
Novel Resource-Efficient Methods for Robust and
Accurate Taxonomic Profiling of Metagenomic Data

Dissertation

zur Erlangung des
Doktorgrades der Naturwissenschaften (Dr. rer. nat.)

der

Naturwissenschaftlichen Fakultät III
Institut für Informatik

der Martin-Luther-Universität
Halle-Wittenberg,

vorgelegt

von Silvio Weging
geb. am 09.06.1989

Gutachter:
Prof. Dr. Ivo Grosse

Prof. Dr. Burkhard Morgenstern

Tag der Verteidigung: 20.10.2022

Acknowledgements

I would like to thank Ivo Große and Andreas Gogol-Döring for believing in me and
the topic I have chosen. They showed me how fun the use of my knowledge can be
and that bioinformatics could be something to stick with for a while. Adding to this,
I would really like to thank Ivo Grosse for including me in his group of tremendous
people: Alex, Benjamin, Claudius, Claus, Francesco, Ioana, Jan, Jördis, Lasse,
Martin, Samar, and Yvonne. When I started this project, he and the group gave
me the support I needed, so: many thanks and cheers to you!

Furthermore, I thank Jan Grau and Yvonne Pöschl-Grau for their valuable advice
and mentoring. Especially teaching together with Jan Grau was a pleasure, our
courses rock!

My thanks also goes to Matthias Müller-Hannemann for providing me with the
much-needed time as well as to Stefan Posch for understanding and accepting my
quirks when working together, as well as to Steffen Schüler for listening to my crazy
ideas even though I felt like never giving him enough context.

Last but not least, my everlasting gratitude goes out to my best friends and family
without whom I would not be who I am today.

Abstract

English version:
Examining the taxonomic composition of sequenced data is a necessary step in al-
most any metagenomic analysis. Most existing and widely used programs prioritize
speed over accuracy and robustness, while consuming large amounts of memory.
As an alternative, we have developed and implemented new methods in a program
called kASA, which is able to efficiently identify DNA or protein sequences using
k -mers to build a metagenomic profile. We ensure high accuracy and robustness by
using an amino acid-like encoding together with an interval of k ’s while using at
most the amount of memory specified by the user. Algorithms and data structures
specifically adapted to the use of secondary memory allow a complete taxonomic
analysis of metagenomic data without compromises on HPC clusters, desktops or
even laptops.

German version:
Die Untersuchung der taxonomischen Zusammensetzung von sequenzierten Daten
ist ein notwendiger Schritt in fast jeder metagenomischen Analyse. Die meisten
existierenden und weit verbreiteten Programme priorisieren Geschwindigkeit über
Genauigkeit oder Robustheit und verbrauchen dabei große Mengen an Arbeitsspe-
icher. Als Alternative haben wir neue Methoden entwickelt und in einem Pro-
gramm namens kASA implementiert, das in der Lage ist, effizient DNA- oder Pro-
teinsequenzen mit k -meren zu identifizieren, um ein metagenomisches Profil zu er-
stellen. Dabei wird eine hohe Genauigkeit und Robustheit sicher gestellt, indem
es eine aminosäureähnliche Kodierung zusammen mit einem Intervall von k ’s ver-
wendet, wobei dabei maximal die vom Benutzer angegebene Speichermenge ver-
braucht wird. Algorithmen und Datenstrukturen, die speziell an die Verwendung
von Sekundärspeicher angepasst sind, ermöglichen eine vollständige taxonomische
Analyse von metagenomischen Daten ohne Kompromisse auf HPC-Clustern, Desk-
tops oder sogar Laptops.

Contents

Contents i

1 Introduction 1

1.1 Introduction to metagenomics . 3

1.2 Requirements and main objectives 7

1.2.1 Requirements . 7

1.2.2 Main objectives . 8

2 Taxonomic profiling 9

2.1 Algorithmic solutions and existing software 9

2.1.1 Software using alignments . 13

2.1.2 Software using the FM-Index 14

2.1.3 Software using hashing . 15

2.1.4 Software using k -mers . 17

2.2 New ideas . 18

2.2.1 Dynamic k . 18

2.2.2 Translation . 20

2.2.3 Memory restriction . 26

3 Implementation details and modules of kASA 28

3.1 Libraries . 28

3.1.1 Standard Template Library 29

3.1.2 STXXL . 30

3.1.3 zlib . 30

3.2 Custom data structures and classes 31

3.2.1 Trie . 31

3.2.2 Bit array sets . 34

3.2.3 WorkerThread and WorkerQueue 36

3.3 Input file formats . 38

3.3.1 FASTA . 38

3.3.2 FASTQ . 39

3.4 Modules of kASA . 39

i

3.4.1 generateCF . 40
3.4.2 build . 41
3.4.3 shrink . 46
3.4.4 update, delete, and merge 48
3.4.5 identify . 49

3.5 Additional features and modules . 58
3.5.1 identify multiple . 58
3.5.2 Retrieving lost or damaged Files 59
3.5.3 Measuring the redundancy 60

4 Experimental design and results 65
4.1 Preliminaries . 65

4.1.1 Snakemake . 65
4.1.2 Quality measurements . 66

4.2 Existing benchmark studies . 67
4.2.1 McIntyre et. al. 68
4.2.2 Lindgreen et. al. 70

4.3 Benchmarks with synthetic data . 72
4.3.1 Robustness . 73
4.3.2 CAMI . 82
4.3.3 Performance and memory consumption 85

4.4 Real data . 94
4.4.1 Deformed wing virus detection 94
4.4.2 Human microbiome project 95
4.4.3 Human genome assembly . 96

4.5 Discussion and summary . 100

5 Further experiments and new insights 103
5.1 Influence of the codon table and its resistance to mutation 103
5.2 kASA as part of a metagenomics pipeline 107
5.3 Usage of spaced k -mers . 110
5.4 Kaiju vs kASA . 113
5.5 Influence of shrink on sensitivity . 115

6 Conclusions and future work 116
6.1 Conclusions . 116
6.2 Goals reached . 119
6.3 Failed ideas . 120
6.4 Future work . 123

Bibliography 124

Definitions and descriptions 143

ii

Chapter 1

Introduction

Since the discovery of DNA as the basis of terrestrial life [1], molecular biology has
been devoted to the study of the genetic information encoded in it. It has become
apparent that DNA can serve as a unique identifier, in the form of genomes. Different
living beings, even individuals [2], could thus be identified and their genome stored as
a reference. If, for example, there were similarities in the DNA, it would be possible
to draw conclusions about a kind of molecular kinship. However, in order to enable
this reference-based research into the earth’s biodiversity, methods and technologies
are needed that can determine the specific sequence of bases in the DNA.

Nowadays, this is made possible by “Next generation sequencing” and “Third-
generation sequencing” techniques [3]. They are able to read, or “sequence”, DNA
and translate it into a digital format. One problem, however, is that DNA has been
found to be very long in some organisms (up to several million base pairs [4]). Man-
ual processing and searching for commonalities and differences in DNA sequences,
or genomes formed from them, is infeasible.

This is where a new discipline comes into play: bioinformatics. Processing large
amounts of data is one of the main tasks of computers and a significant subfield of
computer science. Accordingly, it is obvious to process biological data with meth-
ods from computer science as well. One of the main goals is to prepare data in
such a way that they can be digitally processed. The result: a digital database
of reference genomes, which can be searched using known algorithms [5]. Another
advantage of this is that newly sequenced DNA can now be compared against these
references. This makes it possible to separate the known from the unknown data
and to determine the frequency of certain sequences.

The latter is particularly important for another field of research in the life sciences:
metagenomics. It deals with the analysis of samples from the environment, which
usually contain microbial life that cannot be cultured in the laboratory (for more on
the history of metagenomics, see Section 1.1). The comparatively high proportion

1

of unknown DNA makes it much more difficult to deal with this type of data. In
addition, it is not only important to identify which known organisms are found in
a sample, but also how many (the “abundance”). A variety of conclusions can be
drawn from this. An example from medical diagnostics would be the recognition
of the pathological spread of an intestinal germ based on its abundance in a stool
sample [6].

Therefore, it is important to have software that is able to quickly and versatilely as
well as accurately determine the presence and abundance of the relevant organisms
in a digitized DNA sample. There are numerous such programs that have been
developed in recent years [7, 8]. However, almost all of them require the presence
of hardware that is not necessarily available to every person: High-Performance
Computer Clusters (HPCC). Especially with an ever-growing number of reference
genomes, it seems reasonable to switch to low-cost memory and not try to load
everything into primary memory.

This is the goal of this dissertation: to develop and use a software capable of iden-
tifying known strings of DNA with a customizable primary memory footprint. This
software is called kASA - k -mer Analysis of Sequences based on Amino acid-like
encoding and is able to run on many commercially available computers and spares
neither accuracy nor performance. Some of the content of this dissertation has
already been published in Nucleic Acids Research with open access [9]. Usage of
published content is permitted via the Creative Commons CC BY license. The
source code can be found online [10, 11, 12].

The dissertation is structured as follows: The first chapter gives an introduction into
the research field of metagenomics [13] and why we chose it. Starting with a brief
history in Section 1.1, it then depicts a typical metagenomic study. On that basis,
our chosen topic of interest is derived at the end. It also explains the challenges
we faced while developing kASA in Section 1.2.1 and describes the main task of this
dissertation in Section 1.2.2 further.
This introduction is then followed by Chapter 2 which outlines in Section 2.1 what
solutions and software already exist and what their limitations are. Based on this,
we show new ideas in Section 2.2 which aim to overcome those limitations and at
the same time achieve some of the goals we defined in Section 1.2.2.
Chapter 3 revolves around the implementation of kASA. It shows the algorithmic
solutions we developed alongside some code that illustrates how the ideas we de-
scribed in the second chapter were implemented. The different sections refer to the
modes in which kASA operates. Section 3.4.2 for example shows how genomic data
is transformed and saved into a data structure better suited for identification. This
is then used in Section 3.4.5 to compare sequenced data to this data structure con-
taining the reference. Additional modes shown in Sections 3.4.3, 3.4.4 and 3.5 aim
to improve usability.
Chapter 4 verifies our theoretical ideas with various experiments with both simu-

2

lated and real data in Sections 4.3 and 4.4, respectively. Section 4.3.1 for example,
contains comparisons of the performance and accuracy of kASA with software men-
tioned in Chapter 2.
Since kASA can also be used to gain new scientific insights, we give an overview of
what we learned in Chapter 5.
In the last Chapter 6, we conclude our findings and discuss our results concerning
our goals. We also sketch possible future work.

1.1 Introduction to metagenomics

The study of microbial communities started in 1674 with the observation through
self crafted microscopes by Leeuwenhoek [14]. With samples gathered, for example
from his teeth, he saw that tiny creatures lived inside his mouth. Another method
was employed later when Robert Koch isolated Bacillus anthracis by making it grow
on a nutrient in 1876 [15]. Both methods aimed at visualizing and understanding
bacteria and their physiology. Over time, microscopes got better at magnifying the
world of microbes. This lead to the discovery that the observed microbiome did
not match the number of cultivatable organisms from the same sample [16]. Among
others, Winogradsky drew the conclusion that different microbes only grow under
specific circumstances in the late 1800s [17]. This was followed by a period of stud-
ies on microbial pathogenesis and biochemical abilities of certain microbes [17]. In
the year 1977 Carl Woese used ribosomal RNA (rRNA) named 16S (for prokary-
otes) and 18S (for eukaryotes) as molecular markers to distinguish microbial life [18].
The classification via 16S or/and 18S rRNA is a method still used due to its sim-
plicity [19]. In order to detect if certain known rRNA was present, amplification
with specific primers was performed [20]. This way, it was deducible that if the
amplification of a certain 16/18s rRNA worked, the corresponding species was in
the sample as well. This marked the beginning of reference based analysis: Known
16/18S sequences were saved and used to later re-identify them. Amplification was
first done via “cloning vectors” which were mostly plasmids containing foreign DNA
that were then introduced into a host species for duplication (in most cases Es-
cherichia coli) [21, 22]. This lead to the possibility of studying the metagenome in
a broader way: Handelsman et al. used DNA cloning vectors to directly study the
microbial community of soil samples [23] by copying all found DNA. After isolating
the DNA polymerase enzyme found in Thermus aquaticus in 1969 [24], polymerase
chain reactions (PCRs) were used for amplification instead due to the shorter time
needed for amplification [25]. However, this introduced an amplification bias which
could distort the estimated amount of microbial species in a sample [26]. A method
of directly sequencing genetic material was introduced by Sanger et al. in 1975 [27].
It was able to sequence DNA with a length of sometimes more than 500 nucleotides.
Today, these sequenced pieces of DNA are called “reads”. However, it suffered from
low quality in the first few bases and therefore required quality checks [28]. After

3

30 years of further development, so called “Next generation sequencing” technolo-
gies emerged in 2005 [3] which were able to sequence millions reads (depending
on the technology used) with fewer errors and reduced prices. This enabled the
analysis of whole metagenomic samples by shotgun sequencing [29, 30] which works
by sequencing quasi-randomly grouped fragments analogue to the shot grouping
pattern of a shotgun. This era is now being complemented and even replaced by
“Third-generation sequencing” techniques [3] such as those from Oxford Nanopore
Technologies [31] or Pacific Biosciences [32] which enable sequence lengths of kilo-
or even megabase level.

Obtaining metagenomic samples can be quite easy due to their various habitats [33].
Typical metagenomic samples come from sea- [34] / ground- [35] and waste [36]
water, soil [23], gut [37], feces [38], surfaces [39], biopsy [40] and many more. With
this data and the mentioned techniques available, it is currently estimated that
earth’s biodiversity, especially microbial life, is almost completely unknown [41].

This gives us a chance to find new solutions to existing problems given that over
the last centuries, humanity made vital discoveries while studying microbial life.
Prominent examples are the discovery of penicillin (produced by fungi from the
genus Penicillium) [42] and the vaccination against smallpox (Variola major) with
Cowpox virus [43]. More modern examples would be gene therapy based on viral
vectors (usually Adeno viruses) [44], the development of the CRISPR/Cas-Method
for gene editing [45], and the use of the thrombolytic enzyme Streptokinase found
in some bacteria of the genus Streptococcus for eliminating blood clots [46]. These
inventions were only possible due to the research of our biodiversity and its effect
on nature. Given the current trend of loss in biodiversity, however [47], the ability
to gain further insights which might solve current or future problems could get lost.
It is therefore crucial to identify as many new organisms as possible in the most
accessible and easiest way. To do this, researchers must be able to differentiate
between already known genomes and new genetic material. This process is called
taxonomic profiling and is part of almost all metagenomic studies.

The “taxonomic” part in taxonomic profiling refers to taxonomy - the classification
of things (organisms in our case) based on shared characteristics [48]. Elements of
a taxonomy are called “taxa” or “taxon” in singular. This branch of science started
with Linnaeus in the 18th century [49]. About 100 years later, Charles Darwin
based his classification on evolutionary relationships [50]. From this, a system still
in use was developed. It is modeled like a tree with two domains of life (prokaryota
and eukaryota) [51]. In 1977, Carl Woese did not only use 16S/18S to distinguish
organisms but also discovered “Archaea” as the third domain of life [52]. Since then,
multiple changes and new proposals for reordering the taxonomic relationships were
given [53]. For example, with the rise of molecular biology, taxonomic order was not
only given by phylogeny but also molecular similarities [54]. One of the most widely
used taxonomy database is the NCBI taxonomy [55] which maps taxa to unique
numbers - so called “taxonomic IDs”. This way, genomes, genes, etc. are directly

4

mapped to a name and an identifier. In this dissertation, we will use this to identify
known species by their genomic data linked to a taxonomic ID.

Quality control
Filtering/Trimming
(+Deduplication)

Read-based analysis

Taxonomic profiling

Taxonomic profiling

Functional profiling

Functional profiling

Gene prediction

Binning

Assembly-based
analysis

Output
files

Figure 1.1: Flowchart of a typical metagenomic study.

With this, we are able to describe how a typical metagenomic study is performed [56,
57]. Let us assume that the DNA or RNA has already been sequenced. Then the
typical approach can be seen illustrated in Figure 1.1 and is as follows:
The reads are first analyzed for per-base quality. Then, reads of low complexity (also
called “dust”) or artificial sequences belonging to adapters or primers are cut from
the raw read files. In some cases, reads are exact copies from another, usually when
they were amplified via PCR enrichment. Depending on the study’s aims, they can
be deleted as well. After that, the processing goes in two directions:
The first path uses a method called “assembly” which tries to piece together reads
to create longer pieces of DNA or even whole genomes. This can be done de novo by
trying to find reads that overlap (by having identical bases at one of the ends) [58].
Another method is called “reference-based” which uses existing genomes as a guide-
line to assemble similar genomes of, for example, related organisms [59]. Afterwards,
these assembled reads, called “contigs”, can be used for taxonomic profiling. How-
ever, assembling reads is a very computationally intensive task with no guaranteed
success [56]. The second path is therefore viable as it tries to directly identify the
reads by comparing them with a reference and reporting found similarities.
Both paths ultimately create a “taxonomic profile”. A taxonomic profile is a list
of all organisms or taxa that have been identified in a dataset together with their
respective abundance [60]. This means that depending on the chosen path, the pro-
file is derived either directly from the reads or from the contigs. During taxonomic
profiling, the reads or contigs which are similar to reference genomes are assigned the
respective taxonomic IDs belonging to these known species. After summarizing the
abundances, they are also able to spot the most prominently identified species of the
whole dataset. The profile created from the reads aims to describe the composition
of the dataset in terms of the organisms identified. With this, researchers are able
to inspect the whole metagenome of a sample. The profile derived from the con-

5

tigs is mainly used to check which contigs belong to known and which to unknown
metagenome-assembled genomes (MAGs). This helps to estimate the amount of
unknown data in the dataset as well as partition the reads into known and unknown
sequences.
It then continues with the “annotation” which tries to find genes or non-coding parts
and biological information like function [56]. If multiple samples were gathered (like
human gut microbiota from pre- and post-spaceflight), statistical analysis might also
give vital insight in similarities or differences between samples. Our software kASA

can also be part of such a pipeline, as can be seen in Section 5.2.

A problem current pipelines are facing is that the number of reference genomes is
rising quickly. The reason is that the cost of sequencing has gone down significantly
in the last years [3] and whole genome sequencing techniques [61] are adding more
and more genomes to databases such as the NCBI’s nt [5, 62]. This leads to increas-
ing space consumption and required computing time. We therefore decided to focus
our research on this problem and develop a program capable of taxonomic profiling
of data from both reads and contigs, while being scalable in terms of the number
of reads and reference genomes. To better differentiate between the assignment of
taxonomic IDs to a read and the creation of a table summarizing the whole data
set, we call the former “r-identification” and the latter “profiling” from now on.

For the readers information: Usually, programs like kASA are called “tools” which
use ”classification” to taxonomically profile a metagenomic dataset. We will not be
using those terms however, because even though they might be widely used, they
are slightly incorrect. In software development, a “tool” is usually part of a software
and used to support this software [63]. It therefore does not produce something on
its own. An example would be the defragmentation tool used by most operating
systems. Because kASA is not part of a software and produces its own output, we
call it and all related programs “software” or “program” and not “tool”. The term
“classification” on the other hand, is usually used when something is categorized
according to their type [64]. It could be argued that taxonomic profiling is a form of
classification, as sequenced DNA is assigned to taxonomic IDs. However, the process
behind this is more like recognition than a predetermined classification. Therefore, a
program “identifies” the sequenced DNA based on similarities with known genomes.
The human brain does the same thing for example, when it tries to match faces to
recognize people it has seen before in order to identify them as a known person [65,
66]. This is the reason why we (and others [67]) will use “identification” instead of
“classification”.

6

1.2 Requirements and main objectives

1.2.1 Requirements

Before and during taxonomic profiling, some things need to be considered.

At first, the database used as a reference must be chosen. Depending on the scope
of the study, this might range from a couple of genomes up to every currently known
genome. Additionally, the reference must be kept up to date for future studies. With
increasingly more species being discovered, there is also a risk of redundancy: It may
be that two different researchers discover the same species but name it differently
or known species are updated, as has happened for example, to many subspecies of
Shigella and Escherichia coli [68, 69].

Secondly, the data that needs analyzing has certain specifics which a program per-
forming taxonomic profiling must handle appropriately. Some sequencing technolo-
gies offer paired-end sequencing [70] which means that DNA was sequenced from
both ends at the same time [71]. Another issue would be the length of the reads
because some methods [72] are not optimized for large sequences (more than 1000
bases). The size of the files combined with the size of the reference database can
pose quite a challenge even for high performance computing clusters (HPCC). Files
containing reads can be as large as multiple gigabytes and the reference can com-
prise several terabytes. Finding similarities between the two could take weeks if
done naively.

Thirdly, a problem often underestimated is the existence of errors in either the
reference or sequenced data. The ability to deal with mutations, insertions, dele-
tions, and sequencing errors is called “robustness”. Some methods assume a high
sequence quality and discard sequences with low quality even though they might
have contained valuable information. Given a more robust method, these sequences
could still be processed. Other methods try to balance between accepting errors
and generating false positives, which naturally occur when the matching process is
relaxed. Being able to deal with errors is important because some species mutate
at a relatively rapid rate (e.g., RNA viruses from the genus Orthomyxoviridae [73]),
therefore diverging fast from a reference genome. This leads to false conclusions
about the actual presence of a taxon.

Fourthly and finally, there are problems of technical nature such as output formats
and standards, the compatibility to operating systems and hardware, dependencies
on third-party software, and the general ease of use. Most programs have their own
output format and offer the translation from one format to another. Currently, no
standard exists although the CAMI [8] format might emerge as one. It is also ap-
parent that most programs are written for a Linux environment and work optimally
on an HPCC platform, effectively limiting the user base to those who have access to
both. Experience of users also varies, resulting in most people using software that
is often cited, although it does not necessarily offer the best user experience.

7

1.2.2 Main objectives

Given the challenges mentioned in Section 1.2.1 we have to define what our software
must be capable of when taxonomically profiling sequence data.

As we mentioned at the end of Section 1.1, the number of reference genomes is
growing quite fast. Therefore, using a reference means writing a program that can
handle a small as well as a very large number of genomes. It also means that the
user must be able to add new reference genomes. This leads to goals Nr. 1 and 2:

Goal 1: kASA has to work, independently of the number of reference genomes.

Goal 2: kASA must have a functionality to add new genomes to its existing reference
database.

It is also apparent that we need to support long reads since third-generation se-
quencing techniques [31, 32] are becoming more widely used [3]. But next genera-
tion sequencing is still used, so we also need to consider techniques like paired-end
sequencing mentioned in Section 1.2.1.

Goal 3: kASA needs to support current techniques and also accept any length of
sequences.

Because metagenomic data also contains viruses which mutate at a faster rate than
most organisms [73], we have to think about robustness.

Goal 4: kASA must be robust to nucleotide changes in either the reference or se-
quence.

Another goal is to provide as much compatibility and ease of use as possible and
useful. We also have to avoid needing admin privileges or a specific operating system.

Goal 5: kASA must be easy to install and to use on common hardware and operating
systems.

This culminates in the final objective of this dissertation:

Goal 6: kASA should:

1. correctly and efficiently identify any valid sequence belonging to a known species,

2. not use more memory than given by the user,

3. provide easy access as well as a variety of options for any user,

4. be as independent of platform and other software as possible,

5. provide significant scientific value for metagenomic and thematically related
studies.

8

Chapter 2

Taxonomic profiling

This chapter contains an overview of existing ideas and software as well as new
ideas for taxonomic profiling. Section 2.1 starts by giving a mathematical formula-
tion of the underlying problem. Then a brief introduction into existing algorithmic
solutions is given accompanied by a description of selected software categorized by
method. Section 2.2 presents new ideas building on conclusions from Section 2.1
and expanding them. These ideas form the basis for the implementation presented
in Chapter 3.

2.1 Algorithmic solutions and existing software

The problem of taxonomic profiling can be abstracted and formulated as following:

Let M be the set of all sequences from sampled (meta-) genomic data (called “reads”)
and R be the set of IDs describing the order of these sequences. Then MR is the
set of tuples containing sequences in the form of strings with their respective read
IDs from R. Furthermore, let SR be a relation [74] between all possible non-empty
substrings of sequences in M together with the respective IDs from R. This means
that should different reads contain identical substrings, all corresponding IDs are
part of the tuple. This way, the substring can function as the attribute name or
“key” [74].

Let furthermore DB be the set of all genomic strings derived from a database of
known genomes and T be the set of all taxonomic IDs of known genomes in DB.
Then DBT is the set of tuples where each string in DB has its respective taxonomic
ID from T as second component. The relation GT then contains all possible non-
empty substrings of all genomes in DB mapped to the taxonomic IDs of their origin.
Should multiple genomes share a substring, the taxonomic IDs are grouped inside
the corresponding tuples as well.

Each of these sets of tuples SR and GT represents a relation [74] with the first

9

ACGTA {1, 2}
CGATCGT {3}
GTTCAA {4}

Table 2.1: SR with two
reads having ACGTA as a
substring

ACGTA {9157}
CGATCGT {9606, 9598}

AACAT {562}

Table 2.2: GT with
two genomes having
CGATCGT as a substring

ACGTA {9157} {1, 2}
CGATCGT {9606, 9598} {3}

Table 2.3: Natural join of SR and GT excluding keys that are not in both relations.

component, the substring, as key. The question is now:

Given SR and GT , what are the entries in SR ./ GT ?

Where ./ is the natural join operation [74]. The resulting tuples represent links
between read IDs and taxonomic IDs. An example can be seen in Tables 2.1, 2.2
and 2.3.

However, generating such large sets and searching for matching keys is quite costly in
terms of computational speed and space requirements. Therefore, it is preferable to
avoid creating all possible substrings. In the following, methods that work directly
with the original strings are explained.

A specialization of the aforementioned problem is to compare one string from the
sampled data MR with one string from the database DBT . This problem can then
be seen as a ”longest common substring problem” [75]. If solved and applied to all
tuples in MR × DBT , it can be used to answer the general question stated above.
In bioinformatics, the longest common substring problem translates to finding the
longest match between at least two genomic strings. This can be solved via finding an
“alignment” [76] between every pair of two strings. An alignment is an arrangement
of two strings that is intended to achieve the highest match of equal letters by
appropriately shifting one of these strings. Optimal global alignment algorithms
like the Needleman-Wunsch [77] dynamic programming solution or local ones, e.g.
developed by Smith & Waterman [78], however have a worst case time complexity
of O(n · m) for two sequences of lengths n and m. Therefore, they often become
inefficient for large data sets. Examples of software using alignments to answer the
question stated above can be found in Section 2.1.1.

A better way would be to create “suffix trees” [79] for all sequences in DBT and then
search for every string of MR in them. A suffix tree is an efficient data structure that
stores all suffixes of a string or text and their positions. Creating a suffix tree can be
done in O(|DB| ·n) with n being the length of the longest genome. Searching is then
quite fast with a time complexity of O(m) where m is the length of a string from

10

MR. However, it typically consumes much more space than the original string when
constructed (up to 28 ·m bytes vs m bytes [80]) and is thus impractical for usage
in metagenomics with large comprehensive databases. This problem was reduced
by “suffix arrays” [81] which use less space while still maintaining a good search
time complexity. A method using these suffix arrays together with the Burrows-
Wheeler-Transformation (BWT) [82] is the FM-Index [83]. Let dball be the length
of all strings in DBT combined, then this can be done in O(dball) time and space
complexity at most [82]. As this has to be done only once, the time complexity
for building this index is irrelevant for the search itself. Another advantage of the
FM-Index is that random access to the underlying suffix arrays is still possible.
Therefore searching a string from MR in this index can be done in O(m + o) time
where m is the length of that string and o is the occurrence, meaning how often that
string is found. Assuming that every string in MR has the same length (which is not
unusual in DNA sequence data), that the search is done for every string in MR, and
that every string only matches once, we arrive at O(|MR| ·m) time. That run time
complexity has a major drawback however: As mentioned in Section 1.1, the third-
generation sequencing techniques allow for sequences on a megabases level, which
would make m a rather large factor for this approach. Therefore, the FM-Index
is usually only efficient for short strings [84]. Software that uses the FM-Index for
taxonomic profiling can be seen in Section 2.1.2.

Another solution to the problem of taxonomic profiling would be to create substrings
with a small fixed size from the strings in DBT and/or MR. More generally:

Definition 1 (k -mer). Given a string of length L ∈ N, then a k-mer is a substring
with length 0 < k ≤ L of that string.

When retaining as much information as possible is important, this substring sam-
pling can be done with overlapping substrings: For example, the string “ACGAGT”
has four overlapping substrings of length three “ACG”, “CGA”, “GAG”, and “AGT”.
These overlapping substrings of length k are called ”overlapping k -mers”.

For the following argument, let K be the multiset containing all k -mers sampled
from strings of DBT . When using overlapping k -mers, the number of strings in K
increases by L−k+1 for every string of length L in DBT . Therefore, |K| ≥ |DB| for
every k ≤ L which seems like an obvious disadvantage. However, now that all strings
in K have equal length, a hash table can be used to efficiently store and search for
these strings. Building the index of hashes can be done in Θ(|K|) time and space if
only unique k -mers are saved. This is because the size of the hash table can also be
calculated upfront so no rehashing/resizing has to be done. Not using unique k -mers
increases the space and time required for building and searching, depending on the
collision resolution strategy used. Also sampling k -mers from strings in MR and
then searching in this table can be done in Θ(1) time for every k -mer, if no collisions
occur. This results in a time complexity of O(L−k) with L being the longest string
in MR. For all strings in MR we get a time complexity of O(|MR| · (L − k)). By

11

using the same assumptions of equal length m for all strings in MR as above for
the FM-Index, we get a total time complexity of O(|MR| · (m − k)). We see that
although the hash table based index uses more space than the FM-Index, the factor
after |MR| is smaller since m − k < m, ∀ k > 0. It is therefore a valid alternative
solution. See Section 2.1.4 for software using this approach. Further applications of
k -mers are for example assembly [85] and alignment-free analysis [86].

If retaining all information from strings in DBT is not needed or desired, hashes can
also be derived from these strings directly. Approaches like minhashing [87] generate
hash values from k -mers that characterize these strings best and saves those. This
reduces the space used to store the table and if also applied to strings from MR,
speeds up the process of searching significantly (see benchmarks in Section 4.3.3).
Existing software using hash tables without overlapping k -mers can be seen in Sec-
tion 2.1.3.

We would also like to elaborate how the results can be given to the user in meaningful
ways. The usual form of an r-identification output (meaning the output generated
for every read) would be a list containing matching taxonomic IDs for every read ID.
Because having multiple taxonomic IDs for one read ID can be too much information,
some programs use a so called ”lowest common ancestor (LCA)” approach [88]. The
taxonomy of all organisms can be seen as a directed acyclic graph (see Section 1.1).
It is thus possible to traverse the tree upwards and look for the lowest node that still
summarizes the matched taxonomic IDs. Let, for example, five species belonging
to the same genus match the same sequence. Then the output could be either all
five species’ IDs or one ID: the genus of those species (since genus is only one node
above species). Some methods to be discussed in the sections below use this LCA
tree for their r-identification output. We would like to mention beforehand that we
do not employ this idea in kASA. The reason is best explained with another example:
assume a genus of 100 species and a match in five species but not in the other 95.
Most LCA based software would then go upwards the tree to the genus and lose
information. Because most output is post-processed by scripts anyway, we found
that imposing such a decision for the initial output to be disadvantageous for the
user.

Finally, the following sections describe the solutions of other authors which inspired
some ideas we have incorporated into kASA. Given the diversity of metagenomic data
and studies with different requirements, it is not surprising that multiple solutions
emerged. Due to the sheer number of them, we are presenting only a subset of all
existing software chosen by ideas that contributed to kASA. Also please note, that
the classification based on method is not strict. Some methods use k -mers as well
as hashing, for example. Rather, it is meant to group software that are similar in
their core method.

Adding to that, we introduce two terms often used when comparing software: sen-
sitivity and precision. Sensitivity is the fraction gained by dividing the number of

12

correctly identified reads by the total number of reads, whereas precision divides
it by the number of identified reads. The formulas can be seen in Section 4.1.2.
This means that sensitivity is high if a software is able to identify as many reads
as possible. On the other hand, precision is high if the reads are truly from the re-
ported genomes. Some programs choose a trade-off between the two measurements,
for example decreasing sensitivity but increasing precision by applying thresholds to
their scoring schemes. It is also possible to relax the matching process and allow for
errors which can decrease the precision but increase sensitivity.

2.1.1 Software using alignments

The best known alignment based software is BLAST [89] or megablast [90]. It is
using a heuristic to search for short matches, called “seeds”. Gathering these seeds
from a string of MR is done by first creating overlapping k -mers. Second, from each
k -mer a list of similar words is generated by using a similarity matrix [91]. Every
element of this list gets a score and the ones with the highest score are saved in a
search tree data structure. This helps to quickly compare the high-scoring words to
the database sequences later. Usually, a BLOSUM62 scoring scheme is used [91, 92].
Afterwards, the strings in DBT are searched. Matching seeds are elongated until a
score given to the alignment falls below a certain threshold or the sequence matches
entirely. Gapped alignment is allowed but influences the score negatively for every
gap needed. Extending the match is done in both directions. While BLAST is good
for single sequence search, megablast is more suited for multiple input sequences.
It concatenates every string in MR and then uses BLAST on this long new string.
At the end, individual alignments are gathered in a post-processing step. Both
algorithms are still widely in use, not least because of the easy access via a web
interface [93]. The big disadvantage of BLAST and megablast however, is the high
computational effort needed to process large numbers of sequences against a large
database [94].

This problem was handled by another software we would like to present: DIA-
MOND [95]. It also uses a seed-and-extend strategy as done in BLAST, although
with protein sequences only. The main differences are the usage of spaced seeds [96,
97] and the “double indexing” scheme [95]. Spaced seeds are seeds which contain
relevant and irrelevant characters (that match to everything) but at the same time
are longer than their contiguous part. For example, a seed of length 10 can be
transformed to a spaced seed by considering two positions as irrelevant and then
adding two other characters at the end, making it a spaced seed of length 12. This
increases the probability of a match, since these space seeds now match strings
that had other characters in the irrelevant positions previously. Double indexing
describes the process of creating not only seeds for the strings in MR as done in
BLAST, but also those in DBT . Should two seeds be similar, the position inside
the string from DBT is then fetched and the match is extended via calculating a
Smith-Waterman alignment [78]. These sets of seeds generated from strings in MR

13

and DBT are sorted so that the comparison for equality can be performed with a
time complexity that is linear in the size of these sets [98]. Because the number of
seeds is significantly smaller than the number of sequences or genomes, this speeds
up the process of finding alignments and at the same time ensures at least the same
sensitivity as BLAST [95].

Using alignment-based software has the advantage that it is possible to get the
exact positions where strings from MR and DBT are similar. This helps in deciding
whether a string from MR has a known biological meaning. We did not incorporate
an alignment-based approach into kASA but the match-and-extend strategy was a
good inspiration. The double indexing strategy of DIAMOND is something we also
took ideas from, especially the comparison of two sorted sets in linear time.

2.1.2 Software using the FM-Index

As described above, the FM-Index [83] is a fast method for taxonomic profiling as
long as the strings in MR are relatively short. Because there still are sequencing
technologies that generate short reads [99] (250 bp), this method remains relevant.
We present two implementations, each having different approaches in using the FM-
Index.

The first program is called Centrifuge [100]. It creates an FM-Index from strings in
DBT . This index is compressed by discarding genomic data that is ≥ 99% similar
to other genomes inside the index. Similarity is calculated by counting identical
randomly sampled 53-mers. Segments belonging to two or more species are labeled
correspondingly. Taxonomic profiling of strings from MR is done with seeds of length
16 bp which are matched exactly and extended as far as possible. This methods was
also used in BLAST, see Section 2.1.1. In case of a mismatch, the letter(s) is(/are)
skipped and the matching starts anew. Based on the matched length, a score for
every matched species is calculated. The species with the highest score then get
assigned to the matched read. Should more than five species match the same read
equally, the LCA method is applied. Additionally, Centrifuge can calculate a profile
of the whole file which contains the abundances for every matched species. Here, an
Expectation-Maximization(EM) [101] algorithm is used to calculated the likelihood
of an abundance in the profile.

The second FM-Index based program that significantly influenced kASA is Kaiju
[102]. What characterizes Kaiju, is its usage of amino acids instead of DNA. There-
fore, its FM-Index is composed of protein sequences translated from genes of the
genomes from DBT . This reduces the index size and adds robustness against mu-
tations or sequencing errors due to codon degeneracy [103]. For identification, the
input sequences are translated in all six frames and fragmented at stop codons (for
more details on “frames” and translation, see Section 2.2.2). To speed the query-
ing process up, fragments below a certain length are discarded. Afterwards, the
fragments are matched exactly using a modified backwards search. Should two or

14

more taxa score equally, the LCA method is used as well. The software can use a
“Greedy” mode which works similar to the seed-and-extend strategy of Centrifuge
except substitutions of amino acids in the BLOSUM62 matrix [91] are allowed.

We took three main ideas from these programs: presenting multiple matched taxa
per read, the calculation of a profile, and the inherent robustness of the genetic code
when using protein sequences.

2.1.3 Software using hashing

We would first like to present two notable programs using hashing: MetaCache [104]
and Kraken2 [105]. Then, we present Ganon [106] as an interesting alternative to
the other two.

In general, minhashing [87] tries to quickly estimate the Jaccard similarity coeffi-

cient [107] J(A,B) := |A∩B|
|A∪B| in order to measure equality between two sets of strings

A and B. The closer the value is to 1, the more similar they are. This is done via
creating a unique set of hash values per “window” - substrings of a fixed length.
These hash values DBh are generated for every window of every string in DBT and
stored into a hash table. Should now the same method be applied to all windows
of every string in MR resulting in Mh for every window, the number of collisions
gives an estimator on |Mh∩DBh|. Because of the fixed windows, the number of ele-
ments in |Mh∪DBh| are quickly calculated. It is now easy to estimate J(Mh, DBh)
for every window. If done for all windows, it can be deduced how similar the two
strings are. Now follows the implementation of this principle in MetaCache and then
a similar method is presented in Kraken2.

In MetaCache, the windows are overlapping substrings of strings from DBT with a
pre-defined length l. They are decomposed into k -mers (k ≤ l) and then hashed to
gather the k -mers belonging to the smallest unique set of hash values. Uniqueness
is measured by a resemblance function that decides if two k -mers are similar and
if so, puts them into the same multiset. Of all multisets generated from the string,
the smallest multiset is then used to characterize the string and the corresponding
hash value is saved into the table together with information about the genome. For
an identification, the same method is applied to the reads in MR which are queried
against the hash table. The scoring function includes results from every window and
prints out the taxon with the most k -mer counts. If two or more taxa score equally,
the LCA method is used to deduce the result. Values for l, k and the number of
counted hash values s per window are user definable but need to be fixed when
building the index and not changed afterwards for that index.

In Kraken2, the authors do not directly use minhashing, although their approach
resembles it strongly. Therefore, a few differences exist. For example, unique hashes
representing strings are called minimizers. They are built from m-mers which are
the lexicographically smallest strings of all k -mers sampled from windows of length

15

l with m ≤ k ≤ l. These minimizers can also use a spaced approach as mentioned in
context of DIAMOND in Section 2.1.1. During the building step, reference genomes
from DBT are converted into distinct minimizers and together with the taxonomic
ID used to populate a hash table. If a collision occurs and the taxonomic IDs are
close to each other inside the taxonomic tree, the taxon is updated to the next
higher level (LCA method). Should the minimizer be different during collision,
linear probing is used to calculate the next possible position inside the table. The
identification works by creating minimizers from strings of MR. Here, the k -mers
used to create the minimizers are kept. If the hash value of a minimizer is found,
the respective taxonomic ID is assigned to the k -mer. For every set of k -mers per
sequence from MR the LCA method is applied and the resulting taxonomic ID is
written to the output file. A downside of the minimizer approach is that if originally
a minimizer refers to multiple different k -mers, the found LCA would be assigned
to all of them even though they are not identical.

Another interesting hashing approach was implemented in Ganon. A feature often
neglected, is the ability to add genomes to an existing index without having to build
it anew. Since new genomes are still being sequenced, a user might want to keep
their index up-to-date. In Ganon, this is achieved by using so called ”interleaved
Bloom filters” [108] as a data structure for its index. In short, a Bloom filter is a
hash table which, instead of saving pairs of keys and values, sets n bits to 1 where
n is the number of hash functions applied. For a search, one has to just check if all
positions equal 1 and if not, the key could not have been saved into the hash table.
However, this introduces a chance for false positives since collisions are not handled
and the search could return true even though the key has never been entered. Adding
entries to this kind of hash table is an incremental and highly parallel process thus
creating and updating this index is not only fast but trivial. Keys in this case are
k -mers belonging to a preclustered group of taxonomically close genomes. During
identification, k -mers from input data are searched against this index and scored
depending on the number of mismatches. Should a high enough count of matched
k -mers be reached, a read is considered identified. Afterwards, an LCA algorithm
can be used to group multiple matches together.

All presented methods that use hashing to minimize the number of saved identifiers
from DBT have high speed and good scalability. However, due to the usage of
hashing together with exact matching, there is no real robustness against mutations
or sequencing errors. We nevertheless took a lot of good ideas from these approaches.
The ability to update the index, for example, is something we think is necessary
for modern software. Furthermore, while not explicitly said but observed during
testing, MetaCache has a very good usability regarding installation, documentation
and parameters. We took much inspiration in that. Lastly, Kraken2 allows for fixed
sized hash tables, limiting the usage of memory. Especially for researchers with
limited disk space, this can be a good choice which we found useful as well.

16

2.1.4 Software using k-mers

The main difference between software from the former Section 2.1.3 and k -mer based
methods we will now present, is the amount of information stored. Usually, k -mer
based methods try to combine fast searching with high confidence in their prediction.
Therefore, almost all k -mers generated from strings in DBT are saved to the index.
Two approaches using this strategy are Kraken [109] and CLARK [110].

