼𝑚(𝑗𝜔) − 𝐻𝐼𝑚(𝑗𝜔)

|𝑍(𝑗𝜔)|
× 100% (3.18) 

 

Where |𝑍(𝑗𝜔)| refers to the absolute value of the measured or simulated impedance 

and 𝐻(𝑗𝜔) represents the model impedance. 
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Applying methodology as describe in section 3.2 the gain and time constant 

distribution of this RLC circuit is calculated. The obtained time constant spectrum is shown in 

Figure 3.2 (f). In this figure, amplitude of peaks (y-axis values) corresponds to the resistances 

chosen, and the locations of the peaks (x-axis values) are the associated time constants, i.e. τ 

= R × C. Moreover, the magnitude of peak at very low time constant corresponds to total 

resistance of circuit, which is detected at the high frequency region of the spectra. Real part 

of gains is plotted on right y-axis of the same plot, positive values of it indicate capacitive 

behaviour and negative values indicate inductive behaviour.  

This is a well-known system, and it was used as a test. We knew which time constants 

should have been expected, and we verified if the Loewner framework would have been 

detected the same. In the next chapter, the case of a complex system (here PEMFC) where 

multiple phenomena occur with closer time constants is discussed. Notice that for later 

analysis of EIS and cFRA spectra in this work, the distribution of the characteristics frequency 

(DCF) is preferred over the time constant spectra, since 𝑓𝑐 =
1

2×𝜋×𝜏
  is valid. 

 

Figure 3.2: (a) Bode plot of RLC circuit, (b) Nyquist plot of RLC circuit, (c) Singular value decay 
of the Loewner matrix, (d) Frequency response comparison – state space model, (e) Model 
residuals, (f) Corresponding time constant spectrum. 
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4 EIS 

4.1 Analysis of impedance spectra of PEMFC 

In this section, EIS data of a PEMFC are analysed across a wide range of frequencies by the 

novel method. The spectra are recorded in a frequency range from 0.01 Hz to 1 kHz at five 

measurement points per decade. Figure 4.1(a-b) shows an example of a typical PEMFC 

impedance spectrum (cell operated at T=80 °C, 55% R.H. (H2/air) and j=300 mA cm−2). In this 

case, normal operating conditions are applied over the whole cell area (see section 8.2.1 in 

the Appendix). 

The Nyquist plot (Figure 4.1 (b)) directly illustrates Ohmic losses, R0, and polarization 

losses, RP. R0 is specified as the high frequency intercept (𝜔 → ∞) with the real axis, while RP 

as the subtraction of low frequency (𝜔 → 0) and high frequency intercept (𝜔 → ∞) with 

the real axis. Besides, R0 can decompose into ionic and electronic resistance. The electronic 

resistance due to electrons transport in electrodes, gas diffusion layers (GDL), and flow 

fields, whereas the proton transport process in the polymer electrolyte membrane causes 

the ionic resistance. Since the electronic conductivity is significantly higher than the ionic 

conductivity, thus the main contribution to the Ohmic losses is because of the membrane 

conductivity [20]. 

 

Figure 4.1: Impedance spectra of PEMFC operated with Air and T = 80°C, RH=33 % and j=300 
mA cm−2. (a) Bode plot, (b) Nyquist plot, (c) The DCF spectra, and (d) Real part of the DCF 
spectra. 
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See, Figure 4.1 (c-d) for a detailed view of the polarization processes, which shows 

the distribution of the characteristic frequency (DCF) spectra corresponding to the 

impedance spectra. The DCF spectra allow the de-convolution of up to six separable peaks 

(P0-P5) with different characteristic frequencies (22.1 kHz, 270 Hz, 53 Hz, 13 Hz, 0.33 Hz, 

0.034 Hz). Each peak (from P1-P5) that characteristic frequencies are related to time 

constants of different polarization processes and the peak (P0) at a very high frequency 

indicates an Ohmic resistance (RO). Whereas in the Bode plot (magnitude spectra and 

imaginary part spectra), only three dynamics are visible. Correspondingly, only three clear 

loops (representing different phenomena) are seen in the Nyquist plot. 

Besides the characteristic frequency, the associated resistance of each process is 

illustrated by the magnitude (y-axis value) of the peak. As can easily be noticed, this new 

approach facilitates a better separation and identification of the individual dynamics and 

allows to evaluate the resistances related to different physical processes. Here the total 

resistance (RT = 0.0530 Ω) is the sum of the real part value of all the gains (peak values). So 

one can also calculate the polarization resistance (RP = 0.0309 Ω) by subtracting the Ohmic 

(membrane) resistance (RO = 0.0221 Ω) from the total resistance. These resistances can also 

confirm by examination of the Nyquist Plot. 

However, the number and location of the visible peaks depend strongly on the order 

of the state-space model k. Hence, the selection of k must be carefully pre-evaluated to 

obtain a meaningful distribution of gains (polarization contributions) with different 

characteristic frequencies (time constants) for the provided impedance data. In Figure 4.2 

(a1-a4) the distribution of the characteristic frequency (DCF) spectra are determined for 

different values of order k, starting from 17 to 23 (note that one can select maximum order k 

up to the rank of Loewner matrix, here 26). 

 

Figure 4.2: (a1-a4) The DCF spectra for different values of order k, (b1-b4) respective residual. 
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It can be noticed that different values of k lead to a varying number of peaks (as well 

as the magnitude and location of the peaks). For an ideal spectrum, k can be set to any large 

value to decompose all phenomena. However, for a measured spectrum too large values of k 

lead to erroneous results due to the noise superimposed on the measurement, which can 

lead to physical misinterpretations. This problem may arise at values of k=23 (see Figure 4.2 

(a4)). On the other hand, lower values of k (17, 19) cannot reproduce the measured 

spectrum over the whole frequency range (see Figure 4.3 (a-b)). 

 

Figure 4.3: Frequency response comparisons with the state space model of different model 
order k (a-d). 

For verifying the accuracy of the fitted model to the measured spectrum, the 

respective error of the model is determined in terms of relative residuals (Figure 4.2 (b1-b4)) 

by using equations (3.17) and (3.18). It is obvious that the residuals decrease with higher 

values of k, but do not become better for k values above 21 (see Figure 4.2 and Figure 4.3). 

Thus, in this case, k was chosen to 21 for the analysis of the DCF spectra, in order to achieve 

a trade-off between low residuals and possible avoidance of noise. In the next few sections, 

the experimental parameters are varied such that it becomes easier to understand dynamics 

related to each of the peaks and allocate them to the different physicochemical phenomena 

that take place in the PEMFC. 

4.2 Allocating the distribution of characteristic frequency peaks  

The impedance spectrum obtained during a PEMFC operation in H2/air flows (T = 80 °C, FH2 = 

850 ml/min, Fair = 600 ml/min, j = 300 mA cm-2, RH = 33 % for both inputs) is presented in 

Figure 4.4 (a-c). As mentioned previously, the impedance spectrum shows only three main 

characteristics or visible arcs at high (5 - 1 kHz), medium (0.1 - 5 Hz) and low frequencies (< 

0.1 Hz). Figure 4.4 (d) displays the relative residuals of the respective fitted state-space 

model to the measured data. The residuals are less than 0.5% for the entire frequency range. 

Thus, relatively small residuals confirm reproducibility and allow further processing. 
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Figure 4.4: Impedance spectra of PEMFC operated with Air and T = 80°C, RH=33 % and j=300 
mA cm−2. (a) Magnitude spectra, (b) Imaginary part of spectra, (c) Nyquist plot, and (d) Relative 
residuals. 

 

Figure 4.5: (a) The DCF spectra correspond to Impedance spectra in Figure 4.4, (b) Real part of 
the DCF spectra. 

