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Abstract: Additive manufacturing has a wide range of applications and has opened up new methods
of drug formulation, in turn achieving attention in medicine. We prepared styrene–isobutylene–
styrene triblock copolymers (SIBS; Mn = 10 kDa–25 kDa, PDI 1,3–1,6) as a drug carrier for triamci-
nolone acetonide (TA), further processed by fused deposition modeling to create a solid drug release
system displaying improved bioavailability and applicability. Living carbocationic polymerization
was used to exert control over block length and polymeric architecture. Thermorheological properties
of the SIBS polymer (22.3 kDa, 38 wt % S) were adjusted to the printability of SIBS/TA mixtures
(1–5% of TA), generating an effective release system effective for more than 60 days. Continuous drug
release and morphological investigations were conducted to probe the influence of the 3D printing
process on the drug release, enabling 3D printing as a formulation method for a slow-release system
of Triamcinolone.

Keywords: SIBS triblock copolymer; Triamcinolone acetonide; 3D printing; living carbocationic
polymerization

1. Introduction

The 3D printing of pharmaceuticals has become an attractive alternative to conven-
tional formulation technologies in the past decade [1–4]. The use of various printing
technologies such as fused deposition modeling (FDM), stereo lithography (SLS), or binder
jet printing and laser sintering has revolutionized formulation strategies by implementing
solutions for personalized medicines [5,6] or complex dosage regimes, such as polypills or
dosage of medicines with a low therapeutic index [1]. A variety of different drugs have been
3D-printed using various polymers, such as poly-ethylene glycol (PEG), poly-lactic acid
(PLA), poly-vinyl alcohol (PVA), poly-caprolactone (PCL), poly-isobutylene (PIB), hydrox-
ypropylmethylcellulose (HMPC), and poly-vinylpyrrolidon (PVP)-type polymers [5,7–21],
always considering key parameters such as thermal stability of the drug, melt flow of
the polymers, as well as their final shape persistence and (bio)-degradation, as desired.
Apart from the use of biodegradable polymers (such as PLA, PCL), 3D printing of non-
degradable polymers for implantation and slow release over many years has gained notable
importance in this context [8,11,19–23]. In particular, the use of poly-isobutylene (IB)-based
polymers has become important as a 3D-printable medium [24–26], able to embed a variety
of drugs (with a focus on paclitaxel®), especially for long-term release [27–38]. To effect
sufficient processability, and, most of all, 3D-printability, copolymers of IB with styrene
(S) have been designed. The triblock copolymer SIBS is known for its medical use, in e.g.,
the TAXUS® coronary stent as a drug carrier for paclitaxel, which is a known antitumor
drug/cell growth inhibitor [39–41]. For this application, a stent is spray-coated with a
solution of drug and polymer, followed by solvent evaporation to generate a thin film
containing the embedded drug. After implantation, the drug will be released over a long
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time period. It is reported that SIBS as a drug carrier forms a very slow-release system,
releasing drugs over years [42,43]. Advantages of SIBS when compared to PLA or other
biodegradable polymers include its excellent stability in the human body, where the struc-
ture can be kept over a long period of time, which leads to long-term drug exposure. Thus,
synthetic heart valves have been designed using SIBS with low styrene content, a polyester
fabric, and a second SIBS with higher styrene content for structural stability [36,44]. The
mechanical properties, in particular, are important in such SIBS polymers, as they can be
engineered relatively easily, by adjusting the ratios of hard and soft segments. For medical
applications, these polymers are usually designed with a molecular weight in the range of
75–150 kDa [45]. To increase the mechanical properties, it is common to blend SIBS with
thermoplastic polymers such as PS or PPO, which, due to their improved thermoplastic
properties, can be used for additive manufacturing using FFF 3D printing [46].

