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Abstract

In this thesis, we study submodels of a diffuse interface multiphase mixture model
which was proposed by Dreyer, Giesselmann, and Kraus in [24]. This model is a type
of phase field model which describe the chemically reacting viscous fluid mixtures
consisting of N constituents that may develop a transition between a liquid and a
vapor phases.
The submodel has N partial mass balance equations, a balance equation of the
momentum, and a transport equation of the phase field variable. The phase variable
indicates the present phase. The model is supplied with a complicated equation of
state. We will consider one space dimension and assume an isothermal flow. We
consider the homogeneous part of this model which is a hyperbolic system of partial
differential equations for two phase mixture flow with N components.
The main aim of this work is to study the sub-model analytically and numerically.
The analytical study reveals that this model is strictly hyperbolic. We presented
the analytical structure and the mathematical properties of the sub-model such as
the eigenstructure and the wave types of the solutions. We also obtain the exact
solution of Riemann initial value problem for the pure phases flow, i.e. N = 1 as
well as for the multicomponent flow, i.e. N > 1.
Any discretization of the full model in [24] has to contain a correct and stable
implementation of the homogeneous part. Therefore, it is justified to deal with the
problem of numerics for the submodel separately. This is what we do.
In the numerical study, we first consider a vapor-vapor flow. We solve the model
using different Riemann solvers and present the results. We compare the numerical
solution with the exact results obtained in the analytical study. Further, we consider
vapor-liquid flows. In this case, major difficulties appear such as negative pressures,
i.e. unphysical results.
We overcome these difficulties using a tracking the interface approach. But actually,
these methods are generally not easy to implement. So we also consider discontinuity
capturing methods. For these, we also develop a new strategy to deal with this
situation. The new approach is called estimating the pressure approach. We applied
the new method to several test cases. This gave an undeniable improvement but
still leaves some open problems for future research.
Finally, in this work, we include the source term in the sub-model, and we discuss
the ability of this model to deal with chemical reactions.
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Zusammenfassung

In dieser Arbeit untersuchen wir Teilmodelle eines diffusen Grenzflächen Mehrphasen-
mischungsmodells, das von Dreyer, Giesselmann und Kraus in [24] vorgeschlagen
wurde. Das Modell in [24] ist eine Art Phasenfeldmodell, das chemisch reagierende
Fluidgemische beschreibt, die aus N Bestandteilen bestehen, die einen Übergang
zwischen einer flüssigen und einer Dampfphase entwickeln können.
Das Teilmodell hat N partielle Massenbilanzgleichungen, eine Bilanzgleichung des
Impulses und eine Transportgleichung der Phasenfeldvariablen. Die Phasenvariable
zeigt die gegenwärtige Phase an. Das Modell wird mit einer komplizierten Zus-
tandsgleichung geliefert. Wir betrachten eine Raumdimension und gehen von einer
isothermen Strömung aus. Wir betrachten den homogenen Teil dieses Modells, das
ein hyperbolisches System partieller Differentialgleichungen für eine Zweiphasen-
Gemischströmung mit N Komponenten ist.
Das Hauptziel dieser Arbeit ist es, das Teilmodell analytisch und numerisch zu un-
tersuchen.
Die analytische Studie zeigt, dass dieses Modell streng hyperbolisch ist. Wir stellen
die analytische Struktur und die mathematischen Eigenschaften des Teilmodells wie
die Eigenstruktur und die Wellentypen der Lösungen vor. Wir erhalten auch die
exakte Lösung des Riemann-Anfangswertproblems für die reine Phasenströmung,
d.h. N = 1, sowie für die Mehrkomponentenströmung, d.h. N > 1.
Jede Diskretisierung des vollständigen Modells in [24] muss eine korrekte und sta-
bile Implementierung des homogenen Teils enthalten. Daher ist es gerechtfertigt,
das Problem der Numerik für das Teilmodell gesondert zu behandeln. Das ist, was
wir machen.
Bei der numerischen Untersuchung betrachten wir zunächst eine Dampf-Dampf-
Strömung. Wir lösen das Modell mit verschiedenen Riemann-Lösern und präsentieren
die Ergebnisse. Wir vergleichen die numerische Lösung mit den exakten Ergebnissen
der analytischen Studie. Weiterhin betrachten wir Dampf-Flüssigkeits-Strömungen.
In diesem Fall treten große Schwierigkeiten auf, z.B. negative Drücke, d.h. un-
physikalische Ergebnisse.
Wir überwinden diese Schwierigkeiten mit einer Verfolgung der Grenzfläche, d.h.
einem Tracking-the-Interface-Ansatz. Aber tatsächlich sind diese Methoden im All-
gemeinen nicht einfach zu implementieren. Daher betrachten wir auch Diskonti-
nuitätserfassungsmethoden. Auch für diese entwickeln wir eine neue Strategie, um
mit dieser Situation umzugehen. Der neue Ansatz wird Druckschätzungsansatz
genannt. Wir wenden diese neue Methode auf mehrere Testfälle an. Dies führt
zu einer unbestreitbaren Verbesserung, lässt aber noch einige offene Probleme für
zukünftige Forschung.
Schließlich nehmen wir in dieser Arbeit den Quellterm in das Teilmodell auf und
diskutieren die Fähigkeit dieses Modells, chemische Reaktionen zu berücksichtigen.
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Chapter 1

Introduction

Consider the classical phases of matter gas, liquid, and solid. Multiphase mixtures
occur in nature and modern technology such as e. g. gas bubbles in liquids, solid
particles transported by liquid or droplets in a gas.
The flow of the multiphase mixtures is an important phenomenon that plays a major
role in many fields of science. One can see it when the liquid pressure drops below
the vapor pressure, then the liquid vaporizes and forms a bubble. This is called
cavitation, see Bachmann [12]. Further examples, gas and water may coexist in a
rock, dust clouds in astrophysics and droplets of liquid move in a gas.
The flow of multiphase mixtures can be combined with a chemical reaction. This
depends on the nature of the materials in the mixture.
Our main interest in this work is the flow of two phases. The two-phase flow of
gases, liquids and solids can be divided into three categories according to the phase
materials: Gas-liquid flows, gas-solid flows, and liquid-solid flows.
In many situations, the components are stationary with respect to one another which
means one component does not diffuse into another which leads to the complexity
of the theoretical treatment.
In this work, we do not consider the solid phase we consider only fluids that can be
made to flow, and the study is turned to be the study of multicomponent fluids.
The presence of multicomponent fluids everywhere in nature demands a deep un-
derstanding of their behavior so that many models are considered. Of course, math-
ematical modeling and numerical computations face huge difficulties. One of the
main reasons for such difficulties is the treatment of the interfaces. These are the
surfaces and layers that separate the phases. One of the difficulties at the interface is
the interaction between the phases which includes the transfer of mass, momentum,
and energy across the interface. Also, the discontinuities of the fluid properties at
the interface are another reason for the complexity. So that the two-phase flows are
characterized by the treatment of the interface. The interface can be considered a
free boundary in the flow. In this case, we call it the sharp interface. When we
consider a thickness of the interface here we call it a diffuse interface.
Based on the nature of the interface one can distinguish two kinds of models. The
first one treats the interface as a sharp interface. Many methods were introduced
for the treatment of the sharp interface models. These methods are classified into
Lagrangian methods, Eulerian methods, combined Euler-Lagrangian methods, and
arbitrary Lagrangian-Eulerian methods. More details can be found in Hu et al. [39],
Saurel [63], Scardovelli and Zaleski [66], Tryggvason et al. [77], Saurel and Ab-
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CHAPTER 1. INTRODUCTION

grall [64] as well as Saurel and Le Metayer [65].
The second kind of models deals with the interface as a diffuse zone so we call this
kind of models a diffuse interface models. These models are based either on the Eu-
ler equations or the multiphase flow equations, see discussions in Acar [4], Anderson
et al. [6], Alzein [5], Bachmann [12], Abgral [1], Shyue [68], Saurel and Abgral [2], [3]
as well as Andrianov et al. [10] [9].
One can see that some models are simple and efficient but have limited applications
in physics and require a simple equation of state.
On the other hand, some models have many applications in physics but need a large
number of equations to be used.
For instance, models of Baer-Nunziato type [13] require a large number of equa-
tions. This increase the numerical cost substantially. Further, these models are
usually not in the divergence form. Accordingly, their discretization needs special
attention. Moreover, the form of the exchange terms is not known. For more details
see Herard [37] and Müller et al. [57].
In 2007 Romenski et al. [61] introduced a similar symmetric hyperbolic and thermo-
dynamically compatible two phase flow model. Although the volume fraction is a
variable of the system the model is in divergence form. Therefore the model seems
to be very interesting from a mathematical point of view even though a conservation
law for relative velocity should be discussed extensively. Recently all characteristic
fields of the system and all possible wave phenomena were discussed, see Thein et
al. [74], but the full Riemann solution is still not available.
Sharp interface models need only a smaller number of equations. Interesting an-
alytical results are available in Hantke et al. [32]. The Riemann problem for the
isothermal Euler equations with phase transitions was completely discussed. Mass
transfer was modeled by kinetic relations. To solve such systems numerically, the
interface has to be resolved more or less exactly. Accordingly, either a very fine
grid resolution is required, or the computations have to be performed on a moving
mesh or one has to track the interfaces on an additional mesh. This can become
quite complicated in higher space dimensions, see for instance Chalons et al. [17]
and [18]. In [17] a conservative finite volume method was developed to approximate
weak 1d-solutions of conservation laws with phase boundaries. This method was
generalized in [18] for 2d-computations and is able to exactly resolve planar phase
interfaces. Further interesting results on this topic can be found in Schleper [67] or
Fechter et al. [27].
To overcome the disadvantages of the types of models discussed before, the so called
phase field models are considered. This kind of models are based on the phase field
variable which is a function of time and space. This parameter takes two distinct
values to indicate the local phase. It smoothly changes at the interface which is
modeled as small zones of finite width.
Dreyer, Giesselmann, and Kraus in their paper [24] have proposed a diffuse inter-
face model which is such a type of phase field model. This model describes chemical
reacting viscous fluids mixtures which consist of N constituents. The mixture may
develop a transition between a liquid and a vapor.
To describe the phase transition an artificial phase field indicator has been intro-
duced. This phase field variable, say χ, indicates the present phase by giving the
values 1 to the liquid and -1 to the vapor phase. Values in ]− 1, 1[ indicate a tran-
sition layer. The pressure is a constitutive quantity that is related to the phase
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function variable χ and the partial densities of the components by an equation of
state. The model is supplied with a multi component equation of state and the
challenge comes from its very complicated nature.
The diffuse interface multiphase mixture model derived by Dreyer et al. in [24] is
the focus of this work. In particular, the homogeneous part of the model obtained
by neglecting source terms and terms with second derivatives in space.
The homogeneous submodel has N+2 equations: N partial mass balance equations,
an equation of balance for the momentum and a transport equation for the phase
field variable χ. This work aims to give a full analysis of the Riemann initial value
problem for this hyperbolic system of conservation laws. Also, solving the sub-model
numerically is one of the main goals of this thesis.
Presenting the model [24] in detail is essential before we start our study. But due
to the wide range of applications and the complicated relations in thermodynamics,
we will start this thesis by devoting Chapter 2 to present a summary of the thermo-
dynamics concepts.
In Chapter 3 we present the model in its full version. We discuss all the basic
quantities and the constitutive laws in detail. A good knowledge of the hyperbolic
sub-part of the full model is required for analytical and numerical computations.
Further, we introduced an equation of state which is necessary in order to close the
model. The equation of state has a special form presented in [24]. It is based on the
phase variable χ and the equation of state of the pure phases.
Chapter 4 is devoted to studying the model analytically. For this goal, we start this
chapter by reminding the reader of the main concepts in the theory of the hyperbolic
conservation laws in the scalar case as well as in the systems.
We study the analytical structure and the main mathematical properties of the sys-
tem considered. Studying the eigenstructure of the submodel helps us to understand
the wave patterns of the solution. It reveals that the solution consists of three waves.
A contact discontinuity wave in the middle, a shock wave and a rarefaction wave
either to the right or to the left. Then we discuss the Riemann invariants which are
essential to construct the exact solution. We obtain the exact solution for the case
N = 1. We could generalize those results to the case N > 1.
Many interesting examples are given in this chapter and the results are compared
with the results presented in Toro [75] and Hantke et al. [32]. Parts of this chapter
will appear as [35].
The main focus of Chapters 5 and 6 is to solve the sub-model numerically. Chapter
5 contains a short survey of numerical methods to solve the conservation laws. We
present the Godunov scheme and we give an overview of Riemann solvers such as
HLL, HLLC, Roe solver, VFRoe, and Rusanov. For higher order, we discuss the
MUSCL method. Then we discuss the discretization of the sub-model. We consider
the case of vapor-vapor flow. This case is a good test case in order to test the per-
formance of Riemann solvers and to understand the structure of the solutions.
In Chapter 6 we presented the numerical solution for the more complicated case
which is the flow of vapor-liquid. In this case, many unexpected difficulties appear.
They are namely the negative pressures, i.e. unphysical results. These difficulties
are also relevant for the discretization of the full model since they are due to the
nature of the equation of state. It is identical for both models. We develop strate-
gies and methods to overcome these difficulties. In this work, first, we used tracking
the interface approach in order to avoid negative pressure. This method is applied
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CHAPTER 1. INTRODUCTION

successfully in the work of Thein [73]. But this approach deals with the interface as
a sharp interface. So we developed a new approach called ”estimating the pressure”.
This new approach is based on the physical properties of the liquid. We consider a
liquid phase as a solid wall because most of the effects appear in the vapor phase.
This enables us to solve the Riemann problem on the wall. We do this in two ways.
The first one by solving the Riemann problem on the wall numerically using Rie-
mann solvers. The other one, by using the exact solution of the Riemann problem
on the wall. This method is applied to many examples and gives good results. Parts
of Chapter 6 will appear as [34].
In both Chapters 5 and 6 we give some numerical examples and compare those re-
sults with the exact solution obtained in Chapter 4.
Finally, in Chapter 7 for chemical reactions, the sub-model is modified by reaction
sources. For their discretization, an ODE-solver has to be coupled to the numerical
method. We study this new sub-model and give a numerical solution to it. Numer-
ical examples have been presented.
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Chapter 2

Thermodynamics

As we have mentioned in the introduction our aim in this work is to study the
homogeneous form of the diffuse interface multiphase mixture model proposed by
Dreyer et al. in [24]. This model was suggested for chemically reacting viscous fluid
mixtures that may develop a transition between the phases. The model is provided
with an equation of state. One can notice that a background in thermodynamics
is required so we will start this work by providing the reader with a summary of
thermodynamics results and highlighting the basic concepts that we will need in this
work.
The main references in this chapter are the book by Atkins [11] and the book by
Müller and Müller [56]. For further details we recommend the book by Anderson [7],
the paper by Müller and Hantke [33] as well as the PhD thesis by Thein [73].
Additionally we also refer to the work of Menikoff and Plohr [52], Landau and
Lifshitz [43], Bothe and Dreyer [15] as well as Flatten [29] .
We will start this chapter with some basic definitions before we introduce the famous
laws of thermodynamics. After that we present the thermodynamics potentials in
Section 2.3. In Section 2.4 we give an overview of the equation of state with some
examples. Maybe the most important section is Section 2.5 where we discuss the
thermodynamics of mixtures in order to define the stiffened gas equation of state
which will play an important role later on in this study.
Thermodynamics is in general used for providing rules that govern the descriptions
of macroscopic systems in terms of their properties and their interactions with other
systems.
We divide the universe into two parts, the system, which is the part of the world in
which we have a special interest and its surroundings, which comprise the region
outside the system and where we make our measurements. The interface separating
the system and its surroundings is called the system boundary. And we call the
combination of system and surrounding the universe.
The characteristics of the system boundaries classify the system into:

• Open system: if matter can be transferred through the boundaries between
the system and its surrounding.

• Closed system: if matter cannot pass through the boundary but other prop-
erties may be transferred through it.

• Isolated system: a closed system that has neither mechanical nor thermal
contact with its surrounding.
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CHAPTER 2. THERMODYNAMICS

We have to mention here that both closed and open systems allow energy to transfer,
i.e. can exchange energy with their surrounding.
We distinguish the system, which has constant mass, but possibly variable volume,
from the control volume. The latter one is a fixed volume where mass can pass in
and out through its boundary, which is called the control surface.

2.1 Basic definitions

We define

• Phase: a quantity of matter that is homogeneous throughout, e.g. liquid,
gaseous or solid.

• Phase boundary: interface between different phases.

• State: condition described by observable macroscopic properties.

• Property: quantity that only depends on the state of the system and is
independent of the history of the system.

There are two important classes of properties we consider:

• Extensive property: a property which is doubled if we double the system,
in other words a property that depends on the mass of the system like total
volume and total energy.

• Intensive property: a property which is independent of the mass of the
system like temperature and pressure.

Actually, we define properties for systems which are in Equilibrium, which is a
state in which no spontaneous changes are observed with respect to time, and we
will define three types of equilibrium

• Mechanical equilibrium: is characterized by equal pressure and velocity every-
where in the system.

• Thermal equilibrium: is characterized by equal temperature everywhere.

• Chemical equilibrium: is characterized by equal chemical potentials every-
where.

Often systems undergo a change of state, which means one or more properties of
the system have changed, a succession of changes of state is called a process, which
is given special names like isothermal when it has constant temperature, isobaric
when constant pressure is assumed, and isochoric when we consider constant vol-
ume.
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2.2. THE LAWS OF THERMODYNAMICS

2.2 The laws of thermodynamics

2.2.1 First law of thermodynamics

Generally, when a system passes through a process, it exchanges energy with its
environment. The total energy of a system is called its internal energy E. The
difference ∆E = Ef −Ei is the change in internal energy when the system changes
from an initial state i with energy Ei to final state f of internal energy Ef .
The energy change in the system, may result from performing work W on the
system or letting the system perform work, and from exchanging heat Q between
the system and the environment. Starting from this point, we can set the first law
in thermodynamics:

The change of the internal energy is the sum of the heat supplied to the
system and the work done to the system.

To summarize this result we write ∆E the change in internal energy as

∆E = Q+W

which is the mathematical state of the first law.
Now we switch attention to infinitesimal changes of state, e.g. like temperature, and
infinitesimal changes in the internal energy dE. Then the work done on a system is
dW and the energy supplied to it as heat is dQ, which means

dE = dQ+ dW.

Enthalpy

The enthalpy H with the volume V and pressure p is defined as

H = E + pV.

The enthalpy plays an important role in stationary flows of fluids, ∆H is independent
of the path between any pair of initial and final states. The change in enthalpy is
equal to the energy supplied as heat at constant pressure

dH = dQ, (2.1)

and for measurable changes
∆H = Q.

As the internal energy of a substance increases when its temperature T is raised, we
define the heat capacities CV and Cp as the amount of heat needed to raise the
temperature of the material by one degree. We define the heat capacity at constant
volume CV as

CV =

(
∂E

∂T

)
V

.

The heat capacity at constant pressure is the slope of the tangent to a plot of
enthalpy against T at constant pressure

Cp =

(
∂H

∂T

)
p

.

7



CHAPTER 2. THERMODYNAMICS

We define γ the ratio of heat capacities

γ =
Cp
CV

.

Remark 1 So far all quantities were denoted by capital letters. From this point we
will consider specific quantities, i.e. per amount of substance or per mass, and we
will use the corresponding small letter. We will consider only specific quantities in
this work.

Changes in internal energy

When the specific volume v changes to v + dv at constant temperature, the specific
energy e = e(v, T ) changes to

e′ = e+

(
∂e

∂v

)
T

dv.

If instead, T changes to T+dT at constant volume, then the internal energy changes
to

e′ = e+

(
∂e

∂T

)
v

dT.

Now suppose that v and T both change infinitesimally, the internal energy differs
from e by infinitesimal amount de, therefore the new internal energy is the sum of
the changes arising from each increment

de =

(
∂e

∂v

)
T

dv +

(
∂e

∂T

)
v

dT.

The coefficient ( ∂e
∂v

)T plays a major role in thermodynamics because it measures the
variation of the internal energy of a substance as its volume is changed at constant
temperature. This coefficient is called the internal pressure and denoted by π.
We have already cv = ( ∂e

∂T
)v , which gives

de = πdv + cvdT.

Now we want to find out how the internal energy varies with temperature when the
pressure of the system is constant. We obtain(

∂e

∂T

)
p

= π

(
∂v

∂T

)
p

+ cv.

The partial derivatives on the right in this expression is the slope of the plot of
volume against temperature. This property is called expansion coefficient α
which is defined as

α =
1

v

(
∂v

∂T

)
p

.

Physically it is the fractional change in volume that accompanies a rise in temper-
ature. We define the isothermal compressibility κ as

κ = −1

v

(
∂v

∂p

)
T

,

which is a measure of the fractional change in volume when the pressure is increased.
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2.2. THE LAWS OF THERMODYNAMICS

2.2.2 The second law of thermodynamics

Some changes can only go in one direction, e.g. in the absence of some extra energy
heat can only flow from a hotter medium to a colder medium. Such processes are
irreversible. So we think it is useful to start this subsection by defining so-called
reversible and irreversible processes:

• Reversible process: A process in which it is possible to return both the system
and surroundings to their original states.

• Irreversible process: A process in which it is impossible to return both the
system and surroundings to their original states.

The second law of thermodynamic in terms of the state function the specific entropy
s says

The entropy of a an isolated system can only increase by internal
processes

∆stot = stot,f − stot,i ≥ 0,

where f and i are the final and initial state respectively and stot is the total entropy
of the system and its surrounding. We use the index ”rev” to indicate reversible
processes.
The second law can be summarized by Clausius inequality which is given by

ds ≥ dqrev
T

.

The equality

ds =
dqrev
T

,

only holds for reversible processes and may be used to define the entropy for these
processes. Further details can be found in Atkins [11], Müller and Müller [56] as
well as Thein [73].

2.2.3 The fundamental equation

We have seen that the first law of thermodynamics may be written as

de = dq + dw.