Kraken follows a strategy which assigns k -mers of length 31 (by default) on the DNA
level to a lowest common ancestor (LCA) tree. This tree is built in a preprocessing
step which takes taxonomic information from the NCBI [55] and genomic information
from a fasta file. It then counts all k -mers with a third party library and assigns the
respective taxonomic labels to them. If a k -mer is counted in multiple species, it uses
the LCA method. Furthermore, Kraken clusters similar k -mers together to optimize
cache usage. Similarity is measured by a so called “minimizer” which consists of the
first 15 letters of a k -mer. k -Mers with the same minimizer are grouped together
in a lexicographically sorted part of the hash table representing the index. During
identification, k -mers from reads are generated, counted, and searched in the index.
Following the resulting path inside the LCA-tree with the highest score yields the
most probable taxon for each read. Because Kraken is a selective classifier which
discards k -mers not belonging to the most probable identification path, precision
is prioritized at some cost to sensitivity. Unfortunately, for this method to work,
Kraken needs to load the entire index into primary memory.

In contrast to saving all k -mers from a string from DBT , CLARK is discarding
identical k -mers. What remains are “discriminative” k -mers, which are unique for
every species. This significantly reduces memory requirements while increasing con-
fidence in a match. For the index creation step, CLARK saves 21-mers of every
taxon (called targets) together with information of its origin in a hash table. Colli-
sions are handled with separate chaining [111]. Afterwards, any k -mer belonging to
multiple taxa is removed. The identification step is simply the search of generated
k -mers from strings of MR in the index. For every read in MR, the taxonomic ID
with the highest number of matched k -mers is assigned to that read. Additionally,
every assignment gets a confidence score. The authors argue that due to the index
consisting of discriminative k -mers, no conflict of two or more equally high scored
taxa should arise which would need resolving. This is why CLARK operates on a
single taxonomic level as opposed to an LCA method.

The minimizer principle from Kraken inspired us to use it to check, whether a k -mer
can be in the index before actually searching for it. The use of a single taxonomic
level as done in CLARK is something we also employ in kASA. We argue that if
the taxonomic profiling, for example on species level, is successful, higher order
classification can always be done afterwards to increase readability of the output.
More generally, we also use a k -mer approach for kASA, although not with a hash
table as index. The reason for that is given in Section 2.2.3. The main benefit

17

in using k -mers is that they can be sampled from sequences of any length. This
implicitly achieves the last part of Goal 3 that required our software to accept any
length of sequences. We now introduce the new ideas of kASA in Section 2.2.

2.2 New ideas

Most of the programs presented in Section 2.1 have one or more of the following four
major drawbacks:

Problems:

1. Focus on either sensitivity or precision [102, 104, 105, 109, 110]

2. No built-in robustness against mismatches [104, 106, 109, 110]

3. Primary memory usage scales with index size (all except Ganon)

4. Dependency on the operating system (almost all of them run exclusively on
Linux)

The following sections further describe the problems and present solutions to them.
As for a solution to Problem 4, we would like to refer the reader to Section 3.1 in
Chapter 3.

2.2.1 Dynamic k

As mentioned in Section 2.1.4, the user must choose a fixed k for the index and
input in a k -mer based approach. However, which value for k should be used is not
always straightforward: If k is too large, it may not be possible to exactly match the
k -mers. If k is too small, two related species may be more difficult to distinguish by
the resulting score, leading to false ambiguity. We will now elaborate further but
for simplicity’s sake, assume the viewpoint of only one k -mer.

Let D denote a DNA string of k letters from the alphabet B := {A,C,G, T} so
D ∈ B∗ with ∗ being the Kleene star [112]. The elements of B represent the four
bases which DNA consists of [113]. Let furthermore GS1 ∈ B∗ be the genome of a
species S1 with |GS1| = n. Assuming that k = n, the probability that D = GS1 is:

peq :=
1

4k
(2.1)

This is because we search for exactly one combination of letters in the space of
possibilities given by the alphabet times the number of letters. However, k is usually
smaller than n and therefore we have to try every position of GS1 as a possible
starting position for a match.

18

The following approach stems from a publication that tries to approximate the
probability of finding one string of a fixed length k in a longer string of length n at
least once [114] (see Proposition 2). One of the assumptions necessary for this is that
all positions where a match could start are independent of each other. With this,
the number of Bernoulli trials we use to determine whether D is completely matched
is K := n− k + 1. We saw that formula before in Section 2.1 when calculating how
many k -mers can be sampled from a string. The probability that GS1 contains D
as a substring at least once can therefore be approximated with:

P (GS1 contains D) ≈
K∑
i=1

(
K

i

)
peq

i (1− peq)
K−i (2.2)

= 1− (1− 1

4k
)K (2.3)

This means that the larger k is, the less likely it is for GS1 to contain D. If a
match between a fairly large D and the genome GS1 occurs, it is quite unique and
very likely, that the DNA sequence D belongs to the species S1. Let us assume
now, that a species S2 exists and that it is biologically related to S1 so its genome
GS2 is similar but not equal to GS1. What is the minimum length D must have to
distinguish whether it belongs to S1 or S2? As the reader can imagine, this is not
easy to answer and depends on the data. Therefore, choosing a large enough k is
crucial.

If k is too large however, we run into another problem. Assume that a base b ∈
B changes to another letter of B (for example, A to C) randomly. This event is
usually called “mutation” in accordance to its biological pendant. The probability
is here independent of the actual base for simplicity’s sake and given as pmut. The
probability of at least one such mutation occurring in D is then:

P (D mutates) = 1− (1− pmut)
k (2.4)

We see that with increasing length of D, the probability of a mutation increases
as well. This means that if D originally belonged to S1 but mutated before that
matching process, we cannot determine that origin should k be too large. This leads
to the problem of choosing an appropriate k which is representative enough to make
it possible to uniquely assign D to a species and at the same time minimizes the
chance of a mismatch due to mutations that occurred before. This trade-off also
determines whether sensitivity or precision is the priority, as a large k increases
precision but decreases sensitivity, for a small k the reverse is true.

To counteract this Problem (which corresponds to Problem 1), we reinterpret the
extend strategy of BLAST and use a range of several k ’s [kL, kH] ⊆ N. Should the
smallest kL-mer match, we increase k ∈ (kL, kH] until either a mismatch happens or

19

k = kH . This ensures that at least some inference to a group of species can be made
should the kH -mer not match. If repeated for all overlapping kH -mers, the count
of matched k -mers for every species results in a taxonomic profile. Furthermore,
we only need to save the largest kH -mers. This is because smaller k -mers can be
sampled from larger l -mers (k ≤ l) when the DNA string is padded by (kH − kL)
letters. See Figure 2.1 for a visual example.

S=ACGCATC**

k ∈ [2,4]

ACGC

CATC
ATC*
TC**AC

ACG
ACGC

CGCA
GCAT

Figure 2.1: Example for k ∈ [2, 4] in which smaller k -mers are sampled from larger
ones. Due to the padding, only the prefix with the respective length of k needs to
be sampled. Note that a k -mer containing a padding symbol will only match up to
this symbol but never the symbol itself.

If kL = 1 and kH = maxS∈{all species} |GS | is the length of the largest genome of all
all species, this approach resembles an alignment-based strategy. However, kH is
usually limited by external factors like machine word size or memory size and thus
much smaller (< 100 bp). Although this increases the execution time linearly in the
length of the interval, the information gained should prove worthwhile. The user is
able to freely change this interval at the beginning of every start of kASA, hence we
name this approach: dynamic k.

2.2.2 Translation

The next problem we wish to address is Problem 2 which refers to the lack of robust-
ness against mutations or sequencing errors in many programs. The necessity for
this was already mentioned in the section above. While developing a solution to this,
we were being inspired by nature and Kaiju (see Section 2.1.2) to use the so called
“codon degeneracy” [103]: While translating an RNA sequence to a protein consist-
ing of amino acids, two or more triplets of bases C, G, U, A often code for the same
amino acid. See Table 2.4 for the standard codon table often seen in nature [115].

20

This introduces the possibility of “silent mutations” where the base changes but the
amino acid does not. Therefore, matchings on amino acid level would be possible
even though two letters mismatch on DNA/RNA level. Furthermore, in contrast
to the translation in nature and Kaiju which starts at a certain triplet (e.g., AUG
in Eukaryotes and Archaea), we include non-coding regions as well since they are
known to be conserved as well (transcription factor binding sites for example [116]).
For simplicity, we will use DNA instead of RNA as base for our arguments in this
section.

Table 2.4: Standard codon table for the translation from RNA triplets (codons) to
the respective amino acid (AA) as well as the stop codons (St).

Codon AA Codon AA Codon AA Codon AA

UUU F UCU S UAU Y UGU C
UUC F UCC S UAC Y UGC C
UUA L UCA S UAA St UGA St
UUG L UCG S UAG St UGG W

CUU L CCU P CAU H CGU R
CUC L CCC P CAC H CGC R
CUA L CCA P CAA Q CGA R
CUG L CCG P CAG Q CGG R

AUU I ACU T AAU N AGU S
AUC I ACC T AAC N AGC S
AUA I ACA T AAA K AGA R
AUG M ACG T AAG K AGG R

GUU V GCU A GAU D GGU G
GUC V GCC A GAC D GGC G
GUA V GCA A GAA E GGA G
GUG V GCG A GAG E GGG G

Reducing three letters from the DNA alphabet (total size of 43 = 64) to one letter
from the amino acid alphabet (size of 22) decreases memory usage. The former
needs six bits per triplet, whereas the latter only needs five per letter. This however
leads to an inherent information loss. To counter this, we use the first three bases
as a starting in each case and sample k -mers in “frames” (see Figure 2.2). We now
show that this really is conserving all information needed for taxonomic profiling by
proving that the translation can be inverted.

Let A be an alphabet of size n with 1 ≤ n ≤ 31, n ∈ N and B := {A,C,G, T}. Let
furthermore S be a word consisting of at least three letters from B∗, so S ∈ B∗ and
|S| ≥ 3. S therefore represents a DNA sequence.

21

CGTATCAG
R V Y I

1. Frame

2. Frame
3. Frame

S Q1.

2.
3.

Figure 2.2: Translation in three frames resulting in three words coded with amino
acid letters: “RI”, “VS”, and “YQ”.

Let code : B × B × B → A be a function with the following property:

code((b0, b1, b2)) 7→ a ∈ A as given in the codon table.

If code((b0, b1, b2)) = code((c0, c1, c2))

⇒ b1 = c1,

(b0, b1, b2), (c0, c1, c2) ∈ B × B × B

(2.5)

This means that every two triplets of bases which code for the same amino acid
have the same base in the middle. A look at Table 2.4 shows that this property
is mostly true for the standard codon table with exceptions for “S” which has two
middle bases and the stop codons. We therefore use a slightly modified codon table
in kASA we now name C. Next, we model the translation itself.

translate : B∗ → A∗×A∗×A∗ is now a function for translating the DNA sequence
S into three amino acid-like sequences with iterative application of code. If code is
applied with a shifted start, we get the conversion in three frames mentioned above.
So the resulting words w0, w1, w2 ∈ A∗ are as follows:

wj :=

b |S|−j
3
c⊕

i=0

code(S [j + 3 · i, j + 3 · i + 2]), j = 0, 1, 2

where
⊕

is the string concatenation and S[a, b] is the substring of S starting at
position a and ending at position b.

Observation 2. w0, w1, w2 are created from overlapping triplets, which means that
for a DNA sequence b0, b1, b2, b3, b4, ... the triplet of the first frame b0, b1, b2 shares

22

two letters b1, b2 with the second frame and one letter b2 with the third frame. Fur-
thermore, the second frame b1, b2, b3 shares b2, b3 with the third frame which starts
with b2, b3, b4. b3 and b4 are now again the bases forming the first and second letter
for the next iteration in the first frame.

The translation is now fully modeled. If we can show that this translation can
be reversed, then the original sequence can be reconstructed. This means that
all relevant information is stored inside the translated sequences. The taxonomic
profiling on amino acid level would therefore report the same taxa as on DNA level.

Lemma 3. Apart from the first and last letter of S, no information loss occurs when
using translate.

Proof. To show that no information loss occurs, except for the first and last letter
of S, we construct the functions code−1 and translate−1 that we will later use to
show that translate is reversible. Let t0, t1, t2 be words consisting of amino acids
from which we wish to reconstruct the DNA sequence.

code−1 is created by determining each triplet b ∈ B × B × B associated with the
respective letter a ∈ A from the codon table C and storing it in a set.

code−1(a) = T ⊆ B × B × B
∀(b0, b1, b2), (c0, c1, c2) ∈ T ⇒ b1 = c1

(2.6)

This means, that for example for t0 = a0, ..., ai, ..., al with 0 ≤ i ≤ l ≤ b |S|3 c,
code−1(ai) is a set of ordered triples with the same middle component according to
Property 2.5.

translate−1 : A∗×A∗×A∗ → B∗ is now constructed as follows: We apply code−1

to the letters in each word t0, t1 and t2 which results in multiple of these ordered
sets. These sets are implicitly ordered and grouped by word.

Ti := (Tr{i,0}, T r{i,1}, ..., T r{i,|ti|}), i = 0, 1, 2 (2.7)

where Tr{i,j} = code−1(ti[j]), j = 0, ..., |ti| (2.8)

translate−1(t0, t1, t2) 7→
|t0|⊕
j=0

2⊕
i=0

tr[1], tr ∈ Tr{i,j} (2.9)

with ti[j] being the j -th position in the string ti and tr[1] being the middle position
in any string from Tr{i,j}. This means, that for example, Tr{0,0}, T r{1,0} and Tr{2,0}
must each contain at least one triplet where the bases match in the positions given in
Observation 2. See Figure 2.3 for an example. Without loss of generality, accessing a
string out of bounds returns an empty string during construction. This can happen
if the original DNA string has a length that is mod 3 6= 2 which results in different
lengths for t0, t1, t2.

23

Since the first base in the first frame and the last base of the last frame are not
necessarily unique and cannot be checked by the other frames, they are consid-
ered ambiguous. Therefore, the sequence S can be reconstructed with just the
amino-acid-like encoded frames except for its first and last base. This means that
translate−1 is a valid inverse function as:

translate−1(translate(w)) = w[1, |w| − 1], w ∈ B∗

Remark 4. During the proof, we made the implicit assumption that the ordering
of the frames are as translate created them. However, should this ordering be
disturbed, we can try to use the constructed translate−1 anyway because the recon-
struction will fail if the ordering is not correct due to Observation 2. Therefore no
other combination would generate a full-length sequence in the reconstruction pro-
cess. Since there are only six possible combinations of t0, t1 and t2 we get the correct
DNA string eventually.

Remark 5. As written above, the standard codon table cannot be constructed with
code, because prerequisite 2.5 is not satisfied (“S” has two middle bases). To fix that,
one must first split the amino acid “S” into two letters (“AGT” and “AGC”) and
second give the stop codon “TGA” an additional letter as well. The default codon
table used in kASA implements the additional stop codon but does not introduce a
new letter to split “S” to be compatible with already converted amino acid sequences.
Benchmark results for both the standard codon table and the one with a split “S” did
not differ noticeably, so an approximation of code (by the standard codon table) is
sufficient.

Remark 6. One can reconstruct the first and last base of S, if the alphabet A is
restricted further: The first base of every triplet must be identical for every assigned
letter a ∈ A. Secondly, six instead of three frames are used (so the reverse comple-
ment is created and translated as well). A possible function code using a 16-letter
alphabet maps each combination of the first two bases in a triplet to a unique letter,
so

code16((b0, b1, b2)) = code16((c0, c1, c2))⇒ b0 = c0 and b1 = c1,

(b0, b1, b2), (c0, c1, c2) ∈ B × B × B.

Remark 7. This proof offers another insight: Even though the frames together
contain almost all information of the DNA sequence, the translated words t0, t1, t2
themselves do not. This means that should we create k-mers from one or all of these
amino acid strings, it may very well match erroneously. This can be seen when
using a different coding alphabet like the 16 letter alphabet described in Remark 6.
It implies that every third letter of the sequence is ignored for each frame which
leads to higher robustness but also reduced precision. We therefore assume this to

24

CGT
CGC
CGA
CGG
AGA
AGG

ATT
ATC
ATA

?GTAT?

CGTATC
R V Y IGTT

GTC
GTA
GTG

TAT
TAC

Figure 2.3: Translation and inversion based on the modified standard codon table
C. It is visible that the DNA string is translated in three frames resulting in three
different letters. For the reconstruction, the sets as given by code−1 in Equation 2.6
are fetched from C. Then the middle letter of every set is written down and con-
catenated to the reconstructed DNA string. There is always a triplet in every set
which has a last letter that maps to the first letter of the next set, these are marked
in color. Because the first letters in “R” and the last letters in “I” are different, they
cannot be reconstructed.

be a case of: ”The sum is bigger than its parts”. If the context which k-mer belongs
to which frame is destroyed during lexicographical sorting, we might lose too much
information and thus suffer a decrease in precision. We suspect that the standard
conversion alphabet performs well because there might be an intrinsic balance be-
tween information conservation and robustness for each k-mer in it. We will see in
Section 5.1 that there is empirical evidence to support this.

25

An implementation of the constructive proof can be found in https://github.com/

SilvioWeging/kASA/tree/master/scripts/reconstructDNA.py.

This shows, that using an abstraction to amino acids together with using frames
is a valid method of improving robustness to mutations per converted k -mer. At
the same time, we do not really lose the information of the DNA string. So we can
consider Goal 4 to be achieved. Because we designed kASA so that the translation
table is changeable, the approach is called ”amino acid-like encoding”. The only
disadvantage of this approach is that using three or six frames generates more k -
mers than a DNA-based approach, resulting in higher memory or disk consumption.
A solution to this problem will be discussed in the next section.

2.2.3 Memory restriction

All software introduced in Section 2.1 has a similar processing structure:

1. Create an index from a database of genomic information

2. Match new data to this index

3. Use a scoring scheme to determine the taxa most likely contained in this data

4. Print out the scores and taxa in a suitable way

We opted to use the same structure in kASA. The main argument for this is that
preprocessing saves time later, especially if the same database needs to be searched
often. However, most software assumes that hardware powerful enough is used to
study metagenomic data. We thought this to not be a sufficiently satisfied assump-
tion seeing that the amount of data is likely to increase in the near future [117].
Even if Moores Law [118] upholds, handling databases and building indices from
them which fit into primary memory will get harder and more expensive [119]. We
therefore added a technical robustness against the size of data: keeping the index
on the disk/secondary memory. The user may then give kASA an amount of RAM
via a parameter that is not exceeded. If enough primary memory and processing
power is available, it can be used to load the index into it. If not, our software
takes the available resources and streams the chunks needed from the index lying
on the disk. kASA therefore provides the user with control over memory usage and
avoids Problem 3, that the primary memory usage scales with the index size, while
achieving Goal 1 which stated, that kASA has to work independently of the number
of reference genomes.

To be able to do this, we use a k -mer based approach. As indicated in Section 2.1
on page 11, it offers the ability to calculate how many k -mers are created. Thus, we
know how much primary memory will be used in both cases, the index creation and
the identification.

Saving and accessing our indices is done by the STXXL [120] C++ library (see Sec-
tion 3.1.2). Combining this strategy with new technologies like SSDs [121] decreases

26

https://github.com/SilvioWeging/kASA/tree/master/scripts/reconstructDNA.py
https://github.com/SilvioWeging/kASA/tree/master/scripts/reconstructDNA.py

the bottleneck of “out-of-core” approaches [122] where not all data is saved in pri-
mary memory. This enables us to handle arbitrarily large files without much per-
formance loss. The downside of this approach is that we cannot make use of hash
tables as indices. Most hash table implementations are not really working well in
secondary memory data structures as every call would be a random access which is
quite slow [121]. We therefore use a sorted array as index data structure in order
to utilize sequential accesses as much as possible (since even on SSDs, this is still
faster [123]). More on this method can be read in Section 3.4.2.

Regarding large input files, we thought it best to process each file in chunks. The
size of these chunks can be calculated from the given memory restriction parameter
chosen by the user. This ensures that the software has a predictable upper bound on
memory usage. In Section 4.3.3 we show experimentally that the overhead generated
this way does not impact execution times by a large degree.

This strategy of letting the user choose an upper bound opens up the possibility
of choosing hardware which is not part of an HPCC like a Laptop/Notebook or
Desktop. In our opinion, this enables more scientists to run metagenomic studies
since many have access to a Laptop/Notebook but not to an HPCC.

Summary
This chapter began with a mathematical formulation of the taxonomic profiling
task. We then presented already existing algorithmic solutions using that formalism.
Existing programs were categorized via approach and presented in relevance to our
own program: kASA. We furthermore derived ideas from these programs and chose a
k -mer based approach. The second section introduced new ideas, like the dynamic
k, the amino acid-like encoding and the restriction of primary memory usage. They
aim to solve the problems of existing programs that we stated at the beginning of
the section. How we implemented these theoretical ideas and solutions is presented
in the next chapter.

27

Chapter 3

Implementation details and
modules of kASA

Chapter 2 introduced existing as well as new ideas how to solve the problem of
taxonomic profiling. These ideas need to be implemented in order to validate them
experimentally. This chapter shows how we set out to do exactly that. It starts
with Section 3.1 where we introduce various functions from different libraries we
used in kASA. This is followed by Section 3.2 which shows custom data structures
that we use inside kASA. They are mostly customized versions of existing data struc-
tures which is why we did not include them in the previous chapter. Afterwards,
two common input file formats often used in bioinformatics are briefly presented in
Section 3.3. This serves the purpose of giving the reader context as to what kASA

accepts as input in the different modules which are shown in Section 3.4. They are
the main part of this chapter and our code. In particular, the identify module in
section 3.4.5 is important for understanding how we generate a taxonomic profile as
well as an r-identification. At the end, we also show additional features and modules
in Section 3.5 which are not necessary but useful for any user of kASA.

We would like to point out, that we show snippets of code to visualize how exactly
we implemented our ideas. Please beware that parts of our code will change over
time. It is therefore more of a snapshot of our current version. The “[...]” in the
code stands for the fact that there is more code inside this class or function but it
is not shown. This is mostly because these parts are not relevant to the respective
method. We hope that helps stress the important parts.

3.1 Libraries

We saw in Section 2.2.3 that a memory restriction is necessary to support large
databases and is thus one core idea of kASA. We therefore chose to implement kASA
in C++ because it offers such manual memory management. The standardization in

28

1991 [124] together with the development of a standard library in 1995 [125] also
made it a very flexible language which offers many existing algorithms we incorpo-
rated into our code. It is also available for many operating systems which helps
achieving Goal 5 which stated that kASA must be easy to install and to use on
common hardware and operating systems. We would like to present three software
libraries that made the development of kASA much easier: the Standard Template
Library (STL) of C++ [125], the STXXL [120], and the zlib [126]. All libraries are
either part of a C++ compiler or part of the source code so that these dependencies do
not need to be installed in addition to kASA. If the user downloads our source code,
everything necessary to run the program will already be available. This eliminates
third-party or external dependencies, often limiting the possible user base.

3.1.1 Standard Template Library

The STL [125] is part of the C++ standard and offers various generic data structures
and algorithms. Unfortunately, its implementation depends on the used compiler.
The consequence is that some features are available for e.g. the Microsoft Visual
Studio Compiler (MSVC) [127] but not for the GNU Compiler Collection (gcc) [128]
or Clang [129]. We therefore made sure to use only features available to all these
compilers or used preprocessor directives to ensure correct compilation. This can be
done by making the source code compliant to a standard. The source code of kASA is
compatible with a compiler supporting at least the C++11 standard but recommend
using one that supports C++17. The reason for that is that the C++17 standard
provides for example, generic multi-threaded algorithms and platform independent
file management. These will be preferred in future updates of kASA. On UNIX
systems like all Linux distributions and macOS, cmake [130] is needed as well (which
is not provided but only needs a C++ compiler on the system to run).

The STL gives access to “containers” like vectors (arrays of dynamic size), unordered
maps (hash tables) and many more. The interfaces to these classic data structures
provided us with ample possibilities to implement our modules and at the same time
enough abstraction to even use custom classes. We would also like to mention a few
algorithms provided by this library without kASA would not work:

• std::sort - uses a hybrid sorting algorithm called “introsort” [131] which
switches from quicksort to heapsort and then to insertion sort depending on the
size of the parts that need to be sorted. In C++17 this algorithm is parallelized
with a three-way-quicksort implementation (at least in MSVC).

• std::unique - needs a sorted container and then deletes all redundant entries
from that container.

• std::lower bound - a binary search algorithm determining the smallest ele-
ment in a container that is greater than or equal to the searched element. It
also takes a custom comparison function which makes it very versatile.

29

• std::set intersection - detects identical entries between two sorted con-
tainers. It also inspired our algorithm used in identify in Section 3.4.5.

This library is therefore essential and recommended for any C++ programmer. Its
elements are referred to with std:: before the name of either the container or an
algorithm.

3.1.2 STXXL

The Standard Template Library for Extra Large Data Sets (STXXL) [120] is an
extension of the STL. Data inside the implemented containers resides in secondary
memory so very large sizes can be used as STL containers do not go beyond the
available primary memory. It also includes custom algorithms to handle such con-
tainers and apply algorithms like stxxl::sort to them. However, many of those
algorithms are not in-place so a temporary file is created every time a program using
this library is started. We therefore use STL containers and algorithms as much as
possible but the index has to lie in secondary memory. The only container from this
library that can persist on secondary memory after termination of the program is
the stxxl::vector. We therefore save the index into an stxxl::vector container
together with a file containing the number of elements. This is necessary because the
index will be in binary format and the stxxl::vector interface does not calculate
the number of entries from the size of the file automatically after opening it again.
When the index file is opened in read-only mode, multiple arrays are created which
can hold a block of data from this file in primary memory. This “paging” makes use
of the caching behavior of modern PCs and decreases the latency when accessing the
file sequentially [132]. The container also allows random access albeit with larger
latencies. In the beginning of the development of kASA we used more containers and
algorithms from this library, but over time we found that only the stxxl::vector

is necessary. Because the library was last updated 2018 and planned updates are
not mentioned, we will either develop our own solution to keep kASA up to date or
use a more recent interface in the near future.

3.1.3 zlib

Many users use files compressed with gzip [133] to reduce space usage. It is therefore
not desirable to decompress them before starting a software like kASA. Since the
decompression algorithm works like a stream, we can incorporate this and directly
use the decompressed data stream for our program. An interface providing this can
be found in the zlib library [126] together with the gzstream [134] header (provides
an interface to std::ifstream). With this, we can read compressed files without
needing to save them to secondary memory first. This feature is optional, of course,
and compressed files are detected automatically.

30

3.2 Custom data structures and classes

This section contains more in-depth information about the data structures and
classes we designed or customized and implemented specifically for usage inside
kASA. One of them is the trie data structure which is used as search space reduction
to limit the number of random accesses to secondary memory in identify. We also
created a data structure based on an array containing only true and false as values,
named ”Bit Array Sets”. Its purpose is to use only as much memory as necessary
to minimize primary memory usage. Finally, we developed a queue of tasks inside
threads to enable multi-threaded calculations inside multiple modules.

3.2.1 Trie

A prefix tree or “trie” [135] is a directed, acyclic graph data structure using strings
as nodes. It is used to store and search for prefixes of strings. This can be done in a
time complexity that is linear in the length of the string. We wrote a modified version
in which we save the edges in the form of a lookup table containing pointers, inside
the nodes. This enables fast traversal because the corresponding ASCII value [136]
of the letter is exactly the position inside the lookup table and only the status of a
pointer at that index needs to be checked (if it is a nullptr or a valid address). The
consequence is a larger memory consumption (256 bytes for a node and 372 bytes for
a leaf) than a compact trie would have, with a full trie using at most 11.9 GB RAM.
However, in all our experiments including the real world example in Section 4.4 using
all fully sequenced genomes as a database for its index, the trie’s RAM usage did
not exceed 1.8 GB. The leaves are larger because instead of pointers, their lookup
tables contain integers describing the search range of the suffixes residing in the
index on the secondary memory (see Code 3.1 below). This reduces the number of
I/O operations significantly because only a subset of the index must be searched
(see Figure 4.19 in the following Chapter 4). A visualization of our version of a trie
can be seen in Figure 3.1.

A trie is also a valid replacement for a hash table because the search needs to be
interruptable. If, for example, k is from an interval from five to ten, we traverse the
trie until the fifth level (in case of a match). Then we look for the lexicographically
smallest and largest leaf to determine the remaining search space for the suffix (see
Code 3.1 below). This rules out using a hash table because emulating this behavior
with it would use too much space.

Source Code 3.1: Leaf

//

struct Leaf {

// Sizeof(Leaf): 372 Byte

uint64_t _vRanges1[32]; // starting positions

uint32_t _vRanges2[32]; // number of elements inside range

31

Leaf() {

for (uint8_t i = 0; i < 32; ++i) {

_vRanges1[i] = numeric_limits<uint64_t>::max();

_vRanges2[i] = 0ul;

}

}

inline uint64_t GetFirst() {

for (uint8_t i = 0; i < 32; ++i) {

if (_vRanges1[i] != numeric_limits<uint64_t>::max()) {

return _vRanges1[i];

}

}

return numeric_limits<uint64_t>::max();

}

inline uint64_t GetLast() {

for (int8_t i = 31; i >= 0; --i) {

if (_vRanges1[i] != numeric_limits<uint64_t>::max()) {

return _vRanges1[i] + _vRanges2[i];

}

}

return 0;

}

};

The prefixes of every k -mer from the index saved inside the trie are of length six. This
value is chosen because on one hand the number of possible nodes is small enough
to create a trie which fits into primary memory (as the trie size grows exponentially
with every level); on the other hand, it offers the possibility of reducing the size of
the index by omitting the prefix already saved in the trie. See Section 3.4.3 for more
information about this.

32

0x12af001c
0x40c3f61b
0x00000000

...
0x084c95ed

Lookup table with
memory addresses Root

Starting node of the trie

A
B
C
...
St

Represents letters
from the alphabet

ASRCTL String that is looked up

0x00020A0C
...

A

...

B

...

St

...

Next level in the trie,
same structure of
the node

[0,123]
[124,567]

...
[9810,12345]

...

T

...

A
B
...
L
...

Position in the table
stands for the last letter

Lookup table with
ranges in the index

ASRCTL... [9810,12345]
K-mers starting with "ASRCTL"
can be found in the index from

position 9810 until 12345

...

... ...

...
Go through the remaining nodes
until the last one

Jump to that address

Figure 3.1: The first letter of prefix/6-mer determines the position in the lookup
table of the root node. Should that memory address/pointer not be zero, this address
is visited. It points to the next node which contains such a table as well. This is
repeated until the penultimate letter. The leafs contain lookup tables containing
the ranges. There, looking at the position of the last letter yields the range in which
k -mers with that prefix can be found in the index.

33

3.2.2 Bit array sets

We define a bit array as an array data structure in which every element is a bit having
either true or false as value. A set is here a collection in which every element only
occurs once. Therefore, a bit array set is a set that uses a bit array to track, whether
an element has already been inserted or not. This reduces the space requirements to
a minimum and provides quick access without having to sort or search through the
set. In order to implement such a data structure, we need an array of bits, a container
to save the added elements in, and a pointer keeping track of the current element
in the container. This pointer is useful because setting it to the beginning of the
container is easier than emptying the container while resetting the data structure.
The number of bits needed must be known beforehand so this data structure only
makes sense if the maximum capacity Cap of the set is known. Because C++ does
not have a data type bit and the smallest one (char aka int8 t) uses one byte, a
different method is used. We reinterpret an integer of size 64 bits (uint64 t to be
precise) as an array of 64 bits. The elements in this new array can be accessed via
bitwise operators, for example bit shifts. If the size of the set should be larger than
64, an array of integers is used. Access to specific bits is then calculated by dividing
by 64 together with the modulo operation. See Code 3.2 for the implementation.
Another advantage is that the bit array set can be reset without deleting it, avoiding
de- and reallocation of memory. When resetting, the pointer is set to the beginning
and every integer in the array is set to zero. This effectively sets the bit array to
zero as well. If we would have taken a simple array, the number of operations would
be Cap. With this data structure, it only takes Cap

64 operations.

Our application for this data structure is to save identified taxonomic IDs. As this
must be done for every k -mer from the input, it is often reset. Furthermore, we
only need to know if and which ID has been identified. Because we also know the
number of possible taxonomic IDs beforehand, this data structure is therefore a
fitting choice. We also enumerate these taxonomic IDs in order to map the ID to
the index in the bit array (see Section 3.4.1). Should a taxonomic ID be identified
during taxonomic profiling, the corresponding bit is set to one and the entry is saved
into a container (an std::vector in our case). The pointer pointing to the current
element of the container is incremented as well. If the bit already has the value
one, the entry is not saved into the container. Gathering all saved taxonomic IDs in
order to link the matched read IDs to the taxonomic IDs (see Section 2.1) is done
by iterating over the container up to the pointer, indicating the end of the set. This
way we do not need to look at the entries in the bit array as this would require
|Taxa| operations, which in the average use case is much more than the number of
identified taxa.

34

Source Code 3.2: Bit Array Set

///

class sBitArray {

unique_ptr<uint64_t[]> _arr;

uint64_t _iNumOfBlocks = 0;

vector<uint64_t> _vElementsArray;

size_t _currentPositionInArray = 0;

public:

////////////////////////////////

sBitArray(const uint64_t& iSize) {

_iNumOfBlocks = (iSize + 63) >> 6; // idx / 64

_arr.reset(new uint64_t[_iNumOfBlocks]);

memset(_arr.get(), 0, _iNumOfBlocks * sizeof(uint64_t));

_vElementsArray.resize(iSize);

}

////////////////////////////////

inline void set(const uint64_t& idx) {

const uint64_t& blockID = idx >> 6; // idx / 64

const uint64_t& fieldID = idx & 63; // idx % 64

// if there already is a 1, this is skipped

if (!((_arr[blockID] >> fieldID) & 1)) {

_vElementsArray[_currentPositionInArray++] = idx;

_arr[blockID] |= (1ULL << fieldID);

}

}

////////////////////////////////

inline void reset() {

memset(_arr.get(), 0, _iNumOfBlocks * sizeof(uint64_t));

_currentPositionInArray = 0;

}

////////////////////////////////

inline vector<uint64_t>::const_iterator begin() const {

return _vElementsArray.cbegin();

}

////////////////////////////////

inline vector<uint64_t>::const_iterator end() const {

return _vElementsArray.cbegin() + _currentPositionInArray;

}

[...]

};

35

3.2.3 WorkerThread and WorkerQueue

In order to execute tasks in parallel, we first used OpenMP [137] which is an API
capable of parallelizing parts of code with the help of preprocessor pragmas (com-
mands that are evaluated by the compiler). However, we soon realized that this
would mean an additional dependency and compiler compatibility problems (MSVC
supports only OpenMP 2.0 whereas Clang only supports versions starting from 3.1).
We therefore switched to std::thread introduced with C++11. Unfortunately, the
overhead of spawning threads soon outweighed the advantages. We therefore de-
cided to create a pool of threads to which tasks can be handed over and the threads
inside switch between work and sleep without needing to create or destroy them.
This class is called WorkerThread and is used for the task of translating DNA se-
quences, converting them into k -mers or identifying them in parallel. More on the
specific parallelization strategy in identify is described in Section 3.4.5. The class
was designed for uniform tasks (those who take about the same time). So one task
is assigned one thread. Having heterogeneous tasks like operating on multiple files
concurrently as done in identify multiple (see Section 3.5.1), motivated another
class: WorkerQueue.

It is a variation of the thread pool principle because now tasks are put inside a
queue where larger tasks get more threads. This process needs a function for priority
calculation and since there is a correlation between file size and time consumption,
we put identification tasks with large files at the head of the queue. This way all
given cores are used since large tasks run in parallel to multiple smaller tasks. This
solution approximates an optimal solution to the task scheduling problem [138].

Apart from the parallel implementation of the std::sort algorithm, these classes
form the core for parallelization in kASA, but can also be used outside of it. The
code for the WorkerThread class can be seen in Code 3.3, the code for WorkerQueue
is not presented as it is very similar to the one shown.

Source Code 3.3: WorkerThread

///

class WorkerThread {

vector<thread> T; // hold exactly one thread

int32_t ID = 0;

vector<function<void(const int32_t&)>> tasks;

condition_variable cv_worker;

condition_variable cv_master;

mutex taskMutex;

bool stop = false, bStarted = false;

public:

//

36

inline WorkerThread() {

tasks.reserve(1);

startWorker();

}

//

inline void pushTask(const function<void(const int32_t&)>& task) {

tasks.push_back([task](const int32_t& id) { task(id); });

}

//

inline void startThread() {

if (tasks.size()) {

bStarted = true;

cv_worker.notify_one();

}

}

//

inline void waitUntilFinished() {

if (bStarted) {

unique_lock<std::mutex> lock(this->taskMutex);

this->cv_master.wait(lock,

[this] { return this->tasks.empty(); });

}

}

[...]

private:

//

inline void startWorker() {

T.emplace_back(

[this](){

while (true) {

{

std::unique_lock<std::mutex> lock(this->taskMutex);

this->cv_worker.wait(lock, [this]() {return

!(this->tasks.empty()) || this->stop; });↪→

}

if (this->stop) {

tasks.clear();

this->T[0].detach();

this->T.pop_back();

this->cv_worker.notify_one();

return;

}

for (const auto& entry : tasks) {

entry(this->ID);

}

tasks.clear();

37

bStarted = false;

std::unique_lock<std::mutex> lock(this->taskMutex);

cv_master.notify_one();

}

}

);

}

};

3.3 Input file formats

The following two file formats are the de-facto standard in bioinformatics regarding
the storage of DNA or protein sequences. We briefly describe both formats to give
the reader more context, how exactly sequences are put into kASA. They are used in
almost all modules presented in Section 3.4.

3.3.1 FASTA

The FASTA format (from now on written in lower case) was initially used in a
software with the same name [139] in 1985. Its simplicity quickly led to a wide
adoption by succeeding programs like BLAST (see Section 2.1.1). It can easily be
read and edited by various scripting languages as well as text-processing programs.
The format itself consists of commenting lines, a sequence identifier line starting
with ’>’, and the sequence itself. The sequence identifier line is usually used to refer
to the source of the sequence, for example, in the accession.version format [140] of
the NCBI. The genome of Escherichia coli str. K-12 substr. MG1655 would for
example, contain the following sequence identifier line: ”>NC 000913.3 Escherichia
coli str. K-12 substr. MG1655, complete genome”. The NC 000913.3 stands for
the nucleotide database [5, 62] (NC), followed by the accession (000913) which is
used to uniquely identify that genome, and its version (3). This is then followed by
line-by-line sequences of letters from the DNA or amino acid alphabet that make up
the sequence or genome. The lengths of these lines are usually 70 or 80 letters for
historical reasons. Another thing to consider is that fasta files often contain more
than one sequence, for example if the genome consists of chromosomes. In these
cases, they are separated by the sequence identifier lines and sometimes by empty
lines. Now follows an example of a fasta file:

>NC_000913.3 Escherichia coli str. K-12 substr. MG1655, complete genome

AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGATTAAAAAAAGAGTGTCTGATAGCAGC

TTCTGAACTGGTTACCTGCCGTGAGTAAATTAAAATTTTATTGACTTAGGTCACTAAATACTTTAACCAA

TATAGGCATAGCGCACAGACAGATAAAAATTACAGAGTACACAACATCCATGAAACGCATTAGCACCACC

ATTACCACCACCATCACCATTACCACAGGTAACGGTGCGGGCTGACGCGTACAGGAAACACAGAAAAAAG

CCCGCACCTGACAGTGCGGGCTTTTTTTTTCGACCAAAGGTAACGAGGTAACAACCATGCGAGTGTTGAA

GTTCGGCGGTACATCAGTGGCAAATGCAGAACGTTTTCTGCGTGTTGCCGATATTCTGGAAAGCAATGCC

38

AGGCAGGGGCAGGTGGCCACCGTCCTCTCTGCCCCCGCCAAAATCACCAACCACCTGGTGGCGATGATTG

...

3.3.2 FASTQ

The fasta format inspired another format for storing sequences: the FASTQ format
(from now on written in lower case as well) [141]. It was developed for next genera-
tion sequencing in order to save the sequencing quality alongside the sequenced read.
As mentioned in Section 1.1, different sequencing technologies have different sequenc-
ing qualities. When analyzing the reads, the base quality gives the probability that
the base was incorrectly called. This can then be considered when identifying this
read to ignore mismatches for example. It is coded via a Phred quality score [142].
These scores are ASCII characters usually ranging from ’ !’ to ’I’ (quality +33 in the
ASCII table [136]) with ’I’ being the best quality. The format itself is structured
into four parts: The sequence identifier line starting with ’@’, the sequence, a ’+’
which can include the sequence identifier as well, and the quality string. Usually,
many millions of sequences make up a fastq file so this format is repeated many
times. Because the origin of the sequenced DNA is usually unknown, the sequence
identifier instead contains information about the machine and its parameters. An
example of a fastq file would be:

@A00654:16:HCVKCDRXX:1:2101:1081:1016 1:N:0:NAATGTGTCT+GTAAGGCATA

AGTCTCGCTCATCAATCCAAAAGGAATACCGGACATCTCCACCAACCAAAAATCAGGAGTATTA

+

FFFFF:FFFFFFFFFFFFFFFFFFFFFFFFF,F:FFFFFFFFFF:FFFFFF:FFFF:FFF,FFF

@A00654:16:HCVKCDRXX:1:2101:8169:1016 1:N:0:NAATGTGTCT+GTAAGGCATA

CTCCACCAGTTGTCATCAACGGGTAGGGTTTGTTGGAAATTACTGTCATTCTCCTGCCACGCTT

+

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF,FFFFFFFFFF:FFFFFFFFFFFFFFF

3.4 Modules of kASA

The following sections describe the most important modules of our software. The
module build creates the index, shrink, update, delete and merge can modify
it. identify uses said index and is described afterwards. Figure 3.2 shows how the
modules are interconnected. Analogue to Section 2.1, let DBT be the set of genomes
DB together with their respective taxonomic ID T , XT be the sorted index generated
from DBT and MR be the set of sequenced reads M together with their read IDs
R. Furthermore, let the k ’s be from the interval [kL, kH] ⊂ N with kL being called
the ”lower k” and kH being called the ”higher k”.

