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Abstract: Within the era of battery technology, the urgent demand for improved and safer electrolytes
is immanent. In this work, novel electrolytes, based on pyrrolidinium-bistrifluoromethanesulfonyl-
imide polymeric ionic liquids (POILs), equipped with quadrupolar hydrogen-bonding moieties
of ureido-pyrimidinone (UPy) to mediate self-healing properties were synthesized. Reversible
addition–fragmentation chain-transfer (RAFT) polymerization was employed using S,S-dibenzyl
trithiocarbonate as the chain transfer agent to produce precise POILs with a defined amount of
UPy and POIL-moieties. Kinetic studies revealed an excellent control over molecular weight and
polydispersity in all polymerizations, with a preferable incorporation of UPy monomers in the copoly-
merizations together with the ionic monomers. Thermogravimetric analysis proved an excellent
thermal stability of the polymeric ionic liquids up to 360 ◦C. By combining the results from differential
scanning calorimetry (DSC), broadband dielectric spectroscopy (BDS), and rheology, a decoupled
conductivity of the POILs from glass transition was revealed. While the molecular weight was found
to exert the main influence on ionic conductivity, the ultimate strength and the self-healing efficiency
(of up to 88%) were also affected, as quantified by tensile tests for both pristine and self-healed
samples, evidencing a rational design of self-healing electrolytes bearing both hydrogen bonding
moieties and low-molecular-weight polymeric ionic liquids.

Keywords: RAFT polymerization; hydrogen bonds; polymeric ionic liquids

1. Introduction

Lithium-ion batteries (LIBs) as an alternative power source to traditional petrochem-
ical energy have attracted researchers’ interest owing to their excellent power density,
reusability, and processability [1]. However in conventional liquid electrolytes, LIBs gener-
ally suffer drawbacks from lithium dendrites [2,3], leakage and flammability of the liquid
electrolytes and the thus resulting poor thermal stability [4]. To solve such deficiencies in
current electrolyte systems, polymeric ionic liquids (POILs), where ionic moieties are teth-
ered onto a polymeric backbone, represent potential candidates as polymer electrolytes due
to their good conductivity, thermal and mechanical stability, as well as their plasticity [5,6].
For next-generation electrolytes with battery applications, not only high ionic conductivity
and good mechanical properties are required [7,8], but also properties such as self-healing
can contribute to extending the lifespan of a polymer electrolyte, and thus of the battery as
a whole. In the field of supramolecular materials, hydrogen bonds (HBs) play an important
role because HBs can provide interchain forces, leading to material properties such as im-
proved mechanical strength [9], shape memory behavior [10], stimulus responsiveness [11],
and self-healing [12,13]. Thus in the field of polymer electrolyte chemistry, researchers are
exploiting such HBs in POILs to exploit their generally proposed weaker strength and thus
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to embed self-healing ability into the materials [14,15]. Among the diverse HB synthons,
ureido-pyrimidinone (UPy) is widely applied to polymer matrices [16–19] owing to its facile
synthesis and strong dimerization-abilities (with an association constant, Kasssn. ≥ 106 M−1

in CDCl3) [20] via its quadrupolar HBs. There have been several approaches to introducing
UPy into POIL to explore its self-healing property together with the conductive nature of
POILs [15,17–19], which represents an advantageous strategy to design new-generation
functional electrolytes.

While many POILs have been reported predominantly with polyimidazolium ions [17,21]
or other POILs [18,22,23] as self-healing electrolytes, poly-pyrrolidinium-based self-healing
electrolytes have been scarcely reported, despite the fact that pyrrolidinium-based ionic
liquids generally have a higher electrochemical stability [24]. Moreover, in many publica-
tions POILs were synthesized via free radical polymerization, which offers no control over
the molecular weight of POILs, thus yielding polymers with a broad polydispersity and a
poor reproducibility, which significantly influences the final conductivity of the obtained
polymer electrolytes [25–28]. While UPy was widely exploited in polymers synthesized via
RAFT polymerization [29–31], only a few [32] RAFT kinetics studies regarding an acrylate-
based UPy monomer were reported, let alone studies involving its copolymerization with
ionic monomers.

