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ABSTRACT

Deuterium NMR has been employed to determine the average orientation ( )P2 cosθ
of chain segments in poly(butadiene) networks. It is shown that the free induction decay
separates the contribution to the orientation arising from the network constraint to that
from chain interactions. The NMR spectrum lineshape reveals the orientational
distribution of network vectors due to the crosslinks, whereas the observed splitting gives
information about the orientation due to segmental interactions. Both the lineshape and
splitting have been fitted simultaneously for a range of deformed poly(butadiene)
networks. From the fitting parameters the separate contributions to the average
orientation of the chain segments arising from the network constraint and from the
interactions are calculated. These in turn are used to determine the molecular weight
between crosslinks and the size of the segmental interactions, which we choose to express
in terms of the Edward's screening length.

The NMR line splitting is investigated also in terms of network concentration and on
the Flory interaction parameter χ . It is shown that one should take into account not only
the χ parameter arising from different chemical structures but also that arising from the
crosslinks of the network, in order to explain the experimental NMR line splitting. The

latter is found to be proportional to T/1 . It is also shown that the Edward's screening
length is independent of precursor chain length and crosslink density.

Deuterium NMR line shapes of carbon black (N220) filled cis-1,4 poly(butadiene)
networks have been examined. The effect of the susceptibility of the filler on the NMR
line shape has been considered. The theory constructed in this study for deuterium NMR
line splitting from polymer networks was used to fit the experimental data. It was found
that the polymer segments nearby the surface of a filler particle experience a different
local magnetic field from the remaining segments, due to the susceptibility of the carbon
black. This effect gives rise to an asymmetry in the NMR spectrum, which until now has
not been explained. Additionally, this analysis determines the fraction of polymer units
affected by the local field of the filler particles and provides information about the effect
of the macroscopic deformation on these attached chains.

The sine correlation function (introduced by Callaghan et al.) and the NMR relaxation
function (introduced by Simon et al.) were also employed to study the NMR response of
the poly(butadiene) networks and linear chains. Finally, the residual quadrupolar
interaction determined by all the above mentioned procedures was compared.
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SUMMARY

Investigation of orientation and dynamics of polymeric chains is one of the main
concerns in the field of polymers since it fully influences to properties of polymer
products, such as plastics, rubber, adhesives, fibers and paints. In order to enhance
mechanical properties of some polymer products, e.g. car tyres, different types of filler
materials are mixed together with polymer. Although elastomers are vastly studied, there
exist still open questions such as to understand and determine the orientation and
dynamics of polymer network chains under deformation, in terms of basic polymer
physics and also to understand the effect of filler on polymer network chains. In this work
the main aim is to cope with the latter questions by means of  nuclear magnetic resonance
(NMR). Deuterium NMR is mainly used throughout this study since its capability of
labeling polymer chains and hence giving opportunity to study the chains or segments
discretely.

For an undeformed rubber a single resonance line in the deuterium NMR spectrum is
observed26. Under uniaxial deformation the spectrum splits into a well-defined doublet
structure corresponding to an oscillation in the free induction decay27. A non interacting
phantom Gaussian network theoretically shows no splitting under deformation28. These
results therefore indicate that to model the chain reorientation in a strained elastomer one
must introduce segmental interactions29. In strained rubbers there is a higher degree of
anisotropy than that merely induced by the crosslinks. Several explanations have been put
forward to account for the oscillations seen in the free induction decay from strained
deuterated networks, these include: nematic interactions30, excluded volume
interactions31, and anisotropic junction fluctuations32.

In this work it is shown, without the need to assume a particular model for the chain
interactions, that the oscillations are indicative of an anisotropic mean field due to the
many segmental interactions. Furthermore the decay envelope of the oscillations reveals
the distribution of network vectors, each formed by connecting together consecutive
crosslinks. A general analytic result that includes the effect of anisotropic mean field and
network constraint will then be derived.

It is shown from analysing a range of deformed network sample signals, that for small
deformations the assumption of initially Gaussian distributed network vectors, that then
undergo affine deformation, adequately describes the NMR response. The NMR
interaction term, the static quadrupolar constant, is effectively reduced in magnitude by
rapid local level reorientations subject to both the constraint from the monomers being
attached between crosslinks and the interactions of the segments with their environment.
In a network a polymer segment interacts with many neighbouring ones.  These many
interactions can be described by an effective mean field33,34. NMR is able to monitor the
average orientation due to the crosslinks and this mean field separately, allowing the two

contributions to the total average orientation ( )P2 cosθ  to be evaluated. A theoretical

interpretation by Brereton and Ries31 attributes the higher degree of anisotropy implied by
the splitting to excluded volume interactions within the rubber. Under deformation the
distribution of monomeric units generate, through their excluded volume interactions, an
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anisotropic mean field. All chains within the rubber matrix experience this mean field
that causes an induced alignment along the strain direction.  The resultant splitting due to
this interaction is dependent on the size of the excluded volume interaction.

This work is based on an earlier NMR study that analysed a range of linear
poly(butadiene) melts39. In that work the deuterium transverse relaxation was
investigated to determine the size of a statistical segment and the magnitude of its
corresponding rescaled quadrupolar coupling constant νo . Rapid internal conformational
changes within a single statistical segment reduce the magnitude of the static quadrupolar
coupling constant, giving rise to a rescaled value.  These two parameters found from
well-characterised monodisperse linear chains are required in analysing the spectra from
strained deuterated networks.

The NMR line splitting depends on the network concentration and also on the Flory
interaction parameter χ . It is shown that one should take into account the χ parameter
not only arising from different chemical structures but also that arising from the
crosslinks of the network, in order to explain the experimental NMR line splitting. The
temperature dependence of NMR line splitting is studied and it is shown that the

dependency is in the order of T/1 . It is also shown that the Edward's screening length
is independent of precursor chain length and crosslink density.

The next attempt is to explain the asymmetric NMR spectra observed from deformed
carbon black filled poly(butadiene) networks. The effect of the susceptibility of the
carbon black filler on the local field of polymer chains that are in the vicinity of these
particles is considered. It is proposed for the interpretation that the magnetic field near
carbon black particles is different to the rest of the sample. Therefore, the polymer chains
near to the filler particles experience a different resonance frequency. This change in
frequency causes a shift of their NMR spectrum in the Fourier transformed signal
relatively to the unbound segments. In order to quantify this shift we employed our
theoretical expression, which will be constructed at the beginning of the study, to model
the NMR lineshape and splitting. Then the expected shift in frequency is calculated by
using susceptibility data of carbon black and shows that this compares favorably with the
results obtained from our fitting procedure. As well as the susceptibility of the carbon
black filler we also consider that the applied macroscopic deformation does not affect the
chains closely attached to filler particles to the same degree as it does the remaining
chains. Also it is shown experimental evidence for the existence of the shifted spectrum
of the carbon black closely associated segment.

The sine correlation function (introduced by Callaghan et al.)73 and the NMR
relaxation function (introduced by Simon et al.)20 were also employed to study the NMR
response of the poly(butadiene) networks and linear chains. The residual quadrupolar
interaction determined by all the above mentioned procedures was compared. It is shown
that the results from sine correlation function and conventional NMR relaxation show the
same tendency though they differ in the numbers.
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ZUSAMMENFASSUNG

Eine wichtige Fragestellung auf dem Gebiet der Polymere besteht in der
Untersuchung von Orientierung und Dynamik polymerer Ketten, da diese wesentlich die
anwendungstechnischen Eigenschaften vieler Polymerprodukte wie Plaste, Gummi,
Beschichtungen, Fasern und Farbanstriche beeinflusst. Um die mechanischen
Eigenschaften solcher Polymerprodukte, wie z.B. Autoreifen, zu verbessern, wurden
verschiedenen Typen von Füllstoffmaterialien mit dem Polymer zusammengemischt.
Obwohl Polymere bereits vielfach untersucht wurden, existieren noch immer offenen
Fragen hinsichtlich der Bestimmung und dem Verständnis der Orientierung von
Polymerketten sowie dem Einfluss von Füllstoffen auf die Polymerkette. Das Hauptziel
dieser Arbeit besteht in der Bearbeitung dieser Fragestellungen nittels der Magnetischen
Kernresonanz (NMR). Aufgrund ihres Potentiales an deuterierten Polymerketten wurde
im Rahmen dieser Arbeit weitgehend die Deuteronen-NMR zur Untersuchung verwendet,
da diese die Möglichkeit zur diskreten Untersuchung von einzelnen Ketten bzw.
Segmenten eröffnet.

Für nichtdeformierte Elastomere wird im Deuteriumspektrum eine einzelne Linie
beobachtet26. Bei uniaxialer Deformation ergibt sich im Spektrum eine wohldefinierte
Dublettstruktur, die einer Oszillation im freien Induktionsabfall (FID) entspricht.27. Ein
Gauß’sches Phantomnetzwerk ohne Wechselwirkung zeigt theoretisch keine Aufspaltung
bei Deformation28. Dieses Ergebnis zeigt daher, daß zur Beschreibung der
Kettenreorientierung in einem gedehnten Elastomer Segmentwechselwirkungen in
Betracht gezogen werden müssen29. In gedehnten Elastomeren existiert ein höherer
Anisotropiegrad als der, der nur durch die Vernetzungspunkte eingebracht wird.

Zur Beschreibung der im freiem Induktionsabfall gedehnter deuterierter Netzwerke
beobachteten Oszillationen wurden verschiedene Erklärungen in Betracht gezogen, unter
ihnen: nematische Wechselwirkungen30, ausgeschlossenes Volumen31 und anisotrope
Knotenfluktuationen32.

In dieser Arbeit wird, ohne ein bestimmtes Modell für die Kettenwechselwirkung
anzunehmen, gezeigt, daß diese Oszillationen durch ein aufgrund der vielen
Segmentwechselwirkungen anisotropes "mean field“ hervorgerufen werden. Weiterhin
spiegelt die Einhüllende der Oszillationen die Verteilung der Netzwerkvektoren wider,
welche von den Verbindungsvektoren aufeinanderfolgender Netzknoten gebildet werden.
Ein allgemeines analytisches Ergebnis, welches sowohl den Einfluß des anisotropen
„mean“ Feldes als auch der Netzwerkbehinderungen einschließt, wird abgeleitet.

An einer Reihe von deformierten Netzwerken wird gezeigt, daß für geringe
Deformationen die Annahme einer Gaußverteilung der Netzwerkvektoren und deren
affines Deformationsverhalten eine adäquate Beschreibung des NMR-Signals liefern. Der
NMR-Wechselwirkungsterm, d.h. die statische Quadrupolkopplungskonstante, wird in
seiner Stärke effektiv durch schnelle lokale Reorientierungen reduziert, welche sowohl
von den Behinderungen der Monomere zwischen zwei Knoten als auch von den
Wechselwirkungen der Segmente mit ihrer Umgebung beeinflußt werden. In einem
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Netzwerk kann das Polymersegment mit vielen Nachbarn wechselwirken. Diese
vielfachen Wechselwirkungen können durch ein effektives „mean“-Feld beschrieben
werden33,34 . Die NMR ist in der Lage, sowohl die mittlere Orientierung zwischen den
Netzknoten als auch das „mean“-Feld separat zu beobachten, wobei die beiden Beiträge
zur gesamten mittleren Orientierung P2(cosθ) getrennt werden können.

Ein theoretischer Zugang von Brereton und Ries beschreibt den als Aufspaltung
beobachtbaren höheren Anisotropiegrad in Elastomeren als „excluded volume“-
Wechselwirkung. Unter Deformation erzeugt die Verteilung der Monomereinheiten
infolge der „excluded volume“-Wechselwirkung ein anisotropes „mean“-Feld. Alle
Ketten innerhalb der Elastomermatrix erfahren dieses „mean“-Feld, welches zu einer
induzierten Anordnung entlang der Zugrichtung führt. Die Aufgrund dieser
Wechselwirkung resultierende Aufspaltung hängt von der Stärke der „excluded volume“
Wechselwirkung.

Diese Arbeit baut auf einer früheren NMR-Arbeit zur Untersuchung von linearen
Polybutadienschmelzen auf39. Darin wurde mittels transversaler Deuteriumrelaxation die
Größe des statistischen Segmentes und die Stärke der entsprechenden reskalierten
Quadrupolkopplungskonstante ν0 bestimmt. Schnelle interne Konformationsänderungen
innerhalb eines einzelnen statistischen Segmentes reduzieren die Stärke der statischen
Quadrupolkopplungskonstante und liefern einen reskalierten Wert. Diese zwei Parameter
wurden an gut charakterisierten monodispersen linearen Ketten bestimmt und hier zur
Analyse der Spektren gedehnter deuterierter Netzwerke verwendet.

