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Abstract: Urban green space can help to reduce PM2.5 concentration by absorption and deposition
processes. However, few studies have focused on the historical influence of green space on PM2.5

at a fine grid scale. Taking the central city of Wuhan as an example, this study has analyzed the
spatiotemporal trend and the relationship between green space and PM2.5 in the last two decades.
The results have shown that: (1) PM2.5 concentration reached a maximum value (139 µg/m3) in 2010
and decreased thereafter. Moran’s I index values of PM2.5 were in a downward trend, which indicates
a sparser distribution; (2) from 2000 to 2019, the total area of green space decreased by 25.83%. The
reduction in larger patches, increment in land cover diversity, and less connectivity led to fragmented
spatial patterns of green space; and (3) the regression results showed that large patches of green space
significantly correlated with PM2.5 concentration. The land use/cover diversity negatively correlated
with the PM2.5 concentration in the ordinary linear regression. In conclusion, preserving large native
natural habitats can be a supplemental measure to enlarge the air purification function of the green
space. For cities in the process of PM2.5 reduction, enhancing the landscape patterns of green space
provides a win-win solution to handle air pollution and raise human well-being.

Keywords: urban green space; particulate matter; spatiotemporal evolution; landscape index; spatial
panel regression

1. Introduction

Urban green space can include street trees, private gardens, parks, and peri-urban
agricultural land within the city [1–3]. Ecosystem benefits provided by green space sig-
nificantly contribute to maintaining a livable environment for citizens. For instance, air
purification [4], alleviation of urban heat islands [5,6], carbon sequestration [7], recreational
service [8], and biodiversity conservation [9] can enhance the local quality of life. Small
particulate matter with widths less than 2.5 µm (PM2.5) is one of the outcomes of anthro-
pogenic activities [10,11]. PM2.5 damages human health in terms of the cardiovascular
system [12], respiration [13,14], and mortality [15]. In contrast, green spaces directly absorb
particulate matter through the retention ability of leaves [16] and slow down the spread of
PM2.5. However, green space is often affected by urban development, which exacerbates
the correlations with PM2.5 in areas where population density is already high.

The adverse effects of PM2.5 concentrations are a global concern. According to the
guidelines released by the WHO, annual exposure to PM2.5 concentrations under 5 µg/m3

has a less negative impact on humans [17]. The guidelines and actual emissions of PM2.5
in many countries and regions have not yet adopted or attained the same standard yet.
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For example, the two levels of PM2.5 concentration identified in China are 15 µg/m3

and 35 µg/m3 (annually) [18]. According to the National Ambient Air Quality Standard
(NAAQS), the PM2.5 concentration in India should be no more than 40 µg/m3 (annu-
ally) [19]. The limit of PM2.5 set by the European Commission is 20 µg/m3 (annually) [20].
There are gaps between the different guidelines (Appendix A, Table A1), which indicates
that many efforts need to be made in global PM2.5 reduction. Notably, the most dramatic in-
fluence of air pollution is the effect on longevity. Ebenstein et al. (2017) claimed that a 10.35
µg/m3 increase in PM10 reduced life expectancy by 7.68 months [21]. If PM2.5 concentra-
tions reach WHO air quality guidelines (annual 10 µg/m3, released in 2005) in all countries,
then life expectancy will increase by a population-weighted median of 7.20 months [22].
Moreover, poor air quality exposure increases the rates of cardiovascular diseases [23,24].
In addition, regional air quality can affect citizens’ self-reported happiness [25].