Motivated by these findings, we herein report the synthesis and characterization of
pyrrolidinium-bistrifluoromethanesulfonyl-imide-based POILs (POIL-x, with x being the
entry number as provided in Table 1) and also the copolymers (CPILU-y, with y being the
entry number) with an acrylate-based UPy monomer via RAFT polymerization. Kinetic
studies were carried out firstly via the RAFT homopolymerization of the ionic monomer
ILA in DMF, and subsequently the copolymerization kinetics with the acrylate-based
UPy monomer UPyA. Homopolymers and copolymers with various molecular weights
were prepared, and their thermal, electrical, rheological, and self-healing properties were
discussed. Thermogravimetric analysis (TGA) revealed an extraordinarily high thermal
stability of the homopolymers POIL-x and the copolymers CPILU-y, while differential
scanning calorimetry (DSC) was employed to study the thermal transition of the homo- and
co-polymers. Together with conductivity obtained via broadband dielectric spectroscopy
(BDS) and zero shear viscosity determined by rheology, the relationship between conduc-
tivity and viscosity was explored. By combination with DSC data, an insight into the
decoupled conductivity properties of both POIL-x and CPILU-y was revealed. To elucidate
the self-healing ability, two copolymers with different molecular weights but identical UPy
content were subjected to tensile tests, allowing the future rational design of self-healing
electrolytes via HBs and with low molecular weight.

Table 1. Data from RAFT polymerizations of ILA and the resulting homopolymer POIL-x.

Sample Entry M/CTA a T/◦C t/h conv. b Mn, th
c Mn, NMR PDI d

POIL-

1 20:1 70 7 38% 3900 8000 1.26
2 20:1 80 7 62% 6100 11,000 1.26
3 100:1 80 7 67% 32,500 40,100 1.34
4 200:1 80 7 79% 75,800 82,100 1.36

a Polymerization was carried out in DMF with AIBN as the initiator, and the ratio of [DBTTC]/[AIBN] was kept
to 1:0.1 while the monomer concentration was kept at 1 mmol monomer in 1 mL DMF; b conversion was detected
by 1H NMR using trioxane as reference; c the number-average molecular weight calculated by the equation:
Mn,th = conv. × ([MILA]/[DBTTC]) × mILA + mDBTTC; d PDI was determined by DMF + LiTFSI (0.1 M) GPC with a
PS standard.

2. Materials and Methods

Acryloyl chloride 96%, 2-cyanobutanyl-2-yl 3,5-dimethyl-1H-pyrazole-1-carbodithioate,
95% (PCDT), and calcium hydride coarse powder 92% were purchased from ABCR (Karl-
sruhe, Germany); 3-chloro-1-propanol 98%, 1-methyl-pyrrolidine 98%, benzyl chloride
99%, carbon disulfide 99.9%, and α,α′-azoisobutyronitrile (AIBN) were purchased from
Sigma-Aldrich (Taufkirchen, Germany); triethylamine 99% and molecular sieve 3Å 1–2 mm
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bead were purchased from Alfa Aesar (Kandel, Germany); 2-isocyanatoethyl acrylate 98%
and 2-amino-4-hydroxy-6-methylpyrimidine (6-methylisocytosine) 98% were purchased
from TCI (Eschborn, Germany); lithium bis(trifluoromethanesulfonyl)imide 99% was pur-
chased from IoLiTech (Heilbronn, Germany); and potassium carbonate was purchased
from Bernd Kraft (Oberhausen, Germany). Molecular sieve 3Å was activated in a vacuum
oven at 200 ◦C for one week before use. 1-Methyl-pyrrolidine was refluxed and distilled
with calcium hydride for 48 h to dry and stored with molecular sieve 3Å in a glovebox
filled with nitrogen (O2: 0.1 ppm, H2O: 0.1 ppm). All the other chemicals were used as
received unless otherwise stated. All other chemicals which are not described here can be
found in the Supplementary Material Section S1.1.

Thermogravimetric analysis (TGA) was performed using a Netzsch Tarsus TG 209
F3 (NETZSCH-Gerätebau GmbH, Selb, Germany). Approximately 10 mg of samples was
placed in aluminum oxide crucibles and measured from room temperature to 600 ◦C
at 10 K·min−1 under nitrogen with a flow rate of 20 mL min−1. The data analysis was
performed via the NETSCH Proteus-Thermal Analysis (Germany, version 5.2.1) software.

