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Chapter 1.

Introduction

1.0. Structure of this Thesis

For the convenience of the reader, the structure of this thesis will be briefly de-
scribed here.

After a short discussion of existing methods and the state of the art for predicting
vibrational spectra in Chapter 1, the focus will be put on method development and
theory in Chapter 2. Some (but not all) of the methods described there have been
developed within the scope of this thesis. To demonstrate that these approaches
are indeed able to predict vibrational spectra of complex liquid systems, some
examples are presented in Chapter 3. The main part of this thesis ends with some
conclusions in Chapter 4.

Subsequently, an Appendix which contains some mathematical derivations and
algorithms can be found from page 115 on.

Two separate bibliographies follow. While the first one (starting on page 131)
contains all publications to which M.B. contributed, as indicated by the “MB” prefix
when citing,MB1 the second one (beginning on page 137) contains all other publica-
tions which are cited in this document without prefix.1 All references are clickable
links which lead directly to the bibliography (at least if you are reading an electronic
version of this thesis).

On page 173, an author index can be found, which contains an alphabetical list
of all authors which contributed to the references cited in this thesis, with a list
of corresponding reference numbers (which are—again—clickable links) after each
author’s name.

After a list of figures, list of abbreviations, and an index, the acknowledgments
follow. Finally, a short curriculum vitae of M.B. as well as a statement of author-
ship close this document.
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Chapter 1. Introduction

1.1. Vibrational Spectroscopy

Vibrational spectroscopy has been an important field of chemistry and physics for
a very long time. As this class of methods is concerned with molecular vibrations
(or phonons in solid state materials) which are highly sensitive to the chemical envi-
ronment of a certain molecule, vibrational spectra allow to study the interactions
present in the sample in great detail. Due to these characteristics, there exist count-
less applications of vibrational spectroscopy in science, industry, and medicine.1–10

The first “infrared spectrum” (albeit of the earth’s atmosphere instead of a prepared
sample) was recorded by J. F. W. Herschel in 1840.11 The Raman effect was pre-
dicted by A. Smekal around 100 years ago,12 and first experimental applications
followed several years later,13,14 but only the advent of the laser15,16 in the 1960s
led to the final breakthrough of Raman spectroscopy. Despite their long history,
infrared and Raman spectroscopy are still by far the most important methods of
vibrational spectroscopy for practical applications.

The most prominent limitation of Raman-based spectroscopic methods is their
low sensitivity. Out of one million incident photons, typically less than one un-
dergoes Raman scattering, so that a very weak signal is obtained. In the 1960s, it
was discovered that the intensity of the Raman scattering drastically increases if
the incident laser wavelength is close to the energy of an electronic excitation in
the sample, which was termed as the resonance Raman effect.17–21 Apart from the
overall increase in intensity, also the intensity ratio of the spectral bands changes
– vibrational modes which displace atoms involved in the electronic excitation
show larger gains of Raman intensity (vibronic coupling). With the low sensitivity
of Raman spectroscopy in mind, the discovery of the resonance Raman effect was
an important advance in the field, and the increased signal intensity allowed for
higher resolution and shorter acquisition times. Moreover, as the signal increase
only occurs for molecules which are electronically excited by the laser, it became
possible to measure very dilute solutions – a reasonable choice of laser wavelength
amplifies the bands of the solute, but not those of the solvent. Resonance Raman
spectroscopy was recently applied in the fields of medicine,22 electrochemistry,23

and to study drug binding,24 solar cells,25 photosynthesis,26 nanoparticles,27 and
water splitting.28

More recently, the chiral variants of infrared and Raman spectroscopy have been
introduced experimentally, namely vibrational circular dichroism (VCD)29–32 and
Raman optical activity (ROA)33–36 spectroscopy. Based on circularly polarized
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1.1. Vibrational Spectroscopy

light, these techniques derive their results as the difference between two infrared
and Raman spectra, respectively. For a sample which consists of only non-chiral
molecules or a racemate, the VCD and ROA spectra are empty. However, if the
sample contains an enantiomeric excess, characteristic signals appear, and the sign
of these signals allows for the determination of the absolute configuration of the
chiral compound. This is a very important feature, as most other kinds of spectro-
scopies are not able to determine the absolute configuration of molecules.

Another very interesting method is sum frequency generation (SFG) spec-
troscopy. It is a non-linear laser spectroscopy, in which two laser beams (visible
pump and infrared probe) mix at an interface and generate an output beam with a
frequency equal to the sum of the two input frequencies. As such a sum frequency
signal is only created in close proximity to the interface, this is a surface-selective
spectroscopy, and thus very valuable. This technique has been developed in 1987
by the group of Shen,37,38 and only a few years later it was used by Guyot–Sionnest
to study electronic and vibrational dynamics at surfaces.39–41 The information con-
tained in a SFG spectrum is in a certain sense complementary to infrared and
Raman spectroscopy.42

3



Chapter 1. Introduction

1.2. Predicting Vibrational Spectra

With the rise of computers in the second half of the 20th century, the field of
computational chemistry was established, and it became possible to predict vibra-
tional spectra by quantum chemical methods. This was an important step, as these
predictions were helpful to complement and better understand experimentally
measured spectra. In the beginning, these prediction were based on the so-called
static–harmonic approximation, which models molecular vibrations as a system of
harmonic oscillators, as it will be discussed in the following.

1.2.1. The Static–Harmonic Approach

Assuming a reasonably smooth potential energy surface, the potential energy V(x)
of a set of N atoms in close proximity of some point x0 with respect to the atom’s
3N Cartesian coordinates x = (x1, . . . , x3N) can be approximately expressed in
terms of a second-order multi-dimensional Taylor expansion:

V(x) ≈ V
(
x0)+ 3N

∑
i=1

( ∂V
∂xi

)
x0

(
xi − x0

i
)
+

1
2

3N

∑
i=1

3N

∑
k=1

( ∂2V
∂xi∂xk

)
x0

(
xi − x0

i
) (

xk − x0
k
)

(1.2.1)
If the point x0 is an energy minimum, the gradients

(
∂V
∂xi

)
x0 vanish, and only the

second derivatives remain:

V(x) ≈ V
(
x0)+ 1

2

3N

∑
i=1

3N

∑
k=1

( ∂2V
∂xi∂xk

)
x0

(
xi − x0

i
) (

xk − x0
k
)

(1.2.2)

Based on this approximation, the force Fi acting on coordinate xi can be expressed
as

Fi := −
( ∂V

∂xi

)
= −1

2

3N

∑
k=1

( ∂2V
∂xi∂xk

)
x0

(
xk − x0

k
)

(1.2.3)

By inserting Equation 1.2.3 into Newton’s equation

Fi = mi ai = mi

(d2xi

dt2

)
, i = 1, . . . , 3N, (1.2.4)

one obtains a system of equations of motion

mi

(d2xi

dt2

)
= −

3N

∑
k=1

( ∂2V
∂xi∂xk

)
x0

(
xk − x0

k
)

, i = 1, . . . , 3N (1.2.5)
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1.2. Predicting Vibrational Spectra

To express these equations more compactly, it is desirable to switch to the set of
so-called mass-weighted Cartesian coordinates q=(q1, . . . , q3N) defined as

qi := xi
√

mi, (1.2.6)

in which Equation 1.2.5 now reads

d2qi

dt2 = −
3N

∑
k=1

Hi,k qk, i = 1, . . . , 3N (1.2.7)

with the short-hand notation Hi,k for the mass-weighted Hessian matrix

Hi,k :=
1√

mimk

( ∂2V
∂xi∂xk

)
x0

. (1.2.8)

As the above approximation defines a purely harmonic potential energy surface
(see Equation 1.2.2), one can assume that the motion of each coordinate qi can be
described by a sinusoidal time evolution

qi(t) = q0
i + A · cos(ωt) (1.2.9)

with some amplitude A and angular frequency ω. Inserting this into Equation 1.2.7
yields

ω2qi =
3N

∑
k=1

Hi,k qk, i = 1, . . . , 3N, (1.2.10)

which can be rewritten as matrix eigenvalue problem for the mass-weighted Hes-
sian matrix H with the eigenvalues ω2:

ω2q = Hq. (1.2.11)

In other words, solving this eigenvalue problem directly yields the vibrational
frequencies ω of the system of atoms as the square roots of the eigenvalues. Fur-
thermore, the eigenvectors q of the matrix represent the directions along which
the atoms are displaced within each normal mode. Therefore, a full set of normal
modes—each with vibrational frequency and atom displacement vector—can be
obtained via this approach. Additional care has to be taken to project out the invari-
ants (i. e., translational and rotational invariance due to the conservation of momentum
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Chapter 1. Introduction

and angular momentum) out of the mass-weighted Hessian matrix, so that typically
only (3N−6) normal modes are obtained.

The method described above only yields vibrational frequencies of the modes.
However, in order to predict real vibrational spectra, also the intensities of each
mode need to be computed. This is typically performed by computing derivatives
of some more or less complicated properties with respect to the atom displace-
ments q obtained for each mode. For example, the infrared intensity of a certain
mode is proportional to the change in electric dipole moment that occurs when the
atoms are displaced along that mode. More details on computing the intensities
for the different kinds of vibrational spectroscopy can be found in Section 2.

Static–harmonic infrared43–52 and Raman43,45,47–50,53–57 spectra have been avail-
able for several decades in quantum chemistry software packages such as Gaus-
sian,58 and static VCD29,48,50,59–66 and ROA45,49,50,53,57,67–72 spectra can also be com-
puted since many years. Concerning resonance Raman spectra, the situation is
similar.73–82

Despite still being the standard approach in the literature, computing spectra
via the static–harmonic approach comes with several severe limitations:

• Due to the harmonic approximation of the potential energy surface, all an-
harmonic effects83 are neglected. If the system possesses features such as
strong hydrogen bonds or hindered rotations, the harmonic approximation
of certain modes will be poor, and so will be the quality of the predicted
spectrum.

• The spectrum can only be computed for one minimum energy structure
at a time. If there exist several conformers of the molecule, they need to
be considered separately. If the system can hardly at all be described by
minimum energy structures (such as bulk phase liquids), it will be hard to
obtain reasonable spectra at all.

• The method works best for molecules or small clusters in vacuum. Solvent
effects on the spectrum (which can be very pronounced) can be crudely approxi-
mated either via continuum solvation models84–91 such as COSMO and PCM,
or by means of microsolvation, but the solvent effect cannot be captured in
whole.

• The approach only yields a discrete line spectrum; no line widths or band
shapes can be obtained. To predict realistic spectra, empirical line broadening
needs to be applied.

6



1.2. Predicting Vibrational Spectra

It should be noted that a lot of effort was put into more accurate and more effi-
cient electron structure treatment92–94 as well as into going beyond the harmonic
approximation, and more complex approaches such as, e. g., vibrational self con-
sistent field theory (VSCF), 2nd order vibrational perturbation theory (VPT2), and
vibrational configuration interaction (VCI) were introduced to account for certain
anharmonic effects.45,49,50,95–105

1.2.2. The Time–Correlation Approach

Apart from employing the static–harmonic approximation, there exists the pos-
sibility to compute vibrational spectra directly from molecular dynamics (MD)
simulations. In this approach, the spectra are obtained as the Fourier transform of
some time correlation functions along the simulation trajectory—an idea which is
at least 55 years old now,106–112 and is called the time–correlation function (TCF)
formalism. This approach comes with several advantages over the static–harmonic
concept:

• Condensed-phase systems can be handled; it is possible to explicitly capture
the effects of solvent and entropy on the spectrum.

• Some anharmonic effects such as line broadening, approximate overtones
and combination bands113 are reproduced.

• Realistic band shapes are obtained instead of a discrete line spectrum.

• Intrinsic conformer sampling takes place during the MD simulation.

• No minimum energy structure is required to compute the spectrum.

However, due to the very limited accuracy of early MD simulations, this method
initially was of relatively little use.

With the advent of faster computers in the 1980s, it became possible to per-
form molecular dynamics (MD) simulations on the basis of a quantum chemical
description of the electron structure, referred to as ab initio molecular dynamics
(AIMD).114,115 The pioneers on that field were Roberto Car and Michele Parrinello,
which published their approach of Car–Parrinello molecular dynamics (CPMD) in
1985.116 With this class of methods, periodic bulk phase systems can be treated
natively, and even anharmonic effects are covered to a certain extent, as line shapes,
overtones, and combination bands are reproduced in qualitatively correct man-
ner.113,117 The first predictions of infrared spectra based on AIMD followed in 1997
on the examples of liquid water118 and amorphous silica,119 while the first com-
puted Raman spectrum from AIMD was published in 2002.120 Since then, many

7



Chapter 1. Introduction

more infrared113,121–135,MB14,MB19,MB23 and Raman113,130,136–140,MB14,MB19,MB23,MB26,

MB36,MB49 spectra of condensed phase systems based on this methodology have
been presented in the literature. Complementing experimental spectra with atom-
istic simulations has shown to be a powerful method to gain insights into directed
interactions such as, e. g., hydrogen bonds.141–149

However, with regard to the chiral variants of these two spectroscopies, namely
VCD and ROA, a similar progress was not visible for a long time. Only in 2016,
Thomas and Kirchner published the first predicted VCD spectrum of a liquid sys-
tem,150 based on a classical approach to obtain the magnetic moments that will be
discussed in Section 2.6 of this thesis. A few months later, Scherrer and Sebastiani
published another predicted VCD spectrum of a liquid151 which was based on
nuclear velocity perturbation theory (NVPT).

Concerning ROA spectra, the first predicted such spectrum of a periodic liquid
system was published by our group in 2017,MB26 based on an AIMD simulation.
Our newly developed approach is discussed in Section 2.8. Only a few months
earlier, another ROA spectrum derived from AIMD was published by Luber,152

but only one single molecule in vacuum was investigated, and as some derivations
have explicitly been conducted under the assumption of a non-periodic system, it
is concluded there that the application to liquid systems remains an open project
for the future.

Predicting resonance Raman spectra from AIMD simulations was not possi-
ble for a long time. The first such spectrum has been published by our group in
2019,MB36 using a newly developed approach that will be presented in Section 2.10
of this thesis.

SFG spectra based on molecular dynamics simulations can be computed since
some years and have been presented in the literature several times now.153–165

It should be noted that most standard AIMD simulations describe the nuclei
classically, and this description is an approximation which sometimes fails to cap-
ture certain effects relevant for reproducing experimental spectra.166 Several ap-
proaches167 to overcome this limitation have been developed, among them the path
integral molecular dynamics (PIMD)168,169 approach, which is often applied in the
variants of centroid Molecular Dynamics (CMD)170–174 and ring polymer molec-
ular dynamics (RPMD).175,176 It has been shown that PIMD is able to reproduce
certain nuclear quantum effects which are missing in simulations with classical
nuclei.177,178

8



1.3. Atomistic Simulation Methods

1.3. Atomistic Simulation Methods

The discipline of atomistic simulation is concerned with computer simulations of
chemical systems on the level of individual atoms. It is a relatively recent field
of science, which originated in the late 1950s, when the first computers were ap-
plied to investigate properties of matter.179 Due to the exponential rise of avail-
able computer power within the last decades,180 methods of molecular simulation
are nowadays an important and widely used tool in the field of computational
chemistry and physics. On modern computers, huge systems can be simulated,
consisting of more than one trillion (1012) of particles,181 reaching system sizes
in the multi-micrometer regime, which are almost “macroscopic”. Methods of
molecular simulation were shown to enable the accurate prediction of real-world
properties.115

Figure 1.3.1.: A snapshot of an atomistic simulation containing the
ionic liquid [EMIm][OAc] and water.MB8,MB13

Atomistic simulation methods can be categorized either by the sampling approach
which is used to create new configurations (i. e., sample the phase space), or by the
method for the potential energy computation of a certain configuration.

The two most important sampling methods for atomistic simulation are molec-
ular dynamics (MD) and Monte Carlo (MC). As the MC method is not frequently
used to predict vibrational spectra, only MD shall be discussed in the scope of the
thesis. In this approach, the simulation box is described as a dynamical system
with a certain number of degrees of freedom for each simulated atom. Each such
degree of freedom is described by its position and its velocity through the course

9



Chapter 1. Introduction

of the simulation. The system is propagated in time by solving Newton’s equations
of motion for all degrees of freedom, given by

miv̇i(t) = Fi(ri) = −∇V(ri) (1.3.1)

ṙi(t) = vi(t) , (1.3.2)

where ri, vi, and Fi denote the position, velocity, and force vector of particle i, re-
spectively, mi represents the particle’s mass, V(r) is the underlying potential energy
surface, and ∇ depicts the gradient operator. This system of coupled ordinary dif-
ferential equations (ODEs) of first order is solved by stepwise integration with
a finite time step ∆t, which is usually kept constant during the simulation. This
yields a discrete trajectory with a steady progression of time, containing the parti-
cle’s positions and velocities in each time step.

Of all different methods to numerically solve coupled systems of ODEs, the
symplectic integration schemes for Hamiltonian systems attained special attention in
the field of molecular dynamics. They possess a very good conservation of energy.
In contrast to many other methods, they show a reasonable behavior when inves-
tigating the long-term evolution of chaotic Hamiltonian systems (like, e. g., MD
simulations). Three popular such symplectic integration schemes are the Leapfrog
algorithm, the Verlet method,182 and the velocity Verlet integrator. Despite their
different names, they are very similar. It can be easily seen that the Verlet and ve-
locity Verlet methods are algebraically equivalent (by eliminating the velocities from
the velocity Verlet algorithm), and it can be shown that, eventually, all three methods
are identical.183 All three methods are explicit integration methods with a global
error of order 2, and therefore one order better than the semi-implicit Euler method,
which is also a symplectic integration scheme. As the velocity Verlet algorithm is
the only of these three methods which yields velocities and positions at the same
points in time, many popular molecular dynamics packages use this integrator.

The general equations of the velocity Verlet scheme read

r(t+∆t) := r(t) + v(t)∆t +
1
2

a(t)∆t2, (1.3.3)

v(t+∆t) := v(r) +
a(t) + a(t+∆t)

2
∆t. (1.3.4)

By inserting

ai(t) =
Fi(t)
mi

, i = 1 . . . N, (1.3.5)

10



1.3. Atomistic Simulation Methods

one arrives at the two-step method

ri(t+∆t) := ri(t) + vi(t)∆t +
Fi(t)
2mi

∆t2, i = 1 . . . N, (1.3.6)

vi(t+∆t) := vi(t) +
Fi(t) + Fi(t+∆t)

2mi
∆t, i = 1 . . . N, (1.3.7)

which is implemented in most MD program packages.

One of the central aspects of atomistic simulations is the so-called ergodicity. Only
if a system is ergodic, ensemble averages and temporal averages become equivalent,
so that a simulation can be used to predict experimental quantities. Unfortunately,
it is not possible to prove ergodicity for any system of practical relevance, so this
has to remain an assumption in all work based on simulations. The mathematical
aspects of ergodicity are discussed in Section A.1 in the Appendix.

Nosé–Hoover Chain Thermostat

Standard molecular dynamics simulations sample the NVE ensemble. Experiments,
however, are often carried out at constant temperature, so that it would be more
desirable to simulate in the NVT ensemble in order to reproduce experimental
quantities. This can be achieved by the use of a so-called thermostat in the MD sim-
ulation. Many such thermostats have been developed over the years, and there is no
“best” choice. One frequently applied method is the so-called Nosé–Hoover chain
thermostat (NHC),184 which combines multiple Nosé–Hoover thermostats185–187

into a chain. It samples the NVT ensemble very well; however, it is only capable
of maintaining adequate temperature control close to the thermodynamic equi-
librium.188 Chain lengths larger than 2 are recommended in general cases where
there is a broad distribution of vibrational frequencies in the system.189

The adapted equations of motion190,191 for the N particles with NHC thermostat
and several corresponding virtual degrees of freedom ξj read

ṙi =
pi

mi
, (1.3.8)

ṗi = Fi − piξ̇1, (1.3.9)

where ri and pi are the position and momentum of the i-th particle, respectively,
mi is the particle’s mass, and Fi is the external force acting on the particle. It can
be seen that the velocity of the first virtual degree of freedom ξ1 interacts with the
motion of the real particles.
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Chapter 1. Introduction

The motion of the M virtual degrees of freedom ξj belonging to a NHC thermostat
with chain length M is governed by the set of differential equations

ξ̈1 =
1

Q1

( N

∑
i=1

miv2
i − N f kBTset

)
− ξ̇1ξ̇2 (1.3.10)

ξ̈j =
1

Qj

(
Qj−1ξ̇

2
j−1 − kBTset

)
− ξ̇jξ̇j+1, j = 2, . . . , (M−1) (1.3.11)

ξ̈M =
1

QM

(
QM−1ξ̇

2
M−1 − kBTset

)
, (1.3.12)

where vi is the velocity of the i-th real particle, N f is the number of active degrees of
freedom in the system of real particles, Tset is the thermostat’s target temperature,
and kB is the Boltzmann constant.190 The parameters Qj are the masses of the
virtual particles, which should be chosen192 according to

Q1 := N f kBTsetτ
2, (1.3.13)

Qj := kBTsetτ
2, j = 2, . . . , M, (1.3.14)

where τ is the desired time constant of the Nosé–Hoover chain thermostat.

The conserved quantity of the simulation (including both the real particles and the
thermostat) can be expressed as

ENHC :=
1
2

N

∑
i=1

miv2
i + Epot

(
{ri}

)
+

M

∑
j=1

1
2

Qjξ̇
2
j + N f kBTsetξ1 +

M

∑
j=2

ξjkBTset, (1.3.15)

where the first two terms are the kinetic and potential energy of the atomistic
system, and the remaining terms represent the kinetic and potential energy of the
thermostat, respectively.

The equations of motion given above can be solved iteratively using the Newton–
Raphson procedure. However, there exist also direct (explicit) integration approaches,
which are preferable. In these explicit integrators, a substantial improvement of the
accuracy can be obtained by using a higher order integration algorithm, e. g. the
Yoshida–Suzuki integration scheme,192 combined with a multiple time step (MTS)
approach.

An explicit integration algorithm to apply the Nosé–Hoover chain thermostat to
a molecular dynamics simulation can be found in Section A.4 in the Appendix.
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1.4. Computing Electromagnetic Moments

1.4. Computing Electromagnetic Moments

Computing vibrational spectra—both via the static–harmonic approach and via
the time-correlation function (TCF) approach—requires knowledge of certain elec-
tromagnetic moments of the system (e. g., the electric dipole moment). While in the
former case, these moments are calculated for excursions of the minimum structure
along the normal modes, they are computed for snapshots along the simulation tra-
jectory in the latter case. For non-periodic systems, electric moments can be readily
derived as expectation values from electron structure calculations by applying the
corresponding moment operator to the converged wave function. Under periodic
boundary conditions, however, the standard moment operators are ill-defined. This
issue has been addressed by the so-called modern theory of polarization, which is
based on a Berry phase,193–196 and can provide the electric moments of the whole
simulation cell under periodic boundary conditions. By combining this method
with perturbation theory, it is also possible to calculate the polarizability.197

There are several reasons for considering molecular instead of system-wide elec-
tromagnetic moments. First, the sampling of the spectrum is improved and the
spectrum contains less noise if cross-correlations of non-neighboring molecules are
omitted (see discussion of Equation 2.4.3 in Section 2.4). Secondly, it allows to separate
the spectral contributions of the constituents of a mixture, so that, e. g., the solvent
spectrum can be suppressed.

One widely used approach to assign electric dipole moments to individual mo-
lecules is a localization of the molecular orbitals (MOs) in space. For non-periodic
systems, there exist some well-known and computationally efficient methods such
as the Boys–Foster localization198 and the Pipek–Mezey localization,199 among
others.200,201

In periodic systems, localization of orbitals is considerably more involved. One
commonly used method is the so-called Wannier localization.202–207 It applies a
unitary transformation U to the set of occupied Kohn–Sham orbitals |ψi〉 so that
another set of molecular orbitals |ψ̃n〉 is obtained, which are called Wannier orbitals
or maximally localized Wannier functions (MLWFs):208

|ψ̃n〉 = ∑
i

Ui,n |ψi〉 . (1.4.1)

The unitary transformation U is constructed in a way so that a so-called spread
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functional

Ω = ∑
n

∑
I

f
(
|zI,n|2

)
, (1.4.2)

zI,n =
〈

ψn

∣∣∣OI
∣∣∣ψn

〉
, (1.4.3)

is minimized.208 Here, OI is a class of suitable spread operators that are well-
defined in periodic space, such as

OI = exp(iGI · r) (1.4.4)

with the I reciprocal lattice vectors GI , and f is an appropriate function. Common
choices for f are208

f1

(
|zI,n|2

)
=

√
|zI,n|2 = |zI,n| , 203 (1.4.5)

f2

(
|zI,n|2

)
= log

(
|zI,n|2

)
, 209 (1.4.6)

f3

(
|zI,n|2

)
= |zI,n|2 .210 (1.4.7)

Note that both the Boys–Foster localization198 and the Pipek–Mezey localization199

for non-periodic systems can be expressed in terms of the above equations with
the choice of f ≡ f3. For Boys–Foster, the operator OI is simply defined as OI = rI

with the conventional position operator rI for I = x, y, z.

One traditionally applied approach in quantum chemistry for localizing MOs is
the method of two-by-two orbital rotations first introduced by Edmiston and Rue-
denberg.200 Unfortunately, the analytical expression for the optimal angle of these
rotations can only be derived for the choice of f ≡ f3,208 i. e., for the Silvestrelli–
Marzari–Vanderbilt,203,210 the Boys,198 and the Pipek–Mezey functional.199 For the
choice of f ≡ f1 which is commonly used for performing Wannier localization,
one has to resort to iterative numerical methods such as a generalized Jacobi ro-
tation scheme211 or the so-called “crazy angle” algorithm by Joost VandeVondele
in CP2k.212–214 All these methods require considerable amounts of extra computer
time for the localization and are not guaranteed to converge at all. A discussion of
these issues can be found in Section 2.1.4.

The centroids of the Wannier orbitals are called Wannier centers or maximally
localized Wannier centers (MLWCs); they can be seen as the positions of electron
pairs in a simple picture. As those are located relatively closely to the atoms, it is
well possible to assign Wannier centers to individual molecules. Based on these
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Wannier centers, the molecular dipole moment µMol can be expressed as

µMol = −2e
N

∑
i=1

ri + e
M

∑
j=1

ZjRj, (1.4.8)

where N is the number of Wannier centers in the molecule, ri is the position of
the i-th Wannier center, M is the number of atoms in the molecule, rj and Zj are
the position and the nuclear charge of the j-th atom, respectively, and e is the
elementary charge. The sum of all molecular dipole moments computed by this
protocol is often a good approximation to the total dipole moment of the system.206

The Wannier localization approach can also be used to compute molecular elec-
tric polarizabilities via finite differences of external electric fields.MB14 In linear
approximation, the dipole moment µind induced by an electric field E can be ex-
pressed as

µind = αE (1.4.9)

with the second-order electric polarizability tensor α. This leads to the central finite
differences

αi,j =
µ

j+
i − µ

j−
i∣∣Ej+ − Ej−
∣∣ , i, j = x, y, z, (1.4.10)

where Ej+ and Ej− are the field vectors of the external electric field applied in posi-
tive and negative j direction, respectively, µ

j+
i and µ

j−
i are the i components of the

molecular dipole moments (obtained from Equation 1.4.8) under the influence of these
two fields, and αi,j is the (i, j) component of the molecular polarizability tensor. By
performing six additional SCF calculations with positive and negative fields in x, y,
and z direction, the full polarizability tensor can thus be obtained. The strength of
the electric field |E| needs to be chosen so that the molecule is still within the linear
regime of polarizability (i. e., Equation 1.4.9 is still a good approximation).

When molecular polarizabilities are computed according to Equation 1.4.10, the
changes in the local electric field of a molecule by the polarization of the neighbor-
ing molecules are omitted. This effect can be captured by considering the dipole–
dipole interaction tensor computed by Ewald summation215 under periodic bound-
ary conditions as explained in references 216 and 217. However, a recent study of
water has shown that this has only a minor influence on the resulting spectra.138

There also exist alternative approaches to computing molecular polarizabilities:
one by Partovi–Azar and Kühne based on the spread of the Wannier centers,218,219

and one by Luber based on perturbation theory.134
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1.5. Programs used within this Thesis

This section describes which programs have been used for creating this thesis.

• The molecular dynamics simulations which have been evaluated within this
thesis have been performed with LAMMPS220,221 and CP2k.212–214 Initial con-
figurations have been created with Packmol.222,223

• All trajectory analyses have been carried out with Travis.MB2,MB40

• Plots of one-dimensional functions and spectra have been created with Xm-
grace.224

• Contour plots and density plots have been obtained either from Mathemati-
ca225 or from Gnuplot.226

• Snapshots of molecular structures as well as simulation boxes have been
created with VMD,227 using the Tachyon renderer.228 Figures 1.3.1 and 3.6.4
have been rendered with Qutemol.229

• All calculations have been carried out on a local GNU/Linux compute cluster
running Debian and Slurm, using OpenMPI for parallelization.