Governments and research institutes construct PM2.5 datasets to examine the concen-
tration, possible origins, and the main influencing factors. Ground air quality stations
observe hourly, daily, monthly, and yearly results of particulate matter measurements.
These datasets are widely applied in spatial and temporal change analysis of PM2.5 [26–28]
and are combined with Aerosol Optical Depths (AODs) data to generate full cover maps
across regional and global scales [29,30]. PM2.5 concentrations and distributions are affected
by anthropogenic and natural factors. The emissions from burning biomass and fossil fuels
are the main origins of particulate and gaseous pollutants [31]. Landscape fires are a signif-
icant PM2.5 source in many regions [32]. Meteorological factors significantly influence the
distribution of PM2.5 through wind speed and temperature [33]. Urbanization, road density,
and urban morphologies correlate with PM2.5 pollution [34,35]. Land use and cover change
also contribute to the distribution of PM2.5 [36]. Methods such as land-use regression,
random forest, and the spatial panel model have been widely applied in examining the
influencing factors and predicting the features of PM2.5 concentration [37–40].

Green space is one of such factors that can influence regional PM2.5 concentration,
decreasing the concentration by deposition from leaves, affecting wind speed, and im-
pacting air humidity [41,42]. Morphological and physiological traits of green space also
make a difference in PM2.5 reduction [43]. Higher green space core and bridge proportions
significantly reduce the PM2.5 concentration [44]. The leaf area index negatively correlates
with PM2.5 mass concentration [45]. The air purification effects of green space have a
particular functional scale. Considering the circular buffers of 0.5–5 km in radius, centered
in the monitoring stations, the total edge length of green space has a greater impact on
PM2.5 concentration than the green cover area. However, the influence of green cover
dominates on the 3–5 km scale [46]. In addition, biogenic volatile organic compounds
(BOVC) emissions of green space-induced PM2.5 concentration are harmful to human
health [47]. The dual role of green space in warm seasons is to both remove air pollution
and enhance air quality [48], which needs to be pointed out in the correlation analysis of
PM2.5 concentration and green space morphology.

During the process of urbanization, urban green space is inevitably influenced by
building encroachment. Decreasing its area will further undermine the ecosystem func-
tions [49], especially for the central city area where impervious land occupies a higher
proportion. Air purification, recreation, and habitat maintenance services of green spaces
play significant roles in residents’ well-being. Thus, the correlation of green space landscape
patterns on PM2.5 concentration across an extended period needs to be clarified. Because
PM2.5 can migrate within the regional area within a particular time, long time-series data
of PM2.5 concentrations are more useful to develop annual full cover maps [50]. Further-
more, these maps can be fitted to examine the relationship between PM2.5 and green space
landscape patterns on a grid scale.

This study focuses on the central city of Wuhan because it has undergone rapid
urbanization and drastic changes in air quality during the last 20 years. The main objectives
of the present work are to (1) reveal the spatial-temporal changes in green space and PM2.5
concentration and to (2) identify the correlations between landscape features of green space
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and PM2.5 concentration. Finally, we propose strategies to enhance the positive relationship
between PM2.5 and green space.

2. Data and Methodology
2.1. Study Area

Wuhan is the capital of Hubei province, the geographical and economic center of the
middle part of China, and it has a total area of 8569.15 km2 (Figure 1). It is located in a
humid subtropical climate zone, and the Yangtze River flows across the central city. The
annual precipitation is 2012.4 mm, and the average temperature is about 17.2 ◦C (2020).
The total population is about 12.44 million [51], which increased by 54.67% from 2000 to
2020. Wuhan has undergone rapid urbanization over the past two decades, especially in its
central districts where 57.88% of the population (7.21 million) lives.
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Figure 1. Location of the study area.

Expanding the impervious surface threatens the distribution pattern and amount of
green space. Factory production, fossil fuel consumption, and private cars are all growing
along with urban development, which causes urban problems such as air pollution and
traffic jams. More attention has been given to these negative outputs and the importance
of protecting the natural environment in the central districts. The local government has
implemented a series of measures to deal with these problems, such as reducing energy
consumption and unqualified fuels of private cars. The Chinese government gives priority
status to the promotion of air quality. A PM2.5 concentration reduction by 10% is promised
in China’s 14th Five-Year Plan (2021–2025) [52], and rules such as restricting high-polluting
sources and constant air quality monitoring will continue.

