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Abstract

Complex socio-economic, political and demographic factors have driven the increased con-

version of Europe’s semi-natural grasslands to intensive pastures. This trend is particularly

strong in some of the most biodiverse regions of the continent, such as Central and Eastern

Europe. Intensive grazing is known to decrease species diversity and alter the composition

of plant and insect communities. Comparatively little is known, however, about how inten-

sive grazing influences plant functional traits related to pollination and the structure of plant-

pollinator interactions. In traditional hay meadows and intensive pastures in Central Europe,

we contrasted the taxonomic and functional group diversity and composition, the structure

of plant-pollinator interactions and the roles of individual species in networks. We found

mostly lower taxonomic and functional diversity of plants and insects in intensive pastures,

as well as strong compositional differences among the two grassland management types.

Intensive pastures were dominated by a single plant with a specialized flower structure that

is only accessible to a few pollinator groups. As a result, intensive pastures have lower diver-

sity and specificity of interactions, higher amount of resource overlap, more uniform interac-

tion strength and lower network modularity. These findings stand in contrast to studies in

which plants with more generalized flower traits dominated pastures. Our results thus high-

light the importance of the functional traits of dominant species in mediating the
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consequences of intensive pasture management on plant-pollinator networks. These find-

ings could further contribute to strategies aimed at mitigating the impact of intensive grazing

on plant and pollinator communities.

Introduction

Europe’s diverse semi-natural grasslands are being reshaped by intensive anthropogenic

change [1, 2]. As a consequence, almost all European countries report a decline in the area cov-

ered by semi-natural grasslands and an associated loss of biodiversity [1, 3, 4]. This has led to

increasing concern that European grasslands will not be able to maintain essential ecosystem

services, such as pollination [5, 6]. Pollination services occur in a community context, where

plant-pollinator encounters are embedded within an interaction network [7–10]. Plant-polli-

nator interaction networks quantify the frequency of pairwise interactions between plants and

pollinators [11], their structure being shaped by the diversity, abundance and composition of

both plants and pollinators [11]. Quantifying how plant-pollinator networks are altered by

anthropogenic change is key to understanding and predicting shifts in interaction structure

and their consequences for grassland ecosystem services.

Among semi-natural grasslands, intensively managed, permanent pastures and traditionally

managed hay meadows (this is known as extensive management) represent two opposite end-

points of disturbance and nutrient input gradients [12]. Traditionally managed hay meadows

are subjected to low disturbance and nutrient input regimes, as plant biomass is removed only

once or twice a year and fertilizer input is minimal [13, 14]. Intensive, permanent pastures are,

in contrast, characterized by prolonged grazing and high animal stocking rate, leading to con-

stant disturbance and high nutrient input throughout the year [12]. The conversion of tradi-

tional hay meadows to intensive pastures is driven by a complex array of socio-economic,

political and demographic factors [15, 16], and is particularly common in Central and Eastern

European countries [16–18]. These intensive pastures are defined by low species diversity and

are often dominated by grazing-, trampling- and nutrient-tolerant plant species [18–21]. Such

disturbance-induced shifts in plant species diversity and composition could have conse-

quences for higher trophic levels, such as pollinating insects [22–24]. This is because plant

diversity is usually correlated with pollinator diversity, a correlation hypothesized to be medi-

ated by floral resource availability and accessibility [25–27].

The diversity and composition of pollinators should thus depend on plant species diversity,

plant functional composition and functional trait matching between plants and pollinators.

Hay meadows with diverse plant communities will harbour a broad range of flowers that pro-

vide resources that are accessible to a broad spectrum of pollinators, including specialists [28,

29]. Intensive pastures will in turn contain only a few plant species with vegetative traits that

tolerate intensive management regimes [19, 30]. Depending on their geographic location, envi-

ronmental conditions and the type and stocking rate of herbivores, pastures could be domi-

nated by grazing-tolerant plant species with either generalist or specialist floral functional

traits. A recent review has highlighted the lack of data on the effect of grazing on floral traits,

with the available research indicating that generalist flowers could be favoured [31]. However,

some studied reveal that Fabaceae, which have quite specialized flowers, are often dominant in

intensive pastures throughout Europe (i.e. [32–34]). Differences in the dominance of particu-

lar floral traits might explain why the effect of grazing on pollinators and plant-pollinator

interactions is variable across studies [30, 35–38].
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If plants with generalist flower traits (i.e. that provide accessible resources to a broader

range of pollinators) dominate in intensive pastures, then intensive grazing should have only a

minor effect on pollinator diversity, community composition and thus on network architec-

ture [36, 39]. Such was the case in Brazil, where the dominance of Asteraceae species in inten-

sive pastures resulted in only small changes in network structure compared to less intensely

managed sites [36]. Alternatively, if plants with specialized floral traits dominate in intensive

pastures, significant shifts in network structure should occur including: a decrease in the fre-

quency of unique interactions and thus interaction diversity as a consequence of the loss of

diversity of pollinators with traits which do not match the dominant plant species; a decrease

of interaction evenness as a consequence of a skewed distribution of interactions towards the

dominant plant species; an increase in network-level specialization and niche overlap, as all

pollinators primarily utilize the dominant plant species; the loss of entire groups of interacting

and functionally matching species (i.e., modules); and an increased role of the dominant plant

species, as well as its interaction partners, in the network.