Differential scanning calorimetry (DSC) measurements were performed on a calibrated
heat-flux DSC (Mettler-Toledo, Greifensee, Switzerland) equipped with a FRS5 sensor, con-
nected to a TC100 Intracooler (Huber, Offenbach, Germany). 5–10 mg of samples were placed
in aluminum sealed crucibles for measurements. The thermal history was cancelled by heating
the samples from 25 ◦C to 120 ◦C at 10 K·min−1, followed by isothermal annealing for 20 min,
re-cooling to −60 ◦C at 5 K·min−1, and thermostatting at −60 ◦C for another 20 min. The
final DSC curves were then recorded from −60 ◦C to 120 ◦C at 5 K·min−1.

Preparations of samples applied in this work with specific geometry (bar or disc) were
obtained via hot-vacuum press by a VCM Essential molding machine (MeltPrep GmbH,
Graz, Austria). First, the raw polymers were dried in an oven at 80 ◦C at 5 mbar for 24 h
and then dried thoroughly by an ultrahigh vacuum pump at 80 ◦C for 24 h to eliminate
water traces. Second, the polymers were hot-vacuum-pressed into a bar or disc at 70 ◦C
and the so prepared specimens were kept in a desiccator with phosphorous oxide before
the measurements started. For disc samples with specific geometries, a punching tool was
used. For the self-healing samples, the pristine samples were cut vertically at the middle
of the long edge and brought back tightly before being put in an oven pre-conditioned at
the temperature of interest and annealed for a certain time. After self-healing, the samples
were cooled to room temperature in a desiccator containing phosphorous oxide before
measurements were conducted.

Broadband dielectric spectroscopy (BDS) was performed on an Alpha analyzer dielec-
tric spectrometer (Novocontrol Technologies GmbH & Co. KG, Hundsangen, Germany).
Two different sample cells were used depending on the sample texture. For the gel sam-
ples, a cell consisting of two brass electrodes with a sample size of 20 mm diameter and
a thickness of 0.25 mm was used. Gel samples were carefully inserted into the hollow
space between the electrodes inside the sample holder, with air bubble formation avoided.
For self-standing samples, the samples were firstly hot-vacuum-pressed into a disc of
20 mm in diameter and 0.2–0.8 mm in thickness and subsequently sandwiched between
two brass electrodes for the dielectric measurement. The measurements were performed
inside a cryostat with a constant flow of dry nitrogen gas during the measurements to
avoid moisture. Measurements were performed in a frequency range from 1 Hz to 106 Hz.
Values of the DC conductivity were extracted from the DC plateau of the log σ vs. log
frequency plots.

Rheology measurements were performed on an MCR 101 DSO rheometer (Anton
Paar Germany GmbH, Ostfildern-Scharnhausen, Germany) using a parallel plate–plate
geometry (plate diameter: 8 mm). All polymers were dried under high vacuum at 80 ◦C
for 24 h before the rheology measurement. While the gel samples were directly smeared on
the lower plate of the sample holder, the solid samples were hot-vacuum-pressed into films
at 70 ◦C, cut into discs of 8 mm with a punching tool, and subject to the measurement. The
sample temperature was regulated by thermoelectric cooling/heating in a Peltier chamber
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under a dry nitrogen atmosphere. At each temperature the sample was equilibrated for
20 min before measurement was initiated. All measurements were performed in the
dynamic mode and repeated twice to ensure precise viscosity values. Data analysis was
performed via Rheo CompassTM (Austria, version V1.30.1064).

Tensile tests were performed on an INSTRON 5900 Series (INSTRON Deutschland
GmbH, Darmstadt, Germany) tensile testing machine at room temperature at a strain rate of
20 mm·min−1. Data analysis was performed via Bluehill Universal (Germany, version 4.08).

All methods which are not mentioned here can be found in the Supplementary Material
Section S1.1.