We may set dwrev = −pdv and dqrev = Tdv, where p is the pressure of the system,
and T is the temperature. Therefore, for a reversible change in a closed system

de = Tds− pdv, (2.2)

which combines the first and the second laws of thermodynamics. This relation is
called the fundamental equation.
We could regard e as a function of the other variables, such as p and T because they
are all interrelated, but the simplicity of the fundamental equation (2.2) suggests

9



CHAPTER 2. THERMODYNAMICS

that e(s, v) is the best choice. We can express an infinitesimal change de in terms
of changes ds and dv by

de =

(
∂e

∂s

)
v

ds+

(
∂e

∂v

)
s

dv.

When this expression is compared to the equation (2.2) we see that,(
∂e

∂s

)
v

= T,

(
∂e

∂v

)
s

= −p.

2.3 Thermodynamic potentials

2.3.1 The Helmholtz and Gibbs energies

We can develop the Clausius inequality

ds− dq

T
≥ 0, (2.3)

in two ways according to the conditions of constant volume or constant pressure
under which the process occurs. First, we consider at constant volume. Then we
can write

dq
V

= de,

which means

ds− de

T
≥ 0,

or
Tds ≥ de. (2.4)

Now, when energy is transferred as heat at constant pressure then by (2.1)

dqp = dh.

From (2.3) it follows that
Tds ≥ dh. (2.5)

Because of (2.4) and (2.5) we have the inequalities

de− Tds ≤ 0 and dh− Tds ≤ 0.

These inequalities can be expressed more simply by introducing two more thermo-
dynamics quantities. The first one is the specific Helmholz energy ψ which is
defined as

ψ = e− Ts,
and the other is the specific Gibbs energy g where

g = h− Ts.
When the state of the system changes at constant temperature, the two properties
change as follows

dψ = de− Tds,
dg = dh− Tds,

and from (2.4) and (2.5) we obtain

dψT,V ≤ 0,

dgT,p ≤ 0.

10



2.3. THERMODYNAMIC POTENTIALS

Properties of the Gibbs energy

In order to discuss phase transitions and chemical reactions, we need expressions
showing how g varies with the pressure and temperature, and as we have seen before

g = h− Ts.

This can be written for infinitesimal changes as

dg = dh− d(Ts) = dh− Tds− sdT.

And because h = e+ pv, we know that

dh = de+ d(pv) = de+ pdv + vdp,

and therefore

dg = de+ pdv + vdp− Tds− sdT.

For a reversible changes of a closed system using (2.2) we obtain

dg = vdp− sdT.

This gives (
∂g

∂T

)
p

= −s,
(
∂g

∂p

)
T

= v. (2.6)

Because the equilibrium composition of a system depends on the Gibbs energy, we
need to know how g varies with temperature, and the last relation is a good starting
point for this, as we can express it in terms of the enthalpy h by using the definition
of g we write

s =
h− g
T

,

then (
∂g

∂T

)
p

=
g − h
T

,

which gives the expression (
∂

∂T

g

T

)
p

=
−h
T 2

,

which is called the Gibbs-Helmholtz equation.

2.3.2 The chemical potential

The chemical potential µ is a measure of the potential that a substance has for
undergoing physical or chemical change in a system. For a single component system
the molar Gibbs energy gm and the chemical potential µ are synonyms so gm = µ.
It follows from (2.6) that(

∂µ

∂T

)
p

= −s,
(
∂µ

∂p

)
T

= v.

11
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2.4 Equation of state

The physical state of a sample of a substance is defined by its physical properties.
Two samples of a substance that have the same physical properties are in the same
state. The state of a pure gas, for example, is specified by giving its mass density
ρ, pressure p, and temperature T .
It has been established experimentally that it is sufficient to specify only two of
these variables, then the third variable is determined via an equation of state i.e. an
equation that interrelates these three variables.
Equations of state are useful in describing the properties of fluids, mixtures of fluids,
solids and even the interior of stars. The general form of an equation of state is

p = f(T, ρ).

This equation tells us that, if we know the values of T and ρ for a particular substance
then the pressure has a determined value. One of the simplest equations of state is
the ideal gas law,

p =
nRT

V
,

where R is a constant and n is the total amount of a substance. This law is roughly
accurate for gases at low pressures and moderate temperature. However, this equa-
tion becomes inaccurate at higher pressures and lower temperature, and fails to
predict condensation from a gas to a liquid. Therefore a number of much more
accurate equations of state have been developed for gases and liquids, and next we
present some examples:

• The equation suggested by J.D. van der Waals, which is an excellent example
of an expression that can be obtained by thinking scientifically about math-
ematically complicated but physically simple problem. The van der Waals
equation is

p =
nRT

V − nb
− a n

V

2

,

where a and b are the van der Waals coefficients.

• Tait’s EOS, which has the form

p = pref +Kref ((
Vref
V

)ν − 1),

where the subscript ref refers to values at given temperature Tref , and Kref is
the modulus of compression. The non-linearity is due to the exponent ν ≥ 1
and for linear Tait equation of state ν = 1.

It has to be mentioned, that there is no single equation of state that accurately
predicts the properties of all substances under all conditions.

2.5 Thermodynamics of mixtures

A mixture is defined as the result of combining two or more substances like the
air can be taken as a mixture of nitrogen and oxygen. We analyze here mixtures
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2.5. THERMODYNAMICS OF MIXTURES

of simple non-reacting chemical substances that form a single phase or multiphase
system, such that a chemical reaction does not occur between components of the
mixture.
Let us consider a thermodynamic property X as a function of the temperature
T , the pressure p and the composition given as the amount of the N components
n1, n2, ..., nN . This implies that when we keep T and p constants

dX =
N∑
i=1

(
∂X

∂ni

)
T,p

dni.

The quantity X can be found by integration as

X =
N∑
i=1

(
∂X

∂ni

)
T,p

ni. (2.7)

Here we define the partial molar quantities Xi as

Xi =
N∑
i=1

(
∂X

∂ni

)
T,p

.

That means the quantity X can be calculated as the sum of the contributions of
each component, where the individual contribution is the partial molar quantity
multiplied by the amount of the component.
Now we want to apply this to the volume and we define the partial molar volume
vi of a component i in a mixture. It is the change in volume per mole of substance
i added to a large volume of the mixture and it defined as follows

vi =

(
∂v0

∂ni

)
p,T

.

From this relation we can derive that

v =
N∑
i=1

vini.

For a substance in a mixture the chemical potential µi is defined as the partial molar
Gibbs energy

µi =

(
∂g

∂ni

)
p,T

.

By applying the same argument that led to (2.7) we obtain

g =
N∑
i=1

µini.

The equation
dg = vdp− sdT,

then becomes

dg = vdp− sdT +
N∑
i=1

µini.
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This expression is called the fundamental equation of chemical thermody-
namics. It follows that at constant volume and entropy

µi =
N∑
i=1

(
∂e

∂ni

)
s,v

,

therefore, the chemical potential shows how g and e change when the composition
changes. In the same way we can find

µi =
N∑
i=1

(
∂h

∂ni

)
s,p

, µi =
N∑
i=1

(
∂ψ

∂ni

)
v,T

. (2.8)

2.5.1 Equation of state of the mixture

Let N be the number of the constituents, ρi the partial densities, then the mixture
density ρ is given by

ρ =
N∑
i=1

ρi.

In order to obtain an equation of state usually it is required to to relate the partial
pressure pi and the thermal energy ρe to the partial densities ρi and the mixture
temperature T .
As we have seen before the specific Helmholz free energy is given as

ψ = e− Ts.

It follows that

µi =
∂ρψ

∂ρi
and e = −T 2 ∂

∂T

(
ψ

T

)
.

The representation of the pressure

p = −ρψ +
N∑
i=1

ρiµi, (2.9)

is a consequences of the second law and is called the Gibbs-Duhem equation. For
further details concerning these relations see Bothe and Dreyer [15], Hantke and
Müller [33] as well as Dreyer et. al. [24].

2.5.2 Simple mixtures

The mixture momentum ρv is given by

ρv =
N∑
i=1

ρivi.

Now we want to apply the previous results to a simple mixture. By simple mixture
we mean a mixture of N components where the partial pressures and the partial
specific energies have the form

pi = pi(T, ρi) and ei = e(T, ρi).
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Let ψi = ψi(T, ρi) be the partial Helmholz free energy. In this case the further
partial quantities are given as

ei = −T 2 ∂

∂T

(
ψi
T

)
, (2.10)

µi =
∂ρψi
∂ρi

, (2.11)

pi = −ρiψi + ρiµi, (2.12)

see Hantke and Müller [33].

2.5.3 The stiffened gas equation of state

Due to its simplicity and suitability for fluid mechanical applications, many authors
consider the stiffened gas equation of state a useful basis for simulating multicom-
ponent flow problems, especially, when considering water under very high pressures,
i.e. typical applications are underwater explosions.
Let ρi be the partial densities, the parameters: γi, πi, cvi and qi be the ratio of the
specific heats, the minimal pressure, the specific heat capacity at constant volume
and the heat of formation of component i respectively. Let the free energy density
ψi be defined as

ψi(ρ, T ) = −cviT ln
T

Tref
+ qi(1−

T

Tref
) +

πi
ρi

+ (γi− 1)cviT ln
ρi

ρi,ref
+
πi
ρi

T

Tref
. (2.13)

Here Tref and ρref are the reference temperature and reference density respectively.
The definition (2.13) was taken from Hantke and Müller [33].
To derive an appropriate internal energy law for ei, we apply ei = −T 2 ∂

∂T
(ψi
T

) from
(2.10), which gives

ei = cviT + qi +
πi
ρi
. (2.14)

The chemical potential is determined by applying µi = ∂ρψi
∂ρi

from (2.11), which gives

µi = −cviT ln
T

Tref
+ qi(1−

T

Tref
)+(γi−1)cviT ln

ρi
ρi,ref

+(γi−1)cviT −πi
T

Tref
.

1

ρi,ref
.

(2.15)
By using (2.12) with the free energy density (2.13) and the chemical potential (2.15)
we obtain

pi = −πi + ρi(γi − 1)cviT ; πi ≥ 0, (2.16)

which is the stiffend gas equation of state in terms of pressure.

Speed of sound

The speed of the sound ai is defined by the slope of the isentropes in the pressure-
density plane as

a2
i =

(
∂pi
∂ρi

)
= (γi − 1)cviT. (2.17)

Using this equation with (2.16) and di = −πi leads to the equation of state

pi = a2
i ρi + di, (2.18)
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which will play an important role later on in order to supply the model with an
equation of state.
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Chapter 3

The model

3.1 Introduction

In 2014 Dreyer, Giesselmann and Kraus [24] proposed a new diffuse interface model
to describe chemically reacting fluid mixtures consisting of N components where
phase transition between a liquid and a vapor may occur. The isothermal evolution
was exclusively considered. This model is a type of phase field model. This chapter
is devoted to introducing this model in detail.
To describe the phase transition, an artificial phase field indicator was introduced.
It indicates the present phase by assigning values to the liquid and the vapor phase.
Within the transition layer between the phases the phase field indicator changes
smoothly between the two values. In our case the indicator has the value -1 in the
vapor phase and the value 1 in the liquid phase. The phase field value between the
two phases will be in the interval ]− 1, 1[.
As the conservation of mass and momentum play a central role in this model we
want to start this chapter by presenting one of the most important properties in
nature which are the conservation laws. A general introduction to conservation laws
was presented in the book by Evans [26]. Also we refer the reader to the book by
Warnecke [81] and by Dafermos [22].
Then we will present a diffuse interface multiphase mixture model in detail and we
supply this model with an equation of state before discussing the exact and the
numerical solution in the next chapters. Interesting discussions can be found in the
work of Blesgen [14], Kotschote [41], Saurel et al. [62] and Feireisl et al. [25].

3.2 Conservation laws

Let u be a quantity of interest such as the density of mass, the temperature of a
rod or a concentration in a chemical cell. In physics, we know that properties of an
isolated physical system do not change as the system evolves over time which means
that these quantities are conserved in certain classes of physical processes. We call
this principle a conservation law which is one of the most important results in the
history of science. It has many applications in nature and all branches of science.
For the time t ∈ [0, tmax) ⊆ R≥0 we consider that the quantity u(t, x) defined for
all the points x of the domain Ω ⊂ Rd where d = 1, 2, 3. The unknown quantity
u is called the conservative variable. According to the idea of conservation law the
change in the quantity u in time in a fixed volume is equal to the total amount of u
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and the flux of u across the boundary of the volume. This means that the change
in the quantity u comes only from the information entering or leaving the domain
of interest, i.e. the change in u comes only from the fluxes f . The flux represents
the amount of u which goes in or comes out of the domain. This observation can be
summarized by the following partial differential equation

ut + f(u)x = 0, (3.1)

which is called a conservation law.
An extension of this idea is the consideration of additional source terms s which add
or subtract a certain amount of u. In this case there are two factors affecting the
change of u the first one is the flux f and the second one is the source s. Then the
equation will have the form

ut + f(u)x = s.

This equation is often called the balance law due to the fact that the rate of change
in u is balanced by the flux and source.

3.3 The derivation of the conservation laws

The basic idea of the conservation laws says that some features of the matter remain
constant in the region of space occupied by the same particles for all time t. This
region is called the material volume V . Many features are conservative but in
this section we restrict ourselves to the classical quantities which are the mass, the
momentum and the energy.
The first conservation law is the conservation of mass which means that the mass
of a material volume cannot be changed. In other words no mass is generated or
annihilated within V . Suppose that A is the surface of V . This means that no mass
flow across the surface A.
Another important conservation law is the conservation of momentum which is based
on Newton’s second law. This law states that the momentum of a material volume
V is equal to the force applied to it.
The last conservation law is the conservation of energy which says that energy can be
neither created nor destroyed. This law results from the first law in thermodynamics.
Next in this section we will present only the derivation of the conservation laws of
mass and momentum because the conservation law of the energy is not considered
in the model in which we are interested.
First we want to remind the reader of the Reynolds transport theorem which states
that assume that v(x, t) is the velocity vector of fluid motion and let V be an
arbitrary material volume then

∂

∂t

∫
V

φ(x, t) dV =
∂

∂t

∫
V0

φ(x, t) dV0 +

∫
A

φ(x, t) v · n dS = 0. (3.2)

Here φ is the quantity of the fluid motion, V0 is a fixed control volume of the surface
A, n is the unit outward normal and dV , dV0 are the volume elements of V and V0

respectively.
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3.3.1 Conservation of mass

As we have seen before the mass of a material is a conserved quantity which means
that the mass can not be changed. We assume that ρ is the density of the material
in V . This means that the mass can be given as

M(t) =

∫
V

ρ(x, t) dV.

As we assumed that the mass is conservative this means that the rate of change of
the mass is zero

d

dt
M(t) =

d

dt

∫
V

ρ(x, t) dV = 0.

Now we apply Reynolds transport theorem (3.2). We obtain

∂

∂t

∫
V0

ρ(x, t) dV0 +

∫
A

ρ(x, t) v · n dS = 0.

Applying Gauss’s divergence theorem and taking into account that V0 is independent
in time we get ∫

V0

∂ρ

∂t
+ div(ρv) dV0 = 0.

Since this holds for any volume V0, we obtain

∂ρ

∂t
+ div(ρv) = 0, (3.3)

which is the differential form of the mass conservation law.

3.3.2 Conservation of momentum

The conservation law of the momentum results from the direct application of New-
ton’s second law of motion. One has to notice that the total force F (t) consists of
two forces the volume force FV and the surface force Fs which are given by

FV (t) =

∫
V

ρfV dV, Fs(t) =

∫
A

n · σ dA,

where fV is the specific volume force per unit mass and σ is the stress tensor which
is given as

σ = −pI + Π,

where p is the pressure of the fluid, I is the unit matrix and Π is the viscous stress
tensor see Toro [75]. Now we consider Newton’s second law which states that

∂

∂t

∫
V

(ρv) dV = F (t)

As we have done in the previous subsection we apply again Reynolds transport
theorem we get

∂

∂t

∫
V0

ρv dV +

∫
A

(ρv⊗ v + pI− Π) · n dS =

∫
V0

ρfV dV.
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By applying Gauss’s divergence theorem we obtain∫
V0

∂ρv

∂t
+ div[ρv⊗ v + pI− Π] dV =

∫
V0

ρfV dV.

As this valid for any arbitrary volume V0 we obtain

∂ρv

∂t
+ div[ρv⊗ v + pI− Π] = ρfV ,

which is the differential form of the momentum equation including a source term
due to volume forces. One can neglect the volume forces fV and set the viscous
stresses Π to be zero in order to obtain

∂ρv

∂t
+ div[ρv⊗ v + pI] = 0. (3.4)

3.4 A diffuse interface multi-phase mixture model

A diffuse interface multi-phase mixture model, with chemical reactions, was pro-
posed by Dreyer, Giesselmann and Kraus [24] in order to describe the phases in
the diffuse interface setting. They proposed a model for chemically reacting viscous
fluid mixtures that may develop a transition between a liquid and a vapor where the
interface between adjacent liquid and vapor phases is modeled by a thin layer. The
thermodynamic quantities change smoothly within the layer in one phase to differ-
ent values in the other phase. This model belongs to the class of diffuse interface
models which solve the partial differential equations in the transition region while
the sharp interface models deal with jump conditions across the interface between
the phases.
In this study we consider that the mixture consists of N constituents and occupies
a region Ω ⊆ Rm. At any time t ≥ 0, the phsical state of Ω is described by N
partial mass densities ρi, the velocity v and the pressure p. These quantities may
be functions of time t ≥ 0 and space x ∈ Ω.
In this work we exclusively consider isothermal evolutions. This means that the
temperature T is fixed to be constant.

3.4.1 The basic quantities

We consider multi-component liquid (L) and/or vapor (V) mixtures of N con-
stituents A1, A2, ..., AN where the constituents Ai for i = 1, ..., N of a fluid mixture
allow chemical reactions. This means that we have NR reactions of the type

aj1A1 + aj2A2 + ...+ ajNAN 
 bj1A1 + bj2A2 + ...+ bjNAN ,

where the constant stoichiometric coefficients aji and bji are positive integers for
j = 1, ..., NR. We define their differences as

νji = bji − a
j
i .

In order to explain the stoichiometric coefficients we present the following example
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Example 1 In this example we consider a mixture of liquid water A1 = (H2O)liquid
and water vapor A2 = (H2O)vapor.

(H2O)vapor 
 (H2O)liquid.

In this case we have a mixture that consists of two components i = 1, 2. One can
notice that the stoichiometric coefficient sare

a1 = 0, a2 = 1, b1 = 1, b2 = 0,

this means that ν is
ν1 = −1, ν2 = 1.

The stoichiometric coefficients play an important role in the treatment of two phase
flow with chemeical reactions as we shall see in Chapter 7.
Now we consider as basic variables the partial mass densities ρi where i = 1, ..., N
the number of the constituents N, the partial velocities vi and the temperature T .
The partial mass densities and the partial velocities are used to define the total mass
density ρ and the velocity v as

ρ =
N∑
i=1

ρi, v =
1

ρ

N∑
i=1

ρivi.

To describe phase transitions we introduce a phase field variable χ indicating the
present phase at (t, x). We introduce χ to distinguish between the two possible
phases. It assumes values in the interval [-1,1] where the values 1 and -1 indicate
the liquid and vapor phase respectively and within the transition layer between the
phases it changes between -1 and 1.

3.4.2 The constitutive laws

There are further quantities which are given by constitutive equations such as

• The stress σ which models the volume changes, viscosity and capillarity. This
is discussed in details in [24]. We will mention it in the model but not use it
later.

• Chemical potentials and the pressure which are given by (2.11) and (2.12) as

µi =
∂ρψ

∂ρi
, p = −ρψ +

N∑
i=1

µiρi, i = 1, ..., N.

Here ρψ is the free energy density. The chemical potentials, the pressure and
the free energy density were presented in detail in Chapter 2.

• The Reaction rates Rj
b and Rj

f given by

Rj
b = Rj

fexp(
Aj

kT
), j = 1, ..., NR,

where k is Boltzman constant and the chemical affinities Aj defined by

Aj =
N∑
i=1

miν
j
i µi,

where mi the atomic mass of constituent i, see Dreyer et al. [24].
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• The chemical reaction term which is given as

ri =

NR∑
j=1

miν
j
i (R

j
f −R

j
b).

3.4.3 The model

After introducing the main variables we now present the diffused interface model of
Dreyer et al. [24] which is given by the system of the partial differential equation

∂
∂t
ρ+ div(ρv) = 0,

∂
∂t
ρi + div(ρiv)− div(

∑N−1
β=1 Miβ∇(µi − µN)) =

∑NR
j=1 ν

j
imiM

j
r (1− exp(A

j

kT
)),

∂
∂t

(ρv) + div(ρv ⊗ v) +∇p+ div(γ∇χ⊗∇χ− σNS) = 0,

ρ ∂
∂t
χ+ ρv · ∇χ = −Mp(

∂ρψ
∂χ
− γ∆χ).

(3.5)

Here M j
r and Mp are the mobilities. The reaction mobility have been chosen as

constant M j
r > 0.

To solve such systems numerically we use splitting methods. This means that the
system is split into two subproblems. The first one is the flow part of the system and
the other one is the reacting part by integrating the source term. In this work we
will focus on the flow part and we will restrict ourselves to the 1− d homogeneous
subsystem of first order terms. In the last chapter we will discuss the system with
source term.

3.5 The equation of state

The main goal of this section is to present an equation of state in order to close the
model (3.5). The pressure p is a constitutive quantity that is related to the phase
field variable χ and the partial densities ρi, i = 1, ..., N of the components by an
equation of state p = p(χ, ρ1, ..., ρN) which is proposed in [24]. This equation of
state has the form

p(χ, ρ1, ..., ρN) = −W (χ) +h(χ)pL(χ, ρ1, ..., ρN) + (1−h(χ))pV (χ, ρ1, ..., ρN), (3.6)

where

pL =
N∑
i=1

pLi and pV =
N∑
i=1

pV i,

are the equation of state in terms of pressure of the liquid and vapor phases respec-
tively. Further the double well potential function W (χ) = w0(χ − 1)2(χ + 1)2 is
considered and it has its minima in the pure phases and controls the phase tran-
sition. The function h is the interpolation function which relates the phases given
below.

