On the Rayleigh-Taylor instability for the two-phase Navier-Stokes equations in cylindrical domains

Mathias Wilke

Abstract

We are considering the two-phase Navier-Stokes equations with surface tension, modelling the dynamic behaviour of two immiscible and incompressible fluids in a cylindrical domain, which are separated by a sharp interface forming a contact angle with the fixed boundary. In the case that the heavy fluid is situated on top of the light fluid, one expects the effect which is known as Rayleigh-Taylor instability. Our main result implies the existence of a critical surface tension with the following property: In the case that the surface tension of the interface separating the two fluids is smaller than the critical surface tension, Rayleigh-Taylor instability occurs. On the contrary, if the surface tension of the interface is larger than the critical value, one has exponential stability of the flat interfaces. The last part of this article is concerned with the bifurcation of nontrivial equilibria in multiple eigenvalues. The invariance of the corresponding bifurcation equation with respect to rotations and reflections yields the existence of bifurcating subcritical equilibria.

1. Introduction

Let $u=u(t, x)$ and $\pi=\pi(t, x)$ denote the velocity field and the pressure field of a single incompressible fluid in a domain Ω, respectively. By saying that the fluid is incompressible, we mean that its density $\rho>0$ is constant. Then the dynamics of the fluid are described by the Navier-Stokes equations

$$
\begin{align*}
\partial_{t}(\rho u)-\mu \Delta u+\rho(u \cdot \nabla) u+\nabla \pi & =\rho f, & & t>0, x \in \Omega, \tag{1.1}\\
\operatorname{div} u & =0, & & t>0, x \in \Omega,
\end{align*}
$$

where $\mu>0$ represents the viscosity of the fluid and f is some external force (e.g., gravity). The first equation reflects the balance of momentum, while the second equation states the conservation of mass.

Let us consider a more comprehensive situation, where the domain Ω is occupied by an incompressible and an immiscible fluid, fluid 1 and fluid 2 , respectively, which are separated by a sharp interface $\Gamma(t)$ for each $t \geq 0$. We denote by $\Omega_{j}(t)$ the subset

[^0]of Ω which is filled with fluid $j, j \in\{1,2\}$ with ρ_{j}, μ_{j} being the density and viscosity, respectively, of fluid j. If u^{j} and π^{j} are the velocity fields and the pressure fields of fluid j, respectively, then, for $t \geq 0$ one sets
\[

u(t, x):=\left\{$$
\begin{array}{ll}
u^{1}(t, x), & x \in \Omega_{1}(t), \\
u^{2}(t, x), & x \in \Omega_{2}(t),
\end{array}
$$ \quad \pi(t, x):= $$
\begin{cases}\pi^{1}(t, x), & x \in \Omega_{1}(t), \\
\pi^{2}(t, x), & x \in \Omega_{2}(t)\end{cases}
$$\right.
\]

Assuming that $\left(u^{j}, \pi^{j}\right)$ satisfies the Navier-Stokes equations in each of the phases $\Omega_{j}(t)$, then we may conclude that (u, π) satisfies (1.1) for all $t>0$ and $x \in \Omega \backslash \Gamma(t)$, where ρ and μ are defined by

$$
\rho(x):=\left\{\begin{array}{ll}
\rho_{1}, & x \in \Omega_{1}(t), \\
\rho_{2}, & x \in \Omega_{2}(t),
\end{array} \quad \mu(x):= \begin{cases}\mu_{1}, & x \in \Omega_{1}(t) \\
\mu_{2}, & x \in \Omega_{2}(t) .\end{cases}\right.
$$

Clearly, one expects that the two fluids should affect each other in their dynamics. Therefore, it is natural to ask for relations that describe the coupling of the two fluids across the interface $\Gamma(t)$. If one neglects effects of phase transitions between the phases $\Omega_{1}(t)$ and $\Omega_{2}(t)$ (e.g., the exchange of mass), then the motion of the moving boundary $\Gamma(t)$ should only be caused by the velocity fields of both fluids. Therefore, it is natural to propose that $\left.u^{2}\right|_{\Gamma(t)}=\left.u^{1}\right|_{\Gamma(t)}$. Then, the normal velocity V_{Γ} of $\Gamma(t)$ is given by

$$
\begin{equation*}
V_{\Gamma}=u \cdot v_{\Gamma}, \tag{1.2}
\end{equation*}
$$

where ν_{Γ} denotes the unit normal field on $\Gamma(t)$ pointing from $\Omega_{1}(t)$ to $\Omega_{2}(t)$. We call the quantity $\llbracket u \rrbracket:=\left.u^{2}\right|_{\Gamma(t)}-\left.u^{1}\right|_{\Gamma(t)}$ the jump of u across $\Gamma(t)$. Note that $\llbracket u \rrbracket=0$ if and only if the velocity field u is continuous across the interface $\Gamma(t)$. Another condition on $\Gamma(t)$ reads

$$
\begin{equation*}
-\llbracket \mu\left(\nabla u+\nabla u^{\top}\right) \rrbracket v_{\Gamma}+\llbracket \pi \rrbracket \nu_{\Gamma}=\sigma H_{\Gamma} v_{\Gamma}, \tag{1.3}
\end{equation*}
$$

where $\sigma>0$ denotes the (constant) surface tension of $\Gamma(t)$ and $H_{\Gamma}:=-\operatorname{div}_{\Gamma} \nu_{\Gamma}$ is the mean curvature of $\Gamma(t)$ with div ${ }_{\Gamma}$ being the surface divergence on $\Gamma(t)$. Condition (1.3) describes the balance of forces on the interface. To be precise, there is no contribution to the rate of change of the momentum coming from the interface $\Gamma(t)$.

If the fixed boundary $\partial \Omega$ of Ω is not empty, then system (1.1)-(1.3) with $\llbracket u \rrbracket=0$ has to be equipped with appropriate boundary conditions on $\partial \Omega$ as well as some initial conditions on $u(0)=u_{0}$ and $\Gamma(0)=\Gamma_{0}$. There is a vast literature concerning the mathematical treatment of free boundary problems for the Navier-Stokes equations with or without surface tension. To this end, we can only give a subjective selection and refer the reader to $[2,5,6,8-13,23,24,27-30,32,33,35,36,38-50]$. For a derivation of (1.1)-(1.3) we refer to [18] or [31].

To describe the effect of what is called Rayleigh-Taylor instability, let us consider the case that $\Omega=\mathbb{R}^{n}$ consists of two phases $\Omega_{1}(t)$ and $\Omega_{2}(t)$ which are separated by an
interface $\Gamma(t)$, given by the graph of a height function h over \mathbb{R}^{n-1}, i.e.,

$$
\Gamma(t):=\left\{x=\left(x^{\prime}, x_{n}\right) \in \Omega: x_{n}=h\left(t, x^{\prime}\right), x^{\prime} \in \mathbb{R}^{n-1}\right\} .
$$

Assume further that $\Omega_{2}(t)$ is the upper phase, that is,

$$
\Omega_{2}(t)=\left\{x=\left(x^{\prime}, x_{n}\right) \in \Omega: x_{n}>h\left(t, x^{\prime}\right), x^{\prime} \in \mathbb{R}^{n-1}\right\} .
$$

Both phases are filled with two fluids with possibly different densities which are accelerated in the direction of $-e_{n}$ by the gravitational force.

Taking a close look at system (1.1)-(1.3), it turns out that the vanishing velocity fields, constant pressure fields and the flat interfaces belong to the set of equilibria, i.e., the set of all solutions which are constant with respect to t. Henceforth, we will speak of the trivial equilibrium whenever $u=0, p$ is constant and $h=0$. Heuristically, one expects that the stability behaviour of the trivial equilibrium is being influenced by the densities $\rho_{2}>0$ and $\rho_{1}>0$ of the fluids. Indeed, if $\llbracket \rho \rrbracket=\rho_{2}-\rho_{1}>0$, i.e., if the heavier fluid is placed above the lighter fluid, then one expects that the trivial equilibrium is unstable, while in the case that $\llbracket \rho \rrbracket \leq 0$, the trivial equilibrium should be stable. In fact, if $\llbracket \rho \rrbracket>0$ then the upper phase, which is the heavier one, should sack down into the lower phase; see Figure 1. This effect is called Rayleigh-Taylor instability and it goes back to the pioneering works of Rayleigh [33] and Taylor [50]. For more information concerning RayleighTaylor instability, we refer the interested reader to Chandrasekhar [7] and Kull [24] and the references cited therein. A rigorous proof of Rayleigh-Taylor instability for the twophase Navier-Stokes equations in the above setting has been given by Prüss and Simonett [28]. The basic strategy is to consider the full linearisation of the quasilinear problem (1.1)-(1.3) at the trivial equilibrium and to compute the spectrum of the linearisation. Due to the lack of compactness, there is a portion of approximate eigenvalues in the spectrum of the linearisation. In addition, there is no spectral gap which would allow us to apply classical tools to carry over the linear stability properties to the nonlinear case. To this end, the authors in [28] apply Henry's instability theorem [17, Theorem 5.1.5] which does not require a spectral gap.

In the periodic framework, i.e., with $\Omega=\mathbb{T}^{2} \times \mathbb{R}$ where $\mathbb{T}=\mathbb{R} / \mathbb{Z}$ is the 1 -torus, a rigorous proof of Rayleigh-Taylor instability has been given by Tice and Wang in [53]. Note that if $\llbracket \rho \rrbracket>0$, then the result in [28] states that the trivial equilibrium is always unstable, no matter what the remaining parameters $\mu>0$ and $\sigma>0$ are. However, in the periodic setting considered in [53], the stability properties of the trivial equilibrium also depend on the surface tension. To be more precise, there exists a critical surface tension $\sigma_{c}>0$ such that if $\sigma>\sigma_{c}$, then the trivial equilibrium is stable, while if $0<\sigma<\sigma_{c}$, it is unstable. In other words, even if $\llbracket \rho \rrbracket>0$, a sufficiently large surface tension $\sigma>0$ of $\Gamma(t)$ prevents the heavier phase from sacking down into the lower phase.

An advantage of the approach via maximal regularity of type L_{p} which has been used in [28] is that one obtains a semi-flow for the free boundary problem in a natural phase
space. In particular, there is no loss of regularity. With the help of functional calculus for sectorial operators and harmonic analysis, it is then shown that there exists $\lambda_{\infty}>0$ such that the interval $\left[0, \lambda_{\infty}\right]$ is the unstable part of the spectrum of the linearisation. The functional-analytic setting used in [28] then allows us to apply Henry's instability theorem [17, Theorem 5.1.5] to conclude instability for the nonlinear problem. In contrast to the result in [28], the authors in [53] construct so-called growing mode solutions (horizontal Fourier modes growing exponentially in time) for the linearised problem and use several energy estimates to study the spectrum of the full linearisation. The passage from linear to nonlinear (in-)stability follows from a Guo-Strauss bootstrap procedure, which has been introduced by Guo and Strauss in [15]. Due to the higher-order energy estimates, the regularity of the initial values is considerably high and therefore not optimal, when one compares with the assumptions in [28]. However, the authors in [53] obtain a clear picture of the stability properties of the trivial equilibrium, which depend on $\llbracket \rho \rrbracket$ and $\sigma>0$. Concerning further results on Rayleigh-Taylor instability for different problems, we refer the reader to the selection [3,14,16,19-21,52].

It is one purpose of this article to extend the results obtained in [28] to the framework of bounded cylindrical domains. To be precise, we assume that $\Omega=G \times\left(H_{1}, H_{2}\right)$, where $G \subset \mathbb{R}^{n-1}, n \in\{2,3\}$ is a bounded domain with smooth boundary and $H_{1}<0<H_{2}$. Suppose further that there is a family of hypersurfaces $\{\Gamma(t)\}_{t \geq 0}$ given by the graph of some height function h over G, i.e.,

$$
\Gamma(t)=\left\{\left(x^{\prime}, x_{n}\right) \in \Omega: x_{n}=h\left(t, x^{\prime}\right), x^{\prime} \in G\right\}, \quad t>0
$$

such that for each $t \geq 0$ the interface $\Gamma(t)$ divides Ω into two subdomains $\Omega_{1}(t)$ and $\Omega_{2}(t)$ which are filled with two fluids, respectively. We adopt the convention that $\Omega_{2}(t)$ is the upper phase. Assuming that equations (1.1)-(1.3) together with the condition $\llbracket u \rrbracket=0$ are satisfied, we are led in a natural way to the problem of finding suitable boundary conditions on the vertical part $S_{1}:=\partial G \times\left(H_{1}, H_{2}\right)$ and the horizontal part $S_{2}:=(G \times$ $\left.\left\{H_{1}\right\}\right) \cup\left(G \times\left\{H_{2}\right\}\right)$ of the boundary $\partial \Omega$ of Ω. This turns out to be a delicate question, since within the above setting we are on the one hand concerned with two parts S_{1} and S_{2} of the boundary such that $\partial S_{1}=\partial S_{2}$. Therefore, the boundary conditions on S_{1} and S_{2} have to be chosen in such a way that they are compatible with each other. On the other hand, we have to deal with a contact angle problem, as $\partial \Gamma(t)$ is a moving contact line on S_{1}. At this point we want to emphasise that the choice of the periodic setting in [53] allows us to circumvent the formation of a contact angle. The theory of contact angle problems, in particular with a dynamic contact angle which depends on t, is not well understood yet. In fact, there exist different points of view about how to model such a problem. One party supposes that the dynamic contact angle is determined by an additional equation, while the other party assumes that the contact angle will be determined by the dynamic equations for the interface and the fluid, hence the equation for the contact angle should be redundant. We refer the reader to $[4,37]$ and to the references given therein for more details.

Figure 1. A cylindrical domain

Therefore, in order to avoid this lack of clarity, we assume throughout this article that the contact angle is constant and equal to 90 degrees. One can interpret this ansatz as a kind of idealisation. It is possible to translate the condition on the contact angle to a condition on the height function h from above. Indeed, if h is sufficiently smooth, then the unit normal on $\Gamma(t)$ with respect to $\Omega_{1}(t)$ is given by

$$
\nu_{\Gamma}=\frac{1}{\sqrt{1+\left|\nabla_{x^{\prime}} h\right|^{2}}}\binom{-\nabla_{x^{\prime}} h}{1} .
$$

Since the outer unit normal on S_{1} is given by $v_{S_{1}}=\left(v_{\partial G}, 0\right)^{\top}$, the condition on the contact angle reads $\nu_{\Gamma} \cdot v_{S_{1}}=0$, or equivalently, $\partial_{\nu_{\partial G}} h=0$ at the contact line. Concerning S_{1}, it is not possible to propose Dirichlet boundary conditions, the so-called no-slip boundary conditions, since this leads to a paradox for the moving contact line (see, e.g., [32]). The next canonical choices are the so-called Navier boundary conditions or partial-slip boundary conditions

$$
u \cdot v_{S_{1}}=0, \quad P_{S_{1}}\left(\mu\left(\nabla u+\nabla u^{\top}\right) v_{S_{1}}\right)+\alpha u=0
$$

where $P_{S_{1}}:=I-v_{S_{1}} \otimes v_{S_{1}}$ denotes the projection to the tangent space on S_{1}. The parameter $\alpha \geq 0$ has the physical meaning of a friction coefficient. However, as long as $\alpha>0$, it turns out that this kind of boundary condition does not allow the interface to move along S_{1}, which is not very reasonable, as numerical simulations show. For a two-dimensional analytical explanation of this pathology, see [55, Section 1].

In order to circumvent this problem, we will consider the case $\alpha=0$, which characterises the so-called pure-slip boundary conditions. From a physical point of view this means
that there is no friction on the boundary S_{1}. Having fixed the boundary conditions on S_{1}, we may choose suitable boundary conditions on S_{2}, having in mind that these conditions have to match those on S_{1}. It turns out that homogeneous Dirichlet boundary conditions are a good choice, since they are compatible with the pure-slip boundary conditions on S_{1} and furthermore, they allow us to apply Korn's inequality for $D u:=\nabla u+\nabla u^{\top}$; see Theorem A.4. Note that the no-slip boundary conditions on S_{2} do not cause any problems with the moving interface, since we will always have $\Gamma(t) \cap S_{2}=\emptyset$ for all $t \geq 0$. We are thus led to the problem

$$
\begin{align*}
\partial_{t}(\rho u)-\mu \Delta u+\rho(u \cdot \nabla) u+\nabla \pi & =-\rho \gamma_{a} e_{n}, & & \text { in } \Omega \backslash \Gamma(t), \\
\operatorname{div} u & =0, & & \text { in } \Omega \backslash \Gamma(t), \\
-\llbracket \mu\left(\nabla u+\nabla u^{\top}\right) \rrbracket v_{\Gamma}+\llbracket \pi \rrbracket v_{\Gamma} & =\sigma H_{\Gamma} \nu_{\Gamma}, & & \text { on } \Gamma(t), \\
\llbracket u \rrbracket & =0, & & \text { on } \Gamma(t), \\
V_{\Gamma} & =u \cdot v_{\Gamma}, & & \text { on } \Gamma(t), \\
P_{S_{1}}\left(\mu\left(\nabla u+\nabla u^{\top}\right) v_{S_{1}}\right) & =0, & & \text { on } S_{1} \backslash \partial \Gamma(t), \tag{1.4}\\
u \cdot v_{S_{1}} & =0, & & \text { on } S_{1} \backslash \partial \Gamma(t), \\
u & =0, & & \text { on } S_{2}, \\
v_{\Gamma} \cdot v_{S_{1}} & =0, & & \text { on } \partial \Gamma(t), \\
u(0) & =u_{0}, & & \text { in } \Omega \backslash \Gamma(0), \\
\Gamma(0) & =\Gamma_{0}, & &
\end{align*}
$$

where we denote by $\gamma_{a}>0$ the acceleration constant due to gravity.
With this article, we present a rather complete stability analysis of (1.4). In Section 2 we will transform the time-dependent domain $\Omega \backslash \Gamma(t)$ to a fixed domain by means of a Hanzawa transformation. For the transformed problem, we have already proven the existence and uniqueness of a strong L_{p}-solution in [55, Theorem 4.2]. Section 3 is devoted to the investigation of the stability properties of the trivial equilibrium, i.e., when $u=0$, $h=0$ and π is constant. It turns out that if $\llbracket \rho \rrbracket>0$, then there exists a critical surface tension

$$
\sigma_{c}:=\frac{\llbracket \rho \rrbracket \gamma_{a}}{\lambda_{1}}>0
$$

where $\lambda_{1}>0$ denotes the first nontrivial eigenvalue of the Neumann Laplacian in $L_{2}(G)$. If $\sigma>\sigma_{c}$, then the trivial equilibrium is exponentially stable in the natural phase space, while in case $\sigma \in\left(0, \sigma_{c}\right)$ it will be unstable. If $\llbracket \rho \rrbracket \leq 0$, then the trivial equilibrium is always exponentially stable. Specialising to the case $G=B_{R}(0)$, we obtain as a corollary that for fixed surface tension $\sigma>0$ and if $\llbracket \rho \rrbracket>0$, there exists a critical radius

$$
R_{c}:=\left(\frac{\sigma \lambda_{1}^{*}}{\llbracket \rho \rrbracket \gamma_{a}}\right)^{1 / 2}
$$

such that if $R<R_{c}$, then the trivial equilibrium is exponentially stable, while for $R>R_{c}$ it will be unstable. Here $\lambda_{1}^{*}>0$ denotes the first nontrivial eigenvalue of the Neumann Laplacian in $L_{2}\left(B_{1}(0)\right)$, given by $\lambda_{1}^{*}=\left(j_{1,1}^{\prime}\right)^{2}$, where $j_{1,1}^{\prime}$ is the first zero of the derivative J_{1}^{\prime} of the Bessel function J_{1} (see, e.g., [1]). The proof of the stability result requires some effort, since after the transformation to a fixed domain one has to pay the price that in particular the (transformed) velocity field is no longer divergence free. Therefore, one has to split the solution into two parts in a suitable way such that one part is divergence free while the other part, whose divergence does not vanish, satisfies a nonlinear problem which can be handled by the implicit function theorem.

The results in Section 3 suggest that if σ decreases from $\sigma>\sigma_{c}$ to $\sigma<\sigma_{c}$, then an eigenvalue of the full linearisation will cross the imaginary axis. Therefore, it is natural to ask for possible bifurcations from the trivial equilibrium. In Section 4 we will see that the eigenvalue which crosses the imaginary axis through zero is, unfortunately, not simple if $n=3$. Therefore, it is not possible to apply the bifurcation results of Crandall-Rabinowitz directly. By the choice of the boundary conditions, the equilibria of the transformed problem are such that $u=0, p$ is constant and the height function h satisfies the capillary equation

$$
\begin{align*}
\sigma \operatorname{div}_{x^{\prime}}\left(\frac{\nabla_{x^{\prime}} h}{\sqrt{1+\left|\nabla_{x^{\prime}} h\right|^{2}}}\right)+\llbracket \rho \rrbracket \gamma_{a} h & =0, \tag{1.5}
\end{align*} \quad x^{\prime} \in B_{R}(0), ~ 子 x_{v_{B_{R}(0)}} h=0, \quad x^{\prime} \in \partial B_{R}(0) .
$$

This equation for h exhibits certain symmetry properties; in particular, we will show that it is invariant under the group action of the orthogonal group $O(2)$. This fact enables us to reduce the bifurcation equation to a one-dimensional equation and to apply the implicit function theorem which yields the existence of subcritical bifurcating branches from the trivial solution.

Finally, we collect all technical results which are needed for the execution of the above program in Appendix A.
Notation. The symbols $H_{p}^{s}, W_{p}^{s}, s \geq 0$ refer to the Bessel potential spaces and SobolevSlobodeckij spaces, respectively (Sobolev spaces for $s \in \mathbb{N}$ with $H=W$). If $J=[0, T]$ is some interval and X a suitable Banach space, then ${ }_{0} W_{p}^{s}(J ; X)$ denotes the subspace of $W_{p}^{s}(J ; X)$ consisting of all functions having a vanishing trace at $t=0$, whenever it exists. Finally, we denote by $\dot{W}_{p}^{k}(\Omega)=\dot{H}_{p}^{k}(\Omega)$ the homogeneous Sobolev space of order $k \in \mathbb{N}$, where $\Omega \subset \mathbb{R}^{n}$ is a sufficiently smooth domain. The symbol $(\cdot \mid \cdot)$ denotes the standard inner product in \mathbb{R}^{n} and we will sometimes also make use of the notation $u \cdot v=(u \mid v)$ for $u, v \in \mathbb{R}^{n}$.

Remark 1.1. The results in this paper are partially taken from the author's habilitation thesis [54].

2. Preliminaries

For the sake of readability we will assume throughout this article that the space dimension n is equal to 3. This is the most important case from a viewpoint of applications. Furthermore, we will assume from now on that $p>5$. In [55], an article about the well-posedness of the nonlinear model, this condition on p is needed for an application of some Sobolev embeddings. For arbitrary n one may work with the restriction $p>n+2$.

It is convenient to introduce the modified pressure

$$
\tilde{\pi}:=\pi+\rho \gamma_{a} x_{3}
$$

in (1.4). Then, we obtain the following problem:

$$
\begin{align*}
\partial_{t}(\rho u)-\mu \Delta u+\rho(u \cdot \nabla) u+\nabla \tilde{\pi} & =0, & & \text { in } \Omega \backslash \Gamma(t), \\
\operatorname{div} u & =0, & & \text { in } \Omega \backslash \Gamma(t), \\
-\llbracket \mu\left(\nabla u+\nabla u^{\top}\right) \rrbracket v_{\Gamma}+\llbracket \tilde{\pi} \rrbracket v_{\Gamma} & =\sigma H_{\Gamma} v_{\Gamma}+\llbracket \rho \rrbracket \gamma_{a} x_{3} \nu_{\Gamma}, & & \text { on } \Gamma(t), \\
\llbracket u \rrbracket & =0, & & \text { on } \Gamma(t), \\
V_{\Gamma} & =u \cdot v_{\Gamma}, & & \text { on } \Gamma(t), \\
P_{S_{1}}\left(\mu\left(\nabla u+\nabla u^{\top}\right) v_{S_{1}}\right) & =0, & & \text { on } S_{1} \backslash \partial \Gamma(t), \tag{2.1}\\
u \cdot v_{S_{1}} & =0, & & \text { on } S_{1} \backslash \partial \Gamma(t), \\
u & =0, & & \text { on } S_{2}, \\
\nu_{\Gamma} \cdot v_{S_{1}} & =0, & & \text { on } \partial \Gamma(t), \\
u(0) & =u_{0}, & & \text { in } \Omega \backslash \Gamma(0), \\
\Gamma(0) & =\Gamma_{0} . & &
\end{align*}
$$

Here $\Omega=G \times\left(H_{1}, H_{2}\right), H_{1}<0<H_{2}$, is a cylindrical domain where $G \subset \mathbb{R}^{2}$ is an open bounded domain with a smooth boundary ∂G. The compact free boundary $\Gamma(t)$ divides Ω into two unbounded disjoint phases $\Omega_{j}(t), j=1,2$, so that $\Omega=\Omega_{1}(t) \cup \Gamma(t) \cup \Omega_{2}(t)$. The convention is that $\Omega_{2}(t)$ is the upper phase while $\Omega_{1}(t)$ is the lower one, with the unit normal ν_{Γ} at $x \in \Gamma(t)$ pointing from $\Omega_{1}(t)$ to $\Omega_{2}(t)$. We denote by $\nu_{S_{1}}$ the outer unit normal at the fixed boundary $S_{1}:=\partial G \times\left(H_{1}, H_{2}\right)$. The operator $P_{S_{1}}:=I-v_{S_{1}} \otimes v_{S_{1}}$ stands for the projection to the tangential space on S_{1}. Finally, $S_{2}:=\bigcup_{j=1}^{2} G \times\left\{H_{j}\right\}$.