• This thesis has been created using LATEX for typesetting, using the Palatino
Linotype font.
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Chapter 2.

Method Development and Theory

In this chapter, several methods for computing vibrational spectra from AIMD sim-
ulations (and some other methods which yield quantities required to do so) are described.
While some of them have been developed in the scope of this thesis, others were
developed by other groups and are introduced here because of their relevance.

2.1. Voronoi Integration

One of the central pieces of the approach presented herein to computing vibrational
spectra is the radical Voronoi integration which we have developed.MB23,MB40,MB48

In short, it is a method for obtaining atomic or molecular electromagnetic moments
in periodic bulk phase simulations from the corresponding volumetric quantities
on a grid. It will be described on the following pages.

2.1.1. Voronoi Tessellation

The Voronoi tessellation230,231 is a mathematical tool which partitions an Euclidean
space containing some points (Voronoi sites) into non-overlapping subsets. Each
Voronoi site corresponds to exactly one such subset (called Voronoi cell), which
contains all points from space which are closer to this Voronoi site than to any
other Voronoi site. In mathematical form, this is written as

Ci :=
{

x ∈ Rn
∣∣∣ ‖x− pi‖ ≤

∥∥x− pj
∥∥ ∀j ∈ {1 . . . k}, j 6= i

}
, i ∈ {1 . . . k},

(2.1.1)
where Rn stands for any Euclidean space with the norm ‖ · ‖, in which k Voronoi
sites, each with position pi ∈ Rn, are given, and the Ci ⊆ Rn are the resulting
Voronoi cells.

By considering atoms in three-dimensional space as Voronoi sites, this concept
has widely been applied in different fields of computational chemistry. To name a
few advantages of the method, the Voronoi tessellation of a set of atoms is uniquely
defined and can be calculated with moderate computational demands. The Voronoi
tessellation can easily be adopted to systems with periodic boundary conditions,
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Chapter 2. Method Development and Theory

and is therefore well suited for bulk phase systems. Finally, the method does not
possess any empirical parameters to tune, and therefore gives an unbiased and
uniquely defined picture.

Figure 2.1.1.: Two-dimensional illustration of the Voronoi tessellation. Black
dots correspond to Voronoi sites (input), while colored poly-
gons depict the resulting Voronoi cells.

Voronoi tessellation has already been used before to partition the total electron
density, by placing a simple plane midway between two atoms.232,233 This idea
was extended later on to account for different atom sizes by shifting the boundary
planes,234–237 for example in Richards’ “method B”238 which found some applica-
tions.236

However, certain limitations do arise from the properties of the standard Voronoi
tessellation. As all atoms are treated in the same way, Voronoi polyhedra of light
atoms like hydrogen will on average have the same size as those around heavier
atoms like iodine. From a mathematical point of view, this is not a problem, but
from a chemical perspective, this is completely unreasonable. If, e. g., the electron
density within the Voronoi cell of a hydrogen atom is integrated, the hydrogen
atom would always end up with a heavily negative partial charge, because way too
much electron density would be considered as belonging to this hydrogen atom.
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2.1. Voronoi Integration

2.1.2. Radical Voronoi Tessellation

To overcome this problem, radii need to be introduced into the Voronoi tessellation,
allowing to treat different atom types differently. Several ways to do so have been
proposed. We employ a generalization in terms of the radical Voronoi tessellation
(also known as power diagram in the two-dimensional case).239 In this technique,
a radius is assigned to each atom, allowing to model the sizes of the atoms in a
chemically reasonable sense. Such radii have also been used in reference 236, but
instead of the ratio of the radii, the difference between the squared radii deter-
mines the position of the cell face between two atoms here. Thus, in contrast to
the aforementioned “method B”236,238 and similar approaches, the radical Voronoi
tessellation does not suffer from the “vertex error”,238,239 i. e., it does not contain
holes. When integrating electron density, this is important to keep the total charge
of the system constant. As another advantage, the Voronoi sites around which the
cells are constructed can be kept on the atoms and do not have to be shifted (as it
was done in reference 235) to obtain a chemically reasonable partitioning. To the
best of our knowledge, the radical Voronoi tessellation has not been used for the
computation of molecular electromagnetic moments before.

The definition of the radical Voronoi tessellation as a generalization of the classi-
cal tessellation reads

Cr
i :=

{
x ∈ Rn

∣∣∣ ‖x− pi‖2− r2
i ≤

∥∥x− pj
∥∥2− r2

j ∀j ∈ {1 . . . k}, j 6= i
}

, i ∈ {1 . . . k},
(2.1.2)

with radius ri for Voronoi site i. While in the classical case the face between two
adjacent Voronoi cells is always placed in the middle between the corresponding
Voronoi sites, its position is now determined by the difference of the squared radii.
From Equation 2.1.2, it can be derived that the separation plane between two sites
A and B with radii rA and rB will be located at a position

w :=
(

1
2
+

r2
A − r2

B

2R2
AB

)
RAB, (2.1.3)

where RAB is the distance between both sites, and w describes the distance of
the separation plane from A – see Figure 2.1.2. It can be seen that the relative
position of the plane depends on the distance between the sites: if the distance
becomes large with respect to the radii, the plane will be located in the middle,
even if the radii differ. In the other extreme case of a small inter-site distance
when compared to the radii, w can even be outside of the interval [0, RAB], which
means that either one of the sites is no longer located inside of its Voronoi cell, or
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the Voronoi cell of this site is degenerate (empty). However, both cases are not a
problem if electron density shall be integrated within the cells. These effects are
more pronounced if the differences between the radii become larger. If all radii are
equal, the radical Voronoi tessellation becomes identical to the classical Voronoi
tessellation, and those degeneracies cannot occur. A two-dimensional schematic
illustration of the radical Voronoi tessellation in the case of benzene is shown in
Figure 2.1.3. Please note that the term “radical” is not related to chemical radicals
(which possess unpaired electrons).

Figure 2.1.2.: Separation plane between two Voronoi sites A and B with
radii rA and rB in the radical Voronoi tessellation, see
Equation 2.1.3.

The crucial parameters in the radical Voronoi tessellation are the radii assigned
to the atoms. We have recently shownMB23 that van der Waals (vdW) radii240–242

yield a reasonable separation of molecules in the bulk phase, and that the result-
ing molecular electromagnetic “Voronoi” moments can readily be used to calcu-
late vibrational spectra of bulk phase systems from ab initio molecular dynamics
(AIMD) simulations, including infrared,MB23 Raman,MB23,MB26,MB36 vibrational cir-
cular dichroism (VCD),150 Raman optical activity (ROA),MB26,MB51 and resonance
RamanMB36 spectra. Since van der Waals radii have been fitted to reproduce inter-
molecular distances, it can be expected that they lead to a suitable placement of
the molecular boundaries in a radical Voronoi tessellation.

The definition of the radical Voronoi tessellation in Equation 2.1.2 shows that
the tessellation will not change if the set of radii

{
ri
}

is transformed to a new set{
r′i
}

by the map

r′i :=
√

r2
i + C, i ∈ {1 . . . k} (2.1.4)

with some constant C ∈ R. Due to this relation, the absolute value of the radii does
not have a direct meaning.
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2.1. Voronoi Integration

Figure 2.1.3.: Two-dimensional illustration of the radical Voronoi tessella-
tion in liquid benzene. Solid black lines are iso-lines of the
electron density, dashed circles indicate the atomic radii, radi-
cal Voronoi cells are shown as gray solid lines with resulting
molecular boundaries drawn in blue.

In the Travis
MB2,MB40 implementation of the method presented herein,MB23 the

Voro++ library243,244 from Chris Rycroft is used to perform the radical Voronoi
tessellation of periodic simulation cells, which may have the shape of any paral-
lelepiped (therefore not restricting our implementation to orthorhombic cells).
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2.1.3. Voronoi Integration

After the construction of the Voronoi cells, the volumetric data (e. g., the electron
density) needs to be integrated within each Voronoi cell to obtain the atomic elec-
tromagnetic moments. If molecular quantities are required, the integration runs
over the Voronoi cell of the molecule instead, which is just defined as the union of
all atomic Voronoi cells. The Voronoi integration of the total electron density yields
the molecular charge qMol, the molecular dipole vector µMol, and the molecular
trace-free quadrupole tensor QMol according to the following equations:

qMol =
NMol

∑
i=1

qi −
∫

Mol

ρ(s) d3s, (2.1.5)

µMol =
NMol

∑
i=1

qiri −
∫

Mol

ρ(s) s d3s, (2.1.6)

QMol
jk =

NMol

∑
i=1

qi

(
3ri,jri,k − ‖ri‖2 δjk

)
−
∫

Mol

ρ(s)
(

3sjsk − ‖s‖2 δjk

)
d3s, (2.1.7)

where NMol is the number of atoms in the molecule, qi and ri are the core charge
and position vector of the i-th atom of the molecule, respectively, ρ(s) is the total
electron density at position s in space, and δ is the Kronecker delta. The first part
of the three equations is concerned with the charges of the nuclei, while the second
part captures the electron density (the actual Voronoi integration). The “Mol” inte-
gration volume denotes the molecular Voronoi cell. Please note that the molecular
center of mass is chosen as the coordinate origin.

As the volumetric data in the simulation box is supplied on a grid, an efficient
algorithm is required to traverse the grid points which are located inside a given
Voronoi cell. A simplistic approach that checks for each grid point in which cell
it is located would lead to very poor performance, as there are around 10 million
grid points per typical AIMD snapshot. Instead, we have implemented another
method: the three stride vectors of the grid are termed v1, v2, v3 in the following.
As non-orthorhombic simulation cells are permissible, these vectors do not need to
be orthogonal to each other. At first, the maximum cross section of the Voronoi cell
along the v1 direction is computed in the v2–v3 plane. A (in the case of orthorhombic
simulation cells) rectangular bounding box in that plane is constructed around this
section. For each grid coordinate pair within this bounding box in the v2–v3 plane,
a ray is cast into v1 direction, and intersections between this ray and all Voronoi
faces of the given Voronoi cell are probed. As Voronoi cells are always convex,
there may be either zero or two such ray–face intersections, other combinations are
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2.1. Voronoi Integration

not possible. With zero intersections, the ray misses the Voronoi cell, and no further
action is taken. With two intersections, the entry and exit points of the ray through
the Voronoi cell are known, and the grid points between the intersections can be
summed up along the ray. This algorithm finally yields the sum over all grid points
located within the given Voronoi cell. As each grid point is assigned to exactly one
Voronoi cell by this algorithm, the total sum over all Voronoi cells is equal to the
total sum over all grid points, which is important satisfy certain invariants (e. g.,
to keep the total charge of the system fixed when integrating the electron density). This
implementation has already been applied several times to obtain electromagnetic
moments of molecules in bulk phase simulations.MB23,MB26,MB36,MB48 Our approach
is rather efficient – a full Voronoi integration of a bulk phase snapshot with around
1 000 atoms and 10 million grid points takes roughly 1 second on a single CPU core.

In real-world applications, the grid of the volumetric data is often relatively
coarse in order to reduce the required storage space. Typical values are in the order
of one grid point each 10 . . . 20 pm. As each grid point is completely assigned to
exactly one Voronoi cell, infinitesimal changes in the radii may lead to grid points
switching the cell they are assigned to. Therefore, the map from atomic radii to
atomic electromagnetic moments is no longer continuous, or in other words, some
amount of numerical noise is introduced, which would deteriorate the predicted
spectra. To reduce the impact of this effect, we have developed and implemented
an on-the-fly interpolation scheme for the volumetric data grid. During the inte-
gration pass, the grid can be refined by tri-linear interpolation. The smaller grid
spacing which results from this procedure leads to a reduced amount of numer-
ical noise. On the other hand, demands on storage system and core memory are
not increased, as the interpolation is just performed on-the-fly while integrating.
We call this approach refinement; it has been utilized in some applications of our
methodMB48 with a refinement factor of 2 (i. e., one grid point was interpolated to
two grid points along each axis of the grid, yielding 8 grid points in total from
each original grid point). Our implementation is not limited to a refinement factor
of 2; higher values can be chosen on demand.

Since 2021, the Voronoi integration approachMB23 is implemented directly in
CP2k212–214 (starting from version 8.1), so that molecular electromagnetic moments
can now directly be computed during AIMD runs.

Note that we have also applied the Voronoi integration approach to compute
optimized atomic partial charges and atomic radii in condensed phase systems via
minimization of the charge variance.MB48
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2.1.4. Advantages over Wannier Localization

After we had developed the Voronoi integration approach to computing molecu-
lar electromagnetic moments, one of the first questions was if these moments are
suitable to predict vibrational spectra. To investigate this, we used a simulation tra-
jectory of liquid methanol to compute infrared and Raman spectra from molecular
electric moments based on either Wannier localization or Voronoi integration.MB23

The results are presented in Figure 2.1.4.

Figure 2.1.4.: Comparison of predicted infrared (top panel) and Raman (bottom
panel) spectra of liquid methanol, using Wannier localization (dashed
lines) and Voronoi integration (solid lines) to compute the molecular
electric moments.MB23

It can be seen that apart from minor differences in the intensities, both the infrared
and the Raman spectrum are almost identically predicted by the two approaches.
The differences result from the fact that the Wannier localization enforces strictly
neutral molecules (as Wannier centers bear integer charge), while the Voronoi integra-
tion allows for a certain amount of charge transfer between the molecules. It can be
concluded that molecular electromagnetic moments based on Voronoi integration
are well suitable to predict bulk phase vibrational spectra.
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Timing and Convergence

As described in Section 1.4, all known methods to perform a Wannier localization
of a periodic system are iterative, which means that they converge towards the
desired solution, but actually never reach the exact solution. Unfortunately, it can
not even be guaranteed that the used algorithms always converge. In other words,
it can happen that the localization procedure fails for a particular frame along a
simulation, so that the electromagnetic moments are missing for that frame. Pre-
dicting vibrational spectra relies on computing time-correlation functions, where a
missing frame would be highly problematic.

Figure 2.1.5.: Logarithmic frame times for a standard BOMD simulation (black
curve) and a BOMD with Wannier localization (red curve) of a liquid
phase system with ≈ 1000 atoms.

To give an example, consider Figure 2.1.5, where the frame times of a standard
BOMD simulation with CP2k212–214 (black curve) are compared to those with addi-
tional Wannier localization in each step (red curve). The system is in the liquid phase
and contains 936 atoms (cubic cell size ≈ 20 Angstrom). Please note the logarithmic
vertical axis. The average frame time of the standard BOMD is 47.9 s, while the
frame time with additional Wannier localization is 139.3 s on average. This means
that 65% of the total computer time are spent for the localization step, which is
certainly not satisfactory. Apart from that, the frame times are highly irregular
with Wannier localization. The reason is that CP2k uses the very efficient “crazy
angle” algorithm for the localization by default. If this algorithm does not converge,
iterative Jacobi diagonalization211 is employed as a fallback. The latter is slightly
more robust but considerably slower, so that frame times of several thousand sec-
onds can be observed if the fallback is activated. But even if considering only the
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frames for which the fast “crazy angle” algorithm did converge, the time for the
localization alone is still ≈ 30 s per frame, which is still a considerable amount of
the total computer time.

Our Voronoi integration approach, in contrast, is not an iterative method and
does not need to converge. This means that there do not exist cases in which no
electromagnetic moments can be obtained for a particular frame. Furthermore, our
approach is significantly faster than the Wannier localization—it requires only 2.0 s
per frame for the same system on a single CPU core. Therefore, more than a factor
2 of total computer time can be saved by utilizing Voronoi integration instead of
Wannier localization for each frame of the simulation.

Issues with Aromatic Systems

Another disadvantage of the Wannier localization approach are certain issues with
aromatic systems. Please consider Figure 2.1.6, where we have predicted the in-
frared spectrum of liquid benzene based on Wannier localization (dashed line) and
Voronoi integration (solid line).MB23 In the Wannier-based spectrum, artificial peaks
appear between 1200 and 1350 cm−1. These peaks are neither present in the experi-
mental spectrum, nor if the spectrum is predicted via total cell dipole moment or
Voronoi integration.

Figure 2.1.6.: Predicted infrared spectrum for liquid benzene based on Wannier
localization (dashed line) and Voronoi integration (solid line). The
Wannier-based spectrum possesses artificial peaks between 1200
and 1350 cm−1.MB23

After some investigation, we were able to identify the cause of these artificial peaks.
When performing a Wannier localization of benzene, the aromatic electrons need to
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be localized, so that an alternating single bond/double bond pattern results—see
the left panel of Figure 2.1.7. When considering all vibrational normal modes of
benzene, one of them deforms the molecule towards cyclohexatriene (see right panel
of Figure 2.1.7). As this mode possesses an inversion symmetry, it cannot alter the
total dipole moment of the molecule, and is therefore invisible in infrared spec-
troscopy. However, if this mode is active, the six ring bonds no longer have identical
bond lengths, and there appear preferred positions where the Wannier centers of
the aromatic electrons should be localized. As a result, the single bond/double
bond pattern of the aromatic electrons flips with the frequency of this vibration.
Due to numerical inaccuracies (an iterative localization can never be fully converged),
this leads to a small jump in the molecular dipole moment, which appears as an
artificial peak in the infrared spectrum at the frequency of the cyclohexatriene de-
formation mode which should be invisible.

Figure 2.1.7.: Wannier localization for one benzene molecule leads to an alter-
nating single bond/double bond pattern (left panel); normal mode
of benzene which deforms the molecule towards cyclohexatriene
(right panel).MB23

The situation becomes even worse if one tries to compute a Raman spectrum based
on molecular polarizabilities resulting from Wannier localization and external field
finite differences. Depending on the direction of the external field, the preferred
localization of single bonds and double bonds in the ring differs, so that different
such patterns can occur in the two calculations for the finite differences. This
introduces an amount of noise which is actually so large that the Raman spectrum
completely vanishes in the noise. For an example, see Figure 2.1.8, where the Raman
spectrum of liquid benzene was predicted based on Wannier localization (dashed
curve) and on Voronoi integration (solid line). As described above, the Wannier-
based spectrum consists almost exclusively of noise, while the Voronoi-based result
gives a good prediction of the Raman spectrum.
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Figure 2.1.8.: Predicted Raman spectrum for liquid benzene based on Wannier
localization (dashed line) and Voronoi integration (solid line).MB23

The Wannier-based prediction shows only noise.

Computing Higher Multipoles

Wannier localization is frequently used in the literature to compute molecular
electric dipole moments. However, certain types of vibrational spectroscopy (such
as Raman optical activity—see Section 2.8) require also the electric quadrupole mo-
ment.68 To the best of our knowledge, it is not possible to compute higher molecular
electric multipoles via Wannier localization. Based on the Voronoi integration, on
the other hand, this is not an issue, as shown in Equation 2.8.1.

Conclusions

To conclude this section, we find the following four advantages of Voronoi integra-
tion over Wannier localization:

• Voronoi integration requires considerably less computer time for medium-
sized and large systems. More than a factor of 2 can be saved.

• Iterative Wannier localization is not guaranteed to converge at all; Voronoi
integration is non-iterative and always yields results.

• Wannier localization has severe issues with aromatic systems (artificial bands
in the infrared spectrum, large amounts of noise in the Raman spectrum), while
Voronoi integration has no problems with such systems.

• In contrast to Wannier localization, Voronoi integration can also compute
higher multipole moments such as the electric quadrupole tensor, which is,
e. g., required to predict ROA spectra.
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2.2. Lossless Compression of Volumetric Data

2.2. Lossless Compression of Volumetric Data

Many of the methods for predicting vibrational spectra presented here rely on the
total electron density on a three-dimensional grid along the simulation trajectory.
Such volumetric data sets require significant storage space even for a single frame,
and in particular if required along a full trajectory. To give an example, consider
the Raman optical activity (ROA) spectrum shown in Figure 3.4.1 on page 93. The
electron density grid has a resolution of 160× 160× 160, so that one frame requires
52 MiB storage space in Gaussian Cube file format.245 To compute the spectrum,
4× 65 000 such frames are necessary, leading to the enormous amount of 13 Ter-
abyte raw data for this single spectrum. Such a storage requirement is completely
unacceptable, even for large compute centers.

There are two possible ways how to overcome this difficulty. First, one could per-
form all necessary calculations on the fly, without storing the raw electron density
data at all. However, this is problematic as long as some steps in the computa-
tional protocol are still in development, because any attempt to improve on one of
these steps would require to re-run the whole simulation. Furthermore, the elec-
tron density contains much more information on the system than just the spectral
intensities, so it might be worthwhile to be stored.

Figure 2.2.1.: Schematic illustration of compressing volumetric data.

The other way to overcome the issue would be to compress the volumetric data
in order to reduce the required storage space. As long as the impact of limited
accuracy on the spectra has not been studied in detail, it would be desirable to
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use a lossless compression algorithm here,∗ so that a degradation of the results’
quality can be excluded. To achieve that purpose, we tried common lossless com-
pression algorithms such as bzip2, which is able to reach a compression ratio of
around 4.5 : 1 relatively to the Gaussian Cube file, so that the raw data still re-
quires ≈ 3 Terabyte. But the main issue here is that the compression takes almost
as much time as the AIMD simulations themselves. In terms of computational
resource use, this is not an option. It seemed that there was no other option than
to develop a tailor-made lossless compression algorithm which exploits the special
structure and characteristics of volumetric electron density trajectories—namely,
continuity both in space and time. The results of this endeavor are described in
this section; they have been published in 2018.MB34

The basic principle of our approach is as follows. The continuity of the data
allows to extrapolate the first unknown element based on all previously known
elements. Such an extrapolation will never be exact. However, it opens the possibil-
ity to store the residuals (difference between the true value and the extrapolation)
instead of the original data, which possess significantly less information entropy. In
a second step, this set of residuals is compressed by an entropy encoding method
such as Huffman coding to reduce its size. The details are described in the follow-
ing two sections, concluded by a presentation of the obtained results.

Together with our compression algorithm, we have published a file format to
store the data, which is called the bqb format (“binary cube”). It is very size-efficient
and robust (due to checksums at multiple levels). The frames along the trajectory are
stored independently in the file, but an index frame at the end allows for quick
random access to certain frames, and allows to append to the bqb file without
modifying the existing part of the file (similar to the approach found in PDF files).
More aspects of the newly developed file format are discussed in Section 2.2.3.
Details on how to work with the bqb format and a free tool to compress and
decompress trajectories (both of atom position or volumetric data) can be found on the
following website:

https://brehm-research.de/bqb

∗ In the sense that the input data can be bit-wise restored without any changes. All numbers stored in
computers are of limited precision already before compression.
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2.2.1. Reducing Information Entropy via Extrapolation

The central idea of our lossless compression algorithm is to exploit the continuity
of data resulting from molecular simulation. First, the simulation proceeds in
relatively small discrete time steps, so that the change in any property between
two subsequent time steps is often small and smooth. Secondly, volumetric data
such as the total electron density cannot possess discontinuities (gaps, jumps, etc.),
and is therefore smooth in space. Both properties allow to extrapolate the next data
element (both in time and space) based on all previously known elements. Such an
extrapolation will never be exact. However, it opens the possibility to store the
residuals (difference between the true value and the extrapolation) instead of the
original data, which possess significantly less information entropy.

Figure 2.2.2.: Schematic illustration of extrapolation polynomials of different
degree n (lines) fitted to the trajectory of one atom from a simu-
lation (circles). Red arrow depicts position to be extrapolated.

An exemplary illustration of this concept is presented in Figure 2.2.2, where the
X position of one selected atom along a MD simulation is shown as gray dots,
with the simulation time on the horizontal axis. The value at “i = 0” is the last
known position, and the value above the red arrow shall be extrapolated. Several
different extrapolation polynomials which include terms up to different orders are
optimized to match all known data points. The number of known data points taken
into consideration depends on the degree of the polynomial. For example, the red
curve with n=3 is a cubic polynomial and is optimized to the last four previously
known points. The inset shows how the quality of the extrapolation depends on the
polynomial’s degree. The best extrapolation is obtained with n=4. Polynomials of
both lower or higher degree lead to worse predictions. Which polynomial degree
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works best depends on the nature of the data set and should be determined before
compression (our algorithm does this automatically).MB34

In the case of volumetric data, extrapolation in three-dimensional space is re-
quired, which is slightly more involved. When the grid points are traversed in a
row-by-row fashion, there is always one current point which shall be extrapolated
and a set of already known points from the current as well as previous rows. A
two-dimensional illustration of this situation is presented in Figure 2.2.3, where
the red point shall be extrapolated, the blue and green points are already known,
and the green points are used to optimize the multi-dimensional extrapolation
polynomial.

Figure 2.2.3.: Schematic two-dimensional illustration of grid points in
the volumetric extrapolation.

To show the mathematical derivation on how to efficiently optimize such an ex-
trapolation polynomial in the multi-dimensional case, let’s consider an exemplary
ansatz, which is a function F in the two variables x and y, defined as a polynomial
up to second order (only in x):

F(x, y) = c0 + cx · x + cy · y + cxy · xy + cx2 · x2 (2.2.1)
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In order to choose the coefficient values c to fit the known data points (green squares
in Figure 2.2.3) as close as possible, the following system of linear equations needs
to be solved:

F(x0−1,y0−2) = c0 + cx(x0−1) + cy(y0−2) + cxy(x0−1)(y0−2) + cx2 (x0−1)2

F(x0, y0−2) = c0 + cx x0 + cy(y0−2) + cxy x0 (y0−2) + cx2 x2
0

F(x0+1,y0−2) = c0 + cx(x0+1) + cy(y0−2) + cxy(x0+1)(y0−2) + cx2 (x0+1)2

F(x0−1,y0−1) = c0 + cx(x0−1) + cy(y0−1) + cxy(x0−1)(y0−1) + cx2 (x0−1)2

F(x0, y0−1) = c0 + cx x0 + cy(y0−1) + cxy x0 (y0−1) + cx2 x2
0

F(x0+1,y0−1) = c0 + cx(x0+1) + cy(y0−1) + cxy(x0+1)(y0−1) + cx2 (x0+1)2

F(x0−1,y0) = c0 + cx(x0−1) + cy y0 + cxy(x0−1) y0 + cx2 (x0−1)2

(2.2.2)

Such a system of linear equations is typically (formally) solved by converting it to
matrix form and then inverting the coefficient matrix A:

A · x = b

x = A−1 · b
(2.2.3)

By doing so with the system in Equation 2.2.2 and assuming without loss of
generality that x0 = 0 and y0 = 0, we obtain



1 −1 −2 2 1
1 0 −2 0 0
1 1 −2 −2 1
1 −1 −1 1 1
1 0 −1 0 0
1 1 −1 −1 1
1 −1 0 0 1


·


c0

cx

cy

cxy

cx2

 =



F(−1,−2)
F(0,−2)
F(1,−2)

F(−1,−1)
F(0,−1)
F(1,−1)
F(−1, 0)


. (2.2.4)

As the coefficient matrix is a non-square matrix, it cannot be inverted, so that
Equation 2.2.3 cannot be used to solve the system. This is the case because the
system of equations is over-determined (more equations than unknowns). Luckily,
such a system can still be solved approximately (least-squares solution) by employing
the so-called Moore–Penrose inverse A+ of A.246,247 The Moore–Penrose inverse
of A is the matrix A+ which fulfills the following four relations:

AA+A = A

A+AA+ = A+(
AA+

)∗
= AA+(

A+A
)∗

= A+A

(2.2.5)
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It can be shown that such a matrix A+ always exists and is uniquely defined for
any A ∈ Rm×n. In a certain sense, the Moore–Penrose inverse is the generalized
matrix inverse. For matrices which possess and inverse, the Moore–Penrose inverse
equals the traditional inverse.

Once A+ is known, the system from Equation 2.2.3 can be approximately solved
via

A · x = b

x = A+ · b.
(2.2.6)

It remains the question how the Moore–Penrose inverse can be efficiently (numer-
ically) computed in practice. This can be achieved by the Singular Value Decom-
position (SVD).248 Any real matrix A ∈ Rm×n can be written as the product

A = UΣVT, (2.2.7)

where U and V are orthogonal matrices, Σ is a diagonal matrix (with all non-diagonal
elements being zero), and ·T denotes the matrix transpose. The singular value decom-
position can be efficiently and accurately computed with a numerical algorithm
developed by Gene Golub et al.249,250 Once the decomposition is known, the Moore–
Penrose inverse A+ of A can be expressed as the simple product

A+ = VΣ+UT (2.2.8)

where Σ+ is formed by forming the reciprocal of all non-zero values of Σ and then
transposing the resulting matrix (see Equation 2.2.5).