The DCF spectrum resulting from the analysis of the EIS data is illustrated in Figure 

4.5 (a-b). It is obvious that this approach identifies six different peaks: One peak at very high 

frequency (P0 >10 kHz), three different contributions in the high-frequency range (P1 - P3), 

followed by one in mid-frequency (P4) and another peak in the low-frequency region (P5). 
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Note that there are also very small but distinct peaks in the mid to low frequency 

range. However, these peaks are not assigned because their contribution is very small and, 

at present, it cannot be evaluated if they are due to some physical phenomena or noise. 

Then, the main advantage of this methodology of analysis of the FRA spectra is the 

decoupling of several different dynamics with similar time constants, which is not possible 

with the conventional representation in the form of Bode and Nyquist plots. In this way, the 

impedance values related to different physical processes are easily and directly determined. 

The contribution of the Ohmic resistance RO is found at the high-frequency end of the 

impedance spectrum (>104 Hz) [15], [32]. This Ohmic resistance mainly corresponds to the 

ionic resistance of the polymer electrolyte membrane [20].  

The kinetics of the charge transfer reactions occurring simultaneously with the 

double-layer charging is in the high-frequency range of 100 Hz [3], [32]. There are two 

charge transfer resistances as a consequence of the kinetic hindrance of the electrode 

reactions, which are the hydrogen oxidation reaction (HOR) and the oxygen reduction 

reaction (ORR). The contribution to the kinetic activation losses of the HOR is usually 

significantly lower than the one of the ORR [33]. Hence, it is feasible to hypothesize that P1 

and P2 are correlated to the dynamics of HOR and ORR, respectively. 

The oxygen diffusion to the electrode through the GDL is usually founded with a 

characteristic frequency around 10 Hz. Thus, phenomena with identical characteristic 

frequency could describe the mass transport resistance of GDL [13]. In the experimental 

work of Weiss et al. [21], two phenomena that occur at around 10 Hz and 50 Hz, 

respectively, are successfully assigned to oxygen reduction reaction-related processes. Thus, 

one can also hypothesize that peak P2 and P3 are related to the dynamics of ORR. So, one 

cannot allocate P3 to only one of the both processes (ORR and oxygen mass transport in the 

GDL) in the case of a fuel cell operated with air. Due to the overlap of the phenomena (P1- 

P3) in the impedance spectra, only one curve is appeared in the Bode and Nyquist plots (see 

Figure 4.4 (a-c)). 

At a frequency around 0.7 Hz, the dynamics with respect to the oxygen mass 

transport in the channel on the cathode side are observed. This mass transport effect is 

explained by the decrease in oxygen concentration along the cathode flow channel [3], [34]. 

At low humidification, the dehydration phenomenon due to an electro-osmotic drag 

is observed with a characteristic frequency of around 0.1 Hz [32]. The strength of the 

electro-osmotic effect depends strongly on the current. Thus, the flux of water from the dry 

anode to the wetter cathode is enhanced as the current increases. Consequently, the water 

content of the membrane drops near the anode, the membrane becomes locally 

dehydrated, and the Ohmic resistance increase [35]. This effect has similar time constants as 

the mass transport phenomena in the channel and appears in the Nyquist diagram as a 

second loop. Therefore, these two effects often overlap in the impedance spectra, so that an 

exact differentiation is not possible. Due to this fact, one cannot assign the peak P4 

individually to one of these both processes. 
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Finally, the back diffusion of water from the cathode to the anode via the membrane 

is observed at a low characteristic frequency around 0.01 Hz [3], [32], [36]. In contrast to the 

other phenomena, however, this causes a reduction in impedance. The increased current 

generates additional water at the cathode, which needs a certain time to diffuse through the 

membrane from cathode to anode. The increased water content reduces the membrane's 

proton resistance, especially in locally very dry regions [35]. In the Nyquist plot (Figure 4.4 

(c)) this phenomenon appears as an inverted loop. The negative value of gain (resistance) at 

a frequency of about 0.03 Hz in the DCF spectra (Figure 4.5 (b)) confirms that this 

phenomenon has occurred. Thus, one can certainly assign the peak P5 to the dynamics of 

water transport in the membrane by back diffusion. This phenomenon is more pronounced 

in dry operating conditions (low relative humidity) [37].  

After the phenomenon of back diffusion (P5) the total resistance RT can be obtained 

by a very low-frequency intercept (~ 10-3 Hz) of the real axis in the Nyquist diagram (see 

Figure 4.4 (c)). This total resistance is also determined by summing the real part of the gain 

over the whole frequency range in DCF spectra (see Figure 4.5 (b)). Thus, the polarization 

resistance RP is the difference between RT and Ro [20]. This polarization resistance is the 

resistance or slope of the polarization curve at the operating point where the EIS 

measurement is performed.   

Furthermore, note that the explanation of the impedance spectra and the 

assignment of the peaks in the DCF spectrum to the various physicochemical phenomena are 

based only on a general understanding of the EIS and the literature review of the related 

research in this field. For this reason, the interpretation becomes relatively clear. However, 

verification is still required by performing further experiments at different operating 

conditions. 

4.3 Variation of the operating conditions 

In this section, the operating conditions of the experiments are changed systematically in 

order to monitor the variation of the individual peaks and identify the specific phenomenon 

related to them. To eliminate mass transport losses in GDL and channel, the PEMFC is 

operated with pure oxygen rather than air (all other parameters are unchanged). Moreover, 

in order to identify the losses associated with water transport in the membrane, the cell is 

operated with an increased relative humidity of the feeds. 

As shown in the Bode and Nyquist plots, the overall impedance decreased when pure 

oxygen is used as cathode feed instead of air. Especially the middle and the beginning of the 

high-frequency part of the impedance spectrum (0.1 to ~ 30 Hz) reduced (compare blue and 

black lines in Figure 4.6 (a, c)). 
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Figure 4.6: (a) Magnitude spectra, (b) Imaginary part of spectra, (c) Nyquist plot, and (d) 
Relative residuals. Impedance spectra of PEMFC operated with air and T = 80°C, RH = 33 %, 
and j=300 mA cm-2 are shown as blue data; impedance spectra of PEMFC operated with pure O2 
and T = 80°C, RH = 33 %, and j=300 mA cm-2 are displayed as black data; impedance spectra of 
PEMFCs operated at pure O2 and T = 80°C, RH = 55 %, and j=300 mA cm-2 are represented as 
pink data. 

In addition, the membrane resistance (high-frequency intercept of the real axis in the 

Nyquist plot) dropped significantly as the humidification of pure oxygen and H2 increased 

from 33% to 55%. The mid to low frequency part of the spectra (0.01 to 1 Hz) is also 

significantly influenced (see black and pink lines in Figure 4.6 (a, c)). 

 

Figure 4.7: (a) The DCF spectra correspond to Impedance spectra in Figure 4.6, (b) Real part of 
the DCF spectra. 
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The corresponding DCF spectra are obtained in the Figure 4.7 for all the three cases 

(blue points for the base case (H2/air, RH=33%), black points for case 1 (H2/pure O2, RH=33%) 

and pink points for case 2 (H2/pure O2, RH=55%)). 

Note that the peaks (P3 - P5) are significantly affected when pure O2 is used in place 

of air, while the other peaks are only negligibly affected. As it was expected, the peaks P3 

and P4 significantly decrease, since they lie in the same frequency range in which the mass 

transport of oxygen in GDL (10 Hz) and channel (0.7 Hz) are observed. For this reason, they 

can be attributed to these phenomena. The fact that they do not disappear completely using 

pure oxygen is due to the accumulation of water in the GDL, which obstructs the oxygen 

diffusion. Moreover, the peak P3 is affected by the charge transfer resistance of the ORR 

[21], [35]. These hypotheses are further demonstrated in the next sections. 