22



3.5. THE EQUATION OF STATE

3.5.1 Relate the phases

In order to relate the phases we consider two phases: a liquid where the phase field
variable χ will take the value 1 and vapor where χ = −1. Our aim now is to define
a function h which relates the two phases. We consider that this function has the
value 1 in the liquid and the value zero in the vapor. In order to relate the two
phases considered we will use the function h : R → [0, 1] to be the interpolation
function satisfying

h(χ) =


1 χ ≥ 1

(−1
4
χ+ 1

2
)(χ+ 1)2 −1 < χ < 1

0 χ ≤ −1.

and having the following properties

h(1) = 1, h(−1) = 0 and h′(1) = h′(−1) = 0.

Further the double well function W (χ) = w0(χ − 1)2(χ + 1)2 is considered and it
has its minima in the pure phases and controls the phase transition.

3.5.2 The equation of state of the mixtures

We consider two phases a Liquid L and a vapor V . Each phase has N constituents.
As each phase has to be governed by its own equation of state. We consider now
that the equation of state in the pure phases is the stiffened gas equation. This
equation of state was discussed in Chapter 2. It is given by (2.18) as

pki = a2
kiρki + dki, i = 1, ..., N, (3.7)

where ak are the isothermal sound speed. The parameters dL, dV are given constants
which equal to zero for ideal gases. Using (3.6) we obtain

p(χ, ρ1, ..., ρN) = −W (χ) +
N∑
i=1

[h(χ)(a2
Liρ+ dLi) + (1− h(χ))(a2

V iρ+ dV i)], (3.8)

which is the equation of state of the mixture in terms of the pressure. For more
details see Dreyer and Bothe [15] as well as Hantke and Müller [33].

Sound speed of the mixture

The sound speed of the mixture is given as

A2 = (
∂p(χ, ρ)

∂ρi
) =

N∑
i=1

[h(χ)a2
Li + (1− h(χ))a2

V i].
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3.6 The homogeneous form

After neglecting the second order diffusion terms and chemical reactions the model
consists of N + 2 equations and can be written in the simplified form as following

∂
∂t
ρ+ ∂

∂x
(ρv) = 0,

∂
∂t
ρ1 + ∂

∂x
(ρ1v) = 0,

...
∂
∂t
ρ
N−1

+ ∂
∂x

(
ρ
N−1

v
)

= 0,

∂
∂t

(ρv) + ∂
∂x

(ρv2 + p) = 0,

ρ ∂
∂t
χ+ ρv ∂

∂x
χ = 0,

(3.9)

where

• The equation ρ ∂
∂t
χ + ρv ∂

∂x
χ = 0 is the transport equation for the phase field

variable χ.

• The equations ∂
∂t
ρ
i
+ ∂

∂x
(ρ

i
v) = 0, i = 1, ...,N−1 are N-1 continuity equations

for the partial mass densities ρ1, ρ2,..., ρN−1.

• The equation ∂
∂t
ρ + ∂

∂x
(ρv) = 0 is the continuity equation for the total mass

density ρ =
∑N

i=1 ρi. This equation can be replaced by the transport equation
for the density of the Nth constituent.

• The equation ∂
∂t

(ρv) + ∂
∂x

(ρv2 + p) = 0 is the total momentum balance equa-
tion involving the total pressure p.

The pressure p is not among the basic variables and it is therefore called a consti-
tutive quantity which is related to the variables χ and ρ by an equation of state
p = p(χ, ρ) which is given in (3.8).
In order to write the system in the conservative form we can replace the transport
equation of the phase field variable by the conservative form

∂

∂t
(ρχ) +

∂

∂x
(ρvχ) = 0.

One can clearly see using the continuity equation for total mass density that the
both forms are equivalent, i.e. have the same smooth solutions. For discontinues
solutions see the discussions in Chapter 4.
One should mention that writing the transport equation of the phase field variable
in the conservative form has no physical meaning because physically the phase field
variable is not conservative. It can lead to some difficulties but writing the system
in the conservative form provides us good way to deal with the model in the context
of conservative form. This benefits the methods and solvers considered.
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3.7 The case of pure phases N=1

In this section and the rest of our work we will consider two pure phases N = 1. In
this case the model has the form

∂
∂t
ρ+ ∂

∂x
(ρv) = 0,

∂
∂t

(ρv) + ∂
∂x

(ρv2 + p) = 0,

ρ ∂
∂t
χ+ ρv ∂

∂x
χ = 0,

(3.10)

supplied with the equation of state of the form

p(χ, ρ) = −W (χ) + h(χ)(a2
Lρ+ dL) + (1− h(χ))(a2

V ρ+ dV ). (3.11)

The system can be written in the conservative form

∂u

∂t
+

∂

∂x
f(u) = 0, (3.12)

where u is the vector of the conservative variables and f is the fluxes vector

u =

 ρ
ρv
ρχ

 , f =

 ρv
ρv2 + p
ρχv

 ,

Our aim in the following chapters is to find the analytical and numerical solution of
this submodel.
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Chapter 4

Analytical structure and some
exact solutions

4.1 Introduction

In the previous chapter we presented the diffuse interface multiphase mixture model.
We have seen that the homogeneous form of this model is a system of conservation
laws. One of the main targets of this work is to study this system analytically and
obtain the exact solutions for the Riemann initial value problem. Of course we
expect some difficulties especially in the discussions of the case N > 1 where the
mixture consists of N components in each phase. This is actually the exciting part.
Due to the main role of the hyperbolic conservation laws we want to start this
chapter by giving a brief introduction to the hyperbolic conservation laws. For
general background we recommend the books by Toro [75] and LeVeque [47]. Further
details can be found in the books of Evans [26], LeFloch [44], Smoller [69], as well as
Godlewski and Raviart [31]. Further interesting references in the field of hyperbolic
problems Caraso [59], Hoermander [38] as well as Tveito and Winther [78].
In the first part of this chapter we start by reminding the reader of the scalar
conservation laws and their properties such as the characteristics, the weak solutions
and the Rankine-Hugoniot condition. As an example we consider the advection
equation and the Burgers equation.
Presenting some basic concepts on hyperbolic systems of conservation laws is very
essential. A summary is given in Section 4.3.
In Section 4.4 we consider the diffuse interface model for the case N = 1. We study
the analytical structure of the model and we construct the exact solutions to the
Riemann problem. The main challenge was to extend this study to the case N > 1.
One of the main results of this work is to present an analytical study of the case
N > 1 and obtain the exact solution, see section 4.5.
In Section 4.6 we test the exact solution for the cases N = 1 and N > 1 into some
numerical examples.

4.2 The scalar conservation laws

The partial differential equation

∂

∂t
u(x, t) +

∂

∂x
f(u(x, t)) = 0, (4.1)

27



CHAPTER 4. ANALYTICAL STRUCTURE AND SOME EXACT SOLUTIONS

where u : R→ R, is said to be a scalar equation. We classify the scalar conservation
laws into linear and nonlinear equation. The scalar conservation law is linear if the
flux f is a linear function of u. As an example we consider the advection equation.
For the nonlinear case we will present the Burgers equation.

4.2.1 The advection equation

The simplest conservation law is the linear advection equation of the form

ut + aux = 0,

where a is constant and represents the wave propagation speed.
The solution of the advection equation is obtained using the method of characteris-
tics. We define the characteristic as the curve x(t) in the x− t plane where the PDE
can be reduced to an ODE. Thus we can obtain the unknown function u(t, x(t)).
Along the characteristic curves where u is constant we can set

du

dt
=
∂u

∂t
+
∂u

∂x

dx

dt
= 0. (4.2)

Comparing the coefficients gives
dx

dt
= a,

which means that the characteristics are straight lines with the characteristic speed
a which is the slope of the line in the x− t plane.
Now we supply the advection equation with the initial data u(x, 0) = u0(x). The
corresponding characteristic to the point x(0) = x0 is given as

x = x0 + at.

As x0 represents the values of the x-axis we get a family of characteristics all of
them are parallel.
One can observe that the solution of the advection equation means that the profile
of the initial data is shifted without any changes with speed a to the right if a > 0
or to the left if a < 0. The solution is given as

u(x, t) = u0(x− at),

for t > 0.

4.2.2 Burgers equation

If the flux function f is a nonlinear function then we call the partial differential
equation (4.1) nonlinear. The most famous example is Burgers equation where the
flux is f(u) = 1

2
u2. In this case the equation has the form

ut +

(
1

2
u2

)
x

= 0.

In the Burgers equation one notices that a = a(u) = u. We consider two initial
value problems

u(x, 0) =

{
u− = 3 if x < 0,

u+ = 1 if x > 0,
(4.3)
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and

u(x, 0) =

{
u− = 1 if x < 0,

u+ = 3 if x > 0,
(4.4)

where − and + denote the left hand side and the right hand side respectively. The
solution as explained before is given as

du

dt
= ut + uux = 0, (4.5)

with
dx

dt
= u x(0) = x0. (4.6)

The characteristics in this case are also straight lines but with the slope 1/u0(x0) in
the x− t plane i.e. u0(x0) in the t− x plane. The solution is given as

u(x.t) = u0(x0) = u0(x− u0(x0)t), (4.7)

which means that the slope of the characteristic lines depends on the initial data.
Figure 4.1 illustrates the initial data and the characteristics for the both examples.
Here we discuss two cases

Figure 4.1: Left: The initial data and the characteristics for Example (4.3). Right:
The initial data and the characteristics for Example (4.4).

• Case1
In this case the characteristics intersect and a discontinuity arises inevitably.
The propagation speed of the discontinuity s fulfills the jump condition

s =
f+ − f−
u+ − u−

, (4.8)
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which will be disused later in this section. For the Burgers equation we obtain

s =
1
2
u2

+ − 1
2
u2
−

u+ − u−
=
u+ + u−

2
.

The discontinuity is called a shock which fulfills the Lax admissibility con-
dition

u− > s > u+.

The characteristics go into the shock, see Figure 4.2, and determine its speed
by their jump condition (4.8).

Figure 4.2: The characteristics at the shock.

• Case2
In this case with the initial date u− < u+ there is a multitude of possible
mathematical solutions with admissible and non-admissible discontinuities.
But there is one unique continuous solution which is called a rarefaction,
see Figure 4.3. This solution is unphysical and the characteristics go away
from the discontinuity. In this case the entropy condition is not fulfilled.
The solution for this case can be constructed using intermediate characteristics
method. The solution consists of two regions with constant states u− and u+.
The region between the constant states is the solution which is called the
rarefaction wave The solution is given as

u(x, t) =


u−

x−x−
t
≤ u−

x−x−
t

u− ≤ x−x−
t
≤ u+

u+
x−x−
t
≥ u+.

4.2.3 Characteristics and the weak solution

In this subsection we consider the conservation law

ut + f(u)x = 0, (4.9)

with the initial data

u(x, 0) = u0(x).
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4.2. THE SCALAR CONSERVATION LAWS

Figure 4.3: The characteristics at the rarefaction, unphysical.

The equation (4.9) can be written in the nonconservative form

ut + a(u)ux = 0,

where
a(u) = f ′(u).

Characteristics or characteristic curves are defined as curves x = x(t) along which
the PDE becomes ODE. Let u = u(x(t), t) the solution of the conservation law (4.9).
The rate of change of u along x = x(t) is

du

dt
=
∂u

∂t
+
dx

dt

∂u

∂x
.

One can notice that if the characteristic curve x = x(t) satisfies

dx

dt
= a(u),

then
du

dt
=
∂u

∂t
+ a(u)

∂u

∂x
.

Therefore the rate of changes of u along the characteristic curve x = x(t) is zero
which means that the characteristic curves x = x(t) are straight lines along which
u is constant.
The speed a is called the characteristic speed. From the initial data one can set that
x(0) = x0. The characteristic straight line passing through the point (x0, 0) is

x = x0 + ta(u0(x0)),

As the solution remains constant along the characteristics, for the initial data
u(x, 0) = u0(x) then the solution is

u(x, t) = u0(x0) = u0(x− at).

This solution means that the initial data remains unchanged with the time evolved
and it propagates with speed a to the right if a > 0 and to the left if a < 0.
Now we assume two points x1 and x2 and the characteristic curves C1 and C2 which
are drawn from the points x1 and x2 respectively. Let The characteristics C1 and
C2 have two different slops. In this case the characteristics will intersect at some
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point say p.
At this point p the solution should take the same values u0(x1) and u0(x2) which is
impossible. This means that the solution u can not be continuous at the point p.
The solution to this initial value problem may be discontinuous even if u0(x) is
smooth, see Smoller [69] for examples. In this case it will not be possible to determine
the differentiation in the conservation law. In order to overcome this situation the
idea of a weak solution is considered. The idea of the weak solution is based on
multiplying the PDE by a test function say φ ∈ C1

0(R × R), where C1
0 is the space

of function that is continuously differentiable with compact support i.e. the test
function φ(x, t) is zero outside of some bounded set. Then integrate one or more
times and use the integration of parts to move the derivatives of the function u
and onto the smooth test function. This procedure gives an equation with fewer
derivatives on u which require less smoothness.
In order to apply this idea to the conservation laws we multiply it by the test function
φ and integrate. We obtain∫ ∞

0

∫ ∞
−∞

[φut + φf(u)x]dxdt = 0.

Integrating by parts gives∫ ∞
0

∫ ∞
−∞

[φtu+ φxf(u)]dxdt = −
∫ ∞
−∞

[φ(x, 0)u(x, 0)]dxdt. (4.10)

We say that the function u(x, t) is a weak solution of the conservation law if (4.10)
holds. For more details about the weak solution see [47].

4.2.4 The Rankine-Hugoniot condition

In this subsection we want to present the Rankine-Hugoniot condition or so called
jump condition. This idea is discussed in detail in [47] and [31]. To this end we
consider σ to be a surface of discontinuity of u. Let M a point of σ and D a small
ball centered at M . We denote by D+ and D− the two open components of D on
each side of σ. Now we consider φ a function in the space of function with compact
support. We write

0 =

∫
D

[u · ∂φ
∂t

+
m∑
i=1

fi(u)
∂φ

∂xi
]dxdt =

∫
D+

+

∫
D−

.

Applying Green’s formula in D+ and D− and utilizing that u is a solution in D+

and D− we obtain∫
σ∩D

[−nt(u+ − u−)−
m∑
i=1

nxi(fi(u+)− fi(u−))] · φdS = 0,

where n is the norm vector to the surface points in the direction of D+. This means
the jump relation along the surface of the discontinuity is

(u+ − u−)nt +
m∑
i=1

(fi(u+)− fi(u−))nxi = 0.
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We denote by
JuK = u+ − u−,

the jump of u across σ and similarly by

Jfi(u)K = fi(u+)− fi(u−),

the jump of fi across the discontinuity. Then we can write

ntJuK +
m∑
i=1

Jfi(u)K = 0.

For the scalar case and smooth σ we can set

sJuK = Jf(u)K,

where s is the speed of propagation of the discontinuity. Discontinuities that satisfy
the jump condition are called shocks.

4.3 Notions on hyperbolic systems and conserva-

tion laws

Definition 1 Conservation laws Let Ω be an open subset of Rm, f be a smooth
function from Ω into Rm and u : R≥0 × R→ Rm the function of conserved physical
states. The general form of systems of conservation laws is

∂u

∂t
+
∂f

∂x
= 0, x ∈ R, t ≥ 0, (4.11)

where

u =


u1

u2
...
um

 , f(u) =


f1

f2
...
fm

 .

Here u is a vector of conserved variables and the function f is a vector of fluxes.
One says that the system (4.11) is written in conservative form.

The system of one dimensional first order conservation laws (4.11) can be written
in the quasilinear form

∂u

∂t
+ A(u)

∂u

∂x
= 0 (4.12)

where

A(u) = ∂f/∂u =


∂f1/∂u1 ... ∂f1/∂um
∂f2/∂u1 ... ∂f2/∂um

...
∂fm/∂u1 ... ∂fm/∂um

 . (4.13)

is the Jacobian matrix of the flux function f(u). Physically the eigenvalues of the Ja-
cobian matrix represent the speeds of the propagation of information in the solution.
We consider that the speed is positive in the direction of positive x and negative
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otherwise. We call the eigenvalues λi(u) for i = 1, ...,m the i − th characteristic
speeds which are given by the solution of

|A− λI| = det(A− λI) = 0.

Additionally, we can find a linearly independent right eigenvector ki corresponding
to an eigenvalue λi of the matrix A. The pair (λi(u),ki(u)) determines the i − th
characteristic field of the system (4.11).
The Jacobian matrix and its eigenvalues and eigenvectors play an important role in
the study of the analytical structure of the conservation laws as we shall see later
on.

Definition 2 Hyperbolic systems The system (4.11) is called hyperbolic if the
Jacobian matrix has m real eigenvalues and m linearly independent corresponding
eigenvectors. The system is called strictly hyperbolic if the eigenvalues are distinct,
in other words if

λ1 < λ2 < ... < λm

holds.

At time t = 0, the system (4.11) with the initial data of the form

u(x, 0) = u0(x), (4.14)

is called Cauchy problem or the initial value problem.
One of the difficulties that one may face in the study of the Cauchy problem is that
the solution may become discontinuous after some time even if the initial data are
smooth. To overcome this situation the weak solution to (4.11) with the initial data
(4.14) plays a major role, see the subsection 4.2.3.

Definition 3 The Riemann problem The initial value problem (4.11)-(4.14) is
called Riemann problem if the initial data has the special form

u(x, 0) = u0(x) =

{
u− if x < 0,

u+ if x > 0,
(4.15)

where u− the left hand side and u+ the right hand side initial date are two constant
vectors separated by a discontinuity at x=0. Figure 4.4 illustrates the idea of the
Riemann problem.

0 x

ut = 0

u−

u+

Figure 4.4: The initial data of the Riemann problem.

The Riemann problem plays an important role in the study of hyperbolic conserva-
tion laws and it has many applications in science and nature. The solution of the
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0 x

t

u−

u∗− u∗+

u+

Figure 4.5: The structure of the solution of the Riemann problem.

Riemann problem consists of m waves emanating from the origin. These waves are
separated by a discontinuity in the value of the conservative variables u considered.
The solution to the left of the first wave and to the right of the mth wave is given
by the initial data u− and u+ respectively. We call the area between the first and
the last wave the star region. The main problem is to find the solution in the star
region between the first and the last waves. Figure 4.5 illustrate the structure of the
solution of the Riemann problem.
In most cases the difference |u− − u+| plays an essential role in order to find the
solution to the Riemann problem, see Andrianov [8]. If the system (4.11) is strictly
hyperbolic then the Riemann problem has a solution but only for initial data where
the difference |u−−u+| is small, see Godlewski and Raviart [31]. As an example we
consider the flow of two vapors. In this case the difference between the initial data
of the conservative variables is small as we shall see in Chapter 5.
For big changes within initial Riemann data, like the flow of vapor and liquid, the
corresponding Riemann problem can have no solution, see Keyfitz and Kranzer [40],
or at least we can face more difficulties as we shall see in Chapter 6.

Definition 4 Linearly degenerate fields A λi-characteristic field is said to be
linearly degenerate if

∇λi(u) · ki(u) = 0.

Definition 5 Genuinely nonlinear fields A λi-characteristic field is said to be
genuinely nonlinear if

∇λi(u) · ki(u) 6= 0.

Definition 6 The generalized Riemann invariants

Suppose the pair (λi(u), ki(u)) is the ith characteristic field of the system of hyper-
bolic conservation laws (4.11). Then the ith generalized Riemann invariants are the
ordinary differential equation

du1

k1

=
du2

k2

= ... =
dum
km

,

where u = (u1, u2, ..., um)> is the vector of dependent variables which may be con-
served or primitive variables and ki the ith-component of the right eigenvector ki(u)
of the ith characteristic field.
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The study of the Riemann problem reveals that many kinds of waves occur in the
solution. The properties of λi-characteristic field provide us with a vision of the
nature of the solution. We can distinguish three types of waves that are associated
with the genuine nonlinear field and the linearly degenerate field. The waves which
are associated to the genuine nonlinear field are the rarefaction waves and the shock
waves where the contact discontinuity is the one associated with the linearly de-
generated field. One has to mention that the shock and the contact discontinuities
satisfy a jump condition. Now we want to present each type of wave and provide
the reader a summary of the solution to the Riemann problem. The main references
we have used here are the books of Toro [75], Smoller [69] and LeVeque [47] as well
as the PhD theses of Matern [51] and Thein [73].

The shock wave

As we have seen previously the characteristics might intersect at some point p. In
this case the characteristics form a shock. We understand the shock as a small tran-
sition layers of rapid changes in physical quantities such as pressure, density and
temperature. The transition layer of a strong shock is very thin so that mathemat-
ically this layer can be replaced by discontinuity, for more details see [75].
As we are dealing with the shock as a discontinuity this means that the Rankine-
Hugoniot condition

Jf(u)K = sJuK

holds. Here s is the velocity.

The contact discontinuity

The last type of waves is called the contact discontinuity. This type is associated
with a linearly degenerated characteristic field. In this case the relation

λ(u−) = λ(u+) = s,

holds. This means that all characteristics are parallel to each other. The Rankine-
Hugoniot conditions and the Riemann invariants are fulfilled. The i-th characteristic
field speeds are constant across the wave and coincide with the speed of the contact
wave.

4.4 The analytical structure and the exact solu-

tion of the submodel for the case N = 1

In this section we want to study the analytical structure of the diffuse interface
multiphase mixture model presented in Chapter 3. We will apply the mathemat-
ical tools presented in the previous section and show that the system is a system
of hyperbolic conservation laws. We find the eigenvalues and eigenvectors of the
Jacobian matrix. Then we analyze the eigenstructure and study the properties of
the characteristic fields. We will present the exact solution to the Riemann problem
for the case N = 1 where we have two pure phases. In this case the homogeneous
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form of the diffuse interface model (3.5) is given as

χt + vχx = 0,

ρt + (ρv)x = 0,

(ρv)t + (ρv2 + p)x = 0,

with the Riemann initial data

(ρχ)(x, 0) =

{
(ρχ)− if x < 0,

(ρχ)+ if x > 0,
ρ(x, 0) =

{
ρ− if x < 0,

ρ+ if x > 0,
(4.16)

(ρv)(x, 0) =

{
(ρv)− if x < 0,

(ρv)+ if x > 0.

