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Abstract

It has always been challenging to determine a path across an area or within a
medium — whether on a road map for route planning, in a 3D CAD model to
generate wire paths, or by surgeons on medical scans for treatment planning. In
such scenarios, a decision-maker must consider multiple objectives simultane-
ously to make an informed decision. In multi-objective optimisation, several
objectives are considered, and a set of solutions is produced. Such problems
can have large search spaces, as they typically consider a well-defined data
structure representing the connections between entities. Classic exact optimisa-
tion approaches can result in relatively long computation times. To counteract
this, metaheuristics, such as evolutionary algorithms, can generate good solu-
tions in a reasonable time. However, pathfinding problems can be deceptive,
resulting in relatively poor performance when using such methodologies. This
thesis addresses the optimisation of many-objective pathfinding problems using
evolutionary algorithms.

In the related literature, several works on multi-objective pathfinding prob-
lems have been proposed. They are outlined and categorised in this thesis.
Furthermore, various techniques accounting for different aspects of pathfinding
optimisation problems have been addressed by other authors. Yet in many works,
only specific use-case tailored problems have been considered, with specialised
environments.

This thesis proposes methodologies to generate variable and scalable pathfind-
ing benchmark problems and techniques to improve the optimisation process.
The result is an increased quality of solutions. The benchmark generator was
developed using real-world knowledge and can be employed by the research
community to evaluate new algorithms. The techniques to improve the opti-
misation can be divided into two parts. First, various approaches to represent
pathfinding problems for optimisation algorithms are proposed. Second, new
techniques that can be used with existing algorithms to increase the quality and
maintain the diversity of the solution set are presented. The results show an
improvement in the solution set’s quality.

Furthermore, this thesis addresses the challenge for decision-makers to choose
one solution among many that are all Pareto-optimal. Approaches to identifying
interesting paths are presented and evaluated, based on a real-world road net-
work. The results indicate that computing sets of various alternatives or robust
solutions can be helpful for human decision-makers in real life.
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Zusammenfassung

Es war schon immer eine Herausforderung, einen Weg über ein Gebiet oder in-
nerhalb eines Mediums zu bestimmen - sei es auf einer Straßenkarte zur Routen-
planung, in einem 3D-CAD-Modell zur Erstellung von Drahtwegen oder von
Ärzten auf medizinischen Scans zur Behandlungsplanung. In solchen Szenarien
muss ein Entscheidungsträger mehrere Ziele gleichzeitig berücksichtigen, um
eine fundierte Entscheidung zu treffen. Bei der multikriteriellen Optimierung
werden mehrere Ziele berücksichtigt, und es wird eine Reihe von Lösungen
erstellt. Solche Probleme können große Suchräume haben, da sie typischer-
weise eine wohldefinierte Datenstruktur berücksichtigen, die die Verbindungen
zwischen den Einheiten darstellt. Klassische exakte Optimierungsansätze kön-
nen zu relativ langen Berechnungszeiten führen. Um dem entgegenzuwirken,
können Metaheuristiken, wie z. B. evolutionäre Algorithmen, in angemessener
Zeit gute Lösungen erzeugen. Pfadfindungsprobleme können jedoch trügerisch
sein, was zu einer relativ schlechten Leistung beim Einsatz solcher Metho-
den führt. Diese Arbeit befasst sich mit der Optimierung von multikriteriellen
Pfadfindungsproblemen durch evolutionäre Algorithmen.

In der einschlägigen Literatur sind mehrere Arbeiten zu multikriteriellen
Wegfindungsproblemen vorgeschlagen worden. Sie werden in dieser Arbeit
beschrieben und kategorisiert. Darüber hinaus haben sich andere Autoren mit
verschiedenen Techniken befasst, die unterschiedliche Aspekte von Pfadfind-
ungsoptimierungsproblemen berücksichtigen. In vielen Arbeiten wurden jedoch
nur auf bestimmte Anwendungsfälle zugeschnittene Probleme mit speziellen
Umgebungen berücksichtigt.

In dieser Arbeit werden Methoden zur Erzeugung variabler und skalierbarer
Pfadfindungs-Benchmark-Probleme und Techniken zur Verbesserung des Opti-
mierungsprozesses vorgeschlagen. Das Ergebnis ist eine höhere Qualität der
Lösungen. Der Benchmark-Generator wurde unter Verwendung von Wissen aus
der Praxis entwickelt und kann von der Forschungsgemeinschaft zur Bewertung
neuer Algorithmen eingesetzt werden. Die Techniken zur Verbesserung der Op-
timierung können in zwei Teile unterteilt werden. Erstens werden verschiedene
Ansätze zur Darstellung von Pfadfindungsproblemen für Optimierungsalgo-
rithmen vorgeschlagen. Zweitens werden neue Techniken vorgestellt, die mit
bestehenden Algorithmen verwendet werden können, um die Qualität zu er-
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höhen und die Vielfalt der Lösungsmenge zu erhalten. Die Ergebnisse zeigen
eine Verbesserung der Qualität der Lösungsmenge.

Darüber hinaus befasst sich diese Arbeit mit der Herausforderung für Entschei-
dungsträger, eine Lösung unter vielen zu wählen, die alle Pareto-optimal sind. Es
werden Ansätze zur Identifizierung interessanter Pfade vorgestellt und anhand
eines realen Straßennetzes bewertet. Die Ergebnisse zeigen, dass die Berech-
nung von Gruppen von verschiedenen Alternativen oder robusten Lösungen für
menschliche Entscheidungsträger im Alltag hilfreich sein kann.
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“This Is The Way.”
THE MANDALORIAN , IN THE MANDALORIAN
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1 Introduction

1.1 Motivation

Pathfinding is one of the most challenging tasks for humans. Since the first
explorers set foot on highly unpredictable terrain to the highly detailed maps
today, finding the best route between two points has always been equivalent to an
optimisation problem. Pathfinding becomes even more difficult when travellers
must choose between several options because they have more than one objective
to accomplish. Pathfinding is used in many industrial applications with complex
requirements as well as in private route planning. Logistics such as delivery
services, ambulances, postal services, and other services that use road maps to
plan their routes all have specific requirements. For example, animal transports
may use routes with relatively few curves to reduce stress on the animals.
For ambulances, routes and pathways must be resilient to unexpected events.
Pathfinding is not only performed on road maps that show street networks but
also in various other applications, such as the automobile industry or the medical
field. For example, a doctor may plan a path from the outside of the body to the
cancerous cells for liver ablation or other tumour interventions. Typically, the
physician makes an educated guess as to where to insert the needle. The methods
we develop in this thesis provide an approach to personalised path-planning
that can help doctors select the optimal path for surgery or can enable decision-
makers (DMs) to locate alternative solutions when planning their routes in
logistic applications. It is common for an industry to optimise a route or path
based upon several objectives. However, a DM usually establishes a specific
weighting of the objectives, based on their experience, yielding a single optimal
path. In evolutionary multi-objective optimisation, a number of objectives are
simultaneously optimised, resulting in a set of possible alternative solutions.

In pathfinding applications, multi-objective optimisation methods can be applied.
Such problems can be considered NP-hard, i.e., not solvable by an algorithm in
polynomial time. Although this might not be an issue for small-scale problems
and exact algorithms can be used, time is precious and waiting for a result can
be costly. The dimensionality of multi-objective optimisation problems is high,
resulting in long times to finish an optimisation.
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To provide suboptimal solutions in a reasonable time, evolutionary algorithms
(EAs) have proven useful. Results can be obtained early that give good in-
sights regarding a problem for a DM. A second advantage of metaheuristics
like evolutionary algorithms is their anytime property, which means that the
algorithms can be halted at any time and results can be obtained. To see results
with exact methods, the optimisation process usually must complete. It is also
for this reason that EAs are appropriate for solving multi-objective pathfinding
problems. The DM is always able to obtain intermediate results and can see
how the optimisation process is proceeding.

In addition, from a real-world perspective, there are several applications that
can benefit from pathfinding algorithms to identify more interesting and better
solutions [CZKZ22]. We outline a subset of them here.

We also provide different methodologies for pathfinding used in several ap-
plications; thereafter, we evaluate and examine those methods.The first and
best-known application is pathfinding on road networks. These networks are
typically hierarchical [Gei08], which is used by speed-up techniques such as
hub-labelling. The second application is pathfinding in medical treatments.

From an abstract point of view, these applications are different but have simi-
larities. While the pathfinding on road networks considers a two-dimensional
(2D) space, pathfinding in medical application scales to three dimensions (3D),
which increases the complexity of the search space. One of the goals of this
thesis is to find generally applicable methods which can be used in several
applications. In the following section, we describe the two applications.

1.1.1 Road networks

Pathfinding algorithms are commonly used with road networks. Several compa-
nies provide pathfinding (or route planning) services based on the world’s street
network. A road network is composed primarily of streets and intersections. It
can be represented as a graph by making each node represent an intersection (or
address) in the network, linked to other intersections by edges which represent
the streets. Moreover, typical road networks have a hierarchy since they are
constituted of different road types. In Figure 1.1, the hierarchy derived from
the speed and movement of traffic and access to property is depicted. These
characteristics can be exploited in pathfinding algorithms. In road networks,
pathfinding is typically used to determine a route from one address to another.
It is possible to restrict the pathfinding methods by accessing only certain types
of roads. A goal is often not merely an arbitrary path but rather the shortest
route. When the term shortest is used, it usually refers to the shortest distance
or the shortest time needed to traverse a graph.

In marine vessel logistics, waterways are used instead of roads. In this field,
navigation and route planning are essential. However, maritime route planning
is a problem consisting of a well-defined network of waterways as well as a
grid which separates the ocean into distinct areas. Waterways do not exist in
the oceans, which are rather a surface to be navigated. Graphs are used as a
representation for waterways, and grids are used to represent oceans for vessel
routing.

1.1.2 3D Pathfinding

It is necessary to plan routes from one place to another in numerous industries,
including aviation. Vehicles of this type move in a space that can be divided into

4



Figure 1.1: Road Hierarchy
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a 3D grid and can be represented as a graph. If one considers the atmosphere of
the earth as an example, depending on the grid’s resolution (i.e., the size of the
grid cells), there could be many grid cells. The number of cells in the graph can
be reduced by applying techniques such as octrees, which reduces the number
of nodes in the graph by sacrificing some accuracy.

Moreover, 3D pathfinding can be beneficial for other applications, such as the
routing of wires through mechanical objects. Examples include cars and other
mechanically engineered objects which require wiring harnesses.

1.1.3 Coverage Path Planning

Pathfinding techniques can help with coverage path planning. In this task, it
is vital to maintain a path that passes over all the points of interest in an area,
while avoiding obstacles [GC13].

1.1.4 Medical Applications

This application must be divided into two separate sub-applications. These are
derived from the actual medical treatments.

Needle-based Percutaneous Intervention

The first treatment involves a needle-based percutaneous procedure. An ablation
treatment or biopsy can be performed using a relatively rigid needle inserted
into the body. It is possible to perform a biopsy or ablation in order to examine
or treat cancerous cells. It is essential to perform pathfinding to locate an
appropriate spot on the skin and the appropriate angle at which to insert the
needle. The path in this case refers to the path leading from the outside of the
body to the treatment area.

Catheterisation

In the second treatment, a catheter (which is a small tube of medical-grade
material) is inserted into the body to support specific tasks, such as draining
fluids or performing special operations during surgery. For instance, cardiac or
coronary catheterisation is a procedure that can be used for treating myocardial
infarctions (heart attacks). In this case, pathfinding can determine a possible
route from the outside of the body, through the vessel systems, to the point of
interest where the obstruction occurred.
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The above two use-cases share the same foundation, namely voxel data from
medical imaging techniques such as computed tomography scans (CT) or mag-
netic resonance imaging (MRI). Once raw data has been acquired, it is pre-
processed and segmented. Organs and other structural elements within the data
can be extracted and labelled through segmentation. Because of their grid-like
structure, voxels can be converted into a 3D lattice graph. Following this step,
each voxel is represented as a node which is connected to its six neighbours
using edges. It is possible to label each node with the specific tissue type by
segmenting the data prior to analysis. The labelled lattice graph can then be
used for pathfinding within tissue.

At present, pathfinding methodologies differ for each sub-application. The
different methods affect the underlying graph used to compute the paths.

1.1.5 Manufacturing

In the field of manufacturing, many applications benefit from pathfinding
methodologies using graphs. For instance, 3D CAD models can be represented
as a graph while searching for disassembly, or assembly sequences can be per-
formed using a pathfinding algorithm [WBM18]. Furthermore, finding possible
ways for wires and harnesses through a 3D CAD model using a graph-based
shortest path technique can support engineers [WBM19]. Identifying functional
groups in a CAD model is another application of pathfinding. For each of these
problems, multiple objectives are usually considered by the engineer or DM.

1.2 Research Goals and Questions

This thesis assesses and develops methodologies for the multi-objective pathfind-
ing problem in several aspects. Analysis of the various applications indicates
that each of them can be represented by a graph, i.e., a data structure to store
information about how entities are interconnected. Such entities can be road
intersections or blood vessel branches and junctions. In addition, neighbour-
hood relationships in a CAD model can be expressed with such a structure. It is
independent of but does not exclude geometrical or geographical information,
and it can represent complex relations. In this thesis, we focus on using such
structures to encode a pathfinding problem.

In previous studies, often only three objectives have been considered, regard-
less of the underlying methodology, such as exact methods or evolutionary
algorithms. In reality, problems can have more than three objectives. Addi-
tionally, current methodologies often do not consider the objective functions
commonly encountered in the real world but use specific well-defined contin-
uous benchmark functions. In this thesis we investigate the Many-Objective
(Single-Path) Pathfinding Problem (MaOPF), which is a problem of finding a
set of Pareto-optimal paths in a graph concerning more than three objectives.
There is little research on the topic of MaOPF, a gap this thesis addresses
through meta-heuristics (i.e., evolutionary algorithms). We next describe the
goals (G1–G5) of this thesis and the research questions (RQs).

The goals of this thesis are defined as follows and result in five research ques-
tions, which are described afterwards:

G 1 Review of state-of-the-art approaches
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G 2 Define a scalable and variable test problem to evaluate algorithms for
MaOPFs

G 3 Assess representation schemes of the MaOPF

G 4 Develop new methodologies to improve the performance of optimisation
algorithms for pathfinding problems

G 5 Evaluate the proposed techniques

The goals listed here also provide a broad outline of this thesis. To achieve these
goals, we worked on the following research questions, which arose from the
research and corresponding challenges regarding evolutionary many-objective
optimisation methods for pathfinding. As a first question, related work is of
concern but also whether methodologies from the single-objective domain can
increase the performance of multi-objective techniques.

RQ 1 Which techniques exist to solve the MaOPF?

RQ 1.1 Which environmental classes are used and how do they differ?

RQ 1.2 Which state-of-the-art algorithms are used in the respective envi-
ronments?

RQ 1.3 Can single-objective speed-up techniques be used to support a multi-
objective approach?

In this thesis, we develop strategies for the many-objective pathfinding problem.
Furthermore, we study different evolutionary operators and search strategies.
We modify existing methods and develop new techniques to cope with the
identified challenges of such problems and to explore and exploit the search
spaces more efficiently.

A question that arises when designing an algorithm for a specific problem is the
representation of the problem and its solutions. When using genetic algorithms
in particular, the choice can strongly influence the performance. Therefore, we
address the following research question:

RQ 2 Is there a significant difference between using problem and solution
tailored representations rather than standard encodings?

In addition to the encoding schemes, another aspect to consider when developing
methodologies to solve the problem is that the new technique should work well
on a variety of similar problems. Therefore, it is necessary to have a well-known
test problem to compare different approaches. In this regard, the following
research questions were addressed:

RQ 3 How should a scalable and variable benchmark test problem be designed
to cover a wide variety of pathfinding problems?

RQ 3.1 Which real-world related objectives should be considered in the test
problems?

A key question is how optimisation can be improved to obtain better results,
possibly in less time. A specific characteristic of the MaOPF is that its solutions
are actual paths that are eventually traversed by a robot, car or any other entity or
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object. The actual expression of a path is of great interest. Furthermore, a large
diversity of possible options is beneficial for a DM. Therefore, we concentrate
on analysing the geometrical and physical characteristics of a path and thus
address the following questions:

RQ 4 How can the geometrical properties of a path be assessed?

RQ 4.1 How can differences from other paths be measured?

RQ 5 How can these properties be exploited for the optimisation process?

RQ 6 Can such properties be used to increase the diversity of the resulting
solution set?

A new technique or approach must be evaluated to assess its quality. However,
when multiple solutions are presented to a DM, the number of options should be
reduced so as not to overwhelm them and to support the decision process. With
a large network and with numerous objectives, the number of Pareto-optimal
solutions tends to increase. A human DM might be unable to comprehend such
a high number. Therefore, we aim to develop and evaluate methodologies to find
interesting solutions without sacrificing the diversity of the proposed solution
set. Furthermore, we introduce the concept of decision points (DPs). Hence, in
addition to the previous questions, the following questions are also of interest:

RQ 7 What performance indicator (PI) can be used to evaluate the algorithm’s
performance?

RQ 8 How to reduce the number of solutions that are presented to a decision-
maker?

In this thesis, we aim to answer these questions. Hence, the findings and new
methodologies should enable planners, engineers and similar professionals to
find better and more diverse solutions to their problems.

1.3 Structure of the Thesis

This thesis is structured as follows. In Chapter 2, we discuss the relevant scien-
tific fundamentals on topics such as graph theory and EAs. In Chapter 3, RQ
1 is addressed, and we describe related works on the topic of multi-objective
optimisation for pathfinding problems and their relevant solution approaches.
Furthermore, we identify and summarise characteristics of the works. Differ-
ent aspects of the pathfinding problem and related techniques are covered. A
benchmark suite for the proposed problem is presented in Chapter 4, where RQ
3 is addressed. We propose how a scalable and variable test problem can be
generated that incorporates several properties of real-world problems. Chap-
ter 5 addresses RQ 2 and describes the various representations for pathfinding
problems. In the same chapter, we present several methodologies for the ini-
tial solution generation and how multi-objective techniques can benefit from
single-objective speed-up approaches. New methodologies in terms of diversifi-
cation in the decision space during the search are described in Chapter 6, which
addresses RQ 4, RQ 5, and RQ 6. At the end of each chapter, we present an
evaluation of the proposed methodologies. To support a DM, in Chapter 7 we ad-
dress RQ 8 and present techniques to find interesting path solutions. The chapter
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also proposes methodologies for reducing the resulting solution set. Moreover,
we define DPs. Although RQ 7 is partially addressed in Chapter 2, Chapter 7
covers another crucial aspect of this question with a focus on decision-making.
The conclusion of this thesis is given in Chapter 8, and promising future work
is covered in Section 8.3.

Due to the vast amount of experiments, we aggregated the results in the eval-
uations to determine which algorithm outperformed its competitors. To save
trees and the environment, we present the raw indicator values in an additional
online appendix (Appendix B), which is not included in the printed version of
this thesis. More information are presented in Appendix A.2.
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2 Scientific Fundamentals

ScientifiIn this chapter, the following points are covered

• Background

• Mathematical definitions

In this chapter, the scientific background is introduced. We describe graph
theory, which is used in our proposed approaches (Section 2.1), multi-objective
optimisation in general (Section 2.2) and evolutionary optimisation specifically
(Section 2.2.1). In Section 2.3.2, we present a holistic definition of the multi-
objective pathfinding problem. In Section 2.4, basic principles of pathfinding
are introduced. Path similarity measurement methodologies are described in
Section 2.5, as they are used in several parts of this thesis. Finally, performance
metrics are presented in Section 2.6, which are used to evaluate the quality of
solutions. Furthermore, we present the basic concepts of decision-making and
clustering techniques.

2.1 Graph Theory

Graphs are used to represent the relations between entities. A graph G consists
of a set of vertices that are the representations of such entities and a set of
edges that denotes the relations. An edge usually consists of an unordered or
ordered set of two vertices. Formally, a directed graph G is a pair G = (V ,E),
where V denotes the set of vertices and E is the set of edges, where E ⊆{
(n,n′) | (n,n′) ∈V 2,n ̸= n′,n,n′ ∈V

}
. Note that E consists of two-element

ordered subset of V 2, which renders a graph directed. In undirected graphs, by
contrast, E consists of two-element unordered subsets of V 2 [Wil10b].

There are different types of graphs. In simple graphs, only one edge between two
vertices is allowed, while multiple edges can exist in a multigraph. Furthermore,
a graph can contain loops, which allow edges that join vertices to themselves.

In bipartite graphs, the vertices are divided into two subsets so that there is an
edge from every node in a subset to any other node in the other, but no edge
from one vertex to the other inside the subsets.

A hypergraph is a generalisation of a graph where edges can have an arbitrary
number of nodes. For every hypergraph, there exists a corresponding graph.
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A graph can also be weighted. This means a weight is assigned to each edge
through a weight function w : E → R.

In this thesis, we work with specific types of graphs, namely directed or
undirected and weighted graphs. We use the following definition of a graph:
G = (V ,E,φ), where V is the set of vertices, E is the set of edges, and φ is a
function that maps every edge to a pair of vertices. Note that φ can refer to both
a function mapping to ordered or unordered pairs of vertices, depending on the
use-case and the available data. Hence, φ : E →

{
(n,n′) | (n,n′) ∈V 2,n ̸= n′

}
.

The set notation is used in the case of unordered pairs and, therefore, undirected
graphs. In a later section, we extend this definition to represent graph-based
pathfinding problems.

There are several approaches to describing a way through a graph and thus
also several different terms. In [Wil10a], a walk is defined as a finite or infinite
sequence of edges that joins a sequence of nodes or vertices. Formally, a se-
quence of edges (e1, · · · ,ek−1) is a finite walk, if there is a sequence of nodes
(n1, · · · ,nk) with φ(ei) = {ni,ni+1}, i = 1, · · · ,k−1. It is also called the node
sequence of the walk. If n1 = nk, it is a closed walk and an open walk otherwise.
In an infinite walk, there is no first and no last node. There are also trails that are
walks containing only distinct edges and paths with distinct edges and nodes.
However, several authors do not apply the definitions strictly and simply refer
to a path, although it may not have a distinct node set [Wil10a].

2.1.1 Properties

The following section is largely based on the publication [WBM18].

A graph structure has several properties, which are outlined as follows.

Direction A graph structure is called directed if the graph’s edges have an
orientation. It is defined as G = (V,E), where V is the set of nodes and E is
a set of ordered pairs of nodes. Directed graphs have ordered pairs of nodes,
while undirected graphs have unordered pairs (see above).

Node Degree A node’s degree indicates how many connections a node has to
other neighbouring nodes. This measure may be considered the most fundamen-
tal measurement of a graph [BS09], since several other properties are related to
it; the algorithm’s complexity is also linked to it. The degree distribution of a
graph represents the degree of all nodes and is different in each use-case of a
graph-based system (GBS).

Cycles A graph is a cycle if three or more nodes can be ordered such that
there is an edge passing from one node to the next and from the last node to the
first. Graphs can also contain cycles, which influences several algorithms. This
applies to both directed and undirected graphs.

Planarity A planar graph is a graph which can be drawn without intersecting
edges. Boyer and Myrwold introduced an O(n) algorithm to determine the
planarity of a graph [BM04]. Often, road networks can be represented as planar
graphs. However, bridges or underpasses can render the graph non-planar.
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Completeness In a complete graph, there is an edge from each node to every
other node. Hence, all possible edges are included in the set of edges.

Connectivity Two unordered nodes are connected if there is a path from one
to the other. An undirected graph is connected if there is a path of any node
to any other node in the graph. Otherwise, the graph is a disconnected graph.
The graph’s connectivity in directed graphs is divided into strongly and weakly
connected graphs. A pair of ordered nodes is connected if there is a directed
path from one node to the other. It is weakly connected if directed edges are
replaced with undirected and a path exists. In a strongly connected graph, this
applies to all ordered pairs of nodes. Hence for a weakly connected graph it
holds when replacing directed edges with undirected edges.

Centrality A node’s centrality represents the importance of the node in a
network, e.g., how likely it is that information will be transferred through that
node when traversing the graph. There are several types of centrality, which
have different measurements. The first is degree centrality, which indicates
each node’s degree. In a directed graph there is an in-degree and an out-degree
centrality. Another type is the betweenness centrality, which indicates how many
times a node lies on the paths between two other nodes [Fre77]. The closeness
centrality indicates the average of the shortest path’s length between the node
and any other node inside the graph [Sab66].

2.1.2 Methods and Algorithms

This section provides a short overview of the existing methodologies and algo-
rithms designed to extract features or analyse certain properties in graphs.

Pattern Matching and Recognition Pattern matching algorithms find prede-
fined specific patterns in a given data set. The aim of pattern recognition is to
find unknown patterns in a data set.

Labelling Labelling is usually a function which maps the nodes or edges to
a set of labels. Labels are used to categorise nodes into classes or to further
analyse a network structure. An example of graph labelling is graph colouring,
where a colour is assigned to every node such that two adjacent nodes do not
have the same colour. Use-cases for graph colouring are scheduling problems,
where jobs can be executed in parallel but some jobs share the same resources.
Two jobs which use the same resource may be connected by an edge, and
each execution process is represented by a colour. Graph colouring can be
used in pattern matching and Sudoku solving [Lew16]. Furthermore, labelling
techniques can be used in a preprocessing stage to speed up path queries in a
graph.

Pathfinding Pathfinding algorithms are often executed to find the shortest
path between two nodes; these are among the earliest use-cases of graph-based
systems. One of the best-known shortest path algorithms is Dijkstra’s algorithm,
which finds optimal paths for two given nodes [Dij59]. The problem of single-
objective shortest path calculation can be divided into four classes: single-pair
shortest path problem (SPP), where the objective is to find a shortest path
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between two nodes; single-source SPP, in which all the paths from a given node
must be found; single-destination SPP, where all the shortest paths from any
node to a given node must be found and all-pairs SPP, in which all shortest
paths for every pair of nodes must be found.

Clustering The main objective of clustering algorithms is to find groups of
entities with a certain similarity or with a certain relationship to each other.
There are several kinds of clustering algorithms. Examples include hierarchical,
representative-based, grid-based and density-based algorithms [EC02].

2.2 Optimisation

Optimisation is the task of finding the best solution to a given problem. Exact
approaches always result in the global optimum but require an exponential
runtime for NP-hard problems. In addition to these approaches, heuristics are
often problem-specific, whereas meta-heuristics can generate good solutions in
an acceptable time frame. Usually, meta-heuristics can be applied to a variety
of problems.

In this thesis, we use meta-heuristics, specifically evolutionary algorithms (EAs).
Such meta-heuristic algorithms have often been inspired by biological processes
which can be observed in nature. EAs are an instance of so-called population-
based meta-heuristics. To find solutions, a population of different solutions is
created and evolved during the optimisation process.

2.2.1 Evolutionary Algorithms

An EA is a type of algorithm which is used to generate solutions to optimisation
problems. EAs are based on the principles of natural selection and evolution.
Natural selection is the process by which organisms that are better adapted to
their environment survive and reproduce, while those that are less adapted die
off. This process leads to a gradual change in the characteristics of a population
over time. EAs mimic the process of natural selection to find solutions to opti-
misation problems. EAs typically start with a population of size µ of randomly
generated solutions, called chromosomes or phenotypes. These solutions are
then evaluated according to a fitness function, and the fittest solutions are se-
lected to produce the next generation of solutions; these are then evaluated again
and selected, and so on. The process of selection and reproduction continues
until a stopping criterion is met, such as a certain number of generations being
reached, or a solution being found with a fitness that is good enough for the
problem at hand.

EAs are used to solve a wide variety of optimisation problems, such as finding
the shortest path between two points or the lowest energy state of a system. There
are several types of EA, which differ in the way that solutions are represented
and selected. The most common type of EA is the genetic algorithm (GA),
which uses a representation called a chromosome. A chromosome can be
a string of bits (ones and zeros) that represents a potential solution to the
optimisation problem. Each bit corresponds to a particular decision that needs
to be made to find the solution. For example, in the shortest path problem, each
bit could represent a decision about which direction to turn at a junction. Other
representations are possible and are discussed in Chapter 5.
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Figure 2.1: Basic flow of an EA.
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GAs work by selecting the fittest chromosomes from the current generation and
producing a new generation of chromosomes through the process of crossover
and mutation. Crossover is the process of combining two parent chromosomes
to produce a child chromosome. For example, if the two parent chromosomes
are 101101 and 100011, the child chromosome could be 101001. Mutation is the
process of randomly changing the value of one or more bits in a chromosome.
For example, if the chromosome is 101101, a mutation could change it to 101111.
The process of selection, crossover and mutation is repeated until a solution
with a fitness good enough for the problem at hand is found or a predetermined
number of generations has been reached. Figure 2.1 illustrates the basic scheme
of an EA.

EAs are powerful optimisation tools that can find solutions to problems that are
difficult or impossible to solve using traditional methods. However, EAs are
not perfect and there are several limitations, which need to be considered when
using EAs. The first limitation is that EAs can only find a solution that is good
enough, which is not necessarily the best possible solution. This is because the
search space of possible solutions is too large to be searched exhaustively. The
second limitation is that EAs can get stuck in local optima, which are regions
of the search space where the fitness of the solutions is good, but not as good
as it could be. This is because EAs often consider the immediate neighbours
of a solution when exploiting the search space for better solutions. The third
limitation is that EAs can be slow, particularly when the search space is large.
This is because the process of selection, crossover and mutation can take a long
time to converge on a good solution. Despite these limitations, EAs remain
powerful optimisation tools that can be used to solve a wide variety of problems.

The principles of EAs imitate biological evolution. They are referred to as
meta-heuristics, which include several other methods, including particle swarm
optimisation and ant colony optimisation, which are biologically based. They
also include classic processes such as simulated annealing, which originated
in thermodynamic processes. It applies the principles of evolution, such as
mutation and selection, to populations of candidate solutions to find a sufficiently
good solution to any optimisation problem [KBB+16].
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2.2.2 Multi-objective Optimisation

Multi-objective optimisation (MOO) is the process of finding the best possible
solution to a problem that has multiple conflicting objectives. In other words,
it is the process of finding a solution that maximises or minimises multiple
objectives simultaneously. MOO is a challenging problem because there is often
no single best solution. Instead, there is a set of solutions, each of which is the
best possible solution for a given set of objectives. The challenge in MOO is to
find the best possible solution for the overall problem, not just for a specific set
of objectives. MOO algorithms are designed to find the best possible solutions
to a problem by searching through the space of all possible solutions. The search
process is guided by a set of objectives, which are used to evaluate the quality of
a solution. The most common type of MOO algorithm is the EA. EAs are a type
of optimisation algorithm that uses a population of solutions, which are evolved
over time through a process of selection, crossover and mutation. EAs are well
suited to MOO because they can simultaneously optimise multiple objectives.
EAs can also handle problems with many variables and constraints. MOO
algorithms are used to solve a range of problems in fields such as engineering,
economics and operations research. There are several MOO algorithms, each
with its own strengths and weaknesses. The choice of algorithm depends on the
specific problem being solved. MOO is a powerful tool for solving complex
problems. However, MOO algorithms can be computationally expensive and
they may not always find the best possible solutions [Deb11a, Gol89, Mic96].

In Figure 2.2 the two primary goals of MOO methodology are shown. The
first goal is convergence, which is the or closeness to the true Pareto-front; the
second is diversity, which is a measurement for how diverse and spread the
solutions are along the Pareto-front.

Real-world problems often contain multiple conflicting objectives. The term
multi-objective problem (MOP) for such problems has been used in the research
community. Equation (2.1) shows a mathematical formulation.
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In MOO one is confronted with several conflicting objectives fi(⃗x), i = 1, · · · ,m
which are to be optimised (without loss of generality, we take minimisation):

Z : min f⃗ (⃗x) = ( f1(⃗x), f2(⃗x), . . . , fm(⃗x))
T

s.t. x⃗ ∈ Ω
(2.1)

where x⃗ corresponds to a decision variable in n-dimensional feasible decision
space Ω. The solution of this problem is a set of so-called Pareto-optimal solu-
tions denoted by P. Pareto-optimality refers to a situation (or solution) where an
objective value cannot be improved without worsening at least one other. The
concept is used to introduce a partial ordering on a set of solutions to rank them.
To compare two solutions, it must be determined if one of them dominates the
other in the Pareto-sense, which is defined below. This is resolved by using
the Pareto-dominance criteria, described in Equation (2.2). In Figure 2.3a an
example is shown. It follows for the set of Pareto-optimal solutions that for each
x⃗ ∈ P, there is no other y⃗ ∈ Ω which dominates x⃗ (denoted by y⃗ ≺ x⃗):

y⃗ ≺ x⃗ : fi(⃗y)≤ fi(⃗x),∀i = 1, · · ·m
f j (⃗y)< f j (⃗x),∃ j

(2.2)

Hence, the solutions in P are all Pareto-optimal and indifferent from each other.
Pareto-optimality is defined as follows:

x⃗∗ ∈ Ω is Pareto-optimal ⇐⇒ ∄⃗x ∈ Ω | x⃗ ≺ x⃗∗ (2.3)

These solutions are usually represented in the so-called decision space Ω (also
called the search space), which represents the decision variables. The optimal
solutions in this space construct the Pareto-set (PS). The image of these solutions
in the objective space constitutes a Pareto-front (PF). Formally, the PS is defined
as the set of all Pareto-optimal solutions:

PS := {⃗x | x⃗ is Pareto-optimal } (2.4)

The PF is the set of points that is obtained by applying the objective function
vector to a Pareto-optimal solution:

PF := { f⃗ (⃗x) | x⃗ ∈ PS} (2.5)

The goal of MOO algorithms is to find several Pareto-optimal solutions which
can provide a good representation of the Pareto-front.

In an MOP, the n-dimensional decision space Ω is mapped to the m-dimensional
objective space M . There are m fitness functions that compute the objective
values of a solution. The optimisation of an MOP aims to minimise or maximise
these functions simultaneously. Such fitness functions are also called objective
functions. Chapter 5 presents different encoding schemes of the pathfinding
problem, which change the definition of Ω. The decision space can be con-
strained to implement a feasibility measurement. In this thesis, the particular
optimisation in the field of pathfinding problems is discussed. Therefore, we
assume Ω to be a subspace of all possible paths from the start to the end points,
denoted by S. The space S can be further constrained by a number of inequali-
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ties expressed by some function g⃗(p), where p is a solution path. The decision
vector x⃗ is, in the scope of this thesis, a path p; hence p = x⃗.

S={p = (ni, · · · ,nk) | ni ∈V, i = (1, · · · ,k)∧
∃φ (ei,i+1) = (ni,ni+1) ∈ E, i = 1, · · · ,k−1}

(2.6)

Equation (2.6) shows the mathematical definition of the search space. Therefore,
Ω = {p ∈ S | g⃗(p)≤ 0} ⊆ S. However, direct constraint handling is outside the
scope of this thesis and is not addressed. Constraints in pathfinding problems
are often set in the environment; furthermore, in this thesis we consider only
minimisation problems.

Aside from the mentioned Pareto-dominance, other dominance criteria can be
implemented, as follows. Figure 2.3 illustrates three such criteria.

ε-Dominance The ε-dominance introduces a factor ε ∈ R>0 which enlarges
the area that is dominated by a solution. Applying it to a Pareto-front results in
a set of ε-optimal alternatives with a limited number of solutions. Figure 2.3b
shows a visual example, and it is defined as follows [PY00]:

y⃗ ⪯ε x⃗ : fi(⃗y)− εi ≤ fi(⃗x),∀i = 1, · · · ,m
f j (⃗y)− ε j < f j (⃗x),∃ j

(2.7)

Cone-Dominance In [KWZ84], a cone-shaped domination relation is de-
scribed. With such a relation, specific features of a Pareto-front can be
found. For instance, solution candidates that are inferior to other solutions
in one objective, yet non-dominated, can be dominated if cone-dominance is
used [IKK01, BCGR11]. In other words, with cone-dominance, a cone (de-
fined by an angle) defines the area that is dominated. Cone-dominance is also
known as α-dominance. Figure 2.3c shows a visual example, and it is defined
as follows (using angle ϕ):

y⃗ ⪯α x⃗ :ωi (⃗y)≤ ωi (⃗x) ,∀i = 1, · · ·m
ω j (⃗y)< ω j (⃗x) ,∃ j

(2.8)

where

ωi(⃗x) = fi(⃗x)+
m

∑
j=1, j ̸=i

ai j f j (⃗x), i = 1, · · · ,m

ai j = tan
ϕ −90

2
,∀i, j, i ̸= j

(2.9)

An advantage of the cone-dominance relation is its ability to find knee-
points [BDDO04] in a Pareto-front, which can be of great interest to DMs.
The reason is that a neighbouring solution to the knee-point on the front often
has an unfavourable trade-off [AD13, DG11].

Typically, problems with m > 1 are called multi-objective problems, whereas
problem instances with m > 3 are called many-objective optimisation problems.

In many-objective optimisation, various challenges arise [DS05, GFPC09,
ZZN+19]. One of them derives from the fact that as the number of objectives in-
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Figure 2.3: Different Dominance
Relations
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creases, so does the proportion of non-dominated solutions [Deb11b, GFPC09].
This characteristic makes methodologies based solely on Pareto-dominance less
suitable for many-objective optimisation. It can happen that a large proportion
of the solution set is non-dominated and focusing on those solutions is not
beneficial to the search process as there is little room for new solutions [DJ14].
This is known as the loss of selection pressure [ZZN+19]. Another challenge is
that measuring the diversity becomes computationally more expensive in high-
dimensional spaces. Moreover, recombining solutions to generate new ones can
be inefficient, as a few randomly chosen solutions from the population can be
distant from each other, resulting in distant offspring solutions. Deb and Jain
in [DJ14] stated that it is also difficult to represent the trade-off surface, as more
points are needed with more dimensions. Furthermore, the computational costs
of performance indicators can be high if there are many objectives. For instance,
the computational effort of computing the hypervolume increases exponentially
with the number of objectives [FPLI06,WHBH06a,DJ14]. Finally, presenting a
solution set with many objectives visually is difficult.

Various methodologies have been developed to overcome these challenges. For
instance, decomposition-based approaches, can divide the objective space into
equally spaced regions that enable the algorithm to focus on solutions along
those vector lines. Such approaches divide the problem into several single or
multi-objective problems that are solved simultaneously by the algorithm. Aside
from these kinds of algorithms handling many-objective problems, there are
also domination-based approaches that improve either the dominance regulation
or the sorting mechanism. Moreover, indicator-based algorithms use a particu-
lar indicator to measure the quality of solutions during the optimisation, and
objective-reduction-based approaches use a subset of objectives during the eval-
uation [ZZN+19]. Increasing convergence and diversity in the decision space
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Figure 2.4: Pathfinding problem
classes.
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can be beneficial for the performance measured in the objective space, since
close solutions in one space can be distant from each other in the other space,
a likely case in multi-objective pathfinding problems. For instance, focusing
solely on the objective space can result in a large uncovered area in the decision
space. Problems such as the multi-objective pathfinding problem are problems
where the quality of solutions benefits from these approaches.

2.3 Pathfinding Problems

There is a wide range of pathfinding problems, with the (multi-objective) short-
est path problem discussed in this thesis being only one of the variants.

2.3.1 General Overview

In Figure 2.4, an overview of different pathfinding problems is shown. This
tree represents a subset of pathfinding problems; a complete analysis appears
in [ZH21]. In general, pathfinding problems can be characterised with respect
to the number of agents or entities for which a path should be computed. It can
either be a single-agent problem, where one path for one moving entity is to be
found, or multi-agent, where a set of paths P for a set of agents A is to be found.
The multi-agent variant can be further divided into several subproblems, includ-
ing the location routing problem (LRP), vehicle routing problem (VRP), and the
multi-objective multi-agent pathfinding problem (MoMAPF) [WMZM20]. On
the other side, single-agent pathfinding also has sub-classes, such as coverage
path planning (CPP) or the shortest path problem (SPP). The goal of the for-
mer is to find a route through a space that includes all points of interest while
simultaneously averting traversing through obstacles [GC13]. Regarding the
latter, it can be subdivided into the single-objective shortest path problem, where
one objective function is considered and one path is computed. In the multi-
objective shortest path problem, multiple objective functions are considered and
optimised simultaneously. This problem is examined in this thesis. It should
be noted that several of the other problems can be transferred to an SPP and
solved using different methodologies. For instance, for CPP, the coverage can
be defined as an objective and maximised during the optimisation.
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2.3.2 The Multi-objective Pathfinding Problem

The multi-objective route planning problem, hereafter called the pathfinding
problem, can be defined as a network flow problem [RE09, PMPDLC15]. The
goal is to find a set of optimal paths (routes) P∗= {p1, · · · , pL} in a graph

G =
(

V ,E,φ ,
#»
f , ιV (P), ιE(P),ns,ne

)
(2.10)

where V is the set of vertices or nodes, E represents the set of edges and φ

represents a function mapping every edge to a ordered pair of nodes n and
n′; hence φ : E → {(n,n′) | (n,n′) ∈ V 2}. A path pi is the sequence of nodes
from a starting node nS ∈ V to a predefined end node nEnd ∈ V , i.e., pi =
(ni,ni+1 · · · ,nk), where nS = ni and nEnd = nk and ni ∈ V for i = 1,2, · · · ,k
and ∃φ(ei,i+1) = (ni,ni+1) ∈ E for i = 1,2, · · · ,k− 1. Such a path p is called
a path of length k−1 from n1 to nk. A path pi is here represented as a list of
nodes in a graph. Another representation is a list of edges to traverse; hence
pi = (e1, · · · ,ek−1) where nS = φ(e1)(1) and nEnd = φ(ek)(2) and ei ∈ E for i=
1,2, · · · ,k. Following the definition of a MOP, the decision variable x⃗ is a path p
in search space Ω (cf. Section 2.2.2 and Equation (2.6)). The vector

#»
f represents

the objective functions that are to be optimised; hence
#»
f = ( f1, · · · , fm). The

graph’s nodes and edges can have further properties, e.g., an assigned location
information, such as a coordinate or height. For edges traversals, the properties
can be, e.g., constraints, such as maximum velocity. Assigning properties to
the graph’s entities is also known as the property graph data model [RN10].
Two functions ιV (P) and ιE(P) take a set of predefined property functions
as an argument and return the node’s or edge’s respective property values. A
property set P is defined as a set of property functions taking a node or edge
as an argument; hence P(·) = {gi(·)}, where (·) is either a node or an edge,
and therefore i = 1,2, · · · , |V | or i = 1,2, · · · , |E|. The function gi, represents a
specific property that assigns the value of the property to a node or edge. Given
m real-valued function mappings from fi : Ω → R for i = 1,2, · · · ,m, i.e.,

#»
f ,

the multi-objective shortest path from nS to nEnd is the set of Pareto-optimal
paths P∗ which minimises all fi(p) for i = 1,2, · · · ,m in a multi-objective sense.
In the course of this thesis, we also use the simplified definition of a graph for
pathfinding problems, that is G = (V ,E).

All points which are represented by nodes in a graph usually have an assigned
coordinate, and all edges represent actual traversal paths. The methods dis-
cussed in this thesis are primarily for coordinate-based pathfinding and thus are
geometric path planning. However, using different measurements and metrics,
the proposed methodologies can be applied to non-geometric pathfinding too.

In contrast to several other approaches discussed in the related work (cf. Chap-
ter 3), we use a graph-based problem representation and genetic algorithms for
the actual optimisation. Therefore, we use a variable-length chromosome repre-
sentation for the solutions when using the proposed methodologies. However,
pathfinding problems and their solutions can be defined in different ways, with
a graph being one of several possibilities (cf. Chapters 3 and 5). We define the
multi-objective pathfinding problem that includes the many-objective pathfind-
ing problem. The methodologies presented in this thesis can be applied to both
types but are more tailored to the many-objective variants which optimise more
than three objectives.

The multi-objective pathfinding problem can be a multi-modal problem, i.e.,
there can be more than one solution resulting in the same objectives [Jin21].
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The problem we work on in this thesis has different names in the literature (see
Chapter 3) and is also used with differing definitions in the research community.
Some authors use the terminology of both path planning and trajectory planning.
Nevertheless, there is a clear difference. A geometric path is to be found in
path planning, which indicates how to move — through via-points — from
a start point to an endpoint. By contrast, in trajectory planning, a computed
geometric path is used and enriched with time information about when an
entity traversing the path should be at which point [GBLV15]. Moreover, in this
thesis, the focus is on pathfinding in general. The shortest path problem is a
sub-problem, since pathfinding can include the longest path problem, coverage
planning, round trip planning and other pathfinding methodologies, such as
cycle detection [AMO93].

2.4 Pathfinding Techniques

There are various pathfinding methodologies available. It should be noted that
such techniques are usually tailored to a specific pathfinding problem. This
fact makes meta-heuristics — such as EAs — suitable for these problems, as
they can solve a broad range of such problems. Pathfinding techniques are a
major feature of this thesis, and different approaches are described in Chapter 3.
Here, we only outline the most known exact approaches and relevant speed-up
techniques that are used in some methodologies proposed in this thesis.

2.4.1 Exact Approaches

One of best-known algorithms to solve the shortest path problem is Dijkstra’s
algorithm, proposed in [Dij59]. It is a correct greedy algorithm to compute
either a single-pair SPP (given start and end node) or can be used to compute a
single-source SPP, i.e., given the start node, the shortest paths to all other nodes
are computed. When exploring the graph from a starting node it always follows
the edge with the current minimum summed-up costs. In that way it will always
result in the shortest possible path if there is one. It should be noted that the
algorithm only works with positive edge weights.

Another well-known algorithm to solve the shortest path problem is the A*
algorithm. In its basics it has the same pattern as Dijkstra’s algorithm but
uses a heuristic to estimate the cost to the goal node from the current position.
Therefore, it is an informed search and usually performs better than the former.
Instead of following the edge with the least cost, it adds the value computed
with the heuristic function and then follows the most promising edge [HNR68].

2.4.2 Speed-up Techniques

It is well known that Dijkstra’s algorithm is often impractical for large graphs.
Therefore, techniques that pre-process the graph to speed up the subsequent path
search have been developed. For instance, contraction hierarchies, proposed
in [Gei08], create shortcuts to avoid nodes during the expansion that are con-
sidered unnecessary. Creating shortcuts works especially well on hierarchical
networks, such as street networks. For instance, the fastest route from one major
city to another one often leads to a highway. The shortcuts, including shortcuts
between other shortcuts, are created during a preprocessing phase and can be
unpacked in the query and retrieval phase. During the latter phase, the search
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only expands the set of shortcut edges, which has a much lower cardinality than
the edge set of the actual graph.

2.5 Path Similarity Measurements

Path or curve similarity measurement are found in several fields; e.g., in hand-
writing recognition, curves are compared to match letters or words [SKB07].
Other fields include morphing [EGHP+02] and protein structure alignment [
JXZ08,WM21b]. Although related, these methodologies have not been used
to support an MOO process in maintaining and increasing the solution set’s
diversity.

In general, such a measurement or distance metric assigns a real value to two
arbitrary curves, A and B. A distance metric d : X ×X → R where X is a set,
satisfies the following conditions for x,y,z ∈ X :

d(x,y)≥ 0,d(x,y) = 0 iff x = y (Non-negativity) (2.11)

d(x,y) = d(y,x) (Symmetry) (2.12)

d(x,z)≤ d(x,y)+d(y,z) (Triangular inequality) (2.13)

However, we also propose to use measurements that do not fulfil all requirements
of a metric, e.g., dynamic time warping (DTW). It should be noted that there are
different metrics or measurements available that take different curve definitions
into account. For instance, the original Fréchet distance [EM94] computes the
distance between two continuous curves, while the Hausdorff metric [AG95] and
dynamic time warping [Mül07] take discretised curves and their inputs. Paths
that are computed using techniques proposed in this thesis are discretised curves
and can be used as inputs for the presented similarity metrics. In Chapter 6 a
detailed description of the metrics and measurements is given.

2.6 Performance Measurement

For assessing the quality of an EA, various performance indicators (PIs) can be
used. It has to be noted that each indicator describes different characteristics
of the solution set. For instance, a metric can be used for convergence or
diversity of the solution set to a known true Pareto-front. However, certain
indicators can be used without any knowledge of the true optimal solutions. In
this section, the indicators used in this thesis are explained in detail. Formally, a
performance indicator maps the set of solutions A =

{
#»a 1, · · · , #»a µ

}
, where each

#»a i is an objective vector #»a i = ( f1(pi), · · · , fm(pi)), to a single performance
value. Hence, a PI is defined as a unary operator, I : Ω→R [TI20]. Nevertheless,
as outlined, there are also PIs that map the obtained set of decision vectors to a
single performance value, I : M → R.

Because PIs are based on different factors, one algorithm may have an advan-
tage when a particular indicator is used but might be outperformed by another
algorithm when a different indicator is used. Other issues of fair comparisons
of MOO algorithms are termination condition, population size µ , and test prob-
lems [IPS22].

An algorithm’s performance can be measured in different spaces, i.e., the objec-
tive and the decision space. The PIs measure properties of the set of solutions,
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such as diversity or convergence to the real Pareto-front or set, or the number
of non-dominated solutions, and a PI may also reflect a combination of such
characteristics.

Performance indicators can be classified as either not, weakly or strongly Pareto-
compliant [HJ98]. A PI I is strongly Pareto-compliant if the order it imposes on
M follows the Pareto-dominance relation. Formally, given two solution sets A
and B, a PI I is ▷-compliant (Pareto-compliant) if A▷B⇒ I(A)< I(B), assuming
a lower indicator value as better, without loss of generality. An example of a
strong Pareto-compliant PI is the hypervolume indicator. A PI is weakly Pareto-
compliant if it determines at least equal performance for two reference sets if
one set is better in the sense of Pareto-dominance but never determines that
the better set is worse in the sense of the indicator. Formally, a PI I is weakly
▷-compliant if A▷B ⇒ I(A)≤ I(B). When comparing two sets with a PI that is
not Pareto-compliant, the outcome can be that the better set (Pareto-dominance)
is determined to be worse [IPS22, FCEC19]. There are several approaches to
make weakly Pareto-compliant PIs strongly Pareto-compliant, such as shown
in [FCEC19].

In the following section, several PIs are explained that were used for evaluating
the methodologies proposed in this thesis.

2.6.1 Objective Space

To measure the quality of a set of candidate solutions, a researcher can apply
a PI in the objective space, i.e., the space of the objective functions M . In
this thesis, we apply three PIs. The inverted generational distance (IGD) and
IGD+ use a reference point set, denoted as Z = {z1, · · · ,zk}, which contains
reference solutions; hence zi ∈ M , for i = 1, · · · ,k. Using the PIs, we compute
this distance from the reference set Z to the approximation set A =

{
a1, · · · ,aµ

}
.

Inverted Generational Distance

The IGD, which is a non-Pareto-compliant PI, measures the average distance
from the reference set to the approximation set [CCRS04]:

IGD(Z,A) =
1
|Z|

|Z|

∑
i=1

|A|
min
j=1

d (zi,a j) (2.14)

The distance function d(·, ·) measures the Euclidean distance between a refer-
ence point and a point from the approximation set.

Inverted Generational Distance+ (IGD+)

In [IMTN15a], the distance function of IGD was changed to incorporate the
dominance relation between the reference and approximation points. The au-
thors stated that the new distance can be seen as a measurement of inferiority
of the solution compared to the reference point. This IGD+ indicator is weakly
Pareto-compliant. The distance function d(·, ·) in Equation (2.14) is altered as
follows:

dIGD+(z,a) =

√
m

∑
k=1

(max{zk −ak,0})2 (2.15)

Therefore, the IGD+ indicator is computed as follows:
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Figure 2.5: Hypervolume
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IGD+(Z,A) =
1
|Z|

|Z|

∑
i=1

|A|
min
j=1

dIGD+ (zi,a j) (2.16)

Hypervolume (HV)

In real-world problems, a reference front is not always given. Furthermore,
evaluating the results using PIs that are not Pareto-compliant can lead to
the wrong final solution choice. The only known Pareto-compliant PI is the
hypervolume (HV) indicator [IMTN15a, IPS22]. However, for many-objective
optimisation problems, it becomes impractical as it requires a relatively large
computational effort.

The HV indicator computes the combined volume of all non-dominated points
in a set of points S ⊂ Rd and is defined by Equation (2.17), where r ∈ Rd is a
volume limiting point. The term [p,r] denotes the volume limited by a point
p ∈ S on the lower side and r on the upper side [ZT98, GFP20]. The term Λ

refers to the Lebesgue measure. In Figure 2.5, a visual example of the HV
indicator is shown. The indicator measures the size of the surface (or volume in
higher dimensions) of the grey areas. In other words, it indicates the size of the
area that is dominated by the approximation restricted by a reference point r.

HV (S,r) = Λ

⋃
p∈S
p≤r

[p,r]

 (2.17)

In addition to indicators in the objective space, some performance indicators
are computed in the decision space.

2.6.2 Decision Space

Inverted Generational Distance X (IGDX)

The inverted generational distance X (IGDX) indicator measures the distance
of the true Pareto-set (reference set) to the set of candidate solutions [AQY09].
It is adapted from the IGD indicator, which measures the quality of the solution
set in the objective space. Usually, the distance between a reference point and
a candidate solution is computed using the Euclidean distance. However, in
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Figure 2.6: Similarity
measurement comparison.
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the decision space of the graph-based multi-objective pathfinding problem,
the Euclidean distance cannot be used. Therefore, we propose using a path
similarity metric to measure the distances in the decision space. However,
different metrics can result in different results, as shown in Figure 2.6. The
figure shows three different paths: p1 in green as a baseline, p2 in orange and
p3 in violet. Path p2 differs in only one node compared to the baseline path,
whereas p3 differs in three nodes. Intuitively, p3 is more different from p1
than is p2. However, computing δdF(p1, p2) and δdF(p1, p3) results in the same
value, i.e., δdF(p1, p2) = δdF(p1, p3) = 1. By contrast, using the dynamic time
warping distance results in different similarity values, as shown in the respective
figure. Therefore, to evaluate small differences between several paths, analysts
should use dynamic time warping rather than the Fréchet distance. We also
show the respective values for using the Hausdorff distance.

2.7 Decision Support

A decision support system can support a DM to find a Pareto-optimal solution
that is the best choice accoording to the DM’s preferences [Mie08]. The need
for such a system arises from the challenge in multi-objective optimisation
that multiple criteria must be considered and a set of Pareto-optimal solutions
cannot be totally ordered. In Chapter 7, we propose a methodology to reduce
the number of Pareto-optimal solutions.

There are four major types of decision-making methodologies in multi-criteria
decision making (MCDM) [Mie08]. An a priori technique requires the DM to
select their preferences before a multi-objective optimisation algorithm com-
putes a solution set. However, often a DM is not fully aware of their preferences
as they lack knowledge about the problem. In a posteriori methods, an ap-
proximation of the Pareto-front is computed first, and a DM has to choose the
preferred solution afterwards. When more than two objectives are optimised, a
visualisation of the non-dominated solutions is not trivial and DMs can find it
difficult to understand the information. A third type is no-preference methodolo-
gies, where assumptions are made and a neutral trade-off solution is found, e.g.,
a point that is identified using the average values of the nadir and utopian point.
The fourth type, interactive methodologies, involve the DM in the optimisation
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process. Here, the DM is provided with indermediate solutions and can identify
their preferences [Mie08].

2.8 Clustering

Often, for analysing a data set consisting of data points, a technique called
clustering is used to divide the set into different categories or classes according
to the data points’ similarity. Depending on the kind of data, various methodolo-
gies to achieve this grouping are employed. The technique can be used during
a decision-making process. A clustering process divides an n-dimensional
population into κ sets, which results in a set of clusters Ci, i = {1, · · · ,κ},
i ∈ N [Mac67]. Since we only examine a subset of methodologies from the
large field of cluster analysis, the interested reader is referred to [TSKK19]. In
the following, we explain the most relevant techniques employed in Chapter 7.

2.8.1 Clustering Types

There are various types of clustering methodologies. In partitional clustering, a
set of data points is divided into κ groups, where κ is known before. However,
if a cluster C can contain a set of sub-clusters, it is considered to be hierar-
chical clustering. A prominent example of the partitional type is the k-means
algorithm [Mac67, Llo82]. Hierarchical clustering can be divided further into a
divisive or an agglomerative approach.

Divisive At the beginning of a divisive clustering, each object or data point is
assigned to the same cluster. During the process, the cluster is split until each
object belongs to a dedicated cluster.

Agglomerative In agglomerative clustering, a bottom-up approach is realised.
At first, each data point belongs to its own cluster, and the clusters are merged
with respect to predefined metrics until a single cluster left.

The result of both approaches is a hierarchy of clusters, which can be visualised
using a dendrogram or a nested cluster diagram.

In this thesis, we use agglomerative clustering during the decision support
process. We explain the necessary characteristics in this section.

During the fusion of clusters, a linkage criterion is needed to determine the
merging clusters. Various criteria are typically used to compute cluster proximity.
In single linkage, cluster proximity is defined as the proximity between the two
closest points of two different clusters. In contrast, in complete linkage, the
farthest two points are used. For both techniques, a distance metric is needed (cf.
Equations (2.11) to (2.13)), which assigns a real positive value to two objects.

2.8.2 Evaluation of κ

For assessment of the clustering, internal or external methodologies can be used.
The former is a measurement with respect to inter-cluster distance and variance
of a cluster. However, for the latter, ground-truth data is needed to compare the
obtained clustering. Due to the nature of the problem, there is no benchmark
data for path clustering available. Therefore, we describe only such methods
that do not require ground-truth data. However, we can compare the clustering
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results while gaining little information about the overall quality. Each of the
following indices reflects the relationship between the compactness of a cluster
and its separation from other clusters. Each index has a different approach.

Silhouette coefficient

To measure the quality of a clustering technique, Rousseeuw proposed the use
of a so-called silhouette, i.e., a graphical representation of a cluster [Rou87].
The silhouette coefficient displays the validity of a clustering. Its computation
requires two things: the partitioning of a data set into κ clusters and a dissim-
ilarity matrix that contains the distance between all objects. To compute the
silhouette value s(i) for an object i, one must compute a(i), i.e., the average
distance to all other objects in the same cluster CI (i ∈CI), which is defined by:

a(i) =
1

|CI|−1 ∑
j∈CI ,i ̸= j

d(i, j) (2.18)

Furthermore, we must compute the minimum of the mean dissimilarity to all
other clusters, i.e., the mean distance to all other objects j ∈CJ , CI ̸=CJ , and
then determine the minimum value. This value b(i) is defined as:

b(i) = min
J ̸=I

1
|CJ| ∑

j∈CJ

d(i, j) (2.19)

Here, d(i, j) is the distance between the two data points i and j, which can be
any distance metric. Finally, we compute the silhouette value s(i) for an object
i as follows:

s(i) =


1−a(i)/b(i), if a(i)< b(i)
0, if a(i) = b(i)
b(i)/a(i)−1, if a(i)> b(i)

(2.20)

The value is −1 ≤ s(i) ≤ 1 and its mean value s̃ over all objects i is a mea-
surement of how effective a clustering is, or how closely all points within a
cluster are grouped. Using this value, Kaufmann and Rousseeuw proposed the
silhouette coefficient, which maximises the mean s(i) when computing it for
each κ = 2, · · · ,n−1 where n is the number of objects in the data set [KR90].
The coefficient is defined as follows:

SC = max
κ

s̃(κ) (2.21)

It results in the value for κ , which is the maximum mean s(i), and is, therefore,
a good choice for the number of clusters.

Dunn Index

Dunn proposed a measure that is the ratio of the minimum inter-cluster distance
and the maximum cluster diameter [Dun73]. It is defined as follows:

DIm =
min1⩽i< j⩽m δ (Ci,C j)

max1⩽k⩽m ∆k
(2.22)
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The function δ represents the inter-cluster distance, whereas ∆k is the cluster
diameter. However, computing these values is not predefined and is adapted to
the underlying data set. A higher Dunn index represents a better clustering.

Davies-Bouldin Index

Davies and Bouldin developed a measure to compute the similarity of clusters.
For each cluster C the maximum similarity to any other cluster is computed,
and the average of all maximum values is referred to as the Davies-Bouldin
Index [DB79]. It is defined as:

R̄ ≡ 1
N

N

∑
i=1

Ri (2.23)

where Ri ≡ maxi̸= jRi j. The value of Ri j is defined as the ratio of the sum of the
dispersion measures Si of two clusters and their Minkowski distance Mi j and is
calculated as follow:

Ri j ≡
Si +S j

Mi j
(2.24)

where a dispersion measure Si is defined as

Si =

(
1
Ti

Ti

∑
j=1

∥∥X j −Ai
∥∥q

p

)1/q

(2.25)

where Ti is the number of objects in cluster Ci, and Ai is its centroid. Therefore, Si

is the qth root of the qth moment of the objects in a cluster Ci about the cluster’s
representative point. If q= 1, the dispersion measure equals the average distance
of objects in the cluster to the centroid, whereas q = 2 represents the standard
deviation of the distances of the objects to the cluster’s centroid.

The Minkowski distance is defined as follows:

Mi, j =
∥∥Ai −A j

∥∥
p =

(
n

∑
k=1

∣∣ak,i −ak, j
∣∣p) 1

p

(2.26)

that is, the distance between the centroids of the clusters Ci and C j. In Equa-
tions (2.25) and (2.26), if p = 2, distances equal the Euclidean distance, while
they equal the Manhattan distance if p = 1. A lower index value indicates a
better clustering.

2.9 Summary

In this chapter, we have presented the necessary scientific background for the
following chapters. We have described graph theory, MOO in general and
specifically evolutionary MOO. Moreover, we have discussed the background
of pathfinding methodologies and various path similarity measurements that
are used in this thesis. Another point was the definition of the multi-objective
pathfinding problem that is addressed in this work. With an increasing number
of objectives, more solutions are non-dominated, and a DM needs to select a
solution. Therefore, we have described a subset of clustering analysis method-
ologies that are used for determining interesting solutions in a decision support
methodology that is described later.
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3 Related Work and
State-of-the-art

RelatedIn this chapter, the following points are covered

• Literature Review

• Classification

In this chapter, we present various algorithms and approaches that have been
proposed in the literature. We furthermore classify and discuss the method-
ologies. In the literature, there are different names for similar problems. For
example, some authors discuss the multi-objective path planning problem or
multi-objective shortest path problem, but other names are multi-objective path
optimisation or multi-objective route optimisation. Many articles have addressed
such problems. It should be noted that the definitions of these problems also
differ in the literature because some researchers use them for trajectory planning
instead of pure path planning.

There are specific approaches for pathfinding in the literature, which usually
work on graphs to find paths between two nodes. Besides the exact single-
objective methods which solve the shortest path problem (e.g., the well-known
Dijkstra’s algorithm [Dij59]), there are several optimisation methods for these
algorithms, such as contraction hierarchies [Gei08,DSSW09]. Another example
of such speed-up methods is hub labelling. They are used because the perfor-
mance of Dijkstra’s algorithm is inversely related to the size of the underlying
graph. The larger the graph, the longer the time required to obtain a result.

Speed-up techniques bypass this limitation by preprocessing the graph to find
shortcuts between certain nodes. The preprocessing time can itself be extensive
but the procedure only needs to be done once if the environment does not
change. As in general optimisation, there are exact methods for the multi-
objective (single-path) pathfinding problem, as well as meta-heuristic methods,
e.g., EAs to solve it [AD13, DPMH13, FC14, NN11, XS18, CTM07, ORK14,
CPS11, JQ10, AD11]. A few articles address the multi-objective perspective of
pathfinding using exact methods [WYMW19, SnC19, LVEJ16, DMS08, FS13,
LPLH12, SM13, GKS10].
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Combining approaches from both fields by creating hybrid strategies could lead
to faster and better results, since EAs can be stopped or paused at any stage to
obtain results.

In general, many studies have been based on a form of the multi-objective
pathfinding problem. However, they usually evaluate the methodologies on
unique and highly specialised environments, tailored to a specific use-case, with
path planning for robots or unmanned aerial vehicles (UAVs) being among the
most popular use-cases. Hence, application-specific methodologies are carried
out on the respective problem and they improve the quality of results for these
particular problems.

More general analysis or propositions of generally applicable methodologies
are scarce. One of the reasons is that pathfinding problems are often inherently
application-specific. This circumstance implies the non-triviality of generalis-
ing pathfinding problems and finding an algorithm for various path planning
problems. Moreover, each environment has different characteristics and must
be analysed thoroughly.

In the following chapters, we aim to provide methods that can cover a variety
of pathfinding tasks. Furthermore, many pathfinding problems can be translated
(transferred) into a shortest path problem, which is the main focus of this thesis.
In our analysis of the related work landscape, we have classified the works
according to the research questions that we address in this thesis. This includes
various aspects of the studied environments, algorithms, operators and search
methodologies. Diversification and initialisation techniques are additional key
points.

3.1 Classification of Literature

We identified 17 characteristics on which we could build a classification. The
primary classification is based on the number of objectives optimised by the
respective algorithm and the number of nodes in the graph being studied. Fig-
ure 3.1 summarises the characteristics and their relation or hierarchy.

Figure 3.2 illustrates the existing approaches to solve the multi-objective
pathfinding problem regarding the number of objectives, the number of nodes
|V | and the respective graph’s density ρ . The x-axis shows the number of op-
timised objectives. The left y-axis shows the number of nodes, whereas the
right (red) y-axis shows the density. For each objective, each work is assigned a
marker that can be found up to two times for the respective number of objectives.
For instance, there is only one work with a relatively high number of nodes
and a comparable small density for the case of one objective. Both types of
information are depicted by the diamond marker (3), referring to the same
work. However, there were also works for which we could not determine the
density; there is only one blue marker for such cases, showing the number of
nodes. Furthermore, we estimated the number of edges for a few grid-based
works by analysing how a respective agent can move on the used grid.

Figure 3.3 shows the relation between the number of nodes and the density,
both on a log scale. It is evident that the two properties have an inverse log-log
linear relationship, i.e., as the number of nodes increases, the density decreases.

Tables 3.1 and 3.2 summarise the most important related literature. These
articles address multi-objective pathfinding problems in various environments
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Figure 3.1: Properties of the
identified related work.
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and use different algorithms. In the table, each column corresponds to one of
the identified characteristics. However, we could not determine the value of
each property in all works, and in several cases the property was not relevant
for the approach used. For instance, optimal approaches usually do not need
a diversification strategy. We assigned N/A (not applicable) for such entries.
If the property value could not be determined, we assigned a dash (–). The
table shows the type of environment that was explored, and if applicable its size
and the number of different cell classes that defined the environment. Some
works included an obstacle handling technique that increased the number of
cell classes. In addition, we determined the dynamicity of the environment and
its homogeneity, as well as the number of nodes and edges. If possible, we
computed the resulting density.

Several works proposed special diversification and niching strategies or initiali-
sation methodologies. For the proposed solving techniques, we determined the
type of algorithm, the corresponding representation scheme and, if applicable,
whether it was a fixed- or variable-length representation. In the penultimate
column, we show the marker that is used in the corresponding objective value
(see Figure 3.2. The last column in Table 3.2 presents additional relevant infor-
mation.

As visible in the two figures, only a few articles have addressed many-objective
pathfinding problems. The maximum number of nodes in these analyses (ac-
counting only for m > 3) was 487500 [DPMH15].
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Figure 3.2: Related Work
Landscape.
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The reader should note that we do not cite the respective works in the following
sections again if a property is relevant to many articles; the references are
given in Tables 3.1 and 3.2. Next, we summarise the characteristics and their
expressions.

3.1.1 Problem characteristics

In the related works, different problems are used. A pathfinding problem’s
environment represents its basis and has several properties. The problems, then,
can be classified concerning their representation or the actual environment’s size,
dynamicity, homogeneity or solution representation. The problem characteristics
are presented in Table 3.1.

Size

Figure 3.2 shows that the environment’s size often inversely correlates with the
number of objectives. Defining an environment’s size is not trivial. Imagining a
graph with five nodes, representing five intersections on a road map: Connecting
them can be done using a few edges, representing streets, resulting in, e.g., three
streets per intersection. If the nodes represent roundabouts a larger number of
streets can end in such intersections. Doing so would result in more edges while
retaining the five initial nodes. Therefore, the size of an environment should be
always given with its complexity, such as density in graph-based environments;
see Equations (3.1a) and (3.1b). Therefore, we use density in our analysis, and
it is defined as follows for undirected graphs [Bol79]:

ρGU =
|E|(|V |

2

) = 2|E|
|V |(|V |−1)

(3.1a)
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Figure 3.3: Relation of |V | and ρ .
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In other words, the density is the ratio of the actual number of edges |E| and
the possible number of edges, i.e.,

(|V |
2

)
= |V |(|V |−1)

2 . For directed graphs, the
number of possible edges is as twice as large, since there can be two edges
between any arbitrary set of two nodes; hence 2

(|V |
2

)
. Therefore, the density of

a directed graph is defined as:

ρGD =
|E|

2
(|V |

2

) = |E|
|V |(|V |−1)

(3.1b)

Another point in the size property is the environment’s shape. Often, grid-
based environments have a rectangular shape. Other shapes are possible but
are not found in the literature regarding grid-based approaches. Graph-based
environments inherently have no shape; they have only a size and complexity
that is defined by their number of nodes |V |, number of edges |E| and the density
ρ .

Problem representation

The representation is usually performed using a grid or a graph, while homo-
geneous environments — such as road maps — are often encoded as a graph.
These environments can also be discretised into a grid, which can be benefi-
cial to reduce computational effort while sacrificing some accuracy. Moreover,
some studies have employed directed graphs, implying that a hypothetical agent
cannot move freely. As this property is one of the primary aspects in this thesis,
we discuss it in detail in a separate section (see Section 3.1.3).