With pure oxygen as input, the peak P2 attributed to the ORR charge transfer is 

shifted to the right in the spectra (see Figure 4.7). It is acceptable due to the faster kinetics 

of ORR as a result of the locally increased oxygen concentration and effective diffusivity. 

However, the magnitude of P2 remains constant due to the constant current density.  

The P5 peak can be correlated to a low-frequency induction loop in the Nyquist 

diagram. Since the inductive behaviour of the cell is also shown in DCF spectra, by 

representing the spectra as a real part of the gain (Figure 4.7 (b)). However, the negative 

value of the gain (resistance) is not related to the physical inductive phenomena, but it is 

interpreted by the dynamics of the decrease in its resistance and has a lower characteristic 

frequency [38].  

In Figure 4.7, it is also clear that the peaks P0, P4, and P5 are strongly influenced by 

the humidification of the gases (compare black and pink peaks). In this case, it is noticeable 

that both the Ohmic and polarization resistances decrease as the moisture content of the 

gases (H2 and O2) increases. The strong reduction of P0 (from 33% RH to 55% RH at constant 

current density) is explained by the dependence of proton conductivity on the water content 

of the membrane. Reactive gases with higher relative humidity cause a stronger absorption 

of water into the membrane, which results in a higher proton conductivity [20]. 

The change in relative humidity from 33% to 55% may not influence the dynamics of 

the charge transport. It also does not affect mass transport in the experiment due to the 

higher impact of liquid water produced by the ORR rather than the relative humidity of the 

feeds. Additionally, no influence of relative humidity of the feeds is observed on the kinetics 

(peaks P2 and P1). 

The DCF spectra reveal the reduction in the dynamics of the membrane (P4 and P5) 

as humidity increases because the membrane is more sensitive to changes in the water 

balance under dry conditions [37]. That is because of P4 is related to membrane dehydration 

caused by electro-osmotic drag, whereas P5 is associated with the rehydration of the 

membrane by back diffusion. 
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4.3.1 Variation of current density in the case of H2 and air as inputs:     

To study the impact of the current change at low relative humidity (RH=33%) during H2/Air 

operation by means of DCF spectra, the impedance was recorded at different current 

densities (j = 100, 200, and 300 mA cm-2) while other parameters were kept constant (see 

Figure 4.8 and Figure 4.9).   

As current increases, the high-frequency arc in the Nyquist diagram (Figure 4.8 (c)) 

reduced, while the medium-frequency loop expanded. However, the contributions of 

kinetics and mass transport are not separable. The DCF spectra (Figure 4.9) illustrate these 

changes more clearly. Here all peaks are directly or indirectly influenced by the current 

variation. As already discussed, P1 and P2 can be attributed to the hydrogen oxidation 

reaction (HOR) and ORR, respectively. Both these peaks are reduced as current increases, 

which points to a reduction in kinetic (activation) losses with increasing current density due 

to a larger over-potential [21]. 

Furthermore, P3 shows a significant decrease with increasing current density at a 

characteristic frequency of about 10-20 Hz. The strong current dependence of P3 indicates a 

relationship with the charge transfer kinetics of the oxygen reduction reaction (ORR) [12]. 

However, as already mentioned in section 4.2, P3 is also correlated with the diffusion of 

oxygen in GDL, since air is used as a cathode feed. Due to the strong coupling of these two 

phenomena, one cannot only assign P3 to the charge transfer kinetics of the ORR in H2/air 

mode, but one can allocate it to the kinetics of the ORR in the case of a very high oxygen 

flow at the inlet [20], [21]. 

As already discussed, a characteristic frequency of the peak P4 is within the 

frequency range of the mass transport phenomena in the channel as well as the dehydration 

phenomena induced by the electro osmotic effect. At higher currents, both the mass 

transport and the electro osmotic effects become stronger. Therefore, the amplitude of the 

peak P4 is more pronounced, and the characteristic frequency is shifted to the right in the 

spectra, indicating a faster dynamic [20], [32], [35]. 

The peak P0 refers to the Ohmic Resistance, which is lowered with increasing current 

because of increased hydration of the membrane due to water formation at the cathode 

[22], [39]. However, the peak P5 associated with membrane hydration, caused by back 

diffusion of water, has remained nearly constant in magnitude but shifted towards the 

higher frequency, indicating a faster dynamics of it with an increased current. 
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Figure 4.8: Variation of the current density (100 to 300 mA cm-2) of PEMFC operated with air and 
T = 80°C, RH=33 %. (a) Magnitude spectra, (b) Imaginary part of spectra, (c) Nyquist plot, and 
(d) Relative residuals. 

 

Figure 4.9: (a) The DCF spectra correspond to Impedance spectra in Figure 4.8, (b) Real part of 
the DCF spectra. 

4.3.2 Variation of humidity in the case of H2 and O2 as inputs:     

To investigate how humidification of gases affects water transport phenomena in the 

membrane, the relative humidity was varied from 33% RH to 55% RH at constant current 

density (j = 300 mA cm-2). Moreover, pure oxygen used as a cathode feed to minimize the 

impact of processes related to the mass transport. Figure 4.10 and Figure 4.11 show the 

impedance spectra and the equivalent the DCF spectra, respectively. 
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Figure 4.10: Variation of the relative humidity (33 to 55 %) of PEMFC operated with pure O2 and 
T = 80°C, j=300 mA cm-2. (a) Magnitude spectra, (b) Imaginary part of spectra, (c) Nyquist plot, 
and (d) Relative residuals. 

 

Figure 4.11: (a) The DCF spectra correspond to Impedance spectra in Figure 4.10, (b) Real part 
of the DCF spectra. 

The DCF spectra show that the location of the peaks (P1, P2, and P3), which are 

attributed to kinetic charge transfer and mass transport in the GDL, remains steady when 

the relative humidity is changed. In addition, the magnitude of these peaks indicates only 

very little deviation, which suggests that the nature of these processes remains almost 

constant. 

The peak P4 previously attributed to the dynamics of gas transport in the channel 

changes both location and magnitude along with the relative humidity of the feeds. This is 
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probably due to two reasons: (i) the decreased total flow rate going to lower humidity, 

which affects the time constant of this phenomenon, (ii) the decrement of the water mass 

transport in the GDL, which affects the magnitude.  

Then, the peak P5 at low frequency is significantly influenced by humidification. This 

confirms the earlier assignment of this to the dynamics of water transport in the membrane. 

The DCF spectra indicate indeed the reduction of the impact of the membrane hydration 

with increasing moisture, since the membrane reacts more sensitively to changes in the 

water balance under dry conditions [37]. 

Moreover, as expected, the peak P0 associated with membrane resistance decreases 

with an increased relative humidity of the inflows because of the higher water content of the 

membrane [20]. 

4.4 Analysis of simulated EIS spectra  

In this section, simulated EIS spectra are examined by means of the DCF analysis. The 

impedance spectra are generated using a validated 1D mathematical model under the same 

operating conditions as previously considered for the experimental spectra in section 4.3.1. 

The experimental conditions and the values of the parameters used in the model are 

specified in section 8.2 in the Appendix. The model comprises gas transport in the channel 

and the GDL, water transport in the Nafion membrane and double-layer charging and 

discharging at the catalyst surface. The catalyst layer was considered as an interface, 

although the effect of liquid water formation in the cell was neglected. For details regarding 

the model, refer to the paper by Sorrentino et al. [3] and section 8.2 in the Appendix.  

For comparison, the experimental spectra are also shown in Figure 4.12 (a, c, e) 

together with the simulated one (b, d, f) obtained at three different working points (100, 

200, and 300 mA cm-2). The corresponding the DCF spectra are displayed in Figure 4.13. In 

addition, the relative residuals are shown in Figure 8.5 in the Appendix.  As shown in Figure 

4.12, the simulated spectra are qualitatively well matched to the experimental ones across 

the entire frequency range, although the DCF spectra of the model show most of the peaks. 