Triamcinolone acetonide (TA) is known for its excellent thermal stability at up to
290 ◦C [47] and is commonly used to treat skin and joint conditions as well as ocular
diseases [48]. The drug is conventionally applied as a topical medication or as an injection,
and for a less troublesome treatment, a long-term delivery system would be advanta-
geous. Formulations of TA using a polymer matrix are usually fast-release systems using
biodegradable polymers such as PEG [49,50], PLA [51], or PCl [52,53]. With a strong burst
release in the first hour, the drug content of the subsequent release is significantly smaller.
A release system of the penta-block copolymer PLA-PCl-PEG-PCl-PLA was reported, show-
ing full release after 40 days, depending on the length of hydrophobic segments inside the
polymer backbone [54].

The use of a 3D-printable hydrophobic polymer such as SIBS, known as a slow-release
system with adjustable properties, could lead to a new area of application of triamcinolone
acetonide. Using 3D printing, various shapes can be designed, which opens up further
applications. Here, we report studies on the 3D printing of SIBS/triamcinolone acetonide
(TA) blends, based on the rheological properties of synthesized low-molecular-weight SIBS
triblock copolymers containing TA, with a particular focus on shear rate dependence and
the effect of higher printing temperatures on the release system (see Figure 1).
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Figure 1. Concept of the 3D printing of triamcinolone acetonide (TA, red) embedded into SIBS
triblock copolymers (S = yellow, IB = blue).

2. Materials and Methods

Triamcinolone acetonide (4aS,4bR,5S,6aS,6bS,9aR,10aS,10bS)-4b-fluoro-6b-glycoloyl-5-
hydroxy-4a,6a,8,8-tetramethyl-4a,4b,5,6,6a,6b,9a,10,10a,10b,11,12-dodecahydro-2H-naphtho
[2′,1′:4,5]indeno[1,2-d][1,3]dioxol-2-one) was purchased from ABCR (Karlsruhe, Germany).
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Sodium chloride was obtained from Roth (Dessau, Germany). Na2HSO4 was purchased
from Alfa Aesar ((Haverhill, MA, USA). KH2SO4 was purchased from Roanal (Budapest,
Hungary). Potassium chloride was purchased from Sigma-Aldrich (St. Louis, MO, USA).
All substances used were of analytical grade or higher and used without further purifica-
tion if not stated otherwise. Double-distilled water was used in the experiments. Solvent
handling and the chemicals that are not mentioned here can be found in the Supplemen-
tary Materials.

All 1H-NMR and 13C-NMR spectra were measured with a Varian FT-NMR spectrom-
eter (500 and 101 MHz, respectively, Agilent Technologies, Waldbronn, Germany). The
samples were measured at 27 ◦C using deuterated chloroform (CDCl3). All NMR spectral
analysis was performed using MestReNova (Version: 12.0.2-20910, Mestrelab Research,
Santiago de Compostela, Spain).

The synthesized polymer was analyzed via gel permeation chromatography (GPC)
using a Viscothek GPCmax VE2001 (ViscoTec, Tönning a. Inn, Germany), equipped with
two columns (CLM-3008, CLM-3011) and a refractive index (RI) detector (Viscothek 3580).
Linear poly-isobutylene (PIB) was used for standard calibration, and THF (HPLC grade,
Prolabo) was used as an elution solvent at a flow rate of 1 mL/min. The injection concen-
tration was between 4 mg/mL and 5 mg/mL.

Differential scanning calorimetry (DSC) (Netzsch DSC 204 F1 Phoenix, Netzsch, Selb,
Germany) was used to analyze the thermal properties of the synthesized polymers. The
sample (10 mg) was heated from −100 ◦C to 200 ◦C, using a heating rate of 10 K/min
and a nitrogen atmosphere. The data were collected in the second heating cycle. Nitrogen
(20 mL/min) was used as an inert gas. Data analysis was performed on the software
NETZSCH Proteus (version 5.2.1, Netzsch, Selb, Germany) and Origin 2019 (OriginLab
Corporation, Northampton, MA, USA).

Thermogravimetric analysis (TGA) was performed using a TG 209 F3 Tarus by Netzsch.
Samples (15 mg) were weighed in an aluminum oxide crucible and heated under nitrogen
atmosphere at a heating rate of 10 K/min until a temperature of 600 ◦C was reached. For
data analysis, the software Netzsch Proteus for Thermal Analysis (Version 5.2.1, Netzsch,
Selb, Germany) was used.