2.1. Reduction to a flat interface

In this section we transform the time-dependent domain $\Omega \backslash \Gamma(t)$ to a fixed domain by means of a Hanzawa tranformation. To this end, we assume that

$$
\Gamma(t)=\left\{x \in G \times\left(H_{1}, H_{2}\right): x_{3}=h\left(t, x^{\prime}\right), x^{\prime}=\left(x_{1}, x_{2}\right) \in G, t \geq 0\right\}
$$

Let $\left.\varphi \in C^{\infty}(\mathbb{R} ;[0,1])\right)$ be such that $\varphi(s)=1$ if $|s| \leq \delta / 2$ and $\varphi(s)=0$ if $|s| \geq \delta$, where
we have $\delta<\min \left\{-H_{1}, H_{2}\right\} / 2$. Define a mapping

$$
\Theta_{h}(t, \bar{x}):=\bar{x}+\varphi\left(\bar{x}_{3}\right) h\left(t, \bar{x}^{\prime}\right) e_{3}=: \bar{x}+\theta_{h}(t, \bar{x})
$$

where $\bar{x}:=\left(\bar{x}^{\prime}, \bar{x}_{3}\right)$, and for fixed $t>0$ we set $x=\Theta_{h}(t, \bar{x})$. An easy computation shows

$$
\theta_{h}^{\prime \top}=\left(\begin{array}{ccc}
0 & 0 & \partial_{1} h \varphi \\
0 & 0 & \partial_{2} h \varphi \\
0 & 0 & h \varphi^{\prime}
\end{array}\right)
$$

It follows that Θ_{h}^{\prime} is invertible if $\|h\|_{\infty, \infty}<1 /\left(2\left|\varphi^{\prime}\right|_{\infty}\right)$, and

$$
\left(\Theta_{h}^{\prime}\right)^{-\top}=\left(I+\theta_{h}^{\prime \top}\right)^{-1}=\frac{1}{1+h \varphi^{\prime}}\left(\begin{array}{ccc}
1+h \varphi^{\prime} & 0 & -\partial_{1} h \varphi \\
0 & 1+h \varphi^{\prime} & -\partial_{2} h \varphi \\
0 & 0 & 1
\end{array}\right)
$$

In what follows, let $\|h\|_{\infty, \infty}<\eta$ with $0<\eta \leq 1 /\left(2\left|\varphi^{\prime}\right|_{\infty}\right)$ being sufficiently small. Then, the inverse $\Theta_{h}^{-1}: \Omega \rightarrow \Omega$ is well-defined and it transforms the free interface $\Gamma(t)$ to the flat and fixed interface $\Sigma:=G \times\{0\}$. Now we define the transformed quantities

$$
\begin{aligned}
& \bar{u}(t, \bar{x}):=u\left(t, \Theta_{h}(t, \bar{x})\right), \\
& \bar{\pi}(t, \bar{x}):=\tilde{\pi}\left(t, \Theta_{h}(t, \bar{x})\right)
\end{aligned}
$$

and compute $\nu_{\Gamma}=\left(-\nabla_{x^{\prime}} h, 1\right)^{\top} / \sqrt{1+\left|\nabla_{x^{\prime}} h\right|^{2}}$, where

$$
\begin{aligned}
\nabla \tilde{\pi} & =\nabla \bar{\pi}-M_{0}(h) \nabla \bar{\pi}, \\
\operatorname{div} u & =\operatorname{div} \bar{u}-\left(M_{0}(h) \nabla \mid \bar{u}\right), \\
\Delta u & =\Delta \bar{u}-M_{1}(h): \nabla^{2} \bar{u}-M_{2}(h) \nabla \bar{u}, \\
\partial_{t} u & =\partial_{t} \bar{u}-\varphi \partial_{t} h\left(1+\varphi^{\prime} h\right)^{-1} \partial_{3} \bar{u},
\end{aligned}
$$

with

$$
\begin{aligned}
M_{0}(h) & :=\theta_{h}^{\prime \top}\left(I+\theta_{h}^{\prime \top}\right)^{-1}, \\
M_{1}(h): \nabla^{2} \bar{u} & :=\left[2 \operatorname{sym}\left(\theta_{h}^{\top \top}\left[I+\theta_{h}^{\prime}\right]^{-\top}\right)-\left[I+\theta_{h}^{\prime}\right]^{-1} \theta_{h}^{\prime} \theta_{h}^{\prime \top}\left[I+\theta_{h}^{\prime}\right]^{-\top}\right]: \nabla^{2} \bar{u},
\end{aligned}
$$

and

$$
M_{2}(h) \nabla \bar{u}:=\left(\left[\Delta \Theta_{h}^{-1}\right] \circ \Theta_{h} \mid \nabla\right) \bar{u} .
$$

Furthermore, it holds that

$$
V_{\Gamma}=\left(\partial_{t} \Theta_{h} \mid \nu_{\Gamma}\right)=\partial_{t} h\left(e_{3} \mid \nu_{\Gamma}\right)=\frac{\partial_{t} h}{\sqrt{1+\left|\nabla_{x^{\prime}} h\right|^{2}}}
$$

This yields the following transformed problem for \bar{u} and $\bar{\pi}$ (for convenience, we drop the bars in what follows):

$$
\begin{align*}
\partial_{t}(\rho u)-\mu \Delta u+\nabla \pi & =F(u, \pi, h), & & \text { in } \Omega \backslash \Sigma, \\
\operatorname{div} u & =F_{d}(u, h), & & \text { in } \Omega \backslash \Sigma, \\
-\llbracket \mu \partial_{3} v \rrbracket-\llbracket \mu \nabla_{x^{\prime}} w \rrbracket & =G_{v}(u, h), & & \text { on } \Sigma, \\
-2 \llbracket \mu \partial_{3} w \rrbracket+\llbracket \pi \rrbracket-\sigma \Delta_{x^{\prime}} h-\llbracket \rho \rrbracket \gamma_{a} h & =G_{w}(u, h), & & \text { on } \Sigma, \\
\llbracket u \rrbracket & =0, & & \text { on } \Sigma, \\
\partial_{t} h-w & =H_{1}(u, h), & & \text { on } \Sigma, \\
P_{S_{1}}\left(\mu\left(\nabla u+\nabla u^{\top}\right) v_{S_{1}}\right) & =H_{2}(u, h), & & \text { on } S_{1} \backslash \partial \Sigma, \tag{2.2}\\
u \cdot v_{S_{1}} & =0, & & \text { on } S_{1} \backslash \partial \Sigma, \\
u & =0, & & \text { on } S_{2}, \\
\partial_{v_{\partial G}} h & =0, & & \text { on } \partial \Sigma, \\
u(0) & =u_{0}, & & \text { in } \Omega \backslash \Sigma, \\
h(0) & =h_{0}, & & \text { on } \Sigma .
\end{align*}
$$

Here,

$$
\begin{aligned}
& F(u, \pi, h):=\rho \varphi \partial_{t} h\left(1+\varphi^{\prime} h\right)^{-1} \partial_{3} u-\mu\left(M_{1}(h): \nabla^{2} u+M_{2}(h) \nabla u\right)+M_{0}(h) \nabla \pi, \\
& F_{d}(u, h):=\left(M_{0}(h) \nabla \mid u\right), \\
& G_{v}(u, h):=-\llbracket \mu\left(\nabla v+\nabla v^{\top}\right) \rrbracket \nabla h+|\nabla h|^{2} \llbracket \mu \partial_{3} v \rrbracket \\
& \quad+\left(\left(1+|\nabla h|^{2}\right) \llbracket \mu \partial_{3} w \rrbracket-(\nabla h \mid \llbracket \mu \nabla w \rrbracket)\right) \nabla h, \\
& G_{w}(u, h):=-(\nabla h \mid \llbracket \mu \nabla w \rrbracket)-\left(\nabla h \mid \llbracket \mu \partial_{3} v \rrbracket\right)+|\nabla h|^{2} \llbracket \mu \partial_{3} w \rrbracket+\sigma G_{\kappa}(h), \\
& G_{\kappa}(h):=\operatorname{div}\left(\frac{\nabla h}{\sqrt{1+|\nabla h|^{2}}}\right)-\Delta h, \\
& H_{1}(u, h):=-(v \mid \nabla h), \\
& H_{2}(u, h):=P_{S_{1}}\left(\mu\left(M_{0}(h) \nabla u+\nabla u^{\top} M_{0}(h)^{\top}\right) v_{S_{1}}\right),
\end{aligned}
$$

where we have set

$$
\begin{gathered}
v:=\left(u_{1}, u_{2}\right), \quad w:=u_{3} \\
\nabla w=\nabla_{x^{\prime}} w, \quad \nabla v=\nabla_{x^{\prime}} v, \quad \nabla h=\nabla_{x^{\prime}} h
\end{gathered}
$$

for the sake of readability. Note that $H_{2}(u, h)=0$ on $S_{1} \backslash \partial \Sigma$ since $u \cdot v_{S_{1}}=0$ on $S_{1} \backslash \partial \Sigma$ and $\partial_{\nu_{\partial G}} h=0$ on ∂G; see [55, Section 4.1].

The following result on the existence and uniqueness of strong L_{p}-solutions having optimal regularity has been published in [55, Theorem 4.2]:

Theorem 2.1. Let $n=3, p>5$. For each given $T>0$ there exists a number $\eta=\eta(T)>0$ such that for all initial values $\left(u_{0}, h_{0}\right) \in W_{p}^{2-2 / p}(\Omega \backslash \Sigma)^{3} \times W_{p}^{3-2 / p}(\Sigma)$ satisfying the
compatibility conditions

$$
\begin{aligned}
\operatorname{div} u_{0} & =F_{d}\left(u_{0}, h_{0}\right), \\
-\llbracket \mu \partial_{3} v_{0} \rrbracket-\llbracket \mu \nabla_{x^{\prime}} w_{0} \rrbracket & =G_{v}\left(v_{0}, h_{0}\right), \\
\llbracket u_{0} \rrbracket & =0, \\
u_{0} \cdot v_{S_{1}} & =0, \\
P_{S_{1}}\left(\mu\left(\nabla u_{0}+\nabla u_{0}^{T}\right) v_{S_{1}}\right) & =0, \\
\left.u_{0}\right|_{S_{2}} & =0, \\
\partial_{v_{\partial G}} h_{0} & =0,
\end{aligned}
$$

as well as the smallness condition

$$
\left\|u_{0}\right\|_{W_{p}^{2-2 / p}(\Omega \backslash \Sigma)}+\left\|h_{0}\right\|_{W_{p}^{3-2 / p}(\Sigma)} \leq \eta,
$$

there exists a unique solution $(u, \pi, \llbracket \pi \rrbracket, h)$ of (2.2) with regularity

$$
\begin{gathered}
u \in H_{p}^{1}\left((0, T) ; L_{p}(\Omega)^{3}\right) \cap L_{p}\left((0, T) ; H_{p}^{2}(\Omega \backslash \Sigma)^{3}\right), \quad \pi \in L_{p}\left((0, T) ; \dot{H}_{p}^{1}(\Omega)\right), \\
\llbracket \pi \rrbracket \in W_{p}^{1 / 2-1 / 2 p}\left((0, T) ; L_{p}(\Sigma)\right) \cap L_{p}\left((0, T) ; W_{p}^{1-1 / p}(\Sigma)\right) .
\end{gathered}
$$

and

$$
h \in W_{p}^{2-1 / 2 p}\left((0, T) ; L_{p}(\Sigma)\right) \cap H_{p}^{1}\left((0, T) ; W_{p}^{2-1 / p}(\Sigma)\right) \cap L_{p}\left((0, T) ; W_{p}^{3-1 / p}(\Sigma)\right)
$$

3. Rayleigh-Taylor instability

3.1. Equilibria and spectrum of the linearisation

In this section we compute the equilibria of (2.1) as well as the spectrum of the full linearisation of (2.1) in the trivial equilibrium.

Assume that we have a time-independent solution of (2.1). Then multiplying (2.1) 1_{1} by u and integrating by parts yields the identity

$$
\left\|\mu^{1 / 2} D u\right\|_{L_{2}(\Omega)}^{2}=0
$$

hence $u=0$ on $\partial \Omega$ and therefore $u=0$ in all of Ω, by Korn's inequality (Theorem A.4). If $u=0$, then π must be constant, with possibly different values in different phases. Hence, condition $(2.1)_{3}$ yields that

$$
\sigma H_{\Gamma}+\llbracket \rho \rrbracket \gamma_{a} x_{3}=\text { const. }
$$

on Γ. In particular, if $H_{\Gamma}=0$ then x_{3} must be constant, hence flat interfaces belong to the set of equilibria. Assume that Γ is given by the graph of a height function h, that is,

$$
\Gamma=\left\{x \in \Omega: x_{3}=h\left(x_{1}, x_{2}\right),\left(x_{1}, x_{2}\right) \in G\right\} .
$$

Then the normal v_{Γ} on Γ pointing from $\Omega_{1}\left(x_{3}<h\left(x_{1}, x_{2}\right)\right)$ into $\Omega_{2}\left(x_{3}>h\left(x_{1}, x_{2}\right)\right)$ is given by

$$
\nu_{\Gamma}\left(x^{\prime}, h\left(x^{\prime}\right)\right)=\frac{1}{\sqrt{1+\left|\nabla_{x^{\prime}} h\left(x^{\prime}\right)\right|^{2}}}\left[-\nabla_{x^{\prime}} h\left(x^{\prime}\right), 1\right]^{\top}, \quad x^{\prime}=\left(x_{1}, x_{2}\right) \in B_{R}(0)
$$

Since $H_{\Gamma}=-\operatorname{div}_{\Gamma} v_{\Gamma}$, we obtain the quasilinear elliptic problem

$$
\begin{align*}
\sigma \operatorname{div}_{x^{\prime}}\left(\frac{\nabla_{x^{\prime}} h}{\sqrt{1+\left|\nabla_{x^{\prime}} h\right|^{2}}}\right)+\llbracket \rho \rrbracket \gamma_{a} h & =c, \quad x^{\prime} \in G \tag{3.1}\\
\partial_{v_{\partial G}} h & =0, \quad x^{\prime} \in \partial G
\end{align*}
$$

where $c:=\frac{\llbracket \rho \rrbracket \gamma_{a}}{|G|} \int_{G} h d x^{\prime}$. All admissible height functions which solve (3.1) belong to the set of equilibria.

We are interested in the stability properties of the flat interface $\Sigma=G \times\{0\}$ in $\Omega=$ $G \times\left(H_{1}, H_{2}\right)$. After transformation of (2.1) to the fixed domain $\Omega \backslash \Sigma$, we consider the full linearisation around the equilibrium $(0, \Sigma)$:

$$
\begin{aligned}
\partial_{t}(\rho u)-\mu \Delta u+\nabla \pi & =0, & & \text { in } \Omega \backslash \Sigma, \\
\operatorname{div} u & =0, & & \text { in } \Omega \backslash \Sigma, \\
-\llbracket \mu\left(\nabla u+\nabla u^{\top}\right) \rrbracket e_{3}+\llbracket \pi \rrbracket e_{3} & =\sigma\left(\Delta_{x^{\prime}} h\right) e_{3}+\llbracket \rho \rrbracket \gamma_{a} h e_{3}, & & \text { on } \Sigma, \\
\llbracket u \rrbracket & =0, & & \text { on } \Sigma, \\
\partial_{t} h-u_{3} & =0, & & \text { on } \Sigma, \\
P_{S_{1}}\left(\mu\left(\nabla u+\nabla u^{\top}\right) v_{S_{1}}\right) & =0, & & \text { on } S_{1} \backslash \partial \Sigma, \\
\left(u \mid v_{S_{1}}\right) & =0, & & \text { on } S_{1} \backslash \partial \Sigma, \\
u & =0, & & \text { on } S_{2}, \\
\partial_{v_{\partial G}} h & =0, & & \text { on } \partial \Sigma, \\
u(0) & =u_{0}, & & \text { in } \Omega \backslash \Sigma, \\
h(0) & =h_{0}, & & \text { on } \Sigma,
\end{aligned}
$$

Observe that by conservation of mass, it holds that

$$
\int_{G} h(t) d x^{\prime}=\int_{G} h_{0} d x^{\prime}
$$

for $t>0$. Indeed, this follows from an integration of (3.2) ${ }_{5}$ over $\Sigma=G \times\{0\}$ and the fact that

$$
\int_{G} u_{3} d x^{\prime}=\int_{\Omega_{1}} \operatorname{div} u d x=0
$$

by (3.2 $)_{2,4,7,8}$ and the divergence theorem for Lipschitz domains. Therefore, if h_{0} is mean value free, the solution $h(t)$ inherits this property for $t>0$.

Define a linear operator $L: X_{1} \rightarrow X_{0}$ by

$$
\begin{equation*}
L(u, h):=\left[(\mu / \rho) \Delta u-(1 / \rho) \nabla \pi, u \cdot e_{3}\right], \tag{3.3}
\end{equation*}
$$

where $X_{0}:=L_{p, \sigma}(\Omega) \times\left\{h \in W_{p}^{2-1 / p}(\Sigma): \int_{G} h d x^{\prime}=0, \partial_{\nu_{\partial G}} h=0\right\}$,

$$
L_{p, \sigma}(\Omega):={\overline{\left\{u \in C_{c}^{\infty}(\Omega)^{3}: \operatorname{div} u=0\right\}}}^{\|\cdot\|_{L_{p}}}, \quad \bar{X}_{1}=H_{p}^{2}(\Omega \backslash \Sigma)^{3} \times W_{p}^{3-1 / p}(\Sigma)
$$

and

$$
\begin{align*}
& X_{1}:=D(L)=\left\{(u, h) \in X_{0} \cap \bar{X}_{1}: P_{\Sigma}\left(\llbracket \mu\left(\nabla u+\nabla u^{\top}\right) \rrbracket e_{3}\right)=0, \llbracket u \rrbracket=0,\left.u\right|_{S_{2}}=0,\right. \\
&\left.P_{S_{1}}\left(\mu\left(\nabla u+\nabla u^{\top}\right) v_{S_{1}}\right)=0,\left(u \mid v_{S_{1}}\right)=0, \partial_{\nu_{\partial G}} h=0\right\} . \tag{3.4}
\end{align*}
$$

The function $\pi \in \dot{H}_{p}^{1}(\Omega \backslash \Sigma)$ in the definition of L is determined as the solution of the weak transmission problem

$$
\begin{aligned}
\left(\left.\frac{1}{\rho} \nabla \pi \right\rvert\, \nabla \phi\right)_{L_{2}(\Omega)} & =\left(\left.\frac{\mu}{\rho} \Delta u \right\rvert\, \nabla \phi\right)_{L_{2}(\Omega)}, \\
\llbracket \pi \rrbracket & =\sigma \Delta_{x^{\prime}} h+\llbracket \rho \rrbracket \gamma_{a} h+\left(\llbracket \mu\left(\nabla u+\nabla u^{\top}\right) \rrbracket e_{3} \mid e_{3}\right) \quad \text { on } \Sigma,
\end{aligned}
$$

where $\phi \in H_{p^{\prime}}^{1}(\Omega)$ and $p^{\prime}=p /(p-1)$, which we know is well-defined thanks to [55, Lemma 5.7]. We will sometimes make use of the notation via solution operators, i.e.,

$$
\begin{equation*}
\frac{1}{\rho} \nabla \pi=T_{1}[(\mu / \rho) \Delta u]+T_{2}\left[\sigma \Delta_{x^{\prime}} h+\llbracket \rho \rrbracket \gamma_{a} h+\left(\llbracket \mu\left(\nabla u+\nabla u^{\top}\right) \rrbracket e_{3} \mid e_{3}\right)\right] \tag{3.5}
\end{equation*}
$$

where $T_{1}: L_{p}(\Omega)^{3} \rightarrow L_{p}(\Omega)^{3}$ and $T_{2}: W_{p}^{1-1 / p}(\Sigma) \rightarrow L_{p}(\Omega)^{3}$ are bounded linear operators.

In what follows, we will analyse the spectrum of the operator L. Note that L has a compact resolvent. This implies that the spectrum of L is discrete and it consists solely of eigenvalues with finite multiplicity. Consider the eigenvalue problem $\lambda(u, h)=L(u, h)$, that is,

$$
\begin{align*}
\lambda \rho u-\mu \Delta u+\nabla \pi & =0, & & \text { in } \Omega \backslash \Sigma, \\
\operatorname{div} u & =0, & & \text { in } \Omega \backslash \Sigma, \\
-\llbracket \mu\left(\nabla u+\nabla u^{\top}\right) \rrbracket e_{3}+\llbracket \pi \rrbracket e_{3} & =\sigma\left(\Delta_{x^{\prime}} h\right) e_{3}+\llbracket \rho \rrbracket \gamma_{a} h e_{3}, & & \text { on } \Sigma, \\
\llbracket u \rrbracket & =0, & & \text { on } \Sigma, \\
\lambda h-u_{3} & =0, & & \text { on } \Sigma, \tag{3.6}\\
P_{S_{1}}\left(\mu\left(\nabla u+\nabla u^{\top}\right) v_{\partial \Omega}\right) & =0, & & \text { on } S_{1} \backslash \partial \Sigma, \\
\left(u \mid v_{S_{1}}\right) & =0, & & \text { on } S_{1} \backslash \partial \Sigma, \\
u & =0, & & \text { on } S_{2}, \\
\partial_{v_{\partial G}} h & =0, & & \text { on } \partial \Sigma .
\end{align*}
$$

We test the first equation with u and integrate by parts to obtain

$$
\begin{equation*}
\lambda\left|\rho^{1 / 2} u\right|_{L_{2}(\Omega)}^{2}+\frac{1}{2}\left|\mu^{1 / 2} D u\right|_{L_{2}(\Omega)}^{2}+\bar{\lambda}\left[\sigma\left|\nabla_{x^{\prime}} h\right|_{L_{2}(G)}^{2}-\llbracket \rho \rrbracket \gamma_{a}|h|_{L_{2}(G)}^{2}\right]=0 . \tag{3.7}
\end{equation*}
$$

The above identity for $\lambda=0$ implies $u=0$, by Korn's inequality (Theorem A.4), hence p as well as $\llbracket p \rrbracket$ are constant. Therefore, h is a solution of the linear elliptic problem

$$
\begin{align*}
\Delta_{x^{\prime}} h+\frac{\llbracket \rho \rrbracket \gamma_{a}}{\sigma} h & =0, \quad x^{\prime} \in G, \tag{3.8}\\
\partial_{\nu_{\partial G}} h & =0, \quad x^{\prime} \in \partial G
\end{align*}
$$

since h is mean value free. Let $\sigma\left(-\Delta_{N}\right) \subset(0, \infty)$ denote the spectrum of the negative Neumann Laplacian in the space

$$
X:=\left\{h \in W_{p}^{1-1 / p}(G): \int_{G} h d x^{\prime}=0\right\}
$$

and let $E(\eta)$ denote the eigenspace corresponding to the eigenvalue $\eta \in \sigma\left(-\Delta_{N}\right)$. It follows that $h=0$ is the unique solution of (3.8) if and only if

$$
\frac{\llbracket \rho \rrbracket \gamma_{a}}{\sigma} \notin \sigma\left(-\Delta_{N}\right)
$$

and there exists $0 \neq h \in E(\eta)$ if and only if

$$
\eta:=\frac{\llbracket \rho \rrbracket \gamma_{a}}{\sigma} \in \sigma\left(-\Delta_{N}\right)
$$

This shows that

$$
0 \in \sigma(L) \quad \text { if and only if } \quad \frac{\llbracket \rho \rrbracket \gamma_{a}}{\sigma} \in \sigma\left(-\Delta_{N}\right)
$$

Suppose that $0 \neq \lambda \in \sigma(L)$ with $\operatorname{Re} \lambda=0$. Taking real parts in (3.7), it follows that $u=0$ by Korn's inequality (Theorem A.4), hence h must be nontrivial. By equation (3.6) ${ }_{5}$, it follows that $\lambda=0$. This shows that $\lambda=0$ is the only eigenvalue of L on the imaginary axis.

In particular, if

$$
\frac{\llbracket \rho \rrbracket \gamma_{a}}{\sigma}<\lambda_{1}
$$

with $\lambda_{1}>0$ being the first nontrivial eigenvalue of $-\Delta_{N}$ in X, then

$$
\sigma(L) \subset\{\lambda \in \mathbb{C}: \operatorname{Re} \lambda \leq-\omega<0\}
$$

for some $\omega>0$, since

$$
\left|\nabla_{x^{\prime}} h\right|_{L_{2}(G)}^{2}-\frac{\llbracket \rho \rrbracket \gamma_{a}}{\sigma}|h|_{L_{2}(G)}^{2} \geq 0
$$

by the Poincaré inequality for functions h with mean value zero. To see this, observe that (by a bootstrap argument) e_{j} is an eigenfunction of $-\Delta_{N}$ with eigenvalue λ_{j} in X if and only if e_{j} is an eigenfunction of $-\Delta_{N}$ with eigenvalue λ_{j} in

$$
L_{2}^{(0)}(G):=\left\{h \in L_{2}(G): \int_{G} h d x^{\prime}=0\right\}
$$

As $-\Delta_{N}$ is self-adjoint in $L_{2}^{(0)}(G)$ with compact resolvent, the spectral mapping theorem yields

$$
\left|\nabla_{x^{\prime}} h\right|_{L_{2}(G)}^{2} \geq \lambda_{1}|h|_{L_{2}(G)}^{2}
$$

for all $h \in H_{2}^{1}(G) \cap L_{2}^{(0)}(G)$.
Note that there exists $\kappa>0$ such that $\kappa-L$ is a sectorial operator, since L has maximal L_{p}-regularity. In particular, it holds that $\sigma(L-\kappa) \subset \Sigma_{\pi / 2+\delta}$, or equivalently, $\sigma(L) \subset \Sigma_{\pi / 2+\delta}+\kappa$ for some $\delta \in(0, \pi / 2)$. This concludes the proof of existence of the number $\omega>0$ above.