Dynamicity

An environment can be of a static, dynamic or stochastic nature. The most
trivial case is a static grid or graph, where the cost of a traversal does not change
and is deterministic at any point in time. Total deterministic environments
were used in the majority of the analysed works. Deterministic but unknown
environments were worked on in two articles [OP16, QYS21]. In such ap-
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Table 3.1: Related Work -
Problem characteristics

Grid size Type Cell classes |V| |E| Directed Obstacles Density Homogenety Dynamicity Reference Marker

– Graph 1 1.8 ·107 4.22 ·107 Yes No 1.3 ·10−7 – Deterministic [Gei08]
64x64 Grid 2 4,096 32,006 – Yes 3.82 ·10−3 – Deterministic [AD11]

3x3 Graph 1 9 24 Yes No 0.33 – Dynamic (time-
dependent)

[HLZ+18]

– Graph 1 24 76 Yes No 0.14 He Stochastic [ZCS04]
50x50 Grid 2 50 – No Yes – He Stochastic [ZGZ13]
60x40 Grid/Graph 2 2,400 – No Yes – He Deterministic [MS10]

– Graph 1 4 7 Yes No 0.58 Ho Deterministic [Wak02]
50x50 Grid 3 2,500 19,404 Yes Yes 3.11 ·10−3 He Stochastic [Mou12]

– Graph 1 247 1,158 Yes No 1.91 ·10−2 Ho Dynamic (time-
dependent), stochas-
tic

[CNT05]

160x160 Grid 5 25,600 – No Yes – He Deterministic, but
unknown

[OP16]

700x700 Grid 3 4.9 ·105 – No Yes – He Deterministic, but
unknown

[QYS21]

28x10 Grid 2 280 – No Yes – He Deterministic [ZXL+15]
1124x948 Grid 1 1.07 ·106 7.99 ·106 No No 1.41 ·10−5 He Deterministic [HBAO21]

128x128 Grid 2 16,384 1.3 ·105 – Yes 9.65 ·10−4 – Deterministic [AD13]
– Graph 1 2.64 ·105 7.3 ·105 No No 2.09 ·10−5 – Deterministic [PMPDLC15]

4000x4000 Grid 2 1.6 ·107 – – Yes – – Deterministic [XS18]
– Graph 1 1.13 ·107 2.29 ·107 Yes No 1.8 ·10−7 – Deterministic [FS13]

10x10 Graph 1 100 360 No No 7.27 ·10−2 Ho Stochastic [RBSMBA15a]
– Graph 1 22 37 No No 0.16 He Stochastic [ZJWW10]

10x10 Grid/Graph 2 100 261 Yes Yes 2.64 ·10−2 He Deterministic [JQ10]
100x100 Grid 2 10,000 – No Yes – He Deterministic [HPVRFP15]
100x100 Grid 2 10,000 – No Yes – He Deterministic [HPVRFP17]

N/A N/A – – – – – – He Deterministic [Mou04]
100x120 Grid 2 12,000 95,484 Yes Yes 6.63 ·10−4 He Deterministic [DPMH13]
500x500 Grid 2 2.5 ·105 – No Yes – He Deterministic [HA20]

45x45 Grid/Graph 4 2,025 12,000 No Yes 5.86 ·10−3 – Deterministic [MML+08]
100x100 Graph 1 10,000 39,600 No No 7.92 ·10−4 – Deterministic [PMPDLC15]
650x750 Grid 2 4.88 ·105 – No Yes – He Deterministic [DPMH15]

10x20 Grid 2 200 – – Yes – – Stochastic [TMS17]
– Graph 1 1,000 – Yes No – Ho Dynamic (time-

dependent), stochas-
tic

[OMH06]

– Grid/Graph 2 118 218 No No 3.16 ·10−2 He Deterministic [Jin21]

proaches, the algorithm must not know the complete environment and thus
cannot exploit it upfront. A dynamic environment can change depending on the
time [HLZ+18]; however, the network’s state is also deterministic. In a stochas-
tic environment, the traversal costs are stochastic, which must be considered
by a pathfinding algorithm when minimising, e.g., the variance of an objective.
These kinds of networks have been used by [ZCS04, ZGZ13, Mou12, RB-
SMBA15a, ZJWW10, TMS17]. Some works consider both stochastic and dy-
namic networks [CNT05,OMH06]. Designing an algorithm capable of handling
all dynamicity types is not trivial. Methodologies for static problems can be
applied to stochastic environments by adapting their respective objective func-
tions to cope with variances. However, problem-tailored approaches usually
outperform transferred methodologies.

Homogeneity

Environments can consist of different cell classes, where the trivial classes
are obstacles and free space. However, several works — and therefore also
algorithms — take multiple classes into account. The real world can be seen as
a multiclass environment depending on the use-case. Furthermore, an environ-
ment entity can have properties that describes the entity in more detail, such as
height information, movement constraints or safety measurements. Entity prop-
erties can be discrete or continuous. The related articles examined homogeneous
and heterogeneous environments. A heterogeneous environment resembles the
real world best, as different kinds of representative points are usually found.
Furthermore, approaches for heterogeneous environments can also work on
homogeneous ones. Table 3.1 indicates which works used a homogeneous or
heterogeneous environment.
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Table 3.2: Related Work -
Algorithm characteristics

Divers. & Niching Objectives Initialisation Representation Length Algorithm type Optimal Reference Marker Comment

N/A 1 N/A Direct node list F Graph Search Yes [Gei08] –
NSGA-II 2 – Splines F Genetic Algorithm No [AD11] –
N/A 2 N/A Direct node list V

Ripple-spreading al-
gorithm

Yes [HLZ+18] –

Mutation, by find-
ing random path
from mutation point

2
STOCH algorithm,
random neighbour
selection

Direct node list V Genetic Algorithm No [ZCS04] Simulation-based

Altered probability
to select infeasible
solutions

2 Random Coordinates F Swarm Intelligence No [ZGZ13] Continous space

Probabilistic Road
Map

2 Random (sensor
distance of robot)

N/A N/A Swarm Intelligence No [MS10] Weighted sum

N/A 2 N/A Direct node list N/A Policy improve-
ment procedure

Yes [Wak02] Single-objective
+ Constraints on
other obj.

N/A 2 N/A Direct node list N/A Vector-Value
Markov Decision
Process

Yes [Mou12] Preference-based

N/A 2 N/A Direct node list V Graph Search Yes [CNT05] –
N/A 2 N/A Direct node list N/A Graph Search No [OP16] –
N/A 2 RRT Direct node list N/A Graph Search No [QYS21] –
Domain specific
Operators

2 Random Obstacle Vertex in-
dicies

V Memetic algorithm No [ZXL+15] –

Custom Step size
crossover, extended
log-normal rule mu-
tation

2
equidistant Point
sampling between
start and goal, and
addition of single-
objective optimal
paths (biased)

Splines F Evolutionary Strat-
egy

No [HBAO21] –

NSGA-II 3 – Integer-coded
(among others)

F Genetic Algorithm No [AD13] –

N/A 3 – Direct node list N/A Graph Search Yes [PMPDLC15] Took 6h to com-
plete

Domain specific
Operators

3 Only feasible, also
local minimum
of each objective
added

List of turning
points

V Genetic Algorithm No [XS18] –

N/A 3 N/A Direct node list F Graph Search Yes [FS13] Weighted sum
NSGA-II 3 Random neighbour

Selection
Direct node list V Genetic Algorithm No [RBSMBA15a] –

MOPSO 3 Node priority Indirect, node prior-
ity

F Swarm Intelligence No [ZJWW10] –

Domain specific op-
erators

3 Visibility Graph
and Chaos Se-
quence

Coordinates V Genetic Algorithm No [JQ10] –

Domain specific op-
erators

3 Selection Window Coordinates (Grid
cells)

V Shuffled Frog-
Leaping Algorithm

No [HPVRFP15] –

Domain specific op-
erators

3 Selection Window Coordinates (Grid
cells)

V Swarm Intelligence No [HPVRFP17] –

N/A 3 N/A Direct node list N/A Markov Decision
Process

Yes [Mou04] Theoretical paper,
Preference Based

Domain specific
Operators

3 fixed number of
different Waypoints
for each initial
solution

Coordinates (Grid
cells)

V Genetic Algorithm No [DPMH13] –

N/A 3 One initial path
is found using
Voronoi-visibility
points

Coordinates V Region of Sight No [HA20] Constraints on obj.
and then shortest
path

ACO 4 – Direct node list N/A Swarm Intelligence No [MML+08] –
N/A 5 – Direct node list N/A Graph Search Yes [PMPDLC15] –
Domain specific
Operators

5 fixed number of
different Waypoints
for each initial
solution

Coordinates (Grid
cells)

V Genetic Algorithm No [DPMH15] –

N/A 6 – Direct node list V Reinforcement
learning

No [TMS17] –

N/A 6 N/A Direct node list N/A Graph Search Yes [OMH06] Returns one solu-
tion

N/A 7 N/A Direct node list N/A Graph Search Yes [Jin21] Multi-modal

3.1.2 Algorithm Characteristics

Various algorithmic approaches have been leveraged to solve the pathfinding
problem. In this section , we describe specific characteristics of the methodolo-
gies found in the literature, as outlined in Table 3.2.

Number of objectives

As shown in Figure 3.2, most of the examined literature was concerned with
optimising two or three objectives. There were relatively few studies on more
than three objectives [TMS17, PMPDLC15]. For instance, [TMS17] identified
only three works, including theirs, that dealt with four or more objectives [PM-
PDLC15,MML+08]. Only one work in our analysis considered seven objectives
by working on a comparable small graph. For five objectives, the highest number
of nodes or grid cells was 487500 [DPMH15]. The same study employed a GA,
as we have done in this thesis. In one work, multiple objectives were considered,
but the computation resulted in only one solution that had the best trade-off
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according to a metric [OMH06]. The exact computation of the complete Pareto-
optimal set for such a high number of objectives is often time-consuming, as
the problem is NP-hard.

Types

Different algorithm types have been employed to solve pathfinding prob-
lems. For example, there are GAs [AD11, ZCS04, AD13, XS18, RBSMBA15a,
JQ10, DPMH13, DPMH15]; memetic algorithms [ZXL+15]; and swarm in-
telligence techniques, such as ant colony optimisation [MML+08] or particle
swarm optimisation [ZGZ13, MS10, ZJWW10]. In the realm of swarm in-
telligence techniques, the firefly algorithm has been employed in pathfind-
ing [HPVRFP17]. Other methodologies have been employed, such as di-
rect graph searches [Gei08, CNT05, QYS21, PMPDLC15, FS13, PMPDLC15,
OMH06], including A* algorithms and variations of it [OP16, Jin21] as well as
reinforcement learning [TMS17], or other nature-inspired methodologies such
as ripple-spreading [HLZ+18] or a frog-leaping algorithm [HPVRFP15]. The
region of sight technique was used in [HA20]. In three works, a Markov model
was proposed [Wak02, Mou12, Mou04]. Finally, most of the works employed a
direct graph-search algorithm. However, the distinction implies other properties
of an approach too, such as the anytime property, which means that subopti-
mal results can be obtained before the termination criteria of the algorithm is
met. Usually, population-based approaches have this property, whereas direct
graph searches such as A* must run to completion to yield a result. Algorithms
without the anytime property usually obtain optimal solutions, but exceptions
exist.

Precomputation

Depending on the underlying pathfinding problem and the requirements in the
final application, precomputation can be employed before the actual pathfinding
algorithm is run to reduce the time to obtain results [FS13]. Usually, a lookup
table or a similar data structure is built up to decrease the time until a solution is
obtained. Only a few works used precomputation for multi-objective pathfinding
problems, as this process is time-consuming and often memory-consuming.
However, when the environment is static and several pathfinding queries will be
set on this environment, precomputing a lookup table can be beneficial in the
actual real-world execution of the algorithm. There are also several speed-up
techniques, such as contraction hierarchies, that use extensive preprocessing to
accelerate shortest path queries on a graph [Gei08].

Optimality

There are several optimal and deterministic methodologies to solve single-
objective and multi-objective pathfinding problems. There are also optimal
approaches with the precomputation characteristic, making them suitable for ap-
plications with a static environment and many executions afterwards. However,
techniques have been proposed which may consume vast time to obtain a result.
For pathfinding on graphs, there are optimal methods available that usually
count to the class of greedy algorithms. A well-known algorithm is Dijkstra’s
shortest path algorithm [Dij59]. The algorithm can be seen as a specialisation
of the A* algorithm, as it uses a heuristic equal to 0. Due to a chosen heuristic
function, A* can often solve the problem in less time. Dijkstra’s worst-case
time complexity is O(|E|+ |V | log |V |), whereas the complexity of A* is O(|E|).
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Additionally, a multi-objective variant of Dijkstra’s algorithm was proposed
in [Mar84].

Initialisation

In the literature, different initialisation techniques have been employed. They
can substantially influence the performance of the algorithm and the quality of
results. The majority of works that use an initialisation method employ a random
strategy [ZGZ13, ZXL+15, MS10, RBSMBA15a]. Here, the population-based
approaches’ decision values are initialised randomly within their respective
intervals. However, infeasible solutions can be generated, as they do not always
constitute a valid solution. Nevertheless, these solutions can be helpful during
the search process, as promising solutions can occur at the border between
feasible and infeasible solutions [RSIS09]. Some works employ an informed
search to generate the initial solution set using domain-specific knowledge.
However, injecting specific individuals into an initial population can bias the
search, which can be unhelpful. For instance, in [XS18] only feasible solutions
were generated and the global minimum of each objective was predetermined
and added to the set; the same was done in [HBAO21]. Other techniques, such
as the STOCH algorithm — which is an optimised Dijkstra’s algorithm [ZCS04]
— and rapidly-exploring random trees (RRT) [QYS21] have been employed.
In [ZJWW10], the node priority methodology was used, which was also utilised
in the representation scheme. Jun and Qingbao used a visibility graph and the
chaos sequence technique to generate the initial population [JQ10]. A waypoint-
based approach was similarly proposed and used by [DPMH13, DPMH15].
Using this technique, a different set of randomly generated waypoints is used
for each solution and is connected in a second step. Hidalgo et al. proposed a
selection window approach, i.e., the search space for the next point on the path
was within a small window that was shifted accordingly during the generation
process [HPVRFP15, HPVRFP17]. In one work, the authors used Voronoi-
visibility points [HA20]. The authors in [HBAO21] used equally spaced points
between the start and end points to generate the initial paths.

Diversification and Niching

The identified works used various diversification and niching methodologies.
While there is no such technique for most optimal approaches, the authors using
an evolutionary approach implement them. Often, domain-specific operators are
used to (a) ensure the feasibility of the solution and (b) diversify the solution
set. In general, diversification and niching methodologies in the literature are
placed in the objective space. Because such techniques are a major aspect of
this thesis, we provide more detail in a separate section (see Section 3.1.4).

3.1.3 Representation Schemes

Pathfinding problems have to be distinguished according to the representa-
tion of the pathfinding problem and the solution. For the former, we identi-
fied grid-based and graph-based approaches. For the latter, classification into
fixed or variable-length solution representations can be made, with further
sub-categories. We describe the related works in terms of these two classes.
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Figure 3.4: Grid to Graph
conversion [WM21b]

(a) Superimposed graph on a
grid

(b) Two paths pi and pi+1 that go along
nodes and edges.

Problem Representation

There is extensive literature in the field of route planning and pathfinding in
general, and especially for vehicle route planning, which uses EAs [AD13,
CTM07, AKC+13, AD11]. Because EAs are considered as a meta-heuristic, a
problem needs to be represented in a data structure to enable the algorithm to
evaluate solution candidates.

Various representations have been suggested for the pathfinding problem. These
include graph-based [CXCG10, QL16, TMS17, PMPDLC15, RBSMBA15b,
WBM18] and grid-based representations [AD13, YBH15].

Grid-based representations for pathfinding problems have proven to be highly
practical for EAs [AD13, AD11]. Such grid representations can be refined de-
pending on the required resolution of the problem, as a search space can be
defined as either coarse- or fine-grained. The resolution of a problem is the
granularity of its representation. Moreover, grids are often used for benchmark-
ing purposes [Stu12, KPK+14], and they can represent real-world problems
by discretising the problem representation [Ang11]. Grids typically consist of
units with adjustable size [Anb13]. Considering grids, several constraints for
movements on specific paths by defining an upper limit for movements (such
as speed) on each grid unit can be introduced. In this way, various linear and
non-linear constraints on each unit, representing the speed, ascent, obstacles
and others can be incorporated [WM21b].

It is comparatively easy to convert a grid into a graph by considering units
as nodes and their contact-edges as the graph’s edges. Grid-to-graph trans-
fer is performed in several applications, e.g., the game industry. Regarding
pathfinding, a grid is superimposed over an area and graph-search algorithms
are used [Yap02]. The A∗ algorithm can be used for pathfinding on a grid which
is transferred to a graph, where the heuristic function is the distance between
grid cells [Yap02, Stu12].

In general, graph-based representations allow higher flexibility in representing
real-world problems which are heterogeneous than do the typically homoge-
neous grids. However, other grid forms are also possible [WM22b].

Figure 3.4 depicts a graph which is superimposed on a grid (lattice graph) in
the left panel and two paths pi and pi+1 in the right panel.
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Solution Representation

In most cases, two approaches are used. In the first approach, solutions are rep-
resented with a variable-length chromosome, which may be used in conjunction
with a graph-based problem representation [EAA04,JQ10,MDSK07,DPMH13].
A solution is represented as a list of nodes, the length of which is variable when
calculating a path. Another approach involves a fixed-length chromosome that
is made up of a list of nodes in a graph or grid cells with indications of the
direction of traversal [BPdlTMRM13, QXA13, AD13].

In [JQ10,LLHL13,JKC11], the authors proposed a graph-based approach, where
each path consists of a list of variable length of nodes in a graph. Other variable-
length approaches include techniques that use indices of obstacle vertices to
encode a path [ZXL+15].

Regarding the genetic representation of paths, Beke et al. compared direct
variable-length and direct fixed-length encodings [BWC20]. Variable-length
encodings were introduced in [MTS98], where chromosomes consisted of the
IDs of nodes in a graph. A random chromosome would probably end up in
an infeasible path since two arbitrarily chosen nodes are not connected by an
edge. Due to the variable length, this approach needs specialised operators to
ensure its feasibility. Fixed-length encodings were influenced by the work of
Inagaki [IHK99]. Here, the chromosome length equalled the number of nodes
in a graph and a gene’s locus, and the allele defines the next node in a path.
However, besides direct representations containing node IDs, indirect represen-
tations also exist. A decoding function constructs the corresponding path. Gen
et al. also proposed a random-key-based encoding, where the prioritisation was
performed using real-valued priorities [GRD97]. The node with the highest
priority among the current node’s neighbours is attached to the last node to
construct the path. Therefore, a chromosome’s decoding will result in a valid
path. Several existing crossover and mutation operators can work with such a
fixed-length representation. Gen also proposed a random-key-based encoding,
where the prioritisation was done using real-valued priorities [GL06]. Such real-
valued and fixed-length representation schemes enable most operators to work
on these problems. Other approaches for fixed-length chromosomes include the
representation using splines [AD11, HBAO21].

In conclusion, in most of the literature, coordinate-based techniques were used,
in which the coordinates that a path covered were encoded in the chromosome. It
should be noted that several authors consider the variable-length representation
to be unhelpful for solving and optimising pathfinding problems [ZJWW10,
ZXL+15].

3.1.4 Diversification Methodologies

In the literature, various diversification and niching techniques are used. How-
ever, depending on the actual approach, several algorithms inherently lack this
kind of measurement to maintain or increase the diversity of the solution set,
such as optimal approaches. Shir stated that standard EAs tend to lose diversity
within the population, resulting in landing in local optima [Shi12]. To address
this issue, niching methods support maintaining diversity. Various methodolo-
gies in current state-of-the-art algorithms implement techniques to increase or
maintain diversity. One example is to use crowding distance to identify crowded
areas in the objective space. This measure reflects the average distance of the
two neighbouring solutions of an individual [DPAM02]. During the replacement
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and selection phase of the NSGA-II algorithm, this measurement can be used
to emphasise solutions in less crowded areas. Other techniques involve the use
of reference vectors. Solutions along these vectors are usually preferred, and as
they are distributed in the objective space, diversity can be maintained [DJ14].
The latter methodology is often used with many-objective problems, optimising
more than three objectives. However, studies have shown that the performance
is impacted by the type of problem, resulting in the need for careful consid-
eration when choosing an algorithm and not relying only on the number of
objectives [CSF18,WM22b].

Furthermore, for specific problems, especially multi-modal ones where two
or more solutions can map to the same objective values, other diversity mea-
surements can be useful, such as combining different metrics in the objective
and decision space [JRAM20]. For example, the many-objective pathfinding
problem is a problem where close solutions in objective space can be far
from each other in decision space, and vice versa. Therefore, using a diversity-
maintaining measurement in decision space can be beneficial to an algorithm’s
performance [WM21b]. However, it is not trivial to compute a measurement of
diversity in the decision space, especially if the solution’s representation is of
variable length. For fixed-length chromosomes, crowding distance or another
metric — such as the harmonic mean — can be employed [JM21].

In the related work, genetic operators were often used to explore and exploit the
search space. We mention such techniques in this subsection as they contribute
to a diverse solution set. In several works, domain-specific operators were
used [ZXL+15, XS18, JQ10, HPVRFP15, HPVRFP17, DPMH13, DPMH15]. In
such cases, the authors incorporated problem knowledge into their algorithm, as
the operators worked on various path representations, partially ensuring feasible
solutions. Some works also used special operators to optimise specific objec-
tives. Furthermore, domain-specific operators, such as mutation by finding a
random path from a random point to the endpoint, have been proposed [ZCS04].
Altered probabilities and the use of probabilistic road maps were also em-
ployed [ZGZ13]. The authors of [HBAO21], who used evolutionary strategy,
employed a custom step size crossover and extended log-normal rule mutation.

To our knowledge, diversification and niching (explicitly and by using operators)
has been performed in the objective space in most studies that consider the
pathfinding problem. It must be noted that domain-specific operators are not
necessarily applied in the decision space but can also be applied in the objective
space. This approach works for the problems that were examined, but it can be
detrimental if properties of the environment change or other objective functions
are used. In Chapter 6 we propose various methodologies that work in the
solution space of the problem and therefore also work directly on the cause.

Furthermore, in several works, e.g., [DPMH15] it has been shown that paths
can be highly similar to each other in the decision space yet distant in the
objective space. However, a DM should choose from a diverse solution set in
both spaces, since their criteria for satisfaction cannot always be objectified.
Hence, a dominated solution with specific characteristics in the decision space
can be the final choice by a DM.

3.1.5 Objectives

In the literature, several objective functions have been defined. In most cases,
the length of the path is of interest and should be minimised. In [RMHS17] three
objectives were optimised using a modified multi-objective A* algorithm, i.e.,
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horizontal and vertical distance as well the maximal slope of a path. Machuca
and Mandow used distance and time [MM12] as two objectives. Kanoh and
Kenta additionally included a third objective, called total penalty, in which they
aggregated various negative aspects of a path on a road network [KH08]. In
Tozer et al., six objectives — such as distance, signal loss to a communication
station, observability of an agent, travel time and the amount of used energy —
were proposed [TMS17]. Other objectives, such as the smoothness of a path
or some form of safety distance, are often used [RMHS17]. In contrast to its
commonly known definition, the smoothness is often minimised to comply
with other objectives. Criteria such as interestingness [SK21] or amenities of
driving [Kan07] also appear in the literature.

3.1.6 Discussion

Some of the works claimed to propose a multi-objective approach that turned
out to be a weighted sum or purposely found a single solution as a result. This
approach does not comply with the definition of MOO. However, authors from
other fields may follow a different concept of the term. Some authors proposed
solutions where a set of objectives was first ensured and then, in a second step,
another objective was optimised, using the comparable smaller search space
from the first step. All proposed methodologies are valid approaches that work
for the respective problems. According to the no free lunch theorem [WM97],
no methodology outperforms another concerning all possible problems. Hence,
the proposed techniques are all good solutions for their respective problems.
However, the proposed problems have several characteristics in common. This
commonality enables creating a more abstract pathfinding problem and the
respective methodologies to solve them.

3.2 Applications

Pathfinding problems are found in several industrial applications. A trivial
application is route planning on road networks for logistic applications or
leisure purposes and so on. Besides road networks, vessels or aircraft such as
airplanes, helicopters or drones need pathfinding techniques to reach their goals.
The key is to transfer their respective medium of movement into a graph or grid.

Various other applications can also be represented as a pathfinding problem. For
instance, surgeons plan paths when performing catheterisations or an ablation.
In both cases, the tissue can be scanned with medical imaging methodologies
and then transferred into a graph using a technique such as voxel represen-
tation and connecting them by edges. Furthermore, several other problems,
such as job shop scheduling, can be transferred or reduced to a shortest path
problem [SSBK21].

Another interesting application of the shortest path problem is the detection of
negative cycles to find arbitrage opportunities [AMO93]. Such an opportunity
can happen due to the inefficiencies on the stock market, and a trader may use
differences in prices for the same asset in different markets. By detecting such a
cycle, traders can make a profit. Other applications include project management,
facility layout planning and DNA sequence alignment [AMO93]. The topic
of this thesis is pathfinding methodologies using EAs, which each application
can benefit from. To conclude, shortest path problems are found in various
industries, medical applications, management and social sciences.
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3.3 Benchmarks

For testing optimisation approaches and pathfinding algorithms, a ground-truth
data set is needed to evaluate the quality of results compared to a known set of
optimal solutions. Benchmarks meet this need by providing different classes
of problems that algorithms can be applied to. In addition, so-called frame-
works often provide generators to create problems that incorporate different
characteristics.

There are several existing benchmark frameworks and test problems, such
as [FCAM19,DTLZ05], for MOO algorithms in general. Additionally, there are
several benchmark sets for the shortest path problem with multiple objectives,
e.g., [Stu12,DGJ09]. The DIMACS Implementation Challenge — Shortest Paths
[DGJ09] presents road maps for several states in the United States, combining
different independent data sets. Various articles have used these graphs and a
multi-objective approach, e.g., [MM12]. Other benchmark data sets operate on
grid-based approaches, e.g., [Stu12, TMS17]. Usually, the data sets and graphs
provided in these data sets are large, making it difficult to compute the true
Pareto-front for given objectives [WM22b].

Nevertheless, in the related work, unique problems are mentioned in almost
every article. Furthermore, reimplementing these problems is often an impossi-
ble task due to the lack of definitions of obstacle positions or specific height
values. Moreover, it is often a challenge for researchers to understand a given
code, especially if it is a language the researcher does not know. These facts are
common barriers to working on the same problem as other authors.

In 2021, at the IEEE Congress on Evolutionary Computation, a multi-modal
multi-objective pathfinding challenge was held. The challenge authors pub-
lished several predefined scenarios to apply different algorithms. The problems
resembled different roadmap designs and were imposed with different charac-
teristics, such as traffic congestion or mandatory via-points through which a
route had to pass. The maps also varied in size. Throughout the scenarios, up to
seven objectives had to be taken care of. However, the authors did not provide
the true Pareto-fronts and sets. In [Jin21] an exact algorithm was proposed to
compute the true Pareto-optimal solutions.

The work of Hu et al. describes a benchmark test toolkit for multi-objective path
optimisation [HZZ+19]. The authors propose a toolkit for discrete combinatorial
problems and especially multi-objective path optimisation problems. In the
study, a bottom-up approach is performed because the network in which paths
are to be found is constructed by providing a model with certain information,
such as the number of nodes and links. Furthermore, the user has to provide a set
of Pareto-optimal objective vectors from which the network is created in a two-
step process. In this work, the number of optimal paths is known beforehand
as they are used to construct the test problem. Therefore, the work offers an
approach to construct arbitrary large test problems. However, the authors stated
that environmental characteristics, such as the direction of a network edge or the
number of links of a node, are not adjustable. They mentioned that their model
produces abstract transportation models that do not refer to any real-world
application. The authors proposed a test problem-generating methodology that
is based on the Pareto-optimal solutions instead of environmental characteristics
that define a test problem.
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3.4 Decision Support Systems

To our knowledge, there is only one work on decision support systems which
is specifically tailored to the multi-objective pathfinding problem, but not to
its many-objective variant. Such work is nonetheless important since with an
increasing number of objectives, more solutions are non-dominated and there-
fore lie within the resulting solution set. In addition, pathfinding problems have
real-world expressions and characteristics that an objective or a constraining
function may not cover but are important to the DM. However, certain generally
applicable methodologies in decision-making can be applied to pathfinding
problems. Such techniques usually take information about objective values and
other meta information into account that has been obtained from the DMs.

3.4.1 Application-specific Approach

Partes [Par21] proposes different methodologies to reduce the solution set
to find interesting paths. First, the author presents a technique that involves
different dominance criteria to identify an approximation of the solution set.
The cardinality of this approximation set is likely smaller than the original
set. Such approximation includes the computation of solutions that are not
ε-dominated or knee-points on the non-dominated solution set. Furthermore,
the author proposes to use clustering in the decision space to find similar paths
according to a path similarity metric. Finally, the medoids of the computed
clusters are presented as interesting solutions, as they represent a class of paths.
In addition, a combined approach was proposed by first approximating the
solution set in the objective space and clustering the remaining solutions in the
decision space afterwards.

3.4.2 General Applicable Approaches

In the literature, several methodologies are presented to help a DM identify the
most satisfying solutions concerning their aspirations. In this section, a subset
of such methods is presented. In [RA15], the authors reviewed several articles
covering different approaches. The interested reader is referred to that work, as
we merely outline the most widely used techniques here.

Multi-Attribute Utility Method

The multi-attribute utility method can be a weighted sum approach, but other
combining functions are also possible [Jan11]. With this methodology, for each
objective that is considered an attribute of a solution, the importance is deter-
mined by interaction with the DM. The most trivial approach to compute the
value v(x) of an alternative x is a linear combination of the different attributes:

v(x) =
n

∑
i=1

wivi (xi) (3.2)

Here, wi is the importance or weight of the value vi of attribute i of x, namely
xi [Jan11]. Eventually, the alternative with the highest value will be the one that
is chosen.
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Analytic Hierarchy Process

The analytic hierarchy process involves determining the values representing
the importance of a criterion over other criteria [Saa08]. After the resulting
importance matrix has been obtained, the same methodology is applied to
the values of each criterion. Then, they are ranked in a pairwise comparison.
Finally, matrices containing inter-criteria importance rankings and intra-criteria
importance rankings are computed. The principal eigenvector is computed for
each criterion by determining the eigenvector centrality. This calculation yields
a measure of the overall importance of the criteria. The jth solution’s priority
p j can then be computed by:

p j = ∑
i

wi j ·wi (3.3)

Here, wi is the importance weight of criteria i, and wi j is the importance weight
of solution j of criteria i.

Other Approaches

Another approach, ELECTRE, eliminates alternative solutions from the solution
set. Choosing, ranking and sorting methodologies are used throughout the
process to iteratively result in recommendations [Tri00]. TOPSIS is another
approach where distances from the best and worst alternatives are used to
calculate the merits of an alternative. Using these distances, it is quantified how
beneficial an alternative is [HY81]. Both these techniques require the input of
the DM as solutions are compared in terms of their different attributes.

3.5 Summary and Conclusion

In this chapter, we have shown that the extent of previous research related
to the topic of this thesis is vast, yet such work has not covered all aspects
of the proposed problem. We have also shown that a general, scalable and
variable pathfinding benchmark problem appears to be lacking. Furthermore,
a methodology that is problem-specific, application independent and diversity
preserving and enhancing does not exist. A study exploring the advantages and
disadvantages of different representation schemes is required. Finally, given the
nature of many-objective optimisation problems and the fact that a hypothetical
DM must select from a large solution set, we have shown that the existing work
on decision support systems can be extended in this area.

Although other works cover a wide range of aspects, there is still room for
improvement and more in-depth analysis. In the following chapters, we address
the drawbacks of the current approaches and present solutions to increase the
performance of pathfinding algorithms.
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4 Benchmarking Pathfinding
Algorithms

BenchmIn this chapter, the following points are covered

• Benchmark Construction

• Baseline Evaluation

The following chapter is largely based on the publication [WM22b].

Testing new algorithms is a challenging task. The literature on specific test prob-
lems for pathfinding and, specifically, multi-objective shortest path problems is
scarce. In this thesis, we develop a novel scalable many-objective pathfinding
benchmark, which can be considered a suite because many different instances
can be generated. This chapter provides an in-depth description and analysis of
the test suite. The benchmark itself is highly variable and scalable, as it can be
adjusted in terms of size and hence the search space size; it can also be adjusted
with respect to various constraints which influence the complexity.

4.1 Grid and Graph-based Benchmarking

Benchmarks can be based on grids to resemble an environment where a shortest
path is to be found. Another approach is to create tests based on graph structures,
as they often resemble real-world maps in a better way. In contrast to [HZZ+19]
(cf. Section 3.3), our proposed test toolkit follows a top-down approach, i.e.,
we propose well-defined functions that are used to create test problems of
arbitrary size. Furthermore, we suggest five objective functions that can be used
to evaluate MOO algorithms.

This benchmark is aimed at representing environments for pathfinding algo-
rithms on maps. Hence, we construct the instances by defining a cartesian grid
with a specific size, where the cells have the same dimensions, also known as
integer lattice. The variable properties of the benchmark influence the properties
of each cell in the lattice [WM22b].
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4.1.1 Benchmark Problem Construction

The multi-objective pathfinding problem can be defined as described in Sec-
tion 2.3.2 and Equation (2.10). Before constructing the problem-related graph,
we model a grid which is used as a map for the pathfinding problem. We as-
sume that we have a two-dimensional search space defined by a given size (i.e.,
size of the map) denoted by the range [1,xmax] in x-direction and [1,ymax] in
y-direction, xmax,ymax ∈ N. This search space is divided into grid cells, which
define the resolution of the path planning and therefore the size of the search
space. Finally, the grid has xmax number of grid cells in the x-direction and ymax

number of grid cells in the y-direction accordingly. We define different types of
grid cells denoted by the position (x,y). These types impose constraints on the
velocity of movements indicated by vmax(x,y), which represents different road
types as well as obstacles (denoted by gLA(x,y) and gCH(x,y) in Section 4.3.1).
On obstacles a movement cannot occur. The cells with a velocity of zero define
infeasible areas which can add further non-linear constraints.

We define an elevation function h(x,y) with a variable number of hills, which
can be defined by using either a peak-function or a combination of hill functions.
This elevation function can be mapped to the cells in the map. Two additional
features concern the neighbourhood and backtracking. The neighbourhood
property restricts the number of possible neighbour cells an agent can move to.
We use the 2k-neighbourhood, similar to [SSF+19]. For instance, k = 2 means
that it is possible to go to one of the four neighbours located in the cardinal
directions. This neighbourhood is known as the von Neumann neighbourhood. If
k = 3, there are eight possible neighbours, taking the diagonal cells into account.
This neighbourhood is known as the Moore neighbourhood. The backtracking
property of the benchmark defines whether an agent can go backwards or only
forward. For instance, if backtracking is allowed and the goal is to go from the
north-west corner of the grid to the southern-east corner, the agent can go in
any direction specified by the 2k-neighbourhood from any cell on a certain path.
If backtracking is not allowed, the agent can only move in the directions of east,
south and south-east (if k = 3). An 8-neighbourhood with enabled backtracking
is also known as king-moves, derived from chess. A summary of the above
adjustable features is shown in Table 4.1.

In the following, we propose a graph-based representation of the benchmark
grid. As stated in Section 2.3.2, we describe all objectives for the evaluation
of a solution represented as a path p of variable length j consisting of a list of
adjacent nodes in a graph: p = (n1, · · · ,n j). However, for the evaluation on the
grid (as described above), each node ni, i = 1, · · · , j can be replaced by their
respective coordinates (xni ,yni).

To transfer the grid to its corresponding graph, each cell ci of the grid with
its respective coordinates (xi,yi) is considered as a node in the graph. In our
implementation, we assign properties to the graph’s elements in the form of
key-value pairs (see Section 2.3.2). Therefore, we assign the coordinates as a
property to each node, making it possible to evaluate the objectives. Additionally,
the various cell types, velocity constraints, characteristics about obstacles and
elevation values are assigned to the properties of the node. Depending on
the 2k-neighbourhood and backtracking property, the corresponding nodes are
connected to their respective neighbours using edges. The resulting graph is
also known as lattice graph. Figure 4.1 shows an example of the transfer from
a grid to a graph [WM22b].
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Figure 4.1: Superimposed
graphs on grids for k = 2 (left)

and k = 3 (right)
instances. [WM22b]

Table 4.1: Adjustable properties
of the proposed

benchmark [WM22b]

Property Values

Size
{x,y}max ∈ N,
1 < {x,y}max

Movement per cell vmax

Expected delay delay(ni,ni+1)
Elevation Function nh ∈ {1,2,3,M}
Neighbourhood 2k, k ∈ {2,3}
Backtracking {True,False}

4.1.2 Objective Functions

In this section, we define five objective functions by which a solution path p of
length K is evaluated.

Objective 1: Euclidean length. The Euclidean length represents the distance
between the start nS and the end nEnd of a path. It is calculated by the sum of
the Euclidean distances d(ni−1,ni) between the neighbouring vertex pairs ni−1
and ni in a solution path p, as follows:

f1(p) =
K−1

∑
i=1

d(ni,ni+1) (4.1)

Here, i = 1 corresponds to the starting point nS, and the last node of a path
nK maps to the endpoint denoted nEnd . Figure 4.2 illustrates an example. In
real-world applications, this objective can additionally be used to estimate fuel
consumption [WM22b].

Objective 2: Expected delays. The second objective is meant to measure the
expected delay in a given path. In real-world applications, delays are caused by
accidents or traffic. Therefore, a delay is the likelihood of having an accident
or encountering other blockages on each node of the path. However, in our
proposed approach, we do not take draws from the probability distribution,
making it deterministic. The expected delay per path segment between the
nodes ni and ni+1 is defined by the differences between the corresponding
velocity values of the two adjacent nodes (cf. Equation (4.12)). Our proposed
second objective f2 calculates the sum of delay for all the edges on a given path
p [WM22b]:

f2(p) =
K−1

∑
i=1

delay(ni,ni+1) (4.2)
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Figure 4.2: Objectives (1) and
(5) on an example path modelled

by a graph [WM22b]

S

E

Objective 3: Elevation. The aggregated ascent of a solution path is represented
by the third objective. Our proposed benchmark contains various possibilities for
defining the elevation function h(ni) which is defined on a node ni. The ascent
is calculated between two nodes in the graph e(ni,ni+1). The third objective
f3(p) is the sum of the elevations between all the nodes in a path p:

f3(p) =
K−1

∑
i=1

e(ni,ni+1)

e(m,n) =

{
h(n)−h(m), if h(n)> h(m)

0, otherwise

(4.3)

This objective accounts to the amount of fuel consumption in a real-world
application [WM22b].

Objective 4: Travelling time. The fourth objective represents the travelling
time. For this calculation, we utilise the average velocity of two subsequent
nodes defined by vmax(ni)+vmax(ni+1)

2 for each node ni and use the length of the
path utilised in Objective 1 [WM22b]:

f4(p) =
K−1

∑
i=1

2d(ni,ni+1)

vmax(ni)+ vmax(ni+1)
(4.4)

Objective 5: Smoothness. The smoothness or curvature of a path is mod-
elled in the fifth objective. We measure smoothness by calculating the angle
between three nodes on a path, as shown in Figure 4.2. The angle θ is ob-
tained by extending the line between two nodes and measuring the angle to
the third node. Similar to [ORK14, JQ10, HPVRFP15, DPMH15], we invert
a ·b = ∥a∥∥b∥cos(θ):

f5(p) =
K−1

∑
i=2

arccos
( −−−→nini−1 ·−−−→ni+1ni

|−−−→nini−1| · |−−−→ni+1ni|

)
(4.5)

Because we intend to minimise the objective values, the smaller smoothness
value represents a straighter path [WM22b].

4.2 Benchmark Test Suite

In the following, we propose various examples for a test suite by selecting
specific features for the defined variables of the benchmark. We set nS = (1,1)
as the start and nEnd = (xmax,ymax) as the end nodes. This means a path starts
in the north-western corner and ends in the south-eastern corner. We set four
kinds of cells with velocity values vmax of 130, 100, 50 and 0. For obstacle cells
with vmax = 0, we propose two different forms: 1) the checkerboard pattern is
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Figure 4.3: Three types of
cells [WM22b]
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Figure 4.4: Examples of grid cell
properties (dark to light colours

represent high to low speed
values) [WM22b]

(a) lake obstacle
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(b) checkboard-obstacles
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designed to simulate block-like environments, and 2) the lake obstacle denotes a
larges region which is not passable (Figure 4.4). For the checkerboard obstacles,
we define every second cell to be an obstacle in both x and y directions. The
lake obstacle is defined as a circle on the grid. The circle radius is defined
by a fraction of the x-size of the grid. We represent the checkerboard and
lake obstacles as a variant of the square wave function and circle function,
respectively (see Equations (4.8a) and (4.10)). In the tested instances, the lake
obstacles are defined by a radius of xmax/4. Figures 4.4a and 4.4b show the two
obstacle types on an example instance of the benchmark problem. Figure 4.3
shows an example instance of size 19 [WM22b].

The corresponding equations are provided in Section 4.3.1.

For the elevation, we take four hill functions in the domain [−3,3], which will
be scaled when applied to the grid with cell coordinates (x,y) represented by
the node n in the path segment. For determining the corresponding height
value h(x,y), the two cell coordinates must be scaled to the interval [−3,3],
hence [{1,1},{xmax+1,ymax+1}]→ [−3,3] and (x,y)→ (xs,ys),{xs,ys ∈R|−
3 ≤ xs,ys ≤ 3}. In the equation, we refer to (xs,ys) to represent the scaled
coordinates:

hm(xs,ys) =3(1− xs)
2e−x2

s−(ys+1)2 −10e−x2
s−y2

s

(−x3
s + xs/5− y5

s )−1/3e−(xs+1)2−y2
s

h1(xs,ys) =5e−(xs+1.5)2−(ys+1.5)2

h2(xs,ys) =5e−(xs−1.5)2−(ys−1.5)2

h3(xs,ys) =5e−(xs−1.5)2−(ys+1.5)2

(4.6)
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Figure 4.5: Different elevation
profiles of the proposed

benchmark [WM22b]

(a) Elevation profile for nh = M

-8

-6

3 3

-4

-2

0

22

2

H
e
ig

h
t

4

6

1 1

8

10

Y-Coordinate X-Coordinate

0 0
-1-1

-2-2
-3-3

(b) Elevation profile for nh = 1
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(c) Elevation profile for nh = 2
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(d) Elevation profile for nh = 3
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We chose these functions to represent different height settings on the grid.
Equation hm, also known as the peaks function, has various hills and valleys.
Since this function is defined in the interval of [−3,3], we define the other three
functions in the same interval. Each of the three other equations represents a
hill on the landscape. In Figure 4.5, the linear combinations of the functions
are depicted. Combining them yields various elevation characteristics of the
problem instances. Finally, an instance can have hm or a linear combination of
the others as its elevation function. Therefore, we define h as:

h(x,y) =


∑

nh
i=1 hi, if nh ∈ {2,3}

h3, if nh = 1
hm, if nh = M

(4.7)

For the third objective, we aggregate positive slopes, as we want to focus on
flat routes. Taking negative elevations into account too can result in a path
containing a hill with a steep gradient, which is not beneficial for a bulky
transportation. The fourth objective, expected delay, is defined by vmax of two
subsequent cells (see evaluation section Equations (4.11) and (4.12).)

All these variations of the properties are used in the name of a benchmark
instance. The name starts with ASLETISMAC for the five objectives to be
minimised: ascent, length, time, smoothness and accidents (expected delay).
Thereafter, the name includes the obstacle type, followed by the size (in X
and Y directions), the elevation function (PM stands for the peaks function
hm and the combination is set to Pnh), followed by the 2k-neighbourhood and
finally the backtracking (B) property (T for true or F for false). For example,
ASLETISMAC_CH_X10_Y10_P1_K2_BF defines an instance with the checker-
board obstacles, sized 10x10, nh = 1 as the elevation function (one hill), four
possible neighbours (K2), but no backtracking (BF) [WM22b]. For the values
of delays (caused by accidents) in the second objective, we refer to real-world
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Table 4.2: Integer sequences of
possible number of paths from

the north-western corner to the
south-eastern corner one with

no obstacles on oeis.org for the
size of nxn [WM22b].

Benchmark type Integer sequence

K3,BF A001850
K3,BT A140518
K2,BF A000984
K2,BT A007764

statistical data (see Equation (4.2))1. We adopt the likelihood of encountering
an accident from real-world data, depending on the vmax of a certain cell. For
instance, one is far more likely to have an accident when driving on streets
located in a city, i.e., with a lower vmax, than on highways or country roads.
Therefore, we assume a smaller likelihood of encountering an accident with
higher velocities. We also assume a large likelihood when the type of street
changes, such as travelling on an access road or an exit road [WM22b].

4.2.1 Obtaining the True Pareto-front

We performed an exhaustive search on 272 benchmark instances with different
obstacle types, sizes, elevation functions and neighbourhood metrics. To obtain
the fronts, we performed a depth-first search (DFS) from the cell at the northern-
west corner to the south-east corner cell. The larger the instances, the longer the
DFS takes to complete. The most complex in terms of the number of possible
paths we evaluated was the instance ASLETISMAC_NO_X14_Y14_PX_K3_BF,
which had a size of 14x14, 4-neighbourhood and no backtracking. For this
instance, there were 1409933619 possible paths.

The number of possible paths is represented by specific integer sequences,
obtainable at oeis.org. The numbers are shown in Table 4.2.

4.2.2 Benchmark Characteristics

The proposed benchmark has several specific characteristics. Regarding the
decision space, we can define a fixed- or variable-length encoding of solutions.
Fixed encodings are suggested especially for the K2,BF instances, as the allowed
paths have the same length f1(p), i.e., f1(p) = ((xmax −1)+(ymax −1)). Using
a variable-length approach can represent the problem as a combinatorial one.
For this purpose, one can use graph, real-value or integer-value representations.
In this case, the true Pareto-fronts of the test instances are disconnected and
degenerate due to the discrete search space. In addition, the fronts are irregular
and the different objectives have different scales. An interesting characteristic
of this benchmark is that similar paths on the grid are not necessarily close
in the objective space, implying that paths which differ in most of their nodes
can lead to similar objective values. In the K2,BF instances, the challenges
for algorithms depend on the chosen representation to find a feasible path, as
the ratio of infeasible to feasible solutions is relatively high. In Section 4.3.4
and Appendix A.1.2, Figures 4.10 and A.2 to A.5 show several examples of
obtained true Pareto-sets and fronts as well as algorithmic results [WM22b].

1. https://www.destatis.de/EN/Themes/Society-Environment/Traffic-Accidents/
_node.html
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4.3 Evaluation

The suite of test problems is a baseline for the methodologies and approaches
proposed in the following chapters. Therefore, we evaluate standard algorithms
on various instances. We set specific obstacle and velocity configurations (i.e.,
environmental settings) for the mentioned problems and use four algorithms.
Furthermore, the benchmark characteristics are transferred to a real-world map
and the same algorithms are applied.

4.3.1 Environmental Settings

Obstacles on the map

The following equations are defined for the lake gLA and checkerboard gCH

obstacles. These equations are mapped to the grids with the grid cell positions
of (x,y). With these functions, cells of the grid can be identified where obsta-
cles will be positioned, hence cells with vmax = 0. The two provided obstacle
functions can be used as a constraining function when running an optimisation
algorithm. They take the cell’s coordinate as an input and output a true or false
value, which determines whether the specified cell is an obstacle. For all obstacle
functions holds: {x ∈ N|1 ≤ x ≤ xmax} and {y ∈ N|1 ≤ y ≤ ymax} [WM22b].

The checkerboard obstacle is defined as follows:

gCH(x,y) =sign
(

sin
(

π

2
+π x

))
+ sign

(
sin
(

π

2
+π y

))
−2Π(x− xmax) Π(y− ymax)< 2

(4.8a)

Π(a) = H
(

a+
1
2

)
−H

(
a− 1

2

)
(4.8b)

where H(·) is the so-called Heaviside step function with:

H(x) :=

{
1, x > 0
0, x ≤ 0

(4.9)

The lake obstacle is defined as follows:

gLA(x,y) =(
x−1− xmax

2

)2
+
(

y−1− ymax

2

)2
− (r xmax)

2 < 0
(4.10)

where r denotes the radius ratio.

Velocity functions

To determine the velocity vmax of each cell except obstacle cells with vmax = 0,
we used the following equation, representing the three street types of highways,
country roads and city streets. The data is derived from the usual speed limits in
Germany. The function takes the cell’s coordinates as an input and outputs the
respecting vmax for that cell. The provided values can be exchanged or extended
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to represent other road networks. For all velocity function the following holds:
{x ∈ N|1 ≤ x ≤ xmax} and {y ∈ N|1 ≤ y ≤ ymax} [WM22b].

vmax(x,y) =


130, if w(x,y)> 0.9
50, if w(x,y)<−0.4
100, else

(4.11)

where w(x,y) = max(sin(x−1),cos(y−1)).

Derived from this property, the expected delay per path segment is also defined:

delay(ni,ni+1) =
2 if vmax (ni) ̸= vmax (ni+1)
3 if vmax (ni) = vmax (ni+1) = 50
1 if vmax (ni) = vmax (ni+1) = 100
1
5 otherwise

(4.12)

4.3.2 Experimental Settings

In the experiments, we investigated the degree of difficulty of the proposed
benchmark problem. We applied four state-of-the-art EAs to several instances
to evaluate the complexity of the benchmark. Furthermore, we present a cus-
tom mutation operator which can operate on a variable-length chromosome
consisting of a list of nodes.

In our proposed benchmark, we consider a solution to be a sequence of nodes
p = (n1, · · · ,nK) with a variable-length K. We take this representation for the
encoding in EAs. The variable-length chromosome poses difficulties for the
algorithms but can be highly efficient when using realistic data, since intersec-
tions and endpoints are not homogeneously distributed and paths usually have
different lengths. This representation was used by [LBE18, TY12, LZY+06]
and studied by [BWC20].

We used a one- or two-point crossover for this encoding, as follows. If two
selected solutions had intersection points except for the start and end nodes,
these points could be used as possible cut-off points. If there were fewer than
two intersections, we used a one-point crossover. Additionally, we defined
the so-called perimeter mutation operator. From a given path which is to be
mutated, we took two arbitrary points within a maximum network distance
dmax =

|p|
2 and computed their middle point. Then we searched for a random

point within a maximum distance of rmax, using an R-tree index [Gut84], which
was generated upfront. We performed a random search (local search) from
the first and second points to it. Depending on the benchmark instance, we
either considered all neighbouring nodes within the radius in positive cardinal
and diagonal directions (instances of type K3,BF) or a subset of them, namely,
nodes in positive cardinal directions for K2,BF [WM22b]. In Section 6.1.2, the
operator is described in more detail.

In the experiments, we used the NSGA-II [DPAM02], NSGA-III [DJ14] and
DIR-enhanced NSGA-II (d-NSGA-II) [CSF18] algorithms. The d-NSGA-II
employs a diversity indicator based on reference vectors [CSF18], making it
suitable for many-objective optimisation problems. Additionally, we used an
indicator-based algorithm, the ISDE+ algorithm [PMS19]. For all four algo-
rithms, we set the population size to µ = 212 as in the original NSGA-III study.
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We set the probabilities for crossover and mutation to Pc = 0.8 and Pm = 0.2,
the number of divisions for NSGA-III to 6, the maximum number of generations
to 500, and the number of runs to 31 for statistical analysis. The task of the
pathfinding algorithm was to find a path from the north-west corner to the
south-east corner.

To compare the algorithms, we calculated the IGD+ indicator [IMN15,IMTN14].
The results were compared and tested for statistical significance using the non-
parametric Kruskal-Wallis test and Bonferroni correction for multiple indepen-
dent samples, as suggested by Knowles et al. [KTZ06]. The null hypothesis
states that that the distributions of the four samples have equal medians. Statis-
tical significance of the difference in performance was assumed for p-values
smaller than 0.01 [WM22b].

Real-World Data

OpenStreetMap (OSM)2 provides the GPS coordinates for a graph representa-
tion, which can be used to measure the path length for the first objective. For
the second objective concerning the delay (number of accidents), we used the
publicly available accident statistic data from 20183 and mapped the data to
the imported network. The coordinates of the accidents generally differed from
the available nodes in the network. Hence, we defined an R-tree index [Gut84]
on the network and performed a nearest node search for each accident to align
each accident to a node in the network.

The third objective was measured using the Google Maps Elevation API4.
The elevation is obtained in metres above mean sea level and written to the
node’s properties. For the smoothness, we simplified the network to straight
connections between nodes, which meant that smoothness was obtained in the
same way as in the proposed benchmark.

From the OSM network, we obtained information about speed limits per street
segment. We calculated the time needed per segment as the ratio of distance
and speed. Summing the values of each segment resulted in the total travelling
time (Objective 5). For the experiments, we used the same parameter settings
as above with only one-point crossover [WM22b].

4.3.3 Results

Artificial Instances

In the first part of our analysis, we counted the number of successful runs in
which the algorithms could obtain the entire Pareto-front. A front was found
if the IGD+ was 0 in all 31 runs of the algorithms. Given 272 valid instances,
NSGA-II, NSGA-III, d-NSGA-II and ISDE+ were unable to find the complete
true Pareto-fronts for 234, 233, 240 and 221 instances. This indicates the diffi-
culty of the benchmark for specific instances. For 15 instances, the algorithms
did not find a result. This outcome occurred mostly on the small X3_Y3 in-
stances. The reason was the customised operators, which can fail on relatively
short paths. It can occur that the mutation operator cannot find a suitable node
in the given radius.

2. https://www.openstreetmap.org
3. https://web.archive.org/web/20200704125405/https://unfallatlas.statistikportal.
de/_opendata2019.html
4. https://developers.google.com/maps/documentation/elevation/start
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Figure 4.6: Obtained IGD+

Values for the instance
NO_X14_Y14_PM_K3_BF

[WM22b]
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Table 4.3: Wins, losses and ties
of each algorithm pair (rows vs.

column) with statistical
significance at p < 0.01,

Bonferroni correction applied,
IGD+ indicator. [WM22b]

ISDE+ NSGA-II NSGA-III

d-NSGA-II 167/31/59 22/183/52 66/45/146
ISDE+ 26/213/18 41/158/58

NSGA-II 179/39/39

After running the experiments, we obtained complete results for 257 instances.
By ‘complete’ we mean the results from all 31 runs for an instance for all
four algorithms. Figure 4.6 shows the obtained IGD+ values for the instance
NO_X14_Y14_PM_K3_BF, for which none of the algorithms found the whole
Pareto-front, indicating the complexity of the problem. We noted that NSGA-II
obtained the best result, although NSGA-II is not usually considered the best
option for many-objective problems. In Table 4.3, the wins, losses and ties are
shown for each of the algorithms.

Overall, NSGA-II performed the best in the IGD+ indicator in most instances,
with a statistically significant difference (p < 0.01, see Figure A.1). This could
be due to the crowding distance estimation to maintain diversity, which is
beneficial to irregular Pareto-fronts [CSF18]. However, the results of the ISDE+
algorithms indicate that more algorithms of this class should be tested on
the benchmarks, as they yielded the most completely solved instances. Five
other instances, including their Pareto-set and results for the four algorithms,
are presented in Section 4.3.4 and Appendix A.1.2 in Figures 4.10 and A.2
to A.5. The ISDE+ algorithm showed the most diverse results in the decision
space. When analysing the algorithms’ progress, we often saw in the K2,BF
instances that some algorithms converged to paths that only went down and then
right. We surmised that it can be challenging for algorithms to explore these
instances’ search spaces because they may fall into local optima. The proposed
benchmark suite generated instances in which the closeness of paths did not
reflect closeness in objective space. In conclusion, size, neighbourhood and
backtracking increased the search space size; conversely, changing the latter
two to values which decreased the search space would also increase the ratio
of infeasible to feasible solutions. The convergence to local optima is visible
in Figure A.5 in the appendix (see Appendix A). From a visual perspective, it
seems that the ISDE+ algorithm is less prone to these challenges [WM22b].
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Figure 4.7: Map of Berlin
showing the best path in terms

of each objective. Min
Ascent, Min Length, Min
Time, Min Smoothness,

Min expected delay. The dashed
black line represents the path

from the original OSM Routing
Service [WM22b]

Real-World Data

In the following, we transfer the problem from the proposed benchmark to a
real-world application. We use the data on the map of Berlin and compute a set
of paths between the two airports Berlin-Tegel and Berlin-Schönefeld. For this
purpose, we use OSM data, which is imported and converted to an undirected
graph via the osmnx library [Boe17]. We simplify the network by removing
nodes which do not represent an intersection. The resulting graph has 63731
vertices and 84912 edges. For merged edges, we take the maximum values of
the merged partners and aggregate the distances. Our computed path is thus
an approximation but can be used to analyse the algorithm’s performance on
real-world data. Figure 4.7 shows the layout of the map and depicts the start
and end points [WM22b].

Because this is a real-world problem, we do not know the true Pareto-front. To
approximate the performance of the algorithms, we combined all results from
all four algorithms and all 31 runs and calculated the non-dominated solution
set. We obtained 1422 non-dominated solutions. Figure 4.7 shows a subset of
the obtained non-dominated solutions and the path obtained from the OSM
routing service. For clarity, we do not illustrate the whole set but only five non-
dominated paths from one airport to the other, representing the best solution
per objective. It is evident that the paths differ. Furthermore, the paths with the
fewest accidents mostly traverse highways, indicating that the algorithms could
explore the search space. Interestingly, our obtained path with the least time
is the same as that obtained from the OSM routing service. All depicted paths
could be recommended to a hypothetical driver, representing different possible
requirements. The blue route is probably the most reliable one as it contains the
least expected delay, despite being relatively long. The red route is suitable for
vehicles with relatively low power [WM22b].

With the obtained reference from all runs, we calculated the IGD+ indicator
for the four algorithms. Figure 4.8 shows the respective values of the obtained
results, and Figure 4.9 shows the parallel coordinates plot of the best solutions
per objective. In this experiment, NSGA-III obtained the best median; however,
it significantly outperformed d-NSGA-II and ISDE+ [WM22b].
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Figure 4.8: Obtained IGD+

values on the real-world
problem [WM22b]
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Figure 4.9: Parallel coordinates
plot of the best paths for each

objective [WM22b]

Ascent Length Time Smoothness Exp_Delay

60 

80 

100

120

140

160

30000

35000

40000

45000

50000

55000

60000

25

30

35

40

45

50

11000

12000

13000

14000

15000

16000

17000

40 

60 

80 

100

120

140

160

180

The experiments show that while the NSGA-II performed the best on the
majority of the benchmark instances, the NSGA-III was at least equally good on
the real-world example. The artificial instances are distinguishable from the real-
world example because the former are ordered as a grid, whereas real-world data
is usually more heterogeneous. An algorithm’s performance can depend on the
underlying structure. The artificial instances reflect the properties of real-world
street networks to a certain extent while being scalable and variable [WM22b].

4.3.4 Detailed Path Visualisations

Figure 4.10 show true Pareto-fronts, sets and results from the algorithms for
the instance NO_X5_Y5_P3_K3_BF. Figures A.2 to A.5 in the appendix (see
Appendix A.1.2) show true Pareto-fronts, sets and results from the algorithms
for four other different instances. Furthermore, Figure A.1 illustrates the ob-
tained IGD+ values regarding the different types of problem instances. For the
smoothness objective, values are given in degrees.

4.4 Summary
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ASLETISMAC_NO_X5_Y5_P3_K3_BF Pareto Set
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(a) Pareto-set of instance
NO_X5_Y5_P3_K3_BF
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(b) Pareto-Front of instance
NO_X5_Y5_P3_K3_BF

Instance: NO_X5_Y5_P3_K3_BF Algorithm: NSGA-II
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(c) Result set of algorithm NSGA-II

Instance: NO_X5_Y5_P3_K3_BF Algorithm: NSGA-III
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(d) Result set of algorithm NSGA-III

Instance: NO_X5_Y5_P3_K3_BF Algorithm: ISDE+
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(e) Result set of algorithm ISDE+

Instance: NO_X5_Y5_P3_K3_BF Algorithm: DNSGA-II
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(f) Result set of algorithm D-NSGA-
II

Figure 4.10: Pareto-set and front of instance NO_X5_Y5_P3_K3_BF and result
sets of all algorithm (median run with respect to IGD+ value) [WM22b]

In this chapter, we have presented a scalable many-objective pathfinding bench-
mark problem representing a real-world related navigation problem on actual
map data. The benchmark is scalable and can be used to analyse many-objective
optimisation techniques for path and route planning and navigation. Different
obstacle types, as well as elevation functions, neighbourhoods and backtrack-
ing properties, can be adjusted according to the required complexity. We have
proposed five objective functions for the benchmark related to real-world goals
when planning a route. Furthermore, we have obtained the true Pareto-fronts for
several benchmark instances, which we provide in the appendix. Additionally,
we have used four existing EAs to minimise five objectives and compared the
results with the obtained true Pareto-fronts of several benchmark instances.
Moreover, we have transferred the benchmark’s characteristics to real-world
data by adding further information to an OSM data graph that we had down-
loaded. We have also applied the algorithms with the same parameters and
obtained promising results. In the following chapters, we use the proposed
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problem generator to evaluate our approaches and methodologies for different
problem sizes and complexities.
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5 Representation Schemes and
Performance Considerations

RepreseIn this chapter, the following points are covered

• Comparison of Encodings

• Initial Solution Generation

• Performance Considerations

In this chapter, different representation schemes of the many-objective pathfind-
ing problem and its respective solutions are discussed and evaluated. Further-
more, various approaches for generating an initial solution set are proposed.
Additionally, considerations regarding the size of the problem graph are exam-
ined, and several performance-enhancing techniques are proposed.

5.1 Representation Schemes

The following section is largely based on the publication [WZM21].

In EAs, a problem and its respective solutions can be represented by various
approaches. For many problems, a fixed-length representation is used, where
the chromosome is an n-dimensional vector of real-valued numbers. A problem
then has n decision variables. Several existing state-of-the-art operators, e.g.,
crossover and mutation operators, work on these fixed-length chromosomes.
For instance, a crossover operator can create new offspring chromosomes by di-
viding two parent chromosomes at the same decision variable and concatenating
the different respective parts again. In the other approach, i.e., variable-length
representation, new challenges occur because chromosomes can vary in length,
and this renders the division not trivial. In this section, we describe these two
main approaches and propose suitable representation schemes tailored for the
multi-objective pathfinding problem. The representation scheme or encoding is
often chosen regarding a specific problem. We thus evaluate our approaches on
the ASLETISMAC benchmark proposed in Chapter 4.

5.1.1 Fixed Length

In contrast to the encoding used in the original work (Chapter 4, [WM22b]),
which used a variable-length encoding, most algorithm frameworks are — by
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default — configured with fixed numbers of variables. Here, we propose a
real-valued and a binary representation scheme, respectively.

Moreover, in the original graph representation of the problem, obstacles in the
map were avoided by removing their nodes from the graph. However, in our
approach, coordinates in the map could be created that contained obstacles
(which render a path infeasible). Hence, we propose two different ways of
handling infeasible solutions in our encodings [WZM21].

Real-valued Encoding

For the real-valued encoding, each variable represents one step of movement
on the grid-based map. Based on the chosen neighbourhood, obstacles and
other parameters, different directions of movement are possible from any given
location in the grid. As a result, each variable represents the direction to move
in during the next step while traversing the path. Because we define a fixed-
length encoding, using this pattern, only a fixed number of steps is possible.
The maximum number of direction changes for a path from one corner to
the opposite corner is defined by the map’s size, i.e., dmax = xmax + ymax −
2. We propose multiplying this number by a certain factor δ because of the
benchmark’s ability to represent maps where backtracking is allowed. Hence,
the destination can be reached even if directions are used, which increase the
distance to the end coordinates in suboptimal solutions or when obstacles have
to be avoided. In the experiments, we evaluate the impact of different values of
δ . The total number of decision variables is defined as D = ⌈dmax ·δ⌉.

Decoding is implemented from the real-valued vector r⃗, which translates the
real values into coordinates in the grid, i.e., a list of nodes. This list is then used
in the original evaluation functions of the problem, as shown in Chapter 4.

For each decision variable ri, we define the domain ri ∈ [0,1]. During the
evaluation, this interval is divided into the number of possible neighbours of a
cell; therefore, each sub-interval maps to another direction in the following way.
For each variable ri, determine the neighbours nneighbours of the current grid cell.
Then, divide the interval [0,1] into nneighbours parts. The value of ri determines
which neighbour is used and which step is added to the path [WZM21].

Binary Encoding

The binary encoding uses a number of bits necessary to express the possi-
ble neighbouring nodes according to the chosen neighbourhood structure for
every decision. One individual consists of a binary vector

#»

b = (b1, · · · ,bD),
where bi ∈ {0,1}, for i = 1, · · · ,D. In the same way as in the real en-
coding, we employ the factor δ to increase the likelihood of reaching the
goal. The number of decision variables with this encoding is defined by
D =

⌈
(
⌊
log2(nneighbours)

⌋
+1) ·dmax ·δ

⌉
. The value of nneighbours depends on

the benchmark’s setting regarding the 2k-neighbourhood and the backtracking
setting. Since we need

⌊
log2(nneighbours)

⌋
+ 1 bits to encode one change in

direction, we map the respective number of bits to a number in the interval
of [0,1] and decode the path using the same methodology as in the real-value
encoding [WZM21].

Neighbour Calculation

In both proposed encodings, the number of existing neighbours nneighbours must
be computed for each grid cell. The number of neighbours is influenced by the
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problem’s parameters, i.e., the neighbourhood (k = 2 or k = 3), and by whether
backtracking is allowed on paths. For instance, if k = 2 and backtracking is
allowed, there are four possible neighbours: east, south, west and north. By
contrast, without backtracking, the traversal is allowed only to the east and the
south. On the other hand, with a k = 3 neighbourhood, the diagonal directions
would also be allowed. Furthermore, cells at the edges of the map may possess
fewer neighbouring cells. In addition, the existence of obstacles in the map can
lead to smaller numbers of neighbours for the cells next to the obstacle cells.

In our encoding, the movement towards a neighbouring cell is always computed
with only the available neighbours. This means that in cases where backtracking
is not allowed and the current position lies on the right border of the map, the
only remaining neighbour is the cell below. Hence, no matter which value the
following real or binary-encoded movement contains, the outcome is always
the same neighbour [WZM21].

Constraint Handling

Constraint handling methodologies are necessary for the fixed-length encodings
to tackle two separate challenges: (1) the produced paths do not necessarily
arrive at the designated destination position, i.e., (xmax,ymax) in the map, and
(2) the encodings may be able to produce paths that traverse through grid cells
with obstacles on them.

While the original implementation reported in [WM22b] always operated on
feasible paths with a fixed start and destination, the proposed fixed-length
encoding does not guarantee arrival at the destination. Instead, the decisions on
which direction to take in each grid cell can, independent of binary or real-valued
encoding, result in a path that stops at arbitrary coordinates.

To account for this circumstance and enable arbitrary algorithms to produce
optimal paths, we utilise penalty values to decrease the quality of incomplete
paths. More precisely, if the target destination is not reached within the length
of an individual (i.e., the fixed number of steps), a penalty value of twice the
Manhattan distance from the current position to the destination is added to
the first objective value f1, which represents the length of the path. This value
is chosen because it represents a longer distance than the longest distance
necessary to reach the goal from the current position; therefore, the objective
function value for f1 is worse for a solution that does not arrive at the destination
than for the worst solution that does arrive. Other approaches have used different
constraint handling techniques [Deb00], which are not accounted for in this
implementation.

The second issue concerns obstacle handling. In this thesis, we compare two
methods of dealing with obstacles. The first is not to allow obstacles on the
paths, which means removing the neighbouring cells from the list of possible
neighbours if they contain obstacles. This version is most similar to the original
implementation of ASLETISMAC , as it does not allow obstacles on the path.
The second approach allows our encoding to produce arbitrary paths even if
they contain obstacle cells. Such paths are not beneficial for the underlying
pathfinding application. Therefore, a cell containing obstacles in a path is
penalised by adding the number of obstacles contained to the first objective
function f1.

For the analysis, we consider solutions that do not arrive at the destination or
traverse obstacles as infeasible [WZM21].
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5.1.2 Variable Length

A variable-length representation [RADG17, RADG19] can be considered a
relatively natural encoding, because in reality paths often have different lengths.
Encoding a path using a variable-length representation is suitable for graph-
based problem representations, where a solution can be a sequence of nodes,
and for grid-based problem representations, where a solution is represented as a
sequence of coordinates to traverse.

A node-list-based representation is usually interpreted as a sequence of inter-
sections one has to pass to reach the destination. Each pair of consecutive
intersections is connected by a street segment, represented as an edge in a graph.
No other intersections are on this segment.