2.2. Data for Analysis

This study represented green space as areas composed of land cover, including wood-
land, grassland, and cropland. There was a rapid increase in construction land use in
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the central districts, so we also considered artificial surfaces. According to the current
land use classification in China (GB/T 21010-2017) [53], the land cover types were man-
ually interpreted from Google history remote sensing images with a resolution of 2 m
(2000/2010/2020) [54]. To improve the precision of our interpretation, we took the land
cover maps generated from GlobalLand30 as a reference [55]. The total accuracy of Glob-
alLand30 is 85.72%, and the Kappa coefficient is 0.82. We calculated landscape patterns
of green space in 2020. For coherence with the following data, we described the results of
green space landscape patterns as in 2019.

PM2.5 concentration data (1 km resolution, annual average) were obtained from an
open-access database [56], which includes long-term, full-coverage, and high-resolution
ground-level air pollutants in China. The local government of Wuhan implemented lock-
down strategies from 23 January–22 February 2020. Consequently, this study applied the
PM2.5 dataset of 2019 in the spatial panel regression to avoid the lockdown effect. Thus,
this study extracted annual PM2.5 concentration data from 2000, 2010, and 2019.

The spatial maps of gross domestic product (GDP) were drawn from the Data Center
of Resources and Environmental Sciences (RESDC) [57]. The resolution of GDP maps in
2000, 2010, and 2015 was 1 km. Because the GDP for 2019 was unavailable, it was estimated
by multiplying 2015 data by the growth rate from 2015 to 2019.

2.3. Methodology
2.3.1. Landscape Patterns of Green Space

The configuration and composition of green space can influence the deposition rate
of particulate matter. Hence, we applied the total area (TA), contagion index (CONTAG),
largest patch (LPI), and Shannon’s diversity index (SHDI) to demonstrate the spatial
distribution of green space (Table 1). TA aims to reflect the area of green space. LPI
represents the dominating patches occupying the proportion of green space area. CONTAG,
as the fractal dimension index, describes the spatial patterns of patches. Finally, SHDI can
manifest the complexity of green space types.

Table 1. Formula and explanations of landscape indexes.

Landscape Indexes Formula Description References

Total area (TA) TA =
n
∑

j=1
aij

Equals the sum of green space
areas of patches. [58,59]

Largest patch index (LPI) LPI =
max(aij)

A ∗ 100
Equals the percentage of the
landscape comprised by the

giant patch
[60,61]

Contagion index
(CONTAG)

CONTAG

=

(
1 + ∑n

i ∑n
j (Pi∗m−ln(Pi∗m))

2 ln(n)

)
∗100

Ranging from 0 to 100. The
lower the index value, the
more scattered the urban
landscape pattern and the

higher the average degree of
fragmentation.

[62–64]

Shannon’s diversity Index
(SHDI) SHDI = −

n
∑

i=1
(Pi ∗ lnPi)

This represents diversity. The
value increases as the number

of different patch types
increases.

[65,66]

Note: aij is the area (m2) of patch ij; A is the total area of the grid (m2); n is the number of patches; Pi represents
the proportion of landscape occupied by patch type i; gik is the number of adjacencies (joins) between pixels of
patch types (classes). m = gik/ ∑n

k=1 gik .

A fishnet (grids with 1 km resolution) was created from the PM2.5 dataset (ArcGIS 10.5,
“create fishnet” tool) and applied in the extraction of green space. The landscape indexes
were calculated by Fragstats (4.2).
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2.3.2. Spatial Correlation Analysis

(1) Spatial weight matrix

The weight matrix is based on the queen contiguity criterion to reflect the neighboring
influence. Grids with the common vertexes and edges are assigned to 1, and otherwise 0.
The formula is as follows:

Wij =

{
1, i shares a corner or edge with j;
0, i isn′t adjacent to j.