However, the impact of the dominance of plant species with specialized floral traits on polli-

nator diversity and composition and on plant-pollinator networks has so far received only

very limited attention. In the present study we thus aim to assess the effects of intensive grazing

on the diversity, composition and structure of interactions between plant and pollinator com-

munities. We thereby explicitly consider the changes in floral functional traits and their impor-

tance in determining the role of particular species within plant-pollinator networks and in

network responses to intensive grazing. The following questions are specifically addressed: i)

Do plant and pollinator communities have lower taxonomic and functional diversity in inten-

sive pastures compared to hay meadows? ii) Does intensive grazing shift plant and insect com-

munities towards the dominance of a few species or groups? iii) Does intensive grazing shift

network structure and the roles species play within networks?

Materials and methods

Study sites

The study was conducted in the Opawskie Mountains, at the border between Poland and the

Czech Republic (S1 Table). We selected five semi-natural grassland sites found at the two

extreme ends of a disturbance and nutrient input gradient. From the five sites, two were unim-

proved (i.e. no additional sowing of plant species for fodder), permanent, intensively grazed

cow pastures (high disturbance, high nutrient input) and three were extensive hay meadows,

mown only once or twice a year and not fertilized (low disturbance, low nutrient input). All

sites were imbedded in a similar landscape matrix and occurred on similar mesic, acidic soils

and within the same altitudinal zone. Vegetation in intensive pastures corresponded to Lolio
perennis-Cynosuretum cristati phytosociological association(Cynosurion cristati alliance),

whereas that of hay meadows corresponded to Poo-Trisetetum flavescentis phytoassociation

(Arrhenatherion eatioris alliance) (see also [33]); which are linked to low and high land use

intensity (respectively). In fact, additional analyses confirmed that vegetation in pastures was

dominated by species tolerant to grazing, trampling and increased nutrient inputs and could

thus be classified as intensively managed (S1 Appendix and S2 Table). Field work was con-

ducted with the consent from local land owners and in accordance with applicable law (as no

threatened species were collected, no collection permits were required).

Species sampling

Sampling took place during peak flowering in the middle of June 2018. We chose this point in

time because it represents the period when most flowering plants are in bloom, and in the case
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of the hay meadows it reflects the maximum development of the vegetation before mowing

(see also [38]). Within each of the five sites, we established 10 transects (with the exception of

one pasture for which we could only place 6 transects), each measuring 30x2m. Transects were

placed with a minimum distance of 30m between them, and towards the nearest field margins.

In each transect, we visually estimated the percent cover of flowers/inflorescences of each

plant species (i.e. [40]). We used the standardized transect walks to also quantify pollinator

species and plant-pollinator interactions. One collector walked each transect for an active sam-

pling period of 15 min. We thereby sampled over 3 days in total (for 300 min in pastures and

450 min in hay meadows), with two days in which a pasture and a hay meadow site were sam-

pled in parallel, and a day in which the remaining hay meadow was sampled.

All Hymenoptera, Diptera and Lepidoptera that contacted the reproductive structures of

the flowers were treated as potential pollinators and collected using sweeping nets (we hereaf-

ter refer to these groups as pollinators for simplicity); easily identifiable species were identified

on site and released, while all other individuals were collected and frozen for further process-

ing. All plant species were identified to species level. Among pollinators, 85.5% of all individu-

als were identified to species level and 99.5% to genus level (see species lists in S2 and S3

Tables).

Sampling completeness

Most sampling methods are incomplete; as such no study is likely to capture the entire com-

plexity of biological communities [41, 42]. In order to ensure that our sampling has captured a

comparable completeness of the community diversity across all sites and management types,

we evaluated the sampling completeness of flowering plants, their pollinators and unique

plant-pollinator interactions [42]. We used the bias-corrected Chao2 estimator of asymptotic

richness for quantifying the percentage of asymptotic richness detected by the observed rich-

ness [43]. Calculations were performed using the “specpool” function in the package vegan in

R [44]. Sampling completeness among the two grassland management types was compared

using the unpaired two-sample Wilcoxon test in R.

Functional trait classifications

We categorized all flowering species based on their flower structure and the accessibility and

type of reward using the BiolFlor database (www.biolflor.de, [45]) and a slightly modified ver-

sion of the classification of [46]. We thus grouped plant species into nine functional groups: i)

flower heads (nectar hidden at the base of individual florets); ii) disk flowers with open nectar;

iii) disk flowers with hidden nectar; iv) lip flowers (nectar hidden at the base of the flower); v)

pollen flowers (pollen as the only, openly available reward); vi) bell shaped flowers (nectar

more or less hidden within the flowers); vii) flag flowers (nectar hidden at the base of the flow-

ers); viii) stalk disk flowers (nectar hidden very deep within the flowers); ix) funnel flowers

(nectar hidden at the base of the flowers) (S1 Fig).

For pollinators, the length of the proboscis together with innate visual and olfactory prefer-

ences for particular flower types, are important in influencing a pollinator’s flower choice.