39

build update

mergeshrink

identify/
identify_multiple

reference
& taxonomy

sequenced
data

profile

r-identification

index

generateCF

Figure 3.2: Directed graph showing how the modules are intertwined. generateCF

creates a content file from the fasta file(s) together with the taxonomy. It can also
be called inside build. Both build and update also need reference data from fasta
files to either create or update the index. shrink and merge modify the index (the
latter needs two indices) and identify uses the index to find similarities with new
sequenced data. It then puts out two different files: one containing a broad overview
of the identified taxa inside the input (profile) and the other a more thorough analysis
of every read (r-identification).

3.4.1 generateCF

This module is mostly a precursor to build, but can be called independently. It
contains functions for the creation of a ”content file” which is a list of taxa from
T together with information from the sequence identifiers found in the fasta file(s)
(see Section 3.3.1).

First, we go through all given fasta files and gather information about the genomes
or proteins from DB. As seen in Section 3.3.1, the fasta format contains sequence
identifier lines starting with ’>’. These lines also correspond to taxonomic IDs which
are mapped to them via a given table. Depending on the chosen taxonomic level,
the taxonomic tree, given via the “nodes.dmp” file from the NCBI taxonomy [55],
is traversed upwards and IDs belonging to the same nodes are joined together. For
example, two Escherichia coli (E. coli) strains are found in the fasta files and the

40

targeted taxonomic rank is species. Then the two taxonomic IDs corresponding
to these strains are replaced by the one given for the species E. coli. This new
taxonomic ID together with the IDs and accessions of the strains as well as the
name of the species are saved into a ”content file”. It is a tab-separated, human-
readable table which can also be created by other programs outside of kASA and
then given as a parameter as well. This enables, for example, the use of taxonomic
databases other than the one used by the NCBI. The content file is used in almost
every module of kASA and necessary to fetch, for example, the name of a matched
taxonomic ID after identification. A small example would be:

Histophilus somni 731 228400;205914 CP000947.1;CP000436.1;CP000019.1

Escherichia Coli 511145 511145 NC_000913.3

Sulfolobus solfataricus 2287 2287 NZ_LT549890.1

3.4.2 build

After creating the content file (see Section 3.4.1), we go through the fasta files (see
Section 3.3.1) once more and gather all DNA or already translated protein sequences
from DB that belong to recognized identifiers. See Code 3.4 for the translation
from a DNA string to a string of amino acid letters. While doing so, we convert and
translate the DNA to overlapping k -mers on the amino acid level (see Section 2.2.2).
The translation uses one, three, or six frames depending on the user’s choice. If the
sequences have already been translated, we simply create overlapping k -mers from
them. The k in this context is always kH because as seen in Figure 2.1, smaller
l -mers can be sampled from larger k -mers with kL ≤ l ≤ kH . Thus, we store only
k -mers of maximum length.

Source Code 3.4: DNA to amino acids translation

//

// Converts a string of dna to a string of aminoacids by triplets;

// sDNA is a reference to the dna string, length is the input length,

pointer position is the starting position in the dna string↪→

inline void dnaToAminoacid(const string& sDna, const int32_t& iLength,

const int32_t& iPointerPosition, string* outString) {↪→

// map A,C,T,G,X,Z to 0,1,2,3,4,5 by & with 1110 = 14 and then shift to

the position in 000 000 000, this gives the position in the array

where the respective amino acid is written

↪→

↪→

// small letters are also correctly converted

const uint32_t& iDnaSize = iLength / 3;

for (uint32_t i = 0, j = 0; i < iDnaSize; ++i, j += 3) {

const int32_t& iIndex =

((sDna[iPointerPosition + j] & 14) << 5)

| ((sDna[iPointerPosition + j + 1] & 14) << 2)

| ((sDna[iPointerPosition + j + 2] & 14) >> 1);

41

(*outString)[i] = _sAminoAcids_bs[iIndex]; //_sAminoAcids_bs is the

coding table↪→

}

}

The largest currently supported k is determined by the size of an integer in C++

because every translated k -mer is saved in its integer representation. See Code 3.5
for our implementation of this. Every letter in an alphabet the size of at most 31
needs five bits of space because 25−1 = 31. The largest integer currently supported
by the C++ standard has a size of 64 bits. This value divided by five results in
12 letters without information loss. We also offer a custom 128-bit integer which
consists of two 64-bit integers together with the necessary arithmetic. This way we
can raise the maximum k to 25.

Source Code 3.5: Conversion of amino acid strings to their integer representation

//

// Converts one aminoacid string to a coded kMer, using 5 bits per amino

acid letter (max k = 12 => 60 bits used)↪→

template<class intType> // uint64_t or uint128_t

static inline intType aminoacidTokMer(const string& aminoacid) {

intType ikMer = 0;

const int32_t& iLengthAA = int32_t(aminoacid.length());

for (int32_t i = 0; i < iLengthAA - 1; ++i) {

uint32_t iConvertedChar = aminoacid[i] & 31;

ikMer |= iConvertedChar;

ikMer <<= 5;

}

uint32_t iConvertedChar = aminoacid[iLengthAA - 1] & 31;

ikMer |= iConvertedChar;

return ikMer;

}

The k -mers generated from DB are saved together with their respective taxonomic
ID in a ascending order into a data structure called ”STXXL vector” (see Sec-
tion 3.1.2) on secondary memory. The sorting is necessary to achieve linearith-
mic time complexity during identify because naively comparing two arrays (with
sizes n and m) is of O(n · m) time complexity. When an array the size of m is
already sorted (since the index only needs to be sorted once) and the other ar-
ray the size of n is sorted after creation as well, we achieve a time complexity of
O(n · log(n) + 2 · (n + m)) [98] which is in o(n ·m).

After this step, we create a minimal index so that two identical entries are merged.
If only the k -mer is identical but the taxonomic ID is not, we keep all entries with
different taxonomic IDs. This introduces a certain redundancy to our index but

42

ensures the highest sensitivity. This can be seen in Chapter 4 of this dissertation,
where CLARK uses distinctive k -mers and suffers sensitivity loss because of it (see
Section 4.3.1).

The process of sorting and storing minimal pairs efficiently under the restriction
of minimal memory and space requirements is a problem with multiple possible ap-
proaches. Our first and naive approach was to translate, convert, and save all k -mers
into one large temporary stxxl::vector (referred to as “vector” in the following
text) which is then sorted by stxxl::sort and lastly made unique with duplicate
k -mer removal. This approach was dismissed because the sorting algorithm is not
working in-place, hence, an additional temporary file the size of our vector was cre-
ated in the background. Furthermore, we discovered that the number of I/O accesses
of the implemented merge sort algorithm inside the STXXL was unacceptable for
systems without an SSD.

Therefore, we developed a less straightforward but much more efficient solution.
Instead of sorting the whole vector, we gather as much k -mers as possible given
the memory restriction by the user. The resulting pairs are then sorted in primary
memory with std::sort (see Section 3.1.1) and afterwards put into a temporary
vector residing on secondary memory. Then the local container in RAM is reset
and the process starts anew. When all data is processed, we apply the following
strategy: Create a new temporary vector and keep a pointer for each file and its
topmost (and therefore smallest) element. These topmost elements are compared
inside a priority queue, the smallest is added to the new temporary file, and the
pointer for this vector containing the smallest element is incremented. If two or
more topmost elements are equal in both k -mer and taxonomic ID, all but one are
discarded. If a temporary vector reaches its end, it is deleted. The merging step
is repeated until only one temporary file is left. This last file then represents the
index. Our strategy avoids using more memory than given by the user and uses only
the necessary amount of temporary space. The reason for that is that the STXXL
supports growing and shrinking vectors when data is added or removed. Therefore
the elements are truly moved instead of copied. A graphical interpretation can be
found in Figure 3.3.

After creating the index, we can use it to add some further preprocessing steps:
Narrow the search space and count the number of all k -mers for later use. The first
step of narrowing the search space is motivated by the fact that the input which needs
to be identified is usually much smaller than the index. Therefore going through
the index sequentially would stream a lot of useless data until a match would occur.
To solve this, we use the fact that we sorted our index beforehand. This way, we
can narrow the search space every time a letter matches since no further match can
occur in a lexicographically smaller word. Therefore, the index can be split into
ranges, depending on the shared prefix. Should a k -mer from the input MR not
match such prefix, it cannot be found inside the index and is therefore discarded.
Should a match occur, the search space has at most |Alphabet|kmax−|prefix| entries

43

which is usually much smaller than the whole index. To save these ranges for usage
in identify, we use a trie as described in Section 3.2.1. It is created from the index
and saved alongside our index to allow for much shorter run times during identify.
Because the trie data structure cannot be saved directly, it is “linearized”. This
process saves the nodes in a list to efficiently reconstruct the trie during identify

and works as follows:

The leaves of our trie contain the ranges in the index in which every k -mer has the
same prefix of length six (see Section 3.2.1). A path through the trie represents that
prefix. Because the index is sorted, we can directly count the number of k -mers
that have the same prefix. The index is also contiguous so summing up those counts
gives the ranges when reconstructing the trie in identify. For now, the prefixes
together with their respective count are saved as tuples into an stxxl::vector.

Lastly, a ”frequency file” is constructed. This file contains the absolute number of k -
mers for every taxon and k in the built index. These numbers are used in identify

in Section 3.4.5 and multiple other modules.

With this, we have created an index and associated files from DBT and preprocessed
them for use in other modules.

44

fasta file

translate & convert
to k-mers

fetch
tax ID

taxonomy

...

......

& save into container

sort by
k-mers

...

...

merge

final index

previously
created
sorted
containers

link tax ID
and k-mer

Figure 3.3: Scheme of the algorithm building the index. Multiple temporary files
containing sorted pairs of k -mers and taxonomic IDs are created until no genomic
information is left in the fasta file(s). Afterwards, these files are merged concurrently
into the final index.

45

3.4.3 shrink

As mentioned in Section 3.4.2, the index is designed with no information loss in
mind. This introduces a certain redundancy because two or more identical k -mers
can have different taxonomic IDs but they still use the space of two or more whole
pairs. The reason for that is that the underlying data structure of an stxxl::vector

requires uniform space for every entry. In our case this means 12 or 20 bytes per
entry, depending on whether a 64-bit integer or a 128-bit integer is used. So even
if we could remove the redundant integer representing the k -mer and just save all
corresponding taxonomic IDs, the space would still be wasted. This leads to high
space requirements for large, comprehensive databases (e.g. Terrabytes). While we
argue, that kASA was not designed to use compact indices because space on sec-
ondary memory is more abundant than on primary memory, we decided to give the
user the possibility of shrinking the index. In the following paragraphs, we present
our current methods for achieving exactly that.

Lossless strategy
Our first approach was finding constrains that enabled us to make assumptions

which would shrink the index without information loss. In Section 3.2.1, we men-
tioned that prefixes saved into the trie are of length six. This approach uses the
fact, that when the maximum k is 12, these prefixes already contain the first half of
information of every k -mer from the index. If we assume that the lower k, named kL,
is always larger than six, we only need to look at the suffixes if the prefix was found
in the trie. Removing the prefix from every 12-mer in the index would therefore
make no difference in this case so we can omit it. Since the entries in the index are
pairs containing the k -mer and the taxonomic ID, the second component must be
restricted in size as well to fully halve the size of the index. To code the taxonomic
ID, a 32-bit integer is used by default because humanity is far from having identified
232 − 1 species yet. Coupling the content file to an index by using the line number
of every entry instead of the taxonomic ID and restricting the number of entries to
65535 taxa (the highest number that can be coded in a 16-bit integer) would enable
us to change the tuple size from 64+32 bits to 32+16 bits, effectively halving it.
Afterwards, the index is marked as shrunken, so the user can be reminded of these
constrains.

Deleting k-mers
We also found out that lossy concepts work well enough if the compromise of losing

information is justified by the space gained. The second approach is a removal of
k -mers based on a user-specified percentage, so that large genomes lose more k -mers
than small ones. To calculate the number of k -mers that are deleted per taxon, we
need the total number of every taxon first. Fortunately, we can use the frequency file
created while building the index as it contains the total number of k -mers of every
taxon and every k including the largest. Then two arrays, each the size of all taxa

46

in the index, are initialized. One will count upwards should a 12/25-mer of a taxon
be hit during the loop over every 12/25-mer of the index. The other contains step
sizes which are derived from the given percentage and the total number. Should the
count of the former array be the same as the value in the latter while going through
the index iteratively, the current 12/25-mer is removed and the counter is reset. All
others are written to a new index file which is still sorted but needs a new frequency
and trie file which are both generated afterwards. The code can be seen in Code 3.6.

Source Code 3.6: Deleting k -mers with a given percentage

//

// Throw out kMers for every ID where fN is the percentage of how many are

thrown out of the respective ID (e.g. fN = 60 -> throw out 60%,

iCount[ID] = 1200 -> 480 stay, 720 are thrown away)

↪→

↪→

template<class vecType, class elemType>

inline void deleteEveryNth(const unique_ptr<const vecType>& vLib,

unique_ptr<vecType>& vOut, const float& fN, const

unordered_map<uint32_t, uint32_t>& mContent) {

↪→

↪→

const double& dStepSize = 100. / fN;

vector<uint64_t> vSteps(mContent.size(), 1);

vector<double> vNextThrowOutIdx(mContent.size(), dStepSize);

auto itOut = vOut->begin();

uint64_t iCounter = 0, iCurrentPercentage = 0;

for (auto libIt = vLib->cbegin(); libIt != vLib->cend(); ++libIt) {

const auto& entry = *libIt;

const auto& idx = Utilities::checkIfInMap(mContent,

entry.second)->second;↪→

if (vSteps[idx] != vNextThrowOutIdx[idx]) {

*itOut = entry;

itOut++;

++iCounter;

}

else {

vNextThrowOutIdx[idx] += dStepSize;

}

++vSteps[idx];

}

vOut->resize(iCounter, true);

}

This approach can also be applied while building the index. For example: if a per-
centage of 50% is given, every second overlapping k -mer is ignored. Additionally,
setting the memory restriction parameter in this mode reduces the index size to its
value in GB by calculating the necessary percentage.

47

Deleting based on entropy
The third approach uses information theory to calculate the normalized metric en-
tropy [143] of every k -mer and removes those falling below a certain threshold. For
example, a k -mer like ”AAAAAABBBBBB” would be removed while ”ABBCAD-
DEAFAR” would be kept. While this approach does not shrink the index to a large
degree, it helps removing k -mers which do not contribute much to the identification
and thus saves space and time without much loss of accuracy. The reasoning is the
same as in any low-complexity filter for e.g. DNA sequences [144]: low-complexity
sequences can cause artificial hits. The process is as follows:

For every k -mer from the index, we calculate the number of occurrences of every
letter l from the alphabet A and divide these counts by the total size of the k -mer
resulting in the relative frequency rf for the letter l. The Shannon entropy [145] is
then determined by:

H(k-mer) := −
∑
l∈A

rf(l) · log2(rf(l))

The normalized metric entropy is then defined as:

HN(k-mer) :=
H(k-mer)

log(|A|)

Should this value be larger than a user given threshold between zero and one (0.5
for example) the k -mer will be kept or discarded if not.

3.4.4 update, delete, and merge

Building the index can take some time, especially if it uses a large database. If
some taxonomic IDs should change or data must be added to the index, building it
anew is not preferable. In order to update the index by either adding data to it or
removing deprecated taxa, we wrote the modules update and delete.

In update, the user can add data from one or more fasta files to the index. Should
the fasta file(s) contain taxa or accessions which are not part of the content file (see
Section 3.4.1) already, it must and will be updated as well. The process is similar to
the one in build (see Section 3.4.2): After converting the sequences to k -mers and
saving them into a sorted temporary file, the existing index and this temporary file
will be merged while either overwriting the existing index or creating a new version.
Afterwards, the frequency and the trie file will be updated as well. Therefore, the
update step can be seen as another iteration of the building algorithm. The last part
of merging two indices is also available via the module merge. This can be useful
if two indices were created for different studies but now need to be united and also
saved onto the drive for another study. With the availability of update, we achieve
Goal 2 for kASA in which we require the software to be able to add data to its index.

48

In case the user wants to delete entries by their taxonomic ID entirely from the
index, kASA can be given a list of such taxonomic IDs via delete. Internally, this
list is converted to a hash table for faster lookup. For every entry in the index, it
determines if either the entries’ taxonomic ID is inside this table meaning that the
entry can be discarded, or if the entry can be written to a new index file. All other
files belonging to the index (e.g. trie, frequency file, ...) are updated as well.

We initially developed methods for in-place updating as well but found out that
reading from an external file and writing into another is much faster than doing
both in the same file due to cache thrashing. Unfortunately, this forces the user
to provide enough space for the new index to be saved alongside the old one. It is
future work to find a way to avoid this behavior.

3.4.5 identify

This module calculates the links between DBT and MR as described in Section 2.1.
The result of this process is an r-identification output and/or a taxonomic profile.
It is therefore the main part of kASA and solves the problem of taxonomic profiling
with the ideas presented in Chapter 2.

Loading of preprocessed files
In the building step (see Section 3.4.2) we preprocessed data from DBT to allow

for a faster identification of data from MR. This part describes what information is
gathered from these preprocessed files and how they will be used.

The frequency file (see Section 3.4.2) gives the number of k -mers per k of all taxa
in the index. These values are saved into an array so that an index of this array
corresponds to its line number in the file. It also contains the total number of taxa
in the index which is needed for primary memory space allocation beforehand. The
content file (see Section 3.4.1) is also read and a hash table containing the links
between the taxonomic IDs and the corresponding line numbers is generated. The
names of the taxa are saved into an array as well. The line numbers in the hash table
correspond to the indices in this array as well as to those in the array created from
the frequency file. This simplifies output generation because an identified taxon can
then be referred to its line index and thus to its name and k -mer frequency. We
therefore put the identified taxa into further context, making the output files human
readable as well (reading “9606” is not as informative as reading ”Homo sapiens”
for example).

The index itself can be loaded either via the STXXL interface (see Section 3.1.2)
for secondary memory access or into primary memory via the std::vector data
structure (see Section 3.1.1), depending on the users choice. The latter speeds up
the identification process but reduces available primary memory space. As described
in Section 3.4.2, we also created a flattened trie. It is now expanded and loaded into
primary memory to speed up the identification process.

49

Reading the input
After loading all preprocessed files and data structures, the input files in the form of
fastq or fasta files (see Sections 3.3.2 and 3.3.1), gzipped or not (see Section 3.1.3),
can be processed to MR and matched against our index. For this to happen, the
DNA or protein sequences need to be converted into a format comparable to k -mers
in our index:

The DNA from M is translated to overlapping k -mers of length kH via a user given
translation alphabet (the standard translation table is used by default, see Table 2.4)
in one, three, or six frames. The latter means that the reverse complement is created
and translated as well. This may be necessary if the direction of the sampled data
is unknown. At this point we would like to advise the reader and user that using
six frames for build and three for identify could skew the identification as single
k -mers from the input could be identical to some of the reverse complement of the
genomes in the index.

The sampled k -mers are saved together with IDs belonging to their original read,
which in turn are created by incrementing a variable each time a new read is pro-
cessed. Duplicate k -mers can be removed if it is necessary for the experiment. After
converting and saving those pairs into an std::vector container, it is sorted in as-
cending order via std::sort (see Section 3.1.1). Let this sorted container be named
IR from now on.

All input files are read in chunks if the memory restriction does not allow the whole
file to be processed. If a read can only be processed partially due to these conditions,
we called it an ”overhanging read”. These overhanging reads are scored but the score
is not yet written to the output. Instead the rest of that read is processed in the
next iteration and the new score is added to the saved one. Only when a read has
been completely processed, its result is written to the output file.

Since access to the index via secondary memory is a bottleneck regarding time, we
avoid trying to match k -mers which are not even inside the index. This is done
with the help of the trie built prior to this step: We try to match the prefixes of our
newly constructed k -mers up to the smallest k (kL) provided. If that fails, the k -mers
cannot be inside the index since not even the prefixes are found. However, if a match
occurs we get the range of the index in which the suffixes lies (see Figures 3.1 and
3.4). This range is saved alongside the k -mer and the read ID. Should kL be larger
than or equal to the depth of the trie (which is currently six), the trie is traversed
completely and the matching process is continued within the suffixes. Should kL
be smaller than six, the traversal only gets to the kLth level and from there the
lexicographically smallest and largest prefixes are determined. See Section 3.2.1 and
in the Code 3.1 the two functions GetFirst() and GetLast() for further details
on this last case. We are traversing the trie after sorting because lexicographically
sorted accesses to our trie enables it to prefetch the next nodes and therefore save a
lot of time.

50

[lower, upper]

(ABCDEFG..., tax ID)

.

.

.

Trie

lower

upper

Index

A
B

C
C

D
E

F

(ABCDEFH..., tax ID)

.

.

.
(ABCDEAB..., tax ID)

(ABCEEFA..., tax ID)

0

|Index|

Figure 3.4: Ranges inside the index for which the k -mers have identical 6-mer pre-
fixes are gathered from the trie.

Identification algorithm
After fetching the ranges, the identification algorithm can run in parallel with as
many parts of IR as threads are available, should the user have multi-threading
enabled. The vector IR is split to take advantage of the caching effects. These
caching effects come into play when the areas where the suffixes are searched within
the index are close together. The reason for that is that sequential access to SSD
and RAM is faster than random access (a principle called ”locality of reference”,
see [132]). Therefore we ensure that ranges close to each other are in the same
part of the vector and thus computed by the same thread. More information re-
garding the parallelization can be seen further down below (see here: 3.4.5). The
algorithm applied to every k -mer of the input inside the vectors is inspired by the
set intersection algorithm from the STL (see Section 3.1.1). See Figures 3.5 and
3.6 for a graphical example and a flowchart of this process. The pseudocode is given
in Algorithm 3.1. The process is as follows:

Let i ∈ IR be a pair of k -mer and read ID from the input and YRan ⊆ XT be pairs
of k -mer and taxonomic ID inside the range Ran ⊆ [0, |XT |] from the index XT

determined by the trie for i. At the beginning, the first matching m ∈ YRan for
the smallest k (kL) inside the range is searched inside the range YRan via a binary
search. Should this fail, we try it again with the next element of IR. If such a
match m is found however, the sequential matching with pairs from YRan starts.
The k ∈ [kL, kH] is increased until a mismatch occurs or the highest given k (kH) is
reached. In the latter case, the index is searched for identical k -mers in YRan with
different taxonomic IDs than the matching one, since we included such duplicates
to increase sensitivity. Afterwards, the algorithm starts anew with the next entry
in IR.

Should a mismatch occur because the k -mer from i is larger than that of m for
the current k, YRan is searched sequentially for a k -mer that is either equal to or

51

larger than the current k -mer from i. If such an element is found, the process of
elongating the k -mer by increasing k resumes. In case the i is smaller than m for
a k, the process is interrupted and the next element of IR is chosen. We also keep
a copy of all currently considered k -mers. Should the next element of IR be equal
to the one before for any value of k, their read IDs will be saved as well without
going through the index again. Furthermore, should a new k -mer be different from
the saved copy for a k, the algorithm will consider i to be finished for this k because
no other k -mer will match the copy in the future due to the lexicographical order.
Therefore, the algorithm knows that it can score the links between the saved read
IDs and taxonomic IDs. This works as follows:

For every match of the k -mer in i and k, the read ID and matching taxonomic ID
are saved. We use the bit array set data structure (see Section 3.2.2) to save the
matching taxonomic IDs TM (i, k) and an std::vector for the matching read IDs
RM (i, k). The number of matches for every i ∈ IR and k is saved into an array of
integers with length k named counts(i, k). Keeping all this information until the
end is neither useful nor necessary. Instead we calculate a score and save it into
a matrix the size of T × R named ScoreTR (implemented as an array of pointers
pointing to arrays). This means that for every pair in (t, r) ∈ TM (k) × RM (k) the
score derived from the counts in counts(i, k) is added to the entry in ScoreTR[t][r].
It is initialized to zero and reset every time a new part of the input MR is put into
the identification algorithm described above. The identification output is generated
from this matrix.

ABCBBB

ADDDDD

ABCAAA

ADDDDD

Input Index

Match? ABCBBB

ADDDDD

ABCAAA

ADDDDD

>

ABCBBB

ADDDDD

ABCAAA

ADDDDD
Match?

ABCBBB

ADDDDD

ABCAAA

ADDDDD

>

get next
entry

get next
entry

Figure 3.5: Example of a matching during identification. Picture order is left top,
right top, right bottom, left bottom. First, a match for k = 1, 2, 3 occurs until for
k = 4 the entry in the index is smaller than that of the input. We therefore take
the next entry from the index and try to match anew. Here, only for k = 1 a match
can be found until the input k -mer is smaller than that of the index, so we take the
next one.

52

fasta/fastq
file convert &

sort

(k-mer, read ID)
.
.

(k-mer, tax ID)
...

look up in trie, fetch
range (lower, upper)
and...

read ID mapped to tax ID

=

> =
?

get next
k-mer

[lower, upper]

(k-mer, read ID, lower, upper)

(k-mer, read ID, ∞, 0)
.
.

...mark invalid
k-mers (∞,0)

get k-mers
from index

(k-mer, read ID)

get k-mers
from input

from
 low

er to upper

fo
r a

ll
fro

m
 in

pu
t

compare

>

get next
k-mer

...

Figure 3.6: Flowchart of the program flow inside identify. First, k -mers are con-
verted, then sorted and searched in the trie to narrow the search space inside the
index. The remaining ones are compared to those from the index. Either a match
was found or the next k -mer needs to be read from either the input or the index,
depending on the result of the comparison.

53

Scoring
Overall, we calculate six scores. The first is called the ”k -mer Score” which de-
scribes, how many k -mers a taxon shares with a read. Based on this, an error score
is computed which indicates how far away the k -mer Score for a read is from the
best possible one. The ”Relative Score” is calculated at the end of the identification
process for every read when it has been fully identified. These scores are part of
the r-identification output. The “unique relative frequency”, “non-unique relative
frequency” and “overall relative frequency” are part of the taxonomic profile. Now
follows a more detailed description of these scores:

The aforementioned score that is saved into ScoreTR is called the ”k -mer Score”
which is a weighted sum of the counts in counts(i, k) ∀ i ∈ IR. The weights wk

depend on k and are calculated by squaring k and normalizing these values of k2 to
(0, 1] because just using k rewards short matches too much. Instead, a polynomial
function was chosen because it ensures that longer matches gain a higher significance
than shorter ones. Should more than one taxon share the same k -mer with a read, a
penalty on the score is necessary to decrease the importance for those k -mers so we
divide the count of matches by the number of matched taxa for that k (TM (i, k)).
The resulting formula for the k -mer Score of the taxon t ∈ T and read r ∈ R is as
follows:

k-mer Scoret,r :=
∑
i∈IR

kH∑
k=kL

wk ·
counts(i, k)

|TM (i, k)|
(3.1)

Given a k -mer Score and a read r ∈ R consisting of DNA that was translated in
three frames, the error is calculated via:

Best scorer :=

kH∑
k=kL

(length(r)− k · 3 + 1) · wk (3.2)

Errort,r :=
Best score− k-mer Scoret,r

Best score
(3.3)

This normalizes the error to [0,1] which means that should the error be equal to
1, no k -mer hit that taxon for this read. A zero indicates that all sampled k -mers
were found in the index. The r-identification output only contains the error for the
highest scoring taxa for every read given by the ”Relative Score”. The motivation
behind this error score is that taxa matching reads with a low error score increase
confidence that this read truly belongs to its matching taxon. On the other hand,
it can be used to filter out specific reads. During decontamination, an index of
unwanted taxa is created and everything that matches ”good enough” regarding
this error (e.g., everything below 0.5) can be filtered out. Afterwards, two files can
be created, one containing the clean and the other one the filtered sequences. This
filtering is optional and can be enabled with a few parameters in kASA.

54

The ”Relative Score” takes k -mer Scores for every taxon and read and normalizes
them. This is necessary because of two reasons: 1. To make a fair comparison
between reads of different lengths and 2. smaller genomes generate fewer matches
than longer ones, making them more important. It is calculated by taking the k -mer
Score for every read and taxon and normalizing them to the length of the read r ∈ R
and the number of k -mers called the frequency of the taxon t ∈ T . The latter was
saved into memory prior to the identification (see ”Loading of preprocessed files”
above). The formula is inspired by the E-value of the BLAST algorithm [89] but in
our case, higher means better and can be used to stress matches of small genomes.

Relative Scoret,r :=
k-mer Scoret,r

1 + log2 (length(r) · frequency(t))
(3.4)

For the r-identification output and every read ID in it, taxa are sorted in decreasing
order by this relative score. If a read has multiple identified taxa, the leftmost one
has the highest value. We furthermore separate between “Top Hits” and “Further
Hits” to make interpretation of the per-read results easier. A taxon t is a “Top
hit” if k-mer score of t

highest k-mer score > 0.8. This value seemed to correspond best to what would
intuitively be considered “relevant” when reporting several results for one read. It
was therefore determined empirically.

To calculate the scores for the profile, kASA manages two counts per k and taxon:
The “unique” and the “non-unique” k -mer count. The unique count of the taxon
t ∈ T is increased during Algorithm 3.1 by the value in counts(i, k) if |TM (i, k)| = 1.
The non-unique count for each taxa in TM (i, k) divides the value in counts(i, k) by
the number of taxa in TM (i, k) beforehand in order to give each taxon their fair share.
If for example a k -mer found in five reads from the input matched to four different
taxa, each taxon would receive 5

4 to their non-unique count. In case TM (i, k) = 0,
nothing is added to both counts as counts(i, k) would be zero as well.

uniqueness(i, k, t, TM (i, k)) :=

{
counts(i, k), TM (i, k) = {t}
0, else

(3.5)

unique count(t, k) :=
∑
i∈IR

uniqueness(i, k, t, TM (i, k)) (3.6)

non-unique count(t, k) :=
∑
i∈IR

counts(i, k)

|TM (i, k)|
(3.7)

The unique count helps to differentiate between two related species. For example,
species A and B are related so their genomes are similar. This means the non-
unique counts will be similar as well. However, there will for example be k -mers
that match exclusively to A and not to B. Therefore, the unique count of species A
will be higher than that of B. Measuring the non-unique counts on the other hand
gives an approximation on the composition of known taxa. It also protects from
database redundancies like entries that are identical on amino acid level but have a

55

different taxonomic ID which would receive no unique count. These counts can also
be put in relation to either the total number of non-/unique counts or to all sampled
k -mers from IR. These scores are then called the unique relative frequency (hU),
the non-unique (h) relative frequency, and the (unique-) overall relative frequency
(hO), respectively. The latter is primarily used if, for example, 90% of the input was
unidentified but one taxon has a unique relative frequency of 1. Because the overall
relative frequency relates to all sampled k -mers from the input, the identified taxa
are put into relation to the whole dataset and this would be visible.

Let TM (i, k) be the set of matched taxa for i ∈ IR and k as above and T be the
set of all taxa. Let also frames ∈ Z be the number of frames in which the reads are
translated (one, three or six). Then the formulas are as follows:

hU (t, k) :=
unique count(t, k)∑
t̂∈T unique count(t̂, k)

(3.8)

h (t, k) :=
non-unique count(t, k)∑
t̂∈T non-unique count(t̂, k)

(3.9)

hO (t, k) :=
non-unique count(t, k)

|IR| − |R| · (k − kL) · frames
(3.10)

The denominator in hO calculates the total number of k -mers for that k sampled
from the input. Since IR only contains maximum length kH -mers, it is necessary to
subtract the number of smaller k -mers which were sampled from those long ones.

After all data from a file has been processed and scored, the results are written to
two output files. The r-identification output contains information which taxa scored
highest for each read, the profile forms a taxonomic profile showing the above de-
scribed counts and relative frequencies per taxon. The r-identification output can
be formatted as json, jsonl, Kraken-style [109], or tab separated with one line
per read. The profile is given as a csv-file for best compatibility with scripts and
spreadsheet software.

Parallelism
Since 2000, increasingly more CPUs started to include two or more cores (with

IBM® POWER4 being the first [146]). Writing software that uses only one core
is therefore not future-proof. We set out to parallelize every part of kASA that
can be parallelized. The only exceptions are reading from and writing into a file.
Although, when using multiple drives or an SSD for example, reading from a file
while writing to another can be run concurrently. Whenever parallel code is written,
the programmer has to keep in mind if there are parts that need synchronization
or “locking”. Locking must be used if only one thread should compute certain
parts of the code because a race condition could occur otherwise. A race condition
occurs when the correctness of the program depends on the order of execution of
the threads [147]. In our context, this happens if two threads access the same area

56

of memory. For example, the value of a variable is read, another value is added,
and the result is then written back to memory. In a race condition, one thread
might access the value before the other thread adds its value and so the new value
is overwritten. This distorts the true value in the end and could lead to a false
result and interpretation. “Locking” [148] can prevent this by instructing the other
thread to wait until the variable is freed again by the locking thread. The result is
therefore calculated sequentially and correctly. However, locking increases execution
time because it creates overhead and the waiting thread wastes time. Optimally, no
locking should occur in the first place due to ”embarrassingly parallel” [149] code
with little to no dependency between the tasks. There are some parts of code in kASA

which fall into that category, namely, the translation from DNA to amino acid-like
sequences, reading from the trie, counting the number of k -mers, and sorting. The
latter is parallelized in the C++17 standard in the STL (see Section 3.1.1), the other
parts use WorkerThread (see Section 3.3). Translation (as seen in Section 2.2.2)
can be done in parallel if chunks of DNA are saved into a std::vector container
first and then translated in parallel with another container for the resulting k -mers
(what we defined as IR earlier). Because the number of k -mers can be calculated
directly from the length of the DNA, we can set specific ranges for every task in the
result container. More generally, splitting a container like std::vector into equal
parts that are then processed in parallel (using the class WorkerThread) is a typical
method when each entry of the container is independent of all others. It is therefore
also used for the other mentioned cases above.

The parallelization of identify however requires a bit more synchronization. Be-
cause both the index XT and the container holding the input IR are sorted in ascend-
ing order of the k -mers, the attached read IDs and taxonomic IDs are scrambled.
Splitting the input container in as many parts as threads are available is therefore
possible, but every thread would need its own matrix ScoreTR mentioned earlier.
Because this matrix is of size |T | × |R| and uses float as data type (the k -mer score
in Equation 3.1 is a floating point value), this is not viable. A common data set of a
million reads and an index with about a thousand taxa would use more than 3 GB
of memory for each thread. Assuming we have just two threads that would mean
more than 6 GB just for the matrix. Of course many entries will be zero but note,
that a dynamically growing matrix is much less efficient and could in the worst case
use more memory than a pre-allocated array due to the operating system allocating
incoherently more than necessary. We thus conclude that using just one matrix or
rather two-dimensional array containing matches between read ID and taxonomic
ID must suffice. To avoid a race condition, locking becomes necessary because our
score could be influenced should two or more threads access the same entry in the
array. After some experiments however, we noticed that locking introduced a large
overhead and decreased performance by a large degree, making parallelization use-
less. Out of curiosity, we disabled locking entirely for this part and expected our
results to change but they did not. This motivated the following observation:

57

Let |R| be the number of reads, |T | be the number of taxonomic IDs, JT ⊂ N be the
index set generated by enumerating the elements in T , and pr = (pr,1 ... pr,|T |), 1 ≤
r ≤ |R| be the probability vector of taxa for each read r. This means that the
probability, that a taxon t ∈ T with the position jt ∈ JT is present in read r is
pr,jt . The values inside the probability vector are usually unknown in metagenomics
although for the following arguments, this does not bother us. We further assume
that every read is statistically independent from all other reads. This means that
pr and pr′ do not depend on one another for all r, r′ ∈ R, r 6= r′. Therefore, the
probability that an entry of the matrix ScoreTR is hit can be calculated as follows:

P (Hit between taxon t and read r) = P (Hittr) =
pr,jt
|R|

, jt ∈ JT (3.11)

Since access to such an entry by two or more threads simultaneously is a binary
event (happening or not), it is modeled as a Bernoulli trial. Let Xtr be therefore
the event that for N ≥ 2 threads at least M ≤ N threads access the same read ID
r and taxonomic ID t in ScoreTR. The probability of that happening is:

P (Xtr) =
N∑

M=2

(
N

M

)
(P (Hittr))

M (1− P (Hittr))
N−M (3.12)

Which results in a higher probability, the more threads we start and in a lower
probability the more reads and/or taxa we need to consider. Finally, the probability
across all taxa and reads can be calculated by:

P (Race condition happens) = 1−
∏

(t,r)∈T×R

(1− P (Xtr)) (3.13)

Just taking an unrealistically small example of three taxa, 100 reads, eight threads,
and pr = (0.5 0.3 0.2) for every read results in P (Race condition happens) ≈ 0.1.
As this is already quite small, we conclude that locking would unnecessarily impact
performance and is thus omitted. Even if this race condition should occur, the worst
case is a reduction of the k -mer score (see Equation 3.1) for a pair of read ID and

taxonomic ID. This reduction can at most be wk · counts(i,k)
|TM (i,k)| for one k -mer from IR

if it happens once.

3.5 Additional features and modules

3.5.1 identify multiple

We have also developed a version of identify that makes more efficient use of the
available hardware (for example on an HPCC) if the user wants to process multiple
files at the same time. Since reading and writing a file can only be performed by a
single thread, there are limits to the acceleration of our parallel algorithm by more
processors. We therefore use the given resources to process multiple input files in

58

parallel instead of sequentially as this uses given cores much more efficiently. This
mode is also used for most of our experiments, since they often consist of multiple
input files. The informed reader may recognize this to be a typical job scheduling
problem [138] for which we approximate a solution.

It starts by sorting the files by size so that larger files get more cores. If more cores
than files are available, all files will be processed in parallel asynchronously while
larger files get more cores. If more files than cores are available, then as many files
as possible are processed, each using only one core. We use the WorkerQueue class
(see Section 3.2.3) to start calculations asynchronously (see next chapter for more
details). The given RAM is divided by the number of concurrently running processes
so that the memory barrier is not exceeded. Furthermore, loading the index and
expanding the trie is done once so that all subsequent calls to identify use these
data structures instead of creating them anew every time.

3.5.2 Retrieving lost or damaged Files

Currently, kASA needs certain files in order to be useful (see Section 3.4.5). These
files are the index in a binary file format, the info file containing its size and addi-
tional information about the type of index (see Section 3.4.2), the flattened trie in
binary file format and its corresponding info file (see Section 3.2.1), the frequency
file containing all k -mer counts for every taxon (see Section 3.4.2), and lastly the
content file (see Section 3.4.1). Should any of these files go missing or are corrupted
for unknown reasons, we developed ways to compensate for that by rebuilding them.

• The trie file can be generated again with a call to trie if the index was not
halved (see Section 3.4.3). This will use the existing index to create the trie
again together with its info file. The algorithm is the same as in build (see
Section 3.4.2).

• Should the frequency file be affected, it can be created with getFrequency

from the index.

• The info file for an index can simply be retrieved by creating a .txt file, dividing
the binary size of the index by 20, 12 or 6 Bytes and writing this number to
the first line. Depending on the choice of the maximum k of 25 or 12, or if
it was halved by the respective shrink mode, “128” or “3” has to be written
on the second line, respectively. This sounds like it could be automated but
unfortunately, STXXL files contain no metadata so it cannot be bootstrapped
from the binary file alone.

• The index file itself can only be retrieved by rebuilding it. The user can give the
pre-computed content file to the building routine in order to skip the creation
step. Afterwards, the k -mers need to be rebuild from the database and the
other additional files are overwritten. If the content file was affected, it has to
be rebuild from scratch as well.

59

3.5.3 Measuring the redundancy

Comprehensive databases suffer the disadvantage of species having many k -mers in
common. We therefore introduced multiple scoring strategies for our profiling step.
To help the user interpreting the results, we added a mode to check the redundancy
of the index. If over 99% of the k -mers have a unique taxonomic ID, the unique
relative frequency should give a very good profiling result. In contrast: if almost all
k -mers belong to two or more taxa, the non-unique relative frequency gives a better
impression of the composition of the data.

The redundancy is calculated by creating a histogram with the number of taxa
per k -mer as counts. Starting from one, the numbers of k -mers are summed up
per number of taxa. When this sum reaches 99% of all k -mers, almost all k -mers
have at most this number of taxa. If, for example, 50% of all k -mers have unique
taxonomic IDs and 49% have two then two will be returned as output. Afterwards,
this number and an interpretation is given to the user so that the person may decide
how important the non-unique relative frequency might be. See Code 3.7 for the
implementation.

Source Code 3.7: Calculating the redundancy histogram

//

// count occurrence of taxIDs per kMer and locate 99% of kMers cutoff. Most

kMers have only one taxon.↪→

template<class vecType, class intType>

inline uint32_t histogram(const unique_ptr<const vecType>& vLib, const

uint32_t& iNumOfTaxIDs) {↪→

intType iSeenkMer = (vLib->at(0)).first;

vector<uint32_t> taxIDs(iNumOfTaxIDs + 1);

uint32_t iCounter = 0;

uint64_t iUniquekMerCounter = 0;

for (const auto& entry : *vLib) {

const auto& kMer = entry.first;

if (kMer == iSeenkMer) {

iCounter++;

}

else {

taxIDs[iCounter]++;

iCounter = 1;

iSeenkMer = kMer;

++iUniquekMerCounter;

}

}

taxIDs[iCounter]++;

double percentage = 0.0;

for (uint32_t i = 1; i < iNumOfTaxIDs; ++i) {

60

if (percentage >= 0.99) {

return i - 1;

}

percentage += static_cast<double>(taxIDs[i]) / iUniquekMerCounter;

}

return 4; // Some magic number that signals something went wrong

}

Summary
In this chapter we introduced the data structures and modules of which kASA con-
sists. First, the more technical side was presented in form of library functions,
customized data structures and our parallelization scheme optimizing program exe-
cution time. It was shown that kASA has minimal dependencies when installing, thus
requiring almost no further work from the user, which broadens the potential user
base. The implementation of our trie and the bit array set offers significant reduc-
tion of execution time and the Worker-Thread/Queue classes enable parallelization
of many parts of the code. Lastly, we saw how locking would reduce performance
without being necessary and therefore was omitted making kASA almost completely
parallelizable.