(1)

(2) Moran’s I and hotspot analysis

We conducted the spatial autocorrelation test to examine the spatial interdependence
of PM2.5 concentration. Moran’s I was applied to calculate the degree of spatial autocorrela-
tion [67,68]. The formula is expressed as follows:

I =
∑N

i=1 ∑N
j=1 Wij(xi − x)

(
xj − x

)
s2 ∑N

i=1 ∑N
j=1 Wij

(2)

S2 =
∑N

i=1(xi − x)2

N
(3)

where I is the univariate global spatial correlation index; xi, xj are the attribute values of
features i and j, respectively; x is the average value of features i and j; S2 is the sample
variance; Wij is the spatial weight between features i and j; and N equals the total number
of features.

For the Moran’s I analysis, the null hypothesis states that the attribute being analyzed
is randomly distributed among the features in the study area. The null hypothesis may be
rejected when the p-value is lower than the defined threshold (5% in this study) and the
z-score is positive. The spatial distribution of high values and low values in the dataset
is more spatially clustered. When the p-value is lower than the defined threshold and
the z-score is negative, the null hypothesis may also be rejected. In that case, the spatial
distribution of high values and low values in the dataset are more spatially dispersed.

Hotspot analysis is applied to identify the clustering attribute of factors [69,70]. This
analysis creates maps of statistically significant hot and cold spots. The hotspot analysis
calculates the Getis–Ord G∗i statistic for each feature in a dataset:

G∗i =
∑N

j=1 wi,jxj − x ∑N
j=1 wi,j

S

√
(N ∑N

j=1 w2
i,j−(∑

N
j=1 wi,j)

2
)

N−1

(4)

The explanations of variables are the same as in Formula (2). G∗i is a z-score that
represents the standard deviation. The resultant z-scores and p-values show where features
with high or low values cluster spatially. For statistically significant positive z-scores (5%
in this study), the larger z-scores represent intense clustering of high values (hot spot),
and vice versa. The quadrants were divided as “High-high (H-H)”, “Low-low (L-L)”,
“High-low (H-L)”, and “Low-high (L-H)”.

2.3.3. Spatial Panel Model

Variance inflation factors (VIFs) were calculated to exclude the highly correlated
variables from a stepwise procedure. First, we assumed that relevant factors influenced the
PM2.5 concentration without spatial dependency. A basic Ordinary Least Squares (OLS)
model is expressed as follows:

Yit = β0 + βXit + εit (5)



Land 2022, 11, 776 6 of 16

where Yit is the PM2.5 concentration in cell i at time t; β0 is a constant term; β is the
parameter of Xit; Xit represents the independent variables, referring to the landscape
indexes of green space, GDP, and artificial surface proportion in this study; and εit is the
error term.

Ignoring the spillover effect of PM2.5 concentration might lead to bias. The spatial lag
model (SLM) presumes that dependent variables interact among neighbors [71,72]. Thus,
we changed Formula (5) into:

Yit = β0 + ρ
N

∑
j=1

WijYit + βXit + εit (6)

where ρ is the spatial lag effect coefficient. When the error terms correlate, the random
effect affects the spillover effect [73]. The Spatial Error Model (SEM) is expressed as follows:

Yit = β0 + βXit + µit (7)

µit = λWµit + εit (8)

where λ represents the average degree of spatial correlations of errors. Furthermore, the
Spatial Durbin Model (SDM) measures the effect of neighboring dependent and indepen-
dent variables [74]. In this case, PM2.5 concentration is influenced not only by the PM2.5
value of neighbors but also by the neighboring independent variables:

Yit = β0 + ρ
N

∑
j=1

WijYit + βXit + θ
N

∑
j=1

WijXijt + εit (9)

where Yit is the PM2.5 concentration and θ is the spatial spillover effect coefficient of the
independent variables.

The Likelihood Ratio test (LR test) determines whether SLM, SEM, and SDM models
are more fitted for the green space and PM2.5 data. The Hausman test was conducted to
select between the fixed-effects (FE) or random-effects (RE) panel model [75]. Akaike’s
Information Criteria (AIC) and Bayesian Information Criteria (BIC) supported the model
selection [76]. The lower the AIC and BIC values, the better the model fits the data. The
spatial panel model was processed in Stata15 (package “xsmle”).