Die  NMR-Linienaufspaltung hängt sowohl von der Netzwerkkonzentration als auch
vom Flory-Wechselwirkungsparameter χ ab. Es wird gezeigt, daß zur Beschreibung der
experimentell beobachteten NMR-Linienaufspaltung die Berücksichtigung eines χ-
Parameters nötig ist, verursacht nicht nur durch chemisch unterschiedlichen Strukturen
sondern auch durch Knoten im Netzwerk. Die Temperaturabhängigkeit der

Linienaufspaltung wurde untersucht und es konnte gezeigt werden, daß diese eine T/1
Abhängigkeit aufweist. Weiterhin wurde gezeigt, daß die Edwards „screening“-Länge
unabhängig von der Ausgangskettenlänge und der Netzwerkdichte ist.

Der nächste Punkt besteht in der Erklärung der unsymmetrischen NMR-Spektren, wie
sie an rußgefüllten Polybutadiennetzwerken beobachtet wurden. Der Einfluß der
Suszeptibilität des Rußes auf das lokale Feld der Polymerketten, die sich in der Nähe der
Füllstoffteilchen befinden, wird betrachtet. Es wird zur Interpretation vorgeschlagen, daß
das Magnetfeld in der Nähe der Rußpartikel verschieden von dem in der restlichen Probe
ist. Daher erfahren die Polymerketten in der Nähe der Rußpartikel eine andere
Resonanzfrequenz. Dieser Frequenzunterschied führt zu einer Verschiebung des NMR-
Teilspektrums im fouriertransformierten Signal relativ zu dem der ungebundenen
Segmente. Zur Quantifizierung dieser Verschiebung wurde der eingangs vorgestellte
theoretische Ausdruck zur Modellierung von Linienform und Aufspaltung verwendet.
Danach wurde die zu erwartende Frequenzverschiebung bei Kenntnis der Suszeptibilität
des verwendeten Rußes berechnet. Es konnte gezeigt werden, daß dieses Ergebnis
hervorragend mit dem Resultat der Fitprozedur übereinstimmt. Neben der Suszeptibilität
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der Rußfüllstoffes wurde ebenfalls beobachtet, daß die aufgebrachte makroskopische
Deformation diejenigen Ketten, welche eng an die Füllstoffteilchen gebunden sind, nicht
in demselben Maße beeinflußt wie die restliche Polymermatrix. Weiterhin wird ein
experimenteller Beweis für die Existenz des verschobenen Spektrums gegeben,
hervorgerufen durch Segmente, die eng an den Ruß gebunden sind.

Die „Sinus-Korrelationsfunktion“ (eingeführt durch Callaghan et al.)73 und die NMR
Relaxationsfunktion (eingeführt von Simon et al.)20 wurden ebenfalls zur Untersuchung
des NMR-Signals von Polybutadiennetzwerken und linearen Polybutadienketten
verwendet. Die nichtausgemittelte Restquadrupolwechselwirkung wurde mit allen oben
erwähnten Methoden bestimmt und miteinander verglichen. Es konnte gezeigt werden,
daß die Ergebnisse aus der"Sinus-Korrelationsfunktion" und den konventionalle
Relaxationsuntersuchungen die gleiche Tendenz zeigen, allerdings in ihren
Absolutwerten variieren.



1

CHAPTER 1

1.1 Introduction

1.1.1 Motivation

Investigation of orientation and dynamics of polymeric chains is one of the main

concerns in the field of polymers since it fully influences to properties of polymer

products, such as plastics, rubber, adhesives, fibers and paints. To enhance mechanical

properties of some polymer products, e.g. car tyres, different types of filler materials are

mixed together with polymer. Also crosslinking of technical elastomers such as

poly(butadiene) is of crucial importance for the mechanical properties of rubber products.

Therefore, these materials, either filled or unfilled, have been the subjects of a large

numbers of investigations.

Although elastomers are vastly studied, there still exist open questions such as to

understand and determine the orientation and dynamics of polymer network chains under

deformation, in terms of basic polymer physics. Also, the effect of microscopic

parameters, e.g. Edward's screening length, on the orientation of network chains and

exact means of investigating these parameters are still not well revealed. In addition,

despite of numerous investigations of filled elastomers by different physical and

mechanical methods, the molecular origin of the reinforcement effect is still under

discussion. The key problems which should be solved in order to reveal the molecular

mechanism for improvement of the mechanical properties are the following: chain unit

behaviour at the polymer-filler interface during deformation and chain orientation in

deformed networks as a result of the complex network structure in the presence of filler.

Through measurements of spin relaxation times, Nuclear Magnetic Resonance

(NMR) has been a profoundly useful technique for providing insights into segmental

dynamics in polymers. The dipole-dipole interactions between a pair of protons and the

quadrupolar interaction along the C-D bond are inherently the most sensitive ways to

draw out dynamical information from NMR.
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This work is to study the above mentioned questions by means of nuclear magnetic

resonance. Deuterium NMR is mainly used throughout this study since its capability of

labeling polymer chains and hence giving opportunity to study the chains or segments

discretely. This chapter is devoted to describe the basic theory of Transverse NMR

Relaxation. In Chapter 2, materials and methods are discussed. Chapter 3 is devoted to

construct a frame work in order to understand the deuterium NMR line splitting observed

from deformed elastomers, by means of basic polymer physics. An analytic result was

derived that takes into account two contributions to the total orientation of the constituent

polymer chains.  It is shown that the free induction decay readily separates the effect of

chain interactions with their environment from that of the network constraint, i.e. the

presence of crosslinks within the rubber matrix, on the polymer segmental anisotropy.

The analytic result for the NMR response of a strained network was compared to

experimental data from a range of deformed poly(butadiene) rubbers.

The dependence of deuterium NMR line splitting of deformed poly(butadiene) on

temperature, network chain concentration and Flory interaction parameter χ  is discussed

in Chapter 4. Carbon black filled poly(butadiene) networks were studied in order to

reveal the effect of filler on the polymer network (Chapter 5). In Chapter 6 and Chapter 7,

two different NMR methods, which are employed to study the molecular orientation and

dynamics of polymer networks, are discussed and the results from these methods are

compared with the results obtained in Chapter 3.
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1.1.2  The Transverse NMR Relaxation

The relaxation of induced nuclear magnetic polarisation in a sample is described by

two processes: longitudinal spin-lattice relaxation, and transverse spin-spin relaxation.

This work is concerned with the latter and considers the information that it can reveal

about polymeric structure and dynamics.

Basics of both the theoretical and experimental aspects of the transverse relaxation

are presented in this chapter. This introduction is developed for proton NMR, but the

analysis holds equally for deuterium work, as will be mentioned later in this chapter.

A proton possesses a nonzero spin and hence a magnetic moment. An applied

magnetic field causes the spin to precess with an angular frequency 0ω  about the z-axis,

defined as the field direction. This is termed the Larmor frequency, with its magnitude is

given by1

00 Bγω = , (1.1)

where γ  is the gyromagnetic ratio for a proton (2.6752×107 rad T-1 s-1) and 0B  is the

magnitude of the field. In a system of protons experiencing the same static field, all the

spins would precess at this frequency. They are randomly distributed in phase about the

field direction. Protons are spin ½ nuclei and either align themselves parallel or anti-

parallel to the applied field. To align against the magnetic field direction requires a

slightly higher energy level. Through the Boltzmann factor this produces a small excess

of  up spins, i.e. pointing in the same direction as the field. The magnetic moments of the

protons can then be mathematically paired, up with down, leaving a slight resultant

magnetisation in the positive z-direction, see Figure 1.1. This is known as the bulk or

macroscopic magnetisation M , and defined as
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∑=
protons

M µ , (1.2)

where µ  is the magnetic moment vector of a proton. It is through this slight asymmetry

in the distribution of spins that NMR is possible. All NMR experiments are concerned

with the behaviour of this macroscopic property M .

A pulse of high frequency radiation at the Lamore frequency causes an equalisation

of the spin distribution in such a way that the falling population receive phase coherence

in the x-y plane. Essentially this can be viewed as rotation of the vector M  about the x-

axis, see Figure 1.2.

Y

X

M

B

µ

Z

Figure 1.1  Macroscopic Magnetization for a system of protons
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The effect of dephasing is to reduce the magnitude of the bulk magnetisation. This is

illustrated in Figure 1.4a.

ω0

B

Y

X

M

Z

rf pulse

Slow spins

Fast spins

ω0 Y

X

M

Z

Figure 1.2  Rotation of M  by a radio frequency (rf) pulse

Figure 1.3  The dephasing of the bulk magnetisation M
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1

0

(a)

)(tG

(b)

The observable quantity M consists of precessing spins which rotate itself about the

magnetic field at the Larmor frequency. If now the induvidual protons experienced

slightly different magnetic fields, then the spins comprising M would precess at

frequencies perturbed from that of ω0. Those experiencing a stronger local magnetic field

than 0B  will precess faster than the bulk magnetisation, as illustrated in Figure 1.3.

time

Figure 1.4  a) Decay of the transverse magnetisation M  as the precessing spins fan out as a

result of magnetic field inhomogeneities b) the corresponding decay )(tG .
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It is the quantity M  as a function of time that is experimentally recorded as the free

induction decay (fid) )(tG (see Figure 1.4b), which can be defined as

)0(/)()( MtMtG = . (1.3)

1.1.3  The Transverse Relaxation Function

The simplest theoretical model to study the transverse NMR relaxation in polymer

molecules consists of two spin ½ nuclei (a proton pair) a vector distance d apart, fixed to

a single bond in a chain of identical bonds. For a single spin in a magnetic field B along z

direction, the transverse components ( yx mm , ) of the magnetisation precess about the

direction of B with the Larmor frequency 0ω . The presence of the other spin contributes

a dipolar field at the site of the first spin and leads to an additional interaction energy of

[ ]1)(cos3
4

3 2
3

2

−t
d

υγ !    , (1.4)

where )(tυ  is the angle that the vector d makes with the applied magnetic field and γ  is

the gyromagnetic ratio. The dipolar interaction causes the dephasing of the transverse

components and the subsequent relaxation of the magnetisation is described2 by

∫ −=
t

dtt
d

tG
0

''2
3

2

)1)(cos3(
4

3
cos)( υγ !

, (1.5)

The averaging in equation (1.5) is taken over all the dynamically accessible

configurations of the chain available in the time interval 0 to t. It is assumed that the
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proton pair is rigidly attached to the main chain so that the dynamical behaviour of the

polymer chain is monitored through the integrated time dependence of the angle )(tυ .

Clearly the complexity of the local connectivity of an actual polymer chain in terms

of bond angles and steric hindrances makes an analytic calculation of the relaxation

function )(tG  at this level of molecular details difficult. However, the notion of scale

invariance3 enables to simplify the large scale connectivity of polymer chains. This

Figure 1.5  A schematic representation of the relation between the atomic bond vectors {ds} and the
submolecule bond vector b. The atomic bond carrying NMR active spin ½ nuclei and makes an angle )(tυ
to the applied magnetic field B . The configurations of the atomic bonds ds are averaged out for a given b
vector. The complete polymer chain is considered as a sequence of {b} bond vectors. a represents a
monomer. In the case of deuterium (spin 1 nuclei) )(tυ  is the angle the C–D bond makes with the applied

magnetic field B .

R

υ

b

a

B0

θ

C
D
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makes many of the details at the molecular level irrelevant to the large scale and long

time behaviour of the polymer chain. Cohen-Addad successfully pioneered this approach

to the NMR properties of polymers4-8. A short sequence of s=1,2,..Na atomic bond

vectors ds containing the NMR active bond is considered. A semilocal description is

provided by the end to end vector b:

∑
=

=
aN

s
sdb

1

(1.6)

and the dipolar interaction energy (1.4) is averaged over all configurations of the {ds}

subject to the constraint that the vector b is held constant. The leading term, bδ , of the

rescaled interaction associated with this semilocal submolecule bond vector b is found to

have essentially the same form as the original dipolar interaction2,3, i.e.,

}1)(cos3{ ´2´ −= tb θδδ    , (1.7)

where

aa NddN

tb
t 3

2

2

´2
´'

4

)(3
)(

!γδ = .