Following the definition of a pathfinding problem graph
G
(

V ,E,φ ,
#»
f , ιV (P), ιE(P),ns,ne

)
from Section 2.3.2, a path p is a se-

quence of nodes of variable length: p = (ns, · · · ,ne). Each node n has a set of
properties assigned by applying ιV (P) to the set of nodes V . Properties can be
any value and are always chosen and defined with respect to the underlying
problem. A trivial example is coordinates that are assigned to each node,
which are used to measure distances between the nodes. Other examples
include height information, or movement constraints such as maximum
velocities, or safety information. Using ιV (P), for each node, we can derive
its set of node-properties: P(n) = {gi(n) | i ∈ N,1 ≤ i ≤ |V |}, where gi(n) is a
function that maps the node to a value. However, this value can be real-valued,
categorical or any other data type. The properties are used during the evaluation
of a path to compute its objective values.

The variable-length chromosome poses difficulties for the algorithms; however,
it can be highly efficient when using realistic data, because intersections and
endpoints are not homogeneously distributed and paths usually have different
lengths. In [MSG08,LG09], it was found that a variable-length encoding was not
suitable for large networks. A key argument was that the respective crossover
operator can produce many infeasible solutions. However, in this thesis, new
methodologies are explored to make this encoding more suitable for large
networks. Furthermore, we demonstrate that the encoding outperformed a fixed-
length representation in several experiments. In general, the encoding can
be used for problems of arbitrary sizes and does not need to be adapted to
the problem size. Nevertheless, other approaches exist that use a fixed-length
representation and are also suitable for problems independent of their size.
However, other issues can occur because a path is not represented as a whole.

When using EAs, the operators have to fit the selected encoding and therefore
also the representation scheme. In many studies, fixed-length schemes have
been preferred over variable-length schemes since the latter impose additional
challenges when designing the operators. In the evaluation section of this
chapter (Section 5.4.1), we compare the two major encoding schemes, namely
fixed-length and variable-length.

5.2 Initial Solution Generation (ISG)

Before a GA such as NSGA-II begins its loop, a certain number of solutions is
generated, which serve as a seed for the optimisation. For various benchmark
problems, a real-valued encoding is used. Therefore, random numbers can be

66



Figure 5.1:  Start,  Goal,  
Other,  Gateways

employed to generate an initial solution set. However, when using a variable-
length node-list-based encoding, it is not trivial to generate this set rapidly. A
naive approach is to find µ random paths, where µ is the population size. On
large graphs, finding random paths can be time-consuming, since the probability
of finding an arbitrary path decreases with increasing graph size. The following
three proposed techniques can be used.

5.2.1 k-shortest path finding

In k-shortest path finding (KSPF), algorithms are employed which can compute
an arbitrary number k of shortest paths. No coordinate-based graph is needed for
these algorithms, as they can be applied to the general graph structure. Various k-
shortest path algorithms exist, such as Yen’s k-shortest paths which can employ
any shortest path algorithm. In the first step, the 1st-shortest path is determined,
and in the following steps the other (k− 1)-shortest paths are computed by
iteratively removing links between nodes that have been obtained in the previous
searches [Yen70, MP03]. Other algorithms, such as Eppstein’s algorithm for
finding the k-shortest path, can be employed if loops are allowed [Epp98].
Although these methods can find k-shortest paths, these paths can be still — in
terms of similarity — comparatively close to each other, which is not unlikely in
large real-world road networks [CBG+20]. For instance, after the shortest path
is found from Place A to Place B in a road network, the second shortest path
is probably almost the same, with only a few roads being changed, analogous
to detours around construction sites. Suurballe’s algorithm is used if k edge-
disjoint shortest paths should be found [Suu74]. A more diverse set of initial
paths can be found with this method since all found paths do not share any
edge. However, it can happen that only one road is available to the terminal
destination or from the starting destination in specific road networks. In these
cases, the algorithm must search between the nodes with more than two edges.
These gateway nodes can be identified by traversing a directed graph GD from
the respective start or end node until a node with a degree of deg+GD

(nstart)> 1
for the start node, or deg−GD

(nend)> 1 for the end node. For an undirected graph
GU , a degree of degGU (nstart) > 2 is required to qualify a node as a gateway
node. However, more requirements may be necessary depending on the graph’s
structure, since the method described above does not guarantee finding distinct
paths in any case. Figure 5.1 displays a visual example of such gateway nodes.

An enhancement of the KSPF is to introduce a rolling objective shortest path.
Yen’s k-shortest path is computed with respect to a single objective. By gen-
erating k = µ solutions for the initial population, the population’s diversity
might end up comparatively low in the objective and in the decision space. This
happens due to the nature of the algorithm, as it creates small deviations in the
paths. The probability of obtaining significantly different objective values is
therefore low. However, if µ is large enough, a sufficient diverse set of solutions
can be obtained; this depends naturally on the properties of the underlying
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graph, i.e., V , E and ρ . However, introducing a rolling objective mechanism
can increase the diversity. Before the solution generation starts, we created a
corresponding graph for each edge weight we wanted to consider. It should
be noted that the edge weights have to be computed beforehand, which is not
possible for every objective. For instance, the smoothness objective which is
used in the benchmark instances cannot transferred to an edge weight (see
Section 6.6.3). For each subgraph, we can run Yen’s k-shortest path algorithm
to compute the k shortest paths. Thereafter, we unify the sets of paths and select
µ random solutions to use as the initial solution population. Approaches other
than the random choice are similarly suitable. For instance, the objective-wise
best paths can be added. In our implementation we chose the random approach
to avoid bias in the search.

5.2.2 Random Paths

Through random path generation, random edges are traversed until the desig-
nated goal has been found. In large networks, this approach can result in serious
performance issues, because the probability of finding a random path can —
depending on the size of the network — be rather low due to its stochastic na-
ture. However, guided random path walks can be employed, such as a weighted
random walk, where edge weights are considered to decide which edge is taken
in the next step. Nevertheless, this approach is quite uncertain and should not
be used when quick results are a requirement.

5.2.3 Random point connection RPC

In RPC, nRPC points are generated with random coordinates that refer to their
nearest node in a graph. These points are then connected in the order in which
they were generated, starting with the starting node of the pathfinding problem
and ending with its respective ending node. Finally, nRPC +1 paths have to be
computed for a single initial solution. A variety of shortest path algorithms can
be used to connect these points. One of the best known is Dijkstra’s algorithm
for finding the shortest path between two nodes in a graph [Dij59]. However,
as the graph size increases, so does the runtime, since the time complexity of
the algorithm is O(|V | log(|V |)+ |E|). Therefore, a different approach must
be used to obtain an initial solution set when the algorithm is applied to large
road maps. From the domain of single objective shortest path algorithms, a
speed-up technique called contraction hierarchies can be used to increase the
performance of a RPC search (cf. Section 5.3.2). With RPC paths with loops
can be generated. Also note that for the random coordinates, an area must be
specified where the points are to be placed.

Usually, graphs for pathfinding problems have coordinates assigned to their
nodes to assign a random coordinate to a specific node in a graph. However,
other methods for finding random nodes can be employed if this is not the
case, such as picking random nodes from the graph’s set of nodes. Finally,
the approaches have the same outcome, but the coordinate-based method uses
problem knowledge and can narrow the search space. Similar to KSPF, one can
diversify the set of initial solutions by introducing the rolling objective.

5.3 Performance Considerations

68



The multi-objective pathfinding problem is an NP-hard problem [GBR06],
which implies that an algorithm’s runtime increases exponentially with increas-
ing graph size. Meta-heuristics are methods that do not guarantee optimality but
can find good solutions in a reasonable amount of time. However, the runtime
increases with a larger graph, and longer paths are found in the multi-objective
pathfinding problem. Often, DMs cannot wait indefinitely before obtaining a
solution and searching for it can be time-critical [GPN+11]. On real-world
street maps, paths can be considerably long. However, due to the hierarchical
nature of such maps and structures, paths can have a significant length even on a
small geographical area if the number of nodes in a path is seen as representing
the path length. From a computational perspective, this is of interest.

The proposed representation schemes have various disadvantages and advan-
tages. Function evaluations of candidate solutions for variable-length represen-
tations can require considerable time, since the length of the solution’s path
is uncertain at the outset. However, in a way-point-based approach, the com-
putational cost of finding the paths between these points has to be considered.
Nevertheless, integer and permutation-based encoding are primarily suitable for
environments with a fixed path length, i.e., well-defined pathfinding benchmark
instances, which can be considered a white-box problem as most properties are
known upfront. Working on real-world maps and structures to find paths can be
considered grey-box; usually, some properties are known, but others – such as
path length – can be highly dynamic.

Several techniques can increase the algorithm’s performance through sacrificing
its ability to explore and exploit the solution space. However, a DM can be in
favour of obtaining a solution quickly instead of obtaining a close-to-optimal
solution more slowly.

5.3.1 Path Simplification

Reducing the number of nodes in a path can help to decrease the computational
effort and better utilise the available computational budget. The performance of
the various proposed methods relies strongly on the number of nodes in a path
and therefore on its length. For instance, computing the path similarity between
two paths is computationally expensive for long paths; hence, computing dis-
similarity matrices (see Section 6.4) takes considerable time. An algorithm to
simplify a path and reduce the number of nodes is the Ramer-Douglas–Peucker
algorithm (RDPA) [DP73]. It originated in geo computer science as a technique
for map generalisation. The algorithm smooths a curve by removing certain
vertices that are inside a certain area spanned by two other vertices. Using ap-
proximations of curves to determine their similarities can significantly improve
the performance, since fewer calculations are required.

In the first step, a polygonal curve p, defined by its points p = (x1, · · · ,xk)
(xi ∈ Rn, i = 1, · · · ,k), is examined to find the point xm of p with the maximum
distance to the direct line connecting x1 and xk (denoted by x1xk), which is the
first approximation of the curve:

dmax = max
i=2...k−1

d (xi,x1xk) (5.1)

The distance function d can be any distance metric. If dmax ≤ εRDPA, where
εRDPA is a predefined threshold, all other points between x1 and xk are dis-
carded and the remaining line between the two points is the found approximation.
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Figure 5.2: Example of the
Douglas-Peucker agorithms.
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If dmax > εRDPA, the new approximation is considered to be (x1,xm,xk). Then,
dmax is to be found in the two segments, and the approximation is refined until
dmax ≤ εRDPA is met.

This technique significantly reduces the number of nodes in a path. Considering
a path with 10 nodes on a straight line, it can be reduced to two nodes by the
algorithm. Figure 5.2 provides an example. The original path is denoted by
the ∗-marker, whereas the simplified path is denoted by the 3-marker. In this
example, εRDPA = 0 is used, and only knickpoints are retained.

However, simplification often means sacrificing some quality. For instance,
two mostly similar paths with very small differences can result in the same
simplified path, which results in a Fréchet distance (see Section 6.3.2) of 0
between the paths. In the algorithm design, the value of εRDPA must be chosen
carefully.

Our experiment demonstrated (see Section 5.4.3) how simplification could
influence the quality of the results.

5.3.2 Single-objective Speed-up Techniques

There are numerous techniques in the domain of single-objective shortest path
problems which can help to increase performance. Often, these methodologies
require extensive precomputing. However, they can be helpful during the initial
phase of a GA and its reproduction phase. In Section 5.2, we described various
existing shortest path algorithms which can be used in the initial solution
generation. The same algorithms can also be used during the reproduction phase.
However, a speed-up in time is always connected with sacrificing the ability to
explore, as these algorithms are deterministic and reduce randomness during
the search. The randomness, however, is needed to find new and promising
solutions.

Similarly, during the algorithm’s reproduction phase, speed-up techniques can
be utilised. In Section 6.1.2, the proposed mutation operator finds possible
nodes in the surrounding – or perimeter – of a predetermined node. In the
following step, the node at the beginning of the mutation segment is connected
to a random node in the vicinity, which is then connected to the node at the end
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of the segment. The connection mechanism can be a single-objective shortest
path algorithm or a random path generation. We thus used the same speed-up
techniques as in the proposed RPC method in the initial solution generation
(see Section 5.2). However, depending on the network size, it can be beneficial
to employ a random search to determine the two paths to be found, as this
approach exploits the solution space more thoroughly. If runtime is crucial, a
simple pathfinding method such as Dijkstra’s algorithm can be utilised, or a
speed-up methodology such as contraction hierarchies is applicable. Choosing
the right connection mechanism largely depends on the underlying network,
its characteristics and requirements for the optimisation. Besides the mutation
operator, the crossover can also utilise such speed-up methodologies. In cases
when the two chromosomes do not share common points, we randomly chose
one on each path and connected them using a path search (cf. Section 6.1.1).

5.4 Evaluation

In the following, we evaluate the different encodings and ISG approaches in
terms of algorithmic performance.

5.4.1 Evaluation of Representation Schemes

In this section, we address the following research questions:

• How does the encoding of the problem impact the algorithm’s perfor-
mance?

• How do existing large-scale algorithms perform on high-dimensional
instances of ASLETISMAC?

• How are the performance and feasibility rate impacted by different over-
length settings?

• In what way are the results influenced by the choice of handling obstacles?

Parameter Settings

For the experiments, we evaluated various encodings and several algorithms
with the proposed benchmark in Chapter 4 [WM22b]. Each of two different
encodings, namely real-valued and binary, was adapted to the respective bench-
mark instance type. From the benchmark suite, we used a variety of problems
incorporating various characteristics. All three available obstacle configurations
from the benchmark were used: 1) no obstacles, 2) the lake obstacle and 3)
the checkerboard pattern. In addition, we applied the algorithms to different
benchmark instance sizes, starting with small maps of 5× 5 cells up to map
sizes of 200×200 in various step sizes [WZM21].

We conducted several experiments to answer the research questions. In Table 5.1,
the general experimental settings are shown. We used the NSGA-II [DPAM02],
NSGA-III [DJ14] and GLMO [ZIMN16a] algorithms with 106000 function
evaluations, as this resulted in 500 generations for a population size of µ = 212.
The values were taken from the original NSGA-III study. Although NSGA-
II is usually not suitable for many-objective optimisation problems, it had
outperformed NSGA-III in another study on the multi-objective pathfinding
problem [WM22b]. Therefore, we used it in our comparisons. To evaluate
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Table 5.1: General experimental
settings [WZM21] Parameter Value

Algorithms NSGA-II, NSGA-III, GLMO
Encodings binary, real

Sizes 5,10,14
Neighbourhood K2,K3
Backtracking True/False

Allow Obstacles On Path False
Population Size (µ) 212
Max. Function Eval. 106000

δ 1.5

Table 5.2: General experimental
settings (large scale) Parameter Value

Algorithms NSGA-III, GLMO, WOF, LCSA
Encodings real

Sizes 50,100,200
Neighbourhood K2,K3
Backtracking True/False

Allow Obstacles On Path False
Population Size (µ) 212
Max. Function Eval. 212000

δ 1.5

algorithms for large-scale problems, we additionally employed the algorithms
WOF [ZIMN16b, ZIMN18, ZM17] and LCSA [ZM19, Zil19] on benchmark
instances with map sizes 50, 100 and 200. In these runs, we set the number
of function evaluations to 212000 (Table 5.2). Furthermore, we employed a
dedicated experiment to evaluate the influence of allowing obstacles on the path
and another experiment to evaluate the impact of δ [WZM21].

As the true Pareto-front is not available for instances over the size of 14, we
estimated the worst solution to have a reference point for the hypervolume
indicator [WHBH06b, ZT99]. The estimation relies solely on the Manhattan
distance, namely xmax + ymax − 2 from the start point (1,1) to the endpoint
(xmax,ymax). For the first, second and fourth objectives, to take possible detours
due to backtracking into account, we multiply the length of the chromosome by
a factor of δ = 1.5. The worst solution for the elevation objective is estimated
by the underlying elevation profile, given by hi, which is defined by the bench-
mark’s nh parameter (cf. Section 4.2). The function determines the number of
hills and is therefore used as a factor. Moreover, due to possible backtracking
moves, we multiply it by the factor mentioned above and by 5, which was
the highest elevation of each hill, to allow for possible multiple upward and
downward movements. The number of steps estimates the smoothness objective
from the start to the end point, multiplied by π

2 , i.e., a turn of 90°. We divide
this value by 2, estimating that the worst path cannot have a higher smooth-
ness value. However, the worst solution is merely an approximation. Future
research should indicate more accurate estimations. As the true Pareto-front
is available for instances without backtracking and for sizes xmax,ymax ≤ 14,
we use the IGD+indicator [IMTN15b] to compare it with the variable-length
encoding from the original study [WM22b]. Each combination of an algorithm,
an encoding and a benchmark instance is run 21 times for statistical analysis.
To test the pairwise performances (each algorithm compared to NSGA-III), we
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use the Mann-Whitney U-test for the null hypothesis that the two samples had
equal medians. The results were statistically significant at p < 0.05 [WZM21].

Impact of Encoding

Figures 5.4 and 5.5 depict the results for two particular instances without
obstacles, the third elevation profile and no backtracking. Figure 5.4 shows the
results of the instance with k = 2 neighbourhood, whereas Figure 5.5 shows
results of the instance with k = 3 neighbourhood. Shown in blue are the original
study results concerning a variable-length encoding for different instance sizes,
with comparable results from this study shown in green. The variable-length
algorithms are denoted by VL, whereas the fixed-length approach is denoted
by FL-R for the real-valued encoding and FL-B for the binary encoding. We
compared sizes up to 14x14 since that was the maximum size used in the
original study [WM22b, WZM21].

For the k = 2 neighbourhood instance, the variable-length algorithms outper-
formed the fixed-length approach. In contrast, on the k = 3 neighbourhood
instance, for sizes 5 and 10 the fixed-length NSGA-II achieved better results
than the variable length in the original study. For size 14, our proposed encod-
ings were outperformed by the original study’s.

Comparing the binary and real-valued encoding, the algorithms using the binary
representation outperformed their counterparts on most instances. This finding
was relevant to both k = 2 and k = 3 instances. An explanation lies in how a
change in the decision variables affects the choice of the neighbouring cells. In
the binary encoding, for the k = 2 instances, only 1 bit is used to encode each
movement step. A change in a decision variable leads directly to the choice of a
different neighbour. It is noteworthy that this increased exploitation behaviour
enables the algorithms with binary encoding to outperform the real-valued ones
even in the k = 3 instances [WZM21].

Interestingly, NSGA-II outperformed NSGA-III on the larger neighbourhood.
Moreover, due to the discrete Pareto-front and different distributions of Pareto-
optimal solutions, NSGA-II outperformed NSGA-III, which is usually more
suitable for many-objective algorithms. This behaviour was studied by Cai et
al. [CSF18].

Next, we examined how the algorithms dealt with the two encodings. We
compared various instances of the benchmark with different parameter settings.
In Tables 5.3 and 5.4, we show the winning rates of the algorithms compared to
each other. For the four methods listed in the table, the numbers indicate how
often these algorithms performed significantly better, worse or on par with the
reference method NSGA-III. Table 5.3 shows the data for real-valued encodings,
and Table 5.4 shows the data for the binary encoding. A dash indicates that the
specific combination of algorithm and instance size was not tested [WZM21].

For the real-valued instances, NSGA-II and NSGA-III had the same perfor-
mance and outperformed the respective other in multiple instances. The GLMO
generally performed superior to or on par with NSGA-III. This picture changed
when binary encoding was used, as the number of instances where GLMO
performed significantly more poorly than NSGA-III increased substantially. It
should be noted that the GLMO was configured with its standard parameters
given in the framework and therefore used NSGA-III internally as an optimiser.
GLMO seems to perform more poorly when binary encoding is used because
the standard grouping mechanism uses ordered grouping. Algorithms, such as
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Table 5.3: Wins, losses, and ties
of each algorithm compared to

NSGA-III using real-valued
encoding [WZM21]

Map size NSGA-II GLMO LCSA WOF

5 1/10/13 3/1/20 - -
10 7/10/7 9/0/15 - -
14 6/8/10 7/0/17 - -
50 - 3/0/3 0/0/6 3/2/1
100 - 6/0/0 1/2/3 5/0/1
200 - 6/0/0 3/1/2 6/0/0

Table 5.4: Wins, losses, and ties
of each algorithm compared to

NSGA-III using binary-valued
encoding [WZM21]

Map size NSGA-II GLMO

5 3/12/9 3/9/12
10 6/10/8 5/11/8
14 4/9/11 3/15/6

GLMO, employ a group-wise mutation which changes large portions of the
decision variables at once. For such low-dimensional instances, this behaviour is
not beneficial since it results in more exploration than exploitation. In contrast,
the real-valued encoding allows for mutations to change the variables without
an immediate change in the chosen neighbour of a cell, which in turn eases the
small variations in the path [WZM21].

Higher Dimensional Instances

Table 5.3 displays the wins, losses and ties on the large-scale instances. We com-
pare the NSGA-III algorithm to the large-scale algorithms GLMO, LCSA and
WOF on real-valued instances. With increasing dimensionality, each of the three
algorithms outperformed NSGA-III in more instances. GLMO outperforms
NSGA-III in all six instances from size 100 onwards, while the same happens
for the WOF only at the size of 200. From the three large-scale algorithms,
LCSA performs the worst compared to NSGA-III. However, as expected, the
large-scale algorithms perform better the larger the instances become [WZM21].

Feasibility Rate regarding Encoding Length δ

Concerning the feasibility rate, we found that in most of the tested algorithms
and benchmark instances, each converged to a completely feasible solution
set. Our proposed constraint handling penalises the fitness if paths do not end
at the designated goal coordinate or paths traverse through obstacles, as such
infeasible solutions could occur. However, there were certain exceptions, such
as the two examples shown in Figures 5.3a and 5.3b. Figure 5.3a shows the
feasibility rate (number of solutions in the population that are feasible) of the
three algorithms NSGA-II, NSGA-III and GLMO for one instance with the
checkerboard obstacle, the first elevation profile, k = 3 neighbourhood with the
binary encoding. In this example, obstacles were not allowed on a path and
δ = 1.0, meaning there was no room for longer paths in the chromosome. After
the maximum of function evaluations was reached, the GLMO feasibility rate
was below 1.0, i.e., a portion of the population resulted in infeasible paths.

It is noteworthy that the feasibility rate of the initial population seldom lay over
0.0 for any algorithm, which is not visible in the diagrams. Due to its grouped
mutation mechanism, a quarter of the decision variables — and therefore also
directions — were changed at once, while only one was changed using NSGA-II
or NSGA-III. Changing a direction may lead to moving in the opposite direction.
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Figure 5.3: Feasibility rates of
the algorithms for different

instances [WZM21]

(a) Checkerboard obstacle, K3, no ob-
stacles allowed on path
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(b) Checkerboard obstacle, K3, obsta-
cles allowed on path
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Table 5.5: Median and IQR of
the hypervolume indicator for

NSGA-III, Problem CH P1 K3 BT,
δ = 1.5. Statistically significant

differences between the two
columns are shown in

bold [WZM21].

Map size Obstacles not allowed Obstacles allowed

5 1.7586e-01 (8.1125e-05) 1.7583e-01 (9.0567e-05)
10 3.0499e-01 (1.7423e-03) 2.3519e-01 (2.8475e-02)
14 2.9737e-01 (6.0812e-03) 2.3117e-01 (2.4072e-02)

When several directions are changed, and δ = 1.0, there is no room left for
arriving at the designated goal.

In Figure 5.3b, the feasibility rate for the same instance type is shown. However,
in this evaluation, obstacles were allowed on the path (while penalising the
objective f1 when traversing through them), and δ = 1.5, leaving room to reach
the goal while increasing the dimensionality of the problem. All three of the
compared algorithms needed several thousand evaluations to converge to a
completely feasible solution set, i.e., they reached a rate of 1.0 (see Figure 5.3b).
The chosen pattern, the checkerboard, had well distributed obstacles located
on the map and a path was thus relatively likely to encounter an obstacle
when traversing through the grid. However, after the maximum of function
evaluations had been reached, each algorithm converged to a complete feasible
solution set, i.e., they found paths that avoided obstacles and arrived at the
destination [WZM21].

Obstacle Handling

In Table 5.5, a comparison between the two obstacle handling techniques re-
garding the hypervolume indicator for the NSGA-III algorithm is shown. A
single benchmark instance with the checkerboard pattern, k = 3 neighbourhood,
and enabled backtracking is assessed here. Except for map size 5, the algorithm
achieved a significantly higher hypervolume if obstacles were not allowed on
the path. As a result, it is beneficial to use problem knowledge when executing
the algorithm, as it can decrease the size of the search space, especially in
environments with several obstacles. However, pruning neighbours adds com-
putational effort as non-visitable neighbours must be identified upfront. In other
networks with numerous neighbouring cells, this can negatively impact the algo-
rithm’s performance. Nevertheless, as shown by [MMC05], it can be beneficial
to maintain infeasible solutions to find feasible solutions on the boundaries of
the feasible area [WZM21].
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Figure 5.4: Comparison of the
original variable-length encoding

with the proposed fixed-length
for an instance with k = 2
neighbourhood. [WZM21]
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Figure 5.5: Comparison of the
original variable-length encoding

with the proposed fixed-length
for an instance with k = 3
neighbourhood. [WZM21]
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5.4.2 Evaluation of ISG approaches

To evaluate the different approaches of the initial solution generation, we ob-
served the respective values of both indicators, IGD+ and IGDX, over the
generations. We thus evaluated whether there was a benefit in the first gen-
eration and whether it led to an overall performance gain, after all available
function evaluations had been exhausted and the termination criteria were met.
However, biasing the solution set can be detrimental to the optimisation process,
as other promising areas of the fitness landscape may not be evaluated. We
decided to evaluate the KSPF incorporating the rolling objective approach.

Table 5.6 outlines the general experiment settings. Finally, we tested the two
approaches on 240 different problem instances, ranging from a small size up to
size 30×30. Furthermore, we used the length, time and smoothness objectives
as the set of rolling objectives.
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Table 5.6: General experimental
settings for ISG experiment Parameter Value

Algorithms NSGA-II
Encoding direct node list

Sizes 10,15,20,24,30
Neighbourhood K2,K3
Backtracking True/False

Population Size (µ) 212
Max. Function Eval. 106000

No. of runs 31
Indicators IGD+ & IGDX

Table 5.7 presents the results after the initial population had been evaluated (after
gen. 1) as well as the results after 500 generations had been evaluated. When
evaluating the initial population only, we noted a discrepancy in comparing
IGDX and IGD+ values. In terms of the IGD+ indicator, the KSPF methodology,
i.e., Yen’s shortest paths, outperforms the random search in most cases. However,
for the comparison of results using the IGDX indicator, it was evident that the
two approaches equally outperformed each other and also yielded several ties.
The effect is due to the way Yen’s algorithm works: For each objective, the
best path was found, as were paths that were direct predecessors in terms of
the respective objective but were thus better regarding other objectives. In
this manner, we followed a form of weighted sum approach. However, as we
decided to randomly take µ paths, we loosened the weighted sum approach.
When analysing the indicator values after all available function evaluations
were exhausted, we saw that in terms of IGD+, initialising the population with
Yen’s algorithm remained beneficial. Only a few instances were won by the
random approach, while the rolling objective initialisation outperformed the
other in most cases. When analysing the IGDX indicator, we noted that the
random approach outperformed the biased approach in a few instances while
also resulting in many ties. Figure 5.6 illustrates how the indicator values
developed over the number of generations. We present the median indicator
value per generation over all solved problem instances as well as the IQR in
the same manner. As evident in Figure 5.6a, the ISG approach using Yen’s
algorithm started out better and continued to be superior over the course of the
generations. The values from Table 5.7 align with this finding, as the random
approach was outperformed in 219 problem instances and even in 182 instances
after the experiment ended. In terms of the IGDX indicator (Figure 5.6b), most
problem instances resulted in a tie, comparing the initial solutions. After all
function evaluations had been exhausted, the two approaches ended with highly
similar values; however, Yen’s algorithm overall resulted in better values in 116
of 240 cases.

Table 5.7: Wins, losses and ties
of each algorithm pair (rows vs.

column) with statistical
significance at p < 0.01,

Bonferroni correction applied,
IGDX and IGD+ indicator. Three

rolling objectives.

Yen’s Algorithm (three rolling objectives)

After gen. 1 After gen. 500

Random
IGDX 18/34/188 23/116/101
IGD+ 9/219/12 6/182/52

In the first experiments, we used three objectives to generate three different
graphs on which Yen’s algorithm is used. However, more objectives resulted in
a higher effort to generate graphs. Therefore, we also examine the impact of
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Figure 5.6: The IGD+ and IGDX
indicator over the number of

generations.
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the number of rolling objectives. In Table 5.8 we present the values using only
two objectives. Evaluation of the initial solution set resulted in different values
compared to using three objectives. For instance, the rolling objective approach
outperformed the random approach in a few instances, while also resulting in
many ties when comparing the IGDX values for the three-objective variation.
Using only two objectives resulted in only 35 ties (compared to 188) and more
wins for both algorithms. Furthermore, the random approach outperformed the
rolling objective in more cases. Additionally, it was outperformed more often
when we compared the IGD+values. After all function evaluations had been
exhausted, the results were similar, indicating that using only two objectives
yielded an equal performance to using three when all available evaluations were
exhausted.

Table 5.8: Wins, losses and ties
of each algorithm pair (rows vs.

column) with statistical
significance at p < 0.01,

Bonferroni correction applied,
IGDX and IGD+ indicator. Two

rolling objectives.

Yen’s Algorithm (two rolling objectives)

After gen. 1 After gen. 500

Random
IGDX 106/99/35 34/112/94
IGD+ 3/231/6 12/181/47

In this experiment we demonstrated that a biased initial population can be
beneficial to the overall performance of an algorithm. Particularly when a rolling
objective is used, several Pareto-optimal and near Pareto-optimal solutions were
injected into the initial set. However, this approach requires a greedy algorithm
to be applied to the graph. Depending on its size and density, this can result in
severe performance degradation. Furthermore, the number of objectives taken
into the rolling mechanism must be chosen carefully. For some objectives, a
transferred graph needs to be generated, potentially resulting in substantially
more nodes and edges and adding to the time needed for execution.

In the appendix, we report each value of the experiment (Tables B.3 and B.4).

5.4.3 Path Simplification

We assess the aforementioned path simplification methodology, i.e., the RDPA,
by running the same algorithm configuration and either simplifying the paths
during the process or not. In next chapter, we propose techniques to maintain and
increase the diversity in the decision space and perform specific computations
where a path simplification can be applied. We apply the Fréchet distance metric
to compute the distance between two paths. In this experiment, before comput-
ing the distance, we simplify the paths using the RDPA with εRDPA = {0,2}.
This results in paths containing only knickpoints or even further simplified paths,
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Figure 5.7: Wins and Ties of the
proposed approach by different

instance size ranges concerning
the IGD+ indicator.
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besides the obligatory start and end points. Using a higher εRDPA reduces the
computational effort of computing the Fréchet distance, as it results in fewer
path segments. We use the same general experiment setting as we did in the
ISG experiment, presented in Table 5.6.

Table 5.9: Wins/Losses/Ties of
each algorithm pair (rows vs.

column), statistical significance
p < 0.01, Bonferroni corrected,

IGDX and IGD+ indicator.

εRDPA = 0 Baseline

εRDPA = 2
IGDX 7/44/189 6/52/182
IGD+ 7/60/173 6/65/169

εRDPA = 0
IGDX - 3/14/223
IGD+ - 6/16/218

Table 5.9 shows the results. A comparison of εRDPA = 0 with the baseline
approach (i.e., using no simplification) indicates that it resulted is numerous ties.
However, 5.8% of the problem instances were won regarding the IGDX indica-
tor and approximately 6.6% when comparing the IGD+ indicator. Comparing
εRDPA = 2 with the baseline, we note that as many as 21.6% and 27% of the
problem instances were won by the baseline. The difference is also evident
when comparing εRDPA = 0 and εRDPA = 2.

Analysing the different problem instances in more detail, we note from Fig-
ure 5.7 that an increasing instance size is associated with a decrease in the
number of instances won by the baseline approach. Therefore, we conclude that
longer paths are less prone to performance impacts arising from simplification.
The longer the path, the smaller the differences between path similarity mea-
sures that use non-simplified paths and those that use simplification techniques.
However, when the technique is applied to small size instances, a simplification
approach should not be used.

5.5 Summary

In this chapter, we have discussed various solution encodings that are used in
genetic algorithms optimising a pathfinding problem. We have shown that a
fixed-length representation has some advantages, depending on the data type.
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However, the variable-length encoding outperforms the fixed-length in most
cases, especially as the problem sizes increases. Additionally, we have proposed
different methodologies for the initial solution generation. We have evaluated
the approaches using a variety of problem instances that were generated using
the aforementioned benchmark generator. To assess the quality of the algorithms,
we have used metrics in both spaces, i.e., the objective and the decision space.
In addition, we have examined what impact on the performance is associated
with path simplification strategies that decrease the computational effort of the
diversification methodology. This topic is further explained in the next chapter.
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6 Diversification for
Pathfinding Problems

Diversifi
In this chapter, the following points are covered

• Genetic Operators

• Path Similarities

• Diversification in the Decision Space

The following chapter is largely based on the publications [WM20, WM21b,
WM21a, WM22a].

In this chapter, various new techniques for diversifying the population are intro-
duced and discussed. First, we propose genetic operators tailored specifically
for the multi-objective pathfinding problem. Thereafter, we discuss various
approaches to increase the diversity during the search process in the objective
space and the decision space respectively.

6.1 Operators

In evolutionary multi-objective optimisation (EMO), several operators are ap-
plied to the population at different steps during the optimisation process. In
Section 2.2.1, it was shown that during the reproduction phase of the algorithm,
a crossover and a mutation operator are used to find new solutions. Other opera-
tors also select the candidate solutions to be transferred to the next generation
and those that are crossed and mutated in the reproduction phase.

For the algorithm’s reproduction phase, we propose a customised crossover
and a customised mutation operator. Furthermore, we propose to use a deletion
operator that simply removes cycles in a path and is executed before a solution
is evaluated. The reason is that no path can be better, for any objective, if we
compare a path to the same path with an added arbitrary circle. This holds for
our proposed objectives when backtracking is not allowed, but the situation
may differ depending on the computation of the objectives. For instance, circles
can become beneficial if the pathfinding is constrained in terms of the curvature
of the path. It can be better to traverse through a circle instead of turning to
the desired direction. A real-world example is flight trajectories, where aircraft
have to follow a certain airfield traffic pattern. Specific problem knowledge
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Figure 6.1: Perimeter Mutation
Operator (PNM)

S

E

is needed to determine whether a repairing operator, such as loop deletion, is
suitable and needed.

6.1.1 Crossover

When variable-length representation is used, specialised operators are
needed [MTS98]. Therefore, we implemented the crossover operator by per-
forming a n-point crossover if two paths had intersections, where n∈N [WM20].
In all our experiments throughout this thesis we used n = 2 if not stated other-
wise. However, it can happen that two paths are disjunct and do not share any
edges or nodes except the start and end nodes. In such cases, we selected two
random points from each path, determined the shortest path using Dijkstra’s
algorithm in terms of length and connected the points through that path. The
operator is usually executed with a probability of Pc = 0.8.

6.1.2 Mutation

For the mutation operator, we implemented several variants. In this thesis, we
mostly use a variable-length chromosome representation; hence, we needed
specialised operators to ensure the validity and feasibility of the generated
paths. The possible alele of each gene depends on its predecessor. Unlike fixed-
length representation, where each gene is often mutated with a probability of

1
number of genes , we chose a fixed probability Pm = 0.2, which determines whether
a path is mutated. We next describe two approaches to designing a mutation
operator for such a problem.

Perimeter Mutation Operator (PNM) We propose an operator for variable-
length chromosomes. From a given path which is to be mutated, we took
two arbitrary points within a maximum network distance dmax and computed
their middle point. We then searched a random point in the network within a
maximum distance of rmax, using an R-tree, from that point, and performed a
Dijkstra search from the first point to it and to the second point from it. Hence,
we performed a local search. Figure 6.1 depicts the operator graphically. An
R-tree is a data structure that serves as an index for spatial data [Gut84]. Such
a method needs precomputation to build the index, but recent algorithms can
build indexes — also for large data sets — relatively fast. In Figure 6.1, the set
of possible nodes which are candidates for the new node is shown in orange.
Generalising this approach would mean, that the whole circle is considered as
the set of candidate nodes.

Hierarchical mutation In addition to the PNM approach, we propose a
second variation which uses the importance of different network entities and is
thus particularly useful for graphs and networks representing road maps. Using
that operator, streets that are higher in the hierarchy, e.g., highways in contrast
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to residential streets, are mutated with a lower probability (see Section 1.1.1).
Simultaneously, rmax is adjusted in accordance with a higher hierarchy (higher
priority). The actual values are depended strongly on the underlying network.
A hyperparameter optimisation can support identifying good values; therefore,

Pm(e)∼ 1/prio(e)

rmax(e)∼ prio(e)
(6.1)

where e refers to and edge, which represents a street in the graph and prio(e)
refers to the edge’s priority in the network.

6.2 Objective and Decision Space

In EMO, there are usually two spaces in which solutions are represented: 1)
the objective space M where each solution is assigned a vector of its objec-
tive values, and 2) the decision space Ω where a solution is represented by its
variables. In both spaces, one can apply methodologies to diversify the solu-
tions. Often, distant solutions in one space can be narrow in the other and vice
versa [WM21a].

As Shir noted, genetic algorithms typically suffer from loss of diversity within
populations, resulting in a local optimum [Shi12]. Niching methods address
this problem by preserving diversity. In state-of-the-art algorithms, there are
various methods for increasing or maintaining diversity. Crowding distance is
an example of using the objective space to identify crowded areas. In the next
section, we describe the approaches performed in both spaces.

6.2.1 Objective Space

Since the goal of an optimisation task is to find solutions with optimal objective
values, diversification is performed in the objective space. During the search
process, an EA can result in local optima. Furthermore, it can happen that
the search becomes stuck there. To overcome this challenge, researchers have
proposed various techniques. The goal of diversification is to obtain a set
of solutions that covers the Pareto-front. Another methodology to support
the search process is called niching. With niching, unexplored areas that are
not yet covered by a solution are emphasised during the optimisation to be
explored [Shi12].

One of the best-known niching techniques is the so-called crowding distance
(CD). Individuals are measured by the distance between their two neighbouring
solutions [DPAM02]. Relatively isolated solutions can be emphasised by using
this measurement during the NSGA-II algorithm’s replacement and selection
phase. Another technique is to use reference vectors. The solutions along such
vectors are generally preferred, and their distribution within the objective space
allows diversity to be maintained [DJ14]. When optimising more than three
objectives, the latter methodology often serves as a good solution to problems
with many objectives. However, research results indicate that performance can
be affected not only by the number of objectives but also by the type of problem,
requiring careful consideration when choosing an algorithm [CSF18,WM22b].

For multi-modal optimisation problems, such as the multi or many-objective
pathfinding problem (specific problems), there are various other techniques
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to approximate the Pareto-front. Several alternative distance metrics can be
employed. For such problems, measurements in the decision space can be
performed [DT05, JRAM20].

6.2.2 Decision Space

If more than one solution can map to the same objective values in specific
problems, i.e., multi-modal problems, other diversity measurements can be
useful. An example is combining different metrics in the objective and decision
spaces [JRAM20,DT05]. For instance, the many-objective pathfinding problem
can have close solutions in the objective space, although they are far apart in the
decision space. The use of diversity-preserving measurements in the decision
space can thus improve an algorithm’s performance [SPNE09,WM21b]. Shir
stated that diversity along the Pareto-front does not necessarily result in the
same diversity in the decision space among the Pareto-set. Furthermore, a
decision space-diverse set is of interest for a potential DM [SPNE09, UBZ10].
In their work, Ulrich et al. proposed a methodology to integrate the decision
space diversity into a hypervolume-based search [UBZ10]. Particularly if a
variable-length encoding represents the solution and the distance between two
of them cannot be computed using the Euclidean distance. The CD, in addition
to other metrics such as the harmonic mean, can be used when the chromosomes
are fixed-length and located in an Euclidean space [JM21]. Other spaces require
specialised distance metrics.

In the following sections, we describe metrics and methodologies that can be
performed in the decision space to preserve and increase the solution set’s
diversity. These methods can also overcome the challenges associated with
problem-specific encoding.

6.3 Path Similarities

Path or curve similarity measurement is found in several fields. For instance,
in handwriting recognition, curves are compared when the letters or words
are matched [SKB07]. Other fields include morphing [EGHP+02] and protein
structure alignment [JXZ08].

There are different methods of path similarity measurements. This analysis
evaluates three different metrics, namely the Hausdorff distance, the Fréchet
distance and dynamic time warping (DTW). With Hausdorff distance, the dis-
tance of two subsets (curves) in a metric space can be measured [Mun00], while
Fréchet distance also takes the flow of curves into account. Fan et al. used
the Fréchet distance on road networks to measure the resemblance of road
tracks [FLZ11]. Assuming two subsets are in the same metric space, they can
have a short Hausdorff distance but a rather large Fréchet distance. Originating
from signal theory, DTW finds a warping path between two curves or signals, to
align them, and the path’s length determines the similarity between the signals
and therefore the curves. In the following, we describe each of the distance
metrics in more detail [WM22a].

6.3.1 Hausdorff Distance

The Hausdorff distance can be used to compute the distance between two
sets of points without taking their flow into account. The formula is shown in
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Figure 6.2: An example of a dog
walk. [WM21b]

Equation (6.2). This measure is the greatest of all distances between points in
one set and their nearest points in the other set.

D(x,K) :=min{d(x,k) | k ∈ K}
δhd(A,B) :=max{max{D(a,B) | a ∈ A},max{D(b,A) | b ∈ B}}

(6.2)

6.3.2 Fréchet Distance

The Fréchet distance is a measurement of similarity for curves in a metric space.
Eiter and Mannila described it through a dog walk analogy [EM94]. A dog and
its owner walk on two different paths, and both entities can vary their speed but
cannot backtrack. Since there is a leash attached to both entities, the Fréchet
distance is defined as the shortest length of a leash which is required for both of
them to follow their paths, as shown in Figure 6.2. The dashed lines indicate
the leash.

The Fréchet distance [EM94] is mathematically defined as follows:

δF(A,B) = inf
α,β

max
t∈[0,1]

{
d
(

A(α(t)), B(β (t))
)}

(6.3)

Here, A and B are curves as a continuous mapping in a metric space M, defined
as A : [0,1] → M and B : [0,1] → M. The re-parameterisations α and β are
non-decreasing functions from [0,1] to [0,1]. In other words, A(α(t)) and
B(β (t)) are the positions of the owner and the dog in time-step t, and they
are non-decreasing as the two entities cannot move backwards. The function
d is the distance metric on M, e.g., the Euclidean distance, which describes
the length of the leash between the dog and the owner. Finally, the Fréchet
distance is obtained by computing the infimum (greatest lowest bound) of all
re-parameterisations α and β of [0,1] of the maximum over all t of the distance
d in M between A(α(t)) and B(β (t)). Alt and Godau studied the computational
properties of the measurement [AG95] initially introduced by [Fré06]. They
specified an algorithm to compute the distance δF in time O(ab logab), where
a and b are the number of segments of two curves [EM94]. Eiter and Mannila
proposed a variation of the distance metric, i.e., the coupling distance or discrete
Fréchet distance δdF , which provides a good approximation of δF in time
O(ab). They also showed that δdF is an upper bound of δF . They approximated
the two curves A and B by polygonal curves, which is, intuitively, a list of
supporting points. Those points specify the endpoints of line segments. The
sequence of segment endpoints of a polygonal curve P is denoted as σ(A) =
(u1, · · · ,ua). A coupling L between A and B is defined as a sequence L =
(uc1 ,vd1),(uc2 ,vd2), · · · ,(ucm ,vdm) of distinct pairs of σ(A)×σ(B), with respect
to c1 = 1,d1 = 1,cm = a,dm = b. The coupling respects the order of points.
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Finally, the length of the coupling is defined as ||L||= max
i=1,··· ,m

d(uci ,vdi); hence

the longest connection in L. The equation of the discrete Fréchet distance is
shown in Equation (6.4) [EM94].

δdF(A,B) = min{||L|| | L is a coupling between A and B} (6.4)

In more recent works, subquadratic algorithms were developed to approximate
the discrete Fréchet distance [BM16]. The authors developed an algorithm that
runs in O(n logn+ n2

α
), where n is the number of points and α ∈ [1,n] is the

approximation. The two curves must have the same number of nodes. In [CR18],
an approximation algorithm resulting in O(n logn+ n2

f 2 ) was proposed, where f
denotes the approximation and is f ∈ [1,n]. In this analysis, we use all points of
the two curves. We can therefore employ the original methodology of [EM94].
Using the more recent approaches with all points would result in α = f = n,
resulting in O(n logn). However, the polygonal curves in this thesis are not
constituted of the same number of nodes. Therefore, we use Eiter and Mannila’s
approach [WM22a].

The Fréchet distance accounts for the flow of the curves, whereas the Hausdorff
distance measures the distance from one point in one curve to the closest on
the second curve. For the remainder of the analysis, we refer to the discrete
Fréchet distance. As we define a path in this thesis as pi = (ns, · · · ,nEnd), we
can represent it by analogy to the definition of δdF ; hence pi = σ(A) and
(ns, · · · ,nEnd) = (u1, · · · ,ua), where ns = u1, ns+1 = u2, nEnd = ua. In other
words, A represents a continuously defined curve and σ(A) are the segment end
points. Since a path in a graph is defined by its nodes, every node ni ∈ pi is, in
fact, a segment endpoint.

6.3.3 Dynamic Time Warping

Although the Fréchet distance is a metric that results in a dissimilarity mea-
surement of two curves, DTW (which is a measure) can find the best match
between two signals and determine their distance [Mül07]. The measure reflects
similarities between temporal sequences. However, one can use the approach
to determine a distance between two paths which are sequences of locations.
In Equation (6.5) the formal definition of the DTW distance is shown. For
its computation, a local cost measurement d(a,b) is needed that describes the
similarity between two points a ∈ A and b ∈ B, such as the Euclidean distance.
A cost matrix C(A,B) can be built by computing d(a,b) for each pair of a and
b. The goal is to find an optimal warping path p∗ of the two curves A of length
R and B of length l such the overall cost (Equation (6.5a)) of a warping path
p is minimal (Equation (6.5c)). An (R, l)-warping path p is a path in the cost
matrix that runs along a valley of low cost [Mül07]. As the matrix’s values
represent cost, the warping path is the one obtaining the least combined costs if
it passes through the matrix’s cells (Equation (6.5c)). In this path, the element
arℓ ∈ A is assigned to the element bsℓ ∈ B. To compute δdtw, we used dynamic
programming [WM22a].
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Figure 6.3: Comparison of
Distance Metrics. Lines show

path couplings [WM22a]
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cp(A,B) :=
L

∑
ℓ=1

d (arℓ ,bsℓ) (6.5a)

δdtw(A,B) := cp∗(A,B) (6.5b)

δdtw(A,B) = min{cp(A,B) | p is an (R, l)-warping path} (6.5c)

Figure 6.3 shows two curves and their respective distance values using each of
the three proposed metrics. In all three measures, the function d(·, ·) represents
the Euclidean distance between two points.

6.3.4 Network Distance

Each of the shown curve similarity metrics is based on a distance metric d(·, ·) in
the respective space of the curves to measure the distance between two distinct
points of the curves. Usually, this is the Euclidean distance between points, i.e.,

de(p,q) =
√
(q1 − p1)

2 +(q2 − p2)
2 for the two-dimensional case. However,

other inter-point distance metrics can be used. The pathfinding problem to which
we apply our proposed methodology is based on a graph-based representation;
hence, the network distance can be employed, which represents the number of
minimum number of edges between two nodes in an unweighted graph. This
distance is also known as the geodesic distance dg between two nodes in a
graph. Furthermore, dg can also be defined as the total weight of the shortest
path in a weighted graph between two nodes.

It should be noted, that the difference of de and dg depends strongly on the
underlying graph G. The distances can be equal or similar to each other if G is
a Euclidean graph. Therefore, the grid graphs proposed in the ASLETISMAC
benchmark can be classified as Euclidean graphs. However, in the following
experiments, we used Hausdorff, Fréchet and DTW only. The reason was that
we observed in a preliminary study that computing the network distance often
required a large computational budget.
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Figure 6.4: Different discrete
Fréchet distance
values [WM21b].
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6.4 Diversification Within the Search Process

Within the optimisation process, the proposed methodologies can be imple-
mented. We present here an approach for how such techniques can be used
throughout the optimisation.

6.4.1 Incorporating Path Similarity Measurements

To preserve the diversity of solutions (paths) in the decision space, we now use
each of the proposed path similarity measurements in the well-known NSGA-
II algorithm [DPAM02]. Although NSGA-II has some drawbacks for many-
objective problems, our previous study [WM22b] indicated that it outperformed
NSGA-III [DJ14] in most problem instances. The problem’s Pareto-fronts are
usually irregular and degenerate. Due to the use of crowding distance, NSGA-
II is more robust to these types of problems, as evenly distributed reference
vectors which are used in NSGA-III can lead to the same solution [CSF18].
Furthermore, the pathfinding problem is partially deceptive, which can lead the
algorithms to get stuck in local optima. In our experiments, we used several
variations of incorporating the path similarity metric into the GA. In another
study, we used the three proposed distance metrics to explore their impact on
the algorithm results [WM22a].

In our algorithm’s approach, we replace the crowding distance used in the
NSGA-II algorithm with the proposed distance metric in the decision space. In
other words, when the next parent population is filled and the last front cannot
be added completely, we compare the solutions by using δhd , δdF , or δdtw.
Moreover, we use this distance metric in the selection process. For this purpose,
we implement a path similarity sorting method. We compute a dissimilarity
matrix for µ paths in a population and assign either the lowest distance of all
µ −1 values to each path or the median distance to µ −1 paths as described in
Algorithm 1. The function ψ describes whether to use min(·) or median(·) as
the crowding measurement [WM22a].

In this approach, paths with less similarity have a higher distance value. Fig-
ure 6.4 illustrates an example with several possible paths on a benchmark
instance. Figure 6.4b shows two of the paths and their respective discrete
Fréchet distance of 1, whereas Figure 6.4a shows two rather distinct paths with
large distance values of 5.65. After every pair is computed, the paths are sorted
by their distance value in descending order. This algorithm is called NSGA-II-
CR-δ -ψ , where δ and ψ are exchanged with their respective implementation
when running the algorithm. For instance, if δ = δFD and ψ = min(), then the
algorithm is called NSGA-II-CR-FD-MIN [WM22a].
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Input: List of Paths P = {p1, · · · , pµ}
// Map is a key-value store. A path p is the key

with the minimum distance as its value.
Result: Map(Path,minimum distance)
// Every Path pi ∈ P gets ∞ assigned
Map results = Map(Paths,Infinity);
// The distance δ from every path to every other

is computed
// {(pi, p j)|pi, p j ∈ P, pi ̸= p j}
for i=1 to µ do

for j=i+1 to µ do
δold(pi) = results(pi);
δcurrent(pi)=δ (pi,p j);
results(pi)=ψ(δold(pi),δcurrent(pi));

end
end

Algorithm 1: Crowding Path similarity [WM21b], adapted [WM22a]

6.4.2 Using an Archive

In the second approach, we use a limited archive for storing non-dominated
solutions and prune solutions by using the proposed discrete Fréchet distance.
In this method, we apply the pruning strategy in decision space rather than in
objective space. A variant of this approach is used in the context of multi-modal
MOO [JZM19, DT05]. In this case, the discrete Fréchet distance metric repre-
sents a niching method. We call this variant NSGA-II-FDAO (Fréchet distance
archive-only). We selected the archive-based approach as it has been shown that
using an archive to store the non-dominated solutions can significantly improve
the performance [Pat20]. Patil analysed several archive architectures, such as
a limited archive which contains a maximum number of solutions. After each
reproduction phase, all solutions of the population are added to the archive.
A new solution Snew is checked for domination with the solutions already in
the archive. If Snew is dominated by all solutions Si,archive, Snew is not added.
If Snew dominates any solution in the archive, the dominated solutions are re-
moved from the archive. For the case where Snew is non-dominated, and the
maximum number of archive members is reached, a solution in a dense area
is removed; this is done based on clustering, nearest-neighbour or crowding
distance [WM21b].

The third approach combines the two other approaches, resulting in NSGA-II-
FD. In this variation, we replaced the crowding distance with the proposed
Fréchet distance (as in the first approach), and the algorithm used an archive (as
in the second approach) [WM21b].

6.5 Curve Ordering

Computing path similarities is an approach to identify areas in the decision space
that are already covered by a majority of the population members. However, in
contrast to computing a distance matrix and finding the minimum or median
values, as was done in [WM21b, WM22a], imposing an order on a set of curves
would open the possibility of finding neighbourhood relationships. With this
approach, it is possible to find less covered areas with less computational effort.
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When the crowding distance mechanism [DPAM02] is used as an example, it
is evident that computing the degree of isolation for a solution – by analysing
the distance to its neighbours – can yield benefits. In the crowding distance
mechanism, solutions are ordered concerning the objectives being optimised.
Then, the distance between the two neighbours is computed per objective and
summated. This methodology allows a more focused niching, since less crowded
sections are found and can be explored more. In the current analysis, we apply
this concept to a set of paths in decision space. However, there is no natural
total order on a set of paths or curves in a metric space [WM21a].

To order a set of paths, one can impose a binary relation on it. A relation ≤
on a set M is a total order if the following requirements are fulfilled for all
a,b,c ∈ M:

a ≤ b∧b ≤ a ⇒ a = b (Antisymmetric)

a ≤ b∧b ≤ c ⇒ a ≤ c (Transitive)

a ≤ b∨b ≤ a (Connected)

(6.6)

Our approach to impose a total order on a set of curves is to contract every
curve to a single point and then compute the signed length of an orthogonal
vector from a predefined line to these contraction points. Using a contraction
metric fcm, we then transfer each path from its metric space into the contracted
space, where each path is represented as a single point [WM21a].

6.5.1 Contraction Metrics

Definition 1 (Contraction Metric). A contraction metric can be, but is not lim-
itedistad to, a measure of central tendency on a set of m points {x1,x2, · · · ,xm},
where each xi ∈ Rn. It can be used to contract a path, defined by its set of nodes
to a single point, which can be used for further computations. Let P be a set
of k paths P = {p1, p2, · · · , pk}, where each path pi = (x1,x2, · · · ,xm) is of a
variable length m ∈ N,m ≥ 1, where each xi ∈ Rn. Then a contraction metric
fcm maps each path to a point, which serves as the path’s representative, in the
previously mentioned contracted space Rn; hence, fcm : P → Rn. This space
has the same number of dimensions as do the points in the respective path.

For the contraction, the following metrics (measures of central tendency) can
be used. We employ the set notation because all these metrics are based on sets
of points and not on n-tuples. It should be noted that this list is not exhaustive,
since other measurements can be used.

Definition 2 (Centroid). The centroid C of a set X of m points {x1,x2, · · · ,xm}
with each xi ∈ Rn is defined by:

C(X) =
x1 +x2 + · · ·+xm

m
(6.7)

The centroid, also known as the centre of mass of a polygon, is the point where
the polygon can be balanced when placed on the tip of a needle.

Definition 3 (Geometric Median). The geometric median of a set of m points
{x1,x2, · · · ,xm} with each xi ∈ Rn is defined by:

argmin
y∈Rn

m

∑
i=1

∥xi − y∥2 (6.8)
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Here, a point y is to be found which minimises the sum to all xi in the set of
nodes. This problem is also known as the Fermat-Weber problem [CLM+16].
We use Weiszfeld’s algorithm, which iteratively computes the geometric me-
dian [Wei37].

6.5.2 Imposing an Order

After computing the contraction point xcm = fcm(P) for each path pi ∈ P and
pi = (x1, · · · ,xm), we can impose an order on the resulting set of points. As
follows, we use the notation of #»xy for a vector from point x to point y. Hence,

#»xy =

y0 − x0
...

yn − xn

 for two points x,y ∈ Rn. We take the vector # »vse =
#      »x1xm from

the start to the endpoint and find an orthogonal vector #  »wse, so that ⟨ # »vse,
#  »wse⟩= 0,

⟨ #»a ,
#»

b ⟩ denotes the dot product. This equation holds if # »vse =

(
x
y

)
and #  »wse =(

y
−x

)
. We construct the orthogonal vector accordingly. Then, we compute

the vector from xcm to x1, i.e., #»r = #        »xcmx1. To determine the signed distance
dcm = fdistCm(xcm) of the point xcm to the line from x1 to xm, we compute
the dot product of #  »−r and ŵse, where ŵse is the normalised vector #  »wse, hence
fdistCm(xcm) = ⟨ #  »−r, ŵse⟩. This value is also known as the scalar projection
of the vector #  »−r in the direction of the vector ŵse. In other words, it is the
signed length of the projection of #  »−r onto #  »wse, hence #  »−r #  »wse . This value can be
negative or positive, depending on which side of the vector # »vse the point lies. In
Figure 6.5, the used vectors and their relations are shown in a two-dimensional
metric space.

Proof. Let −→r =−−−−−→pcm pstart , and vse ⊥ wse. So,

cosθ =
∥rwse∥
∥r∥

cosθ ∥r∥= ∥rwse∥
cosθ ∥r∥∥wse∥= ∥rwse∥∥wse∥

⟨wse,r⟩= ∥rwse∥∥wse∥
⟨wse,r⟩
∥wse∥

= ∥rwse∥

⟨wse,r⟩= ∥rwse∥

After computing fdistCm for every contraction point of each path pi ∈ P, we
order the values in ascending or descending order. We thus impose a total order
on the set of paths by ordering their respective fdistCm-values. Figure 6.6 shows
an example map, in which different markers denote the different paths. Further-
more, the respective contraction points are shown using the same markers. In
addition, the contraction point’s distance is colour coded. Paths on the left side
of the dashed centre line have a negative distance, whereas paths on the right
side have positive distances. In this example, we used the geometric median as
the contraction metric [WM21a].

This methodology is independent of the path’s orthogonal coordinate system and
can be applied to any set of paths. The reason behind this is that both the centroid
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Figure 6.5: Vectors used for
measuring the distance between

xcm and the vector vse. The
dashed line represents an

example path. [WM21a]
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Vectors in Decision Space

and the geometric median are equivariant under Euclidean transformations. Only
pairwise distances account for a change in their values [Eft15, Kim94].

6.5.3 Path Density-Based NSGA-II

In [WM21b], the authors used the well-known NSGA-II algorithm [DPAM02]
and changed the replacement mechanism by employing their Fréchet sorting
method instead of using crowding distance. When the population cannot be
filled with the following front during the replacement process, the solutions
are usually ordered using crowding distance to find solutions in less dense
areas. The authors in [WM21b] instead computed the distance matrix of all
solutions and then assigned the respective minimum value of the distances to
the respective solution. Through this approach, they performed the niching in
decision space instead of the objective space. The solution with the highest
minimum distance was then brought into the next generation. They applied the
same technique during the selection process [WM21a].

In our novel approach, instead of computing the distances to all other paths in
the respective front and taking the minimum, we compute the distance between
the two neighbours of a specific solution, which reduces computational cost and
increases the niching. The solutions are ordered according to their respective
contraction points, and the Fréchet density values are computed by taking the
average distance to the two neighbours of a solution. The two outer solutions are
assigned with an infinite distance, as is done in crowding distance. In Figure 6.7,
a small example is shown. Three paths are depicted in white, while the paths’
respective couplings are shown in black. The middle path is the one whose
degree of isolation is computed. The algorithm determines the distances to its
two neighbours, and the average is then assigned as its isolation value. For
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Figure 6.6: Paths and their
respective contraction points

(geometric median, denoted by
the same marker as in the paths)

[WM21a]
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Figure 6.7: Three paths, in white.
Black: The paths’

couplings. [WM21a]

Fréchet Density Example
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a path pi in an ordered set of paths P = {p1, · · · , pk}, and using one of the
above-mentioned contraction metrics, the Fréchet density value is defined by:

FDV (pi) =
∑

1
j=−1 δdF(pi, pi+ j)

2
(6.9)

where δdF(pi, p j) is the discrete Fréchet distance between the paths pi and p j.
It should be noted that other similarity metrics can be used here as well.

For the sake of clarity, the algorithm from [WM21b] is denoted as NSGA-
II-CRFD, whereas our approach is denoted as NSGA-II-DEFDXX. Here XX
refers to the contraction metric used; CT means centroid, GM means geometric
median, DE means density, and FD means Fréchet distance. The solutions with
a higher Fréchet density value are thus brought into the next generation and
selected if they are non-dominated during the selection phase.

6.6 Evaluation
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Figure 6.8: IGD+ over instance
sizes. Top, middle and bottom
rows illustrate NO, CH and LA

obstacles. Right and left
columns show the K2 and K3

neigbourhoods. [WM21b]
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In the previous sections, we proposed different methodologies to maintain and
increase the solution set diversity in the decision space. Here, we evaluate each
of the approaches described.

6.6.1 Distance Matrices

As follows, we evaluate the proposed methodology, which uses distance matrices
for the diversification of the population.

Using an archive

Figure 6.8 illustrates the median value and the standard error of the IGD+

indicator regarding the instance size.

We additionally report the number of Pareto-optimal solutions (indicated by #
of POS) for each problem instance. From a graphical perspective, it is evident
that the results vary depending on the type and size of the problem instance.
In most cases, the NSGA-II-FDAO (archive-only) obtained the best median
value and the lowest standard error. Counting the number of experiments where
an algorithm was outperformed by at least one other algorithm confirmed that
NSGA-II-FDAO was outperformed the least. Comparing this variant solely with
the baseline algorithm indicates that the baseline algorithm was outperformed
152 times, whereas the proposed variant was never outperformed. Table 6.1
shows the wins, losses and ties of each algorithm on all 256 problems [WM21b].

The variant with Fréchet distance only (NSGA-II-FDWOA, no archive), also
performed well compared to the baseline algorithm alone. The proposed vari-
ation of the algorithm was outperformed 76 times (concerning the value of
the IGD+ indicator) for the 256 chosen problems, whereas the baseline algo-
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Table 6.1: Wins, losses and ties
of each algorithm pair (rows vs.

column) with statistical
significance at p < 0.01,

Bonferroni correction applied,
IGD+ indicator [WM21b].

NSGA-II-FD NSGA-II-FDAO NSGA-II-FDWOA

NSGA-II 0/132/124 0/152/104 0/85/171
NSGA-II-FD 0/45/211 25/34/197

NSGA-II-FDAO 51/33/172

rithm was outperformed 369 times. In the remaining experiments, there was no
statistically significant difference.

The mixed variant NSGA-II-FD was never outperformed when compared only
to the baseline algorithm. The baseline, by contrast, was outperformed 108
times with respect to the IGD+ indicator.

When analysing the results, we noted that the high number of ties indicates room
for improvement. This could be due to the fact that the Fréchet distance sorting,
given two subsets of distinct paths with relatively short distance values inside
the subset, results in a short distance value for each path even if the two sets
are apart from each other . Nonetheless, the results show an improvement over
the baseline algorithm since the proposed variants won in more problems and
lost in fewer. The archive-only algorithm obtained the most promising results,
supporting Patil’s statement that only the use of an archive can significantly
affect the results [WM21b].

Comparison of different metrics

Settings In the experiments, we examined the proposed approaches on the
benchmark test suite ASLETISMAC [WM22b] (cf. Chapter 4). We consider a
two-dimensional space with three obstacle types (NO, LA and CH), with K3
neighbourhood, enabled backtracking and grid sizes of {15,20,24,26,28,30}.
NO indicates no obstacles, whereas LA and CH introduce bulk and checker-
board obstacles, as shown in Figure 4.4. In this way, CH constrains the decision
space to a few feasible paths. The K3 neighbourhood restricts the number
of possible neighbours to eight, i.e., all surrounding cells. All these combina-
tions result in 84 test instances. Given a solution represented by a path p as
p = (ni,ni+1 · · · ,nk) (a list of nodes), we evaluate it by five objectives to be
minimised: 1) Euclidean length, 2) Delays, 3) Elevation, 4) Travelling time and
5) Smoothness (Curvature) (see Chapter 4).

We use the same operators for pathfinding as in [WM22b] i.e., a one-point
crossover, which creates new offspring chromosomes by crossing two parent
paths at one common point. We also use the proposed perimeter mutation
for the mutation operator, which mutates the middle point of two arbitrary
points within a specific network distance inside a given maximum radius and
reconnects the paths afterwards. We thus compare the algorithms using the
three incorporated distance metrics. Although the problem is a many-objective
optimisation problem, we consider a smaller computational budget than our
previous studies did. The reason is that we observed that the quality of results
changed only marginally after 100 generations. This decision means we want
to take time performance considerations into account by sacrificing quality.
Furthermore, we use a population size of µ = 100 to further account for fewer
function evaluations. In real-world applications, obtaining results in a short time
is often a requirement. For the experiments, we calculate the IGD+ indicator
that is a distance measurement between the obtained front of non-dominated
solutions and the known true Pareto reference front [IMN15]. Furthermore, we
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Figure 6.9: IGD+ and IGDX over
instance sizes. Top, middle and

bottom rows illustrate NO, CH
and LA obstacles [WM22a].
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(b) IGD+ results
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report the respective wins, losses and ties of each algorithm for all problem
instances [WM22a].

To assess the quality of solutions in the decision space, we also employ the IGDX
indicator [AQY09], which measures the distance between the known Pareto-
set and the found solutions. Again, we compare the results of the algorithms
to each other and test for statistical significance using Bonferroni correction
(because we perform multiple comparisons). Our null hypothesis states that the
populations have equal medians [WM22a].

Results Figure 6.9 illustrates the median values and standard error of the
IGDX and IGD+ indicators, respectively, for the instance sizes and obstacle
settings. Each row in the figure shows a different obstacle profile: NO, CH or
LA.

We also report the number of Pareto-optimal solutions for each problem instance
on the right axis, which we obtained using the exact approach. From a graphical
perspective, it is evident that the results vary depending on the type and size
of the problem instance. It is noteworthy that in the instance of LA P1 BT
K3 (bottom left) of size 28, the algorithms using Fréchet and DTW distance
obtained a small IGDX value, whereas the IGD+ value was relatively high.
This indicates that solutions near the optimal solutions in the decision space
were found, but they were of a low quality in the objective space. For the
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Table 6.2: Wins, losses and ties
of each algorithm pair (rows vs.

column) with statistical
significance at p < 0.01,

Bonferroni correction applied,
IGDX and IGD+

indicator [WM22a].

FD-MED HD-MED

DTW-MED
IGDX 3/6/75 23/16/45
IGD+ 0/0/84 0/6/78

FD-MED
IGDX 23/14/47
IGD+ 0/2/82

multi-objective pathfinding problem, we have shown that solutions close to
the optimum in decision space are not necessarily close to the optimum in
terms of the respective objective values. However, the same two algorithms
obtained a worse IGDX value on instance of size 30 for the same map type,
whereas the algorithm incorporating the Hausdorff distance could still obtain a
low value. Nevertheless, in the other two obstacle settings, using the Hausdorff
distance was not as stable as the other two distance metrics regarding IGDX
values as backtracking was allowed. This meant the metrics that took the flow
of a curve into account yielded better results. If a path gets closer to its origin,
whereas another path does not, the Hausdorff distance does not always reflect
their similarity correctly, in the sense of their flow. As a result, the Hausdorff
distance can be small although the Fréchet and DTW distances give higher
values, as the paths are more distinct.

Concerning the IGD+ indicator, all three algorithms obtained similar values.
The indicators’ results show that using the proposed niching methodology
improves the quality of solutions in terms of closeness to the true Pareto-set.
However, there is room for improvement regarding the objective values. Because
we limited the search to 10000 function evaluations (which is relatively low
for many-objective optimisation problems), the results regarding IGD+ were
expected. In this study, the search process focused on employing measurements
in the decision space to minimise the objective functions. Therefore, there was
little improvement in the objective space that was measured by IGD+. The
underlying problem is deceptive, which can result in paths that are close to an
optimal solution in the decision space (measured by IGDX) but far from the
optimum in the objective space. For a real-world application, the impact would
be that a slight perturbation when executing or traversing a path can result in
a severe deterioration in terms of objective functions. Future research could
develop more advanced methodologies to focus on local optimisation. Often,
only a small portion of the path needs to be changed to result in better objective
values [WM22a].

Table 6.2 shows the wins, losses and ties of each algorithm on all 84 test
problems. Again, the differences concerning the two performance indicators is
evident, as most outcomes regarding IGD+ were ties. Several instances had a
definite winner when the IGDX values were compared [WM22a].

Figure 6.10 shows a comparison of two variants of the algorithm using δdF , i.e.,
(1) taking the median value of all distances to other paths, denoted by FD-MED,
and (2) taking the minimum value of the distances, denoted by FD-MIN. The
two variants are again compared concerning IGDX (Figure 6.10a) and IGD+

(Figure 6.10b). Interestingly, regarding IGD+, FD-MED either won or was
of the same quality as FD-MIN, whereas the latter won in several instances
regarding IGDX. The reason is that the min() approach works better for local
optimisation since the closest paths are used as a reference [WM22a].

A more detailed view is provided in Figure 6.11, where the respective indicator
values over different sizes for a specific instance type are depicted. Clearly,
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Figure 6.10: Wins/Losses/Ties
of the algorithm incorporating

Fréchet distance with respect to
the IGD+ and IGDX indicators

over different instance size
intervals [WM22a].
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(b) IGD+ results
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Figure 6.11: Indicator values of
the instance CH P1 K3 BT for

different sizes, comparing
FD-MED and FD-MIN [WM22a].
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(b) IGD+ results
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FD-MIN obtained better or similar values in terms of the IGDX values but was
outperformed by FD-MED with respect to IGD+.