Now, we aim to show that $\sigma(L) \cap \mathbb{C}_{+} \neq \emptyset$ whenever $\frac{\llbracket \rho \rrbracket \gamma_{a}}{\sigma}>\lambda_{1}$. To this end, for $\lambda \geq 0$ and given $g \in W_{p}^{1-1 / p}(G), p>2$, we solve the elliptic two-phase Stokes problem

$$
\begin{align*}
\lambda \rho u-\mu \Delta u+\nabla \pi & =0, & & \text { in } \Omega \backslash \Sigma, \\
\operatorname{div} u & =0, & & \text { in } \Omega \backslash \Sigma, \\
-\llbracket \mu\left(\nabla u+\nabla u^{\top}\right) \rrbracket e_{3}+\llbracket \pi \rrbracket e_{3} & =g e_{3}, & & \text { on } \Sigma, \\
\llbracket u \rrbracket & =0, & & \text { on } \Sigma, \tag{3.9}\\
P_{S_{1}}\left(\mu\left(\nabla u+\nabla u^{\top}\right) v_{S_{1}}\right) & =0, & & \text { on } S_{1} \backslash \partial \Sigma, \\
\left(u \mid v_{S_{1}}\right) & =0, & & \text { on } S_{1} \backslash \partial \Sigma, \\
u & =0, & & \text { on } S_{2}
\end{align*}
$$

by Theorem A. 3 to obtain a unique solution $u \in H_{p}^{2}(\Omega \backslash \Sigma) \cap H_{p}^{1}(\Omega)$. Define the (reduced) Neumann-to-Dirichlet operator $N_{\lambda}: W_{p}^{1-1 / p}(G) \rightarrow W_{p}^{2-1 / p}(G)$ by $N_{\lambda} g:=\left(u \mid e_{3}\right)$. With the compact operator N_{λ} at hand, we may rewrite the eigenvalue problem (3.6) as

$$
\begin{equation*}
\lambda h+N_{\lambda}\left(A_{*} h\right)=0, \tag{3.10}
\end{equation*}
$$

where $A_{*} h:=-\sigma \Delta_{N} h-\llbracket \rho \rrbracket \gamma_{a} h$ is the shifted Neumann Laplacian with domain

$$
D\left(A_{*}\right)=\left\{h \in W_{p}^{3-1 / p}(G): \int_{G} h d x^{\prime}=0, \partial_{\nu_{\partial G}} h=0 \text { on } \partial G\right\}
$$

We remark that for $\lambda \geq 0$ problems (3.6) and (3.10) are equivalent. Therefore, it suffices to show that for $\frac{\llbracket \rho \rrbracket \gamma_{a}}{\sigma}>\lambda_{1}$ there exists $\lambda>0$ such that equation (3.10) has a nontrivial solution $h \in D\left(A_{*}\right)$.

Concerning N_{λ}, we have the following result (see also [31, Section 10.5] for the case of a bounded smooth domain with $\Gamma(t) \cap \partial \Omega=\emptyset)$:

Proposition 3.1. The Neumann-to-Dirichlet operator N_{λ} of the Stokes problem (3.9) admits a compact self-adjoint extension to $L_{2}(G)$ which has the following properties:
(1) If u denotes the solution of (3.9), then

$$
\left(N_{\lambda} g \mid g\right)_{2}=\lambda\left|\rho^{1 / 2} u\right|_{L_{2}(\Omega)}^{2}+\frac{1}{2}\left|\mu^{1 / 2} D u\right|_{L_{2}(\Omega)}^{2}
$$

for all $g \in W_{p}^{1-1 / p}(G)$ and $\lambda \geq 0$.
(2) For each $\alpha \in(0,1 / 2)$ there is a constant $C>0$ such that

$$
\left(N_{\lambda} g \mid g\right)_{2} \geq \frac{(1+\lambda)^{\alpha}}{C}\left|N_{\lambda} g\right|_{L_{2}(G)}^{2}
$$

for all $g \in L_{2}(G)$ and $\lambda \geq 0$. In particular,

$$
\left|N_{\lambda}\right|_{\mathcal{B}\left(L_{2}(G)\right)} \leq \frac{C}{(1+\lambda)^{\alpha}}
$$

for all $\lambda \geq 0$.
(3) $N_{\lambda} g$ has mean value zero for all $\lambda \geq 0$ and each $g \in L_{2}(G)$.

Proof. The first assertion follows from integration by parts, while for the proof of the second assertion one uses trace theory, interpolation theory and Korn's inequality (Theorem A.4). To show the third assertion, observe that for each $\lambda \geq 0$ we have

$$
\int_{G} N_{\lambda} g d x^{\prime}=\int_{G}\left(u \mid e_{3}\right) d x^{\prime}=\int_{\Omega_{1}} \operatorname{div} u_{1} d x=0
$$

by the divergence theorem, where $u_{1}:=\left.u\right|_{\Omega_{1}}$.
Proposition 3.1 combined with Korn's inequality (Theorem A.4) implies that whenever $N_{\lambda} g=0$, then $u=0$, hence g must be constant. Therefore, the restriction of N_{λ} to functions with mean value zero is injective. Therefore, we may rewrite equation (3.10) as

$$
\begin{equation*}
\lambda N_{\lambda}^{-1} h+A_{*} h=0 \tag{3.11}
\end{equation*}
$$

for each $h \in D\left(A_{*}\right)$. Let us consider (3.11) in $L_{2}^{(0)}(G)$, the subspace of $L_{2}(G)$ consisting of functions with vanishing mean value. Define $B_{\lambda}:=\lambda N_{\lambda}^{-1}+A_{*}$ with

$$
D\left(B_{\lambda}\right)=D\left(A_{*}\right)=\left\{h \in W_{2}^{2}(G) \cap L_{2}^{(0)}(G): \partial_{\nu_{\partial G}} h=0 \text { on } \partial G\right\}
$$

since N_{λ}^{-1} is a relatively compact perturbation of A_{*}. We will show that the operator B_{λ} is positive definite provided $\lambda>0$ is large enough. Let $\mu_{j}>0$ be an eigenvalue of N_{λ}^{-1} in $L_{2}^{(0)}(G)$ with corresponding eigenfunction e_{j}. Then

$$
\frac{1}{\mu_{j}}\left|e_{j}\right|_{2}=\left|N_{\lambda} e_{j}\right|_{2} \leq \frac{C}{(1+\lambda)^{\alpha}}\left|e_{j}\right|_{2}
$$

hence $\mu_{j} \geq \frac{1}{C}>0$ for each $\lambda \geq 0$. It follows that

$$
\left(B_{\lambda} h \mid h\right)_{2}=\lambda\left(N_{\lambda}^{-1} h \mid h\right)_{2}+\left(A_{*} h \mid h\right)_{2} \geq\left(\lambda / C-\llbracket \rho \rrbracket \gamma_{a}\right)|h|_{2}^{2}>0
$$

for each $h \in D\left(A_{*}\right)$, if $\lambda>0$ is sufficiently large.
On the other hand, let $0 \neq h_{*} \in D\left(A_{*}\right)$ be an eigenfunction of $-\Delta_{N}$ to the first nontrivial eigenvalue $\lambda_{1}>0$ of $-\Delta_{N}$, i.e., $-\Delta_{N} h_{*}=\lambda_{1} h_{*}$. This yields

$$
\left(B_{\lambda} h_{*} \mid h_{*}\right)_{2}=\lambda\left(N_{\lambda}^{-1} h_{*} \mid h_{*}\right)_{2}-\sigma\left(\frac{\llbracket \rho \rrbracket \gamma_{a}}{\sigma}-\lambda_{1}\right)\left|h_{*}\right|_{2}^{2} .
$$

Since $\lim _{\lambda \rightarrow 0_{+}} \lambda\left(N_{\lambda}^{-1} h_{*} \mid h_{*}\right)=0$, it follows that $\left(B_{\lambda} h_{*} \mid h_{*}\right)_{2}<0$ provided $\lambda>0$ is sufficiently small and $\frac{\llbracket \rho \rrbracket \gamma_{a}}{\sigma}>\lambda_{1}$. Let $\frac{\llbracket \rho \rrbracket \gamma_{a}}{\sigma}>\lambda_{1}$ and define

$$
\lambda_{*}:=\sup \left\{\lambda>0: B_{\mu} \text { is not positive semi-definite for each } \mu \in(0, \lambda]\right\} .
$$

Then, $\lambda_{*}>0$ by what we have shown above and B_{λ} has a negative eigenvalue for each $\lambda<\lambda_{*}$, since the resolvent of B_{λ} is compact. It follows that $0 \in \sigma\left(B_{\lambda_{*}}\right)$, hence there exists a solution $0 \neq h \in D\left(A_{*}\right)$ in $L_{2}^{(0)}(G)$ of (3.11). A bootstrap argument finally shows that $h \in D\left(A_{*}\right) \cap W_{p}^{3-1 / p}(G)$. This in turn yields that $\sigma(L) \cap \mathbb{C}_{+} \neq \emptyset$ whenever $\frac{\llbracket \rho \rrbracket \gamma_{a}}{\sigma}>\lambda_{1}$. We have proven the following result:

Proposition 3.2. The operator L defined above has the following spectral properties:
(1) $\sigma(L) \cap i \mathbb{R} \subset\{0\}$ and $0 \in \sigma(L)$ if and only if $\llbracket \rho \rrbracket \gamma_{a} / \sigma \in \sigma\left(-\Delta_{N}\right)$.
(2) If $\llbracket \rho \rrbracket \leq 0$ then $\sigma(L) \subset \mathbb{C}_{-}$.
(3) If $\llbracket \rho \rrbracket>0$ and $\frac{\llbracket \rho \rrbracket \gamma_{a}}{\sigma}<\lambda_{1}$, then $\sigma(L) \subset \mathbb{C}_{-}$.
(4) If $\llbracket \rho \rrbracket>0$ and $\frac{\llbracket \rho \rrbracket \gamma_{a}}{\sigma}>\lambda_{1}$, then $\sigma(L) \cap \mathbb{C}_{+} \neq \emptyset$.

3.2. Parametrisation of the nonlinear phase manifold

We have already seen that after a Hanzawa transformation, the transformed velocity field is no longer divergence free. Moreover, the jump condition of the stress tensor as well as the divergence condition are transformed into some nonlinear terms. It is the aim of this section to parametrise the nonlinear phase manifold

$$
\begin{aligned}
\mathcal{P} \mathcal{M}:= & \left\{(u, h) \in W_{p}^{2-2 / p}(\Omega \backslash \Sigma)^{3} \times\left[W_{p}^{3-2 / p}(\Sigma) \cap X\right]:\right. \\
& \left.u\right|_{S_{2}}=0,\left.u\right|_{S_{1}} \cdot v_{S_{1}}=0, P_{S_{1}}\left(\mu\left(\nabla u+\nabla u^{\top}\right) v_{S_{1}}\right)=0, \llbracket u \rrbracket=0, \\
& \left.P_{\Sigma}\left(\mu\left(\nabla u+\nabla u^{\top}\right) e_{3}\right)=\left(G_{v}(u, h), 0\right), \partial_{v_{\partial G}} h=0, \operatorname{div} u=F_{d}(u, h)\right\}
\end{aligned}
$$

as a subset of the set $X_{\gamma}:=W_{p}^{2-2 / p}(\Omega \backslash \Sigma)^{3} \times W_{p}^{3-2 / p}(\Sigma)$, near the trivial equilibrium $\left(u_{*}, h_{*}\right)=(0,0)$ over the linear phase manifold

$$
\begin{aligned}
X_{\gamma}^{0}:=\{ & \{u, h) \in\left[W_{p}^{2-2 / p}(\Omega \backslash \Sigma)^{3} \times W_{p}^{3-2 / p}(\Sigma)\right] \cap X_{0}:\left.u\right|_{S_{2}}=0,\left.u\right|_{S_{1}} \cdot v_{S_{1}}=0, \\
& \left.P_{S_{1}}\left(\mu\left(\nabla u+\nabla u^{\top}\right) v_{S_{1}}\right)=0, \llbracket u \rrbracket=0, P_{\Sigma}\left(\mu\left(\nabla u+\nabla u^{\top}\right) e_{3}\right)=0, \partial_{v_{\partial G}} h=0\right\} .
\end{aligned}
$$

Let $\mathbb{E}_{\pi}:=\dot{W}_{p}^{1-2 / p}(\Omega \backslash \Sigma), \mathbb{E}_{q}:=W_{p}^{1-3 / p}(\Sigma)$,

$$
\begin{aligned}
\mathbb{E}_{u}:= & \left\{u \in W_{p}^{2-2 / p}(\Omega \backslash \Sigma)^{3}: \llbracket u \rrbracket=0,\left.u\right|_{S_{1}} \cdot v_{S_{1}}=0,\left.u\right|_{S_{2}}=0,\right. \\
& \left.P_{S_{1}}\left(\mu\left(\nabla u+\nabla u^{\top}\right) v_{S_{1}}\right)=0\right\},
\end{aligned}
$$

$\mathbb{E}:=\left\{(u, \pi, q) \in \mathbb{E}_{u} \times \mathbb{E}_{\pi} \times \mathbb{E}_{q}: q=\llbracket \pi \rrbracket\right\}$, and
$\mathbb{F}:=\left\{\left(f_{1}, f_{2}\right) \in\left[W_{p}^{1-2 / p}(\Omega \backslash \Sigma) \cap \hat{H}_{p}^{-1}(\Omega)\right] \times W_{p}^{1-3 / p}(\Sigma)^{3}:\left(P_{\Sigma} f_{2}\right) \cdot v_{S_{1}}=0\right.$ at $\left.\partial \Sigma\right\}$.

We will need the following auxiliary result for the Stokes problem:

$$
\begin{align*}
\rho \omega u-\mu \Delta u+\nabla \pi & =0, & & \text { in } \Omega \backslash \Sigma, \\
\operatorname{div} u & =f_{d}, & & \text { in } \Omega \backslash \Sigma, \\
-\llbracket \mu \partial_{3} v \rrbracket-\llbracket \mu \nabla_{x^{\prime}} w \rrbracket & =g_{v}, & & \text { on } \Sigma, \\
-2 \llbracket \mu \partial_{3} w \rrbracket+\llbracket \pi \rrbracket & =g_{w}, & & \text { on } \Sigma, \\
\llbracket u \rrbracket & =0, & & \text { on } \Sigma, \tag{3.12}\\
P_{S_{1}}\left(\mu\left(\nabla u+\nabla u^{\top}\right) v_{S_{1}}\right) & =0, & & \text { on } S_{1} \backslash \partial \Sigma, \\
u \cdot v_{S_{1}} & =0, & & \text { on } S_{1} \backslash \partial \Sigma, \\
u & =0, & & \text { on } S_{2} .
\end{align*}
$$

Proposition 3.3. Let $n=3, p>5$ and $\rho_{j}, \mu_{j}>0$. If $\omega>0$ is sufficiently large, then there exists a unique solution $(u, \pi, \llbracket \pi \rrbracket) \in \mathbb{E}$ of (3.12) if and only if $\left(f_{d},\left(g_{v}, g_{w}\right)\right) \in \mathbb{F}$. Moreover, there exists a constant $M_{\omega}>0$ such that

$$
\|(u, \pi, \llbracket \pi \rrbracket)\|_{\mathbb{E}} \leq M_{\omega}\left\|\left(f_{d},\left(g_{v}, g_{w}\right)\right)\right\|_{\mathbb{F}} .
$$

Proof. For the proof of this result one may apply the same strategy which was used in the proof of Theorem A.3. We omit the details.

Let us consider the elliptic problem

$$
\begin{align*}
\rho \omega \bar{u}-\mu \Delta \bar{u}+\nabla \bar{\pi} & =0, & & \text { in } \Omega \backslash \Sigma, \\
\operatorname{div} \bar{u} & =P_{0} F_{d}(\bar{u}+\tilde{u}, \tilde{h}), & & \text { in } \Omega \backslash \Sigma, \\
-\llbracket \mu \partial_{3} \bar{v} \rrbracket-\llbracket \mu \nabla_{x^{\prime}} \bar{w} \rrbracket & =G_{v}(\bar{u}+\tilde{u}, \tilde{h}), & & \text { on } \Sigma, \\
-2 \llbracket \mu \partial_{3} \bar{w} \rrbracket+\llbracket \bar{\pi} \rrbracket & =G_{w}(\bar{u}+\tilde{u}, \tilde{h}), & & \text { on } \Sigma, \tag{3.13}\\
\llbracket \bar{u} \rrbracket & =0, & & \text { on } \Sigma, \\
P_{S_{1}}\left(\mu\left(\nabla \bar{u}+\nabla \bar{u}^{\top}\right) v_{S_{1}}\right) & =0, & & \text { on } S_{1} \backslash \partial \Sigma, \\
\bar{u} \cdot v_{S_{1}} & =0, & & \text { on } S_{1} \backslash \partial \Sigma, \\
\bar{u} & =0, & & \text { on } S_{2},
\end{align*}
$$

for $(\bar{u}, \bar{\pi}, \llbracket \bar{\pi} \rrbracket)$, where $\omega>0$ and $(\tilde{u}, \tilde{h}) \in r B_{X_{\gamma}^{0}}(0)$ are given. Here we have set

$$
P_{0} f:=f-\frac{1}{|\Omega|} \int_{\Omega} f d x
$$

for $f \in L_{1}(\Omega)$.
Define a nonlinear mapping $N: \mathbb{E}_{u} \times X_{\gamma}^{0} \rightarrow \mathbb{F}$ via

$$
N(\bar{u}, \tilde{u}, \tilde{h}):=\binom{P_{0} F_{d}(\bar{u}+\tilde{u}, \tilde{h})}{\left(G_{v}(\bar{u}+\tilde{u}, \widetilde{h}), G_{w}(\bar{u}+\tilde{u}, \tilde{h})\right)^{\top}} .
$$

Let S_{ω} denote the solution operator which is induced by Proposition 3.3 and define a mapping $H:=\mathbb{E} \times X_{\gamma}^{0} \rightarrow \mathbb{E}$ by

$$
H((\bar{u}, \bar{\pi}, \bar{q}),(\tilde{u}, \tilde{h})):=(\bar{u}, \bar{\pi}, \bar{q})-S_{\omega} N(\bar{u}, \tilde{u}, \tilde{h})
$$

where \bar{q} is a dummy variable representing $\llbracket \bar{\pi} \rrbracket$. Since $N(0)=0$, it follows that the equation $H(0,0)=0$ holds. Since $N \in C^{2}$, it holds that $H \in C^{2}$, too. Differentiating H with respect to $(\bar{u}, \bar{\pi}, \bar{q})$, we obtain

$$
D_{(\bar{u}, \bar{\pi}, \bar{q})} H(0,0)=I_{\mathbb{E}}
$$

where we used the fact that $D_{\bar{u}} N(0)=0$. The implicit function theorem implies the existence of a C^{2}-function $\phi_{0}: r B_{X_{\gamma}^{0}} \rightarrow \mathbb{E}$ with $\phi_{0}(0)=0$ and $\phi_{0}^{\prime}(0)=0$, such that $H\left(\phi_{0}(\tilde{u}, \tilde{h}),(\tilde{u}, \tilde{h})\right)=0$ whenever $(\tilde{u}, \tilde{h}) \in r B_{X_{\gamma}^{0}}(0)$. In other words, this means that $(\bar{u}, \bar{\pi}, \bar{q})=\phi_{0}(\widetilde{u}, \tilde{h})$ is the unique solution of $\underset{\sim}{\sim}(3.13)$ for a given $(\tilde{u}, \tilde{h}) \in r B_{X_{\gamma}^{0}}(0)$. Furthermore, it can be shown that $P_{0} F_{d}(\bar{u}+\tilde{u}, \tilde{h})=F_{d}(\bar{u}+\tilde{u}, \tilde{h})$ (see proof of [55, Theorem 4.2]).

Let $P(\bar{u}, \bar{\pi}, \bar{q}):=\bar{u}$ and define $\phi(\tilde{u}, \tilde{h}):=P \phi_{0}(\tilde{u}, \tilde{h})$ as well as

$$
\Phi(\tilde{u}, \tilde{h}):=(\tilde{u}, \tilde{h})+(\phi(\tilde{u}, \tilde{h}), 0) .
$$

It follows that $\Phi\left(r B_{X_{\gamma}^{0}}(0)\right) \subset \mathcal{P} \mathcal{M}$ and that Φ is injective. We will now show that Φ is locally surjective near 0 . To this end, we assume that $(u, h) \in \mathcal{P} \mathcal{M}$ is given and close to 0 in X_{γ}. Then we solve the linear problem

$$
\begin{align*}
\rho \omega \bar{u}-\mu \Delta \bar{u}+\nabla \bar{\pi} & =0, & & \text { in } \Omega \backslash \Sigma, \\
\operatorname{div} \bar{u} & =P_{0} F_{d}(u, h), & & \text { in } \Omega \backslash \Sigma, \\
-\llbracket \mu \partial_{3} \bar{v} \rrbracket-\llbracket \mu \nabla_{x^{\prime}} \bar{w} \rrbracket & =G_{v}(u, h), & & \text { on } \Sigma, \\
-2 \llbracket \mu \partial_{3} \bar{w} \rrbracket+\llbracket \bar{\pi} \rrbracket & =G_{w}(u, h), & & \text { on } \Sigma, \\
\llbracket \bar{u} \rrbracket & =0, & & \text { on } \Sigma, \tag{3.14}\\
P_{S_{1}}\left(\mu\left(\nabla \bar{u}+\nabla \bar{u}^{\top}\right) \nu_{S_{1}}\right) & =0, & & \text { on } S_{1} \backslash \partial \Sigma, \\
\bar{u} \cdot v_{S_{1}} & =0, & & \text { on } S_{1} \backslash \partial \Sigma, \\
\bar{u} & =0, & & \text { on } S_{2}
\end{align*}
$$

by Proposition 3.3 to obtain $\bar{u} \in \mathbb{E}_{u}$. Define $(\tilde{u}, \tilde{h}):=(u-\bar{u}, h)$ and observe that

$$
\operatorname{div} \tilde{u}=F_{d}(u, h)-P_{0} F_{d}(u, h)=\frac{1}{|\Omega|} \int_{\Omega} F_{d}(u, h) d x .
$$

Since $\tilde{u} \in H_{p}^{1}(\Omega)^{3}$ with $\left.\tilde{u}\right|_{S_{1}} \cdot v_{S_{1}}=0,\left.\tilde{u}\right|_{S_{2}}=0$ and $\llbracket \widetilde{u} \rrbracket=0$, it follows that the equation $P_{0} F_{d}(u, h)=F_{d}(u, h)$ holds, hence $\operatorname{div} \tilde{u}=0$.

This in turn yields $(\tilde{u}, \tilde{h}) \in X_{\gamma}^{0}$ and $\phi(\tilde{u}, \tilde{h})=\bar{u}$, showing that Φ is locally surjective near 0 .