)( ´tθ  is now the angle between )( ´tb  and the magnetic field B . The situation is

schematically shown in Figure 1.5.

Form (1.7) does not bring out the full significance of the rescaling operation. To see

this let (x,y,z) be the coordinates of the submolecule vector b, with 2222 zyxb ++=  then

equation (1.7) can be written as2

}2{
2

3 222
2

yxz
bb −−∆=δ   , (1.8)
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where

aNd3

2

2

!γ=∆ and 22 dNb a= .

1−∆  determines the NMR time scale for the experiment and 2b  is the average length

(squared) of the submolecule.

Now whereas the original dynamics of the chain were effective only through the

angular variable )(tθ , in the rescaled form they appear in the coordinate variables

)(),(),( tztytx  of the semilocal bond vector b(t). The essential simplification occurs

because the semilocal variables )(),(),( tztytx  can adequately be described by a

Gaussian random type process, whereas those for angular variables )(tθ  involve detailed

molecular conformational changes. It is this fact that makes an analytic solution of this

problem possible. The transverse relaxation function can be written as

{ }∫ −−




 ∆=∆

t

dttytxtz
b

tG
0

´´2´2´2
2

)()()(2
2

3
cos),( , (1.9)

where the averaging is taken over all dynamical configurations of the submolecule bond

vector b(t).

The starting point of this work essentially the equation (1.9), with all that follows

being methods of solving this NMR problem for various systems and environments. The

physics of the polymer melt, cross links, entanglements and other chain interactions, is

introduced into the transverse decay through the averaging denoted by ...  in (1.9). The

type of reorientation undergone by the probe molecule is indicative of its environment

and can be revealed through the shape of the transverse relaxation curve.
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1.1.4  Deuterium NMR

Unlike protons deuterium nuclei are spin 1 particles. It is found that nuclei with spin

quantum numbers greater than 1/2 possess an asymmetric nuclear charge distribution,

known as a quadrupole moment9 . In a polymer sample a deuterium nucleus is covalently

bonded to a carbon atom. This deuterium nucleus will interact with the electric field

gradient (EFG) that is oriented along the C-D bond axis. A quadrupole moment in the

presence of a local EFG experiences a torque. As with the dipolar interaction this

perturbs the resonant Larmor frequency of the nucleus. The magnitude of this interaction

depends on the relative orientation of the C-D bond through10

)1)(cos3(
4

3
)( 2 −=∆ tt q υνπω , (1.10)

where qν  denotes the static quadrupolar coupling constant (~200 kHz) and )(tυ  is the

angle the C-D bond makes with the applied magnetic field at a time t . This is identical in

form to (1.4) and so the mathematical approach to deuterium NMR follows that set out by

the proton spin pair analysis above.

1.1.5  NMR on Polymers

Through measurements of spin relaxation times, Nuclear Magnetic Resonance

(NMR) has been a profoundly useful technique for providing insights into segmental

dynamics in dilute polymer solutions. Recent advances in solid state NMR give access to

a wide range of dynamical processes in solid polymers. The dipole-dipole interactions

between a pair of protons and the quadrupolar interaction along the C-D bond are

inherently the most sensitive ways to draw out dynamical information from NMR.
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There exists wide range of time scales for dynamical processes in the condensed fluid

phases of entangled polymer melts, concentrated solutions and amorphous networks

above the glass transition temperature. These include fast, localised processes like

intramonomer librations (~ 10-12s time scale) and correlated conformer isomerisations (≤

10-9s), which are comparable to motions in liquids comprised of flexible, low molecular

mass molecules. In contrast with such liquids the linking together of monomers imposes

constrains on molecular motions that give rise to slow dynamical processes unique to

polymer chains. For example, the so-called Rouse modes correspond to subchain

reorientations that exhibits dynamics on the microsecond time scale. And cooperative

multichain processes that involve whole chain reconfigurational dynamics (e.g. reptative

diffusion) can be operative on a tens of seconds time scale for high molar mass polymers.

Consequently, the way in which microscopic properties appear to be averaged will

depend on the time scale of the experimental window associated with the particular

technique employed.

Local order parameter associated with nuclear spin interactions of rank 2 tensorial

character is among the many important average molecular properties that can be

measured by NMR. Especially these include the proton-proton dipolar interaction of

magnitude 32)2/3( −= rH !γν , associated with a pair of protons affixed at a separation r

within a monomer, and the quadrupolar interaction of magnitude !/)4/3( 2QqeD =ν

experienced by deuterons in the presence of a magnetic field gradient q  associated with

the local molecular orbital. These interactions, which are bilinear in the spin operators,

transform under rotation as [ ]1)(cos3)2/1()(cos 2
2 −= tP ϑϑ , where )(tϑ  is the angle the

polarising magnetic field makes with the internuclear vector in the case of pair of

protons, or the electric field gradient symmetry axis in the case of deuterons. The

corresponding local order parameters involve the temporal average over relevant

dynamical processes. In the case of isotropic polymer melts or solutions 0)(cos2 =ϑP  on

a sufficient long time scale. However, on the operative NMR time scale, [ ] 61
, 10−− ≈DHν s,

the whole chain reconfigurational processes are too slow, and the rank 2 spin interactions

are incompletely averaged. J.P. Cohen Addad originally suggested that one might
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investigate aspects of the topological restrictions in networks and entangled phases (slow

dynamical process) by studying residual nuclear spin interactions - dipolar and

quadrupolar interactions that have been pre-averaged over the fast daynamical

processes11,12. Subsequently it was shown that, in mechanically ordered fluid polymers,

deformed networks, and sheared melts 0)(cos2 ≠ϑP , irrespective of the time scale. In

particular, the deuterium NMR spectroscopic signature of mechanically induced

anisotropy, the quadrupolar splitting )(cos2 2 ϑν PD , has been extensively used13-17. In

principal, knowledge about the strength of the dipolar and quadrupolar interactions and

the orientation of their relevant principal axes can reveal important information about

local order and dynamics. In practice, such knowledge depends on the effectiveness with

which the interaction can be distinguished from other terms in the nuclear spin

Hamiltonian, especially from those associated with Zeeman-like magnetic interactions. In

the case of 2H-NMR, this distinguishability is relatively straightforward and has led to the

wide spread use of deuterium labelling experiments.
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CHAPTER 2

2.1 Materials and Methods

2.1.1  Materials

Polybutadiene (PB) is used as the testing material throughout this study. Cis and

anionic (cis+trans) polymer microstructures were obtained by employing two different

polymerisation procedures.

Ziegler-Natta polymerization18 procedure resulted in cis microstructure. The partially

deuterated poly(butadiene) was polymerised on the basis of (1,1,4,4-D4)-butadiene

(Promochem 98%, stabilized by Hydrochinon) by a conventional (commercially used)

Ziegler-Natta catalyst. The result is a methylene labeled high cis-1,4 Poly(butadiene)

(98% cis microstructure). Toluene (Aldrich, 99.8%) was used as solvent. 2,4-Di-tert.-

butyl-p-cresol was used for ageing protection. The following is the composition of the

catalyst:

The microstructure was determined by 13C-NMR and showed a 98% cis-

microstructure.  Molecular weights were performed by gel permeation chromatography

(GPC) (see Table 3.1).  This polymer was mixed in a ratio 1:9 with the nearly

corresponding commercial non-deuterated poly(butadiene) BUNA cis 132 (for the case of

cis polymers Mn(H) = 120000 g/mol, Mw(H) = 450000 g/mol,  and for the case of anionic

polymers see the Table 3.1). Dicumyl Peroxide (DCP) was used as the crosslinking agent

for all networks prepared.  The samples were vulcanised in a vulcameter press at 145°C

and 100 bar for 1h. Latter vulcanisation conditions were valid for all the samples describe

hereafter. The resulting mean molar mass between two crosslinks, Mc, determined from

mechanical stress-strain measurements19, swelling measurements18 and NMR relaxation20

for individual samples, and the average values are shown in Table 3.1. BUNA cis 132

Ni (OOC - CH - C4H9)2 + 9 BF3*Et2O + 10 AlEt3 + 3 CH2 = CH - CH = CH2

C2H5



15

(Mn(H) = 120000 g/mol, Mw(H) = 450000 g/mol, U = 3.75) is used to prepare non

deuterated samples.

Deuterated free chains Protonated free chains

(BUNA cis 132)

Sample

Mn

(g/mol)

Mw

g/mol

U % Mn

g/mol

Mw

g/mol

U %

Filler

N220

(phr)

Mc

(g/mol)

CD2A 25000 120000 4.80 10 120000 450000 3.75 90 - 8000

CD2B 25000 120000 4.80 10 120000 450000 3.75 90 - 6500

CSM1 - - - - 120000 450000 3.75 100 - 10000

CSM2 - - - - 120000 450000 3.75 100 - 8000

CD1 190000 700000 3.68 10 120000 450000 3.75 90 - 8000

CD2F25 25000 120000 4.80 10 120000 450000 3.75 90 25.0 6500

(BAYER 150000)

AD1 152000 162000 1.06 10 125000 129000 1.03 90 - 3300

AD2 135000 140000 1.04 10 125000 129000 1.03 90 - 3600

AD3 70000 72000 1.03 10 61000 64000 1.05 90 - 6800

AD4 50000 52000 1.04 10 61000 64000 1.05 90 - 5400

In order to prepare the filled samples, Carbon black N220 was used as the filler. The

desired amounts of carbon black were incorporated by mixing the polymer, crosslinker

and filler together in a mixer of rotating frequency of 60 min-1 for 10 minutes at a

temperature of 50°C, and then the vulcanization procedure was applied.

The series of prepared cis-1,4 Polybutadiene samples can be summarised as follows

with the help of Table 2.1:

CD2A and CD2B are unfilled, deuterated samples while CD2F25 is the only deuterated

sample also with filler (25 phr). CSM1 and CSM2 are protonated (non deuterated),

Table 2.1 Description of all Polybutadiene samples used in the experiments. U=Mw/Mn.  The used polymer
fractions, in order to prepare test samples, are described in the columns titled %. All the samples starting from the
label letter C correspond to cis-1,4 Poly(butadiene), PB, while that of A corresponds to anionic polymer. It is
important to note that the four anionic polymer samples have made by using different precursor chain lengths of
the deuterated polymer. F in the sample labels indicate that the samples were filled with carbon black and D in the
labels indicate that the samples were made using also the deuterated polymer. Mc value is the average of the values
determined from NMR relaxation, swelling and stress- strain measurements.



16

unfilled samples. The labels CF0.2 – CF60 are corresponding to the protonated polymer

networks with different amount of the filler. For all the anionic, CSM1, CSM2 and CD2B

samples the  mixing procedure was done in solution state. Toluene was used as the

solvent and after mixing the polymer was dried in a vacuum oven. Vulcanisation

procedure was applied after removing the solvent.

The anionic polymer samples were prepared by employing the procedure of anionic

polymerisation18:  (1,1,4,4-D4)-butadiene (Promochem 98%, stabilised by Hydrochinon)

was used as monomer. The reaction medium was Cyclohexan and as initiator for the

polymerisation sec-Butyllithium (Merk, 1,3m in Cyclohexan) was used. To avoid

breaking of the reactions, all the chemicals were dried and cleaned as the first step.

Cyclohexan was distilled over CaH2, cleaned by using BuLi and evacuated. Monomers

were distilled by Mg(Bu)2 (Aldrich, 2m in Heptan) and then stired at room temperature.

The monomer was distilled off and condensed on to BuLi, after which is was stirred  at –

70 °C during 10 hours. In order to determine activity of the initiator it was titrated with

0.1n Benzoic acid, before each polymerization step. After that necessary amount of

Butylithium was calculated in order to get required molecular mass.  In the

polymerisation step, the calculated amount of initiator was spurt in a vacuum vessel at

first, and then the solvent and at the end the monomer were condensed. Reaction

temperature was about 30-40°C. Finally, the resulting amorphous Poly(butadiene) was

dried in vacuum. Vulcanisation procedure was the same as described above. The samples

labelled as AD1, AD2,AD3 and AD4 were with the anionic microstructure. They were

composed of 45% cis, 45% trans and 10% 1,2 vinyl microstructure.

The samples have been prepared by Sabine Hotof, a former member of the research

group.

2.1.2 Methods

All NMR experiments were carried out on a Varian Unity 400 (later INOVA) wide-

bore spectrometer (400 MHz proton frequency) operating at 61.3 MHz for deuterons.