The Peak associated with Ohmic resistance P0 has almost the same magnitude range 

in the experiment and simulation. Moreover, its value decreases with increased current 

density because of the water content in the membrane increased by the additional water 

production at the cathode.  

The peak P1 related to the HOR is negligible and basically has no impact on the 

performance losses. The peak P2 associated with the oxygen reduction reaction (ORR) is 

shifted to a higher characteristic frequency, which indicates the faster kinetics of the ORR 

due to a larger overpotential with the increased current in the simulation. 
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Figure 4.12: Experimental (a, c, e) and simulated (b, d, f) EIS spectra of PEMFC operated with 
air and T = 80°C, RH=33 % for 100, 200, and 300 mA cm-2.  Magnitude spectra (a, b), Imaginary 
part of spectra (c, d), and Nyquist plot (e, f). 

 

Figure 4.13: The DCF spectra correspond to EIS spectra in Figure 4.12 (a, c), a Real part of the 
DCF spectra (b, d). The experimental (a, b) and simulated (c, d) spectra. 

As already described, the peak P3 is related to both the ORR and the mass transport 

resistance of the GDL when air is used as cathode feed because of the interconnection of 

these two processes. This is also visible in the case of the simulated spectra in Figure 4.13(c-

d). 

Furthermore, the characteristic frequencies of peak P4 and P5 are almost the same 

as the experimental ones. Besides, the peak P4 is more pronounced in the experiment than 

in the simulation, as the current density increased. This is because peak P4 is correlated with 
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the mass transport effect along the channel, and this phenomenon is highly dependent on 

the current.  

Whereas the peak P5 is concerned with the hydration of the membrane resulting 

from the back diffusion, the dependence of this phenomenon on the current density is 

visible in the simulation. Its magnitude increases with the current density because the water 

production on the cathode side increases.  Thus, the proton conductivity of the membrane is 

enhanced. Consequently, the peak P5, which corresponds to the negative resistance in the 

spectra, is also amplified.  
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5 cFRA 

5.1 Analysis of cFRA experimental data 

In this section, analysis of cFRA experimental data of a PEMFC is discussed. First, the results 

of the spectral analysis performed on the data in the time domain are shown. According to 

this, indications on the reduction of the time required for the experiments are given. Then, 

the determined cFRA spectra under different operating conditions are analysed and 

discussed.  

For each specific operating condition, there are 17 experimental data sets in the time 

domain. Each data set consists of the perturbation of the input (oxygen and/or water partial 

pressure) and the corresponding output response (voltage or current) as periodic signals at 

different frequencies. The signals are restricted in a frequency range between 0.01 Hz and 1 

Hz due to the limitations of the setup, which is not capable to produce periodic inputs at 

higher frequencies. 

In this section, the focus is only on the analysis of cFRA data, so only one input 

(oxygen partial pressure) and one output (voltage) is considered as an example. As shown in 

Figure 5.1 (a-c), the frequencies of the signals are lower as one passes through data sets No. 

1 to 17. Additionally, the signals are turned from sine waves (for data set No. 1) into nearly 

square waves (for data set No. 17). Because of this, the frequency spectra derived from the 

Fourier transform of these signals contained different harmonics beside the fundamental 

frequency, especially for low-frequency signals, as shown in Figure 5.2 (a-c). 

Therefore, instead of taking only the harmonic at the highest frequency (the 

fundamental one), one should also consider all the other dominant frequencies. Thus, all 

dominant frequencies and the corresponding spectrum of input and output for all data sets 

are collected for further analysis. 

Figure 5.3 shows all dominant frequencies collected from all 17 data sets. Note that 

both odd and even harmonics are taken from data sets no. 1 to 6, while only odd harmonics 

are collected from data sets no. 7 to 17, because in the latter case the signals are almost 

square waves. In general, only odd harmonics contain the most information about the 

square wave. 

After obtaining all the dominant frequencies and the respective FFT spectra of input 

and output, the spectrum ratio (transfer function) between output (voltage) and input 

(oxygen partial pressure) at all the dominant frequencies can easily be determined (as shown 

in equation (2.2)).  
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Figure 5.1: The perturbation of the input (oxygen partial pressure) and the corresponding 
output response (electrical potential) as periodic signals for data set no. 1, 8, and 17 (a-c). 
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Figure 5.2: Fourier transform amplitude spectra correspond to the periodic signals in Figure 
5.1 (a-c). 
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Figure 5.3: Dominant Frequencies of the Input and Output signals for all data sets. 

Figure 5.4 displays the magnitude spectra at all dominant frequencies (red crosses). 

For comparison, the cFRA spectra, which correspond to the most fundamental frequencies, 

is also shown in the same figure (green circles). 

 

Figure 5.4: Magnitude spectra of galvanostatic cFRA O2. 

Experimental data have a bit scattering behaviour, so it is useful to approximate 

them for better interpretation and understanding. There are many approaches and tools are 

available for  the data approximation (or smoothing), such as Polynomial interpolation, 

Moving average filtering, Gaussian-weighted moving average, Linear and Quadratic 

regression, Savitzky-Golay filter, and so on [40]–[42].   
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In this thesis, polynomial interpolation is employed for fitting the curve to the cFRA 

data because of its simplicity. However, there are many limitations of the polynomial fitting, 

but here it is used only to follow the overall behaviour of the spectra for better visualization 

and understanding. As shown in Figure 5.4, the blue curve describes an approximation of the 

data (red crosses) with a polynomial of degree 12. 

From Figure 5.4 it becomes obvious that this approach can capture more dynamics 

(especially in the mid to high-frequency range) compared to the earlier one, where only the 

harmonics of the most important frequency are taken into account (green circles). Hence, 

this new strategy offers a better resolution and tries to avoid uncertainties in the spectra 

due to measurement errors. 

Besides this, there is also the possibility to shorten the experiment time by reducing 

the number of data sets, if one can identify sub-datasets (five or six) instead of 17 that 

contain the frequencies, which associated spectra are close to the trajectory of the data 

(curve) and cover the frequency range of interest. In the following section, the feasibility to 

reduce the time for cFRA experiments by using the Loewner framework is discussed. 

5.2 cFRA experimental time reduction 

As discussed in the previous section, a group of six sub data sets out of a total of 17 data sets 

is the most suitable, since contains the frequencies which corresponding spectra near the 

trajectory of the data of all 17 data sets (curve) and cover the frequency range of interest. 

However, 12376 different groups are possible for six sub-datasets out of 17 data sets 

according to nCr. Thus, one should try every possible combination to get the most 

appropriate one. The approach to get this is explained in the form of a flowchart (see Figure 

5.5). 

 

Figure 5.5: Procedure for identifying the best group of six data sets among 12376 possible 
groups that approximate the response of all 17 data sets. 

Pick- frequency response 
measurements that 

correspond to one group 
of six data sets out of 

12376 groups

Apply the Loewner 
framework to construct a 
state-space model from 

these measurements

Predict the response at 
dominant frequencies of 

17 data sets using this 
model

Calculate the root-mean-
square error (RMSE) and 

the frequency range 

Repeat the previous steps 
for all the possible groups 
(12376) and collect their 

RMSE value and the 
frequency range

Identify a group with a 
lower RMSE value and 
maximum frequency 

range
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By applying this methodology, a group of the data sets (1, 6, 7, 12, 14, and 17) is 

identified here as the most favourable group, and its corresponding root-mean-square error 

(RMSE) and frequency range is shown in Figure 5.6 (marked as a light blue circle), which 

displays the RMSE and frequency range of all groups. In this figure, one can observe that this 

group has a lower RMSE, and it is covering the maximum frequency range. 

 

Figure 5.6: Frequency range vs root-mean-square error. 