When analysing the results, we noted that the high number of ties indicates
room for improvement. The many ties are a result of the path similarity sorting.
Sorting with two subsets of distinct paths that have relatively short distance
values inside the subset will result in a short distance value for each path,
although the two sets may be apart from each other [WM22a].

6.6.2 Curve Ordering

In this section we evaluate the proposed curve ordering technique using con-
traction metrics.

Experiment Settings

To test our approach, we used the proposed five objective benchmark suite
from [WM22b]. We generated 240 different instances with different sizes,
obstacle and neighbourhood configurations, and elevation functions. Drawing
from the same work, we used the provided true Pareto-fronts and sets to evaluate
our methodology. Figure 6.6 shows an example map which represents the lake
obstacle configuration on an instance of size 9, while in Figure 6.7 the map
is of size 5 and there are no obstacles. For the experiments, we used instance
sizes in the interval {5,6, · · · ,14}, all four proposed elevation functions, 2k-
neighbourhoods for k ∈ {2,3} and disabled backtracking. In addition to the
benchmark instances, we applied the algorithm on a real-world data set to
compute the set of paths between two airports in Berlin. The same approach
was followed in [WM22b].

The problem instances are defined on grids of various sizes with different
constraints. However, they are represented as a graph G = (V,E), where each
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node n ∈ V has various properties, including their respective coordinates, a
height value and constraints concerning possible movements when this node is
traversed (see Chapter 4). The problem has five objectives, i.e., path length, the
time needed to traverse the path, expected delay, total positive ascent of a path,
and curvature (smoothness).

To compare our results, we used the proposed algorithm in [WM21b] as our
baseline. We used the same implementation but changed the Fréchet sorting
method to our proposed ordering and neighbourhood relation identification
method. The two contraction metrics are used in dedicated algorithms. The
reason for using NSGA-II for a many-objective problem is that in the original
study, it outperformed many-objective algorithms such as NSGA-III [WM22b].
We ran the algorithms 31 times with a population size of µ = 212 for 500
generations, totalling 106000 evaluations. The crossover and mutation rates
were set to 0.8 and 0.2, respectively. For performance comparison, we used
the IGD+indicator [IMN15] and the IGDX indicator [AQY09] to measure
the distance in the decision space. The distance from the Pareto-set to the
candidate solutions are, again, measured using the Fréchet distance. To compute
a reference front for the real-world example, we combined the results from
all runs of all algorithms and computed the non-dominated set. The statistical
evaluation was performed using the Kruskal-Wallis test and applied Bonferroni
correction for multiple comparisons, as suggested in [KTZ06], and statistical
significance was set at p < 0.01. In pairwise comparisons, we assumed the null
hypothesis held, namely that the distributions of the two samples had equal
medians [WM21a].

The algorithms were implemented in Java using the jMetal framework [NDV15]
and the jGraphT library [MKNS19].

Results

Figure 6.12 shows the results of the algorithms. Depicted are the IGD+values
and their corresponding standard errors for different instance sizes. It is evident
that the proposed method performed better for larger sizes. Mainly from the
size of 10 and above, the new method outperformed the other in most instances.
This trend indicates that the proposed niching methods should not be used with
small instance sizes. The reason for the poor performance on smaller instances
is that the contraction points are comparatively close to each other or may even
exist at the same coordinates, which makes it hard for the algorithm to find
less dense areas; this holds for both variations employing different contraction
metrics. However, the geometric median approach performed slightly better.
The approach in [WM21b], by contrast, was better on smaller instances, as
it determined crowded areas using a distance matrix, which gives a better
estimation of densities [WM21a].

The results also showed that the proposed approach outperformed the origi-
nal method when the Pareto-optimal solutions were comparatively dense in
decision space. The former approach has various drawbacks in such a situa-
tion, since the values in the distance matrix are mostly the same. This makes
it hard for the algorithm to determine the solution with the lowest degree of
isolation [WM21a].

In Figure 6.13, different size intervals are grouped, and the respective wins of
each algorithm are shown. It is evident that with increasing size, the proposed
method won most benchmark instances. In the diagram, each interval contains
48 benchmark instances. For example, the interval [5,6] contains instances with
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Figure 6.12: Results of the
algorithms (IGD+indicator) by

size of the instance type LA P1
K2 BF. [WM21a]
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all different obstacle, neighbourhood and elevation configurations, but only
those of size 5 and 6 [WM21a].

In Table 6.3, the wins, losses and ties concerning the two used indicators are
shown. The table numbers indicate the respective number of benchmark in-
stances. With respect to IGD+, our proposed methods won most of the instances.
Moreover, using the geometric median as the contraction metric can yield bene-
fits over using the centroid approach. The reason is the characteristics of the
geometric median, which by nature is more robust to outliers (cf. mean and
median). If a path is mutated so that a few nodes are shifted, the centroid’s
position is impacted more than the geometric median’s coordinates. In this
approach, the geometric median can still provide a good estimate of the path’s
relations to its neighbours, compared to the centroid. In other words, using the
centroid approach, a neighbourhood relation can change more quickly if only a
few nodes change their positions [WM21a].

However, there are still several losses and also ties, indicating room for improve-
ment. Figure 6.12 illustrates a direct comparison of the obtained IGD+indicator
values concerning the instances’ sizes. Our proposed methods achieved better
results with increasing map size [WM21a].

A different outcome was obtained by analysing the results using the IGDX
indicator, which measures the distance to the true Pareto-set in the decision
space. When the method from [WM21b] was compared to our approach, our
methodology was outperformed more often than it won an instance. Further-
more, there were many ties between the methods. The reason is that the older
method uses a dissimilarity matrix to determine crowded areas and is therefore
more sensitive to differences in paths. The path comparison in [WM21b] uses
the complete path information, whereas our technique uses a single point of
representation. We also compared the centroid-based methodology to the geo-
metric median-based approach. They won similar cases against each other, and
the comparison also resulted in numerous ties [WM21a].

The results of the real-world example indicated that the proposed method was
superior to the original approach. This conclusion is supported by the IGD+

indicator, shown in Figure 6.14, depicting the indicator value over the number of
evaluations. Here, a faster convergence can be observed. Finally, the proposed
approach outperformed the reference methodology regardless of the chosen
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Figure 6.13: Wins and Ties of
the proposed approach by

different instance size ranges
(using the centroid method)

concerning the IGD+

indicator. [WM21a]
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Figure 6.14: IGD+ indicator over
function evaluation for the
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contraction metric. The two metrics had no statistically significant difference
regarding the values of the IGD+ indicator [WM21a].

A comparison of the computational costs indicated the benefits of using our
proposed method. In [WM21b] a distance matrix was used, resulting in µ −1
distance computations for each solution, where µ is the population size. In our
approach, after ordering the set and determining neighbourhood relations, we
needed to compute only two distances for each solution. The algorithms’ run
time was lower than in the baseline approach. However, the computation of
the contraction points must also be considered. Computing the centroid of a
set of points needs less computational effort, since the points’ coordinates are
averaged. There is no analytic solution for the geometric median, because this
is a computationally challenging task and an iterative algorithmic approach
has to be used. There are newer approaches to solve the problem of finding
the geometric median which achieve lower computational complexity than
Weiszfeld’s algorithm, i.e., [CLM+16], which achieved a nearly linear time
complexity of O

(
nd log3 n

ε

)
for a (1− ε)-approximate geometric median. In

contrast to our study, n denotes the number of points and d the number of
dimensions.
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Table 6.3: Wins, losses and ties
of each algorithm pair (rows vs.

column) with statistical
significance at p < 0.01,

Bonferroni correction applied,
IGDX and IGD+

indicator [WM21a].

Centroid Geom. Med.

[WM21b]
IGDX 66/54/120 76/67/97
IGD+ 51/93/96 47/109/84

Centroid
IGDX 54/56/130
IGD+ 20/50/170

6.6.3 Comparison with Exact Approaches

We compared our approach in terms of performance to an exact approach, i.e.,
the multi-objective Dijkstra shortest path algorithm [Mar84]. A comparison with
exact methods is not trivial, since algorithms such as Dijkstra or A* typically use
edge weights to evaluate a path’s cost. In the classical multi-objective shortest
path problem, a path p of length k is defined by a sequence of edges in the graph,
i.e., p = (e1, . . . ,ek), where ei ∈ E, for i = 1, . . . ,k and the path’s cost is defined
by the sum of the edges’ weight vectors, i.e., z(p) = (z1(p), . . . ,zm(p)), where
z j(p) = ∑

k
l=1 w j(el) and

#      »

w(e) = (w1(e), . . . ,wm(e)), where m is the number of
cost values or objectives [GBR06].

Graph Transfer

In the benchmark of [WM22b], the objectives cannot be represented as a weight
vector

#      »

w(e) on each edge e ∈ E. The reason is the smoothness objective, which
depends on the location of three nodes in a sequence. In Equation (4.5), it is
evident that this objective takes three nodes as its input parameters. Therefore, it
cannot be expressed as a weight value assigned to an edge connecting only two
nodes. It always depends on three nodes. An edge’s weight vector

#       »

w(ei) thus
depends on the previous edge on the path, i.e.,

#             »

w(ei−1). To apply conventional
multi-objective pathfinding methodologies to these problems, one must reduce
the problem to a regular multi-objective pathfinding problem by transferring the
graph G = (V,E) to a new graph G′ = (V ′,E ′). A node is denoted by (·), and a
directed edge between two nodes is denoted by an arrow, i.e., (·)→ (·). In graph
G′, each pair of nodes, i.e., (q,r),q,r ∈ V , with (q)→ (r) ∈ E in graph G, is
represented by a new node (q,r) ∈V ′. Furthermore, an edge from (q,r)→ (r,s)
is added to E ′, which represents the traversal from r to s, assuming q was the
traversed node before r. The pathfinding problem has predetermined start and
target nodes, i.e., s, t ∈V . Therefore, we added the nodes s+ ∈V ′ and t+ ∈V ′

and edges γ = (s+) → (s,q) ∈ E ′, with wi(γ) = fi(s,q), for i = 1, . . . ,4, but
wi(γ) = 0, for i = 5, and η = (q, t)→ (t+) ∈ E ′ with

#       »

w(η) =
#»
0 , i.e, the zero

vector [WM22a].

The graph transformation enables conventional multi-objective shortest path
algorithms to solve the problem. However, the number of nodes and edges in
graph G′ can be substantially higher than those in G, depending on the specified
problem instance. For K3 instances with enabled backtracking, the number of
nodes is defined by |V ′|= 4(xmax −1)(2xmax −1)+2 and the number of edges
|E ′|= 4(xmax −1)(16xmax −23)+6. Given these functions, it is clear that the
number of nodes and edges grows quadratically and influences the algorithm’s
performance. Figure 6.15 illustrates an example, showing the original graph G
in Figure 6.15a and the transferred graph G′ in Figure 6.15b [WM22a].

To set the edges’ weight vectors, we can employ the objective functions from the
benchmark to compute the weights for each e ∈ E ′. The proposed functions are
path-based and have an arbitrary path p of length k > 1 as an input, where k is
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Figure 6.15: Comparison of the
original problem graph G and

the transferred graph G′. In
parentheses: the respective grid

coordinates [WM22a].

(a) Original Graph G

(0.0,0.0) (0.0,1.0)

(1.0,0.0) (1.0,1.0)

(b) Transferred Graph G′

(1.0,0.0),(1.0,1.0)

(0.0,0.0),(0.0,1.0) (0.0,0.0),(1.0,0.0)

(0.0,1.0),(1.0,1.0)

(0.0,0.0)*

(1.0,1.0)*

the number of nodes in pi. Again, all objective functions, except the smoothness
objective, need two consecutive nodes to be computed. However, the smoothness
( f5, Equation (4.5)) is based on three nodes to compute the angle between them.
The edge’s weight vectors are set as shown in Equation (6.10), where the inputs
of the objective functions are node lists [WM22a].

#»w((q,r)→ (r,s)) = ( f1((r,s)), f2((r,s)), f3((r,s)), f4((r,s)), f5((q,r,s)))
(6.10)

We employed the multi-objective Dijkstra for various instances of different
sizes and properties, to find the true Pareto-fronts and sets.

In conclusion, the cost of reducing an arbitrary graph of a multi-objective
pathfinding problem to a standard multi-objective shortest path problem (where
each edge’s weight vector represents the objective functions) can be large,
depending on the actual computation of the objective functions. The more nodes
that are considered for an objective, the costlier the transfer, and the costlier the
computation of an optimal method. Nevertheless, in a real application, it should
always be considered how performant and costly an exact approach would be,
as such an approach can be beneficial [WM22a].

Naturally, it is not trivial to compare an exact algorithm to a meta-heuristic.
However, since the running time of the multi-objective Dijkstra is directly
related to the number of nodes and edges, we decided to combine running times
with the quality of results of the algorithms to compare them. We therefore
used the indicator values. Our comparison metric was λI = median(tI) · (1+
median(I)), i.e., the median run time tI of an algorithm on a problem multiplied
by the median indicator value I added to 1. This metric takes the suboptimality
of meta-heuristics into account. However, the indicator value I for the optimal
algorithm is inherently 0, where I is the IGD+ or IGDX indicator [WM22a].

Performance Comparison

We also compared the performance of the algorithms on the original graph to
an exact approach on the transferred graph in order to evaluate the quality and
running time when allowing a small computational budget of 10000 evalua-
tions. Figure 6.16 shows the values of the proposed λ -performance for the two
employed quality indicators. The y-axis is on a logarithmic scale. In the left
graph, λIGDX shows that the proposed approach has a better value from instance
sizes of 26 onwards, whereas the values are lower from size 28 for λIGD+ , com-
pared to the exact approach. Nevertheless, a trend is evident in which lower λ
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Figure 6.16: Results of the λ

performance measurement
(IGD+ & IGDX) [WM22a].
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values for the metaheuristic approach than for the exact approach are associated
with larger map sizes. That is to be expected, as the running time for the exact
approach grows quadratically. Interestingly, the DTW approach achieved the
best performance in most of the runs. Although the DTW is computationally
expensive, it can diversify the solution set well since it is sensitive to path dif-
ferences. Nevertheless, the λ indicator is an approximation and cannot be used
to make decisions about significant differences between algorithms [WM22a].

6.7 Summary

In this chapter, we have proposed various techniques and methodologies to
diversify the set of solutions during the search process. Without special tech-
niques, an optimisation can get stuck in local optima, as the many-objective
pathfinding problem can be deceptive. Most of the presented approaches take
place in the decision space, because other methods (such as CD) do not obtain
accurate solutions in terms of the objective values. Nevertheless, for some ap-
proaches, we have shown that focusing solely on diversification and niching
in the decision space can result in close-to-optimal objective values — but
also in solutions that are distinct from optimal solutions in the decision space.
As a result, if a path is traversed in the real world, and if small perturbations
happen, the eventual objective values can be much worse than the computed
ones. Combining techniques in both of the spaces can result in good objective
values and closeness to optimal solutions in the decision space, resulting in
more robust solutions. This topic is addressed in the next chapter.
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7 Decision Support and Large
Road Networks

Decision
In this chapter, the following points are covered

• How to support a decision-maker (DM) using reduc-
tion approaches

• Definition of DPs

• Pathfinding on large road networks

In many-objective optimisation, the result is usually a large set of solutions.
However, in a real-world process, only a single solution can be chosen. This
principle also holds for the pathfinding problem: from all paths found, only one
can be executed or traversed. According to Miller, only 7±2 so-called chunks
of information can be processed by humans [Mil56]. It should be noted that
recent research indicates that this number is even lower, at approximately 3 to 4
chunks [RMC+08]. To find an appropriate number of solutions from the result
of a multi-objective algorithm, researchers need an additional methodology. A
decision support system can help in identifying interesting solutions from the
complete solution set.

Usually, with many objectives, a large fraction of the solution set is Pareto-
optimal [DJ14]. On large road maps, for instance, thousands of solutions can
be Pareto-optimal, which no human DMs can comprehend at once. In this
chapter, we present methodologies that reduce a large solution set to a small and
comprehensible subset that is specifically developed for pathfinding problems.
Again, we intend to find a set of final solutions from which a DM can choose.

In [Par21] a decision support system was proposed. The author described three
variations of an algorithm that uses different combinations of measurements
in both objective and decision space. In this thesis, we extend that approach
by employing various distance metrics as well as a different cluster analysis.
Additionally, we propose an approach to identify alternative paths as well as
robust paths.

7.1 Objective Space

In the literature, there are several works on filtering the solution set by using
different dominance criteria. Two of the major methodologies are ε-dominance
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and cone-dominance. Both approaches are more relaxed variants of Pareto-
dominance and were described in Section 2.2.2.

For the pathfinding problem, we use these relations to obtain a subset of a large
solution set. Cone-dominance is particularly suitable to determine knee-points
in a Pareto-front [DZJ03]. Using ε-dominance enables finding an approximation
of the Pareto-front, which often has fewer elements than the result solution list
of an optimisation technique.

Besides these variants of domination, one can also use cluster analysis to find
κob j sets of similar solutions and determine the respective representative solu-
tions.

7.2 Decision Space

Similar to the objective space, there are measurements in the decision space to
find interesting solutions or promising regions during the optimisation [EBN05].
In our approach, we determined κdec clusters of paths using a data-structure
specific metric. Moreover, we determined the optimal number of clusters using
the silhouette coefficient, the Dunn index and the Davies-Bouldin index (see
Section 2.8.2).

7.2.1 Clustering

To classify each path in a set of paths into a cluster, we used agglomerative
clustering with complete linkage.

The goal was to assign a label lSj to each path p ∈ P. A label set is LS =

{lS1 , · · · , lSn }, where lSi ∈ {1, · · · ,κ}. We define a label lSj as a set of paths
belonging to label j of the labels obtained by a cluster algorithm in space
S ∈ {ob j,dec}; that is,

lSj =
{

pi | pi ∈ P∧ cl(S ,P, pi) = lSj
}

(7.1)

.

The function cl(·, ·, ·) assigns a label to a path by analysing the solutions in the
respective space, hence cl : P → LS .

7.2.2 Finding Representatives

After we computed the cluster set, we determined a certain representative of
each cluster, which is used in the evaluation of the clustering and in the result
that is presented to a DM, i.e., interesting solutions. For each cluster, we defined
a representative path. We decided to use the medoid of each cluster, which is
defined as the data point that has the minimum sum of distances to all other data
points in its respective cluster [SHR96]. Mathematically the medoid is defined
as:

xmedoid = arg min
y∈X

n

∑
i=1

d (y,xi) (7.2)

For the distance function d, we again used δDM. In the following section, we
define a function medoid(P,δDM), which determines the medoid of the given
path set P using a path similarity function δDM.
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7.2.3 Obtaining an Adequate κ

To obtain a suitable number of clusters κ , we used the three cluster evaluation
metrics presented in Section 2.8.2.

The distance function d(i, j) between data points (cf. Equation (2.19)) was
implemented using the discrete Fréchet δdF , Hausdorff δHd and DTW δdtw
distance functions. We needed to compute the distances between data points
that were now paths.

Regarding the Davies-Bouldin index, instead of the centroid of cluster, we
used the medoid, since a centroid can naturally not be defined on a set of
paths. Furthermore, in Equations (2.25) and (2.26) we use different values
for q and employ each path distance measurement as a replacement for the
Minkowski distance of the medoids. Therefore, we can omit assigning a value
to p. The distance metric used in the dispersion measure – or how scattered
a single cluster is – should match the distance between clusters. Using a path
similarity metric in each of the equations is, therefore, a consistent approach.
Furthermore, when computing the Dunn index, for δ we again used the path
distance metrics (δDM) to determine the distance between medoids. However,
for ∆, we used the maximum distance of two paths in a cluster. It is computed
as ∆i = maxx,y∈Ci d(x,y).

7.3 Combining Spaces

We propose incorporating certain metrics from the objective space and others
from the decision space using two different approaches. The first involves
finding sets of paths with special characteristics, whereas the second is a two-
step process resulting in a single set of interesting solutions.

7.3.1 Alternative and Robust Routes

In pathfinding, and especially in route planning on road networks, it can be of
interest if there are alternative routes available that result in similar objective
values but are expressed as a different set of roads to traverse. Furthermore, one
can be interested in other routes that also have similar objectives and are close to
each other. We propose two methodologies, based on clustering and set theory,
to determine such route sets. It should be noted that we do not define threshold
distances of paths in both spaces (objective and decision space) as some form
of δDM(pi, p j) < εob j or

∣∣∣ #»
f (pi)−

#»
f (p j)

∣∣∣ < εdec but adjust such distances by
choosing a different number of clusters, i.e., κob j in the objective space and
κdec in the decision space. The median cluster size changes proportionally by
increasing or decreasing the space-respective κ .

Robust Routes

To find a robust set of paths or routes, we first define the term ‘robust’ with
respect to pathfinding. A robust set of routes Probust ⊆ P contains paths that
are similar in their objective values while also being similar (i.e., close) to
each other in the decision space. Formalised, it is an intersection of clusters.
Computing such a set involves a cluster analysis in the two spaces and de-
termining intersections of the two cluster types. After clustering the set of
paths, we obtain two label sets that contain the labels for the cluster analysis in
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the objective space Lob j =
{

lob j
1 , · · · , lob j

nob j

}
, and the label set for the decision

space Ldec =
{

ldec
1 , · · · , ldec

ndec

}
. After obtaining the two sets, we can identify all

intersections between the labels.

Let L be the cartesian product of Lob j and Ldec, that is, L =Lob j ×Ldec. Each
element in L is therefore a pair of labels, such as

(
lob j
1 , ldec

2

)
, which are also

sets of paths (see Equation (7.1)). We thus define the set of all robust path sets as
the set of all pairwise intersections, which is the set of all

⋂
Ui, where Ui ∈ L :

Probust =
{⋂

Ui |Ui ∈ L
}

(7.3)⋂
Ui : =

⋂
a∈Ui

a = {x | ∀a ∈Ui : x ∈ a} (7.4)

Finally, an arbitrary robust set of paths is Probust ∈ Probust .

Alternative Routes

A set of alternative routes contains routes that are similar in the objective space
but distant in the decision space. We define such a set as analogous to a robust
set of paths. Again, we perform the cluster analysis in both spaces, namely the
objective space and the decision space. We then compute the intersections, as
we did in the robust path finding, and can find for a path pi in the intersection set
another path in the corresponding objective cluster that is not in the intersection
set. This pair of paths is similar in terms of their objective values but distant in
the decision space. We can define a set of alternative paths as follows:

For each Ulob j
i ,ldec

j
= (lob j

i , ldec
j )∈L , we determine the intersection set

⋂
Ulob j

i ,ldec
j

.
The set of pairs of alternative paths is then defined as:

Palternative =
{
(pi, p j) | pi ∈

⋂
Ulob j

i ,ldec
j
, p j ∈ lob j

i ∧ p j ∋
⋂

Ulob j
i ,ldec

j

}
(7.5)

7.3.2 Obtaining Interesting Solutions

In the first approach to obtain interesting solutions, the methods described
above for reducing the number of solutions are combined to identify interesting
and unique solutions. We propose to determine an approximation of the non-
dominated solution set by using either ε or cone-dominance, which is P∗

DC ⊆ P∗,
where DC is either ε or α , representing the respective dominance criteria (DC).
We then apply the cluster analysis in the decision space on P∗

DC to obtain a set
of labels Ldec, assigning a label to each path pi ∈ P∗

DC.

As a second methodology, we propose using all sets of robust solutions and
computing the medoid of each. Therefore, an interesting set of solutions can be
defined as:

Pinteresting = {pi | pi = medoid(Probust),Probust ∈ Probust} (7.6)

7.4 Decision Points

The term decision points (DPs) is used in various contexts. For instance, [LR18]
is an article about century-long flood risk management in England. DPs are used
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Figure 7.1: Decision Points as a
graph representation
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as points in time when a specific decision is due, in this case, deciding what
measurements should be implemented to lower the flood risk. Such points can be
highly dynamic, as the prediction of certain indicators may change. Furthermore,
the placements depend on numerous variables, e.g., time to implement a certain
measurement or predicted values. In indoor route guidance, DPs are points of
action, e.g., change of level or change of directions [DCOVdW+21]. The authors
presented a study on the complexity perception of such points when persons
are navigating indoor. Numerous DPs in the criminal justice system experience
involve some small degree of racial bias. These biases can accumulate over
time and negatively impact defendants of colour. The DPs in this domain are,
for instance, stopping of a car, search of a suspect or arrest. At each of these
points, which form a path in the justice system, biases can occur [Chi16].

Whereas the above examples include fixed DPs, in [OBM] sporadic DPs were
addressed. In that study, DPs in lectures were identified, where a different
course of action could be taken. The concept of DPs was also used in product
development in the pharmaceutical industry [MLFPEAP+11].

Although the specific definitions of DPs in these works differ, they share a
commonality: DPs occur on paths. Examples include navigating through flood
risk management, where DPs are dynamic in time within a certain range, depen-
dent on other factors and have different result paths; indoor navigation, where
DPs are spatially fixed, time-independent and have fixed result path; navigating
through the criminal justice system, where DPs are process fixed, have different
result paths, and can result in possibly severe outcomes for humans; changing
the course of a lecture, where DPs are sporadically occurring and have different
result paths; or managing product development, where DPs have different result
paths. Hence, the timing (i.e., when an algorithm or a DM should place a DP )
is of interest in these scenarios and use cases.

In route planning, that is addressed in this thesis, a DP can be defined as the last
common point of sub-sequences of multiple solutions where the next point in
each solution is different. With this method, a decision graph can be spanned.
Figure 7.1 shows part of such a graph, where each node represents DPs. Note
that all other points that define a path have been omitted in the representation
and merged into the edges connecting the points (common paths). Furthermore,
the result is usually not a tree, as all alternatives can conclude at the same
endpoint.

After obtaining a set of non-dominated solutions from an optimisation algorithm,
a DM has to choose between several solutions. It can happen that two or more
DMs are involved in the process. There are several techniques which can be
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applied during such a group decision-making process to evaluate the fairness
and several other metrics of a set of solutions [MS99]. However, another case
occurs if this process needs to happen while the plan — i.e., the path — is
executed or traversed. Here, so-called DPs can be defined or identified on which
a new set of solutions is generated and evaluated.

On each DP, the DM has to choose the next sub-alternative route. Naturally,
the cardinality of this subset is often much smaller than the complete set of
non-dominated solutions. The method reduces the number of paths that are
considered at a decision process, as the DM only needs to take the next subset
into account. This can improve the performance and speed of a decision where
multiple DMs are involved.

Decision points can furthermore be used with other optimisation techniques,
such as rolling horizon evolutionary optimisation [PSLR13]. With this approach,
a sub-route can be generated in a shorter time and evolved as it is traversed.
This can be beneficial for long-distance routes with many objectives, where
the computational effort is high. Generally, the concept can be applied a priori
and a posteriori, i.e., to identify the points either during the optimisation or
afterwards. Moreover, an interactive methodology may be possible, e.g., a DM
that specifies points where a decision should be made.

In the remaining course of the thesis, the concept of DPs is not pursued in-
depth and should be analysed thoroughly in future research. In this chapter, we
propose an a posteriori approach to determine DP on a set of routes.

7.5 Evaluation on Large Road Networks

In this section, we evaluate the proposed decision support methodologies. Such
an evaluation is not trivial, as the goodness of a presented solution set can be
highly subjective due to the DM’s experience or other factors.

To evaluate our approaches, we use the European Road Network which con-
sists of approximately 6.25× 108 nodes. After small subnetworks and non-
intersection nodes were removed because they would not be used for our routing
purpose, the final graph consisted of 1.14× 108 nodes and 1.46× 108 edges.
It should be noted that an intersection is often represented by several nodes
to take different turning constraints into account when using data from OSM.
In other chapters, such as Chapter 4, we have simplified the network to one
node per intersection. We used the GraphHopper5 library to employ the already
implemented data-handling methodologies for large graphs. In addition, we
used single-objective shortest path algorithms in several parts of our method-
ologies, e.g., to connect random points during the initial solution generation, or
to connect points using the crossover and mutation operator. For these parts, we
also used the GraphHopper library’s contraction hierarchies speed-up technique.
Finally, due to the generalised definition of the MaOPF, we implemented our
algorithms using Java to work with the library.

According to a report by the European Court of Auditors, there are several major
routes for trucks transporting goods across Europe. We evaluate one of the most
used routes in the European Union, i.e., Madrid to Warsaw [oA20]. The linear
distance between these two cities is approximately 2290 km. In Figure 7.2, we
show in black the shortest distance (spheric distance) between the cities; the

5. https://www.graphhopper.org
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Figure 7.2: Distances from
Warsaw, Poland to Madrid,

Spain. Linear dist.: 2290 km,
fastest car route (GPS system):

2858 km

straight line distance is shown in grey. Due to the projection of the map, the
grey line looks shorter, but ultimately it is longer when seen on a globe. In blue,
the fastest route for car navigation is shown, which is approximately 2858 km
long, when using an automotive navigation system.

7.5.1 General experimental settings

We combine here several methodologies that have already been proposed in
this thesis. We use a variable-length chromosome representation, where each
gene relates to a node in the problem graph. For the initial solution generation,
we use RPC. Moreover, to increase the solution set diversity in the decision
space, we use the proposed curve ordering technique with contraction points
by utilising the Fréchet similarity measurement. Finally, after obtaining the
final set of non-dominated solutions, we employ the proposed decision support
techniques described in this chapter. This includes computing knee-points using
different angles and identifying interesting or alternative routes through the
clustering technique.

Other parameters were set with the same settings as in previous experiments.
However, population size µ and number of generations were both set to 100 as
we assumed a small computational budget. Moreover, to resemble a real-world
perspective, we ran the algorithm only once instead of 31 times. With these
settings, we consider that our algorithm may be executed on a mobile device in
the future.

After all function evaluations (10000) were exhausted, we obtained 69 non-
dominated solutions. For this scenario, we did not have information about the
true Pareto-front and set. In Figure 7.3 all obtained non-dominated solutions
are shown. From a visual perspective, it is already evident that several paths
overlap. One can assume that the visible major paths are the most important and
interesting routes. Nevertheless, using our methodologies we aimed to identify
such routes from the set of non-dominated solutions, as an analysis relying
solely on the visual aspects may not be sufficient and is not practicable.

We used the proposed methodologies to filter the solution set to obtain an
interesting subset according to different criteria. We employed cone-dominance
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Figure 7.3: Non-dominated
solutions
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to identify knee-points in the obtained front, and afterwards applied the proposed
cluster techniques to identify robust route sets and sets of alternative routes (see
Section 7.3.2).

7.5.2 Analysis

Cone-dominance

Figure 7.4 shows the number of non-dominated solutions using different values
for the angle α . Figure 7.5 shows the path set for α = 102°, as the number of
α-non-dominated solutions decreased only marginally after this value. After
computing the solutions that were non-dominated using α = 102°, we obtained
12 solutions. Assessing the results visually, we concluded that one of the major
routes via Lyon was classified as dominated by the others. This approach is, from
a computational effort perspective, the one with the least effort, as computing
the set requires only matrix operations.
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Figure 7.5: Paths for α = 102°.

Representative Identification

One approach to narrow down the set of solutions to a set containing interesting
solutions is to cluster the initial set and identify the cluster’s medoids. A medoid
serves as a representative of a cluster, as the medoid’s sum of distances to all
other objects inside the cluster is minimal [SHR96].

Using this methodology, a DM can obtain an overview of the distribution of the
solutions in each space. The DM can then make an informed decision that can
guide further analysis. For instance, in interactive MOO, the DM is required
to lead the optimisation in a direction that is most promising or interesting, in
their expert opinion. It should be noted that the obtained clusterisation is not
reflected in the respective other space and that solutions in a cluster in one space
may not be in the same cluster in the other space.

Figure 7.6 shows the obtained medoids following the decision space clustering.
It is clearly visible – and was expected – they are well distributed on the map.
However, as evident in the lower image of the figure, the distribution in the
objective space is suboptimal, not covering a wide range of it. A DM may gain
a false impression by analysing only the path’s expression on the map.

If we take the clusterisation obtained in the objective space, the medoid com-
putation results in the configuration depicted in Figure 7.7. In this case, the
pattern is the opposite, namely, a well distributed set in the objective space, but
close solutions on the map of Europe. Therefore, we conclude that a DM must
not only take the information of one space into account but should always be
presented with information about both spaces.

Robust and alternative routes

As shown in Section 7.3.1, the next step was to perform various cluster analysis
techniques to find sets of routes that were either robust or resulted in alternative
routes. Since for both approaches the first step of clustering is the same, we
present and discuss the results first and then discuss the specific results for each
approach.
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Figure 7.6: Medoids obtained
from decision space clustering.

In our analysis, we use complete linkage, as this approach tends to result in
smaller clusters, whereas single linkage tends to result in chaining. To obtain the
optimal number of clusters in each space, we use the silhoutte coefficient. For the
decision space, we obtained κdec = 6 as the optimal number of clusterswhereas
we obtained κob j = 3 for the objective space. In the later analysis, we discovered
that using this number resulted in very large cluster intersection. Therefore,
we manually set it to κob j = 7, which yielded better results. It should also
be noted that during the cluster analysis, we simplified the routes by again
employing the RDPA. We set εRDPA to a value for which the routes were still
unique. Figure 7.8 illustrates the obtained clusters in the decision space, i.e., the
map of Europe. Each cluster is assigned with a colour. In the lower figure, the
corresponding objective values are shown. It is evident that the decision space
clustering resulted in a fragmented objective space dataset, i.e., the clusterisation
could not be transferred to the other space.

When performing the same analysis in the objective space, the results differed.
In Figure 7.9, on the upper panel, the paths are shown on the map clustered
according to the objective space. The lower image again shows the same paths
in the objective space, with the same colour coding.
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Figure 7.7: Medoids obtained
from objective space clustering.

After computing the clusters in both spaces, we applied the proposed techniques
for route identification.

Robust Routes To obtain a set of robust paths, we employed the intersection
methodology proposed in Section 7.3.1. This resulted in 18 sets of paths with a
cardinality of 2 or higher. Other intersections resulting in 1 or zero paths were
filtered out, as such sets do not provide evasion routes. In Figure 7.10, three
such sets are shown. The lower panel of the figure shows the three clusters in
the objective space. Here, the three sets are different in each objective; however,
the red and green sets are close in the actual expression as a path on the map.
On the map, the difference is barely visible.

The intersection set with the largest cardinality is depicted in Figure 7.11. The
paths are largely overlapping when analysed visually. However, as illustrated in
the lower panel, the difference is evident in several single spots. For instance,
in the area of Vichy, France, the routes do not overlap and result in unique
expressions.

As a result, a potential driver may choose one of these clusters. The driver can
follow any path of the cluster, knowing that it will result in similar objective
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Figure 7.8: Clustered paths
according to decision space

clustering.
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values. Nevertheless, the driver has more freedom in the actual traversal. Using
such a set means having the option taking a slightly different route, while not
deviating too much from the original route.

Alternative Routes For the alternative route identification, we applied the
methodology proposed in Section 7.3.1. However, as this is a generalised
approach, we introduced several additional process steps to narrow down the
final solution set. After identifying the cluster intersections, we obtained sets of
solutions that were contained in a cluster in both spaces. A starting route served
as the baseline to identify alternative routes. We applied cone-dominance to the
set and identified the solution that remained when using α = 180°; this was the
starting route. Then, we obtained n routes with the smallest distance according
to the objective values in the corresponding objective cluster from which the
baseline solution originated. In our case study, we chose n = 2, resulting in
three routes (baseline+n).

Figure 7.12 shows two examples. Each route is assigned a different colour. The
routes have different expressions but similar objective values.
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Figure 7.9: Clustered paths
according to objective space

clustering.
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In Figure 7.13, the corresponding objective values are visible in the context of
all other solutions. The figure also shows a third set that we do not present in
the decision space. Each colour refers to a set of routes. Route set 1 refers to the
upper image in Figure 7.12, whereas set 2 refers to the bottom image. Set 3 is a
set that is not shown in the decision space, and set 4 refers to all other routes in
the solution set. It is evident that each route is close to the others within the set.
From a visual analysis it is apparent that several parts of the objective space are
not covered by the set, because we chose to display only three sets. However,
another problem arises here. It is not trivial which sets should be displayed to
a DM. Interactive optimisation can be beneficial for such problems. It should
be noted that the colours we used to represent the different paths on the maps
(Figure 7.12) are independent of those used in the objective space diagram
(Figure 7.13). On the map, the colours are used to distinguish the individual
paths.

Sets of alternative routes are an example of DPs. It is evident that the respective
routes share several points and differ greatly in other areas. The points where
routes diverge can be seen as DPs. A driver has to decide which expression, or
route, to take. In our case, the alternatives overlap again at a later point. With
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Figure 7.10: Three obtained
robust clusters.
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expert knowledge, an informed decision can be made when executing a certain
route.

7.5.3 Discussion

The proposed approaches of solution set reduction are largely an underesti-
mation of the problem under study. The first reason for this is that the true
Pareto-front is unknown as the search space is too large and computing it takes
too long. This is the case when trying to reach the global optimal solution using
a heuristic approach, as most optimisation problems do. Second, particularly
for routes on street networks, there can be a vast number of constraints that, in
practice, a human being would consider in their reasoning. It would be of value
to incorporate them a priori into the optimisation to narrow down the search
space using the available computational budget better. Performing an expert
interview with a human participant may give additional insights regarding the
problem and would enable empirical evaluation of the underlying assumption
of this study.

The proposed methodologies can be combined. For instance, after a robust set of
routes is identified, its medoid can be computed and used as a baseline solution.
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Figure 7.11: The largest robust
cluster and a detail view of

differences.

Since the medoid has the least sum of distances to every other solution in the
set, it can be considered the route from which all other routes can be reached
using the least effort. However, a large similarity between two paths does not
necessarily result in a small distance or low time taken to change from one route
to the other. Parallel streets can be highly similar; nevertheless, in reality, there
may be only a few possibilities to change between the two objects.

7.6 Summary

In this chapter, we have proposed methodologies that can help a DM in se-
lecting a route that accommodates specific requirements, based on the user’s
preferences. We have explored all of our approaches within the context of both
objective space and decision space. This is important, as the solutions to these
spaces can provide conflicting information. Our discussed approaches result in
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Figure 7.12: Two examples of
sets of alternative routes. Each

set contains three routes.

different route suggestions. However, evaluating them is not trivial and must
be performed in the future, in an in-depth analysis that considers the actual
requirements of real DMs.
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Figure 7.13: Found sets in the
context of the complete solution

set.
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8 Conclusion and Future Work

In this chapter, we conclude this thesis and present a framework that functions
as a decision support for arbitrary pathfinding problems. We then give an
overview of topics for future research in the field of multi- and many-objective
pathfinding.

8.1 Conclusion

In this thesis, we have proposed the graph-based many-objective pathfinding
problem, which can be used to model real existing problems. First, we analysed
the related work; second, we proposed a benchmark suite that can generate
various problem instances. Third, we have illustrated various problem represen-
tations that EAs can handle and have analysed their differences in performance,
quality and other metrics. In another chapter, we proposed several techniques to
diversify the population in the decision and objective spaces, since the many-
objective pathfinding problem can be deceptive. Additionally, we have proposed
various techniques to support DMs by decreasing the number of presented solu-
tions using methodologies from clustering. In the following sections, we discuss
the research questions that were formulated at the start of this study:

RQ 1 Which techniques exist to solve the MaOPF?

RQ 1.1 Which environmental classes are used and how do they differ?

RQ 1.2 Which state-of-the-art algorithms are used in the respective envi-
ronments?

RQ 1.3 Can single-objective speed-up techniques be used to support a multi-
objective approach?

In Chapter 3, we analysed the related work covering several techniques and
approaches to various pathfinding problems with a range of environments. We
pointed out that exact approaches, due to the NP-hardness of the problem, are
usually applied on relatively small environments with few objective functions.
However, there are interesting speed-up techniques for single-objective pathfind-
ing problems and their exact solution approaches. For instance, contraction
hierarchies is a technique for precomputing shortcuts upfront to greatly decrease
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the query time. Such approaches can be also used during the meta-heuristic
MOO in several phases, as we have shown. In the state of the art, various
environments have been proposed which consist of different properties and,
sometimes, non-linear constraints. Often, the algorithms were tailored to a
specific environment and are not generally applicable in other settings. In the ar-
ticles we reviewed , other approaches – such as particle swarm optimisation, ant
colony optimisation, EAs and q-learning – have been proposed and evaluated.

RQ 2 Is there a significant difference between using problem and solution
tailored representations rather than standard encodings?

In Chapter 5, we assessed different encoding schemes for the multi-objective
pathfinding problem. We evaluated fixed-length and variable-length represen-
tation schemes using our proposed benchmark suite. On smaller problem in-
stances, the fixed-length approach was superior, but its performance deteriorated
as the instances became larger. By contrast, the variable-length approach main-
tained a certain quality level. From this experiment, we concluded that in most
cases, a more natural encoding, i.e., variable-length, is suitable for such prob-
lems. Considering only fixed-length approaches, we evaluated real-valued and
binary encodings. We found that the latter outperformed the former.

The larger the instances, the more problems and challenges occurred in any
encoding scheme that could be tackled using techniques from large-scale op-
timisation. As the true Pareto-front is unknown for such large problems, it is
difficult to assess the absolute performance of an algorithm. Although the results
seem reasonably sound, they might be far from the global optimum. A way to
circumvent this restriction is to compute the true fronts and sets using an exact
approach, which would involve a large computational budget.

RQ 3 How should a scalable and variable benchmark test problem be designed
to cover a wide variety of pathfinding problems?

RQ 3.1 Which real-world related objectives should be considered in the test
problems?

In Chapter 4, we proposed a benchmark suite that enables researchers to cre-
ate different pathfinding problem environments. Furthermore, we presented
objective functions that can be used with such environments. The suite’s en-
vironments can be populated with different constraining properties, such as
obstacles in different variations, neighbourhood relations or elevation profiles.
These characteristics can also be found in other related works and resemble
real-world pathfinding problems to a certain extent. The properties and settings
can also be mapped to pathfinding problems from other domains. Our proposed
objective functions are a suggestion. Nevertheless, other objective functions
can be used with the same environment.

We also analysed several large maps of the benchmark and found that the
optimal values of the ascent objective converged towards 0. The reason was that
with larger instances more possibilities arise containing almost flat neighbours.
While this finding may seem interesting from an optimisation approach, it
impacts actual implementations of the benchmark. Such small floating-point
values can be an issue, depending on the programming language, and may result
in inaccuracies. Comparing different algorithms can be difficult in light of this
issue. Solutions are either to accept this inaccuracy or to scale the value to an
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integer by multiplication with a factor. Other approaches include specialised
techniques to cope with such small numbers.

We have shown how a variable and scalable benchmark can be defined and have
assessed the environments as well as the objective functions. Furthermore, we
applied them on real-world data.

RQ 4 How can the geometrical properties of a path be assessed?

RQ 4.1 How can differences from other paths be measured?

RQ 5 How can these properties be exploited for the optimisation process?

RQ 6 Can such properties be used to increase the diversity of the resulting
solution set?

In one of our studies, we explained that diversification techniques that are ap-
plied in the objective space can be detrimental during optimisation. Pathfinding
problem often have the characteristic of close solutions in the decision space
being far from each other in the objective space, and vice versa. Therefore,
emphasising isolated solutions and unexplored objective space areas can lead
to a non-diverse set of solutions in the decision space. However, a DM is often
interested in such a set. To overcome this issue, in Chapter 6 we proposed
utilising path similarity measurements. The geometrical properties of paths
are incorporated in the selection process of the EA. Specifically, we measured
the similarities (or differences) between paths by computing their respective
Fréchet distances. Furthermore, we evaluated alternative measurements, such
as the Hausdorff distance or DTW. Each of these possibilities poses specific
advantages and disadvantages regarding the accuracy or computational effort.
In a first approach, a stochastic measurement of tendency in a set of paths was
computed, and the path with the highest value (the most isolated path) was
determined as the selection candidate. As this method needed in a large com-
putational budget, we then proposed a technique to determine neighbourhood
relations in a path set. We suggest contracting each path to a single represen-
tative point and measuring the signed distance to the beeline that connects the
common first and last point of each path. Our proposed approaches reduced the
computational effort and increased the quality of the solution set. Furthermore,
the resulting solution set had an increased diversity, which can be beneficial for
a DM’s decision.

RQ 7 What performance indicator (PI) can be used to evaluate the algorithm’s
performance?

In this thesis, in most cases we have employed well-known state-of-the-art
performance indicators, such as IGD+, IGD, IGDX and hypervolume. The
IGD+ was used in most studies, as the computation of the hypervolume results
in large computation times when using many objectives. However, we are
aware that IGD+ is only weakly Pareto-compliant. In addition to the standard
indicators that are obtained in the objective space, we used IGD’s counterpart
in the decision space, i.e., IGDX. As the distance function, we utilised the path
similarity measurement that was proposed in Chapter 6, specifically the Fréchet
distance. However, a major drawback is that the δF of two paths can be equal
to another pair of paths, although they are different from a visual perspective.
Using DTW can solve this issue but can also require a larger computational
effort.
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RQ 8 How to reduce the number of solutions that are presented to a decision-
maker?

In Chapter 7, we proposed several approaches to narrow down a result set of an
algorithm to the most interesting solutions that can be presented to a DM. Such
techniques are necessary because a many-objective pathfinding problem can
result in many non-dominated solutions, which is barely comprehensible for a
DM. Again, we employed similarity measurements. We discussed a technique
using clustering to determine robust solution sets as well as sets of alternative
solutions. To compute such sets, we also incorporated information from the
objective space where we had applied clustering techniques. Intersecting the
resulting clusters resulted in the respective sets. In addition, we suggested
using cone-dominance as an alternative dominance criterion to decrease the
cardinality of the solution set. We tested our approaches on real-world data,
including determining a set of non-dominated solution paths from Warsaw to
Madrid, which is one of the major truck roads in Europe. Four objectives were
minimised and only one run was conducted to resemble an optimisation task
that may occur in this setting in an actual company. From the result set, we could
determine several sets of alternative solutions as well as robust solution sets.
Furthermore, the former were an example of decision points, i.e., points where
an alternative solution can be chosen. Finally, we represented each subset using
the respective medoid that was computed with the proposed path similarity
measurement. These representatives can be presented to a DM.

In summary, we generated techniques and approaches to increase the perfor-
mance of EAs applied to the multi-objective pathfinding problem. These method-
ologies can be used in other approaches too and are dedicated to a specific aspect
of the underlying problem. However, a drawback of this thesis is that it lacks a
comparison with existing pathfinding approaches. There were two reasons for
this lack. As outlined in Chapter 3, in most cases it was not trivial to reimple-
ment the approaches or recreate the environments used. Furthermore, comparing
approaches across programming languages is not trivial. With the proposed
benchmark, we created a baseline problem set with well-defined environment
characteristics and objective functions. We want to encourage the research
community to use it.

Another perspective that was covered only in part is the constraint handling. In
reality, several problems are highly constrained and special techniques must be
used. In Chapter 5, we implemented a trivial approach of constraint handling
by penalising solutions that were outside the desired domain. Although that is
a working approach, more sophisticated methodologies are missing from this
thesis. In most of our other studies, we decreased the search space by omitting
such nodes that are inaccessible. In reality, this information can be hidden or
accessed only if the respective node is traversed. In our studies, neglecting such
areas can be classified as preprocessing or offline constraint handling. Finally,
we extracted the feasible search space area with problem knowledge.

8.2 A Guide for Future Pathfinding Problems

In this thesis, different methodologies for arbitrary pathfinding problems have
been proposed. However, we have shown that, depending on the problem char-
acteristics, certain techniques often outperform others. Therefore, we propose
the following framework as a decision support model for a pathfinding problem.
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The framework depends on the size of the problem and its complexity, modality
and spatiality as well as the similarity of paths. Analysing a problem regarding
these properties leads to suitable approaches, which are proposed in this thesis.
It should be noted that the following textual framework is a suggestion based
on the empirical results of our studies and further evaluations. For a real-world
problem, the algorithmic configuration may differ from the suggested solution,
and parameters should be adjusted with care.

Size The problem or environment size has an impact on several algorithmic
properties and parameters. For small-scale problems, a fixed-length solution
representation can be beneficial, whereas a variable-length method is usually
superior when the environment – and therefore also the solution – are large.
Furthermore, different path similarity measurements can be used, depending
on the size of the environment, which includes their respective computational
efforts. In small-scale instances, the Fréchet distance or DTW can give perfor-
mance gains while maintaining a reasonable computation time. Computing the
Hausdorff distance is less complex and can therefore be used with large-scale
instances. However, sacrificing quality in the solution may be a trade-off one
must accept.

Spatiality If the environment contains spatial information about its entities
(e.g., coordinates), the use of a path similarity measurement technique – such as
computing isolated solutions in the decision space – is encouraged. If no spatial
information is involved, one can also use the proposed similarity measurements,
but instead of the Euclidean distance between points, their respective network
distance is used. This approach can, however, result in significant performance
issues regarding the time needed to obtain the results.

Similarity The similarity factor is a value that reflects the importance of
small differences in the actual expression of the path. In Figure 2.6 the different
similarity measurements are compared. Using the Fréchet distance is sufficient
for most problems. If small differences have a high importance, DTW should
be used, whereas the Hausdorff distance can be used if such differences are
negligible.

Modality Pathfinding problems can be, depending on the underlying envi-
ronment, unimodal or multi-modal. The former maps exactly one path to one
objective value vector, while the latter allows multiple paths resulting in the
same objective values. If a DM is aware of such a property and aims to empha-
sise those values, decision space diversification should be used. With such a
technique, multi-modal solutions can be found.

Complexity Depending on the complexity of an environment together with
the complexity of the resulting problem, other techniques have proven beneficial.
Although a pathfinding problem can be defined in more than two or three
dimensions, using a path similarity measuring technique can be beneficial and
would merely add computational effort. The metrics that are used in this thesis
are independent of the dimensionality. Solely the distance function that is used
to compute distances between single points is impacted.
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8.3 Future Work

In the future, several methodologies to tackle the challenges of the many-
objective pathfinding benchmark should be developed. In this thesis, we have
proposed various starting points for an ongoing research process.

8.3.1 Environmental and Algorithmic Aspects

One of the major tasks in the future is to reduce the environmental impact
that results from executing an optimisation task. There are other aspects with
respect to problem generation and solution computation, too. We suggest that
the energy consumption of an execution should be reduced by finding more
sophisticated methodologies to reduce the search space, which in turn would
reduce the computational effort.

Environment Generation

In the future, benchmark generators including dynamic obstacles can be devel-
oped to better resemble the reality and actual problems. Furthermore, stochastic
characteristics can be incorporated, as real-world problems are often not deter-
ministic and highly uncertain. In the related work, variations of such properties
can be found and can be implemented with our proposed benchmark suite. In
addition, time-dependent networks can be considered to represent timetables
of public transports or problems from other domains. In general, real-world
problems are often dynamic in several regards, which should be incorporated in
the problem generation.

Algorithmic Characteristics

For the algorithmic characteristics, several points should be considered when
conducting research on the multi-objective pathfinding problem. In the para-
graph above we outlined several aspects of the environment generation. Dy-
namic problems introduce several challenges in the actual execution of the
optimisation methodology. Speed-up techniques, such as contraction hierar-
chies, are applied on static and deterministic environments and therefore cannot
be used on dynamic problems. This introduces drawbacks to our proposed
reproduction operators, as they need to determine the shortest path between two
points to generate new solutions. For dynamic problems, different techniques
must be developed to compute such paths. Furthermore, a different encoding
scheme would be beneficial for such environments.

Measuring path similarities assumes some geometrical properties of the re-
spective paths. However, pathfinding problems can also be placed on spatially
independent graphs. For such problems, the network distance can be used as a
substitute, but this would again result in increased computational effort. In the
future, more sophisticated methodologies for such graphs and problems should
be evaluated.

Another promising focus point would be to develop sophisticated techniques to
find a natural ordering of a set of paths. The inclusion of additional geometrical
properties could lead to better determination of neighbourhood relations. The
current use of the Fréchet distance has drawbacks, since it considers only the
maximum difference.
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The concept of innovisation relates to extracting knowledge about high-
performing solutions from the search process [DS06]. The online innovisation
process performs the extraction during the execution of the optimisation to use
the knowledge in the following iterations. The use of tailored similarity mea-
surements and diversification techniques in the path search space can be seen as
part of this approach, since knowledge about geometric properties is extracted
and used. Nonetheless, future research should develop more methodologies
using this technique as it is promising in this domain.

With an increasing problem size, the solution paths become proportionally
longer, although this is not a necessity as the environment can be large but the
desired paths short. Evaluating long and large paths impacts the performance of
the optimisation. Surrogate-assisted optimisation can be beneficial here, since
surrogate paths or representations can be found and used instead. This method
has certain disadvantages as the paths are not evaluated as a whole, which can
lead to inaccuracies.

8.3.2 Aspects of Real-World Applications

As discussed in Chapter 1, pathfinding problems occur in a variety of different
domains and applications. Beyond pathfinding for travel purposes, other use-
cases exist where this technique can be used. In the following subsections, we
outline a few use-cases which would be interesting fields for applied science in
the future, considering the approaches proposed in this thesis.

Spatial Routing Problems

There are numerous spatial routing problems where pathfinding techniques
can be beneficial. Other than car routing, 3D pathfinding for air travel using
airplanes or other vessels is a promising use-case with conflicting objectives.
Furthermore, such problems oppose several constraints that must be considered.
Often, these constraining functions strongly decrease the feasible area of the
search space, which results in special requirements for an efficient algorithm.

Running Routes

Real-world problems are often highly constrained, which is a challenge for
EAs. A running route provides an example. Runners often favour routes of
a specific length, which can be modelled as an objective but should also be
constrained to result in a path that is in a certain ε range of the desired length.
Furthermore, zigzag courses are usually not favoured, and the surface of the track
can play a large role for some runners. A certain uniqueness of the route may
be required to avoid merely running in circles. Modelling these requirements
as objectives is possible, but it can result in many non-dominated solutions.
Modelling constraints is often the better solution to emphasise the search on the
desired area of the search space. In this thesis, we have not analysed this field.
In future research, methodologies can be developed to consider and analyse
such constraints. This would also help the community to appreciate how EAs
can help in everyday problems.

Medical Applications

Besides pathfinding on actual road networks, other applications can also employ
such techniques. One example is medical applications, where a path from the
outside of the body to the inside needs to be found. For instance, a cancerous
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tumour within liver tissue needs to be treated by ablation. A needle is inserted
into the tissue to place the needle’s point, or treatment area, at the correct
position of the tumour. When surgeons use this technique, they must find a path
from the patient’s body surface to the tumour.

Manufacturing

There are numerous possibilities to apply pathfinding techniques in the field
of manufacturing. In [WBM18], we outlined several applications to use such
techniques. A major challenge is to find a suitable representation of spatial and
engineering information. For instance, in assembly sequence generation, not
only the parts have to be brought into relation but also the free space between
them to compute the correct assembly or disassembly sequences. Optimisation
in manufacturing has great potential and is also interesting, as the domain’s
problems usually are more highly constrained than those of scientific benchmark
problems. Finally, the reality often consists of edge cases that are mostly not
considered.

8.3.3 Decision Support Systems

In Chapter 7, we proposed a concept of using decision points along a path as
possible triggers for recomputation or decision-making methodologies. In the
future, we hope to see such methodologies evolve, as this would be beneficial
to decrease computation times and would emphasise the interactive approach of
decision-making for such problems. Interactive decision-making is an approach
involving a DM during the optimisation process, which leads the optimisa-
tion to an appealing area in the objective space as well as the decision space.
Furthermore, rolling horizon EAs [PSLR13] are a promising approach for multi-
objective pathfinding problems, as they can result in quicker computation times
due to the reduced optimisation horizon. However, other challenges arise, es-
pecially while optimising paths, since later steps on a chosen path may lead to
a marked deterioration of the objective values, which may not be predictable.
Furthermore, in Section 7.4, we presented the concept of DPs for pathfinding
problems. Moreover, using the proposed algorithmic approaches, the presented
use cases of DPs could benefit from it. For instance, identifying a path in the
criminal justice system with a minimum racial bias and simultaneously ensuring
a trial’s speed can help individuals having fairer trials.
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A Benchmark Results

A.1 Benchmark

A.1.1 Data sets and Code

To enable researchers to use the proposed benchmark, we also publish the code
to generate different benchmark instances and the obtained true Pareto-fronts
and sets. Everything can be downloaded here: https://ci.ovgu.de/Publications/
TEVC_WM_2020-p-910.html. We used Java and the jMetal framework in version
6 [NDV15]. However, the code enables researchers to create different grids
and export them as a csv-file to import it in other software or to use other
programming languages. The codes also contain a readme file.

A.1.2 Extended Result Figures of Test Problems

In this section, the results of several test instances are shown. We show the
IGD+ values with respect to the instance type and size. Furthermore, we present
the paths, as well as the objective values of the Pareto-optimal solutions for
specific instances.
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(a) IGD+ Values for all P1 instances
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(b) IGD+ Values for all P2 instances
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(c) IGD+ Values for all P3 instances
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(d) IGD+ Values for all PM instances

Figure A.1: The obtained IGD+ values with respect to the different type, ordered
by instance size [WM22b]

L



ASLETISMAC_CH_X14_Y14_PM_K3_BF Pareto Set

2 4 6 8 10 12 14

X-Coordinate

2

4

6

8

10

12

14

Y
-C

o
o

rd
in

a
te

(a) Pareto-set of instance
CH_X14_Y14_PM_K3_BF

Ascent Length Time Smoothness Exp_Delay

1 

2 

3 

4 

5 

6 

7 

8 

9 

10

19

20

21

22

23

24

0.17

0.18

0.19

0.2 

0.21

0.22

0.23

0.24

0.25

0.26

100

150

200

250

300

350

10

12

14

16

18

20

22

24

26

28

30

32

(b) Pareto-Front of instance
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(c) Result set of algorithm NSGA-II
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(d) Result set of algorithm NSGA-III
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(e) Result set of algorithm ISDE+
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(f) Result set of algorithm D-NSGA-
II

Figure A.2: Pareto-set and front of instance CH_X14_Y14_PM_K3_BF and
result sets of all algorithm (median run with respect to IGD+ value) [WM22b]
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(a) Pareto-set of instance
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(b) Pareto-Front of instance
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(c) Result set of algorithm NSGA-II
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(d) Result set of algorithm NSGA-III

Instance: LA_X10_Y10_PM_K3_BF Algorithm: ISDE+

2 4 6 8 10

X-Coordinate

1

2

3

4

5

6

7

8

9

10

Y
-C

o
o
rd

in
a
te

(e) Result set of algorithm ISDE+
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(f) Result set of algorithm D-NSGA-
II

Figure A.3: Pareto-set and front of instance LA_X10_Y10_PM_K3_BF and
result sets of all algorithm (median run with respect to IGD+ value) [WM22b]
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(c) Result set of algorithm NSGA-II
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(d) Result set of algorithm NSGA-III
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(e) Result set of algorithm ISDE+

Instance: LA_X13_Y13_P2_K2_BF Algorithm: DNSGA-II

2 4 6 8 10 12

X-Coordinate

2

4

6

8

10

12

Y
-C

o
o
rd

in
a
te

(f) Result set of algorithm D-NSGA-
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Figure A.4: Pareto-set and front of instance LA_X13_Y13_P2_K2_BF and
result sets of all algorithm (median run with respect to IGD+ value) [WM22b]
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(c) Result set of algorithm NSGA-II

Instance: LA_X9_Y9_P2_K3_BF Algorithm: NSGA-III
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(d) Result set of algorithm NSGA-III

Instance: LA_X9_Y9_P2_K3_BF Algorithm: ISDE+
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(e) Result set of algorithm ISDE+

Instance: LA_X9_Y9_P2_K3_BF Algorithm: DNSGA-II
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(f) Result set of algorithm D-NSGA-
II

Figure A.5: Pareto-set and front of instance LA_X9_Y9_P2_K3_BF and result
sets of all algorithm (median run with respect to IGD+ value) [WM22b]
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A.2 Online Appendix

To save trees and the environment, the raw experiment results and values can
be found online at: https://ci.ovgu.de/Publications/PhD+Thesis+Jens+Weise+Online+
Appendix.html. The QR-Code in Figure A.6 also points to the given URL.