Spectra were obtained using a standard 90 rf pulse of approximate 7 µs.
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The deuteron measurements under mechanical deformation were performed by a

simple stretching device parallel and perpendicular to the static magnetic field B0. The

aim of the one-dimensional stretching of the samples was to induce an orientation of the

network chains. The stretching ratio was determined from the distance between two

marks on the sample, before and after stretching. Figure 2.1 shows the NMR probe used

to perform the NMR experiments of the polymer samples under deformation

perpendicular to the magnetic field. This probe was built with the help of Dr. Manfred

Knögen. The important features of this probe for deforming the polymer networks is its

simplicity, easy to build and accurate measurements of deformation.

Rubber sample s is driven through the radio frequency (RF) coil and then turn down

to vertical direction from both sides over the freely rotatable rollers b and b´. Both ends

of the sample are clamped tightly by the clamps c and c (́opposite to the c) respectively.

These two clamps are fixed to the plate e. A threaded rod f goes freely through the plate g

and again it goes through the female threads in the plate e.

The top end of the rod f is free to rotate and the bottom end of it is fixed to a lever h.

Suppose the distance between two threads of rod f is x. When the lever h is turned

clockwise one round, the plate e is moved vertically downward by an amount of x (and

vise versa). Since c and c  ́are fixed to e , the sample s is extended from both sides by

amounts of x. Therefore, one clockwise turn of the lever h corresponds to 2x macroscopic

deformation of the sample. Since the distance x between two threads can be made in sub-

millimeter scales, the above described probe can be used as one of the accurate tools of

deforming the rubber samples in NMR experiments.

Standard Hahn-Echo pulse sequence was employed in the relaxation experiments.

The pulse sequence used to generate the experimental data of Beta function will be

described in the Chapter 6.
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View from top

View from side

The complete probe

Figure 2.1  The  probe used to perform NMR experiments on deformed (perpendicular to the
external magnetic field) polymer networks.



19

CHAPTER 3

3.1  Contributions to the Total Orientation of Deformed Rubbers

Arising from the Network Constraint and Chain Interactions as

Measured by NMR

3.1.1  Introduction

Macroscopic strain applied to elastomeric networks induces orientation to the

constituent polymer chains.  Several experimental techniques, such as rheo-optical

and deuterium nuclear magnetic resonance, have been devoted to the study of the

anisotropy at a molecular level in strained elastomers23-25.  The important feature

considered in this work is the contribution to the total orientation coming from

interchain interactions in the deformed rubber.

For an undeformed rubber a single resonance line in the deuterium NMR spectrum

is observed26.  Under uniaxial deformation the spectrum splits into a well-defined

doublet structure corresponding to an oscillation in the free induction decay27.   A non

interacting phantom Gaussian network theoretically shows no splitting under

deformation28.  These results therefore indicate that to model the chain reorientation in

a strained elastomer one must introduce segmental interactions29.  In strained rubbers

there is a higher degree of anisotropy than that merely induced by the crosslinks.

Several explanations have been put forward to account for the oscillations seen in

the free induction decay from strained deuterated networks, these include: nematic

interactions30, excluded volume interactions31, and anisotropic junction fluctuations32.

In this chapter it will be shown, without the need to assume a particular model for the

chain interactions, that the oscillations are indicative of an anisotropic mean field due

to the many segmental interactions. Furthermore the decay envelope of  the

oscillations reveals the distribution of network vectors, each formed by connecting
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together consecutive crosslinks.  A general analytic result that includes the effect of

anisotropic mean field and network constraint will then be derived.

It is shown, from analysing a range of deformed network sample signals, that for

small deformations, the assumption of initially Gaussian distributed network vectors

that then undergo affine deformation adequately describes the NMR response.  The

NMR interaction term, the static quadrupolar constant, is effectively reduced in

magnitude by rapid local level reorientations subject to both the constraint from the

monomers being attached between crosslinks and the interactions of the segments

with their environment. In a network a polymer segment interacts with many

neighbouring ones.  These many interactions can be described by an effective mean

field33-34.  NMR is able to monitor the average orientation due to the crosslinks and

this mean field separately, allowing the two contributions to the total average

orientation ( )P2 cosθ  to be evaluated.

A theoretical interpretation by Brereton and Ries31 attributes the higher degree of

anisotropy implied by the splitting to excluded volume interactions within the rubber.

Under deformation the distribution of monomeric units generate, through their

excluded volume interactions, an anisotropic mean field.   All chains within the rubber

matrix experience this mean field that causes an induced alignment along the strain

direction35-38.  The resultant splitting due to this interaction is dependent on the size of

the excluded volume interaction31.

This work is based on an earlier NMR study that analysed a range of linear

poly(butadiene) melts39. In that work the deuterium transverse relaxation was

investigated to determine the size of a statistical segment and the magnitude of its

corresponding rescaled quadrupolar coupling constant νo . Rapid internal

conformational changes within a single statistical segment reduce the magnitude of

the static quadrupolar coupling constant, giving rise to a rescaled value.  These two

parameters found in the previous study of well-characterised monodisperse linear

chains are required in analysing the spectra from strained deuterated networks.
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3.1.2  Theory

3.1.2.1 Introduction

A scale invariant model consisting of a series of statistical units { }b j  is taken to

represent the network chains.  As introduced by Cohen-Addad4-7,40 and further

developed by Brereton2,41 the quadrupolar interaction is rescaled by rapid local

reorientations onto this coarse-grained representative chain.

The effect is to reduce the magnitude of the static quadrupole interaction strength

and make the perturbations of the energy levels of the deuterium nuclei dependent on

the instantaneous orientations of the statistical units.  For a nucleus within a particular

statistical segment b j  this orientation gives rise to a perturbation of the precessional

Larmor frequency by ( )∆ω b j , which in reference (31) was written as

( )∆ω νb j o
z y xb b b

b
=

− −2 2 2 2

2
,

where { }b b bx y z
2 2 2, , ,  are the Cartesian coordinates of the labelled NMR statistical

segment and νo  is the rescaled interaction constant.  In this work, as it is the aim to

focus on the average orientation of the chain segments, it is more convenient to write

this as

( ) ( )∆ω ν θb j oP= 2 2 cos   ,

where θ  is the angle the applied magnetic field makes with the statistical bond vector

b j  and ( )P2 �  is the second order Legendre polynomial.

In the regime where the local level bond dynamics is fast compared to the time

scale set by νo
−1 the relaxation of the transverse components of the magnetisation can

be written as42
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( ) ( )[ ]tP
T

t
tG o θνλ cos2cosexp, 2

2





 −= . (3.1)

The �  is an annealed average over all the available conformations subject to the

network constraint imposed by the deformation λ  through the crosslinks, whilst the

( )�  indicates a quenched average over all crosslink points. The 2T  term corresponds

to the intrinsic line width of the poly(butadiene) sample and is related to the

fluctuating part of the NMR Hamiltonian42. At temperatures sufficiently above gT  in a

network this contribution evolves much slower than the cosine term. In an earlier

study on poly(butadiene) it was measured 2T s from a range of linear uncrosslinked

samples giving a measure of the intrinsic line width term39. The network samples

decay on a time scale that is approximately 20 times shorter than linear chains of a

corresponding molecular weight to that of the crosslink density. This reveals that this

broadening can be neglected with very little loss in accuracy, i.e. we can write31

( ) ( )[ ]tPtG o θνλ cos2cos, 2=   . (3.2)

3.1.2.2  An Interacting Network

The important point in this work is that there are two principle factors that

influence the averaging over all the available conformations of the NMR active bond.

Firstly there is the constraint caused by the junction points.  The end-to-end vector

formed by two consecutive crosslinks determines a static residual average orientation

of the labelled bond.  Secondly there are the interactions of the chain segments in the

rubber with their many neighbours.  The average orientation of an NMR active

segment can be written as ( )P
V2 cos
,

θ
R

, where the subscript R,V  indicates that

both the constraints of the network vector R  and the interactions V  have been

included.
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The network constraint R and the interactions V  will contribute to the average

orientation of the chains. The orientation due to the network constraint in the absence

of interactions is43 ~ N−1, where N  is the number of statistical segments between

crosslinks. The interchain interactions V  collectively form a mean field, which in an

undeformed state is isotropic34 and therefore does not contribute to the orientation.

However, in the deformed rubber, the mean field becomes anisotropic and makes a

contribution. The effect of the mean field on a single chain is expressed as a

deformation dependent screened potential31 )(* λV . Only the anisotropic part

contributes to the orientation and its effect, through the Boltzmann factor, can be

treated as a perturbation, i.e.

...
)(

1
)(

exp
**

++=







kT

V

kT

V λλ

In an earlier work it was shown that the effect of )(* λV  in the deformed state was

also the same as31 ~ N−1, justifying the perturbative approach of present work. Hence

to this order it can be written11-13,44

( ) ( ) ( )P P P
V V2 2 2cos cos cos
,

θ θ θ
R R

≈ + (3.3)

where � R  indicates an averaging over all conformations subject to the limiting

imposed by the end to end vector, but without the interactions and � V  is subject to

these interactions, but conversely not to the network vector constraint.  In this way the

effect of the network constraint and the interchain interactions are additive31.

Combining this expression (3.3) for the average orientation with the equation for

the transverse relaxation signal (3.2) gives

( ) ( ) ( )( )[ ]G t i P P to V
, Re exp cos cosλ ν θ θ= +








2 2 2R
(3.4)
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It is possible to see the effect of including the extra term ( )P
V2 cosθ  on the

transverse relaxation, without as yet going into the details of the mathematics. A

segment of a chain in a network is interacting with many neighbouring chains.  The

total effect is found by summing over the interactions from these many chains, with

this then naturally self averaging the interactions. These interactions can therefore be

well described by an effective mean field34. Furthermore this mean field by its very

nature is not unique to any specific network vector, but is common to all segments.

The ( )�  indicates an averaging over each network vector, but since ( )P
V2 cosθ  will

be the same for each segment considered, it can come out from under the ( )� . This

means that the NMR response can be simplified to

( ) ( )[ ] ( )[ ]G t i P t i P to V o, Re exp cos exp cosλ ν θ ν θ= ×


2 22 2 R
  . (3.5)

The resultant NMR signal (3.5) is seen to consist of a product of two terms.  The

first term corresponds to an oscillation, or a splitting, whose frequency depends on the

mean field contribution to the average orientation.  The second term determines the

decay envelope, or lineshape, and is fully specified by the network constraint

contribution to the average orientation.

3.1.2.3  Fourier Transformed Signal

The ability of NMR to separate the two contributions was first mentioned by Sotta

et al13. What follows here is a new analytic result for the NMR Fourier transformed

spectrum of equation (3.5).  This expression will then be compared to a range of

experimental data, enabling NMR to be a probe of the mean field and cross-link

density.  The NMR spectrum in frequency space ν , ( )G ν λ, , can be derived from
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( ) ( )G e G t dti tν λ λπ ν, ,= ∫ 2    . (3.6)

Before this calculation is made, a form is needed for the averaging over all

network vectors, ( )� , in (3.5) and a relationship between the network end-to-end

vector and the average orientation of a subsequent segment.  In this work it will be

assumed that the initial Cartesian components of the network end-to-end vectors,

{ }X Y Zo o o, , , are Gaussianly distributed and that these then undergo uniaxial affine

deformation.  This means that the averaging ( )�  denotes an integration over a

probability distribution, i.e.

( ) ( ) ( )
� �= 





− + +













−∞

+∞

−∞

+∞

−∞

+∞

∫∫∫
3

2

3
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3 2 2 2 2

2πNb

X Y Z

Nb
dX Y Z

o o o
o o o

/

exp    . (3.7)

Under an affine, uniaxial deformation λ  it can be shown that the average orientation

of a segment attached to an initial network constraint ( )X Y Zo o o, , is given by31

( )P
N

Z X Y

Nb
o o o

2

2 2 2 2

2
1

2

2
cosθ λ λ λ

R
= − −











, (3.8)

where N  is the number of Gaussian statistical segments of average size b  between

the junction points.  If this value is averaged over all the network vectors, using the

above averaging equation, (3.7), this gives the mean orientation due solely to network

constraint,  ( )P2 cosθ R , as

( )P
N2

21
3

1
cosθ λ

λR = −





. (3.9)

The NMR problem posed by equations (3.5) - (3.8) requires an integration over all

possible network vectors.  Each network vector orientation produces a particular

frequency of oscillation in the NMR signal, or in Fourier space two Dirac delta
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functions.  The magnitude of this frequency depends on the total contribution from the

network constraint and the mean field to the average orientation, recall equation (3.4).