Information about the mean proboscis length of each recorded pollinator species was com-

piled from a broad range of sources (i.e. [47–50]). For the Diptera, only the Syrphidae could be

included as information on other families is missing. As the data on the length of the proboscis

stems from different sources and has been measured in different ways, we grouped tongue

lengths into three categories: (i) short (1–5 mm); (ii) medium (5.5–9.5 mm); (iii) long (> 10

mm). In order to roughly account for the innate preferences of pollinator groups (assuming

that particular orders differ in their flower preferences as suggested by the floral syndrome
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hypothesis, [28]), we differentiated among the three tongue length categories within Hyme-

noptera, Lepidoptera and Diptera (only Syrphidae). Functional groupings for all plant and pol-

linator species can be found in S2 and S3 Tables.

Data analysis

Unless otherwise specified, analyses were performed by pooling transects within sites and sites

within management types in order to compare the two grassland management types. We also

performed all analyses by pooling transects within sites in order to assess site-specific variation

within management types; however, as site-specific results were consistent with the overall

analyses we only present overall analyses performed at management type level.

a) Comparison of species and functional diversity. While sampling completeness was

not significantly different among the two management types (see Results), sampling effort (e.g.

the number of transects sampled per management type) was. We thus rarefied and extrapo-

lated species and functional richness and diversity of plants and their pollinators by transect

[51, 52]. Plant cover and insect frequencies were converted to incidences (presence or absence)

before incidence-based methods were applied. In order to obtain an estimate of richness and

diversity from a functional perspective (referred to as functional richness and diversity

throughout the manuscript) we substituted species by their functional groups. We used Hill

numbers to quantify species and functional richness (q = 0), Shannon diversity (q = 1) and

Simpson diversity (q = 2). Hill numbers are an effective way to compare diversity of species

rich communities and allow a systematic assessment of the effect of dominant and rare species

[53]. All diversity measures were performed using the function “iNext” in the package iNEXT

in R [51]. Interpolated rarefaction was based on random sampling of transects, with extrapola-

tion performed to twice the number of transects sampled [51]. The comparison of richness

and diversity of pastures in relation to hay meadows was performed by constructing 95% con-

fidence intervals, with non-overlapping 95% confidence intervals at the same number of sam-

pling units indicating significant differences among management types [52, 54].

b) Assessing changes in community composition: Patterns of taxonomic and functional

dissimilarity and dominance. In order to assess whether plant and insect species and func-

tional groups of pastures represent a subset of the species and functional groups found in hay

meadows, or whether they have been replaced by species more adapted to intensive manage-

ment, we quantified the amount of turnover and nestedness in plant and insect communities

between management types using the incidence-based Sørensen dissimilarity index [55, 56].

Overall dissimilarity partitioning among grassland management types was performed using

the function “beta.multi” in the “betapart” package in R [57].

Dominance patterns of plant and pollinator species and functional groups were compared

by performing a non-parametric multivariate ANOVA-type test in the R package “npmv”

[58]. Function “nonpartest” with 1000 permutations was used to assess the overall distribution

of the relative abundances of plant (measured as relative cover) and pollinator species (mea-

sured as relative frequency) in each management types. We thereby focused only on the 10

most abundant plant and pollinator species within each grassland management type. In order

to determine between which species significant difference occurred we relied on the function

“ssnonpartest”, using F-approximations for ANOVA Type statistics, from the same package.

This function is an equivalent to follow-up ANOVA tests usually performed in parametric pro-

cedures. A similar approach was used for comparing the dominance patterns of plant and pol-

linator functional groups (all functional groups were included; for this analysis we replaced

species with their functional group and recalculated relative cover for each functional group

per management type).
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c) Plant-pollinator network structure and changes in species roles. We constructed visi-

tation networks for hay meadows and intensive pastures based on interaction frequency

between plants and pollinators using the ‘plotweb’ function in the bipartite R package [59]. For

visualization purposes, we summarized insect species into genera, however all analyses were

performed at the species level. All graphical outputs were created in R vers. 1.2.5033, with visual

properties (colour, lines, labelling) being further adapted using Corel Draw (vers. 20.0.0.633).

Network analyses relied on weighted, quantitative metrics chosen to provide insights into

the way that changes in the diversity, composition and dominance patterns of species can alter

the structure and stability of plant-pollinator networks. Specifically, we assessed metrics which

account for:

a) Changes in diversity and evenness of interactions–Shannon diversity of interactions and
interaction evenness.

b) Changes in the specificity of interactions–H2 and niche overlap. H2 is a measure of speciali-

zation and reflects link complementary across all species in the network [60]. The value of

the metric can range between 0 (no specialization) and 1 (high dependency of each species

in the network to a narrow range of partners). While H2 reflects the number of interaction

partners, niche overlap reveals the extent to which partners are shared among either plants

or pollinators.

c) Changes in the degree of compartmentalization of interactions (modularity). This metric

reflects changes in diversity, evenness of interactions and their specificity, providing

insights into the stability of networks [61–63]. A modular network is considered to be more

stable, as it consists of groups of species that interact more frequently with each other than

with species belonging to other groups. The loss of particular species or even a module is

thus less likely to have a cascading effect throughout the entire network [64].