3. Results and Discussion
3.1. Synthesis of Monomers and Polymers

To synthesize the ionic monomer ILA, firstly acryloyl chloride was reacted with chloro-
propanol in excess with triethylamine as the organic base in DCM to obtain chloropropyl
acrylate (CPA) as a precursor. The precursor CPA was then used to quaternize 1-methyl
pyrrolidine in MeCN to obtain pyrrolidinium-based acrylate with chloride as the counte-
rion. Ion exchange was performed in water using an excessive amount of LiTFSI to afford
the final ionic acrylate-base monomer ILA, with the pyrrolidinium-ion representing the
cationic moiety and bistrifluoromethanesulfonyl imide (TFSI) constituting the anion (see
Scheme 1). To link the UPy moiety to a polymerizable acrylate, 6-methylisocytosine was
firstly dissolved in hot DMSO, whereafter an excessive amount of isocyanatoethyl acrylate
was added, followed by immediate cooling in a water bath to prevent self-polymerization.
After stirring for 3 h at room temperature and subsequent purification, the finely powdered
UPy monomer UPyA was obtained (for synthetic details, see Supplementary Material
Section S1.2).
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Scheme 1. Synthetic route towards the POIL-x and CPILU-y (bearing the IL and the self-healing
UPy moieties): (a) precursor CPA: acryloyl chloride with chloropropanol and triethylamine (TEA)
at room temperature for 24 h; (b) ionic monomer ILA: CPA with 1-methyl pyrrolidine in MeCN
at 75 ◦C for 24 h; (c) with LiTFSI in H2O at room temperature for 24 h; (d) HBs monomer UPyA:
6-methylisocytosine in DMSO at 120 ◦C, followed by isocyanatoethyl acrylate and stirring at room
temperature for 3 h; (e) homopolymers POIL-x: DBTTC and AIBN in DMF at 70/80 ◦C for 7 h;
(f) copolymers CPILU-y: DBTTC and AIBN in DMF at 80 ◦C.

In this work, S,S-dibenzyl trithiocarbonate (DBTTC) was used as a chain transfer
agent (CTA) for the RAFT polymerization owing to its excellent control over acrylate
monomers [33] and ionic monomers [34]. To make full use of the potential of DBTTC and
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reach the maximum chain end fidelity, the ratio between DBTTC and AIBN was kept at
1:0.1 in all entries. Thanks to the nature of RAFT polymerization, by manipulation of the
ILA to DBTTC ratio, the molecular weight of the final polymers can be adjusted, which
enables precise studies on the influence of molecular weight on the final properties of the
homopolymer POIL-x and the copolymers CPILU-y. RAFT polymerizations were carried
out in DMF because it has been reported as an outstanding solvent for the polymerization
of ionic liquids [35]. To obtain POIL-x with various molecular weights, the kinetics of
RAFT homopolymerization of the ILA was investigated using DBTTC and AIBN as the
initiator. The polymerization conditions, the monomer conversion into the final polymer,
the calculated theoretical and practical number-averaged molecular weight via 1H NMR,
as well as polydispersities determined by gel permeation chromatography (GPC) can be
found in Table 1. As shown in Figure 1a), polymerization using [ILA]/[DBTTC] = 20:1
at 70 ◦C (red square) showed first-order kinetics within the investigated time (7 h), while
increasing the reaction temperature to 80 ◦C (blue circle) with the same monomer to CTA
ratio drastically boosted the reaction rate, and the polymerization reached its maximum
conversion within 3 h. As represented by the orange triangles in Figure 1a, when the
[ILA]/[DBTTC] ratio was increased to 100:1, the polymerization at 80 ◦C showed pseudo-
first-order reaction kinetics, and after a 7-hour reaction, it reached a final conversion of
67%. As shown in Table 1, when the [ILA]/[DBTTC] ratio increased from 20: to 100:1,
and subsequently to 200:1, the conversion also rose from 62% to 67%, and finally to 79%.
Control over the molecular weight was also improved as the ratio increased, as evidenced
by the decreasing deviation between the theoretical and experimental molecular weights
calculated via 1H NMR (for calculation details and NMR spectra, see Supplementary
Material Sections S1.2 and S4). In addition to the moderate control over molecular weight,
the control over polydispersity decreased as the [ILA]/[DBTTC] ratio increased but still
remained within the moderate range (PDI ≤ 1.4).
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Figure 1. Kinetic plots of RAFT (a) homopolymerizations of ILA under the conditions:
[ILA]/[DBTTC] = 20:1 at 70 ◦C (red square), [ILA]/[DBTTC] = 20:1 at 80 ◦C (blue circle),
and [ILA]/[DBTTC] = 100:1 at 80 ◦C (orange triangle); (b) copolymerizations of ILA with
UPyA under the conditions: [ILA + UPyA]/[DBTTC] = 20:1 at 80 ◦C (green rhombus) and
[ILA + UPyA]/[DBTTC] = 100:1 at 80 ◦C (brown star); and (c) photos of the copolymers CPILU-
y with various contents of UPy moieties.