Second, we presented the modules which serve as the core functionality for the
software and contain all ideas which we had during development. We saw that in
order for identify to work we need build and to offer versatility, additional modules
like shrink, merge, and update were necessary. This gives the user and reader the
power as well as context to use kASA in various ways mentioned. Additionally, we
presented procedures and algorithms as well as figures explaining how our software
works.

61

Algorithm 3.1: Identify

input : The index and the sorted input with converted k -mers and ranges
output: Scores and counts

// Part One

list of matched read IDs per k: RM (i, k) ← [];
list of matched taxonomic IDs per k: TM (i, k) ← [];
list of last known k -mer per k: known k ← [];

for every entry with range in input do
reset all lists;
k-mers [lower,higher] = gather all k -mers with the same range;

for all k -mers in k-mers[lower,higher] do

i← current k-mer;
if range invalid then

continue;
currKMerShifted ← i with lowest value for k ;
start ← lower ;
end ← higher ;
do once

if currKMerShifted is in range then
use binary search to find the start ;

else
continue;

if i has been seen before then
for all k ’s do

add read ID to RM (i, k) if ik matches entry in knownk;
continue;

else
seen before ← i;

// Part Two

// see below

// Part Three

// see below
return Scores and counts

62

// Part One: see above

for every entry with range in input do
for all k -mers in k-mers[lower,higher] do

// Part Two

for x in index from start to end do
for all k ’s from lowest to highest do

ik ← i shortened for this k ;
xk ← x shortened for this k ;
if ik < xk then

for all remaining k ’s from k to highest do
add read ID to RM (i, k) if ik matches entry in knownk but
avoid duplicates;

break out of the x loop and get next i ;

else
if ik == xk then

if ik matches entry in knownk then
add taxonomic ID from x to TM (i, k) and read ID to
RM (i, k) but avoid duplicates;

else
// all possible matches for old ik found ->

save

for all entries in TM (i, k) do
count unique or non-unique match;
for all entries in RM (i, k) do

save match of read ID and taxonomic ID ;
reset RM (i, k) and add the current read ID ;
reset TM (i, k) and add the current tax ID ;
knownk ← ik;

else
// ik > xk
iterate x further through index and add taxonomic IDs to
TM (i, k) if xk matches entry in knownk;

stop if no full match occurs;
break out of k loop;

if highest k was reached then get next x ;

// Part Three: see below

63

for every entry with range in input do
for all k -mers in k-mers[lower,higher] do

// Part One and two

// <see above>

// Part Three

// look for any remaining x in case there are no more i

left

for any x left in range do
for k from lowest to highest do

if xk matches entry in knownk then
add taxonomic ID to TM (i, k);

else
break;

if at least one k matched then
get next x ;

else
break;

// all possible matches for old ik found -> save

for all entries in TM (i, k) do
if size of TM (i, k) == 1 then

save unique match;
else

save non-unique match;
for all entries in RM (i, k) do

save match of read ID and taxonomic ID ;
return Scores and counts

64

Chapter 4

Experimental design and results

The premise of this chapter is to apply kASA to data and compare the results with
those of relevant software introduced in Section 2.1. We present results from multiple
benchmarks in order to evaluate kASA in a reasonable way. First, we use data
specifically designed for taxonomic profiling from other benchmarks to see if kASA

is able to perform at least as good as established programs in Section 4.2. Then in
Section 4.3 we are going to show our own benchmarks with synthetic data to prove
that our statement that our software is indeed more robust than established methods,
holds. Afterwards, real data experiments in Section 4.4 are used in comparison with
other software to see if they agree on the composition of known genomes. This
includes tests with third-generation sequencing techniques as well. We therefore
check theoretic results empirically or present valuable conclusions made during our
experiments.

4.1 Preliminaries

To better understand the experiments further down, we would like to explain the
framework used for our tests and some measurement formulas used.

4.1.1 Snakemake

The Python programming language together with snakemake [150] offers the possi-
bility to automatically test our and other software on the same data without needing
to fine-tune or write scripts for every software. With snakemake we only need to
set so called rules which describe in which order calls shall be made. It supports
multi-threading and concurrent execution of rules which do not depend on one an-
other. We used an HPCC environment for most of our tests, so this proved to be the
most sophisticated and maintainable method. Furthermore, it allows recreation of
our experiments on other computers by downloading them from our GitHub pages
and rerunning them with just minor changes to a configuration file [11, 12].

65

4.1.2 Quality measurements

This section contains the frequently used measurements for assessing the accuracy
of our and other software. In most benchmarks, the accuracy of the r-identification
is evaluated. For the synthetic robustness test in Section 4.3 both the accuracy per
read and per taxon is evaluated. The former is done by checking whether the origi-
nal taxon of a read was identified correctly by their taxonomic ID. If it matched, it
was marked as a correctly identified and assigned read, otherwise only as assigned
(decreasing precision). Only the best hits were considered. If not specified other-
wise, the json array for every read containing the “Top hits” was used for kASA (see
Section 3.4.5). If two or more taxonomic IDs matched the read with an equal score,
it was additionally considered ambiguous but correctly assigned if at least one taxon
was correct. This ambiguity is printed as additional information but does not in-
fluence the evaluation. If the LCA-based algorithms (see Section 2.1) gave a higher
taxonomic rank as result (while containing the correct ID), the assignment was also
considered ambiguous but correctly assigned. If the taxonomic path given by back-
tracking the LCA-path did not contain the correct ID, it was considered incorrectly
assigned. We added genomic reads from species not inside the database/indices to
test the ability of every software to “ignore” reads. This is measured with the speci-
ficity via checking if a nonassignable read was correctly not assigned. The formulas
were derived from the definition in [109, 151] and are as follows:

Sensitivity :=
|Correctly assigned reads|

|Reads|
(4.1)

Precision :=
|Correctly assigned reads|

|Assigned reads|
(4.2)

F1 score := 2 · Sensitivity · Precision

Sensitivity + Precision
(4.3)

Specificity :=
|Correctly unassigned reads|
|Nonassignable reads|

(4.4)

As these measures do not penalize the assignment of one read to multiple (some-
times wrong) taxa, we added the perspective of each taxon in our benchmarks with
synthetic data. This can be done via a binary classification: The “original label” is
the true taxonomic ID of the taxon the read originates from, the “reported label” is
the taxonomic ID the software returns for that read.

• True positives (TP) - The original label and the reported label are identical.

• True negatives (TN) - The original label came from a taxon not inside the
index and, correctly, no label was reported.

• False positives (FP) - The original label and the reported label are not identical
or the original label came from a taxon not inside the index but a label was
reported.

66

• False negatives (FN) - The original label came from a taxon inside the index,
but no label was reported.

With this, we can calculate the four values for every expected taxon and get the
Matthews correlation coefficient (MCC) [152]:

MCC :=
(TP ∗ TN − FP ∗ FN)√

(TP + FP) ∗ (TP + FN) ∗ (TN + FP) ∗ (TN + FN)
(4.5)

We then averaged these MCCs for every file and got a measure of how specific
software reports taxa per read.

We would also like to mention three measures used to calculate how close the re-
ported distribution of taxa in a profile is to the true distribution. The log-odd
score [91] for a taxon uses the relative frequencies introduced in Equation 3.8 is
calculated by:

log2

(
relative frequencyobserved

relative frequencytrue

)
(4.6)

These values are summed for all taxa. The closer this sum is to zero, the better.
It also offers the possibility of comparing profiles from different programs with each
other.

The other two measures are the Pearson correlation coefficient (PCC) [153] and
Spearman’s rank correlation coefficient (SRCC) [154]. Both measure the linear cor-
relation between two sets of data X and Y . For the PCC the values are taken
directly, for the SRCC, the values of each set are sorted and then given a ranking rg.
With Cov being the Covariance and sd being the standard deviation, the formulas
are as follows:

PCCX,Y :=
Cov(X,Y)

sd(X)sd(Y)
(4.7)

SRCCX,Y := PCCrg(X),rg(Y) (4.8)

The closer both values are to one, the higher the correlation. Zero means no corre-
lation and minus one shows an anti-correlation.

With this we can perform quality measures of our benchmarks.

4.2 Existing benchmark studies

Because taxonomic profiling is a common problem and no software has every feature
desired, more are developed and tested in benchmarks. The problem is that these
benchmarks are static as in they take a certain version of a software and evaluate
data developed only for this test. The latter can be used to benchmark other software
published later, but to fairly evaluate the other software, one would have to redo the
study all over. Because software usually continues in development, this study is then

67

no longer as meaningful. There are efforts to unify this to avoid redundant tests
whenever a new software is published [155]. However, researchers continue to rely
on such static studies to decide on a software they use for their research (e.g.: [156]
(in Section ”Rapid and Moderate Comprehensive Sequencing Analysis Followed by
Exhaustive Remnants Analysis”), [157] (in Section ”Metagenomic sequence analy-
sis”)). We therefore would like to present two often cited benchmark studies and
show how kASA performs with their data and measurements.

4.2.1 McIntyre et. al.

1

0.8

0.6

0.4

0.2

Figure 4.1: Median of the F1 scores from 10 data sets for all software evaluated in the
study of McIntyre et. al. plus kASA (highlighted). The two results for kASA come from
either taking only the best scoring taxon from the “Top Hits” per read (kASA First)
or all taxa from the “Top Hits” (kASA All) (as described in Section 3.4.5). The latter
scores highest.

The study of McIntyre et. al. [7] was primarily designed to test how false positives
during a metagenomic study can be reduced. This included running combinations

68

of software on the same data to see if it would increase confidence (and thus reduce
false positives) in the result to, e.g., make clinical decisions based on the compo-
sition of the sample. Multiple data sets were designed as a ground truth for the
evaluation. Of the 35 simulated data sets from this study we selected 10: two files
with high complexity and even distribution of species (named “HC” in the study)
and eight files with low complexity and log-normal distribution of species (named
“LC”). These files had therefore known abundances for every species contained,
so we were able to check if that distribution was detected correctly by kASA. This
served as an additional sanity check which is not presented here. The used quality
measures of sensitivity (Equation 4.1), precision (Equation 4.2) and the resulting
F1 score (Equation 4.3) are the same as described in Section 4.1.2. We chose the
taxonomic level “species” because it strikes a balance between index size (the lower
the taxonomic level, the larger the index) and complexity. The index was created
in accordance with the default databases of the other programs. The publication
offered results for subspecies, species and genus level so we did not have to rerun
other software and could just add results for kASA to the table. Figure 4.1 shows
the median of the F1 scores from the results for the selected data sets. For kASA, we
had to choose two different methods for the evaluation. The first is similar to how
software that does not support multiple assignments per read operates and takes
only the taxon with the highest relative score (see Equation 3.4) for every read
(thus named kASA First). The second takes all taxa with almost the same score as
the best one into consideration (the “Top hits”) which is equivalent to printing out
multiple assignments per read (named kASA All).

Using only the first best taxon for every read results in a sufficiently high F1 score
in comparison to other software. However, the real strength of kASA is the ability to
print out multiple assignments per read with an equal or slightly lower score. This
leaves the user with more information to work with and we see that it results in the
best F1 score of all software tested.

69

4.2.2 Lindgreen et. al.

The benchmark study designed by Lindgreen et. al. [151] contains, among other
evaluations, a benchmark of the profiling capabilities of multiple software. Together
with their design of the data sets which are modeled after real data, we concluded
that it would give kASA the opportunity to be evaluated before doing experiments
with real data. The test files are composed of two different simulated bacterial
communities and for each community, three replicates were created which sums up
to six data sets. These replicates have the same relative abundance for each phyla
but the genomes and the reads from those genomes were chosen randomly. The
targeted taxonomic levels are genus and phylum to make the test more robust against
differences in the standard databases of the programs (e.g. different names for the
same species). We adopted this strategy for our real data test in Section 4.4.2 as well.
The reference database for kASA and CLARK was custom made due to deprecation
of genomes since publication date and consisted of all known bacteria, viruses, and
archaea (2019-07-22). Eukaryotes were neglected because not all software in the
benchmark had them in their standard databases. We then calculated the profile
for all six data sets with kASA and CLARK. CLARK was used here as an indicator if
our method is valid. We expect the scores to be worse due to the deprecation of some
species used then. However, should the values of CLARK be almost equal to those
reported in the publication we know that our custom database did not introduce a
bias. As done in the benchmark, we used the sum of the absolute log-odd scores
(Equation 4.6) and the PCC (Equation 4.7) as a measure of similarity between the
true and observed values for the taxa on the mentioned taxonomic levels. For kASA,
we calculated the abundance of a taxon by taking the r-identification output and
counting the number of reads that had the respective taxon as best scoring hit. If
multiple high scoring taxa were reported for a read, each reported taxon got 1

|taxa|
added to their count. This count is then divided by the total number of reads
resulting in a read-based relative frequency for our evaluation. This was done in
order to be consistent with the method used for other software in the publication. We
also calculated the profile and looked at the relative frequencies calculated directly
from the k -mers to see if they would also be viable.

Figure 4.2 shows that kASA is the best software regarding summed up log-odd scores
and among the best for the PCC. The values for CLARK are almost equivalent
to the ones reported in the publication which shows that our reference is valid.
The (non-unique) relative frequency calculated from the r-identification output and
the profile generated by kASA are quite similar with a PCC of 0.96 and an SRCC
(Equation 4.8) of 0.98. We therefore conclude that kASA should be able to accurately
profile real world-like data sets.

70

Figure 4.2: Top: Mean of the summed up log-odd scores across all six data sets,
lower is better. Bottom: Mean of the PCC across all six data sets, higher is better.
CLARK check stands for the values we got after rerunning it with our reference.
Results for kASA are highlighted.

71

4.3 Benchmarks with synthetic data

In order to evaluate if kASA can really identify the most likely taxon for a read as
well as the composition of genomic data, we need to have a ground truth. This can
be done by using reference genomes for which we know the taxonomic ID as input.
Therefore the following two benchmarks use a set of genomes as a database from
which the index as well as the input data is generated. This way we can assign the
correct identifier to each read and afterwards check if it was correctly identified.

The first benchmark with synthetic data (named this way because data is synthesized
from existing genomes) in Section 4.3.1 is not only checking the correctness of every
read but also the robustness against mutations. This aims to empirically validate our
theoretic ideas of a dynamic k (see Section 2.2.1) and an amino-acid like encoding
(see Section 2.2.2). The second benchmark in Section 4.3.2 is derived from the
CAMI Challenge [8] which tests software similar to kASA with various methods based
on the taxonomic profile. Both benchmarks work within a snakemake framework
and are easily verifiable by other researchers. They can be found in our GitHub
repositories [11, 12] and a flowchart can be seen in Figure 4.3. Both benchmarks
are also evaluated regarding speed and memory consumption in Section 4.3.3. Most
of the software presented in Section 2.1 is used as comparison for kASA. Alignment
based software (see Section 2.1.1) is not included as their execution times are too
high to be comparable to the others. A benchmark regarding kASA and Kaiju [102]
is given separately in Section 5.4 because Kaiju accepts only protein sequences as
reference and the others do not.

create folders

download genomes
and fastq files download tax data

generate and mutate
fastqs

build index

identifyevaluate

download genomes

CAMI Robustness

Figure 4.3: Workflow of both snakemake benchmarks. The steps ’build’, ’identify’
and ’evaluate’ (yellow) are carried out for every tested software. The other steps
(blue) are called only once.

72

4.3.1 Robustness

As mentioned, this benchmark uses a set of known genomes as database. Currently,
we use the largest chromosome (or whole genome in case of prokaryotes) of seven
model organisms and a negative control of three species to check the specificity. The
names of the taxa are as follows (NEG marks the taxa used for negative controls):

• Homo Sapiens chr1

• Mus musculus chr1

• Arabidopsis Thaliana chr1

• Drosophila melanogaster chr3R

• Saccharomyces cerevisiae chrIV

• Escherichia Coli

• Sulfolobus solfataricus

• NEG: Phaeodactylum tricornutum chr1

• NEG: Acinetobacter baumanii

• NEG: Tobacco mosaic virus

We would like to point out that this list can be expanded at will, we just chose a
minimal working example to keep the necessary computational requirements low.
The genomic source was downloaded from the NCBI [62, 5] and then converted
to indices until all data was available for every program tested. Input data was
generated by randomly sampling reads of length 100 bases from the genomes and
mutating them with single point mutations, insertions, and deletions until a given
number of mutations per read is reached (ranging from 0 to 20). These values are
much higher than found in nature [158] but used in this context to test the limits
of our approach. The generated fastq files (see Section 3.3.2) were then tested
for every software with the measurements given in Section 4.1.2. The index for
kASA was built using the default three translation frames, all other indices were
build as described in the software’s respective documentation. In addition to the
default three frames used for the input, we test kASA with one frame as well (named
“kASA one”). We suspect that one frame for the input may be sufficient since the
genomic data was already saved in three frames inside the index. Note that using
six frames for the index would be unnecessary since no reverse complement reads
were generated.

73

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Mutation Percentage

0.0

0.2

0.4

0.6

0.8

1.0
F1

 S
co

re

MetaCache
Kraken2
Ganon
Clark
Kraken
Centrifuge
kASA_one
kASA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Mutation Percentage

0.0

0.2

0.4

0.6

0.8

1.0

M
CC

MetaCache
Kraken2
Ganon
Clark
Kraken
Centrifuge
kASA_one
kASA

Figure 4.4: F1 score (top, see Equation 4.3) and MCC (bottom, see Equation 4.5) of
tested software for our simulated data. Because all software was used with default
settings, kASA is shown with default settings of k ∈ [7, 12] and three/one frame(s)
as well.

74

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Mutation Percentage

0.0

0.2

0.4

0.6

0.8

1.0
Se

ns
iti

vi
ty

MetaCache
Kraken2
Ganon
Clark
Kraken
Centrifuge
kASA_one
kASA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Mutation Percentage

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

MetaCache
Kraken2
Ganon
Clark
Kraken
Centrifuge
kASA_one
kASA

Figure 4.5: Sensitivity (top, see Equation 4.1) and precision (bottom, see Equa-
tion 4.2) of tested software for the synthetic data with different mutation percent-
ages.

75

We see in Figures 4.4 and 4.5 that the sensitivity of kASA stays very high even if
seven percent of every read differs from its reference. From there on, the robustness
is visibly higher than that of all other tested software. The values for Centrifuge drop
for two reasons: First, because the required minimum exact matching seed length of
16 bases is achieved in fewer and fewer cases. Second, an internal threshold is applied
so that low scoring matches are ignored. The latter lets the score drop to zero at
16%. We suspect that this was implemented to increase specificity. The precision
of kASA is comparable to those of the best software. Ganon and MetaCache lose
precision when the number of mutations increases (due to hash table collisions or
misses). We clearly see that our methods together increase the robustness against
sequence errors without sacrificing precision. Even if only one translation frame is
used, the sensitivity of kASA is still higher than that of other software. However,
the MCC is visibly lower than in the three frames mode, which means that fewer
correct taxa are reported.

Because kASA detects every similarity, we also need to look at the specificity (see
Equation 4.4) to rule out that kASA would misidentify an unknown taxon with a
high score. Figure 4.6 shows that the specificity for both translation frame settings
is very low because even very low scoring hits are reported. Applying a low threshold
on the relative score (see Section 3.4.5) resolves this as can be seen in Figure 4.7.
This threshold has nothing to do with the classification in “Top Hits” and “Further
Hits” mentioned in Section 3.4.5. It is rather used as a cutoff to separate identified
reads with a high relative score (≥ 1) from those with a low relative score (< 1).
We applied various thresholds to see how sensitivity and specificity are influenced
by different mutation percentages (5 and 10 were chosen as representatives). For
zero mutations, a threshold up to 1.0 increased specificity to almost 1 but did not
influence sensitivity at all. For the two mutation percentages, there is a direct link
between increasing specificity and decreasing sensitivity. This effect gets stronger
the higher the mutation percentage per read is. This is expected because scores get
lower overall if the number of matches decreases. We therefore recommend to decide
on a threshold on a case-by-case basis if needed and are confident that users are able
to interpret those results given that they know the amount of noise in their data.

76

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Mutation Percentage

0.0

0.2

0.4

0.6

0.8

1.0
Sp

ec
ifi

cit
y

MetaCache
Kraken2
Ganon
Kraken
Clark
Centrifuge
kASA_one
kASA

Figure 4.6: Specificity for all tested software, same color and settings as in Figure 4.4.
The line at the top results from the graphs of multiple programs lying on top of each
other. Only kASA and kASA one have a lower specificity than all others.

0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty

0.40.450.50.550.60.651.0

0.001
0.01

0.03
0.05

0.07
0.09

0.2
0.3
0.4

0.010.030.050.070.09
0.2

0.3
0.4

0
5
10

Figure 4.7: Receiver operating characteristic curve (ROC curve) [159] for kASA with
zero, five and ten percent mutations and various thresholds.

77

We were also interested in the influence of the range of k ’s on the robustness. The
shorter the k is, the more similarities can be found, but the longer kASA takes to
compute them all. Using the largest k of 25 as an upper bound, we calculated
F1 scores for all lower k ’s, the result can be seen in Figure 4.8. We see that for
large k the F1 score drops considerably due to low sensitivity and ultimately due
to no identification at all. For small k, the precision is impacted by the effect
mentioned before that all scores get lower and thus many different taxa overshadow
the true ones. However, there seems to be a subset k ∈ [5, 6] where sensitivity
and precision are optimal (see Figure 4.9). Unfortunately, finding these optimal
lower k ’s is generally only possible with a ground truth and depends on the data
and sequencing length. To show how kASA performs without such knowledge, we
chose the default lower k of seven for our benchmark even if it may put us at a
disadvantage.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Mutation Percentage

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

kASA_25
kASA_24
kASA_23
kASA_22
kASA_21
kASA_20
kASA_19
kASA_18
kASA_17
kASA_16
kASA_15
kASA_14
kASA_13
kASA_12
kASA_11
kASA_10
kASA_9
kASA_8
kASA_7
kASA_6
kASA_5
kASA_4
kASA_3
kASA_2
kASA_1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Mutation Percentage

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty

kASA_25
kASA_24
kASA_23
kASA_22
kASA_21
kASA_20
kASA_19
kASA_18
kASA_17
kASA_16
kASA_15
kASA_14
kASA_13
kASA_12
kASA_11
kASA_10
kASA_9
kASA_8
kASA_7
kASA_6
kASA_5
kASA_4
kASA_3
kASA_2
kASA_1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Mutation Percentage

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

kASA_25
kASA_24
kASA_23
kASA_22
kASA_21
kASA_20
kASA_19
kASA_18
kASA_17
kASA_16
kASA_15
kASA_14
kASA_13
kASA_12
kASA_11
kASA_10
kASA_9
kASA_8
kASA_7
kASA_6
kASA_5
kASA_4
kASA_3
kASA_2
kASA_1

Figure 4.8: F1 score (top), sensitivity (bottom left) and precision (bottom right) of
kASA for all lower k ’s with a higher k of 25.

78

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425
Lower k

0.0

0.2

0.4

0.6

0.8

1.0
F1

 S
co

re

0%
1%
2%
3%
4%
5%
6%
7%
8%
9%
10%
11%
12%
13%
14%
15%
16%
17%
18%
19%
20%

Figure 4.9: Inverted plot showing F1 score curves for all mutation percentages from
Figure 4.8 of all lower k ’s.

The last thing to check is whether the amino acid-like encoding by itself could
improve robustness already since the degeneration of the genetic code proved to be
a successful evolutionary advantage up until now. To isolate this factor, we need
to fix the upper and lower k to the same value. Other k -mer based software like
CLARK or Kraken (see Section 2.1.4) use a fixed k of 21 and 31, respectively. They
both use DNA instead of an amino acid-like encoding thus providing a base for
comparison. To compare kASA with these programs we fixed k to 10, simulating a k
of 30 on the DNA level. To fully utilize the amino acid-like encoding, we created the
index with six frames and translated all input reads with six frames as well. The
test data was modified to include reads in reverse complement to the genome.

Figure 4.10 shows how kASA performs in comparison to CLARK and Kraken. We
see that even though the graphs are close together, there is a noticeable difference
with kASA being better when the number of mutations increases. This confirms
our hypothesis that the amino acid-like encoding has an inherent ability to handle
mutations but at the same time shows why the dynamic k is necessary as well.

We also tested how the number of frames affects the robustness. After creating
three indices, each with a different number of frames (one, three or six), identify
translated the reads with one, three or six frames as well. Figure 4.11 shows how the

79

robustness is affected by the choice of frames for index and reads. As expected, the
use of only one frame for the index and input is suboptimal. Using six frames for
both, on the other hand, leads to the highest robustness. This is even more evident
in Figure 4.12, where any setup with six frames is more robust than the rest.

We conclude that kASA outperforms the other tested software regarding robustness
(see Figure 4.4). We also see in Figure 4.8 that the influence of the dynamic k
is quite strong and thus fixing the value for k is disadvantageous. The effect of
the amino acid-like encoding is shown in Figure 4.10 where there is a small but
noticeable improvement compared to the DNA based k -mer approaches of Kraken
and CLARK. These results corroborate our statements and show that our strategies
for increasing robustness with kASA seem to indeed be viable in practice.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Mutation Percentage

0.0

0.2

0.4

0.6

0.8

1.0

F1

Clark
Kraken
kASA

Figure 4.10: Comparison of fixed k DNA software and kASA using only the amino
acid-like encoding with six frames for index and input.

80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Mutation Percentage

0.0

0.2

0.4

0.6

0.8

1.0

F1

kASA_one_one
kASA_three_one
kASA_six_one

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Mutation Percentage

0.0

0.2

0.4

0.6

0.8

1.0

F1

kASA_one_three
kASA_three_three
kASA_six_three

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Mutation Percentage

0.0

0.2

0.4

0.6

0.8

1.0

F1

kASA_one_six
kASA_three_six
kASA_six_six

Figure 4.11: F1 score of kASA with a fixed k of 10. The index was built with one
(top), three (middle), and six (bottom) frames. For the input, one, three, or six
frames were used for each index.

81

5 10
Mutation Percentage

0.0

0.2

0.4

0.6

0.8

F1
 S

co
re

kASA_one_one

kASA_three_one

kASA_six_one

kASA_one_three

kASA_three_three

kASA_six_three

kASA_one_six

kASA_three_six

kASA_six_six

Figure 4.12: F1 score of kASA with a fixed k of 10 showing values for five and ten
percent mutation for all combinations from Figure 4.11.

4.3.2 CAMI

This benchmark is inspired by the ”Critical Assessment of Metagenome Interpreta-
tion (CAMI)” Challenge [8] in which several software was tested for their profiling
capabilities, among other things. Together with OPAL [60] we were able to create a
snakemake pipeline which allows a ranking of the profile quality. The data for this is
taken from the ”2nd CAMI Toy Human Microbiome Project Dataset (gastrointesti-
nal tract)” for which a true ”gold standard” profile is available. It contains a set of
genomes for the indices and reads in a format used by PacBio [160] with long reads
(2500 bases on average) and many sequencing errors (Phred score [142] of eight),
making profiling a challenge for the software used in the previous benchmark. Note,
that we do not include results from Ganon because it could not detect any taxa.
Furthermore, OPAL reports entries with very low relative frequencies as false posi-
tives, so we set a threshold of 0.01 on the species level after some preliminary tests
for all applicable software (Kraken and Kraken2 report many taxa with a value of
zero so no thresholds were applied). The results of this test can be seen in Table 4.1.

First, we want to determine which relative frequency describes the real composition
of the taxa best, since the profile contains counts and relative frequencies for all k ’s
of the user given interval. We then compare the scores of all meaningful k ’s for both
the 64 bit (k ∈ [7, 12]) as well as the 128 bit version (k ∈ [10, 25]). Because the real
taxonomic composition of a dataset is usually unknown and the best k is dependent

82

on that data, we recommend users to use the largest k. Therefore the scores for
the highest k of 25 are shown next to those of the best k. Afterwards we compare
values for both the best and the highest k with the profiles of other software. We
also include results for the fast but more inaccurate choice of one translation frame
instead of three.

Table 4.1: Sum of scores (lower is better) given by OPAL for the unique, non-unique,
and overall relative frequency for k ’s from 10 to 25.

k Unique Non-unique Overall

10 1951 1945 1860
11 1651 1811 1775
12 1290 1603 1617
13 1124 1297 1343
14 1020 894 1126
15 706 676 914
16 585 577 868
17 489 502 789
18 445 412 657
19 462 416 642
20 551 492 615
21 718 609 628
22 809 728 668
23 824 794 720
24 813 824 695
25 950 929 849

Average 899.25 906.81 985.38
Median 811 761 819

We see in Table 4.1 that the values and the average score for the unique and non-
unique relative frequencies are closer together than the ones of the overall relative
frequency are to either of them. Furthermore, the median score of the non-unique
relative frequency is lowest which shows that it will most likely describe the real
composition best. In both the unique as well as the non-unique relative frequency,
the scores for k = 18 are the lowest ones which shows the best k for this data which
will be used in the comparison as well.

Figure 4.13 shows a comparison of scores from OPAL for the non-unique frequencies
(with threshold) for both versions of our index (64 and 128 bit) and all relevant
k ’s. As expected, the values for the same k ’s are about equal and the larger index
is more useful because more information from the long reads can be used. We will
therefore only use the results of the 128 bit index for our comparison.

The scores in Table 4.2 are shown for the best (18) and the default k (25) for kASA.
The scores for other software are given with and without threshold if applicable.

83

25242322212019181716151413121110121110987

64 bit 128 bit

Figure 4.13: Sum of scores from OPAL for different k ’s for the 64 bit index (highest
k is 12) and the 128 bit index (highest k is 25). The dashed lines show that the
sums of the scores do not differ significantly when the same k is chosen from the
64-bit and the 128-bit indexes.

kASA is shown with the default three and with one translation frame as well. The
normalization in OPAL ensures that the sum in every taxonomic rank is 1. This
however benefits only Kraken and Kraken2 as can be seen when this normalization is
turned off (score of 421 vs 883 for Kraken). The reason is that Kraken and Kraken2
report some taxa even if their abundance is zero. With normalization enabled, these
taxa are counted regardless. We can only guess why Kraken and Kraken2 show this
behavior.

Using only one translation frame comes at almost no cost in profile accuracy due
to the index being created with three translation frames (see Section 2.2). The
optimal determined k of 18 scores best but the largest k of 25 is not far behind.
Applying a threshold proves to be beneficial, especially for CLARK and MetaCache
as the number of false positives can be significantly reduced this way. Centrifuge
was second best in the robustness benchmark (see Figure 4.3.1) but performs worst
during profiling even with a threshold. We suspect that due to the noisy data, the
required minimum exact match of 16 bases was not always met in each read. We
conclude that kASA is able to profile even very noisy data with good accuracy, that
the non-unique relative frequency should be preferred for diverse data and that the

84

Table 4.2: Sum of scores with and without (-n) normalization given by OPAL. Lower
is better, the table is sorted by the first column. 0.01 is the threshold mentioned,
and the 18 and 25 represent the k.

Software Sum of scores Sum of scores -n

kASA-18-0.01 408 430
kASA-18-one 415 437
Kraken 421 883
MetaCache-0.01 425 409
CLARK-0.01 542 508
kASA-25-0.01 649 595
kASA-25 751 687
Kraken2 882 1351
MetaCache 887 865
Centrifuge-0.01 977 945
CLARK 1106 1063
Centrifuge 1463 1292

highest k instead of the optimal still yields representative results.

4.3.3 Performance and memory consumption

To evaluate the performance of every tested software, we used the snakemake bench-
mark routine which shows the elapsed wall-clock time and the peak primary memory
consumption during testing. Every software was given 40 GB of RAM, eight cores,
10 input files of the same size and ran with recommended default settings on our
HPCC [161]. Experiments testing performance on different platforms were addition-
ally run on personal hardware. The versions of all software and system specifications
can be seen in Tables 4.3 and 4.4.

Table 4.3: Versions as well as the date of retrieval of used software.

Software Version and retrieval date

Centrifuge 1.0.4, 2020-03-02
CLARK 1.2.6, 2020-06-01
Ganon 0.2.1, 2020-04-20
Kaiju 1.7.4, 2020-04-20
kASA 1.4, 2020-11-19

Kraken 1.1.1, 2020-03-02
Kraken2 2.0.8, 2020-03-02

MetaCache 1.1.1, 2020-04-20

85

Table 4.4: Hardware specifications of the testing systems.

Component iDiv HPC Desktop Laptop

CPU
Intel® Xeon®

Gold 6148 @ 2.40 GHz
or E5-2690 @ 2.9 GHz

Intel® CoreTM

i7 7700K @ 4.5 GHz
Intel® CoreTM

i7-6500U @ 2.5 GHz

RAM 1480 GB DDR4
16 GB DDR4

2800 MHz
8 GB DDR3
1600 MHz

SSD
Connected via

InfiniBand(TM)
Samsung T7

(USB 3.1G2, 2 TB)
Samsung T7

(USB 3.0, 2 TB)

Experiments performed on the HPCC ran in a Linux environment (CentOS) so kASA

was compiled with gcc [128]. We tested if execution times vary with the operating
system and/or compiler and found no correlation (on our Desktop System). The
only thing we would like to mention is that the sorting algorithm for the MSVC com-
piler [127] is slightly faster due to better parallelization. When disabled and replaced
with the same algorithm used for gcc and Clang [129], no significant difference was
measurable.

The following figures 4.14 and 4.15 show the measured wall-clock time and the mem-
ory and space consumption for both the robustness as well as the CAMI benchmark.

86

Build Identify
0

500

1000

1500

2000

2500

3000

W
al

l-c
lo

ck
 ti

m
e

in
 s

Kraken2

Clark

Kraken

Centrifuge

MetaCache

Ganon

kASA_64

kASA_64 (one frame)

Build Identify
0

1000

2000

3000

4000

5000

W
al

l-c
lo

ck
 ti

m
e

in
 s

Kraken2

Clark

Kraken

Centrifuge

MetaCache

kASA_64

kASA_128

kASA_128 (one frame)

Figure 4.14: Wall-clock times for the robustness benchmark (top) and for the CAMI
benchmark (bottom) of all tested software. Ganon is missing from the CAMI bench-
mark because the profiles were empty.

87

Build Identify Index Size
0

8

16

24

32

RA
M

/D
isk

 sp
ac

e
us

ed
 in

 G
B

Kraken2

Clark

Kraken

Centrifuge

MetaCache

Ganon

kASA_64

kASA_128

Build Identify Index Size
0

8

16

24

32

40

48

56

64

72

80

88

96

RA
M

/D
isk

 sp
ac

e
us

ed
 in

 G
B Kraken2

Clark

Kraken

Centrifuge

MetaCache

kASA_64

kASA_128

Figure 4.15: Memory and space consumption for the robustness benchmark (top)
and the CAMI benchmark (bottom) of all tested software. Ganon is missing from
the CAMI benchmark because the profiles were empty.

88

When looking at the wall-clock times of both benchmarks in Figure 4.14, we see
that the hash table-based algorithms (used in Kraken2 and MetaCache) are indeed
the fastest. From the one-frame-mode of kASA, we can deduce an obvious trade-
off between time and accuracy. With default settings, kASA ranges midfield in the
robustness benchmark and is the slowest software in the CAMI benchmark during
identification. When building the index, kASA is one of the fastest software but
this is because the available memory was larger than the index size. With larger
databases, the partitioning of the input, which is almost entirely dependent on the
throughput, may decrease performance. We would like to remind the reader that
this is the result of our paradigm to be able to build a large index on a memory
restricted environment. In Figure 4.15, which shows the primary memory usage in
the CAMI benchmark, we can immediately see that some software scales beyond the
primary memory capacity of our laptop. kASA is only using so much memory because
it was available, but Kraken, CLARK, and Centrifuge, for example, would not have
been able to build their index on our laptop regardless of the settings. We there-
fore conclude that kASA still needs some optimization but can already achieve good
execution times given that it does not use a hash table based index. Together with
the conclusions from both benchmarks we see that using only one translation frame
reduces accuracy but still performs better than other presented software regarding
sensitivity and precision. It also has a better performance than the three frames
mode. This makes it a viable alternative mode should the user prefer performance
without losing much accuracy.

In Section 2.2.3 we made the statement that kASA runs on major platforms (Clus-
ter, Desktop, Laptop) due to a highly customizable primary memory footprint. In
Section 3.4.5 we mentioned that due to this memory restriction, the input will be
processed in chunks. Therefore, we expect that platforms with less available primary
memory will take more time for the same input than systems with more resources.
In order to test this, we created a benchmark by using the CAMI benchmark and
one input file from it on multiple platforms (each time using four cores). Figure 4.16
confirms our expectation and shows that even on the same system, making more
memory available decreases execution time. We also see that throughput is a large
factor since it is the only bottleneck of our algorithm (USB 3.1G2 vs USB 3.0). Run-
ning this experiment on an external HDD for example led to a very large increase
of execution time (see Figure 4.17). We therefore do not recommend using kASA

on an HDD since its architecture is not optimal for random accesses to the index.
Another interesting observation is that should the interface technology allow a high
bandwidth, using secondary memory for the index directly can even be faster than
the RAM version due to the overhead of loading the index into primary memory
first. In case multiple input files need to be processed, this overhead is mitigated
since it only has to be done once. Therefore kASA still scales better for an HPCC
than on a desktop computer with an external SSD. However, the bandwidth for
communication protocols has increased rapidly over the last years. For example,
USB has gone from 3.0 (5 Gbit/s) to 3.1 (10 Gbit/s) in just three years (2011-2014)

89

and after another three years to 3.2 (20 Gbit/s) in 2017 [162]. USB 4.0 (released
in 2019) offers speeds up to 40 Gbit/s [162]. We would therefore argue that the
bottleneck to secondary memory will widen in the near future. One final conclusion
from this figure is that CPU clock frequencies do have an influence on execution
times: The wall-clock time for the Desktop 5 GB version is slightly lower than that
of our laptop.

Identify
0

500

1000

1500

2000

2500

3000

3500

W
al

l-c
lo

ck
 ti

m
e

in
 s

Cluster RAM 40 GB

Cluster Infiniband 40 GB

Cluster Infiniband 5 GB

Desktop SSD(USB 3.1G2) 10 GB

Desktop SSD(USB 3.1G2) 5 GB

Desktop SSD(USB 3.0) 5 GB

Laptop SSD(USB 3.0) 5 GB

Figure 4.16: Results showing the wall-clock time while running the same test for
kASA on different platforms and settings. The legend is structured as following:
Platform, hardware on which the index lies and interface technology, amount of
RAM given.

Identify
0

2500

5000

7500

10000

12500

15000

17500

20000

W
al

l-c
lo

ck
 ti

m
e

in
 s

Desktop SSD(USB 3.1G2) 5 GB

Desktop SSD(USB 3.0) 5 GB

Desktop HDD 5 GB

Figure 4.17: Wall-clock times on the same platform (Desktop PC) for SSD vs HDD.
We do not recommend using the latter.

90

To see more clearly how kASA scales with increasing number of cores and amount
of primary memory, we created Figure 4.18. We see that kASA does benefit from
multi-core environments but that I/O restricts the parallelization potential. This
non-parallelizable part of every program determines the minimum execution time
which is called Amdahl’s law [163]. In our case, increasing the number of cores has
a non-linear decreasing effect. The value per core is still best when only using one
core as for example you would need six cores to get the value of two. We conclude
that even though most parts of kASA are parallelizable, there still is a rather large
proportion of time spent on reading the input file and writing the output file which
cannot be parallelized (see Section 3.4.5). If the bandwidth increases, this influence
should decrease.
Regarding the use of more primary memory, kASA benefits more from multiple cores
than from more primary memory. The lines in the middle of the figure decrease non-
linearly but converge rather quickly. This is because the C++ sort algorithm has
a linearithmic time complexity regarding the number of k -mers from the input but
our set intersection algorithm has a linear time complexity regarding the number
of k -mers from the input as well as the ones from the index. This means that
sorting a small container in every iteration is faster than sorting one large container
of k -mers in one go. However, calling the set intersection algorithm iteratively like
this quickly mitigates that benefit due to the large latency while reading from the
hard/solid state drive. We conclude that it is always preferable to keep the number
of iterations that identify has to perform as small as possible and that providing
more RAM is beneficial to this.

Finally, we want to prove our statement made in Section 2.2.1 that the execution
time depends on the size of the range of k ’s. In Figure 4.19 we clearly see that the
search space reduction of the trie (see Section 3.2.1) has a major effect (left side of
the black line). We also see that in the algorithm of identify itself, the number
of k ’s linearly affects the execution time (right side of the black line). We therefore
consider this statement valid and choose the default value of seven for the lower k.

91

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Number of cores

1

2

3

4

5

6

7

8

Sp
ee

du
p

fa
ct

or

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Number of cores

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Va
lu

e
by

 c
or

e

Figure 4.18: Wall-clock times for the same experiment but with different numbers
of cores available for kASA every time (top left) or with more primary memory
available (top right), as well as speedup (bottom left, higher is better) and value per
core (bottom right, lower is better) calculated from the wall-clock times per core.

92

Figure 4.19: Wall-clock time of identify when used with the CAMI dataset on one
fastq file and the 128 bit index for various lower k ’s. Starting with a lower k of
seven, the trie fully reduced the search space in the index.

93

4.4 Real data

Because of the good results in our synthetic benchmarks, we set out to test kASA

with real data where the ground truth is unknown. To nevertheless verify the output
of kASA or at least put it in relation, software used in the previous benchmarks is
also applied to the real data. Each presented experiment models a commonplace
problem often encountered in metagenomics. The first experiment in Section 4.4.1
falls into the category of low presence detection, usually viruses. There, very sensi-
tive matching is required to determine whether a virus is present in a sample and, if
so, in what quantity. The second experiment in Section 4.4.2 is a classical analysis
of the microbiota in a host (here: human). The goal is to detect present and re-
lated bacteria and/or viruses, so either the remaining sequences may be analyzed for
novel organisms or the presence of a pathogen is detected. The latter case is usually
done in a clinical study. Lastly, we use kASA in Section 4.4.3 on third-generation
sequencing reads (generated with Nanopore [164]) to show that long reads pose no
problem. Furthermore, we simulate a decontamination so that reads can be filtered
out if necessary.