Comparisons between intensive pastures and traditionally managed hay meadows were

performed by rarefying all network-level metrics, except modularity, for number of interac-

tions sampled per management type and iterated 100 times with 95% confidence intervals

using the function “boot_networklevel” in the package “bootstrapnet” [65]. This function ran-

domly samples interactions without replacement to build an interaction-based rarefaction

curve for each metric [65]. The resulting rarefaction curves represent the mean of the 100 iter-

ations and end in the value generated by the “networklevel” function in bipartite. Non-over-

lapping 95% confidence intervals at an equal number of interactions show significant

differences among the network indices [65]. This approach allows metrics to be compared

between management types at a standard number of interactions sampled [65]. In order to

assess the level of modularity and the number of modules for networks of each management

type we used the “metaComputeModule” function in bipartite, using the DIRT_LPA_wb_plus

algorithm (default settings) [64]. Functional traits of both plants and pollinators were visual-

ized to aid with the interpretation of the observed modules (i.e. [66]).

Among all plant species common to both hay meadows and pastures, T. repens experienced

the largest shift in dominance, becoming the single most dominant species in pastures (see

Results). Consequently, we chose this species and its most frequent pollinators in order to

assess whether and how shifts in dominance patterns of species led to changes to their roles

across management types. Changes in species roles within networks were measured by calcu-

lating the following species-level metrics:

a) Species strength: quantifies the importance of a species among all its partners, based on the

sum of dependencies of each species [67, 68]. Species with high values of this metric are
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considered keystone species within networks, as it shows that a higher number of interac-

tion partners are dependent upon them [36, 69].

b) Partner diversity: reflects the diversity of interaction partners of each species and is calcu-

lated as the weighted mean Shannon diversity index for all interactions of that particular

species. High values indicate an even spread of interactions across partners, while low val-

ues indicate that the species interacts preferentially with one or a few partners [59].

c) Species specialization (d’): indicates the degree of specialization of a species, by measuring

how much a specie’s resource use deviates from opportunism. Its values range from 0 (no

specialization) to 1 (complete specialization), with low values reflecting either interactions

with multiple species or with a single dominant species and high values reflecting either

interactions with just one or a few species or a several very rare species [70].

For all metrics we build an interaction-based rarefaction curve using the “bootstrapnet”

package, function “specieslevel”, as described for network-level metrics above [65].

Results

We recorded a total of 67 flowering plant species belonging to 23 families, 108 pollinator spe-

cies belonging to 24 families (Hymenoptera: 19 species, 4 families; Diptera: 68 species, 14 fami-

lies; Lepidoptera: 21 species, 7 families) and a total of 1767 unique interactions between plant

and pollinator species (S2 and S3 Tables).

Sampling completeness

We found no significant differences in the sampling completeness of plants (W = 4; p = 0.773),

pollinators (W = 3; p = 1) and interactions (W = 3; p = 1) among intensive pastures and hay

meadows. Sampling completeness in intensive pastures thereby reached a median value of 65.6

(IQR = 5.58) for plants, 54.6(IQR = 6.18) for pollinators and 40.8 (IQR = 2.49) for interactions.

In comparison, sampling completeness in hay meadows reached median value of 74.8 (inter-

quartile range = 16) for plants, 55.9 (IQR = 14) for pollinators and 40.3 (IQR = 7.23) for

interactions.

Species and functional diversity

At equal levels of sampling effort species richness, Shannon and Simpson diversity, were sig-

nificantly lower in intensive pastures than in hay meadows for both plants and their pollinators

(95% confidence intervals for both plant and pollinator diversity did not overlap between man-

agement types; Fig 1). Even when sampling effort was doubled the richness and diversity indi-

ces remained unchanged, plateauing near the interpolated value.

Richness of plant functional group was not significantly different between management

types, whereas pollinators were found to be significantly less functionally rich in pastures than

in hay meadows. Both plants and pollinators had significantly lower Shannon and Simpson

functional diversity in intensive pastures than in hay meadows (Fig 2). Extrapolating to double

the sampling effort did not alter these patterns.

Patterns of taxonomic and functional dissimilarity and dominance

Intensive pastures and hay meadows shared 19 of the 67 plant species (28.36%), while 11 spe-

cies were unique to pastures (16.42%) and 37 to hay meadows (55.22%). The dissimilarity anal-

ysis thus showed clear differences among intensive pastures and hay meadows. These
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differences were mainly determined by turnover of species among management types rather

than nestedness (ßSOR = 0.5; ßSIM = 0.456; ßSNE = 0.04).

The comparison of the dominance patterns of plants revealed significant differences

between intensive pastures and hay meadows (non-parametric ANOVA type test, F = 5.14,

p = 0.04); pastures were thereby clearly dominated by a single species, T. repens. The abun-

dance (percent relative cover) of T. repens was significantly lower in hay meadows (lower

5.9%) than in pastures (70.9%) (ssnonpartest, p<0.05) (see S1 Fig visualizing the 10 most dom-

inant plant species for each management type).