Although GPC is a well-established method to characterize the molecular weight
of many neutral polymers, the determination of the molecular weight of POILs via GPC
remains challenging due to their unique hydrodynamic radius and interaction with the
GPC column, as previously reported [36–38]. In 2013, He [38] reported a strategy to charac-
terize the molecular weight of imidazolium-based POILs with various (counter)-anions by
synthesizing a set of poly(4-vinylbenzyl chloride) with precise molecular weights via RAFT
polymerization, followed by quaternization and ion exchange of the polymer precursors
to obtain the final PS-based polybutylimidazolium with TFSI as the counterion. These
polyimidazoliums were then used for calibration in a DMF GPC with LiTFSI as the additive
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to reduce the interaction of POILs with the GPC column. The molecular weights detected
by this GPC were compared with those obtained via 1H NMR, proving the preciseness of
this strategy. Therefore we also prepared our acrylate-based polypyrrolidinium following
this strategy (for synthesis details, see Supplementary Material Section S1.3). However,
during the quaternization where 1-methylpyrrolidine was involved, side reactions took
place, and the final POILs showed imperfect curves as detected by the GPC in DMF. This
could be attributed to the hydrolysis of the ester moieties of the polymer [39,40] and the
RAFT-active chain end [41] due to the presence of 1-methyl pyrrolidine (which is a base),
which deteriorated the overall polydispersity and further impaired our GPC characteri-
zation with POIL calibration. Therefore, only the conventional PS standard calibration
together with the 0.1 M LiTFSI as an additive was used in DMF GPC to establish the
polydispersity (for GPC curves and data, see Supplementary Section S2).

To introduce the HB-moiety UPy into the POILs and also to study the RAFT copoly-
merization kinetics of the ionic monomer ILA with the quadrupolar hydrogen-bonded
monomer UPyA, random copolymerizations of the two monomers were investigated. The
copolymerization conditions, the monomer conversion into the final polymer, the initial
molar fraction of UPyA in the monomer mixture and the final fraction on the polymer back-
bone, the degree of polymerization of both the ILA and the UPyA, the calculated theoretical
and practical number-averaged molecular weight via 1H NMR, and the polydispersity
determined by GPC are listed in Table 2.

Table 2. Data from RAFT copolymerizations of ILA with UPyA and the resulting copolymer CPILU-y.

Sample Entry M/CTA a f UPy
b T/◦C t/h conv. c FUPy, NMR

d DPIL
e DPUPy

f Mn, th
g Mn, NMR PDI h

CPILU-
5 20:1 5% 80 7 55% 4% 22.5 0.9 5400 11,800 1.35
6 20:1 15% 80 7 77% 14% 18.6 2.6 7200 10,700 1.32
7 20:1 25% 80 7 84% 24% 18.7 4.5 7400 10,500 1.25
8 100:1 5% 80 7 65% 4% 90.1 3.6 30,700 44,400 1.36

a Polymerization was carried out in DMF with AIBN as the initiator, and the ratio of [DBTTC]/[AIBN] was
kept to 1:0.1, while the monomer concentration was kept at 1 mmol monomer in 1 mL DMF; b f UPy was the
initial molar fraction of UPyA in the monomer mixture; c conversion was detected by 1H NMR using trioxane as
reference; d FUPy was the final molar fraction of UPyA on the polymer backbone, calculated from 1H NMR; e, f

calculated from relative integral of protons from 1H NMR (for details see Supplementary Material Section S1.2); g

the number-average molecular weight calculated by the equation: Mn,th = conv. × [([MILA]/[DBTTC]) × mILA +
([MUPyA]/[DBTTC]) × mUPyA] + mDBTTC; h PDI was determined by DMF + LiTFSI (0.1 M) GPC with PS standard.

As shown in Figure 1b, the copolymerization of ILA with a 5% feeding molar ratio
of UPyA at 80 ◦C with [ILA + UPyA]/[DBTTC] = 20:1 (green rhombus) showed similar
kinetics as the homopolymerization entry 2 (blue circle in Figure 1a), and in 3 h the copoly-
merization reached its full conversion of 55%. Entry 8 with [ILA + UPyA]/[DBTTC] = 100:1
also showed comparable kinetics (brown star in Figure 1b) as compared to the homopoly-
merization (entry 3) under the same conditions (orange triangle in Figure 1a)). As shown in
Table 2, when the initial fraction of UPyA increased from 5% to 15% and to 25% the overall
conversion of the two monomers also increased from 55% to 77% and to 84% respectively
(see entry 5–7), this indicated a higher reactivity catalyzed by the HBs in monomer UPyA,
presumably due to the attractive association of UPyA in compared to the repulsive ionic
nature of ILA. Despite the difficulties of copolymerizing non-ionic and ionic monomers,
the control over molecular weight by DBTTC remained moderate in all cases, while control
over polydispersity was less pronounced compared to the homopolerizations, which again
was anticipated again due to the strong association among UPy moieties and ionic clusters
of pyrrolidinium and TFSI ions.