Rheology experiments were performed with an MCR 101-DSO (Anton Paar, Graz, Aus-
tria) using a parallel plate geometry (diameter 8 mm). The measurements were performed
from 140 ◦C to 180 ◦C with 20 min of equilibration time in between the measurements.
The shear rate was set in the range of 0.1–100 s−1. Data analysis was performed with the
software RheoCompassTM (version V1.30.1064, Anton Paar, Graz, Austria) and Origin 2019.

For quantification of triamcinolone acetonide, high-performance liquid chromatogra-
phy (HPLC) was used. Experiments were conducted on an Atlantis T3 5 µm (4.6× 250 mm)
column. ACN, water, and formic acid (60:40:0.1) were used as a solvent. Solutions of the
two drugs in methanol in a range of 0.001–0.2 mg/mL were used to obtain a calibration
curve (Figure S9). To determine the total drug load, samples were dissolved in 1 mL THF.
Methanol (4 mL) was added to precipitate the SIBS polymer and the sample was then
filtered using a 0.2 µm PTFE filter to remove the precipitate.

For 3D printing, a 3D Discovery G5 from REGENHU was used. The printer was
equipped with a thermo polymer extruder type HM-300H (REGENHU, Villaz-Saint-Pierre,
Switzerland) using a 0.33 mm diameter needle. The printing was carried out using a
pressure of 0.4 MPa with a feed of 10 rev s/mm. The printing temperatures were 180 ◦C
and 200 ◦C for the drug-containing polymer and pure SIBS, respectively. The temperature
of the storage tank was set to a 10 ◦C higher temperature.

AFM measurements were performed using a Nanosurf CoreAFM (Nanosurf, Liestal,
Switzerland) with Tap190AI-G Cantilevers in the phase contrast mode. The samples (10 mg)
were dissolved in DCM, dropped onto the sample carrier, and left at room temperature to
evaporate, followed by high vacuum for 24 h to ensure no solvent residue. Data analysis
was accomplished using Gwyddion 2.61 (Czech Metrology Institute, Brno, Czech Republic).
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The release of triamcinolone acetonide was studied in phosphate-buffered saline (PBS),
pH 7.4. The extruded and film samples (10–25 mg) were weighed in the buffer solution
to completely submerge the polymer/drug sample. Sink conditions were ensured during
the whole release experiment, using 50 mL of solvent. The experiment was performed at
37 ◦C ambient temperature and shaking at 150 min−1. Samples of 0.5 mL were taken in
previously described time intervals and analyzed via HPLC as mentioned before. Drug
release was calculated from TA in the release medium, including a correction function for
the 1% solvent removal after each sample was taken.

3. Results and Discussion
3.1. Synthesis

Several triblock copolymers with adjustable composition of the blocks (S, IB) were
synthesized via living carbo cationic polymerization (LCCP) using a bivalent initiator
(Figures S1–S6) [55–57]. LCCP is known to allow for a living polymerization of both
monomers, IB and S, to generate an adjustable and well-engineered block length of both of
the monomers [58,59]. Within the final SIBS polymer, the S and IB blocks are microphase-
segregated, imparting favorable rheological properties for this thermoplastic elastomer,
with IB constituting the liquid phase and S the solid phase. To this end, LCCP was
initiated by 1-(tert-butyl)-3,5-bis(2-methoxypropan-2-yl)benzene, dissolved in a mixture of
hexane and DCM 60:40 at −80 ◦C with di-tert-butyl-pyridine (DtbP) as the acid scavenger.
Isobutylene (IB) was added and the polymerization was initiated with the addition of TiCl4.
After 10 min, styrene (S) was added at −80 ◦C to effect the crossover chemistry from the
living PIB chains to the S-polymer, subsequently quenched using methanol after 15 min
(Scheme 1). The polymer was precipitated into a 10-fold excess of methanol and dried
using high vacuum (0.007 mbar). A series of different SIBS triblock copolymers displaying
molecular weights from 10 kDa to 25 kDa, with block ratios ranging from IB/S = 20:1 to 1:1,
were prepared (see Table 1) with reasonable polydispersities and with controlled molecular
weights (Figures S7 and S8).
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Scheme 1. Synthesis of SIBS polymers starting from 5-(tert-butyl)isophthalic acid to prepare the
bivalent initiator 1-(tert-butyl)-3,5-bis(2-methoxypropan-2-yl)benzene, followed by living carbo
cationic polymerization (LCCP) of iso-butylene (IB), followed by addition of styrene (S). Indicated
carbocations are representative of the active (growing) chain ends (reversibly deactivated chains are
not shown).