Coming back to the example from Equation 2.2.4, the approximate least-squares
solution (determined by applying Equations 2.2.6 and 2.2.8) reads


−0.29 0.14 −0.57 0 0.86 0.57 0.29
0.14 −0.24 −0.38 −0.17 0.24 0.88 −0.48
−0.19 −0.24 −0.38 0 0.24 0.38 0.19
0.29 −0.14 −0.43 0 0.14 0.43 −0.29
0.29 −0.48 0.24 0.27 −0.52 0.26 0.048

 ·



F(−1,−2)
F(0,−2)
F(1,−2)

F(−1,−1)
F(0,−1)
F(1,−1)
F(−1, 0)


=


c0

cx

cy

cxy

cx2

 . (2.2.9)

As we only want to extrapolate the value F(0, 0), we do not need to compute the
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coefficients c of the polynomial at all. We can simply write

F(0, 0) = c0 + cx · 0 + cy · 0 + cxy · 0 + cx2 · 02

= c0,
(2.2.10)

and the value F(0, 0) is therefore obtained as a simple dot product

F(0, 0) = c0 =
(
−0.29 0.14 −0.57 0 0.86 0.57 0.29

)
·



F(−1,−2)
F(0,−2)
F(1,−2)

F(−1,−1)
F(0,−1)
F(1,−1)
F(−1, 0)


. (2.2.11)

This means that the full process of fitting a multi-dimensional extrapolation
polynomial to the known data points (multi-dimensional non-linear regression) and
then using this polynomial to extrapolate the first unknown point has been broken
down to a dot product between two vectors. The first vector contains coefficients
which only depend on the geometric position of the known data points relatively
to the point which shall be extrapolated. These coefficients are identical for all
such extrapolations and can therefore be pre-computed before the run. The second
vector contains the values of the known data points. This approach is very compu-
tationally efficient and allows to perform millions of polynomial regressions and
extrapolations (as required for compressing volumetric data) within milliseconds.

Figure 2.2.4.: Illustration of grid traversal by a space-filling Hilbert curve in
two dimensions (left panel) and three dimensions (right panel);
the locality of neighboring grid elements is preserved.MB34
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To allow for a high compression ratio in the entropy encoding algorithm, data
locality in the sequence of residuals is very important. In a three-dimensional grid,
locality means that neighboring grid entries are also close to each other in the one-
dimensional sequence of residuals. When traversing the grid in canonical order
(with three nested loops for X, Y, Z index), locality is very bad. Neighbors in X
direction are still neighbors in the sequence, but neighbors in Y and especially Z
direction are very far separated from each other. To overcome this, non-canonical
traversal schemes can be applied to preserve some degree of locality. A good choice
in such a case is the space-filling Hilbert curve.251 It is guaranteed to touch every
grid point exactly once (and therefore is a valid traversal path), and it preserves
locality. Two illustrations of such a Hilbert curve are presented in Figure 2.2.4
in two dimensions (left panel) and three dimensions (right panel). It is visible that
neighboring grid points are often (not always) close to each other on the traversal
path. Our implementation uses a fast algorithm (without recursion) to construct
three-dimensional Hilbert curves.252 In a typical example application (as presented
in Figure 2.2.8), the Hilbert curve traversal reduces the output file size by around
10 %.MB34

2.2.2. Entropy Encoding

The sequence of transformations presented below is inspired by the bzip2 com-
pression tool,253 which was developed by Julian Seward. The source code of bzip2
is freely available in the internet under a BSD-like license. No parts of the bzip2
source code have been copied when the implementation presented here was writ-
ten; only the general concept is similar. The following discussion closely follows
our original article.MB34

Alphabet Creation

The first step in our compression approach is the creation of an alphabet. The
use of an alphabet transforms the symbol space from all possible integers to a
consecutive range of non-negative integers. If n different symbols are present in
the input integer stream, then the output stream will contain the values 0 . . . (n−1).
The alphabet is created in such a way that the symbols are sorted in ascending
order. This means that a zero in the output stream corresponds to the smallest
integer from the input stream, and a (n−1) corresponds to the largest integer. To
accelerate the transformation of the input stream by the alphabet (especially for
very large n), a hash table is utilized.
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Burrows–Wheeler Transformation

After the alphabet has been applied, the resulting list of consecutive integer num-
bers can be treated with a Burrows–Wheeler transformation.254 This is optional
and can be switched on/off by the user. The Burrows–Wheeler transformation is
the central part of bzip2.

A descriptive explanation of the Burrows–Wheeler transformation is given in
Figure 2.2.5, and explained in the following. The input data is a list of symbols, in
this example it is ˆANANAS$ (“Ananas” is the German term for pineapple). All cyclic
permutations of the input sequence are created (i. e., for all n, shift the sequence to
the right n places, such that symbols which fall out on the right side enter on the
left side). The list of all these permutations is then sorted lexicographically (i. e.,
comparing the first symbol of both sequences, and if equal, go to the next symbol). From the
sorted list of permutations, the last column is extracted as the output sequence. It
becomes clear that all the symbols from the input sequence also appear in the out-
put sequence, but in a different order. This is the essence of the Burrows–Wheeler
transformation: it re-orders the sequence of symbols such that equal symbols have
a higher probability to follow after each other (depending on the structure of the input
data). Additionally, the index of the original (non-permuted) input sequence in the
sorted list needs to be stored, which is 7 in this example.

Figure 2.2.5.: Descriptive example of the Burrows–Wheeler transformation.

An efficient implementation is, however, more involved than the description given
above. For long sequences of symbols, it would require a large amount of memory
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to explicitly construct all permutations. Instead of doing so, the sorting algorithm
can directly operate on the input sequence (periodically wrapped around at the end),
which does not require any additional memory and is very efficient in terms of
cache utilization. Furthermore, parts of the sequences which consist of only one
repeated symbol are detected and handled separately, as those would significantly
reduce the efficiency of sorting algorithms such as Quicksort.255 Even for large
input sequences of > 107 symbols, this algorithm only takes a few seconds on a
single modern CPU core.

Move-To-Front Transformation

Directly after a Burrows–Wheeler transformation, often a move-to-front transfor-
mation256 follows. While the aim of the Burrows–Wheeler transformation is to
bring as many identical symbols as possible into consecutive sequences, the aim of
the move-to-front transformation is to replace these sequences by runs of zeros. In
the implementation presented here, the move-to-front transformation is optional
and can be switched on/off by the user. A descriptive example of the move-to-front
transformation is given in Figure 2.2.6.

Figure 2.2.6.: Descriptive example of the Move-to-Front transformation. In-
put data is taken from the output of Figure 2.2.5.

The input data for the transformation given as a sequence of symbols, together
with an alphabet. The alphabet is copied to a temporary stack in some well-defined
order (e. g., sorted by symbol values). To create the output data, the input sequence
is read starting from the beginning, one symbol at a time. The index at which the

38



2.2. Lossless Compression of Volumetric Data

input symbol is currently found on the alphabet stack is pushed to the output.
Subsequently, the symbol on the stack is deleted at its original place and instead
inserted at the front position (“move-to-front”), shifting all other symbols one
position further down the stack. This process is repeated for all input symbols, as
shown in the figure. It becomes clear that sequences of identical symbols lead to
sequences of zeros in the output data, because this symbol is already found at the
front of the stack when it is encountered for the second time.

Run-Length Encoding

The final step after a Burrows–Wheeler transform and a move-to-front transform
is often a run-length encoding257 for zero runs. As the aim of Burrows–Wheeler
and move-to-front is to create such zero runs, this is a reasonable choice. In the
implementation presented here, the run-length encoding is optional and can be
switched on/off by the user.

In bzip2 as well as our implementation presented here, the run-length encoding
works as follows. The alphabet contains two additional symbols, which are typ-
ically termed as RUNA and RUNB, and which do not appear in the input data.
Every occurrence of one or more zeros in the input data is replaced by sequences of
RUNA and RUNB, which encode the number of consecutive zeros. Such a sequence
ends when another symbol apart from RUNA and RUNB is found. The encoding
works similar to base-2 bijective numeration. Let xi ∈ {RUNA, RUNB}, i = 1 . . . n
be a sequence of n RUNA and RUNB symbols. A RUNA symbol at index i in this
sequence has a value of 2i−1, a RUNB symbol at this index has a value of 2i. All
those symbol values in the sequence are added up and give the number of consec-
utive zeros that were originally found in the input data. For example, an isolated
RUNA symbol encodes a single zero, whereas the sequence RUNA, RUNB, RUNA,
RUNA, RUNB encodes 1 + 4 + 4 + 8 + 32 = 49 consecutive zeros.

Paired with an ideal entropy encoding algorithm (which truly maximizes the en-
tropy), run-length encoding would be of no use. However, in the general case there
exists no perfect entropy encoder if single symbols are to be encoded. The com-
pression efficiency of the Huffman coding described below suffers if the frequency
of a symbol (typically of “zero” if move-to-front was used) becomes very high. This is
mitigated by applying run-length encoding before.
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Huffman Coding

The most important step for size reduction is the Huffman coding.258 Both bzip2
and our implementation presented herein strongly profit from an advanced multi-
table Huffman coding. Before this will be covered below, Huffman coding with a
single table will be explained.

Huffman coding is a widely used entropy encoding method (e. g., in the JPEG
image format and MP3 audio format). It aims at reducing the size of a stream
of symbols by maximizing the entropy. This is achieved by creating a variable-
length prefix code where each symbol from the input corresponds to a variable-
length sequence of bits. According to Shannon’s source coding theorem,259 such
a code is optimal if the length of each bit sequence is approximately proportional
to − log2(p),260 where p is the probability of finding the corresponding symbol
within the input sequence. In simple words, the symbols which appear most often
will have the shortest corresponding bit sequences. This is not always strictly ful-
filled, but it can be shown that Huffman coding produces an optimal code among
all methods that encode each symbol separately.261

An efficient algorithm to construct a Huffman coding table makes use of a binary
tree structure. First, a list of 2–tuples is created where each tuple contains one sym-
bol from the alphabet and the frequency of that symbol, i. e., the total count of this
symbol in the input data. This list is sorted in ascending order by frequency, such
that it starts with the least frequent symbols. The first two tuples are taken and
removed from the list. A new tree node is created, with these two tuples as children.
The new tree node is also represented as tuple, with its frequency being the sum
of the two children’s frequency. This newly created node is now inserted into the
list of tuples on the correct position, such that the list remains sorted with respect
to the tuple frequencies. Then, the process is repeated by taking and removing the
first two tuples from the list, and so on. The algorithm stops if there is only one
tuple left in the list. This is the root of a binary tree. All symbols from the alphabet
represent leaves in this tree. To find the Huffman code of a given symbol, the tree
is traversed starting from the root until the leaf is reached which corresponds to
this symbol. During this traversal, a “0” bit is produced each time the left child
of a node is entered, and a “1” bit each time the right child of a node is accessed.
The resulting sequence of bits is the Huffman code word for the symbol in the leaf.
Following from this, the length of the code word for some symbol is equivalent to
the depth of this symbol within the binary tree.
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Decoding of Huffman-encoded data is simple if the binary tree is known (or can
be reconstructed). Then, bits are taken from the input bit stream, and depending on
the bit value, the left or right child of a tree node is entered, starting at the root
node. As soon as a leaf is encountered, the end of the code word is reached (due
to the prefix property of the code). The leaf’s symbol value is written to the output,
and the position in the tree is reset to the root node. However, it is inefficient to
store the whole Huffman tree in the compressed file. To reconstruct the tree at
decode time, the exact symbol frequencies would be required, and their storage
would also reduce efficiency. A more efficient solution to store the Huffman table
is the so-called canonical Huffman code, which is used in both bzip2 and our
implementation.

Canonical Huffman Coding

Canonical Huffman coding262 takes the original Huffman code (i. e., a table which
assigns a code word of bits to each symbol) created above as an input, but subse-
quently modifies the code. This modification is performed as follows. The Huffman
code table is sorted first in ascending order by code word length, and secondly
by symbol. All code words preserve their bit lengths, but the bits are overwritten.
The first code word from the sorted list is overwritten by all zero bits (keeping
the length). Subsequent code words are overwritten by the next binary number in
sequence, such that the code word is larger in value than all preceding code words.
If a code word with larger bit length is reached, the required amount of zero bits
is appended at the right side after increasing the binary number. This procedure
yields a canonical Huffman code table. All symbols are encoded by code words
with the same bit length as in the non-canonical Huffman code, and therefore, the
compression efficiency is not influenced. However, the canonical Huffman table
itself can be stored with much less information, as explained in the following.

For storage, the canonical Huffman table is first sorted in ascending order by
symbol, so that the code words of the symbols will be stored in alphabetical order.
For each symbol, one requires to store three pieces of information: the symbol itself,
the bit length of the code word, and the code word itself. However, as the symbols
are stored in alphabetical order, the symbol itself can be omitted. As this is a
canonical Huffman code, we have the additional information that an (alphabetically)
later code word will always be higher in value than an earlier one of the same
bit length. Taking this together, it is only necessary to store the bit length of each
symbol’s code word in order to unambiguously reconstruct the canonical Huffman
table. This is a large saving when compared to the storage requirements of a
non-canonical Huffman tree.
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Multi-Table Huffman Coding

Huffman coding possesses disadvantages when the input data features some de-
gree of locality. A symbol which infrequently occurs in the complete input data
will be assigned to a long code word. If there is a short block in the input data
with very high frequency of this symbol, nothing will change. One way to take
advantage of such situations is to use multiple Huffman tables. The input data is
separated into short blocks, and each such block is encoded with the Huffman table
that leads to the smallest output size. This raises the question how to construct
different Huffman tables such that many blocks can be encoded efficiently with
one of them. In the bzip2 source code, an elegant solution is found, which will be
explained in the following.

As an example, three independent Huffman tables shall be constructed for an
input data stream with known symbol frequencies. In the beginning, the three
Huffman tables are constructed in such a way that each symbol is contained in
exactly one Huffman table, and each Huffman table contains symbols which ac-
count for approximately 1

3 of the total input data. To achieve this, the alphabet is
sorted in descending order by symbol frequency, so that the most frequent symbol
is found in the beginning of the list. Then, symbols from the beginning of the
list are assigned to the first Huffman table, until the sum of symbol frequencies
exceeds 1

3 of the total symbol count. The following symbols are assigned to the
second table, until the sum of symbol frequencies also in this table exceeds 1

3 of
the total symbol count. All remaining symbols are assigned to the third table. The
three Huffman tables are now constructed, based on the symbols assigned to them
and their respective frequencies.

The input data is separated into small blocks. For each block, it is decided which
of the three Huffman tables is most efficient in encoding the block data. If a symbol
from the block is already contained in the Huffman table, it is clear how many bits
its code word would occupy. If a symbol is not yet contained in this table, it is
computed how much additional storage would be required by adding this symbol
to the table (including the effect on all preceding blocks that have been encoded with this
table). After all blocks of the input data have been processed, each of the blocks is
assigned to one of the Huffman tables, and the Huffman tables were augmented
with many additional symbols (many symbols now appear in more than one Huffman
table). The whole process is iteratively repeated, starting again from the first input
data block, and deciding for each block which table would be most efficient to
encode it. The total required storage size reduces with each iteration. Specialized
Huffman tables will form, which are very efficient for specific types of data blocks.
The iteration is stopped if the total size no longer decreases or if a maximum cycle
count is reached.

42



2.2. Lossless Compression of Volumetric Data

2.2.3. The bqb File Format

The output data from the compression algorithm is a stream of bits. Such a raw
sequence is impractical to handle, and needs to be encapsulated in a suitable file
format for practical use. To this aim, we have developed the bqb file format.MB34

Initially, it was considered as “binary cube” file format (therefore the name bqb), but
in the end it was designed as a multi-purpose file format which can carry many
different kinds of payload data related to trajectories. It does not offer the degree
of flexibility known from formats such as HDF5; however, in contrast to HDF5, it
considers a high compression ratio as central design goal. Even the headers and
control structures are compressed, and the format is built as bit stream (i. e., not
respecting byte boundaries), so that not a single bit of storage space is wasted.

Figure 2.2.7.: The logo of the bqb file format.

The bqb file format is defined on a per-frame basis. A bqb frame starts with a frame
header, which contains a “magic number”, followed by a frame type specifier, the
total payload size in bytes, and a CRC-32 code263 of the frame payload. Depending
on the frame type, a frame can either be a “short frame” or a “long frame”. A long
frame can contain many different chunks of data, which can encode different types
of information in one single frame. A short frame contains a fixed type of data for a
specific application. There exist, e. g., short frames for storing compressed position
data (when a position trajectory is compressed) and for storing both position and volu-
metric data in the same frame (when a volumetric trajectory is to be compressed). Both
frame formats can optionally contain information on the (possibly non-orthorhombic)
cell vectors and the atom types in the system, which often are not required in every
single frame. Apart from that, also a short frame format for compressing arbitrary
binary files is available (similar to bzip2).

Most bqb files possess a special frame type at the end of the file, which is an
index frame. Index frames in the middle of a bqb file are simply ignored. This
brings the following advantage. If additional frames are written to an existing bqb
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file, an updated index frame is simply appended at the end, and the existing file
data is not modified in any way. The index frame contains a list of all preceding
frames in the file, together with their respective frame types and file offsets. This
enables fast random access to arbitrary frames. Such an index frame is optional, it
can be left out if it is not required. An application can probe the existence of an
index frame by considering the last bytes of a bqb file. Index frames end with a
special signature. If this signature is found, then the length of the index frame is
stored in the bytes directly in front of this signature, so that the start of the index
frame can be reconstructed without scanning the whole file. This index concept is
inspired by the PDF document file format, where it is called a “catalog” and has
proven to be suitable for many applications.

A bqb trajectory is simply a sequence of bqb frames. No data structures exist
above the bqb frame level. This means that several bqb frames / trajectories can be
concatenated by simply concatenating the underlying raw files. If required, a new
index frame can be created for the concatenated file and appended at the very end.
bqb files can be also concatenated by creating a so-called list file, which is a text
file that contains absolute file names to bqb files in each of its rows. The access to
the individual bqb files is handled transparently, such that the list file behaves as a
standard bqb file.

When trajectory data is compressed with polynomial extrapolation, the exact
data from the previous n frames is required to decompress one frame. This means
that to decompress a single frame in the middle of the bqb file, one needs to start
at the first frame, and decompress all frames up to the desired frame in sequential
order. In many applications, trajectories are read sequentially anyway, and this
might not be a concern. If random access to decompressed frames is desired, one
can take a compromise: every, e. g., 100 frames, the temporal polynomial extrap-
olation order is reset to zero, so that one frame appears which is not dependent
on any preceding frame. All following frames increase the extrapolation order by
1 each, up to the desired global extrapolation order. This concept is very similar
to “key frames” in modern video encoding. If a random frame shall be decom-
pressed, only 99 preceding frames need to be decompressed first in the worst
case. The key frame interval can be adapted to the specific application. Key frames
possess a special frame type, and can therefore be easily identified in the bqb index.

For more details on the bqb file format as well as tools to compress and decom-
press trajectories, please visit

https://brehm-research.de/bqb
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2.2.4. Results

To benchmark the performance of our newly developed lossless compression algo-
rithm for volumetric data trajectories,MB34 we applied it to a simulation of the
ionic liquid 1-ethyl-3-methylimidazolium acetate,MB8,MB13,MB19,MB31 also known
as [EMIm][OAc], for which we stored the total electron density on a grid with
216× 216× 216 grid points in each simulation step (∆t = 0.5 fs). In Figure 2.2.8, we
compare our method to several other existing storage formats. “Cube” corresponds
to the Gaussian Cube file format,245 which is a simple text format for volumetric
data with 5 significant digits. “FP32” is the hypothetical size of storing every grid
entry in a 32 bit (single precision) floating point number, such as performed in the
gOpenMol264 PLT file format. “bzip2” and “xz” are command-line compression
utilities,253,265 which were used in highest compression settings to compress the
Cube files (as xz is very slow, this took many days to complete). “bqb” depicts the re-
sulting size of the bqb trajectory, obtained with the algorithms presented here. All
data was averaged over 1 000 volumetric data frames. In all formats compared here,
5 significant digits were stored for the volumetric data. Strictly speaking, this is a
lossy storage. However, as the original Cube files written by the electron structure
program also have 5 significant digits, the compression is lossless in the sense that
it can bit-wise reproduce the original input data.

Figure 2.2.8.: Comparison of compression ratio and timing for a typical volumetric
data trajectory (liquid phase simulation, 216 × 216 × 216 grid points)
with ∆t = 0.5 fs and 5 significant digits. Averaged over 1 000 frames.
The algorithm presented here is on the far right.MB34

45



Chapter 2. Method Development and Theory

The blue bars in Figure 2.2.8 depict the compressed average frame size in MiB,
while the orange and green bars correspond to the average computer time required
to compress and decompress one frame, respectively. At first sight, the very high
compression rate of the bqb format can be seen, reaching almost 40 : 1. The other
formats can only achieve around 5 : 1 here. Even for single volumetric data frames
(where no temporal continuity can be exploited), a compression ratio of around 20 : 1
is still reached. Apart from the by far best compression ratio, the newly devel-
oped format also has the shortest compression and decompression times, which
are 8.5 s and 3.1 s per frame, respectively (all measured on a single CPU core “Intel
Xeon E5–2609” at 2.5 GHz). When considering the size of an uncompressed frame
in Gaussian Cube format, this corresponds to a compression and decompression
data rate of 15.0 MiB s−1 and 40.6 MiB s−1, respectively, on a single core.

To come back to the initial question described in the beginning of Section 2.2,
the 13 Terabyte of raw data required to compute a single ROA spectrum can
be compressed to just 350 Gigabyte of data in bqb format without losing any
information. Thus, the challenge is completely solved now, as it is not an issue to
store a few hundred Gigabytes of raw data.

Position Trajectories

After having successfully applied the extrapolation-based approach to compressing
volumetric data trajectories, we considered to utilize the same approach to the
lossless compression of standard position trajectories. And indeed it turned out
that a high compression ratio can be reached also for this type of input data.
As above, we have applied the method to a simulation trajectory of the ionic
liquid266 1-ethyl-3-methylimidazolium acetate,MB8,MB13,MB19,MB31 also known as
[EMIm][OAc], which contains around 1 000 atoms, and the frames are stored with
a time step of ∆t = 0.5 fs. The results are presented in Figure 2.2.9. As the position
extrapolation is carried out independently for each atom, the compression ratio
is almost independent on the total atom count, so that the system size is not of
importance here. “XYZ” is a simple text file format267 which contains one atom
position per row; no unnecessary characters (multiple whitespaces, more digits than
required, etc.) have been written to ensure the smallest possible file size. “FP32”
refers to storing atom coordinates in single-precision floating point numbers (i. e.,
32 bits per coordinate). “bzip2” and “xz” refer to command line compression
utilities,253,265 which have been used (in highest compression settings) to compress the
XYZ text file. Please note that “xz” gives high compression ratio, but is extremely
slow at compressing data. “XTC” is a binary position trajectory format used by
the Gromacs program package.268–270 “bqb” corresponds to the compressed files
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created with the algorithms described herein. All numbers are averaged over 1 000
consecutive trajectory frames.

Figure 2.2.9.: Comparison of compression ratio and timing for a typical position
trajectory ([EMIm][OAc] trajectory, 936 atoms) with ∆t = 0.5 fs and
a precision of 10−3 pm. Averaged over 1 000 frames. The algorithm
presented here is on the far right.MB34

The blue bars in Figure 2.2.9 indicate the average compressed frame size in kiB,
while the orange and green bars depict the average computer time required to
compress and decompress one frame, respectively. At first sight, the very high
compression rate of the bqb format can be seen, reaching 16 : 1. The other formats
can only achieve around 5 : 1 here. Apart from the best compression ratio, the
bqb file format also has very reasonable compression and decompression times of
2.1 ms and 1.7 ms per frame, respectively (measured on a single CPU core “Intel Xeon
E5–2609” at 2.5 GHz). This corresponds to a compression and decompression data
rate of around 12 MiB s−1 on a single core.

To obtain more insight into the dependence of the compression ratio on the
trajectory stride and coordinate accuracy, some further benchmarks have been per-
formed, see Table 2.2.1. All tests have been performed with the same liquid phase
[EMIm][OAc] simulation trajectory which was also used in Figures 2.2.8 and 2.2.9.
All numbers are averaged over 1 000 trajectory frames. The first column in the
table depicts the trajectory stride, i. e., the temporal distance between two succes-
sive frames. “shuffle” means that the average was computed over 1 000 randomly
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Table 2.2.1.: Comparison of compressed size of [EMIm][OAc] trajectory (936 atoms) for
different trajectory strides ∆t and coordinate precisions, averaged over 1 000
steps each. “shuffle” means randomly selecting 1 000 time steps from a long
trajectory. Last column depicts XYZ to bqb compression ratio.MB34

∆t Precision Size (kiB/Frame) bqb
(fs) (pm) XYZ bzip2 –9 xz –9 XTC bqb Ratio

0.5

1 17.13 3.19 1.15 3.59 0.52 32.94
0.1 19.87 5.63 2.76 4.73 0.78 25.47
0.01 22.61 7.12 4.06 5.89 1.11 20.37
0.001 25.36 8.78 5.32 6.99 1.56 16.26

1.0

0.001

25.35 8.83 5.81 7.00 2.69 9.42
2.0 25.36 8.85 6.42 7.00 4.73 5.36
4.0 25.37 8.87 7.32 7.00 5.58 4.55

10.0 25.39 8.88 8.58 7.00 6.07 4.18
40.0 25.56 8.91 9.52 7.00 6.79 3.76

shuffle 25.56 8.95 9.68 7.00 7.96 3.21

selected frames (in random order) from a very long simulation trajectory, so that no
continuity in time exists which might be exploited by the compression algorithm.
In the second column, the absolute numerical precision of the atomic coordinates
is specified. The following columns depict the average frame size for the different
formats in kiB, while the last column indicates the compression ratio of the bqb
format when compared to the XYZ format.

For the XYZ and XTC formats, it can be seen that the frame size depends on the
number of decimal places stored for the coordinates, but not on the trajectory stride,
as the frames are stored independently of each other. The bzip2 format shows only
a slight dependence of the trajectory stride. Interestingly, this effect is significantly
larger for xz, despite both are general compression algorithms and don’t recog-
nize any temporal continuity. The strongest dependence on the trajectory stride
is found for the bqb format, which particularly aims at exploiting the temporal
continuity. For a typical trajectory with ∆t = 0.5 fs and 10−3 pm precision, a lossless
compression ratio of 16 : 1 with respect to XYZ format is reached, which is almost
a factor 4 smaller than the closest competitor (xz compression). With increasing ∆t,
the compression ratio of the bqb format is significantly decreased, but even for
∆t = 40 fs, it is still the most size-effective format among all competitors. Only for
the “shuffle” case with randomly arranged frames, the Gromacs XTC format beats
bqb by a few percent.

It can be concluded that the bqb format is a very efficient lossless storage format
also for position trajectories as long as some temporal continuity is present (as it
always is the case in molecular dynamics simulations).
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2.3. Power Spectrum

The concept of the power spectrum originally stems from signal processing, where
a power spectrum can identify how much (electrical) power is contained in individ-
ual frequency ranges of a signal. Such a power spectrum can also be computed for
dynamical systems such as particles in motion, as it is known in the literature for
a long time,271–274 where it is also termed as velocity spectrum275 or vibrational
density of states (vDOS).276 In this context, a power spectrum captures all motions
of the system, but it is not bound to certain selection rules, so that the intensity of
each spectral band only depends on the amplitude of a particular motion, but not
on the change of some electromagnetic quantity (such as dipole moment). Therefore,
there exists no experimental analogue, and a power spectrum of molecular vibra-
tions cannot be measured. Despite this, power spectra can give useful information
on atomistic simulations, as it will be discussed below.

One possible definition of a power spectrum for a one-dimensional oscillator
reads

P(ω) = mω2
∫ 〈

r(τ) · r(t+τ)
〉

τ
exp

(
−iωt

)
dt, (2.3.1)

where ω is the angular frequency, m is the reduced mass of the oscillator, τ and t
denote the time, r(τ) is the position of the oscillator at time τ, and 〈·〉τ stands for
averaging over all values of τ. From the properties of the Fourier transform, it is
known that forming a derivative in the time domain is equivalent to a multiplica-
tion with the independent variable in the frequency domain, so that

P(ω) = m
∫ 〈

ṙ(τ) · ṙ(t+τ)
〉

τ
exp

(
−iωt

)
dt (2.3.2)

is formally equivalent to the first equation, using ṙ(τ) as the velocity of the oscilla-
tor at time τ. Despite being equivalent, the latter equation offers certain numerical
advantages, so that almost only this form is used in practice. This also coincides
with the verbal definition, stating that the power spectrum is “the Fourier trans-
form of the velocity autocorrelation function”.

One important aspect in computing power spectra is the mass weighting, as
performed in the two equations from above by introducing the reduced mass m of
the oscillator. The mass weighting ensures that the power spectrum is obtained in
the correct physical units so that the integral over the spectrum possesses the unit
of temperature. This means that the temperature of a certain degree of freedom in
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the system can be directly read by considering the integral over the corresponding
band in the power spectrum. According to the equipartition theorem,277–280 all
degrees of freedom in a well-equilibrated system carry the same amount of energy
on average, so that the power spectrum can even be used to assess whether a sim-
ulation is well equilibrated by comparing the integrals of bands in the spectrum
corresponding to different degrees of freedom in the system.