Figure A.6: QR-Code pointing to
the online appendix
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B Raw Experiment Results

B.1 Details Benchmark Results

B.1.1 IGD+Values

Instance Name d-NSGA-II ISDE+ NSGA-II NSGA-III

CH_X10_Y10_P1_K2_BF 0.0018 0.0083 0 0.22
IQR 0-0.045 0.00077-0.036 0-0 0.12-0.38

CH_X10_Y10_P1_K3_BF 0.15 0.53 0.055 0.17
IQR 0.12-0.2 0.44-0.58 0.028-0.063 0.14-0.2

CH_X10_Y10_P2_K2_BF 0 8.1e-16 0 8.1e-16
IQR 0-0 0-0.24 0-0 2e-16-8.1e-16

CH_X10_Y10_P2_K3_BF 0.18 0.65 0.032 0.29
IQR 0.15-0.23 0.55-0.69 0.027-0.048 0.28-0.41

CH_X10_Y10_P3_K2_BF 0 0.042 0 0.075
IQR 0-1.1e-16 6.3e-05-0.043 0-0 0.075-0.075

CH_X10_Y10_P3_K3_BF 0.17 0.49 0.028 0.24
IQR 0.13-0.24 0.42-0.57 0.017-0.042 0.19-0.29

CH_X10_Y10_PM_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

CH_X10_Y10_PM_K3_BF 0.2 0.66 0.068 0.22
IQR 0.18-0.22 0.56-0.73 0.027-0.081 0.19-0.28

CH_X11_Y11_P1_K2_BF 0.054 0.053 0.018 0.35
IQR 0.047-0.067 0.034-0.064 0.013-0.031 0.32-0.39

CH_X11_Y11_P1_K3_BF 0.11 0.34 0.031 0.12
IQR 0.098-0.16 0.29-0.42 0.018-0.033 0.11-0.15

CH_X11_Y11_P2_K2_BF 0.12 0.13 0.12 0.37
IQR 0.022-0.19 0.076-0.19 0.018-0.12 0.2-0.48

CH_X11_Y11_P2_K3_BF 0.18 0.57 0.043 0.31
IQR 0.15-0.22 0.5-0.64 0.029-0.059 0.26-0.32

CH_X11_Y11_P3_K2_BF 0.08 0.082 0.0049 0.39
IQR 0.073-0.11 0.057-0.11 0-0.025 0.37-0.41

CH_X11_Y11_P3_K3_BF 0.17 0.46 0.03 0.22
IQR 0.13-0.21 0.42-0.56 0.027-0.038 0.19-0.3

CH_X11_Y11_PM_K2_BF 0.12 0.18 0.029 0.057
IQR 0.083-0.24 0.091-0.27 0.029-0.029 0.057-0.14

CH_X11_Y11_PM_K3_BF 0.19 0.46 0.046 0.26
IQR 0.17-0.24 0.42-0.52 0.042-0.052 0.22-0.28

CH_X12_Y12_P1_K2_BF 0.026 0.084 0.0016 0.33
IQR 0.02-0.028 0.068-0.11 0-0.0072 0.27-0.35

CH_X12_Y12_P1_K3_BF 0.074 0.41 0.017 0.061
IQR 0.042-0.17 0.35-0.45 0.016-0.03 0.04-0.091

CH_X12_Y12_P2_K2_BF 0.0058 0.31 0 0.14
IQR 0-0.065 0.23-0.42 0-0.0058 0.14-0.15

CH_X12_Y12_P2_K3_BF 0.15 0.64 0.029 0.28
IQR 0.1-0.17 0.52-0.74 0.022-0.039 0.17-0.38

CH_X12_Y12_P3_K2_BF 0.026 0.13 0 0.33
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Instance Name d-NSGA-II ISDE+ NSGA-II NSGA-III

IQR 0.012-0.037 0.099-0.17 0-0 0.26-0.34
CH_X12_Y12_P3_K3_BF 0.12 0.59 0.018 0.17

IQR 0.089-0.15 0.53-0.67 0.013-0.021 0.13-0.27
CH_X12_Y12_PM_K2_BF 0.021 0.19 0 0.065

IQR 0-0.031 0.13-0.28 0-0 0.065-0.066
CH_X12_Y12_PM_K3_BF 0.12 0.51 0.064 0.11

IQR 0.11-0.17 0.43-0.6 0.062-0.071 0.094-0.13
CH_X13_Y13_P1_K2_BF 0.048 0.1 0.018 0.3

IQR 0.048-0.057 0.077-0.19 0.014-0.047 0.25-0.3
CH_X13_Y13_P1_K3_BF 0.16 0.48 0.009 0.092

IQR 0.12-0.19 0.43-0.56 0.009-0.018 0.083-0.23
CH_X13_Y13_P2_K2_BF 0.18 0.36 0.072 0.29

IQR 0.093-0.19 0.31-0.45 0.016-0.1 0.29-0.29
CH_X13_Y13_P2_K3_BF 0.16 0.61 0.035 0.26

IQR 0.14-0.22 0.48-0.65 0.02-0.043 0.22-0.33
CH_X13_Y13_P3_K2_BF 0.082 0.19 0.016 0.19

IQR 0.061-0.1 0.14-0.21 0.0093-0.029 0.19-0.22
CH_X13_Y13_P3_K3_BF 0.16 0.57 0.033 0.3

IQR 0.13-0.2 0.52-0.65 0.014-0.034 0.27-0.33
CH_X13_Y13_PM_K2_BF 0.052 0.18 0.03 0.11

IQR 0.052-0.091 0.09-0.22 0.0045-0.047 0.11-0.28
CH_X13_Y13_PM_K3_BF 0.2 0.57 0.054 0.22

IQR 0.13-0.22 0.5-0.61 0.045-0.062 0.18-0.32
CH_X14_Y14_P1_K2_BF 0.026 0.18 0.0079 0.27

IQR 0.012-0.039 0.15-0.22 0.0079-0.0079 0.24-0.29
CH_X14_Y14_P1_K3_BF 0.054 0.48 0.015 0.053

IQR 0.031-0.12 0.37-0.54 0.012-0.018 0.035-0.07
CH_X14_Y14_P2_K2_BF 0.024 0.59 0 0.33

IQR 0-0.08 0.43-0.74 0-0 0.33-0.36
CH_X14_Y14_P2_K3_BF 0.16 0.59 0.038 0.26

IQR 0.14-0.2 0.49-0.69 0.027-0.056 0.2-0.31
CH_X14_Y14_P3_K2_BF 0.017 0.25 0.011 0.11

IQR 0.011-0.017 0.21-0.28 0.0069-0.017 0.11-0.11
CH_X14_Y14_P3_K3_BF 0.16 0.53 0.033 0.21

IQR 0.14-0.18 0.47-0.62 0.029-0.04 0.19-0.27
CH_X14_Y14_PM_K2_BF 0.031 0.22 0 0.26

IQR 0.024-0.049 0.17-0.29 0-0 0.12-0.3
CH_X14_Y14_PM_K3_BF 0.14 0.68 0.078 0.13

IQR 0.11-0.21 0.58-0.74 0.07-0.13 0.12-0.16
CH_X3_Y3_P2_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
CH_X3_Y3_P2_K3_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
CH_X3_Y3_P3_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
CH_X3_Y3_P3_K3_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
CH_X4_Y4_P1_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
CH_X4_Y4_P1_K3_BF 0.33 1.1 0.8 0.75

IQR 0.33-0.8 0.8-1.1 0.45-0.8 0.75-0.75
CH_X4_Y4_P2_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
CH_X4_Y4_P2_K3_BF 0 2.4 0 0

IQR 0-0 2.2-2.4 0-0 0-0
CH_X4_Y4_P3_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
CH_X4_Y4_P3_K3_BF 0 2 0 0

IQR 0-0 0.71-2.2 0-0 0-0
CH_X4_Y4_PM_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0.54 0-0
CH_X4_Y4_PM_K3_BF 0.19 0.84 0.19 0

IQR 0.19-0.3 0.83-1.2 0-0.19 0-0
CH_X5_Y5_P1_K2_BF 0 0 0.046 0.046

IQR 0-0 0-0 0.046-0.046 0.046-0.28
CH_X5_Y5_P1_K3_BF 0.79 1 0.065 0.24

IQR 0.56-0.79 1-1 0.065-0.065 0.24-0.24
CH_X5_Y5_P2_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0.059 0-0
CH_X5_Y5_P2_K3_BF 0.89 0.9 1.1 0.41

IQR 0.66-0.9 0.88-0.9 0.062-1.2 0.17-0.45
CH_X5_Y5_P3_K2_BF 0 0 0.076 0.076

IQR 0-0 0-0 0.076-0.076 0.076-0.26
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Instance Name d-NSGA-II ISDE+ NSGA-II NSGA-III

CH_X5_Y5_PM_K2_BF 0 0 0.042 0.18
IQR 0-0 0-0 0.042-0.042 0.18-0.18

CH_X6_Y6_P1_K2_BF 0 0 0.073 0.073
IQR 0-0 0-0 0.073-0.073 0.073-0.073

CH_X6_Y6_P1_K3_BF 0.87 3.8 0 0
IQR 0.87-0.87 3.8-7.5 0-0 0-0

CH_X6_Y6_P2_K2_BF 0 0 0.073 0
IQR 0-0 0-0 0-0.16 0-0

CH_X6_Y6_P2_K3_BF 0.44 0.61 0 0.11
IQR 0.23-0.47 0.52-0.7 0-0.0098 0.0098-0.28

CH_X6_Y6_P3_K2_BF 0 0 0.073 0.073
IQR 0-0 0-0 0-0.34 0.073-0.073

CH_X6_Y6_P3_K3_BF 0.71 0.95 0.5 0.43
IQR 0.5-0.83 0.93-1.2 0.059-0.5 0.099-0.43

CH_X6_Y6_PM_K2_BF 0 0 0 0.06
IQR 0-0 0-0 0-0.081 0.06-0.06

CH_X7_Y7_P1_K2_BF 0 0 4.1e-16 0
IQR 0-0 0-0 4.1e-16-4.1e-16 0-4.1e-16

CH_X7_Y7_P1_K3_BF 0.25 0.66 0 0.14
IQR 0.16-0.25 0.59-0.76 0-0.055 0.055-0.17

CH_X7_Y7_P2_K2_BF 0 0 1.9e-16 1.9e-16
IQR 0-1.9e-16 0-0 1.9e-16-4.1e-16 0-1.9e-16

CH_X7_Y7_P2_K3_BF 0.42 0.87 0 0.14
IQR 0.22-0.62 0.8-0.91 0-0 0.14-0.14

CH_X7_Y7_P3_K2_BF 0 0 4.1e-16 0
IQR 0-0 0-0 1e-16-4.1e-16 0-0

CH_X7_Y7_P3_K3_BF 0.31 0.8 0.015 0.13
IQR 0.26-0.5 0.69-0.86 0.015-0.015 0.13-0.13

CH_X7_Y7_PM_K2_BF 0 0 0.004 0.004
IQR 0-0.11 0-0 0.004-0.004 0.004-0.004

CH_X7_Y7_PM_K3_BF 0.25 0.54 0.12 0.49
IQR 0.23-0.31 0.45-0.56 0.12-0.15 0.28-0.49

CH_X8_Y8_P1_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

CH_X8_Y8_P1_K3_BF 0.14 0.92 0 0.18
IQR 0.1-0.17 0.77-0.94 0-0 0.17-0.24

CH_X8_Y8_P2_K2_BF 0 0 4.1e-16 0
IQR 0-0 0-0 0-4.1e-16 0-0

CH_X8_Y8_P2_K3_BF 0.12 0.81 0 0.17
IQR 0.092-0.15 0.66-0.89 0-0 0.14-0.19

CH_X8_Y8_P3_K2_BF 0 0 4.1e-16 4.1e-16
IQR 0-0 0-0 0-4.1e-16 4.1e-16-0.46

CH_X8_Y8_P3_K3_BF 0.18 0.78 0.0029 0.14
IQR 0.16-0.22 0.68-0.88 0.0029-0.0029 0.11-0.17

CH_X8_Y8_PM_K2_BF 0 0 0 0.31
IQR 0-0 0-0 0-0 0.31-0.31

CH_X8_Y8_PM_K3_BF 0.28 0.67 0.038 0.18
IQR 0.23-0.35 0.62-0.75 0.024-0.039 0.14-0.38

CH_X9_Y9_P1_K2_BF 0.16 0 0.089 0.5
IQR 0.089-0.16 0-0.0001 4.8e-17-0.089 0.5-0.5

CH_X9_Y9_P1_K3_BF 0.19 0.43 0.035 0.14
IQR 0.17-0.23 0.36-0.5 0.019-0.044 0.14-0.22

CH_X9_Y9_P2_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

CH_X9_Y9_P2_K3_BF 0.26 0.58 0.061 0.27
IQR 0.21-0.29 0.47-0.65 0.032-0.066 0.25-0.3

CH_X9_Y9_P3_K2_BF 0.17 0 0.016 0.33
IQR 0.17-0.31 0-0 0.016-0.19 0.33-0.33

CH_X9_Y9_P3_K3_BF 0.23 0.5 0.03 0.3
IQR 0.19-0.28 0.43-0.56 0.029-0.049 0.25-0.33

CH_X9_Y9_PM_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

CH_X9_Y9_PM_K3_BF 0.33 0.67 0.066 0.28
IQR 0.28-0.33 0.61-0.7 0.038-0.12 0.24-0.29

LA_X10_Y10_P1_K2_BF 0.024 0.049 0.0096 0.21
IQR 0.017-0.03 0.034-0.064 0.0096-0.024 0.18-0.25

LA_X10_Y10_P1_K3_BF 0.078 0.39 0.055 0.17
IQR 0.075-0.092 0.31-0.45 0.055-0.059 0.16-0.21

LA_X10_Y10_P2_K2_BF 0 0.76 0 0.087
IQR 0-0 0.42-1 0-0 0.076-0.089

LA_X10_Y10_P2_K3_BF 0.44 1.5 0 1.2
IQR 0.17-1.4 1.3-1.6 0-0 1.1-1.2

LA_X10_Y10_P3_K2_BF 0.14 0.18 0.0099 0.23
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Instance Name d-NSGA-II ISDE+ NSGA-II NSGA-III

IQR 0.091-0.17 0.13-0.2 0.0031-0.043 0.21-0.25
LA_X10_Y10_P3_K3_BF 0.29 0.61 0.16 0.26

IQR 0.28-0.31 0.51-0.7 0.16-0.16 0.25-0.29
LA_X10_Y10_PM_K2_BF 0 0.5 0 0.11

IQR 0-0 0.44-0.71 0-0 0-0.12
LA_X10_Y10_PM_K3_BF 0.94 1.1 0 0.99

IQR 0.22-0.97 0.89-1.2 0-0 0.28-1
LA_X11_Y11_P1_K2_BF 0.076 0.16 0.015 0.23

IQR 0.064-0.076 0.11-0.18 0.015-0.076 0.23-0.35
LA_X11_Y11_P1_K3_BF 0.053 0.54 0.029 0.15

IQR 0.042-0.068 0.5-0.6 0.029-0.046 0.12-0.44
LA_X11_Y11_P2_K2_BF 0.012 0.39 0.008 0.085

IQR 0.008-0.068 0.26-0.46 0.0026-0.008 0.067-0.12
LA_X11_Y11_P2_K3_BF 0.6 1.2 0.028 0.82

IQR 0.55-0.69 1.1-1.4 0-0.23 0.16-0.91
LA_X11_Y11_P3_K2_BF 0.12 0.25 0 0.34

IQR 0.12-0.15 0.21-0.31 0-0 0.25-0.34
LA_X11_Y11_P3_K3_BF 0.2 0.71 0.072 0.24

IQR 0.14-0.24 0.59-0.84 0.07-0.13 0.23-0.25
LA_X11_Y11_PM_K2_BF 0.0074 0.56 0.0074 0.073

IQR 0.0074-0.19 0.53-0.74 0.0074-0.0074 0.01-0.17
LA_X11_Y11_PM_K3_BF 0.39 0.71 0.0073 0.57

IQR 0.25-0.45 0.65-0.79 5.9e-06-0.0073 0.47-0.69
LA_X12_Y12_P1_K2_BF 0.013 0.13 0.013 0.23

IQR 0.013-0.013 0.078-0.21 0.013-0.013 0.17-0.25
LA_X12_Y12_P1_K3_BF 0.047 0.44 0.016 0.33

IQR 0.036-0.085 0.39-0.49 0.013-0.029 0.26-0.41
LA_X12_Y12_P2_K2_BF 0.094 0.25 0.01 0.18

IQR 0.058-0.13 0.2-0.28 0.00016-0.05 0.12-0.21
LA_X12_Y12_P2_K3_BF 0.29 0.82 0.19 0.33

IQR 0.26-0.32 0.71-0.93 0.17-0.24 0.3-0.36
LA_X12_Y12_P3_K2_BF 0.06 0.28 0.018 0.096

IQR 0.025-0.082 0.21-0.41 0.018-0.018 0.084-0.17
LA_X12_Y12_P3_K3_BF 0.13 0.55 0.043 0.15

IQR 0.12-0.17 0.48-0.6 0.034-0.044 0.13-0.16
LA_X12_Y12_PM_K2_BF 0.067 0.2 0.035 0.12

IQR 0.061-0.073 0.18-0.24 0.011-0.061 0.072-0.13
LA_X12_Y12_PM_K3_BF 0.12 0.44 0.075 0.27

IQR 0.1-0.16 0.37-0.5 0.05-0.087 0.2-0.35
LA_X13_Y13_P1_K2_BF 0.014 0.2 0.014 0.23

IQR 0.014-0.036 0.12-0.32 0.014-0.014 0.17-0.26
LA_X13_Y13_P1_K3_BF 0.066 0.58 0.027 0.23

IQR 0.045-0.094 0.48-0.68 0.021-0.028 0.15-0.41
LA_X13_Y13_P2_K2_BF 0.11 0.3 0.048 0.19

IQR 0.083-0.15 0.26-0.34 0.0034-0.048 0.12-0.23
LA_X13_Y13_P2_K3_BF 0.19 0.76 0.084 0.21

IQR 0.16-0.24 0.7-0.86 0.065-0.087 0.18-0.31
LA_X13_Y13_P3_K2_BF 0.05 0.48 0.016 0.13

IQR 0.038-0.085 0.4-0.53 0.016-0.016 0.12-0.23
LA_X13_Y13_P3_K3_BF 0.14 0.71 0.033 0.26

IQR 0.11-0.19 0.66-0.84 0.026-0.038 0.18-0.3
LA_X13_Y13_PM_K2_BF 0.028 0.34 0.018 0.1

IQR 0.024-0.035 0.28-0.47 0.018-0.018 0.072-0.12
LA_X13_Y13_PM_K3_BF 0.096 0.52 0.042 0.14

IQR 0.071-0.12 0.45-0.65 0.029-0.048 0.13-0.2
LA_X14_Y14_P1_K2_BF 0.024 0.64 0 0.18

IQR 0.014-0.049 0.51-0.95 0-0 0.14-0.22
LA_X14_Y14_P1_K3_BF 0.092 0.79 0.021 0.29

IQR 0.064-0.13 0.63-0.85 0.016-0.031 0.13-0.35
LA_X14_Y14_P2_K2_BF 0.068 0.7 0 0.19

IQR 0.031-0.12 0.53-0.92 0-0.054 0.099-0.24
LA_X14_Y14_P2_K3_BF 0.24 0.8 0.04 0.29

IQR 0.2-0.29 0.71-0.92 0.034-0.049 0.24-0.36
LA_X14_Y14_P3_K2_BF 0.098 0.72 0 0.15

IQR 0.062-0.15 0.6-0.87 0-0.054 0.097-0.19
LA_X14_Y14_P3_K3_BF 0.2 0.73 0.037 0.24

IQR 0.19-0.26 0.62-0.79 0.034-0.044 0.22-0.29
LA_X14_Y14_PM_K2_BF 0.053 0.59 0.038 0.11

IQR 0.045-0.087 0.4-0.82 0.038-0.085 0.069-0.18
LA_X14_Y14_PM_K3_BF 0.087 0.66 0.023 0.14

IQR 0.071-0.14 0.57-0.71 0.021-0.028 0.11-0.19
LA_X5_Y5_P1_K2_BF 0.33 0 0.68 0.33

IQR 0-0.33 0-0 0.68-0.68 0.33-0.33
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Instance Name d-NSGA-II ISDE+ NSGA-II NSGA-III

LA_X5_Y5_P1_K3_BF 0.71 7.3 0 0
IQR 0.71-0.71 0.71-11 0-0 0-0

LA_X5_Y5_P2_K2_BF 0 0 0.96 0.28
IQR 0-0.28 0-0 0.96-0.96 0.28-0.28

LA_X5_Y5_P2_K3_BF 0.71 7.3 0 0
IQR 0.71-0.71 0.71-11 0-0 0-0

LA_X5_Y5_P3_K2_BF 0 0 0.86 0.33
IQR 0-0.33 0-0 0.86-0.86 0.33-0.33

LA_X5_Y5_P3_K3_BF 0.77 1.3 0.037 0.037
IQR 0.77-0.77 0.73-1.5 0.037-0.037 0.037-0.037

LA_X5_Y5_PM_K2_BF 0 0 0.83 0
IQR 0-0.28 0-0 0.83-0.83 0-0

LA_X5_Y5_PM_K3_BF 0.46 0.87 0.15 0.31
IQR 0.31-0.46 0.53-0.98 0.15-0.15 0.15-0.43

LA_X6_Y6_P1_K2_BF 0 0 0.71 0
IQR 0-0.53 0-0 0.71-0.71 0-0

LA_X6_Y6_P1_K3_BF 0.71 7.3 0 0
IQR 0.71-0.71 0.71-11 0-0 0-0

LA_X6_Y6_P2_K2_BF 0 0 0.71 0
IQR 0-0 0-0 0.71-0.71 0-0

LA_X6_Y6_P2_K3_BF 0.71 11 0 0
IQR 0.71-0.71 0.71-11 0-0 0-0

LA_X6_Y6_P3_K2_BF 0 0 0.71 0
IQR 0-0.71 0-0 0.71-0.71 0-0

LA_X6_Y6_P3_K3_BF 0.71 1.8 0 0
IQR 0-0.71 0.71-11 0-0 0-0

LA_X6_Y6_PM_K2_BF 0.25 0 0.81 0.29
IQR 0.25-0.25 0-0 0.81-0.81 0.29-0.29

LA_X6_Y6_PM_K3_BF 0.57 0.67 0.25 0.25
IQR 0.57-0.9 0.57-0.9 0.25-0.25 0.25-0.25

LA_X7_Y7_P1_K3_BF 0.45 0.83 0 0.45
IQR 0.45-0.83 0.45-1.4 0-0 0.45-0.45

LA_X7_Y7_P2_K2_BF 0.5 0 0.5 0.5
IQR 0.5-0.5 0-0 0.5-0.5 0.5-0.5

LA_X7_Y7_P2_K3_BF 0.71 0.71 0 0
IQR 0.71-0.71 0.71-1.8 0-0 0-0

LA_X7_Y7_P3_K3_BF 0.71 0.71 0 0
IQR 0.71-0.71 0.71-8.3 0-0 0-0

LA_X7_Y7_PM_K2_BF 0.71 0 0.71 0
IQR 0.5-0.71 0-0 0.5-0.71 0-0

LA_X7_Y7_PM_K3_BF 0.34 0.33 0.21 0.34
IQR 0.21-0.34 0.24-0.45 0.21-0.21 0.22-0.34

LA_X8_Y8_P1_K2_BF 0.26 0 0.26 0.3
IQR 0.26-0.26 0-4.9e-09 0.26-0.26 0.3-0.3

LA_X8_Y8_P1_K3_BF 0.31 0.58 0.15 0.36
IQR 0.19-0.36 0.36-0.67 0.15-0.15 0.31-0.36

LA_X8_Y8_P2_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

LA_X8_Y8_P2_K3_BF 1 4.5 0.33 0.33
IQR 0.84-1 1.8-4.8 0.33-0.84 0.33-0.33

LA_X8_Y8_P3_K2_BF 0.26 0 0.26 0.3
IQR 0.26-0.26 0-0 0.26-0.26 0.3-0.3

LA_X8_Y8_P3_K3_BF 0.65 0.91 0.46 0.46
IQR 0.46-0.65 0.87-1.4 0.46-0.46 0.46-0.46

LA_X8_Y8_PM_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

LA_X9_Y9_P1_K2_BF 0.053 0.053 8.1e-17 0.21
IQR 0.053-0.053 0.023-0.09 8.1e-17-0.053 0.21-0.21

LA_X9_Y9_P1_K3_BF 0.17 0.48 0.12 0.29
IQR 0.16-0.17 0.39-0.54 0.12-0.12 0.19-0.34

LA_X9_Y9_P2_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

LA_X9_Y9_P2_K3_BF 2e+02 2.1 4 4
IQR 0.26-2e+02 1.4-3.4 0-4 0-4

LA_X9_Y9_P3_K2_BF 0.23 0.2 0.23 0.23
IQR 0.23-0.23 0.1-0.29 0.23-0.23 0.23-0.23

LA_X9_Y9_P3_K3_BF 0.47 0.66 0.37 0.39
IQR 0.47-0.47 0.57-0.76 0.37-0.37 0.38-0.46

LA_X9_Y9_PM_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

LA_X9_Y9_PM_K3_BF 1.3 1.2 0.92 1.3
IQR 1.3-1.3 0.93-1.6 0.0047-0.92 1.1-1.4

NO_X10_Y10_P1_K2_BF 0.051 0.18 0.017 0.33

LXI



Instance Name d-NSGA-II ISDE+ NSGA-II NSGA-III

IQR 0.035-0.061 0.14-0.2 0.016-0.025 0.3-0.38
NO_X10_Y10_P1_K3_BF 0.13 0.53 0.048 0.47

IQR 0.11-0.17 0.42-0.59 0.043-0.055 0.17-0.64
NO_X10_Y10_P2_K2_BF 1.1e-16 1.6 1.1e-16 0.076

IQR 1.1e-16-1.1e-16 1.3-1.9 1.1e-16-1.1e-16 0.066-0.098
NO_X10_Y10_P2_K3_BF 0.21 0.68 0.09 0.26

IQR 0.19-0.27 0.55-0.74 0.081-0.098 0.23-0.31
NO_X10_Y10_P3_K2_BF 0.17 0.43 0.037 0.37

IQR 0.1-0.2 0.35-0.48 0.034-0.067 0.33-0.39
NO_X10_Y10_P3_K3_BF 0.18 0.63 0.082 0.24

IQR 0.15-0.23 0.54-0.69 0.075-0.095 0.2-0.26
NO_X10_Y10_PM_K2_BF 0 2.1 0 0.12

IQR 0-0 1.4-2.3 0-0 0-0.12
NO_X10_Y10_PM_K3_BF 0.25 0.68 0.068 0.19

IQR 0.18-0.3 0.62-0.77 0.056-0.094 0.18-0.32
NO_X11_Y11_P1_K2_BF 0.074 0.35 0.033 0.41

IQR 0.053-0.12 0.3-0.4 0.025-0.035 0.41-0.5
NO_X11_Y11_P1_K3_BF 0.091 0.45 0.038 0.36

IQR 0.076-0.14 0.4-0.52 0.031-0.046 0.22-0.52
NO_X11_Y11_P2_K2_BF 0.057 0.7 0.027 0.15

IQR 0.031-0.14 0.58-0.8 0.022-0.027 0.085-0.44
NO_X11_Y11_P2_K3_BF 0.19 0.72 0.094 0.28

IQR 0.17-0.21 0.68-0.8 0.079-0.11 0.25-0.33
NO_X11_Y11_P3_K2_BF 0.18 0.36 0.024 0.37

IQR 0.12-0.2 0.3-0.41 0.0097-0.027 0.34-0.39
NO_X11_Y11_P3_K3_BF 0.15 0.65 0.075 0.24

IQR 0.13-0.18 0.61-0.69 0.069-0.081 0.19-0.28
NO_X11_Y11_PM_K2_BF 0.11 1 0.0051 0.17

IQR 0.025-0.43 0.78-1.1 0-0.0051 0.1-0.21
NO_X11_Y11_PM_K3_BF 0.26 0.76 0.09 0.19

IQR 0.2-0.37 0.68-0.84 0.069-0.11 0.17-0.23
NO_X12_Y12_P1_K2_BF 0.063 0.44 0.022 0.41

IQR 0.045-0.065 0.36-0.54 0.022-0.022 0.32-0.41
NO_X12_Y12_P1_K3_BF 0.14 0.54 0.034 0.4

IQR 0.094-0.18 0.47-0.6 0.029-0.04 0.16-0.47
NO_X12_Y12_P2_K2_BF 0.16 0.68 0.044 0.22

IQR 0.14-0.24 0.56-0.88 0.026-0.099 0.19-0.29
NO_X12_Y12_P2_K3_BF 0.18 0.83 0.078 0.22

IQR 0.14-0.29 0.77-0.96 0.068-0.087 0.17-0.23
NO_X12_Y12_P3_K2_BF 0.11 0.58 0.061 0.2

IQR 0.096-0.17 0.44-0.64 0.046-0.067 0.19-0.3
NO_X12_Y12_P3_K3_BF 0.18 0.76 0.061 0.21

IQR 0.16-0.25 0.67-0.81 0.053-0.071 0.15-0.25
NO_X12_Y12_PM_K2_BF 0.063 0.49 0.033 0.15

IQR 0.057-0.12 0.35-0.66 0.026-0.056 0.088-0.2
NO_X12_Y12_PM_K3_BF 0.18 0.64 0.073 0.18

IQR 0.15-0.22 0.55-0.66 0.062-0.081 0.15-0.39
NO_X13_Y13_P1_K2_BF 0.056 0.42 0.017 0.4

IQR 0.044-0.11 0.4-0.5 0.017-0.017 0.34-0.44
NO_X13_Y13_P1_K3_BF 0.14 0.63 0.034 0.41

IQR 0.12-0.19 0.55-0.75 0.029-0.046 0.31-0.45
NO_X13_Y13_P2_K2_BF 0.19 1 0.13 0.22

IQR 0.18-0.2 0.74-1.2 0.081-0.17 0.19-0.27
NO_X13_Y13_P2_K3_BF 0.23 0.78 0.1 0.25

IQR 0.17-0.26 0.66-0.83 0.081-0.11 0.2-0.29
NO_X13_Y13_P3_K2_BF 0.15 0.75 0.094 0.22

IQR 0.12-0.18 0.57-0.93 0.042-0.094 0.19-0.3
NO_X13_Y13_P3_K3_BF 0.18 0.73 0.087 0.25

IQR 0.15-0.24 0.68-0.8 0.079-0.099 0.16-0.29
NO_X13_Y13_PM_K2_BF 0.12 0.54 0.028 0.26

IQR 0.073-0.17 0.45-0.64 0.028-0.071 0.13-0.35
NO_X13_Y13_PM_K3_BF 0.22 0.67 0.078 0.19

IQR 0.17-0.26 0.64-0.74 0.06-0.095 0.17-0.31
NO_X14_Y14_P1_K2_BF 0.056 1.5 0 0.2

IQR 0.033-0.068 1-2.3 0-0.05 0.15-0.26
NO_X14_Y14_P1_K3_BF 0.17 0.87 0.048 0.27

IQR 0.11-0.2 0.74-0.92 0.038-0.06 0.2-0.33
NO_X14_Y14_P2_K2_BF 0.18 1.6 0.13 0.28

IQR 0.14-0.25 1.4-1.8 0.13-0.13 0.17-0.41
NO_X14_Y14_P2_K3_BF 0.24 0.8 0.096 0.32

IQR 0.21-0.26 0.69-0.91 0.087-0.1 0.28-0.34
NO_X14_Y14_P3_K2_BF 0.074 1.4 0.054 0.16

IQR 0.055-0.14 1.1-1.5 0.024-0.054 0.093-0.22

LXII



Instance Name d-NSGA-II ISDE+ NSGA-II NSGA-III

NO_X14_Y14_P3_K3_BF 0.22 0.79 0.082 0.24
IQR 0.17-0.24 0.72-0.85 0.075-0.092 0.23-0.33

NO_X14_Y14_PM_K2_BF 0.065 1.5 0.085 0.12
IQR 0.042-0.099 1-2 0.038-0.085 0.099-0.15

NO_X14_Y14_PM_K3_BF 0.18 0.76 0.072 0.24
IQR 0.15-0.2 0.68-0.81 0.062-0.095 0.21-0.32

NO_X3_Y3_P1_K2_BF 0 0 0.13 0
IQR 0-0 0-0 0.13-0.13 0-0.47

NO_X3_Y3_P2_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

NO_X3_Y3_P3_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

NO_X4_Y4_P1_K2_BF 0 0 0 0.21
IQR 0-0 0-0 0-0.03 0.077-0.33

NO_X4_Y4_P1_K3_BF 0.84 1.2 0.63 0.29
IQR 0.84-0.84 0.89-1.8 0.27-0.84 0.29-0.29

NO_X4_Y4_P2_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

NO_X4_Y4_P2_K3_BF 0.49 1.9 0.49 0.11
IQR 0.49-0.58 1.6-2.6 0.49-0.49 0.11-0.11

NO_X4_Y4_P3_K2_BF 0.12 0 0 0.12
IQR 0.1-0.13 0-0 0-0 0.12-0.12

NO_X4_Y4_P3_K3_BF 0.49 1.8 0.49 0.13
IQR 0.49-0.49 1.5-2.5 0.49-0.49 0.13-0.4

NO_X4_Y4_PM_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

NO_X4_Y4_PM_K3_BF 0.44 1.2 0.34 0.44
IQR 0.42-0.72 1-1.4 0.34-0.34 0.34-0.44

NO_X5_Y5_P1_K2_BF 0.026 0 0 0.026
IQR 0.0073-0.026 0-0 0-0 0.026-0.17

NO_X5_Y5_P1_K3_BF 0.64 0.65 0.26 0.27
IQR 0.6-0.64 0.64-1 0.26-0.27 0.12-0.59

NO_X5_Y5_P2_K2_BF 0.14 0 0 0.11
IQR 0.044-0.21 0-0 0-0 0.11-0.11

NO_X5_Y5_P2_K3_BF 0.69 1.1 0.3 0.3
IQR 0.6-0.8 0.94-1.2 0.29-0.47 0.3-0.34

NO_X5_Y5_P3_K2_BF 0.015 0 0 0.22
IQR 0.015-0.017 0-5.6e-17 0-0 0.22-0.22

NO_X5_Y5_P3_K3_BF 0.48 0.86 0.17 0.22
IQR 0.35-0.5 0.71-0.91 0.17-0.22 0.17-0.35

NO_X5_Y5_PM_K2_BF 0.025 0 0 0.1
IQR 0.014-0.035 0-0.0049 0-0 0.094-0.17

NO_X5_Y5_PM_K3_BF 0.61 0.74 0.21 0.21
IQR 0.57-0.68 0.72-0.83 0.078-0.21 0.17-0.25

NO_X6_Y6_P1_K2_BF 0 0.048 0 0.13
IQR 0-0.029 0.029-0.083 0-0 0.029-0.16

NO_X6_Y6_P1_K3_BF 0.35 0.81 0.097 0.21
IQR 0.28-0.42 0.7-0.95 0.096-0.15 0.16-0.26

NO_X6_Y6_P2_K2_BF 0.00078 0.048 0 0.21
IQR 6.3e-05-0.04 0.017-0.065 0-2.4e-05 0.2-0.21

NO_X6_Y6_P2_K3_BF 0.29 0.89 0.073 0.36
IQR 0.23-0.35 0.79-0.98 0.055-0.12 0.28-0.42

NO_X6_Y6_P3_K2_BF 0 0.06 0 0.28
IQR 0-0 0.016-0.093 0-0 0.22-0.33

NO_X6_Y6_P3_K3_BF 0.23 0.81 0.053 0.24
IQR 0.2-0.29 0.69-0.88 0.042-0.13 0.22-0.37

NO_X6_Y6_PM_K2_BF 0.043 0.043 0 0.11
IQR 0.035-0.053 0.035-0.064 0-0.002 0.08-0.12

NO_X6_Y6_PM_K3_BF 0.14 0.65 0.093 0.19
IQR 0.13-0.25 0.56-0.73 0.071-0.093 0.12-0.23

NO_X7_Y7_P1_K2_BF 9.9e-05 0.15 0 6.8e-05
IQR 7.8e-06-0.056 0.11-0.26 0-0 6.8e-05-0.0001

NO_X7_Y7_P1_K3_BF 0.16 0.67 0.055 0.21
IQR 0.13-0.18 0.53-0.72 0.044-0.072 0.15-0.24

NO_X7_Y7_P2_K2_BF 0.037 0.3 0 0.041
IQR 2e-16-0.039 0.22-0.42 0-0 0.039-0.076

NO_X7_Y7_P2_K3_BF 0.2 0.67 0.039 0.15
IQR 0.15-0.24 0.55-0.77 0.032-0.039 0.11-0.23

NO_X7_Y7_P3_K2_BF 0.037 0.29 0 0.039
IQR 2e-16-0.13 0.17-0.38 0-0 0.039-0.067

NO_X7_Y7_P3_K3_BF 0.18 0.57 0.05 0.16
IQR 0.14-0.21 0.52-0.61 0.05-0.062 0.11-0.27

NO_X7_Y7_PM_K2_BF 0.062 0.22 0 0.021

LXIII



Instance Name d-NSGA-II ISDE+ NSGA-II NSGA-III

IQR 0.021-0.082 0.086-0.29 0-0 0.021-0.034
NO_X7_Y7_PM_K3_BF 0.23 0.52 0.049 0.21

IQR 0.2-0.26 0.47-0.58 0.042-0.061 0.19-0.32
NO_X8_Y8_P1_K2_BF 0.025 0.12 5e-06 0.24

IQR 0.024-0.029 0.068-0.16 0-0.012 0.24-0.31
NO_X8_Y8_P1_K3_BF 0.073 0.49 0.033 0.13

IQR 0.064-0.093 0.4-0.57 0.029-0.047 0.085-0.17
NO_X8_Y8_P2_K2_BF 0.00072 0.4 7.6e-07 0.028

IQR 7.6e-07-0.012 0.27-0.52 1.9e-17-7.6e-07 0.00069-0.065
NO_X8_Y8_P2_K3_BF 0.18 0.63 0.027 0.19

IQR 0.14-0.23 0.54-0.69 0.021-0.039 0.17-0.23
NO_X8_Y8_P3_K2_BF 0.034 0.22 0.011 0.34

IQR 0.031-0.055 0.18-0.28 0-0.011 0.27-0.34
NO_X8_Y8_P3_K3_BF 0.16 0.56 0.026 0.15

IQR 0.14-0.2 0.49-0.6 0.021-0.033 0.12-0.18
NO_X8_Y8_PM_K2_BF 0.025 0.37 0.0033 0.065

IQR 0.0033-0.062 0.26-0.56 0.0033-0.0033 0.038-0.14
NO_X8_Y8_PM_K3_BF 0.21 0.7 0.046 0.19

IQR 0.19-0.34 0.66-0.76 0.043-0.052 0.16-0.22
NO_X9_Y9_P1_K2_BF 0.062 0.25 0.028 0.41

IQR 0.054-0.11 0.17-0.32 6.8e-17-0.028 0.41-0.41
NO_X9_Y9_P1_K3_BF 0.11 0.51 0.045 0.2

IQR 0.073-0.15 0.45-0.59 0.042-0.049 0.12-0.35
NO_X9_Y9_P2_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
NO_X9_Y9_P2_K3_BF 0.19 0.54 0.071 0.22

IQR 0.17-0.23 0.48-0.61 0.066-0.077 0.18-0.25
NO_X9_Y9_P3_K2_BF 0.2 0.46 0.12 0.22

IQR 0.13-0.74 0.37-0.66 0.084-0.12 0.22-0.22
NO_X9_Y9_P3_K3_BF 0.2 0.54 0.069 0.25

IQR 0.16-0.25 0.47-0.6 0.064-0.077 0.16-0.28
NO_X9_Y9_PM_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
NO_X9_Y9_PM_K3_BF 0.27 0.81 0.063 0.22

IQR 0.22-0.32 0.7-0.88 0.057-0.094 0.19-0.32

Table B.1: Raw values of different instances of the IGD+ indicator. Shown are
the median and the IQR values below.

B.1.2 IGD Values

Instance Name d-NSGA-II ISDE+ NSGA-II NSGA-III

CH_X10_Y10_P1_K2_BF 0.0077 0.025 0 0.14
IQR 0-0.1 0.011-0.041 0-0 0.13-0.18

CH_X10_Y10_P1_K3_BF 0.1 0.14 0.078 0.12
IQR 0.094-0.11 0.13-0.15 0.041-0.083 0.12-0.13

CH_X10_Y10_P2_K2_BF 0 0.14 0 0.14
IQR 0-0 0-0.2 0-0 0.036-0.17

CH_X10_Y10_P2_K3_BF 0.098 0.17 0.035 0.15
IQR 0.092-0.11 0.15-0.19 0.033-0.068 0.12-0.18

CH_X10_Y10_P3_K2_BF 0 0.043 0 0.16
IQR 0-0.074 0.021-0.065 0-0 0.15-0.16

CH_X10_Y10_P3_K3_BF 0.091 0.13 0.027 0.1
IQR 0.086-0.095 0.11-0.14 0.014-0.039 0.093-0.11

CH_X10_Y10_PM_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

CH_X10_Y10_PM_K3_BF 0.13 0.18 0.058 0.14
IQR 0.11-0.13 0.16-0.2 0.033-0.074 0.12-0.15

CH_X11_Y11_P1_K2_BF 0.069 0.036 0.035 0.12
IQR 0.045-0.072 0.03-0.042 0.032-0.055 0.12-0.14

CH_X11_Y11_P1_K3_BF 0.078 0.078 0.069 0.087
IQR 0.076-0.08 0.073-0.087 0.068-0.069 0.083-0.094

CH_X11_Y11_P2_K2_BF 0.087 0.093 0.1 0.19
IQR 0.08-0.11 0.077-0.11 0.028-0.1 0.18-0.23

CH_X11_Y11_P2_K3_BF 0.078 0.13 0.043 0.1
IQR 0.069-0.082 0.12-0.14 0.041-0.047 0.095-0.12

CH_X11_Y11_P3_K2_BF 0.064 0.058 0.014 0.16
IQR 0.053-0.077 0.046-0.071 0-0.031 0.14-0.18

CH_X11_Y11_P3_K3_BF 0.063 0.092 0.028 0.077
IQR 0.06-0.067 0.086-0.11 0.025-0.032 0.07-0.083

LXIV



Instance Name d-NSGA-II ISDE+ NSGA-II NSGA-III

CH_X11_Y11_PM_K2_BF 0.13 0.15 0.093 0.16
IQR 0.11-0.16 0.11-0.23 0.093-0.093 0.16-0.19

CH_X11_Y11_PM_K3_BF 0.069 0.11 0.034 0.093
IQR 0.063-0.084 0.098-0.12 0.032-0.037 0.082-0.11

CH_X12_Y12_P1_K2_BF 0.045 0.04 0.0016 0.11
IQR 0.032-0.055 0.035-0.043 0-0.033 0.11-0.12

CH_X12_Y12_P1_K3_BF 0.063 0.093 0.053 0.077
IQR 0.061-0.069 0.085-0.099 0.052-0.054 0.07-0.085

CH_X12_Y12_P2_K2_BF 0.077 0.18 0 0.13
IQR 0-0.086 0.15-0.21 0-0.086 0.13-0.16

CH_X12_Y12_P2_K3_BF 0.071 0.15 0.037 0.12
IQR 0.067-0.082 0.13-0.17 0.032-0.043 0.086-0.16

CH_X12_Y12_P3_K2_BF 0.033 0.057 0 0.11
IQR 0.021-0.046 0.055-0.064 0-0 0.11-0.12

CH_X12_Y12_P3_K3_BF 0.067 0.12 0.032 0.079
IQR 0.061-0.074 0.11-0.13 0.032-0.035 0.077-0.083

CH_X12_Y12_PM_K2_BF 0.04 0.12 0 0.12
IQR 0-0.081 0.094-0.14 0-0 0.12-0.12

CH_X12_Y12_PM_K3_BF 0.093 0.12 0.075 0.092
IQR 0.078-0.094 0.11-0.13 0.071-0.078 0.088-0.095

CH_X13_Y13_P1_K2_BF 0.11 0.095 0.086 0.17
IQR 0.099-0.12 0.082-0.1 0.073-0.1 0.16-0.17

CH_X13_Y13_P1_K3_BF 0.067 0.1 0.047 0.08
IQR 0.063-0.071 0.099-0.11 0.046-0.047 0.074-0.088

CH_X13_Y13_P2_K2_BF 0.12 0.2 0.06 0.18
IQR 0.077-0.14 0.17-0.22 0.02-0.12 0.18-0.18

CH_X13_Y13_P2_K3_BF 0.051 0.1 0.025 0.071
IQR 0.048-0.054 0.09-0.11 0.022-0.027 0.066-0.077

CH_X13_Y13_P3_K2_BF 0.074 0.086 0.047 0.1
IQR 0.07-0.082 0.074-0.091 0.023-0.052 0.1-0.15

CH_X13_Y13_P3_K3_BF 0.049 0.094 0.028 0.069
IQR 0.045-0.056 0.09-0.1 0.022-0.028 0.065-0.076

CH_X13_Y13_PM_K2_BF 0.08 0.093 0.04 0.19
IQR 0.057-0.083 0.076-0.1 0.023-0.051 0.13-0.19

CH_X13_Y13_PM_K3_BF 0.069 0.11 0.047 0.09
IQR 0.064-0.071 0.1-0.12 0.037-0.051 0.082-0.1

CH_X14_Y14_P1_K2_BF 0.056 0.066 0.051 0.11
IQR 0.054-0.06 0.059-0.072 0.051-0.051 0.11-0.12

CH_X14_Y14_P1_K3_BF 0.043 0.081 0.034 0.057
IQR 0.041-0.05 0.071-0.09 0.033-0.034 0.054-0.071

CH_X14_Y14_P2_K2_BF 0.046 0.26 0 0.21
IQR 0-0.08 0.21-0.3 0-0 0.21-0.22

CH_X14_Y14_P2_K3_BF 0.048 0.093 0.02 0.069
IQR 0.045-0.052 0.086-0.11 0.018-0.023 0.06-0.072

CH_X14_Y14_P3_K2_BF 0.06 0.091 0.041 0.1
IQR 0.033-0.061 0.085-0.1 0.024-0.06 0.099-0.1

CH_X14_Y14_P3_K3_BF 0.04 0.075 0.02 0.051
IQR 0.036-0.042 0.065-0.079 0.019-0.023 0.045-0.058

CH_X14_Y14_PM_K2_BF 0.036 0.077 0 0.11
IQR 0.032-0.041 0.069-0.082 0-0 0.097-0.12

CH_X14_Y14_PM_K3_BF 0.11 0.15 0.11 0.12
IQR 0.1-0.12 0.14-0.16 0.098-0.12 0.11-0.13

CH_X3_Y3_P2_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

CH_X3_Y3_P2_K3_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

CH_X3_Y3_P3_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

CH_X3_Y3_P3_K3_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

CH_X4_Y4_P1_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

CH_X4_Y4_P1_K3_BF 0.47 0.69 0.76 0.63
IQR 0.47-0.76 0.58-0.73 0.51-0.76 0.63-0.63

CH_X4_Y4_P2_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

CH_X4_Y4_P2_K3_BF 0 1.7 0 0
IQR 0-0 1.6-1.7 0-0 0-0

CH_X4_Y4_P3_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

CH_X4_Y4_P3_K3_BF 0 1.5 0 0
IQR 0-0 1-1.6 0-0 0-0

CH_X4_Y4_PM_K2_BF 0 0 0 0

LXV



Instance Name d-NSGA-II ISDE+ NSGA-II NSGA-III

IQR 0-0 0-0 0-0.7 0-0
CH_X4_Y4_PM_K3_BF 0.51 0.61 0.51 0

IQR 0.51-0.51 0.61-0.73 0-0.51 0-0
CH_X5_Y5_P1_K2_BF 0 0 0.37 0.37

IQR 0-0 0-0 0.37-0.37 0.37-0.37
CH_X5_Y5_P1_K3_BF 0.54 0.64 0.3 0.45

IQR 0.51-0.54 0.64-0.64 0.3-0.3 0.45-0.45
CH_X5_Y5_P2_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0.19 0-0
CH_X5_Y5_P2_K3_BF 0.47 0.47 0.59 0.32

IQR 0.39-0.48 0.46-0.47 0.08-0.73 0.13-0.46
CH_X5_Y5_P3_K2_BF 0 0 0.39 0.39

IQR 0-0 0-0 0.39-0.39 0.39-0.39
CH_X5_Y5_PM_K2_BF 0 0 0.24 0.3

IQR 0-0 0-0 0.24-0.24 0.3-0.3
CH_X6_Y6_P1_K2_BF 0 0 0.21 0.21

IQR 0-0 0-0 0.21-0.21 0.21-0.21
CH_X6_Y6_P1_K3_BF 1.1 2.8 0 0

IQR 1.1-1.1 2.8-5.3 0-0 0-0
CH_X6_Y6_P2_K2_BF 0 0 0.078 0

IQR 0-0 0-0 0-0.17 0-0
CH_X6_Y6_P2_K3_BF 0.35 0.43 0 0.19

IQR 0.26-0.41 0.39-0.44 0-0.082 0.082-0.24
CH_X6_Y6_P3_K2_BF 0 0 0.18 0.18

IQR 0-0 0-0 0-0.29 0.18-0.18
CH_X6_Y6_P3_K3_BF 0.43 0.5 0.31 0.36

IQR 0.38-0.49 0.46-0.54 0.22-0.31 0.22-0.36
CH_X6_Y6_PM_K2_BF 0 0 0 0.079

IQR 0-0 0-0 0-0.13 0.079-0.079
CH_X7_Y7_P1_K2_BF 0 0 0.33 0

IQR 0-0 0-0 0.33-0.33 0-0.33
CH_X7_Y7_P1_K3_BF 0.22 0.37 0 0.17

IQR 0.2-0.25 0.33-0.39 0-0.057 0.15-0.19
CH_X7_Y7_P2_K2_BF 0 0 4.5e-16 4.5e-16

IQR 0-4.5e-16 0-0 4.5e-16-4.5e-16 0-4.5e-16
CH_X7_Y7_P2_K3_BF 0.27 0.43 0 0.14

IQR 0.2-0.35 0.38-0.44 0-0 0.14-0.17
CH_X7_Y7_P3_K2_BF 0 0 0.16 0

IQR 0-0 0-0 0.041-0.16 0-0
CH_X7_Y7_P3_K3_BF 0.23 0.34 0.12 0.18

IQR 0.22-0.28 0.31-0.36 0.12-0.12 0.18-0.19
CH_X7_Y7_PM_K2_BF 0 0 0.29 0.27

IQR 0-0.11 0-0 0.29-0.29 0.27-0.27
CH_X7_Y7_PM_K3_BF 0.18 0.23 0.099 0.26

IQR 0.15-0.18 0.21-0.27 0.099-0.12 0.18-0.28
CH_X8_Y8_P1_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
CH_X8_Y8_P1_K3_BF 0.11 0.34 0 0.13

IQR 0.096-0.13 0.3-0.39 0-0 0.13-0.15
CH_X8_Y8_P2_K2_BF 0 0 0.33 0

IQR 0-0 0-0 0-0.33 0-0
CH_X8_Y8_P2_K3_BF 0.092 0.26 0 0.11

IQR 0.079-0.11 0.22-0.29 0-0 0.1-0.13
CH_X8_Y8_P3_K2_BF 0 0 0.44 0.44

IQR 0-0 0-0 0-0.44 0.44-0.46
CH_X8_Y8_P3_K3_BF 0.12 0.25 0.072 0.12

IQR 0.11-0.13 0.23-0.28 0.072-0.072 0.11-0.13
CH_X8_Y8_PM_K2_BF 0 0 0 0.39

IQR 0-0 0-0 0-0 0.33-0.39
CH_X8_Y8_PM_K3_BF 0.16 0.24 0.074 0.18

IQR 0.14-0.19 0.22-0.25 0.059-0.14 0.17-0.22
CH_X9_Y9_P1_K2_BF 0.18 0 0.15 0.28

IQR 0.17-0.18 0-0.0001 0.00049-0.17 0.28-0.28
CH_X9_Y9_P1_K3_BF 0.095 0.12 0.039 0.11

IQR 0.088-0.1 0.11-0.13 0.032-0.046 0.11-0.12
CH_X9_Y9_P2_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
CH_X9_Y9_P2_K3_BF 0.14 0.2 0.075 0.17

IQR 0.13-0.17 0.18-0.21 0.066-0.081 0.14-0.21
CH_X9_Y9_P3_K2_BF 0.17 0 0.24 0.47

IQR 0.17-0.32 0-0 0.24-0.27 0.38-0.47
CH_X9_Y9_P3_K3_BF 0.11 0.14 0.044 0.13

IQR 0.1-0.12 0.13-0.16 0.042-0.051 0.12-0.14

LXVI



Instance Name d-NSGA-II ISDE+ NSGA-II NSGA-III

CH_X9_Y9_PM_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

CH_X9_Y9_PM_K3_BF 0.2 0.25 0.089 0.19
IQR 0.19-0.23 0.23-0.25 0.077-0.11 0.19-0.23

LA_X10_Y10_P1_K2_BF 0.04 0.028 0.019 0.072
IQR 0.031-0.041 0.026-0.03 0.019-0.038 0.068-0.076

LA_X10_Y10_P1_K3_BF 0.068 0.074 0.063 0.081
IQR 0.068-0.071 0.067-0.079 0.063-0.064 0.079-0.089

LA_X10_Y10_P2_K2_BF 0 0.34 0 0.11
IQR 0-0 0.27-0.39 0-0 0.076-0.11

LA_X10_Y10_P2_K3_BF 0.2 0.5 0 0.43
IQR 0.12-0.47 0.44-0.54 0-0 0.41-0.43

LA_X10_Y10_P3_K2_BF 0.059 0.057 0.021 0.11
IQR 0.054-0.078 0.051-0.063 0.01-0.033 0.097-0.12

LA_X10_Y10_P3_K3_BF 0.11 0.13 0.076 0.11
IQR 0.093-0.11 0.12-0.15 0.076-0.076 0.1-0.12

LA_X10_Y10_PM_K2_BF 0 0.37 0 0.11
IQR 0-0 0.3-0.51 0-0 0-0.12

LA_X10_Y10_PM_K3_BF 0.25 0.28 0 0.29
IQR 0.1-0.26 0.26-0.32 0-0 0.11-0.29

LA_X11_Y11_P1_K2_BF 0.12 0.077 0.039 0.15
IQR 0.055-0.12 0.073-0.082 0.039-0.12 0.14-0.16

LA_X11_Y11_P1_K3_BF 0.064 0.092 0.06 0.087
IQR 0.063-0.066 0.084-0.097 0.059-0.06 0.08-0.095

LA_X11_Y11_P2_K2_BF 0.053 0.11 0.053 0.1
IQR 0.05-0.056 0.09-0.12 0.033-0.053 0.099-0.11

LA_X11_Y11_P2_K3_BF 0.19 0.33 0.073 0.26
IQR 0.17-0.23 0.29-0.36 0-0.097 0.18-0.28

LA_X11_Y11_P3_K2_BF 0.099 0.093 0 0.18
IQR 0.065-0.1 0.084-0.1 0-0 0.12-0.19

LA_X11_Y11_P3_K3_BF 0.085 0.13 0.06 0.1
IQR 0.073-0.1 0.12-0.15 0.06-0.084 0.1-0.11

LA_X11_Y11_PM_K2_BF 0.098 0.25 0.098 0.14
IQR 0.098-0.18 0.24-0.29 0.098-0.098 0.098-0.14

LA_X11_Y11_PM_K3_BF 0.094 0.16 0.027 0.14
IQR 0.073-0.11 0.14-0.17 0.022-0.034 0.13-0.16

LA_X12_Y12_P1_K2_BF 0.077 0.09 0.075 0.12
IQR 0.076-0.079 0.08-0.11 0.075-0.075 0.11-0.13

LA_X12_Y12_P1_K3_BF 0.038 0.062 0.031 0.061
IQR 0.037-0.039 0.057-0.065 0.03-0.035 0.052-0.072

LA_X12_Y12_P2_K2_BF 0.076 0.073 0.016 0.095
IQR 0.071-0.091 0.071-0.078 0.005-0.073 0.079-0.1

LA_X12_Y12_P2_K3_BF 0.088 0.17 0.06 0.1
IQR 0.079-0.098 0.15-0.19 0.057-0.087 0.098-0.11

LA_X12_Y12_P3_K2_BF 0.074 0.12 0.056 0.14
IQR 0.065-0.093 0.11-0.15 0.056-0.056 0.11-0.16

LA_X12_Y12_P3_K3_BF 0.033 0.073 0.022 0.042
IQR 0.031-0.038 0.067-0.079 0.016-0.024 0.038-0.046

LA_X12_Y12_PM_K2_BF 0.056 0.081 0.044 0.07
IQR 0.056-0.059 0.074-0.088 0.013-0.056 0.063-0.087

LA_X12_Y12_PM_K3_BF 0.049 0.076 0.037 0.067
IQR 0.048-0.052 0.072-0.084 0.026-0.046 0.06-0.075

LA_X13_Y13_P1_K2_BF 0.071 0.1 0.066 0.11
IQR 0.068-0.075 0.097-0.12 0.066-0.066 0.1-0.12

LA_X13_Y13_P1_K3_BF 0.03 0.071 0.023 0.049
IQR 0.028-0.032 0.064-0.08 0.018-0.023 0.042-0.06

LA_X13_Y13_P2_K2_BF 0.073 0.081 0.068 0.094
IQR 0.067-0.079 0.076-0.092 0.012-0.068 0.077-0.11

LA_X13_Y13_P2_K3_BF 0.053 0.12 0.037 0.071
IQR 0.05-0.058 0.11-0.13 0.031-0.038 0.056-0.082

LA_X13_Y13_P3_K2_BF 0.057 0.15 0.039 0.095
IQR 0.051-0.067 0.13-0.16 0.039-0.039 0.079-0.13

LA_X13_Y13_P3_K3_BF 0.037 0.093 0.021 0.063
IQR 0.035-0.042 0.086-0.1 0.017-0.025 0.047-0.068

LA_X13_Y13_PM_K2_BF 0.04 0.12 0.031 0.073
IQR 0.036-0.055 0.11-0.14 0.031-0.031 0.068-0.081

LA_X13_Y13_PM_K3_BF 0.043 0.077 0.035 0.054
IQR 0.041-0.045 0.07-0.085 0.032-0.036 0.051-0.063

LA_X14_Y14_P1_K2_BF 0.033 0.2 0 0.11
IQR 0.024-0.045 0.16-0.26 0-0 0.071-0.13

LA_X14_Y14_P1_K3_BF 0.037 0.1 0.026 0.052
IQR 0.035-0.04 0.083-0.11 0.025-0.026 0.048-0.057

LA_X14_Y14_P2_K2_BF 0.063 0.27 0 0.14

LXVII



Instance Name d-NSGA-II ISDE+ NSGA-II NSGA-III

IQR 0.051-0.084 0.24-0.34 0-0.054 0.11-0.15
LA_X14_Y14_P2_K3_BF 0.049 0.11 0.022 0.084

IQR 0.044-0.055 0.1-0.13 0.02-0.025 0.06-0.099
LA_X14_Y14_P3_K2_BF 0.075 0.29 0 0.12

IQR 0.062-0.097 0.24-0.31 0-0.054 0.091-0.16
LA_X14_Y14_P3_K3_BF 0.044 0.099 0.022 0.078

IQR 0.041-0.049 0.094-0.11 0.02-0.024 0.063-0.085
LA_X14_Y14_PM_K2_BF 0.051 0.2 0.038 0.074

IQR 0.043-0.062 0.16-0.24 0.038-0.061 0.064-0.11
LA_X14_Y14_PM_K3_BF 0.031 0.074 0.023 0.04

IQR 0.03-0.034 0.069-0.079 0.023-0.024 0.038-0.044
LA_X5_Y5_P1_K2_BF 0.55 0 0.71 0.55

IQR 0-0.55 0-0 0.71-0.71 0.55-0.55
LA_X5_Y5_P1_K3_BF 0.87 5.2 0 0

IQR 0.87-0.87 0.87-8.1 0-0 0-0
LA_X5_Y5_P2_K2_BF 0 0 0.79 0.44

IQR 0-0.44 0-0 0.79-0.79 0.44-0.44
LA_X5_Y5_P2_K3_BF 0.87 5.2 0 0

IQR 0.87-0.87 0.87-8.1 0-0 0-0
LA_X5_Y5_P3_K2_BF 0 0 0.73 0.47

IQR 0-0.47 0-0 0.73-0.73 0.47-0.47
LA_X5_Y5_P3_K3_BF 0.66 0.77 0.55 0.55

IQR 0.63-0.66 0.47-0.83 0.55-0.55 0.55-0.55
LA_X5_Y5_PM_K2_BF 0 0 0.72 0

IQR 0-0.42 0-0 0.72-0.72 0-0
LA_X5_Y5_PM_K3_BF 0.46 0.46 0.3 0.3

IQR 0.35-0.48 0.36-0.48 0.3-0.3 0.3-0.3
LA_X6_Y6_P1_K2_BF 0 0 1 0

IQR 0-0.75 0-0 1-1 0-0
LA_X6_Y6_P1_K3_BF 0.87 5.2 0 0

IQR 0.87-0.87 0.87-8.1 0-0 0-0
LA_X6_Y6_P2_K2_BF 0 0 1 0

IQR 0-0 0-0 1-1 0-0
LA_X6_Y6_P2_K3_BF 0.87 8.1 0 0

IQR 0.87-0.87 0.87-8.1 0-0 0-0
LA_X6_Y6_P3_K2_BF 0 0 1 0

IQR 0-1 0-0 1-1 0-0
LA_X6_Y6_P3_K3_BF 0.87 1.3 0 0

IQR 0-0.87 0.87-8.1 0-0 0-0
LA_X6_Y6_PM_K2_BF 0.39 0 0.82 0.39

IQR 0.39-0.39 0-0 0.82-0.82 0.39-0.39
LA_X6_Y6_PM_K3_BF 0.45 0.39 0.35 0.35

IQR 0.4-0.54 0.38-0.49 0.35-0.35 0.35-0.35
LA_X7_Y7_P1_K3_BF 0.45 0.59 0 0.45

IQR 0.45-0.59 0.45-0.86 0-0 0.45-0.45
LA_X7_Y7_P2_K2_BF 0.71 0 0.71 0.71

IQR 0.71-0.71 0-0 0.71-0.71 0.71-0.71
LA_X7_Y7_P2_K3_BF 0.87 0.87 0 0

IQR 0.87-0.87 0.87-1.3 0-0 0-0
LA_X7_Y7_P3_K3_BF 0.87 0.87 0 0

IQR 0.87-0.87 0.87-5.9 0-0 0-0
LA_X7_Y7_PM_K2_BF 0.87 0 0.87 0

IQR 0.87-0.87 0-0 0.87-0.87 0-0
LA_X7_Y7_PM_K3_BF 0.21 0.21 0.2 0.21

IQR 0.2-0.29 0.18-0.25 0.2-0.2 0.21-0.24
LA_X8_Y8_P1_K2_BF 0.33 0 0.33 0.34

IQR 0.33-0.33 0-0.04 0.33-0.33 0.34-0.34
LA_X8_Y8_P1_K3_BF 0.28 0.25 0.28 0.28

IQR 0.28-0.29 0.21-0.3 0.28-0.28 0.28-0.29
LA_X8_Y8_P2_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
LA_X8_Y8_P2_K3_BF 0.9 2.7 0.49 0.49

IQR 0.89-0.9 1.2-2.8 0.49-0.89 0.49-0.49
LA_X8_Y8_P3_K2_BF 0.26 0 0.26 0.39

IQR 0.26-0.26 0-0 0.26-0.26 0.39-0.39
LA_X8_Y8_P3_K3_BF 0.52 0.56 0.49 0.49

IQR 0.49-0.52 0.52-0.67 0.49-0.49 0.49-0.49
LA_X8_Y8_PM_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
LA_X9_Y9_P1_K2_BF 0.11 0.06 7.2e-06 0.16

IQR 0.11-0.11 0.029-0.083 7.2e-06-0.11 0.16-0.16
LA_X9_Y9_P1_K3_BF 0.12 0.14 0.11 0.14

IQR 0.12-0.13 0.13-0.15 0.11-0.11 0.14-0.15

LXVIII



Instance Name d-NSGA-II ISDE+ NSGA-II NSGA-III

LA_X9_Y9_P2_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

LA_X9_Y9_P2_K3_BF 1e+02 1.1 2.1 2.1
IQR 0.27-1e+02 0.75-1.7 0-2.1 0-2.1

LA_X9_Y9_P3_K2_BF 0.28 0.13 0.28 0.29
IQR 0.28-0.28 0.1-0.2 0.28-0.28 0.28-0.31

LA_X9_Y9_P3_K3_BF 0.18 0.2 0.17 0.18
IQR 0.18-0.18 0.19-0.22 0.17-0.17 0.17-0.19

LA_X9_Y9_PM_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

LA_X9_Y9_PM_K3_BF 0.6 0.53 0.48 0.6
IQR 0.6-0.61 0.43-0.66 0.32-0.48 0.51-0.62

NO_X10_Y10_P1_K2_BF 0.037 0.045 0.029 0.084
IQR 0.033-0.04 0.043-0.047 0.028-0.03 0.075-0.087

NO_X10_Y10_P1_K3_BF 0.037 0.061 0.032 0.063
IQR 0.036-0.039 0.054-0.068 0.031-0.032 0.044-0.078

NO_X10_Y10_P2_K2_BF 0.087 0.58 0.087 0.13
IQR 0.087-0.087 0.47-0.68 0.087-0.087 0.11-0.13

NO_X10_Y10_P2_K3_BF 0.036 0.075 0.025 0.05
IQR 0.035-0.042 0.064-0.083 0.022-0.026 0.046-0.056

NO_X10_Y10_P3_K2_BF 0.09 0.12 0.036 0.14
IQR 0.077-0.11 0.11-0.14 0.031-0.051 0.13-0.15

NO_X10_Y10_P3_K3_BF 0.031 0.063 0.02 0.039
IQR 0.03-0.033 0.058-0.068 0.019-0.022 0.036-0.04

NO_X10_Y10_PM_K2_BF 0 0.94 0 0.12
IQR 0-0 0.64-1 0-0 0-0.12

NO_X10_Y10_PM_K3_BF 0.056 0.096 0.026 0.065
IQR 0.049-0.064 0.091-0.11 0.023-0.032 0.062-0.07

NO_X11_Y11_P1_K2_BF 0.052 0.076 0.046 0.11
IQR 0.049-0.059 0.071-0.082 0.044-0.046 0.1-0.11

NO_X11_Y11_P1_K3_BF 0.025 0.047 0.02 0.045
IQR 0.024-0.028 0.044-0.052 0.02-0.021 0.037-0.057

NO_X11_Y11_P2_K2_BF 0.036 0.15 0.03 0.095
IQR 0.031-0.053 0.13-0.17 0.029-0.03 0.077-0.13

NO_X11_Y11_P2_K3_BF 0.033 0.07 0.022 0.044
IQR 0.031-0.034 0.066-0.077 0.018-0.024 0.04-0.05

NO_X11_Y11_P3_K2_BF 0.051 0.076 0.023 0.12
IQR 0.047-0.057 0.068-0.081 0.02-0.025 0.089-0.13

NO_X11_Y11_P3_K3_BF 0.026 0.057 0.02 0.034
IQR 0.025-0.027 0.054-0.059 0.02-0.021 0.031-0.036

NO_X11_Y11_PM_K2_BF 0.11 0.37 0.063 0.14
IQR 0.071-0.19 0.3-0.41 0-0.063 0.12-0.17

NO_X11_Y11_PM_K3_BF 0.06 0.11 0.03 0.068
IQR 0.055-0.066 0.1-0.12 0.025-0.051 0.059-0.074

NO_X12_Y12_P1_K2_BF 0.066 0.11 0.05 0.12
IQR 0.057-0.078 0.097-0.12 0.049-0.05 0.1-0.13

NO_X12_Y12_P1_K3_BF 0.035 0.06 0.029 0.057
IQR 0.033-0.037 0.055-0.067 0.028-0.029 0.045-0.061

NO_X12_Y12_P2_K2_BF 0.081 0.16 0.066 0.11
IQR 0.075-0.1 0.15-0.2 0.056-0.067 0.093-0.12

NO_X12_Y12_P2_K3_BF 0.037 0.093 0.024 0.041
IQR 0.034-0.04 0.087-0.11 0.023-0.025 0.038-0.047

NO_X12_Y12_P3_K2_BF 0.071 0.13 0.048 0.12
IQR 0.066-0.078 0.12-0.15 0.042-0.052 0.12-0.13

NO_X12_Y12_P3_K3_BF 0.037 0.085 0.028 0.042
IQR 0.035-0.04 0.077-0.089 0.026-0.029 0.039-0.046

NO_X12_Y12_PM_K2_BF 0.059 0.12 0.034 0.075
IQR 0.054-0.063 0.11-0.15 0.031-0.047 0.068-0.075

NO_X12_Y12_PM_K3_BF 0.027 0.061 0.02 0.045
IQR 0.025-0.033 0.055-0.063 0.019-0.021 0.04-0.048

NO_X13_Y13_P1_K2_BF 0.057 0.099 0.045 0.11
IQR 0.051-0.064 0.092-0.11 0.045-0.045 0.1-0.12

NO_X13_Y13_P1_K3_BF 0.029 0.06 0.023 0.048
IQR 0.028-0.032 0.054-0.067 0.023-0.023 0.04-0.05

NO_X13_Y13_P2_K2_BF 0.099 0.28 0.072 0.12
IQR 0.098-0.11 0.21-0.32 0.067-0.083 0.1-0.14

NO_X13_Y13_P2_K3_BF 0.027 0.068 0.018 0.034
IQR 0.025-0.029 0.059-0.073 0.017-0.018 0.031-0.037

NO_X13_Y13_P3_K2_BF 0.062 0.17 0.053 0.11
IQR 0.057-0.072 0.14-0.2 0.046-0.053 0.085-0.11

NO_X13_Y13_P3_K3_BF 0.026 0.061 0.02 0.032
IQR 0.024-0.028 0.058-0.066 0.019-0.02 0.03-0.038

NO_X13_Y13_PM_K2_BF 0.057 0.13 0.027 0.11
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Instance Name d-NSGA-II ISDE+ NSGA-II NSGA-III

IQR 0.054-0.088 0.12-0.14 0.026-0.042 0.095-0.12
NO_X13_Y13_PM_K3_BF 0.036 0.068 0.023 0.05

IQR 0.031-0.043 0.065-0.074 0.022-0.024 0.043-0.055
NO_X14_Y14_P1_K2_BF 0.045 0.41 0 0.11

IQR 0.033-0.051 0.31-0.61 0-0.044 0.086-0.14
NO_X14_Y14_P1_K3_BF 0.033 0.083 0.025 0.042

IQR 0.031-0.036 0.073-0.088 0.025-0.026 0.04-0.045
NO_X14_Y14_P2_K2_BF 0.13 0.56 0.098 0.2

IQR 0.1-0.17 0.51-0.64 0.098-0.098 0.17-0.23
NO_X14_Y14_P2_K3_BF 0.031 0.077 0.019 0.043

IQR 0.029-0.036 0.069-0.087 0.018-0.02 0.04-0.051
NO_X14_Y14_P3_K2_BF 0.083 0.46 0.076 0.12

IQR 0.076-0.09 0.38-0.5 0.059-0.076 0.1-0.14
NO_X14_Y14_P3_K3_BF 0.029 0.07 0.021 0.038

IQR 0.028-0.032 0.063-0.073 0.021-0.023 0.035-0.042
NO_X14_Y14_PM_K2_BF 0.056 0.42 0.061 0.075

IQR 0.052-0.065 0.3-0.55 0.038-0.061 0.071-0.092
NO_X14_Y14_PM_K3_BF 0.025 0.064 0.017 0.039

IQR 0.022-0.029 0.058-0.066 0.016-0.018 0.034-0.042
NO_X3_Y3_P1_K2_BF 0 0 0.36 0

IQR 0-0 0-0 0.36-0.36 0-0.58
NO_X3_Y3_P2_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
NO_X3_Y3_P3_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
NO_X4_Y4_P1_K2_BF 0 0 0 0.31

IQR 0-0 0-0 0-0.066 0.22-0.31
NO_X4_Y4_P1_K3_BF 0.54 0.57 0.42 0.35

IQR 0.54-0.54 0.5-0.86 0.35-0.54 0.35-0.35
NO_X4_Y4_P2_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
NO_X4_Y4_P2_K3_BF 0.67 1.1 0.67 0.24

IQR 0.67-0.7 0.97-1.5 0.67-0.67 0.24-0.24
NO_X4_Y4_P3_K2_BF 0.28 0 0 0.28

IQR 0.22-0.32 0-0 0-0 0.28-0.28
NO_X4_Y4_P3_K3_BF 0.65 1.1 0.65 0.24

IQR 0.65-0.65 0.88-1.5 0.65-0.65 0.24-0.54
NO_X4_Y4_PM_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
NO_X4_Y4_PM_K3_BF 0.44 0.67 0.39 0.39

IQR 0.41-0.48 0.56-0.76 0.39-0.39 0.36-0.41
NO_X5_Y5_P1_K2_BF 0.17 0 0 0.17

IQR 0.053-0.17 0-0 0-0 0.17-0.21
NO_X5_Y5_P1_K3_BF 0.33 0.37 0.24 0.29

IQR 0.33-0.33 0.34-0.43 0.24-0.24 0.26-0.33
NO_X5_Y5_P2_K2_BF 0.14 0 0 0.27

IQR 0.14-0.31 0-0 0-0 0.27-0.27
NO_X5_Y5_P2_K3_BF 0.41 0.47 0.29 0.27

IQR 0.39-0.44 0.45-0.53 0.24-0.29 0.27-0.29
NO_X5_Y5_P3_K2_BF 0.13 0 0 0.19

IQR 0.12-0.13 0-0.015 0-0 0.19-0.19
NO_X5_Y5_P3_K3_BF 0.27 0.33 0.18 0.21

IQR 0.24-0.28 0.3-0.35 0.18-0.24 0.18-0.24
NO_X5_Y5_PM_K2_BF 0.039 0 0 0.076

IQR 0.032-0.044 0-0.016 0-0 0.07-0.088
NO_X5_Y5_PM_K3_BF 0.29 0.31 0.14 0.2

IQR 0.26-0.32 0.31-0.34 0.11-0.16 0.18-0.22
NO_X6_Y6_P1_K2_BF 0 0.062 0 0.13

IQR 0-0.034 0.051-0.071 0-0 0.038-0.16
NO_X6_Y6_P1_K3_BF 0.22 0.32 0.18 0.21

IQR 0.21-0.25 0.3-0.36 0.17-0.19 0.19-0.22
NO_X6_Y6_P2_K2_BF 0.041 0.062 0 0.18

IQR 0.029-0.047 0.05-0.068 0-0.018 0.16-0.18
NO_X6_Y6_P2_K3_BF 0.15 0.28 0.063 0.18

IQR 0.13-0.16 0.25-0.3 0.054-0.1 0.15-0.23
NO_X6_Y6_P3_K2_BF 0 0.072 0 0.15

IQR 0-0 0.059-0.089 0-0 0.12-0.23
NO_X6_Y6_P3_K3_BF 0.12 0.23 0.05 0.14

IQR 0.11-0.13 0.21-0.25 0.041-0.083 0.13-0.18
NO_X6_Y6_PM_K2_BF 0.038 0.031 0 0.061

IQR 0.034-0.044 0.025-0.036 0-0.008 0.056-0.069
NO_X6_Y6_PM_K3_BF 0.12 0.19 0.081 0.14

IQR 0.1-0.14 0.17-0.21 0.069-0.081 0.12-0.14
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Instance Name d-NSGA-II ISDE+ NSGA-II NSGA-III

NO_X7_Y7_P1_K2_BF 0.17 0.18 0 0.18
IQR 0.079-0.18 0.15-0.22 0-0 0.18-0.18

NO_X7_Y7_P1_K3_BF 0.092 0.17 0.076 0.099
IQR 0.091-0.095 0.14-0.18 0.076-0.081 0.092-0.11

NO_X7_Y7_P2_K2_BF 0.054 0.19 0 0.095
IQR 2.2e-16-0.078 0.17-0.23 0-0 0.087-0.14

NO_X7_Y7_P2_K3_BF 0.076 0.15 0.052 0.083
IQR 0.073-0.083 0.13-0.17 0.049-0.052 0.078-0.089

NO_X7_Y7_P3_K2_BF 0.099 0.18 0 0.13
IQR 0.082-0.11 0.16-0.22 0-0 0.11-0.13

NO_X7_Y7_P3_K3_BF 0.07 0.12 0.054 0.078
IQR 0.065-0.077 0.11-0.13 0.054-0.056 0.066-0.084

NO_X7_Y7_PM_K2_BF 0.092 0.17 0 0.092
IQR 0.072-0.099 0.12-0.18 0-0 0.092-0.1

NO_X7_Y7_PM_K3_BF 0.079 0.11 0.036 0.085
IQR 0.065-0.083 0.1-0.12 0.033-0.038 0.072-0.11

NO_X8_Y8_P1_K2_BF 0.065 0.069 0.0064 0.13
IQR 0.064-0.068 0.064-0.08 0-0.06 0.13-0.14

NO_X8_Y8_P1_K3_BF 0.039 0.08 0.032 0.049
IQR 0.037-0.041 0.069-0.087 0.032-0.035 0.046-0.056

NO_X8_Y8_P2_K2_BF 0.067 0.15 0.037 0.09
IQR 0.063-0.074 0.13-0.18 0.017-0.063 0.079-0.097

NO_X8_Y8_P2_K3_BF 0.051 0.1 0.025 0.061
IQR 0.047-0.055 0.099-0.11 0.024-0.029 0.056-0.07

NO_X8_Y8_P3_K2_BF 0.033 0.077 0.011 0.17
IQR 0.03-0.045 0.07-0.085 0-0.011 0.14-0.17

NO_X8_Y8_P3_K3_BF 0.046 0.088 0.03 0.053
IQR 0.044-0.049 0.082-0.093 0.029-0.031 0.051-0.057

NO_X8_Y8_PM_K2_BF 0.1 0.21 0.056 0.14
IQR 0.09-0.14 0.17-0.24 0.056-0.09 0.13-0.17

NO_X8_Y8_PM_K3_BF 0.076 0.14 0.045 0.087
IQR 0.068-0.088 0.13-0.15 0.035-0.059 0.08-0.091

NO_X9_Y9_P1_K2_BF 0.074 0.089 0.062 0.15
IQR 0.067-0.091 0.084-0.11 0.00019-0.062 0.15-0.15

NO_X9_Y9_P1_K3_BF 0.031 0.063 0.026 0.045
IQR 0.029-0.035 0.057-0.071 0.026-0.026 0.039-0.061

NO_X9_Y9_P2_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

NO_X9_Y9_P2_K3_BF 0.043 0.075 0.027 0.054
IQR 0.039-0.05 0.068-0.082 0.025-0.028 0.049-0.061

NO_X9_Y9_P3_K2_BF 0.18 0.25 0.095 0.24
IQR 0.12-0.35 0.23-0.29 0.084-0.095 0.22-0.24

NO_X9_Y9_P3_K3_BF 0.037 0.065 0.023 0.044
IQR 0.031-0.041 0.057-0.07 0.022-0.023 0.038-0.048

NO_X9_Y9_PM_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

NO_X9_Y9_PM_K3_BF 0.086 0.16 0.045 0.086
IQR 0.078-0.1 0.14-0.17 0.04-0.049 0.079-0.1

Table B.2: Raw values of different instances of the IGD indicator. Shown are
the median and the IQR values below.