In order to find the proper fraction of UPy on the polymer chain for application as
self-healing electrolytes, CPILU-y with different UPy contents were prepared. As shown in
Figure 1c, as the content of the strong dimerization of UPy moieties increased, the CPILU-y
altered from a gel (5%) to a glassy solid (25%) and finally to a powdery material (>25%),
indicating increased interchain forces due to the quadrupolar HBs of UPy moieties.
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3.2. Thermal Characterization via Thermogravimetric Analysis (TGA) and Differential Scanning
Calorimetry (DSC)

To understand the thermal stability of the POILs thermogravimetric analysis (TGA)
was employed. The 5%-weight-loss temperature and the degradation onset temperature are
listed in Table 3. The ionic monomer ILA demonstrated excellent thermal stability up to 348
◦C as shown in the Figure 2a, while the non-ionic monomer UPyA showed lower stability
until 198 ◦C. For the homopolymers POIL-2 and POIL-3 the thermal stabilities were slightly
higher than that of the monomer, manifesting a minor influence by molecular weight on
the thermal stability. The thermal stabilities of the POIL-x are comparable with those of
similar polypyrrolidinium-polymers as previously reported [42]. However, when UPyA
was incorporated into the polymer backbone the thermal stability showed a decreasing
trend as the UPyA fraction increased. The degradation of the copolymer CPILU-y was
found to be a two-step process, where the UPy moieties were decomposed first at around
200 ◦C, followed by the ionic moieties decomposing at around 360 ◦C (see Table 3, column
Onset T/◦C), indicating a resonable thermal stability compared to the homopolymers.

Table 3. Thermal characterization data of ILA, UPyA, POIL-x, and CPILU-y via thermogravimetric
analysis and differential scanning calorimetry.

Sample Entry Sample Info. 5 wt%-loss T/◦C Onset T/◦C Tg, DSC/◦C a

ILA - monomer 348 348 -

UPyA - monomer 201 198 -

POIL-
2 11 k 348 353 −13
3 40 k 360 357 7

CPILU-
5 4%, 12 k 338 198, 360 9
6 14%, 11 k 297 212, 365 13
7 24%, 10 k 263 215, 363 30

a Glass transition temperature via DSC.
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Figure 2. Thermal characterization of ionic monomer ILA, HBs monomer UPyA, homopolymers
POIL-x, and copolymers CPILU-y via (a) thermogravimetric analysis measured at a heating rate of
10 K·min−1 under N2 atmosphere; and (b) differential scanning calorimetry measured at a heating
rate of 5 K·min−1 with the thermal history cancelled by a preheating/cooling circle (the baseline of
POIL-3 was corrected manually).

For the electrolytes used in batteries, it is often observed that the batteries can provide
different local temperatures which could introduce a temperature-controlled structural
transition of the electrolytes, causing changes in the physical and chemical properties of
the electrolytes and further affecting the performance of the batteries, but also reaching
temperatures sufficient to activate dynamic self-healing processes. Therefore, the thermal
behavior of the polymers in this work was studied by differential scanning calorimetry
(DSC). As shown in Figure 2b, the crystallization and melting peaks of the pyrrolidinium
moieties [43] were not found in the DSC curves of all POILs, but only glass transitions were
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observed. This could be advantageous for polymers applied as electrolytes, as a better
conductivity value can be achieved both above and below the glass transition temperature
in amorphous regions (analogous to higher conductivities achieved in amorphous region
in PEO [44]). All Tgs are listed in Table 3 and are also shown in the plot. We found that the
molecular weight of the POIL-x and the UPy content of the CPILU-y indeed influenced the
glass transition temperature. When the molecular weight increased from 11 kDa to 40 kDa,
Tg also increased from −13 ◦C (POIL-2) to 7 ◦C (POIL-3), which is potentially indicative of
more restricted chain motions. When only 4% of the UPy moieties were introduced into the
polymers, Tg drastically increased from −13 ◦C to 9 ◦C, revealing that the dimerizable UPy
moieties act as a strong “chain-hardener” in comparison to the increase of molecular weight.
If the UPy content increased from 4% to 14% and then to 24%, Tg increased further from
9 ◦C to 13 ◦C and to 30 ◦C, respectively, this evidenced stiffer chain segments in CPILU-6
and CPILU-7 as a result of a denser UPy dimerization.