5.2.1 Confirmation with similar cFRA experimental data 

In this section, the magnitude spectra of the previously obtained best six data sets is plotted 

together with the magnitude spectra of all 17 data sets, making it clear that these sub-data 

sets are capable to follow the nearly identical path of all 17 data sets across the entire 

frequency range. Figure 5.7 shows the dominant frequencies of six data sets (green circles). 

In Figure 5.8, the blue curve and the black curve represent an approximation of the spectra 

of 17 data sets (red crosses) and six data sets (light blue circles), respectively, both having 

the polynomial degree 12. It is remarkable from the figures that these six data sets can 

substitute the 17 data sets and reduce a significant amount of the measurement time. In this 

case, the total measurement time for the 17 data sets is 40.6 minutes, whereas the duration 

of these six data sets is around 16.4 minutes. In this way, about 60 % of the overall time can 

be shortened (=
40.6−16.4

40.6
× 100 ≈ 60 %).   

It must be remarked that the polynomial fitting in this chapter is only used for better 

visualization and understanding of the cFRA spectra. 
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Figure 5.7: Dominant frequencies of the input and output signals for six data sets. 

 

 

Figure 5.8: Magnitude spectra of galvanostatic cFRA O2 for both all-17 data sets and six data 
sets. 
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5.3 cFRA O2 

In order to study the dynamics of the PEMFC associated with mass transport by DCF analysis, 

the cFRA spectra are measured by oxygen partial pressure perturbations under different 

operating modes (voltastatic and galvanostatic), see eqs. (2.1) and (2.2). Figure 5.9 shows 

the experimental spectra obtained at three different working points (100, 200, and 300 mA 

cm-2) in galvanostatic (a-b) and voltastatic (c-d) mode, and the respective DCF spectra are 

also displayed in Figure 5.10.  

Notice that the experimental spectra shown in Figure 5.9 are an approximation of the 

actual data for a better interpretation and understanding (see Figure 8.7 for gavanostatic 

and Figure 8.8 for voltastatic in section 8.3 in Appendix). However, the actual data were used 

to obtain the respective DCF spectra as displayed in Figure 5.10. That is also valid for all the 

cases. As the focus is on the study of the main dynamics in the cFRA spectra, the rank of the 

Loewner matrix is selected as the order of the model k in all cases. Thus, the relative 

residuals are very small (less than 0.1%) over the whole frequency range, which confirms the 

reproducibility (see Figure 8.10 (a, c) in section 8.3 in Appendix).  

As discussed in the chapter 4 in the study of EIS spectra, generally three dynamics are 

observed in the frequency range of 0.01 - 1 Hz. First one is mass transport of oxygen in the 

GDL, second one is the transport of oxygen along the channel, and last one is hydration of 

membrane because of back diffusion of water.  

There is only one clear dynamics is observed in the galvanostatic as well as in the 

voltastatic mode.  The associated characteristic frequencies can be identified by an inflection 

point in the magnitude spectra or by the turning point in the imaginary part of the spectra 

[3]. Even in the DCF spectra around 0.1 Hz a clear peak (denoted as 1) can be seen. This 

phenomenon (1) is caused by the mass transport of oxygen along the channel and also by 

oxygen transport through the GDL to the electrode surface.  

Besides, a small but visible peak (marked as 3) can be observed in voltastatic mode at 

0.03 Hz only at a 300mA cm-2 current density (see Figure 5.10 (c-d)). It is mostly because of 

water transport in the membrane caused by back diffusion. However, it was only seen at 

higher current density due to the higher water production at the cathode side. It does not 

appear in the galvanostatic spectra because there is a constant water production by the ORR 

at the cathode and consequently uniform hydration of the membrane, which is not a 

dynamic element under this operating condition [3].  
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Figure 5.9: Experimental cFRA O2 spectra under galvanostatic (a-b) and voltastatic (c-d) control 
for 100, 200, and 300 mA cm-2. 

 

Figure 5.10: The DCF spectra correspond to cFRA O2 spectra in Figure 5.9 (a, c), Real part of 
the DCF spectra (b, d).  

To make comparisons, the cFRA spectra are simulated by a validated numerical 1D 

model at the same operating conditions that have been previously considered for the 

experiment. The details about the model and the parameter values taken in the model are 

described in section 8.2 in Appendix. The results are displayed in Figure 5.11 and the 

corresponding DCF spectra are provided in Figure 5.12. Also, relative residuals are shown in 

Figure 8.10 (b, d) in the Appendix.   
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Figure 5.11: Simulated cFRA O2 spectra under galvanostatic (a-b) and voltastatic (c-d) control 
for 100, 200, and 300 mA cm-2. 

 

Figure 5.12: Simulated DCF spectra correspond to cFRA O2 spectra in Figure 5.11 (a, c), Real 
part of the DCF spectra (b, d). 

As can be seen, the theoretically calculated cFRA spectra are qualitatively well 

matched to the experimental oxygen cFRA spectra with a Frequency range lower than 0.5 

Hz. In the simulations (see Figure 5.11 & Figure 5.12), phenomena (1) in the galvanostatic 

mode (a-b) and phenomena (1) and (3) in the voltastatic mode (c-d) appear in almost the 

same frequency range to the respective experimental spectra. These phenomena are related 

to gas transport in the channel (1) and water transport in the membrane (3), respectively, as 

discussed previously.  
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5.4 cFRA H2O 

To understand the water transport phenomena in the membrane of the PEMFC through DCF 

analysis, the cFRA spectra obtained by water partial pressure perturbations at three 

different working points (100, 200, and 300 mA cm-2) in the galvanostatic mode (see, eq. 

(2.2)) are illustrated in Figure 5.13 (a-b), and simulated spectra of cFRA-H2O generated by 

the theoretical model under the same condition are also displayed in Figure 5.13 (c-d) for 

comparison. The respective DCF spectra can be seen in Figure 5.14 and relative residuals 

displayed in Figure 8.10 (e-f) in the Appendix. Remember that the experimental spectra 

depicted in Figure 5.13 (a-b) are an approximation of the real data to allow clear 

interpretation (see Figure 8.9 in Appendix). Nevertheless, the original data were employed 

for determining the DCF spectra.  

There are three distinct dynamics visible in the magnitude and imaginary part of the 

experimental spectra in Figure 5.13 (a-b), whereas in the case of the simulated spectra in 

Figure 5.13 (c-d) only two phenomena are visible. Interestingly, three clear peaks can be 

seen in the DCF spectra related to simulated ones (see Figure 5.14 (c-d)), thus the DCF 

analysis facilitates a better decoupling of the phenomena. 

 

Figure 5.13: Experimental (a-b) and simulated (c-d) cFRA H2O spectra under galvanostatic 
control for 100, 200, and 300 mA cm-2. 
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Figure 5.14: The DCF spectra correspond to cFRA H2O spectra in Figure 5.13 (a, c), Real part of 
the DCF spectra (b, d). The experimental (a, b) and simulated (c, d) spectra. 

Figure 5.14 displays a very distinct peak (denoted by 3) for both the experimental and 

the simulated spectra in the low-frequency range around 0.01 Hz. This characteristic 

frequency refers to the water transport phenomena in the membrane, which are caused by 

the slow diffusion of the water in the membrane. Only at very low frequencies, the water 

partial pressure signal has sufficient time to diffuse through the whole membrane. As a 

result, the water content of the membrane changes and affects the membrane resistance. 

Consequently, the voltage increases when the water partial pressure is increased, and vice 

versa.  

Furthermore, at the higher current density, this phenomenon (3) is more pronounced 

due to the electro osmotic effect that dries out the membrane strongly. As drier the 

membrane becomes, the stronger the effect of changes in the water balance on the 

membrane resistance and so on the voltage [37]. 