4.4.1 Deformed wing virus detection

The experiment shown here was part of a study conducted before kASA was writ-
ten [165]. We were tasked with finding out whether the expected viruses Deformed
wing virus Type A (DWV-A) and Varroa destructor virus-1 also known as Deformed
wing virus Type B (DWV-B) were present in pupae of Apis mellifera. Two data sets
were generated by sequencing DNA with Illumina from crushed pupae infected with
the viruses. These data sets were named M1 and M2 and contain sequences of
DWV-A and DWV-B, respectively. We used the Bowtie2 mapper [166] to align the
sequences to the host genome (Apis mellifera) and the viral genomes. The remaining
reads were identified or discarded with megablast [90] using the nt [5, 62] database.

We re-evaluated these results later with kASA and Centrifuge [167] to verify our early
findings. Centrifuge is used here because it was the second best performing program
regarding sensitivity in our benchmarks with synthetic data (see Section 4.3.1 and
Figure 4.5). Table 4.5 shows the relative frequency of mapped reads via Bowtie2,
kASA and Centrifuge. We can see that the relative frequencies derived from the reads
for kASA as well as for Centrifuge are close to those calculated with Bowtie2 for the
M2 data set. It is also apparent that Centrifuge and Bowtie2 could not detect as
many reads belonging to Apis mellifera as kASA did. Note, that we chose to use the
frequency calculated from the read distribution to better compare it to Bowtie2.

Regarding the M1 data set, the difference in relative frequencies of kASA and Cen-
trifuge to Bowtie2 is visible but not large. We looked at the reads that kASA and
Centrifuge identified as belonging to DWV-B, since the difference to Bowtie2 was
most obvious there for both programs. We found out that most of those reads were
ambiguous with the “Top Hits” array often having two entries in case of kASA. There-

94

fore, they could not be solely identified as belonging to either DWV-B or DWV-A.
In this case, each of the viruses got 0.5 to their read count before calculating the
relative frequency via read count(t)

number of reads with t being the taxonomic ID. We then used
megablast [90] to see if the similarities were also visible there. These results showed
that almost all of the reads were most likely from DWV-A with either exactly the
same score as or a score close to DWV-B. Therefore kASA and Centrifuge could not
differentiate between the two and thus have a higher relative frequency for DWV-B
than Bowtie2.

Nevertheless, we were able to verify our results from 2016. For future experiments
of this kind, kASA appears to be a good addition to or a substitute for Bowtie2.

Table 4.5: Relative frequencies of identified reads given in percent for Bowtie2, kASA
and Centrifuge for both data sets.

M1 Bowtie2 kASA Centrifuge

Apis mellifera 44.2 46.5 41.8
DWV-A 53.5 51.5 51.9
DWV-B 0.0032 1.83 0.87

M2

Apis mellifera 74.5 77.5 68.9
DWV-A 0.03 0.029 0.051
DWV-B 22.2 22.4 22.1

4.4.2 Human microbiome project

The human microbiome has a large influence on the body [168] and thus determining
the composition of microbes in a sample is vital for finding, e.g., pathogens. kASA

offers exactly this via its profile, but because we have no ground truth in real world,
we chose to use Kraken2 and Centrifuge to see if they can agree on the composi-
tion of known organisms. For our test, we downloaded existing open access data
from the Human Microbiome Consortium [169], more precisely data sampled and
sequenced from saliva (Sample ID: SRS147126, SRA ID: SRX154235). We then
created indices for all three programs and created profiles in CAMI format [60]. As
reference database, we used the RefSeq [170] from 2019-10-1. Table 4.6 shows that
the programs mostly agree on the relative frequency for the genus level (except for
Centrifuge which could not identify Porphyromonas with the expected frequency).
Results of kASA are closer to those of Kraken2 as they are to those of Centrifuge.
This is not surprising given that kASA and Kraken2 are both k -mer based methods.
In addition, it is known that almost all detected genera with a high frequency occur
in the human oral flora, which confirms our results.

95

Table 4.6: Selection of genera with the highest relative frequency (in %) found in
data sampled from human saliva (SRS147126). For kASA, the non-unique relative
frequencies for k=12 are shown. Below are the averaged absolute differences between
the relative frequencies of the programs.

Scientific name kASA n.-u. Kraken2 Centrifuge

Prevotella 27.9 30.7 34.1
Streptococcus 16.5 13.5 17.8

Neisseria 15.2 11.5 9.1
Veillonella 7.7 7.7 6.9

Porphyromonas 6.6 6.8 0.25
Haemophilus 5.1 4.5 3.8

Campylobacter 1.6 1.4 1.1

Program names Average difference

kASA vs Kraken2 0.0138
Kraken2 vs Centrifuge 0.0244
kASA vs Centrifuge 0.0293

4.4.3 Human genome assembly

This experiment used data from Jain et. al. [171] in which they sequenced the hu-
man genome from the GM12878 Utah/Ceph cell line (namely FAB42476) [172] with
the Nanopore minION [164] technology. As reference database, we chose the Ref-
Seq [170] from Section 4.4.2 as well. We set out to prove two things:

1. Even with strong similarities to other taxa (e.g., chimpanzee), it is possible to
see the true host (human)

2. Contaminations with e.g. bacteria are visible in the profile

That the first point holds true can be seen in our multifaceted profile which presents
among others, the unique and the overall relative frequency which help to separate
true from false positives. For example, the difference in the unique relative frequency
of Homo sapiens(0.29) vs Pan troglodytes(0.05) is clearly visible (see Table 4.7).

96

Table 4.7: Excerpt from the profile resulting from the experiment of kASA on data from the human cell line FAB42476 mixed
with E. Coli. Only the columns for k=12 are shown due to the limited size of the page.

taxID Name U. counts U. rel. f. N-u. counts N-u. rel. f. O. rel. f.

9606 Homo sapiens 18270375 0.293796 2.78E+07 0.166454 0.0059195
9597 Pan paniscus 4481489 0.0720643 9.36E+06 0.0560577 0.00199355
9593 Gorilla gorilla 3648926 0.0586763 9.80E+06 0.0586692 0.00208642
9598 Pan troglodytes 3118585 0.0501482 8.66E+06 0.0518557 0.00184412
9601 Pongo abelii 2392786 0.038477 6.11E+06 0.0366143 0.00130209
61621 Rhinopithecus bieti 1804089 0.0290105 5.19E+06 0.0311037 0.00110612
9516 Cebus capucinus 1767579 0.0284234 4.99E+06 0.0298676 0.00106217
9541 Macaca fascicularis 1719200 0.0276455 6.28E+06 0.0376241 0.00133801
60711 Chlorocebus sabaeus 1651331 0.0265541 5.31E+06 0.0317964 0.00113076
9483 Callithrix jacchus 1614864 0.0259677 4.67E+06 0.027979 0.000995001
9545 Macaca nemestrina 1606200 0.0258284 4.74E+06 0.028377 0.00100916
9555 Papio anubis 1385434 0.0222784 5.63E+06 0.0337148 0.00119898

591936 Piliocolobus tephrosceles 1374825 0.0221078 4.31E+06 0.0258187 0.000918175
9531 Cercocebus atys 1299742 0.0209004 4.25E+06 0.0254758 0.00090598
9565 Theropithecus gelada 1207755 0.0194212 5.41E+06 0.0323893 0.00115184
9568 Mandrillus leucophaeus 1173074 0.0188635 4.16E+06 0.024895 0.000885325
37293 Aotus nancymaae 1113403 0.017904 3.47E+06 0.0207814 0.000739037
9544 Macaca mulatta 1068340 0.0171794 4.90E+06 0.0293279 0.00104297
27679 Saimiri boliviensis 1012049 0.0162742 3.31E+06 0.019793 0.000703886

562 Escherichia coli 23431 0.000376781 226570 0.00135674 4.82E-05

97

The second point can be proven by inserting, for example, bacterial reads from
Escherichia coli str. K-12 substr. MG1655 into the .fastq files, because a cell
line usually has no contamination. We randomly generated 100 reads with length
1000 from this genome to ensure that the reads are unique. Both fastq files were
concatenated to see if the corresponding amount will be visible in the profile (the
identification per read is ignored here). With this setup, we expect to find at most
196000 k -mers (k is 12, forward and reverse complement are considered). With
4708900768 total k -mers and 62187376 unique k -mers in our dataset, we can calcu-
late the expected unique and the expected overall relative frequency (see Table 4.8).

Table 4.8: Profiling results after the insertion of E. coli reads into the dataset for
the unique and the overall relative frequency.

Expected rel. freq. Observed rel. freq.

Unique 0.0031 0.00037
Overall 0.000041 0.000048

After running kASA on the merged dataset, we inspected the generated profile and
compared our observed values with the expected ones. We see that the values for the
overall relative frequency are very close to each other. The unique relative frequency,
however, differs greatly. This is not surprising given what we wrote in Section 3.5.3:
Comprehensive databases suffer the disadvantage of species having many k -mers in
common. With the usage of the RefSeq and the fact, that E. Coli and Shigella share
many similarities [68], the uniqueness is reduced. We therefore conclude that kASA

is capable of identifying contaminations in a dataset but admit that the profile will
be hard to interpret if many related species overshadow these contaminations.

Because of this, we added the possibility to calculate the coverage for every taxon.
This coverage is gained by counting every match during identify once for a taxon
and dividing that count by the number of k -mers in the index for that taxon. The
latter is gained from the frequency file (see Section 3.4.2). For this to be correct
however, the input needs to be processed completely in one go. If it is processed in
chunks, the counts will be distorted because two identical k -mers are counted twice
or more and not once. The advantage is that the resulting profile could be sorted by
this coverage and everything “high enough” (depending on the sequencing depth),
be considered valid. This way, even small genomes with low k -mer counts but high
coverage would be visible. Including the coverage in the profile is optional and can
be activated via a parameter. For the experiment above, the coverage is too low to
be noticeable. When inserting the complete genome of E. coli into the fastq file, the
coverage is at 100% and ≈ 85% for Shigella flexneri. A Krona[173] visualization of
our calculated profile can be seen in Figure 4.20.

98

Viruses 0.1%

Archaea 0.04%

all

Eukaryota

Metazoa

Chordata
Craniata

H
om

o
sa

pi
en

s
17

%

Pan paniscus 6%

Pan troglodytes 5%

Gorilla gorilla 6%

Pongo abelii
4%

M
acaca

fascicularis
4%

M
acaca

m
ulatta

3%

M
acaca

nem
estrina

3%

C
hloro cebus

sabaeus
3%

3%
P

ap
io

an
ub

is

3%
Th

er
op

ith
ec

us
ge

la
da

3%
C
er

co
ce

bu
s

at
ys

2%
M

an
dr

illu
s
le

uc
op

ha
eu

s

3%
Rhin

op
ith

ec
us

bie
ti

3%
Pilio

colobus tephrosce
les

0.9%
Colobus

3% Cebus capucinus

3% Callithrix jacchus

2% Saimiri boliviensis

2% Aotus nancymaae
0.8% Carlito syrichta

0.8% Lemuriformes
0.9%

Myomorpha4 more
1%

Caniformia

0.8%
Chiroptera8 more

0.8%
Neognathae

2%
Teleostei

A...a

Hexapoda

1%
H

olom
etabola

22
m

ore

Vi...ae

S...a

1%
S
treptophytina

61
m

ore

Bacteria

Proteobacteria

1%
G

am
m

aproteobacteria

Fi...es

0.9%
B

aci lli

71
m

ore

Figure 4.20: Visualization of our profiling result of the FAB42476 dataset together
with E. coli insertions with Krona. Since species related to Homo sapiens were also
reported, they are also visible in the pie chart. The green part representing Bacteria
shows the Gammaproteobacteria to which E. coli belongs.

99

4.5 Discussion and summary

This chapter aimed at showing how kASA performs in various experiments. The first
four experiments used data sets with known truths so that a systematic investigation
of sensitivity, precision, and other measures of accuracy could be conducted. The
last three experiments focused on real data to show that kASA can be used for
actual studies as well. The performance of kASA was also evaluated and its technical
limitations explored. For all experiments, existing relevant software was used as a
comparison. We now discuss our results, a conclusion with regards to the theoretic
ideas presented in Chapter 2 is given in the final Chapter 6.

The experiments with static data in Section 4.2 by McIntyre et. al. and Lindgreen
et. al. made it possible to compare kASA with other software based on the same data.
In both benchmarks, typical metagenomic data with pre-defined distributions was
created. In the study of McIntyre et. al., the accuracy of the r-identification was
benchmarked. With data from Lindgreen et. al., the quality of the profile gained
from the r-identification output of kASA was tested. Both benchmarks showed that
kASA performs very well in comparison to other software. We also noticed, judging
from Figure 4.1, that it is advantageous for kASA to print out more than one taxon for
every read. This is also reflected in the experiment from Lindgreen et. al. in which
the calculation for the profile from the r-identification was made proportionally to
the number of reported taxa for each read. This way multiple reported taxa got
counted in the profile with their share of 1

|taxa| . Figure 4.2 shows that this is a valid
strategy. We therefore conclude that kASA is performing just as good or better than
other tested software in those benchmarks. The ability to report multiple taxa in the
r-identification is a useful feature that directly influences benchmark performance
and helps users gain more knowledge about the data.

The major problem with the benchmarks of McIntyre et. al. and Lindgreen et. al.
is that their data and necessary reference will become increasingly outdated over
time. For the latter benchmark, we encountered this problem because some reference
genomes have been updated or deleted since the benchmark was developed. This,
together with the fact that more and more taxonomic profiling programs are being
developed, makes it necessary to develop a benchmark that is able to generate its
own data based on up-to-date references. We therefore created our own benchmark
in Section 4.3.1 which is highly customizable and easy to use thanks to snakemake
(see Section 4.1.1). Data is generated from reference genomes so the test files can be
updated whenever the references change. The primary purpose of the benchmarks
was to test the robustness of currently used software, in particular kASA, with respect
to mutations and sequencing errors. One of the results was that kASA is more
robust than all other tested programs. Furthermore, if three or six frames are used
to create the reference, using one frame for the input sequences seems to suffice,
as the robustness was still very high in this case (see Figures 4.4 and 4.12). One
problem with kASA was that the specificity (see Figure 4.6) seems to be quite low and

100

thresholds on the relative score had to be applied to correct this (see Figure 4.7).
This is a direct result of the fact that kASA reports every match and does not
post-process the results inherently. However, we provide python scripts to do this
afterwards if desired.

Another problem is that the choice of the optimal range of k ’s is not obvious. In
Figure 4.9, the optimal lower k ’s were made visible because ground truth data were
available. In general, however, it depends strongly on the data and the number
of errors/mutations in the data. We must conclude that while we have chosen a
reasonable default lower bound of seven k, which should be sufficient for most data,
we cannot guarantee optimal performance in general. Should optimal behavior be
desired, multiple runs with different lower and higher k ’s will be necessary in order
to find the best range of k ’s. Judging from our experience however, the default
ranges [7, 12] or [7, 25] perform well enough if no knowledge of the data is available.
The problem of choosing the right k ’s can also be seen in the CAMI benchmark in
Section 4.3.2. There, we tested how close the created taxonomic profile is to the real
distribution of the taxa in the simulated data. In Figure 4.13 the same situation
occurs: certain k ’s perform better than others. The difference however is, that here
only one k is considered for the comparison. But even then, the standard pick of
the largest k performs good enough as can be seen in Table 4.2.

All tested programs were also evaluated with regard to their performance in terms of
wall-clock time and primary memory consumption, as well as disk space consump-
tion. Section 4.3.3 showed that the wall-clock time of kASA is directly influenced by
the number of frames used. Figure 4.14 shows that using the default three frames
makes kASA the slowest program for large data sets. If one frame is used, wall-clock
times for kASA range midfield next to Centrifuge and Kraken. If the index was built
with three or six frames, the robustness stays high as described earlier. This is an
advantage of kASA since Centrifuge was the only other program that combined high
sensitivity with reasonable good performance. However, Centrifuge underperformed
during profiling (see Table 4.2). This and the abrupt cutoff seen in Figure 4.5 make
it a less attractive option in our opinion.
If performance is much more important than robustness, MetaCache and Kraken2
are valid choices since they were the fastest programs in the competition for both
index building as well as identification. If, on the other hand, wall-clock time is
irrelevant, choosing kASA with three or six translation frames for the input would be
the best choice of all considered programs because it achieves the highest robustness.

In Figure 4.15, we can see that CLARK, Kraken and Centrifuge would not be able to
create their index on a platform with only 8 GB RAM. This problem was countered
by kASA with the usage of secondary memory for its index and the processing of the
input in chunks which enables a user defined RAM usage. Using SSDs is an obvious
optimization, since HDDs are not optimally suited for this task (see Figure 4.17).
Especially external SSDs depend on the communication protocol speed, for example
the USB standard (see Figure 4.16). Internal SSDs can nowadays be accessed via

101

PCIe [174] with bandwidths up to 7000 MB/s [175]. As both external and internal
communication bandwidths increase, this bottleneck is eliminated eventually and
only the clock speed of the CPU remains as the limiting factor.

At the end of the chapter, real data was used from three typical metagenomic stud-
ies. The first experiment was dedicated to detecting the frequency of viral genetic
material in samples with a host species. The second dealt with identifying known
taxa in a metagenomic sample and creating a taxonomic profile. The third and
last experiment showed that third-generation sequencing techniques pose no prob-
lem for kASA and that filtering out contaminates is possible with it as well. In all
experiments, the values of kASA were close to those of established programs. This
functions as a validation since ground truths are not available for real data. The
conclusion of these experiments is that kASA is excellently suited to handle real data
and ready to be employed even in large field studies.

In the last two real data experiments, the non-unique relative frequency was es-
pecially useful and seemed to be close to the values of other software. As seen in
Table 4.1 this makes sense when using a comprehensive database such as the Ref-
Seq [170]. However, in Table 4.7 the unique relative frequency helps to see that
Homo sapiens is the true host for this data. We did not present a data set with
a large unknown fraction to motivate the overall relative frequency in this chapter
but in Section 5.2 of the next chapter, the percentage of unidentified sequences was
calculated by this frequency. This means that it depends on the study and its focus
to choose the right type of relative frequency. The profile that kASA creates contains
all of them nevertheless so that the user has all necessary information available. We
see this as one major advantage in contrast to other software. Combined with the
optional coverage described in Section 4.4.3, the taxonomic profile becomes a very
useful output and summary of the examined data set.

102

Chapter 5

Further experiments and new
insights

The experiments in Chapter 4 aim to empirically verify our ideas and methods chosen
for kASA. Rather, this chapter is a collection of experiments conducted to explore
the possibilities that kASA offers to answer some scientific questions and to gain new
insights. It starts in Section 5.1 by checking if the codon table used in Section 2.2.2
for the translation from DNA to amino acid-like sequences has any influence on
robustness. Section 5.2 shows that kASA can be used within a metagenomics pipeline
and therefore replace existing programs. A wholly different experiment is shown in
Section 5.3 where an often used method for increasing sensitivity is explored: Spaced
k -mers [97]. The penultimate Section 5.4 compares kASA to Kaiju [102] as both can
process protein sequences. Then lastly, Section 5.5 shows how strong the influence
of the lossy shrinking method presented in Section 3.4.3 on the robustness really is.
We would like the reader to know, that because this chapter has no real coherence,
there will be no transitions from section to section as well as no summary at the
end.

5.1 Influence of the codon table and its resistance to
mutation

kASA has the capability of applying a user given translation alphabet in the NCBI
format to the translation process. To test if the size of the alphabet matters more
than the actual codon table, we experimented with multiple, randomly generated
alphabets satisfying the requirements of code (see Section 2.2.2 and Equation 2.5).
We chose alphabet sizes from 8 to 27. The lower bound of eight was chosen because
64 codons can be evenly mapped to eight letters with eight codons per letter. The
only number below eight with such an even distribution of codons that can satisfy
the requirements of code, is four but this produced nonsensical results. The upper

103

limit results from the fact that each letter has five bits available, which stand for
an integer of at most 31 and kASA reserving four letters for internal use. For every
alphabet size, a different conversion table was created by a Python script. The
8-letter alphabet and the 16-letter alphabet are special since they were designed
by hand with the idea from Remark 6 in mind: If the first and second letter are
identical for all codons that map to a letter from the alphabet, no information loss
occurs when using six translation frames.

To simulate equal circumstances for all alphabets, we used the same benchmark
as in Section 4.3.1. However, we only used mutation percentages of 0, 5, 10, and
15. We tested the sensitivity, precision, and resulting F1 score as well as the MCC
described in Section 4.1.2. The results are presented as line plots to show the effects
of different alphabet sizes, and as bar graphs to show how much the robustness is
affected. kASA sta represents the standard codon table 2.4.

Figure 5.1 shows that the sensitivity, precision, and the resulting F1 score profit from
a larger alphabet, regardless of the conversion table. The plots showing the MCC
paint a more clearer picture in which there is an optimum at 26 letters. The reason is
a trade-off between robustness and conservation of information: More letters in the
alphabet means that more triplets of DNA are uniquely identifiable which conserves
information. In case of a mutation however, these triplets get unidentifiable or are
falsely assigned. Since this depends on the frequency with which each triplet is
included in the index, the equilibrium point depends on the data. Here, the sweet
spot seems to be at 26 letters. In any case, we can conclude that the standard
alphabet has no intrinsic property that makes it more powerful than a generic table
with more available letters.

Regarding the special alphabet of 16 letters, Figure 5.2 shows that the precision
is largely dependent on the number of available letters of the alphabet. As the
simulated mutations increase, this observation only gets more obvious. Therefore,
the information that could be recovered as described in Remark 6 has no measurable
impact on robustness.

We therefore conclude that increasing the number of letters and thus the size of the
alphabet for a translation table from nucleotide triplets to amino acid-like letters
does influence the identification accuracy by increasing uniqueness but may decrease
robustness. Decreasing the alphabet size leads to a clear loss of accuracy if less than
16 letters are used. There might be a mechanism to calculate translation tables
which optimizes both aspects for a specific data set but this would require more
sophisticated research and is thus future work. For now, we recommend using the
standard codon table (see Table 2.4) if only for compatibility reasons.

104

0 5 10 15
Mutation Percentage

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Se
ns

iti
vi

ty

kASA_8
kASA_9
kASA_10
kASA_11
kASA_12
kASA_13
kASA_14
kASA_15
kASA_16
kASA_17
kASA_18
kASA_19
kASA_20
kASA_21
kASA_22
kASA_23
kASA_24
kASA_25
kASA_26
kASA_27
kASA_sta

kA
SA

_8

kA
SA

_9

kA
SA

_10

kA
SA

_11

kA
SA

_12

kA
SA

_13

kA
SA

_14

kA
SA

_15

kA
SA

_16

kA
SA

_17

kA
SA

_18

kA
SA

_19

kA
SA

_20

kA
SA

_21

kA
SA

_22

kA
SA

_23

kA
SA

_24

kA
SA

_25

kA
SA

_26

kA
SA

_27

kA
SA

_st
a

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty

0
5
10
15

0 5 10 15
Mutation Percentage

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pr
ec

isi
on

kASA_8
kASA_9
kASA_10
kASA_11
kASA_12
kASA_13
kASA_14
kASA_15
kASA_16
kASA_17
kASA_18
kASA_19
kASA_20
kASA_21
kASA_22
kASA_23
kASA_24
kASA_25
kASA_26
kASA_27
kASA_sta

kA
SA

_8

kA
SA

_9

kA
SA

_10

kA
SA

_11

kA
SA

_12

kA
SA

_13

kA
SA

_14

kA
SA

_15

kA
SA

_16

kA
SA

_17

kA
SA

_18

kA
SA

_19

kA
SA

_20

kA
SA

_21

kA
SA

_22

kA
SA

_23

kA
SA

_24

kA
SA

_25

kA
SA

_26

kA
SA

_27

kA
SA

_st
a

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

0
5
10
15

0 5 10 15
Mutation Percentage

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1
-S

co
re

kASA_8
kASA_9
kASA_10
kASA_11
kASA_12
kASA_13
kASA_14
kASA_15
kASA_16
kASA_17
kASA_18
kASA_19
kASA_20
kASA_21
kASA_22
kASA_23
kASA_24
kASA_25
kASA_26
kASA_27
kASA_sta

kA
SA

_8

kA
SA

_9

kA
SA

_10

kA
SA

_11

kA
SA

_12

kA
SA

_13

kA
SA

_14

kA
SA

_15

kA
SA

_16

kA
SA

_17

kA
SA

_18

kA
SA

_19

kA
SA

_20

kA
SA

_21

kA
SA

_22

kA
SA

_23

kA
SA

_24

kA
SA

_25

kA
SA

_26

kA
SA

_27

kA
SA

_st
a

0.0

0.2

0.4

0.6

0.8

1.0

F1
-S

co
re

0
5
10
15

0 5 10 15
Mutation Percentage

0.2

0.4

0.6

0.8

1.0

M
CC

kASA_8
kASA_9
kASA_10
kASA_11
kASA_12
kASA_13
kASA_14
kASA_15
kASA_16
kASA_17
kASA_18
kASA_19
kASA_20
kASA_21
kASA_22
kASA_23
kASA_24
kASA_25
kASA_26
kASA_27
kASA_sta

kA
SA

_8

kA
SA

_9

kA
SA

_10

kA
SA

_11

kA
SA

_12

kA
SA

_13

kA
SA

_14

kA
SA

_15

kA
SA

_16

kA
SA

_17

kA
SA

_18

kA
SA

_19

kA
SA

_20

kA
SA

_21

kA
SA

_22

kA
SA

_23

kA
SA

_24

kA
SA

_25

kA
SA

_26

kA
SA

_27

kA
SA

_st
a

0.0

0.2

0.4

0.6

0.8

1.0

M
CC

0
5
10
15

Figure 5.1: Results of the robustness benchmark for all tested alphabets displayed
as line and bar plots.

105

0 5 10 15
Mutation Percentage

0.15

0.20

0.25

0.30

0.35
F1

-S
co

re

kASA_16
kASA_sta
kASA_26

0 5 10 15
Mutation Percentage

0.92

0.94

0.96

0.98

1.00

Pr
ec

isi
on

kASA_16
kASA_sta
kASA_26

Figure 5.2: Benchmark from Section 4.3.2 with the 16-letter alphabet (“kASA 16”)
mentioned in Remark 6 versus the standard translation alphabet used by most or-
ganisms in nature (“kASA sta”) and the best performing 26-letter alphabet (“kASA
26”). Top: F1 score, bottom: Precision.

106

5.2 kASA as part of a metagenomics pipeline

In Section 1.1 the workflow of a typical metagenomic pipeline was described. We
would like to reiterate that these pipelines usually have two different paths: One
using assembly to generate longer strings of DNA from the reads and another using
the reads directly. In both paths, taxonomic profiling is used to identify known
taxa. The reader might now be suspecting a certain redundancy since the taxonomic
profiling of the reads should be sufficient. However, the outputs of both paths differ:
The k -mer/read frequencies of the raw reads give an indication on the abundance
of the taxa, the r-identification of the contigs validates the found taxa. The latter
is especially useful since not only the taxa which were truly sequenced but also
related taxa could be given high scores (see Section 4.4.3). Another reason why
both paths are used is that calculating the r-identification output for each raw read
is usually computationally intensive, as the files are often several gigabytes in size.
The profile is therefore much more useful in this case. On the other hand, after the
assembly, most of the reads were assembled into one or more contigs. Without the
information of how many reads contributed to the contig(s), an abundance analysis
would certainly be biased. Therefore we recommend using the profiling output before
and the r-identification output after an assembly. To show that kASA is able to do
both, we included it in a metagenomics pipeline and evaluated the results.

The metagenomic analysis pipeline chosen was developed by the NASA GeneLab
[176, 177] and is used to process data sampled from spaceflight experiments. There,
the taxonomic analysis is performed with two programs: MetaPhlan [178] for the
raw reads, and DIAMOND [95] for the assembled contigs. After an initial run
to gather results for a comparison, we replaced both of them with kASA and an-
alyzed exemplary data for differences and similarities. We would like to mention
that the benefit of replacing these two taxonomic profiling programs is that it
saves disk space (one instead of two indices) and installation effort. The paired-
end data used was from the GLDS-249 dataset [38] (more specifically, the file
”C57-6T FCS BSL LAR NxtaFlex Rep1 B1”). This dataset was sampled with Illu-
mina [3] from feces of mice (Mus musculus) which were in space flight. The database
used for our index was the non-redundant protein database “nr” from the NCBI [62,
179] since it is used by other programs in the pipeline as well.

In total, about 74% of all k -mers could be identified. From those, 91% of all iden-
tified taxa are Bacteria, ≈ 8% are Eukaryota and a small rest are Archaea ≈ 0.56%
or Viruses ≈ 0.11% (see Figure 5.3 for a visualization). The largest share of Bac-
teria was made up of three phyla: Bacteroidetes (69%), Firmicutes (7%), and Pro-
teobacteria (6%). These percentages roughly correspond to those also determined
by MetaPhlan. This is not surprising given the fact that they make up the largest
proportion of the gut microbiome of mice [180]. Adding to this, the mice were fed
Nutrient Upgraded Rodent Food Bars (NuRFBs) which contain wheat flour, wheat
gluten, and corn syrup [38, 181]. It has been shown that food high in carbohydrates

107

promotes growth of species from the Bacteroidetes phylum [182, 183]. This explains
why Bacteroidetes make up the largest share.

Regarding the r-identification of the contigs, we present the top 10 species (with
respect to the number of contigs) and their phylum in Table 5.1. This shows that
not only was the host correctly identified, the profile also predicted the correct
phyla. On closer inspection, however, we found it curious that none of species from
the genus Parabacteroides present in the profile (see Figure 5.3) are in the top 10 or
even the top 50 of the assembly output. We inspected the assembly report, the k -mer
scores (see Equation 3.1) and the output of DIAMOND (which includes coverages)
and saw that almost all reads originally belonging to these species were assembled
into a few large contigs. This shows that calculating abundance based on assembled
contigs should be done with caution.

We conclude that both, taxonomic profiling of the raw reads as well as the assembled
contigs give valuable insight into the data. Using kASA for both analyses is not only
possible but useful as well.

Table 5.1: Top 10 identified species from the contigs.

Tax ID Phylum Name Num. of contigs

10090 Eukaryota Mus musculus 9510
2026724 Chloroflexi Chloroflexi bacterium 7641
83555 Chlamydiae Chlamydia abortus 6405

2026735 Proteobacteria Deltaproteobacteria bacterium 4819
1978231 Acidobacteria Acidobacteria bacterium 2659
1913989 Proteobacteria Gammaproteobacteria bacterium 2613

1496 Firmicutes Clostridioides difficile 1712
1531 Firmicutes Enterocloster clostridioformis 1588

1898104 Bacteroidetes Bacteroidetes bacterium 1580
6335 Eukaryota Trichinella nativa 1501

108

all

26%
 [not identified]

Ba
ct

er
ia

FC
B

 g
ro

u
p

B
a
ct

e
ro

id
e
te

s/
C

h
lo

ro
b
i
g
ro

u
p

Pa
ra

b
ac

te
ro

id
es

 g
ol

d
st

ei
n
ii

1
2
%Pa

ra
bacte

ro
ides s

p. B
X2 5

%

Parabacteroides sp. AF17-3 5%

Parabacteroides sp. AM58-2XD 3%

Parabacteroides sp. TM07-1AC 2%

Parabacteroides faecis 2%

Parabacteroides sp. ASF519 1%

Parabacteroides distasonis 1%

Parabacteroides sp. AF18-52 1%

Parabacteroides gordonii 1%

Parabacteroides sp. HGS0025 1%

Parabacteroides timonensis 1%

46 m
ore

B
acteroides 4%

3
7
 m

o
re

Pe
d
o
b
a
cte

r 1
%

2
3

6
 m

o
re

Terrabacteria group

Fir...tes

1
%

 E

n
te

ro
cl

o
st

e
r

1
5
6
 m

o
re

0
.9

%

 C

lo
st

ri
d
ia

ce
a
e

9
5
 m

o
re

1
%

 B

ac
ill

i

Ac...ia

3%

A
ct

in
ob

ac
te

ri
a

Prote...teria

G...a

1%

En
te

ro
ba

ct
er

ia
ce

ae

23
2

m
or

e

B...a

1%

Bur
kh

ol
de

ria
le

s

1% A
lphapro

te
obacte

ria

PV
C
 group

C
hla...diae

3% C
hlamydia abortu

s

1030 more

E
u
ka

ry
o
ta

O
p
ist...ko

n
ta

M
...a

0.8% Mus musculus

1% Trichinella

..
.

1% DikaryaS
a
r

..
.

0.9% Plasmodium yoelii15 more

Figure 5.3: Krona [173] chart of the profile generated from the raw reads.

109

5.3 Usage of spaced k-mers

It has been shown that spaced words can increase sensitivity for seeded searches [96,
97]. The principle was mentioned in Section 2.1.1 and is as follows: A word S of
length L = |S| = r + i containing r relevant positions and i irrelevant positions
is searched in an index of words. Only the relevant r positions need to match,
the irrelevant i positions can match to everything. This breaks with the usual
necessity of consecutive matches in exact matching algorithms, but the advantage is
an implicit error management: If a letter in S would be a mismatch but is at one of
the i positions, S is still considered a match. In the case of alignment software, this
match could then be extended to a longer matching word that otherwise would not
have been found. In the case of spaced k -mers, the number of relevant positions r
is usually equal to k and l = i + r is the new length of the l -mer [184]. An example
would be:

String from database: ABCDEFG

Failing exact match: ACCDE

Spaced match: A ∗ CD ∗ FG

In order to see if this approach works in kASA as well and how it performs in tan-
dem with the dynamic-k (see Section 2.2.1) we also implemented an optional spaced
k -mer approach. The first variant was to guess and apply a bit mask to the k -
mers on DNA level and then translate these to the amino acid level. This way, any
triplet containing an irrelevant position was translated to a dummy letter. However,
this lead to significant information loss in case two DNA letters were not irrele-
vant. Adding a dummy letter for each of the seven cases avoided that problem but
increased the alphabetical complexity and trie size (see Section 3.2.1).

We therefore opted for a different variant by applying a spaced mask to the amino
acid-like encoded k -mers of the input during comparisons with those of the index in
identify (see Section 3.4.5). In total, we created nine spaced masks. The largest
one for example looks like this: 1111111011010100101011001. A “1” indicates a
relevant, a “0” an irrelevant position. The first seven letters contain no zeroes
because the trie needs an exact matching to fully decrease the search space. To
work in tandem with the dynamic k approach, this spaced mask is used with a
higher k of 25. There are nine zeroes in this mask so it corresponds to a 16-mer
without spaces. That means that in order to compare the performance of the spaced
approach to the default version of kASA, it is necessary to fixate the higher k ’s in
both cases. If we set the higher k of the default version to kH = r then the spaced
mode with this mask uses a higher l of lH = r + i. The lower k is the same in both
instances.

The downside of this approach is that if a k -mer truly matches S in all positions,

110

even the irrelevant ones, there is no benefit in using this approach. On the contrary,
it could even add false positive matches that would not have matched without spaces.
This can be seen in the publication of CLARK-S [184] Supplementary Table 2, where
the precision of CLARK-S is lower than that of CLARK in almost all cases. To verify
this for kASA empirically as well, we used the robustness benchmark pipeline from
Section 4.3.1. Because we need, among others, a higher kH of 25, the read length is
increased to 1000 bases and the number of mutations in every read to 0, 160, 200,
240, 280 and 320.

In Figure 5.4 the sensitivity, precision, and F1 score (see Section 4.1.2) were calcu-
lated for all spaced masks and mutations. The sensitivity really is at times slightly
better than the contiguous version, but the precision is worse for all spaced masks.
This means that the scores for the taxa are inflated for the spaced versions, leading
to a higher number of misidentifications of the taxa in every read.

In conclusion, using the spaced version for kASA only makes sense if the data is very
noisy and the number of possible false positives is not of importance. There is no
difference regarding performance and the same index is used in both cases.

111

0 160 200 240 280 320
Mutation Percentage

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty

kASA-128_spaced_0
kASA-128_spaced_1
kASA-128_spaced_2
kASA-128_spaced_3
kASA-128_spaced_4
kASA-128_spaced_5
kASA-128_spaced_6
kASA-128_spaced_7
kASA-128_spaced_8
kASA-128_25

0 160 200 240 280 320
Mutation Percentage

0.988

0.990

0.992

0.994

0.996

0.998

1.000

Pr
ec

isi
on

kASA-128_spaced_0
kASA-128_spaced_1
kASA-128_spaced_2
kASA-128_spaced_3
kASA-128_spaced_4
kASA-128_spaced_5
kASA-128_spaced_6
kASA-128_spaced_7
kASA-128_spaced_8
kASA-128_25

0 160 200 240 280 320
Mutation Percentage

0.2

0.4

0.6

0.8

1.0

F1
_S

co
re

kASA-128_spaced_0
kASA-128_spaced_1
kASA-128_spaced_2
kASA-128_spaced_3
kASA-128_spaced_4
kASA-128_spaced_5
kASA-128_spaced_6
kASA-128_spaced_7
kASA-128_spaced_8
kASA-128_25

Figure 5.4: Sensitivity (top), precision (middle) and F1 score (bottom) of kASA for
the nine spaced masks as well as for the fixed higher k of 25. Lower k for all runs
was seven (default). Note, that the y-axis of the figures start at different values.

112

5.4 Kaiju vs kASA

Both the robustness and the CAMI benchmark in Sections 4.3.1 and 4.3.2 compare
kASA only to software working on DNA level. Since kASA is also able to take pro-
teins as input for both building the index as well as identification, we considered it
interesting for the reader to include a benchmark working solely on protein level. As
comparison, we used Kaiju [102] which we described in Section 2.1.2. As database we
used the already translated genomes included in the “Fungi” pre-selected database
from the website of Kaiju [185]. The translated genomes served as input for the
index and from the genomes themselves, DNA sequences were generated the same
way as in the robustness benchmark (albeit with fewer mutation percentages, see
Section 4.3.1). Since the authors Menzel et. al. wrote that Kaiju benefits from
longer reads, we sampled 200 base pairs (bps) instead of 100 bps randomly from
the genomes. We let kASA use six translation frames for the input since the index
consisted of already translated sequences without any indication of direction. Be-
cause most genomes contain non-coding regions, we do not expect both programs
to be able to identify every read as these parts are not included in the database.
Furthermore, Kaiju only uses open reading frames which are parts of the DNA that
begin and end with specific codons [186]. In contrast, kASA translates everything
including non-coding parts. This is something we think is the biggest difference
between the two programs aside from their identification method.

Some technical details and settings (platform was HPCC [161]): Kaiju version 1.7.4,
5 cores used during build, 5 GB RAM used (30 GB given) for build, 2.8 GB resulting
index size, ≈ 5 min needed for build, 8 cores used during identification, about 3 GB
used for identification, about 7 min in total used for identification. kASA version 1.4,
5 cores during build, 19 GB RAM used (30 GB given), 18 GB resulting index size, 6
min needed for build, “species” as taxonomic level used, 8 cores given for identifica-
tion, 28 GB RAM used (30 GB given, index loaded into RAM), identify multiple

used and about 13 min needed.

Results are visible in Figure 5.5 which shows that by default, kASA has a higher
sensitivity as well as a better robustness than Kaiju. Precision for kASA was lower
because very low scoring hits were also reported. True positives usually had k -mer
scores of more than 15, false positives less than 1. We could therefore apply a
threshold and improve precision. Everything with a k -mer score (see Equation 3.1)
lower than 1.0 was discarded. However, this threshold would only apply to this data
and with higher mutation percentages it starts to influence true positives as well.
We are nevertheless confident that any user examining the r-identification output
would be able to distinguish between a true hit and one with short, low scoring
similarities. In kASA, such threshold can be given via a command line parameter.

We conclude that thresholds can be important in differentiating between short sim-
ilarities and long, high scoring matches. After applying a threshold, kASA had not
only a better precision than Kaiju but still a better sensitivity. Figure 5.5 also showed

113

how much data could not be identified because only protein coding segments of the
genomes were used as reference. We therefore believe that our approach of also using
non-coding parts of the genome is well justified.

0 5 10 15 20
Mutation Percentage

0.0

0.2

0.4

0.6

0.8

1.0
Se

ns
iti

vi
ty

kASA
kASA_threshold
Kaiju

0 5 10 15 20
Mutation Percentage

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

kASA
kASA_threshold
Kaiju

Figure 5.5: Sensitivity (top) and precision (bottom) of Kaiju and kASA with and
without a threshold of 1.0 on the k -mer score.

114

5.5 Influence of shrink on sensitivity

In Section 3.4.3 part two, we described a way to reduce the index size by removing
k -mers from the index via a calculated or given percentage. It is obvious that this
influences sensitivity but the effect might be negligible when considering the gained
disk space and identification speed (by reducing the amount of data that need to be
streamed through the I/O). We took the robustness benchmark from Section 4.3.1 to
see how the accuracy and robustness would be influenced when certain percentages
of the index would be removed. Figure 5.6 shows the effect on the robustness should
a given percentage be kept (aside from that, default settings were used). We see
that the impact is measurable but not significant except for 10% and 20%. This
conclusion was used for the real data experiments in Section 4.4.2 were we shrunk
the index by about 60% first and then halved it with the lossless method. We
therefore recommend using this method should index size matter. Together with
the information of the redundancy from Section 3.5.3, we see this as a useful feature
and addition to kASA.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Mutation Percentage

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

kASA-10
kASA-20
kASA-30
kASA-40
kASA-50
kASA-60
kASA-70
kASA-80
kASA-90
kASA-100

Figure 5.6: Robustness benchmark for shrunken indices via a given percentage.
kASA-100 is the full index, kASA-90 is only 90% of the full index, and so on.