The summation over all network chains, giving the resultant theoretical spectrum

( )G ν λ,  is derived in the Appendix.  There it is shown that the NMR spectrum can be

determined from

( )G
N

g g
o

ν λ π
ν

λ
λ

ν ν λ ν ν λ, , ,=






 +





+





+ −











−

+ −
3

2
2

1

2 22

1 2 ∆ ∆
  , (3.10)

where

( )∆ν ν
π

θ= 2 2
o

V
P cos , (3.10a)

with

( )g
N

o
+ = −









ν λ πλ

ν
ν, exp

3
(3.10b)

and when ν ν≤ ∆
2

( )g
N

o
− =









ν λ πλ

ν
ν, exp

3
(3.10c)

or when ν ν> ∆
2

( ) ( )g
N

erf z
o

− =








 − +




























ν λ πλ

ν
ν ν λ

λ
, exp

3
1

3

2
2

1
2

 (3.10d)

with

( )z
N

o
ν πν

ν
=   . (3.10e)

Parts b and d of equation (3.10) correct a minor numerical error in the result of

(3.8) in reference 28, which has also been noted elsewhere29. However, (3.10)

represents a substantial correction to the result (5.2) in reference 28, although both

expressions give qualitatively similar results.
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In the absence of a mean field contribution to the orientation ∆ν = 0 this result

(3.10) agrees with the theoretical result for a non-interacting network.  The calculation

of the Fourier transformed phantom network signal can be found in the literature and

has been the concern of a recent paper by Warner et al29.  An important point to note

is that the non-interacting network does not generate the oscillation that is seen in

experimental data.  By contrast the interacting network result above generates a

doublet structure, where the splitting, i.e. the distance in frequency space between the

peaks, is given by ∆ν .  This means that the NMR free induction decay is a measure

of the induced orientation produced by the mean field.  It is also important to stress

that the splitting consequently does not give the total orientation of the chain segments

but merely the contribution from mean field.  In this way NMR can decouple the

resultant orientation due to the chain interactions from that of the network constraint.

This is the main result of this chapter.

3.1.3  Results and Analysis

The NMR spectra for a range of deformations from a poly(butadiene) network

have been recorded.  The signal intensities have been normalised so as to have unit

area under each spectrum, with these displayed in Figure 3.1.

The aim of the subsequent work is to quantify the two contributions to the average

orientation of the polymer segments.  To achieve this equation (3.10) will be

employed to interpret the NMR frequency response of the deformed networks.  This

expression has three independent parameters; the rescaled interaction constant divided

by the number of statistical segments between crosslinks νo N , the magnitude of

splitting in frequency space ∆ν  that depends on the mean field contribution to the

anisotropy through (3.10a) and the deformation λ .  A Mathematica program has been

written to fit the theoretical spectrum (3.10) to the data, by minimising the root mean

square difference between the theoretical lineshapes and the data recorded.
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There is a ~5% experimental error in determining λ , so the fitting procedure

allows for small changes in the required theoretical deformation ratios.  As the same

network is examined at each λ , νo N  must be the same for each theoretical

spectrum, therefore this will be treated as a global fitting parameter.  Essentially only

( ) V
P θcos2  is allowed to vary between data sets.

In an earlier study39 on poly(butadiene) linear melts it was found the molecular

weight of a NMR statistical segment is g/mol)30260( ±  and the corresponding

rescaled interaction constant for the methylene deuterium is Hz7730=oν . From

these values and the νo N  required to fit the data it is simple to determine N , thus

the actual molecular weight between crosslinks and the mean orientation ( )P2 cosθ R

due to the network constraint from equation (3.9).  The fitting parameters can be

found in Table 3.1 and the corresponding theoretical decays are compared to the data

in Figure 3.2.

Figure 3.1  A range of NMR spectra from a strained poly(butadiene) network, where λ  is the

deformation ratio.  The solid lines are to guide the eye.
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Experimental λ Fitting λ ( )P2 cosθ R ( )P
V2 cosθ ( )

( )
P

P
V2

2

cos

cos

θ
θ R

1.00 1.00 0 0

1.21 1.29 0.086 0.024 0.28

1.41 1.49 0.15 0.055 0.37

1.58 1.56 0.17 0.063 0.37

1.83 1.83 0.27 0.10 0.38

νo N  (Hz) 2200 +/-200

Mx  (g/mol) 900 +/-200
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Table 3.1  The parameters required in the theoretical NMR signal (3.10) to model the data in Figure 2

(a)
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Figure 3.2(a)-(e)  The solid lines are the theoretical fits from equation (10) to strained poly(butadiene)

network using the parameters in Table 1.  λ  is the deformation ratio.  (a) λ = 100.  (b) λ = 121.  (c)

λ = 141.  (d) λ = 158.  (e) λ = 183. .
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From Table 3.1 it can be seen that the theoretically required deformation ratios are

close to the experimentally determined ones and indeed are within the ~5% estimated

error in λ .  This means that NMR was able to measure the deformation of the

samples from the NMR Fourier transformed signals.  It is only at the highest

deformation, λ = 183. , that the theoretical lineshape deviates from the experimental

data.  This could be attributed for example to non-affine deformation of the effective

crosslink points at high elongations.

Stress strain measurements19 on this network have determined the molecular

weight between chemical crosslinks, Mc , as 6500g / mol and the molecular weight

between entanglements, Me, as 1970g / mol at room temperature. The effective

molecular weight between crosslinks, Mx , can be estimated from42

1 1 1

M M Mx e c
= + . (3.11)

This gives a value of Mx = 1500g / mol  which is close to the above NMR determined

value in Table 1.  Through the new analytic result (3.10) it is therefore possible to

measure the average molecular weight between effective crosslink points.

In Table 3.1 the relative contribution to the orientation of the mean field to the

network constraint has been determined.  The mean field appears to increase the

alignment, in terms of a resultant ( )P
V2 cos
,

θ
R

, by approximately 30%.  The

remaining part of the analysis section shall consider a proposed model for this

anisotropic mean field.
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3.1.3.1  Edward's Screening Length

A segment in a polymer melt interacts through excluded volume interactions with

its many neighbouring chains.  These many interactions of the segment with its

environment give rise to an effective interaction potential between any two segments

on a particular chain, ( )V * r , given by34

( ) ( ) ( )
V V

r

r

* exp
r r= −

−











δ
ξ

π ξ4 2
, (3.12)

where V  is the bare excluded volume interaction strength, ξ  is the Edward's

screening length and r  is the vector separating the two segments.  This potential

consists of a strong repulsive short range component, ( )δ r , and a weak attractive part

of range ξ .  The Edward's screening length can be related to V  through31

ξ = b
kT

Vc12
, (3.13)

where c  is the number of statistical segments per unit volume and k  is the Boltzmann

constant.

From equation (3.12), the effective interaction potential satisfies34 ( )V d* r r∫ = 0 .

This effect is known as the screening of the excluded volume interactions. In an

undeformed melt it is this screening that gives rise to Gaussian statistics.

The Fourier transform components Vq
*  of the screened interaction potential

(equation (3.12)) can be written in terms of the components of the bare interaction Vq

as34



34

V V
V g

V gq q
q q

q q

* = −
+

2

1
, (3.14)

where in the case of a network gq  becomes the sum of the structure factors of the

network chains divided by the number of network chains31,45-47.  These network chain

structure factors then depend on the deformation λ . It is through this dependence of

the structure factors on elongation that the interaction potential itself becomes

anisotropic.

In a paper by Brereton and Ries the average orientation due to this anisotropic

screened potential was calculated to be31

( )P
N

b
V2

21
15

1
cosθ

π ξ
λ

λ
= −





(3.15)

with this depending on the crosslink density and the ratio of the length scales b ξ .

In Figure 3.3 the orientation due to the mean field is plotted as a function of

( )λ λ2 1− − .  As the molecular weight between crosslinks, N , is already known a

straight line fit to the data in Figure 3.3 specifies the ratio of the screening length to

the average statistical segment size.  This gives ξ = b / .60 , which as expected is close

to unity48.
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If this model of excluded volume interactions for the mean field had been adopted

earlier in the analysis, as opposed to having taken the more general approach, it would

have been possible to fit all the NMR signals simultaneously using only two

parameters; ν o N = 2200 and ξ = b 6 0. .  This is a strong indication of the above

theoretical framework to correctly model the NMR response.

From the characteristic ratio C∞  an absolute value of the screening length can be

estimated.  This ratio gives the average end to end distance R2  for a chain

comprising ′N  atomic bonds of length li  through the expression49

C

li
i

N∞

=

′=

∑

R2

2

1

. (3.16)

Figure 3.3  The average orientation of the deformed poly(butadiene) network due to the

contribution from mean field ( )P
V2 cosθ  as a function of λ λ2 1− − .
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For poly(butadiene) both the cis- and trans- forms have a characteristic ratio near to50

5. From this the average end-to-end distance of the statistical segment, b , of

molecular weight g/mol)30260( ±  can be calculated as approximately nm5.1 .  The

ratio ξ = b 60.  gives an Edward's screening length therefore of nm2.0 .  At distances

greater than that of the order of a bond length the excluded volume interactions are

therefore screened.  This is a reasonable length scale for screening and supports the

notion that excluded volume interactions are sufficient to account for the observed

splitting seen in NMR spectra from strained networks.
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CHAPTER 4

4.1  Concentration, Molecular Weight and Temperature Dependence of

the deformation-Induced Line Splitting

4.1.1  Introduction

When a deuterated network is stretched, an oscillation, corresponding to a splitting in

frequency space, is produced in the transverse deuterium NMR decay16 , see Figure 4.1.

b)

a)

with oscillation

t Hz

FID Spectrum

no oscillation single line

splitting

Figure 4.1  The NMR response in time domain and after Fourier transformation. a) FID without

oscillation corresponds to a single line while b) FID with oscillation corresponds to a splitting.
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This indicates an anisotropic tumbling of the chain segments. Indeed this can be

understood undoubtedly: if a network is elongated it would induce an anisotropy into the

conformations of the network chains translated through the juction points. It was only

later realised by Brereton28, Sotta and Deloche15 that for a non interacting (phantom)

network the oscillation would disappear when averaged over all network chain

orientations. This doublet produced in the frequency domain was indicative of a higher

degree of anisotropy than that induced merely by the crosslink points.

This section is devoted to strengthen the idea of mean field introduce in Chapter 3, in

order to explain the latter mentioned higher degree of anisotropy. To achieve this task it

is introduced here the experimental results from deuterated dry networks, protonated

networks incorporated with deuterated free chains and deuterated networks incorporated

with protonated free chains. It will be shown how the experimental results can be

discussed using the theoretical framework constructed on mean field idea. Also it will be

discussed here the effect of Flory interaction parameter χ  on the observed deuterium

NMR line splitting.

4.1.2  Results and Discussion

4.1.2.1  Network Probe and Free chain Probe

The interesting observation is that deuterated free chains within a protonated

deformed polymer network exhibit the same line splitting as it does a deuterated

deformed network. This result is presented for PB networks in Figure 4.2b while the

situation is schematically represented in Figure 4.2a.

It is shown in Figure 4.2b the line splitting of three different networks. Two of them

are protonated PB networks (CSM1 and CSM2), (MC=10 000 g/mol and 8000 g/mol

respectively), which were incorporated with deuterated free PB chains of Mn=25000

g/mol.  The free chain incorporation procedure was a simple one: free chains were laid



39

firmly on the network and allowed enough time (few weeks) to be well incorporated to

the network. Finally, the remaining free chains on the surface were well wiped out.

For comparison, the line splitting of a deuterated dry network (MC=  6500 g/mol) is also

shown in Figure 4.2b. The magnitude of the splitting for all components, the signal from

the free chain or network, are comparable and have the same dependence on extention

ratio ( λλ /12 −  ).