Indeed, the dynamics associated with gas transport in the channel (around 0.1 Hz) 

can be recognized in the DCF spectra (Figure 5.14). However, it is very noticeable in the 

simulated spectra, but partly visible in the experimental spectra. 
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6 Conclusion and Future Suggestions 

6.1 Conclusion 

A data-driven approach to study the different dynamics of a PEMFC is developed in this 

thesis. To accomplish this, the Loewner framework is employed as a data-driven approach. 

Subsequently, this novel method named the distribution of the characteristic frequency 

(DCF) was successfully applied for analysing the EIS and the cFRA experimental spectra of a 

PEMFC as well as simulated spectra of a validated 1D numerical PEMFC model. The DCF 

analysis of the EIS experimental spectra revealed five distinct peaks that correspond to the 

polarization processes and one peak representing the Ohmic. On the other hand, only three 

different dynamics could be distinguished through the patterns of the Bode and the Nyquist 

plots, which pointed to a de-coupling of the phenomena having comparable time constants. 

In order to assign each of these peaks to the various internal phenomena of the 

PEMFC, specific experimental conditions (feed composition and current density) were 

applied. As a result, all the peaks were successfully allocated. For example, a peak above 100 

Hz is attributed to the HOR, a peak around 50 Hz is contributed to the ORR, while peaks 

around 10 Hz are the result of both the ORR and the mass transport of the oxygen in the 

GDL, a peak around 0.1 Hz is caused by the mass transport losses along the channel, whereas 

a peak around 0.01 Hz is related to the membrane hydration due to back diffusion. Finally, a 

peak of over 10 kHz represents the Ohmic resistance. Additionally, the DCF analysis of the 

simulated EIS spectra has detected most of the peaks apart from a peak that corresponds to 

(HOR). Nevertheless, the other peaks are qualitatively well matched to the experimental 

ones. 

The DCF analysis of the experimental and simulated cFRA spectra of O2 has 

effectively identified the peaks that are associated with oxygen mass transport phenomena 

in the GDL and/or the channel as well as water transport phenomena within the membrane, 

depending on the operating modes (galvanostatic and voltastatic) confirming the hypothesis 

of previous studies. In addition, the DCF analysis of the cFRA spectra of H2O also revealed 

peaks with respect to these dynamics. 

This work confirms that clear identification of the polarization losses based on their 

characteristic frequencies (time constants) is feasible and this leads to a detailed 

understanding of the electrochemical phenomena occurring in the PEMFC. This method has 

considerable benefits in terms of high resolution, allows easy reading of impedance values, 

and determines the distribution of characteristic frequencies directly from frequency 

response measurement. 

In addition, the cFRA experimental spectra were analysed considering all the 

dominant harmonics in addition to the fundamental frequency, which allowed minimizing 

the number of data sets (or measurement points) that are required in order to obtain the 
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frequency range of interest, instead of 17 to only six. As a result, the present duration of 

measurement for each experiment under specific operating conditions can be shortened by 

up to 60 %.  

6.2 Future suggestions 

The previous discussion reveals that this novel approach is a very powerful way of studying 

EIS and cFRA spectra. The only constraint that prevents it from being a black-box approach is 

the selection of an order of the state-space model k. The model order k is a very crucial 

parameter that determines the quality of the DCF spectra. In the case of excellent data 

quality or ideal data, it is possible to take a higher value of k (the rank of the Loewner 

matrix), but for experimental or real data, it is necessary to choose an appropriate value. An 

improper value of k leads to incorrect peaks as well as a shift in the frequency and 

magnitude of the peaks in the DCF spectra due to an over-fitting of the model to the noise. 

Thus, in order to deal with noisy data, prior knowledge of the system is required for a proper 

selection of this parameter. Hence, one needs to define some criteria in order to choose the 

order of the state-space model, which can automate this approach. 

The presented analysis offers an excellent foundation for improving the performance 

of the mathematical model, as this approach allows clear identification of the contribution of 

the individual loss mechanisms occurring in the PEMFC, quantitatively. Thus, accurate 

insights of each of the phenomena are possible by comparing the DCF spectra for both 

experiment and simulation. Hence, the improvement in the performance of the numerical 

model can be achieved by modifying associated model parameters in the simulation. 
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8 Appendix  

8.1  Fourier transform (FT) 

One often experiences the difficulty of transforming a time-domain signal to the frequency 

domain and vice versa. Fourier transform is a powerful tool for achieving this conversion and 

is used in many applications so many times. A time-domain signal may be continuous or 

discrete in signal processing and may be aperiodic or periodic. This leads to four types of 

Fourier transforms, which are shown in Figure 8.1 [43]. 

 

Figure 8.1: Four types of Fourier transforms [43]. 

For convenience, explanation here will be limited to Discrete Fourier Transform 

(DFT), which is widely available as part of software packages such as MATLAB, Scipy(python), 

etc., but one can approximate other transforms using DFT. 

8.1.1 Real and complex versions of transforms 

There is a real version and a complex version of each of the transforms listed above. The real 

transform version takes in real numbers and gives two sets of real frequency domain points 

– one set representing coefficients over cosine basis function and the other set representing 

the coefficient over sine basis function. The complex version of the transforms represents 

positive and negative frequencies in a single array. The complex versions are flexible, 
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allowing it to process complex-valued signals as well as real-valued signals. The Figure 8.2 

below captures the difference between real DFT and complex DFT [44]. 

 

Figure 8.2: Real and complex DFT [44]. 

8.1.1.1 Real DFT 

Consider the case of N-point real DFT, it takes in N samples of (real-valued) time-

domain waveform x[n] and gives two arrays of length 𝑁 2⁄ + 1 each set projected on cosine 

and sine functions respectively. 

 𝑋𝑟𝑒[k] =
2

𝑁
∑ 𝑥[n]cos (

2𝜋𝑘𝑛

𝑁
)

𝑁−1

𝑛=0

 (8.1) 

 

 𝑋𝑖𝑚[k] = −
2

𝑁
∑ 𝑥[n]sin (

2𝜋𝑘𝑛

𝑁
)

𝑁−1

𝑛=0

 (8.2) 

 

The time domain index n runs from 0 to N, the frequency domain index k runs from 0 

to 𝑁 2⁄ . 

8.1.1.2 Complex DFT 

Consider the case of N-point complex DFT, it takes in N samples of (the complex-valued) 

time-domain waveform x[n] and produces an array X[k] of length N. 
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 𝑋[k] =∑ 𝑥[n]𝑒−
𝑖2𝜋
𝑁
𝑘𝑛

𝑁−1

𝑛=0

 (8.3) 

 

 𝑋[k] =∑ 𝑥[n] [𝑐𝑜𝑠 (
2𝜋

𝑁
𝑘𝑛) − 𝑖 𝑠𝑖𝑛 (

2𝜋

𝑁
𝑘𝑛)]

𝑁−1

𝑛=0

 (8.4) 

 

From these equations ((8.1) and (8.2)), one can see that the real DFT is calculated by 

projecting the signal onto cosine and sine basis functions. However, the complex DFT (eq. 

(8.3)) projects the input signal onto exponential basic functions (Euler's formula combines 

these two concepts (see eq. (8.4))) [44]. 

If the input signal is a real value in the time domain, the complex DFT fills the 

imaginary part with zero during the calculation. The following Figure 8.3 shows how the raw 

FFT results are interpreted in MATLAB, which calculates the complex DFT.  

The values in the arrays are interpreted as below 

 X [0] represents the component of the DC frequency 

 Next N/2 terms are positive frequency components with X[N/2] being the Nyquist 

frequency (which is equal to half of sampling frequency) 

 Next N/2-1 terms are negative frequency components (note: negative frequency 

components are the phasors turning in the opposite direction, they can optionally be 

omitted depending on the application) 

 

Figure 8.3: Interpretation of frequencies in complex DFT output [44]. 

 



Appendix 

58 
 

8.1.2 Fast Fourier transform (FFT) 

The FFT function in MATLAB is an algorithm published in 1965 by J.W. Cooley and J.W. 