3.3. Main result on Rayleigh-Taylor instability

In this section we are going to prove the following main result:
Theorem 3.4. Let $n=3, p>5$ and $\rho_{j}, \mu_{j}, \gamma_{j}, \sigma>0$. Denote by $\left(u_{*}, h_{*}\right)=(0,0)$ the trivial equilibrium and let $s(L)$ denote the spectral bound of the linearisation L (see equation (3.3)). Furthermore, let $\lambda_{1}>0$ be the first eigenvalue of $-\Delta_{N}$ in

$$
\left\{h \in W_{p}^{1-1 / p}(G): \int_{G} h d x^{\prime}=0\right\} .
$$

Then, the following assertions hold:
(1) If $\llbracket \rho \rrbracket \gamma_{a} / \sigma<\lambda_{1}$, then $\left(u_{*}, h_{*}\right)$ is exponentially stable in the sense that there exist constants $\eta \in[0,-s(L))$ and $\delta>0$ such that whenever $\left(u_{0}, h_{0}\right) \in \mathcal{P} \mathcal{M}$ with

$$
\left\|\left(u_{0}, h_{0}\right)\right\|_{X_{\gamma}} \leq \delta,
$$

the solution (u, h) of (2.2) exists globally and satisfies the estimate

$$
\|(u(t), h(t))\|_{X_{\gamma}} \leq e^{-\eta t}\left\|\left(u_{0}, h_{0}\right)\right\|_{X_{\gamma}}
$$

for all $t \geq 0$.
(2) If $\llbracket \rho \rrbracket>0$ and $\llbracket \rho \rrbracket \gamma_{a} / \sigma>\lambda_{1}$, then $\left(u_{*}, h_{*}\right)$ is unstable in the sense that there is a constant $\varepsilon_{0}>0$ such that for each $\delta>0$ there are initial values $\left(u_{0}, h_{0}\right) \in \mathcal{P} \mathcal{M}$ with

$$
\left\|\left(u_{0}, h_{0}\right)\right\|_{X_{\gamma}} \leq \delta
$$

such that the solution (u, h) of (2.2) satisfies

$$
\left\|\left(u\left(t_{0}\right), h\left(t_{0}\right)\right)\right\|_{X_{\gamma}} \geq \varepsilon_{0}
$$

for some $t_{0}>0$.
Proof. For $\eta \geq 0$, let

$$
\begin{aligned}
e^{-\eta} \mathbb{E}_{u}\left(\mathbb{R}_{+}\right):= & \left\{u \in e^{-\eta}\left[H_{p}^{1}\left(\mathbb{R}_{+} ; L_{p}(\Omega)^{3}\right) \cap L_{p}\left(\mathbb{R}_{+} ; H_{p}^{2}(\Omega \backslash \Sigma)^{3}\right)\right]: \llbracket u \rrbracket=0,\right. \\
& \left.u \cdot v_{S_{1}}=0, P_{S_{1}}\left(\mu\left(\nabla u+\nabla u^{\top}\right) \nu_{S_{1}}\right)=0,\left.u\right|_{S_{2}}=0\right\}, \\
e^{-\eta} \mathbb{E}_{\pi}\left(\mathbb{R}_{+}\right):= & e^{-\eta} L_{p}\left(\mathbb{R}_{+} ; \dot{H}_{p}^{1}(\Omega \backslash \Sigma)\right), \\
e^{-\eta} \mathbb{E}_{q}\left(\mathbb{R}_{+}\right):= & e^{-\eta}\left[W_{p}^{1 / 2-1 / 2 p}\left(\mathbb{R}_{+} ; L_{p}(\Sigma)\right) \cap L_{p}\left(\mathbb{R}_{+} ; W_{p}^{1-1 / p}(\Sigma)\right)\right], \\
e^{-\eta} \mathbb{E}_{h}\left(\mathbb{R}_{+}\right):= & \left\{h \in e ^ { - \eta } \left[W_{p}^{2-1 / 2 p}\left(\mathbb{R}_{+} ; L_{p}(\Sigma)\right)\right.\right. \\
& \left.\left.\cap H_{p}^{1}\left(\mathbb{R}_{+} ; W_{p}^{2-1 / p}(\Sigma)\right) \cap L_{p}\left(\mathbb{R}_{+} ; W_{p}^{3-1 / p}(\Sigma)\right)\right]: \partial_{\nu_{\partial G}} h=0\right\},
\end{aligned}
$$

and
$e^{-\eta} \mathbb{E}\left(\mathbb{R}_{+}\right):=\left\{(u, \pi, q, h) \in e^{-\eta}\left[\mathbb{E}_{u}\left(\mathbb{R}_{+}\right) \times \mathbb{E}_{\pi}\left(\mathbb{R}_{+}\right) \times \mathbb{E}_{q}\left(\mathbb{R}_{+}\right) \times \mathbb{E}_{h}\left(\mathbb{R}_{+}\right)\right]: q=\llbracket \pi \rrbracket\right\}$.

Moreover, we define the data spaces as follows:

$$
\begin{aligned}
e^{-\eta} \mathbb{F}_{1}\left(\mathbb{R}_{+}\right):= & e^{-\eta} L_{p}\left(\mathbb{R}_{+} ; L_{p}(\Omega)^{3}\right), \\
e^{-\eta} \mathbb{F}_{2}\left(\mathbb{R}_{+}\right):= & e^{-\eta}\left[H_{p}^{1}\left(\mathbb{R}_{+} ; \hat{H}_{p}^{-1}(\Omega)\right) \cap L_{p}\left(\mathbb{R}_{+} ; H_{p}^{1}(\Omega \backslash \Sigma)\right)\right], \\
e^{-\eta} \mathbb{F}_{3}\left(\mathbb{R}_{+}\right):= & \left\{f_{3} \in e^{-\eta}\left[W_{p}^{1 / 2-1 / 2 p}\left(\mathbb{R}_{+} ; L_{p}(\Sigma)^{3}\right) \cap L_{p}\left(\mathbb{R}_{+} ; W_{p}^{1-1 / p}(\Sigma)^{3}\right)\right]:\right. \\
& \left.P_{\Sigma}\left(f_{3}\right) \cdot v_{S_{1}}=0\right\}, \\
e^{-\eta} \mathbb{F}_{4}\left(\mathbb{R}_{+}\right):= & \left\{f _ { 4 } \in e ^ { - \eta } \left[W_{p}^{1-1 / 2 p}\left(\mathbb{R}_{+} ; L_{p}(\Sigma)\right)\right.\right. \\
& \left.\left.\cap L_{p}\left(\mathbb{R}_{+} ; W_{p}^{2-1 / p}(\Sigma)\right)\right]: \partial_{\nu_{\partial G}} f_{4}=0\right\},
\end{aligned}
$$

and $e^{-\eta} \mathbb{F}\left(\mathbb{R}_{+}\right):=X_{j=1}^{4} e^{-\eta} \mathbb{F}_{j}\left(\mathbb{R}_{+}\right)$. We can now prove each of the assertions.
(1) Let $\left(u_{0}, h_{0}\right) \in \mathcal{P} \mathcal{M}$ be fixed such that $\left\|u_{0}\right\|_{W_{p}^{2-2 / p}}+\left\|h_{0}\right\|_{W_{p}^{3-2 / p}} \leq \delta$ for some sufficiently small $\delta>0$ to be determined later. It follows from the results of Section 3.2 that $\left(u_{0}, h_{0}\right)=\left(\widetilde{u}_{0}, \widetilde{h}_{0}\right)+\left(\phi\left(\widetilde{u}_{0}, \widetilde{h}_{0}\right), 0\right)$, i.e., we have $\widetilde{h}_{0}=h_{0}$, where $\left(\widetilde{u}_{0}, \widetilde{h}_{0}\right) \in r B_{X_{\gamma}^{0}}(0)$. For $h \in L_{1}(\Sigma)$, we define

$$
P_{0}^{\Sigma} h:=h-\frac{1}{|\Sigma|} \int_{\Sigma} h d x^{\prime},
$$

and consider the linear evolution equation

$$
\begin{equation*}
\partial_{t}(\tilde{u}, \tilde{h})-L(\tilde{u}, \tilde{h})=\omega\left(\left(I-T_{1}\right) \bar{u}, P_{0}^{\Sigma} \bar{h}\right),\left.\quad(\tilde{u}, \tilde{h})\right|_{t=0}=\left(\tilde{u}_{0}, \tilde{h}_{0}\right) \tag{3.15}
\end{equation*}
$$

in the space

$$
X_{0}:=L_{p, \sigma}(\Omega) \times\left\{h \in W_{p}^{2-1 / p}(\Sigma): \int_{G} h d x^{\prime}=0, \partial_{\nu_{\partial G}} h=0\right\}
$$

where L has been defined in Section 3.1 and $(\bar{u}, \bar{h}) \in e^{-\eta}\left[\mathbb{E}_{u}\left(\mathbb{R}_{+}\right) \times \mathbb{E}_{h}\left(\mathbb{R}_{+}\right)\right]$are given functions. Here $\eta \in[0,-s(L))$, where $s(L)$ denotes the spectral bound of L.

By [55, Corollary 3.3] and Proposition 3.2, it follows that the operator L has the property of L_{p}-maximal regularity on \mathbb{R}_{+}provided that $\llbracket \rho \rrbracket \gamma_{a} / \sigma<\lambda_{1}$. Since $(f, g):=$ $\omega\left(\left(I-T_{1}\right) \bar{u}, P_{0}^{\Sigma} \bar{h}\right) \in e^{-\eta} L_{p}\left(\mathbb{R}_{+} ; X_{0}\right)$ and $\left(\tilde{u}_{0}, \widetilde{h}_{0}\right) \in X_{\gamma}^{0}$, we obtain a unique solution

$$
(\tilde{u}, \tilde{h}) \in e^{-\eta}\left[H_{p}^{1}\left(\mathbb{R}_{+} ; X_{0}\right) \cap L_{p}\left(\mathbb{R}_{+} ; X_{1}\right)\right]=: e^{-\eta} \widetilde{\mathbb{E}}\left(\mathbb{R}_{+}\right)
$$

for each $\eta \in[0,-s(L))$, where $X_{1}=D(L)$ is given by (3.4). We denote by

$$
\Xi:=\left(\partial_{t}-L,\left.\operatorname{tr}\right|_{t=0}\right)^{-1}: e^{-\eta} L_{p}\left(\mathbb{R}_{+} ; X_{0}\right) \times X_{\gamma}^{0} \rightarrow e^{-\eta} \widetilde{\mathbb{E}}\left(\mathbb{R}_{+}\right)
$$

the corresponding solution operator which satisfies the estimate

$$
\left\|\Xi\left((f, g),\left(\tilde{u}_{0}, \widetilde{h}_{0}\right)\right)\right\|_{e^{-\eta} \tilde{\mathbb{E}}\left(\mathbb{R}_{+}\right)} \leq M\left\|\left((f, g),\left(\tilde{u}_{0}, \tilde{h}_{0}\right)\right)\right\|_{e^{-\eta} L_{p}\left(\mathbb{R}_{+} ; X_{0}\right) \times X_{\gamma}^{0}}
$$

In particular, by (3.5), we obtain on the one hand that $\nabla \tilde{\pi}$ is given in terms of (\bar{u}, \bar{h}) and

At this point, we remark that the function \tilde{h} possesses some more regularity. Indeed, it holds that

$$
\partial_{t} \tilde{h}=\left.\tilde{u}_{3}\right|_{\Sigma}+\omega P_{0}^{\Sigma} \bar{h} \in e^{-\eta} W_{p}^{1-1 / 2 p}\left(\mathbb{R}_{+} ; L_{p}(\Sigma)\right)
$$

hence $\tilde{h} \in e^{-\eta} W_{p}^{2-1 / 2 p}\left(\mathbb{R}_{+} ; L_{p}(\Sigma)\right)$ holds in addition.
Next, we consider the problem

$$
\begin{align*}
\omega \rho \bar{u}+\partial_{t} \rho \bar{u}-\mu \Delta \bar{u}+\nabla \bar{\pi} & =F(\tilde{u}+\bar{u}, \tilde{\pi}+\bar{\pi}, \tilde{h}+\bar{h}), & & \text { in } \Omega \backslash \Sigma, \\
\operatorname{div} \bar{u} & =P_{0} F_{d}(\tilde{u}+\bar{u}, \tilde{h}+\bar{h}), & & \text { in } \Omega \backslash \Sigma, \\
-\llbracket \mu \partial_{3} \bar{v} \rrbracket-\llbracket \mu \nabla_{x^{\prime}} \bar{w} \rrbracket & =G_{v}(\tilde{u}+\bar{u}, \tilde{h}+\bar{h}), & & \text { on } \Sigma, \\
-2 \llbracket \mu \partial_{3} \bar{w} \rrbracket+\llbracket \bar{\pi} \rrbracket-\sigma \Delta_{x^{\prime}} \bar{h}-\llbracket \rho \rrbracket \gamma_{a} \bar{h} & =G_{w}(\widetilde{u}+\bar{u}, \tilde{h}+\bar{h}), & & \text { on } \Sigma, \\
\llbracket \bar{u} \rrbracket & =0, & & \text { on } \Sigma, \\
\omega \bar{h}+\partial_{t} \bar{h}-u \cdot e_{3} & =H_{1}(\tilde{u}+\bar{u}, \tilde{h}+\bar{h}), & & \text { on } \Sigma, \tag{3.16}\\
P_{S_{1}}\left(\mu\left(\nabla \bar{u}+\nabla \bar{u}^{\top}\right) v_{S_{1}}\right) & =0, & & \text { on } S_{1} \backslash \partial \Sigma, \\
\bar{u} \cdot v_{S_{1}} & =0, & & \text { on } S_{1} \backslash \partial \Sigma, \\
\bar{u} & =0, & & \text { on } S_{2}, \\
\partial_{v_{\partial G}} \bar{h} & =0, & & \text { on } \partial \Sigma, \\
\bar{u}(0) & =\phi\left(\tilde{u}_{0}, \tilde{h}_{0}\right), & & \text { in } \Omega \backslash \Sigma, \\
\bar{h}(0) & =0, & & \text { on } \Sigma,
\end{align*}
$$

where $(\tilde{u}, \tilde{h})=\omega \Xi\left(\left(I-T_{1}\right) \bar{u}, P_{0}^{\Sigma} \bar{h}\right)$ and $\nabla \tilde{\pi}$ is given by (3.5), with (u, h) being replaced by $(\widetilde{u}, \widetilde{h})$.

Define an operator $\mathbb{L}_{\omega}: e^{-\eta} \mathbb{E}\left(\mathbb{R}_{+}\right) \rightarrow e^{-\eta} \mathbb{F}\left(\mathbb{R}_{+}\right)$by

$$
\mathbb{L}_{\omega}(\bar{u}, \bar{\pi}, \bar{q}, \bar{h}):=\left(\begin{array}{c}
\omega \rho \bar{u}+\partial_{t} \rho \bar{u}-\mu \Delta \bar{u}+\nabla \bar{\pi} \\
\operatorname{div} \bar{u} \\
-\llbracket \mu\left(\nabla \bar{u}+\nabla \bar{u}^{\top}\right) \rrbracket e_{3}+\bar{q} e_{3}-\sigma \Delta_{x^{\prime}} \bar{h} e_{3}-\llbracket \rho \rrbracket \gamma_{a} \bar{h} e_{3} \\
\omega \bar{h}+\partial_{t} \bar{h}-\bar{u} \cdot e_{3}
\end{array}\right),
$$

where $\bar{q}=\llbracket \bar{\pi} \rrbracket$. Set

$$
\begin{aligned}
\bar{X}_{\gamma}:= & \left\{(u, h) \in W_{p}^{2-2 / p}(\Omega \backslash \Sigma)^{3} \times W_{p}^{3-2 / p}(\Sigma):\left.u\right|_{S_{2}}=0,\right. \\
& \left.\left.u\right|_{S_{1}} \cdot v_{S_{1}}=0, P_{S_{1}}\left(\mu\left(\nabla u+\nabla u^{\top}\right) v_{S_{1}}\right)=0, \llbracket u \rrbracket=0, \partial_{\nu_{\partial G}} h=0\right\}
\end{aligned}
$$

and denote by

$$
\mathrm{ext}_{\eta}: \bar{X}_{\gamma} \rightarrow e^{-\eta}\left[\mathbb{E}_{u}\left(\mathbb{R}_{+}\right) \times \mathbb{E}_{h}\left(\mathbb{R}_{+}\right)\right]
$$

a linear extension operator such that $\left.\operatorname{ext}_{\eta}(\hat{u}, \widehat{h})\right|_{t=0}=(\hat{u}, \widehat{h})$. The existence of such an extension operator can be seen in [55, Section 4.2], by solving the corresponding auxiliary problems in exponentially weighted spaces.

Furthermore, we define a nonlinear mapping

$$
N: e^{-\eta}\left[\mathbb{E}_{u}\left(\mathbb{R}_{+}\right) \times \mathbb{E}_{\pi}\left(\mathbb{R}_{+}\right) \times \mathbb{E}_{h}\left(\mathbb{R}_{+}\right)\right] \times X_{\gamma}^{0} \rightarrow e^{-\eta} \mathbb{F}\left(\mathbb{R}_{+}\right)
$$

by

$$
N\left((\bar{u}, \bar{\pi}, \bar{h}),\left(\widetilde{u}_{0}, \widetilde{h}_{0}\right)\right):=\left(\begin{array}{c}
\bar{F}(\bar{u}, \bar{\pi}, \bar{h}) \\
P_{0} \bar{F}_{d}\left((\bar{u}, \bar{h})+\operatorname{ext}_{\eta}\left[\left(\phi\left(\widetilde{u}_{0}, \tilde{h}_{0}\right), 0\right)\right.\right. \\
-(\bar{u}(0), \bar{h}(0))]) \\
\left(\overline { G } _ { v } \left((\bar{u}, \bar{h})+\operatorname{ext}_{\eta}\left[\left(\phi\left(\widetilde{u}_{0}, \widetilde{h}_{0}\right), 0\right)\right.\right.\right. \\
\left.-(\bar{u}(0), \bar{h}(0))]), \bar{G}_{w}(\bar{u}, \bar{h})\right)^{\top} \\
\bar{H}_{1}(\bar{u}, \bar{h})
\end{array}\right) .
$$

Here the functions $\left(\bar{F}, \bar{F}_{d}, \bar{G}_{j}, \bar{H}_{1}\right)$ result from $\left(F, F_{d}, G_{j}, H_{1}\right)$ by replacing ($\left.\tilde{u}, \tilde{h}\right)$ and $\nabla \tilde{\pi}$ by $\omega \Xi\left(\left(I-T_{1}\right) \bar{u}, P_{0}^{\Sigma} \bar{h}\right)$ and (3.5), respectively.

Consider the equation

$$
\mathbb{L}_{\omega}(\bar{u}, \bar{\pi}, \bar{q}, \bar{h})=N\left((\bar{u}, \bar{\pi}, \bar{h}),\left(\tilde{u}_{0}, \tilde{h}_{0}\right)\right)
$$

subject to the initial condition $\left.(\bar{u}, \bar{h})\right|_{t=0}=\left(\phi\left(\widetilde{u}_{0}, \tilde{h}_{0}\right), 0\right)$. If we can show that this problem has a unique solution $(\bar{u}, \bar{\pi}, \bar{q}, \bar{h}) \in e^{-\eta} \mathbb{E}\left(\mathbb{R}_{+}\right)$, then, by construction, $(\bar{u}, \bar{\pi}, \bar{q}, \bar{h})$ is a solution of (3.16). Here, we have set $\bar{q}=\llbracket \bar{\pi} \rrbracket$.

Let $\left(f, f_{d}, g_{v}, g_{w}, g_{h}\right) \in e^{-\eta} \mathbb{F}\left(\mathbb{R}_{+}\right)$and $\left(u_{0}, h_{0}\right) \in \bar{X}_{\gamma}$ be given in such a way that $\operatorname{div} u_{0}=\left.f_{d}\right|_{t=0}$ and $-\llbracket \mu \nabla_{x^{\prime}} w_{0} \rrbracket-\llbracket \mu \partial_{3} v_{0} \rrbracket=\left.g_{v}\right|_{t=0}$, where $u_{0}=\left(v_{0}, w_{0}\right)$. Consider the linear problem to find a unique $w=(u, \pi, q, h) \in e^{-\eta} \mathbb{E}\left(\mathbb{R}_{+}\right), q=\llbracket \pi \rrbracket$, such that

$$
\mathbb{L}_{\omega} w=F, \quad z(0)=z_{0}=\left(u_{0}, h_{0}\right)
$$

for a sufficiently large $\omega>0$, where $F:=\left(f, f_{d}, g_{v}, g_{w}, g_{h}\right)$ and $z:=(u, h)$. Indeed, by Corollary A. 2 we may assume without loss of generality that $f=u_{0}=0, f_{d}=g_{w}=0$ and $g_{v}=0$. The remaining problem with $\tilde{F}=\left(0,0,0,0, g_{h}\right)\left(g_{h}\right.$ has been modified but not relabelled) and $\widetilde{z}_{0}=\left(0, h_{0}\right)$ can be written in the abstract form

$$
\omega z+\dot{z}+L z=\left(0, g_{h}\right), \quad t>0, \quad z(0)=\tilde{z}_{0}
$$

where the operator L has been defined in Section 3.1. If $\omega>0$ is chosen sufficiently large, then there exists a unique solution $z \in e^{-\omega}\left[\mathbb{E}_{u}\left(\mathbb{R}_{+}\right) \times \mathbb{E}_{h}\left(\mathbb{R}_{+}\right)\right]$, since L has the property of maximal regularity of type L_{p} on \mathbb{R}_{+}in

$$
L_{p, \sigma}(\Omega) \times\left\{h \in W_{p}^{2-1 / p}(\Sigma): \partial_{\nu_{\partial G}} h=0\right\}
$$

by [55, Corollary 3.3].
Therefore, it makes sense to define a function $H: e^{-\eta} \mathbb{E}\left(\mathbb{R}_{+}\right) \times X_{\gamma}^{0} \rightarrow e^{-\eta} \mathbb{E}\left(\mathbb{R}_{+}\right)$by

$$
\begin{aligned}
H\left((\bar{u}, \bar{\pi}, \bar{q}, \bar{h}),\left(\tilde{u}_{0}, \tilde{h}_{0}\right)\right):= & (\bar{u}, \bar{\pi}, \bar{q}, \bar{h}) \\
& -\left(\mathbb{L}_{\omega},\left.\operatorname{tr}\right|_{t=0}\right)^{-1}\left[N\left((\bar{u}, \bar{\pi}, \bar{h}),\left(\tilde{u}_{0}, \tilde{h}_{0}\right)\right),\left(\phi\left(\widetilde{u}_{0}, \tilde{h}_{0}\right), 0\right)\right] .
\end{aligned}
$$

Note that H is well-defined, since all compatibility conditions at $t=0$ as well as at $\partial \Sigma$ and ∂S_{2} are satisfied by construction. It follows from [55, Proposition 4.1] and the results in Section 3.2 that H is a C^{2}-mapping with $H(0,0)=0$ and

$$
D_{(\bar{u}, \bar{\pi}, \bar{q}, \bar{h})} H(0,0)=I_{e^{-\eta} \mathbb{E}\left(\mathbb{R}_{+}\right)}
$$

Therefore, applying the implicit function theorem yields the existence of a C^{2}-function $\psi: X_{\gamma}^{0} \rightarrow e^{-\eta} \underset{\mathbb{E}}{\underset{\sim}{2}}\left(\mathbb{R}_{+}\right)$with $\psi(0)=0$ and $\psi^{\prime}(0)=0$ such that $H\left(\psi\left(\tilde{u}_{0}, \widetilde{h}_{0}\right),\left(\tilde{u}_{0}, \widetilde{h}_{0}\right)\right)=0$, whenever $\left(\tilde{u}_{0}, \widetilde{h}_{0}\right) \in r B_{X_{\gamma}^{0}}(0)$ for some sufficiently small $r>0$.

Let

$$
(u, \pi, q, h):=(\tilde{u}, \tilde{\pi}, \tilde{q}, \tilde{h})+(\bar{u}, \bar{\pi}, \bar{q}, \bar{h})
$$

As in the proof of [55, Theorem 4.2], one can show that $P_{0} F_{d}(u, h)=F_{d}(u, h)$, since $\operatorname{div} u=\operatorname{div}(\tilde{u}+\bar{u})=\operatorname{div} \bar{u}$. Integrating $\tilde{w}=\tilde{u} \cdot e_{3}$ over Σ yields

$$
\int_{\Sigma} \tilde{w} d x^{\prime}=\int_{\Omega_{1}} \operatorname{div} \tilde{u}_{1} d x=0
$$

This in turn implies that

$$
\begin{aligned}
\left(\omega+\frac{d}{d t}\right) \int_{\Sigma} \bar{h} d x^{\prime} & =\int_{\Sigma}[\bar{w}-(v \mid \nabla h)] d x^{\prime} \\
& =\int_{\Sigma}[w-(v \mid \nabla h)] d x^{\prime} \\
& =\int_{\Sigma}\left(u \mid \nu_{\Gamma(t)}\right) \sqrt{1+|\nabla h|^{2}} d x^{\prime} \\
& =\int_{\Gamma(t)}\left(\left(u \circ \Theta_{h}^{-1}\right) \mid \nu_{\Gamma(t)}\right) d \Gamma(t) \\
& =\int_{\Omega_{1}(t)} \operatorname{div}\left(u \circ \Theta_{h}^{-1}\right) d \Omega_{1}(t) \\
& =0,
\end{aligned}
$$

since

$$
\operatorname{div}\left(u \circ \Theta_{h}^{-1}\right)=\left(\operatorname{div} u-F_{d}(u, h)\right) \circ \Theta_{h}^{-1}=\left(\operatorname{div} \bar{u}-F_{d}(u, h)\right) \circ \Theta_{h}^{-1}=0
$$