Table 1. Synthesized SIBS triblock copolymers with various molecular weights (Mn), polydispersities
(PDI), and the calculated wt % of the PS block.

Sample (SIBS) Mn (GPC) PDI wt % PS

B1 10,800 1.36 6%
B2 14,000 1.8 32%
B3 18,000 1.47 36%
B4 22,300 1.44 38%
B5 25,200 1.65 49%

After testing with rheology, SIBS-B4 (vide supra) was chosen due to its excellent
properties, also displaying an acceptable PS/PI ratio and an acceptable PDI. The synthe-
sized polymers with their PDI and molecular weights are shown in Table 1. Polymer and
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drug mixtures were prepared by dissolving both in THF and removing the solvent under
reduced pressure. The SIBS drug mixtures were then dried using a high-vacuum pump to
ensure removal of all solvent residues.

3.2. Thermal Analysis

To guarantee successful printability during the melt extrusion process in 3D printing,
we probed the thermal stability of the polymer and the SIBS–drug mixtures. Differential
scanning calorimetry (DSC) was conducted to understand the influence of the drug on
the Tg-values of the polymer. Thermal gravimetric analysis (TGA) was accomplished to
ensure that no thermal degradation was taking place during the 3D printing process, and
that neither the SIBS nor the drug are decomposing at the respective printing temperature.
The corresponding graphs of SIBS-B4 and its mixtures with 1–5 wt % TA are shown in
Figure 2. TGA showed thermal stability up to 250 ◦C, which is higher than the expected
printing temperature. DSC shows the presence of two glass transition temperatures, one Tg
at −60 ◦C, which can be assigned to the soft PIB segments, and the second one at 70 ◦C,
indicative of the PS block, overall proving microphase segregation of the two polymer
blocks. The addition of the drug in amounts of 1–5 wt % of TA shows no significant
change in the thermal properties, proving that the properties of the SIBS polymer are
largely unchanged.
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3.3. Rheology

For 3D printing, the viscosity dependent on the shear rate and the temperature is
the most important factor to ensure adequate extrusion of the polymer. The shear rate
at the nozzle and the polymer tank leads to the so-called “printing window”, in which
the polymer matches the requirements of the polymer extruder. For our printing system,
the viscosity of the polymer must be in the range of 200 to 2000 Pa·s to be extruded in
a controlled manner, excluding primordial dripping from the printing head as well as a
successful extrusion. Given the data collected in the DSC measurement, the temperature for
3D printing should be above 100 ◦C to ensure a homogeneous state throughout the mixture.

The conducted rheology measurements underscore the 3D-printability of all samples
with viscosities of 150 Pa·s up to 40 kPa·s for the different samples (Figure 3). The results
also showed that the addition of the drug to the polymer led to an increase in viscosity. At
a temperature of 140 ◦C, both drug-containing samples (1 wt % and 5 wt % TA) displayed
a viscosity of 35 kPa·s, compared to 20 k kPa·s of the virgin sample at low shear rates.
With increasing temperature, this ratio remained constant, with 3.4 kPa·s and 4.1 kPa·s for
1 wt % and 5 wt %, respectively, compared to 1.7 kPa·s of pure SIBS-B4. Thus, all of the
samples showed suitable viscosities for 3D printing at different temperatures. At a shear
rate of 10 s−1, the virgin sample displayed a viscosity of 253 Pa·s, and the drug-loaded
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samples showed viscosities of 420 kPa·s and 460 kPa·s for 1 wt % and 5 wt %, respectively.
For SIBS-B4, the viscosity is matching starting from a temperature of 170 ◦C, where the
decreasing viscosity of the drug-loaded samples with higher temperatures indicated that
the mixtures are displaying suitable viscosities for the polymer tank from temperatures of
190 ◦C and above.
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3.4. 3D Printing