Going beyond one-dimensional oscillators, the power spectrum of a more com-
plex system (such as an atomistic simulation) can be simply expressed as sum over
the individual atoms’ power spectra

P(ω) =
N

∑
i=1

[
mi

∫ 〈
ṙi(τ) · ṙi(t+τ)

〉
τ

exp
(
−iωt

)
dt

]
, (2.3.3)

where N is the total number of atoms in the system, mi is the mass of atom i, and
ṙi(τ) is the velocity of atom i at time τ.MB14,MB19,MB40

Figure 2.3.1.: Power spectrum of a system containing 20 different harmonic
diatomic molecules with different atom masses and force con-
stants (black curve) together with integral depicting the temper-
ature of each normal mode (red curve).MB40

An illustrative example is presented in Figure 2.3.1, where the power spectrum
of an atomistic simulation containing 20 different harmonic diatomic molecules
with different atom masses and force constants is shown as black curve. The red
curve depicts the integral (see temperature units on the right vertical axis). It can be
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seen that the integral of all spectral bands is approximately equal, and therefore
the equipartition theorem is well fulfilled in this simulation.

Please note that the autocorrelation in Equations 2.3.1 to 2.3.3 can be efficiently
computed by utilizing the Wiener–Khinchin theorem281,282 that is described in Sec-
tion 2.12.1 as well as in Section A.2 in the Appendix. This approach is also used in
the Travis program packageMB2,MB40 to save computational time.

The power spectrum is the foundation of the normal mode decomposition ap-
proachMB19 that will be discussed in Section 2.11.
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2.4. Infrared Spectroscopy

Infrared spectra based on the static–harmonic approach can be computed since
many decades43–52,283–286 using popular quantum chemistry program packages
such as Gaussian,58 ADF,287, Turbomole,288,289 and ORCA.290–292 When predicting
infrared spectra in the static–harmonic approach, the integral infrared absorption
coefficient Aν̃ of normal mode p is given by43

Aν̃ =
1

4πε0
· NAπ

3c2 ·
( ∂µ

∂Qp

)2
, (2.4.1)

where Qp denotes the mass-weighted normal coordinate corresponding to normal
mode p, NA is Avogadro’s constant, c is the speed of light in vacuum, and ε0 rep-
resents the vacuum permittivity. The derivative of the molecular dipole vector µ

with respect to the normal mode is evaluated at the equilibrium geometry.

Apart from employing the static–harmonic approximation, there exists the possi-
bility to compute vibrational spectra directly from molecular dynamics (MD) simu-
lations. In this approach, the spectra are obtained as the Fourier transform of some
time correlation functions along the simulation trajectory—an idea which is at least
55 years old now,106–112 and is called the time–correlation function (TCF) formal-
ism. As discussed in Section 1.2.2, this approach comes with several advantages
over the static–harmonic concept. However, practical applications to condensed
phase systems were not possible before ab initio molecular dynamics (AIMD) sim-
ulations114,115 could be routinely performed for such systems. The pioneers of that
field were Roberto Car and Michele Parrinello, which published their approach of
Car–Parrinello molecular dynamics (CPMD) in 1985.116 With this class of methods,
periodic bulk phase systems can be treated natively, and even anharmonic effects
are covered to a certain extent, as line shapes, overtones, and combination bands
are reproduced in qualitatively correct manner.113,117

The first predictions of condensed phase infrared spectra based on AIMD were
published in 1997 on the examples of liquid water118 and amorphous silica.119

Since then, many more infrared spectra of condensed phase systems based on this
methodology have been presented in the literature.113,121–135,293–298,MB14,MB19,MB23

For the prediction of vibrational spectra based on AIMD simulations, the deriva-
tives with respect to the normal modes need to be replaced by suitable time-
correlation functions. In the case of infrared spectroscopy, the derivative of the
molecular dipole moment µ in Equation 2.4.1 is replaced with an autocorrelation
function of the molecular dipole moment along the trajectory and a subsequent
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Fourier transform, so that the infrared absorption spectrum A(ν̃) is obtained as

A(ν̃) =
NA

12ε0ckBT

∫
〈µ̇(τ) · µ̇(t+τ)〉τ exp

(
−2πicν̃t

)
dt, (2.4.2)

where ν̃ is the wavenumber, T denotes the temperature at which the observation is
performed, NA is Avogadro’s number, kB is Boltzmann’s constant, ε0 stands for the
vacuum permittivity, c denotes the speed of light in vacuum, and 〈·〉τ stands for
the temporal average over the simulation time τ. Note that instead of the molecular
dipole moment µ the time derivative µ̇ enters the expression, which is equivalent
to multiplying the final spectrum with ω2, but offers some numerical advantages
as discussed in Section 2.3.

There arises the interesting question whether the dipole moments µ in Equa-
tion 2.4.2 should be molecular quantities, or rather those of the whole system. In
the latter case, a treatment in the framework of the modern theory of polarization
(based on a Berry phase)193,195,196 is required, because the traditional dipole moment
operator is ill-defined for periodic systems as discussed in Section 1.4.

When assuming that the sum of the molecular dipole moments equals the total
dipole moment (which is an approximation in the periodic case, but the deviation is
small206), it can be shown that using the total dipole moment is mathematically
equivalent to using all autocorrelations of individual molecules’ dipole moments
together with all cross-correlations between different molecules. For the case of
two molecules A and B with dipole moments µA and µB with the assumption
µA+µB = µTotal, we find that

〈(
µA+µB

)
(τ) ·

(
µA+µB

)
(τ+t)

〉
τ
=〈[

µA(τ) · µA(τ+t)
]
+
[
µA(τ) · µB(τ+t)

]
+
[
µB(τ) · µA(τ+t)

]
+
[
µB(τ) · µB(τ+t)

]〉
τ
=〈

µA(τ) · µA(τ+t)
〉

τ
+
〈
µA(τ) · µB(τ+t)

〉
τ
+
〈
µB(τ) · µA(τ+t)

〉
τ
+
〈
µB(τ) · µB(τ+t)

〉
τ
,

(2.4.3)
which is equivalent to the above statement for the special case of two molecules. It
is often argued that cross-correlations between molecules which are not neighbors
in space only introduce noise to the spectrum, as the motions of such molecules
are not at all correlated. Therefore, we decided to consider only the molecular au-
tocorrelation functions and to neglect all cross-correlation terms between different
molecules. We use our Voronoi integration approachMB23 (see Section 2.1) to com-
pute the molecular dipole moments from the total electron density.

Some examples for infrared spectra predicted via this formalism are shown in
Section 3.1.
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2.5. Raman Spectroscopy

Static–harmonic Raman spectra based on normal mode analysis can be computed
since several decades now.43,45,47–50,53,55–57,299–303 For computing Raman intensities,
the scattering geometry needs to be taken into account. Here, we consider only the
typical setup of an incident beam propagating in the y direction with polarization
along the x axis, and a scattering angle of 90◦. As described in the literature,304,MB14

the Raman scattering intensity I‖ of molecules fixed in space for detection of x
polarized light in this case reads

I‖ =
π2hNI
8π2cε2

0
·
(
ν̃in − ν̃p

)4

ν̃p
· 1

1− exp
(
− hcν̃p

kBT

) · (∂αxx

∂Qp

)2
, (2.5.1)

where Qp denotes the mass-weighted normal coordinate corresponding to normal
mode p, ν̃in is the wavenumber of the incident light, ν̃p is the wavenumber of nor-
mal mode p, N is the number of molecules, I is the irradiance of the incident light,
h is Planck’s constant, kB is Boltzmann’s constant, and T is the temperature. As in
the case of infrared intensities, the derivative of the molecular polarizability tensor
α is evaluated at the equilibrium geometry.

In practical applications, molecules are often oriented arbitrarily in space, so
that it is advantageous to drop the requirement of a fixed molecular orientation.
Averaging over random molecular orientation leads to the expressions304,MB14

I‖ =
π2hNI
8π2cε2

0
·
(
ν̃in − ν̃p

)4

ν̃p
· 1

1− exp
(
− hcν̃p

kBT

) · 45a2
p + 4γ2

p

45
(2.5.2)

for detection of x polarized light (parallel to the incident light polarization plane),
and

I⊥ =
π2hNI
8π2cε2

0
·
(
ν̃in − ν̃p

)4

ν̃p
· 1

1− exp
(
− hcν̃p

kBT

) · 3γ2
p

45
(2.5.3)

for detection of y polarized light (perpendicular to the incident light polarization
plane). These expressions make use of the two rotationally averaged Raman invari-
ants ap and γp for normal mode p, where the isotropic polarizability ap is defined
as

ap :=
1
3

(∂αxx

∂Qp
+

∂αyy

∂Qp
+

∂αzz

∂Qp

)
, (2.5.4)
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and the square of the anisotropy γp is given by

γ2
p :=

1
2

(∂αxx

∂Qp
−

∂αyy

∂Qp

)2
+

1
2

(∂αyy

∂Qp
− ∂αzz

∂Qp

)2
+

1
2

(∂αzz

∂Qp
− ∂αxx

∂Qp

)2

+ 3
(∂αxy

∂Qp

)2
+ 3
(∂αyz

∂Qp

)2
+ 3
(∂αzx

∂Qp

)2
.

(2.5.5)

The first prediction of a Raman spectrum from an AIMD simulation—based on the
time-correlation function (TCF) formalism—was published in 2002 by Putrino et
al.120 Since then, many more examples of computed Raman spectra based on this
approach appeared in the literature.113,130,136–140,218,219,293,298,305,MB14,MB19,MB23,MB26,

MB36,MB49 As shown before for infrared spectroscopy, the derivatives with respect to
the normal modes need to be replaced by corresponding time-correlation functions.
For predicting Raman spectra, this needs to be done for the two Raman invariants
in Equations 2.5.4 and 2.5.5.

From the time series of the polarizability tensor α(t) along the trajectory, these
two invariants can be computed via cross-correlation and subsequent Fourier trans-
formations,MB14 as given by

a(ν̃) :=
∞∫
−∞

〈 α̇xx(τ) + α̇yy(τ) + α̇zz(τ)

3
·

α̇xx(τ+t) + α̇yy(τ+t) + α̇zz(τ+t)
3

〉
τ
exp(−2πicν̃t)dt

(2.5.6)
for the isotropic contribution, and

γ(ν̃) :=
∞∫
−∞

[
1
2

〈(
α̇xx(τ)− α̇yy(τ)

)
·
(
α̇xx(τ+t)− α̇yy(τ+t)

)〉
τ

+
1
2

〈(
α̇yy(τ)− α̇zz(τ)

)
·
(
α̇yy(τ+t)− α̇zz(τ+t)

)〉
τ

+
1
2

〈(
α̇zz(τ)− α̇xx(τ)

)
·
(
α̇zz(τ+t)− α̇xx(τ+t)

)〉
τ

+
3
2

〈
α̇xy(τ) · α̇xy(τ+t)

〉
τ
+

3
2

〈
α̇yz(τ) · α̇yz(τ+t)

〉
τ

+
3
2

〈
α̇zx(τ) · α̇zx(τ+t)

〉
τ

]
· exp(−2πicν̃t)dt,

(2.5.7)

for the anisotropic contribution, where α̇xx denotes the time derivative of the xx
component of the polarizability tensor α, and 〈·〉τ stands for the temporal average
over the simulation time τ. Note that instead of the molecular polarizabilities α

the time derivatives α̇ enter these expressions, which is equivalent to multiplying
the final spectrum with ω2, but offers some numerical advantages as discussed in
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Section 2.3.

Based on these invariants, the Raman intensities for a scattering angle of 90◦

can be computed for different observed polarizations.MB14,MB26 If the polarization
planes of incident light and observed signal are parallel (“parallel Raman spectrum”),
the intensity is given by

I‖(ν̃) =
h

8ε2
0ckBT

· (ν̃in − ν̃)4

ν̃
· 1

1− exp
(
− hcν̃

kBT

) · 45a(ν̃) + 4γ(ν̃)

45
. (2.5.8)

If the polarization planes of incident light and observed signal are perpendicular
to each other (“orthogonal Raman spectrum”), the intensity is obtained as

I⊥(ν̃) =
h

8ε2
0ckBT

· (ν̃in − ν̃)4

ν̃
· 1

1− exp
(
− hcν̃

kBT

) · 3γ(ν̃)

45
. (2.5.9)

If the polarization plane of the scattered light is ignored and all scattered light
is considered (“unpolarized / depolarized Raman spectrum”), the intensity is simply
expressed as the sum of I‖(ν̃) and I⊥(ν̃):

I(ν̃) =
h

8ε2
0ckBT

· (ν̃in − ν̃)4

ν̃
· 1

1− exp
(
− hcν̃

kBT

) · 45a(ν̃) + 7γ(ν̃)

45
. (2.5.10)

Due to the lengthy pre-factor, the intensity I is obtained in the correct physical
units of length2. In all three cases, ν̃ is the wavenumber of the signal, ν̃in is the
wavenumber of the incident laser light, T denotes the temperature at which the
observation is performed, kB is Boltzmann’s constant, ε0 stands for the vacuum
permittivity, and c denotes the speed of light in vacuum.

Finally, the depolarization ratio306,307 ρ of the Raman spectrum can be computed
as the quotient of the orthogonal and parallel Raman spectrum via

ρ(ν̃) =
I⊥(ν̃)
I‖(ν̃)

. (2.5.11)

It can have values < 0.75 for totally symmetric normal modes, but is 0.75 in all
other cases.MB14

A few examples for Raman spectra predicted by this method can be found in
Section 3.2.
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2.6. Classical Approach to Electric Currents

The prediction of VCD and ROA spectra from AIMD simulation requires magnetic
moments, which in turn require electric currents to be computed along the trajec-
tory. However, most AIMD simulations are performed in the Born–Oppenheimer
approximation (BOMD simulations), which includes that no electric currents can
be described. There are several ways how to overcome this difficulty, such as us-
ing nuclear velocity perturbation theory (NVPT)62,308,309 to compute the electric
currents. However, this requires a significant amount of additional computer time,
and is hard to implement in a generic way.

In 2016, Thomas and Kirchner developed a purely classical approach to deduce
electric currents from BOMD simulations.150 In simple words, this approach con-
siders the total electron density in subsequent steps of the MD trajectory, and then
asks how the current could have been flown to cause the observed change in total
electron density. This idea is coupled with the assumption that current should
never flow through the vacuum, but only along paths where some electron density
is located.

The derivation150 starts with the continuity equation

∂ρ(r)
∂t

+∇ · j(r) = 0, (2.6.1)

where ρ(r) denotes the total electron density at position r in space, and j(r) is
the electric current vector at r. The electric current is then approximated as the
product of the total electron density and a conservative vector field v(r), which can
be written as the gradient of some auxiliary scalar field α(r):

j(r) = ρ(r) v(r) = −ρ(r)∇α(r) (2.6.2)

By combining Equations 2.6.1 and 2.6.2, one obtains

∂ρ(r)
∂t

= −∇ · j(r) (2.6.3)

= −∇ ·
(
−ρ(r)∇α(r)

)
(2.6.4)

= ∇ρ(r)∇α(r) + ρ(r)∆α(r) , (2.6.5)

where ∆ = ∇2 represents the Laplace operator. After solving Equation 2.6.5, the
electric current can be obtained via Equation 2.6.2.
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This partial differential equation is now discretized on a Cartesian grid with nx ×
ny × nz grid points. The derivatives are replaced by second-order central finite
differences, i. e.

(Dxα)i,j,k =
αi+1,j,k − αi−1,j,k

2hx
, (2.6.6)(

Dyα
)

i,j,k =
αi,j+1,k − αi,j−1,k

2hy
, (2.6.7)

(Dzα)i,j,k =
αi,j,k+1 − αi,j,k−1

2hz
(2.6.8)

and

(∆α)i,j,k =
αi+1,j,k − 2αi,j,k + αi−1,j,k

h2
x

+
αi,j+1,k − 2αi,j,k + αi,j−1,k

h2
y

+

αi,j,k+1 − 2αi,j,k + αi,j,k−1

h2
z

,
(2.6.9)

where i, j, k depict the grid index in x, y, z direction, and hx, hy, hz indicate the grid
spacing in these directions, respectively. The periodic boundary conditions are
taken into account by letting i ∈ Z/nxZ, j ∈ Z/nyZ, k ∈ Z/nzZ, so that e. g. the
successor of i = (nx−1) is i = 0.

This leads to a system of linear equations

A ·


α0
...

αnxnynz−1

 =


(

∂ρ
∂t

)
0

...(
∂ρ
∂t

)
nxnynz−1

 (2.6.10)

with the coefficient matrix A ∈ Rnxnynz×nxnynz . In typical practical applications
we find that nx, ny, nz ≈ 200, so that this system contains ≈ 107 equations and
unknowns. Such a huge system of linear equations cannot be solved by classical
approaches such as LU decomposition, and not even the coefficient matrix A can
be represented in memory (5 800 Terabyte in double precision). Luckily, A is very
sparse, so that space-optimized representations for sparse matrices can be utilized.
One way to solve such a large system of linear equations is the iterative BiCGstab(l)
(“biconjugate gradient stabilized method”) approach developed by van der Vorst.310–313

The convergence of the algorithm can be improved by using an incomplete LU
factorization314 of A for preconditioning.

58



2.6. Classical Approach to Electric Currents

A simple two-dimensional illustration of the approach is presented in Figure 2.6.1.
In the left-hand panel, the total “electron density” is shown. The middle panel rep-
resents the change of electron density between two subsequent steps. To cause this
change, electron density needs to be transported from the black circle to the white
circle. Based on these inputs, the partial differential equation from Equation 2.6.5
is solved. As described above, the equation contains the assumption that current
can only flow along paths where electron density is located (not through vacuum).
The resulting vector field of the current is shown in the right-hand panel. It can be
seen that indeed the current follows the path of the total electron density, as one
could expect.

Figure 2.6.1.: Schematic example of the classical approach to obtain electric cur-
rents. From the inputs of total electron density (left panel) and change
in electron density (middle panel), the vector field of the current is
obtained from solving Equation 2.6.5 (right panel).

One advantage of the approach presented above is that it only requires the total
electron density of subsequent MD steps on a grid, and can therefore easily be
applied to a wide variety of electron structure methods without any modifications
to the quantum chemistry program package. Promising candidates are hybrid DFT
functionals such as PBE0,315 or even post-Hartree–Fock methods such as MP2, for
which an implementation of NVPT would pose a significant challenge.
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2.7. VCD Spectroscopy

Static–harmonic VCD spectra based on normal mode analysis can be computed rou-
tinely since several decades,29,48,50,59–66,316,317 and the predicted spectra often agree
reasonably well with the experiments.318–325 The most commonly used approach
to predict such spectra is the magnetic field perturbation theory (MFPT)29,61,63,64,326

as implemented in Gaussian,58 ADF,287 and Turbomole.288,289 But there exist also
alternative theories. For example, it was shown that the calculation of the required
magnetic transition dipole moment needs non-Born–Oppenheimer contributions in
the wave function.59,60 In the nuclear velocity perturbation theory (NVPT),62,308,309

this is achieved by the perturbative calculation of the complete adiabatic (CA) correc-
tion to the Born–Oppenheimer ground-state orbitals.327–330 This provides a closely
related yet conceptually different route for the calculation of VCD spectra, and has
been first implemented by Scherrer et al. into the CPMD code331 in 2013.65 A differ-
ent derivation of NVPT based on the exact factorization of the electron–nuclear wave
function instead of CA was published later.66

When computing static–harmonic VCD spectra, the VCD intensity of a normal
mode k is proportional to the rotational strength Rk of that mode, and

Rk ∝
∂ 〈m̂〉

∂q̇k
·

∂
〈 ˆ̇µ
〉

∂q̇k
(2.7.1)

with the time derivative of the electric dipole moment
〈 ˆ̇µ
〉

and the magnetic dipole
moment 〈m̂〉, while q̇k is the velocity along normal mode k.66 The two derivatives
are known as the atomic polar tensor (APT) P and the atomic axial tensor (AAT)
M:

Pαβ ≡
∂
〈

ˆ̇µβ

〉
∂Ṙα

, Mαβ ≡
∂
〈
m̂β

〉
∂Ṙα

(2.7.2)

It has been shown in the literature332–336 that VCD spectra can be computed via the
time-correlation function (TCF) formalism106–112 by Fourier transforming the cross-
correlation of electric dipole moment µ and magnetic dipole moment m from a MD
simulation. The VCD spectrum is obtained as150

∆A(ν̃) =
NA

12ε0c2kBT

∞∫
−∞

(
〈µ̇(τ) · ṁ(τ+t)〉τ − 〈ṁ(τ) · µ̇(τ+t)〉τ

)
exp(−2πicν̃t) dt,

(2.7.3)
where ν̃ denotes the wavenumber, t and τ represent the time, NA is the Avogadro
constant, ε0 the vacuum permittivity, c the speed of light in vacuum, kB the Boltz-
mann constant, T the average simulation temperature, and 〈µ̇(τ) · ṁ(τ+t)〉τ stands
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for the cross-correlation function of the time derivatives of the electric and magnetic
dipole moment. Note that the difference between the two correlation functions in-
side of the integral is a special case of the more general “commutator trick” that
has been derived in the scope of this thesis—see Equation 2.12.6 in Section 2.12.4.

The first ab initio prediction of a liquid phase VCD spectrum based on the TCF ap-
proach via molecular dynamics was published by Thomas and Kirchner in 2016,150

using a purely classical approach to compute the electric current and the magnetic
dipole moment (see Section 2.6). Only a few months later, Scherrer and Sebastiani
presented another ab initio prediction of a VCD spectrum via MD,151 based on
nuclear velocity perturbation theory (NVPT) to obtain the magnetic dipole mo-
ments. Since then, only a few more VCD spectra based on AIMD simulations have
appeared in the literature.296,297,337,338 The former approach is implemented in the
Travis program package and will be shortly described here.

One of the strengths of this approach is that it only requires a standard Born–
Oppenheimer molecular dynamics (BOMD) simulation as an input. The molecular
dipole moments µMol are obtained from the total electron density in each frame by
using our Voronoi integration approachMB23,MB48 (see Section 2.1) as

µMol =
NMol

∑
i=1

qiri −
∫

Mol

ρ(s) s d3s, (2.7.4)

where qi and ri depict the nuclear charge and position of atom i, respectively, ρ(s)
is the total electron density in space, and the integration limits “Mol” indicate
integration over the molecular Voronoi cell. The electric current j(s) is obtained on
a grid by solving the classical partial differential equation discussed in Section 2.6
with the total electron densities of three subsequent steps as the input. Once j(s)
is known, the molecular magnetic dipole moment mMol is obtained—again—via
Voronoi integration as

mMol =
1
2

NMol

∑
i=1

qi (ri × vi)−
1
2

∫
Mol

s× j(s) d3s, (2.7.5)

with vi representing the velocity vector of atom i. In both integrals, the molecular
center of mass is used as the coordinate origin. Based on these two quantities, the
VCD spectrum of the system can be readily computed via Equation 2.7.3 by aver-
aging over all molecular sub-spectra. Some technical details which are important
to obtain high-quality spectra are discussed in Section 2.12.

An example for a VCD spectrum computed following this approach can be
found in Section 3.3.

61



Chapter 2. Method Development and Theory

2.8. ROA Spectroscopy

Static–harmonic ROA spectra based on the normal mode analysis of a molecule
can be computed routinely since more than two decades,45,49,50,53,57,63,69,70,72,339–345

for example by using the Gaussian program package.58 However—similar to VCD
spectroscopy—a predicted ROA spectrum based on molecular dynamics simula-
tions via the time–correlation function (TCF) approach was not seen for a long time.
The first such spectrum was published in 2017 by Luber,152 but only one single
molecule in vacuum was investigated, and as some derivations have explicitly been
conducted under the assumption of a non-periodic system, it is concluded there
that the application to liquid systems remains an open project for the future. A few
months later, we published the first predicted ROA spectrum of a periodic liquid
system,MB26 based on a novel approach through AIMD simulations.

When computing spectra in the TCF formalism, time-correlation functions of
certain quantities have to be formed. In case of ROA, this is not straight-forward,
as the relevant properties are three different polarizability tensors of the system
(also known as optical activity tensors).304 These are the electric dipole–electric dipole
polarizability tensor α, the electric quadrupole–electric dipole polarizability tensor
A, and the magnetic dipole–electric dipole polarizability tensor G′. The main chal-
lenge in computing ROA spectra from MD simulations is to obtain these tensors
in each simulation time step in order to compute the required time correlation
functions. This can be achieved, e. g., by applying perturbation theory152, which
requires, however, significant amounts of computer resources to solve the resulting
perturbation equations.

Our approach is based on the purely classical approximation to the electric
current as presented in Section 2.6. Only the coordinates ri of the nuclei and the
total electron density ρ(r) on a three-dimensional grid are required as input in each
time step. Based on this information, we compute the molecular dipole moment
vector µMol and the trace-free molecular quadrupole moment68 tensor QMol for
each molecule by the classical expressions

µMol =
NMol

∑
i=1

qiri −
∫

Mol

ρ(s) s d3s, (2.8.1)

QMol
jk =

NMol

∑
i=1

qi

(
3ri,jri,k − ‖ri‖2 δjk

)
−
∫

Mol

ρ(s)
(

3sjsk − ‖s‖2 δjk

)
d3s, (2.8.2)

where ri and qi denote the position and core charge of the i-th nucleus, respec-
tively, s denotes points in space at which the electron density is evaluated, sj is
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the j-th component of vector s, and δ is the Kronecker delta. The volume in space
over which ρ is integrated for each molecule is determined by a radical Voronoi
tessellation, as we have proposed before (see Section 2.1).MB23,MB48 In the general
case (i. e., charged molecules), µMol is dependent on the choice of the coordinate
origin; similarly, QMol depends on the origin if the dipole moment is non-zero. For
each molecule, we use the center of mass as the coordinate origin when performing
these computations.

After the electric current j has been calculated by the classical differential equa-
tion, the molecular magnetic dipole moment mMol is computed via the expression

mMol =
1
2

NMol

∑
i=1

qi (ri × vi)−
1
2

∫
Mol

s× j(s) d3s, (2.8.3)

where vi denotes the velocity of the i-th nucleus, j(s) is the volumetric electric
current in space, and the molecular center of mass is used as coordinate origin
again.

To obtain the corresponding polarizabilities from µMol, QMol, and mMol, we apply
an external homogeneous electric field E in each spatial direction to the simulation
frame under consideration. From a central finite differences scheme, we obtain the
molecular electric dipole–electric dipole polarizability tensor αMol, the molecular
electric dipole–electric quadrupole polarizability tensor AMol, and the molecular
electric dipole–magnetic dipole polarizability tensor G ′Mol, and by using the follow-
ing identities from the literature,304 finally the required polarizabilities AMol and
G′Mol:

αMol =
d

dE
µMol (2.8.4)

AMol = AMol =
d

dE
QMol (2.8.5)

G′Mol = −
(
G ′Mol

)T
= −

(
d

dE
mMol

)T

(2.8.6)

A schematic illustration of this workflow to obtain the required electromagnetic
moments is presented in Figure 2.8.1,MB26,MB40 where the rows represent successive
time steps of the standard BOMD simulation, the columns stand for volumetric
and molecular properties, and the red font depicts quantities under the influence
of an external electric field. The Mol superscript will be omitted in the following,
but all quantities are still molecular quantities.
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Figure 2.8.1.: Schematic approach to compute the electromagnetic moments for ROA spec-
tra from standard BOMD simulations.MB26,MB40 Rows represent successive
BOMD time steps. Red font depicts quantities under external electric field.
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The ROA spectrum consists of three invariants, aG′, γ2
G′ , and γ2

A. In static ROA
calculations, these are computed from the derivatives of the polarizability tensor
elements along each normal mode.304 In our new approach, we calculate the in-
variants as the Fourier transform of cross-correlation functions between the time
series of certain molecular quantities along the trajectory. These quantities are the
tensor G′ as well as the time derivatives α̇ and Ȧ of the tensors defined above.
Only quantities from one molecule at a time are considered; cross-terms between
different molecules are not included. Following this approach, the ROA invariants
are functions of the wave number ν̃ rather than scalar values as in the static case:

aG′(ν̃) = 2πcν̃in

∫ ∞

−∞

〈
α̇xx(τ) + α̇yy(τ) + α̇zz(τ)

3

G′xx(τ+t) + G′yy(τ+t) + G′zz(τ+t)
3

〉
τ

· exp(−2πicν̃t)dt,
(2.8.7)

γ2
G′(ν̃) = 2πcν̃in

∫ ∞

−∞

[
1
2

〈(
α̇xx(τ)− α̇yy(τ)

) (
G′xx(τ+t)− G′yy(τ+t)

)〉
τ

+
1
2

〈(
α̇yy(τ)− α̇zz(τ)

) (
G′yy(τ+t)− G′zz(τ+t)

)〉
τ

+
1
2
〈
(α̇zz(τ)− α̇xx(τ))

(
G′zz(τ+t)− G′xx(τ+t)

)〉
τ

+
3
2

〈
α̇xy(τ)

(
G′xy(τ+t) + G′yx(τ+t)

)〉
τ

+
3
2

〈
α̇yz(τ)

(
G′yz(τ+t) + G′zy(τ+t)

)〉
τ

+
3
2
〈
α̇zx(τ)

(
G′zx(τ+t) + G′xz(τ+t)

)〉
τ

]
exp(−2πicν̃t)dt,

(2.8.8)

γ2
A(ν̃) = πcν̃in

∫ ∞

−∞

[〈(
α̇yy(τ)− α̇xx(τ)

)
Ȧz,xy(τ+t)

〉
τ

+
〈
(α̇xx(τ)− α̇zz(τ)) Ȧy,zx(τ+t)

〉
τ
+
〈(

α̇zz(τ)− α̇yy(τ)
)

Ȧx,yz(τ+t)
〉

τ

+
〈
α̇xy(τ)

(
Ȧy,yz(τ+t)− Ȧz,yy(τ+t) + Ȧz,xx(τ+t)− Ȧx,xz(τ+t)

)〉
τ

+
〈
α̇yz(τ)

(
Ȧz,zx(τ+t)− Ȧx,zz(τ+t) + Ȧx,yy(τ+t)− Ȧy,yx(τ+t)

)〉
τ

+
〈
α̇zx(τ)

(
Ȧy,zz(τ+t)− Ȧz,zy(τ+t) + Ȧx,xy(τ+t)− Ȧy,xx(τ+t)

)〉
τ

]
· exp(−2πicν̃t)dt,

(2.8.9)

where ν̃in denotes the wave number of the incident laser light. Note that the “com-
mutator trick” can be applied when computing the cross-correlation functions to
improve the sampling quality—see Equations 2.12.5 and 2.12.6 in Section 2.12.4.
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Table 2.8.1.: Coefficients in Equation 2.8.10 for ICP, SCP, DCPin operating modes and
several scattering geometries; polarization relative to scattering plane;
0◦=forward scattering, 180◦=backward scattering.