The system is supplied with the equation of state

p(χ, ρ) = −W (χ) + h(χ)(a2
+ρ+ d+) + (1− h(χ))(a2

−ρ+ d−). (4.17)

This system also has the conservative form (3.12)

ut + f(u)x = 0,

where the conservative variables are u1 = ρχ, u2 = ρ, u3 = ρv.
Now in order to study the eigenstructure of the model we want to compute the
Jacobian Matrix A(u) taking into account that we will need to find px. We have
p = p(χ, ρ) which gives

dp

dx
=
∂p

∂ρ

∂ρ

∂x
+
∂p

∂χ

∂χ

∂x
.

We determine from (4.17)

∂p

∂ρ
= h(χ)a2

+ + (1− h(χ))a2
− = A2,

and
∂p

∂χ
= −W ′(χ) + p+h

′(χ)− p−h′(χ) = B.

This means that
dp

dx
= A2ρx +Bχx,

where

A2 =
∂p

∂ρ
, B =

∂p

∂χ
.

In order to find the Jacobian matrix it is easier to write the system in quasi linear
form in terms of the primitive variables (χ, ρ, v). The system in quasi linear form is

χt + vχx = 0,

ρt + ρvx + vρx = 0,

vt + vvx +
A2

ρ
ρx +

B

ρ
χx = 0.
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In order to determine the properties of the system, we consider the Jacobian matrix
which is

A(u) =

 v 0 0
0 v ρ

B/ρ A2/ρ v

 .

The eigenvalues of the Jacobian matrix are

λ1 = v − A, λ2 = v, λ3 = v + A

and the corresponding eigenvectors are

k1 =

 0
−ρ
A

 , k2 =

 A2

−B
0

 , k3 =

0
ρ
A

 .

One can notice that the eigenvalues are real and satisfy the condition λ1 < λ2 < λ3

and we have a set of independent corresponding eigenvectors which means the system
is strictly hyperbolic.

4.4.1 Characteristic field of the eigenvalues and Riemann
invariants for the case N = 1

We classify the eigenvectors ki = (ki1, ki2, ki3), i = 1, 2, 3 to be:

• For λ1 = v − A, with the eigenvector

k1 =

 0
−ρ
A

 .

We find

∇λ1k1 =
∂λ1

∂χ
k11 +

∂λ1

∂ρ
k12 +

∂λ1

∂v
k13 = 0 + 0 + A 6= 0,

and the first eigenvector is genuinely non-linear. Across the λ1-wave we have

dχ

0
=

dρ

−ρ
=
dv

A
,

which gives χ = constant the first Riemann invariant and we need to solve

dv +
A

ρ
dρ = 0.

The Riemann invariant is

v + A ln ρ = constant.

• For λ2 = v, with the eigenvector is

k2 =

 A2

−B
0

 .
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We find

∇λ2k2 =
∂λ2

∂χ
k21 +

∂λ2

∂ρ
k22 +

∂λ2

∂v
k23 = 0 · A2 − 0 ·B + 0 = 0,

and the second eigenvector is linearly degenerate. Across the λ2-wave we have

dχ

A2
=

dρ

−B
=
dv

0

which gives the first Riemann invariant in this case which is v = constant and

dχ

A2
=

dρ

−B
⇔ Bdχ+ A2dρ = dp = 0,

which gives the second Riemann invariant in this case which is p = constant.
Another way to show that p = constant is using the jump condition. The
second wave is a contact which means the jump conditions are satisfied. From
our system and the jump condition we get vl = vr = s = v and from the
Rankine-Hungoniot conditions, i.e. JuK = ul − ur, we obtain

s =
JρχvK
JρχK

=
JρvK
JρK

=
Jρv2 + pK

JρvK
.

And

v = s =
Jρv2 + pK

JρvK
=

Jρv2K
JρvK

+
JpK
JρvK

=
v2JρK
vJρK

+
JpK
JρvK

= v +
JpK
JρvK

.

We find JpK
JρvK = 0. Which means JpK = 0. Then we can find pl = pr.

• For λ3 = v + A, with the eigenvector

k3 =

0
ρ
A

 ,

we find

∇λ3k3 =
∂λ3

∂χ
k31 +

∂λ3

∂ρ
k32 +

∂λ3

∂v
k33 = 0 + 0 + A 6= 0,

and the third eigenvector is genuinely non-linear. Across the λ3-wave we have

dχ

0
=
dρ

ρ
=
dv

A

which gives χ = constant and thus A is a constant. We need to solve

dv − A

ρ
dρ = 0.

The Riemann invariant is

v − A ln ρ = constant.
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4.4.2 The exact solution for the case N = 1

In the study of the exact solution of the Riemann problem for the case N = 1 we will
use the vector W = (ρ, v, p)> of the primitive variables instead of the conservative
variables. In this case the initial data in terms of primitive variables consists of the
constant data W− = (ρ−, v−, p−)> to the left and W+ = (ρ+, v+, p+)> to the right.
The initial data are separated by a discontinuity.
As we have seen in the previous section we have three eigenvalues namely

λ1 = v − A, λ2 = v, λ3 = v + A,

which means that the exact solution of the Riemann problem has three waves. The
region between the first and the last wave is called the star region W∗. In this
region the data are unknown. We aim to determine the solution in the star re-
gion. The wave in the middle divides the star region into two subregions star left
W∗
− = (ρ∗−, v

∗
−, p

∗
−) and star right W∗

+ = (ρ∗+, v
∗
+, p

∗
+). This means the waves sepa-

rate four constant states W−, W∗
−, W∗

+ and W+.
The middle wave is a contact discontinuity. Therefore the first and the last waves
form four possible wave patterns which are shock-shock, shock-rarefaction, rarefaction-
shock, and rarefaction-rarefaction.
The study of the Riemann invariants reveals that

p∗− = p∗+, and v∗− = v∗+,

which means that the pressure and the velocity in the star region are constants. For
the sake of the simplicity we use p∗ and v∗ to denote them. The density has two
values in the star region namely ρ∗− and ρ∗+. Our goal is now to determine the four
unknowns p∗, v∗, ρ∗− and ρ∗+.

Solution strategy

The main idea of the solution strategy is based on establishing equations to find
the pressure p∗ and the velocity v∗ in the star region. This benefits the use of the
relation between the pressure and the density via the equation of state to find the
densities ρ∗− and ρ∗+. The main reference is the book by Toro [75] and [49].
For this goal we will define the function f− below which is a function of the pressure
and the data W−. The function f− governs the relations across the left wave and
connects v∗ to the known state W−.
Similarly, the function f+ will be a function of the pressure and the data W+. It
relates v∗ to the known state W+. This function governs the relations across the
right wave. The solution for the pressure p∗ is given by the root of the equation

f(p,W−,W+) = f−(p,W−) + f+(p,W+) + ∆v = 0, ∆v = v+ − v−.

The solution for the velocity in the star region will be given as

v∗ =
1

2
(v− + v+) +

1

2
[f+(p∗)− f−(p∗)].

Once the pressure p∗ is obtained we can find the densities ρ∗− and ρ∗+ using the
equation of state (4.17).
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Shock waves

We start the discussion by considering a shock wave. The shock can move either to
the right or to the left. For each of the two cases there are known data and unknown
variables which we want to determine. We use the Rankine-Hugoniot condition to
derive the relations across the shock waves. First we will assume the case of a shock
moving to the left. We will obtain the relation f− and then we will consider a shock
moving to the right and show how we derive a relation of f+.

Function f− for a left shock

First we consider a shock moving to the left with speed S−. We define the relative
velocities, see Toro [75] and Hantke et al. [32]

v̂− = v− − S−, (4.18)

v̂∗ = v∗ − S−.

The calculations at the shocks require the use of the Rankine-Hugoniot conditions
which are

ρ−χ−v̂− − ρ∗−χ∗−v̂∗− = 0, (4.19)

ρ−v̂− − ρ∗−v̂∗− = 0, (4.20)

ρ−v̂
2
− + p− − (ρ∗−v̂

∗2
− + p∗) = 0. (4.21)

We introduce the mass flux Q− which from (4.20) can be written as

Q− = ρ−v̂− = ρ∗−v̂
∗
−. (4.22)

Then from equation (4.21) we have

Q−v̂− + p− = Q−v̂
∗
− + p∗.

We can get an expression for Q−, which is given by

Q− = − p
∗ − p−
v̂∗− − v̂−

. (4.23)

But from equations (4.18) we can write

v̂∗− − v̂− = v∗ − v−,

which means that we can write the mass flux as

Q− = −p
∗ − p−
v∗ − v−

,

and the velocity can be written as

v∗ = v− −
p∗ − p−
Q−

. (4.24)

Our aim now is to relate v∗ to p∗ and the data W− on the left hand side. For this
end we need to write Q− as a function of p∗ and the data on the left hand side. So
that we use the relations

v̂− =
Q−
ρ−

, v̂∗− =
Q−
ρ∗−

,
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which are obtained from (4.22) and substitute into (4.23). This gives that

Q− = − p∗ − p−
Q−
ρ∗−
− Q−

ρ−

,

which implies that

Q2
− = − p

∗ − p−
1
ρ∗−
− 1

ρ−

. (4.25)

The density is related to the pressure behind the left shock via the stiffened gas
equation of state which is presented in detail in Chapter 3, Subsection 3.5.2. In the
pure phases the equation of state has the form

p = a2ρ+ d,

so that

Q2
− = − p∗ − p−

1
p∗−d
a2

− 1
p−−d
a2

=
1

a2
(p∗ − d)(p− − d).

We substitute into (4.24) and get

v∗ = v− − a
p∗ − p−√

(p∗ − d)(p− − d)
.

As the velocity in the star region should satisfy

v∗ = v− − f−(p∗,W−),

we find that

f−(p∗,W−) = a
p∗ − p−√

(p∗ − d)(p− − d)
,

which is the expression sought for f−.

Function f+ for a right shock

Now we will assume the right wave may be a shock moving with speed S+. We
follow the same approach in the previous discussion taking into account that the
information is known to the right in this case. We begin by defining the relative
velocities which are given as

v̂+ = v+ − S+, (4.26)

v̂∗ = v∗ − S+.

Now we apply the Rankine-Hugoniot condition on the system. This gives

ρ+χ+v̂+ − ρ∗+χ∗+v̂∗+ = 0, (4.27)

ρ∗+v̂
∗
+ − ρ+v̂+ = 0, (4.28)

ρ∗+v̂
∗2
+ + p∗ − (ρ+v̂

2
+ + p+) = 0. (4.29)

We introduce the mass flux

Q+ = −ρ+v̂+ = −ρ∗+v̂∗+. (4.30)
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This means that the equation (4.29) can be written as

−Q+v̂+ + p+ = −Q+v̂
∗
+ + p∗.

We can get an expression for Q+, which is given as

Q+ =
p+ − p∗

v̂+ − v̂∗+
. (4.31)

One can notice that from the definition of the relative velocities we have

v̂+ − v̂∗+ = v+ − v∗, (4.32)

and Q+ becomes

Q+ =
p+ − p∗

v+ − v∗
. (4.33)

This means that the velocity can be written as

v∗ = v+ −
p+ − p∗

Q+

. (4.34)

Now from (4.30) we get

v̂+ =
−Q+

ρ+

, v̂∗+ =
−Q+

ρ∗+
.

We substitute into (4.31) and get

Q+ =
p+ − p∗
−Q+

ρ+
+ Q+

ρ∗+

.

Then we can write the mass flux in terms of the pressure and the density as

Q2
+ =

p+ − p∗
−1
ρ+

+ 1
ρ∗+

.

Now we use the equation of state p = a2ρ + d in the pure phases in order to write
the mass flux as a function of either the pressure p∗ or the density ρ∗. We write the
mass flux as a function of the pressure as

Q2
+ =

p+ − p∗
−1
p+−d
a2

+ 1
p∗−d
a2

=
1

a2
(p∗ − d)(p+ − d).

Next we substitute in (4.34), we get

v∗ = v+ − a
p+ − p∗√

(p∗ − d)(p+ − d)
.

Comparing with the formula of the velocity in the star region satisfying

v∗ = v+ + f+(p∗,W+),

we find that the function f+ for the case in which the right wave is shock is

f+ = −a p+ − p∗√
(p∗ − d)(p+ − d)

.
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Rarefaction waves

Now we want to derive an expression for f− and f+ for the case of rarefaction waves.
We have two possibilities: the first one when the wave is moving to the left and the
second one when the wave is moving to the right. In this case we use the Riemann
invariants in order to relate the unknown state W∗

− with the known data W− to the
left. Similarly, we relate the unknown W∗

+ with the known date W+ to the right.

Function f− for left rarefaction

As we have seen before the Riemann invariant which is associated with the first
eigenvalue and the first eigenvector is given as

v + A ln ρ = constant,

where A is the speed of sound in the mixture which is already presented previously
in this chapter.
As Riemann invariant is constant across the left rarefaction wave and by evaluating
the constant on the left data we find

v− + A ln ρ− = v∗ + A ln ρ∗−.

This means that v∗ is given as

v∗ = v− + A ln
ρ−
ρ∗−
.

This leads to
f− = −A ln

ρ−
ρ∗−
.

This equation can be written in terms of p∗ as

f− = −A ln
p− − d
p∗ − d

,

which is the required function for the case in which the left wave is a rarefaction
wave.

Function fr for right rarefaction

The Riemann invariant is associated with the third eigenvalue and the corresponding
Riemann invariant is given as

v − A ln ρ = constant.

This implies that we can write

v+ − A ln ρ+ = v∗ − A ln ρ∗+,

as long as Riemann invariant is constant along the wave to the right. This gives

v∗ = v+ + A ln
ρ∗+
ρ+

.
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This means that the relation f+ is given as

f+ = A ln
ρ∗+
ρ+

.

which can be written as

f+ = A ln
p∗ − d
p+ − d

.

What we have done until now is that we determined the functions f− and f+ for the
four possible wave patterns. We summarize the expressions f− and f+ as follows

f− =

a
p∗−p−√

(p∗−d)(p−−d)
, shock,

−A ln p−−d
p∗−d , rarefaction,

and

f+ =

−a
p+−p∗√

(p∗−d)(p+−d)
, shock,

A ln p∗−d
p+−d , rarefaction.

Now we have a single equation

f(p∗,W−,W+) = f−(p∗,W−) + f+(p∗,W+) + ∆v = 0, ∆v = v+ − v−.

with one variable p∗ which can be determined now by finding the roots of this
equation. The velocity v∗ can be found by solving

v∗ =
1

2
(v− + v+) +

1

2
[f+(p∗)− f−(p∗)].

We remind the reader that it is an easy task to determine the ρ∗− and ρ∗+ because
the densities are related with the pressure via the equation of state.

4.5 The analytical structure and the exact solu-

tion for the case N > 1

Our aim in this section is to present a detailed discussion for the analytical structure
for the case N > 1. We consider a mixture of two phases that consists of N
components. In this case the system has the form

∂
∂t
ρχ+ ∂

∂x
ρχv = 0,

∂
∂t
ρi + ∂

∂x
(ρiv) = 0 i = 1, ..., N − 1

∂
∂t
ρ+ ∂

∂x
(ρv) = 0

∂
∂t

(ρv) + ∂
∂x

(ρv2 + p) = 0.

(4.35)

The transport equation of the total density ρ =
∑N

i=1 ρi can be replaced by the
transport equation of the partial density of the N − th component. The system in
this case has the form

∂
∂t
ρχ+ ∂

∂x
ρχv = 0,

∂
∂t
ρi + ∂

∂x
(ρiv) = 0, i = 1, ..., N

∂
∂t

(ρv) + ∂
∂x

(ρv2 + p) = 0,

(4.36)
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with the Riemann initial data

χ(x, 0) =

{
χ− if x < 0,

χ+ if x > 0,
ρ(x, 0) =

{
ρ−i if x < 0,

ρ+i if x > 0, i = 1, . . . , N

(4.37)

v(x, 0) =

{
v− if x < 0,

v+ if x > 0.

Remark 2 The systems (4.35) and (4.36) are not only equivalent for the smooth
solutions but also for the weak solutions since the jump conditions

sJρK− JρvK = 0,

and
sJρiK− JρivK = 0, i = 1, . . . , N

are mutually compatible. Note that this is due to

0 =
N∑
i=1

(sJρiK− JρivK) = sJ
N∑
i=1

ρiK− J
N∑
i=1

ρivK = sJρK− JρvK.

The pressure p is related to the phase field variable χ and the partial densities ρi,
i = 1, ..., N of the components by the equation of state

p(χ, ρ1, ..., ρN) = −W (χ) +
N∑
i=1

[h(χ)(a2
+iρi + d+i) + (1− h(χ))(a2

−iρi + d−i)], (4.38)

where ai+ and ai− are the isothermal sound speed of the component i in the liquid
and the vapor respectively. We have

dp

dx
=

∂p

∂ρ1

∂ρ1

∂x
+ ...+

∂p

∂ρN

∂ρN
∂x

+
∂p

∂χ

∂χ

∂x
.

From the equation of state (4.38) we introduce the mixture sound speed

A2
i :=

∂p

∂ρi
= h(χ)a2

i+ + (1− h(χ))a2
i+,

and the variable

B :=
∂p

∂χ
= −W ′(χ) + h′(χ)

N∑
i=1

(a2
i+ρi + di+)− h′(χ)

N∑
i=1

(a2
i−ρi + di−).

One should keep in mind that the abbreviations Ai depend on χ, while B depends
on χ and the partial densities ρi.
Using the above notations we obtain the quasilinear form of the system (4.36) which
has the form

∂
∂t
χ+ v ∂

∂x
χ = 0

∂
∂t
ρi + v ∂

∂x
ρi + ρi

∂
∂x
v = 0 i = 1, ..., N

∂
∂t
v + B

ρ
∂
∂x
χ+ 1

ρ

∑N
i=1A

2
i
∂
∂x
ρi + v ∂

∂x
v = 0.

(4.39)
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The Jacobian matrix in this case is

A(χ, ρ1, ..., ρN , v) =



v 0 0 ... 0 0
0 v 0 ... 0 ρ1

0 0 v ... 0 ρ2
...
0 0 0 ... v ρN
B
ρ

A2
1

ρ

A2
2

ρ
...

A2
N

ρ
v


.

The eigenvalues of the Jacobian matrix are

λ0 = v − A, λ1 = λ2 = ... = λN = v, λN+1 = v + A,

where

A =

√∑N
i=1 ρiA

2
i

ρ
.

In case B 6= 0 we obtain the full set of linearly independent eigenvectors

k0 =



0
−ρ1

−ρ2
...
−ρN
A


, kN+1 =



0
ρ1

ρ2
...
ρN
A


,

k1 =



−A2
1

B
0
...
0
0


, k2 =



−A2
2

0
B
...
0
0


, ..., kN =



−A2
N

0
0
...
B
0


.

In the case B = 0 we have a full system of linearly independent eigenvectors with

k1 =



1
0
0
...
...
0
0


, k2 =



0
−A2

2

A2
1

0
...
0
0


, ..., kN =



0
−A2

N

0
...
0
A2

1

0


,

and k0 and kN+1 as before. The eigensystem in this case looks different because the
eigenvectores do not depend smoothly on the entry of the matrix.
This means that in both cases we have a full set of linearly independent eigenvector.
This implies that system (4.36) is hyperbolic. For the single component case N = 1
it is even strictly hyperbolic.
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4.5.1 Characteristic fields

Let u = (χ, ρ1, . . . , ρN , v)T denote the vector of primitive variables. Across the left
wave we have λ0 = v − A with the corresponding eigenvector k0. We have

∇uλ0k0 =
∂λ0

∂χ
k00 +

∂λ0

∂ρ1

k01 + · · ·+ ∂λ0

∂ρN
k0N +

∂λ0

∂v
k0N+1

= 0 +
∂λ0

∂ρ1

(−ρ1) + · · ·+ ∂λ0

∂ρN
(−ρN) + 1 · A

= −A
2
1 − A2

2Aρ
(−ρ1) + · · · − A2

N − A2

2Aρ
(−ρN) + A

=
ρ1A

2
1 + · · ·+ ρNA

2
N

2Aρ
− ρ1A

2 + · · ·+ ρNA
2

2Aρ
+ A

=
A2

2A
− ρA2

2Aρ
+ A

=
A

2
− A

2
+ A = A 6= 0.

The same across the right wave where λN+1 = v +A with the corresponding eigen-
vector kN+1. In this case

∇uλN+1kN+1 =
∂λN+1

∂χ
kN+1,0 +

∂λN+1

∂ρ1

kN+1,1 + · · ·+ ∂λN+1

∂ρN
kN+1,N +

∂λN+1

∂v
kN+1,N+1

= 0 +
∂λN+1

∂ρ1

ρ1 + · · ·+ ∂λN+1

∂ρN
ρN + 1 · A

=
A2

1 − A2

2Aρ
(ρ1) + · · ·+ A2

N − A2

2Aρ
(ρN) + A

=
ρ1A

2
1 + · · ·+ ρNA

2
N

2Aρ
− ρ1A

2 + · · ·+ ρNA
2

2Aρ
+ A

=
A2

2A
− ρA2

2Aρ
+ A

=
A

2
− A

2
+ A = A 6= 0.

This implies that across the left and the right waves the relations

∇uλ0k0 6= 0, ∇uλN+1kN+1 6= 0,

are satisfied. This means that the associated characteristic fields are genuinely non-
linear and the corresponding waves are shocks or rarefactions.
Furthermore for the multiple eigenvalues λi = v with the corresponding eigenvector
ki where i = 1, ..., N one can verify that

∇uλiki =
∂λi
∂χ

ki0 +
∂λi
∂ρ1

ki1 + · · ·+ ∂λi
∂ρN

kiN +
∂λi
∂v

kiN+1

= 0 · (−A2
i ) + 0 · ki2 + · · ·+ 0 · kiN + 1 · A = 0,

which means that the associated characteristic field is linearly degenerate and the
corresponding wave is a classical contact.

48



4.5. THE ANALYTICAL STRUCTURE AND THE EXACT SOLUTION FOR
THE CASE N > 1

4.5.2 Riemann invariants for the case N > 1

Let λ be an eigenvector of multiplicity m in a system of dimension n. Then there
exist n−m Riemann invariants across the wave corresponding to λ.
Here we have n = N + 2 accordingly we have N + 1 Riemann invariants across the
outer waves belonging to λ0 and λN+1 and we have 2 Riemann invariants across the
contact wave in the middle.
To find the Riemann invariants across the field j, for j = 0, . . . , N + 1 one has to
solve the system

du0

kj,0
=
du1

kj,1
= · · · = duN+1

kj,N+1

. (4.40)

Case j = 0: Then the system of ordinary differential equations to solve becomes

dχ

0
=

dρ1

−ρ1

= · · · = dρN
−ρN

=
dv

A
.