115

Chapter 6

Conclusions and future work

This chapter summarizes all results, theoretical and experimental, and answers the
question whether kASA truly advances the field of taxonomic profiling and metage-
nomics. Afterwards, some ideas are presented which did not work out. We also give
an outlook on what features are planned for kASA and what we might study in the
near future.

6.1 Conclusions

In Chapter 2 three major new ideas were introduced that aimed to make kASA an
outstanding software for analyzing metagenomics data. The first was the usage of a
range of k ’s, the “dynamic k”, which increases sensitivity while preserving precision
as shown in Figures 4.5 and 4.8. The second idea was the translation of the genomic
data, even the non-coding parts, from the database as well as new sequences with an
”amino acid-like encoding” in multiple frame which increases robustness as well, as
shown with Figures 4.10, 4.11 and 4.12. Especially the translation of the non-coding
parts proves to be advantageous, which was covered in Section 5.4. The third idea
was the restriction of primary memory. This was made possible by first holding the
index in secondary memory and then processing the input in blocks. The impact
on the performance was shown in Figure 4.16 and is significant. However, usage
of high bandwidth communication protocols and hardware (SSDs) alleviates this
bottleneck. The following paragraph explains how well kASA performs the task of
taxonomic profiling and elaborates further on our new ideas.

As we have seen in Chapter 4, kASA is excellently suited to correctly identify and
profile genomic or protein data. Both of our created snakemake benchmarks pre-
sented in Sections 4.3.1 and 4.3.2 show that kASA has not only a higher robustness
but also a very good accuracy in contrast to most of the existing tested software
from which we drew our inspiration for kASA. When using data from other bench-
marks like in Sections 4.2.1 and 4.2.2 we were also able to outperform or draw level

116

with the existing software. Furthermore, the real data tests in Section 4.4 showed
that kASA can calculate profiles which are very similar to those from Kraken2 or
Centrifuge. This further proves that our methods work, even if the true distribution
of taxa is unknown which is usually the case. We can therefore conclude that kASA

is able to fulfill the task of taxonomic profiling of metagenomic data.

To see if our methods (dynamic k and amino acid-like encoding) would work not
only together but by themselves, we added the experiments shown in Figures 4.8
and 4.10. It became clear that the strategy of using a dynamic k has a positive effect
on the sensitivity without harming precision. Furthermore, enlarging the interval of
k ’s has only a linear effect on the execution time as long as the lowest k is larger
than six. This was predicted in Section 2.2.1 and seen in Figure 4.19. We can
therefore only reiterate our statement and say that the additional execution time
proves worthwhile for increasing accuracy.

Regarding the amino acid-like encoding, we see that it does increase robustness
against mutations. As mentioned in Section 2.2.2, we lose information during trans-
lation and sorting. We also see in Figure 5.2 that the alphabet itself does not have a
major impact. It is therefore questionable if the inherent balance of robustness and
uniqueness of the standard alphabet as seen in Figure 5.1 is really an advantage in
itself. What does influence robustness visibly is the usage of more than one transla-
tion frame, as can be seen in Figures 4.4 and 4.12. We conclude that the translation
as a whole positively influences robustness against mutation as at least one k -mer
in three or six frames is unlikely to be affected by a mutation.

From a technical viewpoint, the restrictability regarding primary memory is the
major feature of kASA. The strategy described in Section 2.2.3 enables our program
to perform taxonomic profiling even on mainstream hardware with a parameter
restricting the amount of primary memory. It was also designed to use all given and
available primary memory, as can be seen in Figure 4.15. Furthermore, we see in
Figures 4.16 and 4.18 that both the amount of primary memory and the throughput
influence the execution time so an increase in both benefits the program up to a
certain point of saturation. Providing more cores reduces the execution time, but
with an increasing number of cores, the value per core reduces significantly. We
do not see that as an issue since kASA was primarily designed for systems with
a small number of cores and usually, more than one file must be analyzed. This
can be done with the identify multiple mode (see Section 3.5.1) which uses the
available resources as best as possible and therefore mitigates some of these effects.
In conclusion, we made it possible for kASA to run on any system which offers at
least 5 GB of RAM without loss of accuracy as long as enough secondary memory is
available. It benefits from systems providing more resources and is therefore suited
for most of the targeted user base.

This versatility is also reflected by the number of adjustable parameters for kASA

which is quite high. Almost all of them have default values, but some depend on the

117

study and user preference. Therefore, a wiki and a comprehensive README file
with various tips can be found on our GitHub page [10]. The three major parameters
that need some attention are the interval of k ’s, the number of gigabytes for the
primary memory usage and the number of frames. Depending on the lengths of the
reads, a higher k of 25 my be preferred (default is 12). The number of gigabytes
for primary memory usage that makes the most sense is usually system dependent
so it is up to the user to configure this. Finally, the decision on the number of
frames is a decision between speed and space requirements. Using six translation
frames for build results in a larger index than using only three or one frame would
have. Should six or three frames be used for the index, using only one frame for
identify harms robustness only slightly (see Figure 4.12) thus increasing speed.
However using only one frame for build and three or six for identify saves space
but increases wall-clock time. What makes more sense depends on how often the
index is used and how important robustness is. We argue that performance is not
as important as quality and therefore recommend using three or six frames in both
build and identify.

Another aspect is how representative our experiments are for the real world. The
experiments with real data have been added to give the reader and user an insight
into what studies kASA can be used for. Usually, metagenomic studies are undertaken
as described in Section 1.1. Looking at the assembly path, decontamination may be
necessary. The experiment in Section 4.4.3 shows how this can be done via filtering
out reads based on the error score (see Equation 3.2). Analyzing the resulting
assembled contigs via kASA’s r-identification output can be done like in Section 5.2. If
the other path of directly calculating the taxonomic profile is chosen, our experiment
in Section 4.4.2 shows what findings can be obtained and how it may be visualized.
Therefore, our various experiments give a good overview of what real studies look
like and how kASA can contribute to new studies.

What must be mentioned however, is that there may be some instances where kASA is
not the best choice. Especially if enough primary memory is available, the lengths of
the reads are small (< 100 bp) and/or the number of sequencing errors or mutations
is close to zero. In these cases, methods using hash tables (see Section 2.1.3) are
faster and still have a good sensitivity (see Figures 4.4 and 4.14). Another instance
would be if the hardware to support high throughput is not available (SSDs for
example) because kASA needs a high bandwidth for access to secondary memory
(see Figures 4.16 and 4.17).

We also encountered some issues which must be mentioned as well. One major
problem is the number of random matches from taxa which share some similarity
with a sequence of amino acid-like encoded k -mers. Even though most of the time
they can be discarded with a threshold, very noisy data might lower the highest
possible score so that taxonomic assignments of reads become ambiguous. We would
like to mention that such matches are not false matches or errors in the judgment
of our software. kASA simply reports every similarity it encounters starting from the

118

lowest k. Because every living matter on earth is related to one another as far as we
know [50], we are bound to find such similarities. However, we do admit, that due
to the translation from DNA to amino acid-like strings, we inherently introduce the
possibility of matches on that level, which would not be possible on the DNA level.
That means that if the user wants to make sure if that assignment is correct, they
can run the experiment again on a database containing, for example, the genes of the
suspected taxon. Should the read still have the suspected taxon assigned to it, it is
unlikely to be a random match. Note, that we do not advise the user to naively only
use databases consisting of protein sequences because there are non-coding regions
that are highly conserved as well (see our experiment in Section 5.4).

Another issue was the size of the indices we had to create for our experiments.
Especially for the real world tests (see Section 4.4), the indices generated from
the complete RefSeq [170] or even the bacterial database soon scaled even beyond
the available secondary memory. In Section 3.4.3 we presented three methods of
reducing the size of those indices, the second method (see here: 3.4.3) can even be
applied during building. However, that implies a loss of k -mers and thus a decrease
of accuracy. The user could use only one translation frame for the index and then
six for every input file but this increases the execution time significantly. However,
given the fact that in Figure 5.6 we see that the accuracy is not influenced unless a
large percentage of k -mers is lost and that the price of every gigabyte continues to
sink, we are confident that this problem can be resolved.

6.2 Goals reached

We would also like to reiterate our Goals from Section 1.2.2 and how we achieved
them:

Goal 1 stated that kASA must be able to support even large numbers of genomes
as reference. Due to our memory restriction presented in Section 2.2.3, most of the
reference lies on secondary memory so we consider this goal achieved.

Adding to this, Goal 2 required our software to be able to add or delete genomes
from our index. This is supported by the modules update and delete described in
Section 3.4.4.

Goal 3 stems from the necessity of supporting all sequence lengths and current
technologies. The first part was achieved by choosing a k -mer based approach which,
due to its fixed size, only creates more k -mers the longer the sequence gets. We also
implemented support for paired-end input [70], and therefore fully achieve this goal.

We presented two new methods “dynamic k” and “amino acid-like encoding” in
Sections 2.2.1 and 2.2.2, and tested them in Section 4.3.1. Our conclusion from this,
is that the robustness of kASA is high enough to achieve Goal 4. It stated that kASA
must be robust to nucleotide changes in either the reference or sequence.

119

From a technical point of view, Goal 5 says that we should try to simplify the use
of our software as much as possible. This includes availability on most platforms
and operating systems. By employing various implementation techniques and com-
patibility checks mentioned in Section 3.1, we are as close to achieving this goal
as possible and meaningful. We would like to also support the ARM64 architec-
ture [187] in the near future.

The final Goal 6 stated in Chapter 1.2.2 said that kASA should:

1. correctly and efficiently identify any valid sequence belonging to a known
species

2. not use more memory than given by the user

3. provide easy access as well as a variety of options for any user

4. be as independent of platform and other software as possible

5. provide significant scientific value for metagenomic and thematically related
studies

We proved the first and second point to be the case in our experiments in Chapter 4
and described in Chapter 3 how we achieved the fourth requirement. For the third
point, we provide several methods to balance wall-clock times, space usage and
memory consumption. These are also explained on our GitHub page [10]. If users
need a smaller index, they can reduce the index either with or without information
loss (if the requirements are met) and use one or three frames instead of six during
creation. This may reduce accuracy. If wall-clock time is critical, users can use
more resources or reduce the number of frames and load the index into primary
memory. This uses more RAM and leads to greater consumption of both primary
and secondary memory. Finally, if primary memory is limited, users can set a limit
that kASA does not exceed and the index can be moved to an SSD, for example,
which slightly increases execution time.

Consequently, we find the fifth point to be true and with kASA virtually every life
scientist with a laptop should now have the technical means to taxonomically pro-
file metagenomic data. Hence, we fully described the development and use of the
software kASA.

6.3 Failed ideas

While developing kASA, we also tried ideas which did not work out in the end. We
now present some of them, give context, and then explain why they did not work
out.

• Using a hash table instead of a trie
As can be seen in Figure 4.19, using a k lower than seven impacts the execution

120

time quite severely. We therefore set the default lower k to seven. This could
lead to users only choosing the default lower k. However, one benefit of the
trie is, that is does not need to be fully traversed to get the range of the
index. If this is not used, we could simply use a hash table of fixed length
6-mers instead. When we did that however, we found out that speed gain was
marginal but primary memory usage increased by a large degree. It worsened
by using a lookup table albeit it was a bit faster. At the end, using the trie
for prefix matches was never the bottleneck of performance for kASA therefore
optimizing this step ultimately seemed pointless.

• Going read-by-read instead of gathering data in a container
This can be simulated by lowering the memory restriction so that only one read
can be processed at a time. As can be seen in Figure 4.16 there is no benefit
in doing that. One could argue that this would be much more parallelizable
and we agree. However, the cache plays a major role for secondary memory
access and changing pages every time due to random accesses converging to
random noise is doomed to fail.

• Reducing the alphabet to increase k by using less than five bits per letter
We actually tried to further translate the amino acid-like coded words into
even smaller k -mers of length six to reduce the index to the trie entirely. This
resulted in the F1 score dropping to 0.5 in the robustness benchmark even
when no mutations occurred. It is therefore not suitable for our purpose. One
could use the 16 letter alphabet and save one bit but this would destroy the
compatibility with protein sequences.

• Using external sorting with stxxl::sort

In our early development phase, we thought it best to convert both the ref-
erence database as well as the input to external containers and then stream
both to keep below the memory restriction. This implied sorting the exter-
nally stored input with the sorting algorithm of the STXXL. Since this is not
in-place due to the implementation being a merge sort algorithm, a file of the
same size as the input was created. Not only did this take very long it was just
not possible with large files due to our secondary memory running out after a
while.

• Manual buffering of the index
To counterbalance the bottleneck of streaming the index, we tried preloading
the range given by the trie before comparing with the input. It turns out that
most of the time, only a small percentage of that range really mattered and
so we loaded much more than necessary into memory.

• Implementing a galloping search [188] instead of using binary search
When fetching the range inside the index from the trie and searching for the
first matching k -mer, a binary search would fetch the start and the end before
halving the range. This could force the pager to load a page near the end

121

of the range even though it may never be used. We therefore thought that
beginning at the start and using a galloping search would be more sequential
than random access and thus benefit the streaming of the index. We found
out that the galloping search needed more comparisons and took longer than
just using binary search.

• Deleting k -mers with the BLOSUM matrix [91]
The BLOSUM matrix can be used to score how close a protein sequence is to
another, not-identical one. This means that if, for example, only one amino
acid is a mismatch and the matrix shows that this substitution occurs often,
it can still count as a match. We tried using the Levenshtein distance [189]
together with the BLOSUM80 matrix, deleting all similar k -mers and thus only
using discriminative k -mers like CLARK or removing all k -mers sharing the
same prefix/suffix. But ultimately, none of these approaches either produced
acceptable results or took too long to be considered useful.

• Updating the index in-place
The downside of our algorithm used in update and merge is that it creates a
new file instead of modifying the existing one. However, adding an element
into an existing array is of linear time complexity in the length of the array.
This means that the large external index would need to be shifted every time
an element is added into its position. This is obviously not viable. There are
also no implementations of an external list and with stxxl::vector being the
only persistent data structure available, we abandoned this idea.

• Compressing the index
When we designed the format of our index, we knew that the redundancy
of saving identical k -mers with only a difference in the taxonomic ID would
needlessly increase the size. Since the stxxl::vector class needs a fixed bit
size beforehand, this space would be spend regardless so we considered it to
be a necessary evil. Later, we tried to compress the index by packing k -mers
and the respective taxonomic IDs next to each other. We used a run length
encoding so that the first number would be the number of taxonomic IDs
following the k -mer. This way we knew how many bits would belong to one
entry and could save the entries next to each other. A visualization would be
a text with line breaks. This compressed the index and saved about 20% but
increased build time (as the large index would need to be built first anyway)
and identification time as the decompression could only be applied sequentially.
Saving space this way ultimately seemed not worth the effort and time, so it
was scrapped.

122

6.4 Future work

In Section 5.1 we mentioned that there might be a codon table together with an
alphabet, other than the standard one, that optimizes robustness and precision.
Finding such a table and alphabet is not trivial however as the search space is very
large. Sophisticated optimization techniques could be employed but creating a model
is by no means straightforward. Our software together with our snakemake bench-
marks offer a testing platform however. Therefore, if interest in further exploring
this open question from the community rises, it would be possible to do so.

Inspired by software using alignments (see Section 2.1.1), we also saw potential in
saving genome positions along with the k -mers generated from reference genomes.
This would make it possible to distinguish random matches from more meaningful
overlapping matches of k -mers. It would only work for a small number of reference
genomes and require post-processing of the matches but might be worthwhile for
increasing confidence in a reported taxon for a read.

After kASA was published [9], a proposal has been made on GitHub to support real-
time streamed sequencing data that can be output with MinION [164]. Since kASA

runs on most laptops, this combination seems quite useful for researchers who are
frequently on the road (e.g., on a ship).

Lastly, using kASA not only for metagenomics but also metatranscriptomics is an
obvious generalization. Using a protein database and the profile for gene calling
and quantification seems to be a straightforward way of extending studies aiming
for both research topics.

We sum up by saying that we are confident that kASA will stay relevant for the
foreseeable future. It is currently used in multiple collaboration projects either for
replacing existing software in pipelines or as a standalone to study for example the
link between Human gammaherpesvirus 4 and multiple sclerosis. Due to the time
period in which these projects are being conducted, none have been published yet,
but we are actively working to give kASA the attention it deserves.

123

Bibliography

[1] J. D. WATSON and F. H. C. CRICK. Molecular Structure of Nucleic Acids:
A Structure for Deoxyribose Nucleic Acid. Nature 171 (Apr. 1953), 737–738.
doi: 10.1038/171737a0. url: https://doi.org/10.1038/171737a0.

[2] C. E. Bruder, A. Piotrowski, A. A. Gijsbers, R. Andersson, S. Erickson,
T. Diaz de St̊ahl, U. Menzel, J. Sandgren, D. von Tell, A. Poplawski, M.
Crowley, C. Crasto, E. C. Partridge, H. Tiwari, D. B. Allison, J. Komorowski,
G.-J. B. van Ommen, D. I. Boomsma, N. L. Pedersen, J. T. den Dunnen, K.
Wirdefeldt, and J. P. Dumanski. Phenotypically Concordant and Discordant
Monozygotic Twins Display Different DNA Copy-Number-Variation Profiles.
The American Journal of Human Genetics 82 (Mar. 2008), 763–771. doi:
10.1016/j.ajhg.2007.12.011. url: https://doi.org/10.1016/j.ajhg
.2007.12.011.

[3] B. Adewale. Will long-read sequencing technologies replace short-read se-
quencing technologies in the next 10 years? African Journal of Laboratory
Medicine 9 (2020), 5. doi: 10.4102/ajlm.v9i1.1340. url: https://ajlmo
nline.org/index.php/ajlm/article/view/1340.

[4] E. S. Lander et al. Initial sequencing and analysis of the human genome.
Nature 409 (Feb. 2001), 860–921. doi: 10.1038/35057062. url: https://d
oi.org/10.1038/35057062.

[5] Bethesda(MD). Nucleotide [Internet]. National Library of Medicine (US), Na-
tional Center for Biotechnology Information (2004). url: https://www.ncb
i.nlm.nih.gov/nucleotide/.

[6] J. Babickova and R. Gardlik. Pathological and therapeutic interactions be-
tween bacteriophages, microbes and the host in inflammatory bowel disease.
eng. World journal of gastroenterology 21 (Oct. 2015). PMC4616208[pmcid],
11321–11330. doi: 10.3748/wjg.v21.i40.11321. url: https://doi.org/1
0.3748/wjg.v21.i40.11321.

[7] A. B. R. McIntyre, R. Ounit, E. Afshinnekoo, R. J. Prill, E. Hénaff, N.
Alexander, S. S. Minot, D. Danko, J. Foox, S. Ahsanuddin, S. Tighe, N. A.
Hasan, P. Subramanian, K. Moffat, S. Levy, S. Lonardi, N. Greenfield, R. R.
Colwell, G. L. Rosen, and C. E. Mason. Comprehensive benchmarking and
ensemble approaches for metagenomic classifiers. Genome Biology 18 (Sept.

124

https://doi.org/10.1038/171737a0
https://doi.org/10.1038/171737a0
https://doi.org/10.1016/j.ajhg.2007.12.011
https://doi.org/10.1016/j.ajhg.2007.12.011
https://doi.org/10.1016/j.ajhg.2007.12.011
https://doi.org/10.4102/ajlm.v9i1.1340
https://ajlmonline.org/index.php/ajlm/article/view/1340
https://ajlmonline.org/index.php/ajlm/article/view/1340
https://doi.org/10.1038/35057062
https://doi.org/10.1038/35057062
https://doi.org/10.1038/35057062
https://www.ncbi.nlm.nih.gov/nucleotide/
https://www.ncbi.nlm.nih.gov/nucleotide/
https://doi.org/10.3748/wjg.v21.i40.11321
https://doi.org/10.3748/wjg.v21.i40.11321
https://doi.org/10.3748/wjg.v21.i40.11321

2017), 182. doi: 10.1186/s13059-017-1299-7. url: https://doi.org/10
.1186/s13059-017-1299-7.

[8] A. Sczyrba, P. Hofmann, P. Belmann, D. Koslicki, S. Janssen, J. Dröge, I.
Gregor, S. Majda, J. Fiedler, E. Dahms, A. Bremges, A. Fritz, R. Garrido-
Oter, T. S. Jørgensen, N. Shapiro, P. D. Blood, A. Gurevich, Y. Bai, D.
Turaev, M. Z. DeMaere, R. Chikhi, N. Nagarajan, C. Quince, F. Meyer,
M. Balvociute, L. H. Hansen, S. J. Sørensen, B. K. H. Chia, B. Denis, J. L.
Froula, Z. Wang, R. Egan, D. Don Kang, J. J. Cook, C. Deltel, M. Beckstette,
C. Lemaitre, P. Peterlongo, G. Rizk, D. Lavenier, Y.-W. Wu, S. W. Singer,
C. Jain, M. Strous, H. Klingenberg, P. Meinicke, M. D. Barton, T. Lingner,
H.-H. Lin, Y.-C. Liao, G. G. Z. Silva, D. A. Cuevas, R. A. Edwards, S.
Saha, V. C. Piro, B. Y. Renard, M. Pop, H.-P. Klenk, M. Göker, N. C.
Kyrpides, T. Woyke, J. A. Vorholt, P. Schulze-Lefert, E. M. Rubin, A. E.
Darling, T. Rattei, and A. C. McHardy. Critical Assessment of Metagenome
Interpretation–a benchmark of metagenomics software. Nature Methods 14
(Oct. 2017), 1063 EP. url: http://dx.doi.org/10.1038/nmeth.4458.

[9] S. Weging, A. Gogol-Döring, and I. Grosse. Taxonomic Analysis of Metage-
nomic Data with kASA. Nucleic Acids Research (Apr. 2021). doi: 10.1093
/nar/gkab200. url: https://doi.org/10.1093/nar/gkab200.

[10] kASA GitHub Page. url: https://github.com/SilvioWeging/kASA.
[11] kASA Robustness Benchmark GitHub Page. url: https://github.com/Sil

vioWeging/kASA_snakemake.
[12] kASA CAMI Benchmark GitHub Page. url: https://github.com/SilvioW

eging/kASA_cami.
[13] A. Escobar-Zepeda, A. Vera-Ponce de León, and A. Sanchez-Flores. The Road

to Metagenomics: From Microbiology to DNA Sequencing Technologies and
Bioinformatics. Frontiers in Genetics 6 (2015), 348. doi: 10.3389/fgene.2
015.00348. url: https://www.frontiersin.org/article/10.3389/fgen
e.2015.00348.

[14] S. Hamarneh. Measuring the Invisible World. The life and works of Antoni
van Leeuwenhoek. A. Schierbeek. Abelard-Schuman, New York, 1959. 223 pp.
$4. Science 132 (1960), 289–290. doi: 10.1126/science.132.3422.289.
eprint: https://science.sciencemag.org/content/132/3422/289.full
.pdf. url: https://science.sciencemag.org/content/132/3422/289.

[15] M. S. B. Steve M. Blevins. Robert Koch and the ‘golden age’ of bacteriology.
International Journal of Infectious Diseases 14 (2010), E744–E751. doi: 10
.1016/j.ijid.2009.12.003. url: https://www.ijidonline.com/articl
e/S1201-9712(10)02314-3/fulltext.

[16] J. T. Staley and A. Konopka. MEASUREMENT OF IN SITU ACTIVITIES
OF NONPHOTOSYNTHETIC MICROORGANISMS IN AQUATIC AND
TERRESTRIAL HABITATS. Annual Review of Microbiology 39 (1985).
PMID: 3904603, 321–346. doi: 10.1146/annurev.mi.39.100185.001541.

125

https://doi.org/10.1186/s13059-017-1299-7
https://doi.org/10.1186/s13059-017-1299-7
https://doi.org/10.1186/s13059-017-1299-7
http://dx.doi.org/10.1038/nmeth.4458
https://doi.org/10.1093/nar/gkab200
https://doi.org/10.1093/nar/gkab200
https://doi.org/10.1093/nar/gkab200
https://github.com/SilvioWeging/kASA
https://github.com/SilvioWeging/kASA_snakemake
https://github.com/SilvioWeging/kASA_snakemake
https://github.com/SilvioWeging/kASA_cami
https://github.com/SilvioWeging/kASA_cami
https://doi.org/10.3389/fgene.2015.00348
https://doi.org/10.3389/fgene.2015.00348
https://www.frontiersin.org/article/10.3389/fgene.2015.00348
https://www.frontiersin.org/article/10.3389/fgene.2015.00348
https://doi.org/10.1126/science.132.3422.289
https://science.sciencemag.org/content/132/3422/289.full.pdf
https://science.sciencemag.org/content/132/3422/289.full.pdf
https://science.sciencemag.org/content/132/3422/289
https://doi.org/10.1016/j.ijid.2009.12.003
https://doi.org/10.1016/j.ijid.2009.12.003
https://www.ijidonline.com/article/S1201-9712(10)02314-3/fulltext
https://www.ijidonline.com/article/S1201-9712(10)02314-3/fulltext
https://doi.org/10.1146/annurev.mi.39.100185.001541

eprint: https://doi.org/10.1146/annurev.mi.39.100185.001541. url:
https://doi.org/10.1146/annurev.mi.39.100185.001541.

[17] M. McFall-Ngai. Are biologists in ’future shock’? Symbiosis integrates biology
across domains. Nature Reviews Microbiology 6 (Oct. 2008), 789–792. doi:
10.1038/nrmicro1982. url: https://doi.org/10.1038/nrmicro1982.

[18] C. R. Woese and G. E. Fox. Phylogenetic structure of the prokaryotic domain:
The primary kingdoms. Proceedings of the National Academy of Sciences 74
(1977), 5088–5090. doi: 10.1073/pnas.74.11.5088. eprint: https://www.p
nas.org/content/74/11/5088.full.pdf. url: https://www.pnas.org/c
ontent/74/11/5088.

[19] S. K. Heijs, R. R. Haese, P. W. J. J. van der Wielen, L. J. Forney, and
J. D. van Elsas. Use of 16S rRNA Gene Based Clone Libraries to Assess
Microbial Communities Potentially Involved in Anaerobic Methane Oxidation
in a Mediterranean Cold Seep. Microbial Ecology 53 (Apr. 2007), 384–398.
doi: 10.1007/s00248-006-9172-3. url: https://doi.org/10.1007/s002
48-006-9172-3.

[20] W. G. Weisburg, S. M. Barns, D. A. Pelletier, and D. J. Lane. 16S riboso-
mal DNA amplification for phylogenetic study. Journal of Bacteriology 173
(1991), 697–703. doi: 10.1128/jb.173.2.697-703.1991. eprint: https://j
b.asm.org/content/173/2/697.full.pdf. url: https://jb.asm.org/co
ntent/173/2/697.

[21] B. A. Lodish H and Z. S. et al. DNA Cloning with Plasmid Vectors. Molecular
Cell Biology 4th edition (2000), Section 7.1. url: https://www.ncbi.nlm
.nih.gov/books/NBK21498/.

[22] W. Gerlach and J. Bedbrook. Cloning and characterization of ribosomal RNA
genes from wheat and barley. Nucleic Acids Research 7 (Dec. 1979), 1869–
1885. doi: 10.1093/nar/7.7.1869. eprint: https://academic.oup.com/na
r/article-pdf/7/7/1869/7056022/7-7-1869.pdf. url: https://doi.or
g/10.1093/nar/7.7.1869.

[23] J. Handelsman, M. R. Rondon, S. F. Brady, J. Clardy, and R. M. Goodman.
Molecular biological access to the chemistry of unknown soil microbes: a new
frontier for natural products. Chem Biol 5 (Oct. 1998), R245–249. url: htt
ps://www.cell.com/cell-chemical-biology/pdf/S1074-5521(98)90108

-9.pdf?_returnURL=https%5C%3A%5C%2F%5C%2Flinkinghub.elsevier.co

m%5C%2Fretrieve%5C%2Fpii%5C%2FS1074552198901089%5C%3Fshowall%5C

%3Dtrue.
[24] T. D. Brock. The value of basic research: discovery of Thermus aquaticus and

other extreme thermophiles. eng. Genetics 146 (Aug. 1997), 1207–1210. url:
https://pubmed.ncbi.nlm.nih.gov/9258667.

[25] R. Saiki, S. Scharf, F. Faloona, K. Mullis, G. Horn, H. Erlich, and N. Arnheim.
Enzymatic amplification of beta-globin genomic sequences and restriction site
analysis for diagnosis of sickle cell anemia. Science 230 (1985), 1350–1354.
doi: 10.1126/science.2999980. eprint: https://science.sciencemag.or

126

https://doi.org/10.1146/annurev.mi.39.100185.001541
https://doi.org/10.1146/annurev.mi.39.100185.001541
https://doi.org/10.1038/nrmicro1982
https://doi.org/10.1038/nrmicro1982
https://doi.org/10.1073/pnas.74.11.5088
https://www.pnas.org/content/74/11/5088.full.pdf
https://www.pnas.org/content/74/11/5088.full.pdf
https://www.pnas.org/content/74/11/5088
https://www.pnas.org/content/74/11/5088
https://doi.org/10.1007/s00248-006-9172-3
https://doi.org/10.1007/s00248-006-9172-3
https://doi.org/10.1007/s00248-006-9172-3
https://doi.org/10.1128/jb.173.2.697-703.1991
https://jb.asm.org/content/173/2/697.full.pdf
https://jb.asm.org/content/173/2/697.full.pdf
https://jb.asm.org/content/173/2/697
https://jb.asm.org/content/173/2/697
https://www.ncbi.nlm.nih.gov/books/NBK21498/
https://www.ncbi.nlm.nih.gov/books/NBK21498/
https://doi.org/10.1093/nar/7.7.1869
https://academic.oup.com/nar/article-pdf/7/7/1869/7056022/7-7-1869.pdf
https://academic.oup.com/nar/article-pdf/7/7/1869/7056022/7-7-1869.pdf
https://doi.org/10.1093/nar/7.7.1869
https://doi.org/10.1093/nar/7.7.1869
https://www.cell.com/cell-chemical-biology/pdf/S1074-5521(98)90108-9.pdf?_returnURL=https%5C%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS1074552198901089%5C%3Fshowall%5C%3Dtrue
https://www.cell.com/cell-chemical-biology/pdf/S1074-5521(98)90108-9.pdf?_returnURL=https%5C%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS1074552198901089%5C%3Fshowall%5C%3Dtrue
https://www.cell.com/cell-chemical-biology/pdf/S1074-5521(98)90108-9.pdf?_returnURL=https%5C%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS1074552198901089%5C%3Fshowall%5C%3Dtrue
https://www.cell.com/cell-chemical-biology/pdf/S1074-5521(98)90108-9.pdf?_returnURL=https%5C%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS1074552198901089%5C%3Fshowall%5C%3Dtrue
https://www.cell.com/cell-chemical-biology/pdf/S1074-5521(98)90108-9.pdf?_returnURL=https%5C%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS1074552198901089%5C%3Fshowall%5C%3Dtrue
https://pubmed.ncbi.nlm.nih.gov/9258667
https://doi.org/10.1126/science.2999980
https://science.sciencemag.org/content/230/4732/1350.full.pdf
https://science.sciencemag.org/content/230/4732/1350.full.pdf
https://science.sciencemag.org/content/230/4732/1350.full.pdf

g/content/230/4732/1350.full.pdf. url: https://science.sciencema
g.org/content/230/4732/1350.

[26] R. Verhelst, H. Verstraelen, G. Claeys, G. Verschraegen, J. Delanghe, L. Van
Simaey, C. De Ganck, M. Temmerman, and M. Vaneechoutte. Cloning of 16S
rRNA genes amplified from normal and disturbed vaginal microflora suggests
a strong association between Atopobium vaginae, Gardnerella vaginalis and
bacterial vaginosis. BMC Microbiology 4 (Apr. 2004), 16. doi: 10.1186/147
1-2180-4-16. url: https://doi.org/10.1186/1471-2180-4-16.

[27] F. Sanger and A. Coulson. A rapid method for determining sequences in DNA
by primed synthesis with DNA polymerase. Journal of Molecular Biology 94
(1975), 441–448. doi: https://doi.org/10.1016/0022-2836(75)90213-2.
url: https://www.sciencedirect.com/science/article/pii/002228367
5902132.

[28] C. Ledergerber and C. Dessimoz. Base-calling for next-generation sequencing
platforms. Briefings in Bioinformatics 12 (Jan. 2011), 489–497. doi: 10.1093
/bib/bbq077. eprint: https://academic.oup.com/bib/article-pdf/12/5
/489/747085/bbq077.pdf. url: https://doi.org/10.1093/bib/bbq077.

[29] T. J. Sharpton. An introduction to the analysis of shotgun metagenomic data.
Frontiers in Plant Science 5 (2014), 209. doi: 10.3389/fpls.2014.00209.
url: https://www.frontiersin.org/article/10.3389/fpls.2014.00209
.

[30] C. Quince, A. W. Walker, J. T. Simpson, N. J. Loman, and N. Segata. Shotgun
metagenomics, from sampling to analysis. Nature Biotechnology 35 (Sept.
2017), 833–844. doi: 10.1038/nbt.3935. url: https://doi.org/10.1038
/nbt.3935.

[31] J. J. Kasianowicz, E. Brandin, D. Branton, and D. W. Deamer. Charac-
terization of individual polynucleotide molecules using a membrane channel.
Proceedings of the National Academy of Sciences 93 (1996), 13770–13773.
doi: 10.1073/pnas.93.24.13770. eprint: https://www.pnas.org/content
/93/24/13770.full.pdf. url: https://www.pnas.org/content/93/24/1
3770.

[32] E. B. Fichot and R. S. Norman. Microbial phylogenetic profiling with the
Pacific Biosciences sequencing platform. Microbiome 1 (Mar. 2013), 10. doi:
10.1186/2049-2618-1-10. url: https://doi.org/10.1186/2049-2618-1
-10.

[33] A. Gupta, R. Gupta, and R. L. Singh. “Microbes and Environment.” Princi-
ples and Applications of Environmental Biotechnology for a Sustainable Fu-
ture. Ed. by R. L. Singh. Springer Singapore 2017, 43–84. doi: 10.1007/978
-981-10-1866-4_3. url: https://doi.org/10.1007/978-981-10-1866-4
_3.

[34] J. C. Venter, K. Remington, J. F. Heidelberg, A. L. Halpern, D. Rusch, J. A.
Eisen, D. Wu, I. Paulsen, K. E. Nelson, W. Nelson, D. E. Fouts, S. Levy,
A. H. Knap, M. W. Lomas, K. Nealson, O. White, J. Peterson, J. Hoffman,

127

https://science.sciencemag.org/content/230/4732/1350.full.pdf
https://science.sciencemag.org/content/230/4732/1350.full.pdf
https://science.sciencemag.org/content/230/4732/1350.full.pdf
https://science.sciencemag.org/content/230/4732/1350
https://science.sciencemag.org/content/230/4732/1350
https://doi.org/10.1186/1471-2180-4-16
https://doi.org/10.1186/1471-2180-4-16
https://doi.org/10.1186/1471-2180-4-16
https://doi.org/https://doi.org/10.1016/0022-2836(75)90213-2
https://www.sciencedirect.com/science/article/pii/0022283675902132
https://www.sciencedirect.com/science/article/pii/0022283675902132
https://doi.org/10.1093/bib/bbq077
https://doi.org/10.1093/bib/bbq077
https://academic.oup.com/bib/article-pdf/12/5/489/747085/bbq077.pdf
https://academic.oup.com/bib/article-pdf/12/5/489/747085/bbq077.pdf
https://doi.org/10.1093/bib/bbq077
https://doi.org/10.3389/fpls.2014.00209
https://www.frontiersin.org/article/10.3389/fpls.2014.00209
https://www.frontiersin.org/article/10.3389/fpls.2014.00209
https://doi.org/10.1038/nbt.3935
https://doi.org/10.1038/nbt.3935
https://doi.org/10.1038/nbt.3935
https://doi.org/10.1073/pnas.93.24.13770
https://www.pnas.org/content/93/24/13770.full.pdf
https://www.pnas.org/content/93/24/13770.full.pdf
https://www.pnas.org/content/93/24/13770
https://www.pnas.org/content/93/24/13770
https://doi.org/10.1186/2049-2618-1-10
https://doi.org/10.1186/2049-2618-1-10
https://doi.org/10.1186/2049-2618-1-10
https://doi.org/10.1007/978-981-10-1866-4_3
https://doi.org/10.1007/978-981-10-1866-4_3
https://doi.org/10.1007/978-981-10-1866-4_3
https://doi.org/10.1007/978-981-10-1866-4_3

R. Parsons, H. Baden-Tillson, C. Pfannkoch, Y.-H. Rogers, and H. O. Smith.
Environmental Genome Shotgun Sequencing of the Sargasso Sea. Science 304
(2004), 66–74. doi: 10.1126/science.1093857. eprint: https://science.s
ciencemag.org/content/304/5667/66.full.pdf. url: https://science
.sciencemag.org/content/304/5667/66.

[35] R. Pedron, A. Esposito, I. Bianconi, E. Pasolli, A. Tett, F. Asnicar, M. Cristo-
folini, N. Segata, and O. Jousson. Genomic and metagenomic insights into
the microbial community of a thermal spring. Microbiome 7 (Jan. 2019), 8.
doi: 10.1186/s40168-019-0625-6. url: https://doi.org/10.1186/s401
68-019-0625-6.

[36] D. Schneider, N. Aßmann, D. Wicke, A. Poehlein, and R. Daniel. Metagenomes
of Wastewater at Different Treatment Stages in Central Germany. Microbi-
ology Resource Announcements 9 (2020). Ed. by F. J. Stewart. doi: 10.112
8/MRA.00201-20. eprint: https://mra.asm.org/content/9/15/e00201-20
.full.pdf. url: https://mra.asm.org/content/9/15/e00201-20.

[37] R. Saxena and V. Sharma. “Chapter 9 - A Metagenomic Insight Into the
Human Microbiome: Its Implications in Health and Disease.” Medical and
Health Genomics. Ed. by D. Kumar and S. Antonarakis. Academic Press
2016, 107–119. doi: https://doi.org/10.1016/B978-0-12-420196-5.000
09-5. url: https://www.sciencedirect.com/science/article/pii/B97
80124201965000095.

[38] G. JM, G. SJ, L. P. S, S.-B. AM, F. HW, B. NB, B. V, D. MT, C. Y, W. T,
K. KJ, H. E, C. SV, G. SG, B. Y. T, and L. MD. Metagenomic analysis of
feces from mice flown on the RR-6 mission. Version 13. 2019. doi: 10.2603
0/h713-bd02. url: https://genelab-data.ndc.nasa.gov/genelab/acce
ssion/GLDS-249/.

[39] K. Venkateswaran, P. Vaishampayan, J. Cisneros, D. L. Pierson, S. O. Rogers,
and J. Perry. International Space Station environmental microbiome — mi-
crobial inventories of ISS filter debris. Applied Microbiology and Biotechnol-
ogy 98 (July 2014), 6453–6466. doi: 10.1007/s00253-014-5650-6. url:
https://doi.org/10.1007/s00253-014-5650-6.

[40] E. Höring, D. Göpfert, G. Schröter, and U. von Gaisberg. Frequency and
Spectrum of Microorganisms Isolated from Biopsy Specimens in Chronic Col-
itis. Endoscopy 23 (2008), 325–327. doi: 10.1055/s-2007-1010707. url:
https://www.thieme-connect.de/products/ejournals/abstract/10.10

55/s-2007-1010707.
[41] K. J. Locey and J. T. Lennon. Scaling laws predict global microbial diversity.

Proceedings of the National Academy of Sciences 113 (2016), 5970–5975. doi:
10.1073/pnas.1521291113. eprint: https://www.pnas.org/content/113
/21/5970.full.pdf. url: https://www.pnas.org/content/113/21/5970.

[42] A. Fleming. On the Antibacterial Action of Cultures of a Penicillium, with
Special Reference to their Use in the Isolation of B. influenzæ. eng. British

128

https://doi.org/10.1126/science.1093857
https://science.sciencemag.org/content/304/5667/66.full.pdf
https://science.sciencemag.org/content/304/5667/66.full.pdf
https://science.sciencemag.org/content/304/5667/66
https://science.sciencemag.org/content/304/5667/66
https://doi.org/10.1186/s40168-019-0625-6
https://doi.org/10.1186/s40168-019-0625-6
https://doi.org/10.1186/s40168-019-0625-6
https://doi.org/10.1128/MRA.00201-20
https://doi.org/10.1128/MRA.00201-20
https://mra.asm.org/content/9/15/e00201-20.full.pdf
https://mra.asm.org/content/9/15/e00201-20.full.pdf
https://mra.asm.org/content/9/15/e00201-20
https://doi.org/https://doi.org/10.1016/B978-0-12-420196-5.00009-5
https://doi.org/https://doi.org/10.1016/B978-0-12-420196-5.00009-5
https://www.sciencedirect.com/science/article/pii/B9780124201965000095
https://www.sciencedirect.com/science/article/pii/B9780124201965000095
https://doi.org/10.26030/h713-bd02
https://doi.org/10.26030/h713-bd02
https://genelab-data.ndc.nasa.gov/genelab/accession/GLDS-249/
https://genelab-data.ndc.nasa.gov/genelab/accession/GLDS-249/
https://doi.org/10.1007/s00253-014-5650-6
https://doi.org/10.1007/s00253-014-5650-6
https://doi.org/10.1055/s-2007-1010707
https://www.thieme-connect.de/products/ejournals/abstract/10.1055/s-2007-1010707
https://www.thieme-connect.de/products/ejournals/abstract/10.1055/s-2007-1010707
https://doi.org/10.1073/pnas.1521291113
https://www.pnas.org/content/113/21/5970.full.pdf
https://www.pnas.org/content/113/21/5970.full.pdf
https://www.pnas.org/content/113/21/5970

journal of experimental pathology 10 (June 1929). PMC2048009[pmcid], 226–
236. url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2048009/.

[43] S. Riedel. Edward Jenner and the history of smallpox and vaccination. eng.
Proceedings (Baylor University. Medical Center) 18 (Jan. 2005), 21–25. doi:
10.1080/08998280.2005.11928028. url: https://doi.org/10.1080/089
98280.2005.11928028.