Scattering
angle

Polarization X Y Z

0◦ ∆I⊥ = ∆I‖ 360 8 -8
0◦ ∆I 720 16 -16
90◦ ∆I⊥ 180 28 4
90◦ ∆I‖ 0 24 -8
90◦ ∆I 180 52 -4
180◦ ∆I⊥ = ∆I‖ 0 48 16
180◦ ∆I 0 96 32

The final ROA spectrum ∆I(ν̃) is assembled as a linear combination of these three
invariants:304

∆I(ν̃) =
h

8ε2
0ckBT

· (ν̃in − ν̃)4

ν̃
(

1− exp
(
− hcν̃

kBT

)) · 1
90

(
X · aG′(ν̃) + Y · γ2

G′(ν̃) + Z · γ2
A(ν̃)

)
,

(2.8.10)

where the values of the coefficients X, Y, and Z depend on the experimental setup
for which the spectrum shall be predicted. The values of the coefficients for com-
mon scattering geometries are taken from the literature304 and shown in Table 2.8.1.
These values are applicable to the following experimental operating modes: Inci-
dent circularly polarized radiation (ICP), scattered circularly polarized radiation
(SCP), and in-phase dual circularly polarized radiation (DCPin). In the case of out-
of-phase dual circularly polarized radiation (DCPout), no signal is obtained within
this approximation. The frequency-dependent pre-factor in Equation 2.8.10 ensures
that the correct absolute intensity values are obtained. Some technical details which
are important to obtain high-quality spectra are discussed in Section 2.12.

Some examples for condensed phase ROA spectra predicted by our method are
presented in Section 3.4.
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2.9. SFG Spectroscopy

As described in the introduction, sum frequency generation (SFG) spectroscopy
is a non-linear laser spectroscopy which was developed in 1987 by the group of
Shen.37,38 As a surface-selective spectroscopy, it is very valuable, and has been ap-
plied to many interfacial system since then.39–42,346–352 The information contained
in a SFG spectrum is in a certain sense complementary to infrared and Raman
spectroscopy.42

Within the electric dipole approximation,159 SFG is a second-order non-linear
process with an intensity ISFG directly proportional to the square of the second-
order effective polarization P(2)

eff .353–355 This process is induced by the non-linear
second-order effective susceptibility χ

(2)
eff in the presence of the two incident laser

beams (visible pump and infrared probe). Thus, it is found that

ISFG ∝
∣∣∣P(2)

eff

∣∣∣2 =
∣∣∣χ(2)eff EvisEIR

∣∣∣2 (2.9.1)

with Evis and EIR being the electric fields of the incident visible and IR laser beams,
respectively. χ

(2)
eff is a third-rank tensor which is composed of tensorial Fresnel

factors at the interface and the macroscopic second-order non-linear susceptibility
χ
(2)
ijk . Based on that, the SFG intensity can be expressed159 as

ISFG ∝

∣∣∣∣∣∑i
∑
j,k

Fijkχ
(2)
ijk EvisEIR

∣∣∣∣∣
2

, i, j, k ∈ {x, y, z} , (2.9.2)

where Fijk are combined Fresnel coefficients which contain the non-linear Fresnel
coefficient for a SFG field originating from a monolayer at the interface between
the two media as well as the Fresnel coefficients of visible and IR incoming beams.

The macroscopic susceptibility χ
(2)
ijk can be expressed as the sum of two contri-

butions. χ(2)NR is a near-resonant susceptibility which is used for describing SFG
intensity contributions from the substrate. χ(2)R , on the other hand, is the second-
order resonant susceptibility, containing orientation information as well as the
second-order hyperpolarizability of the molecule on the surface. There are a total
of 27 elements in the latter tensor, but due to surface symmetry considerations,
the number of independent elements is significantly smaller. For example, in C2v

surface symmetry such as found on TiO2 (110), there exist the following five non-
vanishing unique components:346

χ
(2)
xxz, χ

(2)
yyz, χ

(2)
zzz, χ

(2)
xzx = χ

(2)
zxx, χ

(2)
yzy = χ

(2)
zyy. (2.9.3)
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When the molecular coordinate system is aligned with the laboratory coordinate
system and the plane of incidence is set to the x–z plane, it is convenient to regroup
the macroscopic susceptibility tensor elements according to the distinct polariza-
tion combinations of the three optical fields (SFG, visible, and IR). At the surface,
the light can be expressed as a combination of two linear polarizations, s and p.
The s-polarized and p-polarized lights have electric field vectors perpendicular
and parallel to the plane of incidence, respectively. As a result, s-polarized light
contains the y component, and p-polarized light contains the x and z components
of the optical field. Thus, there are a total of eight possible unique combinations
of polarizations in a SFG experiment. The effective resonant susceptibility tensor
elements related to the experimental polarization combinations on a C2v surface
are as follows:159

χ
(2)
eff,R,sss = χ

(2)
eff,R,spp = χ

(2)
eff,R,psp = χ

(2)
eff,R,pps = 0

χ
(2)
eff,R,ssp = Fyyzχ

(2)
yyz

χ
(2)
eff,R,sps = Fyzyχ

(2)
yzy

χ
(2)
eff,R,pss = Fzyyχ

(2)
zyy

χ
(2)
eff,R,ppp = −Fxxzχ

(2)
xxz − Fxzxχ

(2)
xzx + Fzxxχ

(2)
zxx + Fzzzχ

(2)
zzz

(2.9.4)

As shown here, only four of the polarization combinations, namely ssp, sps, pss,
and ppp, contribute to the SFG signal on a C2v surface.

The resonant part of the non-linear second-order effective susceptibility tensor
χ
(2)
eff can be computed from molecular dynamics simulations by the time-dependent

approach introduced by Morita et al.,356–358 based on the time-correlation function
(TCF) formalism. Based on this approach, many SFG spectra have already been
predicted from MD simulations of interfaces.153–165,293,359 In Morita’s approach,
χ
(2)
eff,R can be computed as

χ
(2)
eff,R,pqr(ω) =

−i
kBTω

N

∑
i=1

∫ 〈
α̇i

pq(τ) · µ̇i
r(t+τ)

〉
τ

exp(iωt) dt, (2.9.5)

where µ̇i
r(τ) and α̇i

pq(τ) are the time derivatives of the molecular dipole moment
and the molecular polarizability tensor of molecule i at time τ, respectively, N is
the number of molecules, kB is Boltzmann’s constant, and p, q, r ∈ {x, y, z} in the
laboratory coordinate frame, so that all 27 tensor elements can be obtained. The
molecular dipole moments and polarizabilities can be conveniently computed via
our Voronoi integration approachMB23,MB48—see Section 2.1.
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2.10. Resonance Raman Spectroscopy

As described in the introduction, the most prominent limitation of Raman-based
spectroscopic methods is their low sensitivity. Out of one million incident photons,
typically less than one undergoes Raman scattering, so that a very weak signal is
obtained. In the 1960s, it was discovered that the intensity of the Raman scattering
drastically increases if the incident laser wavelength is close to the energy of an
electronic excitation in the sample, which was termed as the resonance Raman ef-
fect.17–21 It followed the development of the resonance Raman spectroscopy, which
is a very important experimental technique today.22–28

Predicting resonance Raman spectra turned out to be quite intricate. As the res-
onance Raman effect involves electronic excitation of the sample, it is in general
not sufficient to solve the time-independent Schrödinger equation to obtain the
scattering intensities. Several approaches to compute these intensities have been
presented in the literature. Many of them are based on the vibronic theory of Al-
brecht and co-workers360–362 or on the time-dependent formalism of Heller and
co-workers.363–366 Another method, based on linear response time-dependent den-
sity functional theory (LR-TDDFT),367 was published by Jensen and Schatz.368,369

Scattering intensities obtained from these methods have been used in many studies
in the literature.73–82

Recently, a different approach which uses real-time time-dependent density func-
tional theory (RT-TDDFT)370–374 to obtain the dynamic polarizability of the sample
appeared in the literature.375 In contrast to the methods mentioned before, the real-
time approach offers the advantage of including all electronic excitations into the
calculation, such that the full frequency range is covered and no subset of low-lying
excitations needs to be selected. Furthermore, this approach intrinsically includes
non-linear effects which are neglected in perturbative methods such as LR-TDDFT.
Within the last years, a few studies on computing resonance Raman scattering
intensities from RT-TDDFT were published.376–378 However, all spectra presented
in these studies were based on static–harmonic frequency calculations of isolated
molecules in vacuum, and therefore lack solvent influence and anharmonic effects
as discussed above. To the best of our knowledge, a predicted resonance Raman
spectrum of a bulk phase system has not been published before.

Our newly proposed methodMB36 is based on a Born–Oppenheimer molecular
dynamics (BOMD) simulation of the bulk phase system of interest. Along the
BOMD trajectory, snapshots of the system are stored in equidistant intervals. For
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each of those snapshots, a separate RT-TDDFT calculation with fixed geometry is
started, as schematically shown in Figure 2.10.1.

Figure 2.10.1.: Schematic simulation protocol of our approach to resonance Raman
spectra. The horizontal direction depicts the BOMD simulation,
while the vertical direction shows the RT-TDDFT calculation of
each BOMD snapshot.MB36

The initial wave function is optimized under the influence of an external periodic
electric field, which is switched off in the beginning of the RT-TDDFT run, so that
the electron density starts to fluctuate (step response). During the RT-TDDFT run,
the temporal development of the total electron density is stored in compressed
bqb formatMB34 (see Section 2.2), and subsequently processed with our Voronoi in-
tegration schemeMB23,MB48 (see Section 2.1) to yield time series of molecular electric
dipole vectors µ (τ, t) with BOMD time t and RT-TDDFT time τ. The Fourier trans-
form of the three dipole vector components yields three entries of the molecular
dynamic polarizability tensor, as shown for an example in Figure 2.10.2.

Figure 2.10.2.: The Fourier transform of the dipole moment step response in the
RT-TDDFT simulation yields the real and imaginary part of the
dynamic polarizability tensor.MB36

To obtain the full dynamic polarizability tensor αij (ω, t) for each molecule (with ω

the incident laser frequency and t the time along the BOMD trajectory), three RT-
TDDFT runs are performed from initial wave functions optimized under external
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fields in X, Y, and Z direction:

αij(ω, t) =
1
|E|

T∫
0

(
µi(τ, t)− µ

0,j
i (t)

)
exp

((
−c

τ

T
)2
)

exp
(
−iωτ

)
dτ (2.10.1)

Please note that we use a Gaussian window function with parameter c for the
Fourier transform of the RT-TDDFT time series. T is the total RT-TDDFT simula-
tion time, µ0,j(t) denotes the initial molecular dipole moment at BOMD time t after
wave function optimization under external electric field in j direction, and |E| is
the absolute value of the external electric field. Please also note that the dynamic
polarizability tensor obtained from Equation 2.10.1 is complex-valued, with disper-
sion as real part and absorption as imaginary part. An example of the dynamic
polarizability is shown in Figure 2.10.3.

Figure 2.10.3.: Real part (dispersion; upper panel) and imaginary part (absorption;
lower panel) of the trace of the dynamic polarizability tensor
from a bulk phase simulation at four different BOMD simulation
times.MB36

Based on the dynamic polarizability tensor, the resonance Raman spectrum for any
incident laser wavelength can be computed as Fourier transform of autocorrela-
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tion functions along the BOMD time series, as discussed in the literature for non-
resonant Raman spectra before.MB14 We obtain the two Raman invariants, namely
the isotropic polarizability a2

p (ν̃, ω) and the anisotropy γ2
p (ν̃, ω), as follows:

a2
p (ν̃, ω) =

T̂∫
0

1
9

〈(
α̇xx(ω, τ) + α̇yy(ω, τ) + α̇zz(ω, τ)

)
·
(
α̇xx(ω, τ+t) + α̇yy(ω, τ+t) + α̇zz(ω, τ+t)

)〉
τ

exp
(
−2πicν̃t

)
dt

(2.10.2)

γ2
p (ν̃, ω) =

T̂∫
0

[
1
2

〈(
α̇xx(ω, τ)− α̇yy(ω, τ)

)
·
(
α̇xx(ω, τ+t)− α̇yy(ω, τ+t)

)〉
τ

+
1
2

〈(
α̇yy(ω, τ)− α̇zz(ω, τ)

)
·
(
α̇yy(ω, τ+t)− α̇zz(ω, τ+t)

)〉
τ

+
1
2

〈(
α̇zz(ω, τ)− α̇xx(ω, τ)

)
·
(
α̇zz(ω, τ+t)− α̇xx(ω, τ+t)

)〉
τ

+3
〈

α̇xy(ω, τ) · α̇xy(ω, τ+t)
〉

τ
+ 3
〈

α̇xz(ω, τ) · α̇xz(ω, τ+t)
〉

τ

+3
〈

α̇yz(ω, τ) · α̇yz(ω, τ+t)
〉

τ

]
exp

(
−2πicν̃t

)
dt

(2.10.3)

The integrals run over the total BOMD simulation time T̂. Taking the time deriva-
tive α̇ of the dynamic polarizability tensor α is equivalent to a factor of ν̃2 outside
of the Fourier transform.MB14 Following from the definition

〈
f (τ) · f (τ+t)

〉
τ

:=
∫

f (τ+t) · f (τ) dτ, (2.10.4)

the autocorrelation of a complex time series f (t) which is required here can be
computed from autocorrelations and cross-correlations of real time series in the
following way:MB36

〈
f (t) · f (t+τ)

〉
τ
=
〈

Re
(

f (t)
)
· Re

(
f (t+τ)

)〉
τ
+
〈

Im
(

f (t)
)
· Im

(
f (t+τ)

)〉
τ

+ i

[〈
Re
(

f (t)
)
· Im

(
f (t+τ)

)〉
τ
−
〈

Im
(

f (t)
)
· Re

(
f (t+τ)

)〉
τ

]
(2.10.5)
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Finally, the resonance Raman spectrum I(ν̃, ω) at laser frequency ω can be ex-
pressed as a linear combination of the two invariants a2

p (ν̃, ω) and γ2
p (ν̃, ω), where

the coefficients X and Y depend on the scattering geometry and polarization
and can be found in the literature. Common choices for (X; Y) are (0; 3) for
orthogonal polarization, (45; 4) for parallel polarization, and (45; 7) for unpolar-
ized/depolarized setups (with a scattering angle of 90◦ in all three cases).304

I(ν̃, ω) =
h

8ε2
0ckBT

· (ω− ν̃)4

ν̃
(

1− exp
(
− hcν̃

kBT

)) · 1
45

(
X · a2

p (ν̃, ω) + Y · γ2
p (ν̃, ω)

)
(2.10.6)

As the RT-TDDFT run yields the dynamic polarizability tensor over the full fre-
quency range (see Equation 2.10.1), we obtain the resonance Raman spectra for all
possible laser wavelengths ω from Equation 2.10.6 in one pass—see e. g. Figure 3.5.3
on page 102. Such a two-dimensional spectrum—also known as “excitation pro-
file”—can reveal interesting details on the vibronic coupling in the system. This is
a clear advantage over other methods, where the resonance Raman intensities are
often computed for a single laser wavelength per pass. The low-frequency part of
the polarizability is correctly reproduced and matches the static polarizability ob-
tained via finite electric field differences. Therefore, also the non-resonant Raman
spectrum is correctly obtained from our approach. We implemented the methodol-
ogy in our freely available open-source program package Travis.MB2,MB40

A few examples for resonance Raman spectra predicted via this approach are
shown in Section 3.5.
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2.11. Normal Mode Analysis

When computing spectra in the static–harmonic framework, each spectral band
is obtained together with a corresponding normal mode (see Section 1.2.1) so that
the spectral features can be easily assigned to specific molecular vibrations. When
computing spectra from AIMD simulations via the time-correlation function (TCF)
formalism, this cannot be easily achieved, because the spectrum is obtained as a
superposition of all vibrational modes in the system without additional informa-
tion on specific molecular motions that contribute to a certain spectral feature.

To overcome this limitation, several approaches for the extraction of normal
modes from molecular dynamics simulations have been reported in the litera-
ture. These approaches include the instantaneous normal mode analysis (INMA)
where the Hessian of the system is calculated in certain time steps along the tra-
jectory.379–382 Moreover, it includes the principal mode analysis (PMA) where an
eigenvalue problem—derived from cross-correlation functions of particle positions
and velocities—is solved.122,276,380,381,383–388 For our purpose, we have adopted the
generalized normal coordinate scheme of Mathias et al.,389,390 which is similar to
the PMA approach, but does not require the equipartition theorem to be fulfilled. A
short summary of the approach will be given in the following paragraphs, closely
following the description in our publication.MB19 The methodology is based on
computing power spectra which are discussed in Section 2.3.

The central object in the approach is the matrix P(ω) of velocity cross-correlation
spectra (closely related to the tensorial vibrational density of states in Ref. 389). For a
molecule consisting of n atoms, this is a 3n× 3n matrix with the elements

Pij(ω) :=
√

mimj Re
(∫ 〈

ẋi(τ) ẋj(τ+t)
〉

τ
exp(−iωt) dt

)
(2.11.1)

where t and τ denote the time and ω is the frequency. The indices i and j run
over the 3n Cartesian coordinates of all atoms in the molecule. ẋi denotes the
time derivative (velocity) of coordinate i and mi is the mass of the atom corre-
sponding to coordinate i.

〈
ẋi(τ) ẋj(τ+t)

〉
τ

denotes the cross-correlation function
of the velocities corresponding to coordinates i and j. Taking the real part of the
Fourier transform corresponds to averaging over the time forward and the time
backward trajectory.389 The main-diagonal elements Pii(ω) are equivalent to atom
specific power spectra along one Cartesian axis, so the trace of P(ω) gives the total
power spectrum of the system as described in the literature.MB14 The off-diagonal
elements Pij(ω) are the Fourier transforms of velocity cross-correlation functions,
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which characterize, in a simplified view, the overlap of the atom specific power
spectra Pii(ω) and Pjj(ω).

Since the Cartesian coordinates of the atoms are used, the atom specific power
spectra Pii(ω) usually range over a broad frequency region with contributions at
all molecular vibrations involving atom i. The main idea is to find a coordinate
transformation such that the main-diagonal elements Pii(ω) are sharply located in
frequency space. This is equivalent to minimizing the off-diagonal elements Pij(ω)

describing the overlaps. The new coordinates are considered as the generalized
normal coordinates of the system.389

If P(ω) was a regular matrix, the minimization of the off-diagonal elements
could be achieved by a simple diagonalization. However, P(ω) depends on the
frequency ω so that standard diagonalization techniques cannot be used. Still it
is possible to minimize the integral over the off-diagonal elements by a modified
Jacobi algorithm,211,389 leading to an orthogonal transformation matrix C that gives
the new matrix

P′(ω) = CP(ω)C−1 (2.11.2)

with minimized cross-correlation spectra P′ij(ω). The matrix C consists of the set
of new coordinate vectors qk characterizing the normal modes. Since the trace of a
matrix is not changed by an orthogonal transformation, the total power spectrum
of the system is not modified by this procedure.

The concept of normal modes generally relies on the assumption that the mo-
lecule undertakes small oscillations around a fixed reference structure, which is
usually a minimum on the potential energy surface. However, in a molecular dy-
namics trajectory, there will also be translational and rotational motion, which
needs to be removed prior to the normal coordinate analysis. For this purpose, the
trajectories are transformed to the Eckart frame of reference391 by finding a rotation
matrix R and a translation vector T in each time step such that the mass-weighted
root-mean-square distance

d :=

√
n

∑
k=1

mk

(
Rrk(t) + T− r0

k

)2
(2.11.3)

is minimized, with rk(t) and r0
k being the position vectors of atom k in the trajectory

and the reference structure, respectively.
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The assumption of small oscillations around one single reference structure breaks
down if there are conformational changes in the trajectory. In this context, the
procedure needs to be extended to several reference structures.390 Either these
can differ only in the ordering of equivalent atoms (e. g., if a methyl group rotates
where the hydrogen atoms are indistinguishable) or they belong to structurally different
minima on the potential energy surface (e. g., if a butyl group changes between trans
and gauche conformation). In the former case, all conformations can be mapped to
a single minimum by considering the permutations of equivalent atoms, whereas
in the latter case, the normal coordinate analysis results in independent normal
modes for all minima.

If there are several reference structures, a probability pm(t) for being in structure
m has to be defined in each time step. A possible choice390 is of the general form

pm(t) := N exp
(
−

d
(
r(t) , r0,m)

2σ2

)
, (2.11.4)

where d
(
r(t) , r0,m) is a function measuring the distance between the Eckart frame

coordinates from the trajectory and reference structure m, σ is a parameter deter-
mining the width of the switching region between two reference structures, and
N is a proper normalization factor to ensure that the sum of all probabilities is
1. The distance function d

(
r(t) , r0,m) can either be the mass-weighted root-mean-

square distance analogous to Equation 2.11.3 or a root-mean-square deviation in
certain internal coordinates.390 With the probabilities pm(t), the cross-correlation
function

〈
ẋi(τ) ẋj(τ+t)

〉
τ

in Equation 2.11.1 is replaced by
〈

pm(τ) ẋi(τ) ẋj(τ+t)
〉

τ
,

resulting in a cross-correlation matrix Pm(τ) for each reference structure. Prop-
erly accounting for the permutation operations, the matrices Pm(τ) of reference
structures just differing by the ordering of equivalent atoms can be added, finally
leading to a single set of normal modes for the corresponding minimum on the
potential energy surface.390

An example for a normal mode decomposition in a bulk phase simulation is
discussed in Section 3.6.
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2.12. Signal Processing Techniques

This section describes some general techniques used in the scope of this thesis
(and implemented in Travis

MB2,MB40) which are relevant for the calculation of all
types of vibrational spectra. While most of these techniques are basic knowledge
of signal processing, they are rarely discussed in articles on computer simulations.

2.12.1. Fast Correlation

All prediction methods for vibrational spectra from molecular dynamics simula-
tions are based on either autocorrelation or cross-correlation functions of some time
series along the trajectory. Typically, these correlations are computed for molecu-
lar properties, not for properties of the whole simulation box. The reason is that
correlating properties of the whole system is equivalent to taking into account all
cross-correlations between different molecules. However, the motion of very distant
molecules is not correlated at all, so that these cross-correlations mostly introduce
noise into the spectrum. Computing all the molecular correlation functions re-
quires much computational power, because such a calculation scales with O(m · n),
where n is the length of the time series, and m is the chosen correlation depth.
Luckily, there exists the Wiener–Khinchin theorem,281,282—see also Section A.2 in
the Appendix—which states that computing the autocorrelation C(τ) of a time
series f (t) is equivalent to Fourier transforming the time series, taking the absolute
square, and transforming back:

C(τ) =
∞∫
−∞

f (t) · f (t+τ) dt = F−1

(∣∣∣∣F( f (τ)
)∣∣∣∣2
)

(2.12.1)

As the Fourier transform of a discrete data set of length n can be efficiently com-
puted by the fast Fourier transform (FFT)392,393 algorithm which only scales with
O(n · log n), this saves a lot of computational time. Equation 2.12.1 is only a special
case of the cross-correlation theorem, so that a similar approach can also be used to
speed up the calculation of cross-correlation functions via FFT. Travis computes all
autocorrelation and cross-correlation functions based on these approaches, using
the KISS FFT library394 (integrated in the Travis source code).

2.12.2. Window Function and Zero Padding

When considering Fourier transforms of data, it is very important to choose a
suitable window function. There exists no Fourier transform without a window
function—using no window function means using a rectangular window, which
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is a very poor choice. Applying a window function simply means element-wise
multiplication of the discrete input data with the window function before Fourier
transforming. By default, Travis uses the Hann window function395 for computing
spectra, which is given by

Wn := cos2
(

πn
2 (N−1)

)
, n = 0, . . . , (N−1) , (2.12.2)

but other window functions (exponential, Gaussian) are also implemented. The
total integral of the Fourier transform of a discrete data set ai depends only on the
first value a0. Therefore, any window function which fulfills the condition W0 = 1
does not modify the total integral at all. In other words, window functions alter the
peak shapes of the spectrum, but keep the integral intensities of the bands invariant.

By adding zeroes to the tail of the correlation function before Fourier transform-
ing, the resolution of the resulting spectrum can be increased, which is called zero
padding. No new spectral information is gained by this technique, it is just an
interpolation (so-called “trigonometric interpolation”) between the data points of the
original spectrum, i. e., a cosmetic measure. By default, Travis uses a zero padding
factor of 4.

2.12.3. Finite Differences Correction

For most spectra, the time derivative instead of the quantity itself enters the cor-
relation functions. For a cosine function cos (ωt+ϕ), it can be shown113 that the
second-order central finite difference derivative is given by

D cos(ωt+ϕ) =
cos
(
ω(t+∆t)+ϕ

)
− cos

(
ω(t−∆t)+ϕ

)
2∆t

= −ω sin(ωt+ϕ)
sin(ω∆t)

ω∆t
, (2.12.3)

i. e., the exact value of the derivative is multiplied by a sinus cardinalis (sinc) function
sin(ω∆t)

ω∆t . Since the product of two such time derivatives is formed in the correlation
functions, the final spectra need to be divided by a factor of

( sin(ω∆t)
ω∆t

)2 to obtain
the correct intensities. This correction is implemented in Travis and active by
default. Due to the correction, high-quality spectra with accurate intensities on the
full spectral range (up to 3500 cm−1) can be obtained even if the electromagnetic
moments only were computed every 4.0 fs, which saves a lot of computer time.
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2.12.4. Improved Sampling via Time Reversibility

Similar to most other properties, vibrational spectra should be invariant under
reversal of the time direction: the trajectory with reversed time samples the same
thermodynamic ensemble as the forward trajectory. And as vibrational spectra
are ensemble averages, they cannot differ for these two cases. Consider the cross-
correlation of two time series a(t) and b(t) along the trajectory. Let ã(t) := a(T−t)
and b̃(t) := b(T−t) be the two time series of the trajectory with reversed time,
where T is the total trajectory length. We find that

〈
ã(t+τ) · b̃(t)

〉
t =

∫
ã(t+τ) · b̃(t) dt

=
∫

a(T−t−τ) · b(T−t) dt

=
∫

a(t̃) · b(t̃+τ) dt̃

=
〈
b(t̃+τ) · a(t̃)

〉
t̃ (2.12.4)

with the substitution t̃ := T−t−τ. Thus, the reversal of the time direction is equiv-
alent to swapping the first and second argument of the cross-correlation. If the
spectra are invariant under time reversal, also the underlying cross-correlation
functions should be invariant. Therefore, swapping the two arguments will yield
identical correlation functions for infinite trajectory length. However, in practice,
sampling is not perfect, and the two correlation functions differ due to statistical
noise. By simply taking the arithmetic average of both correlation functions (with
forward time and reversed time), see Equation 2.12.5, the sampling is effectively in-
creased by a factor of two at no additional computational cost. We call this approach
the “commutator trick”.MB40

CCF(a, b) :=
1
2

(〈
a(t+τ) · b(t)

〉
t +
〈
b(t+τ) · a(t)

〉
t

)
(2.12.5)

It only improves sampling if a(t) and b(t) are different time series, i. e., in the case
of true cross-correlation. If a and b are identical (i. e. autocorrelation, as with correlat-
ing the dipole moment for infrared spectra), nothing is gained.

Another subtlety arises if one of both properties a and b is the magnetic dipole
moment (which is required for VCD and ROA spectra; see below). This quantity depends
linearly on the atomic velocities. A time reversal inverts all atomic velocities, and
therefore swaps the sign of the magnetic dipole moment. In this case, taking the
average of both correlation functions would only yield noise, as both contributions
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would cancel out. The sign of the correlation function with reversed time has to be
changed to obtain the desired effect, see Equation 2.12.6.