Tuckey for the efficient calculation of the DFT. It uses the special structure of the DFT when 

the signal length is a power of 2. In this case, the computing complexity is significantly 

reduced [44]. 

FFT is widely used in software packages such as MATLAB, Scipy, etc. MATLAB's FFT 

implementation computes the complex DFT, which is very similar to the above equations 

except for the scaling factor. For comparison, the MATLAB's FFT implementation calculates 

the complex DFT and its inverse as 

 𝑋[k] =∑ 𝑥[𝑛]𝑒−
𝑖2𝜋
𝑁
𝑘𝑛

𝑁−1

𝑛=0

 (8.5) 

 

 𝑥[n] =
1

𝑁
∑ 𝑋[𝑘]𝑒

𝑖2𝜋
𝑁
𝑘𝑛

𝑁−1

𝑛=0

 (8.6) 

 

The MATLAB commands that implement the above equations ((8.5) and (8.6)) are FFT 

and IFFT, respectively (for details refer to [45]). The respective syntax is as follows 

𝑋 = 𝑓𝑓𝑡(𝑥, 𝑁)  

𝑥 = 𝑖𝑓𝑓𝑡(𝑋,𝑁)  

8.1.3 Interpreting the FFT results 

N-point complex DFT is computed with the FFT function. The transformation length N should 

cover the signal of interest otherwise we will lose some valuable information in the process 

of conversion to the frequency domain. However, if we know about the nature of the signal, 

we can select a reasonable length [44]. 

Each point / bin in the FFT output array is spaced by the frequency resolution ∆f, 

which is calculated as 

 ∆𝑓 = 𝑓𝑠 𝑁⁄  (8.7) 

Where fs is the sampling frequency and N is the FFT size taken into account. 

8.1.3.1 Extract amplitude of frequency components (amplitude spectrum) 

The FFT function calculates the complex DFT and thus the results in a sequence of complex 

numbers of the form  𝑋𝑟𝑒 + 𝑗 𝑋𝑖𝑚. The amplitude spectrum is obtained 

 |𝑋[𝑘]| = √𝑋𝑟𝑒2 +  𝑋𝑖𝑚
2  (8.8) 
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8.1.3.2 Extract phase of frequency components (phase spectrum) 

The phase of the spectral components is calculated as 

 ∠𝑋[𝑘] = tan−1 (
𝑋𝑖𝑚
𝑋𝑟𝑒

) (8.9) 

Extracting the right phase spectrum is a tricky problem. Above equation looks simple, 

but when calculating the inverse tangents using computers one should be careful. Function 

atan ( ) in Matlab seems to be the obvious option for implementation. Use of atan ( ) 

function, however, may prove inaccurate if no further precautions are taken. The atan ( ) 

function only computes the inverse tangent over two quadrants, i.e. it will only return values 

within the interval of [−𝜋 2⁄ , 𝜋 2⁄ ]. Hence the phase needs to be properly unwrapped. One 

can easily solve this problem by using atan2(𝑋𝑖𝑚, 𝑋𝑟𝑒) function to calculate the inverse 

tangent over all the four quadrants [44].  

8.2 Experimental parameters and model description 

8.2.1 Experimental parameters 

Table 8.1 describes the normal operating parameters of the PEMFC, which are also used in 

the simulation. 

Table 8.1: Normal operating conditions of the PEMFC. 

Operating Parameters Unit Value 

Temperature K 353 

Pressure Pa 105 

Cathode inputs: 

Volumetric flow rate of air m3s-1 10-5 

Dew point temperature K 328 

Oxygen partial pressure Pa 1.7713 × 104 

Water partial pressure Pa 1.565 × 104 

Relative air humidity % 33 

Anode inputs:   

Volumetric flow rate of H2 m3s-1 1.42 × 10-5 

Dew point temperature K 328 

Hydrogen partial pressure Pa 8.435  × 104 

Water partial pressure Pa 1.565 × 104 

Relative air humidity % 33 

Fuel cell parameters: 

Porosity of GDL - 0.7 

Thickness of GDL m 190 × 10-6 

Thickness of Membrane m 127 × 10−6 

Active Area m2 26 × 10−4 
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8.2.2 Model description 

A simplified view of the structure and the individual segments that comprise a PEM fuel cell 

is shown in Figure 8.4. In the following model description, all the main dynamic phenomena 

are included that comprise  (i) the charging (or discharging) of the double layer at the 

electrode surface, (ii) the mass transport of the gaseous reactants, and (iii) the water 

transport in the Nafion membrane. 

The dynamic mass balances were formulated for all the species that are present in all 

the segments of the cell. Concentration variations taken into account along the sandwich 

coordinate x, while the composition along the axis coordinate y is considered constant. 

Moreover, isothermal and isobaric conditions are assumed inside the cell.  

In order to correlate the effect of the various transport phenomena with the 

electrical responses, a dynamic charge balance on the catalyst surface was expressed. More 

realistic boundary conditions, which relate to the dynamics of the different compartments of 

the cell was formulated. In the following tables, detailed information on the model 

equations for the different domains of the cell, the boundary conditions, and the values of 

the model parameters are given. For details, refer to this paper [3]. 

 

Figure 8.4: A scheme of a PEMFC [3]. 
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Table 8.2: Balance equations of the cell. 

 Equations References 

Mass balance 
in CH 𝑉

𝑑𝑃𝛼
𝐶𝐻

𝑑𝑡
= 𝑃𝛼,𝑖𝑛

𝐶𝐻 𝐹𝑖𝑛 − 𝑃𝛼
𝐶𝐻𝐹𝑜𝑢𝑡 + 𝑅𝑇𝐴𝐽𝛼|Ω𝑖, 𝑡   𝑖 = 1,4 

[3] 

Mass balance 
in GDL 

𝜕𝑃𝛼
𝐺𝐷𝐿

𝜕𝑡
=  𝐷𝛼,𝛽

𝑒𝑓𝑓 𝜕
2𝑃𝛼

𝐺𝐷𝐿

𝜕𝑥2
 

[46] 

Mass balance 
in membrane 

𝜌𝑀
𝑀𝑀

𝜕𝜆𝑀
𝜕𝑡

= −
𝜕𝑁𝑊
𝜕𝑥

 
[3] 

Charge 
balance for 

anode 

𝑖 = 𝐶𝑑𝑙
𝑎
𝑑𝜂𝑎
𝑑𝑡

+ 2𝐹𝑟𝐻𝑂𝑅 
[3] 

Charge 
balance for 

cathode 

𝑖 = 𝐶𝑑𝑙
𝑐
𝑑𝜂𝑐
𝑑𝑡

− 4𝐹𝑟𝑂𝑅𝑅 
[3] 

Potential loss 
due to Ohmic 

resistance 

∆𝛷𝑀 = 𝑖∫
1

𝑘𝑀(𝜆𝑀)
d𝑥

𝑙𝑀

0

 
[3] 

Polarization 
equation 

𝑈 = 𝑈𝑂𝐶𝑃 − 𝜂𝑎 + 𝜂𝑐 − ∆𝜙𝑀 [3] 

 

Table 8.3: Constitutive equations. 