[44] K. Lundstrom. Viral Vectors in Gene Therapy. eng. Diseases (Basel, Switzer-
land) 6 (May 2018). diseases6020042[PII], 42. doi: 10.3390/diseases60200
42. url: https://doi.org/10.3390/diseases6020042.

[45] M. Jinek, K. Chylinski, I. Fonfara, M. Hauer, J. A. Doudna, and E. Charp-
entier. A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive
Bacterial Immunity. Science 337 (2012), 816–821. doi: 10.1126/science.1
225829. eprint: https://science.sciencemag.org/content/337/6096/81
6.full.pdf. url: https://science.sciencemag.org/content/337/6096
/816.

[46] N. Sikri and A. Bardia. A history of streptokinase use in acute myocardial in-
farction. eng. Texas Heart Institute journal 34 (2007). PMC1995058[pmcid],
318–327. url: https://pubmed.ncbi.nlm.nih.gov/17948083.

[47] G. Ceballos, P. R. Ehrlich, A. D. Barnosky, A. Garcia, R. M. Pringle, and
T. M. Palmer. Accelerated modern human–induced species losses: Entering
the sixth mass extinction. Science Advances 1 (2015). doi: 10.1126/sciadv
.1400253. eprint: https://advances.sciencemag.org/content/1/5/e14
00253.full.pdf. url: https://advances.sciencemag.org/content/1/5
/e1400253.

[48] A. Cain. Taxonomy (2021). url: https://www.britannica.com/science
/taxonomy.

[49] C. v. Linné and L. Salvius. Caroli Linnaei...Systema naturae per regna tria
naturae :secundum classes, ordines, genera, species, cum characteribus, dif-
ferentiis, synonymis, locis. Vol. v.2. Holmiae :Impensis Direct. Laurentii Salvii,
(1759), 564. url: https://www.biodiversitylibrary.org/item/10278.

[50] C. Darwin and L. Kebler. On the origin of species by means of natural se-
lection, or, The preservation of favoured races in the struggle for life. (1859).
url: https://lccn.loc.gov/06017473.

[51] C. A. Long. Sokal, Robert R., and Peter H. A. Sneath. Principles of Nu-
merical Taxonomy. W. H. Freeman and Co., San Francisco and London. Pp.
xvi + 359, illus. 1963. Price $8.50. Journal of Mammalogy 46 (Feb. 1965),
111–112. doi: 10.2307/1377831. eprint: https://academic.oup.com/jmam
mal/article-pdf/46/1/111/2665769/46-1-111.pdf. url: https://doi
.org/10.2307/1377831.

[52] C. R. Woese, L. J. Magrum, and G. E. Fox. Archaebacteria. Journal of Molec-
ular Evolution 11 (Sept. 1978), 245–252. doi: 10.1007/BF01734485. url:
https://doi.org/10.1007/BF01734485.

129

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2048009/
https://doi.org/10.1080/08998280.2005.11928028
https://doi.org/10.1080/08998280.2005.11928028
https://doi.org/10.1080/08998280.2005.11928028
https://doi.org/10.3390/diseases6020042
https://doi.org/10.3390/diseases6020042
https://doi.org/10.3390/diseases6020042
https://doi.org/10.1126/science.1225829
https://doi.org/10.1126/science.1225829
https://science.sciencemag.org/content/337/6096/816.full.pdf
https://science.sciencemag.org/content/337/6096/816.full.pdf
https://science.sciencemag.org/content/337/6096/816
https://science.sciencemag.org/content/337/6096/816
https://pubmed.ncbi.nlm.nih.gov/17948083
https://doi.org/10.1126/sciadv.1400253
https://doi.org/10.1126/sciadv.1400253
https://advances.sciencemag.org/content/1/5/e1400253.full.pdf
https://advances.sciencemag.org/content/1/5/e1400253.full.pdf
https://advances.sciencemag.org/content/1/5/e1400253
https://advances.sciencemag.org/content/1/5/e1400253
https://www.britannica.com/science/taxonomy
https://www.britannica.com/science/taxonomy
https://www.biodiversitylibrary.org/item/10278
https://lccn.loc.gov/06017473
https://doi.org/10.2307/1377831
https://academic.oup.com/jmammal/article-pdf/46/1/111/2665769/46-1-111.pdf
https://academic.oup.com/jmammal/article-pdf/46/1/111/2665769/46-1-111.pdf
https://doi.org/10.2307/1377831
https://doi.org/10.2307/1377831
https://doi.org/10.1007/BF01734485
https://doi.org/10.1007/BF01734485

[53] R. MA, G. DP, O. TM, B. N, B. T, and B. R. et al. A Higher Level Classifica-
tion of All Living Organisms. PLoS ONE 10 (2015). doi: 10.1371/journal
.pone.0119248. url: https://doi.org/10.1371/journal.pone.0119248.

[54] A. Mateos-Rivera, R. Skern-Mauritzen, G. Dahle, S. Sundby, B. Mozfar, A.
Thorsen, H. Wehde, and B. A. Krafft. Comparison of visual and molecular
taxonomic methods to identify ichthyoplankton in the North Sea. Limnology
and Oceanography: Methods 18 (2020), 599–605. doi: https://doi.org/1
0.1002/lom3.10387. eprint: https://aslopubs.onlinelibrary.wiley.co
m/doi/pdf/10.1002/lom3.10387. url: https://aslopubs.onlinelibrar
y.wiley.com/doi/abs/10.1002/lom3.10387.

[55] S. Federhen. The NCBI Taxonomy database. Nucleic Acids Research 40 (2012),
D136–D143. doi: 10.1093/nar/gkr1178. eprint: /oup/backfile/content
_public/journal/nar/40/d1/10.1093_nar_gkr1178/2/gkr1178.pdf.
url: http://dx.doi.org/10.1093/nar/gkr1178.

[56] T. Thomas, J. Gilbert, and F. Meyer. Metagenomics - a guide from sampling
to data analysis. Microbial Informatics and Experimentation 2 (Feb. 2012),
3. doi: 10.1186/2042-5783-2-3. url: https://doi.org/10.1186/2042-5
783-2-3.

[57] C. Y. Chiu and S. A. Miller. Clinical metagenomics. Nature Reviews Genetics
20 (June 2019), 341–355. doi: 10.1038/s41576-019-0113-7. url: https:
//doi.org/10.1038/s41576-019-0113-7.

[58] P. A. Pevzner, H. Tang, and M. S. Waterman. An Eulerian path approach to
DNA fragment assembly. Proceedings of the National Academy of Sciences
98 (2001), 9748–9753. doi: 10.1073/pnas.171285098. eprint: https://www
.pnas.org/content/98/17/9748.full.pdf. url: https://www.pnas.org
/content/98/17/9748.

[59] K. Schneeberger, S. Ossowski, F. Ott, J. D. Klein, X. Wang, C. Lanz, L. M.
Smith, J. Cao, J. Fitz, N. Warthmann, S. R. Henz, D. H. Huson, and D.
Weigel. Reference-guided assembly of four diverse Arabidopsis thaliana genomes.
Proceedings of the National Academy of Sciences 108 (2011), 10249–10254.
doi: 10.1073/pnas.1107739108. eprint: https://www.pnas.org/content
/108/25/10249.full.pdf. url: https://www.pnas.org/content/108/25
/10249.

[60] F. Meyer, A. Bremges, P. Belmann, S. Janssen, A. C. McHardy, and D.
Koslicki. Assessing taxonomic metagenome profilers with OPAL. Genome Bi-
ology 20 (2019), 51. doi: 10.1186/s13059-019-1646-y. url: https://doi
.org/10.1186/s13059-019-1646-y.

[61] D. Morgensztern, S. Devarakonda, T. Mitsudomi, C. Maher, and R. Govin-
dan. “11 - Mutational Events in Lung Cancer: Present and Developing Tech-
nologies.” IASLC Thoracic Oncology (Second Edition). Ed. by H. I. Pass, D.
Ball, and G. V. Scagliotti. Second Edition. Elsevier 2018, 95–103.e2. doi: ht
tps://doi.org/10.1016/B978-0-323-52357-8.00011-1. url: https://w
ww.sciencedirect.com/science/article/pii/B9780323523578000111.

130

https://doi.org/10.1371/journal.pone.0119248
https://doi.org/10.1371/journal.pone.0119248
https://doi.org/10.1371/journal.pone.0119248
https://doi.org/https://doi.org/10.1002/lom3.10387
https://doi.org/https://doi.org/10.1002/lom3.10387
https://aslopubs.onlinelibrary.wiley.com/doi/pdf/10.1002/lom3.10387
https://aslopubs.onlinelibrary.wiley.com/doi/pdf/10.1002/lom3.10387
https://aslopubs.onlinelibrary.wiley.com/doi/abs/10.1002/lom3.10387
https://aslopubs.onlinelibrary.wiley.com/doi/abs/10.1002/lom3.10387
https://doi.org/10.1093/nar/gkr1178
/oup/backfile/content_public/journal/nar/40/d1/10.1093_nar_gkr1178/2/gkr1178.pdf
/oup/backfile/content_public/journal/nar/40/d1/10.1093_nar_gkr1178/2/gkr1178.pdf
http://dx.doi.org/10.1093/nar/gkr1178
https://doi.org/10.1186/2042-5783-2-3
https://doi.org/10.1186/2042-5783-2-3
https://doi.org/10.1186/2042-5783-2-3
https://doi.org/10.1038/s41576-019-0113-7
https://doi.org/10.1038/s41576-019-0113-7
https://doi.org/10.1038/s41576-019-0113-7
https://doi.org/10.1073/pnas.171285098
https://www.pnas.org/content/98/17/9748.full.pdf
https://www.pnas.org/content/98/17/9748.full.pdf
https://www.pnas.org/content/98/17/9748
https://www.pnas.org/content/98/17/9748
https://doi.org/10.1073/pnas.1107739108
https://www.pnas.org/content/108/25/10249.full.pdf
https://www.pnas.org/content/108/25/10249.full.pdf
https://www.pnas.org/content/108/25/10249
https://www.pnas.org/content/108/25/10249
https://doi.org/10.1186/s13059-019-1646-y
https://doi.org/10.1186/s13059-019-1646-y
https://doi.org/10.1186/s13059-019-1646-y
https://doi.org/https://doi.org/10.1016/B978-0-323-52357-8.00011-1
https://doi.org/https://doi.org/10.1016/B978-0-323-52357-8.00011-1
https://www.sciencedirect.com/science/article/pii/B9780323523578000111
https://www.sciencedirect.com/science/article/pii/B9780323523578000111

[62] N. R. Coordinators. Database resources of the National Center for Biotech-
nology Information. Nucleic Acids Research 46 (Nov. 2017), D8–D13. doi:
10.1093/nar/gkx1095. eprint: https://academic.oup.com/nar/article-
pdf/46/D1/D8/23162308/gkx1095.pdf. url: https://doi.org/10.1093
/nar/gkx1095.

[63] Definition ”Tool”. url: https://www.pcmag.com/encyclopedia/term/too
l.

[64] Definition ”Classification”. url: https://dictionary.cambridge.org/dic
tionary/english/classification.

[65] V. Bruce and A. Young. Understanding face recognition. British Journal of
Psychology 77 (1986), 305–327. doi: https://doi.org/10.1111/j.204
4-8295.1986.tb02199.x. eprint: https://bpspsychub.onlinelibrary
.wiley.com/doi/pdf/10.1111/j.2044- 8295.1986.tb02199.x. url:
https://bpspsychub.onlinelibrary.wiley.com/doi/abs/10.1111/j.20

44-8295.1986.tb02199.x.
[66] C. A. Nelson. The development and neural bases of face recognition. Infant

and Child Development 10 (2001), 3–18. doi: https://doi.org/10.1002/i
cd.239. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/i
cd.239. url: https://onlinelibrary.wiley.com/doi/abs/10.1002/icd
.239.

[67] V. R. Marcelino, P. T. L. C. Clausen, J. P. Buchmann, M. Wille, J. R.
Iredell, W. Meyer, O. Lund, T. C. Sorrell, and E. C. Holmes. CCMetagen:
comprehensive and accurate identification of eukaryotes and prokaryotes in
metagenomic data. Genome Biology 21 (Apr. 2020), 103. doi: 10.1186/s13
059-020-02014-2. url: https://doi.org/10.1186/s13059-020-02014-2.

[68] N. K. Devanga Ragupathi, D. P. Muthuirulandi Sethuvel, F. Y. Inbanathan,
and B. Veeraraghavan. Accurate differentiation of Escherichia coli and Shigella
serogroups: challenges and strategies. eng. New microbes and new infections
21 (Sept. 2017). S2052-2975(17)30074-4[PII], 58–62. doi: 10.1016/j.nmni
.2017.09.003. url: https://doi.org/10.1016/j.nmni.2017.09.003.

[69] G. Zuo, Z. Xu, and B. Hao. Shigella strains are not clones of Escherichia
coli but sister species in the genus Escherichia. eng. Genomics, proteomics
& bioinformatics 11 (Feb. 2013). S1672-0229(12)00112-X[PII], 61–65. doi:
10.1016/j.gpb.2012.11.002. url: https://doi.org/10.1016/j.gpb.20
12.11.002.

[70] Paired-end sequencing in Illumina. url: https://www.illumina.com/scie
nce/technology/next-generation-sequencing/plan-experiments/pair

ed-end-vs-single-read.html.
[71] E. R. Mardis. DNA sequencing technologies: 2006–2016. Nature Protocols 12

(Feb. 2017), 213–218. doi: 10.1038/nprot.2016.182. url: https://doi.o
rg/10.1038/nprot.2016.182.

[72] R. Li, C. Yu, Y. Li, T.-W. Lam, S.-M. Yiu, K. Kristiansen, and J. Wang.
SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics

131

https://doi.org/10.1093/nar/gkx1095
https://academic.oup.com/nar/article-pdf/46/D1/D8/23162308/gkx1095.pdf
https://academic.oup.com/nar/article-pdf/46/D1/D8/23162308/gkx1095.pdf
https://doi.org/10.1093/nar/gkx1095
https://doi.org/10.1093/nar/gkx1095
https://www.pcmag.com/encyclopedia/term/tool
https://www.pcmag.com/encyclopedia/term/tool
https://dictionary.cambridge.org/dictionary/english/classification
https://dictionary.cambridge.org/dictionary/english/classification
https://doi.org/https://doi.org/10.1111/j.2044-8295.1986.tb02199.x
https://doi.org/https://doi.org/10.1111/j.2044-8295.1986.tb02199.x
https://bpspsychub.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2044-8295.1986.tb02199.x
https://bpspsychub.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2044-8295.1986.tb02199.x
https://bpspsychub.onlinelibrary.wiley.com/doi/abs/10.1111/j.2044-8295.1986.tb02199.x
https://bpspsychub.onlinelibrary.wiley.com/doi/abs/10.1111/j.2044-8295.1986.tb02199.x
https://doi.org/https://doi.org/10.1002/icd.239
https://doi.org/https://doi.org/10.1002/icd.239
https://onlinelibrary.wiley.com/doi/pdf/10.1002/icd.239
https://onlinelibrary.wiley.com/doi/pdf/10.1002/icd.239
https://onlinelibrary.wiley.com/doi/abs/10.1002/icd.239
https://onlinelibrary.wiley.com/doi/abs/10.1002/icd.239
https://doi.org/10.1186/s13059-020-02014-2
https://doi.org/10.1186/s13059-020-02014-2
https://doi.org/10.1186/s13059-020-02014-2
https://doi.org/10.1016/j.nmni.2017.09.003
https://doi.org/10.1016/j.nmni.2017.09.003
https://doi.org/10.1016/j.nmni.2017.09.003
https://doi.org/10.1016/j.gpb.2012.11.002
https://doi.org/10.1016/j.gpb.2012.11.002
https://doi.org/10.1016/j.gpb.2012.11.002
https://www.illumina.com/science/technology/next-generation-sequencing/plan-experiments/paired-end-vs-single-read.html
https://www.illumina.com/science/technology/next-generation-sequencing/plan-experiments/paired-end-vs-single-read.html
https://www.illumina.com/science/technology/next-generation-sequencing/plan-experiments/paired-end-vs-single-read.html
https://doi.org/10.1038/nprot.2016.182
https://doi.org/10.1038/nprot.2016.182
https://doi.org/10.1038/nprot.2016.182

25 (June 2009), 1966–1967. doi: 10.1093/bioinformatics/btp336. eprint:
https://academic.oup.com/bioinformatics/article-pdf/25/15/1966

/561321/btp336.pdf. url: https://doi.org/10.1093/bioinformatics
/btp336.

[73] J. W. Drake. Rates of spontaneous mutation among RNA viruses. Proceed-
ings of the National Academy of Sciences 90 (1993), 4171–4175. doi: 10.10
73/pnas.90.9.4171. eprint: https://www.pnas.org/content/90/9/4171
.full.pdf. url: https://www.pnas.org/content/90/9/4171.

[74] E. F. Codd. A Relational Model of Data for Large Shared Data Banks. Com-
mun. ACM 13 (June 1970), 377–387. doi: 10.1145/362384.362685. url:
https://doi.org/10.1145/362384.362685.

[75] D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science
and Computational Biology. Cambridge University Press (1997). doi: 10.10
17/CBO9780511574931.

[76] J. Pevsner. Bioinformatics and Functional Genomics, Second Edition. John
Wiley & Sons, Inc. (2009). doi: 10.1002/9780470451496. url: https://on
linelibrary.wiley.com/doi/book/10.1002/9780470451496.

[77] S. B. Needleman and C. D. Wunsch. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. Journal of Molec-
ular Biology 48 (1970), 443–453. doi: https://doi.org/10.1016/0022-28
36(70)90057-4. url: http://www.sciencedirect.com/science/article
/pii/0022283670900574.

[78] T. Smith and M. Waterman. Identification of common molecular subsequences.
Journal of Molecular Biology 147 (1981), 195–197. doi: https://doi.org
/10.1016/0022-2836(81)90087-5. url: http://www.sciencedirect.com
/science/article/pii/0022283681900875.

[79] P. Weiner. “Linear pattern matching algorithms.” 14th Annual Symposium
on Switching and Automata Theory (swat 1973). (1973), 1–11. doi: 10.110
9/SWAT.1973.13.

[80] S. Kurtz. Reducing the space requirement of suffix trees. Software: Practice
and Experience 29 (1999), 1149–1171. doi: https://doi.org/10.1002/(SI
CI)1097-024X(199911)29:13<1149::AID-SPE274>3.0.CO;2-O.

[81] U. Manber and G. Myers. Suffix arrays: a new method for on-line string
searches. siam Journal on Computing 22 (1993), 935–948.

[82] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression
algorithm. Tech. rep. 1994.

[83] P. Ferragina and G. Manzini. “Opportunistic data structures with applica-
tions.” Proceedings 41st Annual Symposium on Foundations of Computer Sci-
ence. (Nov. 2000), 390–398. doi: 10.1109/SFCS.2000.892127.

[84] H. Li. Fast construction of FM-index for long sequence reads. Bioinformatics
30 (Aug. 2014), 3274–3275. doi: 10.1093/bioinformatics/btu541. eprint:
https://academic.oup.com/bioinformatics/article-pdf/30/22/3274

132

https://doi.org/10.1093/bioinformatics/btp336
https://academic.oup.com/bioinformatics/article-pdf/25/15/1966/561321/btp336.pdf
https://academic.oup.com/bioinformatics/article-pdf/25/15/1966/561321/btp336.pdf
https://doi.org/10.1093/bioinformatics/btp336
https://doi.org/10.1093/bioinformatics/btp336
https://doi.org/10.1073/pnas.90.9.4171
https://doi.org/10.1073/pnas.90.9.4171
https://www.pnas.org/content/90/9/4171.full.pdf
https://www.pnas.org/content/90/9/4171.full.pdf
https://www.pnas.org/content/90/9/4171
https://doi.org/10.1145/362384.362685
https://doi.org/10.1145/362384.362685
https://doi.org/10.1017/CBO9780511574931
https://doi.org/10.1017/CBO9780511574931
https://doi.org/10.1002/9780470451496
https://onlinelibrary.wiley.com/doi/book/10.1002/9780470451496
https://onlinelibrary.wiley.com/doi/book/10.1002/9780470451496
https://doi.org/https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/https://doi.org/10.1016/0022-2836(70)90057-4
http://www.sciencedirect.com/science/article/pii/0022283670900574
http://www.sciencedirect.com/science/article/pii/0022283670900574
https://doi.org/https://doi.org/10.1016/0022-2836(81)90087-5
https://doi.org/https://doi.org/10.1016/0022-2836(81)90087-5
http://www.sciencedirect.com/science/article/pii/0022283681900875
http://www.sciencedirect.com/science/article/pii/0022283681900875
https://doi.org/10.1109/SWAT.1973.13
https://doi.org/10.1109/SWAT.1973.13
https://doi.org/https://doi.org/10.1002/(SICI)1097-024X(199911)29:13<1149::AID-SPE274>3.0.CO;2-O
https://doi.org/https://doi.org/10.1002/(SICI)1097-024X(199911)29:13<1149::AID-SPE274>3.0.CO;2-O
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1093/bioinformatics/btu541
https://academic.oup.com/bioinformatics/article-pdf/30/22/3274/7252262/btu541.pdf
https://academic.oup.com/bioinformatics/article-pdf/30/22/3274/7252262/btu541.pdf
https://academic.oup.com/bioinformatics/article-pdf/30/22/3274/7252262/btu541.pdf

/7252262/btu541.pdf. url: https://doi.org/10.1093/bioinformatics
/btu541.

[85] R. Li, H. Zhu, J. Ruan, W. Qian, X. Fang, Z. Shi, Y. Li, S. Li, G. Shan,
K. Kristiansen, S. Li, H. Yang, J. Wang, and J. Wang. De novo assembly
of human genomes with massively parallel short read sequencing. Genome
Research 20 (2010), 265–272. doi: 10.1101/gr.097261.109. eprint: http:
//genome.cshlp.org/content/20/2/265.full.pdf+html. url: http://g
enome.cshlp.org/content/20/2/265.abstract.

[86] G. E. Sims and S.-H. Kim. Whole-genome phylogeny of Escherichia coli/Shigella
group by feature frequency profiles (FFPs). Proceedings of the National Academy
of Sciences 108 (2011), 8329–8334. doi: 10.1073/pnas.1105168108. eprint:
https://www.pnas.org/content/108/20/8329.full.pdf. url: https://w
ww.pnas.org/content/108/20/8329.

[87] A. Z. Broder. “Identifying and Filtering Near-Duplicate Documents.” Com-
binatorial Pattern Matching. Ed. by R. Giancarlo and D. Sankoff. Springer
Berlin Heidelberg (2000), 1–10.

[88] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. “On Finding Lowest Com-
mon Ancestors in Trees.” Proceedings of the Fifth Annual ACM Symposium
on Theory of Computing. STOC ’73. Association for Computing Machinery
(1973), 253–265. doi: 10.1145/800125.804056. url: https://doi.org/10
.1145/800125.804056.

[89] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic
local alignment search tool. Journal of Molecular Biology 215 (1990), 403–
410. doi: https://doi.org/10.1016/S0022-2836(05)80360-2. url: https
://www.sciencedirect.com/science/article/pii/S0022283605803602.

[90] Z. Zhang, S. Schwartz, L. Wagner, and W. Miller. A Greedy Algorithm for
Aligning DNA Sequences. Journal of Computational Biology 7 (2000). PMID:
10890397, 203–214. doi: 10.1089/10665270050081478. eprint: https://do
i.org/10.1089/10665270050081478. url: https://doi.org/10.1089/10
665270050081478.

[91] S. Henikoff and J. G. Henikoff. Amino acid substitution matrices from protein
blocks. eng. Proceedings of the National Academy of Sciences of the United
States of America 89 (Nov. 1992). PMC50453[pmcid], 10915–10919. doi: 10
.1073/pnas.89.22.10915. url: https://doi.org/10.1073/pnas.89.22
.10915.

[92] S. R. Eddy. Where did the BLOSUM62 alignment score matrix come from?
Nature Biotechnology 22 (Aug. 2004), 1035–1036. doi: 10.1038/nbt0804-1
035. url: https://doi.org/10.1038/nbt0804-1035.

[93] BLAST Webpage. url: https://blast.ncbi.nlm.nih.gov/Blast.cgi.
[94] G.-M. Tan, L. Xu, D.-B. Bu, S.-Z. Feng, and N.-H. Sun. Improvement of

Performance of MegaBlast Algorithm for DNA Sequence Alignment. Journal
of Computer Science and Technology 21 (Nov. 2006), 973–978. doi: 10.100

133

https://academic.oup.com/bioinformatics/article-pdf/30/22/3274/7252262/btu541.pdf
https://academic.oup.com/bioinformatics/article-pdf/30/22/3274/7252262/btu541.pdf
https://academic.oup.com/bioinformatics/article-pdf/30/22/3274/7252262/btu541.pdf
https://doi.org/10.1093/bioinformatics/btu541
https://doi.org/10.1093/bioinformatics/btu541
https://doi.org/10.1101/gr.097261.109
http://genome.cshlp.org/content/20/2/265.full.pdf+html
http://genome.cshlp.org/content/20/2/265.full.pdf+html
http://genome.cshlp.org/content/20/2/265.abstract
http://genome.cshlp.org/content/20/2/265.abstract
https://doi.org/10.1073/pnas.1105168108
https://www.pnas.org/content/108/20/8329.full.pdf
https://www.pnas.org/content/108/20/8329
https://www.pnas.org/content/108/20/8329
https://doi.org/10.1145/800125.804056
https://doi.org/10.1145/800125.804056
https://doi.org/10.1145/800125.804056
https://doi.org/https://doi.org/10.1016/S0022-2836(05)80360-2
https://www.sciencedirect.com/science/article/pii/S0022283605803602
https://www.sciencedirect.com/science/article/pii/S0022283605803602
https://doi.org/10.1089/10665270050081478
https://doi.org/10.1089/10665270050081478
https://doi.org/10.1089/10665270050081478
https://doi.org/10.1089/10665270050081478
https://doi.org/10.1089/10665270050081478
https://doi.org/10.1073/pnas.89.22.10915
https://doi.org/10.1073/pnas.89.22.10915
https://doi.org/10.1073/pnas.89.22.10915
https://doi.org/10.1073/pnas.89.22.10915
https://doi.org/10.1038/nbt0804-1035
https://doi.org/10.1038/nbt0804-1035
https://doi.org/10.1038/nbt0804-1035
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://doi.org/10.1007/s11390-006-0973-0
https://doi.org/10.1007/s11390-006-0973-0
https://doi.org/10.1007/s11390-006-0973-0

7/s11390-006-0973-0. url: https://doi.org/10.1007/s11390-006-097
3-0.

[95] B. Buchfink, C. Xie, and D. H. Huson. Fast and sensitive protein alignment
using DIAMOND. Nature Methods 12 (2015), 59–60. doi: 10.1038/nmeth
.3176. url: https://doi.org/10.1038/nmeth.3176.

[96] B. Ma, J. Tromp, and M. Li. PatternHunter: faster and more sensitive ho-
mology search. Bioinformatics 18 (2002), 440–445.

[97] U. Keich, M. Li, B. Ma, and J. Tromp. On spaced seeds for similarity search.
Discrete Applied Mathematics 138 (2004), 253–263. doi: https://doi.org
/10.1016/S0166-218X(03)00382-2. url: https://www.sciencedirect.c
om/science/article/pii/S0166218X03003822.

[98] H. Cohen and E. Porat. Fast set intersection and two-patterns matching.
Theoretical Computer Science 411 (2010), 3795–3800. doi: https://doi.o
rg/10.1016/j.tcs.2010.06.002. url: https://www.sciencedirect.com
/science/article/pii/S0304397510003361.

[99] A. Modi, S. Vai, D. Caramelli, and M. Lari. The Illumina Sequencing Protocol
and the NovaSeq 6000 System. Methods Mol Biol 2242 (2021), 15–42.

[100] F. P. Breitwieser, D. N. Baker, and S. L. Salzberg. KrakenUniq: confident and
fast metagenomics classification using unique k-mer counts. Genome Biology
19 (2018), 198. doi: 10.1186/s13059-018-1568-0. url: https://doi.org
/10.1186/s13059-018-1568-0.

[101] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from
Incomplete Data via the EM Algorithm. Journal of the Royal Statistical So-
ciety. Series B (Methodological) 39 (1977), 1–38. url: http://www.jstor.o
rg/stable/2984875.

[102] P. Menzel, K. L. Ng, and A. Krogh. Fast and sensitive taxonomic classification
for metagenomics with Kaiju. Nature Communications 7 (Apr. 2016). Article,
11257EP–. doi: 10.1038/ncomms11257. url: http://dx.doi.org/10.1038
/ncomms11257.

[103] U. Lagerkvist. ”Two out of three”: an alternative method for codon reading.
Proceedings of the National Academy of Sciences 75 (1978), 1759–1762. doi:
10.1073/pnas.75.4.1759. eprint: https://www.pnas.org/content/75/4
/1759.full.pdf. url: https://www.pnas.org/content/75/4/1759.

[104] A. Müller, C. Hundt, A. Hildebrandt, T. Hankeln, and B. Schmidt. Meta-
Cache: context-aware classification of metagenomic reads using minhashing.
Bioinformatics 33 (2017), 3740–3748. doi: 10.1093/bioinformatics/bt

x520. eprint: /oup/backfile/content_public/journal/bioinformat

ics/33/23/10.1093_bioinformatics_btx520/3/btx520.pdf. url:
http://dx.doi.org/10.1093/bioinformatics/btx520.

[105] D. E. Wood, J. Lu, and B. Langmead. Improved metagenomic analysis with
Kraken 2. Genome Biology 20 (2019), 257. doi: 10.1186/s13059-019-1891
-0. url: https://doi.org/10.1186/s13059-019-1891-0.

134

https://doi.org/10.1007/s11390-006-0973-0
https://doi.org/10.1007/s11390-006-0973-0
https://doi.org/10.1007/s11390-006-0973-0
https://doi.org/10.1007/s11390-006-0973-0
https://doi.org/10.1007/s11390-006-0973-0
https://doi.org/10.1038/nmeth.3176
https://doi.org/10.1038/nmeth.3176
https://doi.org/10.1038/nmeth.3176
https://doi.org/https://doi.org/10.1016/S0166-218X(03)00382-2
https://doi.org/https://doi.org/10.1016/S0166-218X(03)00382-2
https://www.sciencedirect.com/science/article/pii/S0166218X03003822
https://www.sciencedirect.com/science/article/pii/S0166218X03003822
https://doi.org/https://doi.org/10.1016/j.tcs.2010.06.002
https://doi.org/https://doi.org/10.1016/j.tcs.2010.06.002
https://www.sciencedirect.com/science/article/pii/S0304397510003361
https://www.sciencedirect.com/science/article/pii/S0304397510003361
https://doi.org/10.1186/s13059-018-1568-0
https://doi.org/10.1186/s13059-018-1568-0
https://doi.org/10.1186/s13059-018-1568-0
http://www.jstor.org/stable/2984875
http://www.jstor.org/stable/2984875
https://doi.org/10.1038/ncomms11257
http://dx.doi.org/10.1038/ncomms11257
http://dx.doi.org/10.1038/ncomms11257
https://doi.org/10.1073/pnas.75.4.1759
https://www.pnas.org/content/75/4/1759.full.pdf
https://www.pnas.org/content/75/4/1759.full.pdf
https://www.pnas.org/content/75/4/1759
https://doi.org/10.1093/bioinformatics/btx520
https://doi.org/10.1093/bioinformatics/btx520
/oup/backfile/content_public/journal/bioinformatics/33/23/10.1093_bioinformatics_btx520/3/btx520.pdf
/oup/backfile/content_public/journal/bioinformatics/33/23/10.1093_bioinformatics_btx520/3/btx520.pdf
http://dx.doi.org/10.1093/bioinformatics/btx520
https://doi.org/10.1186/s13059-019-1891-0
https://doi.org/10.1186/s13059-019-1891-0
https://doi.org/10.1186/s13059-019-1891-0

[106] V. C. Piro, T. H. Dadi, E. Seiler, K. Reinert, and B. Y. Renard. ganon: con-
tinuously up-to-date with database growth for precise short read classification
in metagenomics. bioRxiv (2019). doi: 10.1101/406017. eprint: https://w
ww.biorxiv.org/content/early/2019/03/19/406017.full.pdf. url:
https://www.biorxiv.org/content/early/2019/03/19/406017.

[107] P. Jaccard. THE DISTRIBUTION OF THE FLORA IN THE ALPINE
ZONE.1. New Phytologist 11 (1912), 37–50. doi: https://doi.org/10

.1111/j.1469-8137.1912.tb05611.x. eprint: https://nph.onlinelibr
ary.wiley.com/doi/pdf/10.1111/j.1469-8137.1912.tb05611.x. url:
https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137

.1912.tb05611.x.
[108] T. H. Dadi, E. Siragusa, V. C. Piro, A. Andrusch, E. Seiler, B. Y. Renard,

and K. Reinert. DREAM-Yara: an exact read mapper for very large databases
with short update time. Bioinformatics 34 (Sept. 2018), i766–i772. doi: 10.1
093/bioinformatics/bty567. eprint: https://academic.oup.com/bio
informatics/article- pdf/34/17/i766/25702473/bty567.pdf. url:
https://doi.org/10.1093/bioinformatics/bty567.

[109] D. E. Wood and S. L. Salzberg. Kraken: ultrafast metagenomic sequence
classification using exact alignments. Genome Biology 15 (Mar. 2014), R46.
doi: 10.1186/gb-2014-15-3-r46. url: https://doi.org/10.1186/gb-20
14-15-3-r46.

[110] R. Ounit, S. Wanamaker, T. J. Close, and S. Lonardi. CLARK: fast and
accurate classification of metagenomic and genomic sequences using discrim-
inative k-mers. BMC Genomics 16 (Mar. 2015), 236. doi: 10.1186/s12864
-015-1419-2. url: https://doi.org/10.1186/s12864-015-1419-2.

[111] P. Reviriego, L. Holst, and J. A. Maestro. On the expected longest length probe
sequence for hashing with separate chaining. Journal of Discrete Algorithms 9
(2011). Selected papers from the 7th International Conference on Algorithms
and Complexity (CIAC 2010), 307–312. doi: https://doi.org/10.1016/j
.jda.2011.04.005. url: https://www.sciencedirect.com/science/art
icle/pii/S1570866711000505.

[112] Kleene star. doi: 10.1093/oi/authority.20110803100039649. url: https
://www.oxfordreference.com/view/10.1093/oi/authority.2011080310

0039649.
[113] B. Alberts, A. Johnson, and J. e. a. Lewis. Molecular Biology of the Cell. 4th

edition. New York: Garland Science (2002). url: https://www.ncbi.nlm.n
ih.gov/books/NBK26821/.

[114] E. Blais and M. Blanchette. “Common Substrings in Random Strings.” Com-
binatorial Pattern Matching. Ed. by M. Lewenstein and G. Valiente. Springer
Berlin Heidelberg (2006), 129–140.

[115] E. V. Koonin and A. S. Novozhilov. Origin and evolution of the genetic code:
The universal enigma. IUBMB Life 61 (2009), 99–111. doi: https://doi.o
rg/10.1002/iub.146. eprint: https://iubmb.onlinelibrary.wiley.com

135

https://doi.org/10.1101/406017
https://www.biorxiv.org/content/early/2019/03/19/406017.full.pdf
https://www.biorxiv.org/content/early/2019/03/19/406017.full.pdf
https://www.biorxiv.org/content/early/2019/03/19/406017
https://doi.org/https://doi.org/10.1111/j.1469-8137.1912.tb05611.x
https://doi.org/https://doi.org/10.1111/j.1469-8137.1912.tb05611.x
https://nph.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8137.1912.tb05611.x
https://nph.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8137.1912.tb05611.x
https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1912.tb05611.x
https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1912.tb05611.x
https://doi.org/10.1093/bioinformatics/bty567
https://doi.org/10.1093/bioinformatics/bty567
https://academic.oup.com/bioinformatics/article-pdf/34/17/i766/25702473/bty567.pdf
https://academic.oup.com/bioinformatics/article-pdf/34/17/i766/25702473/bty567.pdf
https://doi.org/10.1093/bioinformatics/bty567
https://doi.org/10.1186/gb-2014-15-3-r46
https://doi.org/10.1186/gb-2014-15-3-r46
https://doi.org/10.1186/gb-2014-15-3-r46
https://doi.org/10.1186/s12864-015-1419-2
https://doi.org/10.1186/s12864-015-1419-2
https://doi.org/10.1186/s12864-015-1419-2
https://doi.org/https://doi.org/10.1016/j.jda.2011.04.005
https://doi.org/https://doi.org/10.1016/j.jda.2011.04.005
https://www.sciencedirect.com/science/article/pii/S1570866711000505
https://www.sciencedirect.com/science/article/pii/S1570866711000505
https://doi.org/10.1093/oi/authority.20110803100039649
https://www.oxfordreference.com/view/10.1093/oi/authority.20110803100039649
https://www.oxfordreference.com/view/10.1093/oi/authority.20110803100039649
https://www.oxfordreference.com/view/10.1093/oi/authority.20110803100039649
https://www.ncbi.nlm.nih.gov/books/NBK26821/
https://www.ncbi.nlm.nih.gov/books/NBK26821/
https://doi.org/https://doi.org/10.1002/iub.146
https://doi.org/https://doi.org/10.1002/iub.146
https://iubmb.onlinelibrary.wiley.com/doi/pdf/10.1002/iub.146
https://iubmb.onlinelibrary.wiley.com/doi/pdf/10.1002/iub.146
https://iubmb.onlinelibrary.wiley.com/doi/pdf/10.1002/iub.146

/doi/pdf/10.1002/iub.146. url: https://iubmb.onlinelibrary.wiley
.com/doi/abs/10.1002/iub.146.

[116] Q. He, A. F. Bardet, B. Patton, J. Purvis, J. Johnston, A. Paulson, M. Gogol,
A. Stark, and J. Zeitlinger. High conservation of transcription factor binding
and evidence for combinatorial regulation across six Drosophila species. Na-
ture Genetics 43 (May 2011), 414–420. doi: 10.1038/ng.808. url: https:
//doi.org/10.1038/ng.808.

[117] Z. Zhao, A. Cristian, and G. Rosen. Keeping up with the genomes: efficient
learning of our increasing knowledge of the tree of life. BMC Bioinformatics
21 (Sept. 2020), 412. doi: 10.1186/s12859-020-03744-7. url: https://d
oi.org/10.1186/s12859-020-03744-7.

[118] G. E. Moore. Cramming more components onto integrated circuits. Electron-
ics 38 (Apr. 1965). url: https://newsroom.intel.com/wp-content/uplo
ads/sites/11/2018/05/moores-law-electronics.pdf.

[119] A. Sboner, X. J. Mu, D. Greenbaum, R. K. Auerbach, and M. B. Gerstein.
The real cost of sequencing: higher than you think! Genome Biology 12 (Aug.
2011), 125. doi: 10.1186/gb-2011-12-8-125. url: https://doi.org/10
.1186/gb-2011-12-8-125.

[120] R. Dementiev, L. Kettner, and P. Sanders. STXXL: standard template library
for XXL data sets. Softw., Pract. Exper. 38 (2008), 589–637. url: https:
//stxxl.org/.

[121] S.-W. Lee, B. Moon, and C. Park. “Advances in Flash Memory SSD Tech-
nology for Enterprise Database Applications.” Proceedings of the 2009 ACM
SIGMOD International Conference on Management of Data. SIGMOD ’09.
Association for Computing Machinery (2009), 863–870. doi: 10.1145/15598
45.1559937. url: https://doi.org/10.1145/1559845.1559937.

[122] J. S. Vitter. External Memory Algorithms and Data Structures: Dealing with
Massive Data. ACM Comput. Surv. 33 (June 2001), 209–271. doi: 10.1145
/384192.384193. url: https://doi.org/10.1145/384192.384193.

[123] M. Jung and M. Kandemir. Revisiting Widely Held SSD Expectations and
Rethinking System-Level Implications. SIGMETRICS Perform. Eval. Rev. 41
(June 2013), 203–216. doi: 10.1145/2494232.2465548. url: https://doi
.org/10.1145/2494232.2465548.

[124] B. Stroustrup. “Evolving a Language in and for the Real World: C++ 1991-
2006.” Proceedings of the Third ACM SIGPLAN Conference on History of
Programming Languages. HOPL III. Association for Computing Machinery
(2007), 4–1–4–59. doi: 10.1145/1238844.1238848. url: https://doi.org
/10.1145/1238844.1238848.

[125] A. Stepanov and M. Lee. The Standard Template Library. Technical Report
95-11(R.1). HP Laboratories, Nov. 1995. url: http://stepanovpapers.co
m/STL/DOC.PDF.

[126] zlib. url: https://zlib.net/.
[127] Microsoft Visual Studio. url: https://visualstudio.microsoft.com/.