SIBS-B4 and the polymer–drug mixtures with 1 wt % and 5% TA, respectively, were
printed successfully. The printing parameters are shown in Table 2. As reported in the
literature, 3D printing using FDM of high-molecular-weight SIBS is not possible [46,60];
thus, our synthesized medium-to-low-molecular-weight SIBS-B4 was well suited for the
printing process, requiring a temperature of only 210 ◦C for a successful controlled ex-
trusion. The polymer–drug mixtures were extrudable at lower temperatures due to the
higher applied pressure of 0.4 MPa. The final printed samples show suitable resolution
and uniform strand thickness of 0.33 mm (Figure 4). The generated structures were stable
and contained the drug in the indicated amount, as revealed during the subsequent release
studies (see next section).

Table 2. FDM printing parameters of polymer SIBS-B4, containing 1 wt % (TA1) and 5 wt % (TA5) of
triamcinolone acetonide (TA), respectively.

Sample TTank TExtruder Pressure (MPa) Feed (mm·s −1)

SIBS-B4 210 190 0.2 10
TA1 190 180 0.4 10
TA5 190 180 0.4 10
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3.5. Atomic Force Microscopy

To understand the micro-structure and drug incorporation into the polymer in more
detail, AFM (atomic force microscopy) was performed (Figure 5). Previous morphol-
ogy studies have already been conducted for SIBS and similar styrene-containing block
copolymers such as SIPS [61] (IP = isoprene), SBS [62,63] (B = butadiene), and SEBS [64]
(EB = ethylene/butylene), mainly displaying the formation of a partly lamellar phase
separation or random structures, as proven via AFM and/or TEM [65]. Thus, the surface of
these ABA-type triblock copolymers usually shows a topography that consists of valleys
and hills. The hills are formed by the hard segment (styrene) and the valleys consist of
the soft rubbery phase (IP/B/IB/EB). The percentage and height of the hard segments is
reported to increase in size with increasing PS content [64]. The size of these phases are in
the diameter of 20 nm edge to edge and 40 nm center to center, at high molecular weights
from 100 kDa to 175 kDa [66].
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images of SIBS-B15 mixed with TA (5 wt %) after storing in methanol for 1 h. Scale bars are 2 µm and
200 nm for the magnified insets.

In paclitaxel-containing stents, the drug shows a phase separation from the SIBS matrix,
as it is very hydrophobic. With a Hansen solubility parameter (HSP) of 28.59 MPa0.5 [67], the
solubility of paclitaxel shows a big difference from the involved polymers, with 16.05 MPa0.5

and 18.61 MPa0.5 for isobutylene and styrene, respectively [68]. For TA with HSP of
20.1 MPa0.5 [69], this drug should be more likely to dissolve in the amorphous IB segments
of the matrix.

The pure SIBS-B4 polymer shows the expected unorganized phase separation
(Figure 5a,b) after coating and drying the polymer. The polymer forms two phases with
a medium thickness of 20 nm. The addition of the drug shows no impact on the phase
separation of the SIBS, where the drug forms small crystallites with a size of 120 nm/50 nm,
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and therefore seems to not be fully dissolved in the polymer. In close proximity to the
drug aggregates, a more controlled phase separation in the form of rings is observed
(Figure 5c,d). In order to simulate a fast release, the sample was stored in methanol for 1 h,
after which the AFM experiment was repeated. The AFM pictures show a removal of the
drug and a persistency of the holes left behind (Figure 5e,f). The polymer still shows phase
separation, which indicates no significant interactions with the solvent, neither in view of a
solvent-induced swelling nor the destruction of the phase structure at all.