 Equations References 

Effective 
diffusivity 

𝐷𝛼,𝛽
𝑒𝑓𝑓

= 𝜖1.5𝐷𝛼,𝛽 [3] 

Water flow in 
membrane 

𝑁𝑊 = −𝐷𝑊(𝜆𝑀)
𝜌𝑀
𝑀𝑀

𝜕𝜆𝑀
𝜕𝑥

− 𝜉(𝜆𝑀)
𝑖

𝐹
 

[3] 

Water 
diffusivity in 
membrane 

   

𝐷𝑊(𝜆𝑀) = 𝜆𝑀𝐷𝑊
0  𝑒𝑥𝑝 (−

2436

𝑇
) 

[47] 

Electro- 
osmotic drag 

constant 

 
𝜉(𝜆𝑀) = 𝐾𝑀𝜆𝑀 

[48] 

Membrane 
conductivity 𝑘𝑀 = (0.005139𝜆𝑀 − 0.00326) 𝑒𝑥𝑝 (1268 (

1

303
−
1

𝑇
)) 

[48] 

Kinetic 
equation for 

HOR 
𝑟𝐻𝑂𝑅 =

𝐾𝐻𝑂𝑅(𝑃𝐻2
𝐶𝐿)

1 2⁄

2√𝐾𝐻2,𝑎𝑑
sinh (

𝛼𝑎𝐹

𝑅𝑇
 𝜂𝑎) 

[49], [50] 

Kinetic 
equation for 

ORR 

𝑟𝑂𝑅𝑅 =
𝑃𝑂2
𝐶𝐿

𝑅𝑇𝐶𝑂2,𝑟𝑒𝑓
𝑡𝑐𝑐𝑙

𝑎𝑖0
4𝐹
𝑒𝑥𝑝 (−

𝛼𝑐𝐹

𝑅𝑇
 𝜂𝑐) 

[49], [50] 
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The model contains six-second order partial differential equations (PDE). Hence, 

twelve boundary conditions (BC) are required to solve these equations. 

Table 8.4: Boundary conditions. 

Assumptions Equations References 

The continuity of the 
partial at the GDL/CH 

interface of the 
cathode. 

 
𝑃𝛼
𝐺𝐷𝐿|𝑥=Ω1,𝑡 = 𝑃𝛼

𝐶𝐻 

𝑤ℎ𝑒𝑟𝑒 𝛼 = 𝑂2, 𝑁2, 𝐻2𝑂 

[3] 

The continuity of the 
partial at the GDL/CH 

interface of the 
anode. 

 
𝑃𝛼
𝐺𝐷𝐿|𝑥=Ω4,𝑡 = 𝑃𝛼

𝐶𝐻 

𝑤ℎ𝑒𝑟𝑒 𝛼 = 𝐻2, 𝐻2𝑂 

[3] 

Oxygen diffusion 
equals the rate of 

oxygen consumption 

−
𝐷𝑂2,𝑎𝑖𝑟
𝑒𝑓𝑓

𝑅𝑇

𝜕𝑃𝑂2
𝐺𝐷𝐿

𝜕𝑥
|
𝑥=Ω2,𝑡

= 𝑟𝑂𝑅𝑅 
[3] 

Nitrogen does not 
participate in the ORR −

𝐷𝑁2,𝑎𝑖𝑟
𝑒𝑓𝑓

𝑅𝑇

𝜕𝑃𝑁2
𝐺𝐷𝐿

𝜕𝑥
|
𝑥=Ω2,𝑡

= 0 
[3] 

The steady-state 
water balance 

at cathode side 

−
𝐷𝐻2𝑂,𝑎𝑖𝑟
𝑒𝑓𝑓

𝑅𝑇

𝜕𝑃𝐻2𝑂
𝐺𝐷𝐿

𝜕𝑥
|
𝑥=Ω2,𝑡

− 𝐷𝑊(𝜆𝑀)
𝜌𝑀
𝑀𝑀

𝜕𝜆𝑀
𝜕𝑥
|
𝑥=Ω2,𝑡

 

= 2𝑟𝑂𝑅𝑅 + 𝜉(𝜆𝑀)
𝑖

𝐹
 

[3] 

Hydrogen diffusion 
equals the rate of 

Hydrogen 
consumption 

 

−
𝐷𝐻2,𝐻2𝑂
𝑒𝑓𝑓

𝑅𝑇

𝜕𝑃𝐻2
𝐺𝐷𝐿

𝜕𝑥
|
𝑥=Ω3,𝑡

 = 𝑟𝐻𝑂𝑅 

[3] 

The steady-state 
water balance 
at anode side 

−
𝐷𝐻2𝑂,𝐻2
𝑒𝑓𝑓

𝑅𝑇

𝜕𝑃𝐻2𝑂
𝐺𝐷𝐿

𝜕𝑥
|
𝑥=Ω3,𝑡

 

= −𝐷𝑊(𝜆𝑀)
𝜌𝑀
𝑀𝑀

𝜕𝜆𝑀
𝜕𝑥
|
𝑥=Ω3,𝑡

+ 𝜉(𝜆𝑀)
𝑖

𝐹
 

[3] 

At the catalyst/Nafion 
interface, the water 
vapour is considered 
in equilibrium with 

the water inside the 
Nafion membrane,  

𝜆𝑊 = 0.043 + 17.81
𝑃𝐻2𝑂
𝐶𝐿

𝑃𝑠𝑎𝑡
|
𝑥=Ω𝑖,𝑡

− 39.85
𝑃𝐻2𝑂
𝐶𝐿

𝑃𝑠𝑎𝑡
|
𝑥=Ω𝑖,𝑡

2

+ 36
𝑃𝐻2𝑂
𝐶𝐿

𝑃𝑠𝑎𝑡
|
𝑥=Ω𝑖,𝑡

3

 

𝑤ℎ𝑒𝑟𝑒 𝑖 = 3,4 

[48] 
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Table 8.5: Model parameters. 

Quantity Unit Value 

Double-layer capacitance for cathode and 
anode 𝐶𝑑𝑙  

F m-2 100 

Reference concentration O2  𝐶𝑂2,𝑟𝑒𝑓 mol m-3 40 

Product of specific catalyst area and exchange 
current 𝑎𝑖0 

A m-3 104 

Cathode catalyst layer thickness 𝑡𝑐𝑐𝑙 m 10-5 

Kinetic constant for hydrogen oxidation 𝐾𝐻𝑂𝑅 mol m-2 s-1 4.15 × 10−1 

Kinetic constant for hydrogen adsorption 
𝐾𝐻2 , 𝑎𝑑 

Pa-1/2 5.07 × 104 

Charge transfer coefficient at the anode 𝛼𝑎 - 0.5 

Charge transfer coefficient at the cathode 𝛼𝑐 - 0.55 

Effective diffusivity for O2 𝐷𝑂2, 𝑁2
𝑒𝑓𝑓

 m2 s-1 6.69  × 10−7 

Effective diffusivity for H2O 𝐷𝐻2𝑂, 𝑁2
𝑒𝑓𝑓

 m2 s-1 6.6 × 10−6 

Open circuit potential 𝑈𝑂𝐶𝑃 V 1.2 

Volume of the channel 𝑉 m3 7.2 × 10−6 

8.3 Different verifications 

 

Figure 8.5: Relative residuals corresponding to the experimental (a) and simulated (b) EIS 
spectra in Figure 4.12. 

 

Figure 8.6: Magnitude spectra of galvanostatic cFRA O2 for both all-17 data sets and six data 
sets (Verification with other cFRA experimental data). 
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Figure 8.7: Original data of Experimental cFRA O2 spectra shown in Figure 5.9 (a-b) under 
galvanostatic control for 100, 200, and 300 mA cm-2. 

 

 

 

Figure 8.8: Original data of Experimental cFRA O2 spectra shown in Figure 5.9 (c-d) under 
voltastatic control for 100, 200, and 300 mA cm-2. 
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Figure 8.9: Original data of Experimental cFRA H2O spectra shown in Figure 5.13 (a-b) under 
galvanostatic control for 100, 200, and 300 mA cm-2. 

 

 

Figure 8.10: Relative residuals corresponding to the experimental (a, c, e) and simulated (b, d, 
f) cFRA spectra shown in Figure 5.9, Figure 5.11, and Figure 5.13. (a, b) cFRA O2 under 
galvanostatic control, (c, d) cFRA O2 under voltastatic control, and (e, f) cFRA H2O under 
galvanostatic control.  