Intensive pastures and hay meadows shared 30 of the 108 insect species (27.78%, 8 Hyme-

noptera, 17 Diptera, 5 Lepidoptera). Fourteen species were found only in intensive pastures

(12.96%, 3 Hymenoptera, 10 Diptera, 1 Lepidoptera) and 63 were found only in hay meadows

(58.33%, 8 Hymenoptera, 41 Diptera, 14 Lepidoptera). The dissimilarity analysis reflected

these patterns, highlighting relatively high species dissimilarity between grassland manage-

ment types, which appeared to be determined to a similar degree by species turnover and nest-

edness (ßSOR = 0.58; ßSIM = 0.34; ßSNE = 0.24). Despite overall large shifts in the relative

frequency of pollinators between intensive pastures and hay meadows (i.e. Apis mellifera
shifted from 6.27% in hay meadows to 40.23% in pastures, Autographa gamma from 12.14% to

21.47% and Bombus lapidarius from 4.57% to 8.12%, S2 Fig), pastures and hay meadows

shared 5 of the 10 most frequent pollinators. Management types did thus not significantly dif-

fer in the dominance patterns of the 10 most frequent pollinators (non-parametric ANOVA

type test, F = 1.28, p = 0.35) (S2 Fig).

The dissimilarity of functional groups among grassland management types was very low,

both for plants and pollinators and determined solely by pastures having a nested subset of the

functional groups found in hay meadows (plants: ßSOR = 0.11; ßSNE = 0.11; ßSIM = 0;

Fig 1. Differences in species richness and diversity between extensive pastures and traditional hay meadows. Sampling-unit (i.e. transects)

based interpolation (continuous lines) and extrapolation (dashed lines, up to double the number of sampling units) of (A) plant and (B) pollinator

species richness and diversity using Hill numbers. Intensive pastures had significantly lower plant and insect species richness and diversity than

hay meadows (95% confidence intervals are highlighted by shaded areas). The coloured dots denote the level of diversity assessed for the number

of sampled units per meadow type (i.e. 30 for hay meadows, 16 for pastures).

https://doi.org/10.1371/journal.pone.0263576.g001
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pollinators: ßSOR = 0.08; ßSNE = 0.08; ßSIM = 0). Intensive pastures were significantly more

dominated by one functional group of plants (flag blossoms) compared to hay meadows (non-

parametric ANOVA type test, F = 6.25, p� 0.001) (Fig 3A). The dominance pattern of pollina-

tor functional groups did not differ between management types (Fig 3B, non-parametric

ANOVA type test, F = 3.19, p = 0.129).

Plant-pollinator networks

The diversity and evenness of interactions was significantly different (non-overlapping 95%

confidence intervals) between intensive pastures and hay meadows, pastures having lower

interaction diversity and lower interaction evenness of plant and pollinator species (Figs 4 and

S3). Pasture networks were significantly more specialized than hay meadows. Plants occurring

in intensive pastures were similar in the breath of their pollinator niche compared to hay

meadow (results not shown), but pollinators showed a significantly higher niche overlap in

pastures compared to hay meadows (Fig 4).

The modularity analysis revealed a decrease in the number of compartments in pastures,

in comparison to hay meadows. The pasture network could thus be compartmentalized into

only four modules with a likelihood (M) of 0.23. This stands in contrast to the hay meadow

network which could be subdivided into six modules with a likelihood (M) of 0.45. Two of

the modules within pastures contained just one plant and one pollinator species, while the

Fig 2. Differences in functional group richness and diversity between intensive pastures and traditional hay meadows. Sampling-unit (i.e.

transects) based interpolation (continuous lines) and extrapolation (dashed lines, up to double the number of sampling units) of (A) plant and (B)

pollinator functional group diversity using Hill numbers. Plant functional group richness was similar between hay meadows and pastures, while

insect functional richness and plant and insect functional group diversity were significantly lower in intensive pastures (95% confidence intervals are

highlighted by shaded areas). The coloured dots denote the level of functional group diversity assessed for the number of sampled units per meadow

type (i.e. 30 for hay meadows, 16 for pastures).

https://doi.org/10.1371/journal.pone.0263576.g002
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other two contained 4.5±2.5 plant and 21±1 pollinator species. Modules in the hay meadow

network comprised a mean (±SD) of 4.83±1.6 plant and 15.5±6.4 pollinator species. When

the functional traits of both plants and pollinator were superimposed upon the modular

structure of the pastures and hay meadows, the clustering of functional traits of plants and

their connected pollinators could be visualized (S4 Fig). For instance, in pastures, one mod-

ule contained a single plant species, T. repens, with relatively deep floral tubes associated

with long to medium tongued Hymenoptera and Lepidoptera (S4 Fig). This species was part

of a functionally similar module in hay meadows, albeit it had more interaction partners in

pastures (S3 and S4 Figs).

The role of dominant species within networks. The differentiation of the role individual

species play in intensive pastures and hay meadows becomes apparent when species strength,

partner diversity and d’ are analysed. Trifolium repens, the most dominant species in the pas-

tures, shows significantly higher species strength and specialization in intensive pastures than

in hay meadows, but similar values for partner diversity (Fig 5). In comparison to all other co-

occurring plant species in pastures, T. repens became the species with the highest value of spe-

cies strength and had mostly higher values of partner diversity and species level specialization.