It is easy to see that the phase field χ is constant across the 0th wave with χ ≡ χ−.
For j = 2, . . . , N we have

dρ1

−ρ1

=
dρj
−ρj

.

This gives for j = 2, . . . , N

ln(ρ1)− ln(ρj) = const resp. ρj = cj−ρ1 .

It remains to solve

−A
ρ1

dρ1 = dv .

Defining c1− := 1 we get

dv = − 1

ρ1

√∑N
i=1A

2
i ci−ρ1∑N

i=1 ci−ρ1

dρ1 = − 1

ρ1

√∑N
i=1A

2
i ci−∑N

i=1 ci−
dρ1 .

Keeping in mind that the phase field is an invariant we have Ai = Ai(χ−) = const
we define Ai− := Ai(χ−) and we finally obtain

v = v− − ln(ρ1)

√∑N
i=1A

2
i−ci−∑N

i=1 ci−
+ ln(ρ1−)

√∑N
i=1A

2
i−ci−∑N

i=1 ci−
.

Case j = N + 1: It is quite similar. An analogous calculation with c1+ := 1 gives
the following relations

χ ≡ χ+

ρj = cj+ρ1 j = 2, . . . , N

v = v+ + ln(ρ1)

√∑N
i=1 A

2
i+ci+∑N

i=1 ci+
− ln(ρ1+)

√∑N
i=1 A

2
i+ci+∑N

i=1 ci+
with Ai+ = Ai(χ+) .

For the contact one can immediately see that the velocity is a Riemann invariant.
Nevertheless we fail to determine the second invariant. However, from the single
component case with pure phases we know, that also the pressure is a constant
across the middle wave. To verify if this is true in general we rewrite the quasilinear
system, now using the variables v, p, ρi for i = 1, . . . , N .
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New choice of variables.

As mentioned before determining Riemann invariants in the middle wave is not
an easy task. So that we will rewrite the system (4.36) in terms of the primitive
variables ρi, i = 1, . . . , N , v and p instead of χ, ρ1, . . . , ρN and v.
The equation of state (4.38) has the form p = p(ρ1, ρ2, . . . , ρN , χ). This means that

∂p

∂t
=

N∑
i=1

A2
i · (ρi)t +Bχt, and

∂p

∂x
=

N∑
i=1

A2
i · (ρi)x +Bχx,

where

A2
i =

∂p

∂ρi
and B =

∂p

∂χ
.

This implies that

χt =
1

B
(pt −

N∑
i=1

A2
i (ρi)t) and χx =

1

B
(px −

N∑
i=1

A2
i (ρi)x).

We substitute the last relations into the transport equation of the phase field variable
in (4.36) we obtain the smoothly equivalent quasilinear form of the system using the
variables v, p, ρi for i = 1, . . . , N

∂tp+ v∂xp+
N∑
i=1

A2
i ρi∂xv = 0 (4.41a)

∂tρi + v∂xρi + ρi∂xv = 0 i = 1, . . . , N (4.41b)

∂tv +
1

ρ
∂xp+ v∂xv = 0 (4.41c)

with the corresponding Jacobian
v 0 . . . 0

∑N
i=1A

2
i ρi

0 v . . . 0 ρ1
...

. . .
...

0 0 . . . v ρN
1
ρ

0 . . . 0 v

 .

The eigenvectors belonging to the multiple eigenvalue λ1 = · · · = λN = v are now
given by 

0
1
0
...
0
0


, . . . ,



0
0
...
0
1
0


.

Once again we easily can see that the velocity remains constant across the contact
wave. In addition we find the pressure to be the further invariant as conjectured
above.
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4.5.3 The exact solution for the case N > 1

In this section we will present the explicit solution of the Riemann problem for the
diffuse interface multiphase mixture model (4.36) with the equation of state (4.38).
First we summarize the results obtained in the last section as following

• The solution of the Riemann problem consists of four constant states that are
separated by three waves. The middle wave is a contact while the outer waves
are shocks or rarefactions.

• The phase field χ may change across the contact wave, but stays constant
everywhere else. This means that the initial profile of the phase field is shifted
with the flow.

• Due to the fact that the solution for the phase field is known, it remains to
solve the system consisting of the partial mass balances and the momentum
balance. This system is in divergence form. Accordingly the Rankine-Hugeniot
jump conditions are satisfied across discontinuities. These are given by

ρi+v+ − ρi−v− = s(ρi+ − ρi−) i = 1, . . . , N (4.42)

N∑
i=1

(ρi+(v+)2 − ρi−(v−)2) + (p+ − p−) = s
N∑
i=1

(ρi+v+ − ρi−v−) (4.43)

where s denotes the propagation speed of the discontinuity and − and +
indicate the states to the vapor to the left and the liquid to the right of the
discontinuity, resp.

• The velocity and the pressure are Riemann invariants across the contact wave.
This allows to follow the strategy described in the book of Toro [75] to con-
struct the Riemann solution.

Rarefactions.

Assume the left wave is a rarefaction. Then from the last section we know that

v∗ = v− − ln(ρ∗1−)

√∑N
i=1 A

2
i−ci−∑N

i=1 ci−
+ ln(ρ1−)

√∑N
i=1 A

2
i−ci−∑N

i=1 ci−
(4.44)

and ρ∗j− = cj−ρ
∗
1− with cj− =

ρj−
ρ1−

and j = 1, . . . , N . Using (4.38) we find that

p∗ = −W (χ−) + h(χ−)
N∑
i=1

(a2
i+cj−ρ

∗
1− + di+) + (1− h(χ−))

N∑
i=1

a2
i−cj−ρ

∗
1−

= A0− +A1−ρ
∗
1−

with

A0− = −W (χ−) + h(χ−)
N∑
i=1

di+, (4.45)

and

A1− = h(χ−)
N∑
i=1

a2
i+cj− + (1− h(χ−))

N∑
i=1

a2
i−cj− .
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So we can replace ρ∗1− in (4.44) by ρ∗1− = p∗−A0−
A1−

to give

v∗ = v− + ln

(
p∗ −A0−

A1−

)√∑N
i=1A

2
i−ci−∑N

i=1 ci−
− ln(ρ1−)

√∑N
i=1A

2
i−ci−∑N

i=1 ci−
, (4.46)

where
Ai− = Ai(χ−).

An analogous calculation for a right rarefaction leads to

v∗ = v+ + ln

(
p∗ −A0+

A1+

)√∑N
i=1A

2
i+ci+∑N

i=1 ci+
− ln(ρ1+)

√∑N
i=1A

2
i+ci+∑N

i=1 ci+
, (4.47)

where
Ai+ = Ai(χ+).

Shocks

Now let us assume that the left wave is a shock propagating with speed S−. We
define the left relative mass fluxes Qi− by rewriting (4.42) as

ρα−(v− − S−) = ρ∗i−(v∗ − S−) =: Qi− i = 1, . . . , N . (4.48)

We note that

ρ∗i−
ρi−

=
v− − S−
v∗ − S−

for all i = 1, . . . , N . (4.49)

Accordingly

ρ∗i− = ρi−
ρ∗1−
ρ1−

for all i = 1, . . . , N .

Using (4.48) this we can rewrite (4.43) as

(v− − v∗)
N∑
i=1

Qi− + (p− − p∗) = 0 (4.50)

and we obtain

v∗ = v− −
p∗ − p−∑N
i=1 Qi−

where we will express
∑N

i=1Qi− in terms of p∗. To do this we rewrite (4.50) as
follows

N∑
i=1

Qi− = −p− − p
∗

v− − v∗
= − p− − p∗

(v− − S−)− (v∗ − S−)
= − p− − p∗

Qj−
ρj−
− Qj−

ρ∗j−

. (4.51)

Multiplying (4.51) by Qj− and summing up over j we get

N∑
j=1

Qj−

N∑
i=1

Qi− = −
N∑
j=1

p− − p∗
1
ρj−
− 1

ρ∗j−

.
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This leads to

N∑
i=1

Qi− =

√√√√− N∑
i=1

p− − p∗
1
ρi−
− 1

ρ∗i−

,

and we finally obtain

v∗ = v− −
√
p∗ − p−√∑N
i=1

ρi−ρ∗i−
ρ∗i−−ρi−

= v− −
√
p∗ − p−√

ρ∗1−
ρ∗1−−ρ1−

∑N
i=1 ρi−

= v− −
√
p∗ − p−∑N
i=1 ρi−

√
1− A1−ρ1−

p∗ −A0−
.

Analogously we obtain for a right shock

v∗ = v+ +

√
p∗ − p+∑N
i=1 ρi+

√
1− A1+ρ1+

p∗ −A0+

.

Existence and uniqueness of the Riemann solution.

We summarize the results of the last subsection in the following

Theorem 1 Let the function

f(p,W−,W+) = f−(p,W−) + f+(p,W+) + (v+ − v−), (4.52)

be given with

f−(p,W−) =


√
p−p−∑N
i=1 ρi−

√
1− A1−ρ1−

p−A0−
if p > p− (shock)

ln
(
p−A0−
A1−

)√∑N
i=1 A

2
i−ci−∑N

i=1 ci−
− ln(ρ1−)

√∑N
i=1 A

2
i−ci−∑N

i=1 ci−
if p ≤ p− (rarefaction)

f+(p,W+) =


√
p−p+∑N
i=1 ρi+

√
1− A1+ρ1+

p−A0+
if p > p+ (shock)

ln
(
p−A0+

A1+

)√∑N
i=1 A

2
i+ci+∑N

i=1 ci+
− ln(ρ1+)

√∑N
i=1 A

2
i+ci+∑N

i=1 ci+
if p ≤ p+ (rarefaction)

using

A0± = −W (χ±) + h(χ±)
N∑
i=1

di+

A1± = h(χ−)
N∑
i=1

a2
i+cj− + (1− h(χ−))

N∑
i=1

a2
i+cj−

ci± =
ρi±
ρ1±

i = 1, . . . , N.

Then the function f(p,W−,W+) has a unique root p = p∗ that is the unique solution
for the pressure p∗ of the Riemann problem (4.36), (4.38), (4.37). The velocity v∗

can be calculated using

v∗ =
1

2
(v− + v+) +

1

2
(f−(p∗,W+)− f−(p∗,W−)) .
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Proof
The function f is strictly increasing in p. For p → min{A0−,A0+} the function f
tends to −∞. For p → +∞ we have f → +∞. Accordingly f has a unique root
that by construction is the solution for the pressure p∗ of the problem considered.
The remaining part of the theorem is obvious.

Remark 3 To determine the remaining unknown quantities of the solution one has
to use the relations above. Here one has to take care for the type of the waves.

Remark 4 For the special case N = 1, χ− = −1 and χ+ = 1 Theorem 1 reduces
to Theorem 6.2 (Solution of isothermal two-phase Euler equations without phase
transition) in Dreyer et al. [32].

Remark 5 The paper [32] mentioned in the previous remark considers the case of
single component flow where the phase creation is discussed.
We can verify that the diffuse interface model with zero order terms is not able to
deal with this situation because in the pure phases where χ = −1 or χ = 1 we have
h′(χ) = 0. This means that the diffusion term −Mp(

∂ρψ
∂χ

) will be zero because

ρψ = W (χ) + h(χ)ρψL + (1− h(χ))ρψV ,

which means that
∂ρψ

∂χ
= W ′(χ) + h′(χ)(ρψL + ρψV ),

which will be zero in the pure phases.
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4.6 Numerical results

In this section we find the exact solution for the submodel by applying the results
which are obtained before. We discuss the exact solutions for the cases N = 1 and
N > 1 using Theorem 1. We use Newton’s method in order to solve the equation
(4.52) to determine the value of the pressure p∗ in the star region . We selected six
problems to illustrate the wave patterns and show the structure of the solution.

The case N = 1, Examples 1-4

In this case we will consider two pure phases. First we will discuss the solutions
of the case vapor-vapor flow which will appear in the first two examples then we
will consider the vapor-liquid case which will be discussed in the Examples 3 and 4.
Later we will use those examples as a test cases in order to test various numerical
methods.
Each Figure shows the profile of the phase field variable χ, the velocity v, the density
ρ and the pressure p. The initial data of the four examples are given in Table 4.1.

Example χ− p− v− χ+ p+ v+

1 -1 1 Pa 0 m/s 1 0.1 Pa 0 m/s
2 -1 0.4 Pa -2 m/s 1 0.4Pa 2 m/s
3 -1 2300 Pa -100 m/s 1 1000 Pa 100 m/s
4 -1 60000 Pa -200 m/s 1 100000 Pa -50 m/s

Table 4.1: The initial values for four Riemann problem tests.

The first example is so called Sod test, see Sod [70]. In this example we consider
two vapors to the left and to the right. This example is considered a good test case
as a beginning. The solution consists of three waves a rarefaction wave moving to
the left, a contact in the middle, and a shock moving to the right as we can see in
Figure 4.6.
In the second example we consider the 123 problem, see Toro [75]. Figure 4.7 shows
the solution which consists of two rarefactions and contact in the middle.
For the vapor-liquid flow we discuss the first two examples in the paper of Hantke
et al. [32]. We consider two phases a vapor to the left and a liquid to the right. The
solution of the both examples consists of three waves a rarefaction moving to the
left, a contact in the middle and a shock moving to the right. Figure 4.8 illustrate
the solution for example 3 as well as Figure 4.9 shows the solution of example 4.
Table 4.2 shows the values in the star region.

Example p∗ v∗
1 0.3262076 Pa 1.12022 m/s
2 0.00189 Pa 0 m/s
3 1335.3 Pa 100.0002 m/s
4 43531 Pa -50.057 m/s

Table 4.2: The initial values for four Riemann problem tests.
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The case N = 2, Example 5

Now we want to discuss the case of two phases where in each phase we consider
N > 1 components. First we consider a 2-component example. The initial data of
this case is given in Table 4.6

χ ρ1 ρ2 v
Left -0.95 2.5 7.5 0

Right 0.5 600 800 0

Table 4.3: The initial values for the case N = 2.

The equation of state parameters are given as

a1 a2 d1 d2

Vapor 200 300 0 0
Liquid 500 400 −1.495 · 108 −6.35 · 107

Table 4.4: The initial values for the case N = 2.

The solution consists of 4 constant states separated by a left shock, a contact
discontinuity and a right rarefaction, see Figure 4.10. The wave speeds and the
states in the star region are summarized in Table 4.5.

SL SR,tail SR,head p∗ v∗
-176.3412 289.925 422.207 2716903.0964 -132.2825

Table 4.5: The solution for the case N = 2.

The case N = 3, Example 6

In this example we consider the 3-component case. The initial data are given as

χ ρ1 ρ2 ρ3 v
Left -0.95 2.5 7.5 1 -50

Right 0.5 300 800 250 20

Table 4.6: The initial values for the case N = 3.

The equation of state parameters are

a1 a2 a3 d1 d2 d3

Vapor 200 300 100 0 0 0
Liquid 250 400 200 −7.45 · 107 −6.35 · 107 −3.15 · 107

Table 4.7: The initial values for the case N = 3.
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The solution consists of three waves separate 4 states. Figure 4.11 shows two
rarefaction waves moving to the left and to the right as well as a contact in the
middle. The solution in the star region is

SL,head SR,head SR,tail SR,head p∗ v∗
-317.331 -252.907 343.028 348.604 305261.3806 14.4244

Table 4.8: The solution for the case N = 3.
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Figure 4.6: The exact solution of Sod test. Example 1.
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Figure 4.7: The exact solution of 123 problem. Example 2.
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Figure 4.8: The exact solution. Example 3.
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Figure 4.9: The exact solution. Example 4.
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Figure 4.10: The exact solution for the case N = 2. Example 5.
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Chapter 5

The numerical solution for
vapor-vapor flow

5.1 Introduction

One of the main targets of this work is to present a numerical solution for the ho-
mogerneous part of a diffuse interface model presented in Chapter 3 and compare
the results with the exact solution obtained in Chapter 4. For this goal we will
consider two cases. The first one is the vapor-vapor flow which will be discussed in
this chapter. Later on in this work we will consider the vapor-liquid flow case.
Actually this chapter is devoted to the vapor-vapor case because we think that this
case will be useful in order to test the performance of our solvers and illustrate the
structure of the solutions of Riemann problems before we handle the more compli-
cated case which is the vapor-liquid case.
Before we start this study we will remind the reader of some basic concepts of the
numerical treatment of hyperbolic conservation laws. Then we will apply those
methods to the vapor-vapor case.
Many textbooks can be found in this field. We recommend the textbooks by
Toro [75], Kröner [42], LeVeque [47] as well as Godlewski and Raviart [31]. Further
details can be found in Murawski et al. [55], Brad er al. [16], Cocchi et al. [21], J.
Paulo [23] Chertock et al. [20] and [19], LeVeque [46], Wang et al. [79] and [80], as
well as Sohn [71]

5.2 Discretization

In order to utilize numerical methods for solving nonlinear conservation laws, we
replace the continuous problem by a finite set of discrete values, which are obtained
by discretizing the domain of the PDEs into a finite set of points or volumes via a
mesh.
In this work we discretize the upper half plane R × R≥0 plane by a uniform mesh.
The spatial domain R is discretized into cells with width h = ∆x and the time
interval is discretized with time step k = ∆t. We define the grid points (xi, t

n) as

xi = (i− 1

2
)h, i ∈ Z,

tn = nk, n ∈ N0.
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It will be also useful to define the cell boundaries of a cell centered at xi as

xi− 1
2

= xi −
h

2
= (i− 1)h,

xi+ 1
2

= xi +
h

2
= ih.

The aim of numerical methods is to produce approximations uni ∈ R to the solution
u(xi, t

n) applying a finite difference approach and use the point values at the grid
points. In developing methods for conservation laws it is often preferable to produce
an approximation using the finite volume approach where we use cell averages defined
by

ūni =
1

h

∫ x
i+1

2

x
i− 1

2

u(x, tn)dx, (5.1)

rather than the pointwise value.

5.2.1 Conservative Methods

Consider a scalar conservation law

ut + f(u)x = 0,

where f = f(u) is the flux function. A conservative scheme for the scalar conserva-
tion law is a numerical method of the form

un+1
i = uni −

∆t

∆x
[Fi− 1

2
− Fi+ 1

2
],

where
Fi+ 1

2
= Fi+ 1

2
(uni−lL , ..., u

n
i+lR

),

with lL, lR two non-negative integers, Fi+1/2 is called the numerical flux, an approx-
imation to the physical flux f(u). We assume that the flux function satisfies the
consistency condition

Fi+ 1
2
(u, u, ..., u) = f(u)

for any u ∈ R.

5.2.2 Godunov’s method

Our aim is to solve the general initial value problem (IVP){
ut + f(u)x = 0,

u(x, 0) = u0(x),
(5.2)

for a system of conservation laws numerically. Godunov introduced a conservative
extension of the first order upwind scheme to nonlinear system of hyperbolic con-
servation laws.
In Godunov’s method we first define a piecewise constant distribution of the data
by defining cell averages

uni =
1

h

∫ x
i+1

2

x
i− 1

2

ũ(x, tn)dx, (5.3)
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where ũ(x, tn) are the initial data at time t = tn. This produces the piecewise con-
stant distribution u(x, tn) = uni , for x in each cell Ii = [xi− 1

2
, xi+ 1

2
].

A basic assumption of the method is that at a given time level n the data have a
piecewise constant distribution of the form (5.3), which at time level n may be seen
as a pairs of constant states (uni , u

n
i+1) separated by a discontinuity at the intercell

boundary xi+1/2, which define a local Riemann problem.
The essential ingredient of Godunov’s method is the solution of the Riemann prob-
lem, which may be the exact solution or some suitable approximation to it. Here
we present the scheme in terms of the exact solution.
The Godunov method can be written explicitly in conservative form as

un+1
i = uni −

∆t

∆x
[Fi− 1

2
− Fi+ 1

2
], (5.4)

where the intercell numerical flux function is

Fi+ 1
2

= F(uni ,u
n
i+1) = f(ui+ 1

2
(0)).

We assume that the solution of the Riemann problem (5.2) exists. Here for each
i ∈ Z, ui+ 1

2
(0) is the value of the exact solution ui+ 1

2
(x/t) of the Riemann problem

u(x, 0) =

{
uL = uni for x < 0,

uR = uni+1 for x > 0,
(5.5)

evaluated at x/t = 0.

5.2.3 Approximate Riemann solvers

The method of Godunov requires the solution of Riemann problems which may be
exact. This could cause some difficulties due to the complication of the equation
of state or by the complexity of the particular system of equations being solved or
both. We therefore present extensions of Godunov’s scheme that utilize approximate
Riemann solvers.
In this work we will present the numerical methods for solving Riemann problems
in the one dimensional case. We will use the HLL approach of Harten, Lax, and
van Leer, HLLC solver and VFRoe method for deriving an approximate solution to
the Riemann problem. We will use the MUSCL method in order to achieve higher
order of accuracy, see e.g. Toro [75].