3. Results
3.1. Temporal Change and Spatial Distribution of Green Space from 2000 to 2019

The amount of green space (TA) decreased from 381.04 km2 to 282.60 km2, or a
decrease of 25.83%, from 2000 to 2019. Conversely, artificial surfaces increased from
290.54 km2 to 387.68 km2 in the same period, increasing by 33.43%. The adverse direction
of transformation reflects the observation that human activities have an intervention effect
on the natural environment. Consistent with the downward trend of TA, both LPI and
CONTAG decreased, while SHDI increased (Table 2).

Table 2. Landscape indexes of green space in the central city from 2000 to 2019.

Year/Landscape Indexes TA (km2) LPI (%) CONTAG (%) SHDI

2000 381.04 6.05 63.28 0.78
2010 323.52 5.93 54.81 0.96
2019 282.60 3.35 53.14 1.00

changing rate (%)
2000–2010 −15.10 −2.04 −13.39 23.17
2010–2019 −12.65 −43.40 −3.04 4.37
2000–2019 −25.83 −44.56 −16.03 28.55
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The changing rates of landscape indexes in the earlier 10 years (from 2000 to 2010)
were higher than those in later years (from 2010 to 2019), except for LPI. The evolution of
green space resulted in an evident reduction in total area and large patches, which led to
fewer connections of natural land cover. There was an apparent downward trend in green
space in the urban periphery and an incremental trend in the center area (Figure 2). In
addition, landscape indexes demonstrated a clustering pattern (Appendix A, Figure A1).
Moran’s I for TA was in a downward trend due to the loss of ample green space around
the edge of the central city. The spatial correlation of CONTAG kept increasing while LPI
and SHDI decreased from 2000 to 2019. This result suggested that green space has become
more fragmented and less diverse.
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3.2. Spatial and Temporal Changes in PM2.5 Concentration

From 2000 to 2019, the PM2.5 concentration underwent a transition from an upward
to a downward trend. The annual average values of PM2.5 for 2000, 2010, and 2020 were
75.20 µg/m3, 85.87 µg/m3, and 46.10 µg/m3, respectively (Figure 3). Compared to 2000,
a higher level of PM2.5 concentration in 2010 led to an increase in the average PM2.5 by
14.19%. The maximum value occurred in 2010. The dense PM2.5 concentration clustered
around the city center. PM2.5 concentration decreased by 46.33% from 2010 to 2019, which
corresponds with the promotion of air quality across the region. The distribution of PM2.5
was in a clustering pattern according to the global Moran’s I value from 2000 to 2019 (see
Appendix A, Figure A1).
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25th percentile to the 75th percentile. The 50th percentile is the median, represented by the middle
black line).

3.3. Spatial Patterns of Green Space and PM2.5 Concentration

The local spatial correlations among PM2.5 concentrations and landscape indexes are
shown in Figure 4. The number of grids with significant “H-H”, “H-L”, “L-H”, and “L-L”
are demonstrated in the four quadrants. From 2000 to 2019, the spatial scale of “H-H” and
“H-L” cluster patterns decreased, which indicates that both PM2.5 and green space were
downward. “L-L” group numbers increased on the left-hand side of the Yangtze River,
while “L-H” cells clustered on the right-hand side. There were spatial correlations between
PM2.5 and green space landscape indexes. However, clarifying how the landscape patterns
correlated with PM2.5 requires further regression analysis.

3.4. Correlations of Green Space Landscape Patterns and PM2.5 Concentration

We also considered GDP and the artificial surface area because PM2.5 is affected by eco-
nomic development and urbanization [33,34]. The VIF value of independent variables was
less than 10. There was a low correlation among variables and the fit for regression analysis.