Since $\left.\bar{h}\right|_{t=0}=0$, this readily yields that \bar{h} is mean value free, hence $P_{0}^{\Sigma} \bar{h}=\bar{h}$ and therefore (u, π, q, h) is a solution of (2.2) which is unique, by Theorem 2.1. The component (u, h) of the solution has the representation

$$
(u, h)=\bar{\psi}\left(\tilde{u}_{0}, \tilde{h}_{0}\right)+\bar{\Xi}\left(\tilde{u}_{0}, \tilde{h}_{0}\right),
$$

where $\bar{\psi}\left(\tilde{u}_{0}, \tilde{h}_{0}\right):=(\bar{u}, \bar{h})$ and $\bar{\Xi}$ results by replacing (\bar{u}, \bar{h}) by $\bar{\psi}\left(\tilde{u}_{0}, \tilde{h}_{0}\right)$ in the definition of Ξ. This yields the estimate

$$
\|(u, h)\|_{e^{-\eta}\left[\mathbb{E}_{u} \times \mathbb{E}_{h}\right]} \leq M\left\|\left(\tilde{u}_{0}, \tilde{h}_{0}\right)\right\|_{X_{\gamma}^{0}},
$$

where $M>0$ does not depend on $\left(\tilde{u}_{0}, \tilde{h}_{0}\right) \in r B_{X_{\gamma}^{0}}(0)$ as long as $r>0$ is sufficiently small. This follows from smoothness of the function ψ. Since $\left(\widetilde{u}_{0}, \widetilde{h}_{0}\right)=\left(u_{0}, h_{0}\right)-\phi\left(\widetilde{u}_{0}, \widetilde{h}_{0}\right)$, $\phi(0)=0$ and $\phi^{\prime}(0)=0$, we find for each $\varepsilon>0$ a number $r(\varepsilon)>0$ such that the estimate

$$
\begin{aligned}
\left\|\left(\tilde{u}_{0}, \tilde{h}_{0}\right)\right\|_{X_{\gamma}} & \leq\left\|\left(u_{0}, h_{0}\right)\right\|_{X_{\gamma}}+\left\|\phi\left(\tilde{u}_{0}, \tilde{h}_{0}\right)\right\|_{X_{\gamma}} \\
& \leq\left\|\left(u_{0}, h_{0}\right)\right\|_{X_{\gamma}}+\varepsilon\left\|\left(\tilde{u}_{0}, \tilde{h}_{0}\right)\right\|_{X_{\gamma}}
\end{aligned}
$$

is valid. This implies the final estimate

$$
\|(u, h)\|_{e^{-\eta}\left[\mathbb{E}_{u} \times \mathbb{E}_{h}\right]} \leq M_{\varepsilon}\left\|\left(u_{0}, h_{0}\right)\right\|_{X_{\gamma}},
$$

proving the first assertion.
(2) Denote by σ^{+}the collection of the eigenvalues of L with positive real parts and let P^{+}be the spectral projection related to σ^{+}. Define $P^{-}:=I-P^{+}$and $X_{0}^{ \pm}:=P^{ \pm} X_{0}$. Since σ^{+}is finite, it follows that X_{0}^{+}is finite-dimensional and the decompositions

$$
X_{0}=X_{0}^{+} \oplus X_{0}^{-}, \quad L=L^{+} \oplus L^{-}
$$

hold, where L^{+}is a bounded linear operator from X_{0}^{+}to X_{0}^{+}. Note further that the spaces $D\left(L^{+}\right)$and X_{0}^{+}coincide and that

$$
\|z\|:=\left\|P^{+} z\right\|_{X_{0}}+\left\|P^{-} z\right\|_{X_{0}}
$$

defines an equivalent norm in X_{0}, since $P^{ \pm}$are bounded linear operators. By spectral theory, it holds that $\sigma^{ \pm}=\sigma\left(L^{ \pm}\right)$and $\sigma^{-} \subset \overline{\mathbb{C}_{-}}$. Let $\lambda_{*} \in \sigma^{+}$denote the eigenvalue with the smallest real part and choose numbers $\kappa, \eta>0$ such that $[\kappa-\eta, \kappa+\eta] \subset\left(0, \operatorname{Re} \lambda_{*}\right)$. It follows that the strip

$$
\{\lambda \in \mathbb{C}: \operatorname{Re} \lambda \in[\kappa-\eta, \kappa+\eta]\}
$$

does not contain any eigenvalues of L. Therefore, the restricted semigroups $e^{\mp L^{ \pm} t}$ satisfy the estimates

$$
\begin{equation*}
\left\|e^{L^{-} t}\right\| \leq M e^{(\kappa-\eta) t}, \quad\left\|e^{-L^{+} t}\right\| \leq M e^{-(\kappa+\eta) t}, \quad t \geq 0 \tag{3.17}
\end{equation*}
$$

for some constant $M>0$.
Our aim is to prove the second assertion by a contradiction argument. To this end, we assume that $\left(u_{*}, h_{*}\right)=(0,0)$ is stable. Then there exists a global solution $(u(t), \pi(t)$, $q(t), h(t))$ of (2.2) such that $(u, \pi, q, h) \in \mathbb{E}(T)$ for each finite interval $J=[0, T] \subset[0, \infty)$, $q=\llbracket \pi \rrbracket$. Also, for each $\varepsilon>0$ there exists $\delta(\varepsilon)>0$ such that whenever $\left\|\left(u_{0}, h_{0}\right)\right\|_{X_{\gamma}} \leq \delta$ then $\|(u(t), h(t))\|_{X_{\gamma}} \leq \varepsilon$ for all $t \geq 0$. Note that the solution admits the decomposition

$$
(u, \pi, q, h)=(\tilde{u}, \tilde{\pi}, \bar{q}, \tilde{h})+(\bar{u}, \bar{\pi}, \bar{q}, \bar{h})
$$

where (\tilde{u}, \tilde{h}) solves (3.15) with $\tilde{\pi}, \tilde{q}=\llbracket \tilde{\pi} \rrbracket$ given in terms of (\tilde{u}, \tilde{h}) (see (3.5)) and $(\bar{u}, \bar{\pi}, \bar{q}, \bar{h})$ solves (3.16) with a given right hand side (u, π, q, h). Observe that in this
case, $P_{0}^{\Sigma} \bar{h}=\bar{h}$ by integration of (3.16) ${ }_{6}$ over Σ, since

$$
\int_{\Sigma}\left(\bar{u} \mid e_{n}\right) d \Sigma=\int_{\Omega_{1}} \operatorname{div} \bar{u}^{1} d x=\int_{\Omega_{1}} F_{d}\left(u^{1}, h\right) d x=\int_{\Omega_{1}} \operatorname{div} u^{1} d x
$$

and

$$
\int_{\Sigma} H_{1}(u, h) d \Sigma=\int_{\Sigma}\left(\partial_{t} h-\left(u \mid e_{3}\right)\right) d \Sigma=-\int_{\Omega_{1}} \operatorname{div} u^{1} d x
$$

where $u^{1}:=\left.u\right|_{\Omega_{1}}$ and where we made use of the fact that $P_{0}^{\Sigma} h=h$.
To shorten the notation we introduce the new functions $\widetilde{z}:=(\tilde{u}, \tilde{h}), \bar{z}=(\bar{u}, \bar{h}), \widetilde{w}=$ $(\widetilde{u}, \tilde{\pi}, \bar{q}, \widetilde{h})$ and $\bar{w}=(\bar{u}, \bar{\pi}, \bar{q}, \bar{h})$. The functions $P^{ \pm} \tilde{z}$ solve the evolutionary problem

$$
\begin{equation*}
\frac{d}{d t} P^{ \pm} \tilde{z}-L^{ \pm} P^{ \pm} \tilde{z}=\omega P^{ \pm} Q \bar{z},\left.\quad P^{ \pm} \tilde{z}\right|_{t=0}=P^{ \pm} \widetilde{z}_{0} \tag{3.18}
\end{equation*}
$$

where $Q \bar{z}:=\left(\left(I-T_{1}\right) \bar{u}, \bar{h}\right)$ and $\widetilde{z}_{0}:=\left(\tilde{u}_{0}, \widetilde{h}_{0}\right)$. In the first step, we show that $P^{+} \tilde{z}$ is given by the formula

$$
\begin{equation*}
P^{+} \widetilde{z}(t)=-\int_{t}^{\infty} e^{L^{+}(t-s)} \omega P^{+} Q \bar{z}(s) d s \tag{3.19}
\end{equation*}
$$

Since P^{+}is bounded and $X_{\gamma}^{0} \hookrightarrow X_{0}$, it follows from the assumption that

$$
\left\|P^{+} \widetilde{z}(t)\right\|_{X_{0}^{+}} \leq\left\|P^{+} z(t)\right\|_{X_{0}^{+}}+\left\|P^{+} \bar{z}(t)\right\|_{X_{0}^{+}} \leq C\left(\varepsilon+\|\bar{z}(t)\|_{X_{0}}\right)
$$

for all $t \geq 0$. This implies the estimate

$$
\begin{align*}
\left\|e^{-\kappa t} P^{+} \widetilde{z}\right\|_{L_{p}\left(0, T ; X_{0}^{+}\right)} & \leq C\left(\varepsilon\left(\int_{0}^{T} e^{-\kappa p t} d t\right)^{1 / p}+\left\|e^{-\kappa t} \bar{z}\right\|_{L_{p}\left(0, T ; X_{0}\right)}\right) \\
& \leq C(\kappa, p)\left(\varepsilon+\left\|e^{-\kappa t} \bar{z}\right\|_{\tilde{\mathbb{E}}(T)}\right) \tag{3.20}
\end{align*}
$$

where

$$
\widetilde{\mathbb{E}}(T):=\mathbb{E}_{u}(T) \times \mathbb{E}_{h}(T)
$$

and $\widetilde{\mathbb{E}}(T) \hookrightarrow L_{p}\left(0, T ; X_{0}\right)$, with an embedding constant being independent of $T>0$. Employing the relation

$$
\begin{equation*}
\frac{d}{d t}\left(e^{-\kappa t} P^{+} \tilde{z}(t)\right)=\left(-\kappa I+L^{+}\right) e^{-\kappa t} P^{+} \widetilde{z}(t)+e^{-\kappa t} P^{+} Q \bar{z}(t) \tag{3.21}
\end{equation*}
$$

we obtain that

$$
\begin{equation*}
\left\|e^{-\kappa t} P^{+} \tilde{z}\right\|_{\mathbb{Z}(T)} \leq C_{1}\left(\varepsilon+\left\|e^{-\kappa t} \bar{z}\right\|_{\widetilde{\mathbb{E}}(T)}\right) \tag{3.22}
\end{equation*}
$$

where the constant $C_{1}>0$ does not depend on $T>0$. Here we have set

$$
\mathbb{Z}(T):=H_{p}^{1}\left(0, T ; X_{0}\right) \cap L_{p}(0, T ; D(L))
$$

For the function $e^{-\kappa t} P^{-} \widetilde{z}(t)$, the identity

$$
\begin{equation*}
\frac{d}{d t}\left(e^{-\kappa t} P^{-} \widetilde{z}(t)\right)=\left(-\kappa I+L^{-}\right) e^{-\kappa t} P^{-} \widetilde{z}(t)+e^{-\kappa t} P^{-} Q^{\bar{z}}(t) \tag{3.23}
\end{equation*}
$$

holds. Since by (3.17) the semigroup generated by $\left(-\kappa I+L^{-}\right)$is exponentially stable in X_{0}^{-}, we obtain from L_{p}-maximal regularity theory that the estimate

$$
\begin{align*}
\left\|e^{-\kappa t} P^{-\widetilde{z}}\right\|_{\mathbb{Z}(T)} & \leq M\left(\left\|P^{-} \widetilde{z}_{0}\right\|_{X_{\gamma}^{0}}+\left\|e^{-\kappa t} P^{-} Q \bar{z}\right\|_{L_{p}\left(0, T ; X_{0}\right)}\right) \\
& \leq M\left(\left\|P^{-} \widetilde{z}_{0}\right\|_{X_{\gamma}^{0}}+\left\|e^{-\kappa t} \bar{z}\right\|_{\tilde{\mathbb{E}}(T)}\right) \tag{3.24}
\end{align*}
$$

is valid for some constant $M>0$ that does not depend on $T>0$. A combination of (3.22) and (3.24) implies

$$
\begin{equation*}
\left\|e^{-\kappa t} \widetilde{z}\right\|_{\mathbb{Z}(T)} \leq C_{2}\left(\varepsilon+\left\|P^{-} \widetilde{z}_{0}\right\|_{X_{\gamma}^{0}}+\left\|e^{-\kappa t} \bar{z}\right\|_{\tilde{\mathbb{E}}(T)}\right) \tag{3.25}
\end{equation*}
$$

with $C_{2}>0$ being independent of $T>0$. In what follows, we want to reproduce the norm of $e^{-\kappa t} \tilde{z}$ in $\widetilde{\mathbb{E}}(T)$ on the left hand side of (3.25). To this end, we have to estimate $e^{-\kappa t} \widetilde{h}$ and $e^{-\kappa t} \partial_{t} \widetilde{h}$ in $W_{p}^{1-1 / 2 p}\left(0, T ; L_{p}(\Sigma)\right)$.

To estimate $e^{-\kappa t} \tilde{h}$ in $W_{p}^{1-1 / 2 p}\left(0, T ; L_{p}(\Sigma)\right)$, we cannot simply use interpolation of $H_{p}^{1}\left(0, T ; L_{p}(\Sigma)\right)$ with $L_{p}\left(0, T ; L_{p}(\Sigma)\right)$, since the interpolation constant would depend on $T>0$. The following proposition takes care of this problem:

Proposition 3.5. Let $T \in(0, \infty), \kappa>0$ and let $\widetilde{z} \in \mathbb{Z}(T)$ be the unique solution to (3.15). Then there exists $\hat{z} \in \mathbb{Z}\left(\mathbb{R}_{+}\right)$with $\left.\widehat{z}\right|_{[0, T]}=\tilde{z}$ such that the estimate

$$
\left\|e^{-\kappa t} \widehat{z}\right\|_{\mathbb{Z}\left(\mathbb{R}_{+}\right)} \leq M\left(\left\|\widetilde{z}_{0}\right\|_{X_{\gamma}^{0}}+\left\|e^{-\kappa t} \bar{z}\right\|_{L_{p}\left(0, T ; X_{0}\right)}+\left\|e^{-\kappa t} \widetilde{z}\right\|_{L_{p}\left(0, T ; X_{0}\right)}\right)
$$

is valid, with a constant $M>0$ being independent of $T>0$.
Proof. We fix $a>0$ large enough such that the operator $L-a I$ has the property of $L_{p^{-}}$ maximal regularity on \mathbb{R}_{+}. Define a function $f: \mathbb{R}_{+} \rightarrow X_{0}$ by

$$
f(t):= \begin{cases}\omega Q \bar{z}(t)+a \widetilde{z}(t), & \text { if } t \in[0, T], \\ 0, & \text { if } t>T .\end{cases}
$$

Then $f \in L_{p}\left(\mathbb{R}_{+} ; X_{0}\right)$ and we may solve the problem

$$
\begin{equation*}
\partial_{t} \widehat{z}-(L-a I) \hat{z}=f,\left.\quad \widehat{z}\right|_{t=0}=\tilde{z}_{0} \tag{3.26}
\end{equation*}
$$

to obtain a unique solution $\hat{z} \in \mathbb{Z}\left(\mathbb{R}_{+}\right)$. Observe that by the uniqueness of the solution of (3.15), it holds that $\left.\hat{z}\right|_{[0, T]}=\tilde{z}$.

Multiplying (3.26) by $e^{-\kappa t}$, it follows that the function $e^{-\kappa t} \widehat{z}(t)$ solves the initial value problem

$$
\partial_{t}\left(e^{-\kappa t} \widehat{z}\right)-(L-(a+\kappa) I) e^{-\kappa t} \widehat{z}=e^{-\kappa t} f,\left.\quad \widehat{z}\right|_{t=0}=\widetilde{z}_{0}
$$

Since the operator $L-(a+\kappa) I$ has L_{p}-maximal regularity on \mathbb{R}_{+}as well, we obtain the desired estimate. The independence of the constant $M>0$ from t follows from the exponential stability of the analytic semigroup which is generated by $L-(a+\kappa) I$.

Since $\left\|e^{-\kappa t} \widetilde{z}\right\|_{W_{p}^{1-1 / 2 p}\left(0, T ; X_{0}\right)} \leq\left\|e^{-\kappa t} \widehat{z}\right\|_{W_{p}^{1-1 / 2 p}\left(\mathbb{R}_{+} ; X_{0}\right)}$ (here we use the intrinsic norm in $\left.W_{p}^{1-1 / 2 p}\right)$, it follows by the real interpolation method and Proposition 3.5 that the estimate

$$
\begin{align*}
\left\|e^{-\kappa t} \widetilde{z}\right\|_{W_{p}^{1-1 / 2 p}\left(0, T ; X_{0}\right)} & \leq M\left(\left\|\widetilde{z}_{0}\right\|_{X_{\gamma}^{0}}+\left\|e^{-\kappa t} \bar{z}\right\|_{L_{p}\left(0, T ; X_{0}\right)}+\left\|e^{-\kappa t} \widetilde{z}\right\|_{L_{p}\left(0, T ; X_{0}\right)}\right) \\
& \leq M\left(\left\|\widetilde{z}_{0}\right\|_{X_{\gamma}^{0}}+\left\|e^{-\kappa t} \bar{z}\right\|_{\tilde{\mathbb{E}}(T)}+\left\|e^{-\kappa t} \widetilde{z}\right\|_{\mathbb{Z}(T)}\right) \tag{3.27}
\end{align*}
$$

is valid. The second equation in (3.15) and Proposition 3.5 together with trace theory imply

$$
\begin{align*}
& \left\|e^{-\kappa t} \partial_{t} \tilde{h}\right\|_{W_{p}^{1-1 / 2 p}\left(0, T ; L_{p}(\Sigma)\right)} \\
& \quad \leq C_{3}\left(\left\|e^{-\kappa t} \widetilde{u}\right\|_{W_{p}^{1-1 / 2 p}\left(0, T ; L_{p}(\Sigma)\right)}+\left\|e^{-\kappa t} \bar{h}\right\|_{W_{p}^{1-1 / 2 p}\left(0, T ; L_{p}(\Sigma)\right)}\right) \\
& \quad \leq C_{4}\left(\left\|\widetilde{z}_{0}\right\|_{X_{\gamma}^{0}}+\left\|e^{-\kappa t} \bar{z}\right\|_{\tilde{\mathbb{E}}(T)}+\left\|e^{-\kappa t} \widetilde{z}\right\|_{\mathbb{Z}(T)}\right) \tag{3.28}
\end{align*}
$$

Observe that for the estimate of $e^{-\kappa t} \bar{h}$, we have used the fact that

$$
\mathbb{E}_{h}(T) \hookrightarrow W_{p}^{1-1 / 2 p}\left(0, T ; L_{p}(\Sigma)\right)
$$

with an embedding constant being independent of $T>0$, since the norm in the last space is a part of the norm in $\mathbb{E}_{h}(T)$. Combining (3.25) with (3.27) and (3.28), we obtain

$$
\begin{equation*}
\left\|e^{-\kappa t} \widetilde{z}\right\|_{\widetilde{\mathbb{E}}(T)} \leq C_{5}\left(\varepsilon+\left\|\widetilde{z}_{0}\right\|_{X_{\gamma}^{0}}+\left\|P^{-} \widetilde{z}_{0}\right\|_{X_{\gamma}^{0}}+\left\|e^{-\kappa t} \bar{z}\right\|_{\widetilde{\mathbb{E}}(T)}\right), \tag{3.29}
\end{equation*}
$$

with a constant $C_{5}>0$ being independent of $T>0$.
We are now turning our attention to system (3.16) for $\bar{w}=(\bar{u}, \bar{\pi}, \bar{q}, \bar{h})$, which we write shortly as $\mathbb{L}_{\omega} \bar{w}=N(\widetilde{w}+\bar{w})$ with initial condition $\left.\bar{z}\right|_{t=0}=\left(\phi\left(\widetilde{z}_{0}\right), 0\right)$. It will be convenient to write $N(w)=N_{1}(z)+N_{2}(z, \pi)$, where all components of $N_{2}(z, \pi)$ are zero except for the first one, which is given by $M_{0}(h) \nabla \pi$.

Proposition 3.6. Let $\kappa \geq 0$. There exists a nondecreasing function $\alpha: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$with $\alpha(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$ such that
(i) if $z \in \mathbb{Z}\left(\mathbb{R}_{+}\right)$, then

$$
\left\|e^{-\kappa t} N_{1}(z)\right\|_{\mathbb{F}\left(\mathbb{R}_{+}\right)} \leq \alpha(\varepsilon)\left\|e^{-\kappa t} z\right\|_{\mathbb{Z}\left(\mathbb{R}_{+}\right)}
$$

whenever $\|z(t)\|_{X_{\gamma}} \leq \varepsilon$ for all $t \geq 0$;
(ii) if $\hat{z} \in_{0} \mathbb{Z}(T)$ and $z_{*} \in \mathbb{Z}\left(\mathbb{R}_{+}\right)$, then

$$
\left\|e^{-\kappa t} N_{1}\left(\widehat{z}+z_{*}\right)\right\|_{\mathbb{F}(T)} \leq \alpha(\varepsilon) C\left(\left\|e^{-\kappa t} \widehat{z}\right\|_{\mathbb{Z}(T)}+\left\|e^{-\kappa t} z_{*}\right\|_{\mathbb{Z}\left(\mathbb{R}_{+}\right)}\right)
$$

whenever

$$
\|\widehat{z}(t)\|_{X_{\gamma}} \leq C \varepsilon
$$

for all $t \in[0, T]$ and

$$
\left\|z_{*}(t)\right\|_{X_{\gamma}} \leq C \varepsilon
$$

for all $t \geq 0$. The constant $C>0$ does not depend on $T>0$.

Proof. The proof of the first assertion follows by similar arguments as in [25, Proposition 9]. Therefore, we concentrate on the proof of the second assertion. For $\widehat{z} \in_{0} \widetilde{\mathbb{E}}(T)$ we define a bounded linear extension operator $E:{ }_{0} \mathbb{Z}(T) \rightarrow_{0} \mathbb{Z}\left(\mathbb{R}_{+}\right)$by

$$
(E \widehat{z})(t):= \begin{cases}\hat{z}(t), & t \in[0, T] \\ \widehat{z}(2 T-t), & t \in[T, 2 T] \\ 0, & t \geq 2 T\end{cases}
$$

For the norm of $e^{-\kappa t}(E \hat{z})$ in $\mathbb{Z}\left(\mathbb{R}_{+}\right)$, we then obtain

$$
\begin{aligned}
\left\|e^{-\kappa t} E \hat{z}\right\|_{\mathbb{Z}\left(\mathbb{R}_{+}\right)}^{p}= & \int_{0}^{T} e^{-\kappa t p}\|\hat{z}(t)\|_{X_{1}}^{p} d t+\int_{T}^{2 T} e^{-\kappa t p}\|\hat{z}(2 T-t)\|_{X_{1}}^{p} d t \\
& +\int_{0}^{T} e^{-\kappa t p}\|\dot{\widehat{z}}(t)\|_{X_{0}}^{p} d t+\int_{T}^{2 T} e^{-\kappa t p}\|\dot{\widehat{z}}(2 T-t)\|_{X_{0}}^{p} d t \\
= & \int_{0}^{T} e^{-\kappa t p}\|\widehat{z}(t)\|_{X_{1}}^{p} d t+\int_{0}^{T} e^{-\kappa(2 T-\tau) p}\|\hat{z}(\tau)\|_{X_{1}}^{p} d \tau \\
& +\int_{0}^{T} e^{-\kappa t p}\|\dot{\hat{z}}(t)\|_{X_{0}}^{p} d t+\int_{0}^{T} e^{-\kappa(2 T-\tau) p}\|\dot{\hat{z}}(\tau)\|_{X_{0}}^{p} d \tau \\
\leq & \left\|e^{-\kappa t} \widehat{z}\right\|_{\mathbb{Z}(T)},
\end{aligned}
$$

since $2 T-\tau \geq \tau$ for $\tau \in[0, T]$.
In addition, there holds $\|(E \hat{z})(t)\|_{W_{p}^{2-2 / p} \times W_{p}^{3-2 / p}} \leq C \varepsilon$ for all $t \geq 0$. Then, the first assertion yields

$$
\begin{aligned}
\left\|e^{-\kappa t} N_{1}\left(\hat{z}+z_{*}\right)\right\|_{\mathbb{F}(T)} & \leq\left\|e^{-\kappa t} N_{1}\left(E \hat{z}+z_{*}\right)\right\|_{\mathbb{F}\left(\mathbb{R}_{+}\right)} \\
& \leq \alpha(\varepsilon) C\left\|e^{-\kappa t}\left(E \widehat{z}+z_{*}\right)\right\|_{\mathbb{Z}\left(\mathbb{R}_{+}\right)} \\
& \leq \alpha(\varepsilon) C\left(\left\|e^{-\kappa t} \widehat{z}\right\|_{\mathbb{Z}(T)}+\left\|e^{-\kappa t} z_{*}\right\|_{\mathbb{Z}\left(\mathbb{R}_{+}\right)}\right)
\end{aligned}
$$

In order to apply this proposition to the system $\mathbb{L}_{\omega} \bar{w}=N(\bar{w}+\widetilde{w})$, let z_{*} be an extension of z_{0} such that $e^{-\kappa t} z_{*} \in \widetilde{\mathbb{E}}\left(\mathbb{R}_{+}\right)$and $\left\|z_{*}\right\|_{\mathbb{Z}\left(\mathbb{R}_{+}\right)} \leq C\left\|z_{0}\right\|_{X_{\gamma}}$. The existence of such an extension can be seen as in the proof of the first assertion. Then we use the representation $N(w)=N_{1}(z)+N_{2}(z, \pi)$ as well as the identity $N_{1}(z)=N_{1}\left(z-z_{*}+z_{*}\right)=$ $N_{1}\left(\widehat{z}+z_{*}\right)$, where $\widehat{z}:=\left(z-z_{*}\right) \in_{0} \mathbb{Z}(T)$. Finally, note that

$$
\left\|e^{-\kappa t} N_{2}(z, \pi)\right\|_{L_{p}\left(0, T ; L_{p}(\Omega)\right)} \leq C \varepsilon\left\|e^{-\kappa t} \pi\right\|_{\mathbb{E}_{\pi}(T)}
$$

Therefore, the second assertion of Proposition 3.6 implies the estimate

$$
\begin{aligned}
&\left\|e^{-\kappa t} N(\bar{w}+\widetilde{w})\right\|_{\mathbb{F}(T)} \leq \alpha(\varepsilon) C\left(\left\|e^{-\kappa t} \widetilde{z}\right\|_{\mathbb{Z}(T)}+\left\|e^{-\kappa t} \bar{z}\right\|_{\mathbb{Z}(T)}+\left\|e^{-\kappa t} z_{*}\right\|_{\mathbb{Z}\left(\mathbb{R}_{+}\right)}\right) \\
&+\varepsilon C\left(\left\|e^{-\kappa t} \widetilde{\pi}\right\|_{\mathbb{E}_{\pi}(T)}+\left\|e^{-\kappa t} \bar{\pi}\right\|_{\mathbb{E}_{\pi}(T)}\right) \\
& \leq \alpha_{1}(\varepsilon)\left(\left\|e^{-\kappa t} \widetilde{z}\right\|_{\tilde{\mathbb{E}}(T)}+\left\|e^{-\kappa t} \bar{z}\right\|_{\tilde{\mathbb{E}}(T)}+\left\|e^{-\kappa t} \bar{\pi}\right\|_{\mathbb{E}_{\pi}(T)}+\left\|z_{0}\right\|_{X_{\gamma}}\right),
\end{aligned}
$$

where $\alpha_{1}(\varepsilon):=\alpha(\varepsilon)+\varepsilon \rightarrow 0$ as $\varepsilon \rightarrow 0$. Here we have used the estimates

$$
\left\|e^{-\kappa t} z_{*}\right\|_{\mathbb{Z}\left(\mathbb{R}_{+}\right)} \leq C\left\|z_{0}\right\|_{X_{\gamma}}
$$

and

$$
\left\|e^{-\kappa t} \widetilde{\pi}\right\|_{\mathbb{E}_{\pi}(T)} \leq C\left(\left\|e^{-\kappa t} \widetilde{z}\right\|_{\tilde{\mathbb{E}}(T)}+\left\|e^{-\kappa t} \bar{z}\right\|_{\tilde{\mathbb{E}}(T)}\right)
$$

which hold for some constant $C>0$ that does not depend on $T>0$. Note also that $\widetilde{\mathbb{E}}(T) \hookrightarrow \mathbb{Z}(T)$ with a universal embedding constant being independent of $T>0$ and $\|\hat{z}(t)\|_{X_{\gamma}} \leq(1+C) \varepsilon$ for all $t \in[0, T],\left\|z_{*}(t)\right\|_{X_{\gamma}} \leq C \varepsilon$ for all $t \geq 0$.