The HLL solver

In this approach an approximation for the intercell numerical flux is obtained di-
rectly. It requires estimates for the smallest and the largest signal velocities in the
Riemann problem. Assume that the signal speeds SL and SR are known. The inte-
gral average of the exact solution of the Riemann problem between the slowest and
the fastest signals at time T is a known constant given by

Uhll =
SRUR − SLUL + FL − FR

SR − SL
.
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The approximate solution of the Riemann problem, called the HLL Riemann solver
is given by

U(x, t) =


UL if x

t
≤ SL

Uhll if SL ≤ x
t
≤ SR

UR if x
t
≥ SR

The corresponding intercell flux for the approximate Godunov method is then given
by

Fhll
i+1/2 =


FL if 0 ≤ SL
SRFL−SLFR+SLSR(UR−UL)

SR−SL
if SL ≤ 0 ≤ SR

FR if 0 ≥ SR

The HLLC solver

As we have seen before, the HLL approximate Riemann solver considers three con-
stant states separated by two waves. This means that the star region consists of
a single state which could cause difficulties in some cases where we have a contact
wave in the middle. In order to overcome this situation the HLL solver has been
modified and applied using 4 constant states separated by 3 waves. This called the
HLLC solver.
In this approach the middle wave speed S∗ is included corresponding to the eigen-
value λ2. See Toro [76] as well as Mignone and Bode [53].
The HLLC approximate Riemann solver is given by

U(x, t) =


UL if x

t
≤ SL,

U∗L if SL ≤ x
t
≤ S∗,

U∗R if S∗ ≤ x
t
≤ SR,

UR if x
t
≥ SR,

(5.6)

and the HLLC flux for the approximate Godunov method is given by

Fhllc
i+1/2 =



FL if 0 ≤ SL

F∗L = FL + SL(U∗L −UL) if SL ≤ 0 ≤ S∗

F∗R = FR + SR(U∗R −UR) if S∗ ≤ 0 ≤ SR

FR if 0 ≥ SR

(5.7)

The Roe solver

We consider the system of the conservation laws of the form

Ut + F(U)x = 0, (5.8)

with the Riemann initial data

U(x, 0) = U0(x) =

{
UL if x < 0,

UR if x > 0,
(5.9)
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where U is the vector of unknown conservative variables and F is the vector of
fluxes.
As we have seen in Chapter 4 the system of conservation laws (5.8) can be written
in the form

Ut + A(U)Ux = 0, (5.10)

where A is the Jacobian matrix.
Roe’s approach based on replacing the Jacobian matrix A by a constant Jacobian
matrix Ã which is given as

Ã = Ã(UL,UR), (5.11)

which is a function of the data states UL and UR.
Replacing the constant Jacobian matrix in (5.12) gives a linear system with constant
coefficients and the system (5.8) is replaced by an approximate Riemann problem
which can be solved exactly.
The Roe Jacobian matrix Ã must satisfy the following properties which are given
in detail in Toro [75] and Roe [60]:

• The system should be hyperbolic.

• The Roe’s matrix Ã should be consistent with A.

• Conservative across the discontinuities.

Once we determine the matrix Ã, its eigenvalues λ̃ and its eigenvectors K̃
(i)

we write
the data difference as

∆U = UR −UL =
m∑
i=1

α̃iK̃
(i)
,

from which we can determine the wave strength α̃i = sRi − sLi.
The solution is given by

Ui+ 1
2

= UL +
∑
λ̃i≤0

α̃iK̃
(i)
,

or
Ui+ 1

2
= UR −

∑
λ̃i≥0

α̃iK̃
(i)
.

The numerical flux is then given as

Fi+ 1
2

= FL +
∑
λ̃i≤0

α̃iλ̃iK̃
(i)
,

or
Fi+ 1

2
= FR −

∑
λ̃i≥0

α̃iλ̃iK̃
(i)
,

We may also write

Fi+ 1
2

=
1

2
(FR + FL)− 1

2

m∑
i=1

α̃i

∣∣∣λ̃i∣∣∣ K̃(i)
.

The construction of the Roe matrix Ã which satisfies the properties mentioned above
is not an easy task. It can be very complicated so that we seek a simpler approach
where we can avoid this difficulty. In the next subsection we will introduce the
VFRoe method where such difficulty is avoided.
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The VFRoe solver

As we have seen before, the Godunov scheme and Roe’s method require analytical
computations which could be very difficult. In order to overcome such situations, we
will present the method introduced by Gallouët and Masella [50], which is called the
VFRoe method. This method does not require complicated analytical computations.
It is based on the solution of a linearized Riemann problem and the Godunov scheme.
In this method we consider the initial value problem (5.2), see [54] We rewrite the
system of the conservation laws in terms of primitive variables as

∂v

∂t
+ A(v)

∂v

∂x
= 0, (5.12)

where v = (ρ, v, χ)> is the vector of primitive variables and A is the Jacobian matrix
which is given in Chapter 4. In terms of primitive variables we have the initial data
of the Riemann problem at each cell boundary xj+ 1

2
of the form

v(x, 0) =

{
vj, x ≤ xj+ 1

2

vj+1, x > xj+ 1
2
.

(5.13)

Following the approach in [50] the Jacobian matrix A(v̄) is calculated for the average
state

v =
vj + vj+1

2
. (5.14)

Hence the intermediate state in the solution of the Riemann problem (5.12), (5.13)
is given by

v∗
j+ 1

2
= vj +

∑
λi<0

αiri, (5.15)

where λi are the eigenvalues of the Jacobian matrix A(vj+ 1
2
) and ri are the corre-

sponding eigenvectors.
Now we recalculate the conservative variables U∗j+ 1

2
and the Godunove scheme will

be

un+1
j = unj −

∆t

∆x
[f(u∗(unj ,u

n
j+1))− f(u∗(unj−1,u

n
j ))]

u∗ = uL +
∑
λi<0

αiri.

MUSCL method

In this approach we replace locally the averages values Un
i by piecewise linear func-

tion Ui(x) which is given as

Ui(x) = Un
i +

(x− xi)
∆x

∆i, x ∈ [xi− 1
2
, xi+ 1

2
],

where ∆i is a chosen slope of Ui in cell Ii with so called boundary extrapolated
values which are the values of Ui(x) at the extreme points. They are given by

UL
i = Ui(0) = Un

i −
1

2
∆i, UR

i = Ui(∆x) = Un
i −

1

2
∆i,
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and evaluated by a time 1
2
∆t according toU
L

i = UL
i + 1

2
∆t
∆x

[F(UL
i )− F(UR

i )],

U
R

i = UR
i + 1

2
∆t
∆x

[F(UL
i )− F(UR

i )].

As a consequence of having modified the data, at each interface xi+ 1
2

one now may
consider the so called generalized Riemann problem. We seek now the solution of
the generalized Riemann problem after the extrapolated values UR

i and UL
i+1 are

evolved to U
R

i and U
L

i+1.
The intercell numerical flux Fi+ 1

2
is then obtained from

Fi+ 1
2

= f(ui+ 1
2
(0)),

where ui+ 1
2
(0) is the exact similarity solution ui+ 1

2
(x/t) of the Riemann problem

evaluated at x/t = 0.

5.3 Numerical methods for the submodel

In this section we consider the homogeneous part of the diffuse interface multiphase
mixture model without chemical reactions. We consider first the case N = 1 which
means we are dealing with two phases in each phase we have only one vapor. The
model (3.5) in this case is

(ρ)t + (ρv)x = 0,

(ρv)t + (ρv2 + p)x = 0,

ρχt + ρvχx = 0.

As we consider two pure vapor phases, the mixture equation of state (3.8) is given
as

p(ρ, χ) = −W (χ) + h(χ)a2
V1
ρ+ (1− h(χ)a2

V2
ρ. (5.16)

Here the constants aV1 and aV2 are the speed of sound in the first vapor and the
second vapor respectively. The constants dV1 and dV2 have the value zero in vapors.
The Riemann initial data are given by

U(x, 0) = U0(x) =

{
UL if x < 0,

UR if x > 0,
(5.17)

where U = (ρ, ρv, ρχ)> is the vector of the conservative variables.
In order to asses the performance of this model we will not restrict our attention to
the isothermal equation of state (5.16) previously considered. We will also consider
the isentropic equation of state given by

p(ρ) = Cργ,

where γ is the ratio of specific heat capacities and C is a constant evaluated by
taking

C =
p

ργ
, (5.18)
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from a reference state. We will discuss the difference between this equation of
state and the isothermal equation of state and compare both results with the exact
solution of the system which was obtained in Chapter 4 and the exact solution of
the Euler system presented in Toro [75]. We will also see the behavior of the energy
e and the temperature T which are given as

e =
p

(γ − 1)ρ
,

and
T =

p

(γ − 1)cvρ
.

The local speed of sound will be obtained by

a2 =
∂p

∂ρ
= Cγργ−1,

which is again a function of ρ. The mixture speed of sound needed later is given as

A(χ, ρ) = h(χ)a2
V1

+ (1− h(χ))a2
V2
. (5.19)

The mixture equation of state will be in this case

p(ρ) = −W (χ) + h(χ)CV1ρ
γ + (1− h(χ))CV2ρ

γ. (5.20)

Our aim is to solve this system numerically and to show for various examples how the
solutions to Riemann problems are influenced by the model used. The three models
are the Euler and the diffuse interface equations with the isothermal equation of
state (5.16) as well as these equations with the isentropic equation of state (5.21).
For this purpose we will use the HLL, HLLC, VFRoe solver in order to find the first
order solution. We will also use the MUSCL method to achieve second order.
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5.4 Numerical results

In this section we present the numerical results for solving Riemann problems of
the diffuse interface model on test cases and illustrate the performance of Riemann
solvers considering different phases.
In all chosen tests the data consist of two constant states Wl = (ρl, vl, pl) and
Wr = (ρr, vr, pr) separated by a discontinuity. The variable χ has the value -1 to
indicate the phase to the left, and the value 1 to indicate the phase to the right. The
spatial domain is the interval [0, 1] which is discretized with N = 500 computing
cells and the results are given after 250 time steps. All figures show the profiles of
the conservative variables which are the density ρ, the momentum ρv and ρχ, also
the constitutive variable, the pressure p, the velocity v and the phase indicator χ.
In the first example we consider the so called Sod test see Sod [70] and in the second
one we consider the 123 problem see Toro [75] and Marie et al. [50]. In both tests
we consider two vapors, V1 to the left and V2 to the right. They are governed by the
isothermal equation of state

p(ρ) = −W (χ) + h(χ)(a2
V1
ρ+ dV1) + (1− h(χ))(a2

V2
ρ+ dV2),

where aV1 and aV2 are the speed of sound in the first vapor and the second vapor
respectively. The parameters mentioned are given in Table 5.2 for the first test and
in Table 5.5 for the second test.
In Examples 3 and 4 we consider again the Sod test and the 123 problem but we
will use the isentropic equation of state

p(ρ) = −W (χ) + h(χ)(CV1ρ
γ + dV1) + (1− h(χ))(CV2ρ

γ + dV2), (5.21)

where C is the constant obtained from (5.18). The constants dV1 and dV2 have the
value zero in the both cases.

Example 1

First we consider the initial data of the Sod test which are given in Table 5.1.
The equation of state parameters are given in Table 5.2 and the Courant number

Initial Data pV1 vV1 ρV1 pV2 vV2 ρV2
Sod test 1.0 0 1.0 0.1 0 0.125

Table 5.1: The initial data for the case vapor-vapor/Sod test, see [70]

coefficient is Ccfl = 0.9.

Parameters aV1 dV1 aV2 dV2
Sod test 1.0 0 0.894427 0

Table 5.2: The parameters for the case vapor-vapor/Sod test

Figures 5.1, 5.2, and 5.3 show the numerical results using the HLL, HLLC and
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VFRoe solvers for the Sod test. Figure 5.4 shows the results using the MUSCL
method.
The solution of the Sod test consists of a shock that moves to the right, a right
going contact in the middle and a rarefaction wave traveling to the left. It has to be
mentioned that the contact is not an Euler equation contact but the phase change
contact since the energy equation in the Euler system is replaced by the equation
for phase field.
Table 5.3 shows the values of the intermediate state in the star region using the
solvers mentioned and the exact solution in the star region which is obtained in
Chapter 4. One can notice, as expected, that the MUSCL and the exact results are
nearly identical. The VFRoe solver presents better results than the HLL and HLLC
solvers. While we can notice that the HLLC solver exhibits a better convergence to
the exact solution than the HLL solver.

Results p∗V1 v∗V1 p∗V2 v∗V2
HLL 0.3260862 1.1193367 0.3260865 1.1193293

HLLC 0.3260637 1.1194257 0.3260629 1.11942169
VFRoe 0.3260877 1.1193559 0.3260857 1.1193557
MUSCL 0.3262192 1.12016 0.326228 1.12013

Exact 0.3262076 1.12022 0.3262076 1.12022

Table 5.3: The results: The values in the star region using HLL, HLLC, VFRoe
solvers and MUSCL method

Example 2

In the second example we will consider the 123 problem, see Toro [75]. We present
the initial data in Table 5.4 where the proper equation of state parameters are given
in Table 5.5. In all solvers the Courant number has the value Ccfl = 0.9 except for
the VFRoe solver. We use Ccfl = 0.6 for it and one can notice that in this particular
case the VFRoe scheme no longer provides a convergent solution since it blows up
when we exceed this value of the CFL condition. The solution consists of two
rarefaction waves where the vapor is pulled to the left and to the right. Due to the
symmetrical initial conditions the contact is a ghost wave, see Galloët [30]. Figures
5.5, 5.6 and 5.7 show the first order solution profiles using the HLL, HLLC and
VFRoe solvers respectively. Figure 5.8 gives the results using the MUSCL method
for the second order as above are given in Table 5.6. As expected the second order
methods converges faster to the exact solution. One can notice that the HLL solver
is more diffuse than the HLLC solver and VFRoe but it gives good result.

Initial Data pV1 vV1 ρV1 pV2 vV2 ρV2
123 problem 0.4 -2.0 1.0 0.4 2.0 1.0

Table 5.4: The initial data for the case vapor-vapor/123 problem, see [75]
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The test aV1 dV1 aV2 dV2
123 problem 0.632456 0 0.632456 0

Table 5.5: The parameters for the case vapor-vapor/123 problem

Results p∗V1 v∗V1 p∗V2 v∗V2
HLL 0.001520186 0.046388889 0.001520681 0.045961276

HLLC 0.001520017 0.04650278 0.001520739 0.0459819
MUSCL 0.001658343 0.01232602 0.001667608 0.00878486

Exact 0.00189 0 0.00189 0

Table 5.6: The results: The values in the star region using HLL, HLLC, VFRoe
solvers and MUSCL method

Example 3

In this example we will consider again the Sod test and from the initial data we will
find the constant C.
Figure 5.9 presents the solution using the isentropic equation of state (5.21). The
solution is monotone as in the Euler system. We have seen that this is not the
case using the isothermal equation of state. The solution consists of three waves a
rarefaction to the left, contact in the middle moving to the right and shock moving
to the right. Comparing the results with the solution using the EOS (5.16) we see a
difference in the wave structure where the solution is not monotone and comparing
both results with the exact solution of Euler system in Toro [75] we find the similarity
between the exact solution and the numerical solution using the isentropic EOS
(5.21) where some differences appear when we use the isothermal EOS.
Figure 5.10 shows the structure of the sound speed a, the temperature T as well as
the energy e which as expected have the same structure because the all quantities
are proportional.

Example 4

In this example we will consider the 123 problem using the isentropic EOS. Figure
5.11 shows the solution. We notice that we have here the same structure comparing
with the results using the isothermal equation of state (5.16) in Example 2 because
we don’t have a shock here.
The behavior of the sound speed a, the temperature T as well as the energy e is
presented in Figure 5.12.
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Figure 5.1: The solution: Sod test using the HLL solver, blue: the initial data, red:
the numerical solution.
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Figure 5.2: The solution: Sod test using the HLLC solver, blue: the initial data,
red: the numerical solution.

72



5.4. NUMERICAL RESULTS

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

v

0 0.2 0.4 0.6 0.8 1
0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

0.5

1
p

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

v

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

Figure 5.3: The solution: Sod test using the VFRoe solver, blue: the initial data,
red: the numerical solution.

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

v

0 0.2 0.4 0.6 0.8 1
0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

0.5

1
p

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

v

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

Figure 5.4: The solution: Sod test using the MUSCL method, blue: the initial data,
red: the numerical solution.
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Figure 5.5: The solution: 123 problem using the HLL solver, blue: the initial data,
red: the numerical solution.
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Figure 5.6: The solution: 123 problem using the HLLC solver, blue: the initial data,
red: the numerical solution.
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Figure 5.7: The solution: 123 problem using the VFRoe solver, blue: the initial
data, red: the numerical solution.

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1
-2

-1

0

1

2
v

0 0.2 0.4 0.6 0.8 1
0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4
p

0 0.2 0.4 0.6 0.8 1
-2

-1

0

1

2
v

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

Figure 5.8: The solution: 123 problem using the MUSCL method, blue: the initial
data, red: the numerical solution.
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Figure 5.9: The solution: Sod test using the HLL solver with isontropic EOS, blue:
the initial data, red: the numerical solution.
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Figure 5.10: The structure of the sound speed a, the temperature T and the energy
e for Sod test, blue: the initial data, red: the numerical solution.
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Figure 5.11: The solution: 123 problem using the HLL solver with isontropic EOS,
blue: the initial data, red: the numerical solution.
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Figure 5.12: The structure of the sound speed a, the temperature T and the energy
e for 123 problem, blue: the initial data, red: the numerical solution.
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Chapter 6

The numerical solution for
vapor-liquid flow

6.1 Vapor-liquid

In Chapter 5 we presented some numerical methods in order to solve the homoge-
neous part of the diffuse interface multiphase mixture model proposed in [24]. In
order to test the performance of the model considered and the numerical methods
presented in the previous chapter we assumed a mixture of two phases where in each
phase we have vapors only.
Up to this point we could obtain good results and ensured that the numerical meth-
ods considered in Chapter 5 were able to solve that model in different examples.
But the diversity of materials existing in nature implies that we need to consider
more complicated cases such as vapor-liquid flows.
This chapter is devoted to the study of two phase flow without chemical reactions.
In each phase we have either liquid or vapor. This case must be treated with some
care due to the difficulties which appear.
In all of this chapter our principal goal is to solve Riemann problems for the homo-
geneous part of a diffuse interface model numerically and figure out which difficulties
will occur when we consider the case of vapor-liquid. Furthermore we want to give
strategies in order to overcome such difficulties.
First we consider two pure phases liquid (L) and vapor (V). In each phase we have
only one constituent. The phase variable χ will indicate the present phase as χ = −1
in a vapor phase. We will consider it on the left hand side. We take χ = 1 for a
liquid phase and will consider it on the right hand side. The interpolation function
h in this case will have the values 1 in the liquid and 0 in the vapor. The phases
will be separated by a diffuse interface and χ in this case will take values in ]− 1, 1[.
The mixture is described using the model

∂tρ+ ∂x(ρv) = 0,

∂t(ρv) + ∂x(ρv
2 + p) = 0,

∂t(ρχ) + ∂x(ρvχ) = 0,

with the Riemann initial data

U(x, 0) = U0(x) =

{
UL if x < 0,

UR if x ≥ 0.
(6.1)
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The pressure p is given via the equation of state as a function of χ and ρ. As we
have two pure phases the equation of state in this case will have the form

p(ρ) = −W (χ) + h(χ)(a2
Lρ+ dL) + (1− h(χ))(a2

V ρ+ dV ), (6.2)

where aL and aV are the sound speed in the liquid and vapor respectively and dL
and dV are constants.
For the purpose of solving Riemann problems for the system of PDEs numerically,
we will use the HLL solver presented in Chapter 5. The HLL solver seems to be an
appropriate choice for the conserved quantities of the system, namely ρ and ρv.
In this work we use the computational domain [0, 1] × [0, T ]. The spatial domain
[0, 1] is discretized into uniform cells with width ∆x. The time step ∆t is determined
via the CFL condition where we use the CFL number CCFL = 0.9.
As an example we consider the initial data in Table 6.1 corresponding to Example
1 in [32],

Primitive variables χL pL vL χV pV vV
Initial data 1 2300 Pa -100 m/s -1 1000 Pa 100 m/s

Table 6.1: The initial data for the case vapor-liquid

with the equation of state parameters which are given in Table 6.2

Parameters aL dL aV dV
1478.4 m/s −2.1817 · 109 367.8 m/s 0

Table 6.2: The equation of state parameters. Example 1

Based on the results obtained in [32] and in Chapter 4 the expectations are that we
will get three waves, a shock wave moving to the left, contact wave in the middle,
and a rarefaction moving to the right.
Starting some simulation for a liquid and a vapor phase with significant differences
in the phase densities the computations immediately breaks down.
At first glance this seems to be surprising because the phase field models are devel-
oped to deal with phase mixtures. In particular, due to the design of the equation
of state one may expect that mixture cells can be handled. Figure 6.1 shows the
strange behavior of the solution and one can observe that the results obtained are
unphysical.
We illustrate this situation in Figure 6.2 for pure water at room temperature. Here
the pressure is presented as a function of the density ρ and the phase field χ.
The states on the left boundary correspond to pure vapor whereas the states on the
right boundary indicate pure liquid water. One can see that for most states (χ, ρ)
in the phase plane the pressure is negative. This means that these states are not
meaningful.
Solving a Riemann problem for initially pure phases means that states on the left
boundary are connected to the right boundary. In the exact Riemann solution, see
Chapter 4, the intermediate state lies in the reasonable part of the mixture region
in between. Our aim now is to preserve this property and explain why we get such
results and how we can overcome this situation.

80



6.2. NUMERICAL DIFFICULTIES

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

v

0 0.2 0.4 0.6 0.8 1
0

500

1000

0 0.2 0.4 0.6 0.8 1
-4

-3

-2

-1

0

p

108

0 0.2 0.4 0.6 0.8 1
0

1

2

3

v

105

0 0.2 0.4 0.6 0.8 1
0

500

1000

Figure 6.1: The solution: vapor-liquid case using the HLL solver, blue: the initial
data, red: the numerical solution.

6.2 Numerical difficulties

The results obtained imply that we have a problem in our solver. It is due to
the numerical dissipation in conjunction with the equation of state. In order to
understand these results it is useful to solve the system for only one time step.
Figure 6.3 shows the results after one time step. We can notice that we give correct
values for χ and ρ. But we get a negative pressure. This means that the problem
results from the interplay between the solver taking intermediate values at the phase
interface leading to unphysical values in the equation of state (6.2). Figure 6.4 shows
the area where we get the unphysical results in the ρ-p plane. In this area, once we
consider a value of ρ we may get a negative pressure. This is the case in the above
computation where usually the phase interface moves and does not coincide with
any cell boundary after a certain time and all quantities will smear out during the
calculations.
To understand the situation from a numerical point of view, we remind the reader
that usually we are dealing with a grid using the cell size ∆x. Our aim is to
calculate the averages in each cell in order to apply the finite volume approach. We
now consider that at time level tn the phase boundary lies on a cell boundary. The
question now is where will it lie after the time step ∆t? If we are lucky the phase
boundary after ∆t will lie on a cell boundary again. But what will happen if the
phase boundary lies inside a cell?.
As we do not consider phase transition the phase boundary moves with the velocity
v 6= 0 during the time ∆t. This means the phase boundary will travel the distance
v∆t. Which means that the phase boundary will lie inside a cell, see Figure 6.5. In
other words we will have a cell with two different phases and the averaging can lead
to unphysical states.
In this chapter we examine two different procedures to overcome the unphysical
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Figure 6.2: Pressure p depending on phase field χ and density ρ.
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Figure 6.3: The solution after one time step. Blue: the initial data. Red: the
numerical solution

results. The two strategies that we are going to use are:

• Tracking the interface.