1H

2H

2H

1H

(a) (b)

Figure 4.2a  A schematic representation of the (a) deuterated free chains in a protonated polymer network
and (b) protonated free chains in a deuterated polymer network
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Figure 4.2b  A comparison of the line splitting from a deuterated dry network and from deuterated free

chains (Mn=25000 g/mol) within protonated networks. Å - deuterated dry network (Mc=6500 g/mol), Ö -

deuterated free chains dissolved in protonated network (Mc=8000 g/mol), â - deuterated free chains

dissolved in protonated network (Mc=10000 g/mol).
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An oscillation in the free chain signal reveals that the splitting does not depend

explicitly on the presence of crosslinks, i.e. only the constraint arising from the network

due to crosslinks is not responsible for the line splitting. In the literature, it was reported

similar observations from deuterated solvent molecules within a protonated deformed

Polydimethylsiloxane (PDMS) network10,35,51. Sotta et al. demonstrated that when

oligomers of deuterated PDMS were dissolved into a uniaxially deformed PDMS

network they also showed the characteristic doublet52. Further these oligomers displayed

the usual orientational dependence, ( 1cos3 2 −θ ), of their splitting on the angle θ

between the applied strain and the magnetic field. This clearly revealed that all the chains

in the sample, both network and free chains, were aligned along the strain direction.

Previously, Sotta and Deloche52 introduced nematic interactions occuring between

neighbouring segments to explain this phenomenon. These nematic interactions would

both enhance the anistropy of the network segments and generate it in any dissolved free

chains. In a later work Brereton28 showed that it was sufficient to include only excluded

volume interactions in order to account for the observed line splitting. For the network

these were treated as the mean field level and it was shown that an anisotropic mean field

arises when the network is deformed. Subsequently numerical simulations53,54 on

deformed one component systems have demonstrated the ability of excluded volume

interactions to produce the experimentally observed splitting. Brereton and Ries31,

recently, dealt directly with network vectors, which were treated as quenched variables,

to show explicitly how they collectively determine the anisotropy in the mean field.

The latter approach is shortly discussed here and then it will be shown how the

experimental observations can be discussed on the light of it. It will also be shown that

the splitting on either kind of chain (network or free) for a uniaxial extension λ  to vary

linearly with ( λλ /12 − ), and the magnitude is to be determined by the mean field. This

can be experimentally controlled by blending the network with free chains. For the

chains, identical to the network chains, the principle effect is simply to dilute the

contribution to the mean field from the network chains, with the chain length playing a
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minor role. Also, it is derived the contribution to the mean field arises by choosing free

chains of a different chemical nature and compared with the experimental results.

The splitting is linearly dependent on the network fraction and determined by the

excluded volume interaction as expressed by the ratio of the Edward’s screening ξ  to the

chain segment length b . Taking into account all the above facts Brereton and Ries31

[RS1] have shown that the deuterium NMR line splitting BA/ν∆  from either the network

( A ) or free chains (B ) can be written as

BABA /
12

/ )(22 ∆−=∆ −λλνπ . (4.0)

The deformation dependence is entirely contained in the pre-factor, whereas the

molecular weight, concentration and temperature dependence are contained in the term

BA /∆ , given by
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Here BA NN ,  - number of statistical segments per chain (network and free,

respectively),
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ccc BA ,,  - concentrations of network chain, free chain and total, respectively

BBAA NcNc

11
2 0 +=χ   .

There are two contributions to the splitting given by equation (4.1). Contribution of

the first term, i.e. ξ/b , is of the order of 1 and the contribution of the second term, i.e.

BAF / , is of the order of AN/1 . If the network chains and free chains are chemically

identical but of different molecular weights (i.e. 0, =≠ χBA NN ), the second term

becomes (from equation (4.2) and (4.3))
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and is the same for both kind of chains. That means the line splitting is the same from

network and free chains.

It would be interesting to investigate experimentally the above theoretical predictions,

especially how the line splitting is affected by network concentration Ac . For this purpose

one of the previously described PB dry networks (deuterated, MC=6500 g/mol) was used.

The network volume fraction was gradually reduced by inserting protonated free chains

of Mn=1800 g/mol to the network. Deuterium NMR line splitting was measured at

different network concentrations. The effective mass between two crosslinks of the same

network is 1500 g/mol (see Chapter 3). Since the mass of a statistical segment of

methylene deuterated PB is 260 g/mol39, it is calculated the AN  as 5.7. Number of

statistical segments of the protonated free chains BN  is calculated as 6.9. In Chapter 3 it

was shown that length of a statistical segment divided by Edward’s screening length,

ξ/b , is 6.0 and 0ν =7730 Hz. Using these values and equation (4.0), (4.1) and (4.2), the

experimental data of the network concentration dependence of line splitting were fitted to
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the theoretical function (4.0), for λ =1.8 and is shown in Figure 4.3. It was noticed that

there was a slight departure from the usual linear dependence of the splitting on network

concentration. Indeed it is difficult to decide whether these data points corresponds to a

linear dependence or a non-linear dependence, since lack of data points. The difficulty of

obtaining more experimental data points lies in the long time it takes to dissolve a

polymer chain of sufficient length to be considered as a statistical chain into a network. In

the case of χ =0 (i.e. there is no role of Flory interaction parameter although the chains

are slightly chemically different) , the theoretical curve shows the linear dependence. In a

similar work Ries55 introduced a value of 0.05 for the χ  into a system of protonated and

deuterated PDMS polymer chains in order to model the experimental data. Hence we can

discuss our results on the point of view of non-linear behaviour.  Here the second term in

equation (4.1) is beginning to compete with the Edward’s screening length. This is

because a small Flory interaction parameter has been introduced due to the slight

dissimilarity between the deuterated chemically cross linked chains and the protonated

chains. Data can be modeled by constant χ =0.1 and  where the splitting from the

network has been normalized to a dry network result. Error of the data is about 5%.

The dependence of the splitting with λλ /12 − for a series of deformations is shown in

Figure 4.4. In the case of the probe on network chain, deuterated network, the

contribution from AF  is predominantly negative, as can be seen in equation (4.1).

However, the sign can be changed especially when AB NN > .

To model the results from PB network it has to be used a value of χ =0.1 which is

slightly higher value than that used by Ries55 to model the data from PDMS network.
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Figure 4.3  The magnitude of the splitting, normalised to the dry network, for deuterated strained (λ =1.8)

network which is incorporated with protonated free chains as a function of network volume fraction. The straight

line is the linear dependence of line splitting without including the χ  dependent part.

Figure 4.4  The magnitude of the splitting at a series of deformation ratios, for deuterated network which

is incorporated with protonated free chains as a function of network volume fraction.
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Although the chemical structural difference (protonated and deuterated) in the cases

of PDMS and PB are almost the same there exists a large difference  of the effective

molecular weights between cross links Mx. It was 6500 g/mol for the PDMS10 and 900

g/mol for the PB. So that the difference of Mx is about seven times. The difference of the

crosslink densities of PDMS and PB  may cause to differ the values of χ  parameter.

The values of χ  for some polymers which are in different solvents are shown in

Table 6.1 and hence one can get a general idea about the range of  the parameter.

Polymer Solvent Temperature Range (°C) χ

PDMS Benzene

n-Hexane

25 – 70

20

0.81 – 0.75

0.5

Poly(isoprene) Benzene

n-Hexane

25 – 55

25 - 55

0.46 – 0.43

0.54 – 0.50

During a study on swelling in crosslinked natural rubber, McKenna et al.56 have

shown that χ  depends on crossslink density and furthermore, the value of χ  in the

crosslinked polymer was a linear function of the crosslink density (see Figure 4.5). In the

same study it was shown the variation of χ  with volume fraction of rubber. Therefore, it

is argued here that the apparent increase of χ  in  PB is due to its higher crosslink density

than that of PDMS. Additionally this opens a new way to investigate χ  using deuterium

NMR spectroscopy.

Table 6.1  χ  parameter obtained for different polymers in different solvents [Polymer Hand Book]
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4.1.2.2  Temperature Dependence

The term ξ/b  in equation (3.15) and (4.1) is the temperature dependent part of the

deuterium NMR line splitting. To show the relation between ξ/b  and T  recall equation

(3.13) 
Vc

kT
b

12
=ξ . According to this relation the line splitting depends on temperature

as T/1 .

Figure 4.5  Dependence of χ  on crosslink density ν  for dicumyl-peroxide-crosslinked natural rubber

swollen in different solvents, as indicated56.
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In an earlier work by Deloche and Samulski13 considering nematic-like interactions

between chain segments, it was reported that segmental order parameterS  has the

dependence on temperature according to

)
)(

1(
*

*

TT

E
SS seg −

+=
α

φ
(4.5)

where *
segS  is the ideal segment order parameter deduced from kinetic theories of rubber

elasticity57, φ  is the rubber volume fraction, E  is a constant related to elastic module,

and α  is a constant related to an interaction constant between segments.

*T  in equation (4.5) corresponds to a critical temperature of the polymer sample. In

the present study *T  can be considered as the glass transition temperature. Since the

experiments are conducted at a temperature (-20 °C – +60 °C) well above the glass

transition temperature (~ -105 °C), the effect of *T can be neglected and hence the

segmental order parameter has the temperature dependence as T/1 . NMR line splitting

ν∆  is related to S  according to the relation10

qKS νν /∆= , (4.6)

where qν  is the static quadrupolar interaction constant and K  is a numerical constant

which depends on the chemical structure of the polymer. From the above formulations by

Deloche and Samulski  it can be revealed that ν∆  has the temperature dependence as

T/1 . However, it is hard to find in literature an experimental work which has been done

in order to accomplish this temperature dependence.

Experiments were conducted on  deuterated PB networks in order to investigate the

temperature dependence of the NMR line splitting. At each temperature it was allowed 30

minutes time to stabilise the temperature over the network while the temperature increase

was 1 degree per 3 minutes. The deformation ratio was kept at 1.60, 1.85 and 2.20.
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The results are depicted as a logarithmic plot in Figure 4.6. The slopes of the plots,

which are –0.55, –0.60 and –0.70 in this case, indicates the temperature dependence of

the line splitting, i.e. the NMR line splitting depend on the temperature according to

T/1  (see equations (3.13), (4.0) and (4.1)). The dotted lines represent the lines with

slope –1.0. The interesting feature is the behaviour of the temperature dependence of the

NMR line splitting not depend on the applied deformation ratio (see Figure 4.6), giving a

strong evidence for the correctness of the nature of temperature dependence of the

theoretical frame work which was constructed in Chapter 3.

Figure 4.6  Temperature dependence of the NMR line splitting at different deformation ratios

(λ=1.60, 1.85 and 2.20). The dotted line corresponds to the slope of –1.0.
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4.2  Effect of Cross Link Density on the Screening Length and Rescaled

Quadrupolar Interaction

4.2.1  Introduction

This section is devoted to study deuterium NMR line shape of PB networks with

different cross link densities. It will be addressed, with the help of experimental results

fitted to the equation (3.10), the behaviour of screening length on the changing cross link

densities of the network. In Chapter 3 it is shown that the screening length is a unique

quantitiy for a polymer and it is independent of cross link density. Rescaled quadrupolar

interaction constant, which depends on the number of statistical segments between two

cross links, extracted from the above fitting results used to estimate the cross link

densities of the network samples and compared with the results from stress-strain

measurements.

4.2.2  Results and discussion

Deuterium NMR has been employed to determine the average orientation of chain

segments in the poly(butadiene) networks AD1, AD2, AD3 and AD4 (Mc=3300, 3600,

6800 and 5400 g/mol respectively). The NMR spectrum lineshape reveals the

orientational distribution of the network vectors due to the crosslinks, whereas the

observed splitting gives information about the orientation due to segmental interactions.

Both the lineshape and the splitting has been fitted to the equation (3.10) simultaneously

for a range of deformed poly(butadiene) networks. The 2H NMR spectra of the networks

under study were analysed in dependence on the deformation ratio λ. A qualitative

representation of the fitting of experimental data to the equation (3.10) is shown in Figure

4.7. The spectra are well represented by fitting of the latter mentioned fitting equation for

all the samples.
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(a)

(b)

  

(c)

Figure 4.7  Experimental 2H NMR spectra and the fit by equation (3.10) for sample D4 with 0.5 phr

DCP at (a) λ=1.0 (b) λ = 1.1 and (c) λ=1.2.
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All the 2H NMR spectra could be described with only three independent parameters:

the rescaled quadrupolar interaction divided by the number of statistical segments ν0/N,

the magnitude of splitting in the frequency space ∆ν that depends on the mean field

contribution to the anisotropy through equation (3.10a) and the deformation ratio λ. From

the fitting parameters the separate contributions to the average orientation of the chain

segments arising from the network constraint and from the interactions are calculated.