By the invertibility of \mathbb{L}_{ω}, we obtain

$$
\begin{align*}
\left\|e^{-\kappa t} \bar{w}\right\|_{\mathbb{E}(T)} \leq & C_{6}\left(\left\|\phi\left(\widetilde{z}_{0}\right)\right\|_{X_{\gamma}}+\left\|e^{-\kappa t} N(\bar{w}+\widetilde{w})\right\|_{\mathbb{F}(T)}\right) \\
\leq & C_{6}\left(\left\|\phi\left(\widetilde{z}_{0}\right)\right\|_{X_{\gamma}}+\alpha_{1}(\varepsilon)\left(\left\|e^{-\kappa t} \bar{z}\right\|_{\widetilde{\mathbb{E}}(T)}+\left\|e^{-\kappa t} \widetilde{z}\right\|_{\widetilde{\mathbb{E}}(T)}\right.\right. \\
& \left.\left.+\left\|e^{-\kappa t} \bar{\pi}\right\|_{\mathbb{E}_{\pi}(T)}+\left\|z_{0}\right\|_{X_{\gamma}}\right)\right) \tag{3.30}
\end{align*}
$$

Choose $\varepsilon>0$ sufficiently small such that $C_{6} \alpha_{1}(\varepsilon) \leq 1 / 2$ and note that

$$
\left\|e^{-\kappa t} \bar{w}\right\|_{\mathbb{E}(T)}=\left\|e^{-\kappa t} \bar{z}\right\|_{\mathbb{E}(T)}+\left\|e^{-\kappa t} \bar{\pi}\right\|_{\mathbb{E}_{\pi}(T)}+\left\|e^{-\kappa t} \llbracket \bar{\pi} \rrbracket\right\|_{\mathbb{E}_{q}(T)}
$$

This implies the estimate

$$
\begin{equation*}
\left\|e^{-\kappa t} \bar{z}\right\|_{\tilde{\mathbb{E}}(T)} \leq 2 C_{6}\left(\left\|\phi\left(\widetilde{z}_{0}\right)\right\|_{X_{\gamma}}+\alpha_{1}(\varepsilon)\left(\left\|e^{-\kappa t} \widetilde{z}\right\|_{\tilde{\mathbb{E}}(T)}+\left\|z_{0}\right\|_{X_{\gamma}}\right)\right) \tag{3.31}
\end{equation*}
$$

If $\varepsilon>0$ is sufficiently small, we obtain from (3.29) and (3.31) that

$$
\begin{equation*}
\left\|e^{-\kappa t} \widetilde{z}\right\|_{\tilde{\mathbb{E}}(T)}+\left\|e^{-\kappa t} \bar{z}\right\|_{\tilde{\mathbb{E}}(T)} \leq C_{7}\left(\varepsilon+\left\|\widetilde{z}_{0}\right\|_{X_{\gamma}^{0}}+\| P^{\left.\left.-\widetilde{z}_{0}\left\|_{X_{\gamma}^{0}}+\right\| \phi\left(\widetilde{z}_{0}\right) \|_{X_{\gamma}}\right), ~\right)}\right. \tag{3.32}
\end{equation*}
$$

with $C_{7}>0$ being independent of $T>0$ and where we made use of the fact that $z_{0}=\widetilde{z}_{0}+\phi\left(\widetilde{z}_{0}\right)$. In particular, this shows that

$$
e^{-\kappa t} \tilde{z}, e^{-\kappa t} \bar{z} \in \tilde{\mathbb{E}}\left(\mathbb{R}_{+}\right)
$$

This in turn yields that

$$
\begin{aligned}
& e^{-\kappa t} \int_{t}^{\infty}\left\|e^{L^{+}(t-s)} P^{+} \omega Q \bar{z}(s)\right\|_{X_{0}} d s \\
& \quad \leq M\left(\int_{t}^{\infty} e^{\eta p^{\prime}(t-s)} d s\right)^{1 / p^{\prime}}\left\|e^{-\kappa t} \omega \bar{z}\right\|_{L_{p}\left(\mathbb{R}_{+} ; X_{0}\right)} \\
& \quad \leq C\left(\eta, p^{\prime}\right)\left\|e^{-\kappa t} \omega \bar{z}\right\|_{\widetilde{\mathbb{E}}\left(\mathbb{R}_{+}\right)}<\infty
\end{aligned}
$$

For the projection of the solution \widetilde{z} of (3.15) to X_{0}^{+}, we have the variation of parameters formula

$$
\begin{aligned}
P^{+} \widetilde{z}(t) & =P^{+} e^{L^{+}} t \widetilde{z}_{0}+\int_{0}^{t} e^{L^{+}(t-s)} P^{+} \omega Q \bar{z}(s) d s \\
& =P^{+} e^{L^{+}} t \widetilde{z}_{0}+\int_{0}^{\infty} e^{L^{+}(t-s)} P^{+} \omega Q \bar{z}(s) d s-\int_{t}^{\infty} e^{L^{+}(t-s)} P^{+} \omega Q \bar{z}(s) d s
\end{aligned}
$$

at our disposal. Since $e^{L^{+} t}$ extends to a C_{0}-group, we obtain the identity

$$
e^{-L^{+} t}\left(P^{+} \widetilde{z}(t)+\int_{t}^{\infty} e^{L^{+}(t-s)} P^{+} \omega Q \bar{z}(s) d s\right)=P^{+} \widetilde{z}_{0}+\int_{0}^{\infty} e^{-L^{+} s} P^{+} \omega Q \bar{z}(s) d s
$$

which holds for all $t \geq 0$. The left hand side of this equation may be estimated in X_{0} as follows:

$$
\begin{aligned}
& \left\|e^{-L^{+} t}\left(P^{+} \widetilde{z}(t)+\int_{t}^{\infty} e^{L^{+}(t-s)} P^{+} \omega Q \bar{z}(s) d s\right)\right\|_{X_{0}} \\
& \quad \leq M e^{-(\kappa+\eta) t}\left(\|\widetilde{z}(t)\|_{X_{0}}+\int_{t}^{\infty}\left\|e^{L^{+}(t-s)} P^{+} \omega Q \bar{z}(s)\right\|_{X_{0}} d s\right) \\
& \quad \leq M e^{-\eta t}\left(\left\|e^{-\kappa t} \widetilde{z}(t)\right\|_{X_{0}}+C\right) .
\end{aligned}
$$

Here we made use of the fact that the integral does not grow faster than $e^{\kappa t}$ by the computations above. Since the function $\left[t \mapsto\left\|e^{-\kappa t} \widetilde{z}(t)\right\|_{X_{0}}\right]$ is bounded (see above), it follows that

$$
e^{-\eta t}\left(\left\|e^{-\kappa t} \widetilde{z}(t)\right\|_{X_{0}}+C\right) \rightarrow 0
$$

as $t \rightarrow \infty$. This shows in particular that $P^{+} \widetilde{z}_{0}+\int_{0}^{\infty} e^{-L^{+} s} P^{+} \omega Q \bar{z}(s) d s=0$, hence the relation (3.19) holds.

From (3.19) and Young's inequality, we obtain the estimate

$$
\left\|e^{-\kappa t} P^{+} \tilde{z}\right\|_{L_{p}\left(\mathbb{R}_{+} ; X_{0}\right)} \leq M(\eta)\left\|e^{-\kappa t} P^{+} \bar{z}\right\|_{L_{p}\left(\mathbb{R}_{+} ; X_{0}\right)}
$$

By (3.21), this yields

$$
\begin{equation*}
\left\|e^{-\kappa t} P^{+} \tilde{z}\right\|_{\mathbb{Z}\left(\mathbb{R}_{+}\right)} \leq M(\eta)\left\|e^{-\kappa t} P^{+} \bar{z}\right\|_{\tilde{\mathbb{E}}\left(\mathbb{R}_{+}\right)} \tag{3.33}
\end{equation*}
$$

One may now mimic the above estimates with the interval $[0, T]$ being replaced by \mathbb{R}_{+}to obtain the relation

$$
\begin{equation*}
\left\|e^{-\kappa t} \widetilde{z}\right\|_{\widetilde{\mathbb{E}}\left(\mathbb{R}_{+}\right)}+\left\|e^{-\kappa t} \bar{z}\right\|_{\widetilde{\mathbb{E}}\left(\mathbb{R}_{+}\right)} \leq C\left(\left\|P^{-} \widetilde{z}_{0}\right\|_{X_{\gamma}}+\left\|\phi\left(\widetilde{z}_{0}\right)\right\|_{X_{\gamma}}\right) \tag{3.34}
\end{equation*}
$$

At this point, we want to emphasise that the term $\left\|\tilde{z}_{0}\right\|_{X_{\gamma}^{0}}$ does not appear on the right hand side of (3.34), since on \mathbb{R}_{+}there is no need to apply Proposition 3.5. Furthermore, since we estimate norms on the half-line \mathbb{R}_{+}, we may use the first assertion of Proposition 3.6 instead of the second one.

Then, formula (3.19) for $t=0$ and (3.34) imply

$$
\begin{aligned}
\left\|P^{+} \widetilde{z}_{0}\right\|_{X_{\gamma}^{0}} & \leq M(\omega, \eta)\left\|e^{-\kappa t} \bar{z}\right\|_{L_{\infty}\left(\mathbb{R}_{+} ; X_{\gamma}^{0}\right)} \leq M_{1}(\omega, \eta)\left\|e^{-\kappa t} \bar{z}\right\|_{\tilde{\mathbb{E}}\left(\mathbb{R}_{+}\right)} \\
& \leq C\left(\left\|P^{-} \widetilde{z}_{0}\right\|_{X_{\gamma}^{0}}+\left\|\phi\left(\widetilde{z}_{0}\right)\right\|_{X_{\gamma}}\right)
\end{aligned}
$$

since $\widetilde{\mathbb{E}}\left(\mathbb{R}_{+}\right) \hookrightarrow B U C\left(\mathbb{R}_{+} ; X_{\gamma}^{0}\right)$. Due to the fact that $\phi(0)=0$ and $\phi^{\prime}(0)=0$, we may decrease $\delta>0$ (if necessary) to obtain

$$
\left\|\phi\left(\widetilde{z}_{0}\right)\right\|_{X_{\gamma}} \leq \frac{1}{2}\left(\left\|P^{-} \widetilde{z}_{0}\right\|_{X_{\gamma}^{0}}+\left\|P^{+} \widetilde{z}_{0}\right\|_{X_{\gamma}^{0}}\right)
$$

whenever $\tilde{z}_{0} \in \delta B_{X_{\gamma}^{0}}(0)$. Finally, this yields the relation

$$
\left\|P^{+} \tilde{z}_{0}\right\|_{X_{\gamma}^{0}} \leq C\left\|P^{-} \tilde{z}_{0}\right\|_{X_{\gamma}^{0}}
$$

Choosing $\tilde{z}_{0} \in \delta B_{X_{V}^{0}}(0)$ in such a way that $P^{-} \tilde{z}_{0}=0$ and $P^{+} \widetilde{z}_{0} \neq 0$, we have a contradiction. The proof is complete.

We complete this section by considering the special case $G=B_{R}(0)$ and give a result on stability which is dependent on the radius $R>0$.

Corollary 3.7. Let the conditions of Theorem 3.4 be satisfied and let the surface tension $\sigma>0$ be fixed. Denote by $\lambda_{1}^{*}>0$ the first nontrivial eigenvalue of the negative Neumann Laplacian in $L_{2}\left(B_{1}(0)\right)$. Then the following assertions hold:
(1) If $R^{2} \llbracket \rho \rrbracket \gamma_{a} / \sigma<\lambda_{1}^{*}$, then $\left(u_{*}, h_{*}\right)=(0,0)$ is exponentially stable in the sense of Theorem 3.4.
(2) If $\llbracket \rho \rrbracket>0$ and $R^{2} \llbracket \rho \rrbracket \gamma_{a} / \sigma>\lambda_{1}^{*}$, then $\left(u_{*}, h_{*}\right)=(0,0)$ is unstable in the sense of Theorem 3.4.

Proof. The assertions follow from Theorem 3.4. Indeed, denoting by $\lambda_{1}(R)>0$ the first nontrivial eigenvalue of the Neumann Laplacian on $B_{R}(0)$, Theorem 3.4 yields that $(0,0)$ is exponentially stable if $\llbracket \rho \rrbracket \gamma_{a} / \sigma<\lambda_{1}(R)$ and unstable if $\llbracket \rho \rrbracket \gamma_{a} / \sigma>\lambda_{1}(R)$ and $\llbracket \rho \rrbracket>0$. An easy computation yields that $\lambda_{1}(R)=\lambda_{1}^{*} / R^{2}$. This concludes the proof of the corollary.

4. Bifurcation at a multiple eigenvalue

In this section we consider the special case $G=B_{R}:=B_{R}(0) \subset \mathbb{R}^{2}$ for some radius $R>0$. Proposition 3.2 implies that an eigenvalue of the linearisation L crosses the imaginary axis through zero if $\llbracket \rho \rrbracket \gamma_{a} / \sigma=\lambda_{1}$, where $\lambda_{1}>0$ is the first nontrivial eigenvalue of the negative Neumann Laplacian in $L_{2}(G)$. This suggests that $\left(\lambda_{1}, 0\right)$ is a bifurcation point for the nonlinear Navier-Stokes system (2.2). Unfortunately, the eigenvalue $\lambda_{1}>0$ is not simple. Indeed, it is a double eigenvalue, being semi-simple. Therefore, we cannot directly apply the results of Crandall and Rabinowitz. Instead, we will use certain symmetry properties of the bifurcation equation to reduce it to a purely one-dimensional bifurcation equation which then can be solved by the implicit function theorem. For a general theory concerning bifurcation at multiple eigenvalues, we refer the reader to [22,34,51].

We recall that the set of equilibria \mathcal{E} for height functions h with vanishing mean value is given by

$$
\mathcal{E}=\left\{\left(u_{*}, \pi_{*}, q_{*}, h_{*}\right): u_{*}=0, \pi_{*}=\text { const., } q_{*}=\llbracket \pi_{*} \rrbracket=0, h_{*} \text { solves }(4.1)\right\} .
$$

Note that if there exist nontrivial equilibria, i.e., $h_{*} \neq 0$, then these equilibria are determined by the nontrivial solutions of the quasilinear elliptic boundary value problem

$$
\begin{align*}
\sigma \operatorname{div}_{x^{\prime}}\left(\frac{\nabla_{x^{\prime}} h}{\sqrt{1+\left|\nabla_{x^{\prime}} h\right|^{2}}}\right)+\llbracket \rho \rrbracket \gamma_{a} h & =0,
\end{aligned} \begin{aligned}
& x^{\prime} \in B_{R}(0) \tag{4.1}\\
& \partial_{\nu_{B_{R}(0)}} h=0,
\end{align*} x^{\prime} \in \partial B_{R}(0) .
$$

Here the differential operators $\nabla_{x^{\prime}}$ and $\operatorname{div}_{x^{\prime}}$ act only in the variables $x^{\prime} \in G$. We intend to show that if $\llbracket \rho \rrbracket \gamma_{a} / \sigma=\lambda_{1}$, then there exist bifurcating nontrivial solutions h_{*} of (4.1) from the trivial solution $h=0$. To this end, let

$$
\begin{align*}
& X:=\left\{h \in W_{p}^{1-1 / p}\left(B_{R}\right): \int_{B_{R}} h d x^{\prime}=0\right\}, \tag{4.2}\\
& Y:=\left\{h \in W_{p}^{3-1 / p}\left(B_{R}\right) \cap X: \partial_{v_{\partial B_{R}}} h=0\right\}
\end{align*}
$$

and define $F: \mathbb{R}_{+} \times Y \rightarrow X$ by

$$
\begin{equation*}
F(\alpha, h):=\operatorname{div}_{x^{\prime}}\left(\frac{\nabla_{x^{\prime}} h}{\sqrt{1+\left|\nabla_{x^{\prime}} h\right|^{2}}}\right)+\alpha h \tag{4.3}
\end{equation*}
$$

For $h \in W_{p}^{s}\left(B_{R}\right), s>0$, define $\left(\Gamma_{\mathcal{O}_{\phi}} h\right)\left(\bar{x}^{\prime}\right):=h\left(\mathcal{O}_{\phi} \bar{x}^{\prime}\right)$, where

$$
\mathcal{O}_{\phi}:=\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right)
$$

describes a two-dimensional rotation of $\bar{x}^{\prime} \in B_{R}$ through the angle ϕ. Note that \mathcal{O}_{ϕ} is an orthogonal matrix, i.e., $\mathcal{O}_{\phi}^{\top}=\mathcal{O}_{\phi}^{-1}$. Furthermore, we define $\left(\Gamma_{\mathcal{R}} h\right)\left(\bar{x}^{\prime}\right):=h\left(\mathcal{R} \bar{x}^{\prime}\right)$, where $\mathcal{R} \bar{x}^{\prime}:=\left(\bar{x}_{1},-\bar{x}_{2}\right)^{\top}$. It is easily seen that Γ_{j} leaves both spaces X and Y invariant and one readily computes $\nabla_{\bar{x}^{\prime}}\left(\Gamma_{\mathcal{O}_{\phi}} h\right)=\mathcal{O}_{\phi}^{\top}\left(\Gamma_{\mathcal{O}_{\phi}} \nabla_{x^{\prime}} h\right), \Delta_{\bar{x}^{\prime}}\left(\Gamma_{\mathcal{O}_{\phi}} h\right)=\Gamma_{\mathcal{O}_{\phi}} \Delta_{x^{\prime}} h$ and $\nabla_{\bar{x}^{\prime}}^{2}\left(\Gamma_{\mathcal{O}_{\phi}} h\right)=$ $\mathcal{O}_{\phi}^{\top}\left(\Gamma_{\mathcal{O}_{\phi}} \nabla_{x^{\prime}}^{2} h\right) \mathcal{O}_{\phi}$, where $\bar{x}^{\prime}=\mathcal{O}_{\phi}^{\top} x^{\prime}$. Therefore, the identity

$$
\operatorname{div}_{x^{\prime}}\left(\frac{\nabla_{x^{\prime}} h}{\sqrt{1+\left|\nabla_{x^{\prime}} h\right|^{2}}}\right)=\frac{\Delta_{x^{\prime}} h}{\sqrt{1+\left|\nabla_{x^{\prime}} h\right|^{2}}}-\frac{\left(\nabla_{x^{\prime}}^{2} h \nabla_{x^{\prime}} h \mid \nabla_{x^{\prime}} h\right)}{\sqrt{1+\left|\nabla_{x^{\prime}} h\right|^{2}}}
$$

implies that $\Gamma_{\mathcal{O}_{\phi}} F(\alpha, h)=F\left(\alpha, \Gamma_{\mathcal{O}_{\phi}} h\right)$. Similarly, it holds that $\Gamma_{\mathfrak{R}} F(\alpha, h)=F\left(\alpha, \Gamma_{\mathfrak{R}} h\right)$. This shows that F is invariant with respect to the group operations of the orthogonal group $O(2)$.

4.1. Lyapunov-Schmidt reduction

By smoothness of the mapping $\left[\mathbb{R} \ni s \mapsto\left(1+s^{2}\right)^{-1 / 2}\right]$, it holds that $F \in C^{\infty}\left(\mathbb{R}_{+} \times Y ; X\right)$ and the first Fréchet derivative of F is given by

$$
\left[D_{h} F(\alpha, h)\right] \hat{h}=\operatorname{div}_{x^{\prime}}\left(\frac{\nabla_{x^{\prime}} \hat{h}}{\sqrt{1+\left|\nabla_{x^{\prime}} h\right|^{2}}}\right)-\operatorname{div}_{x^{\prime}}\left(\frac{\nabla_{x^{\prime}} h\left(\nabla_{x^{\prime}} \hat{h} \mid \nabla_{x^{\prime}} h\right)}{\sqrt{1+\left|\nabla_{x^{\prime}} h\right|^{2}}}\right)+\alpha \hat{h}
$$

Therefore, it holds that $D_{h} F\left(\lambda_{1}, 0\right)=\Delta_{N}+\lambda_{1} I$, where Δ_{N} denotes the Neumann Laplacian and $\lambda_{1}>0$ is the first eigenvalue of $-\Delta_{N}$ in X (note that $0 \notin \sigma\left(-\Delta_{N}\right)$, since all functions in X have a vanishing mean value). For convenience, we set $A:=D_{h} F\left(\lambda_{1}, 0\right)$. We claim that $0 \in \sigma(A)$ is a semi-simple eigenvalue. Since the operator A has a compact resolvent, it follows that the spectrum consists only of discrete eigenvalues having finite multiplicity. Therefore, it suffices to show that $N(A)=N\left(A^{2}\right)$. To this end, let $0 \neq v \in N\left(A^{2}\right)$ and $u:=A v$. Then $u \in N(A)$ and we compute

$$
\|u\|_{L_{2}\left(B_{R}\right)}^{2}=(A v \mid u)_{L_{2}\left(B_{R}\right)}=(v \mid A u)_{L_{2}\left(B_{R}\right)}=0
$$

since A is self-adjoint in $L_{2}\left(B_{R}\right)$. This shows that $u=0$, hence $v \in N(A)$ and $0 \in \sigma(A)$ is semi-simple. We note here that this implies $X=N(A) \oplus R(A)$. Rewriting the eigenvalue problem $-\Delta_{N} h=\lambda h$ in polar coordinates (r, φ), it follows that the kernel $N(A)$ of A is spanned by the two linearly independent functions

$$
\begin{equation*}
u_{1}^{*}\left(x^{\prime}\right):=J_{1}\left(j_{1,1}^{\prime} r / R\right) \cos \varphi, \quad u_{2}^{*}\left(x^{\prime}\right):=J_{1}\left(j_{1,1}^{\prime} r / R\right) \sin \varphi \tag{4.4}
\end{equation*}
$$

for $r \in[0, R], \varphi \in[0,2 \pi)$, where J_{1} is a Bessel function of first order and $j_{1,1}^{\prime}$ denotes the first zero of the derivative J_{1}^{\prime} of J_{1}. Hence, $\operatorname{dim} N(A)=2$ (notably, A is a Fredholm operator of index zero). In particular, each $h \in X$ can be written in a unique way as $h=u+v$, where $u \in N(A)$ and $v \in R(A)$. Defining $P h:=u$, it follows that the mapping $P: X \rightarrow N(A)$ is a projection onto $N(A)$. With $Q:=I-P$ we also have that the mapping $Q: X \rightarrow R(A)$ is onto and $Q h=v$. Moreover, it holds that $Y=U \oplus V$, where $U:=N(A)$ and $V:=R(A) \cap Y$.

Let us now split the equation $F(\alpha, h)=0$ into two parts: $P F(\alpha, u+v)=0$ and $Q F(\alpha, u+v)=0$. Since the operator $D_{v} Q F\left(\lambda_{1}, 0\right)=Q D_{h} F\left(\lambda_{1}, 0\right): V \rightarrow R(A)$ is an isomorphism, we may solve the equation $Q F(\alpha, u+v)=0$ in a neighbourhood of $\left(\lambda_{1}, 0\right)$, by making use of the implicit function theorem, to obtain a unique smooth function $v_{*}: \mathbb{R}_{+} \times U \rightarrow V$ such that $Q F\left(\alpha, u+v_{*}(\alpha, u)\right)=0$ for all (α, u) close to $\left(\lambda_{1}, 0\right)$. The function $v_{*}=v_{*}(\alpha, u)$ has the following properties:
(1) $v_{*}(\alpha, 0)=0$ if $\alpha>0$ is close to λ_{1};
(2) $D_{\alpha} v_{*}\left(\lambda_{1}, 0\right)=0, D_{u} v_{*}\left(\lambda_{1}, 0\right)=0$;
(3) $\Gamma_{j} v_{*}(\alpha, u)=v_{*}\left(\alpha, \Gamma_{j} u\right)$ for $j \in\left\{\mathcal{R}, \mathcal{O}_{\phi}\right\}$ if (α, u) is close to $\left(\lambda_{1}, 0\right)$.