CCF∗(a, b) :=
1
2

(〈
a(t+τ) · b(t)

〉
t −
〈
b(t+τ) · a(t)

〉
t

)
(2.12.6)

Please note that this approach to enhance the sampling quality has infrequently
been applied before in the literature in a less general formulation for specific
spectroscopic prediction methods such as for VCD spectra.150

2.12.5. Correcting the Verlet Frequency Shift

Describing the dynamics of a system with finite time steps does unfortunately not
leave the vibrational frequencies of harmonic oscillators invariant. If a harmonic
oscillator with “true” frequency ω0 is solved by a Verlet integration scheme182 with
integrator time step ∆t, it can be derived that the observed frequency ω̃ is given by

ω̃ =
1

∆t
arccos

(
1− 1

2
ω2

0∆t2), (2.12.7)

as demonstrated in Section A.3 in the Appendix. Luckily, the effect is rather small.
When simulating an oscillator with ω0 = 3000.0 cm−1 and ∆t = 0.5 fs, the observed
frequency is ω̃ = 2990.0 cm−1, which is a deviation of around 0.3%. When comput-
ing spectra from a trajectory, the observed frequencies ω̃ are given, and the true
frequencies ω0 are sought after. The inverse of Equation 2.12.7 can be easily written
as

ω0 =

√
2− 2cos (ω̃∆t)

∆t
. (2.12.8)

By using Equation 2.12.8, the frequency axis of the spectra can be corrected for the
frequency shift of the Verlet integrator. The correction is implemented in Travis.
For a mathematical derivation, please see Section A.3 in the Appendix. Some
typical frequency deviations for common time steps ∆t are shown in Table A.1 in
the Appendix.
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2.13. The TRAVIS Program Package

Starting in 2009, a program package by the name of Travis (“trajectory analyzer
and visualizer”) for analyzing atomistic simulations has been developed within the
scope of M.B.’s PhD work in the group of Barbara Kirchner. Later, Martin Thomas
and Sascha Gehrke joined the developer team. Since the original publication of the
package in 2011,MB2 the article has already been cited more than 660 times, which
indicates a good adoption of Travis in the scientific community. A more recent
article from 2020 shows a subset of the functions and abilities which Travis has
gained over the time.MB40

Figure 2.13.1.: Logo of the Travis program package.

Travis is open-source free software, written in C++ (currently around 300 000 lines of
source code), platform independent, and does not depend on any external libraries.
It possesses an interactive command line interface (see Figure 2.13.2) which guides
the user through the analysis so that no input file needs to be prepared.

Figure 2.13.2.: The interactive command line interface of Travis.
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All methods which are described in Sections 2.1 to 2.12 of this chapter are im-
plemented in Travis, so that they are freely available to the scientific community.
Apart from spectroscopic functions, Travis contains many more functions for an-
alyzing trajectories. After performing a simulation of a complex system, a clear
and descriptive visualization of the results is equally important, and Travis offers
a set of tools to do so. One example are so-called Sankey diagrams which can be
used to illustrate the competition between different hydrogen bond donors and
acceptors in a mixture—see Figure 2.13.3 for the example of cellulose dissolved in
an [EMIm][OAc] / water mixture.MB40

Figure 2.13.3.: An example of a Sankey diagram created with Travis, illustrating
the competition between different hydrogen bonds in a complex
liquid mixture.MB40

The Travis source code distribution as well as some pre-compiled executables for
Windows can be downloaded from

http://www.travis-analyzer.de

For a step-by-step tutorial on how to predict bulk phase vibrational spectra with
CP2k and Travis, please visit

https://brehm-research.de/spectroscopy
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Applications

In this chapter, some vibrational spectra which have been predicted using the
approaches from Chapter 2 are presented. After discussing infrared and Raman
spectra in Sections 3.1 and 3.2, we turn to the chiral variants of these two—namely
VCD and ROA spectroscopy—in Sections 3.3 and 3.4, respectively. Subsequently,
a few predicted resonance Raman spectra are shown in Section 3.5. Finally, an
example for the bulk phase normal mode analysis is presented in Section 3.6. In
Section 3.7, the general computational protocol (including all relevant literature refer-
ences) is outlined.

All spectra in this chapter have been computed with the Travis program pack-
age,MB2,MB40 and the underlying AIMD simulations were carried out with the CP2k
software212–214 in all cases. The full workflow from the idea to the final spectrum
involves only open-source free software. For a step-by-step tutorial on how to
predict bulk phase vibrational spectra with CP2k and Travis, please visit

https://brehm-research.de/spectroscopy

It should be emphasized that all predicted spectra presented below are shown
directly as computed. No empirical corrections (scaling, shifting, line broadening, etc.)
have been applied. As the protocol for computing spectra is based on ab initio
molecular dynamics simulations, the method is truly predictive and can be applied
to predicting spectra of substances never measured (or even synthesized) before.
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3.1. Infrared Spectroscopy

Methanol

The calculation of infrared spectra from AIMD simulations via time-correlation of
molecular dipole moments is well established in the literature. Just one example
will be shown here. In Figure 3.1.1, the infrared spectra of methanol in the gas
phase (top panel) and liquid phase (bottom panel) are presented.MB14 The black
curves depict the experimental spectra, while the blue curves are the AIMD-based
predictions. Note that the “gas phase” experimental spectrum was measured in
CCl4 to eliminate hydrogen bonding (similar to gas phase), because a true gas phase
spectrum was not available.

Figure 3.1.1.: AIMD-based predictions (blue curves) and experimental (black
curves) infrared spectra of methanol in gas phase (upper panel) and
liquid phase (lower panel).MB14 The “gas phase” experimental spec-
trum was measured in CCl4 to eliminate hydrogen bonding.

As it can be seen, both the gas phase and the liquid phase infrared spectra are re-
produced well by the AIMD predictions. Most importantly, the drastic differences
between both experimental spectra are quantitatively captured by the predicted
spectra. Due to the strong hydrogen bonding in the liquid phase of methanol, the
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O–H stretching mode, found at around 3700 cm−1 in the gas phase, is shifted to
lower wavenumbers and significantly broadened due to the strong anharmonicity.
Another interesting effect (which is unfortunately not covered in the experimental spec-
trum) is the appearance of a new band at around 650 cm−1 which corresponds to
intermolecular interactions between methanol molecules.MB14 On the other hand,
some other spectral bands which are not directly influenced by hydrogen bonding
retain their narrow shape when going from the gas phase to the liquid phase, as it
is also well reproduced by the AIMD simulations.

The computational protocol was as follows. For the liquid phase AIMD simu-
lation, 16 methanol molecules were placed inside a cubic box (which is quite a low
number, but seemingly sufficient to reproduce the bulk phase behavior with respect to vibra-
tional spectra). The simulation temperature was set to 400 K. More computational
details can be found in Section 3.7.
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3.2. Raman Spectroscopy

Liquid Propylene Oxide

One system to which we applied our approach to computing condensed phase
Raman spectra is liquid (R)-propylene oxide, also known as methyl oxirane, which
possesses a molecular structure as shown in Figure 3.2.1.

Figure 3.2.1.: Molecular structure of
(R)-propylene oxide.

Based on AIMD simulations, we have predicted the depolarized Raman spectrum
of liquid (R)-propylene oxide, and compare it to an experimental spectrum in Fig-
ure 3.2.2.MB26 In order to emphasize the important fingerprint region, we show
only a subset of the full frequency range here. It can be seen that the experiment is
reproduced by the simulation very well. All features of the experimental spectrum
can be found in the predicted spectrum, and also the intensity ratios match very
well for most bands. Most peaks appear at lower frequencies in the computed spec-
trum. This effect is well-known and was observed in comparable Raman studies on
propylene oxide before.139 It is therefore not related to our method for computing
spectra presented herein, and could be cured by using a higher level of theory for

Figure 3.2.2.: Depolarized Raman spectrum of liquid propylene ox-
ide predicted from AIMD (black curve)MB26 compared
to experimental spectrum (red curve).396
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performing the electron structure calculations in the AIMD simulation. As already
mentioned, our approach can, in principle, be coupled to any electron structure
method which is able to provide the total electron density.MB26

Apart from the Raman spectrum itself, another very interesting property which
can be predicted based on the methods shown in Section 3.2 is the Raman de-
polarization ratio. As discussed there, the depolarization ratio ρ(ν̃) is defined as
the quotient of the orthogonal Raman spectrum I⊥(ν̃) and the parallel Raman
spectrum I‖(ν̃). For normal modes with low symmetry, the value of ρ is always
0.75 (so-called “depolarized band”), but for totally symmetric modes, it can be lower
(so-called “polarized band”). For example, the breathing mode in methane possesses
a depolarization ratio of ρ=0. Based on this rationale, the depolarization ratio can
help to assign spectral bands to vibrational modes in a molecule.

Figure 3.2.3.: Depolarized Raman spectrum of liquid propylene ox-
ide predicted from AIMD (black curve)MB26 together
with predicted depolarization ratio (blue curve).

The depolarization ratio of liquid propylene oxide is presented as blue curve in
Figure 3.2.3, together with the depolarized Raman spectrum (black curve) that was
already shown on the last page. The grey vertical bars help to assign the depo-
larization ratio to each spectral band. As it can be seen, some intense bands (e. g.,
790 cm−1 and 1460 cm−1) possess a depolarization ratio close to 0.75 (“depolarized
bands”) and are therefore resulting from asymmetric vibrational modes, while some
other bands (e. g., 930 cm−1 and 1240 cm−1) show a depolarization value close to zero
(“polarized bands”) and therefore correspond to highly symmetric modes.
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The AIMD simulation contained 32 molecules of (R)-propylene oxide in a cubic
simulation cell with 1558 pm edge length, resulting in a density of 0.816 g cm−3,
and was conducted with the CP2k program package212–214 in the NVT ensemble at
a temperature of 300 K. A snapshot of the simulation cell is shown in Figure 3.2.4.
After 20 ps of equilibration with and without massive thermostats, a production
run of 32.5 ps followed. In order to obtain the polarizability via finite differences,
additional simulations were performed with static external electric fields in X/Y/Z
direction. The field strength was set to 5.0 · 10−3 a.u. = 2.57 · 109 V m−1. More
computational details can be found in Section 3.7.

Figure 3.2.4.: Snapshot of the liquid phase propylene
oxide simulation cell.
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MgCl2 / KCl Melt

Within the scope of a collaborative project with the group of Vyacheslav Bryant-
sev,MB49 we predicted unpolarized Raman spectra of inorganic melts consisting
of MgCl2 and KCl based on AIMD simulations. The results are presented in Fig-
ure 3.2.5 with the experimental spectra in the top panel and the predictions with
the PBE–D3, PBE–D2, and revPBE–D2 functionals in the remaining panels, respec-
tively. Black curves correspond to pure MgCl2, while red curves depict the spectra
of 50/50 mol% mixtures of MgCl2 and KCl.

Figure 3.2.5.: Experimental (top panel) and predicted (other panels) unpolarized
Raman spectra for pure MgCl2 (black curves) and a 50/50 mol%
mixture of MgCl2 and KCl (red curves) at 1073 K.MB49

It can be seen that the prediction based on AIMD simulations with PBE–D3 repro-
duces the frequencies and intensity ratio of the experiment very well, while the
other approaches are slightly worse in one or more aspects. Given such a level of
agreement between the experimental and simulated Raman spectra, we are confi-
dent that the underlying structural information at the atomic resolution is faithfully
represented in the AIMD simulation with PBE–D3.MB49

As the Voronoi integration approach is currently only suitable for the calculation
of molecular electromagnetic moments, the total cell dipole moment from the Berry
phase operator was used here instead for the computation of the spectra.

89



Chapter 3. Applications

The computational protocol was as follows.MB49 149 Mg2+ and 298 Cl− ions (pure
system) or 100 Mg2+, 100 K+, and 300 Cl− ions (mixture) were pre-equilibrated
in NpT ensemble for 1 ns at 1073 K and 1 bar via force field molecular dynamics,
using a polarizable ion model (PIM)397–399 to accurately model the interactions.
Structures with the average equilibrated densities (1.612 g cm−3 for pure MgCl2

and 1.573 g cm−3 for the mixture) were extracted as initial configurations for the
AIMD simulations. Note that these densities are in very good agreement with the
experimental densities (1.65 g cm−3 for pure MgCl2 and 1.56 g cm−3 for the mix-
ture).400,401 A snapshot of the pure MgCl2 simulation cell is shown in Figure 3.2.6.

Figure 3.2.6.: Snapshot of the simulation cell of the pure MgCl2
simulation (green: chloride, purple: magnesium).

The AIMD simulations have been performed with the CP2k program package,212–214

employing the Quickstep (QS) method402 and the orbital transformation (OT)403,404

approach with the FULL_ALL preconditioner405 and a conjugate gradient (CG)
minimizer.406–408 The electronic structure was calculated with the PBE–D3, PBE–D2,
and revPBE–D2 methods, which are based on the PBE409 and revPBE410 function-
als and employ either the D2411 or the D3412,413 empirical dispersion correction
from Grimme. Basis sets of the kind MOLOPT–DZVP414 and GTH pseudopoten-
tials415,416 were applied to all atoms. The plane wave cutoff was set to 600 Ry, and
the time step was chosen to be 1.0 fs in all simulations. The simulation temperature
was kept at 1073 K by a Nosé–Hoover chain thermostat184–186 with a thermostat
time constant τ = 1000 fs (i. e., NVT ensemble). After an equilibration interval of
20 ps, a production run was performed for 60 ps.
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3.3. VCD Spectroscopy

Liquid Propylene Oxide

A worthwhile target for the prediction of VCD spectra is propylene oxide. It is
one of the smallest chiral organic molecules that exist, and therefore it is relatively
easy to perform an AIMD simulation of the liquid phase with reasonable sam-
pling. VCD spectra of propylene oxide have been predicted before,417–422 but only
for single isolated molecules (mostly based on the static–harmonic approximation) and
therefore not including any explicit solvent effects which are present in the liquid
phase. We have predicted† the VCD spectrum of liquid (R)-propylene oxide with
the AIMD-based approach described in Section 2.7; the resulting spectrum is pre-
sented in Figure 3.3.1 as black curve, together with an experimentally measured
spectrum (red curve).417 In order to emphasize the important fingerprint region, we
show only a subset of the full frequency range here.

Figure 3.3.1.: Predicted VCD spectrum of liquid (R)-propylene oxide (black
curve)† together with experimental spectrum.417

It can be seen that our prediction reproduces the experimental VCD spectrum very
well. All signals observed in the experiment are also found in the simulated spec-
trum, and also the sign and intensity ratio of the signals is in good agreement. We
would like to emphasize again that the predicted spectrum is directly presented as
computed—no empirical corrections (scaling, shift, line broadening, etc.) were applied.
Thus, the method is truly predictive, and can help to identify absolute configura-
tions.

† Unpublished result.
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As already discussed in Section 3.2 for the same system, some peaks appear at
slightly different frequencies in the computed spectrum, which is a well-known
effect and was observed in comparable studies on propylene oxide before.139 It
is therefore not related to our method for computing spectra presented herein,
and could be cured by using a higher level of theory for performing the electron
structure calculations in the AIMD simulation.

The computations were performed as follows. During the AIMD simulation, the
total electron density was written to disk as volumetric data in Gaussian Cube
format in each time step. A setting of STRIDE=1 was used to write these files,
which resulted in a grid of 160× 160× 160 data points (i. e., 9.7 pm grid spacing).
The electric current was obtained from the purely classical approach150 introduced
in Section 2.6 by solving the partial differential equation described there, using a
relative convergence threshold for the BiCGStab method of 10−3 and a background
density of 10−6 a.u. = 7 · 10−3 e nm−3. In the radical Voronoi tessellation scheme,
van der Waals atom radii240–242 were employed, as these have been shown to re-
produce spectroscopic properties very well.MB23 More computational details can
be found in Section 3.7.

Details on the system setup can be found in Section 3.2, where also a snapshot
of the simulation cell is presented in Figure 3.2.4 on page 88.
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3.4. ROA Spectroscopy

Liquid Propylene Oxide

As already discussed in Section 3.3, a worthwhile target for the prediction of ROA
spectra is propylene oxide, which is one of the smallest chiral organic molecules
that exist. Not surprisingly, ROA spectra of propylene oxide have been predicted
before,50,152,423,424 but only for single isolated molecules (mostly based on the static–
harmonic approximation) and therefore not including any explicit solvent effects
which are present in the liquid phase. In 2017, we have predictedMB26 the ROA
spectrum of liquid (R)-propylene oxide with the novel AIMD-based approach de-
scribed in Section 2.8; the resulting spectrum is presented in Figure 3.4.1 as black
curve, together with an experimentally measured spectrum (red curve).425 This was
the first ab initio prediction of a liquid phase ROA spectrum in the literature. In
order to emphasize the important fingerprint region, we show only a subset of the
full frequency range here.

Figure 3.4.1.: Predicted ROA spectrum of liquid (R)-propylene
oxideMB26 together with experimental spectrum.425

As it can be seen, the simulated ROA bands are in very good agreement with the
experimentally observed pattern of positive and negative peaks. For each signal in
the experiment, the simulation shows a corresponding counterpart, and also the
relative intensity ratios agree very well. The calculated spectrum would easily allow
to identify the correct enantiomer of propylene oxide, since the other enantiomer
possesses all bands with opposite sign. We would like to emphasize again that the
predicted spectrum is directly presented as computed—no empirical corrections
(scaling, shift, line broadening, etc.) were applied. Thus, the method is truly predictive.
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As already discussed in Section 3.2 for the same system, some peaks appear at
slightly different frequencies in the computed spectrum, which is a well-known
effect and was observed in comparable studies on propylene oxide before.139 It
is therefore not related to our method for computing spectra presented herein,
and could be cured by using a higher level of theory for performing the electron
structure calculations in the AIMD simulation.

The computations were performed as follows. During the AIMD simulation, the
total electron density was written to disk as volumetric data in Gaussian Cube
format in each time step. A setting of STRIDE=1 was used to write these files,
which resulted in a grid of 160× 160× 160 data points (i. e., 9.7 pm grid spacing).
The electric current was obtained from the purely classical approach150 introduced
in Section 2.6 by solving the partial differential equation described there, using a
relative convergence threshold for the BiCGStab method of 10−3 and a background
density of 10−6 a.u. = 7 · 10−3 e nm−3. In the radical Voronoi tessellation scheme,
van der Waals atom radii240–242 were employed, as these have been shown to re-
produce spectroscopic properties very well.MB23

In order to obtain the polarizabilities required for ROA, additional simulations
were performed with static external electric fields in X/Y/Z direction. The field
strength was set to 5.0 · 10−3 a.u. = 2.57 · 109 V m−1. The external field strength
used here was increased by an order of magnitude with respect to our previous
work.MB14,MB19,MB23 This was done to reduce the noise level in the computation
of the electric dipole–magnetic dipole polarizabilities via finite differences. We
made sure that the polarization effects are still within the linear regime despite
the increased field strength. More computational details can be found in Section 3.7.

Compared to other approaches, the total computational time used in this project
is moderate; it accounts to 2350 ch (core hours; Intel Xeon “Haswell” @ 2.4 GHz)
for the equilibration, 25 500 ch for the production run of 4 trajectories with/without
external field, and 2 000 ch to solve the partial differential equation for the electric
current in all time steps (see supporting information for computational details).
This means that the spectrum presented in Figure 3.4.1 can be obtained within 3
weeks on a 64 core small desktop server, which is available for less than 10 000 USD
today.

Details on the system setup can be found in Section 3.2, where also a snapshot
of the simulation cell is presented in Figure 3.2.4 on page 88.
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N-Acetyl-L-cysteine

Within the scope of an ongoing collaboration with the group of Yunjie Xu,MB51

the ROA spectrum of N-acetyl-l-cysteine (NALC) (see Figure 3.4.2) in water was
predicted from AIMD simulations using the approach described in Section 2.8. As
NALC is a very flexible molecule with several different low-energy conformers, and
as it possesses several strong hydrogen bond donor and acceptor sites which tightly
integrate into the hydrogen bond network of the solvent, it is challenging to obtain
a good prediction for the ROA spectrum via the static–harmonic approach without
explicit solvent. Therefore, we considered this molecule a worthwhile target for the
AIMD-based approach to predicting ROA spectra.

Figure 3.4.2.: Molecular structure of N-acetyl-l-cysteine (NALC).

The resulting predicted ROA backscattering spectrum of NALC in water is pre-
sented in Figure 3.4.3 (black curve) together with the experimentally measured
spectrum (red curve). Apart from the strong positive peak at 1325 cm−1 which is
not captured in the prediction, and apart from several slightly shifted bands, the
overall agreement between experiment and prediction is reasonable, which is a
remarkable achievement for such a complex molecule.

Figure 3.4.3.: Predicted ROA backscattering spectrum of N-acetyl-l-cysteine
(NALC) in water (black curve) together with experimental spec-
trum (red curve).MB51
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To compute the spectrum, one molecule of NALC was placed in a cubic box of
≈ 1300 pm edge length together with 64 water molecules. A snapshot of the sim-
ulation cell is shown in Figure 3.4.4. After force field pre-equilibration using the
TIP4P–EW force field426 for water and OPLS–AA427 combined with optimized
RESP charges428,429 for NALC, the last frame was used to set up AIMD simula-
tions in CP2k212–214 with a total length of 40 ps, of which the last 25 ps were taken
as production runs to compute the spectra with Travis.MB2,MB40 The simulation
temperature was set to 350 K. To obtain the required polarizabilities via finite differ-
ences, an external field strength of E = 5.0 · 10−3 a.u. = 2.57 · 109 V m−1 was applied.
A general description of the computational protocol can be found in Section 3.7.

Figure 3.4.4.: Snapshot of the AIMD simulation cell containing
one N-acetyl-l-cysteine (NALC) molecule in 64
molecules of water (1300 pm cubic cell size).

As described above, one difficulty with NALC is the flexible character of the mole-
cule, which is responsible for the existence of several different low-energy conform-
ers which all contribute to the spectrum. Six such relevant conformers are depicted
in Figure 3.4.5. One advantage of the AIMD-based approach to computing spec-
tra when compared to the static–harmonic approach is the intrinsic conformer
sampling due to the dynamics; however, the NALC conformers in solution are
relatively stable, so that an AIMD simulation is significantly too short to sample
all relevant conformers in one run.
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Figure 3.4.5.: Six relvant low-energy conformers of N-acetyl-l-cysteine (NALC) for
which independent AIMD calculations were performed.

To overcome this, we decided to perform six independent AIMD simulations for
the six conformers shown in Figure 3.4.5 in water, and to predict vibrational spectra
for each conformer separately. To avoid interconversion of the conformers during
each AIMD simulation, we decided to use harmonic restraints on relevant dihedral
angles in order to keep the backbone geometry intact. First, we identified the
relevant dihedral angles which distinguish the conformers, which we refer to as
φ1 . . . φ6, and which are illustrated in Figure 3.4.6. The values of these dihedral
angles for the six conformers C1. . .C6 are given in Table 3.4.1.

Figure 3.4.6.: Dihedral angles in N-acetyl-l-cysteine (NALC)
which were restrained to keep the conformers
from Figure 3.4.5 intact.MB51
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Table 3.4.1.: Target values of the restraints on the dihedral angles φ1 . . . φ6 in N-acetyl-l-
cysteine (NALC) (see Figure 3.4.6) to keep the six conformers C1. . .C6 intact
(see Figure 3.4.5).MB51

Dihedral C1 C2 C3 C4 C5 C6
φ1 64.7 65.2 −64.9 78.6 73.3 −71.0
φ2 52.9 −64.6 65.4 62.6 59.1 −166.6
φ3 159.6 128.7 80.9 80.7 127.3 159.0
φ4 −172.9 179.2 178.3 179.9 −179.4 −171.8
φ5 −178.0 −68.9 −58.3 −58.6 150.0 −174.4
φ6 −1.7 177.9 179.4 178.4 177.0 −5.7

In the AIMD simulations for the six conformers, harmonic restraints with a spring
constant of K = 0.005 Hartree rad−2 were placed on the six dihedral angles φ1 . . . φ6,
using the values in Table 3.4.1 as equilibrium values. In contrast to constraints,
restraints are not rigid—they allow a certain motion of the restrained quantity
around the equilibrium value, but avoid large elongations. This keeps each of the
six conformers in place without altering the backbone dynamics too much, so that
the spectra are not significantly influenced. The concept of restraining the backbone
dihedral angles is visualized in Figure 3.4.7, where an overlay of the conformer
C1 over the whole AIMD production run is shown. It can be seen that despite
the restraints, the backbone is not completely rigid and retains a certain degree of
freedom, but the overall shape of the conformer is maintained.

Figure 3.4.7.: Overlay of N-acetyl-l-cysteine (NALC) structures along
the trajectory for conformer C1, which is kept intact by
dihedral angle restraints (see Figure 3.4.6).MB51

To see how significant the influence of the conformer geometry on the ROA spec-
trum is, please consider Figure 3.4.8, where the individual predicted ROA spectra
for the six NALC conformers are shown. While some bands are predicted similarly
for some of the different conformers, the differences are very large, and even the
sign of some peaks differs between the conformers. The experimental ROA spec-
trum is a superposition of these (and probably some more) conformer spectra, with
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weights determined by the free enthalpy ∆G of each conformer in solution via the
corresponding Boltzmann factor exp

(
−∆G
kBT

)
. In principle, the free enthalpy values

can be determined by AIMD simulations; however, this would require significantly
longer simulation times for the sampling to converge. Therefore, the final predicted
ROA spectrum shown in Figure 3.4.3 was created as a linear combination of the
six conformer spectra with empirically determined coefficients.

Figure 3.4.8.: Predicted ROA backscattering spectra for the six dif-
ferent N-acetyl-l-cysteine (NALC) conformers (see
Figure 3.4.5) in water.

In a certain sense, one could argue that fixing a molecule’s backbone geometry
in an AIMD simulation by restraining certain dihedral angles is not a sensible
way to go, as one loses one of the advantages of the AIMD approach—namely, the
intrinsic conformer sampling. However, this conformer sampling is only effective if
the energy barrier between all relevant conformers is sufficiently small. If this is not
the case (such as for NALC), the AIMD simulation time will be too short to obtain
a meaningful average over the relevant conformers, and the spectrum will heavily
depend on the choice of the initial conformer, which should not be the case in a
MD simulation with reasonable sampling. In such cases, it can be advantageous
to consciously sacrifice the conformer sampling and run independent simulations
for each conformer, which can then be averaged according to the conformers’ free
enthalpies.
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3.5. Resonance Raman Spectroscopy

Uracil in Aqueous Solution

To demonstrate our newly developed approachMB36 for predicting bulk phase res-
onance Raman spectra (see Section 2.10), uracil in water was chosen as a model
system for several reasons:

• Uracil is an important building block of RNA and ubiquitous in biological
systems.

• Uracil possesses both hydrogen bond donors and acceptors and tightly inte-
grates into the hydrogen bond network of water—see Figure 3.5.1. A strong
solvent effect on the spectrum can be expected.

• Uracil possesses an extended π electron system and shows electronic excita-
tions in near UV, so that these can be easily excited by a laser.

Figure 3.5.1.: Uracil integrates into the hydrogen bond
network of liquid water.

To emphasize the importance of the solvent effect in this system, we also predicted
the spectra for uracil in gas phase without solvent.

In the top panel of Figure 3.5.2, we compare our non-resonant AIMD-based
spectra of uracil in gas phase and aqueous solution to a non-resonant Raman ex-
periment.430 While the gas phase simulation (green curve) deviates strongly from
the experimental spectrum (red curve), the bulk phase prediction (black curve) shows
a nice agreement with experiment. Even if resonance effects do not play a role, it
is therefore mandatory to perform bulk phase simulations in order to correctly
predict the Raman spectrum of uracil.
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Figure 3.5.2.: Upper panel: Computed non-resonant Raman spectrum of Uracil in gas
phase (green) and water (black) compared to experiment430 (red); Lower panel:
Computed resonance Raman spectrum of Uracil in gas phase (green) and
water (black) at 340 nm compared to experiment431 at 266 nm (red).MB36

As the next step, we discuss the resonance Raman spectrum. In the bottom panel of
Figure 3.5.2, we show the AIMD-based spectra of uracil in gas phase and aqueous
solution together with an experimental resonance Raman spectrum.431 While the
experiment was conducted with a laser energy of 4.66 eV / 266 nm, we used a
value of 3.65 eV / 340 nm in our prediction. This difference can be explained by
the fact that GGA functionals often underestimate electronic excitation energies,
and is therefore not related to our method. Our approach works also with hybrid
functionals, where the agreement between experimental and computed excitation
energies is known to be far better.
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Similarly to the non-resonant case above, the predicted spectrum of the gas phase
system (green curve in bottom panel of Figure 3.5.2) shows some significant deviations
from experiment (red curve), while the bulk phase simulation (black curve) is in very
good agreement with the experimental spectrum. This was the first ab initio predic-
tion of a liquid phase resonance Raman spectrum in the literature. We conclude
that for both non-resonant and resonance Raman spectra, it is definitely required
to take the solvent influence explicitly into account in the case of uracil. When
comparing the ordinate axes in both panels of Figure 3.5.2, it is visible that the
absolute signal intensity is increased by around three orders of magnitude due to
the resonance Raman effect, as also observed in the experiment.431

As described in Section 2.10, our computational approach does no only yield
the resonance Raman spectrum for one laser wavelength at a time—it predicts all
resonance Raman spectra for all possible laser wavelengths in one pass. Based on
this information, an excitation profile can be created. This is a contour plot with
the vibrational frequency on the horizontal axis and the laser wavelength on the
vertical axis—see Figure 3.5.3.MB36,MB40

Figure 3.5.3.: Predicted excitation profile of uracil in water, i. e., resonance
Raman spectra for all possible laser wavelengths (vertical
axis).MB36,MB40 Rows are normalized to show relative intensity
ratio.