The quantity b/ξ is found to be unique for all networks  under study. It was determined to

a value of 3.4 which is as expected in the order of unity and independent on the length of

the precursor chains and even on the crosslink density. In Chapter 3 it is shown that this

ratio b/ξ should remain constant for a series with different crosslink densities which was

ascertained here. This is a strong indication of the above mentioned theoretical

framework.

In the case of peroxide vulcanisation the radicals are created where the peroxide

molecules are happen to be located. This implies that there is a risk of local

concentrations of radicals, as the peroxide molecules tend  to agglomerate rather than

dissolve in the polymer matrix. The rate of termination is dependent on the collision

frequency which in turn is strongly dependent on the mobility of the system. If the

molecular mobility decreases, the polymer chains in which the radicals are located will be

less able to move freely to collide with other radicals. Before the radical terminates, it

will have time to perform more reactions than a less hindered radical. A lower mobility

will, thus, lead to a larger number of crosslinks per initiated radical. However, it is not

only the decrease in segmental mobility that is responsible for the increase of crosslink

density, even thought it is probably the main reason. When the mobility decreases for

long-chain segments, the mobility of smaller parts of the chain, e.g. methyl groups in

natural rubber or vinyl groups in poly(butadiene), are not affected that much. The vinyl

groups therefore are favoured over main chain unsaturations for reactive species, even

more pronounced at higher pressures58. The fact that vinyl unsaturations are prefered in

crosslinking was shown already by Lavebrett et al.59 who investigated butadiene rubber

(BR) with different microstructure.
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The mean Mc-values between two chemical crosslinks of the networks were estimated

from 1H and 2H-NMR relaxation, stress-strain and swelling measurements60 to be 7500

(3300 from swelling only), 3600, 6800 and 5400 g/mol for the networks AD1, AD2, AD3

and AD4. The much larger precursor chain length (see Table 2.1) for D1 and D2 (it is

about 2 times larger compared to D3 and D4) yields to a more restricted mobility of the

polymer chains. Therefore, the resulting crosslink density is increased (reduced Mc-

value) for this networks despite of the fact that the inserted amount of crosslinker was the

same (about 0.5 phr DCP for all networks under study here). The large discrepancy in the

Mc-values calculated from the different methods for the network D1 is probably caused

by irregularities in the spatial distribution of the radicals which may give rise to

variations in the homogeneity of the resulting network.

The ratio ν0/N was estimated to be 5200, 5100, 3800 and 3700 Hz for the networks

AD1, AD2, AD3 and AD4, respectively, by fitting the spectra using equation (3.10). This

trend is in good agreement with the G’-modulus measurements which give plateau values

for G’ of 1,37 MPa, 1,46 MPa, 1,13 MPa and 1,09 MPa for the same networks. Due to

these results it is believed that the Mc-value for the AD1-network of about 3300 g/mol is

the more correct one. The networks prepared from larger precursor chains yield the larger

ratio ν0/N than those built from shorter chains, however, they differ by a factor of  two in

the crosslink density. But if the protonated precursor chain length is the same and the

deuterated chain length is larger, one could observe only a small increase in this ratio.

This ratio ν0/N in turn is used to determine an effective molecular mass Mx (1/Mx = 1/Mc

+ 1/Me) which contains the topological hindrances due to crosslinks and entanglements.

The value of the corresponding rescaled interaction constant ν0 for methylene deuterium

was taken from an earlier published paper on poly(butadiene) melts39 where it was

estimated to be 7730 Hz. In the same study19 it was found the molecular weight of a

NMR statistical segment is (260 + 30 / 294*) g/mol. Using this values, the effective

molecular masses Mx of these networks were determined to 390/590*, 400/604*,

530/920* and 540/960* g/mol, resp. (* is upper limit). The entanglement contribution Me

was found to be about 1700 g/mol for the given microstructure61. Based on this value for

Me and the above summarised mean molar masses between crosslinks Mc estimated from
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other independent experiments, the expected effective molar masses Mx  can be

calculated as 1120, 1160, 1360 and 1290 g/mol for the AD1, AD2, AD3 and AD4

networks, respectively, which is close to the above NMR determined value for the

effective molecular weight.

The ability of the theoretical result (3.10) to measure a crosslink density that

compares well with mechanical tests and a screening length of a resonable size of about

0.2 nm which is found to be independent on the precursor chain length and crosslink

density, strongly supports the use of this framework to interpret the NMR response from

strained elastomers.
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CHAPTER 5

5.1  The Susceptibility Effect of Carbon Black Filler on the

Deuterium NMR Line Shape from Poly(butadiene) Networks

5.1.1  Introduction

The aim of this chapter is to explain the asymmetric NMR spectra observed from

deformed carbon black filled poly(butadiene) networks62. To illustrate this asymmetry

it is shown in Figure 5.1 a comparison between a NMR spectrum from a filled and

unfilled strained network.  In this study the effect of the susceptibility of the carbon

black filler on the local field of polymer chains that are in the vicinity of these

particles is considered. It is proposed that the magnetic field near carbon black

particles is different to the rest of the sample. Therefore, the polymer chains near to

the filler particles experience a different resonance frequency. This change in

frequency causes a shift of their NMR spectrum in the Fourier transformed signal

relative to the unbound segments. In order to quantify this shift, the theoretical

expression (3.10) to model the NMR lineshape and splitting63 is employed. Then the

expected shift in frequency is calculated by using susceptibility data64 of carbon black,

and it is shown that this compares favorably with the results obtained from our fitting

procedure.

As well as the susceptibility of the carbon black filler it is also considered that the

applied macroscopic deformation does not affect the chains closely attached to filler

particles to the same degree as it do the remaining chains. Figure 5.2 shows

schematically the various possibilities of polymer chain attachments to the filler

particles65.  Chain segments E, F and D are not affected directly by the macroscopic

deformation.

In this work the approach is to consider the asymmetric spectrum as consisting of

two main components. The first corresponds to the NMR signal of polymer that are

far away from the filler particles.  These chains have a spectrum that is essentially
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identical to that of an unfilled network. The second is the spectrum from the polymer

chains that are very close to the filler particles such as segments E in Figure 5.2.  The

carbon black causes a shift in the resonance frequency and a different bulk strain

orientation dependence of these chains attached to the filler particles.  The two

components of the resultant NMR lineshape are schematically shown in Figure 5.3a

and 5.3b. What experimentally observed from the filled polymer network is the

collective effect of the spectra 5.3a and 5.3b. The signal consists of
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Figure 5.1(a)  The NMR spectrum from a carbon black filled deformed poly(butadiene) network

( )80.1=λ  showing the asymmetry in the peak heights.



56

0

0.00025

0.00050

0.00075

0.00100

-2000 -1000 0 1000 2000

Frequency / Hz

In
te

n
si

ty
 (

N
o

rm
a

lis
ed

 b
y 

a
re

a
)

Figure 5.1(b)  NMR spectrum from an unfilled deformed network ( )83.1=λ  showing the symmetry in

the peak heights.

Figure 5.2  Model of the filler-elastomer interactions, cb: carbon black.  A: physical attachment.  B: chemical

attachments.  C: cross-linked rubber chain.  D: loose fold.  E: tight fold.  F: multiple adsorptive attachments.

G: inter-particle tie chain.  H: cilium.  I: entanglements (from reference 4).
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Figure 5.3  Schematic diagram showing how the resultant asymmetric NMR spectrum is formed from two

symmetric signals. a) Represents the NMR spectrum from segments not in the vicinity of the carbon black

particles.  b) The signal from polymer chains that are close to carbon black filler particles and are therefore

shifted by Hz δ− .  c) The collective effect gives rise to the resultant asymmetric NMR spectrum.
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two doublets with one centered on zero frequency and the other being allowed to have

some offset δ .  The two doublets in Figure 5.3a and 5.3b have different splittings

(distance between peaks in a doublet) indicating that the attached and unattached

segments are subject to different deformations. Therefore, the resulting NMR

spectrum is asymmetric as shown in Figure 5.3c.

The next step is to find out experimental evidence for the existence of the shifted

spectrum of the carbon black closely associated segments as shown in Figure 5.3b.

With increasing deformation of the polymer network the line splitting of spectrum of

Figure 5.3a and 5.3b will increase as indicated by the arrows. It is anticipated that the

chains between the carbon black particles will experience a larger deformation, and so

their splitting will increase more rapidly, revealing the off resonance component. In

principle at a sufficiently large macroscopic deformation λ, a third or possibly fourth

peak should become visible in the resultant spectrum Figure 5.3c.

5.1.2  Background

Deuterium nuclear magnetic resonance (2H NMR) has been used extensively to

study the orientational order induced in rubber networks under uniaxial stress10,15,23,66-

68. The spectrum of network chains exhibits a characteristic doublet structure. It is

known that classical theories fail in giving a description for the existence of such a

doublet structure28,29. This doublet structure has been attributed to orientational

interactions between segments68.

However, the 2H NMR line shape observed from carbon black filled elastomers is

somewhat different from that of unfilled elastomers62. In the case of carbon black

filled cis-1,4 poly(butadiene) networks it has been observed that the peaks of the

spectrum of the Fourier transformed NMR signal are not equal in height, recall Figure

5.1a.  No model in the literature for the NMR lineshape from strained networks

predicts this asymmetry. A similar situation was already stated by Gronski et al62.

They observed that increasing the filler content of cis-1,4-poly(butadiene) network at

constant deformation results in an overall broadening of the doublet line shape at
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nearly constant splitting and an increase in the asymmetry of the outer signal wings. In

order to explain the above observations they considered the filled network as

consisting of two parts. One is formed by the pure rubber phase, whereas the second

contains the filler and a fraction of rubber coupled in series. However, the proposed

model, based on the free induction decay of the strained sample, which was

approximated by superposition of two exponentials modulated by the frequencies of

the quadrupolar splitting of the two rubber phases, was unable to explain the observed

asymmetry.

In carbon black filled elastomers there exist three different spin-spin relaxation

times (T2), which have been associated with three microregions69,70:

1. a tightly adsorbed layer, where the motion of the chains is severely restricted

surrounding the filler particles,

2. a more loosely bound domain,

3. a third domain where the motion of the chains is similar to that of unfilled

polymer.

A recent investigation on the surface morphology of carbon black particles with an

atomic force microscope suggests that rubber-filler interaction is likely to reflect

strong topological constraints exerted by the black complex surface on elastomer

chains71.

5.1.3  Analysis

The two main ideas motivating this work are: (a) that the chains in the vicinity of

the filler particles have a different resonance frequency due to the susceptibility of the

carbon black; (b) these chains experience a different deformation from that of the bulk

sample due to their close attachment.

The analytic result, equation (3.10), for the lineshape ( )G Mxν λ; ,  of a uniaxially

deformed network will be used.
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Recall equation (3.10):














 ∆−+





 ∆+



 +





=





−+

−

λννλνν
λ

λ
ν

π
ξ

νλν ,
2

,
2

1
2

2

3
,,,;

21

2
gg

Nb
NG

o
o (5.1)

In this result ν  is the NMR frequency in Hz, λ  is the deformation and Mx (which

is related to N ) is the molecular weight between effective crosslinks. This expression

has been successfully employed in the analysis of unfilled poly(butadiene) networks63

(see chapter 3).

In present model the spectra are viewed as comprising two components, a signal

from segments closely associated with the carbon black and those that are not. It will

assume that the chains not in the local vicinity of the carbon black experience to a first

approximation the macroscopic applied deformation λ .  This means that the signal

from these segments is fully specified by their effective crosslink density Mx  and so

simplifies the analysis by keeping the number of parameters to a minimum.  Next a

fraction f  of signal that is from the segments closely associated to the carbon black

(cb) is introduced.  As these chains are bound to the carbon black we allow them to

have a different effective crosslink density cbxM ,  and to experience a different local

deformation cbλ .  The resultant signal ( )δλλν ,,,,;, , xcbxcb MMfS  can be written as a

linear combination of the two components

( ) ( ) ( ) ( )cbxcbxxcbxcb MGfMGfMMfS ,, ,;,;1,,,,;, λδνλνδλλν −×+×−= , (5.2)

where δ  is the shift in the NMR frequency spectrum from the chains attached to the

carbon black due to the local field strength difference (recall Figure 5.3b).

It is only under deformation that the NMR spectra become significantly

asymmetric.  The signals then clearly reveal that they have this off-resonance

component.  For successful analysis it is important to examine data that displays

enough features such that the parameters in the model can be reliably determined.  If
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the deformation becomes too great ( )λ > 2  though the theoretical result ( )G Mxν λ; , ,

which is based on Gaussian statistics, is no longer valid63. For these reasons the

analysis is begun with the λ = 18.  data.