As the results have shown (Table 3), ordinary linear regression and spatial panel
models examined the correlations between landscape indexes and PM2.5 from different
aspects. The R-square of OLS (0.435) showed that the landscape patterns of green space and
GDP could explain the PM2.5 concentration to a certain degree. Meanwhile, the artificial
surface demonstrated an insignificant correlation with PM2.5. GDP and PM2.5 concentration
significantly correlated. TA and LPI was negatively correlated with PM2.5, which indicates
that the area of green space and larger patches could contribute to the air purification.
CONTAG demonstrated an insignificant relationship with PM2.5 concentration. Finally,
SHDI showed a strong influence in alleviating PM2.5 concentration.



Land 2022, 11, 776 9 of 16
Land 2022, 11, x FOR PEER REVIEW 9 of 17 
 

 

Figure 4. Local spatial correlations of PM2.5 and landscape patterns in the last two decades. (As men-

tioned in the methodology, “H-H” represents the high value of landscape indexes and PM2.5 con-

centration clusters in the spatial scale. The number inside of the rectangle is the calculation of grids, 

and for example, the number of “H-H” of SHDI and PM2.5 in 2000 is 69). 

3.4. Correlations of Green Space Landscape Patterns and PM2.5 Concentration 

We also considered GDP and the artificial surface area because PM2.5 is affected by 

economic development and urbanization [33,34]. The VIF value of independent variables 

was less than 10. There was a low correlation among variables and the fit for regression 

analysis. 

As the results have shown (Table 3), ordinary linear regression and spatial panel 

models examined the correlations between landscape indexes and PM2.5 from different 

aspects. The R-square of OLS (0.435) showed that the landscape patterns of green space 

and GDP could explain the PM2.5 concentration to a certain degree. Meanwhile, the artifi-

cial surface demonstrated an insignificant correlation with PM2.5. GDP and PM2.5 concen-

tration significantly correlated. TA and LPI was negatively correlated with PM2.5, which 

indicates that the area of green space and larger patches could contribute to the air puri-

fication. CONTAG demonstrated an insignificant relationship with PM2.5 concentration. 

Finally, SHDI showed a strong influence in alleviating PM2.5 concentration. 

Spatial panel models further manifested the spatial correlations of PM2.5 and green 

space. LPI and GDP negatively correlated with PM2.5 in SLM and SEM. Neighboring GDP 

and TA showed a negative correlation with PM2.5 concentration in the results of SDM. To 

determine a model for further analysis, we examined the statistically significant LR and 

Hausman test, together with lower AIC and BIC values. We found that the spatial lag 

model (SLM) was more adequate. In detail, LPI negatively correlated with PM2.5, which 

suggests the importance of protecting natural sizeable green space. Even though SHDI 
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Spatial panel models further manifested the spatial correlations of PM2.5 and green
space. LPI and GDP negatively correlated with PM2.5 in SLM and SEM. Neighboring GDP
and TA showed a negative correlation with PM2.5 concentration in the results of SDM. To
determine a model for further analysis, we examined the statistically significant LR and
Hausman test, together with lower AIC and BIC values. We found that the spatial lag
model (SLM) was more adequate. In detail, LPI negatively correlated with PM2.5, which
suggests the importance of protecting natural sizeable green space. Even though SHDI
showed the most effective reduction in PM2.5, in addition to the effect of GDP, the p-value
was not significant. TA and CONTAG correlations with PM2.5 were unclear.

Table 3. Regression analysis of PM2.5 concentration (dependent variable) and landscape indexes,
GDP, artificial surfaces.

Coefficients
Models

OLS SLM SEM SDM

Constant 169.218 - - -
Artificial surfaces 0.000 −0.009 0.002 0.006

GDP −10.204 *** −1.601 *** −1.630 *** −0.486
TA −0.15 *** 0.006 0.032 ** 0.030 **
LPI −0.072 *** −0.023 *** −0.027 *** −0.028 ***

CONTAG −0.002 −0.007 −0.010 −0.008
SHDI −3.64 *** −0.597 −0.510 −0.638
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Table 3. Cont.