3.3. Conductivity via Broadband Dielectric Spectroscopy (BDS) and Zero Shear Viscosity via Rheology

To elucidate the potential of the polymers to be applied as electrolytes the DC con-
ductivity was investigated by broadband dielectric spectroscopy (BDS). As shown in
Figure 3a the low-molecular-weight POIL-2 showed a higher conductivity compared to the
high-molecular-weight POIL-3, matching the conclusions that—in line with expectations—
low-molecular-weight POILs generally offer higher conductivity [25–28]. When 4% UPy
moieties were introduced into the polymer backbone (CPILU-5), the conductivity was
barely influenced by the non-conductive UPy moieties as compared to the homopolymer
POIL-2 (see red squares for POIL-2 and blue triangles for CPILU-5 in Figure 3a). How-
ever, when the UPy content continued increasing, a generally lower conductivity could be
observed within the whole temperature range, as represented by CPILU-6 and CPILU-7.
It is often reported [45–47] that the conductivity of low-molecular-weight ionic liquids is
affected by the viscosity of the conductive system, wherefore the zero shear viscosity η0
was determined to assist the interpretation of the conductivity behavior of the POILs. As
shown in Figure 3b, an inverse relation was observed for the viscosity for those POILs,
which can be explained by the higher molecular weight polymers also showing higher
viscosity that further hinders ion transport.
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Figure 3. Conductivity σ of homo-/copolymer POIL-x and CPILU-y (a) as a function of inverse
temperature 1000/T; (c) glass transition temperature divided by measurement temperature Tg/T;
and (b) zero shear viscosity η0 of homo-/copolymer POIL-x and CPILU-y versus temperature T.

In addition to the notable influence of the viscosity, the conductivity of polymer elec-
trolytes before and after the thermal transition is significantly altered. Thus the conductivity
of the polymers was plotted versus their glass transition temperature divided by the mea-
surement temperature (Tg/T), as shown in Figure 3c. The variation in conductivity of the
polymers by temperature showed two distinct regions in the plot. When the temperature
was higher than the polymers’ Tg, segmental motion was enabled, and the conductivity
was coupled with the segmental motion, thus following the Vogel−Fulcher−Tammann
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(VFT) equation. At temperatures below Tg, segments were frozen, and the conductivity
plot displayed Arrhenius behavior, which is comparable to the conductive behavior of
inorganic glasses [48]. As previously reported [49,50], if the conductivity at Tg is roughly
equal to 10–15 S·cm−1 in an ionic system, the charge transport is then fully governed by
the structural relaxation of the system, which is segmental motion in case of polymer
electrolytes. For our polymers, the conductivities at Tg, as listed in Table 4, are all higher
than the reported threshold value (10–15 S·cm−1) for the fully relaxation-coupled systems.
As a consequence, the polymers in this work exhibited a certain degree of decoupled ion
transport from the segmental dynamics. To clearly visualize this behavior, the decoupling
index defined as Rσ, Tg = 15 + log σTg [51,52] was applied. Among our copolymers, those
polymer with the strongest decoupling, ie those where the charge transport is least linked
to the segmental relaxation, is the copolymer CPILU-5 with 4% UPy moieties, with a de-
coupling index of 8.4. The least-decoupled homopolymer can be observed in the case of the
homopolymer POIL-2 (for Rσ, Tg of other polymers, see Table 4). Because the copolymers
show a higher decoupling index, they could provide better conductivity and mechanical
strength simultaneously. Therefore, a tensile test was employed to explore their mechanical
strength and their self-healing ability, which is discussed in next chapter.

Table 4. Glass transition temperature and conductivity at glass transition temperature, and zero shear
viscosity and conductivity at 80 ◦C of POIL-x and CPILU-y.