3.6. Drug Release

SIBS is known to form a slow-release system. Release studies of paclitaxel usually
show a burst release in the first days of study, after which the drug is released over a long
period of time at a nearly constant rate, independent of the drug load [70]. With a higher
paclitaxel fraction, this release rate is increasing, often explained by the phase segregation
between the S and IB blocks. It also has been reported that the conditions of preparation can
influence the release from a stent, as well [71]. For our system, we compare the release of a
film to the 3D-printed samples to show the influence of shear rate and high temperature on
the system.

The release studies (Figure 6) show similar release kinetics, known for paclitaxel
release, and no major influence of the extrusion on the release, with a burst release in the
first 7 days of the release study and a nearly linear lease behavior for the following weeks
up to 60 days. There also is a faster cumulative release for the less-loaded samples (1 wt %
TA) with a total of 43% and 27% release for the extruded samples and the prepared films,
respectively. The samples containing more of the drug (5 wt %) also show a burst release
in the first 7 days, followed by an almost linear release kinetic for the following weeks.
With a higher drug load, however, the cumulative release is smaller. We hypothesize a
significant influence of the surface area on the release kinetics, as the films and the extruded
sample differ. We propose that initially, both sample surfaces are saturated with the drug,
supported by the ratios of cumulative release, compared between samples of the same
preparation method. The initial films show a release ratio of 5.8% to 27.5%, which well
matches the ratio of 1:5 of the initial drug load. For the extruded samples, the samples show
a cumulative release of 4.7% to 43%. We propose that during extrusion, there is a significant
influence of shear stress and temperature on the phase segregation of drug and matrix
and thus the drug distribution in the polymer, especially at the surface. With higher drug
loads, the interactions between matrix and drug could result in a saturated surface and an
even distribution in the polymer, whereas a lower drug load would form a gradient from a
saturated surface and higher concentration in the outer regions of the polymer strand.
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Figure 6. Drug release study of TA from the SIBS matrix.

4. Conclusions

We investigated the impact of 3D printing using FDM on the release of triamcinolone
acetonide from a SIBS triblock copolymer matrix. Low-molecular-weight (10–25 kDa) SIBS
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triblock copolymers were synthesized using carbocationic polymerization with a bivalent
initiator, reaching controllable molecular weights and reasonably low polydispersities.
To determine thermal stability and thermoplastic elastomeric properties, TGA and DSC
were conducted, indicating adequate thermal stability of the drug and polymer up to
250 ◦C and glass transition temperatures of the PIB and PS blocks of −60 ◦C and 70 ◦C,
respectively. Melt rheology was performed to determine the suitability for 3D printing, and
the printing temperatures were found to be in the range of 180 ◦C to 200 ◦C, which led to a
successful extrusion and 3D printing of the polymer–drug formulations. To understand
the microstructure of the formulation, AFM was conducted and the characteristic phase
separation between the IB and the S block in SIBS was visible. The pictures also indicate
phase separation of the polymer and the drug, forming small circular crystallites with
~150 nm diameter, which, after a simulated release of the drugs, leaves holes in the surface
of the previous position of the drug. A detailed time-dependent drug release study was
conducted over a time period of 60 days to investigate the influence of shear force and
temperature applied to the formulation during the 3D printing extrusion process. All
samples showed a burst release in the first 7 days and a slow and steady release in the
following period. The studies indicate a correlation between cumulative drug release and
surface area independent of the drug load, assuming the presence of a saturated surface. At
its core, this work demonstrates the use of SIBS as an extrudable and 3D printable carrier for
triamcinolone acetonide, necessitating further investigations of the detailed microstructure
of the SIBS polymer, along with the exact location of the drug in specific parts of the phase.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14183742/s1. Figure S1: 1H-NMR spectrum of dimethyl-
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spectrum of 1-(tert-butyl)-3,5-bis(2-methoxypropan-2-yl)benzene (3). Figure S6: 13C-NMR spectrum
of 1-(tert-butyl)-3,5-bis(2-methoxypropan-2-yl)benzene (3). Figure S7: 1H-NMR spectrum of SIBS-B4.
Figure S8: GPC graphs of all synthesized SIBS-polymers. Figure S9: HPLC calibration for TA from
0.001 mg/mL to 0.2 mg/mL.
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