The first two properties follow directly from the equation $\left.Q F\left(\alpha, u+v_{*}, \alpha, u\right)\right)=0$ after differentiation, and the fact that $F(\alpha, 0)=0$ for each $\alpha \in \mathbb{R}_{+}$. The last property follows from the uniqueness of v_{*} and the fact that $\Gamma_{j} Q F(\alpha, u+v)=Q F\left(\alpha, \Gamma_{j} u+\Gamma_{j} v\right)$ for $j \in\left\{\mathcal{R}, \mathcal{O}_{\phi}\right\}$. To see this, we differentiate the identity $\Gamma_{j} F(\alpha, u)=F\left(\alpha, \Gamma_{j} u\right)$ with respect to u and evaluate the result at $(\alpha, u)=\left(\lambda_{1}, 0\right)$ to obtain the relation

$$
\Gamma_{j} A=A \Gamma_{j}
$$

In other words, Γ_{j} commutes with the operator A. It follows readily that Γ_{j} leaves $N(A)$ as well as $R(A)$ invariant, hence we have $\Gamma_{j} P=P \Gamma_{j}$ as well as $\Gamma_{j} Q=Q \Gamma_{j}$.

4.2. Reduction to a one-dimensional bifurcation equation

It remains to study the equation $0=G(\alpha, u)$ for $(\alpha, u) \in \mathbb{R}_{+} \times U$ in some neighbourhood of $\left(\lambda_{1}, 0\right)$, where $G(\alpha, u):=P F\left(\alpha, u+v_{*}(\alpha, u)\right)$. Let us remark that this equation is purely two-dimensional. Similar to the above, it holds that $\Gamma_{j} G(\alpha, u)=G\left(\alpha, \Gamma_{j} u\right)$ for $j \in\left\{\mathcal{R}, \mathcal{O}_{\phi}\right\}$. Let $\Psi: U \rightarrow \mathbb{R}^{2}$ be defined by $\Psi(u):=\left(b_{1}, b_{2}\right)^{\top}$ for $u=b_{1} u_{1}+b_{2} u_{2} \in U$, $b_{k}:=\left(u \mid u_{k}\right)_{L_{2}\left(B_{R}\right)} \in \mathbb{R}$, where $u_{j}:=u_{j}^{*} /\left\|u_{j}^{*}\right\|_{L_{2}}$. It follows that Ψ is an isomorphism with inverse Ψ^{-1} given by $\Psi^{-1}\left(b_{1}, b_{2}\right)=b_{1} u_{1}+b_{2} u_{2}$. Consider now the equation

$$
g(\alpha, b):=\Psi G\left(\alpha, \Psi^{-1} b\right)=0, \quad b \in \mathbb{R}^{2},
$$

and define $\Gamma_{j}^{0}:=\Psi \Gamma_{j} \Psi^{-1}$ on \mathbb{R}^{2} for $j \in\left\{\mathcal{R}, \mathcal{O}_{\phi}\right\}$. With these definitions, it holds that $\Gamma_{j}^{0} g(\alpha, b)=g\left(\alpha, \Gamma_{j}^{0} b\right)$ for $j \in\left\{\mathcal{R}, \mathcal{O}_{\phi}\right\}$. A short computation also shows that the identities

- $\Gamma_{\mathcal{O}_{\phi}}^{0} b=\mathcal{O}_{\phi} b ;$
- $\Gamma_{\mathscr{R}}^{0} b=\mathscr{R} b$
hold for each $b \in \mathbb{R}^{2}$. We will use these two properties to reduce $g(\alpha, b)=0$ to a purely one-dimensional equation. Choose ϕ in such a way that $\mathcal{O}_{\phi} b=s e_{1}=(s, 0)^{\top}$ for some $s \in \mathbb{R}$ close to 0 . Then $g(\alpha, b)=0$ if and only if $g\left(\alpha, s e_{1}\right)=0$, by the first property. Furthermore, $\mathscr{R} e_{1}=e_{1}$, hence

$$
g\left(\alpha, s e_{1}\right)=g\left(\alpha, s \mathcal{R} e_{1}\right)=\mathcal{R} g\left(\alpha, s e_{1}\right) .
$$

This in turn yields that $g_{2}\left(\alpha, s e_{1}\right)=0$ is always satisfied and therefore, we have reduced the equation $g(\alpha, b)=0$ to $g_{1}\left(\alpha, s e_{1}\right)=0$ for $(\alpha, s) \in \mathbb{R}_{+} \times \mathbb{R}$ close to $\left(\lambda_{1}, 0\right)$.

Since $D_{\alpha} g_{1}\left(\lambda_{1}, 0\right)=0$, we cannot simply solve the equation $g_{1}\left(\alpha, s e_{1}\right)=0$ for α in a neighbourhood of $\left(\lambda_{1}, 0\right)$ by the implicit function theorem. Instead, we define a new function

$$
\tilde{g}(\alpha, s):= \begin{cases}g_{1}\left(\alpha, s e_{1}\right) / s, & s \neq 0 \\ D_{b} g_{1}(\alpha, 0) e_{1}, & s=0\end{cases}
$$

Since $D_{b} g_{1}\left(\lambda_{1}, 0\right)=0$, we have $\tilde{g}\left(\lambda_{1}, 0\right)=0$. Moreover, we compute

$$
D_{\alpha} \tilde{g}\left(\lambda_{1}, 0\right)=D_{\alpha} D_{b} g_{1}\left(\lambda_{1}, 0\right) e_{1}
$$

Since $D_{\alpha} D_{h} F\left(\lambda_{1}, 0\right)=I$ and

$$
D_{\alpha} D_{b} g\left(\lambda_{1}, 0\right) e_{1}=\Psi P D_{\alpha} D_{h} F\left(\lambda_{1}, 0\right) \Psi^{-1} e_{1}=e_{1}
$$

it follows that $D_{\alpha} D_{b} g_{1}\left(\lambda_{1}, 0\right) e_{1}=1 \neq 0$. Hence, the implicit function theorem yields the existence of a smooth function $\alpha:(-\eta, \eta) \rightarrow \mathbb{R}$ with $\alpha(0)=\lambda_{1}$ such that $\tilde{g}(\alpha(s), s)=0$ for all $s \in(-\eta, \eta)$ and some (small) $\eta>0$. This in turn yields the following result:

Theorem 4.1. Modulo the action in $O(2)$, all solutions of $F(\alpha, h)=0$ in a neighbourhood \mathcal{U} of $\left(\lambda_{1}, 0\right)$ in $\mathbb{R}_{+} \times Y$ are given by

$$
F^{-1}(0) \cap \mathcal{U}=\left\{\left(\alpha(s), s u_{1}+y(s)\right):|s|<\eta\right\} \cup\{(\alpha, 0):(\alpha, 0) \in \mathcal{U}\}
$$

where $\alpha \in C^{\infty}((-\eta, \eta) ; \mathbb{R})$ with $\alpha(0)=\lambda_{1}>0$ and $y \in C^{\infty}((-\eta, \eta) ; R(A) \cap Y)$ with $y(0)=y^{\prime}(0)=0$ are uniquely determined.

Proof. Define $y(s):=v_{*}\left(\alpha(s), s u_{1}\right)$. Then the assertions for y follow from the properties of the function v_{*}.

Let us now show that the bifurcation in $\left(\lambda_{1}, 0\right)$ is of subcritical type, i.e., $s \alpha^{\prime}(s)<0$ for $0<|s|<\delta$ and some $\delta>0$. We first prove that $\alpha^{\prime}(0)=0$. To this end, we differentiate the expression $F\left(\alpha(s), s u_{1}+y(s)\right)=0$ with respect to s twice and evaluate at $s=0$ to obtain

$$
0=\Delta_{N} y^{\prime \prime}(0)+\lambda_{1} y^{\prime \prime}(0)+2 \alpha^{\prime}(0) u_{1} .
$$

By multiplying this identity by u_{1} in $L_{2}\left(B_{R}\right)$ and integrating by parts, we obtain $\alpha^{\prime}(0)\left\|u_{1}\right\|_{L_{2}\left(B_{R}\right)}^{2}=0$, since $u_{1} \in N(A)$. This implies that $\alpha^{\prime}(0)=0$, since $u_{1} \neq 0$. Differentiating $F\left(\alpha(s), s u_{1}+y(s)\right)=0$ a third time yields at $s=0$

$$
0=\Delta_{N} y^{\prime \prime \prime}(0)+\lambda_{1} y^{\prime \prime \prime}(0)-3 \operatorname{div}\left(\nabla u_{1}\left|\nabla u_{1}\right|^{2}\right)+3 \alpha^{\prime \prime}(0) u_{1}
$$

where we have used the fact that $\alpha^{\prime}(0)=0$. We test the latter equation by u_{1} in $L_{2}\left(B_{R}\right)$ and integrate by parts to obtain

$$
0=\alpha^{\prime \prime}(0)\left\|u_{1}\right\|_{L_{2}\left(B_{R}\right)}^{2}+\left\|u_{1}\right\|_{L_{4}\left(B_{R}\right)}^{4}
$$

hence $\alpha^{\prime \prime}(0)<0$, since $u_{1} \neq 0$.
Corollary 4.2. The bifurcation in Theorem 4.1 at $\left(\lambda_{1}, 0\right)$ is of subcritical type, i.e., $s \alpha^{\prime}(s)<0$ for $0<|s|<\delta$ and some $\delta>0$.

Remark 4.3. One can prove that the bifurcating equilibria induced by Theorem 4.1 are unstable with respect to the flow that is generated by problem (2.2). To this end, one defines an operator $\mathscr{L}(s),|s|<\delta$, as an analogue of the operator L from Section 3.1, representing the full linearisation of (2.2) in one of the bifurcating equilibria. For sufficiently small $\delta>0$, the operator $\mathscr{L}(s)$ possesses a positive eigenvalue, implying the instability of the bifurcating equilibria. We refrain from giving the details and refer the interested reader to [54, Section 5.3] for the proof.

A. Appendix

A.1. The two-phase Stokes problem on the half-line

Let $G \subset \mathbb{R}^{2}$ be open and bounded with $\partial G \in C^{4}$. Define $\Omega:=G \times\left(H_{1}, H_{2}\right)$ and let $\Sigma:=G \times\{0\}$. Let $S_{1}:=\partial G \times\left(H_{1}, H_{2}\right)$ and $S_{2}:=\left(G \times\left\{H_{1}\right\}\right) \cup\left(G \times\left\{H_{2}\right\}\right)$. In this
section we consider the two-phase Stokes problem

$$
\begin{align*}
\omega \rho u+\partial_{t}(\rho u)-\mu \Delta u+\nabla \pi & =f, & & \text { in } \Omega \backslash \Sigma, \\
\operatorname{div} u & =f_{d}, & & \text { in } \Omega \backslash \Sigma, \\
-\llbracket \mu \partial_{3} v \rrbracket-\llbracket \mu \nabla_{x^{\prime}} w \rrbracket & =g_{v}, & & \text { on } \Sigma, \\
-2 \llbracket \mu \partial_{3} w \rrbracket+\llbracket \pi \rrbracket & =g_{w}, & & \text { on } \Sigma, \\
\llbracket u \rrbracket & =u_{\Sigma}, & & \text { on } \Sigma, \tag{A.1}\\
P_{S_{1}}\left(\mu\left(\nabla u+\nabla u^{\top}\right) v_{S_{1}}\right. & =P_{S_{1}} g_{1}, & & \text { on } S_{1} \backslash \partial \Sigma, \\
u \cdot v_{S_{1}} & =g_{2}, & & \text { on } S_{1} \backslash \partial \Sigma, \\
u & =g_{3}, & & \text { on } S_{2}, \\
u(0) & =u_{0}, & & \text { in } \Omega \backslash \Sigma
\end{align*}
$$

on the half-line \mathbb{R}_{+}for $\omega>0$. Define the function spaces

$$
\begin{aligned}
& \mathbb{F}_{1}:=L_{p}\left(\mathbb{R}_{+} ; L_{p}(\Omega)^{3}\right), \\
& \mathbb{F}_{2}:=L_{p}\left(\mathbb{R}_{+} ; H_{p}^{1}(\Omega \backslash \Sigma)\right), \\
& \mathbb{F}_{3}:=W_{p}^{1 / 2-1 / 2 p}\left(\mathbb{R}_{+} ; L_{p}(\Sigma)^{2}\right) \cap L_{p}\left(\mathbb{R}_{+} ; W_{p}^{1-1 / p}(\Sigma)^{2}\right), \\
& \mathbb{F}_{4}:=W_{p}^{1 / 2-1 / 2 p}\left(\mathbb{R}_{+} ; L_{p}(\Sigma)\right) \cap L_{p}\left(\mathbb{R}_{+} ; W_{p}^{1-1 / p}(\Sigma)\right), \\
& \mathbb{F}_{5}:=W_{p}^{1-1 / 2 p}\left(\mathbb{R}_{+} ; L_{p}(\Sigma)^{3}\right) \cap L_{p}\left(\mathbb{R}_{+} ; W_{p}^{2-1 / p}(\Sigma)^{3}\right), \\
& \mathbb{F}_{6}:=W_{p}^{1 / 2-1 / 2 p}\left(\mathbb{R}_{+} ; L_{p}\left(S_{1}\right)^{3}\right) \cap L_{p}\left(\mathbb{R}_{+} ; W_{p}^{1-1 / p}\left(S_{1} \backslash \partial \Sigma\right)^{3}\right), \\
& \mathbb{F}_{7}:=W_{p}^{1-1 / 2 p}\left(\mathbb{R}_{+} ; L_{p}\left(S_{1}\right)\right) \cap L_{p}\left(\mathbb{R}_{+} ; W_{p}^{2-1 / p}\left(S_{1} \backslash \partial \Sigma\right)\right), \\
& \mathbb{F}_{8}:=W_{p}^{1-1 / 2 p}\left(\mathbb{R}_{+} ; L_{p}\left(S_{2}\right)\right) \cap L_{p}\left(\mathbb{R}_{+} ; W_{p}^{2-1 / p}\left(S_{2}\right)\right),
\end{aligned}
$$

and $\widetilde{\mathbb{F}}:=X_{j=1}^{8} \mathbb{F}_{j}$, as well as

$$
\mathbb{F}:=\left\{\left(f_{1}, \ldots, f_{8}\right) \in \widetilde{\mathbb{F}}:\left(f_{2}, f_{5}, f_{7}, f_{8}\right) \in H_{p}^{1}\left(\mathbb{R}_{+} ; \hat{H}_{p}^{-1}(\Omega)\right)\right\}
$$

Furthermore, we set $X_{\gamma}:=W_{p}^{2-2 / p}(\Omega \backslash \Sigma)^{3}$. Then we have the following result:
Theorem A.1. Let $\mu_{j}, \rho_{j}, H_{j}, \sigma>0, p>2, p \neq 3$. Then there exists $\omega_{0}>0$ such that for each $\omega \geq \omega_{0}$, problem (A.1) has a unique solution

$$
u \in H_{p}^{1}\left(\mathbb{R}_{+} ; L_{p}(\Omega)^{3}\right) \cap L_{p}\left(\mathbb{R}_{+} ; H_{p}^{2}(\Omega \backslash \Sigma)^{3}\right), \quad \pi \in L_{p}\left(\mathbb{R}_{+} ; \dot{H}_{p}^{1}(\Omega \backslash \Sigma)\right)
$$

and

$$
\llbracket \pi \rrbracket \in W_{p}^{1 / 2-1 / 2 p}\left(\mathbb{R}_{+} ; L_{p}(\Sigma)\right) \cap L_{p}\left(\mathbb{R}_{+} ; W_{p}^{1-1 / p}(\Sigma)\right)
$$

if and only if the data are subject to the following regularity and compatibility conditions:
(1) $\left(f, f_{d}, g_{v}, g_{w}, u_{\Sigma}, g_{1}, g_{2}, g_{3}\right) \in \mathbb{F}$,
(2) $u_{0} \in X_{\gamma}$,
(3) $\operatorname{div} u_{0}=\left.f_{d}\right|_{t=0},-\llbracket \mu \nabla_{x^{\prime}} w_{0} \rrbracket-\llbracket \mu \partial_{3} v_{0} \rrbracket=\left.g_{v}\right|_{t=0}, \llbracket u_{0} \rrbracket=\left.u_{\Sigma}\right|_{t=0}$,
(4) $P_{S_{1}}\left(\mu\left(\nabla u_{0}+\nabla u_{0}^{T}\right) v_{S_{1}}\right)=\left.P_{S_{1}} g_{1}\right|_{t=0}(p>3), u_{0} \cdot v_{S_{1}}=\left.g_{2}\right|_{t=0}, u_{0}=\left.g_{3}\right|_{t=0}$,
(5) $\llbracket g_{2} \rrbracket=u_{\Sigma} \cdot v_{S_{1}}$,
(6) $\llbracket\left(g_{1} \cdot e_{3}\right) / \mu-\partial_{3} g_{2} \rrbracket=\partial_{\nu_{S_{1}}}\left(u_{\Sigma} \cdot e_{3}\right)$,
(7) $P_{\partial \Sigma}\left[\left(D^{\prime} v_{\Sigma}\right) \nu^{\prime}\right]=\llbracket P_{\partial \Sigma} g_{1}^{\prime} / \mu \rrbracket$,
(8) $\left(g_{v} \mid \nu_{S_{1}}\right)=-\llbracket g_{1} \cdot e_{3} \rrbracket,\left(g_{3} \mid v_{S_{1}}\right)=g_{2}$,
(9) $P_{\partial G}\left[\mu\left(D^{\prime} g_{3}^{\prime}\right) \nu^{\prime}\right]=\left(P_{\partial G} g_{1}^{\prime}\right)$,
(10) $\mu \partial_{\nu_{S_{1}}}\left(g_{3} \cdot e_{3}\right)+\mu \partial_{3} g_{2}=g_{1} \cdot e_{3}$.

Here we have set $g_{j}=\left(g_{j}^{1}, g_{j}^{2}, g_{j}^{3}\right)=:\left(g_{j}^{\prime}, g_{j}^{3}\right)$ for $j \in\{1,3\}, D^{\prime} k=\nabla_{x^{\prime}} k+\nabla_{x^{\prime}} k^{\top}$ for $k \in\left\{v_{\Sigma}, g_{3}^{\prime}\right\}$ and $\nu^{\prime}:=v_{\partial G}$.

Proof. The proof may be based on a localisation procedure. Making use of reflection arguments as in [55], shifted quarter-space problems and two-phase half-space problems are traced to shifted half-space problems and two-phase full-space problems, which may then be solved by [31, Theorem 7.2.1] and [31, Theorem 8.2.2], respectively.

Note that in contrast to the proof of [55, Theorem 3.2], we are able to control all commutator terms which appear during the localisation procedure by C / ω^{a} for some uniform $a>0$ and some $C>0$ being independent of ω, by means of interpolation and trace theory. Choosing $\omega>0$ large enough, the norms of the lower order terms will become small. This yields the linear well-posedness of (A.1) on the half-line \mathbb{R}_{+}for sufficiently large $\omega>0$. Since the strategy of the proof parallels the one used in the proof of [55, Theorem 3.2] to a large extent, we refrain from giving the details.

As an immediate consequence of the last theorem, one obtains maximal regularity of type L_{p} of (A.1) in exponentially weighted spaces. To see this, we define

$$
e^{-\delta} \mathbb{F}_{j}:=\left\{f \in \mathbb{F}_{j}:\left[t \mapsto e^{\delta t} f(t)\right] \in \mathbb{F}_{j}\right\}
$$

where $\delta \in \mathbb{R}$. We define $e^{-\delta} \widetilde{\mathbb{F}}$ and $e^{-\delta} \mathbb{F}$ similarly.
We write $\omega=\omega-\delta+\delta$ in (A.1), multiply each equation by $e^{\delta t}$ and use the formula $\partial_{t}\left(e^{\delta t} u(t)\right)=e^{\delta t}\left(\delta u(t)+\partial_{t} u(t)\right)$ to obtain the following result:

Corollary A.2. Let the conditions of Theorem A. 1 be satisfied. Suppose that $\delta \in \mathbb{R}$ and let $\omega \geq \max \left\{\omega_{0}, \omega_{0}+\delta\right\}$. Then there exists a unique solution

$$
u \in e^{-\delta}\left[H_{p}^{1}\left(\mathbb{R}_{+} ; L_{p}(\Omega)^{3}\right) \cap L_{p}\left(\mathbb{R}_{+} ; H_{p}^{2}(\Omega \backslash \Sigma)^{3}\right)\right], \quad \pi \in e^{-\delta}\left[L_{p}\left(\mathbb{R}_{+} ; \dot{H}_{p}^{1}(\Omega \backslash \Sigma)\right)\right]
$$

and

$$
\llbracket \pi \rrbracket \in e^{-\delta}\left[W_{p}^{1 / 2-1 / 2 p}\left(\mathbb{R}_{+} ; L_{p}(\Sigma)\right) \cap L_{p}\left(\mathbb{R}_{+} ; W_{p}^{1-1 / p}(\Sigma)\right)\right]
$$

of (A.1) if and only if the data are subject to the conditions in Theorem A. 1 with \mathbb{F} being replaced by $e^{-\delta} \mathbb{F}$.

A.2. Elliptic two-phase Stokes problems

Let $\widehat{f} \in L_{p}(\Omega)^{3}, \hat{f}_{d} \in H_{p}^{1}(\Omega \backslash \Sigma),\left(\widehat{g}_{v}, \widehat{g}_{w}\right) \in W_{p}^{1-1 / p}(\Sigma)^{3}, \widehat{u}_{\Sigma} \in W_{p}^{2-1 / p}(\Sigma)^{3}, \widehat{g}_{1} \in$ $W_{p}^{1-1 / p}\left(S_{1} \backslash \partial \Sigma\right)$, and $\widehat{g}_{2} \in W_{p}^{2-1 / p}\left(S_{1} \backslash \partial \Sigma\right)$ as well as $\widehat{g}_{3} \in W_{p}^{2-1 / p}\left(S_{2}\right)$ be given such that $\left(\hat{f}_{d}, \widehat{u}_{\Sigma}, \widehat{g}_{2}, \widehat{g}_{3}\right) \in \hat{H}_{p}^{-1}(\Omega)$ and such that the compatibility conditions (5)-(10) in Theorem A. 1 are satisfied at $\partial S_{1} \cap \partial S_{2}$ and $S_{1} \cap \partial \Sigma$.