B.2 Initial Solution Generation

ISG-RANDOM ISG-YENSK

CH_X10_Y10_P1_K2_BF 0 (0-0.001205) 0 (0-0.001205)
CH_X10_Y10_P1_K2_BT 0.02398 (0.007642-0.04216) 0.005254 (2.007e-08-0.02317)
CH_X10_Y10_P1_K3_BF 0.2365 (0.217-0.2886) 0.2052 (0.07055-0.2141)
CH_X10_Y10_P1_K3_BT 0.9672 (0.6862-1.22) 0.1224 (0.05398-0.1331)
CH_X10_Y10_P2_K2_BF 0.1667 (0-0.1844) 0.6125 (0.08777-0.6125)
CH_X10_Y10_P2_K2_BT 8.142e-16 (0-0.1667) 0.4537 (0.4537-0.4987)
CH_X10_Y10_P2_K3_BF 0.2636 (0.222-0.3353) 0.07955 (0.05946-0.09121)
CH_X10_Y10_P2_K3_BT 0.9284 (0.7736-1.136) 0.09753 (0.06687-0.3103)
CH_X10_Y10_P3_K2_BF 0.04173 (1.563e-05-0.04303) 0 (0-0.002127)
CH_X10_Y10_P3_K2_BT 0.04167 (6.253e-05-0.04308) 0.04316 (6.253e-05-0.06078)
CH_X10_Y10_P3_K3_BF 0.4841 (0.286-0.5504) 0.0832 (0.06963-0.0933)
CH_X10_Y10_P3_K3_BT 0.7758 (0.6505-0.9489) 0.2077 (0.2015-0.2279)
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ISG-RANDOM ISG-YENSK

CH_X10_Y10_PM_K2_BF 0 (0-0) 0 (0-0)
CH_X10_Y10_PM_K2_BT 0 (0-0) 0 (0-0)
CH_X10_Y10_PM_K3_BF 0.5142 (0.475-0.5738) 0.23 (0.2082-0.2355)
CH_X10_Y10_PM_K3_BT 0.9521 (0.8042-1.141) 0.08734 (0.07161-0.103)
CH_X15_Y15_P1_K2_BF 0.01986 (0.00848-0.03283) 0.03455 (0.01772-0.05628)
CH_X15_Y15_P1_K2_BT 0.3297 (0.2177-0.4111) 0.03709 (0.02993-0.06931)
CH_X15_Y15_P1_K3_BF 0.2553 (0.2161-0.2955) 0.07747 (0.07445-0.08508)
CH_X15_Y15_P1_K3_BT 1.357 (1.157-1.814) 0.09264 (0.05957-0.6214)
CH_X15_Y15_P2_K2_BF 0 (0-0) 0 (0-0)
CH_X15_Y15_P2_K2_BT 0 (0-0) 0 (0-0)
CH_X15_Y15_P2_K3_BF 0.4398 (0.3631-0.5373) 0.1094 (0.09178-0.13)
CH_X15_Y15_P2_K3_BT 1.894 (1.74-2.029) 0.1123 (0.08825-0.1225)
CH_X15_Y15_P3_K2_BF 0.2095 (0.07146-0.3463) 0.459 (0.2455-0.5362)
CH_X15_Y15_P3_K2_BT 0.5368 (0.3718-0.8918) 0.5074 (0.4759-0.5723)
CH_X15_Y15_P3_K3_BF 0.315 (0.2778-0.3715) 0.09752 (0.09319-0.1122)
CH_X15_Y15_P3_K3_BT 1.637 (1.455-1.899) 0.2807 (0.2582-0.3031)
CH_X15_Y15_PM_K2_BF 0 (0-0) 0 (0-0)
CH_X15_Y15_PM_K2_BT 0 (0-0) 0 (0-0)
CH_X15_Y15_PM_K3_BF 0.4179 (0.3725-0.477) 0.4162 (0.1543-0.4262)
CH_X15_Y15_PM_K3_BT 1.849 (1.527-2.073) 0.1366 (0.1271-0.1442)
CH_X20_Y20_P1_K2_BF 0.3815 (0.3126-0.4393) 0.0142 (0.01115-0.02457)
CH_X20_Y20_P1_K2_BT 0.5497 (0.4917-0.698) 0.02015 (0.01504-0.03449)
CH_X20_Y20_P1_K3_BF 0.3719 (0.2799-0.4365) 0.03312 (0.03008-0.03803)
CH_X20_Y20_P1_K3_BT 2.383 (2.136-2.722) 0.03336 (0.02968-0.04227)
CH_X20_Y20_P2_K2_BF 0.808 (0.6993-0.9018) 0.1972 (0.1692-0.2453)
CH_X20_Y20_P2_K2_BT 0.9224 (0.6834-1.083) 0.3318 (0.266-0.4978)
CH_X20_Y20_P2_K3_BF 0.6808 (0.6134-0.759) 0.4296 (0.3038-0.6389)
CH_X20_Y20_P2_K3_BT 2.461 (2.165-2.824) 0.7109 (0.4392-0.7127)
CH_X20_Y20_P3_K2_BF 0.5656 (0.4979-0.6308) 0.09579 (0.07553-0.1274)
CH_X20_Y20_P3_K2_BT 0.7006 (0.6217-0.8468) 0.1724 (0.1095-0.21)
CH_X20_Y20_P3_K3_BF 0.5907 (0.5251-0.6467) 0.44 (0.2466-0.4713)
CH_X20_Y20_P3_K3_BT 2.639 (2.342-2.906) 0.3131 (0.312-0.3151)
CH_X20_Y20_PM_K2_BF 1.007 (0.8392-1.103) 0.1671 (0.1224-0.2496)
CH_X20_Y20_PM_K2_BT 1.253 (1.077-1.531) 0.2592 (0.09795-0.2907)
CH_X20_Y20_PM_K3_BF 0.5045 (0.3821-0.5738) 0.1257 (0.1207-0.1424)
CH_X20_Y20_PM_K3_BT 1.777 (1.55-2.12) 0.1577 (0.1543-0.1635)
CH_X30_Y30_P1_K2_BF 0.6221 (0.5607-0.7032) 0.0428 (0.03337-0.05673)
CH_X30_Y30_P1_K2_BT 0.9146 (0.7935-1.144) 0.05427 (0.03742-0.1175)
CH_X30_Y30_P1_K3_BF 0.5411 (0.4933-0.5915) 0.02313 (0.02301-0.02455)
CH_X30_Y30_P1_K3_BT 2.801 (2.346-3.081) 0.02145 (0.02065-0.02922)
CH_X30_Y30_P2_K2_BF 2.452 (2.35-2.694) 0.4521 (0.4128-0.511)
CH_X30_Y30_P2_K2_BT 3.593 (3.418-3.828) 0.447 (0.4128-0.5141)
CH_X30_Y30_P2_K3_BF 1.021 (0.9133-1.051) 1.098 (0.44-1.098)
CH_X30_Y30_P2_K3_BT 3.378 (3.083-3.753) 0.4659 (0.4652-0.4793)
CH_X30_Y30_P3_K2_BF 0.769 (0.6155-0.8528) 0.1459 (0.1133-0.1585)
CH_X30_Y30_P3_K2_BT 1.195 (1.054-1.326) 0.3135 (0.2682-0.3387)
CH_X30_Y30_P3_K3_BF 0.7731 (0.7215-0.8598) 0.4028 (0.4018-0.4083)
CH_X30_Y30_P3_K3_BT 3.252 (3.038-3.492) 0.3983 (0.3977-0.4054)
CH_X30_Y30_PM_K2_BF 2.618 (2.367-2.798) 0.4266 (0.3943-0.4473)
CH_X30_Y30_PM_K2_BT 3.817 (3.12-4.179) 0.4266 (0.3788-0.4429)
CH_X30_Y30_PM_K3_BF 0.9592 (0.8971-1.011) 0.3943 (0.3925-0.4368)
CH_X30_Y30_PM_K3_BT 2.458 (2.321-2.677) 0.3089 (0.3079-0.3134)

CH_X5_Y5_P1_K2_BF 0 (0-0) 0 (0-0)
CH_X5_Y5_P1_K2_BT 0.09952 (0.09952-0.09952) 0 (0-0)
CH_X5_Y5_P1_K3_BF 0 (0-0) 0 (0-0)
CH_X5_Y5_P1_K3_BT 0 (0-0) 0.06452 (0-0.1707)
CH_X5_Y5_P2_K2_BF 0 (0-0) 0.3088 (0-0.3088)
CH_X5_Y5_P2_K2_BT 0 (0-0) 0 (0-0)
CH_X5_Y5_P2_K3_BF 0 (0-0) 0 (0-0)
CH_X5_Y5_P2_K3_BT 0.01377 (0.004552-0.05992) 0.07343 (0.03687-0.09074)
CH_X5_Y5_P3_K2_BF 0 (0-0) 0 (0-0)
CH_X5_Y5_P3_K2_BT 0 (0-0) 0 (0-0)
CH_X5_Y5_P3_K3_BF 0 (0-0) 0 (0-0)
CH_X5_Y5_P3_K3_BT 0.06049 (0-0.321) 0.7297 (0.7297-0.7297)
CH_X5_Y5_PM_K2_BF 0.2322 (0.2322-0.2322) 0 (0-0)
CH_X5_Y5_PM_K2_BT 0 (0-0) 0 (0-0)
CH_X5_Y5_PM_K3_BF 0 (0-0) 0 (0-0)
CH_X5_Y5_PM_K3_BT 0.02154 (0.001291-0.02283) 0.1291 (0.03336-0.2199)

LA_X10_Y10_P1_K2_BF 0.0576 (0.04877-0.06664) 0.02296 (0.01939-0.02517)
LA_X10_Y10_P1_K2_BT 0.2248 (0.1593-0.2989) 0.01303 (0.008897-0.02213)
LA_X10_Y10_P1_K3_BF 0.1379 (0.1265-0.1711) 0.0379 (0.0293-0.05081)
LA_X10_Y10_P1_K3_BT 1.495 (1.258-1.717) 0.04194 (0.02756-0.05821)
LA_X10_Y10_P2_K2_BF 0.664 (0.6066-0.9295) 0.07563 (0.01457-0.1538)

LXXII



ISG-RANDOM ISG-YENSK

LA_X10_Y10_P2_K2_BT 1.441 (0.926-1.797) 0.1667 (0.1667-0.3333)
LA_X10_Y10_P2_K3_BF 1.107 (0.8364-1.389) 0.1434 (0.06561-0.2426)
LA_X10_Y10_P2_K3_BT 3.928 (3.48-4.891) 0.09388 (0.05086-0.2052)
LA_X10_Y10_P3_K2_BF 0.1504 (0.1363-0.1942) 0.1606 (0.1292-0.1841)
LA_X10_Y10_P3_K2_BT 0.3767 (0.2864-0.4267) 0.1425 (0.1039-0.2012)
LA_X10_Y10_P3_K3_BF 0.4062 (0.3711-0.4406) 0.06307 (0.05453-0.0973)
LA_X10_Y10_P3_K3_BT 1.546 (1.192-1.888) 0.06128 (0.05579-0.06587)
LA_X10_Y10_PM_K2_BF 0.7089 (0.4916-1.209) 0.509 (0.494-0.5574)
LA_X10_Y10_PM_K2_BT 1.065 (0.8253-1.216) 0.04235 (0.01635-0.06308)
LA_X10_Y10_PM_K3_BF 0.9667 (0.8226-1.02) 0.2815 (0.2584-0.3548)
LA_X10_Y10_PM_K3_BT 2.134 (1.68-2.45) 0.1623 (0.1496-0.1752)
LA_X15_Y15_P1_K2_BF 0.2993 (0.2644-0.3561) 0.07021 (0.02956-0.1039)
LA_X15_Y15_P1_K2_BT 1.16 (1.038-1.342) 0.02451 (0.02021-0.02941)
LA_X15_Y15_P1_K3_BF 0.4939 (0.4286-0.5459) 0.07797 (0.03709-0.1627)
LA_X15_Y15_P1_K3_BT 3.261 (2.841-3.637) 0.1135 (0.1135-0.1183)
LA_X15_Y15_P2_K2_BF 0 (0-0) 0 (0-0)
LA_X15_Y15_P2_K2_BT 0 (0-0) 0 (0-0)
LA_X15_Y15_P2_K3_BF 1.279 (1.034-1.39) 0.374 (0.2869-0.4993)
LA_X15_Y15_P2_K3_BT 4.963 (4.16-5.442) 0.4237 (0.3883-0.5647)
LA_X15_Y15_P3_K2_BF 0.4699 (0.4142-0.5461) 0.6441 (0.5451-0.7635)
LA_X15_Y15_P3_K2_BT 1.795 (1.474-2.156) 0.8611 (0.6792-0.9132)
LA_X15_Y15_P3_K3_BF 0.7087 (0.6643-0.8015) 0.9174 (0.9174-1.059)
LA_X15_Y15_P3_K3_BT 2.849 (2.625-3.049) 0.3186 (0.2897-0.3342)
LA_X15_Y15_PM_K2_BF 0 (0-0) 0 (0-0)
LA_X15_Y15_PM_K2_BT 0 (0-0) 0 (0-0)
LA_X15_Y15_PM_K3_BF 0.6442 (0.5644-0.7331) 0.6691 (0.6683-0.6827)
LA_X15_Y15_PM_K3_BT 3.567 (3.178-3.816) 0.1714 (0.1667-0.1776)
LA_X20_Y20_P1_K2_BF 1.471 (0.932-1.965) 0.4903 (0.4683-0.5503)
LA_X20_Y20_P1_K2_BT 6.553 (5.346-8.766) 0.5556 (0.4816-0.6188)
LA_X20_Y20_P1_K3_BF 0.7637 (0.606-0.844) 0.02904 (0.02766-0.03846)
LA_X20_Y20_P1_K3_BT 5.371 (4.68-5.818) 0.02901 (0.02708-0.03952)
LA_X20_Y20_P2_K2_BF 1.276 (0.9601-1.635) 0.5316 (0.5039-0.5637)
LA_X20_Y20_P2_K2_BT 4.904 (4.3-5.305) 0.5564 (0.5097-0.6029)
LA_X20_Y20_P2_K3_BF 0.9352 (0.8591-1.029) 0.4851 (0.4832-0.5981)
LA_X20_Y20_P2_K3_BT 5.542 (4.718-6.112) 0.5887 (0.5881-0.5917)
LA_X20_Y20_P3_K2_BF 1.408 (1.077-1.55) 0.515 (0.4823-0.537)
LA_X20_Y20_P3_K2_BT 5.118 (4.447-5.481) 0.6485 (0.536-0.7524)
LA_X20_Y20_P3_K3_BF 0.8049 (0.6837-0.8924) 0.2749 (0.2707-0.2842)
LA_X20_Y20_P3_K3_BT 5.164 (4.794-5.672) 0.1241 (0.1232-0.1376)
LA_X20_Y20_PM_K2_BF 1.888 (1.609-2.41) 0.454 (0.4526-0.5289)
LA_X20_Y20_PM_K2_BT 4.419 (3.639-5.044) 0.4625 (0.2309-0.4659)
LA_X20_Y20_PM_K3_BF 0.8867 (0.7545-0.9238) 0.3331 (0.3167-0.4533)
LA_X20_Y20_PM_K3_BT 4.689 (4.336-5.04) 0.3198 (0.2625-0.3878)
LA_X30_Y30_P1_K2_BF 0.6923 (0.6181-0.7383) 0.01234 (0.01189-0.02688)
LA_X30_Y30_P1_K2_BT 6.187 (5.107-6.725) 0.02616 (0.01185-0.02661)
LA_X30_Y30_P1_K3_BF 0.8273 (0.7146-0.8895) 0.2172 (0.2114-0.2241)
LA_X30_Y30_P1_K3_BT 5.637 (5.008-6.086) 0.6951 (0.6949-0.6956)
LA_X30_Y30_P2_K2_BF 2.784 (2.447-2.929) 0.8071 (0.7835-0.8071)
LA_X30_Y30_P2_K2_BT 7.949 (7.413-8.583) 0.7689 (0.7688-0.7835)
LA_X30_Y30_P2_K3_BF 1.139 (1.068-1.191) 0.1716 (0.1716-0.1731)
LA_X30_Y30_P2_K3_BT 5.502 (4.991-5.938) 0.1205 (0.1202-0.1654)
LA_X30_Y30_P3_K2_BF 0.9054 (0.7776-1.011) 0.7605 (0.6346-0.7669)
LA_X30_Y30_P3_K2_BT 5.944 (5.368-6.874) 0.4532 (0.4362-0.4681)
LA_X30_Y30_P3_K3_BF 0.9423 (0.8453-1.01) 0.1738 (0.1728-0.1752)
LA_X30_Y30_P3_K3_BT 5.494 (5.152-5.919) 0.2265 (0.2034-0.2277)
LA_X30_Y30_PM_K2_BF 8.735 (6.701-11.31) 0.6948 (0.6948-0.7401)
LA_X30_Y30_PM_K2_BT 10.99 (10.3-12.28) 0.602 (0.5965-0.6682)
LA_X30_Y30_PM_K3_BF 1.399 (1.287-1.467) 0.3609 (0.3589-0.3667)
LA_X30_Y30_PM_K3_BT 7.705 (7.162-8.017) 0.5628 (0.5625-0.5723)

LA_X5_Y5_P1_K2_BF 0.1943 (0-0.1943) 0 (0-0)
LA_X5_Y5_P1_K2_BT 0.2967 (0.2967-0.2967) 0 (0-0)
LA_X5_Y5_P1_K3_BF 0 (0-0) 0 (0-0)
LA_X5_Y5_P1_K3_BT 0.02101 (0-0.3333) 0.08333 (0-0.4192)
LA_X5_Y5_P2_K2_BF 0 (0-0) 0 (0-0)
LA_X5_Y5_P2_K2_BT 0 (0-0) 0 (0-0)
LA_X5_Y5_P2_K3_BF 0 (0-0) 0 (0-0)
LA_X5_Y5_P2_K3_BT 0.02101 (0-0.3333) 0 (0-0.2176)
LA_X5_Y5_P3_K2_BF 0.329 (0-0.329) 0 (0-0)
LA_X5_Y5_P3_K2_BT 0 (0-0) 0 (0-0)
LA_X5_Y5_P3_K3_BF 0.004272 (0-0.004272) 0 (0-0)
LA_X5_Y5_P3_K3_BT 0 (0-0.12) 0.1249 (0.1249-0.1262)
LA_X5_Y5_PM_K2_BF 0 (0-0.4297) 0 (0-0)
LA_X5_Y5_PM_K2_BT 0 (0-0) 0 (0-0)

LXXIII



ISG-RANDOM ISG-YENSK

LA_X5_Y5_PM_K3_BF 0 (0-0) 0 (0-0)
LA_X5_Y5_PM_K3_BT 0.05357 (0.03297-0.08686) 0.07195 (0.005787-0.1031)

NO_X10_Y10_P1_K2_BF 0.2038 (0.1552-0.2348) 0.04728 (0.04145-0.1042)
NO_X10_Y10_P1_K2_BT 0.3939 (0.3041-0.4707) 0.04649 (0.04162-0.1076)
NO_X10_Y10_P1_K3_BF 0.2535 (0.2238-0.2871) 0.03354 (0.02848-0.04609)
NO_X10_Y10_P1_K3_BT 1.104 (0.7431-1.28) 0.1967 (0.1831-0.2421)
NO_X10_Y10_P2_K2_BF 1.027 (0.5287-1.193) 0.2787 (0.2298-0.3453)
NO_X10_Y10_P2_K2_BT 2.163 (1.653-2.382) 0.7404 (0.6486-0.7736)
NO_X10_Y10_P2_K3_BF 0.4362 (0.3878-0.4753) 0.2529 (0.2481-0.2778)
NO_X10_Y10_P2_K3_BT 0.9972 (0.8973-1.206) 0.2583 (0.2502-0.2667)
NO_X10_Y10_P3_K2_BF 0.2855 (0.2016-0.3264) 0.497 (0.4908-0.5108)
NO_X10_Y10_P3_K2_BT 0.6191 (0.509-0.7272) 0.4815 (0.4683-0.5029)
NO_X10_Y10_P3_K3_BF 0.3638 (0.3164-0.4058) 0.2275 (0.2199-0.2393)
NO_X10_Y10_P3_K3_BT 0.8891 (0.7246-0.9787) 0.4154 (0.4087-0.4428)
NO_X10_Y10_PM_K2_BF 0.6884 (0.4916-1.058) 0.6191 (0.4568-0.7842)
NO_X10_Y10_PM_K2_BT 1.901 (1.343-2.383) 0.4365 (0.2695-0.4855)
NO_X10_Y10_PM_K3_BF 0.496 (0.4205-0.5447) 0.1909 (0.1079-0.2063)
NO_X10_Y10_PM_K3_BT 1.085 (0.9712-1.273) 0.1052 (0.09889-0.1132)
NO_X15_Y15_P1_K2_BF 0.4795 (0.4035-0.5704) 0.0247 (0.01852-0.06795)
NO_X15_Y15_P1_K2_BT 1.345 (1.064-1.511) 0.0247 (0.0247-0.06588)
NO_X15_Y15_P1_K3_BF 0.5384 (0.4142-0.6317) 0.03899 (0.03543-0.04398)
NO_X15_Y15_P1_K3_BT 2.13 (1.897-2.36) 0.1092 (0.03616-0.1219)
NO_X15_Y15_P2_K2_BF 0 (0-0) 0 (0-0)
NO_X15_Y15_P2_K2_BT 0 (0-0) 0 (0-0)
NO_X15_Y15_P2_K3_BF 0.6088 (0.5128-0.6738) 0.3068 (0.2959-0.3329)
NO_X15_Y15_P2_K3_BT 2.634 (2.378-3) 0.335 (0.3232-0.3547)
NO_X15_Y15_P3_K2_BF 0.6743 (0.5643-0.8147) 0.6458 (0.6458-1.092)
NO_X15_Y15_P3_K2_BT 2.517 (2.143-2.962) 0.9564 (0.8466-1.18)
NO_X15_Y15_P3_K3_BF 0.6091 (0.5447-0.6605) 0.2914 (0.2835-0.3127)
NO_X15_Y15_P3_K3_BT 1.841 (1.55-2.027) 0.2844 (0.2805-0.2985)
NO_X15_Y15_PM_K2_BF 0 (0-0) 0 (0-0)
NO_X15_Y15_PM_K2_BT 0 (0-0) 0 (0-0)
NO_X15_Y15_PM_K3_BF 0.952 (0.9051-1.008) 0.1188 (0.1008-0.1263)
NO_X15_Y15_PM_K3_BT 2.216 (1.895-2.431) 0.7348 (0.09514-0.7455)
NO_X20_Y20_P1_K2_BF 3.136 (2.236-5.691) 0.7412 (0.7412-0.782)
NO_X20_Y20_P1_K2_BT 11.11 (8.852-21.47) 0.6796 (0.6796-0.7104)
NO_X20_Y20_P1_K3_BF 0.7187 (0.6362-0.8496) 0.128 (0.1214-0.1336)
NO_X20_Y20_P1_K3_BT 3.417 (2.942-3.85) 0.1323 (0.1239-0.1368)
NO_X20_Y20_P2_K2_BF 1.899 (1.594-2.223) 0.6318 (0.6318-0.6573)
NO_X20_Y20_P2_K2_BT 3.109 (2.787-3.527) 0.8837 (0.8837-0.9003)
NO_X20_Y20_P2_K3_BF 0.8733 (0.8189-0.9199) 0.4567 (0.4484-0.4885)
NO_X20_Y20_P2_K3_BT 2.915 (2.548-3.061) 0.5057 (0.474-0.758)
NO_X20_Y20_P3_K2_BF 1.943 (1.599-2.234) 0.609 (0.609-0.6361)
NO_X20_Y20_P3_K2_BT 5.718 (5.343-5.984) 0.609 (0.609-0.6271)
NO_X20_Y20_P3_K3_BF 0.691 (0.6144-0.7977) 0.3801 (0.3727-0.4075)
NO_X20_Y20_P3_K3_BT 2.704 (2.476-3.149) 0.3526 (0.35-0.3987)
NO_X20_Y20_PM_K2_BF 2.736 (1.662-3.492) 0.5349 (0.4418-0.5349)
NO_X20_Y20_PM_K2_BT 5.246 (4.212-5.697) 0.9347 (0.9137-0.9383)
NO_X20_Y20_PM_K3_BF 0.7697 (0.6803-0.8226) 0.1462 (0.1414-0.1515)
NO_X20_Y20_PM_K3_BT 2.88 (2.584-3.11) 0.1508 (0.1466-0.1657)
NO_X30_Y30_P1_K2_BF 0.8965 (0.7933-0.9642) 0.01183 (0.005815-0.01296)
NO_X30_Y30_P1_K2_BT 4.504 (3.731-4.856) 0.01236 (0.01225-0.01285)
NO_X30_Y30_P1_K3_BF 0.6528 (0.5942-0.7111) 0.08196 (0.05557-0.08381)
NO_X30_Y30_P1_K3_BT 3.104 (2.77-3.327) 0.03115 (0.03043-0.08168)
NO_X30_Y30_P2_K2_BF 3.416 (3.054-3.762) 0.7635 (0.7164-0.7927)
NO_X30_Y30_P2_K2_BT 8.483 (8.008-9.004) 0.8091 (0.7754-0.8577)
NO_X30_Y30_P2_K3_BF 0.954 (0.9142-1.011) 0.6079 (0.5969-0.6128)
NO_X30_Y30_P2_K3_BT 3.544 (3.347-3.752) 0.6254 (0.6244-0.6382)
NO_X30_Y30_P3_K2_BF 1.385 (1.171-1.52) 0.5007 (0.3262-0.5157)
NO_X30_Y30_P3_K2_BT 5.27 (4.456-6.181) 0.7173 (0.6145-0.7194)
NO_X30_Y30_P3_K3_BF 1.006 (0.9387-1.04) 0.5246 (0.5167-0.545)
NO_X30_Y30_P3_K3_BT 3.543 (3.269-3.741) 0.8048 (0.5326-0.8058)
NO_X30_Y30_PM_K2_BF 12.72 (9.122-17.07) 0.9871 (0.6948-1.912)
NO_X30_Y30_PM_K2_BT 12.65 (11.1-16.18) 0.8616 (0.8616-8.062)
NO_X30_Y30_PM_K3_BF 0.9392 (0.8887-0.9873) 0.222 (0.2204-0.2237)
NO_X30_Y30_PM_K3_BT 3.656 (3.363-3.922) 0.2297 (0.2273-0.2314)

Table B.3: Raw values of different instances of the IGD+ indicator. Median
(lower quartile - upper quartile).
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CH_X10_Y10_P1_K2_BF 0.3278 (0.1358-1.016) 0.5455 (0.02273-2.265)
CH_X10_Y10_P1_K2_BT 0.2033 (0.1575-0.3081) 0.2227 (0.1286-0.5567)
CH_X10_Y10_P1_K3_BF 0.3116 (0.2621-0.3993) 0.2033 (0.1874-0.225)
CH_X10_Y10_P1_K3_BT 0.3451 (0.2981-7.071) 0.2085 (0.1944-0.2206)
CH_X10_Y10_P2_K2_BF 0.5477 (0.3333-0.7454) 0 (0-0)
CH_X10_Y10_P2_K2_BT 0 (0-0.6667) 0.6667 (0-4.082)
CH_X10_Y10_P2_K3_BF 7.071 (0.2834-7.81) 0.1969 (0.1842-0.217)
CH_X10_Y10_P2_K3_BT 3.592 (0.3683-3.592) 0.2 (0.1871-0.2277)
CH_X10_Y10_P3_K2_BF 0.5735 (0.3234-0.5735) 0 (0-0.125)
CH_X10_Y10_P3_K2_BT 0.25 (0.1768-0.2995) 0.25 (0.125-0.3417)
CH_X10_Y10_P3_K3_BF 1.202 (1.079-1.563) 0.1876 (0.18-0.2069)
CH_X10_Y10_P3_K3_BT 0.278 (0.2632-0.3065) 0.1951 (0.1825-0.204)
CH_X10_Y10_PM_K2_BF 0 (0-0.401) 1.162 (1.162-1.162)
CH_X10_Y10_PM_K2_BT 0.868 (0.868-0.868) 0 (0-2.132)
CH_X10_Y10_PM_K3_BF 0.3057 (0.2851-0.3857) 0.1765 (0.1689-0.2038)
CH_X10_Y10_PM_K3_BT 0.3608 (0.3287-0.5106) 0.2038 (0.1898-0.2154)
CH_X15_Y15_P1_K2_BF 0.2857 (0.2227-0.5207) 2.673 (2.132-2.673)
CH_X15_Y15_P1_K2_BT 0.269 (0.269-0.6316) 0.4151 (0.3498-0.4542)
CH_X15_Y15_P1_K3_BF 0.203 (0.1952-0.2155) 0.319 (0.3111-0.3331)
CH_X15_Y15_P1_K3_BT 0.2733 (0.2453-0.3213) 0.2997 (0.2878-0.309)
CH_X15_Y15_P2_K2_BF 1.091 (0-1.512) 0 (0-2)
CH_X15_Y15_P2_K2_BT 2 (2-2) 0.5758 (0.5643-0.7755)
CH_X15_Y15_P2_K3_BF 4.123 (2.236-4.472) 0.2759 (0.2688-0.2821)
CH_X15_Y15_P2_K3_BT 0.3665 (0.3281-0.4091) 0.288 (0.282-0.2921)
CH_X15_Y15_P3_K2_BF 0.7713 (0.6263-1.118) 1 (0.8649-1.061)
CH_X15_Y15_P3_K2_BT 1.042 (0.9749-1.212) 1.155 (1.018-1.197)
CH_X15_Y15_P3_K3_BF 0.236 (0.2208-0.2547) 0.2656 (0.259-0.2718)
CH_X15_Y15_P3_K3_BT 0.3336 (0.3102-0.3784) 0.2617 (0.2579-0.2683)
CH_X15_Y15_PM_K2_BF 3.282 (2-3.282) 0.5185 (0.5185-0.9866)
CH_X15_Y15_PM_K2_BT 1.416 (1.414-2) 0 (0-2)
CH_X15_Y15_PM_K3_BF 0.23 (0.2186-0.2361) 0.3462 (0.2962-0.3602)
CH_X15_Y15_PM_K3_BT 0.3187 (0.2946-0.356) 0.2906 (0.2521-0.3338)
CH_X20_Y20_P1_K2_BF 0.6132 (0.5186-2.402) 0.3001 (0.2753-0.3406)
CH_X20_Y20_P1_K2_BT 0.6426 (0.564-1.129) 0.5336 (0.3964-0.5575)
CH_X20_Y20_P1_K3_BF 0.285 (0.245-0.2879) 0.3486 (0.3398-0.3502)
CH_X20_Y20_P1_K3_BT 1.004 (0.7906-1.223) 0.3607 (0.3536-0.3632)
CH_X20_Y20_P2_K2_BF 0.7589 (0.6585-0.8476) 0.329 (0.2871-0.3426)
CH_X20_Y20_P2_K2_BT 0.7882 (0.6093-3.656) 0.6261 (0.5986-1.163)
CH_X20_Y20_P2_K3_BF 1.611 (1.559-1.862) 0.3166 (0.3101-0.327)
CH_X20_Y20_P2_K3_BT 0.4975 (0.4975-5) 0.3632 (0.3515-0.3656)
CH_X20_Y20_P3_K2_BF 0.8119 (0.3064-2.949) 0.4118 (0.3847-10.61)
CH_X20_Y20_P3_K2_BT 0.604 (0.3225-0.7296) 1.491 (1.294-7.071)
CH_X20_Y20_P3_K3_BF 0.2301 (0.214-1.243) 3.536 (0.3031-3.536)
CH_X20_Y20_P3_K3_BT 0.5293 (0.5293-0.5295) 0.3133 (0.3072-2.749)
CH_X20_Y20_PM_K2_BF 0.2799 (0.2435-0.6858) 2.626 (2.626-2.626)
CH_X20_Y20_PM_K2_BT 0.5455 (0.3413-6.325) 0.4832 (0.4141-0.75)
CH_X20_Y20_PM_K3_BF 3.162 (0.3627-3.162) 0.461 (0.4325-0.4611)
CH_X20_Y20_PM_K3_BT 0.2498 (0.2126-0.906) 0.4306 (0.4079-0.435)
CH_X30_Y30_P1_K2_BF 0.6798 (0.5838-0.7167) 2.887 (2.887-2.887)
CH_X30_Y30_P1_K2_BT 1.114 (0.8607-21.21) 0.6202 (0.6202-3.015)
CH_X30_Y30_P1_K3_BF 0.5939 (0.5939-3.086) 1.388 (0.2604-11.2)
CH_X30_Y30_P1_K3_BT 0.1269 (0.1212-0.1312) 0.2595 (0.2571-0.2595)
CH_X30_Y30_P2_K2_BF 3.086 (1.848-3.086) 0.06135 (0.0603-0.06925)
CH_X30_Y30_P2_K2_BT 1.016 (0.7787-1.387) 3.536 (3.536-8.944)
CH_X30_Y30_P2_K3_BF 0.7184 (0.3019-0.7908) 10 (0.3065-10)
CH_X30_Y30_P2_K3_BT 3.43 (2.914-8.357) 2.265 (2.265-2.265)
CH_X30_Y30_P3_K2_BF 0.585 (0.5052-0.6238) 0.2534 (0.2424-0.2701)
CH_X30_Y30_P3_K2_BT 0.4145 (0.3764-0.4991) 1.598 (1.598-1.598)
CH_X30_Y30_P3_K3_BF 0.1798 (0.1728-0.1904) 0.2724 (0.2724-0.2749)
CH_X30_Y30_P3_K3_BT 1.225 (1.225-4.082) 0.258 (0.258-0.2596)
CH_X30_Y30_PM_K2_BF 0.1424 (0.1181-0.2001) 21.21 (1.65-21.21)
CH_X30_Y30_PM_K2_BT 5.657 (2.846-10) 0.8607 (0.8607-2.012)
CH_X30_Y30_PM_K3_BF 0.2483 (0.239-0.2703) 0.1489 (0.1478-0.3491)
CH_X30_Y30_PM_K3_BT 0.2654 (0.2067-3.313) 3.015 (3.015-17.68)

CH_X5_Y5_P1_K2_BF 5.303 (0-5.303) 0 (0-0)
CH_X5_Y5_P1_K2_BT 0 (0-0) 0 (0-0)
CH_X5_Y5_P1_K3_BF 0 (0-0) 0 (0-0)
CH_X5_Y5_P1_K3_BT 0 (0-0) 0.25 (0-0.25)
CH_X5_Y5_P2_K2_BF 0 (0-0) 0 (0-0)
CH_X5_Y5_P2_K2_BT 4.243 (0-4.243) 0 (0-0)
CH_X5_Y5_P2_K3_BF 0 (0-0) 0 (0-0)
CH_X5_Y5_P2_K3_BT 0.202 (0.1429-0.2474) 0.202 (0.202-0.2857)
CH_X5_Y5_P3_K2_BF 0 (0-0) 0 (0-0)
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CH_X5_Y5_P3_K2_BT 0 (0-0) 0 (0-0)
CH_X5_Y5_P3_K3_BF 0 (0-0) 0 (0-0)
CH_X5_Y5_P3_K3_BT 0 (0-0.2184) 0.2357 (0.1667-2.828)
CH_X5_Y5_PM_K2_BF 14.14 (14.14-14.14) 0 (0-0)
CH_X5_Y5_PM_K2_BT 1.768 (0-1.768) 0 (0-0)
CH_X5_Y5_PM_K3_BF 0 (0-9.806) 0 (0-0)
CH_X5_Y5_PM_K3_BT 0.1571 (0.1111-0.1925) 0.3333 (0.2485-1.622)
LA_X10_Y10_P1_K2_BF 0.1603 (0.1575-0.1632) 0.5033 (0.4866-0.5098)
LA_X10_Y10_P1_K2_BT 1 (0.3769-1) 0.1556 (0.1507-4.082)
LA_X10_Y10_P1_K3_BF 0.1717 (0.1619-0.1805) 0.1304 (0.1282-0.1368)
LA_X10_Y10_P1_K3_BT 0.2155 (0.1805-0.2266) 0.1296 (0.1277-0.1329)
LA_X10_Y10_P2_K2_BF 0.3499 (0.3499-0.378) 1.456 (0.5626-1.483)
LA_X10_Y10_P2_K2_BT 0.378 (0.3499-0.378) 7.071 (7.071-7.071)
LA_X10_Y10_P2_K3_BF 1.098 (1.098-1.098) 0.2236 (0.2-0.2449)
LA_X10_Y10_P2_K3_BT 0.3606 (0.3317-0.4663) 0.2449 (0.2236-3.592)
LA_X10_Y10_P3_K2_BF 0.217 (0.217-0.2294) 0.2632 (0.2121-0.2735)
LA_X10_Y10_P3_K2_BT 0.2236 (0.2236-0.2487) 0.1732 (0.1658-0.1803)
LA_X10_Y10_P3_K3_BF 0.404 (0.3776-0.433) 0.1434 (0.1335-0.1516)
LA_X10_Y10_P3_K3_BT 0.2334 (0.2064-0.2635) 0.1348 (0.1315-0.1403)
LA_X10_Y10_PM_K2_BF 0.4472 (0.4-0.4472) 0.2 (0.2-0.2828)
LA_X10_Y10_PM_K2_BT 0.3536 (0.3536-0.3536) 0.25 (0.2249-0.25)
LA_X10_Y10_PM_K3_BF 0.2652 (0.25-4.023) 3.162 (0.2253-3.162)
LA_X10_Y10_PM_K3_BT 0.2259 (0.2141-0.3004) 0.1895 (0.1845-5)
LA_X15_Y15_P1_K2_BF 0.3122 (0.2113-0.3605) 0.182 (0.181-0.201)
LA_X15_Y15_P1_K2_BT 1.094 (1.091-1.581) 0.2015 (0.1997-0.3011)
LA_X15_Y15_P1_K3_BF 0.09938 (0.08945-0.108) 0.1228 (0.1174-0.1236)
LA_X15_Y15_P1_K3_BT 0.1377 (0.1308-0.1946) 0.1869 (0.1178-0.4161)
LA_X15_Y15_P2_K2_BF 7.071 (2-7.071) 2.99 (1.104-8.165)
LA_X15_Y15_P2_K2_BT 2 (2-3.122) 0 (0-1)
LA_X15_Y15_P2_K3_BF 0.2211 (0.2049-0.2408) 1.091 (1.091-1.091)
LA_X15_Y15_P2_K3_BT 0.3105 (0.2878-0.347) 3.162 (3.162-3.162)
LA_X15_Y15_P3_K2_BF 0.2884 (0.2245-0.3033) 1.054 (1.054-1.055)
LA_X15_Y15_P3_K2_BT 0.5983 (0.5429-0.6455) 0.762 (0.4195-2.719)
LA_X15_Y15_P3_K3_BF 0.1229 (0.1172-0.1287) 7.071 (0.1645-7.071)
LA_X15_Y15_P3_K3_BT 0.184 (0.173-0.3442) 0.1686 (0.1616-0.176)
LA_X15_Y15_PM_K2_BF 1.414 (1-2) 1 (0-1)
LA_X15_Y15_PM_K2_BT 7.071 (2-7.071) 0 (0-0.75)
LA_X15_Y15_PM_K3_BF 0.1219 (0.1179-0.1275) 0.1415 (0.1409-0.1447)
LA_X15_Y15_PM_K3_BT 0.1647 (0.1563-0.1705) 0.1316 (0.1168-0.1335)
LA_X20_Y20_P1_K2_BF 0.4518 (0.3665-0.5364) 0.3265 (0.323-0.3392)
LA_X20_Y20_P1_K2_BT 0.7015 (0.4885-5) 12.65 (0.3299-13)
LA_X20_Y20_P1_K3_BF 0.1754 (0.1575-0.3582) 0.2232 (0.2231-0.2232)
LA_X20_Y20_P1_K3_BT 1.782 (1.782-2.204) 0.223 (0.2229-10.61)
LA_X20_Y20_P2_K2_BF 1.014 (0.5557-2.626) 0.3946 (0.3857-0.4105)
LA_X20_Y20_P2_K2_BT 0.3877 (0.3252-0.6538) 7.071 (0.3902-7.071)
LA_X20_Y20_P2_K3_BF 1.644 (0.1797-1.644) 3.43 (0.5548-3.43)
LA_X20_Y20_P2_K3_BT 0.6131 (0.6131-1.796) 0.3344 (0.3341-0.3395)
LA_X20_Y20_P3_K2_BF 0.5449 (0.4507-0.625) 0.9851 (0.982-0.9851)
LA_X20_Y20_P3_K2_BT 0.18 (0.1797-0.5961) 2.425 (2.425-2.828)
LA_X20_Y20_P3_K3_BF 0.2032 (0.1758-0.3651) 0.2428 (0.2422-0.5935)
LA_X20_Y20_P3_K3_BT 0.258 (0.2254-0.7979) 1.404 (0.2319-1.438)
LA_X20_Y20_PM_K2_BF 0.8512 (0.6537-1.731) 1.07 (1.069-1.763)
LA_X20_Y20_PM_K2_BT 0.395 (0.3151-5) 0.5909 (0.5909-0.5913)
LA_X20_Y20_PM_K3_BF 0.209 (0.1824-1) 0.9613 (0.9312-0.9791)
LA_X20_Y20_PM_K3_BT 0.7538 (0.7538-6.325) 0.3478 (0.3476-0.3521)
LA_X30_Y30_P1_K2_BF 0.3065 (0.2803-0.3479) 6.325 (4.364-6.325)
LA_X30_Y30_P1_K2_BT 1.037 (0.303-6.489) 0.4654 (0.4488-0.4716)
LA_X30_Y30_P1_K3_BF 21.21 (2.828-21.21) 0.141 (0.1399-0.1426)
LA_X30_Y30_P1_K3_BT 0.07277 (0.06577-0.1027) 6.489 (0.3281-13.36)
LA_X30_Y30_P2_K2_BF 3.536 (2.998-3.536) 3.536 (3.536-11.79)
LA_X30_Y30_P2_K2_BT 0.5989 (0.5726-0.8775) 0.2229 (0.2223-0.2229)
LA_X30_Y30_P2_K3_BF 2.132 (2.132-2.132) 0.1012 (0.101-3.086)
LA_X30_Y30_P2_K3_BT 0.8319 (0.1274-0.8319) 0.1113 (0.1109-2.343)
LA_X30_Y30_P3_K2_BF 0.3922 (0.3616-0.43) 1.213 (1.213-10)
LA_X30_Y30_P3_K2_BT 0.3435 (0.3057-0.3994) 0.1931 (0.07809-0.1999)
LA_X30_Y30_P3_K3_BF 0.07428 (0.06971-0.07905) 0.2699 (0.2542-0.2707)
LA_X30_Y30_P3_K3_BT 0.07431 (0.07287-0.08447) 10.69 (4.364-10.69)
LA_X30_Y30_PM_K2_BF 2.265 (2.265-2.981) 5.154 (3.606-5.154)
LA_X30_Y30_PM_K2_BT 4.851 (0.6084-21.21) 0.2223 (0.2223-0.2229)
LA_X30_Y30_PM_K3_BF 2.887 (2.887-2.887) 0.1734 (0.167-0.1736)
LA_X30_Y30_PM_K3_BT 1.555 (0.1375-1.555) 21.21 (21.21-21.21)

LA_X5_Y5_P1_K2_BF 0 (0-0) 0 (0-0)
LA_X5_Y5_P1_K2_BT 0 (0-1.308) 0 (0-0)
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LA_X5_Y5_P1_K3_BF 0 (0-2.673) 0 (0-0)
LA_X5_Y5_P1_K3_BT 0.3333 (0-0.3333) 0.3333 (0-0.3333)
LA_X5_Y5_P2_K2_BF 0 (0-0) 0 (0-0)
LA_X5_Y5_P2_K2_BT 0.9303 (0-0.9303) 0 (0-0)
LA_X5_Y5_P2_K3_BF 0 (0-0) 0 (0-0)
LA_X5_Y5_P2_K3_BT 0.3333 (0-0.3333) 0.4472 (0.08333-0.8246)
LA_X5_Y5_P3_K2_BF 0 (0-0) 0 (0-0)
LA_X5_Y5_P3_K2_BT 0 (0-0) 0 (0-0)
LA_X5_Y5_P3_K3_BF 0 (0-0) 0 (0-0)
LA_X5_Y5_P3_K3_BT 0 (0-0.2) 0.2 (0.2-0.2)
LA_X5_Y5_PM_K2_BF 0 (0-0) 0 (0-0)
LA_X5_Y5_PM_K2_BT 0 (0-0) 1.715 (0-1.715)
LA_X5_Y5_PM_K3_BF 0 (0-0) 0 (0-0)
LA_X5_Y5_PM_K3_BT 0.1429 (0.1429-0.202) 0.202 (0.1429-0.2474)

NO_X10_Y10_P1_K2_BF 0.1615 (0.1579-0.1662) 0.3499 (0.3442-0.4139)
NO_X10_Y10_P1_K2_BT 0.1875 (0.1813-0.2099) 0.3012 (0.2845-0.31)
NO_X10_Y10_P1_K3_BF 0.1257 (0.1167-0.1391) 0.1681 (0.1674-0.1712)
NO_X10_Y10_P1_K3_BT 0.448 (0.3661-0.6026) 0.1678 (0.1663-0.1694)
NO_X10_Y10_P2_K2_BF 0.433 (0.3801-0.496) 0.7806 (0.375-0.7906)
NO_X10_Y10_P2_K2_BT 0.5222 (0.4192-0.5874) 0.7806 (0.3801-0.7979)
NO_X10_Y10_P2_K3_BF 0.1159 (0.1109-0.1228) 0.157 (0.1558-0.1767)
NO_X10_Y10_P2_K3_BT 0.1628 (0.1457-0.1763) 0.1569 (0.1537-0.1581)
NO_X10_Y10_P3_K2_BF 3.78 (0.4027-3.78) 1.459 (0.5764-1.486)
NO_X10_Y10_P3_K2_BT 0.4201 (0.3674-0.4853) 1.696 (1.696-1.696)
NO_X10_Y10_P3_K3_BF 0.1105 (0.1026-0.1157) 0.1319 (0.1271-0.1338)
NO_X10_Y10_P3_K3_BT 0.1488 (0.1363-0.1575) 0.1325 (0.1312-0.1387)
NO_X10_Y10_PM_K2_BF 0.4 (0.4-0.4472) 0.4 (0.3464-0.4472)
NO_X10_Y10_PM_K2_BT 0.3536 (0.3536-0.3696) 0.3307 (0.3123-0.3307)
NO_X10_Y10_PM_K3_BF 0.151 (0.1435-0.1696) 0.2869 (0.2857-0.2891)
NO_X10_Y10_PM_K3_BT 0.1969 (0.1752-0.2541) 0.309 (0.3078-0.3112)
NO_X15_Y15_P1_K2_BF 0.2407 (0.2072-0.268) 0.2619 (0.2388-0.2632)
NO_X15_Y15_P1_K2_BT 0.2946 (0.2796-0.3573) 0.2632 (0.2619-0.3435)
NO_X15_Y15_P1_K3_BF 0.1071 (0.09885-0.1183) 0.2023 (0.2022-0.2064)
NO_X15_Y15_P1_K3_BT 0.1403 (0.1333-0.15) 0.2022 (0.2021-0.205)
NO_X15_Y15_P2_K2_BF 2.236 (2-3) 0 (0-1)
NO_X15_Y15_P2_K2_BT 2.828 (2-4.182) 0 (0-1)
NO_X15_Y15_P2_K3_BF 0.1487 (0.1419-0.1557) 0.2621 (0.2589-1.825)
NO_X15_Y15_P2_K3_BT 0.2126 (0.1968-0.2407) 0.2622 (0.2496-0.2631)
NO_X15_Y15_P3_K2_BF 0.4303 (0.4049-0.4544) 2.549 (1.571-2.549)
NO_X15_Y15_P3_K2_BT 0.5427 (0.4762-0.6123) 0.798 (0.798-0.8544)
NO_X15_Y15_P3_K3_BF 0.1412 (0.1362-0.1494) 0.2293 (0.2285-0.6066)
NO_X15_Y15_P3_K3_BT 0.2133 (0.2027-0.2519) 0.2312 (0.2244-0.2316)
NO_X15_Y15_PM_K2_BF 2.673 (1.414-2.957) 1.622 (1.622-2.192)
NO_X15_Y15_PM_K2_BT 2 (2-2.68) 0.7486 (0-1)
NO_X15_Y15_PM_K3_BF 0.09672 (0.0897-0.1271) 2.466 (2.466-2.466)
NO_X15_Y15_PM_K3_BT 0.1472 (0.1292-0.1727) 0.1814 (0.1647-1.523)
NO_X20_Y20_P1_K2_BF 0.646 (0.5695-0.6845) 4.714 (0.3956-6.168)
NO_X20_Y20_P1_K2_BT 1.543 (1.543-1.543) 0.3927 (0.3927-0.3956)
NO_X20_Y20_P1_K3_BF 0.2544 (0.116-0.2544) 0.9005 (0.9003-0.9005)
NO_X20_Y20_P1_K3_BT 0.1444 (0.1324-0.9715) 0.5274 (0.2118-0.5294)
NO_X20_Y20_P2_K2_BF 2.958 (2.5-5) 2.949 (0.9326-2.949)
NO_X20_Y20_P2_K2_BT 0.8972 (0.2629-1.155) 1.321 (0.7376-1.321)
NO_X20_Y20_P2_K3_BF 0.3679 (0.3679-0.3679) 0.1896 (0.1879-0.1926)
NO_X20_Y20_P2_K3_BT 0.2334 (0.2041-0.2334) 0.1929 (0.1913-0.1989)
NO_X20_Y20_P3_K2_BF 0.8484 (0.7026-0.8629) 0.4593 (0.4593-0.4635)
NO_X20_Y20_P3_K2_BT 0.8467 (0.7673-0.8496) 0.4593 (0.4593-0.4625)
NO_X20_Y20_P3_K3_BF 0.104 (0.09949-0.1092) 0.544 (0.5436-0.5442)
NO_X20_Y20_P3_K3_BT 0.1487 (0.1374-0.1667) 0.1851 (0.1848-0.189)
NO_X20_Y20_PM_K2_BF 2.108 (2.108-2.182) 2.406 (2.153-2.406)
NO_X20_Y20_PM_K2_BT 0.2791 (0.2273-0.324) 0.5913 (0.3273-3.899)
NO_X20_Y20_PM_K3_BF 0.2255 (0.2039-0.2366) 0.3714 (0.3675-0.3753)
NO_X20_Y20_PM_K3_BT 7.071 (2.297-7.071) 0.347 (0.3452-0.3517)
NO_X30_Y30_P1_K2_BF 2.265 (0.5808-2.265) 5.198 (3.738-15.81)
NO_X30_Y30_P1_K2_BT 0.7161 (0.129-6.489) 0.4228 (0.2283-2.998)
NO_X30_Y30_P1_K3_BF 1.812 (1.812-13.36) 16.33 (0.1034-16.33)
NO_X30_Y30_P1_K3_BT 0.05844 (0.05496-0.4394) 0.1324 (0.1033-0.1411)
NO_X30_Y30_P2_K2_BF 1.535 (0.898-6.489) 0.3008 (0.297-0.7789)
NO_X30_Y30_P2_K2_BT 2.887 (0.1083-2.887) 3.294 (3.262-3.552)
NO_X30_Y30_P2_K3_BF 2.914 (2.914-2.914) 0.1431 (0.1373-0.1929)
NO_X30_Y30_P2_K3_BT 0.3351 (0.08763-0.4231) 3.78 (3.78-3.78)
NO_X30_Y30_P3_K2_BF 7.071 (0.5012-7.071) 0.3814 (0.3339-1.027)
NO_X30_Y30_P3_K2_BT 1.215 (0.5929-21.21) 1.195 (1.178-21.21)
NO_X30_Y30_P3_K3_BF 0.08263 (0.07908-0.08581) 2.626 (0.1311-2.626)
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NO_X30_Y30_P3_K3_BT 0.1085 (0.09394-0.1151) 1.129 (0.379-1.129)
NO_X30_Y30_PM_K2_BF 1.474 (1.237-1.747) 0.2106 (0.1754-0.3123)
NO_X30_Y30_PM_K2_BT 2.661 (1.156-21.21) 2.914 (0.6998-10)
NO_X30_Y30_PM_K3_BF 1.029 (0.1119-1.029) 0.1467 (0.1416-0.1469)
NO_X30_Y30_PM_K3_BT 0.2107 (0.1841-0.314) 0.1741 (0.1729-1.115)

Table B.4: Raw values of different instances of the IGDX indicator. Median
(lower quartile - upper quartile).

B.3 Distance Matrices Approaches

B.3.1 IGD+Values

Instance Name NSGA-II NSGA-II-FD NSGA-II-FDAO NSGA-II-FDWOA

CH_X10_Y10_P1_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

CH_X10_Y10_P1_K3_BF 0.063 0.044 0.049 0.044
IQR 0.05-0.064 0.029-0.062 0.021-0.061 0.028-0.062

CH_X10_Y10_P2_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

CH_X10_Y10_P2_K3_BF 0.032 0.0062 0.0062 0.024
IQR 0.022-0.05 9e-18-0.024 3.6e-17-0.03 0.02-0.032

CH_X10_Y10_P3_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

CH_X10_Y10_P3_K3_BF 0.018 0.0075 0.0089 0.01
IQR 0.015-0.038 0-0.01 4.1e-05-0.023 3.3e-05-0.017

CH_X10_Y10_PM_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

CH_X10_Y10_PM_K3_BF 0.04 0.051 0.062 0.068
IQR 0.023-0.077 0.019-0.072 0.021-0.075 0.012-0.077

CH_X11_Y11_P1_K2_BF 0.017 0.021 0 0.0036
IQR 0.013-0.032 0.00089-0.023 0-0.024 0-0.021

CH_X11_Y11_P1_K3_BF 0.03 0.024 0.024 0.02
IQR 0.016-0.033 0.015-0.031 0.015-0.031 0.015-0.031

CH_X11_Y11_P2_K2_BF 0.12 0.008 0 0.016
IQR 0.016-0.12 0-0.016 0-0.016 0-0.016

CH_X11_Y11_P2_K3_BF 0.048 0.026 0.019 0.036
IQR 0.043-0.059 0.0081-0.031 0.0056-0.03 0.023-0.044

CH_X11_Y11_P3_K2_BF 0 0 0 0
IQR 0-0.025 0-0 0-0 0-0

CH_X11_Y11_P3_K3_BF 0.033 0.012 0.021 0.019
IQR 0.027-0.051 0.0032-0.023 0.0041-0.028 0.0096-0.024

CH_X11_Y11_PM_K2_BF 0.029 0 0 0
IQR 0.029-0.029 0-0 0-0 0-0

CH_X11_Y11_PM_K3_BF 0.046 0.037 0.032 0.042
IQR 0.042-0.051 0.0058-0.046 0.0089-0.054 0.029-0.046

CH_X12_Y12_P1_K2_BF 0 0 0 0
IQR 0-0.0016 0-0.0072 0-0 0-0.0072

CH_X12_Y12_P1_K3_BF 0.016 0.016 0.016 0.016
IQR 0.015-0.027 0.015-0.026 0.015-0.027 0.015-0.021

CH_X12_Y12_P2_K2_BF 0 0 0.0058 0
IQR 0-0.0058 0-0.0058 0-0.0058 0-0.0058

CH_X12_Y12_P2_K3_BF 0.029 0.016 0.012 0.016
IQR 0.019-0.033 0.0085-0.028 0.0085-0.022 0.0085-0.029

CH_X12_Y12_P3_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

CH_X12_Y12_P3_K3_BF 0.018 0.0087 0.0087 0.011
IQR 0.013-0.023 0.0058-0.012 0.0058-0.014 0.0073-0.016

CH_X12_Y12_PM_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

CH_X12_Y12_PM_K3_BF 0.063 0.063 0.063 0.063
IQR 0.062-0.071 0.0056-0.078 0.038-0.069 0.021-0.077

CH_X13_Y13_P1_K2_BF 0.014 0.03 0.03 0.0045
IQR 0.0045-0.044 0.0045-0.03 0.0011-0.03 5.6e-17-0.03

CH_X13_Y13_P1_K3_BF 0.018 0.009 0.009 0.009
IQR 0.009-0.018 0.009-0.018 0.009-0.018 0.009-0.009

LXXVIII



Instance Name NSGA-II NSGA-II-FD NSGA-II-FDAO NSGA-II-FDWOA

CH_X13_Y13_P2_K2_BF 0.093 0.016 0.016 0.016
IQR 0.02-0.16 0.011-0.079 0-0.1 0.0029-0.071

CH_X13_Y13_P2_K3_BF 0.033 0.021 0.014 0.033
IQR 0.024-0.055 0.005-0.04 0.0015-0.042 0.013-0.068

CH_X13_Y13_P3_K2_BF 0.022 0 0 4e-17
IQR 0.013-0.029 0-0.0091 0-0.0091 0-0.0091

CH_X13_Y13_P3_K3_BF 0.034 0.024 0.021 0.034
IQR 0.02-0.035 0.0093-0.033 0.01-0.034 0.011-0.034

CH_X13_Y13_PM_K2_BF 0.03 0.03 0.0045 0.012
IQR 0.0045-0.047 5.6e-17-0.03 5.6e-17-0.03 5.6e-17-0.03

CH_X13_Y13_PM_K3_BF 0.058 0.046 0.047 0.054
IQR 0.041-0.072 0.034-0.059 0.036-0.059 0.043-0.063

CH_X14_Y14_P1_K2_BF 0.0079 0.0079 0.0079 0.0079
IQR 0-0.0079 0.0079-0.0079 0.0079-0.0079 0.0079-0.032

CH_X14_Y14_P1_K3_BF 0.015 0.012 0.012 0.015
IQR 0.011-0.02 0.01-0.017 0.0097-0.017 0.012-0.017

CH_X14_Y14_P2_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

CH_X14_Y14_P2_K3_BF 0.042 0.033 0.026 0.031
IQR 0.031-0.057 0.024-0.041 0.019-0.033 0.026-0.046

CH_X14_Y14_P3_K2_BF 0.011 0.017 0.011 0.011
IQR 0.011-0.017 0.011-0.017 0-0.017 0.0069-0.017

CH_X14_Y14_P3_K3_BF 0.036 0.025 0.031 0.029
IQR 0.031-0.045 0.021-0.037 0.021-0.042 0.023-0.038

CH_X14_Y14_PM_K2_BF 0 0 0 0
IQR 0-0.025 0-0 0-0 0-0.017

CH_X14_Y14_PM_K3_BF 0.076 0.074 0.08 0.074
IQR 0.074-0.12 0.055-0.084 0.074-0.1 0.071-0.12

CH_X4_Y4_P1_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

CH_X4_Y4_P1_K3_BF 0.8 0.33 0.33 0.8
IQR 0.8-0.8 0.33-0.33 0.33-0.33 0.44-0.8

CH_X4_Y4_P2_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

CH_X4_Y4_P2_K3_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

CH_X4_Y4_P3_K2_BF 0 0 0 0
IQR 0-4.7e-16 0-0 0-0 0-0

CH_X4_Y4_P3_K3_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

CH_X4_Y4_PM_K2_BF 0.21 0 0 0
IQR 0-0.66 0-0 0-0 0-0

CH_X4_Y4_PM_K3_BF 0.19 0 0 0
IQR 0-0.44 0-0 0-0 0-0.19

CH_X5_Y5_P1_K2_BF 0.046 0 0 0
IQR 0.046-0.046 0-0 0-0 0-0

CH_X5_Y5_P1_K3_BF 0.065 0 0 0.065
IQR 0.065-0.065 0-0.065 0-0.048 0.065-0.065

CH_X5_Y5_P2_K2_BF 0.059 0 0 0
IQR 0-0.059 0-0 0-0 0-0

CH_X5_Y5_P2_K3_BF 0.17 0 0 0.062
IQR 0.062-0.79 0-0 0-0 0.052-0.17

CH_X5_Y5_P3_K2_BF 0.076 0 0 0
IQR 0.076-0.076 0-0 0-0 0-0

CH_X5_Y5_P3_K3_BF 1.2 0.11 0 0.11
IQR 0.62-1.4 0-0.11 0-0.11 0.11-0.38

CH_X5_Y5_PM_K2_BF 0.042 0 0 0
IQR 0.042-0.042 0-0 0-0 0-0

CH_X5_Y5_PM_K3_BF 0.062 0 0 0.062
IQR 0.062-0.47 0-0 0-0 0-0.062

CH_X6_Y6_P1_K2_BF 0.073 0 0 0
IQR 0.018-0.25 0-0 0-0 0-0

CH_X6_Y6_P1_K3_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

CH_X6_Y6_P2_K2_BF 0.073 0 0 0
IQR 0.073-0.28 0-0 0-0 0-0

CH_X6_Y6_P2_K3_BF 0 0 0 0.0098
IQR 0-0.17 0-0.0098 0-0 0-0.0098

CH_X6_Y6_P3_K2_BF 0.073 0 0 0
IQR 0.073-0.27 0-0 0-0 0-0

CH_X6_Y6_P3_K3_BF 0.5 0 0 0.059
IQR 0.059-0.5 0-0 0-0 0.03-0.059

CH_X6_Y6_PM_K2_BF 0.06 0 0 0

LXXIX



Instance Name NSGA-II NSGA-II-FD NSGA-II-FDAO NSGA-II-FDWOA

IQR 0-0.22 0-0 0-0 0-0
CH_X6_Y6_PM_K3_BF 0.16 0 0 0.16

IQR 0.16-0.71 0-0 0-0 0.16-0.16
CH_X7_Y7_P1_K2_BF 4.1e-16 0 0 0

IQR 4.1e-16-0.33 0-0 0-0 0-0
CH_X7_Y7_P1_K3_BF 0 0 0 0

IQR 0-0 0-0 0-0.055 0-0.055
CH_X7_Y7_P2_K2_BF 1.9e-16 0 0 0

IQR 1.9e-16-4.1e-16 0-0 0-0 0-0
CH_X7_Y7_P2_K3_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
CH_X7_Y7_P3_K2_BF 4.1e-16 0 0 0

IQR 4.1e-16-0.12 0-0 0-0 0-0
CH_X7_Y7_P3_K3_BF 0.015 0.015 0 0.015

IQR 0.015-0.015 0-0.046 0-0.015 0.015-0.029
CH_X7_Y7_PM_K2_BF 0.004 0 0 0

IQR 0.004-0.004 0-0 0-0 0-0
CH_X7_Y7_PM_K3_BF 0.12 0 0 0.047

IQR 0.12-0.13 0-0.047 0-0.044 0.047-0.047
CH_X8_Y8_P1_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
CH_X8_Y8_P1_K3_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
CH_X8_Y8_P2_K2_BF 0 0 0 0

IQR 0-4.1e-16 0-0 0-0 0-0
CH_X8_Y8_P2_K3_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
CH_X8_Y8_P3_K2_BF 4.1e-16 0 0 0

IQR 0-4.1e-16 0-0 0-0 0-0
CH_X8_Y8_P3_K3_BF 0.0029 0 0 0.0029

IQR 0.0029-0.0029 0-0.0029 0-0 0.0029-0.0029
CH_X8_Y8_PM_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
CH_X8_Y8_PM_K3_BF 0.024 0.015 0.015 0.024

IQR 0.018-0.039 0.015-0.016 0.0037-0.016 0.015-0.038
CH_X9_Y9_P1_K2_BF 0.089 0 0 0

IQR 0.053-0.089 0-0 0-0 0-0
CH_X9_Y9_P1_K3_BF 0.035 0.019 0.0083 0.019

IQR 0.019-0.035 0.0074-0.019 0.0074-0.019 0.019-0.019
CH_X9_Y9_P2_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
CH_X9_Y9_P2_K3_BF 0.05 0.018 0.0049 0.018

IQR 0.029-0.066 0-0.018 0-0.018 0.018-0.045
CH_X9_Y9_P3_K2_BF 0.016 0 0 0

IQR 0.016-0.19 0-0 0-0 0-0
CH_X9_Y9_P3_K3_BF 0.03 0.014 9.2e-05 0.029

IQR 0.029-0.049 0-0.03 0-0.016 0.016-0.03
CH_X9_Y9_PM_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
CH_X9_Y9_PM_K3_BF 0.061 0.034 0.043 0.061

IQR 0.049-0.12 0.024-0.059 0.023-0.053 0.034-0.11
LA_X10_Y10_P1_K2_BF 0.024 0.0054 0 0.024

IQR 0.0096-0.024 0.0013-0.0062 0-0.0062 0.0096-0.024
LA_X10_Y10_P1_K3_BF 0.055 0.055 0.055 0.055

IQR 0.055-0.055 0.055-0.056 0.049-0.055 0.055-0.055
LA_X10_Y10_P2_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
LA_X10_Y10_P2_K3_BF 0 0 0 0

IQR 0-0 0-1.1 0-0 0-1.1
LA_X10_Y10_P3_K2_BF 0.025 0.041 0.0015 0.1

IQR 0.0099-0.14 0.017-0.062 0-0.0074 0.033-0.15
LA_X10_Y10_P3_K3_BF 0.16 0.19 0.061 0.21

IQR 0.16-0.21 0.13-0.21 0.024-0.2 0.2-0.21
LA_X10_Y10_PM_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
LA_X10_Y10_PM_K3_BF 0 0 0 0

IQR 0-0 0-0.39 0-0 0-0.94
LA_X11_Y11_P1_K2_BF 0.015 0 0 0

IQR 0.015-0.076 0-0.015 0-0.011 0-0.015
LA_X11_Y11_P1_K3_BF 0.029 0.029 0.029 0.029

IQR 0.029-0.047 0.029-0.036 0.029-0.036 0.029-0.059
LA_X11_Y11_P2_K2_BF 0.008 0.0026 0.0036 0.0026

IQR 0.0026-0.008 0-0.0036 3.4e-06-0.0036 0.0026-0.008

LXXX



Instance Name NSGA-II NSGA-II-FD NSGA-II-FDAO NSGA-II-FDWOA

LA_X11_Y11_P2_K3_BF 0.028 0.53 0.028 0.53
IQR 0-0.55 0.079-0.53 0-0.51 0-0.67

LA_X11_Y11_P3_K2_BF 0 0 0 0
IQR 0-0 0-0.052 0-0 0-0

LA_X11_Y11_P3_K3_BF 0.071 0.07 0.07 0.089
IQR 0.07-0.1 0.07-0.1 0.07-0.071 0.07-0.14

LA_X11_Y11_PM_K2_BF 0.0074 0 0 0.0074
IQR 0.0074-0.0074 0-0.0074 0-0.0074 0-0.0074

LA_X11_Y11_PM_K3_BF 5.9e-06 0.0073 5.9e-06 0.0073
IQR 5.9e-06-0.0073 5.9e-06-0.36 5.9e-06-0.0073 5.9e-06-0.37