In hay meadows, T. repens had one of the lowest values of species strength (S5 Fig). The insect

species which most frequently visited T. repens, A. mellifera, also largely changed its role in the

network across grassland management types, with a non-significant trend for higher species

Fig 3. Differences in plant and pollinator functional group composition between intensive pastures and traditional hay meadows. Relative

abundance of functional groups in hay meadows and pastures: (A) flowering plants (based on relative cover of floral functional traits); (B)

pollinators (based on relative frequency of functional traits). (�) denotes significant differences between management types (non-parametric

analysis of variance, p< 0.05).

https://doi.org/10.1371/journal.pone.0263576.g003
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strength in pastures and significantly lower values of partner diversity and specialization values

in pastures compared to hay meadows (S6 Fig). Other frequent pollinators, such as A. gamma
and species of the genus Bombus also had higher values of species strength in intensive

Fig 4. Plant-pollinator network structure. Interaction-based rarefaction curves comparing network metrics between hay meadows

(blue) and pastures (pink). Shaded areas represent 95% confidence intervals. Plant and pollinator icons mark metrics calculated for

either one of the two trophic levels, while graphs without icons were calculated for both trophic levels (drawings by S. C. Herbst and L. P.

Sittel, CC BY-SA 4.0).

https://doi.org/10.1371/journal.pone.0263576.g004

Fig 5. The role of species within plant-pollinator networks. Species level metrics for (A) T. repens and (B) A. mellifera. Comparison of species-level network metrics

between hay meadows (blue) and pastures (pink) rarefied for pooled interactions. Shaded areas represent 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0263576.g005
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pastures compared to hay meadows, and some of the lowest values for partner diversity and

species level specialization in comparison to all pollinator species within pastures (S6 Fig).

Discussion

It is known that intensive grazing can act as a strong filter, reducing plant diversity and altering

community composition, but the parallel effect of grazing on functional groups, insects and

plant-insect interactions has received less attention (but see [27, 38, 71, 72]). Our results show

that, in contrast to traditional hay meadows, intensive pasture management reduces the taxo-

nomic and functional diversity of pollinating insects and strongly shifts community composi-

tion towards the dominance of a single plant species with specialized floral traits. As the

majority of the interactions in the intensive pastures shifted towards this single specialized

plant species, its importance within the network increased and plant-pollinator networks

became more specialized and less modular, features that have been linked with lower robust-

ness of networks towards future perturbations [73–75]. Our results thus contribute to under-

standing the impact of intensive grazing on Europe’s species rich, semi-natural grasslands.

The observed loss of diversity of both plant and pollinators in intensive pastures is likely

due to the high intensity of the pasture management [37, 38], as low-intensity grazing is

known to produce similarly diverse plant communities as traditionally managed hay meadows

[12]. We show strong shifts in community composition of plants, which were mostly attrib-

uted to species turnover and changes in evenness. Plants typically associated with hay mead-

ows were replaced by grazing, trampling and nutrient tolerant species in pastures, and pasture

sites were clearly dominated by a single species, T. repens. Changes in pollinator community

composition were due to both species turnover and nestedness. Typical taxa for traditional hay

meadows, such as the butterfly genus Thymelicus, were lost from pastures, and these were

somewhat replaced by various groups of flies. These could, however, not compensate either in

numbers, or in their functional role the loss of hay meadow species. Pastures were dominated

by species such as Apis mellifera, Autographa gamma and Bombus lapidarius, which were the

main visitors of T. repens in both management types. Our study thus supports previous

research which has shown that intensive grazing can reduce both plant and insect species

diversity and shift community composition towards the dominance of only a few taxa (e.g. [30,

35, 76], but see [77]).

Far less was previously known about the impact of intensive grazing on functional traits

related to pollination, such as flower type [78–81]. We found that as plant communities

became highly dominated by a single species, their functional composition changed as well.

Thus intensive pastures were dominated by flag-type flowers, such as those of T. repens. This

species is highly adapted to intensive grazing, trampling and nutrient input. Its flowers are of

medium size and their nectar is hidden within the floral tube, favouring the access of long- to

medium tongued Hymenoptera [26, 82, 83]. Thus the shift towards a species highly adapted to

intensive pastures was, in the present case, also associated with the shift towards more special-

ized floral traits. Such shifts in plant dominance have been previously reported [19, 30, 81],

however, their effects on the pollinator trophic level were previously largely unexplored, partly

because the response of floral functional traits to intensive management has rarely been taken

into consideration ([20, 21], but see [38]).

Intensive pastures were found to have lower functional diversity of pollinators than hay

meadows, mainly due to the loss of a single functional group, Diptera species with medium

proboscis length. Considering the strong shift in plant functional groups, the comparatively

reduced response in pollinator functional diversity in intensive pastures suggests that species

loss occurred quite evenly across pollinator functional groups, possibly because plant
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functional groups other than the dominating flag-type flowers were more generalized. This is

supported by the fact that the second most abundant plant functional group in intensive pas-

tures was that defined by disk flowers with hidden nectar, flowers which are accessible to

many short and medium tongued pollinators. Alternatively, the fact that some of the visitors of

the flag-type flowers were short tongued flies, which are unlikely to act as pollinators, suggests

that our assessment of pollinator functional diversity might overestimate the true diversity of

functional groups actually involved in pollination [68]. Such a bias, resulting from observing

visitation rather than actual pollination events, may however not be very strong, as we found

functional matching between most interacting plants and pollinators. This was also the case

for the most common visitors of T. repens in intensive pastures, A. mellifera, B. lapidarius and

A. gamma, species with medium to long proboscis and behaviours, well adapted to reach the

nectar and pollen of flowers with deeper corolla tubes and more specialized flower structures.