Define $f(t):=t e^{-t} \widehat{f}$ and in the same way define $f_{d}(t), u_{\Sigma}(t)$ and $g_{j}(t)$ for $j \in$ $\{v, w, 1,2,3\}$. Then it holds that

$$
\left(f, f_{d}, g_{v}, g_{w}, u_{\Sigma}, g_{1}, g_{2}, g_{3}\right) \in e^{-\delta} \mathbb{F}
$$

for each $\delta \in(0,1)$ and the compatibility conditions (3)-(10) in Theorem A. 1 are satisfied with $u_{0}=0$. By Corollary A.2, there exists a unique solution $(u, \pi, \llbracket \pi \rrbracket)$ of (A.1) with $\omega \geq \omega_{0}+\delta$ such that
$u \in e^{-\delta}\left[{ }_{0} H_{p}^{1}\left(\mathbb{R}_{+} ; L_{p}(\Omega)^{3}\right) \cap L_{p}\left(\mathbb{R}_{+} ; H_{p}^{2}(\Omega \backslash \Sigma)^{3}\right)\right], \quad \pi \in e^{-\delta}\left[L_{p}\left(\mathbb{R}_{+} ; \dot{H}_{p}^{1}(\Omega \backslash \Sigma)\right)\right]$, and

$$
\llbracket \pi \rrbracket \in e^{-\delta}\left[{ }_{0} W_{p}^{1 / 2-1 / 2 p}\left(\mathbb{R}_{+} ; L_{p}(\Sigma)\right) \cap L_{p}\left(\mathbb{R}_{+} ; W_{p}^{1-1 / p}(\Sigma)\right)\right]
$$

Therefore, the Laplace transform \mathscr{L} of each term in (A.1) is well-defined. Observe that

$$
(\mathscr{L} f)(\lambda)=\int_{0}^{\infty} e^{-\lambda t} f(t) d t=\hat{f} \int_{0}^{\infty} t e^{-(\lambda+1) t} d t=\frac{1}{(\lambda+1)^{2}} \hat{f}
$$

for $\operatorname{Re} \lambda>-1$, hence $(\mathscr{L} f)(0)=\hat{f}$. Doing the same for all the other data and defining $(\hat{u}, \hat{\pi}, \llbracket \hat{\pi} \rrbracket):=\mathscr{L}(u, \pi, \llbracket \pi \rrbracket)$, we obtain that $(\hat{u}, \hat{\pi}, \llbracket \hat{\pi} \rrbracket)$ solves the elliptic problem

$$
\begin{align*}
\omega \rho \hat{u}-\mu \Delta \widehat{u}+\nabla \hat{\pi} & =\hat{f}, & & \text { in } \Omega \backslash \Sigma, \\
\operatorname{div} \hat{u} & =\widehat{f}_{d}, & & \text { in } \Omega \backslash \Sigma, \\
-\llbracket \mu \partial_{3} \hat{v} \rrbracket-\llbracket \mu \nabla_{x^{\prime}} \widehat{w} \rrbracket & =\widehat{g}_{v}, & & \text { on } \Sigma, \\
-2 \llbracket \mu \partial_{3} \widehat{w} \rrbracket+\llbracket \hat{\pi} \rrbracket & =\widehat{g}_{w}, & & \text { on } \Sigma, \tag{A.2}\\
\llbracket \hat{u} \rrbracket & =\widehat{u}_{\Sigma}, & & \text { on } \Sigma, \\
P_{S_{1}}\left(\mu\left(\nabla \hat{u}+\nabla \hat{u}^{\top}\right) v_{S_{1}}\right) & =P_{S_{1}} \hat{g}_{1}, & & \text { on } S_{1} \backslash \partial \Sigma, \\
\widehat{u} \cdot v_{S_{1}} & =\widehat{g}_{2}, & & \text { on } S_{1} \backslash \partial \Sigma, \\
\widehat{u} & =\widehat{g}_{3}, & & \text { on } S_{2}
\end{align*}
$$

whenever $\omega \geq \omega_{0}+\delta$. Let $A u:=(\mu / \rho) \Delta u-(1 / \rho) \nabla \pi$ with domain

$$
\begin{aligned}
D(A)= & \left\{u \in H_{p}^{2}(\Omega \backslash \Sigma)^{3} \cap L_{p, \sigma}(\Omega): \llbracket \mu \partial_{3} v \rrbracket+\llbracket \mu \nabla_{x^{\prime}} w \rrbracket=0, \llbracket u \rrbracket=0,\right. \\
& \left.P_{S_{1}}\left(\mu(D u) v_{S_{1}}\right)=0, u \cdot v_{S_{1}}=0,\left.u\right|_{S_{2}}=0\right\},
\end{aligned}
$$

and $\pi \in \dot{W}_{p}^{1}(\Omega \backslash \Sigma)$ be the unique solution of the weak transmission problem

$$
\begin{aligned}
\left(\left.\frac{1}{\rho} \nabla \pi \right\rvert\, \nabla \phi\right)_{L_{2}(\Omega)} & =\left(\left.\frac{\mu}{\rho} \Delta u \right\rvert\, \nabla \phi\right)_{L_{2}(\Omega)}, \quad \phi \in W_{p^{\prime}}^{1}(\Omega), \\
\llbracket \pi \rrbracket & =2 \llbracket \mu \partial_{3} w \rrbracket, \quad \text { on } \Sigma,
\end{aligned}
$$

which we know exists, thanks to [55, Lemma 5.7]. Since A has a compact resolvent, the spectrum $\sigma(A)$ of A consists solely of isolated eigenvalues having a finite multiplicity. Furthermore, it holds that $\operatorname{Re} \sigma(A)=\sigma(A) \subset(-\infty, 0)$ by Korn's inequality (Theorem A.4). Indeed, multiplying the eigenvalue problem $A u=\lambda u$ by u and integrating by parts, we obtain the identity

$$
\lambda\|u\|_{L_{2}(\Omega)}^{2}=-\left\|\mu^{1 / 2} D u\right\|_{L_{2}(\Omega)}^{2} .
$$

This yields the following result:
Theorem A.3. Let $\omega \geq 0, \mu_{j}, \rho_{j}, \sigma>0, p>2, p \neq 3$ and let Ω and Σ be as in Theorem A.1. Then there exists a unique solution $(\hat{u}, \hat{\pi}, \llbracket \hat{\pi} \rrbracket)$ with

$$
\widehat{u} \in H_{p}^{2}(\Omega \backslash \Sigma)^{3}, \quad \hat{\pi} \in \dot{H}_{p}^{1}(\Omega \backslash \Sigma), \quad \llbracket \hat{\pi} \rrbracket \in W_{p}^{1-1 / p}(\Sigma)
$$

of (A.2) if and only if the data are subject to the following regularity and compatibility conditions:
(1) $\hat{f} \in L_{p}(\Omega)^{3}, \widehat{f_{d}} \in H_{p}^{1}(\Omega \backslash \Sigma)$,
(2) $\left(\hat{g}_{v}, \widehat{g}_{w}\right) \in W_{p}^{1-1 / p}(\Sigma)^{3}, \widehat{u}_{\Sigma} \in W_{p}^{2-1 / p}(\Sigma)^{3}$,
(3) $\hat{g}_{1} \in W_{p}^{1-1 / p}\left(S_{1} \backslash \partial \Sigma\right), \hat{g}_{2} \in W_{p}^{2-1 / p}\left(S_{1} \backslash \partial \Sigma\right)$,
(4) $\hat{g}_{3} \in W_{p}^{2-1 / p}\left(S_{2}\right),\left(\widehat{f}_{d}, \widehat{u}_{\Sigma}, \widehat{g}_{2}, \widehat{g}_{3}\right) \in \hat{H}_{p}^{-1}(\Omega)$,
(5) $\llbracket \widehat{g}_{2} \rrbracket=\widehat{u}_{\Sigma} \cdot v_{S_{1}}$,
(6) $\llbracket\left(\hat{g}_{1} \cdot e_{3}\right) / \mu-\partial_{3} \widehat{g}_{2} \rrbracket=\partial_{\nu_{S_{1}}}\left(\widehat{u}_{\Sigma} \cdot e_{3}\right)$,
(7) $P_{\partial \Sigma}\left[\left(D^{\prime} \hat{v}_{\Sigma}\right) \nu^{\prime}\right]=\llbracket P_{\partial \Sigma} \hat{g}_{1}^{\prime} / \mu \rrbracket$,
(8) $\left(\widehat{g}_{v} \mid v_{S_{1}}\right)=-\llbracket \widehat{g}_{1} \cdot e_{3} \rrbracket,\left(\widehat{g}_{3} \mid \nu_{S_{1}}\right)=\widehat{g}_{2}$,
(9) $P_{\partial G}\left[\mu\left(D^{\prime} \hat{g}_{3}^{\prime}\right) \nu^{\prime}\right]=\left(P_{\partial G} \widehat{g}_{1}^{\prime}\right)$,
(10) $\mu \partial_{\nu_{S_{1}}}\left(\hat{g}_{3} \cdot e_{3}\right)+\mu \partial_{3} \hat{g}_{2}=\widehat{g}_{1} \cdot e_{3}$,
where $\nu^{\prime}=\nu_{\partial G}$.

A.3. A Korn inequality

For $u \in H_{2}^{1}(\Omega)^{n}$, let $D u:=\nabla u+\nabla u^{\top}$. The following result is well known: There exists a constant $C>0$ such that

$$
\|u\|_{H_{2}^{1}(\Omega)} \leq C\|D u\|_{L_{2}(\Omega)}
$$

for all $u \in H_{2}^{1}(\Omega)^{n}$ such that $u=0$ on $\partial \Omega$ (in the sense of traces). The proof of this inequality relies on integration by parts. We will show that the estimate remains true if $u=0$ on some subset of $\partial \Omega$ having a positive $(n-1)$-dimensional Hausdorff measure.

Theorem A. 4 (Korn's inequality). Let $\Omega \subset \mathbb{R}^{n}, n=2$, 3, be a connected, bounded Lipschitz domain. Then there exists $C>0$ which depends only on Ω such that the estimate

$$
\begin{equation*}
\|\nabla u\|_{L_{2}(\Omega)} \leq C\|D u\|_{L_{2}(\Omega)} \tag{A.3}
\end{equation*}
$$

holds for each $u \in H_{2}^{1}(\Omega)^{n}$ with $u=0$ on some subset $\partial_{D} \Omega$ of the boundary $\partial \Omega$ of Ω such that $\mathscr{H}^{n-1}\left(\partial_{D} \Omega\right)>0$, where \mathscr{H}^{d} denotes the d-dimensional Hausdorff measure.

Proof. Let us first show that we have some kind of Poincaré type estimate, that is, there exists a constant $C>0$ such that the estimate

$$
\|u\|_{L_{2}(\Omega)} \leq C\|D u\|_{L_{2}(\Omega)}
$$

holds for all $u \in H_{2}^{1}(\Omega)^{n}$ with $u=0$ on some subset $\partial_{D} \Omega$ of the boundary $\partial \Omega$ of Ω such that $\mathscr{H}^{n-1}\left(\partial_{D} \Omega\right)>0$.

Assume on the contrary that for each $m \in \mathbb{N}$ there exists $u_{m} \in H_{2}^{1}(\Omega)^{n}$ with $u_{m}=0$ on $\partial_{D} \Omega$ and $\left\|u_{m}\right\|_{L_{2}(\Omega)}=1$ such that

$$
\left\|u_{m}\right\|_{L_{2}(\Omega)} \geq m\left\|D u_{m}\right\|_{L_{2}(\Omega)} .
$$

It follows that $D u_{m} \rightarrow 0$ in $L_{2}(\Omega)$ as $m \rightarrow \infty$. By Korn's inequality for functions in $H_{2}^{1}(\Omega)^{n}$ (see [26]), we obtain

$$
\begin{equation*}
\left\|u_{m}\right\|_{H_{2}^{1}(\Omega)} \leq C_{0}\left(\left\|D u_{m}\right\|_{L_{2}(\Omega)}+\left\|u_{m}\right\|_{L_{2}(\Omega)}\right) \tag{A.4}
\end{equation*}
$$

for some constant $C_{0}>0$. It follows that $\left(u_{m}\right) \subset H_{2}^{1}(\Omega)^{n}$ is bounded. By Rellich's theorem, there exists a subsequence $\left(u_{m_{k}}\right)$ such that $u_{m_{k}} \rightarrow u_{*}$ in $L_{2}(\Omega)$. Then we have $\left\|u_{*}\right\|_{L_{2}(\Omega)}=1$ and by trace theory it holds that $u_{*}(x)=0$ for a.e. $x \in \partial_{D} \Omega$. We make use of (A.4) one more time to conclude that $\left(u_{m_{k}}\right)$ is a Cauchy sequence in $H_{2}^{1}(\Omega)^{n}$, since $D u_{m_{k}} \rightarrow 0$ in $L_{2}(\Omega)$. Therefore, we obtain $u_{m_{k}} \rightarrow u_{*}$ even in $H_{2}^{1}(\Omega)$. Since

$$
\left\|D u_{m_{k}}-D u_{*}\right\|_{L_{2}(\Omega)} \leq C\left\|\nabla u_{m_{k}}-\nabla u_{*}\right\|_{L_{2}(\Omega)} \rightarrow 0
$$

as $k \rightarrow \infty$, it follows readily that $D u_{*}=0$.
Therefore, there exists a skew-symmetric matrix $A \in \mathbb{R}^{n \times n}$ and some $b \in \mathbb{R}^{n}$ such that $u_{*}(x)=A x+b$ for a.e. $x \in \Omega$ (see [26]). Define $U:=\left\{x \in \mathbb{R}^{n}: A x+b=0\right\}$. Then $U \neq \emptyset$ is an affine subspace of \mathbb{R}^{n}, since $\partial_{D} \Omega \subset U$. Fix any $x_{0} \in U$ and define

$$
U_{0}:=U-x_{0}:=\left\{x-x_{0}: x \in U\right\} .
$$

Observe that $\operatorname{dim} U_{0}=n-1$ (by the assumption on the surface measure of $\partial_{D} \Omega$) and $A x=0$ for each $x \in U_{0}$. Let U_{0}^{\perp} be the orthogonal complement of U_{0} and let $y \in U_{0}^{\perp}$. Then $(x \mid A y)=-(A x \mid y)=0$ for each $x \in U_{0}$, since A is skew-symmetric, wherefore $A y \in U_{0}^{\perp}$. Furthermore, we have $(A y \mid y)=0$, since A is skew-symmetric. It follows from $\operatorname{dim} U_{0}^{\perp}=1$ that $A y \in\left(U_{0}^{\perp}\right)^{\perp}=U_{0}$ and therefore $A y=0$ for each $y \in U_{0}^{\perp}$. But, this means that $A x=0$ for each $x \in \mathbb{R}^{n}$, since $\mathbb{R}^{n}=U_{0} \oplus U_{0}^{\perp}$. Thus, we have shown that $A=0$, hence $u_{*}(x)=b$ for some $b \in \mathbb{R}^{n}$. Since $\left\|u_{*}\right\|_{L_{2}(\Omega)}=1$ and $u_{*}(x)=0$ for a.e. $x \in \partial_{D} \Omega$, we have a contradiction.

Finally, the assertion of the proposition follows from the Poincaré type estimate combined with Korn's inequality for functions in $H_{2}^{1}(\Omega)^{n}$.

References

[1] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables. National Bureau of Standards Applied Mathematics Series, no. 55, U. S. Government Printing Office, Washington, D.C., 1964 Zbl 0171.38503 MR 0167642
[2] J. T. Beale, Large-time regularity of viscous surface waves. Arch. Rational Mech. Anal. 84 (1983/84), no. 4, 307-352 Zbl 0545.76029 MR 721189
[3] T. Beck, P. Sosoe, and P. Wong, Duchon-Robert solutions for the Rayleigh-Taylor and Muskat problems. J. Differential Equations 256 (2014), no. 1, 206-222 Zbl 1329.35236 MR 3115840
[4] J. Billingham, On a model for the motion of a contact line on a smooth solid surface. European J. Appl. Math. 17 (2006), no. 3, 347-382 Zbl 1201.76060 MR 2267282
[5] D. Bothe and J. Prüss, On the two-phase Navier-Stokes equation with Bousinesq-Scriven surface fluid. J. Math. Fluid Mech. 12 (2010), no. 1, 133-150 Zbl 1261.35100 MR 2602917
[6] D. Bothe and J. Prüss, Stability of equilibria for two-phase flows with soluble surfactant. Quart. J. Mech. Appl. Math. 63 (2010), no. 2, 177-199 Zbl 1273.76111 MR 2644006
[7] S. Chandrasekhar, Hydrodynamic and hydromagnetic stability. Int. Ser. Monogr. Phys., Clarendon Press, Oxford, 1961 Zbl 0142.44103 MR 0128226
[8] I. V. Denisova, A priori estimates for the solution of the linear nonstationary problem connected with the motion of a drop in a liquid medium. (Russian) Trudy Mat. Inst. Steklov 188 (1990), 3-21. Translation in Proc. Steklov Inst. Math. (1991) no. 3, 1-24 Zbl 0737.35063 MR 1100535
[9] I. V. Denisova, Problem of the motion of two viscous incompressible fluids separated by a closed free interface. Acta Appl. Math. 37 (1994), no. 1-2, 31-40 Zbl 0814.35093 MR 1308743
[10] I. V. Denisova, Solvability in Hölder spaces of a linear problem on the motion of two fluids separated by a closed surface. (Russian) Algebra i Analiz 5 (1993), no. 4, 122-148. Translation in St. Petersburg Math. J. 5 (1994), no. 4, 765-787 MR 1246423
[11] I. V. Denisova and V. A. Solonnikov, Solvability in Hölder spaces of a model initial-boundary value problem generated by a problem on the motion of two fluids. (Russian. English summary) Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 188 (1991), 5-44. Translation in J. Math. Sci. 70 (1994), no. 3, 1717-1746 Zbl 0835.35108 MR 1111467
[12] I. V. Denisova and V. A. Solonnikov, Classical solvability of the problem of the motion of two viscous incompressible fluids. (Russian) Algebra i Analiz 7 (1995), no. 5, 101-142. Translation in St. Petersburg Math. J. 7 (1996), no. 5, 755-786 Zbl 0859.35093 MR 1365814
[13] I. V. Denisova and V. A. Solonnikov, Classical solvability of the problem of the motion of an isolated mass of compressible fluid. (Russian) Algebra i Analiz 14 (2002), no. 1, 71-98. Translation in St. Petersburg Math. J. 14 (2003), no. 1, 53-74 Zbl 1037.35103 MR 1893321
[14] J. Escher, A.-V. Matioc, and B.-V. Matioc, A generalized Rayleigh-Taylor condition for the Muskat problem. Nonlinearity 25 (2012), no. 1, 73-92 Zbl 1243.35179 MR 2864377
[15] Y. Guo and W. A. Strauss, Instability of periodic BGK equilibria. Comm. Pure Appl. Math. 48 (1995), no. 8, 861-894 Zbl 0840.45012 MR 1361017
[16] Y. Guo and I. Tice, Compressible, inviscid Rayleigh-Taylor instability. Indiana Univ. Math. J. 60 (2011), no. 2, 677-711 MR 2963789
[17] D. Henry, Geometric theory of semilinear parabolic equations. Lect. Notes Math. 840, Springer, Berlin, 1981 Zbl 0456.35001 MR 610244
[18] M. Ishii and T. Hibiki, Thermo-fluid dynamics of two-phase flow. Springer, New York, 2006 Zbl 1204.76002 MR 2352856
[19] J. Jang, I. Tice, and Y. Wang, The compressible viscous surface-internal wave problem: nonlinear Rayleigh-Taylor instability. Arch. Ration. Mech. Anal. 221 (2016), no. 1, 215-272 Zbl 1342.35253 MR 3483895
[20] F. Jiang, S. Jiang, and Y. Wang, On the Rayleigh-Taylor instability for the incompressible viscous magnetohydrodynamic equations. Comm. Partial Differential Equations 39 (2014), no. 3, 399-438 Zbl 1302.76217 MR 3169790
[21] F. Jiang, S. Jiang, and W. Wang, Nonlinear Rayleigh-Taylor instability for nonhomogeneous incompressible viscous magnetohydrodynamic flows. Discrete Contin. Dyn. Syst. Ser. S 9 (2016), no. 6, 1853-1898 Zbl 1401.76067 MR 3593408
[22] H. Kielhöfer, Multiple eigenvalue bifurcation for Fredholm operators. J. Reine Angew. Math. 358 (1985), 104-124 Zbl 0552.47025 MR 797678
[23] M. Köhne, J. Prüss, and M. Wilke, Qualitative behaviour of solutions for the two-phase NavierStokes equations with surface tension. Math. Ann. 356 (2013), no. 2, 737-792 Zbl 1317.35300 MR 3048614
[24] H. Kull, Theory of the Rayleigh-Taylor instability. Phys. Rep. 206 (1991), 197-325
[25] Y. Latushkin, J. Prüss, and R. Schnaubelt, Stable and unstable manifolds for quasilinear parabolic systems with fully nonlinear boundary conditions. J. Evol. Equ. 6 (2006), no. 4, 537-576 Zbl 1113.35110 MR 2267699
[26] J. Nečas and I. Hlaváček, Mathematical theory of elastic and elasto-plastic bodies: An introduction, Stud. Appl. Mech. 3, Elsevier, Amsterdam, 1980 MR 0600655
[27] J. Prüss and G. Simonett, Analysis of the boundary symbol for the two-phase Navier-Stokes equations with surface tension. In Nonlocal and abstract parabolic equations and their applications, pp. 265-285, Banach Center Publ. 86, Polish Acad. Sci. Inst. Math., Warsaw, 2009 Zbl 1167.35555 MR 2571494
[28] J. Prüss and G. Simonett, On the Rayleigh-Taylor instability for the two-phase Navier-Stokes equations. Indiana Univ. Math. J. 59 (2010), no. 6, 1853-1871 Zbl 1234.35323 MR 2919738
[29] J. Prüss and G. Simonett, On the two-phase Navier-Stokes equations with surface tension. Interfaces Free Bound. 12 (2010), no. 3, 311-345 Zbl 1202.35359 MR 2727674
[30] J. Prüss and G. Simonett, Analytic solutions for the two-phase Navier-Stokes equations with surface tension and gravity. In Parabolic problems, pp. 507-540, Progr. Nonlinear Differential Equations Appl. 80, Birkhäuser, Basel, 2011 Zbl 1247.35207 MR 3052594
[31] J. Prüss and G. Simonett, Moving interfaces and quasilinear parabolic evolution equations. Monogr. Math., Basel 105, Birkhäuser, Cham, 2016 Zbl 1435.35004 MR 3524106
[32] V. V. Pukhnachev and V. A. Solonnikov, On the problem of dynamic contact angle. (Russian) Prikl. Mat. Mekh. 46 (1982), no. 6, 961-971. Translation in J. Appl. Math. Mech. 46 (1983), 771-779 Zbl 0532.76026 MR 726121
[33] L. Rayleigh, Analytic solutions of the Rayleigh equation for linear density profiles. Proc. London Math. Soc. 14 (1883), 170-177
[34] D. H. Sattinger, Transformation groups and bifurcation at multiple eigenvalues. Bull. Amer. Math. Soc. 79 (1973), 709-711 Zbl 0268.35042 MR 343117
[35] Y. Shibata and S. Shimizu, Free boundary problems for a viscous incompressible fluid. In Kyoto Conference on the Navier-Stokes Equations and their Applications, pp. 356-358, RIMS Kôkyûroku Bessatsu B1, Res. Inst. Math. Sci. (RIMS), Kyoto, 2007 Zbl 1122.35100 MR 2323924
[36] Y. Shibata and S. Shimizu, On a free boundary problem for the Navier-Stokes equations. Differential Integral Equations $\mathbf{2 0}$ (2007), no. 3, 241-276 Zbl 1212.35353 MR 2293985
[37] Y. D. Shikhmurzaev, Moving contact lines in liquid/liquid/solid systems. J. Fluid Mech. 334 (1997), 211-249 Zbl 0887.76021 MR 1442613
[38] V. A. Solonnikov, Solvability of the problem of evolution of an isolated amount of a viscous incompressible capillary fluid. (Russian. English summary) Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 140 (1984), 179-186. Zbl 0551.76022 MR 765724
[39] V. A. Solonnikov, Unsteady flow of a finite mass of a fluid bounded by a free surface. (Russian) Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 152 (1986), 137-157. Translation in J. Soviet Math. $\mathbf{4 0}$ (1988), no. 5, 672-686 Zbl 0639.76035 MR 869248
[40] V. A. Solonnikov, An initial-boundary value problem for a Stokes system that arises in the study of a problem with a free boundary. (Russian) Trudy Mat. Inst. Steklov. 188 (1990), 150-188. Translation in Proc. Steklov Inst. Math. (1991), no. 3, 191-239 MR 1100542
[41] V. A. Solonnikov, Solvability of a problem on the evolution of a viscous incompressible fluid, bounded by a free surface, on a finite time interval. (Russian) Algebra i Analiz 3 (1991), no. 1, 222-257. Translation in St. Petersburg Math. J. 3 (1992), no. 1, 189-220 Zbl 0850.76132 MR 1120848
[42] V. A. Solonnikov, On quasistationary approximation in the problem of motion of a capillary drop. In Topics in nonlinear analysis, pp. 643-671, Progr. Nonlinear Differential Equations Appl. 35, Birkhäuser, Basel, 1999 Zbl 0919.35103 MR 1725589
[43] V. A. Solonnikov and A. Tani, Free boundary problem for a viscous compressible flow with a surface tension. In Constantin Carathéodory: an international tribute, Vol. I, II, pp. 1270-1303, World Sci. Publ., Teaneck, NJ, 1991 Zbl 0752.35096 MR 1130887
[44] V. A. Solonnikov and A. Tani, A problem with a free boundary for Navier-Stokes equations for a compressible fluid in the presence of surface tension. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 182 (1990), 142-148. Translation in J. Soviet Math. 62 (1992), no. 3, 2814-2818 Zbl 0783.76028 MR 1064103
[45] V. A. Solonnikov and A. Tani, Evolution free boundary problem for equations of motion of viscous compressible barotropic liquid. In The Navier-Stokes equations II-theory and numerical methods (Oberwolfach, 1991), pp. 30-55, Lect. Notes in Math. 1530, Springer, Berlin, 1992 Zbl 0786.35106 MR 1226506
[46] N. Tanaka, Global existence of two phase nonhomogeneous viscous incompressible fluid flow. Comm. Partial Differential Equations 18 (1993), no. 1-2, 41-81 Zbl 0773.76073 MR 1211725
[47] N. Tanaka, Two-phase free boundary problem for viscous incompressible thermocapillary convection. Japan. J. Math. (N.S.) 21 (1995), no. 1, 1-42 Zbl 0845.35138 MR 1338355
[48] A. Tani, Small-time existence for the three-dimensional Navier-Stokes equations for an incompressible fluid with a free surface. Arch. Rational Mech. Anal. 133 (1996), no. 4, 299-331 Zbl 0857.76026 MR 1389902
[49] A. Tani and N. Tanaka, Large-time existence of surface waves in incompressible viscous fluids with or without surface tension. Arch. Rational Mech. Anal. 130 (1995), no. 4, 303-314 Zbl 0844.76025 MR 1346360
[50] G. Taylor, The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. Roy. Soc. London Ser. A 201 (1950), 192-196 Zbl 0038.12201 MR 36104
[51] A. Vanderbauwhede, Local bifurcation and symmetry. Research Notes in Mathematics 75, Pitman, Boston, MA, 1982 Zbl 0539.58022 MR 697724
[52] J. Wang and F. Xie, On the Rayleigh-Taylor instability for the compressible non-isentropic inviscid fluids with a free interface. Discrete Contin. Dyn. Syst. Ser. B 21 (2016), no. 8, 2767-2784 Zbl 1354.35116 MR 3555140
[53] Y. Wang and I. Tice, The viscous surface-internal wave problem: nonlinear Rayleigh-Taylor instability. Comm. Partial Differential Equations 37 (2012), no. 11, 1967-2028 Zbl 1294.76143 MR 3005533
[54] M. Wilke, Rayleigh-Taylor instability for the two-phase Navier-Stokes equations with surface tension in cylindrical domains. http://dx.doi.org/10.25673/1016, habilitation thesis, Martin-Luther-University Halle-Wittenberg, Halle, 2013
[55] M. Wilke, The two-phase Navier-Stokes equations with surface tension in cylindrical domains. Pure Appl. Funct. Anal. 5 (2020), no. 1, 121-201 Zbl 1460.35266 MR 4061173

Received 20 September 2021.

Mathias Wilke

Martin-Luther-Universität Halle-Wittenberg, Institut für Mathematik, Theodor-Lieser-Straße 5, 06099 Halle (Saale), Germany; mathias.wilke@mathematik.uni-halle.de

[^0]: 2020 Mathematics Subject Classification. Primary 35R35; Secondary 35B35, 76D03, 76D05, 76D45, 76E17.
 Keywords. Navier-Stokes equations, two-phase problem, Rayleigh-Taylor instability, contact angle, maximal regularity, bifurcation, multiple eigenvalue, symmetry.