LA_X12_Y12_P1_K2_BF 0.013 0.013 0.013 0.013
IQR 0.013-0.013 0.013-0.013 0-0.013 0.013-0.013

LA_X12_Y12_P1_K3_BF 0.013 0.0097 0.0097 0.013
IQR 0.012-0.029 0.0097-0.029 0.0097-0.029 0.0097-0.029

LA_X12_Y12_P2_K2_BF 0.015 0 0 0.02
IQR 0.0034-0.05 0-0.027 0-0 0.015-0.05

LA_X12_Y12_P2_K3_BF 0.19 0.17 0.17 0.17
IQR 0.17-0.24 0.17-0.24 0.14-0.24 0.17-0.24

LA_X12_Y12_P3_K2_BF 0.018 0.018 0.018 0.018
IQR 0.018-0.018 0-0.018 0-0.018 0.018-0.018

LA_X12_Y12_P3_K3_BF 0.036 0.028 0.042 0.03
IQR 0.033-0.043 0.027-0.042 0.027-0.042 0.028-0.042

LA_X12_Y12_PM_K2_BF 0.061 0.013 0.0067 0.035
IQR 0.035-0.061 0.0067-0.054 0-0.035 0.018-0.061

LA_X12_Y12_PM_K3_BF 0.071 0.078 0.062 0.062
IQR 0.062-0.08 0.059-0.087 0.025-0.085 0.062-0.087

LA_X13_Y13_P1_K2_BF 0.014 0.014 0.014 0.014
IQR 0.014-0.014 0.014-0.014 0.014-0.014 0.014-0.014

LA_X13_Y13_P1_K3_BF 0.018 0.024 0.026 0.0094
IQR 0.011-0.028 0.0056-0.026 0.0077-0.028 0.0065-0.028

LA_X13_Y13_P2_K2_BF 0.048 0.048 0.048 0.048
IQR 0.0021-0.048 0-0.048 0.036-0.048 0.012-0.048

LA_X13_Y13_P2_K3_BF 0.07 0.084 0.057 0.059
IQR 0.06-0.087 0.057-0.084 0.053-0.084 0.055-0.084

LA_X13_Y13_P3_K2_BF 0.016 0.016 0.016 0.016
IQR 0.016-0.016 0.016-0.016 0.016-0.016 0.016-0.016

LA_X13_Y13_P3_K3_BF 0.033 0.019 0.017 0.022
IQR 0.025-0.04 0.014-0.032 0.013-0.032 0.017-0.031

LA_X13_Y13_PM_K2_BF 0.018 0 0 0.018
IQR 0.018-0.018 0-0.018 0-0.018 0-0.018

LA_X13_Y13_PM_K3_BF 0.048 0.035 0.042 0.04
IQR 0.027-0.049 0.022-0.048 0.024-0.048 0.024-0.048

LA_X14_Y14_P1_K2_BF 0 0 0 0
IQR 0-0 0-0.05 0-0.05 0-0.05

LA_X14_Y14_P1_K3_BF 0.022 0.017 0.017 0.017
IQR 0.017-0.029 0.015-0.02 0.012-0.02 0.015-0.022

LA_X14_Y14_P2_K2_BF 0 0 0.054 0
IQR 0-0 0-0.054 0-0.054 0-0.054

LA_X14_Y14_P2_K3_BF 0.041 0.023 0.03 0.03
IQR 0.032-0.049 0.02-0.031 0.022-0.033 0.024-0.036

LA_X14_Y14_P3_K2_BF 0 0 0 0
IQR 0-0.054 0-0.054 0-0 0-0.054

LA_X14_Y14_P3_K3_BF 0.039 0.031 0.029 0.031
IQR 0.034-0.049 0.026-0.036 0.025-0.033 0.027-0.035

LA_X14_Y14_PM_K2_BF 0.038 0.038 0 0.038
IQR 0.038-0.085 0.032-0.085 0-0.038 0.032-0.038

LA_X14_Y14_PM_K3_BF 0.026 0.018 0.017 0.02
IQR 0.02-0.032 0.016-0.023 0.014-0.018 0.017-0.026

LA_X5_Y5_P1_K2_BF 0.68 0 0 0
IQR 0.68-0.68 0-0 0-0 0-0

LA_X5_Y5_P1_K3_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

LA_X5_Y5_P2_K2_BF 0.96 0 0 0
IQR 0.96-0.96 0-0 0-0 0-0

LA_X5_Y5_P2_K3_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

LA_X5_Y5_P3_K2_BF 0.86 0 0 0
IQR 0.86-0.86 0-0 0-0 0-0

LA_X5_Y5_P3_K3_BF 0.037 0.037 0.016 0.037
IQR 0.037-0.037 0.037-0.037 0.0028-0.037 0.037-0.037

LA_X5_Y5_PM_K2_BF 0.83 0 0 0
IQR 0.83-0.83 0-0 0-0 0-0

LA_X5_Y5_PM_K3_BF 0.15 0.15 0.0069 0.15

LXXXI



Instance Name NSGA-II NSGA-II-FD NSGA-II-FDAO NSGA-II-FDWOA

IQR 0.15-0.15 0.14-0.15 0-0.13 0.15-0.15
LA_X6_Y6_P1_K2_BF 0.71 0 0 0

IQR 0.71-0.71 0-0 0-0 0-0
LA_X6_Y6_P1_K3_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
LA_X6_Y6_P2_K2_BF 0.71 0 0 0

IQR 0.71-0.71 0-0 0-0 0-0
LA_X6_Y6_P2_K3_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
LA_X6_Y6_P3_K2_BF 0.71 0 0 0

IQR 0.71-0.71 0-0 0-0 0-0
LA_X6_Y6_P3_K3_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
LA_X6_Y6_PM_K2_BF 0.81 0 0 0

IQR 0.81-0.81 0-0 0-0 0-0
LA_X6_Y6_PM_K3_BF 0.25 0.25 0.1 0.25

IQR 0.25-0.25 0.25-0.25 0.067-0.25 0.25-0.25
LA_X7_Y7_P1_K2_BF 0.5 0.5 0 0.5

IQR 0.12-0.5 0.5-0.5 0-0 0.5-0.71
LA_X7_Y7_P1_K3_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
LA_X7_Y7_P2_K2_BF 0.5 0.5 0 0.5

IQR 0.5-0.5 0.5-0.5 0-0.5 0.5-0.5
LA_X7_Y7_P2_K3_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
LA_X7_Y7_P3_K2_BF 0.5 0.5 0 0.5

IQR 0.5-0.71 0.5-0.71 0-0 0.5-0.71
LA_X7_Y7_P3_K3_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
LA_X7_Y7_PM_K2_BF 0.71 0.5 0 0.71

IQR 0.5-0.71 0.5-0.71 0-0.71 0.55-0.71
LA_X7_Y7_PM_K3_BF 0.21 0.21 0.032 0.21

IQR 0.21-0.21 0.12-0.21 0.0089-0.21 0.21-0.21
LA_X8_Y8_P1_K2_BF 0.26 0 0 0

IQR 0.06-0.26 0-0 0-0 0-0.26
LA_X8_Y8_P1_K3_BF 0.15 0.15 0.15 0.15

IQR 0.15-0.15 0.15-0.15 0.053-0.15 0.15-0.15
LA_X8_Y8_P2_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
LA_X8_Y8_P2_K3_BF 0.33 0.33 0.33 0.33

IQR 0.33-0.33 0.33-0.47 0.33-0.33 0.33-0.33
LA_X8_Y8_P3_K2_BF 0.26 0 0 0

IQR 0-0.26 0-0 0-0 0-0.26
LA_X8_Y8_P3_K3_BF 0.46 0.46 0.37 0.46

IQR 0.39-0.46 0.4-0.46 0.3-0.46 0.37-0.46
LA_X8_Y8_PM_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
LA_X8_Y8_PM_K3_BF 0.12 0.12 0.12 0.12

IQR 0.12-0.55 0.12-0.12 0.056-0.12 0.12-0.55
LA_X9_Y9_P1_K2_BF 8.1e-17 8.1e-17 8.1e-17 8.1e-17

IQR 8.1e-17-0.053 8.1e-17-8.1e-17 0-8.1e-17 8.1e-17-8.1e-17
LA_X9_Y9_P1_K3_BF 0.12 0.12 0.1 0.12

IQR 0.12-0.12 0.12-0.12 0.045-0.12 0.12-0.12
LA_X9_Y9_P2_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
LA_X9_Y9_P2_K3_BF 0 4 0 4

IQR 0-4 0.21-4 0-1.2 4-4
LA_X9_Y9_P3_K2_BF 0.23 0.23 0 0.23

IQR 0.23-0.23 0.23-0.23 0-0.23 0.23-0.66
LA_X9_Y9_P3_K3_BF 0.37 0.37 0.2 0.37

IQR 0.37-0.37 0.35-0.37 0.12-0.36 0.37-0.37
LA_X9_Y9_PM_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
LA_X9_Y9_PM_K3_BF 0.92 0.92 0.21 0.92

IQR 0.0047-0.92 0.36-0.92 0.0047-0.92 0.92-0.92
NO_X10_Y10_P1_K2_BF 0.019 0.0088 0.0088 0.016

IQR 0.016-0.025 0.0082-0.0088 0.0082-0.0093 0.016-0.016
NO_X10_Y10_P1_K3_BF 0.054 0.029 0.031 0.034

IQR 0.047-0.056 0.025-0.034 0.029-0.038 0.03-0.04
NO_X10_Y10_P2_K2_BF 1.1e-16 1.1e-16 1.1e-16 1.1e-16

IQR 1.1e-16-1.1e-16 1.1e-16-1.1e-16 1.1e-16-1.1e-16 1.1e-16-1.1e-16
NO_X10_Y10_P2_K3_BF 0.084 0.039 0.046 0.073

IQR 0.076-0.094 0.031-0.06 0.041-0.057 0.067-0.085
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Instance Name NSGA-II NSGA-II-FD NSGA-II-FDAO NSGA-II-FDWOA

NO_X10_Y10_P3_K2_BF 0.037 0.025 0.0035 0.037
IQR 0.034-0.067 0.0035-0.067 0.0035-0.018 0.037-0.067

NO_X10_Y10_P3_K3_BF 0.081 0.048 0.05 0.069
IQR 0.075-0.088 0.04-0.05 0.044-0.055 0.061-0.074

NO_X10_Y10_PM_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

NO_X10_Y10_PM_K3_BF 0.06 0.046 0.051 0.054
IQR 0.055-0.1 0.031-0.079 0.036-0.084 0.048-0.081

NO_X11_Y11_P1_K2_BF 0.031 0.031 0.03 0.03
IQR 0.029-0.034 0.027-0.034 0.025-0.033 0.026-0.033

NO_X11_Y11_P1_K3_BF 0.034 0.025 0.022 0.028
IQR 0.028-0.044 0.019-0.03 0.02-0.024 0.024-0.032

NO_X11_Y11_P2_K2_BF 0.027 0.025 0.025 0.027
IQR 0.022-0.027 0.025-0.026 0.02-0.025 0.027-0.027

NO_X11_Y11_P2_K3_BF 0.086 0.063 0.051 0.098
IQR 0.074-0.11 0.036-0.087 0.041-0.069 0.074-0.11

NO_X11_Y11_P3_K2_BF 0.012 0.024 0.023 0.024
IQR 0.0097-0.029 0.0081-0.026 0.012-0.024 0.011-0.027

NO_X11_Y11_P3_K3_BF 0.08 0.052 0.058 0.065
IQR 0.072-0.092 0.049-0.058 0.051-0.066 0.06-0.07

NO_X11_Y11_PM_K2_BF 0.0051 0 0 0.0051
IQR 0-0.0051 0-0.0051 0-0.0051 0-0.0051

NO_X11_Y11_PM_K3_BF 0.089 0.083 0.072 0.077
IQR 0.061-0.099 0.05-0.096 0.052-0.1 0.06-0.087

NO_X12_Y12_P1_K2_BF 0.022 0.022 0.022 0.022
IQR 0.022-0.06 0.021-0.056 0.02-0.049 0.02-0.042

NO_X12_Y12_P1_K3_BF 0.034 0.025 0.024 0.033
IQR 0.026-0.037 0.021-0.032 0.02-0.031 0.026-0.038

NO_X12_Y12_P2_K2_BF 0.045 0.065 0.038 0.065
IQR 0.026-0.065 0.039-0.12 0.02-0.065 0.045-0.12

NO_X12_Y12_P2_K3_BF 0.08 0.062 0.065 0.069
IQR 0.062-0.089 0.051-0.076 0.052-0.078 0.063-0.08

NO_X12_Y12_P3_K2_BF 0.067 0.061 0.058 0.061
IQR 0.043-0.067 0.029-0.067 0.051-0.067 0.042-0.067

NO_X12_Y12_P3_K3_BF 0.062 0.052 0.053 0.057
IQR 0.056-0.073 0.044-0.065 0.043-0.068 0.048-0.069

NO_X12_Y12_PM_K2_BF 0.034 0.032 0.033 0.035
IQR 0.03-0.056 0.028-0.056 0.028-0.056 0.028-0.056

NO_X12_Y12_PM_K3_BF 0.074 0.056 0.051 0.055
IQR 0.061-0.08 0.049-0.063 0.044-0.058 0.048-0.064

NO_X13_Y13_P1_K2_BF 0.017 0.017 0.017 0.017
IQR 0.017-0.047 0.017-0.045 0.017-0.05 0.017-0.047

NO_X13_Y13_P1_K3_BF 0.032 0.025 0.026 0.035
IQR 0.027-0.043 0.021-0.033 0.024-0.03 0.029-0.039

NO_X13_Y13_P2_K2_BF 0.13 0.13 0.091 0.16
IQR 0.069-0.17 0.074-0.17 0.067-0.16 0.074-0.18

NO_X13_Y13_P2_K3_BF 0.11 0.075 0.073 0.087
IQR 0.086-0.11 0.065-0.089 0.052-0.092 0.077-0.099

NO_X13_Y13_P3_K2_BF 0.083 0.068 0.068 0.068
IQR 0.046-0.094 0.041-0.094 0.044-0.094 0.039-0.083

NO_X13_Y13_P3_K3_BF 0.084 0.062 0.07 0.072
IQR 0.076-0.091 0.049-0.075 0.057-0.078 0.061-0.085

NO_X13_Y13_PM_K2_BF 0.028 0.028 0.026 0.028
IQR 0.028-0.054 0.022-0.063 0.019-0.055 0.026-0.063

NO_X13_Y13_PM_K3_BF 0.074 0.068 0.061 0.068
IQR 0.063-0.093 0.056-0.093 0.055-0.072 0.06-0.084

NO_X14_Y14_P1_K2_BF 0 0 0.05 0
IQR 0-0.05 0-0.05 0-0.05 0-0.05

NO_X14_Y14_P1_K3_BF 0.049 0.032 0.029 0.04
IQR 0.041-0.067 0.026-0.042 0.022-0.035 0.029-0.045

NO_X14_Y14_P2_K2_BF 0.13 0.13 0.13 0.13
IQR 0.13-0.13 0.13-0.13 0.13-0.13 0.13-0.13

NO_X14_Y14_P2_K3_BF 0.099 0.071 0.073 0.083
IQR 0.089-0.11 0.066-0.079 0.067-0.079 0.075-0.093

NO_X14_Y14_P3_K2_BF 0.054 0.054 0.024 0.024
IQR 0.024-0.054 0.024-0.054 0.024-0.054 0.024-0.054

NO_X14_Y14_P3_K3_BF 0.093 0.062 0.067 0.073
IQR 0.08-0.1 0.055-0.069 0.061-0.072 0.065-0.081

NO_X14_Y14_PM_K2_BF 0.038 0.038 0.047 0.085
IQR 0.038-0.085 0.0076-0.085 0.031-0.085 0.038-0.085

NO_X14_Y14_PM_K3_BF 0.074 0.05 0.055 0.067
IQR 0.064-0.093 0.046-0.058 0.045-0.059 0.059-0.072

NO_X4_Y4_P1_K2_BF 0 0 0 0
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Instance Name NSGA-II NSGA-II-FD NSGA-II-FDAO NSGA-II-FDWOA

IQR 0-0.04 0-0 0-0 0-0
NO_X4_Y4_P1_K3_BF 0.63 0.27 0.076 0.27

IQR 0.27-0.77 0.067-0.27 0-0.22 0.27-0.27
NO_X4_Y4_P2_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
NO_X4_Y4_P2_K3_BF 0.49 0 0 0.49

IQR 0.49-0.49 0-0 0-0.21 0.14-0.49
NO_X4_Y4_P3_K2_BF 0 0 0 0

IQR 0-0.018 0-0 0-0 0-0
NO_X4_Y4_P3_K3_BF 0.49 0 0 0.49

IQR 0.49-0.49 0-0.21 0-0 0.21-0.49
NO_X4_Y4_PM_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
NO_X4_Y4_PM_K3_BF 0.34 0.083 0.1 0.34

IQR 0.33-0.34 0-0.34 0-0.34 0.33-0.34
NO_X5_Y5_P1_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
NO_X5_Y5_P1_K3_BF 0.26 0.11 0.1 0.11

IQR 0.26-0.27 0.1-0.25 0.1-0.11 0.1-0.27
NO_X5_Y5_P2_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
NO_X5_Y5_P2_K3_BF 0.3 0.2 0.11 0.3

IQR 0.3-0.53 0.11-0.3 0.049-0.2 0.3-0.35
NO_X5_Y5_P3_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
NO_X5_Y5_P3_K3_BF 0.17 0.17 0.093 0.17

IQR 0.17-0.22 0.058-0.17 0.036-0.14 0.17-0.22
NO_X5_Y5_PM_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
NO_X5_Y5_PM_K3_BF 0.21 0.078 0.036 0.18

IQR 0.078-0.21 0.036-0.11 0-0.11 0.036-0.21
NO_X6_Y6_P1_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
NO_X6_Y6_P1_K3_BF 0.097 0.095 0.084 0.097

IQR 0.095-0.097 0.058-0.11 0.031-0.097 0.095-0.15
NO_X6_Y6_P2_K2_BF 0 0 0 0

IQR 0-0 0-3.2e-05 0-2.4e-05 0-3.2e-05
NO_X6_Y6_P2_K3_BF 0.083 0.055 0.055 0.11

IQR 0.028-0.12 0.023-0.08 0-0.065 0.0047-0.17
NO_X6_Y6_P3_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
NO_X6_Y6_P3_K3_BF 0.053 0.043 0.0035 0.043

IQR 0.043-0.082 0-0.043 0-0.043 0.034-0.053
NO_X6_Y6_PM_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
NO_X6_Y6_PM_K3_BF 0.093 0.041 0.03 0.056

IQR 0.082-0.093 0.013-0.056 0.011-0.056 0.013-0.082
NO_X7_Y7_P1_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
NO_X7_Y7_P1_K3_BF 0.044 0.044 0.044 0.044

IQR 0.04-0.068 0.039-0.056 0.044-0.044 0.041-0.069
NO_X7_Y7_P2_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
NO_X7_Y7_P2_K3_BF 0.039 0.035 0.035 0.039

IQR 0.039-0.039 0.019-0.039 0.025-0.039 0.028-0.04
NO_X7_Y7_P3_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
NO_X7_Y7_P3_K3_BF 0.05 0.04 0.041 0.05

IQR 0.047-0.05 0.028-0.05 0.034-0.065 0.036-0.05
NO_X7_Y7_PM_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
NO_X7_Y7_PM_K3_BF 0.061 0.028 0.017 0.042

IQR 0.053-0.067 0.015-0.035 0.012-0.027 0.034-0.053
NO_X8_Y8_P1_K2_BF 0 0 0 0

IQR 0-0.0088 0-0 0-0 0-0
NO_X8_Y8_P1_K3_BF 0.031 0.028 0.025 0.026

IQR 0.027-0.047 0.025-0.047 0.022-0.041 0.025-0.047
NO_X8_Y8_P2_K2_BF 7.6e-07 7.6e-07 7.6e-07 7.6e-07

IQR 7.6e-07-7.6e-07 1.9e-17-7.6e-07 7.6e-07-7.6e-07 1.9e-17-7.6e-07
NO_X8_Y8_P2_K3_BF 0.029 0.017 0.022 0.02

IQR 0.024-0.036 0.017-0.021 0.016-0.025 0.017-0.029
NO_X8_Y8_P3_K2_BF 0.011 0 0 0

IQR 0-0.011 0-0 0-0 0-0
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Instance Name NSGA-II NSGA-II-FD NSGA-II-FDAO NSGA-II-FDWOA

NO_X8_Y8_P3_K3_BF 0.025 0.022 0.018 0.023
IQR 0.022-0.031 0.018-0.046 0.016-0.021 0.02-0.029

NO_X8_Y8_PM_K2_BF 0.0033 0.0033 0.0033 0.0033
IQR 0.00084-0.0033 0.00084-0.0033 0.0033-0.0033 0.00084-0.0033

NO_X8_Y8_PM_K3_BF 0.046 0.038 0.038 0.042
IQR 0.044-0.051 0.026-0.042 0.023-0.046 0.028-0.052

NO_X9_Y9_P1_K2_BF 6.8e-17 6.8e-17 6.8e-17 6.8e-17
IQR 1.9e-17-0.021 6.8e-17-6.8e-17 1.9e-17-6.8e-17 6.8e-17-6.8e-17

NO_X9_Y9_P1_K3_BF 0.046 0.028 0.025 0.035
IQR 0.04-0.049 0.024-0.033 0.018-0.031 0.032-0.04

NO_X9_Y9_P2_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

NO_X9_Y9_P2_K3_BF 0.073 0.03 0.034 0.05
IQR 0.062-0.089 0.021-0.041 0.028-0.041 0.041-0.059

NO_X9_Y9_P3_K2_BF 0.12 0.12 0.036 0.12
IQR 0.084-0.12 0.048-0.12 0.036-0.084 0.12-0.12

NO_X9_Y9_P3_K3_BF 0.075 0.033 0.028 0.052
IQR 0.063-0.089 0.018-0.044 0.021-0.042 0.049-0.06

NO_X9_Y9_PM_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

NO_X9_Y9_PM_K3_BF 0.066 0.048 0.052 0.041
IQR 0.053-0.084 0.028-0.055 0.038-0.061 0.03-0.06

Table B.5: Raw values of different instances of the IGD+indicator. Shown are
the median and the IQR values below.

B.3.2 IGD Values

Instance Name NSGA-II NSGA-II-FD NSGA-II-FDAO NSGA-II-FDWOA

CH_X10_Y10_P1_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

CH_X10_Y10_P1_K3_BF 0.083 0.077 0.077 0.077
IQR 0.042-0.083 0.033-0.081 0.033-0.079 0.031-0.081

CH_X10_Y10_P2_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

CH_X10_Y10_P2_K3_BF 0.033 0.012 0.012 0.033
IQR 0.019-0.069 0.0026-0.066 0.011-0.059 0.022-0.066

CH_X10_Y10_P3_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

CH_X10_Y10_P3_K3_BF 0.019 0.011 0.012 0.011
IQR 0.014-0.029 0-0.012 0.0088-0.023 0.0061-0.017

CH_X10_Y10_PM_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

CH_X10_Y10_PM_K3_BF 0.057 0.057 0.057 0.058
IQR 0.027-0.071 0.027-0.074 0.03-0.071 0.023-0.073

CH_X11_Y11_P1_K2_BF 0.036 0.057 0 0.013
IQR 0.032-0.064 0.0032-0.058 0-0.058 0-0.057

CH_X11_Y11_P1_K3_BF 0.069 0.068 0.068 0.069
IQR 0.037-0.069 0.059-0.069 0.026-0.069 0.068-0.069

CH_X11_Y11_P2_K2_BF 0.1 0.018 0 0.018
IQR 0.018-0.1 0-0.018 0-0.018 0-0.018

CH_X11_Y11_P2_K3_BF 0.044 0.039 0.035 0.04
IQR 0.043-0.047 0.035-0.04 0.022-0.041 0.034-0.043

CH_X11_Y11_P3_K2_BF 0 0 0 0
IQR 0-0.032 0-0 0-0 0-0

CH_X11_Y11_P3_K3_BF 0.03 0.019 0.02 0.019
IQR 0.025-0.034 0.013-0.024 0.014-0.022 0.015-0.023

CH_X11_Y11_PM_K2_BF 0.093 0 0 0
IQR 0.093-0.093 0-0 0-0 0-0

CH_X11_Y11_PM_K3_BF 0.034 0.03 0.029 0.033
IQR 0.032-0.035 0.026-0.034 0.026-0.038 0.029-0.035

CH_X12_Y12_P1_K2_BF 0 0 0 0
IQR 0-0.0016 0-0.039 0-0 0-0.039

CH_X12_Y12_P1_K3_BF 0.052 0.052 0.052 0.052
IQR 0.036-0.054 0.032-0.053 0.05-0.054 0.052-0.053

CH_X12_Y12_P2_K2_BF 0 0 0.035 0
IQR 0-0.086 0-0.035 0-0.086 0-0.086

CH_X12_Y12_P2_K3_BF 0.038 0.028 0.026 0.031
IQR 0.032-0.04 0.025-0.033 0.025-0.031 0.025-0.037

CH_X12_Y12_P3_K2_BF 0 0 0 0
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Instance Name NSGA-II NSGA-II-FD NSGA-II-FDAO NSGA-II-FDWOA

IQR 0-0 0-0 0-0 0-0
CH_X12_Y12_P3_K3_BF 0.033 0.019 0.022 0.028

IQR 0.031-0.038 0.016-0.024 0.017-0.028 0.019-0.03
CH_X12_Y12_PM_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
CH_X12_Y12_PM_K3_BF 0.079 0.072 0.071 0.075

IQR 0.071-0.079 0.025-0.076 0.03-0.076 0.03-0.078
CH_X13_Y13_P1_K2_BF 0.073 0.065 0.065 0.045

IQR 0.045-0.1 0.027-0.069 0.021-0.069 0.021-0.065
CH_X13_Y13_P1_K3_BF 0.047 0.046 0.047 0.046

IQR 0.046-0.047 0.046-0.047 0.046-0.047 0.046-0.046
CH_X13_Y13_P2_K2_BF 0.077 0.02 0.02 0.02

IQR 0.028-0.12 0.02-0.09 0-0.14 0.0049-0.06
CH_X13_Y13_P2_K3_BF 0.025 0.02 0.016 0.022

IQR 0.023-0.03 0.0097-0.026 0.01-0.025 0.017-0.028
CH_X13_Y13_P3_K2_BF 0.045 0 0 0.013

IQR 0.026-0.051 0-0.013 0-0.013 0-0.022
CH_X13_Y13_P3_K3_BF 0.028 0.025 0.024 0.027

IQR 0.026-0.03 0.019-0.027 0.021-0.028 0.025-0.028
CH_X13_Y13_PM_K2_BF 0.039 0.034 0.031 0.034

IQR 0.023-0.052 0.01-0.04 0.0067-0.034 0.019-0.04
CH_X13_Y13_PM_K3_BF 0.048 0.045 0.044 0.046

IQR 0.036-0.053 0.034-0.051 0.033-0.05 0.036-0.051
CH_X14_Y14_P1_K2_BF 0.051 0.051 0.051 0.051

IQR 0-0.051 0.051-0.051 0.051-0.051 0.032-0.057
CH_X14_Y14_P1_K3_BF 0.033 0.033 0.033 0.033

IQR 0.024-0.034 0.032-0.034 0.016-0.034 0.033-0.034
CH_X14_Y14_P2_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
CH_X14_Y14_P2_K3_BF 0.022 0.017 0.015 0.018

IQR 0.018-0.028 0.014-0.022 0.012-0.018 0.016-0.026
CH_X14_Y14_P3_K2_BF 0.041 0.051 0.041 0.041

IQR 0.041-0.06 0.041-0.06 0-0.06 0.024-0.06
CH_X14_Y14_P3_K3_BF 0.02 0.017 0.018 0.019

IQR 0.02-0.024 0.015-0.018 0.016-0.021 0.018-0.022
CH_X14_Y14_PM_K2_BF 0 0 0 0

IQR 0-0.021 0-0 0-0 0-0.021
CH_X14_Y14_PM_K3_BF 0.11 0.11 0.11 0.11

IQR 0.1-0.11 0.093-0.11 0.11-0.11 0.099-0.12
CH_X4_Y4_P1_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
CH_X4_Y4_P1_K3_BF 0.76 0.47 0.47 0.63

IQR 0.69-0.76 0.47-0.47 0.47-0.47 0.51-0.76
CH_X4_Y4_P2_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
CH_X4_Y4_P2_K3_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
CH_X4_Y4_P3_K2_BF 0 0 0 0

IQR 0-0.26 0-0 0-0 0-0
CH_X4_Y4_P3_K3_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
CH_X4_Y4_PM_K2_BF 0.4 0 0 0

IQR 0-0.66 0-0 0-0 0-0
CH_X4_Y4_PM_K3_BF 0.51 0 0 0

IQR 0-0.54 0-0 0-0 0-0.51
CH_X5_Y5_P1_K2_BF 0.37 0 0 0

IQR 0.37-0.37 0-0 0-0 0-0
CH_X5_Y5_P1_K3_BF 0.3 0 0 0.3

IQR 0.3-0.3 0-0.3 0-0.23 0.3-0.3
CH_X5_Y5_P2_K2_BF 0.19 0 0 0

IQR 0-0.19 0-0 0-0 0-0
CH_X5_Y5_P2_K3_BF 0.13 0 0 0.08

IQR 0.08-0.45 0-0 0-0 0.08-0.13
CH_X5_Y5_P3_K2_BF 0.39 0 0 0

IQR 0.39-0.39 0-0 0-0 0-0
CH_X5_Y5_P3_K3_BF 0.57 0.13 0 0.13

IQR 0.4-0.72 0-0.13 0-0.13 0.13-0.27
CH_X5_Y5_PM_K2_BF 0.24 0 0 0

IQR 0.24-0.24 0-0 0-0 0-0
CH_X5_Y5_PM_K3_BF 0.095 0 0 0.095

IQR 0.095-0.33 0-0 0-0 0-0.095
CH_X6_Y6_P1_K2_BF 0.21 0 0 0

IQR 0.048-0.28 0-0 0-0 0-0

LXXXVI



Instance Name NSGA-II NSGA-II-FD NSGA-II-FDAO NSGA-II-FDWOA

CH_X6_Y6_P1_K3_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

CH_X6_Y6_P2_K2_BF 0.078 0 0 0
IQR 0.078-0.23 0-0 0-0 0-0

CH_X6_Y6_P2_K3_BF 0 0 0 0.082
IQR 0-0.19 0-0.082 0-0 0-0.082

CH_X6_Y6_P3_K2_BF 0.18 0 0 0
IQR 0.18-0.26 0-0 0-0 0-0

CH_X6_Y6_P3_K3_BF 0.31 0 0 0.2
IQR 0.22-0.31 0-0 0-0 0.086-0.22

CH_X6_Y6_PM_K2_BF 0.095 0 0 0
IQR 0-0.2 0-0 0-0 0-0

CH_X6_Y6_PM_K3_BF 0.29 0 0 0.29
IQR 0.29-0.43 0-0 0-0 0.29-0.29

CH_X7_Y7_P1_K2_BF 0.33 0 0 0
IQR 0.33-0.33 0-0 0-0 0-0

CH_X7_Y7_P1_K3_BF 0 0 0 0
IQR 0-0 0-0 0-0.057 0-0.057

CH_X7_Y7_P2_K2_BF 4.5e-16 0 0 0
IQR 4.5e-16-4.5e-16 0-0 0-0 0-0

CH_X7_Y7_P2_K3_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

CH_X7_Y7_P3_K2_BF 0.16 0 0 0
IQR 0.16-0.16 0-0 0-0 0-0

CH_X7_Y7_P3_K3_BF 0.12 0.047 0 0.12
IQR 0.12-0.12 0-0.12 0-0.11 0.12-0.13

CH_X7_Y7_PM_K2_BF 0.29 0 0 0
IQR 0.26-0.29 0-0 0-0 0-0

CH_X7_Y7_PM_K3_BF 0.099 0 0 0.059
IQR 0.099-0.11 0-0.059 0-0.053 0.059-0.059

CH_X8_Y8_P1_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

CH_X8_Y8_P1_K3_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

CH_X8_Y8_P2_K2_BF 0 0 0 0
IQR 0-0.33 0-0 0-0 0-0

CH_X8_Y8_P2_K3_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

CH_X8_Y8_P3_K2_BF 0.44 0 0 0
IQR 0-0.44 0-0 0-0 0-0

CH_X8_Y8_P3_K3_BF 0.072 0 0 0.072
IQR 0.072-0.072 0-0.059 0-0 0.072-0.072

CH_X8_Y8_PM_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

CH_X8_Y8_PM_K3_BF 0.074 0.044 0.044 0.069
IQR 0.053-0.14 0.031-0.074 0.011-0.074 0.026-0.12

CH_X9_Y9_P1_K2_BF 0.17 0 0 0
IQR 0.077-0.17 0-0 0-0 0-0

CH_X9_Y9_P1_K3_BF 0.039 0.032 0.026 0.032
IQR 0.032-0.045 0.019-0.032 0.019-0.032 0.032-0.032

CH_X9_Y9_P2_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

CH_X9_Y9_P2_K3_BF 0.067 0.037 0.032 0.06
IQR 0.05-0.083 0-0.06 0-0.06 0.051-0.067

CH_X9_Y9_P3_K2_BF 0.24 0 0 0
IQR 0.24-0.27 0-0 0-0 0-0

CH_X9_Y9_P3_K3_BF 0.044 0.023 0.023 0.038
IQR 0.042-0.052 0-0.042 0-0.038 0.023-0.044

CH_X9_Y9_PM_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

CH_X9_Y9_PM_K3_BF 0.09 0.078 0.075 0.11
IQR 0.071-0.12 0.044-0.097 0.047-0.089 0.078-0.12

LA_X10_Y10_P1_K2_BF 0.038 0.0054 0 0.038
IQR 0.019-0.038 0.0013-0.0062 0-0.0062 0.019-0.038

LA_X10_Y10_P1_K3_BF 0.064 0.063 0.062 0.063
IQR 0.063-0.064 0.063-0.063 0.04-0.063 0.063-0.063

LA_X10_Y10_P2_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

LA_X10_Y10_P2_K3_BF 0 0 0 0
IQR 0-0 0-0.41 0-0 0-0.42

LA_X10_Y10_P3_K2_BF 0.025 0.032 0.0093 0.046
IQR 0.017-0.067 0.018-0.053 0-0.018 0.038-0.07

LA_X10_Y10_P3_K3_BF 0.076 0.078 0.038 0.089
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Instance Name NSGA-II NSGA-II-FD NSGA-II-FDAO NSGA-II-FDWOA

IQR 0.076-0.1 0.062-0.089 0.027-0.084 0.084-0.11
LA_X10_Y10_PM_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
LA_X10_Y10_PM_K3_BF 0 0 0 0

IQR 0-0 0-0.14 0-0 0-0.25
LA_X11_Y11_P1_K2_BF 0.039 0 0 0

IQR 0.039-0.12 0-0.039 0-0.024 0-0.039
LA_X11_Y11_P1_K3_BF 0.06 0.059 0.059 0.059

IQR 0.059-0.061 0.059-0.059 0.059-0.059 0.059-0.067
LA_X11_Y11_P2_K2_BF 0.053 0.031 0.036 0.033

IQR 0.033-0.053 0-0.036 0.005-0.036 0.033-0.053
LA_X11_Y11_P2_K3_BF 0.054 0.18 0.054 0.18

IQR 0-0.18 0.078-0.18 0-0.18 0-0.22
LA_X11_Y11_P3_K2_BF 0 0 0 0

IQR 0-0 0-0.042 0-0 0-0
LA_X11_Y11_P3_K3_BF 0.06 0.06 0.06 0.06

IQR 0.06-0.066 0.054-0.06 0.06-0.06 0.06-0.091
LA_X11_Y11_PM_K2_BF 0.098 0 0 0.098

IQR 0.098-0.098 0-0.098 0-0.098 0-0.098
LA_X11_Y11_PM_K3_BF 0.022 0.026 0.022 0.034

IQR 0.022-0.034 0.022-0.087 0.022-0.031 0.022-0.089
LA_X12_Y12_P1_K2_BF 0.075 0.075 0.075 0.075

IQR 0.075-0.075 0.075-0.075 0-0.075 0.075-0.075
LA_X12_Y12_P1_K3_BF 0.03 0.03 0.03 0.03

IQR 0.03-0.035 0.03-0.035 0.03-0.035 0.03-0.035
LA_X12_Y12_P2_K2_BF 0.018 0 0 0.02

IQR 0.0066-0.067 0-0.059 0-0 0.015-0.073
LA_X12_Y12_P2_K3_BF 0.062 0.057 0.057 0.057

IQR 0.057-0.087 0.057-0.086 0.05-0.086 0.057-0.084
LA_X12_Y12_P3_K2_BF 0.056 0.056 0.056 0.056

IQR 0.056-0.056 0-0.056 0-0.056 0.056-0.056
LA_X12_Y12_P3_K3_BF 0.017 0.015 0.02 0.016

IQR 0.016-0.024 0.015-0.023 0.015-0.023 0.015-0.021
LA_X12_Y12_PM_K2_BF 0.056 0.022 0.012 0.044

IQR 0.044-0.056 0.012-0.05 0-0.042 0.027-0.056
LA_X12_Y12_PM_K3_BF 0.038 0.038 0.037 0.037

IQR 0.03-0.04 0.026-0.046 0.017-0.04 0.037-0.046
LA_X13_Y13_P1_K2_BF 0.066 0.066 0.066 0.066

IQR 0.066-0.066 0.066-0.066 0.066-0.066 0.066-0.066
LA_X13_Y13_P1_K3_BF 0.018 0.022 0.022 0.016

IQR 0.017-0.023 0.015-0.022 0.015-0.023 0.016-0.023
LA_X13_Y13_P2_K2_BF 0.068 0.066 0.067 0.068

IQR 0.012-0.068 0-0.068 0.061-0.068 0.017-0.068
LA_X13_Y13_P2_K3_BF 0.036 0.035 0.029 0.03

IQR 0.031-0.038 0.029-0.037 0.028-0.037 0.029-0.037
LA_X13_Y13_P3_K2_BF 0.039 0.039 0.039 0.039

IQR 0.039-0.039 0.039-0.039 0.039-0.039 0.039-0.039
LA_X13_Y13_P3_K3_BF 0.021 0.016 0.015 0.016

IQR 0.018-0.025 0.015-0.023 0.014-0.023 0.015-0.023
LA_X13_Y13_PM_K2_BF 0.031 0 0 0.031

IQR 0.031-0.031 0-0.031 0-0.031 0-0.031
LA_X13_Y13_PM_K3_BF 0.035 0.034 0.033 0.033

IQR 0.032-0.036 0.031-0.036 0.031-0.036 0.032-0.036
LA_X14_Y14_P1_K2_BF 0 0 0 0

IQR 0-0 0-0.044 0-0.044 0-0.044
LA_X14_Y14_P1_K3_BF 0.026 0.024 0.024 0.025

IQR 0.025-0.026 0.023-0.025 0.023-0.025 0.024-0.025
LA_X14_Y14_P2_K2_BF 0 0 0.054 0

IQR 0-0 0-0.054 0-0.054 0-0.054
LA_X14_Y14_P2_K3_BF 0.024 0.014 0.021 0.017

IQR 0.02-0.026 0.012-0.023 0.013-0.024 0.015-0.023
LA_X14_Y14_P3_K2_BF 0 0 0 0

IQR 0-0.054 0-0.054 0-0 0-0.054
LA_X14_Y14_P3_K3_BF 0.022 0.017 0.018 0.018

IQR 0.02-0.023 0.016-0.021 0.016-0.021 0.017-0.021
LA_X14_Y14_PM_K2_BF 0.038 0.052 0 0.038

IQR 0.038-0.061 0.038-0.061 0-0.038 0.038-0.038
LA_X14_Y14_PM_K3_BF 0.023 0.022 0.021 0.022

IQR 0.023-0.024 0.02-0.022 0.021-0.022 0.022-0.023
LA_X5_Y5_P1_K2_BF 0.71 0 0 0

IQR 0.71-0.71 0-0 0-0 0-0
LA_X5_Y5_P1_K3_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
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Instance Name NSGA-II NSGA-II-FD NSGA-II-FDAO NSGA-II-FDWOA

LA_X5_Y5_P2_K2_BF 0.79 0 0 0
IQR 0.79-0.79 0-0 0-0 0-0

LA_X5_Y5_P2_K3_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

LA_X5_Y5_P3_K2_BF 0.73 0 0 0
IQR 0.73-0.73 0-0 0-0 0-0

LA_X5_Y5_P3_K3_BF 0.55 0.55 0.25 0.55
IQR 0.55-0.55 0.5-0.55 0.063-0.54 0.55-0.55

LA_X5_Y5_PM_K2_BF 0.72 0 0 0
IQR 0.72-0.72 0-0 0-0 0-0

LA_X5_Y5_PM_K3_BF 0.3 0.3 0.17 0.3
IQR 0.3-0.3 0.24-0.3 0-0.17 0.3-0.3

LA_X6_Y6_P1_K2_BF 1 0 0 0
IQR 1-1 0-0 0-0 0-0

LA_X6_Y6_P1_K3_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

LA_X6_Y6_P2_K2_BF 1 0 0 0
IQR 1-1 0-0 0-0 0-0

LA_X6_Y6_P2_K3_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

LA_X6_Y6_P3_K2_BF 1 0 0 0
IQR 1-1 0-0 0-0 0-0

LA_X6_Y6_P3_K3_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

LA_X6_Y6_PM_K2_BF 0.82 0 0 0
IQR 0.82-0.82 0-0 0-0 0-0

LA_X6_Y6_PM_K3_BF 0.35 0.35 0.21 0.35
IQR 0.35-0.35 0.35-0.35 0.21-0.35 0.35-0.35

LA_X7_Y7_P1_K2_BF 0.87 0.87 0 0.87
IQR 0.22-0.87 0.87-0.87 0-0 0.87-0.87

LA_X7_Y7_P1_K3_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

LA_X7_Y7_P2_K2_BF 0.71 0.71 0 0.71
IQR 0.71-0.71 0.71-0.71 0-0.71 0.71-0.71

LA_X7_Y7_P2_K3_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

LA_X7_Y7_P3_K2_BF 0.87 0.87 0 0.87
IQR 0.87-0.87 0.87-0.87 0-0 0.87-0.87

LA_X7_Y7_P3_K3_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

LA_X7_Y7_PM_K2_BF 0.87 0.87 0 0.87
IQR 0.87-0.87 0.87-0.87 0-0.87 0.87-0.87

LA_X7_Y7_PM_K3_BF 0.2 0.2 0.14 0.2
IQR 0.2-0.2 0.16-0.2 0.085-0.19 0.2-0.2

LA_X8_Y8_P1_K2_BF 0.33 0 0 0
IQR 0.06-0.33 0-0 0-0 0-0.33

LA_X8_Y8_P1_K3_BF 0.28 0.28 0.26 0.28
IQR 0.28-0.28 0.26-0.28 0.14-0.28 0.28-0.28

LA_X8_Y8_P2_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

LA_X8_Y8_P2_K3_BF 0.49 0.49 0.49 0.49
IQR 0.49-0.49 0.49-0.65 0.49-0.49 0.49-0.49

LA_X8_Y8_P3_K2_BF 0.26 0 0 0
IQR 0-0.26 0-0 0-0 0-0.26

LA_X8_Y8_P3_K3_BF 0.49 0.49 0.38 0.49
IQR 0.41-0.49 0.38-0.49 0.33-0.49 0.38-0.49

LA_X8_Y8_PM_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

LA_X8_Y8_PM_K3_BF 0.26 0.26 0.22 0.26
IQR 0.26-0.44 0.26-0.26 0.14-0.26 0.26-0.44

LA_X9_Y9_P1_K2_BF 7.2e-06 7.2e-06 7.2e-06 7.2e-06
IQR 7.2e-06-0.11 7.2e-06-7.2e-06 0-7.2e-06 7.2e-06-7.2e-06

LA_X9_Y9_P1_K3_BF 0.11 0.11 0.079 0.11
IQR 0.11-0.11 0.09-0.11 0.05-0.11 0.11-0.11

LA_X9_Y9_P2_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

LA_X9_Y9_P2_K3_BF 0 2.1 0 2.1
IQR 0-2.1 0.12-2.1 0-0.67 2.1-2.1

LA_X9_Y9_P3_K2_BF 0.28 0.28 0 0.28
IQR 0.28-0.28 0.27-0.28 0-0.27 0.28-0.59

LA_X9_Y9_P3_K3_BF 0.17 0.16 0.099 0.17
IQR 0.17-0.17 0.14-0.17 0.082-0.17 0.16-0.17

LA_X9_Y9_PM_K2_BF 0 0 0 0
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Instance Name NSGA-II NSGA-II-FD NSGA-II-FDAO NSGA-II-FDWOA

IQR 0-0 0-0 0-0 0-0
LA_X9_Y9_PM_K3_BF 0.48 0.48 0.32 0.48

IQR 0.32-0.48 0.36-0.48 0.22-0.48 0.48-0.48
NO_X10_Y10_P1_K2_BF 0.029 0.017 0.017 0.029

IQR 0.029-0.03 0.006-0.017 0.0066-0.017 0.02-0.029
NO_X10_Y10_P1_K3_BF 0.032 0.03 0.03 0.031

IQR 0.031-0.032 0.03-0.03 0.03-0.031 0.031-0.031
NO_X10_Y10_P2_K2_BF 0.087 0.087 0.087 0.087

IQR 0.087-0.087 0.087-0.087 0.087-0.087 0.087-0.087
NO_X10_Y10_P2_K3_BF 0.023 0.019 0.019 0.023

IQR 0.021-0.025 0.016-0.022 0.017-0.021 0.022-0.024
NO_X10_Y10_P3_K2_BF 0.036 0.025 0.019 0.037

IQR 0.033-0.051 0.019-0.049 0.019-0.023 0.036-0.051
NO_X10_Y10_P3_K3_BF 0.022 0.017 0.017 0.021

IQR 0.019-0.023 0.013-0.019 0.013-0.019 0.018-0.022
NO_X10_Y10_PM_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
NO_X10_Y10_PM_K3_BF 0.026 0.023 0.023 0.024

IQR 0.023-0.03 0.02-0.027 0.02-0.041 0.021-0.03
NO_X11_Y11_P1_K2_BF 0.045 0.045 0.044 0.045

IQR 0.045-0.046 0.04-0.046 0.034-0.045 0.043-0.046
NO_X11_Y11_P1_K3_BF 0.02 0.019 0.019 0.019

IQR 0.02-0.02 0.018-0.019 0.019-0.019 0.019-0.02
NO_X11_Y11_P2_K2_BF 0.03 0.023 0.023 0.03

IQR 0.029-0.03 0.023-0.029 0.021-0.026 0.03-0.03
NO_X11_Y11_P2_K3_BF 0.021 0.02 0.018 0.024

IQR 0.018-0.025 0.014-0.024 0.014-0.023 0.019-0.026
NO_X11_Y11_P3_K2_BF 0.02 0.019 0.02 0.023

IQR 0.02-0.026 0.015-0.023 0.018-0.023 0.019-0.025
NO_X11_Y11_P3_K3_BF 0.02 0.017 0.019 0.02

IQR 0.019-0.021 0.016-0.019 0.018-0.019 0.019-0.02
NO_X11_Y11_PM_K2_BF 0.063 0 0 0.063

IQR 0-0.063 0-0.063 0-0.063 0-0.063
NO_X11_Y11_PM_K3_BF 0.031 0.029 0.027 0.035

IQR 0.027-0.051 0.023-0.045 0.023-0.043 0.024-0.051
NO_X12_Y12_P1_K2_BF 0.05 0.05 0.05 0.05

IQR 0.05-0.055 0.049-0.057 0.049-0.055 0.049-0.054
NO_X12_Y12_P1_K3_BF 0.029 0.028 0.028 0.028

IQR 0.028-0.029 0.027-0.028 0.028-0.028 0.028-0.029
NO_X12_Y12_P2_K2_BF 0.062 0.066 0.04 0.066

IQR 0.028-0.072 0.054-0.066 0.022-0.057 0.061-0.072
NO_X12_Y12_P2_K3_BF 0.025 0.023 0.022 0.024

IQR 0.024-0.025 0.02-0.025 0.019-0.024 0.022-0.025
NO_X12_Y12_P3_K2_BF 0.045 0.046 0.045 0.044

IQR 0.04-0.048 0.04-0.049 0.042-0.049 0.037-0.051
NO_X12_Y12_P3_K3_BF 0.028 0.027 0.026 0.027

IQR 0.027-0.029 0.025-0.028 0.025-0.028 0.027-0.028
NO_X12_Y12_PM_K2_BF 0.034 0.032 0.039 0.036

IQR 0.029-0.047 0.028-0.045 0.026-0.045 0.028-0.045
NO_X12_Y12_PM_K3_BF 0.021 0.018 0.017 0.019

IQR 0.019-0.022 0.017-0.02 0.015-0.019 0.017-0.02
NO_X13_Y13_P1_K2_BF 0.045 0.045 0.045 0.045

IQR 0.045-0.049 0.045-0.049 0.043-0.049 0.045-0.049
NO_X13_Y13_P1_K3_BF 0.023 0.022 0.022 0.022

IQR 0.022-0.023 0.021-0.022 0.021-0.022 0.022-0.023
NO_X13_Y13_P2_K2_BF 0.076 0.073 0.071 0.083

IQR 0.066-0.083 0.065-0.083 0.061-0.083 0.071-0.091
NO_X13_Y13_P2_K3_BF 0.018 0.016 0.016 0.017

IQR 0.017-0.019 0.015-0.017 0.013-0.017 0.015-0.018
NO_X13_Y13_P3_K2_BF 0.053 0.05 0.051 0.05

IQR 0.045-0.055 0.043-0.053 0.041-0.054 0.042-0.054
NO_X13_Y13_P3_K3_BF 0.02 0.018 0.018 0.019

IQR 0.019-0.02 0.017-0.018 0.017-0.019 0.018-0.02
NO_X13_Y13_PM_K2_BF 0.026 0.026 0.026 0.026

IQR 0.026-0.035 0.024-0.042 0.021-0.036 0.025-0.041
NO_X13_Y13_PM_K3_BF 0.023 0.022 0.022 0.023

IQR 0.022-0.025 0.02-0.023 0.021-0.023 0.021-0.024
NO_X14_Y14_P1_K2_BF 0 0 0.044 0

IQR 0-0.044 0-0.044 0-0.044 0-0.044
NO_X14_Y14_P1_K3_BF 0.025 0.024 0.024 0.025

IQR 0.025-0.026 0.024-0.025 0.024-0.024 0.024-0.025
NO_X14_Y14_P2_K2_BF 0.098 0.098 0.098 0.098

IQR 0.098-0.098 0.098-0.098 0.098-0.098 0.098-0.098
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Instance Name NSGA-II NSGA-II-FD NSGA-II-FDAO NSGA-II-FDWOA

NO_X14_Y14_P2_K3_BF 0.019 0.016 0.016 0.018
IQR 0.018-0.021 0.015-0.017 0.015-0.017 0.017-0.019

NO_X14_Y14_P3_K2_BF 0.076 0.076 0.059 0.059
IQR 0.059-0.076 0.059-0.076 0.059-0.074 0.059-0.076

NO_X14_Y14_P3_K3_BF 0.021 0.019 0.019 0.02
IQR 0.02-0.022 0.018-0.02 0.018-0.02 0.019-0.022

NO_X14_Y14_PM_K2_BF 0.052 0.048 0.052 0.061
IQR 0.038-0.061 0.0094-0.061 0.038-0.061 0.038-0.061

NO_X14_Y14_PM_K3_BF 0.017 0.015 0.015 0.016
IQR 0.016-0.018 0.014-0.015 0.014-0.016 0.015-0.016

NO_X4_Y4_P1_K2_BF 0 0 0 0
IQR 0-0.088 0-0 0-0 0-0

NO_X4_Y4_P1_K3_BF 0.42 0.35 0.1 0.42
IQR 0.42-0.52 0.1-0.42 0-0.27 0.35-0.42

NO_X4_Y4_P2_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

NO_X4_Y4_P2_K3_BF 0.67 0 0 0.67
IQR 0.67-0.67 0-0 0-0.24 0.24-0.67

NO_X4_Y4_P3_K2_BF 0 0 0 0
IQR 0-0.1 0-0 0-0 0-0

NO_X4_Y4_P3_K3_BF 0.65 0 0 0.65
IQR 0.65-0.65 0-0.24 0-0 0.24-0.65

NO_X4_Y4_PM_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

NO_X4_Y4_PM_K3_BF 0.39 0.13 0.13 0.39
IQR 0.34-0.39 0-0.37 0-0.39 0.33-0.39

NO_X5_Y5_P1_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

NO_X5_Y5_P1_K3_BF 0.24 0.2 0.2 0.21
IQR 0.24-0.24 0.2-0.22 0.18-0.2 0.2-0.24

NO_X5_Y5_P2_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

NO_X5_Y5_P2_K3_BF 0.29 0.19 0.17 0.27
IQR 0.25-0.35 0.17-0.26 0.12-0.21 0.23-0.29

NO_X5_Y5_P3_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

NO_X5_Y5_P3_K3_BF 0.18 0.14 0.11 0.18
IQR 0.18-0.18 0.093-0.18 0.084-0.16 0.18-0.18

NO_X5_Y5_PM_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

NO_X5_Y5_PM_K3_BF 0.14 0.091 0.036 0.14
IQR 0.14-0.18 0.036-0.11 0-0.11 0.081-0.16

NO_X6_Y6_P1_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

NO_X6_Y6_P1_K3_BF 0.18 0.17 0.11 0.18
IQR 0.17-0.18 0.11-0.18 0.11-0.17 0.17-0.19

NO_X6_Y6_P2_K2_BF 0 0 0 0
IQR 0-0 0-0.024 0-0.018 0-0.024

NO_X6_Y6_P2_K3_BF 0.072 0.06 0.06 0.086
IQR 0.029-0.097 0.026-0.076 0-0.063 0.0047-0.12

NO_X6_Y6_P3_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

NO_X6_Y6_P3_K3_BF 0.05 0.046 0.038 0.046
IQR 0.046-0.067 0-0.046 0-0.046 0.038-0.05

NO_X6_Y6_PM_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

NO_X6_Y6_PM_K3_BF 0.081 0.047 0.047 0.049
IQR 0.07-0.081 0.02-0.052 0.013-0.047 0.02-0.07

NO_X7_Y7_P1_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

NO_X7_Y7_P1_K3_BF 0.076 0.076 0.076 0.076
IQR 0.074-0.079 0.046-0.076 0.074-0.076 0.074-0.078

NO_X7_Y7_P2_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

NO_X7_Y7_P2_K3_BF 0.052 0.037 0.036 0.052
IQR 0.051-0.052 0.035-0.052 0.03-0.05 0.049-0.052

NO_X7_Y7_P3_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

NO_X7_Y7_P3_K3_BF 0.054 0.048 0.05 0.054
IQR 0.053-0.054 0.045-0.052 0.043-0.053 0.053-0.054

NO_X7_Y7_PM_K2_BF 0 0 0 0
IQR 0-0 0-0 0-0 0-0

NO_X7_Y7_PM_K3_BF 0.039 0.022 0.024 0.033

XCI



Instance Name NSGA-II NSGA-II-FD NSGA-II-FDAO NSGA-II-FDWOA

IQR 0.035-0.039 0.02-0.029 0.018-0.027 0.031-0.036
NO_X8_Y8_P1_K2_BF 0 0 0 0

IQR 0-0.045 0-0 0-0 0-0
NO_X8_Y8_P1_K3_BF 0.032 0.031 0.031 0.031

IQR 0.031-0.034 0.031-0.035 0.03-0.032 0.031-0.034
NO_X8_Y8_P2_K2_BF 0.063 0.061 0.037 0.063

IQR 0.037-0.063 0.017-0.063 0.028-0.062 0.017-0.063
NO_X8_Y8_P2_K3_BF 0.027 0.023 0.023 0.024

IQR 0.025-0.029 0.02-0.024 0.02-0.025 0.023-0.026
NO_X8_Y8_P3_K2_BF 0.011 0 0 0

IQR 0-0.011 0-0 0-0 0-0
NO_X8_Y8_P3_K3_BF 0.03 0.029 0.027 0.03

IQR 0.029-0.03 0.026-0.031 0.026-0.029 0.029-0.03
NO_X8_Y8_PM_K2_BF 0.071 0.09 0.056 0.09

IQR 0.056-0.09 0.071-0.09 0.056-0.09 0.071-0.09
NO_X8_Y8_PM_K3_BF 0.04 0.032 0.032 0.041

IQR 0.034-0.057 0.026-0.037 0.026-0.037 0.036-0.056
NO_X9_Y9_P1_K2_BF 0.00019 0.00019 0.00019 0.00019

IQR 0.00019-0.046 0.00019-0.00019 4.4e-06-0.00019 0.00019-0.00019
NO_X9_Y9_P1_K3_BF 0.026 0.024 0.015 0.025

IQR 0.026-0.027 0.012-0.025 0.011-0.025 0.025-0.026
NO_X9_Y9_P2_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
NO_X9_Y9_P2_K3_BF 0.026 0.018 0.017 0.024

IQR 0.024-0.029 0.016-0.021 0.016-0.022 0.02-0.026
NO_X9_Y9_P3_K2_BF 0.095 0.095 0.045 0.095

IQR 0.084-0.095 0.055-0.095 0.045-0.084 0.095-0.095
NO_X9_Y9_P3_K3_BF 0.023 0.014 0.014 0.022

IQR 0.022-0.024 0.011-0.019 0.012-0.016 0.02-0.022
NO_X9_Y9_PM_K2_BF 0 0 0 0

IQR 0-0 0-0 0-0 0-0
NO_X9_Y9_PM_K3_BF 0.044 0.037 0.038 0.037

IQR 0.04-0.05 0.031-0.042 0.035-0.045 0.034-0.046

Table B.6: Raw values of different instances of the IGD indicator. Shown are
the median and the IQR values below.

B.4 Curve Ordering Results

B.4.1 IGD+Values

Instance Name [WM21b] Centroid Geo. Med.

CH_X10_Y10_P1_K2_BF 0.31 0.079 0
IQR 0.19-0.47 0.063-0.27 0-0.045

CH_X10_Y10_P1_K3_BF 0.65 0.44 0.075
IQR 0.48-0.79 0.32-0.54 0.062-0.16

CH_X10_Y10_P2_K2_BF 0.48 0.42 0.43
IQR 0.32-0.66 0.42-0.93 0.42-0.43

CH_X10_Y10_P2_K3_BF 0.61 0.31 0.31
IQR 0.5-0.71 0.31-0.42 0.048-0.43

CH_X10_Y10_P3_K2_BF 0.25 0.067 0.071
IQR 0.12-0.31 0.00042-0.098 0.00012-0.071

CH_X10_Y10_P3_K3_BF 0.63 0.29 0.42
IQR 0.5-0.74 0.2-0.43 0.19-0.55

CH_X10_Y10_PM_K2_BF 0 0 0
IQR 0-0 0-0 0-0

CH_X10_Y10_PM_K3_BF 0.54 0.17 0.17
IQR 0.4-0.73 0.083-0.33 0.092-0.39

CH_X11_Y11_P1_K2_BF 0.59 0.094 0.021
IQR 0.34-0.72 0.085-0.19 0.0036-0.044

CH_X11_Y11_P1_K3_BF 0.32 0.27 0.035
IQR 0.19-0.52 0.12-0.48 0.016-0.12

CH_X11_Y11_P2_K2_BF 0.59 0.31 0.18
IQR 0.47-0.79 0.25-0.32 0.15-0.31

CH_X11_Y11_P2_K3_BF 0.73 0.24 0.54
IQR 0.57-1 0.068-0.39 0.45-0.72

XCII



Instance Name [WM21b] Centroid Geo. Med.

CH_X11_Y11_P3_K2_BF 0.59 0.11 0.09
IQR 0.48-0.66 0.093-0.15 0.01-0.093

CH_X11_Y11_P3_K3_BF 0.69 0.39 0.51
IQR 0.54-0.81 0.34-0.66 0.28-0.67

CH_X11_Y11_PM_K2_BF 0.57 0.17 0.34
IQR 0.44-0.76 0-0.33 0.3-0.36

CH_X11_Y11_PM_K3_BF 0.52 0.33 0.22
IQR 0.45-0.61 0.27-0.55 0.17-0.3

CH_X12_Y12_P1_K2_BF 0.36 0.073 0.015
IQR 0.28-0.54 0.066-0.12 0.015-0.13

CH_X12_Y12_P1_K3_BF 0.5 0.25 0.21
IQR 0.31-0.78 0.13-0.33 0.098-0.29

CH_X12_Y12_P2_K2_BF 0.34 0.052 0.14
IQR 0.29-0.45 0.052-0.29 0.14-0.15

CH_X12_Y12_P2_K3_BF 0.52 0.13 0.31
IQR 0.42-0.63 0.088-0.34 0.3-0.48

CH_X12_Y12_P3_K2_BF 0.42 0.16 0.098
IQR 0.37-0.5 0.067-0.2 0.082-0.16

CH_X12_Y12_P3_K3_BF 0.46 0.25 0.4
IQR 0.35-0.64 0.14-0.37 0.17-0.56

CH_X12_Y12_PM_K2_BF 0.43 0.23 0.38
IQR 0.37-0.53 0.21-0.29 0.35-0.38

CH_X12_Y12_PM_K3_BF 0.64 0.3 0.19
IQR 0.42-0.82 0.2-0.38 0.17-0.21

CH_X13_Y13_P1_K2_BF 0.32 0.054 0.037
IQR 0.26-0.82 0.036-0.065 0.032-0.044

CH_X13_Y13_P1_K3_BF 0.47 0.022 0.13
IQR 0.32-0.56 0.01-0.076 0.12-0.18

CH_X13_Y13_P2_K2_BF 0.52 0.37 0.49
IQR 0.44-0.62 0.31-0.45 0.27-0.55

CH_X13_Y13_P2_K3_BF 0.76 0.25 0.47
IQR 0.58-0.88 0.18-0.33 0.27-0.63

CH_X13_Y13_P3_K2_BF 0.56 0.25 0.26
IQR 0.46-0.7 0.11-0.3 0.18-0.35

CH_X13_Y13_P3_K3_BF 0.55 0.26 0.6
IQR 0.39-0.81 0.17-0.39 0.35-0.74

CH_X13_Y13_PM_K2_BF 0.4 0.1 0.059
IQR 0.35-0.58 0.056-0.23 0.017-0.2

CH_X13_Y13_PM_K3_BF 0.65 0.33 0.18
IQR 0.5-0.82 0.095-0.5 0.13-0.26

CH_X14_Y14_P1_K2_BF 0.19 0.1 0.0066
IQR 0.14-0.33 0.076-0.14 0.0015-0.019

CH_X14_Y14_P1_K3_BF 0.65 0.11 0.14
IQR 0.36-0.88 0.016-0.47 0.12-0.18

CH_X14_Y14_P2_K2_BF 0.43 0.23 0.16
IQR 0.43-0.46 0.058-0.23 0-0.26

CH_X14_Y14_P2_K3_BF 0.62 0.26 0.26
IQR 0.39-0.72 0.12-0.3 0.15-0.3

CH_X14_Y14_P3_K2_BF 0.22 0.061 0.32
IQR 0.13-0.69 0.061-0.29 0.12-0.39

CH_X14_Y14_P3_K3_BF 0.72 0.38 0.35
IQR 0.48-0.86 0.18-0.48 0.18-0.45

CH_X14_Y14_PM_K2_BF 0.53 0.13 0.025
IQR 0.41-0.92 0.05-0.29 0-0.26

CH_X14_Y14_PM_K3_BF 0.64 0.42 0.1
IQR 0.43-0.79 0.4-0.43 0.089-0.24

CH_X5_Y5_P1_K2_BF 0.42 0.89 1.1
IQR 0.36-0.71 0.85-1 0.91-1.1

CH_X5_Y5_P1_K3_BF 0.61 0.87 0.86
IQR 0.61-0.69 0.75-0.97 0.59-0.97

CH_X5_Y5_P2_K2_BF 0.54 0.43 0.79
IQR 0.42-0.64 0.43-0.5 0.61-0.91

CH_X5_Y5_P2_K3_BF 0.81 1.2 1
IQR 0.81-1.1 1-1.5 1-1.2

CH_X5_Y5_P3_K2_BF 0.46 1.2 1
IQR 0.32-1 0.8-1.3 0.95-1.3

CH_X5_Y5_P3_K3_BF 0.43 0.35 0.31
IQR 0.39-0.44 0.29-0.42 0.2-0.41

CH_X5_Y5_PM_K2_BF 0.41 0.64 0.64
IQR 0.41-0.52 0.53-0.66 0.64-0.71

CH_X5_Y5_PM_K3_BF 0.48 1.1 0.15
IQR 0.4-0.49 1-1.2 0-0.24

CH_X6_Y6_P1_K2_BF 0.3 0.99 0.94
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Instance Name [WM21b] Centroid Geo. Med.

IQR 0.21-0.31 0.95-1.2 0.83-1.6
CH_X6_Y6_P1_K3_BF 0.71 0.87 0.72

IQR 0.57-0.74 0.66-1.2 0.64-0.87
CH_X6_Y6_P2_K2_BF 0.3 0.56 0.65

IQR 0.29-0.31 0.52-0.69 0.58-0.71
CH_X6_Y6_P2_K3_BF 0.72 1.3 1.3

IQR 0.6-0.94 0.87-1.3 0.85-1.3
CH_X6_Y6_P3_K2_BF 0.34 0.92 0.99

IQR 0.23-0.48 0.86-0.96 0.77-0.99
CH_X6_Y6_P3_K3_BF 0.87 0.96 0.96

IQR 0.82-0.93 0.96-0.99 0.85-0.98
CH_X6_Y6_PM_K2_BF 0.26 0.57 0.5

IQR 0.26-0.33 0.41-0.59 0.35-0.62
CH_X6_Y6_PM_K3_BF 0.43 0.6 0.6

IQR 0.42-0.52 0.52-0.73 0.56-0.67
CH_X7_Y7_P1_K2_BF 0.84 0.96 1.1

IQR 0.61-0.87 0.91-1.1 0.96-1.1
CH_X7_Y7_P1_K3_BF 0.62 0.87 0.6

IQR 0.49-0.91 0.65-0.93 0.54-0.76
CH_X7_Y7_P2_K2_BF 0.73 0.73 0.84

IQR 0.73-0.81 0.73-0.82 0.76-0.86
CH_X7_Y7_P2_K3_BF 0.6 0.92 0.67

IQR 0.43-0.72 0.62-1.3 0.54-1.2
CH_X7_Y7_P3_K2_BF 0.74 0.8 0.64

IQR 0.57-0.91 0.8-1 0.64-0.76
CH_X7_Y7_P3_K3_BF 0.71 0.93 0.91

IQR 0.31-0.91 0.75-0.93 0.75-1.1
CH_X7_Y7_PM_K2_BF 0.66 0.75 0.8

IQR 0.47-0.76 0.71-0.77 0.74-0.86
CH_X7_Y7_PM_K3_BF 0.85 1.1 0.77

IQR 0.71-1.1 0.89-1.2 0.71-1.2
CH_X8_Y8_P1_K2_BF 0 0.63 0

IQR 0-0.63 0.59-0.88 0-0.71
CH_X8_Y8_P1_K3_BF 0.78 0.66 0.64

IQR 0.57-0.88 0.48-0.95 0.46-0.93
CH_X8_Y8_P2_K2_BF 0.75 0.71 0.71

IQR 0.64-0.86 0.43-1.4 0.5-1
CH_X8_Y8_P2_K3_BF 0.78 1.2 1.3

IQR 0.48-1.1 0.84-1.8 1-1.7
CH_X8_Y8_P3_K2_BF 0.65 0.91 0.94

IQR 0.49-0.84 0.45-1.1 0.43-1.1
CH_X8_Y8_P3_K3_BF 0.68 0.83 0.8

IQR 0.67-0.91 0.69-0.9 0.76-0.95
CH_X8_Y8_PM_K2_BF 0.8 0.54 0.91

IQR 0.77-0.83 0.47-0.65 0.75-0.92
CH_X8_Y8_PM_K3_BF 0.65 0.54 0.55

IQR 0.38-1 0.48-0.9 0.53-0.78
CH_X9_Y9_P1_K2_BF 0.43 0.26 0.53

IQR 0.43-0.5 0.09-0.31 0.38-0.92
CH_X9_Y9_P1_K3_BF 0.81 0.43 0.89

IQR 0.63-1 0.23-0.96 0.72-1.1
CH_X9_Y9_P2_K2_BF 0 0 0

IQR 0-0 0-0 0-0
CH_X9_Y9_P2_K3_BF 0.64 0.71 0.72

IQR 0.51-0.82 0.64-1 0.65-1
CH_X9_Y9_P3_K2_BF 0.35 0.7 0.73

IQR 0.29-0.39 0.46-0.75 0.73-0.74
CH_X9_Y9_P3_K3_BF 0.66 0.58 0.65

IQR 0.54-0.78 0.54-0.74 0.54-0.79
CH_X9_Y9_PM_K2_BF 0 0 0

IQR 0-0 0-0 0-0
CH_X9_Y9_PM_K3_BF 0.7 0.85 0.68

IQR 0.52-1 0.66-1 0.65-0.9
LA_X10_Y10_P1_K2_BF 0.32 0.18 0.18

IQR 0.27-0.46 0.14-0.24 0.1-0.23
LA_X10_Y10_P1_K3_BF 0.43 0.18 0.1

IQR 0.31-0.52 0.12-0.34 0.067-0.31
LA_X10_Y10_P2_K2_BF 0.33 0.31 0.33

IQR 0.33-0.47 0.26-0.45 0.33-0.33
LA_X10_Y10_P2_K3_BF 1 0.86 0

IQR 0.55-1.3 0.09-1.1 0-1.1
LA_X10_Y10_P3_K2_BF 0.18 0.4 0.2

IQR 0.15-0.43 0.35-0.44 0.19-0.27
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Instance Name [WM21b] Centroid Geo. Med.