136

https://iubmb.onlinelibrary.wiley.com/doi/pdf/10.1002/iub.146
https://iubmb.onlinelibrary.wiley.com/doi/pdf/10.1002/iub.146
https://iubmb.onlinelibrary.wiley.com/doi/pdf/10.1002/iub.146
https://iubmb.onlinelibrary.wiley.com/doi/abs/10.1002/iub.146
https://iubmb.onlinelibrary.wiley.com/doi/abs/10.1002/iub.146
https://doi.org/10.1038/ng.808
https://doi.org/10.1038/ng.808
https://doi.org/10.1038/ng.808
https://doi.org/10.1186/s12859-020-03744-7
https://doi.org/10.1186/s12859-020-03744-7
https://doi.org/10.1186/s12859-020-03744-7
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/05/moores-law-electronics.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/05/moores-law-electronics.pdf
https://doi.org/10.1186/gb-2011-12-8-125
https://doi.org/10.1186/gb-2011-12-8-125
https://doi.org/10.1186/gb-2011-12-8-125
https://stxxl.org/
https://stxxl.org/
https://doi.org/10.1145/1559845.1559937
https://doi.org/10.1145/1559845.1559937
https://doi.org/10.1145/1559845.1559937
https://doi.org/10.1145/384192.384193
https://doi.org/10.1145/384192.384193
https://doi.org/10.1145/384192.384193
https://doi.org/10.1145/2494232.2465548
https://doi.org/10.1145/2494232.2465548
https://doi.org/10.1145/2494232.2465548
https://doi.org/10.1145/1238844.1238848
https://doi.org/10.1145/1238844.1238848
https://doi.org/10.1145/1238844.1238848
http://stepanovpapers.com/STL/DOC.PDF
http://stepanovpapers.com/STL/DOC.PDF
https://zlib.net/
https://visualstudio.microsoft.com/

[128] GNU Compiler Collection. url: https://gcc.gnu.org/.
[129] Clang. url: https://clang.llvm.org/.
[130] CMake. url: https://cmake.org/.
[131] D. R. MUSSER. Introspective Sorting and Selection Algorithms. Software:

Practice and Experience 27 (1997), 983–993. doi: https://doi.org/10.1
002/(SICI)1097-024X(199708)27:8<983::AID-SPE117>3.0.CO;2-\#.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/\%28SICI
\%291097-024X\%28199708\%2927\%3A8\%3C983\%3A\%3AAID-SPE117\%3E

3.0.CO\%3B2-\%23. url: https://onlinelibrary.wiley.com/doi/abs/1
0.1002/%5C%28SICI%5C%291097-024X%5C%28199708%5C%2927%5C%3A8%5C

%3C983%5C%3A%5C%3AAID-SPE117%5C%3E3.0.CO%5C%3B2-%5C%23.
[132] W. Stallings. Computer Organization and Architecture: Designing for Per-

formance. Prentice Hall (2010). url: https://books.google.de/books?id
=-7nM1DkWb1YC.

[133] gzip. url: https://www.gnu.org/software/gzip/.
[134] gzstream. url: https://www.cs.unc.edu/Research/compgeom/gzstream/.
[135] P. Brass. Advanced Data Structures. Cambridge University Press (2008). doi:

10.1017/CBO9780511800191.
[136] American Standard Code for Information Interchange. url: https://www.s

r-ix.com/Archive/CharCodeHist/X3.4-1963/index.html.
[137] OpenMP. url: https://www.openmp.org//.
[138] E. F. Codd. Multiprogram scheduling: parts 1 and 2. introduction and theory.

Communications of the ACM 3 (6) (1960), 347–350. doi: https://doi.or
g/10.1145/367297.367317. url: https://dl.acm.org/doi/10.1145/367
297.367317.

[139] D. Lipman and W. Pearson. Rapid and sensitive protein similarity searches.
Science 227 (1985), 1435–1441. doi: 10.1126/science.2983426. eprint:
https://science.sciencemag.org/content/227/4693/1435.full.pdf.
url: https://science.sciencemag.org/content/227/4693/1435.

[140] NCBI Sequence Identifiers. url: https://www.ncbi.nlm.nih.gov/genbank
/sequenceids/.

[141] P. J. A. Cock, C. J. Fields, N. Goto, M. L. Heuer, and P. M. Rice. The Sanger
FASTQ file format for sequences with quality scores, and the Solexa/Illumina
FASTQ variants. Nucleic Acids Research 38 (Dec. 2009), 1767–1771. doi: 1
0.1093/nar/gkp1137. eprint: https://academic.oup.com/nar/article-
pdf/38/6/1767/16769834/gkp1137.pdf. url: https://doi.org/10.1093
/nar/gkp1137.

[142] B. Ewing, L. Hillier, M. C. Wendl, and P. Green. Base-Calling of Automated
Sequencer Traces UsingPhred. I. Accuracy Assessment. Genome Research 8
(1998), 175–185. doi: 10.1101/gr.8.3.175. eprint: http://genome.cshlp
.org/content/8/3/175.full.pdf+html. url: http://genome.cshlp.org
/content/8/3/175.abstract.

137

https://gcc.gnu.org/
https://clang.llvm.org/
https://cmake.org/
https://doi.org/https://doi.org/10.1002/(SICI)1097-024X(199708)27:8<983::AID-SPE117>3.0.CO;2-\
https://doi.org/https://doi.org/10.1002/(SICI)1097-024X(199708)27:8<983::AID-SPE117>3.0.CO;2-\
https://onlinelibrary.wiley.com/doi/pdf/10.1002/\%28SICI\%291097-024X\%28199708\%2927\%3A8\%3C983\%3A\%3AAID-SPE117\%3E3.0.CO\%3B2-\%23
https://onlinelibrary.wiley.com/doi/pdf/10.1002/\%28SICI\%291097-024X\%28199708\%2927\%3A8\%3C983\%3A\%3AAID-SPE117\%3E3.0.CO\%3B2-\%23
https://onlinelibrary.wiley.com/doi/pdf/10.1002/\%28SICI\%291097-024X\%28199708\%2927\%3A8\%3C983\%3A\%3AAID-SPE117\%3E3.0.CO\%3B2-\%23
https://onlinelibrary.wiley.com/doi/abs/10.1002/%5C%28SICI%5C%291097-024X%5C%28199708%5C%2927%5C%3A8%5C%3C983%5C%3A%5C%3AAID-SPE117%5C%3E3.0.CO%5C%3B2-%5C%23
https://onlinelibrary.wiley.com/doi/abs/10.1002/%5C%28SICI%5C%291097-024X%5C%28199708%5C%2927%5C%3A8%5C%3C983%5C%3A%5C%3AAID-SPE117%5C%3E3.0.CO%5C%3B2-%5C%23
https://onlinelibrary.wiley.com/doi/abs/10.1002/%5C%28SICI%5C%291097-024X%5C%28199708%5C%2927%5C%3A8%5C%3C983%5C%3A%5C%3AAID-SPE117%5C%3E3.0.CO%5C%3B2-%5C%23
https://books.google.de/books?id=-7nM1DkWb1YC
https://books.google.de/books?id=-7nM1DkWb1YC
https://www.gnu.org/software/gzip/
https://www.cs.unc.edu/Research/compgeom/gzstream/
https://doi.org/10.1017/CBO9780511800191
https://www.sr-ix.com/Archive/CharCodeHist/X3.4-1963/index.html
https://www.sr-ix.com/Archive/CharCodeHist/X3.4-1963/index.html
https://www.openmp.org//
https://doi.org/https://doi.org/10.1145/367297.367317
https://doi.org/https://doi.org/10.1145/367297.367317
https://dl.acm.org/doi/10.1145/367297.367317
https://dl.acm.org/doi/10.1145/367297.367317
https://doi.org/10.1126/science.2983426
https://science.sciencemag.org/content/227/4693/1435.full.pdf
https://science.sciencemag.org/content/227/4693/1435
https://www.ncbi.nlm.nih.gov/genbank/sequenceids/
https://www.ncbi.nlm.nih.gov/genbank/sequenceids/
https://doi.org/10.1093/nar/gkp1137
https://doi.org/10.1093/nar/gkp1137
https://academic.oup.com/nar/article-pdf/38/6/1767/16769834/gkp1137.pdf
https://academic.oup.com/nar/article-pdf/38/6/1767/16769834/gkp1137.pdf
https://doi.org/10.1093/nar/gkp1137
https://doi.org/10.1093/nar/gkp1137
https://doi.org/10.1101/gr.8.3.175
http://genome.cshlp.org/content/8/3/175.full.pdf+html
http://genome.cshlp.org/content/8/3/175.full.pdf+html
http://genome.cshlp.org/content/8/3/175.abstract
http://genome.cshlp.org/content/8/3/175.abstract

[143] J. Yang and W. Qiu. Normalized Expected Utility-Entropy Measure of Risk.
Entropy 16 (2014), 3590–3604. doi: 10.3390/e16073590. url: https://ww
w.mdpi.com/1099-4300/16/7/3590.

[144] A. Morgulis, E. M. Gertz, A. A. Schäffer, and R. Agarwala. A Fast and
Symmetric DUST Implementation to Mask Low-Complexity DNA Sequences.
Journal of Computational Biology 13 (2006). PMID: 16796549, 1028–1040.
doi: 10.1089/cmb.2006.13.1028. eprint: https://doi.org/10.1089/cmb
.2006.13.1028. url: https://doi.org/10.1089/cmb.2006.13.1028.

[145] C. E. Shannon. A mathematical theory of communication. The Bell System
Technical Journal 27 (1948), 379–423. doi: 10.1002/j.1538-7305.1948.t
b01338.x.

[146] J. M. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy. POWER4 System
Microarchitecture. White Paper. IBM Server Group, Oct. 2001. url: ftp://p
ublic.dhe.ibm.com/software/mktsupport/techdocs/power4.pdf.

[147] D. A. Huffman. The synthesis of sequential switching circuits. Technical Re-
port. Research Laboratory of Electronics, Massachusetts Institute of Tech-
nology, Jan. 1954. url: https://dspace.mit.edu/handle/1721.1/4804.

[148] S. Peyton Jones. Beautiful concurrency. Beautiful code. O’Reilly (Jan. 2007).
url: https://www.microsoft.com/en-us/research/publication/beaut
iful-concurrency/.

[149] M. T. Heath. Hypercube multiprocessors 1986 (Jan. 1986). url: https://w
ww.osti.gov/biblio/6055870.

[150] J. Köster and S. Rahmann. Snakemake—a scalable bioinformatics workflow
engine. Bioinformatics 28 (Aug. 2012), 2520–2522. doi: 10.1093/bioinfor
matics/bts480. eprint: https://academic.oup.com/bioinformatics/art
icle-pdf/28/19/2520/819790/bts480.pdf. url: https://doi.org/10.1
093/bioinformatics/bts480.

[151] S. Lindgreen, K. L. Adair, and P. P. Gardner. An evaluation of the accuracy
and speed of metagenome analysis tools. Scientific Reports 6 (Jan. 2016).
Article, 19233 EP. url: http://dx.doi.org/10.1038/srep19233.

[152] D. Chicco and G. Jurman. The advantages of the Matthews correlation coef-
ficient (MCC) over F1 score and accuracy in binary classification evaluation.
BMC Genomics 21 (Jan. 2020), 6. doi: 10.1186/s12864-019-6413-7. url:
https://doi.org/10.1186/s12864-019-6413-7.

[153] K. Pearson. Note on Regression and Inheritance in the Case of Two Parents.
Proceedings of the Royal Society of London Series I 58 (Jan. 1895), 240–242.

[154] C. Spearman. The Proof and Measurement of Association Between Two Things.
1904.

[155] M. Seppey, M. Manni, and E. M. Zdobnov. LEMMI: A Live Evaluation of
Computational Methods for Metagenome Investigation. bioRxiv (2019). doi:
10.1101/507731. eprint: https://www.biorxiv.org/content/early/2019
/04/16/507731.full.pdf. url: https://www.biorxiv.org/content/ear
ly/2019/04/16/507731.

138

https://doi.org/10.3390/e16073590
https://www.mdpi.com/1099-4300/16/7/3590
https://www.mdpi.com/1099-4300/16/7/3590
https://doi.org/10.1089/cmb.2006.13.1028
https://doi.org/10.1089/cmb.2006.13.1028
https://doi.org/10.1089/cmb.2006.13.1028
https://doi.org/10.1089/cmb.2006.13.1028
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
ftp://public.dhe.ibm.com/software/mktsupport/techdocs/power4.pdf
ftp://public.dhe.ibm.com/software/mktsupport/techdocs/power4.pdf
https://dspace.mit.edu/handle/1721.1/4804
https://www.microsoft.com/en-us/research/publication/beautiful-concurrency/
https://www.microsoft.com/en-us/research/publication/beautiful-concurrency/
https://www.osti.gov/biblio/6055870
https://www.osti.gov/biblio/6055870
https://doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.1093/bioinformatics/bts480
https://academic.oup.com/bioinformatics/article-pdf/28/19/2520/819790/bts480.pdf
https://academic.oup.com/bioinformatics/article-pdf/28/19/2520/819790/bts480.pdf
https://doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.1093/bioinformatics/bts480
http://dx.doi.org/10.1038/srep19233
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.1101/507731
https://www.biorxiv.org/content/early/2019/04/16/507731.full.pdf
https://www.biorxiv.org/content/early/2019/04/16/507731.full.pdf
https://www.biorxiv.org/content/early/2019/04/16/507731
https://www.biorxiv.org/content/early/2019/04/16/507731

[156] C. P. Oechslin, N. Lenz, N. Liechti, S. Ryter, P. Agyeman, R. Bruggmann,
S. L. Leib, and C. M. Beuret. Limited Correlation of Shotgun Metagenomics
Following Host Depletion and Routine Diagnostics for Viruses and Bacteria
in Low Concentrated Surrogate and Clinical Samples. Frontiers in Cellular
and Infection Microbiology 8 (2018), 375. doi: 10.3389/fcimb.2018.00375.
url: https://www.frontiersin.org/article/10.3389/fcimb.2018.0037
5.

[157] A. C. Retchless, C. B. Kretz, L. D. Rodriguez-Rivera, A. Chen, H. M. Soeters,
M. J. Whaley, and X. Wang. Oropharyngeal microbiome of a college popula-
tion following a meningococcal disease outbreak. Scientific Reports 10 (Jan.
2020), 632. doi: 10.1038/s41598-020-57450-8. url: https://doi.org/1
0.1038/s41598-020-57450-8.

[158] L. Wang, Y. Sun, X. Sun, L. Yu, L. Xue, Z. He, J. Huang, D. Tian, L. D.
Hurst, and S. Yang. Repeat-induced point mutation in Neurospora crassa
causes the highest known mutation rate and mutational burden of any cel-
lular life. Genome Biology 21 (June 2020), 142. doi: 10.1186/s13059-020-
02060-w. url: https://doi.org/10.1186/s13059-020-02060-w.

[159] D. Green and J. Swets. Signal Detection Theory and Psychophysics. Wiley
(1966). url: https://books.google.de/books?id=fHR9AAAAMAAJ.

[160] J. Eid, A. Fehr, J. Gray, K. Luong, J. Lyle, G. Otto, P. Peluso, D. Rank, P.
Baybayan, B. Bettman, A. Bibillo, K. Bjornson, B. Chaudhuri, F. Christians,
R. Cicero, S. Clark, R. Dalal, A. deWinter, J. Dixon, M. Foquet, A. Gaertner,
P. Hardenbol, C. Heiner, K. Hester, D. Holden, G. Kearns, X. Kong, R. Kuse,
Y. Lacroix, S. Lin, P. Lundquist, C. Ma, P. Marks, M. Maxham, D. Murphy,
I. Park, T. Pham, M. Phillips, J. Roy, R. Sebra, G. Shen, J. Sorenson, A.
Tomaney, K. Travers, M. Trulson, J. Vieceli, J. Wegener, D. Wu, A. Yang,
D. Zaccarin, P. Zhao, F. Zhong, J. Korlach, and S. Turner. Real-Time DNA
Sequencing from Single Polymerase Molecules. Science 323 (2009), 133–138.
doi: 10.1126/science.1162986. eprint: https://science.sciencemag.or
g/content/323/5910/133.full.pdf. url: https://science.sciencemag
.org/content/323/5910/133.

[161] iDiv HPC Cluster. url: https://www.idiv.de/en/research/platforms_a
nd_networks/hpc_cluster.html.

[162] USB Implementers Forum. url: https://www.usb.org/documents.
[163] D. P. Rodgers. Improvements in multiprocessor system design. ACM SIGARCH

Computer Architecture News 13 (June 1985), 225–231. doi: 10.1145/3270
70.327215. url: https://dl.acm.org/doi/10.1145/327070.327215.

[164] M. Jain, H. E. Olsen, B. Paten, and M. Akeson. The Oxford Nanopore Min-
ION: delivery of nanopore sequencing to the genomics community. Genome
Biology 17 (Nov. 2016), 239. doi: 10.1186/s13059- 016- 1103- 0. url:
https://doi.org/10.1186/s13059-016-1103-0.

[165] D. P. McMahon, M. E. Natsopoulou, V. Doublet, M. Fürst, S. Weging,
M. J. F. Brown, A. Gogol-Döring, and R. J. Paxton. Elevated virulence of

139

https://doi.org/10.3389/fcimb.2018.00375
https://www.frontiersin.org/article/10.3389/fcimb.2018.00375
https://www.frontiersin.org/article/10.3389/fcimb.2018.00375
https://doi.org/10.1038/s41598-020-57450-8
https://doi.org/10.1038/s41598-020-57450-8
https://doi.org/10.1038/s41598-020-57450-8
https://doi.org/10.1186/s13059-020-02060-w
https://doi.org/10.1186/s13059-020-02060-w
https://doi.org/10.1186/s13059-020-02060-w
https://books.google.de/books?id=fHR9AAAAMAAJ
https://doi.org/10.1126/science.1162986
https://science.sciencemag.org/content/323/5910/133.full.pdf
https://science.sciencemag.org/content/323/5910/133.full.pdf
https://science.sciencemag.org/content/323/5910/133
https://science.sciencemag.org/content/323/5910/133
https://www.idiv.de/en/research/platforms_and_networks/hpc_cluster.html
https://www.idiv.de/en/research/platforms_and_networks/hpc_cluster.html
https://www.usb.org/documents
https://doi.org/10.1145/327070.327215
https://doi.org/10.1145/327070.327215
https://dl.acm.org/doi/10.1145/327070.327215
https://doi.org/10.1186/s13059-016-1103-0
https://doi.org/10.1186/s13059-016-1103-0

an emerging viral genotype as a driver of honeybee loss. Proceedings of the
Royal Society B: Biological Sciences 283 (2016), 20160811. doi: 10.1098/r
spb.2016.0811. eprint: https://royalsocietypublishing.org/doi/pdf
/10.1098/rspb.2016.0811. url: https://royalsocietypublishing.org
/doi/abs/10.1098/rspb.2016.0811.

[166] B. Langmead and S. L. Salzberg. Fast gapped-read alignment with Bowtie 2.
Nature Methods 9 (Apr. 2012), 357–359. doi: 10.1038/nmeth.1923. url:
https://doi.org/10.1038/nmeth.1923.

[167] D. Kim, L. Song, F. P. Breitwieser, and S. L. Salzberg. Centrifuge: rapid
and sensitive classification of metagenomic sequences. Genome Research 26
(2016), 1721–1729. doi: 10.1101/gr.210641.116. eprint: http://genome.c
shlp.org/content/26/12/1721.full.pdf+html. url: http://genome.cs
hlp.org/content/26/12/1721.abstract.

[168] J. C. Clemente, L. K. Ursell, L. W. Parfrey, and R. Knight. The impact of
the gut microbiota on human health: an integrative view. eng. Cell 148 (Mar.
2012). S0092-8674(12)00104-3[PII], 1258–1270. doi: 10.1016/j.cell.2012
.01.035. url: https://doi.org/10.1016/j.cell.2012.01.035.

[169] T. H. M. P. Consortium. A framework for human microbiome research. Na-
ture 486 (June 2012). Article, 215 EP. url: http://dx.doi.org/10.1038
/nature11209.

[170] N. A. O’Leary, M. W. Wright, J. R. Brister, S. Ciufo, D. Haddad, R. McVeigh,
B. Rajput, B. Robbertse, B. Smith-White, D. Ako-Adjei, A. Astashyn, A.
Badretdin, Y. Bao, O. Blinkova, V. Brover, V. Chetvernin, J. Choi, E. Cox,
O. Ermolaeva, C. M. Farrell, T. Goldfarb, T. Gupta, D. Haft, E. Hatcher, W.
Hlavina, V. S. Joardar, V. K. Kodali, W. Li, D. Maglott, P. Masterson, K. M.
McGarvey, M. R. Murphy, K. O’Neill, S. Pujar, S. H. Rangwala, D. Rausch,
L. D. Riddick, C. Schoch, A. Shkeda, S. S. Storz, H. Sun, F. Thibaud-Nissen,
I. Tolstoy, R. E. Tully, A. R. Vatsan, C. Wallin, D. Webb, W. Wu, M. J.
Landrum, A. Kimchi, T. Tatusova, M. DiCuccio, P. Kitts, T. D. Murphy,
and K. D. Pruitt. Reference sequence (RefSeq) database at NCBI: current
status, taxonomic expansion, and functional annotation. Nucleic Acids Res.
44 (Jan. 2016), D733–745.

[171] M. Jain, S. Koren, K. H. Miga, J. Quick, A. C. Rand, T. A. Sasani, J. R.
Tyson, A. D. Beggs, A. T. Dilthey, I. T. Fiddes, S. Malla, H. Marriott, T.
Nieto, J. O’Grady, H. E. Olsen, B. S. Pedersen, A. Rhie, H. Richardson, A. R.
Quinlan, T. P. Snutch, L. Tee, B. Paten, A. M. Phillippy, J. T. Simpson,
N. J. Loman, and M. Loose. Nanopore sequencing and assembly of a human
genome with ultra-long reads. Nature Biotechnology 36 (Jan. 2018), 338 EP.
url: http://dx.doi.org/10.1038/nbt.4060.

[172] GM12878 Utah/Ceph cell line. url: https://www.coriell.org/0/Section
s/Search/Sample_Detail.aspx?Ref=GM12878&Product=CC.

[173] B. D. Ondov, N. H. Bergman, and A. M. Phillippy. Interactive metagenomic
visualization in a Web browser. BMC Bioinformatics 12 (Sept. 2011), 385.

140

https://doi.org/10.1098/rspb.2016.0811
https://doi.org/10.1098/rspb.2016.0811
https://royalsocietypublishing.org/doi/pdf/10.1098/rspb.2016.0811
https://royalsocietypublishing.org/doi/pdf/10.1098/rspb.2016.0811
https://royalsocietypublishing.org/doi/abs/10.1098/rspb.2016.0811
https://royalsocietypublishing.org/doi/abs/10.1098/rspb.2016.0811
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1101/gr.210641.116
http://genome.cshlp.org/content/26/12/1721.full.pdf+html
http://genome.cshlp.org/content/26/12/1721.full.pdf+html
http://genome.cshlp.org/content/26/12/1721.abstract
http://genome.cshlp.org/content/26/12/1721.abstract
https://doi.org/10.1016/j.cell.2012.01.035
https://doi.org/10.1016/j.cell.2012.01.035
https://doi.org/10.1016/j.cell.2012.01.035
http://dx.doi.org/10.1038/nature11209
http://dx.doi.org/10.1038/nature11209
http://dx.doi.org/10.1038/nbt.4060
https://www.coriell.org/0/Sections/Search/Sample_Detail.aspx?Ref=GM12878&Product=CC
https://www.coriell.org/0/Sections/Search/Sample_Detail.aspx?Ref=GM12878&Product=CC

doi: 10.1186/1471-2105-12-385. url: https://doi.org/10.1186/1471-
2105-12-385.

[174] D. Mayhew and V. Krishnan. “PCI express and advanced switching: evo-
lutionary path to building next generation interconnects.” 11th Symposium
on High Performance Interconnects, 2003. Proceedings. (2003), 21–29. doi:
10.1109/CONECT.2003.1231473.

[175] Example of a PCIe SSD. url: https://www.westerndigital.com/de-de
/products/internal-drives/wd-black-sn850-nvme-ssd#WDS500G1X0E.

[176] E. G. Overbey, A. M. Saravia-Butler, Z. Zhang, K. S. Rathi, H. Fogle, W. A.
da Silveira, R. J. Barker, J. J. Bass, A. Beheshti, D. C. Berrios, E. A. Blaber,
E. Cekanaviciute, H. A. Costa, L. B. Davin, K. M. Fisch, S. G. Gebre, M.
Geniza, R. Gilbert, S. Gilroy, G. Hardiman, R. Herranz, Y. H. Kidane, C. P.
Kruse, M. D. Lee, T. Liefeld, N. G. Lewis, J. T. McDonald, R. Meller, T.
Mishra, I. Y. Perera, S. Ray, S. S. Reinsch, S. B. Rosenthal, M. Strong,
N. J. Szewczyk, C. G. Tahimic, D. M. Taylor, J. P. Vandenbrink, A. Vil-
lacampa, S. Weging, C. Wolverton, S. E. Wyatt, L. Zea, S. V. Costes, and
J. M. Galazka. NASA GeneLab RNA-seq consensus pipeline: Standardized
processing of short-read RNA-seq data. iScience 24 (2021), 102361. doi: htt
ps://doi.org/10.1016/j.isci.2021.102361. url: https://www.scienc
edirect.com/science/article/pii/S2589004221003291.

[177] GeneLab Data Processing Pipeline. url: https://github.com/asaravia-b
utler/GeneLab_Data_Processing.

[178] D. T. Truong, E. A. Franzosa, T. L. Tickle, M. Scholz, G. Weingart, E.
Pasolli, A. Tett, C. Huttenhower, and N. Segata. MetaPhlAn2 for enhanced
metagenomic taxonomic profiling. Nature Methods 12 (Oct. 2015), 902–903.
doi: 10.1038/nmeth.3589. url: https://doi.org/10.1038/nmeth.3589.

[179] Bethesda(MD). Protein [Internet]. National Library of Medicine (US), Na-
tional Center for Biotechnology Information (2004). url: https://www.ncb
i.nlm.nih.gov/protein/.

[180] R. E. Ley, D. A. Peterson, and J. I. Gordon. Ecological and Evolutionary
Forces Shaping Microbial Diversity in the Human Intestine. Cell 124 (Feb.
2006), 837–848. doi: 10.1016/j.cell.2006.02.017. url: https://doi.or
g/10.1016/j.cell.2006.02.017.

[181] G.-S. Sun, J. C. Tou, K. Liittschwager, A. M. Herrera, E. L. Hill, B. Girten,
D. Reiss-Bubenheim, and M. Vasques. Evaluation of the nutrient-upgraded
rodent food bar for rodent spaceflight experiments. Nutrition 26 (2010), 1163–
1169. doi: https://doi.org/10.1016/j.nut.2009.09.018. url: https:
//www.sciencedirect.com/science/article/pii/S0899900709004109.

[182] G. D. Wu, J. Chen, C. Hoffmann, K. Bittinger, Y.-Y. Chen, S. A. Keilbaugh,
M. Bewtra, D. Knights, W. A. Walters, R. Knight, R. Sinha, E. Gilroy,
K. Gupta, R. Baldassano, L. Nessel, H. Li, F. D. Bushman, and J. D. Lewis.
Linking Long-Term Dietary Patterns with Gut Microbial Enterotypes. Science
334 (2011), 105–108. doi: 10.1126/science.1208344. eprint: https://sc

141

https://doi.org/10.1186/1471-2105-12-385
https://doi.org/10.1186/1471-2105-12-385
https://doi.org/10.1186/1471-2105-12-385
https://doi.org/10.1109/CONECT.2003.1231473
https://www.westerndigital.com/de-de/products/internal-drives/wd-black-sn850-nvme-ssd#WDS500G1X0E
https://www.westerndigital.com/de-de/products/internal-drives/wd-black-sn850-nvme-ssd#WDS500G1X0E
https://doi.org/https://doi.org/10.1016/j.isci.2021.102361
https://doi.org/https://doi.org/10.1016/j.isci.2021.102361
https://www.sciencedirect.com/science/article/pii/S2589004221003291
https://www.sciencedirect.com/science/article/pii/S2589004221003291
https://github.com/asaravia-butler/GeneLab_Data_Processing
https://github.com/asaravia-butler/GeneLab_Data_Processing
https://doi.org/10.1038/nmeth.3589
https://doi.org/10.1038/nmeth.3589
https://www.ncbi.nlm.nih.gov/protein/
https://www.ncbi.nlm.nih.gov/protein/
https://doi.org/10.1016/j.cell.2006.02.017
https://doi.org/10.1016/j.cell.2006.02.017
https://doi.org/10.1016/j.cell.2006.02.017
https://doi.org/https://doi.org/10.1016/j.nut.2009.09.018
https://www.sciencedirect.com/science/article/pii/S0899900709004109
https://www.sciencedirect.com/science/article/pii/S0899900709004109
https://doi.org/10.1126/science.1208344
https://science.sciencemag.org/content/334/6052/105.full.pdf
https://science.sciencemag.org/content/334/6052/105.full.pdf
https://science.sciencemag.org/content/334/6052/105.full.pdf

ience.sciencemag.org/content/334/6052/105.full.pdf. url: https:
//science.sciencemag.org/content/334/6052/105.

[183] H. N. SHAH and D. M. COLLINS. NOTES: Prevotella, a New Genus To In-
clude Bacteroides melaninogenicus and Related Species Formerly Classified in
the Genus Bacteroides. International Journal of Systematic and Evolutionary
Microbiology 40 (1990), 205–208. doi: https://doi.org/10.1099/002077
13-40-2-205. url: https://www.microbiologyresearch.org/content/j
ournal/ijsem/10.1099/00207713-40-2-205.

[184] R. Ounit and S. Lonardi. Higher classification sensitivity of short metage-
nomic reads with CLARK-S. Bioinformatics 32 (Aug. 2016), 3823–3825. doi:
10.1093/bioinformatics/btw542. eprint: https://academic.oup.com/b
ioinformatics/article-pdf/32/24/3823/16920900/btw542.pdf. url:
https://doi.org/10.1093/bioinformatics/btw542.

[185] GitHub of Kaiju. url: https://github.com/bioinformatics-centre/kai
ju/.

[186] P. Sieber, M. Platzer, and S. Schuster. The Definition of Open Reading Frame
Revisited. Trends in Genetics 34 (Mar. 2018), 167–170. doi: 10.1016/j.tig
.2017.12.009. url: https://doi.org/10.1016/j.tig.2017.12.009.

[187] A. Ltd. AArch64 architecture. url: https://developer.arm.com/documen
tation/ddi0487/latest.

[188] R. Baeza-Yates and A. Salinger. “Fast Intersection Algorithms for Sorted
Sequences.” Algorithms and Applications: Essays Dedicated to Esko Ukkonen
on the Occasion of His 60th Birthday. Ed. by T. Elomaa, H. Mannila, and
P. Orponen. Springer Berlin Heidelberg 2010, 45–61. doi: 10.1007/978-3-
642-12476-1_3. url: https://doi.org/10.1007/978-3-642-12476-1_3.

[189] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions,
and reversals. Dokl. Akad. Nauk SSSR 163 (1965), 845–848. url: http://m
i.mathnet.ru/dan31411.

142

https://science.sciencemag.org/content/334/6052/105.full.pdf
https://science.sciencemag.org/content/334/6052/105.full.pdf
https://science.sciencemag.org/content/334/6052/105.full.pdf
https://science.sciencemag.org/content/334/6052/105
https://science.sciencemag.org/content/334/6052/105
https://doi.org/https://doi.org/10.1099/00207713-40-2-205
https://doi.org/https://doi.org/10.1099/00207713-40-2-205
https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/00207713-40-2-205
https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/00207713-40-2-205
https://doi.org/10.1093/bioinformatics/btw542
https://academic.oup.com/bioinformatics/article-pdf/32/24/3823/16920900/btw542.pdf
https://academic.oup.com/bioinformatics/article-pdf/32/24/3823/16920900/btw542.pdf
https://doi.org/10.1093/bioinformatics/btw542
https://github.com/bioinformatics-centre/kaiju/
https://github.com/bioinformatics-centre/kaiju/
https://doi.org/10.1016/j.tig.2017.12.009
https://doi.org/10.1016/j.tig.2017.12.009
https://doi.org/10.1016/j.tig.2017.12.009
https://developer.arm.com/documentation/ddi0487/latest
https://developer.arm.com/documentation/ddi0487/latest
https://doi.org/10.1007/978-3-642-12476-1_3
https://doi.org/10.1007/978-3-642-12476-1_3
https://doi.org/10.1007/978-3-642-12476-1_3
http://mi.mathnet.ru/dan31411
http://mi.mathnet.ru/dan31411

Definitions and descriptions

A∗ Kleene star, set of all strings which can be formed with the alphabet A
M Set of all sequences/reads from (meta-) genomic data
R Set of IDs describing the order of reads
MR Set of tuples each containing a read and its ID
SR A relation between all possible non-empty substrings of sequences from

M and the IDs from R
DB Set of all genomes in the form of strings derived from a database
T Set of all taxonomic IDs of the genomes in DB
DBT Set of tuples each containing a genome with its respective taxonomic ID
GT A relation between all possible non-empty substrings of genomes from DB

and the IDs from T
kL The lowest or smallest k in the range of k ’s ∈ [kL, kH]
kH The highest or largest k in the range of k ’s ∈ [kL, kH]
TM Container of matching taxonomic IDs, saved into a bit array set
RM Container of matching read IDs saved into an std::vector

143

Abundance The proportion of a taxon’s DNA in a dataset, expressed
as a percentage

Accuracy Refers here to the degree to which software can correctly
identify a taxon

Database (Fasta) files containing the reference
DNA sequence / Read A string of digitized DNA gained by DNA sequencing
DNA sequencing The process of determining the order of nucleotides in

DNA
Frames Translated words generated by shifting the starting po-

sition of the translation by up to two DNA bases
Hits Events where matches happen
HPCC High performance computing cluster
Identification Synonym for taxonomic profiling
Index Data structure holding the database
LCA Lowest common ancestor, a node in the taxonomic tree

that is one level higher up
MAGs Metagenome-assembled genomes, (often novel) genomes

assembled from metagenomic data
Matches DNA or protein sequences from new data which are iden-

tical to sequences in the reference
Platform A certain configuration of hardware like a Desktop PC

or a Laptop
Primary memory Memory from RAM and CPU cache combined and char-

acterized by fast access and volatility
Profile A table of all organisms or taxa that have been identified

in a dataset together with their respective abundance
Reference Genomic or protein data from known species
r-Identification List of read IDs together with their identified taxa and

scores
Robustness Ability to ignore errors without influencing accuracy
Secondary memory Non-volatile memory, usually hard drives (HDD) or

solid-state drives (SSD) as well as flash drives
Taxon / Taxa Taxonomic unit, usually a species
Taxonomic profiling Process of creating an r-identification or/and a profile

by searching for similarities between a reference and se-
quenced data

144

Eidesstattliche Erklärung /
Declaration under Oath

Ich erkläre an Eides statt, dass ich die Arbeit selbstständig und ohne fremde Hilfe
verfasst, keine anderen als die von mir angegebenen Quellen und Hilfsmittel benutzt
und die den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen als
solche kenntlich gemacht habe.

I declare under penalty of perjury that this thesis is my own work entirely and has
been written without any help from other people. I used only the sources mentioned
and included all the citations correctly both in word or content.

. .

Ort / City, Datum / Date Unterschrift / Signature

145

Silvio Weging March 1, 2023

Email: silvio.weging@gmail.com Google Scholar: Silvio Weging
GitHub: SilvioWeging ORCID: 0000-0002-8484-4352

Research interests Taxonomic Profiling, Algorithm Engineering, Mathe-
matical Optimization, Bioinformatics, Big Data

Education Martin-Luther University Halle-Wittenberg
Dr. rer. nat. Computer Science / Bioinformatics
Mentors: Ivo Grosse; Andreas Gogol-Döring
2016-05 – 2022-10

Otto-von-Guericke Universität Magdeburg
M. Sc. Mathematics / Computermathematics
2011-10 – 2014-05

Otto-von-Guericke Universität Magdeburg
B. Sc. Computermathematics
2008-10 – 2011-12

Dissertation Novel resource-efficient methods for robust and
accurate taxonomic profiling of metagenomic
data
Mentors: Ivo Große; Andreas Gogol-Döring

Master thesis Zone models on the basis of Kriging approxima-
tion for use in adaptive substitute model-based
optimization procedures
Mentors: Gennadiy Averkov; IAV GmbH Chemnitz

Bachelor thesis Efficient conversion of number representations
based on floating point numbers
Mentors: Stefan Schirra; Marc Mörig

Publications Taxonomic Analysis of Metagenomic Data with
kASA
Silvio Weging, Andreas Gogol-Döring, Ivo Grosse
Nucleic Acids Research, 2021
https://doi.org/10.1093/nar/gkab200

146

https://scholar.google.de/citations?user=H_Vx1XIAAAAJ&hl=en&oi=ao
https://github.com/SilvioWeging
http://orcid.org/0000-0002-8484-4352
https://doi.org/10.1093/nar/gkab200

NASA GeneLab RNA-Seq Consensus Pipeline:
Standardized Processing of Short-Read RNA-
Seq Data
Eliah G. Overbey, Amanda M. Saravia-Butler, Zhe
Zhang, Komal S. Rathi, Homer Fogle, Willian A. da
Silveira, Richard J. Barker, Joseph J. Bass, Afshin Be-
heshti, Daniel C. Berrios, Elizabeth A. Blaber, Egle
Cekanaviciute, Helio A. Costa, Laurence B. Davin,
Kathleen M. Fisch, Samrawit G. Gebre, Matthew Ge-
niza, Rachel Gilbert, Simon Gilroy, Gary Hardiman,
Raúl Herranz, Yared H. Kidane, Colin P.S. Kruse,
Michael D. Lee, Ted Liefeld, Norman G. Lewis, J.
Tyson McDonald, Robert Meller, Tejaswini Mishra,
Imara Y. Perera, Shayoni Ray, Sigrid S. Reinsch, Sara
Brin Rosenthal, Michael Strong, Nathaniel J Szewczyk,
Candice G.T. Tahimic, Deanne M. Taylor, Joshua P.
Vandenbrink, Alicia Villacampa, Silvio Weging, Chris
Wolverton, Sarah E. Wyatt, Luis Zea, Sylvain V.
Costes, Jonathan M. Galazka
iScience, 2021
https://doi.org/10.1016/j.isci.2021.102361

Revamping Spaceomics in Europe
Pedro Madrigal, Alexander Gabel, Alicia Villacampa,
Aránzazu Manzano, Colleen S Deane, Daniela Bezdan,
Eugénie Carnero-Diaz, F. Javier Medina, Gary Hardi-
man, Ivo Grosse, Nathaniel Szewczyk, Silvio Weging,
Stefania Giacomello, Stephen Harridge, Tessa Morris-
Paterson, Thomas Cahill, Willian A. da Silveira, Raúl
Herranz
Cell Systems, 2020
https://doi.org/10.1016/j.cels.2020.10.006

Elevated virulence of an emerging viral geno-
type as a driver of honeybee loss
McMahon Dino P., Natsopoulou Myrsini E., Doublet
Vincent, Fürst Matthias, Weging Silvio, Brown Mark
J. F., Gogol-Döring Andreas and Paxton Robert J.
Proceedings of the Royal Society B, 2016
https://doi.org/10.1098/rspb.2016.0811

147

https://doi.org/10.1016/j.isci.2021.102361
https://doi.org/10.1016/j.cels.2020.10.006
https://doi.org/10.1098/rspb.2016.0811

Research experience Consortium Member
Space omics ESA topical team
2019 – Present
https://issop.space/space-omics-topical-team/

Consortium Member
NASA GeneLab AWG microbes group for the analysis
of space-related data
2018 – Present
https://genelab.nasa.gov/

Research assistant
Martin-Luther University Halle-Wittenberg
Faculty of Science III - Department of Computer Sci-
ence
2016-05 – 2021-09
https://www.informatik.uni-halle.

de/arbeitsgruppen/bioinformatik/

mitarbeiterinnen/weging/

Research assistant
German Centre for Integrative Biodiversity Research
(iDiv) Leipzig
Bioinformatics Group
08-2014 – 06-2016
https://www.idiv.de/de/index.html

Research assistant
Leipzig University of Applied Sciences (HTWK)
Laboratory for Biosignal Processing
07-2015 – 12-2015
https://labp.github.io/

Teaching experience Teaching during PhD 2016-2021
Basics of Bioinformatics (BA)
Data Structures and Efficient Algorithms (BA)
Mathematical Foundations of Computer Science and
Concepts of Modeling (BA)
Object-Oriented Programming (BA)
Statistical Data Analysis (BA)
Algorithms on Sequences II (MA)
Biological Networks (MA)
Median student rating: 1.3, Average: 1.35

148

https://issop.space/space-omics-topical-team/
https://genelab.nasa.gov/
https://www.informatik.uni-halle.de/arbeitsgruppen/bioinformatik/mitarbeiterinnen/weging/
https://www.informatik.uni-halle.de/arbeitsgruppen/bioinformatik/mitarbeiterinnen/weging/
https://www.informatik.uni-halle.de/arbeitsgruppen/bioinformatik/mitarbeiterinnen/weging/
https://www.idiv.de/de/index.html
https://labp.github.io/

Talks given KoBIS TH Mittelhessen March 2019
Topic: Taxonomic Analysis of Metagenomic Data on a
Notebook

Mittelerde Meeting HS Mittweida June 2018
Topic: kASA - k-Mer Analysis of Sequences based on
Amino acids

Skills Programming
Proficient in: C++, Python, Shell
Familiar with: C#, Java

Languages
German (mother tongue), English (fluent)

Other interests and
hobbies

Pen & Paper, Bouldering, Computer Games, Cycling,
Concerts

149

	Contents
	Introduction
	Introduction to metagenomics
	Requirements and main objectives
	Requirements
	Main objectives

	Taxonomic profiling
	Algorithmic solutions and existing software
	Software using alignments
	Software using the FM-Index
	Software using hashing
	Software using k-mers

	New ideas
	Dynamic k
	Translation
	Memory restriction

	Implementation details and modules of kASA
	Libraries
	Standard Template Library
	STXXL
	zlib

	Custom data structures and classes
	Trie
	Bit array sets
	WorkerThread and WorkerQueue

	Input file formats
	FASTA
	FASTQ

	Modules of kASA
	generateCF
	build
	shrink
	update, delete, and merge
	identify

	Additional features and modules
	identify_multiple
	Retrieving lost or damaged Files
	Measuring the redundancy

	Experimental design and results
	Preliminaries
	Snakemake
	Quality measurements

	Existing benchmark studies
	McIntyre et. al.
	Lindgreen et. al.

	Benchmarks with synthetic data
	Robustness
	CAMI
	Performance and memory consumption

	Real data
	Deformed wing virus detection
	Human microbiome project
	Human genome assembly

	Discussion and summary

	Further experiments and new insights
	Influence of the codon table and its resistance to mutation
	kASA as part of a metagenomics pipeline
	Usage of spaced k-mers
	Kaiju vs kASA
	Influence of shrink on sensitivity

	Conclusions and future work
	Conclusions
	Goals reached
	Failed ideas
	Future work

	Bibliography
	Definitions and descriptions