Coefficients
Models

OLS SLM SEM SDM

W * Artificial surfaces - - - −0.022
W * GDP - - - −1.324 ***
W * TA - - - −0.065 ***
W * LPI - - - 0.026

W * CONTAG - - - 0.023
W * SHDI - - - −0.197

ρ - 0.876 *** - 0.868 ***
λ - - 0.938 *** -

Residual variance - 30.191 *** 29.901 *** 30.145 ***
R-square 0.435 0.4254 0.2900 0.4872

AIC 20,268.721 15,859.38 15,965.58 15,853.29
BIC 20,309.385 15,905.85 16,012.05 15,934.61

Note: ***, **, * represent the significance level of p-value 1%, 5%, and 10%, respectively.

4. Discussion

This paper has focused on the relationship between green space landscape patterns
and PM2.5 concentration in Wuhan central city over the last two decades. The significant
negative correlation between LPI and PM2.5 was examined in the regression analysis. Re-
serving naturally sizeable green space and enlarging present green space are promising
measures to support the mitigation of PM2.5. However, impervious land constantly en-
croaches on surrounding green space [77]. The present study found that almost a quarter of
green space vanished in the central city of Wuhan from 2000 to 2019. The loss of marginal
green space exceeds the increment in the city center (Figure 2), which reduces the total
area [78].

From 2010 to 2019, PM2.5 decreased by 46.33% in the central city of Wuhan. Policies
such as the Air Pollution Prevention and the Control Action Plan, which was released
by the Chinese government in 2013, significantly decreased the population-weighted
annual mean PM2.5 concentrations in China from 61.8 to 42.0 µg/m3 within five years [79].
Anthropogenic emission dominated the reduction. National policies could accelerate the
efforts of local authorities to improve the air quality for sustainable development. In
the central city of Wuhan, measures such as promoting green space coverage, reducing
the use of coal, and green energy consumption have gradually alleviated regional PM2.5
pollution [80]. Indeed, the average PM2.5 concentration decreased and reached 46.1 µg/m3

in 2019. However, this is still far from the guideline (5 µg/m3) suggested by the WHO to
reduce the harmful impacts on human health and longevity [17].

Although artificial surfaces did not show an evident relationship with PM2.5 concentra-
tion, the economic activities demonstrated a statistically significant correlation with PM2.5.
According to the Environmental Kuznets Curve, a post-urbanization period of economic
development can exert a less negative influence on the environment [81,82]. In our case,
during the primary period of urbanization, economic development dominated society.
Factories with polluting emissions near the central city center led to poor air quality. Later,
advanced economic development and urban planning would reduce the disturbance to air
quality. This interpretation might explain the cluster of the “L-L” group on the left-hand
side of the Yangtze River, where high urbanization and a low area of green space occur.

Notably, the relationship between green space and PM2.5 needs to be carefully in-
terpreted. First, many anthropogenic and meteorological factors mutually affect PM2.5
concentration. The contribution rate of the main urban area source to PM2.5 concentration
exceeds 60% in Wuhan [83]. Humidity and temperature can also contribute to the level of
PM2.5 [84]. Even though green space features showed significant correlations with PM2.5
in spring [85], this mechanism is complicated. Meanwhile, biogenic volatile organic com-
pound emissions from green space and other meteorological conditions might influence
PM2.5 mitigation. In the context of regional climate and air quality model simulations,



Land 2022, 11, 776 11 of 16

vegetation emissions led to an increase in PM2.5 concentration over 10 µg/m3, which occu-
pied around 20% of the average observed PM2.5 concentration [86]. Vegetation emissions
can also increase the particle fluxes in urban environments [87]. Thus, the dual effects of
vegetation need to be considered in increasing green space to achieve PM2.5 mitigation.