LA_X10_Y10_P3_K3_BF 0.45 0.4 0.21
IQR 0.35-0.59 0.32-0.5 0.19-0.28

LA_X10_Y10_PM_K2_BF 0.39 0.35 0.39
IQR 0.35-0.98 0.33-0.45 0.064-0.39

LA_X10_Y10_PM_K3_BF 1.1 0.93 0.19
IQR 0.68-1.2 0.16-1 0-0.27

LA_X11_Y11_P1_K2_BF 0.57 0.11 0.076
IQR 0.29-0.74 0.077-0.11 0.015-0.22

LA_X11_Y11_P1_K3_BF 0.37 0.27 0.029
IQR 0.17-0.54 0.1-0.34 0.021-0.036

LA_X11_Y11_P2_K2_BF 0.37 0.12 0.053
IQR 0.21-0.54 0.09-0.37 0.047-0.27

LA_X11_Y11_P2_K3_BF 1 0.79 0.57
IQR 0.72-1.2 0.29-0.96 0.26-0.62

LA_X11_Y11_P3_K2_BF 0.47 0.33 0.16
IQR 0.38-0.55 0.31-0.39 0.082-0.18

LA_X11_Y11_P3_K3_BF 0.58 0.53 0.17
IQR 0.43-0.78 0.4-0.58 0.17-0.29

LA_X11_Y11_PM_K2_BF 0.55 0.072 0
IQR 0.34-0.68 0.072-0.15 0-0.11

LA_X11_Y11_PM_K3_BF 0.68 0.1 0.32
IQR 0.62-0.8 0.0073-0.49 0.0073-0.41

LA_X12_Y12_P1_K2_BF 0.16 0.11 0.028
IQR 0.019-0.54 0.065-0.15 0.0091-0.083

LA_X12_Y12_P1_K3_BF 0.39 0.17 0.1
IQR 0.27-0.61 0.14-0.25 0.029-0.41

LA_X12_Y12_P2_K2_BF 0.25 0.17 0.13
IQR 0.15-0.45 0.078-0.2 0.082-0.24

LA_X12_Y12_P2_K3_BF 1.1 0.79 0.53
IQR 0.76-1.4 0.72-0.88 0.18-0.56

LA_X12_Y12_P3_K2_BF 0.24 0.018 0.09
IQR 0.12-0.49 9.3e-17-0.13 0.018-0.18

LA_X12_Y12_P3_K3_BF 0.61 0.53 0.24
IQR 0.49-0.8 0.27-0.61 0.1-0.39

LA_X12_Y12_PM_K2_BF 0.61 0.45 0.49
IQR 0.54-0.71 0.43-0.48 0.39-0.53

LA_X12_Y12_PM_K3_BF 0.5 0.38 0.22
IQR 0.35-0.63 0.31-0.47 0.087-0.33

LA_X13_Y13_P1_K2_BF 0.14 0.12 0.014
IQR 0.085-0.23 0.052-0.16 0.014-0.022

LA_X13_Y13_P1_K3_BF 0.46 0.3 0.068
IQR 0.39-0.64 0.26-0.36 0.026-0.081

LA_X13_Y13_P2_K2_BF 0.31 0.083 0.066
IQR 0.22-0.52 0.068-0.13 0.048-0.2

LA_X13_Y13_P2_K3_BF 0.64 0.48 0.31
IQR 0.52-0.87 0.38-0.53 0.23-0.33

LA_X13_Y13_P3_K2_BF 0.29 0.1 0.082
IQR 0.16-0.37 0.083-0.19 0.016-0.095

LA_X13_Y13_P3_K3_BF 0.56 0.38 0.12
IQR 0.49-0.69 0.25-0.42 0.1-0.13

LA_X13_Y13_PM_K2_BF 0.5 0.17 0.12
IQR 0.36-0.62 0.14-0.26 0.092-0.12

LA_X13_Y13_PM_K3_BF 0.46 0.21 0.24
IQR 0.3-0.55 0.16-0.28 0.05-0.47

LA_X14_Y14_P1_K2_BF 0.69 0.29 0.33
IQR 0.39-0.81 0.072-0.35 0.17-0.35

LA_X14_Y14_P1_K3_BF 0.44 0.32 0.019
IQR 0.33-0.64 0.22-0.54 0.014-0.024

LA_X14_Y14_P2_K2_BF 0.48 0 0.054
IQR 0.29-0.67 0-0.18 0-0.054

LA_X14_Y14_P2_K3_BF 0.66 0.41 0.29
IQR 0.54-0.79 0.37-0.51 0.2-0.33

LA_X14_Y14_P3_K2_BF 0.73 0.22 0.22
IQR 0.49-1.1 0.21-0.23 0.093-0.23

LA_X14_Y14_P3_K3_BF 0.65 0.24 0.1
IQR 0.55-0.89 0.2-0.33 0.073-0.27

LA_X14_Y14_PM_K2_BF 0.71 0.53 0.49
IQR 0.47-0.81 0.47-0.9 0.29-0.49

LA_X14_Y14_PM_K3_BF 0.95 0.16 0.6
IQR 0.69-1.1 0.1-0.39 0.44-0.6

LA_X5_Y5_P1_K2_BF 0.33 0.91 0.91
IQR 0.32-0.43 0.8-0.91 0.83-0.91

LA_X5_Y5_P1_K3_BF 0.23 0 0.46

XCV



Instance Name [WM21b] Centroid Geo. Med.

IQR 0.23-0.46 0-0.71 0.23-0.57
LA_X5_Y5_P2_K2_BF 0.4 0.6 0.62

IQR 0.28-0.63 0.48-0.6 0.6-0.75
LA_X5_Y5_P2_K3_BF 0.32 0.61 0.61

IQR 0.28-0.51 0.52-0.84 0.32-0.84
LA_X5_Y5_P3_K2_BF 0.54 0.66 0.76

IQR 0.35-0.6 0.65-0.85 0.66-0.76
LA_X5_Y5_P3_K3_BF 0.33 0.72 1

IQR 0.27-0.53 0.68-0.76 0.92-1.1
LA_X5_Y5_PM_K2_BF 0.51 0.56 0.57

IQR 0.37-0.57 0.45-0.56 0.55-0.62
LA_X5_Y5_PM_K3_BF 0.71 0.96 0.96

IQR 0.45-0.82 0.93-0.97 0.96-0.97
LA_X6_Y6_P1_K2_BF 0.39 0.39 0.59

IQR 0-0.54 0.24-0.54 0.39-1.3
LA_X6_Y6_P1_K3_BF 0.29 0.71 0.47

IQR 0.065-0.71 0.31-0.9 0.24-1.7
LA_X6_Y6_P2_K2_BF 0.53 0.59 0.66

IQR 0.48-0.73 0.48-0.95 0.52-0.81
LA_X6_Y6_P2_K3_BF 0.58 0.62 0.21

IQR 0.21-0.59 0.58-0.95 0.21-0.61
LA_X6_Y6_P3_K2_BF 0.59 0.74 0.68

IQR 0.53-0.71 0.51-0.85 0.35-0.77
LA_X6_Y6_P3_K3_BF 0.29 0.71 0.7

IQR 0.26-0.36 0.52-34 0.29-1.6
LA_X6_Y6_PM_K2_BF 0.29 0.92 0.72

IQR 0.29-0.29 0.83-0.92 0.67-0.72
LA_X6_Y6_PM_K3_BF 0.49 1.2 0.8

IQR 0.4-0.85 1.1-1.8 0.67-1.9
LA_X7_Y7_P1_K2_BF 0.48 0.8 0.8

IQR 0.074-0.54 0.71-0.85 0.69-0.83
LA_X7_Y7_P1_K3_BF 0.054 0.97 1.9

IQR 0.032-0.92 0.8-1.1 0.017-3.8e+05
LA_X7_Y7_P2_K2_BF 0.49 0.46 0.49

IQR 0.43-0.52 0.41-0.63 0.42-0.59
LA_X7_Y7_P2_K3_BF 0.31 0.89 0.5

IQR 0-0.56 0.46-0.89 0.31-13
LA_X7_Y7_P3_K2_BF 0.33 0.84 0.71

IQR 0.33-0.47 0.84-0.94 0.71-0.86
LA_X7_Y7_P3_K3_BF 0.32 0.32 0.51

IQR 0-0.67 0.32-0.81 0.32-0.6
LA_X7_Y7_PM_K2_BF 0.41 0.45 0.45

IQR 0.29-0.49 0.29-0.57 0.41-0.45
LA_X7_Y7_PM_K3_BF 0.87 1.1 0.68

IQR 0.57-0.9 0.78-1.4 0.35-1.1
LA_X8_Y8_P1_K2_BF 0.21 0.8 0.8

IQR 0.041-0.3 0.55-0.83 0.27-0.8
LA_X8_Y8_P1_K3_BF 0.68 0.76 0.88

IQR 0.11-0.87 0.68-1.1 0.76-1.3
LA_X8_Y8_P2_K2_BF 0 0 0

IQR 0-0 0-0 0-0
LA_X8_Y8_P2_K3_BF 0.65 4.6 4.5

IQR 0.51-1.1 1.1-8.2 1.1-8.3
LA_X8_Y8_P3_K2_BF 0.41 0.62 0.64

IQR 0.0039-0.49 0.62-0.88 0.5-0.88
LA_X8_Y8_P3_K3_BF 0.63 1.9 1.8

IQR 0.37-1.1 1.2-2 1.2-2.5
LA_X8_Y8_PM_K2_BF 0 0 0

IQR 0-0 0-0 0-0
LA_X8_Y8_PM_K3_BF 0.72 1.3 1

IQR 0.44-1.1 0.91-1.8 0.57-2
LA_X9_Y9_P1_K2_BF 0.35 0.91 0.92

IQR 0.17-0.54 0.6-1.2 0.91-1.3
LA_X9_Y9_P1_K3_BF 1 1.1 1.1

IQR 0.55-1.5 0.89-1.6 0.81-1.2
LA_X9_Y9_P2_K2_BF 0 0 0

IQR 0-0 0-0 0-0
LA_X9_Y9_P2_K3_BF 2.3 1.7 1.5e+02

IQR 1.4-25 1-23 1.6-2e+02
LA_X9_Y9_P3_K2_BF 0.48 0.67 0.8

IQR 0.35-0.72 0.42-1.2 0.74-1
LA_X9_Y9_P3_K3_BF 0.99 1.1 1.2

IQR 0.76-1.2 0.8-1.4 0.87-1.4
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Instance Name [WM21b] Centroid Geo. Med.

LA_X9_Y9_PM_K2_BF 0 0 0
IQR 0-0 0-0 0-0

LA_X9_Y9_PM_K3_BF 1.5 1.9 2.2
IQR 1.1-2.3 1.6-3.5 1.6-3.6

NO_X10_Y10_P1_K2_BF 0.23 0.32 0.12
IQR 0.15-0.42 0.21-0.61 0.082-0.18

NO_X10_Y10_P1_K3_BF 0.52 0.29 0.099
IQR 0.39-0.8 0.12-0.51 0.084-0.17

NO_X10_Y10_P2_K2_BF 0.55 0.19 0.24
IQR 0.36-0.8 1.1e-16-0.3 1.1e-16-0.41

NO_X10_Y10_P2_K3_BF 0.84 0.6 0.55
IQR 0.7-0.92 0.53-0.67 0.34-0.82

NO_X10_Y10_P3_K2_BF 0.32 0.14 0.22
IQR 0.25-0.39 0.11-0.25 0.19-0.27

NO_X10_Y10_P3_K3_BF 0.53 0.68 0.69
IQR 0.4-0.76 0.57-0.73 0.57-0.75

NO_X10_Y10_PM_K2_BF 0.59 0.43 0.33
IQR 0.2-0.68 0.43-0.47 0-0.53

NO_X10_Y10_PM_K3_BF 0.67 0.45 0.4
IQR 0.51-1.1 0.31-0.59 0.37-0.45

NO_X11_Y11_P1_K2_BF 0.47 0.21 0.062
IQR 0.24-0.59 0.1-0.33 0.042-0.071

NO_X11_Y11_P1_K3_BF 0.52 0.59 0.2
IQR 0.37-0.67 0.49-0.94 0.085-0.37

NO_X11_Y11_P2_K2_BF 0.33 0.12 0.028
IQR 0.21-0.54 0.084-0.19 0.027-0.084

NO_X11_Y11_P2_K3_BF 0.64 0.68 0.36
IQR 0.53-0.79 0.4-0.88 0.24-0.65

NO_X11_Y11_P3_K2_BF 0.41 0.19 0.28
IQR 0.31-0.52 0.13-0.23 0.11-0.34

NO_X11_Y11_P3_K3_BF 0.82 0.68 0.47
IQR 0.7-0.9 0.54-0.8 0.39-0.54

NO_X11_Y11_PM_K2_BF 0.65 0.24 0.18
IQR 0.5-0.74 0.1-0.24 0.0051-0.22

NO_X11_Y11_PM_K3_BF 0.73 0.24 0.52
IQR 0.59-1 0.14-0.48 0.3-0.59

NO_X12_Y12_P1_K2_BF 0.61 0.15 0.17
IQR 0.27-0.84 0.061-0.21 0.11-0.42

NO_X12_Y12_P1_K3_BF 0.5 0.43 0.25
IQR 0.31-0.83 0.21-0.52 0.091-0.33

NO_X12_Y12_P2_K2_BF 0.42 0.2 0.2
IQR 0.32-0.5 0.19-0.68 0.12-0.68

NO_X12_Y12_P2_K3_BF 0.99 0.62 0.6
IQR 0.69-1.1 0.48-0.68 0.43-0.69

NO_X12_Y12_P3_K2_BF 0.42 0.35 0.38
IQR 0.23-0.65 0.19-0.47 0.2-0.53

NO_X12_Y12_P3_K3_BF 0.67 0.49 0.52
IQR 0.54-0.79 0.23-0.68 0.41-0.62

NO_X12_Y12_PM_K2_BF 0.45 0.23 0.4
IQR 0.34-0.53 0.15-0.27 0.19-0.53

NO_X12_Y12_PM_K3_BF 0.52 0.36 0.44
IQR 0.39-0.83 0.17-0.54 0.4-0.56

NO_X13_Y13_P1_K2_BF 0.29 0.14 0.043
IQR 0.17-0.83 0.093-0.19 0.041-0.046

NO_X13_Y13_P1_K3_BF 0.39 0.42 0.17
IQR 0.26-0.52 0.22-0.51 0.072-0.3

NO_X13_Y13_P2_K2_BF 0.43 0.22 0.15
IQR 0.31-0.53 0.17-0.29 0.13-0.25

NO_X13_Y13_P2_K3_BF 0.76 0.52 0.52
IQR 0.43-0.88 0.26-0.6 0.31-0.64

NO_X13_Y13_P3_K2_BF 0.35 0.13 0.25
IQR 0.29-0.44 0.084-0.17 0.15-0.41

NO_X13_Y13_P3_K3_BF 0.76 0.59 0.57
IQR 0.59-0.85 0.53-0.67 0.44-0.61

NO_X13_Y13_PM_K2_BF 0.35 0.16 0.1
IQR 0.25-0.49 0.11-0.25 0.076-0.14

NO_X13_Y13_PM_K3_BF 0.68 0.39 0.45
IQR 0.53-0.94 0.29-0.62 0.41-0.53

NO_X14_Y14_P1_K2_BF 0.51 0.25 0.24
IQR 0.34-0.68 0.21-0.34 0.18-0.27

NO_X14_Y14_P1_K3_BF 0.56 0.62 0.17
IQR 0.44-1.2 0.48-0.78 0.12-0.19

NO_X14_Y14_P2_K2_BF 0.83 0.48 1
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Instance Name [WM21b] Centroid Geo. Med.

IQR 0.49-1.4 0.46-0.98 0.13-1.2
NO_X14_Y14_P2_K3_BF 0.71 0.34 0.36

IQR 0.52-0.8 0.31-0.52 0.3-0.44
NO_X14_Y14_P3_K2_BF 0.67 0.23 0.22

IQR 0.44-0.7 0.098-0.37 0.054-0.26
NO_X14_Y14_P3_K3_BF 0.69 0.61 0.56

IQR 0.51-0.91 0.32-0.7 0.46-0.6
NO_X14_Y14_PM_K2_BF 0.71 0.58 0.77

IQR 0.63-0.9 0.52-0.65 0.56-1
NO_X14_Y14_PM_K3_BF 0.76 0.66 0.43

IQR 0.55-0.97 0.56-0.71 0.3-0.57
NO_X5_Y5_P1_K2_BF 0.56 1 1

IQR 0.36-1 0.88-1.1 0.95-1
NO_X5_Y5_P1_K3_BF 0.96 1.1 1

IQR 0.81-1.1 1-1.7 0.16-1.1
NO_X5_Y5_P2_K2_BF 0.37 0.56 0.61

IQR 0.36-0.52 0.56-0.67 0.56-0.67
NO_X5_Y5_P2_K3_BF 1 1.6 1.3

IQR 0.81-1.2 1.2-2.3 0.84-1.7
NO_X5_Y5_P3_K2_BF 0.29 0.39 1

IQR 0.19-0.4 0.28-1.1 0.85-1.2
NO_X5_Y5_P3_K3_BF 1.1 1.1 0.96

IQR 0.61-1.1 1.1-1.2 0.9-1.2
NO_X5_Y5_PM_K2_BF 0.45 0.31 0.59

IQR 0.32-0.46 0.31-0.43 0.4-0.59
NO_X5_Y5_PM_K3_BF 0.52 1.1 1.1

IQR 0.49-0.92 0.45-1.1 1-1.1
NO_X6_Y6_P1_K2_BF 0.32 0.36 0.46

IQR 0.31-0.46 0.26-0.52 0.34-0.58
NO_X6_Y6_P1_K3_BF 0.96 0.98 0.78

IQR 0.78-1.2 0.68-5.6 0.65-6.9
NO_X6_Y6_P2_K2_BF 0.24 0.38 0.29

IQR 0.23-0.26 0.28-0.63 0.18-0.4
NO_X6_Y6_P2_K3_BF 0.86 1.5 0.9

IQR 0.82-1.2 0.79-2.3 0.64-1.6
NO_X6_Y6_P3_K2_BF 0.46 0.34 0.3

IQR 0.34-0.51 0.25-0.55 0.23-0.46
NO_X6_Y6_P3_K3_BF 0.81 1 1.2

IQR 0.51-1.1 0.9-1.5 0.54-1.6
NO_X6_Y6_PM_K2_BF 0.42 0.59 0.5

IQR 0.41-0.66 0.53-0.68 0.4-0.52
NO_X6_Y6_PM_K3_BF 0.82 1 1.2

IQR 0.48-0.9 0.79-1.3 0.56-1.4
NO_X7_Y7_P1_K2_BF 0.5 1 0.98

IQR 0.39-0.86 0.98-1 0.98-1.1
NO_X7_Y7_P1_K3_BF 1.1 13 2.7

IQR 0.95-1.5 0.84-82 0.96-82
NO_X7_Y7_P2_K2_BF 0.85 0.47 0.47

IQR 0.7-0.86 0.47-1.2 0.47-0.65
NO_X7_Y7_P2_K3_BF 1.2 2 1.4

IQR 0.95-1.3 1.4-2.2 1.2-2.1
NO_X7_Y7_P3_K2_BF 0.71 0.8 0.56

IQR 0.65-0.71 0.66-0.88 0.56-0.81
NO_X7_Y7_P3_K3_BF 0.6 0.8 0.92

IQR 0.49-0.68 0.68-0.95 0.68-1.1
NO_X7_Y7_PM_K2_BF 0.47 0.47 0.47

IQR 0.47-0.47 0.39-0.5 0.47-0.47
NO_X7_Y7_PM_K3_BF 0.8 0.91 0.74

IQR 0.62-1.1 0.76-1.2 0.52-0.9
NO_X8_Y8_P1_K2_BF 0.51 0.62 0.88

IQR 0.41-0.63 0.26-0.77 0.56-0.98
NO_X8_Y8_P1_K3_BF 0.76 0.82 0.85

IQR 0.47-0.93 0.62-1.1 0.61-1.1
NO_X8_Y8_P2_K2_BF 0.79 0.51 0.8

IQR 0.59-0.87 0.25-0.52 0.58-0.99
NO_X8_Y8_P2_K3_BF 1.1 1.2 1.2

IQR 0.88-1.4 1-1.5 0.92-1.3
NO_X8_Y8_P3_K2_BF 0.37 0.32 0.45

IQR 0.24-0.62 0.26-0.37 0.26-0.56
NO_X8_Y8_P3_K3_BF 0.64 0.9 0.78

IQR 0.58-0.8 0.73-1.1 0.63-1.1
NO_X8_Y8_PM_K2_BF 0.68 0.61 0.61

IQR 0.48-0.79 0.48-0.76 0.49-0.75

XCVIII



Instance Name [WM21b] Centroid Geo. Med.

NO_X8_Y8_PM_K3_BF 0.87 1.1 0.88
IQR 0.75-1.1 0.88-1.3 0.78-1.1

NO_X9_Y9_P1_K2_BF 0.62 0.74 0.87
IQR 0.43-0.7 0.39-1.1 0.6-1.1

NO_X9_Y9_P1_K3_BF 1.1 1.2 0.96
IQR 0.9-1.4 1.1-1.5 0.7-1.1

NO_X9_Y9_P2_K2_BF 0 0 0
IQR 0-0 0-0 0-0

NO_X9_Y9_P2_K3_BF 0.84 0.73 0.75
IQR 0.63-0.9 0.53-0.85 0.62-0.94

NO_X9_Y9_P3_K2_BF 0.63 0.8 0.75
IQR 0.46-0.8 0.67-1.3 0.74-1.3

NO_X9_Y9_P3_K3_BF 0.67 0.79 0.77
IQR 0.56-0.87 0.6-1 0.59-0.99

NO_X9_Y9_PM_K2_BF 0 0 0
IQR 0-0 0-0 0-0

NO_X9_Y9_PM_K3_BF 0.95 1 0.9
IQR 0.83-1.1 0.87-1.2 0.78-1

Table B.7: Raw values of different instances of the IGD+ indicator. Shown are
the median and the IQR values below.

B.5 Distance Measurement Comparison

B.5.1 IGD+Values - Median Approach

Instance Name DTW-MED FD-MED HD-MED

CH_X10_Y10_P1_K3_BT 1.2 1.5 1.1
IQR 0.93-2 0.82-2.2 0.76-1.8

CH_X10_Y10_P2_K3_BT 1 1.5 1
IQR 0.73-1.6 0.95-1.9 0.61-1.3

CH_X10_Y10_P3_K3_BT 1.1 1 0.68
IQR 0.8-1.5 0.73-1.2 0.55-1

CH_X10_Y10_PM_K3_BT 1.3 1.2 0.74
IQR 0.92-1.9 0.54-1.7 0.48-1.2

CH_X15_Y15_P1_K3_BT 1.5 1.5 1.2
IQR 1.1-1.9 1.2-1.9 0.8-1.8

CH_X15_Y15_P2_K3_BT 1.6 1.8 1.5
IQR 1.3-2 1.4-2.3 1.1-2

CH_X15_Y15_P3_K3_BT 1.5 1.7 1.6
IQR 1.2-1.9 1.4-2.2 1.2-2.1

CH_X15_Y15_PM_K3_BT 2.1 1.9 1.4
IQR 1.5-2.6 1.4-2.4 1.1-1.9

CH_X20_Y20_P1_K3_BT 2.1 2 2.3
IQR 1.6-2.9 1.4-2.6 1.4-3

CH_X20_Y20_P2_K3_BT 2.4 2.5 2.5
IQR 2.1-2.9 2-3.2 1.8-3.3

CH_X20_Y20_P3_K3_BT 2.8 2.1 2.3
IQR 2.1-3.2 1.6-2.5 1.8-2.8

CH_X20_Y20_PM_K3_BT 2.1 1.7 1.8
IQR 1.6-2.4 1.2-2.4 1.3-2.3

CH_X24_Y24_P1_K3_BT 2 1.8 1.9
IQR 1.3-3.1 1.4-2 1.3-2.4

CH_X24_Y24_P2_K3_BT 3.3 3 3.1
IQR 2.7-4.2 2.7-4 2.3-3.6

CH_X24_Y24_P3_K3_BT 2.5 2.2 2.2
IQR 2-2.9 1.9-2.6 1.8-2.5

CH_X24_Y24_PM_K3_BT 2.3 2.7 2.3
IQR 1.8-2.9 2.1-3.4 1.8-2.8

CH_X26_Y26_P1_K3_BT 2.5 2.3 2.4
IQR 2-2.9 1.6-3.1 1.4-2.9

CH_X26_Y26_P2_K3_BT 3 3.3 3.1
IQR 2.5-3.4 2.6-3.8 2.5-3.7

CH_X26_Y26_P3_K3_BT 3.1 2.6 2.8
IQR 2.6-3.4 2.1-3.4 2.3-3.4

CH_X26_Y26_PM_K3_BT 2.3 2.4 1.9
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Instance Name DTW-MED FD-MED HD-MED

IQR 1.8-2.8 1.9-2.8 1.5-2.4
CH_X28_Y28_P1_K3_BT 2.3 2.2 2.7

IQR 1.7-3 1.9-2.7 2.2-3.4
CH_X28_Y28_P2_K3_BT 3.3 3.2 2.7

IQR 2.6-3.9 2.5-3.7 2.2-3.2
CH_X28_Y28_P3_K3_BT 2.8 2.6 2.8

IQR 2.2-3.4 2.1-3.1 2.5-3.1
CH_X28_Y28_PM_K3_BT 2 1.5 1.9

IQR 1.7-2.4 1-2.6 1.6-2.3
CH_X30_Y30_P1_K3_BT 2.5 2.2 2.3

IQR 1.9-3.5 1.9-2.8 1.7-2.7
CH_X30_Y30_P2_K3_BT 3.3 3.5 3

IQR 2.9-3.8 2.7-3.9 2.5-3.4
CH_X30_Y30_P3_K3_BT 2.6 2.7 2.7

IQR 2.2-3 2.3-2.9 2.3-3.1
CH_X30_Y30_PM_K3_BT 2.3 1.8 2

IQR 1.9-2.9 1.5-2.5 1.6-2.5
LA_X10_Y10_P1_K3_BT 1.4 1.2 1.1

IQR 0.93-1.8 0.88-1.6 0.84-1.6
LA_X10_Y10_P2_K3_BT 3.9 2.8 3.3

IQR 2.4-5.2 1.9-4 2.3-4.4
LA_X10_Y10_P3_K3_BT 1.1 0.91 1

IQR 0.78-1.6 0.73-1.4 0.7-1.2
LA_X10_Y10_PM_K3_BT 2.7 2.5 1.9

IQR 2.2-3.3 2-2.9 1.3-2.7
LA_X15_Y15_P1_K3_BT 2.4 2.2 2.3

IQR 2-3.2 1.8-3 2-2.9
LA_X15_Y15_P2_K3_BT 4.5 4 3.6

IQR 3.5-5.5 3-5 2.7-4.2
LA_X15_Y15_P3_K3_BT 2.5 2.1 1.9

IQR 2-2.9 1.8-2.8 1.6-2.5
LA_X15_Y15_PM_K3_BT 3.8 3.7 2.7

IQR 3.3-5 2.9-4.7 1.9-3.6
LA_X20_Y20_P1_K3_BT 4.5 4.6 4.6

IQR 3.9-5.6 4.1-5.1 4.4-5.5
LA_X20_Y20_P2_K3_BT 4.8 4.7 4.8

IQR 4-5.7 4.2-5.5 3.7-5.4
LA_X20_Y20_P3_K3_BT 4.3 3.7 4

IQR 3.8-5.4 3.3-4.2 3.5-4.9
LA_X20_Y20_PM_K3_BT 5.1 4.9 4.6

IQR 4.4-5.8 4.3-5.5 3.6-5.2
LA_X24_Y24_P1_K3_BT 3.7 3.3 3.3

IQR 3.1-4.8 2.8-4.3 2.9-4.1
LA_X24_Y24_P2_K3_BT 4.3 4.6 3.9

IQR 3.4-4.7 3.6-5.1 3.5-4.5
LA_X24_Y24_P3_K3_BT 2.9 2.9 2.8

IQR 2.6-3.5 2.4-3.4 2.1-3.2
LA_X24_Y24_PM_K3_BT 7.2 7 6.8

IQR 6.4-7.8 6.3-7.8 5.8-7.6
LA_X26_Y26_P1_K3_BT 4.4 4.5 4

IQR 3.9-5.2 3.8-5.2 3-5.1
LA_X26_Y26_P2_K3_BT 4.6 4.7 4.2

IQR 3.7-5.9 4.3-5.3 3.7-4.9
LA_X26_Y26_P3_K3_BT 3.8 4.1 3.9

IQR 3.5-4.2 3.3-4.5 2.9-4.7
LA_X26_Y26_PM_K3_BT 4.7 5.3 5

IQR 3.8-5.9 4.8-6 4.4-5.5
LA_X28_Y28_P1_K3_BT 4.7 4.3 4.3

IQR 4.1-5 3.9-5.2 3.7-4.9
LA_X28_Y28_P2_K3_BT 7.5 7.3 7.8

IQR 6.4-9.2 6.6-8.9 6.8-8.7
LA_X28_Y28_P3_K3_BT 3.1 3 3.3

IQR 2.6-3.6 2.4-3.5 2.6-3.5
LA_X28_Y28_PM_K3_BT 6.5 6.4 6.2

IQR 5.6-7.8 5.5-6.9 5.5-7.2
LA_X30_Y30_P1_K3_BT 5 5.3 4.4

IQR 4.1-5.6 4.2-5.8 3.8-4.9
LA_X30_Y30_P2_K3_BT 5.2 4.6 4.7

IQR 4.6-5.7 4.1-5.4 4.1-5.1
LA_X30_Y30_P3_K3_BT 4.6 4.4 4.5

IQR 4.2-5.2 3.9-5.3 4-5.2
LA_X30_Y30_PM_K3_BT 8.1 8.1 7.9

IQR 7.4-9 6.9-9.3 6.7-9

C



Instance Name DTW-MED FD-MED HD-MED

NO_X10_Y10_P1_K3_BT 1.1 0.83 0.93
IQR 0.74-1.4 0.61-1.6 0.55-1.8

NO_X10_Y10_P2_K3_BT 1.1 1.3 1.1
IQR 0.9-1.8 0.84-1.6 0.86-1.4

NO_X10_Y10_P3_K3_BT 0.93 0.91 0.88
IQR 0.81-1.1 0.66-1.2 0.66-1.1

NO_X10_Y10_PM_K3_BT 1.2 1.3 1
IQR 0.89-1.8 0.79-1.8 0.74-1.4

NO_X15_Y15_P1_K3_BT 1.9 1.7 1.4
IQR 1.1-2.4 1.3-2.4 1.1-2

NO_X15_Y15_P2_K3_BT 2.6 2.8 2.2
IQR 1.8-3.1 2.2-3.1 1.7-2.5

NO_X15_Y15_P3_K3_BT 1.8 2 1.6
IQR 1.3-2.2 1.5-2.3 1.1-2.1

NO_X15_Y15_PM_K3_BT 2.3 1.8 1.8
IQR 1.6-2.8 1.4-2.8 1.3-2.4

NO_X20_Y20_P1_K3_BT 3 2.8 2.7
IQR 2.4-3.8 2.1-3.3 2.2-3.4

NO_X20_Y20_P2_K3_BT 2.8 2.6 2.8
IQR 2.4-3.1 2.2-3.2 2.2-3

NO_X20_Y20_P3_K3_BT 2.6 2.5 2.6
IQR 1.9-3.5 2.1-3 2.2-3.1

NO_X20_Y20_PM_K3_BT 2.8 2.8 2.5
IQR 2.1-3.5 1.9-3.3 2-3

NO_X24_Y24_P1_K3_BT 2.4 2.2 2.4
IQR 2-2.9 1.8-2.9 1.9-3.4

NO_X24_Y24_P2_K3_BT 3.3 3.4 3
IQR 2.8-3.8 2.9-4 2.4-3.4

NO_X24_Y24_P3_K3_BT 2.3 2.3 2.3
IQR 2-2.9 1.9-2.7 1.8-2.8

NO_X24_Y24_PM_K3_BT 3.1 2.8 2.7
IQR 2.2-4.3 2.3-3.4 2.3-3.8

NO_X26_Y26_P1_K3_BT 3 3 3
IQR 2.2-4.3 2.3-3.6 2.3-3.8

NO_X26_Y26_P2_K3_BT 3.3 3.3 3.3
IQR 2.5-3.7 2.9-3.7 2.9-3.6

NO_X26_Y26_P3_K3_BT 3.3 3.4 3.4
IQR 2.6-3.6 3-3.9 3-3.9

NO_X26_Y26_PM_K3_BT 2.3 2.9 2.7
IQR 2-3.4 2.3-3.6 2.1-3

NO_X28_Y28_P1_K3_BT 3.2 3.2 2.6
IQR 2.5-3.6 2.7-3.8 2.2-3.2

NO_X28_Y28_P2_K3_BT 3.6 3.6 3.8
IQR 3.2-4.3 3.3-4.2 3.3-4.4

NO_X28_Y28_P3_K3_BT 3.2 3.2 2.8
IQR 2.7-3.6 2.6-3.6 2.3-3.3

NO_X28_Y28_PM_K3_BT 2.8 3.1 2.4
IQR 2.4-3.8 2.7-3.8 1.9-3.5

NO_X30_Y30_P1_K3_BT 2.8 2.5 2.6
IQR 2.1-3.2 2.1-2.9 2.1-3

NO_X30_Y30_P2_K3_BT 3.6 3.1 3.5
IQR 2.6-4 2.9-3.7 2.8-3.8

NO_X30_Y30_P3_K3_BT 3.2 3.1 3
IQR 2.7-3.7 2.7-3.6 2.5-3.5

NO_X30_Y30_PM_K3_BT 3.7 3.6 3.7
IQR 2.9-4.4 3.1-4.5 2.8-4.7

Table B.8: Raw values of different instances of the IGD+ indicator. Shown are
the median and the IQR values below.

B.5.2 IGDX Values - Median Approach

Instance Name DTW-MED FD-MED HD-MED

CH_X10_Y10_P1_K3_BT 0.55 0.34 0.64
IQR 0.48-0.65 0.24-0.45 0.52-0.81

CH_X10_Y10_P2_K3_BT 0.62 0.76 0.72
IQR 0.61-0.78 0.62-0.93 0.68-0.87

CH_X10_Y10_P3_K3_BT 0.53 0.48 0.53
IQR 0.41-0.61 0.42-0.56 0.46-0.73

CI



Instance Name DTW-MED FD-MED HD-MED

CH_X10_Y10_PM_K3_BT 0.68 1.1 0.58
IQR 0.54-1.1 0.57-1.1 0.55-0.69

CH_X15_Y15_P1_K3_BT 1.1 1.1 0.46
IQR 0.54-1.1 0.48-1.1 0.43-0.5

CH_X15_Y15_P2_K3_BT 0.7 0.74 0.73
IQR 0.47-0.7 0.68-1 0.73-0.74

CH_X15_Y15_P3_K3_BT 0.52 0.48 0.47
IQR 0.48-0.59 0.44-0.5 0.32-0.54

CH_X15_Y15_PM_K3_BT 0.72 0.58 0.57
IQR 0.55-0.74 0.49-0.79 0.51-0.8

CH_X20_Y20_P1_K3_BT 0.43 0.37 0.27
IQR 0.27-0.54 0.27-0.49 0.27-0.27

CH_X20_Y20_P2_K3_BT 0.48 0.61 0.45
IQR 0.39-0.67 0.39-1.1 0.38-0.54

CH_X20_Y20_P3_K3_BT 0.42 0.35 0.52
IQR 0.39-0.49 0.17-0.41 0.51-0.54

CH_X20_Y20_PM_K3_BT 0.26 0.26 1
IQR 0.24-0.3 0.24-0.34 0.23-1.1

CH_X24_Y24_P1_K3_BT 0.42 0.64 0.27
IQR 0.24-0.88 0.24-0.88 0.24-0.3

CH_X24_Y24_P2_K3_BT 4.5 1.3 0.36
IQR 2.1-4.5 0.44-4.1 0.31-0.55

CH_X24_Y24_P3_K3_BT 0.4 0.83 2.1
IQR 0.33-0.69 0.41-0.93 0.18-2.1

CH_X24_Y24_PM_K3_BT 1.9 0.39 0.4
IQR 0.34-1.9 0.27-0.49 0.29-0.48

CH_X26_Y26_P1_K3_BT 0.24 0.23 0.36
IQR 0.15-0.37 0.15-0.28 0.31-0.44

CH_X26_Y26_P2_K3_BT 0.36 0.32 1.9
IQR 0.33-0.39 0.3-0.4 0.29-1.9

CH_X26_Y26_P3_K3_BT 0.24 0.24 0.22
IQR 0.17-0.39 0.16-0.3 0.18-0.3

CH_X26_Y26_PM_K3_BT 0.38 0.34 0.45
IQR 0.26-0.46 0.28-0.46 0.4-0.55

CH_X28_Y28_P1_K3_BT 0.32 0.28 2.7
IQR 0.24-0.35 0.24-0.34 0.38-2.7

CH_X28_Y28_P2_K3_BT 0.48 0.4 0.39
IQR 0.33-0.62 0.31-0.51 0.32-0.5

CH_X28_Y28_P3_K3_BT 0.32 0.32 0.35
IQR 0.29-0.43 0.27-0.45 0.32-0.45

CH_X28_Y28_PM_K3_BT 0.42 0.38 0.35
IQR 0.31-0.5 0.27-0.43 0.31-0.43

CH_X30_Y30_P1_K3_BT 0.72 0.66 0.16
IQR 0.22-2.7 0.2-2.7 0.15-0.22

CH_X30_Y30_P2_K3_BT 0.26 0.31 1.8
IQR 0.18-0.4 0.18-0.37 0.26-6.3

CH_X30_Y30_P3_K3_BT 0.32 0.3 0.34
IQR 0.27-0.42 0.26-0.37 0.32-0.42

CH_X30_Y30_PM_K3_BT 0.34 0.29 0.39
IQR 0.23-0.4 0.21-0.37 0.35-0.49

LA_X10_Y10_P1_K3_BT 0.48 0.51 0.56
IQR 0.48-0.48 0.3-0.54 0.52-0.77

LA_X10_Y10_P2_K3_BT 0.64 0.49 2.1
IQR 0.37-0.64 0.36-0.77 0.49-2.1

LA_X10_Y10_P3_K3_BT 0.59 0.72 1
IQR 0.39-0.64 0.65-0.88 0.85-1

LA_X10_Y10_PM_K3_BT 0.69 0.57 0.63
IQR 0.61-0.93 0.26-0.7 0.63-0.64

LA_X15_Y15_P1_K3_BT 0.24 0.39 0.53
IQR 0.21-0.39 0.21-0.53 0.21-0.57

LA_X15_Y15_P2_K3_BT 0.99 0.94 0.58
IQR 0.77-1.2 0.87-1.1 0.58-0.89

LA_X15_Y15_P3_K3_BT 0.43 0.42 0.57
IQR 0.39-0.78 0.39-0.68 0.49-0.78

LA_X15_Y15_PM_K3_BT 2.2 0.72 0.4
IQR 0.43-2.2 0.58-0.72 0.32-0.51

LA_X20_Y20_P1_K3_BT 0.5 0.5 0.27
IQR 0.23-0.51 0.24-0.51 0.19-0.67

LA_X20_Y20_P2_K3_BT 0.6 0.5 0.39
IQR 0.43-0.72 0.31-0.8 0.37-1

LA_X20_Y20_P3_K3_BT 0.34 0.29 0.38
IQR 0.27-1 0.24-0.42 0.38-0.41

LA_X20_Y20_PM_K3_BT 0.9 1.5 0.39

CII



Instance Name DTW-MED FD-MED HD-MED

IQR 0.34-1.5 0.27-1.5 0.26-1.1
LA_X24_Y24_P1_K3_BT 0.32 0.31 0.5

IQR 0.2-0.5 0.11-0.49 0.38-0.68
LA_X24_Y24_P2_K3_BT 0.51 0.37 0.29

IQR 0.27-0.74 0.18-0.56 0.18-0.41
LA_X24_Y24_P3_K3_BT 0.42 0.42 0.23

IQR 0.23-0.57 0.21-0.44 0.21-0.44
LA_X24_Y24_PM_K3_BT 1.3 0.81 0.32

IQR 1.3-4.5 0.26-1.3 0.28-0.46
LA_X26_Y26_P1_K3_BT 0.35 0.3 0.35

IQR 0.28-2.3 0.25-0.37 0.31-0.41
LA_X26_Y26_P2_K3_BT 4.7 4.7 0.55

IQR 0.41-4.7 2.1-4.7 0.27-1.3
LA_X26_Y26_P3_K3_BT 0.24 0.26 0.71

IQR 0.21-0.43 0.23-0.47 0.24-1.1
LA_X26_Y26_PM_K3_BT 0.54 0.49 0.51

IQR 0.32-1.1 0.19-1.1 0.38-2.1
LA_X28_Y28_P1_K3_BT 0.16 0.13 0.45

IQR 0.1-0.46 0.09-0.2 0.36-0.76
LA_X28_Y28_P2_K3_BT 0.48 0.47 0.47

IQR 0.39-0.92 0.41-0.56 0.4-0.52
LA_X28_Y28_P3_K3_BT 0.31 0.3 0.35

IQR 0.28-0.52 0.26-0.48 0.18-4.1
LA_X28_Y28_PM_K3_BT 0.55 0.43 2.7

IQR 0.37-0.69 0.2-0.68 0.61-2.7
LA_X30_Y30_P1_K3_BT 3.2 3.2 0.34

IQR 1.6-4.2 1.6-4 0.22-0.52
LA_X30_Y30_P2_K3_BT 0.18 0.21 0.33

IQR 0.17-0.4 0.15-0.44 0.28-3
LA_X30_Y30_P3_K3_BT 1.8 1.8 3.6

IQR 0.18-5.2 0.17-5.2 3.6-4.9
LA_X30_Y30_PM_K3_BT 0.5 0.47 0.51

IQR 0.4-0.68 0.38-0.64 0.35-0.58
NO_X10_Y10_P1_K3_BT 0.3 0.81 0.27

IQR 0.24-0.81 0.66-0.81 0.25-0.31
NO_X10_Y10_P2_K3_BT 0.64 0.64 0.46

IQR 0.49-1.2 0.46-0.64 0.34-0.46
NO_X10_Y10_P3_K3_BT 0.31 0.8 0.81

IQR 0.24-0.65 0.68-0.8 0.43-0.81
NO_X10_Y10_PM_K3_BT 1.4 0.4 1

IQR 1.4-1.4 0.34-0.58 1-1.4
NO_X15_Y15_P1_K3_BT 0.21 0.22 1.3

IQR 0.2-0.41 0.2-0.41 0.24-1.3
NO_X15_Y15_P2_K3_BT 0.51 0.5 1.5

IQR 0.5-0.52 0.38-0.51 1.5-1.6
NO_X15_Y15_P3_K3_BT 0.44 0.7 0.69

IQR 0.35-0.73 0.33-0.7 0.37-0.69
NO_X15_Y15_PM_K3_BT 1.3 1.3 0.23

IQR 0.27-1.3 0.29-1.3 0.22-0.27
NO_X20_Y20_P1_K3_BT 0.26 0.21 0.57

IQR 0.19-0.34 0.19-0.25 0.32-0.58
NO_X20_Y20_P2_K3_BT 0.33 0.29 0.31

IQR 0.22-0.42 0.2-0.45 0.24-0.39
NO_X20_Y20_P3_K3_BT 0.87 0.88 1.1

IQR 0.31-1.1 0.27-1.2 1-1.3
NO_X20_Y20_PM_K3_BT 0.38 0.31 2.1

IQR 0.24-0.67 0.22-0.37 0.77-3
NO_X24_Y24_P1_K3_BT 0.32 0.27 0.39

IQR 0.25-0.35 0.15-0.35 0.33-0.47
NO_X24_Y24_P2_K3_BT 0.33 1.8 0.36

IQR 0.18-4.1 1.6-4.1 0.18-0.85
NO_X24_Y24_P3_K3_BT 0.19 0.18 0.19

IQR 0.15-0.21 0.16-0.21 0.18-0.22
NO_X24_Y24_PM_K3_BT 0.3 0.28 0.37

IQR 0.18-0.34 0.15-0.38 0.33-0.42
NO_X26_Y26_P1_K3_BT 0.18 0.18 0.39

IQR 0.16-0.27 0.16-0.2 0.13-1.3
NO_X26_Y26_P2_K3_BT 0.31 0.24 0.33

IQR 0.21-0.46 0.17-0.44 0.22-0.44
NO_X26_Y26_P3_K3_BT 0.38 0.27 0.15

IQR 0.25-1.1 0.22-0.95 0.11-0.18
NO_X26_Y26_PM_K3_BT 0.35 0.4 0.7

IQR 0.23-0.49 0.3-0.51 0.38-1.9

CIII



Instance Name DTW-MED FD-MED HD-MED

NO_X28_Y28_P1_K3_BT 0.86 0.86 2.3
IQR 0.86-2.3 0.86-2.3 0.18-5.3

NO_X28_Y28_P2_K3_BT 2.2 2.2 0.74
IQR 0.22-2.2 0.24-2.2 0.43-1.9

NO_X28_Y28_P3_K3_BT 0.31 0.29 1.3
IQR 0.25-0.42 0.23-0.34 0.29-2.7

NO_X28_Y28_PM_K3_BT 0.17 0.18 0.16
IQR 0.15-0.31 0.15-0.33 0.16-0.2

NO_X30_Y30_P1_K3_BT 0.22 0.22 2.6
IQR 0.2-0.4 0.12-0.26 0.92-5.9

NO_X30_Y30_P2_K3_BT 0.32 0.36 0.21
IQR 0.26-3 0.26-3 0.14-0.32

NO_X30_Y30_P3_K3_BT 0.2 0.19 0.4
IQR 0.18-0.26 0.17-0.21 0.22-0.43

NO_X30_Y30_PM_K3_BT 3.6 3.6 3.6
IQR 3.6-4.9 1.1-4.9 0.63-3.6

Table B.9: Raw values of different instances of the IGDX indicator. Shown are
the median and the IQR values below.

B.5.3 IGD+Values - Minimum Approach

Instance Name DTW-MIN FD-MIN HD-MIN

CH_X10_Y10_P1_K3_BT 3 1.8 1.4
IQR 2-4 0.81-2.7 0.66-2.9

CH_X10_Y10_P2_K3_BT 0.99 1.5 0.97
IQR 0.64-1.5 0.83-2 0.74-1.9

CH_X10_Y10_P3_K3_BT 1.3 1.4 0.97
IQR 0.94-2.4 0.89-1.8 0.68-1.4

CH_X10_Y10_PM_K3_BT 1.8 1 1.1
IQR 1.2-2.9 0.63-1.7 0.66-1.7

CH_X15_Y15_P1_K3_BT 3.3 2.4 1.9
IQR 2.4-3.7 1.8-3.2 1.3-2.8

CH_X15_Y15_P2_K3_BT 2.5 1.9 2
IQR 1.8-3.1 1.6-2.6 1.5-2.7

CH_X15_Y15_P3_K3_BT 2.3 1.8 1.6
IQR 1.6-2.9 1.4-2.2 1.1-1.8

CH_X15_Y15_PM_K3_BT 2.3 1.9 1.9
IQR 1.7-3.2 1.5-2.8 1.2-2.9

CH_X20_Y20_P1_K3_BT 3.6 3.7 3
IQR 2-4.9 2.9-4 2.1-4

CH_X20_Y20_P2_K3_BT 2.7 2.4 2.7
IQR 1.9-3.4 1.6-3.4 2.1-3.5

CH_X20_Y20_P3_K3_BT 3 3 2.5
IQR 2.5-4.2 1.9-3.5 1.9-3.2

CH_X20_Y20_PM_K3_BT 1.8 1.8 2.1
IQR 0.89-2.7 1.2-2.4 1.5-2.8

CH_X24_Y24_P1_K3_BT 2.9 3.2 2.9
IQR 2-3.9 2.7-4 1.6-3.6

CH_X24_Y24_P2_K3_BT 4 3.6 3.2
IQR 3-4.7 2.6-4.6 2.3-4.8

CH_X24_Y24_P3_K3_BT 2.3 2.7 2
IQR 1.8-3.4 1.7-3.4 1.5-2.6

CH_X24_Y24_PM_K3_BT 3 3.2 2.1
IQR 2-4.2 2-4 1.5-2.8

CH_X26_Y26_P1_K3_BT 4 3.4 3.3
IQR 2.5-5 2-4.9 2.3-4.3

CH_X26_Y26_P2_K3_BT 3.8 4 3.5
IQR 2.8-4.7 3-4.8 3-4

CH_X26_Y26_P3_K3_BT 3.5 3.1 3.1
IQR 2.8-4.1 1.9-4.1 2.6-3.8

CH_X26_Y26_PM_K3_BT 2.3 1.9 2.8
IQR 1.8-3 1.6-2.9 1.8-3.2

CH_X28_Y28_P1_K3_BT 4 4.4 3.2
IQR 3.1-4.6 3.1-5.4 2.6-3.7

CH_X28_Y28_P2_K3_BT 3.6 3.2 3.6
IQR 3-4.3 2.6-4.2 2.6-4.1

CH_X28_Y28_P3_K3_BT 2.8 3.2 3.1
IQR 2.4-3.7 2.3-4.2 2.4-3.6

CIV



Instance Name DTW-MIN FD-MIN HD-MIN

CH_X28_Y28_PM_K3_BT 2.2 2.1 1.9
IQR 1.4-3 1.4-2.7 1.2-2.4

CH_X30_Y30_P1_K3_BT 3.6 3.4 2.4
IQR 2.5-4.6 2.1-4.3 1.6-3.6

CH_X30_Y30_P2_K3_BT 4 3.6 3.2
IQR 3.5-4.6 2.9-5 2.4-4

CH_X30_Y30_P3_K3_BT 3.2 3.2 2.5
IQR 2.9-4.2 2.3-3.8 2-3.1

CH_X30_Y30_PM_K3_BT 2.3 2.2 2
IQR 1.7-3 1.6-3.1 1.2-2.6

LA_X10_Y10_P1_K3_BT 2.7 1.6 1.4
IQR 1.4-3.5 1-3.1 0.9-1.9

LA_X10_Y10_P2_K3_BT 4 3.3 3.1
IQR 2.6-5.2 2.7-4.7 2.1-4.5

LA_X10_Y10_P3_K3_BT 1.3 1.2 0.78
IQR 0.84-1.7 0.93-1.6 0.63-1.3

LA_X10_Y10_PM_K3_BT 3.5 2.9 2
IQR 2.5-4.7 1.8-4.1 1.3-2.8

LA_X15_Y15_P1_K3_BT 3.9 3.7 2.6
IQR 3.2-4.8 2.1-4.7 2-4

LA_X15_Y15_P2_K3_BT 4.8 4.7 4.6
IQR 3.9-6.8 4.1-6.8 4-5.9

LA_X15_Y15_P3_K3_BT 2.4 2.3 2.9
IQR 2-3 1.9-3 1.8-3.4

LA_X15_Y15_PM_K3_BT 5.2 4.1 4.5
IQR 4.2-6.3 3.4-5.1 3.6-5.4

LA_X20_Y20_P1_K3_BT 6.6 5.8 6.4
IQR 5.3-8 4.7-7.7 5-7.1

LA_X20_Y20_P2_K3_BT 5.6 5.4 4.8
IQR 4.8-6.1 4.1-6.3 3.7-5.6

LA_X20_Y20_P3_K3_BT 5.3 4.7 4.4
IQR 4.5-6.6 3.8-5.9 3.2-5.4

LA_X20_Y20_PM_K3_BT 6.1 5.8 5.2
IQR 4.9-7.3 4.6-6.8 4.5-6.2

LA_X24_Y24_P1_K3_BT 5.8 5.4 4.6
IQR 4.7-6.7 4.3-6.3 3.6-5.4

LA_X24_Y24_P2_K3_BT 4.7 4.5 4.2
IQR 3.7-5.9 3.6-5.8 3.6-5.1

LA_X24_Y24_P3_K3_BT 3.6 3.3 3.1
IQR 2.7-4.3 2.8-3.5 2.6-4

LA_X24_Y24_PM_K3_BT 9.3 8.4 7.7
IQR 7.9-10 7.3-9.5 6.4-9.3

LA_X26_Y26_P1_K3_BT 6.8 6 5.6
IQR 5.8-8.3 5.2-7.3 4.1-6.7

LA_X26_Y26_P2_K3_BT 5.8 5.5 4.8
IQR 4.7-6.7 4.7-6.5 4.1-5.2

LA_X26_Y26_P3_K3_BT 4.5 4.6 4.5
IQR 3.5-5.7 3.2-5.3 3.7-5.4

LA_X26_Y26_PM_K3_BT 5.5 5.8 5.2
IQR 4.5-6.8 5-6.5 4.7-6.5

LA_X28_Y28_P1_K3_BT 5.9 5.8 5.4
IQR 5-7.7 4.1-7.7 4.2-6.5

LA_X28_Y28_P2_K3_BT 9 8 8.5
IQR 7.4-10 7.4-9.6 7.3-9.2

LA_X28_Y28_P3_K3_BT 3.6 3.5 3.5
IQR 3.1-4.5 2.8-4.2 2.6-4.2

LA_X28_Y28_PM_K3_BT 7.9 7.4 7.2
IQR 6.2-8.8 6.6-8.9 6.1-8.1

LA_X30_Y30_P1_K3_BT 6.5 6.8 5
IQR 5.5-7.8 5.7-8.6 4.1-6.8

LA_X30_Y30_P2_K3_BT 6.1 5.3 5
IQR 4.5-6.7 4.6-5.9 4.3-6.1

LA_X30_Y30_P3_K3_BT 4.8 5.6 4.6
IQR 4.2-6.8 4.4-6.2 4.2-5.6

LA_X30_Y30_PM_K3_BT 10 9.4 7.6
IQR 8-11 7.6-11 6.9-8.9

NO_X10_Y10_P1_K3_BT 2.3 1.3 1.1
IQR 1.1-3 0.81-2.1 0.8-2.1

NO_X10_Y10_P2_K3_BT 1.8 1.2 1.2
IQR 1.1-2.6 0.96-2.1 0.84-2.4

NO_X10_Y10_P3_K3_BT 1.3 1.5 0.94
IQR 0.95-1.9 0.87-1.9 0.81-1.3

NO_X10_Y10_PM_K3_BT 1.4 1.2 1.3

CV



Instance Name DTW-MIN FD-MIN HD-MIN

IQR 1.2-1.9 0.84-2.3 0.8-2.4
NO_X15_Y15_P1_K3_BT 4 3.1 2.2

IQR 2.6-4.3 2-3.9 1.7-3.4
NO_X15_Y15_P2_K3_BT 2.5 3.1 2.7

IQR 2-3.7 2.4-4.6 2.1-3.1
NO_X15_Y15_P3_K3_BT 2 1.8 1.7

IQR 1.4-2.6 1.4-2.4 1.4-2.3
NO_X15_Y15_PM_K3_BT 2.2 2.1 1.8

IQR 1.6-2.9 1.5-3.1 1.4-2.7
NO_X20_Y20_P1_K3_BT 5.3 4.7 3.4

IQR 4-6 3.1-6 2.7-4.3
NO_X20_Y20_P2_K3_BT 3.1 2.7 2.7

IQR 2.5-3.6 2-3.5 2.1-3.5
NO_X20_Y20_P3_K3_BT 3 3 2.5

IQR 2.1-4 2.1-3.9 1.8-3.2
NO_X20_Y20_PM_K3_BT 3.1 3 2.9

IQR 2.2-3.6 2.2-3.2 2.2-3.6
NO_X24_Y24_P1_K3_BT 4.4 3.3 3.6

IQR 3.7-5.2 2.5-4.9 2.3-5
NO_X24_Y24_P2_K3_BT 3.6 3.6 3.1

IQR 2.7-4.3 2.8-4.6 2.5-3.9
NO_X24_Y24_P3_K3_BT 2.8 2.4 2.8

IQR 2-3.6 1.9-3.1 2-3.7
NO_X24_Y24_PM_K3_BT 3.4 2.7 2.7

IQR 2.1-4.2 1.9-4.1 2.1-3.8
NO_X26_Y26_P1_K3_BT 5.3 5.1 4

IQR 4.6-6.8 3.9-5.7 2.8-5.2
NO_X26_Y26_P2_K3_BT 3.8 3.5 3

IQR 2.8-4.8 2.9-4.3 2.4-3.4
NO_X26_Y26_P3_K3_BT 3.9 3.8 3.3

IQR 3.2-4.6 2.9-4.4 2.7-4.2
NO_X26_Y26_PM_K3_BT 3 3.3 2.8

IQR 2.5-3.8 2.4-3.7 2.2-3.4
NO_X28_Y28_P1_K3_BT 4.7 4.5 3.4

IQR 4.2-5.7 3.9-5.5 2.8-5.1
NO_X28_Y28_P2_K3_BT 4.3 3.7 3.9

IQR 3.3-5.1 3-4.7 3.3-4.5
NO_X28_Y28_P3_K3_BT 3.2 3.7 3.4

IQR 2.5-4.1 2.8-4.5 2.6-4
NO_X28_Y28_PM_K3_BT 3 3.2 3.2

IQR 2.6-3.9 2.3-4 2.5-4.2
NO_X30_Y30_P1_K3_BT 4.4 3.6 3.2

IQR 3.5-5 2.7-4.9 2.3-4.4
NO_X30_Y30_P2_K3_BT 3.5 3.5 3.2

IQR 2.9-4.6 3-4.2 2.8-4
NO_X30_Y30_P3_K3_BT 3.3 3.4 3.1

IQR 2.9-4 3.1-4.2 2.6-3.7
NO_X30_Y30_PM_K3_BT 3.6 3.4 3.4

IQR 2.9-4.4 2.3-4.4 2.7-4.4

Table B.10: Raw values of different instances of the IGD+ indicator. Shown are
the median and the IQR values below.

B.5.4 IGDX Values - Minimum Approach

Instance Name DTW-MIN FD-MIN HD-MIN

CH_X10_Y10_P1_K3_BT 0.76 0.59 0.54
IQR 0.76-0.76 0.5-0.65 0.49-0.64

CH_X10_Y10_P2_K3_BT 0.63 0.78 0.62
IQR 0.62-0.82 0.53-1.1 0.62-0.63

CH_X10_Y10_P3_K3_BT 0.54 0.53 0.54
IQR 0.44-0.74 0.5-0.69 0.41-0.76

CH_X10_Y10_PM_K3_BT 0.8 0.7 0.69
IQR 0.66-0.8 0.58-0.97 0.61-0.81

CH_X15_Y15_P1_K3_BT 0.66 0.72 1.1
IQR 0.65-1.5 0.58-0.73 0.57-1.6

CH_X15_Y15_P2_K3_BT 1.1 0.79 0.7
IQR 0.52-1.1 0.69-0.92 0.7-0.79

CH_X15_Y15_P3_K3_BT 0.63 0.44 0.55
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Instance Name DTW-MIN FD-MIN HD-MIN

IQR 0.6-0.81 0.44-0.56 0.5-0.62
CH_X15_Y15_PM_K3_BT 0.47 0.42 0.72

IQR 0.41-0.52 0.42-0.54 0.58-0.73
CH_X20_Y20_P1_K3_BT 0.27 0.27 0.54

IQR 0.26-0.59 0.26-0.51 0.33-3.2
CH_X20_Y20_P2_K3_BT 0.29 0.48 0.6

IQR 0.2-0.42 0.4-0.54 0.44-1.4
CH_X20_Y20_P3_K3_BT 0.48 0.66 0.43

IQR 0.15-3.2 0.45-3.2 0.41-0.49
CH_X20_Y20_PM_K3_BT 0.3 0.51 0.45

IQR 0.27-0.45 0.42-0.75 0.27-0.55
CH_X24_Y24_P1_K3_BT 0.51 0.63 0.47

IQR 0.48-0.53 0.4-0.72 0.27-0.88
CH_X24_Y24_P2_K3_BT 0.44 0.3 4.5

IQR 0.32-0.67 0.24-0.48 4.5-4.5
CH_X24_Y24_P3_K3_BT 0.34 0.21 0.56

IQR 0.31-0.45 0.16-0.4 0.37-0.93
CH_X24_Y24_PM_K3_BT 1.9 0.43 0.57

IQR 0.23-1.9 0.31-0.46 0.38-1.9
CH_X26_Y26_P1_K3_BT 0.35 0.28 0.27

IQR 0.27-0.69 0.25-0.33 0.21-0.39
CH_X26_Y26_P2_K3_BT 0.42 0.42 0.43

IQR 0.36-0.51 0.35-0.47 0.36-0.51
CH_X26_Y26_P3_K3_BT 0.39 0.42 0.25

IQR 0.34-0.46 0.31-0.48 0.18-0.41
CH_X26_Y26_PM_K3_BT 0.45 0.49 0.5

IQR 0.39-0.55 0.42-0.53 0.41-0.58
CH_X28_Y28_P1_K3_BT 0.88 0.29 0.3

IQR 0.34-3.8 0.24-3.8 0.26-0.42
CH_X28_Y28_P2_K3_BT 0.37 0.5 0.5

IQR 0.28-0.53 0.46-0.55 0.29-0.55
CH_X28_Y28_P3_K3_BT 0.6 0.46 0.41

IQR 0.33-4.1 0.33-0.72 0.33-0.57
CH_X28_Y28_PM_K3_BT 0.22 1.5 0.41

IQR 0.18-0.3 0.43-8 0.33-0.52
CH_X30_Y30_P1_K3_BT 0.31 0.99 0.73

IQR 0.21-0.66 0.83-3 0.72-2.7
CH_X30_Y30_P2_K3_BT 0.41 0.34 0.34

IQR 0.34-0.63 0.27-0.59 0.25-4.5
CH_X30_Y30_P3_K3_BT 0.42 0.37 0.34

IQR 0.33-0.56 0.31-0.44 0.32-0.42
CH_X30_Y30_PM_K3_BT 0.37 0.33 0.32

IQR 0.29-0.42 0.29-0.46 0.19-0.41
LA_X10_Y10_P1_K3_BT 0.85 0.59 0.48

IQR 0.58-1.1 0.5-0.74 0.48-1.1
LA_X10_Y10_P2_K3_BT 0.44 0.97 0.49

IQR 0.44-0.49 0.97-0.97 0.42-2
LA_X10_Y10_P3_K3_BT 0.87 0.53 1.4

IQR 0.73-0.94 0.53-0.53 1.4-1.4
LA_X10_Y10_PM_K3_BT 0.45 0.74 0.65

IQR 0.33-1.5 0.51-1.5 0.63-0.7
LA_X15_Y15_P1_K3_BT 0.24 0.27 0.39

IQR 0.21-0.33 0.22-0.57 0.25-0.52
LA_X15_Y15_P2_K3_BT 0.48 0.89 0.87

IQR 0.38-0.71 0.68-1.1 0.39-1
LA_X15_Y15_P3_K3_BT 0.43 0.51 0.77

IQR 0.41-0.77 0.43-0.77 0.44-0.79
LA_X15_Y15_PM_K3_BT 0.48 0.32 2.2

IQR 0.48-0.8 0.32-0.33 0.52-2.2
LA_X20_Y20_P1_K3_BT 0.51 0.5 0.51

IQR 0.51-0.52 0.24-0.51 0.26-0.52
LA_X20_Y20_P2_K3_BT 0.42 0.44 0.35

IQR 0.37-1 0.37-1 0.26-0.45
LA_X20_Y20_P3_K3_BT 1.3 0.5 0.95

IQR 0.65-2.9 0.41-1.5 0.26-1.1
LA_X20_Y20_PM_K3_BT 0.2 0.47 1.5

IQR 0.18-0.43 0.42-1.3 0.8-1.5
LA_X24_Y24_P1_K3_BT 0.37 0.5 0.56

IQR 0.32-1.8 0.29-3.5 0.33-0.59
LA_X24_Y24_P2_K3_BT 0.43 0.46 0.37

IQR 0.26-0.48 0.24-0.89 0.24-0.53
LA_X24_Y24_P3_K3_BT 0.42 0.42 0.42

IQR 0.42-0.88 0.42-0.49 0.29-0.45
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Instance Name DTW-MIN FD-MIN HD-MIN

LA_X24_Y24_PM_K3_BT 1.6 0.5 1.3
IQR 0.45-1.6 0.4-1.6 1-4.5

LA_X26_Y26_P1_K3_BT 2.3 2.3 2.3
IQR 0.4-2.3 0.38-2.3 0.37-2.3

LA_X26_Y26_P2_K3_BT 0.44 0.44 4.7
IQR 0.35-0.62 0.34-0.62 0.42-4.7

LA_X26_Y26_P3_K3_BT 0.29 0.25 0.25
IQR 0.25-0.45 0.18-0.43 0.23-0.43

LA_X26_Y26_PM_K3_BT 0.32 0.46 1.1
IQR 0.26-0.39 0.4-0.5 0.74-2.1

LA_X28_Y28_P1_K3_BT 0.87 0.14 0.38
IQR 0.21-0.9 0.12-0.19 0.14-0.47

LA_X28_Y28_P2_K3_BT 3.2 3.2 0.59
IQR 0.47-3.2 1-3.2 0.47-3.2

LA_X28_Y28_P3_K3_BT 0.55 0.37 0.36
IQR 0.31-0.64 0.3-0.56 0.28-0.58

LA_X28_Y28_PM_K3_BT 0.71 1.3 0.45
IQR 0.29-1.3 0.68-2.7 0.36-0.62

LA_X30_Y30_P1_K3_BT 0.89 2.2 3.2
IQR 0.27-2.2 0.32-2.2 1.6-4.2

LA_X30_Y30_P2_K3_BT 0.78 0.53 0.35
IQR 0.57-1 0.37-0.78 0.28-0.47

LA_X30_Y30_P3_K3_BT 1.8 1.8 1.1
IQR 1.8-5.9 1.8-6.2 0.32-1.8

LA_X30_Y30_PM_K3_BT 0.55 0.73 0.56
IQR 0.35-0.69 0.27-1 0.44-0.85

NO_X10_Y10_P1_K3_BT 0.68 0.35 0.81
IQR 0.32-0.68 0.3-0.93 0.81-0.81

NO_X10_Y10_P2_K3_BT 0.34 0.34 0.5
IQR 0.31-0.41 0.3-0.39 0.37-0.5

NO_X10_Y10_P3_K3_BT 0.3 0.38 0.3
IQR 0.24-0.33 0.32-0.89 0.24-0.35

NO_X10_Y10_PM_K3_BT 0.43 0.45 0.42
IQR 0.41-0.5 0.4-0.6 0.39-0.52

NO_X15_Y15_P1_K3_BT 0.41 0.27 0.26
IQR 0.24-0.41 0.22-0.41 0.21-0.41

NO_X15_Y15_P2_K3_BT 2.2 0.39 0.51
IQR 0.45-2.2 0.32-0.5 0.43-0.51

NO_X15_Y15_P3_K3_BT 0.76 1.1 0.41
IQR 0.39-0.76 0.41-1.1 0.37-0.44

NO_X15_Y15_PM_K3_BT 1.3 0.31 1.3
IQR 0.25-1.3 0.24-1.3 0.24-1.3

NO_X20_Y20_P1_K3_BT 4.5 0.2 0.25
IQR 1.5-4.5 0.18-0.24 0.21-0.36

NO_X20_Y20_P2_K3_BT 0.28 0.44 0.36
IQR 0.24-0.31 0.31-0.67 0.3-0.44

NO_X20_Y20_P3_K3_BT 0.47 0.27 0.41
IQR 0.28-0.86 0.24-0.33 0.3-0.79

NO_X20_Y20_PM_K3_BT 0.46 0.35 1.3
IQR 0.4-0.57 0.18-0.41 0.45-2.9

NO_X24_Y24_P1_K3_BT 0.43 1.8 0.37
IQR 0.38-0.55 0.49-4.1 0.32-0.44

NO_X24_Y24_P2_K3_BT 0.17 0.33 1.8
IQR 0.11-0.21 0.27-0.5 1.6-4.1

NO_X24_Y24_P3_K3_BT 0.38 0.47 0.21
IQR 0.29-0.48 0.21-2.1 0.18-0.89

NO_X24_Y24_PM_K3_BT 0.19 6.3 0.34
IQR 0.17-0.26 0.83-6.3 0.18-0.39

NO_X26_Y26_P1_K3_BT 2.4 0.35 0.27
IQR 0.15-2.4 0.13-1.1 0.21-0.52

NO_X26_Y26_P2_K3_BT 0.26 0.26 0.23
IQR 0.21-0.31 0.19-0.37 0.18-0.49

NO_X26_Y26_P3_K3_BT 0.18 0.17 0.23
IQR 0.17-0.21 0.15-0.19 0.19-0.52

NO_X26_Y26_PM_K3_BT 0.25 0.3 0.4
IQR 0.22-0.36 0.25-0.41 0.27-0.53

NO_X28_Y28_P1_K3_BT 0.12 0.18 0.89
IQR 0.11-0.35 0.11-0.26 0.87-0.91

NO_X28_Y28_P2_K3_BT 0.44 0.37 2.2
IQR 0.37-0.55 0.31-0.47 0.26-2.2

NO_X28_Y28_P3_K3_BT 0.22 0.23 0.31
IQR 0.2-0.51 0.18-0.25 0.28-2.9

NO_X28_Y28_PM_K3_BT 0.16 0.18 0.2
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Instance Name DTW-MIN FD-MIN HD-MIN

IQR 0.15-0.34 0.16-0.27 0.16-0.27
NO_X30_Y30_P1_K3_BT 0.62 0.37 0.33

IQR 0.28-1 0.11-0.57 0.25-0.57
NO_X30_Y30_P2_K3_BT 0.77 0.37 3

IQR 0.52-3.2 0.29-0.55 0.24-3
NO_X30_Y30_P3_K3_BT 2.7 1.1 0.22

IQR 1.1-2.7 1.1-1.2 0.2-0.6
NO_X30_Y30_PM_K3_BT 0.38 0.21 3.6

IQR 0.22-1.8 0.18-1.5 3.6-4.9

Table B.11: Raw values of different instances of the IGDX indicator. Shown
are the median and the IQR values below.
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