The dominance of A. gamma, A. mellifera and B. lapidarius, may thus be linked to the preva-

lence of T. repens, whose medium-deep inflorescences can be accessed by few other insects.

Furthermore these species may be resistant to intensive grazing as they are able to fly long dis-

tances, forage on multiple host plant species, and build nests in man-made structures [84]. As

no A. mellifera hives were observed in the close vicinity of our sampling sites, it is likely that

their increased presence in the intensive pastures is due to the ample availability of a floral

resource they can easily exploit.

In accordance to reductions in species diversity and shifts towards a single dominant taxa,

T. repens, interaction networks in intensively managed pastures changed their topology [42,

85]. The only other plant-pollinator network study that considers the effects of intensive pas-

ture management on flower functional traits was conducted in South-America, and found a

shift towards the dominance of highly generalized Asteraceae plant species and minimal effects

on pollinator communities and plant-pollinator networks [36]. In contrast, we found that a

shift towards a more specialized plant species led to our pasture networks having low diversity

of interactions, which were unevenly distributed towards a few partners. Thus species within

intensive pastures relied on only a few interaction partners, which they increasingly shared

with other species, as indicated by the high levels of network specialization and niche overlap

[60]. These patterns likely reflect the decrease in species diversity in pastures and the wiring of

interactions predominantly towards the single abundant resource available, the flowers of T.

repens [39, 86]. The rewiring of interaction towards T. repens also led to a reduction of modu-

larity from several relatively large modules in hay meadows, to just two main modules in pas-

tures. Such simplified networks with lower diversity of species and interactions, higher

specialization and niche overlap and lower modularity are expected to be less robust to pertur-

bations [27, 71, 86, 87]. This is underlined by the fact that the loss or decline of a single species,

of T. repens could lead to the collapse of the network, unless other flowering species take over

its role. In contrast, in the taxonomically and functionally diverse hay meadows the most

abundant plant and pollinator species were relatively evenly distributed among modules, a pat-

tern which is likely to further contribute to the stability of hay meadow networks.

Species level analyses confirmed the increasing importance of T. repens and its pollinators

in intensive pastures. Thus, the species strength and specialization of T. repens, increased in

pastures, while partner diversity remained the same. The lack of effect on partner diversity is

because T. repens, when correcting for network size, interacts with a similar proportion of pol-

linators. Furthermore, the species maintained mostly the same interactions among the two

grassland management types. In pastures, T. repens became more specialized, not because it

interacted with fewer species, but because the species it interacted with became almost exclu-

sively dependent on it. As a result, T. repens is more important to network structure (i.e., spe-

cies strength) in pastures.
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The implications of this study, together with that of [36], are that the effects of grassland

management intensification may depend on the functional traits of the dominant plant species.

In Europe, intensive pastures are often characterized by higher abundance of Fabaceae (i.e.

[30]), and the effect of the dominance of this plant group on higher trophic levels may therefore

be broadly applicable across Europe. However, in order to better understand the generality of

our results, more studies are needed that cover broader temporal and spatial sampling grains.

For example, it is possible that intense grazing might have different effects at different temporal

grains, as dominance patterns could change through time (e.g., [88]). A better understanding of

how intensive grazing influences the structure of plant-pollinator networks can be achieved

with more studies like this one across Europe, in grasslands with different baseline environmen-

tal characteristics (productivity, water availability, vegetation) and with other management fea-

tures (e.g., type of grazing animals). The effects of intensive grazing on plant-pollinator

networks will depend on its effects on the taxonomic and functional diversity and composition

of both plants and pollinators, and this may vary predictably with grazing intensity. Finally our

understanding would be improved by having information about the efficiency of the recorded

visitors in transferring pollen (i.e. [68]). Assessments of pollen transfer patterns could provide

essential information about the role of particular species in determining the coherence of net-

works, information which could support grassland conservation.

Conclusions

Our results suggest that the response of plant-pollinator networks to intensive grazing could

depend on the functional traits of the few dominant species adapted to permanent pastures.

Our study joins a limited body of research on the effect of intensive grazing on plant-pollinator

networks (i.e. [27, 36, 38, 71, 89]), and provides insights into some of the potential mechanisms

that drive changes of ecological communities under intensive grassland management. Grazing

is an essential management tool in conservation in Europe (i.e. [90, 91]). While moderate graz-

ing plays an important role in maintaining the diversity of species and their interactions (i.e.

[27]), intensive grazing is one of the major threats to highly diverse hay meadows in Central

and Eastern Europe [16, 92, 93]. The extremely high stocking rates, continuous grazing

throughout the year and lack of consideration for the boundaries of protected areas is likely

having catastrophic consequences for the structure and stability of diverse plant-pollinator net-

works. However, so far, most evidence on the effect of intensive grazing in these regions has

been anecdotal or limited to a few groups of species [18, 94]. If the diverse landscape of Central

and Eastern Europe is to be conserved this knowledge gap needs to be urgently addressed. Our

study, together with that of [36], thereby indicates that the threat of intensive grazing to plants,

pollinators and their interactions could be potentially predicted and even ameliorated by con-

sidering the functional composition of the community. This study highlights that a synthetic

understanding of how anthropogenic land use influences higher trophic levels and interaction

networks requires explicit consideration of plant functional traits related to pollination.