Green space landscape patterns are stressed in the present study for two reasons. First,
according to previous studies, the green space area and diversification of vegetation could
exert great significance in air regulation [88]. SHDI also showed a negative correlation with
PM2.5 concentration in this study. The amount of PM2.5 adsorption by leaves demonstrated
a noticeable seasonal difference. Conifers were more effective in PM2.5 adsorption than
broadleaf trees were [89]. Green Infrastructure (GI) practices could significantly improve
air quality in urban areas [90]. Vegetation structure, composition, and management are
essential to optimize the capacity of green spaces to purify air quality [91]. The bio-
physical attributes of green spaces directly contribute to the reduction in PM2.5. Second, the
ecosystem services from green space combined with PM2.5 reduction could mutually affect
the health of the residents [92]. Expanding the green area and reducing fragmentation
can support the improvement of air quality and decrease the mortality rate of the citizens.
Combined with the results of this study, large green space patches deserve more attention
in urban land use planning.

This study examined the correlations between green space morphology and PM2.5
concentration over a long period. However, there are some limitations. First, during the
lockdown period, the PM2.5 concentration of Wuhan decreased by 27 µg/m3 compared
with the same period in 2019 [93]. In total, 90% of the reduction resulted from the lockdown
because PM2.5 mainly comes from factories, coal consumption, and transportation. A series
of research studies in India [94], America, Italy, France [95], Southern Italy [96], the United
Kingdom [97], Barcelona [98], and China [99] have shown positive outcomes of promoting
air quality during the same period. Although the lower pollution level briefly appeared
during the lockdown, the positive effects will guide decision-makers to make more efforts
to moderate PM2.5 concentration from the origins [100,101]. Correlations between green
space and PM2.5 concentrations should be further investigated under different policies.

Although this study showed the possible correlations between green space morphol-
ogy and PM2.5 concentration, the interpretation was limited by the absence of PM2.5 sources
and meteorology data. Moreover, the physical mechanisms of green space and PM2.5 con-
centration need to be further explained. For instance, deposition on leaves might offset the
emissions of biogenic volatile organic compounds, even though the net PM2.5 deposition
of green space remains. In that case, the contribution of green space to decrease the PM2.5
concentration will be more comprehensive.

5. Conclusions

Urban green space landscape patterns have shown different correlations with PM2.5.
In the present study, LPI and SHDI negatively correlate with PM2.5 concentrations. Hence,
it is rational to implement measures to strengthen the advantageous landscape features
of green spaces. However, under the pressure of urbanization, only a limited quantity of
land is left for expanding green spaces. Our results show that green space has decreased
by a quarter in the Wuhan central city over the last two decades. Therefore, enhancing
landscape patterns of green space deserves more attention. In terms of PM2.5 concentration,
preserving larger natural patches and new increments around the existing green area
are promising supplementary measures for locations with a lower proportion of green
space and higher pollution emissions. These findings may serve as a reference for cities
undergoing land-use conflicts and experiencing air pollution.
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Table A1. Examples of PM2.5 concentration guidelines.

Organizations/
Commissions/

Countries

Guidelines for PM2.5
(µg/m3, Annual Average) Explanations Reference

WHO

Interim target 1 35 The Air quality guidelines (AQG) level was based on the
relationship between PM2.5 and non-accidental mortality in
the long run. The interim targets, as incremental steps, guide

progressive air quality improvement for areas with
high pollution.

[17]
Interim target 2 25
Interim target 3 15
Interim target 4 10

AQG level 5

European
Commissions

Target value to be
met as of 1.1.2010;
Limit value to be
met as of 1.1.2015

25 For a target value, countries are responsible to implement
measures to ensure that it is attained. Limit value relates to the

maximum margin of tolerance. Stage 2 is stricter than the
former standards.

[20]

Stage 2 limit value
to be met as of

1.1.2020
20

China
Level 1 15 PM2.5 of natural reserve area and other protected places meet

the Level 1; Residential area, factories, and rural area meet
Level 2. No specific time limitation.

[18]Level 2 35

India
National Ambient

Air Quality
Standard (NAAQS)

40 National standard released in 2009 [19]
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