• Estimating and fixing the pressure.
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Figure 6.4: The equation of state in the vapor in liquid phases.
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Figure 6.5: the mixture cell.

6.3 Tracking the interface

The main idea of this approach is to check the grid in each time step in order to
test if the phase boundary lies on the cell boundary or not. This approach was
successfully applied in the thesis of Thein [73] in order to solve the isothermal Euler
equations numerically. If the phase boundary lies again on the cell boundary then
we can go to the next time step, if not, we will align the grid to the phase boundary.
This implies that we have

either χ = −1 ⇒ h(χ) = 0, for a vapor phase,

or χ = 1 ⇒ h(χ) = 1. for a liquid phase.

The equation of state (EoS) in this case will be

p(ρ) = −W (χ) + h(χ)(a2
Lρ+ dL)︸ ︷︷ ︸

=0 in vapor

+

=0 in liquid︷ ︸︸ ︷
(1− h(χ))(a2

V ρ+ dV ) . (6.3)
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Aligning the grid will change the size of the cells and we have to deal with different
cell sizes.
Suppose the phase boundary lies on the boundary xi0+1/2 of the cell Ii0 at the time
step tn. This means that at the time step tn+1 = tn + ∆t the phase boundary will
move the distance v∆t. The new cell boundary according to the new location of the
phase boundary will be then xi0+1/2 = xi0+1/2 + w∆t, see Figure 6.6.

xi0

Ii0
xi0+ 1

2
xi0+ 3

2
xi0− 1

2
Ii0+1

tn
xi0+1

tn+1
v∆t

Ii0

xi0+ 1
2

+ v∆t

Ii0+1

tn+1

align grid

Figure 6.6: after changing the grid.

The new cell size is ∆xav + w∆t could be too large or too small, where ∆xav =
(b − a)/N . With a too small cell we get a severe time step restriction to maintain
stability via the CFL condition. Too large cells give loss of accuracy. We choose
therefore two parameters 0 < ε1 < 1 < ε2. We will determine two cases:

• If a cell satisfies ∆xi < ε1∆xav the cell is too small. We merge it with the
neighboring one.

• If a cell satisfies ∆xi > ε2∆xav the cell is too large. We split it into two cells.

Thereby, we get a modified grid where the phase boundary will always lie on a cell
boundary. We do the same for the next time level.
The Godunov conservative form in this case reads

Un+1
i =

∆xni
∆xn+1

i

Un
i −

∆t

∆xn+1
i

[Fi+ 1
2
− Fi− 1

2
],

where ∆xni and ∆xn+1
i are the cell sizes at the time step tn and tn+1.

In order to calculate and update the time step we start with the initial time step
which is obtained by using

S0
max = max {|v − a|, |v + a|} and ∆t = CCFL

∆x0

S0
max

.

We recalculate the time step using

∆xmin = min
i=1,...,N

{∆xi|∆xi ≥ ε2∆xav} ,

Snmax = max |S|,
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as

∆t = CCFL
∆xmin
Snmax

.

The solution at the interface

Now we want to present the solution at the phase boundary. As we discuss the
case without phase transition and according the results in Chapter 4 we found that
JpK = 0 and JvK = 0, and using the wave speed estimates for the HLLC solver, see
Chapter 5, we get

SL = uL + aL,

SV = uV − aV ,

w =
pL − pV + ρV uV (SV − uV )− ρLuL(SL − uL)

ρV (SV − uV )− ρL(SL − uL)
,

ρ∗L = ρL
SL − uL
SV − w

.

Here SV and SL denote the velocities of the classical waves. The density is calculated
according to the HLLC solver as presented in Chapter 5. The pressure p∗ will be
calculated using the equation of state.

6.3.1 Numerical results

In this section we will test tracking the interface approch presented in previous
section on many examples. We will compare the results with the exact solution
obtained before as well as with the exact solution in Toro [75].

Example 1

We consider again Example 1 with the initial data as given in Table 6.3. This
Example corresponds to Example 1 in [32] and in Chapter 4 where the exact solu-
tion is presented. We will solve the system (6.1) supplied with the equation of state
(6.2) using tracking the interface based on the HLL solver.

primitive variables pL vL pV vV
Initial Data 2300 Pa -100 m/s 1000 Pa 100 m/s

Table 6.3: The initial data for the case vapor-liquid

Figure 6.7 shows the solution which consists of two waves, a shock moving to the
right and a rarefaction moving to the left.
In Table 6.4 we can see the numerical results after applying the approach discussed
before with a different number of cells and the values in the star region.

Example 2

The initial data of this Example are given in Table 6.5 and correspond to Example
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Figure 6.7: The solution of Example 1: vapor-liquid case using the HLL solver, blue:
the initial data, red: the numerical solution.

Cells pL vL pV vV
100 1329.2 Pa 100.45071 m/s 1328.9 Pa 100.38174 m/s
800 1333.0 Pa 100.1242 m/s 1333.0 Pa 100.1193 m/s
1500 1333.8 Pa 100.0784 m/s 1333.8 Pa 100.0767 m/s
4000 1334.7 Pa 100.0363 m/s 1334.7 Pa 100.0360 m/s

Exact solution 1335.3 Pa 100.0002 m/s 1335.3 Pa 100.0002 m/s

Table 6.4: The values in the star region on different grids

2 in Hantke et al. [32] where the exact solution is presented as well as in Thein [73]
where one can see the numerical solution.

primitive variables pL vL pV vV
Initial Data 60000 Pa -200 m/s 100000 Pa -50 m/s

Table 6.5: The initial data for the case vapor-liquid

Figure 6.8 illustrates the numerical results and shows the wave structure. The so-
lution consists in this case of two rarefaction waves moving to the left and to the
right.
The values in the star region are given in Table 6.6 using different number of cells
and for comparison we provide the values of the exact solution given in [32].
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Figure 6.8: The solution of Example 2: vapor-liquid case using the HLL solver, blue:
the initial data, red: the numerical solution.

Cells pL vL pV vV
100 43451 Pa -50.057246 m/s 43450 Pa -50.057247 m/s
800 43511.2 Pa -50.05718612 m/s 43511.1 Pa -50.05718617 m/s
1500 43518.65 Pa -50.05717861 m/s 43518.62 -50.05717865 m/s
4000 43525.407 Pa -50.057171781 m/s 43525.406 Pa -50.057171783 m/s

Exact solution 43531 Pa -50.057 m/s 43531 Pa -50.057 m/s

Table 6.6: The results after checking the grid

6.4 Estimating the mixture pressure

In the previous section we solved the system (6.1) supplied with the equation of
state (6.2) numerically using a tracking of the interface approach. This approach
provided us with a numerical solution of the system considered and enabled us to
avoid the unphysical results. But one can notice that splitting the mixture cell into
two cells means that the phase variables χ will have only two values, either -1 in the
vapor phase or 1 in the liquid phase. This means that the equation of state in the
vapor phase will be

p(ρ) = (a2
V ρ+ dV ), (6.4)

because by definition h(χ) = 0. In the liquid phase h(χ) = 1 which implies that the
equation of state will be

p(ρ) = (a2
Lρ+ dL). (6.5)

The phase variable χ will never have a value in ]-1,1[. This procedure will prevent
us from dealing with the interface as a diffuse interface. However the interface will
be treated as a sharp interface which is not our aim. On other words, tracking the
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interface approach did not deal with the complete equation of state. Instead of that,
only with parts of it.
As we are interested in the complete equation of state our intent is to find another
strategy to avoid the unphysical results.
The major focus of this section is to find an approach which maintains the structure
of the equation of state (6.2). In order to do that we will introduce an ”estimating
the pressure approach”. In the following sections we will start by explaining the
idea of estimating a value of the pressure then use this value to solve the model
considered.

Figure 6.9: The pressure function, green: the positive, red: the negative.

The main idea

Usually, in order to calculate the pressure at the time level n via the equation of
state we start with the values of χn and ρn using the Riemann solvers, in this case
the HLL solver. In order to find the pressure pn+1 at the time level n + 1 we find
first χn+1 and ρn+1. Again using the equation of state we evaluate p which in mix-
ture cells most probably gives a negative value due to the nature of the equation of
state considered. Figures 6.9 and 6.2 show the graph of the pressure function in the
variables χ and ρ. One can see that the negative area is very big especially near the
liquid phase. This means it would be useful to find the pressure without using the
equation of state in the mixture cells to avoid unphysical values in the liquid phase
and for mixtures where χ ∈]− 1, 1[.
The question now is whether we can find a value for the pressure by estimating a
positive value of pn+1 directly from pn without using χn+1 and ρn+1 in the equation
of state.
The conserved quantity ρ can be evaluated using Riemann solvers, i.e. in our case
the HLL solver.
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It remains to find the phase variable χ. This variable is an artificial quantity indi-
cates that the phases present and has no additional meaning. This quantity is not
conserved. Discretizing the transport equation of the variable χ will lead sometimes
to some difficulties. To avoid such difficulties we use the equation of state to find
the third variable χn+1. We substitute the variables pn+1 and ρn+1 in the equation
of state.
We summarized this approach as following:

• We estimate a value of the pressure p.

• We find the density ρ using the Riemann solver.

• We find the phase variable χ by substituting p and ρ into the equation of state
and then solving it numerically for χ.

Figure 6.10 illustrate the path of the new approach.

(χn, ρn) (χn+1, ρn+1)

pn pn+1

HLL

Estimating

Figure 6.10: The path of the new approach.

It has to mention that this approach is done only local for mixture cells. The
question now is how to estimate a value of the pressure without considering χ and
ρ?

6.4.1 A piston problem

According to the physical properties of the liquid and the vapor, we observe when
we compress or decompress a gas or a liquid that most of the changes occur in the
gas phase. This means that most of the effects will appear in the vapor. To illustrate
this idea we notice in Figure 6.11 that a small difference in the pressure causes a big
difference in the density of the gas phase whereas a big change in the pressure in the
liquid phase could be barely noticed and causes a very small change in the density.
This is the almost incompressibility of the liquid. The useful interpretation of this
comes from the fact that the speed of sound in the liquid phase is much larger than
that in the gas phase.
As long as we can consider that there are no effects in the liquid phase, we will treat
the liquid phase as an incompressible liquid. In order to make this idea work in
practice it is useful to consider the liquid phase as a wall. When this is the case,
our main task now is to solve a problem on the boundary of a wall.
To make this idea precise, we consider a Riemann problem with vapor phase to the
left and a wall to the right. This is a type of piston problem. We consider again
Example 1 where the initial data are given in Table 6.7. This example is illustrated
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Figure 6.11: The equation of state in the vapor and liquid.

Primitive variables pL vL pV vV
Initial data 2300 Pa -100 m/s 1000 Pa 100 m/s

Table 6.7: The initial data for the case vapor-liquid
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Figure 6.12: The vapor-liquid phases.

in Figure 6.12.
We want to employ the piston problem in the process of solving this example. Note
that the velocity difference between the phases is 200 m/s. We use Galilean in-
variance to assume that the liquid is a solid wall at rest while the vapor moves at
-200 m/s. Figure 6.13 illustrates the idea. We will use this problem to obtain an
estimated value of the pressure for mixture cells in two ways

• Solving Riemann problem on the wall numerically.

• Finding the exact solution on the wall.

6.4.2 Estimating the pressure numerically

In this subsection we want to discuss the use of the above piston problem for the
solution at the phase boundary. This discussion will be based on the idea of esti-
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The vapor phase

The wall

−200

Figure 6.13: the wall.

mating the pressure suggested in the previous section.
We consider first the whole domain as a vapor. We discretize the domain into N
cells, where N is an even number. As we have seen in the previous section the liquid
phase will be treated as an incompressible liquid which means that we will consider
the liquid phase like a solid stationary wall. In order to perform an update on cell
IN/2, i.e last cell of the vapor phase we need to find the intercell fluxes between this
cell and its neighbors. We have no problems with the intercell flux between the cells
IN/2−1 and IN/2. In order to define the second intercell flux we need to add a so
called ghost cell IN/2+1, see Figure 6.14.
Now we assume that the cell IN/2+1 behaves like a wall. The most important feature
of the wall is that its velocity is zero. The interface in this case will lie on the cell
boundary at xN/2+ 1

2
.

IN
2

+1IN
2

IN
2
−1

WallVapor

Figure 6.14: Discretization of the domain for determination of FN
2

+ 1
2
.

The fluxes of a cell Ii where i = 1, ..., N are given as

Fi± 1
2

=

 ρi± 1
2
vi± 1

2

ρi± 1
2
v2
i± 1

2

+ pi± 1
2

ρi± 1
2
χi± 1

2
vi± 1

2

 .

As the speed of the wall is zero the flux N
2

+ 1
2

will be

FN
2

+ 1
2

=

 0
pN

2
+ 1

2

0

 .

But as we have seen in Chapter 4 according to the Riemann invariants in (4.4.1) the
pressure is constant across this contact discontinuity. Therefore, we set

pN
2

+ 1
2

= pN/2.
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It has to mention that we use this only locally at the phase boundary.
What we have now is an estimating value of the pressure at the phase boundary
between the two phases based on the physical properties of the vapor and the liquid.
Table 6.8 shows the values of the pressure on the phase boundary applied to Exam-
ples 1 and 2. Figures 6.15 and 6.16 present the estimating behavior of the pressure
for one time step at x = 1 = xN
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Figure 6.15: Estimating the pressure for the first example at x = 1 = xN
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Table 6.8 shows the results obtained using the tracking the interface and esti-
mating the pressure approaches and compares both results with the exact solution
in Chapter 4. One can notice that the results are close enough for practical purposes
to the exact solution.

Approach Example 1 Example 2
Trackimg the interface 1334.7 Pa 43525.407 Pa

Estimating the pressure 1334.6 Pa 43514.8 Pa

Exact solution 1335.3 Pa 43531 Pa

Table 6.8: The values of the pressure in the star region using the tracking the
interface approach and by estimating the mixture pressure.

6.4.3 The pressure fix

In this subsection we want to use the idea of estimating the pressure presented
above in order to find the numerical solution of the model considered, supplied with
the equation of state (6.2), for many time steps. For this purpose we calculate the
pressure in the pure phases where χ = 1 or χ = −1 using the equation of state (6.2).
In order to find the pressure in the mixture cells where χ ∈]− 1, 1[ we consider that
the pressure in this case is the estimated value of the pressure. For more time steps
we utilize the property of uniform pressure at the phase boundary. This gives

pn+1 = pn, (6.6)

where n is the time step. We assume that the value of the pressure in a mixture
cell in each time step is the value of the estimated pressure from the first time step.
This approach is summarized in the following algorithm:

if χ = 1 or χ = −1 then
p = p(χ, ρ)

else
p = the estimated value of the pressure

end
Algorithm 1: pressure fix algorithm.

In order to test the performance of this approach we test this idea on Example
1 using the data in Table 6.1. We will use the HLL solver in order to find the
numerical solution. We consider 50 cells and 5 time steps. The CFL number is fixed
at 0.9.
Figure 6.17 shows the solution after 5 time steps. One can notice that the solution
consists of three waves, a rarefaction wave, a contact in the middle and a shock wave.
The solution has the same structure as the results obtained using the tracking the
interface approach, see Section 6.3, as well as with the exact solution obtained in
Chapter 4.
One can see that the pressure fix approach treats the difficulties discussed in Section
6.2.
So far this approach provides us a numerical solution for the model considered but
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only for a few time steps. Our aim now is to find the numerical solution at any time
T . Increasing the number of the time steps will reveal further difficulties.
Unfortunately this approach is not able to solve the problem for many time steps.
Figure 6.18 illustrates the solution of the same example considered, but after 20
steps.
Actually this approach is not proper for each example we want to consider. Figure
6.19 shows the solution of Example 2, see Section 6.5, after 5 time steps. One can
see the negative pressure problem appears again despite of using a small number of
time steps. This confronts us with new questions. Why do we get these results? And
how can we overcome this situation? This will be discussed in the next subsection.
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Figure 6.17: Estimating the pressure for the first example after 5 time steps. Blue:
the initial data, Red: the numerical solution.
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Figure 6.18: Estimating the pressure for the first example after 20 time steps. Blue:
the initial data, Red: the numerical solution.
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Figure 6.19: Estimating the pressure for the second example after 5 time steps.
Blue: the initial data, Red: the numerical solution.

6.4.4 Pressure bounds

As we have seen before, the pressure fix approach provides us a good method in
order to find the pressure in a mixture cell and utilize the estimated value of the
pressure in order to evaluate the solution in each time step. This idea is applied by
calculating the pressure using the equation of state (6.2) as long as we want to find
the pressure in the pure vapor phase or in the pure liquid phase. If −1 < χ < 1
indicates a mixture cell then the pressure in this case will have the estimated value of
the pressure. We do not use the equation of state (6.2) in order to find the pressure
in the mixture cell to avoid negative values. This approach is successfully solving
problems as in Example 1.
But as we have seen in the previous section, until now this approach was not able to
deal with all situations as in Example 2 where we still get a negative pressure. The
negative value of the pressure does not imply the complete failure of the previous
approach. But now the nagative value occure in a liquid cell and not in mixture
cell. After testing the value of the pressure in the whole mixture cells one can notice
that the value of the pressure there is equal to the value of the estimated value of
the pressure.
The question now is why we get a negative pressure in a liquid cell?
To overcome this situation we checked the value of the density. One notices that
the negative pressure appears in the first cell next to the mixture cells. When we
test the value of χ in this cell we get the value 1, i.e. χ = 1 indicates the liquid
phase. This means that the negative pressure appears in the first liquid cell next to
the mixture cells.
The reason behind this is a small difference in the value of the density of the liquid
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in this cell due to the smearing out of the density.
As we have seen in Figure 6.11 a small change in the density of the liquid causes a
big change in the pressure. This is the case here.
In order to avoid this situation we define a minimum value of the density in the
liquid phase and find the pressure using the equation of state only when the density
is bigger than this value. Otherwise we extend the estimated value of the pressure
to the cells where the density does not exceed the expected value of the density. In
this way we guarantee avoiding the consequences of the smearing out of the density.
Figure 6.4 illustrates the idea of the minimal density ρ

Lmin
in the liquid phase.

We modify the algorithm of the pressure fix by including the pressure bound to be

if (χ = 1 and ρ > ρ
Lmin

) or (χ = −1) then
p = p(χ, ρ)

else
p= the estimated value of the pressure,

end
Algorithm 2: pressure fix with pressure bound algorithm.

Applying this approach gives us better results. As we can see in Example 1
we can find the solution for further time steps. In Example 2 we can see that the
negative pressure is avoided now. In both cases we get good results comparing with
the exact solution. But in general, this method is not able to solve the problem for
arbitrary large time.

6.5 Numerical results

In this section we want to reconsider the two examples discussed before and present
the solution using different solvers. We obtain the results using the idea of fixing
the pressure and solve the following examples using the Lax-Friedrich, HLL and
Rusanov solvers. In both examples we consider 50 cells with 10 time steps. The
CFL condition is 0.9.

Example 1
We consider the initial date as in Table 6.9.

primitive variables pV vV χV pL vL χL
Initial Data 2300 Pa -100 m/s -1 1000 Pa 100 m/s 1

Table 6.9: The initial data for the case vapor-liquid - Example 1.

Figures 6.20, 6.21 and 6.22 illustrate the solution of Example 1 using the Lax-
Friedrich, HLL and Rusanov solvers respectively. The solution consists of three
waves. A rarefaction wave moving to the left, a shock wave moving to the right and
a ghost contact in the middle.
The values in the star region are given in Table 6.10.
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p∗L v∗L p∗R v∗R
The solution 1335 Pa 99.996 m/s 1335 Pa 99.998 m/s

Table 6.10: The values in the star region - Example 1.

Example 2
In this example we consider the data as in Table 6.11 The solution of Example 2

primitive variables pL vL pV vV
Initial Data 60000 Pa -200 m/s 100000 Pa -50 m/s

Table 6.11: The initial data for the case vapor-liquid - Example 2

after fixing the pressure is presented in Figures 6.23 and 6.24 using the HLL and
Rusanov. The solution in this case consists of two rarefaction waves moving to the
left and right and a contact wave in the middle.
Table 6.12 shows the solution of this example in the star region.

p∗V v∗v p∗L v∗L
The solution 43514.75 Pa -50.074 m/s 43514.75 Pa -50.065 m/s

Table 6.12: The values in the star region - Example 2
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Figure 6.20: Lax-Friedrich. Example 1. Blue: the initial data, Black: the numerical
solution.
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Figure 6.21: HLL. Example 1. Blue: the initial data, Black: the numerical solution.
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Figure 6.22: Rusanov. Example 1. Blue: the initial data, Black: the numerical
solution.
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Figure 6.23: HLL. Example 2. Blue: the initial data, Black: the numerical solution.
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Figure 6.24: Rusanov. Example 2. Blue: the initial data, Black: the numerical
solution.
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6.5.1 Estimating the pressure using the exact solution

As we have seen before, estimating the pressure by using numerical methods in order
to solve a Riemann problem at the wall provided us a solution for the difficulties
that we described in this section, but only for few time steps. In this subsection we
suggest another way to estimate the pressure by finding the exact solution on the
wall.

6.5.2 The related problem and a pressure estimator

The homogeneous part of a diffuse interface model for the case N = 1 consists of 2
conservation laws for the mass density and the momentum and the transport equa-
tion for the phase variable. The latter is no conservation law. Accordingly, it is not
clear how to discretize this equation.
A similar situation is known from the discretization of the non-conservative terms
in the two-phase Baer-Nunziato model. In [2] Saurel and Abgrall suggested to use a
specific upwind discretization. The idea is based on the knowledge of the properties
of the exact Riemann solution. In particular, it is well-known that pressure and ve-
locities are constant across the phase interface in this model. So the discretization
has to be carried out in such a away that homogeneous pressure and velocity fields
are preserved. The specific design of the discretization depends on the Riemann
solver applied.
Unfortunately we are not able to copy this strategy to our system. Nevertheless we
will use insight in the exact Riemann solution of the system to develop a solution
strategy.