Such an excitation profile is not only helpful to understand the coupling between
vibrational modes and electronic excitations (vibronic coupling) in the system inves-
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tigated, but can even help to design new interesting experiments by picking laser
wavelengths at which interesting resonance effects can be expected. In the lower
part of the contour plot, the non-resonant Raman spectrum is reproduced, while
the intensity ratio between the spectral bands changes drastically in the resonant
upper part of the plot.

We can conclude that—by using our novel approach—it is now possible to di-
rectly compute resonance Raman spectra of bulk phase systems. This has not been
achieved before to the best of our knowledge, therefore constituting an important
contribution to the field of computational vibrational spectroscopy. In contrast to
existing methods, our approach includes the full solvent influence and some anhar-
monic effects. We have computed the resonance Raman spectrum of an aqueous
solution of uracil and find that it is in very good agreement with the experiment.

The computational protocol for the prediction of the spectra was as follows. For
the bulk phase simulation, one uracil molecule was placed in a cubic box together
with 32 water molecules (cell size ≈ 1050 pm), and a force field pre-equilibration
in NpT ensemble was carried out to converge the density. A snapshot of the sim-
ulation cell is shown in Figure 3.5.4. For the gas phase simulation, these steps
were skipped. Subsequently, BOMD simulations of both systems at a temperature
of 300 K were started with CP2k. After another equilibration interval, production
runs of 20 ps were performed. More computational details for these steps are de-
scribed in Section 3.7 below.

Figure 3.5.4.: Snapshot of the simulation cell for predicting the bulk
phase resonance Raman spectrum of uracil in water.MB36
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From these BOMD production trajectories, snapshots were taken every 2.5 fs (i. e.,
every 5 steps), so that 8 000 snapshots per system resulted. For each of these snap-
shots, a real-time propagation run (RTP)372 was started with CP2k.212–214 The
initial wave function for the propagation was optimized under the influence of an
external periodic electric field in X, Y, and Z direction. For each field direction, a
separate RTP run was performed. The absolute value of the electric field amounted
to |E| = 5.0 · 10−4 a.u. = 2.57 · 108 V m−1. Directly in the beginning of the RTP runs,
the electric field was switched off (step response). The propagation time step was
set to 0.0125 fs, and 1 280 steps were performed (i. e., 16 fs of total physical time).
In the RTP runs, we chose EPS_DEFAULT to 10−10 and EPS_ITER to 10−6. Every
0.0625 fs (i. e., every 5 propagation steps), the total electron density was written to
disk in Gaussian Cube file format, so that 256 frames per BOMD snapshot resulted.
The spatial resolution of the volumetric grid was 108 × 108 × 108 for all three
systems. The Cube files were compressed to bqb formatMB34 directly after each
RTP run. The computational cost was 1 350 core hours for the BOMD production
run, 230 000 core hours for the RTP runs, and 430 core hours for compressing the
electron density and performing the Voronoi integration. The resonance Raman
spectra were calculated as described in Section 2.10 above.
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ortho-Nitrophenol in Gas Phase

In addition to uracil, we computed resonance Raman spectra for o-nitrophenol in
the gas phase. Resonance Raman spectra of this system have been investigated
in the literature before,76,376 in particular also by means of RT-TDDFT within the
static–harmonic approximation.376 In Figure 3.5.5, we compare the spectra from
our approach (black curves) to these previously reported results (red bars) for two
different laser wavelengths. The top and bottom panels correspond to the non-
resonant and resonant regime, respectively. As expected, there are some differences
because the AIMD-based spectra take into account some anharmonic effects which
are completely missing in the static spectra. This leads both to shifts in band
positions and to line broadening which alters the peak heights. Apart from these
effects, we find that the change in relative band intensities and the total increase in
intensity due to the resonance Raman effect is captured by our approach very well.

Figure 3.5.5.: Resonance Raman spectra of o-nitrophenol in the gas phase pre-
dicted from AIMDMB36 (black curves) compared to results from static–
harmonic calculations376 (red bars) for two different laser energies
(see panels). Note the change in intensity due to the resonance effect.
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As explained above, our method does not require a set of laser energies as input,
but yields the resonance Raman spectra for all possible laser energies in one pass.
In Figure 3.5.6, we present the set of all such spectra for o-nitrophenol, with the
laser energy on the ordinate axis, and the vibrational frequency shown on the
abscissa. Each spectrum (i. e., each row of the plot) has been normalized to uniform
maximum band height, because otherwise the non-resonant spectra would not be
visible at all due to the strong increase in intensity caused by the resonance Raman
effect. It is clearly visible how bands which are almost invisible in the non-resonant
Raman spectrum become very intense at certain laser energies (e. g., the bands at
850, 1050, and 1600 cm−1). Such an increase in intensity only happens if the spectral
band involves movement of atoms which take part in the electronic excitation at a
given laser energy (vibronic coupling).

Figure 3.5.6.: Predicted excitation profile of o-nitrophenol in the gas phase, i. e.,
resonance Raman spectra for all possible laser wavelengths (vertical
axis).MB36 Rows are normalized to show relative intensity ratio.
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3.6. Normal Mode Analysis

[EMIm][OAc] / Water Mixture

Based on the approach by Mathias et al.389,390 (see Section 2.11) which we have im-
plemented in the Travis program package,MB19 we have computed normal modes
from an AIMD simulation of the ionic liquid 1-ethyl-3-methylimidazolium ac-
etate,MB8,MB13,MB19,MB31 also known as [EMIm][OAc], with a molecular structure as
depicted in Figure 3.6.1.

Figure 3.6.1.: Molecular structure of the ionic liquid 1-ethyl-3-methylimi-
dazolium acetate ([EMIm][OAc]) with strong hydrogen bond
between anion and cation indicated by dashed line.

One prominent feature of this ionic liquid is the strong hydrogen bond between
cation and anion,432,MB8 which is indicated in the figure by the dashed line. It is an
interesting question how the water content of an ionic liquid influences the hydro-
gen bond strength between cation and anion. This can be achieved by vibrational
spectroscopy, because it is well known that hydrogen bonding leads to a red shift
and line broadening of the C–H stretching mode.433 However, these effects cannot
be directly observed in experiment, because there exist many different kinds of
C–H bonds (see Figure 3.6.1), and a slight shift of a single such band will vanish
in the superposition of all signals in that frequency range. A bulk phase normal
mode analysis is an extremely helpful approach to identify such an effect anyways.

In Figure 3.6.2, the results of such a normal mode analysis for AIMD simula-
tions of liquid [EMIm][OAc] with and without water are shown. The left panel
shows the mode spectra for all C–H stretching modes in the system, where the
three stretching modes for the [EMIm]+ ring protons are highlighted by red, green,
and blue color. The upper part of the panel corresponds to the simulation of pure
[EMIm][OAc], while the lower part depicts the [EMIm][OAc] / water mixture. The
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Figure 3.6.2.: Left panel: Normal mode spectra of C–H stretching modes in
[EMIm][OAc] (upper panel) and [EMIm][OAc] / water mixture
(lower panel); Right panel: Three C–H stretching normal modes of
the ring protons.MB19,MB40

right panel of the Figure visualizes the displacement vectors of the three high-
lighted modes. While “Mode 1” and “Mode 2” (green and blue) are the stretching
modes of the two neighboring rear ring protons, “Mode 3” (red color) belongs to
the stretching motion of the isolated front ring proton.

It can be seen that in the pure system, the C–H stretching modes for all three
ring protons have a very large line width as a consequence of the strong hydrogen
bonds in which these protons are involved. The spectral contribution ranges from
3300 cm−1 (which is close to the excepted frequency in vacuum) down to 2700 cm−1,
which is a significant red shift. Mode 3 has more contributions at low frequen-
cies, which corresponds to a stronger hydrogen bond of the isolated ring proton
when compared to the other two, as it has been reported in the literature before.MB8

In the aqueous system, on the other hand, the broadening of the three lines is
significantly less pronounced, and the three bands have a lower frequency range of
around 2900 cm−1. This indicates a slightly weaker but still distinct hydrogen bond.
It can be concluded that the addition of water weakens the hydrogen bond between
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the acetate anion and the three ring protons of the cation, while the hydrogen bond
formed by the isolated ring proton is still the most important one.

As described in Section 2.11, the normal mode analysis requires one or more ref-
erence structures for each molecule type present in the simulation. The molecules
in the trajectory are then projected onto the closest matching reference structure
(according to the RMSD). If the molecule is flexible or has rotating groups (as it
is the case with [EMIm]+), a single reference structure will not suffice. For methyl
groups, our implementation in Travis can automatically create all permutations
of the protons, so that all relevant reference structures for the methyl rotamers are
generated on-the-fly. However, for the ethyl group in [EMIm]+, this is not easily
possible. Therefore, we have supplied two reference structures for different ethyl
group orientations as shown in Figure 3.6.3.

Figure 3.6.3.: Two reference structures of [EMIm]+ which have been
used for the normal mode analysis in Figure 3.6.2.

For each of these structures, the permutations for the two methyl groups were
automatically generated, so that a total of 2×3×3=18 reference structures resulted
for the normal mode analysis of [EMIm]+. In [OAc]−, only one methyl group is
present, so that the on-the-fly generation of the three relevant permutations was
sufficient. The resulting normal mode spectra were obtained individually for each
reference structure and averaged before plotting.
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The computational details of the simulations were as follows. For the pure ionic
liquid trajectory, 36 ion pairs of [EMIm][OAc] where placed in a cubic cell of
2121 pm edge length, while the mixture contained 27 ion pairs of [EMIm][OAc]
together with 81 water molecules in a cubic cell of 2158 pm edge length. Figure 3.6.4
shows a snapshot of the mixture. All AIMD simulations were performed at 350 K.
Note that no electromagnetic moments were computed here, because the normal
mode analysis works on the power spectrum of the system, which is not connected
to any selection rules. More computational details can be found in Section 3.7.

Figure 3.6.4.: Snapshot of the [EMIm][OAc]/water mixture
simulation cell.MB8,MB13,MB19,MB31
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3.7. Computational Details

In this section, general computational details for all spectra in Chapter 3 are given.
Unless otherwise noted in each section, the calculations have been performed as
stated below.

For bulk phase simulations, all molecules which constitute the system were
placed inside a cubic simulation cell with the Packmol software.222,223 A multi-
step pre-equilibration protocol follows, performed with the LAMMPS program
package.220 A first equilibration was performed for 2.5 ps in an NVE ensemble at
a temperature of 500 K using a Berendsen thermostat434 with a time constant of
1.0 fs. Afterwards, the temperature was ramped down to the target temperature
during a time interval of 50 ps. Later, a simulation of 100 ps in an NpT ensemble
using a Nosé–Hoover chain thermostat184–186 with a coupling constant of 100 fs
and a Nosé–Hoover barostat with a coupling constant of 2000 fs was conducted.
The acoustic shock waves resulting from the size change of the simulation box were
damped in a subsequent run using a Langevin thermostat435,436 with a coupling
constant of 100 fs for a duration of 50 ps. A further simulation step without the
Langevin thermostat for a duration of 2.5 ns followed. In an another NpT simula-
tion lasting 7.5 ns using the Nosé-Hoover thermostat with a coupling constant of
100 fs, the average value of the volume of the simulation box was computed and
the resulting density and box size were noted. Subsequently, the volume of the
simulation cell was changed to the previously obtained average value during a
100 ps run. The resulting shock waves were again damped in another simulation
using the Langevin thermostat with a coupling constant of 100 fs and a simulation
time of 250 ps. To equilibrate the system, a simulation in a NVT ensemble lasting
2.5 ns was performed by using a Nosé–Hoover chain thermostat with a coupling
constant of 100 fs. The final production run was conducted in NVT ensemble using
a Nosé–Hoover thermostat with a coupling constant of 100 fs and a simulation time
of 10 ns. The integrator time step was set to 0.5 fs in all steps. If water was present in
the system, it was modeled by the TIP4P–EW model,426 and the bonds and angles
in water were kept rigid via the RATTLE algorithm.437,438 No other bonds or angles
were constrained. We used a Coulomb and Lennard-Jones cutoff radius of 800 pm
and a PPPM long-range Coulomb solver (as implemented in LAMMPS).220 Finally,
the last frame of the force field simulation was used to set up ab initio molecular
dynamics (AIMD) simulations. For gas phase systems, the steps described above
were skipped.
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For the AIMD simulations, we used the program package CP2k,212–214 employing
the Quickstep method402 and orbital transformation (OT)403,404 with the FULL_KINETIC
preconditioner405 and the direct inversion in iterative subspace (DIIS) minimizer439–441

for faster convergence. The electronic structure was calculated with density func-
tional theory (DFT),442,443 utilizing the BLYP functional444,445 together with the re-
cent re-parametrization446 of Grimme’s D3 dispersion correction412,413 with Becke–
Johnson damping.447–449 The initial guess in each step was extrapolated from pre-
vious converged wave functions by using the always stable predictor–corrector
(ASPC) method with an order of 3.450,451 Basis sets of the kind MOLOPT–DZVP–
SR–GTH414 and GTH pseudopotentials415,416 were applied to all atoms. The plane
wave cutoff was set to 350 Ry, and an SCF convergence criterion of 10−6 was used.
The time step was chosen to be 0.5 fs in all simulations. The simulation temper-
ature was adjusted to 300 K by a Nosé–Hoover chain thermostat184–186 (i. e., NVT
ensemble). After two more equilibration intervals (1 ps with massive thermostating
and thermostat time constant τ = 10 fs, then 10 ps with global thermostating and
thermostat time constant τ=100 fs), a production run with the thermostat settings
of the latter equilibration interval was performed for 30.0 ps (i. e., 60 000 time steps).

During the AIMD production runs, the total electron density was exported in
Gaussian Cube file format by CP2k and subsequently compressed to bqb for-
mat using the bqbtool.MB34 To obtain the molecular electromagnetic moments
from the total electron density, Voronoi integrationMB23,MB48 was performed using
Travis,MB2,MB40 employing the atomic van der Waals radii240–242 from literature as
Voronoi radii. The calculation of the spectra from the electromagnetic moments
was also performed with Travis.

The full workflow from the idea to the final spectrum involves only open-source
free software. A tutorial on computing vibrational spectra with CP2k and Travis

can be found on M.B.’s homepage:

https://brehm-research.de/spectroscopy
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Conclusions

This habilitation thesis is focused on methods for predicting vibrational spectra
of condensed phase systems. After an overview of existing methods is given in
the introduction, several novel methods which have been developed within the
scope of this thesis are presented in Chapter 2 and then applied to a few example
systems in Chapter 3.

In some cases, these methods were able to correctly predict spectra that could
not be computed before. For example, we published the first ab initio prediction
of a liquid phase ROA spectrumMB26 in 2017—our novel approach is described
in Section 2.8, while the spectrum and the computational details are discussed in
Section 3.4. Two years later, we were able to present the first ab initio prediction
of a condensed phase resonance Raman spectrumMB36 with a newly developed
protocol that is explained in Section 2.10 (for details on the results, see Section 3.5).

Other types of spectra such as infrared and Raman spectra could be predicted for
liquid phase systems since several decades, but we were still able to improve on the
existing protocols. For example, our Voronoi integration approachMB23 saves up to
a factor 2 of total computer time for the prediction of infrared and Raman spectra
when compared to the widely used Wannier localization, and works flawlessly also
for aromatic systems (see Section 2.1.4 for a discussion).

As a by-product of our protocol to derive vibrational spectra from the total elec-
tron density along an AIMD simulation, we have developed a lossless compression
algorithm for trajectories of volumetric data or atom positions,MB34 which is able
to reach a very high compression ratio with moderate compression and decom-
pression times, so that it is well suitable for archiving simulation trajectories (see
Section 2.2).
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All methods and approaches described in Chapter 2 of this thesis have been im-
plemented in the publicly available Travis program package,MB2,MB40 which was
used to compute all spectra which are shown in this thesis. Travis is open source
free software under the GNU GPL license and can be freely obtained from

http://www.travis-analyzer.de

The underlying AIMD simulations for the prediction of the spectra were carried
out with the CP2k software in all cases, which is also free software. Therefore,
the full workflow from the idea to the final spectrum involves only open-source
free software, which is an important aspect. For a step-by-step tutorial on how to
predict bulk phase vibrational spectra with CP2k and Travis, please visit

https://brehm-research.de/spectroscopy

It should be emphasized that all predicted spectra presented above are shown
directly as computed. No empirical corrections (scaling, shifting, line broadening,
etc.) have been applied. As the protocol for computing spectra is based on ab initio
molecular dynamics simulations, the method is truly predictive, and can be applied
to predicting spectra of substances never measured (or even synthesized) before.
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A. Appendix

A.1. The Ergodic Theorem

The probably most crucial point when analyzing trajectories from molecular sim-
ulation is the ergodic theorem. In a very simplified form, it states that for any
quantity which can be defined within a system, the temporal average equals the
ensemble average if the propagator of the simulation (i. e., the function which propa-
gates one step into the following step) is ergodic. Only if this holds, it is allowed to
perform a simulation over a certain number of steps, and then analyze the results
without explicitly discussing the initial configuration. If this did not hold, any re-
sult would strongly depend on the choice of the initial configuration (even for very
long simulation times), which would render all analyses useless.

As this concept is of such great importance, it will be discussed in some more
detail here. This is done on an abstract level, utilizing mathematical formalisms
from measure theory. The central object in the following part is the finite measure space
(X, Σ, µ). X is the phase space of the dynamical system – a set which contains all
different states the system can exhibit. If N (distinguishable) particles are simulated,
X is a 6N-dimensional space, as each particle’s position and velocity are considered.
Σ is a σ-algebra over X, which intuitively (and simplified) means that Σ is a set
which contains all possible subsets of X. Finally, µ is a measure on X, i. e., a map
which assigns real numbers to all elements of Σ:

µ : Σ→ R, E 7→ µ(E) ∀E ∈ Σ. (A.1.1)

In our case, this can be imagined as simply counting the number of different config-
urations within a subset of the phase space X (actually, µ measures the phase space
volume of a subset of the phase space). The predicate finite in case of a measure
space (X, Σ, µ) requires that all subsets of the space X have a measure < ∞ with
regard to µ:

µ(E) < ∞ ∀E ∈ Σ. (A.1.2)
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Another important element of this theory is the propagator function T : X → X. This
function maps one certain configuration from the phase space to the consecutive
configuration within the simulation. To give an example, in the case of molecular
dynamics simulation this would mean to calculate the forces and to perform a time
integration over a finite time step. The subsequent application of the propagator
function, i. e., performing multiple steps, is denoted by a superscript index:

Tn(a) = T
(
· · · T(a) · · ·

)
, a ∈ X. (A.1.3)

For the case of conservative systems, which are considered here, the Liouville theorem
requires that T is a measure-preserving transformation, which keeps the phase space
volume constant with regard to µ:

µ(A) = µ
(

T(A)
)
∀A ∈ Σ. (A.1.4)

The Poincaré Recurrence Theorem

By using the terminology introduced above, an important theorem can be ex-
pressed, the Poincaré recurrence theorem,452 published in 1890:

Let (X, Σ, µ) be a finite measure space, and T : X → X a measure-
preserving transformation. Then, for any A ∈ Σ, the subset of points
x ∈ A which fulfill Tn(x) /∈ A ∀n > 0 has a measure of zero. Intuitively
speaking, µ-almost every point within the subset of the phase space A
returns into A at some later time.

This theorem already has some far-reaching implications: A simulation which is
started from a certain initial configuration will very likely return to a configuration
which is close to its initial configuration. There exist only very few initial configu-
rations (a zero measure set within the overall phase space) for which this statement
does not hold.

Definition of Ergodicity

Let T : X → X be a measure-preserving transformation on a measure
space (X, Σ, µ) with µ(X) = 1. If for every A ∈ Σ with T−1(A) = A
either µ(A) = 0 or µ(A) = 1 holds, then the transformation T is called
ergodic.

The picture behind this rather abstract definition is the following: A measure-
preserving transformation T is called ergodic if and only if the only two subsets of
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the phase space which are invariant under T are the empty set and the complete
phase space. This means, any true subset A of the phase space X will be modified
by the transformation T, while at the same time µ(A) = µ

(
T(A)

)
holds (T pre-

serves the measure).

An even more intuitive picture can be constructed. Imagine the set X as a bowl
filled with water. Now, a tiny droplet of dye is dropped into the water. Then, suc-
cessive iterations of the inverse of an ergodic transformation (e. g., stirring) will
distribute the dye over all the water – it cannot happen that the dye remains within
a certain sub-region of the bowl. This is what ergodicity states. At the same time,
the water will neither be compressed nor dilated in any sub-region of the bowl,
because the transformation preserves the measure, which is the density in this case.

Birkhoff’s Ergodic Theorem

Let T : X → X be a measure-preserving transformation on a measure
space (X, Σ, µ) with µ(X) = 1. Let f : X → R a µ-integrable function.
Define the temporal average of f for initial value x as

f̂ (x) = lim
n→∞

1
n

n−1

∑
k=0

f
(

Tk(x)
)

(A.1.5)

and the ensemble average of f as

f =
∫

X
f dµ. (A.1.6)

If T is an ergodic transformation, then both averages are equal, and

lim
n→∞

1
n

n−1

∑
k=0

f
(

Tk(x)
)
=
∫

X
f dµ (A.1.7)

holds for µ-almost all initial values x.

This is Birkhoff’s ergodic theorem,453,454 which was first published in 1931. If f is
considered as the function which should be determined from the trajectory, and if
the simulation is indeed ergodic (which is very hard to proof, though), this theorem
allows to evaluate the temporal average instead of the ensemble average (which
cannot be obtained directly), because both are equal. Therefore, strictly speaking,
all predictions of spectra from MD simulations are based on this theorem.
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A.2. The Wiener–Khinchin Theorem

The autocorrelation of a discrete set of n scalar values v(i), i = {1, ..., n}, is given
by the following equation:

C(τ) =
1

T−τ

T−τ

∑
t=1

(
v(t) v(t+τ)

)
(A.2.1)

Unfortunately, the computational cost to evaluate C(τ) for all values t = 1, ..., n
scales with O

(
n2), which slows down the calculation drastically for large data sets.

Typical applications in Travis require autocorrelations of sets with 105 or more
values to be calculated, demanding amounts of computer time which are no longer
acceptable for the user.

Autocorrelation functions are required by many approaches to compute vibra-
tional spectra in the time-correlation function formalism. Therefore, it is very im-
portant to find a method which circumvents the problem depicted above.

Fortunately, there exists a way to compute the autocorrelation function by uti-
lizing the Fourier transform, and this can be done by utilizing the Fast Fourier
transform (FFT)392,393 algorithm with a time complexity of O

(
n log(n)

)
. The com-

putation is based on the Wiener–Khinchin theorem,272,273,455 which has been inde-
pendently discovered by N. Wiener in 1930281 and by A. Khinchin in 1934:282

“The autocorrelation function of a wide-sense-stationary random pro-
cess has a spectral decomposition given by the power spectrum of that
process.”

Travis utilizes this methodology, which strongly accelerates the overall process.
The theorem will be derived in the following.
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The autocorrelation of a complex-valued continuous function f (t) is defined by

C(τ) ≡
∞∫
−∞

f (t) f (t+τ) dt. (A.2.2)

The Fourier transform F(ν) of f (t), and its inverse F−1, on the other hand, are
given by

F(ν) = F
(

f (t)
)

=

∞∫
−∞

f (t) e−iνt dt (A.2.3)

f (t) = F−1
(

F(ν)
)

=

∞∫
−∞

F(ν) eiνt dν (A.2.4)

For the complex conjugate f (t) of f (t), this leads to

f (t) =
∞∫
−∞

F(ν) e−iνt dν (A.2.5)

By substituting these expressions into the autocorrelation integral, we obtain

C(τ) =
∞∫
−∞

( ∞∫
−∞

F(ν) e−iνt dν

)( ∞∫
−∞

F
(
ν′
)

eiν′(t+τ) dν′
)

dt (A.2.6)

C(τ) =
∞∫
−∞

∞∫
−∞

∞∫
−∞

F(ν) F
(
ν′
)

ei(ν−ν′)t eiν′τ dν dν′ dt (A.2.7)

C(τ) =
∞∫
−∞

∞∫
−∞

F(ν) F
(
ν′
)

δ
(
ν−ν′

)
eiν′τ dν dν′ (A.2.8)

C(τ) =
∞∫
−∞

F(ν) F(ν) eiντ dν (A.2.9)

C(τ) =
∞∫
−∞

|F(ν)|2 eiντ dν (A.2.10)

C(τ) = F−1

(∣∣∣∣F( f (τ)
)∣∣∣∣2
)

(A.2.11)
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This derivation shows that the autocorrelation of function f (t) can be calculated
by taking the Fourier transform of f , calculating its absolute square in frequency
domain, and finally applying the back-transform to time domain.

There is also an intuitive picture behind this relation: Consider the Fourier trans-
form of a time series of real values, it is a complex function in general. A complex
number z can be expressed as z = r eiϕ with absolute value r and complex ar-
gument ϕ. In the Fourier transform, the absolute value contains the information
on the amplitudes of certain frequencies, whereas the complex argument contains
the phase information of these frequencies. If one takes the square of the abso-
lute value of the Fourier transform, the complex argument vanishes, and only the
absolute value remains: |z|2 = r2. When this function is transformed back with
the inverse Fourier transform, the phase information has completely been erased,
all frequency contributions are now in the same phase. This is exactly what the
autocorrelation does: Removing the phase information of some time series and
putting all frequency contributions into the same phase.

Finally, it should be noted that the Wiener–Khinchin theorem is a special case of
the cross-correlation theorem:

Let f ? g denote the cross-correlation of two functions f (t) and g(t).
Then

F
(

f ? g
)
= F

(
f
)
F
(

g
)

(A.2.12)

holds, which is equivalent to

f ? g = F−1
(
F
(

f
)
F
(

g
))

. (A.2.13)

In the case f ≡ g, and by using the equality

f ? f =

∞∫
−∞

f (t) f (t+τ) dt ≡ C(τ) , (A.2.14)

Equation A.2.13 becomes identical to Equation A.2.11 on the preceding page.

If the complex conjugation of f in Equation A.2.13 is removed, the convolution
theorem is yielded instead.
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A.3. The Frequency Shift of the Verlet Integrator

One of the most common integrators in molecular dynamics simulations is prob-
ably the Verlet algorithm,182 including the variants which are known as Leapfrog
algorithm and velocity Verlet algorithm. It can be easily shown that all three al-
gorithms produce identical trajectories, and are therefore considered to be equiva-
lent.183

The general equations of the one-dimensional velocity Verlet integrator are given
by

x(t+∆t) = x(t) + ∆tv(t) +
∆t2

2
a
(
x (t)

)
, (A.3.1)

v(t+∆t) = v(t) +
∆t
2

(
a
(
x(t)

)
+ a
(
x(t+∆t)

))
, (A.3.2)

where x(t) denotes the position of the system at time t, v(t) stands for the velocity
at time t, a(x) gives the (time-independent) acceleration at position x, and ∆t is a
finite time step.

Equation A.3.2 requires knowledge of the new position x(t+∆t) in order to
determine the new velocity, which is disadvantageous in the further derivation.
However, this can be easily overcome by substituting Equation A.3.1 into Equa-
tion A.3.2, yielding

v(t+∆t) = v(t) +
∆t
2

(
a
(

x(t)
)
+ a
(

x(t) + ∆tv(t) +
∆t2

2
a
(
x(t)

)))
. (A.3.3)

The state of the system can be completely described by knowing its position x(t)
and velocity v(t) at time t. Both these quantities can be stored together as a complex
number z(t), where

Re
(
z(t)

)
= x(t) , (A.3.4)

Im
(
z(t)

)
= v(t) . (A.3.5)

This enables to write the equations of the velocity Verlet integrator as an operator
T∆t : C→ C by

T∆t(z) =Re(z) + ∆t Im(z) +
∆t2

2
a
(
Re(z)

)
+

i

[
Im(z) +

∆t
2

(
a
(
Re(z)

)
+ a
(

Re(z) + ∆t Im(z) +
∆t2

2
a
(
Re(z)

)))]
.

(A.3.6)
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This operator will be termed Verlet propagator in the following.