Sample Entry Sample Info. Tg, DSC/◦C a σTg/S·cm−1 b Rσ , Tg
c η0, 80 ◦C Pa·s d σ80 ◦C/S·cm−1 e

POIL-
2 11 k −13 3.07 × 10−9 (−10 ◦C) 6.5 43 2.46 × 10−4

3 40 k 7 2.04 × 10−8 (10 ◦C) 7.3 368 9.09 × 10−5

CPILU-
5 4%, 12 k 9 2.55 × 10−7 (10 ◦C) 8.4 37 2.19 × 10−4

6 14%, 11 k 13 2.19 × 10−8 (20 ◦C) 7.3 2.76 × 103 4.85 × 10−5

7 24%, 10 k 30 3.27 × 10−8 (30 ◦C) 7.5 2.84 × 105 1.84 × 10−5

a Glass transition temperature via DSC; b conductivity at glass transition temperature; c decoupling index
calculated with Rσ, Tg = 15 + log σTg; d zero shear viscosity at 80 ◦C; e and conductivity at 80 ◦C.

3.4. Mechanical and Self-Healing Characterization via Tensile Test

To evaluate the mechanical strength and the prominent self-healing ability, two copoly-
mers, both with 7% UPy content but with different molecular weights, were synthesized,
which are designated as CPILU-9 (7% UPy, 10 kDa) and CPILU-10 (7% UPy, 67 kDa) (for
synthesis details, see Supplementary Material Section S1.2). The copolymers were hot-
vacuum-pressed into bars or disc specimens, and self-healing ability tests were firstly
performed with CPILU-9, as visualized in Figure 4a. A specimen was cut vertically at
the long edge into two pieces and brought back with the freshly generated surface tightly
and accurately matched. Owing to the quadrupolar HBs of the UPy moieties associating
at the edge of the wound, self-healing was observed within 1 h at 40 ◦C or 24 h at room
temperature. To quantify the mechanical strength and the self-healing ability, tensile tests
of both pristine and self-healed bar specimens of CPILU-9 and CPILU-10 were performed
at a strain rate of 20 mm·min−1 at room temperature, as shown in Figure 4b.
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For the pristine specimen, increasing the molecular weight from 10 kDa to 67 kDa
indeed drastically enhanced the mechanical strength from 0.34 MPa (CPILU-9, red solid
line in Figure 4b) to 2.25 MPa (CPILU-10, blue solid line in Figure 4b) in terms of ultimate
stress. Both specimen showed good ductility, with roughly 550% and 650% in relation to
the tensile strain for CPILU-9 and CPILU-10, respectively. Regarding self-healing ability,
the self-healed specimen of CPILU-9 showed an almost identical tensile behavior (red dash
line in Figure 4b) in comparison to the pristine specimen, with a slightly reduced ultimate
stress (0.30 MPa) and a similar ductility. These results indicated efficient self-healing (88%
in terms of ultimate stress compared to the pristine specimen) at 40 ◦C for 1 h which is the
consequence of the flexible segments and the strong quadrupolar HBs of UPy moieties in
CPILU-9. As for CPILU-10, with a molecular weight of 67 kDa, the self-healed specimen
generated an ultimate stress of 1.33 MPa (59% in terms of ultimate stress compared to
the pristine specimen) and a poor ductility at 32% tensile strain. This could be attributed
to the more entangled segments in the high-molecular-weight CPILU-10 which hindered
self-healing by UPy dimerization.

4. Conclusions

Novel polymeric ionic liquids POIL-x and copolymers CPILU-y bearing quadrupolar
hydrogen bonds were synthesized via RAFT polymerization using DBTTC as chain transfer
agent. Kinetic studies revealed that the HBs monomer UPyA showed preferable incor-
poration in a copolymerization of ILA, anticipated as the attractive association of UPyA.
While the synthesized homopolymers were thermally stable up to 360 ◦C, the introduction
of UPy moieties into the polymer chains decreased the thermal stability and altered the
decomposition into a two-step process. Examining a combination of data from DSC, BDS,
and rheology, a decoupling of conductivity from the glass transition was observed in all
polymers, while the trend of the zero shear viscosity values of all the polymers matched
that of their conductivity values. A copolymer with 4% UPy content displayed the highest
decoupling index of 8.4, proving that both, self-healing and excellent conductivities can
be embedded into the same type of a POIL using complex hydrogen-bonding. While
copolymers with low molecular weights demonstrated both better conductivity and self-
healing efficiency, the high-molecular-weight samples showed higher ultimate strength
but lower healing efficiency and conductivity. This work proves that HBs are a useful
tool for designing electrolytes with unique properties like decoupled conductivity and
self-healing ability, which can contribute to battery science and electronic devices such as
supercapacitors in the future.
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