Supporting information

S1 Table. Overview sampling sites. Details of the management type (italics denote the names

used in all figure legends), locality, coordinates and altitude of the five studied grasslands.

(DOCX)

S2 Table. Overview plant taxa. Details of all flowering plants from the five grasslands

included in this study, their taxonomic classification, floral functional traits and ecological tol-

erance values for grazing, trampling and nitrogen. Tolerance values are coded as follows:
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intolerant (1); intolerant to sensitive (2); sensitive (3); sensitive to moderately tolerant (4);

moderately tolerant (5); moderately tolerant to well tolerant (6); well tolerant (7); well tolerant

to very tolerant (8); very tolerant (9). Management type indicates weather plant species were

found exclusively in extensive hay meadows (M), intensive pastures (P) or both (M+P). NA

denotes species with missing data.

(DOCX)

S3 Table. Overview pollinator taxa. Details of all pollinators collected from the five grasslands

included in this study, their taxonomical classification and functional traits (proboscis lengths

were summarized into 3 groups: short, medium and long; NA denotes missing data). For Dip-

tera information on the length of the proboscis was only available for Syrphidae. Management

type indicates whether species were found exclusively in extensive hay meadows (M), intensive

pastures (P) or both (M+P).

(DOCX)

S1 Fig. Examples of main floral functional groups. (A) Galium mollugo—Disk flowers with

open nectar (https://www.botanik-seite.de, René Rausch, CC BY 4.0). (B) Leucanthemum vul-
gare–flower heads (Demetra Rakosy, CC BY 4.0). (C) Cerastium holosteoides–Disk flowers

with hidden nectar (https://www.naturadb.de/pflanzen/stellaria-holostea/, Der Michelis, CC

0.0). (D) Prunella vulgaris–Lip flowers (www.wikipedia.com, Georg Buzin, CC BY 4.0). (E)

Plantago media–Pollen flowers (Demetra Rakosy, CC BY 4.0). (F) Campanula patula–Bell

flowers (Demetra Rakosy, CC BY 4.0). (G) Trifolium repens–Flag blossom (www.wikipedia.

com, Vinayaraj, CC BY 4.0). (H) Dianthus deltoides–Stalk disk flowers (www.wikipedia.com,

Robert Flogaus-Faust, CC BY 4.0). (I) Convolvulus arvensis–Funnel flowers (https://commons.

wikimedia.org/, Michel_Langeveld, CC BY 4.0).

(TIF)

S2 Fig. Differences in plant and pollinator species composition between grassland manage-

ment types. Visualization of the 10 most abundant flowering plant species (based on relative

cover) and 10 most frequent pollinator species (based on relative frequency) in (A) hay mead-

ows and (B) pastures. Plant species are colour coded in shades of green, pollinator species in

orange. (�) denotes species shared between hay meadows and pastures. The non-parametric

analysis of variance revealed significant differences between the composition and abundance

of the most common plant species in meadows and pastures (p< 0.05). For pollinators no sig-

nificant differences between management types were found. Plant and insect icons drawn by

S. C. Herbst and L. P. Sittel (CC BY-SA 4.0).

(TIF)

S3 Fig. Plant-pollinator interaction networks. Networks for (A) hay meadows and (B) pas-

tures. Pollinator species are shown by genus for visualization purposes only; all statistical anal-

yses were performed at the species level. Red field margins highlight insects species which

interact with T. repens, while red filled fields highlight A. mellifera, A. gamma and several spe-

cies of Bombus which became the main visitors of T. repens in intensive pastures. Plants are

demarked by green filled fields.

(TIF)

S4 Fig. Plant-pollinator network modularity. Module structure of (A) hay meadows and (B)

pastures illustrating the taxonomic and functional composition of each module. Grey shaded

squares indicate weighted interactions (darker colours indicate higher interaction frequency).

Colour codes indicate the functional group for each species and these colours follow those in

Fig 3 (grey denotes species whose functional traits could not be assessed, most of which were
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Diptera). Bold names indicate the 10 most abundant plant and pollinator species.

(ZIP)

S5 Fig. Species level metrics of T. repens in comparison to all other plants in the networks of

(A) hay meadows and (B) pastures. Metrics have been rarefied for pooled interactions. Shaded

areas represent 95% confidence intervals.

(TIF)

S6 Fig. Species level metrics of A. mellifera, A. gamma and B. lapidarius in comparison to all

other pollinator species in the networks of: (A) hay meadows and (B) pastures. Metrics have

been rarefied for pooled interactions. Shaded areas represent 95% confidence intervals. Besides

A. mellifera, A. gamma and B. lapidarius which were the most frequent pollinators of T.

repens, we highlighted also other Bombus species frequently observed on the flowers for refer-

ence.

(TIF)

S1 Appendix. Indirect measure of land-use intensity.

(DOCX)
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