The main idea

This new approach is based on using the exact solution on the wall, instead of
estimating a value of the pressure, where the exact solution is known. This Riemann
problem is solved numerically using the HLL Riemann solver on a very coarse grid.
Of course we do not estimate the pressure but use the pressure from the exact
solution in every computational cell. Afterwards we calculate the phase variable χ
using the equation of state by Newton’s method.
One can notice that in the original problem we have p(ρ∗V ) = p(ρ∗L) = p. Then the
problem can be solved explicitly as in Toro [75].
In particular, let the density ρV , the sound speed aV and the relative velocity v of
the vapor phase be given. Then for the intermediate pressure p(ρ∗V ) of the related
problem we have

p(ρ∗V ) =

a2
V ρV

(
v

2aV
+
√

v2

4a2V +1

)2

v > 0

exp( v
aV

+ ln(ρV a
2
V )) v < 0.

(6.7)

We expect that the intermediate pressure p(ρ∗V ) of the related problem is a good
approximation for the intermediate pressure p∗ of the original problem.
It will be used as an estimation for the intermediate pressure of the original problem
in our numerical simulations.
Now we have the density from the solver and an estimated values of the pressure.
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We want again to compute the phase variable χ using the equation of state. For
this goal we apply Newton’s method to it.

6.6 Numerical examples

In this section we will test the pressure estimator using the exact solution approach
introduced previously considering the same two different examples which are dis-
cussed in the last section to find the pressure in the intermediate region. Once we
have the pressure we will use this value in the numerical solver in order to solve the
system considered.
The Riemann problem is solved numerically using the HLL solver on a very coarse
grid with ∆x = 1

150
. The initial data and the parameters for Examples 1 and Exam-

ple 2 are given Section 6.5. The parameters correspond to water at a Temperature of
T = 473.15K. One should notice that this is a very high temperature where liquid
water is much more compressible than at standard temperature as in Example 1.
Now we will use the pressure estimator using the exact solution approach to ap-
proximate the pressure and compare the results to the exact solution as we can see
in table 6.13. One can observe that the exact solution and approximated pressure

approximated pressure exact pressure
Example 1 1335.3208 Pa 1335.3199 Pa
Example 2 43526 Pa 43531 Pa

Table 6.13: Approximated pressure and exact pressure

are in very good agreement. We can see that the largest discrepancy appears in
Example 2 which is not surprising due to the more intense compressibility of the
liquid phase that comes along with the very high temperature.
Finally the pressure estimator has to be integrated into the numerical solver. This
Riemann solver is based on the idea that the solution of a general initial value prob-
lem is a superposition of local Riemann problems that appear between neighboring
computational cells.
For all Riemann problems we estimate the pressure. As a consequence for every
computational cell we obtain two pressure estimations, a left and a right side value.
The estimator gives very good approximations for the pressure as we have seen in
Table 6.13.
On the other hand it neglects the wave propagating through the liquid phase. Ac-
cordingly the left sided approximations will be used in the vapor and in the mixture
region while the right sided estimations are used in the liquid. Alternatively one
can use some averaged value.
The overall algorithm for a single time step can be summarized as follows:

• Use any Riemann solver to evolve the conserved quantities

• Solve the related problem at every inner cell boundary

• Update the pressure

• Calculate the corresponding phase function quantity
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Using the above algorithm we solve Examples 1 and 2. The phase boundary is
smeared. This behavior is not surprising due to the very large density gradient at
the phase boundary. The wave speeds are fitted very well. Nevertheless one can
observe that the pressure is slightly overestimated.
Using a volume based mean value instead for the pressure estimation the pressure
in the intermediate region will be in prefect agreement to the exact pressure. But
then the shock speed will be underestimated.
Refining the grid the numerical solution converges.
The numerical solution of Example 2 behaves similarly. There is some deviance in
the left rarefaction. This discrepancy disappears when the grid is refined.
Our estimating the pressure approach enabled us to overcome difficulties that ap-
peared in the study of the numerical solution of the homogeneous part of the diffuse
interface model in the case vapor-liquid flow. It gives a satisfactory results and a is
promising concept which can easily be extended to multicomponent flows.
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Figure 6.25: Exact and numerical solution of Example 1
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Figure 6.26: Exact and numerical solution of Example 1
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Chapter 7

The model with chemical reaction

Many physical problems of fluid dynamics are governed by hyperbolic conservation
laws with a source or production term. The source term is related to physical effects
or to geometric effects. A non-linear system of conservation laws with source term
has the form

Ut + F(U)x = S(U), (7.1)

where U is the vector of unknowns, F is the vector of fluxes and S is a vector of
sources.
In Chapter 4 we studied the homogeneous system

Ut + F(U)x = 0, (7.2)

in which S(U) = 0. There no source was considered.
Assuming no spatial flux variations, where F(U)x = 0, gives another simplification
of (7.1). This leads to a system of ordinary differential equations

d

dt
U = S(U), (7.3)

In this chapter we want to study the approximate solution of the homogeneous
part of the diffuse interface multiphase mixture model with source term using the
splitting method.
For further details about conservation laws with source terms we refer the reader
to the work of Hantke and Müller [33], the PhD theses by Helzel [36] as well as
Fedkiw [28].

7.1 Splitting method for a system of equations

In this section we present the approach so called splitting method. This is used to
solve systems of conservation laws with a source term. This method is a first order
method. In this approach we split the system into two subproblems. The first one
is the homogeneous system (7.2) and the other one is the source subproblem (7.3).
The homogeneous subproblem can be solved numerically as we have seen in Chapters
5 and 6 or by any other appropriate method. In order to solve the source term
problem one can use any ODE solver. For more details see Papalexandris et al. [58],
Tang [72], LeVeque [45] as well as LeVeque and Yee [48].
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We consider the initial value problem

Ut + F(U)x = S(U), (7.4)

U(x, tn) = Un, (7.5)

where Un is the solution at tn and we want to evolve the solution to the new value
Un+1 at tn+1 in a time step ∆t = tn+1 − tn.
We discretise the spatial domain [0, L] into M numbers of cells or grid points i. We
split the system (7.1) into (7.2) and (7.3). The splitting scheme is

Ut + F(U)x = 0,

U(x, tn) = Un

}
⇒ U

n+1
,

where the initial data for this subproblem is the initial data of the complete problem

(7.1) and U
n+1

is the solution of the homogeneous subproblem. This solution will
be used as an initial data for the second subproblem (7.3)

d
dt

U = S(U),

U
n+1

}
⇒ Un+1.

The solution of the main problem (7.1) using splitting method is given as

Un+1 = S(∆t)C(∆t)(Un), (7.6)

where C(∆t) is the solution operator for the problem (7.2) and S(∆t) is the solution
operator for the problem (7.3) over time t.

7.2 The homogeneous model with chemical reac-

tions

The diffuse interface multiphase mixture model with chemical reaction was presented
in Chapter 3. In this section, we want to solve this model after neglecting the second
order terms. This is nothing else than supplying the homogeneous part of the model
with source terms. We will solve this part of the system using splitting method
presented in previous section.
As we have seen in Chapter 3, we consider multi-component liquids (L) and/or
vapors (V) mixture of N constituents A1, A2, ... , AN where the constituents Aα
where α = 1, ..., N of a fluid mixture allow the chemical reactions. This means that
we have NR reactions of the type

ai1A1 + ai2A2 + ...+ aiNAN 
 bi1A1 + bi2A2 + ...+ biNAN ,

where the constants aiα and biα are positive integers and νiα = biα − aiα denotes the
stoichiometric coefficients of constituent α in the possible reaction i = 1, ..., N .
Again we emphasize that the model considers reactions with forward f and backward
b path and the corresponding reaction rates Ri

f and Ri
b give the number of forward

and backward reactions per volume and per time. Hence

rα =
N∑
i=1

mαν
i
α(Ri

f −Ri
b). (7.7)
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But the 2nd law of thermodynamics prescribes the ratio of the reaction rates as

Ri
b = Ri

f exp(
Ai

kT
), (7.8)

where T is the temperature, k is the Boltzmann constant and the chemical affinity
Ai is defined by

Ai =
N∑
α=1

mαν
i
αµα.

We substitute (7.8) into (7.7) and get

rα =
N∑
i=1

mαν
i
αR

i
f (1− exp(

Ai

kT
)).

As either the forward or the backward rate can be modeled, we set Ri
f = M i

r where
the constant M i

r > 0 is the reaction mobility.
As we have seen before, the partial mass densities and the partial velocities define
the total mass density ρ and the mixture velocity v according to

ρ =
N∑
i=1

ρi and ρv =
N∑
i=1

ρivi.

The diffuse interface model is given by the following system of PDEs after neglecting
the second order terms and adding the source term

∂tρ+ div(ρv) = 0,

∂tρα + div(ραv) =

NR∑
i=1

νiαmαM
i
r(1− exp(

Ai

kT
)), (7.9)

∂t(ρv) + div(ρv2 + p) = 0,

∂t(ρχ) + div(ρvχ) = −Mp(
∂ρψ

∂χ
),

where p is the pressure, mα is the atomic mass of constituents α, ρψ is the given
equation of state, µα is the chemical potential and Mp and M i

r are the mobilities.
For more details see Chapter 3 and the references therein.
We supply the model with the equation of state (3.8) which was derived in Chapter
3. It has the form

p(χ, ρ1, ..., ρN) = −W (χ) +
N∑
i=1

[h(χ)(a2
Liρ+ dLi) + (1− h(χ))(a2

V iρ+ dV i)].

7.3 Solving the system using the splitting method

Now we want to solve the system (7.9) numerically using the splitting method which
means we will split our problem into two subproblems. The first one is the homo-
geneous part of the system. This has been discussed in Chapters 5 and 6. Then we
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will solve the chemical reaction subproblem by solving the following ODEs system

dρ

dt
= 0,

dρα
dt

=

NR∑
i=1

γiαmαM
i
r(1− exp(

Ai

kT
)),

dρv

dt
= 0,

dρχ

dt
= −Mp(

∂ρψ

∂χ
).

Afterwards, we obtain the solution by applying (7.6) as explained before in this
chapter.

7.4 Examples

In this section we want to present two examples and discuss the solutions using the
splitting approach. For comparison reasons we will choose examples from Hantke
and Müller [33]. In each example we will discuss the solution of the ODEs (7.3)
using Rung-Kutta method. Then we will present the complete solution of the full
system with source term (7.1). In order to do this we will involve the solution of
the ODE system in the homogeneous system according to the formula

Un+1 = S(∆t)C(∆t)(Un),

where C(∆t) is the solution operator for the problem (7.2) and S(∆t) is the solution
operator for the problem (7.3) over time t. We will choose the parameters as follows:

γ cv π ρ0 mα

vapor 1.43 1040 0 0.9 0.01802
liquid 2.35 1816 109 999 0.01802
oxygen 1.4 920 0 1.429 0.032
hydrogen 1.4 14304 0 0.09 0.00202

Table 7.1: parameters

In both examples we have only one reaction so that NR = 1 and there will be no
need to sum over i.

Example 1a
In this example we consider a mixture of a pure liquid water (l) and a pure vapor
water (v). It is a phase transition not chemical reaction between the vapor and
the liquid. But we consider this example to test the source term rα, and show its
ability to deal with such situations. A further reason, this example is considered in
paper [33] where the model presented therein can deal with both cases phase tran-
sition and chemical reaction. The chemical reactions is just the phase transition.

(H2O)vapor 
 (H2O)liquid (7.10)
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In this case the mixture consists of two components (N = 2). The model has the
form

∂tρ+ ∂x(ρv) = 0,

∂tρl + ∂x(ρlv) = νlmlMr(1− exp(
A

kT
)),

∂t(ρv) + ∂x(ρv
2 + p) = 0,

∂t(ρχ) + ∂x(ρvχ) = −Mp(
∂ρψ

∂χ
),

where ρ is the total density ρ = ρl+ρv. We replace the transport equation of the total
density by the transport equation of the partial density of the second component.
The model becomes

∂tρv + ∂x(ρvv) = νvmvMr(1− exp(
A

kT
)),

∂tρl + ∂x(ρlv) = νlmlMr(1− exp(
A

kT
)),

∂t(ρv) + ∂x(ρv
2 + p) = 0,

∂t(ρχ) + ∂x(ρvχ) = −Mp(
∂ρψ

∂χ
).

From (7.10) we observe that al = 0 , av = 1, bl = 1 and bv = 0 which gives the
coefficients νv = 1 and ν

l
= −1.

As we have seen in Chapter 2 for constant temperature the chemeical potential µ
(2.8) is given as

µα = (γα − 1)cαT ln
ρα
ρrefα

+ (γα − 1)cαT −
πα
ρrefα

,

which can be calculated using the parameters in Table 7.1. Here α denotes to liquid
or vapor component.
In this case the chemical affinity A is given as

A =
N∑
α=1

mαναµα = mlνlµl +mvνvµv

= mlµl −mvµv = m(µl − µv),

where ml = mv = m, which gives by linearization

1− exp(
A

kT
) ≈ 1− (1 +

A

kT
) =
−A
kT

=
m(µv − µl)

kT
.

The system now has the form

∂tρ+ ∂x(ρv) = 0,

∂tρv + ∂x(ρvv) = νvmMr(
m(µv − µl)

kT
),

∂tρl + ∂x(ρlv) = νlmMr(
m(µv − µl)

kT
),

∂t(ρv) + ∂x(ρv
2 + p) = 0,

∂t(ρχ) + ∂x(ρvχ) = −Mp(
∂ρψ

∂χ
).
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Next we apply the splitting method approach in order to solve the system. In this
example we choose the initial data with pv = 2 · 105 and pl = 105 and T = 298K.
We first solve the system of the ODEs numerically which in his case have the form

dρ

dt
= 0,

dρl
dt

= νlmMr(1− exp(
A

kT
)),

dρv

dt
= νvmMr(1− exp(

A

kT
)),

dρv

dt
= 0,

dρχ

dt
= −Mp(

∂ρψ

∂χ
).

We obtain the results in Figure 7.1 and we observe that the pressure in the liquid
water increases and decreases in vapor water. The same behavior is seen for the
densities where the density of the water liquid increases whereas the density of the
vapor decreases.

Example 1b
Now we want to solve the submodel with source terms. As a test case we consider
the initial data on both sides as pvapor = 2 · 105 and pliquid = 105 and T = 298K.
We obtain the results as in Figure 7.3.
One can notice that χ is constant because nothing is changed and the same for v.
But we can notice that the density of the liquid ρ1 is going up and the density of
the vapor ρ2 is going down. This matches the results in Figure 7.1 where the liquid
density ρL increases and the vapor density ρV decreases. The pressure pL shows the
same behavior.
We consider the initial condition as pvapor = 2 · 105 and pliquid = 105 to the left and
pvapor = 105 and pliquid = 2 · 105 to the right, we obtain the results as in Figure 7.4.

Example 2a
In this example we consider a mixture of three components Oxygen (O2), Hydro-
gen (H2) and vapor water (v). The chemical reaction is the so-called oxyhydrogen
reaction

2H2 +O2 
 2(H2O)vapor

In this case the system has the form

∂tρO2 + ∂x(ρO2v) = νO2mO2Mr(1− exp(
A

kT
)),

∂tρH2 + ∂x(ρH2v) = νH2mH2Mr(1− exp(
A

kT
)),

∂tρH2O + ∂x(ρH2Ov) = νH2OmH2OMr(1− exp(
A

kT
)),

∂t(ρv) + ∂x(ρv
2 + p) = 0,

∂t(ρχ) + ∂x(ρvχ) = −Mp(
∂ρψ

∂χ
).
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In this case

A =
N∑
α=1

mαναµα = mO2νO2µO2 +mH2νH2µH2 +mH2OνH2OµH2O

= −mO2µO2 − 2mH2µH2 + 2mH2OµH2O.

Which gives by linearizatuion

1− exp(
A

kT
) ≈ 1

kT
(mO2µO2 + 2mH2µH2 − 2mH2OµH2O).

The chemical reaction term has the form

rα = ναmαMr((
−A
kT

)).

The system in this case has the form

∂tρ+ ∂x(ρv) = 0,

∂tρO2
+ ∂x(ρO2

v) = r
O2

∂tρH2
+ ∂x(ρH2

v) = r
H2

∂tρH2O
+ ∂x(ρH2O

v) = r
H2O

∂t(ρv) + ∂x(ρv
2 + p) = 0,

∂t(ρχ) + ∂x(ρvχ) = −Mp(
∂ρψ

∂χ
),

the stoichiometric coefficients are ν
H2O

= 2, ν
H2

= −2 and ν
O2

= −1.
Now we solve the following ODE system

dρ

dt
= 0,

dρ
O2

dt
= r

O2
,

dρ
H2

dt
= r

H2
,

dρ
H2O

dt
= r

H2O
,

dρv

dt
= 0,

dρχ

dt
= −Mp(

∂ρψ

∂χ
).

We choose the initial data as pH2O = 104, pO2 = 105, pH2 = 2 · 105 and T = 298K.
The results are shown in Figure 7.2. We can see the same behavior of the densities
and the pressure of the components, only now for 3 components. The densities
of the oxygen and hydrogen decrease, the pressure as well, whereas the density of
the water vapor increases and the pressure of the vapor water behaves in the same
manner. This meets our expectations due to the recombination reaction.

Example 2b
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As a test case we consider the initial data on both sides as pH2O = 104, pO2 = 105,
pH2 = 2.105 and T = 298K. We obtain the results as in Figure 7.5.
Now we consider the initial condition as p

H2O
= 104, p

O2
= 105 and p

H2
= 2.105

to the left and pH2O = (104)2, pO2 = (105)2 and pH2 = (2.105)2 from the right, we
obtain the results as in Figure 7.6.
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Figure 7.1: Example 1.
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113



CHAPTER 7. THE MODEL WITH CHEMICAL REACTION

0 0.2 0.4 0.6 0.8 1
0

1

2

0 0.2 0.4 0.6 0.8 1
-1

0

1

v

0 0.2 0.4 0.6 0.8 1
1368

1370

1372

1

0 0.2 0.4 0.6 0.8 1
0

1

2

2

0 0.2 0.4 0.6 0.8 1
1368

1370

1372

0 0.2 0.4 0.6 0.8 1
0

1

2

p

106

0 0.2 0.4 0.6 0.8 1
1368

1370

1372

0 0.2 0.4 0.6 0.8 1
-1

0

1
 v

Figure 7.3: The full system, Example 1, test case. Blue: the initial data, Red: the
numerical solution.
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Figure 7.4: The full system, Example 1. Blue: the initial data, Red: the numerical
solution.
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Figure 7.5: The full system, Example 2, test case, 200 cells, 90 time steps,
time=3.10−04. Blue: the initial data, Red: the numerical solution.
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Figure 7.6: The full system, Example 2, test case, 200 cells, 90 time steps,
time=9.10−05. Blue: the initial data, Red: the numerical solution.
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Chapter 8

Conclusion

In this thesis, we recalled a diffuse interface multiphase mixture model proposed by
Dreyer, Giesselmann, and Kraus in [24]. In order to close the model, an equation of
state was considered. Our main focus in this work was on the isothermal case where
the temperature is fixed. We introduced the model in detail. Then we considered
the homogeneous part of it as a submodel. It is a system of hyperbolic conservation
laws. The main goal of this thesis was to solve the Riemann initial value problem
for the sub-model analytically and numerically.
We started the analytical study by discussing the analytical structure of the sub-
model and introduced its mathematical properties. The eigenstructure of the model
was presented which enabled us to understand the wave patterns of the solutions.
We presented the exact solution to the Riemann problem for the two phase multi-
component model. Further we proved the existence and uniqueness of this solution.
We constructed the exact solution of the case N = 1. Here we have one component
in each phase. We applied the solution to different test cases and we gave a com-
parison with different references.
One of the main advantages of this work was to generalize the exact solution to the
multicomponent flow, i.e. the case N > 1. We obtained the complete solution and
many examples are discussed.
In the numerical part of the study, we considered two cases the vapor-vapor flow
and the vapor-liquid flow.
Discussing the flow of vapor-vapor is considered a good test case in order to test the
performance of our solvers and to illustrate the structure of the solution. We wanted
to show that the model can be solved numerically. We presented the numerical so-
lution of this case using the isothermal and isentropic equation of state. We used
different Riemann solvers namely the HLL, Rusanov, and HLLC solvers for the first
order accuracy. In order to achieve the second order we used the MUSCL method.
As we have the exact solution, we discussed different test cases and compared the
results with it.
The more interesting case was the vapor-liquid flow. In this case, unexpected dif-
ficulties appeared. We obtained negative pressures and unphysical results in the
mixture cells. We explained why we got those results and we developed strategies
in order to overcome them.
The first strategy was using tracking the interface approach. In this approach, in
each time step, we check if the interface lies at the cell boundary or not. If we
have a mixture cell we split it into two cells. This approach enabled us to find a

117



CHAPTER 8. CONCLUSION

numerical solution for the case of vapor-liquid. But it handled the interface as a
sharp interface and used a part of the equation of state which is not our aim. So
another approach was required.
In this thesis, we developed a new approach in order to find a numerical solution
for the homogeneous part of the diffuse interface model in the case of vapor-liquid
flow. We called this new approach estimating the mixture pressure. It is based on
the physical properties of the vapor and the liquid. Due to the fact that most of
the effects appear in the vapor phase, we considered the liquid phase as a wall. We
solved the Riemann problem on the wall in two ways, using the exact solution and
numerically using Riemann solvers. We used this estimated value of the pressure to
find the numerical solution of the system.
The new method avoids expensive techniques like interface tracking and it is very
cheap because it does not require an iterative procedure.
We tested this approach in different examples and the results presented are satis-
factory.
Finally in this thesis, we included diffusion and source terms in the sub-model. We
presented the numerical solution using the splitting method and we applied it to
two examples.
Future work and open problems. In the numerical study, we considered the
liquid phase as a solid wall in order to estimate the pressure. This means that we
neglected the changes in the liquid phase.
A further interesting topic is extending estimating the pressure approach to solve
other models where large density gradients lead to difficulties in discretization.
On the other hand, solving the submodel supplied with chemical reaction terms is
an interesting subject. This can be applied to more complicated examples.
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