The differential equation of a one-dimensional harmonic oscillator reads

−
∂V
(

x(t)
)

∂x(t)
= −F

(
x(t)

)
= m

∂2x(t)
∂t2 (A.3.7)

with a harmonic potential V defined by

V(x) =
k
2

x2. (A.3.8)

The well-known solution of this differential equation reads

x(t) = C1 cos
(√ k

m
t
)
+ C2 sin

(√ k
m

t
)

, (A.3.9)

where usually the substitution ω =
√

k
m is performed, yielding

x(t) = C1 cos
(

ωt
)
+ C2 sin

(
ωt
)

. (A.3.10)

The corresponding velocity v(t) then is obtained as

v(t) =
∂

∂t
x(t) = −C1ω sin

(
ωt
)
+ C2ω cos

(
ωt
)

. (A.3.11)

By letting C1 = 1, C2 = 0, it becomes clear that the trajectories of this system are
ellipses in the x− v phase space with the two radii 1 and ω. Only in the case ω = 1
(i.e., k = m), the trajectories are circles.

For the further derivation, it is desirable for all such trajectories to be circles.
Therefore a transformed velocity v′(t) is defined by

v′(t) =
v(t)
ω

. (A.3.12)

It follows directly from this definition that in the x− v′ space all trajectories which
obey Equation A.3.7 are circles. In the following, only the transformed velocity will
be considered.

Applying the equations of the Verlet integrator from Equations A.3.1 and A.3.3
to the harmonic oscillator by substituting

a
(
x(t)

)
= − 1

m
∂V
(

x(t)
)

∂x(t)
= − k

m
x(t) = −ω2x(t) (A.3.13)
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gives

x(t+∆t) = x(t) + ∆tv(t)− ∆t2ω2

2
x(t) , (A.3.14)

v(t+∆t) = v(t)− ∆tω2

2

(
2x(t) + ∆tv(t)− ∆t2ω2

2
x(t)

)
. (A.3.15)

with the velocity finally being substituted by the transformed velocity v′ in the
second equation:

v′(t+∆t) = v′(t)− ∆tω
2

(
2x(t) + ∆tωv′(t)− ∆t2ω2

2
x(t)

)
. (A.3.16)

Combining Equations A.3.14 and A.3.16 into the form of a complex Verlet propa-
gator such as in Equation A.3.6 yields

T∆t(z) =Re(z) + ∆tωIm(z)− ∆t2ω2

2
Re(z)

+ i

[
Im(z)− ∆tω

2

(
2Re(z) + ∆tωIm(z)− ∆t2ω2

2
Re(z)

)] (A.3.17)

with

Re
(
z(t)

)
= x(t) , (A.3.18)

Im
(
z(t)

)
= v′(t) . (A.3.19)

Please note that the parameters ∆t and ω always appear with equal exponents in
the above equation. The propagator is therefore invariant under any parameter
change which leaves the product ∆t ω invariant. This is in line with intuition, as
doubling the frequency ω and halving the time step ∆t is just a re-parametrization
of time and should not change anything else.

As already stated above, exact solution trajectories of any harmonic oscillator are
circles in the x− v′ space, i.e. the absolute value |z| remains constant along these
trajectories.

Claim 1: The Verlet propagator from Equation A.3.17 keeps |z| approximately con-
stant, and the residuum vanishes quickly as ∆t becomes small.

Note: As

|z|2 = x2 + v′2 = x2 +
v2

ω2 =
2
k

Epot +
2
m

Ekin, (A.3.20)

Claim 1 is equivalent to the statement that the Verlet propagator approximately
conserves the total energy of the system.

123



A. Appendix

Proof: Switching to the trigonometric representation of z by substituting z =

r
(
cos(ϕ) + i sin(ϕ)

)
on the right hand side of the following equation gives

T∆t
(
z
)
= r cos(ϕ) + ∆tωr sin(ϕ)− ∆t2ω2

2
r cos(ϕ)

+ i

[
r sin(ϕ)− ∆tω

2

(
2r cos(ϕ) + ∆tωr sin(ϕ)− ∆t2ω2

2
r cos(ϕ)

)]
(A.3.21)

and

∣∣∣T∆t(z)
∣∣∣2 =

(
r cos(ϕ) + ∆tωr sin(ϕ)− ∆t2ω2

2
r cos(ϕ)

)2

+

(
r sin(ϕ)− ∆tω

2

(
2r cos(ϕ) + ∆tωr sin(ϕ)− ∆t2ω2

2
r cos(ϕ)

))2

= r2

(
1 +

1
4

∆t3ω3 sin(2ϕ)− 1
4

∆t4ω4 cos(2ϕ)− 1
8

∆t5ω5 sin(2ϕ) +
1
32

∆t6ω6
(

1 + cos(2ϕ)
))

,

(A.3.22)

thus∣∣∣T∆t(z)
∣∣∣ = |z|√1 +

1
4

∆t3ω3 sin(2ϕ)− 1
4

∆t4ω4 cos(2ϕ)− 1
8

∆t5ω5 sin(2ϕ) +
1

32
∆t6ω6

(
1 + cos(2ϕ)

)
.

(A.3.23)
It can be seen that the Verlet propagator keeps the absolute value of the argument
approximately constant, and the residue is of the order of O

(
∆t3ω3) (to see this,

please note that
√

1 + x3 ≈ 1 + x3

2 + . . .). A time step ∆t � ω will lead to quickly
vanishing deviations. Apart from that, any real simulation will uniformly sample
the angle ϕ, such that all terms which contain sin(2ϕ) or cos(2ϕ) will cancel out
on average. Depending on the angle, some propagator steps will slightly enlarge
|z|, while others will slightly reduce it, causing a fluctuation of |z| around its exact
value. The only residual term in Equation A.3.23 which does not fluctuate around
zero is of the order of O

(
∆t6ω6). This term is always positive, meaning that |z|

(and therefore the total energy of the system) will always increase over the long
term. However, a sufficiently small time step ∆t will make this effect almost vanish.

As already discussed above, the exact solution trajectory of any harmonic os-
cillator constitutes a circle in the x − v′ space. Therefore it can be assumed that
the discrete Verlet propagator rotates the argument by a specific angle within the
complex plane in order to approximately resemble this exact trajectory.
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Claim 2: The angle by which the Verlet propagator rotates its argument around
the origin within the x− v′ space is approximately independent on the choice of
the argument itself.

This would mean that successive time steps of the Verlet propagator always
rotate by approximately the same angle in the x − v′ space, and this angle only
depends on ∆t and ω.

Proof: The angle between two complex numbers can be determined by utilizing
the dot product:

^(z1, z2) = arccos

(
Re(z1)Re(z2) + Im(z1) Im(z2)

|z1| · |z2|

)
. (A.3.24)

To obtain the angle by which the Verlet propagator rotates its argument, write

^
(

z, T∆t(z)
)
= arccos

(
Re(z)Re

(
T∆t(z)

)
+ Im(z) Im

(
T∆t(z)

)
|z| ·

∣∣T∆t(z)
∣∣

)
. (A.3.25)

Following from Claim 1, we can safely approximate
∣∣T∆t(z)

∣∣ ≈ |z|, and therefore
|z| ·

∣∣T∆t(z)
∣∣ ≈ |z|2. Substituting z = r

(
cos(ϕ) + i sin(ϕ)

)
yields

^
(

z, T∆t(z)
)
= arccos

(
r cos(ϕ)Re

(
T∆t(z)

)
+ r sin(ϕ) Im

(
T∆t(z)

)
r2

)
. (A.3.26)

Inserting the terms from Equation A.3.21 for Re
(
T∆t(z)

)
and Im

(
T∆t(z)

)
and di-

viding by r2 leads to

^
(

z, T∆t(z)
)
= arccos

(
cos2(ϕ)− ∆t2ω2

2
cos2(ϕ) + sin2(ϕ)

− ∆t2ω2

2
sin2(ϕ) +

∆t3ω3

4
sin(ϕ) cos(ϕ)

) (A.3.27)

= arccos

(
1− ∆t2ω2

2
+

∆t3ω3

4
sin(ϕ) cos(ϕ)

)
. (A.3.28)

Keeping in mind that arccos
(
1− x2) ≈ x +O

(
x3), it is visible that the rotation

angle is approximately linearly dependent of the time step ∆t for fixed ω, which is
completely in line with the expectations, as the Verlet propagator need to traverse
larger pieces of the trajectory circle with larger time steps. The term which depends
on ϕ is of higher order with respect to ∆tω, and therefore vanishes quickly. Apart
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from that, like already discussed in the proof of claim 1, the angles ϕ will be uni-
formly sampled in a real simulation, canceling out the residual terms on average
over long runs, as

∫ 2π
0 sin(ϕ) cos(ϕ)dϕ = 0. Some of the time steps will possess a

rotation angle above average, others below.

The final approximation for the angle (which neglects the residual terms) there-
fore reads

^
(

z, T∆t(z)
)
≈ arccos

(
1− ∆t2ω2

2

)
. (A.3.29)

Derivation of the Frequency Shift

Based on the angle α which one time step covers in the x − v′ space derived in
Equation A.3.29, the cycle duration of the discrete system can be determined by

τcycle =
2π

α
∆t (A.3.30)

=
2π∆t

arccos
(
1− ∆t2ω2

2

) . (A.3.31)

Applying ω = 2π
τcycle

, one then obtains

ωverlet =
arccos

(
1− ∆t2ω2

exact
2

)
∆t

. (A.3.32)

In practical applications, it might be more useful to compute the exact frequency
based on the approximate one. Fortunately, the inverse function of the above is
easily given by

ωexact =

√
2− 2 cos (∆t ωverlet)

∆t
. (A.3.33)
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Results

In the following, some results with parameters from typical simulations are shown.
For a typically used time step of 0.5 fs, the deviation of the frequency is found to
be around 10 cm−1 for a C–H vibration at 3000 cm−1. At ∆t = 1.0 fs, the deviation
even amounts to 40 cm−1.

Table A.1.: Frequency shift of Verlet integrator for typical vibrations and time steps ∆t.

ωverlet
ωexact / cm−1 ∆t = 0.1 fs ∆t = 0.5 fs ∆t = 1.0 fs

10 10.000 000 014 8 10.000 000 369 10.000 001 48
100 100.000 014 8 100.000 369 100.001 48

1000 1000.0148 1000.370 1001.483
2000 2000.118 2002.967 2012.013
3000 3000.399 3010.064 3041.396
4000 4000.946 4024.025 4101.159

10 000 10 014.834 10 411.945 13 033.591
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A.4. Explicit Reversible Nosé–Hoover Chain Integrator
Below, an explicit and reversible algorithm to apply a Nosé–Hoover chain thermo-
stat to a molecular simulation is presented.191 The Yoshida–Suzuki integrator192

and a multiple-time-step scheme are used. Note that this is a half-step and needs
to be applied twice, before and after the velocity Verlet integration of the particles.

Algorithm 1 NHC Integrator Half-Step191

akin := ∑N
i=1 miv2

i
for k = 1 . . . nc do

for j = 1 . . . m do
δts := wjδt/nc
# Calculate Thermostat Acceleration
ξ̈1 :=

(
akin− N f kBTset

)
/Q1

for i = 2 . . . M do
ξ̈i :=

(
Qi−1ξ̇

2
i−1 − kBTset

)
/Qi

end for
# Update Thermostat Velocities
ξ̇M := ξ̇M + δts/4 · ξ̈M
for i = 1 . . . M− 1 do

aa := exp
(
−δts/8 · ξ̇M+1−i

)
ξ̇M−i := ξ̇M−i · aa2 + δts/4 · ξ̈M−i · aa

end for
# Update Particle Velocities
aa := exp

(
−δts/2 · ξ̇1

)
for i = 1 . . . N do

vi := vi · aa
end for
# Update Thermostat Positions
for i = 1 . . . M do
ξi := ξi + δts/2 · ξ̇i

end for
# Update Thermostat Accelerations
akin := akin · aa2

ξ̈1 :=
(
akin− N f kBTset

)
/Q1

for i = 2 . . . M do
ξ̈i :=

(
Qi−1ξ̇

2
i−1 − kBTset

)
/Qi

end for
# Update Thermostat Velocities
for i = 1 . . . M− 1 do

aa := exp
(
−δts/8 · ξ̇i+1

)
ξ̇i := ξ̇i · aa2 + δts/4 · ξ̈i · aa
ξ̈i+1 :=

(
Qiξ̇

2
i − kBTset

)
/Qi+1

end for
ξ̇M := ξ̇M + δts/4 · ξ̈M

end for
end for
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In this algorithm, M is the number of thermostats (NHC chain length), ξ1 . . . ξM,
ξ̇1 . . . ξ̇M, ξ̈1 . . . ξ̈M, and Q1 . . . QM are the positions, velocities, accelerations, and
masses of the M virtual thermostat particles, respectively, N is the number of real
particles (atoms), m1 . . . mN are the particle masses, v1 . . . vN are the particle ve-
locities, nc is the number of multiple time steps used, m is the Yoshida–Suzuki
integrator order, N f depicts the active degrees of freedom of the real particle sys-
tem, kB is the Boltzmann constant, Tset is the thermostat’s target temperature, and
akin as well as aa are scalar auxiliary variables.

Chain lengths M larger than 2 are recommended in general cases where there
is a broad distribution of vibrational frequencies in the system.189 Typical values
used in real simulations are M = 3, nc = 2, and m = 3.

As noted in Section 1.3, the virtual particle masses Q1 . . . QM should be cho-
sen191,192 according to

Q1 := N f kBTsetτ
2, (A.4.1)

Qi := kBTsetτ
2, i = 2, . . . , M, (A.4.2)

where τ is the desired time constant of the Nosé–Hoover chain thermostat.

The coefficients wi for the Yoshida–Suzuki integrator are shown in Table A.2.191,192

Table A.2.: Coefficients wj for Yoshida–Suzuki integrators of different order m.191,192

m wj
1 w1 = 1
3 w1 = w3 = 1.351 207 191 959 65

w2 = −1.702 414 383 919 31
5 w1 = w5 = 0.414 490 771 794 37

w2 = w4 = 0.414 490 771 794 37
w3 = −0.657 963 087 177 50

7 w1 = w7 = −1.177 679 984 178 87
w2 = w6 = 0.235 573 213 359 35
w3 = w5 = 0.784 513 610 477 56
w4 = 1.315 186 320 683 92
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A.5. Approximate Overtones from Classical Oscillators
In vibrational spectroscopy, both overtones and combination bands are important
effects which are essential to the understanding of experimental spectra. To give
an example, liquid water appears blue only because a four-quantum overtone
transition at 698 nm absorbs parts of the red light.456 Overtones and combina-
tion bands are purely quantum mechanical phenomena and do not have classical
equivalents. Thus, one would not expect them in spectra predicted from AIMD
simulations, where the nuclei are treated classically. However, interestingly, a simi-
lar phenomenon also can be observed in purely classical oscillators as soon as the
potential is anharmonic, as it has been shown in the literature.113

A simple illustration of this effect is presented in Figure A.1, where the potential
functions (upper panel) and the power spectra (lower panel) of a harmonic (left) and
a Morse oscillator457,458 (right) are shown. The different lines in the power spec-
tra correspond to different temperatures (amplitudes of the oscillators). While in the
harmonic case, all power spectra possess only a single peak at the fundamental fre-
quency of the oscillator, the position of this peak is shifted to lower wavenumbers
in the Morse oscillator when the temperature is increased. Furthermore, additional
bands similar to overtones appear at multiples of the wavenumber of the funda-
mental mode. This is in contrast to quantum mechanical overtones, which appear
at slightly less than full multiples of the fundamental frequency.

Figure A.1.: One-dimensional oscillator with harmonic potential (left) and Morse
potential457,458 (right), together with corresponding power spectra for
different temperatures (amplitudes) in the lower part. Morse oscillator
shows approximate overtones at higher temperatures.
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TERS Tip-enhanced Raman spectroscopy

TIP4P–EW A water force field

Travis Trajectory analyzer and visualizer (software)

UV Ultraviolet light

VCD Vibrational circular dichroism

VCI Vibrational configuration interaction

vDOS Vibrational density of states

vdW Van der Waals (atom radii)

VMD Visual molecular dynamics (software)

VPT2 2nd order vibrational perturbation theory

VSCF Vibrational self consistent field theory
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AAT, see Atomic axial tensor
ab initio molecular dynamics, 7
Absolute configuration, 3
Absorption, 71
Absorption coefficient, 52
Acetate, 9, 45, 46, 82, 107
AIMD, see ab initio molecular dynam-

ics
Always stable predictor–corrector, 112
Anharmonic effects, 7, 52, 85, 103, 130
Anisotropy, 55, 72
APT, see Atomic polar tensor
Aromaticity, 26, 100
Artificial bands, 26
ASPC, see Always stable predictor–corrector
Atomic axial tensor, 60
Atomic partial charges, 23
Atomic polar tensor, 60
Atomic radii, 23
Autocorrelation, 49, 52, 53, 72, 77, 79,
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Backbone, 97
Backscattering, 95
Barostat

Nosé–Hoover, 111
Base-2 bijective numeration, 39
Becke–Johnson damping, 112
Benzene, 26
Berendsen thermostat, 111
Berry phase, 13, 53, 89
BiCGstab, 58
Biconjugate gradient stabilized method,

58
Bijective numeration, 39
Binary tree, 40
BLYP functional, 112
Born–Oppenheimer approximation, 57
Boys–Foster localization, 13
bqb format, 30, 43, 70, 104, 112
Breathing mode, 87

Burrows–Wheeler transformation, 37

C2v surface, 68
Canonical Huffmann coding, 41
Car–Parrinello molecular dynamics, 7,

52
CCl4, 84
Cellulose, 82
Center of mass, 22, 61, 63
CH4, 87
Charge transfer, 24
Charge variance, 23
Combination bands, 7, 52, 130
Commutator trick, 61, 65, 79
Complete adiabatic correction, 60
Complex correlation, 72
Compression of volumetric data, 29
Compression ratio, 46, 47
Conformers, 96, 99
Conjugate gradient, 90
Conservative field, 57
Conservative system, 116
Conserved quantity, 12
Continuity equation, 57
Continuum solvation, 6
Convolution theorem, 120
Coordinate origin, 22, 61, 63
COSMO, 6
Coulomb solver, 111
CP2k, 16, 23, 25, 88, 90, 96, 103, 104,

112
CPMD, see Car–Parrinello molecular

dynamics
Crazy angle algorithm, 14, 25
CRC-32 code, 43
Cross-correlation, 13, 53, 55, 60, 65, 72,

74, 76, 77, 79, 120
Cross-correlation theorem, 77, 120
Cube file, 29, 45, 104, 112
Cutoff radius, 111
Cyclohexatriene, 27
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Index

Density, 90, 103, 111
Depolarization ratio, 56, 87
Depolarized band, 87
Depolarized Raman spectrum, 56, 73,

86, 89
Diagonalization, 14, 25, 75
Dihedral angle, 97
DIIS, see Direct inversion in iterative

subspace
Dipole moment, 52, 60, 62, 68, 70, 89
Dipole–dipole interaction tensor, 15
Direct inversion in iterative subspace,

112
Dispersion, 71
Dispersion correction, 90, 112
Dynamic polarizability, 69, 70

Eckart frame, 75
Eigenvalue problem, 5, 74
Electric current, 57, 61
Electronic excitation, 2, 69, 100
[EMIm][OAc], 9, 45, 46, 82, 107
Enantiomeric excess, 3
Energy conservation, 10
Ensemble

NpT, 90, 103, 111
NVE, 11, 111
NVT, 11, 88, 90, 111, 112

Ensemble average, 11, 79, 115, 117
Entropy, 7

information entropy, 30, 31
Entropy encoding, 36
Equation of motion, 4, 10–12, 121
Equilibration, 111
Equipartition theorem, 50, 74
Ergodic theorem, 117
Ergodicity, 11, 115
Euclidean space, 17
Ewald summation, 15
Exact factorization, 60
Excitation profile, 73, 102, 106
Expectation value, 13
Exponential window function, 78
Extrapolation, 30, 31

Fast Fourier transform, 77, 118
FFT, see Fast Fourier transform

Finite differences, 15, 27, 58, 63, 78, 88,
96

Force field MD, 90
Fourier transform, 49, 52, 55, 60, 65, 70,

74, 77, 118
Fresnel factor, 67
Functional

BLYP, 112
PBE, 90
PBE0, 59
revPBE, 90

Gaussian Cube format, 45, 104, 112
Gaussian window function, 71, 78
Generalized gradient approximation,

101
GGA, see Generalized gradient approx-

imation
GTH pseudopotentials, 90, 112

H2O, 2, 7, 9, 15, 52, 82, 95, 100, 107, 111,
117, 130

Hamiltonian system, 10
Hann window function, 78
Harmonic oscillator, 50, 80, 122, 130
Harmonic potential, 122
HDF5, 43
Hessian matrix, 5, 74
Hilbert curve, 36
Huffmann coding, 40
Hybrid functional, 59
Hydrogen bond, 8, 82, 84, 100
Hyperpolarizability, 67

IL, see Ionic liquid
Imidazolium, 9, 45, 46, 82, 107
Implicit solvent, 6
Index frame, 43
Information entropy, 30, 31
Instantaneous normal mode analysis,

74
Interface, 3, 67
Interpolation, 23, 78

trigonometric, 78
Ionic liquid, 9, 45, 46, 82, 107
Isotropic polarizability, 54, 72

Jacobi diagonalization, 14, 25, 75
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KCl, 89
Key frame, 44
Kohn–Sham orbitals, 13
Kronecker delta, 22, 63

LAMMPS, 16, 111
Langevin thermostat, 111
Laplace operator, 57
Laser, 2, 67, 69, 100, 103, 106
Least-squares solution, 33
Lennard-Jones potential, 111
Linear response TDDFT, 69
Liouville theorem, 116
Locality, 36
Long-range Coulomb solver, 111
Lossless compression, 29, 30
LR-TDDFT, see Linear response TDDFT
LU decomposition, 58
LU factorization, 58

Magnetic field perturbation theory, 60
Magnetic moment, 57, 60, 61, 63
Mass weighting, 49, 52, 54
Mass-weighted coordinates, 5
Massive thermostat, 112
Matrix form, 33, 58
MC, see Monte Carlo
Measure space

finite, 115
Measure-preserving transformation, 116
Melt, 89
Methane, 87
Methanol, 24, 84
Method B, 18, 19
Methyl oxirane, 86, 91, 93
MFPT, see Magnetic field perturbation

theory
MgCl2, 89
Microsolvation, 6
Mixture, 13
Modern theory of polarization, 13, 53
Molecular orbitals, 13
MOLOPT basis set, 90, 112
Monolayer, 67
Monte Carlo, 9
Moore–Penrose inverse, 33
Morse potential, 130
Move-to-front transformation, 38

MP2, 59
MTS, see Multiple time step approach
Multi-quantum transition, 130
Multiple time step approach, 12
Multipoles

electric, 28

N-Acetyl-l-cysteine, 95
NALC, see N-Acetyl-l-cysteine
Near-resonant susceptibility, 67
Newton’s equation, 4, 10
Newton–Raphson method, 12
NHC, see Nosé–Hoover chain thermo-

stat
o-Nitrophenol, 105
Non-linear regression, 35
Normal mode, 5, 13, 27, 52, 54, 56, 60,

62, 74, 85
Nosé–Hoover barostat, 111
Nosé–Hoover chain thermostat, 11, 90,

111, 112, 128
NpT ensemble, 90, 103, 111
Nuclear velocity perturbation theory,

8, 57, 59, 60
NVE ensemble, 11, 111
NVPT, see Nuclear velocity perturba-

tion theory
NVT ensemble, 11, 88, 90, 111, 112

o-Nitrophenol, 105
[OAc], 9, 45, 46, 82, 107
ODE, see Ordinary differential equa-

tion, 122
Optical activity tensor, 62
Optical field, 68
Optimal code, 40
Orbital transformation, 90, 112
Ordinary differential equation, 10, 12
Orientational averaging, 54
Orthogonal Raman spectrum, 56, 73,

87
Orthonormal transformation, 75
Orthorhombic cell, 21
OT, see Orbital transformation
Overlay, 98
Overtones, 7, 52, 130

Packmol, 16, 111
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Parallel Raman spectrum, 56, 73, 87
Parallelepiped, 21
Partial differential equation, 58
Path integral molecular dynamics, 8
PBC, see Periodic boundary conditions
PBE functional, 90
PBE0 functional, 59
PCM, 6
PDE, see Partial differential equation
Periodic boundary conditions, 7, 8, 13–

15, 17, 21, 25, 52, 53, 58, 62, 70,
104

Perturbation theory, 13, 15, 62
Phase space, 115
Phonons, 2
PIM, see Polarizable ion model
PIMD, see Path integral molecular dy-

namics
Pipek–Mezey localization, 13
Plane wave cutoff, 90, 112
Poincaré recurrence theorem, 116
Polarizability, 13, 15, 27, 54, 62, 63, 67,

68, 88, 96
dynamic, 69

Polarizable ion model, 90
Polarized band, 87
Polyhedron

Voronoi, 18
Polynomial, 31
Post-Hartree–Fock method, 59
Power diagram, 19
Power spectrum, 49, 74, 130
PPPM method, 111
Preconditioning, 58, 90, 112
Prefix code, 40
Principal mode analysis, 74
Propagator function, 116
Propylene oxide, 86, 91, 93

Quadrupole moment, 22, 28, 62
Quicksort, 38
Quickstep, 90, 112

Racemate, 3
Radical Voronoi tessellation, 19
Raman scattering, 2, 54, 69
Raman spectrum

depolarization ratio, 56, 87

depolarized, 56, 73, 86, 89
orthogonal, 56, 73, 87
parallel, 56, 73, 87
unpolarized, 56, 73, 86, 89

Random access, 44
RATTLE algorithm, 111
Real-time propagation, 104
Real-time TDDFT, 69
Reciprocal lattice vector, 14
Rectangular window function, 77
Recursion, see Recursion
Refinement, 23
Regression

non-linear, 35
Residual, 31
Resonance Raman effect, 2, 69, 102
Resonant susceptibility, 67
Restraint, 97, 98
revPBE functional, 90
Ribonucleic acid, 100
RMSD, see Root mean square devia-

tion
RNA, see Ribonucleic acid
Root mean square deviation, 76, 109
Rotational strength, 60
RT-TDDFT, see Real-time TDDFT
RTP, see Real-time propagation
Run-length encoding, 39

Salt, 89
Sankey diagram, 82
SCF, see Self-consistent field
Self-consistent field, 15, 112
Shannon’s theorem, 40
Shock waves, 111
σ-Algebra, 115
sinc, see Sinus cardinalis
Singular value decomposition, 34
Sinus cardinalis, 78
Solvent effect, 7, 100, 102
Solvent influence, 103
Sparse matrix, 58
Spread functional, 14
Spring constant, 98
Static–harmonic approximation, 4, 52,

54, 60, 62, 69, 105
Step response, 70, 104
Surface selectivity, 3, 67
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Surface symmetry, 67
Susceptibility, 67
SVD, see Singular value decomposition
Symplectic integrator, 10

Taylor expansion, 4
TCF, see Time-correlation function for-

malism
TDDFT, see Time-dependent DFT
Temporal average, 11, 53, 55, 115, 117
Tessellation, 17, 19
Tetrachloromethane, 84
Theorem

convolution, 120
cross-correlation, 77, 120
equipartition, 50
ergodic, 117
Poincaré recurrence, 116
Shannon, 40
Wiener–Khinchin, 51, 77, 118

Thermostat
Berendsen, 111
massive, 88, 112
Nosé–Hoover chain, 11, 90, 111, 112,

128
Time reversibility, 74, 79
Time-correlation function formalism,

7, 13, 25, 52, 55, 60, 62, 68, 74,
118

Time-dependent DFT, 69
TIP4P–EW, 111
Total charge, 19
Total electron density, 59
Trace, 22, 62
Transformation

measure-preserving, 116
unitary, 13

Traversal scheme, 36
Travis, 16, 21, 51, 73, 81, 82, 96, 112
Trigonometric interpolation, 78

Ultraviolet, 100
Unitary transformation, 13
Unpolarized Raman spectrum, 56, 73,

86, 89
Uracil, 100, 103
UV, see Ultraviolet

van der Waals radii, 20, 92, 94, 112
VCI, 7
vDOS, see Vibrational density of states
Velocity spectrum, 49
Verlet integrator, 10, 80, 121
Verlet propagator, 122
Vertex error, 19
Vibrational density of states, 49
Vibronic coupling, 2, 73, 102, 106
Vibronic theory, 69
Voronoi integration, 22, 53, 61, 63, 68,

70, 89, 104, 112
Voronoi tessellation, 17
VPT2, 7
VSCF, 7

Wannier localization, 13, 24
Wannier spread, 15
Water, 2, 7, 9, 15, 52, 82, 95, 100, 103,

107, 111, 117, 130
Wiener–Khinchin theorem, 51, 77, 118
Window function, 71, 77

exponential, 78
Gaussian, 71, 78
Hann, 78
rectangular, 77

Yoshida–Suzuki integrator, 12, 128, 129

Zero measure set, 116
Zero padding, 78
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