In Figure 5.4 the resultant fit to the NMR spectrum from the network under

deformation λ = 18.  is compared.  The required fitting parameters are:

Mx = 1600 g / mol , g/mol 1100, =cbxM , δ = −498.  Hz, f = 028.  and 1.1=cbλ .
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This simple model is able to generate a reasonable fit to the experimental data

(Figure 5.4).  Better fits could have been obtained by adding more components

corresponding to chains in a different environments, recall Figure 5.2.

Figure 5.4  Solid line shows the theoretical fit of equation (5.2) to NMR spectrum from the strained

poly(butadiene) ( )80.1=λ  carbon black filled network. The required fitting parameters are;

Mx = 1600 g / mol, g/mol 1100, =cbxM , δ = −498.  Hz, f = 028.  and 1.1=cbλ .
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The effective crosslink density of the chains not in the vicinity of the carbon black

particles was found to be 1600 g/mol.  This can be compared with the stress-strain

measurements19. In this work it was found that the molecular weight between

chemical crosslinks Mc  was 6500 g/mol and entanglements Me was 1970 g/mol.

The molecular weight between effective crosslinks Mx  can be estimated from the

relationship42

1 1 1

M M Mx e c
= + (5.3)

From this a value for Mx  of 1500g/mol is determined.  This is very close to the above

found fitting parameter and indicates that the theoretical function ( )G Mxν λ; ,  is

correctly describing the NMR response. The crosslink density of the chains closely

attached to the carbon black particles was found to be 1100g/mol.  This again is in

good agreement with the estimated value for the crosslink density found from

equation (5.3).  This slightly higher density of crosslinks is consistent with the chains

being attached to the filler particles and these contacts acting as extra crosslink points.

It is also interesting to note that the effective deformation for these chains was

1.1=cbλ .  This reveals that these chains remain almost isotropic and do not directly

take part in the bulk deformation, due to their close attachments to the filler particles.

In addition the fit based on equation (5.2) gives direct access, through the

parameter %28=f , to the amount of polymer chains in the vicinity of the filler

particles.  This value compares favorably with work by Gronski et al.70 on carbon

black filled networks.  They fitted the proton NMR relaxation after a solid echo using

three Gaussian components.  They attributed these components to segment in different

regions within the sample (Figure 5.2), giving a measure of the fraction of chain

closely associated with the carbon black particles. Kraus and Collins measured the

magnetic susceptibilities and spin concentrations for a range of different carbon

blacks64. Their data are shown in Table 5.1. They also broke down the mass

susceptibility values into their respective diamagnetic and paramagnetic components

this being derived from the spin concentration and susceptibility of free electrons. In
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present study the net magnetic susceptibility is used to calculate1 a value for the

frequency shift produced by carbon black N220 of 46.6 Hz. This value of is in

remarkable agreement with the frequency shift Hz8.49−=δ  determined by fitting of

the equation (5.2) to the experimental data.

Carbon black Mol%

Carbon

Spin conc.×106

spins/g

Mass susceptibility×106

      Net          Paramagnetic      Diamagnetic

N550

N330

N220

N110

95.77

95.75

-

94.78

10.0

8.0

9.2

8.1

-0.82

-0.79

-0.76

-0.73

0.21

0.17

0.19

0.17

-1.03

-0.96

-0.95

-0.90

Now that the microscopic parameters ( )cbcbxx fMM λ,,, ,  have been determined

from the analysis of an NMR spectrum from the deformed network ( )8.1=λ  they can

now be used to generate the theoretical signal from the undeformed sample.  Figure

5.5 compares the data from the unstrained network λ = 100.  and the theoretical signal

using the above found parameters.

For

Table 5.1  Carbon Black Electron Spin Concentrations and Mass Susceptibilities

Figure 5.5  Solid line shows a no free parameter fit of Eqn. 5.2 to the NMR spectrum

from the undeformed poly(butadiene) carbon black filled network.
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a no parameter fit the theory compares favorably to the data.  It would have been

possible to achieve better fits by simultaneously fitting the NMR data from λ = 100.

and the λ = 180.  deformed networks, but current approach is a stronger test of this off-

resonant component model.

Figure 6  a) The theoretical spectrum from equation (5.2), with the parameters found from fitting the

80.1=λ  network data, predicts the emergence of a third peak to be found at high deformation

( )5.2=λ .  b) This third peak is found experimentally at deformations of 00.3=λ  in the NMR spectra

of the carbon black filled poly(butadiene) network.
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It is possible to make a prediction using the current model and the microscopic

parameters found from the analysis of the 80.1=λ data.  At sufficiently high enough

deformations the splitting from the chains that are not closely attached to the carbon

black particles should become large enough so as to reveal unambiguously the off

resonance component.  In Figure 5.6a the theoretical spectrum from a sample at

deformation λ = 25. , using the parameters found from the above analysis, is shown.

Here a third peak can be seen in the theoretical response corresponding to the nearly

isotropic off-resonance component.  In Figure 5.6b the NMR spectrum measured from

a network at a high deformation λ = 300.  is shown.  Here it can be seen that the

experimental data does reveal this off resonance component, which qualitatively

theoretical function (5.2) does. In this study it is not attempted to quantitatively

analyse this data as the theoretical function used is only strictly correct for

deformations 2<λ , which is within the validity of the Gaussian chain approximation.
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CHAPTER 6

6.1 Molecular Dynamics and Orientation Measured by Sine Correlation

Function (β - Function)

6.1.1  Introduction

A new NMR technique, which is a further development of the work done by

Collignon et al.72, was demonstrated by Callaghan et al.73 that is suitable for the

measurement of weak proton dipolar interactions in fluid polymers where rapid

segmental dynamics pre-average the rigid lattice dipolar coupling. This method is

especially applicable to polymer melts and networks, where such residual interactions can

provide valuable information regarding molecular order and reorientational dynamics.

The pulse sequence which is employed in this study directly generates a function β,

which is zero in the absence of the dipolar interactions, which is completely independent

of all Zeeman dephasing associated with chemical shifts or magnetic inhomogeneity, and

whose time dependence can yield both the magnitude and the fluctuation rate of the

residual dipolar interaction.

In this study, the above mentioned method was employed to deuterium nuclei in order

to study the magnitude and the fluctuation rate of the residual quadrupolar interaction.

The aim of this work is to investigate the latter properties using this method and compare

the results with the same properties obtained by other methods (by deuterium NMR line

splitting and by usual NMR relaxation). Also, it will be shown that this method is

sensitive enough to detect different classes of interactions present in the polymer.

The β function experiment is composed of a single 90°x pulse; solid echo sequences,

90°x -τ- 90°y, 90°x -τ- 90°x; and a Hahn echo, 90°x -τ- 180°y, where, in the echo

examples, τ is the time separating the rf pulses. In each case, it is allowed the density

matrix that describe the nuclear spin ensemble will evolve under the influence of the two
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offset terms in the Hamiltonian. The details of these evolutions are well known74. The

superposition of above echoes and the single pulse, in order to create the β function, is as

follows.

(6.1)

Where

This superposition signal is obtained using a single pulse sequence under appropriate

phase cycling conditions.

As the time t=2τ corresponds to the instant that the magnetic precessions are

refocused in the spin echo, at this particular moment the effect of Zeeman precession

(magnetic field inhomogeneities, chemical shift) vanishes. Therefore, the function β(2τ,τ)

is well suited to investigate the weak dipolar interactions, quadrupolar interactions and

their fluctuations without perturbations due to Zeeman effects. The exact expression for

β(2τ,τ) is derived as75

t

τ

90α1

time

90α2  45α3  45α4 acquire α5

Figure 6.1 The RF pulse sequence used to acquire the β(t,τ) fuction directly. The associated

phase cycles are given in reference [cg1].
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where 
−−

2Q is residual quadrupolar second moment and sτ  is slow correlation time of the

isotropic slow segmental motion.

In many papers20,73,76,80 a more simple expression, )/exp(~ 2
sτττ , is used for the

relaxation with the assumption of 2/1
2 )(Q≤τ .

6.1.2  Experimental and Fitting Procedure

The radio frequency pulse sequence shown in Figure 6.1 was employed to obtain

experimental data for the β-function. Indeed, the first combination of the pulse sequence

(i.e. S1-S2-S3) was applied first and the pulse S3(0,0) was applied as the second. The final

result (i.e. β(2τ,τ)) was obtained by dividing the maximum point of the result of the first

pulse combination by maximum point of the result of the pulse S3(0,0). 90° radio

frequency pulse was approximately 5µs. τ was arrayed between the values 2×10-5s and

0.1s.

An Origin program was written to generate the function (6.2). Experimental data were

fitted using the latter program by keeping the parameters 2
2

__

sQA τ= , sB τ/1=  and C  as

the weighting factor. The correlation time is determined from B  and then from A  the

residual second moment is calculated. Since the aim here is to calculate the residual

quadrupolar interaction 0ν , it is necessary to estimate the fraction q  of the residual

second moment to static second moment SQ2

__

, which is certainly also the fraction of

qνν /0 , where qν  is the static quadrupolar coupling constant.  q  is given by76
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It can be shown that 2
2

__

))(5/1( SSQ ν∆= , where Sν∆  is the distance between the two

maxima of the NMR powder spectrum which can be measured below glass transition

temperature Tg. For methylene deuterated PB it was found20 that Sν∆ =123 kHz. The

relation between qν  and sν∆  is39

sq νν ∆=
3

4
, which give the value for qν  as 165 kHz.

Fitting of the experimental data to equation (6.2) lead to estimate 2

__

Q  and hence q  was

determined using equation (6.3). For the consistency of further discussions it is defined

an order parameter S  which has value of q .

6.1.3  Results and Discussion

It is discussed here qualitatively the experimental results of the ),2( ττβ

measurements and their fittings to the theoretical expression (6.2). The major aim of this

section is to extract information about residual quadrupolar interaction 0ν  and its

fluctuation, using ),2( ττβ , and to compare the results with the same properties

investigated by using deuterium NMR line splitting and transverse relaxation methods.

Since ),2( ττβ  starts from near to zero, reach to a maximum value and then decay to

zero with time, it is more appropriate for a fitting procedure. Because of the fact that this

function exhibits a high degree of sensitivity to the precise nature of dynamics (expressed

via correlation function), it is argued that this sensitivity is significantly greater than that

found in the measured quantities for other NMR methods which provide information

about the strength and fluctuation of dipolar/quadrupolar interactions77.
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Sample
sτ  (ms)

2

__

Q .10-6 (s-2)
S .103

0ν  (Hz)

CD2A_L0   λ=1.0 62 4.1 5.4 912

CD2A_L1   λ=1.6 100 4.3 5.6 937

CD2A_L2   λ=2.2 20 6.0 7.2 1207

CD2B(first part) 23 1300 103 17000

CD2B(second part) 9 1.3 3.3 559

CD2Freechains
Mn=25000 g/mol

100 5.3 5.4 910

AD1    network 58 6.5 7.4 1225

AD2         " 15 6.6 7.3 1210

AD3         " 18 7.5 7.8 1299

AD4         " 10 7.5 7.8 1301

CD2network+free 1H
chains (first part)

8 2438 141 23396

CD2network+free 1H
chains (second part)

40 2.5 5.8 965

The experimental and fitting results of ),2( ττβ  are discussed in a way that to clarify

the latter mentioned ability of ),2( ττβ in recognising discrete dynamics, in the PB

networks and melts. To illustrate this point, firstly, the results obtained from CD2A

network were presented (see Figure 6.2). ),2( ττβ  was investigated at different

deformation ratios of the network, as shown in Figure 6.2 (a), (b) and (c). It is worth to

state here that the maximum amplitude of ),2( ττβ  is a property which is independent on

the interaction strength and which depend only on the functional form of time

dependence75,77. Hence the observed maximum amplitude of the experimental ),2( ττβ

data will give an idea about the nature of the dominant dynamics in the network. It is also

important to note that this height will be sensitive to all dynamical regimes, not just that

prevailing at the observational time scale τ .

Table 6.1  Results from the fitting of experimental data to the equation.(6.2).
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As one can clearly note in Figure 6.2, there exist an additional broadened maximum

at higher τ  values (see Figure 6.2(a)) in addition to the major maximum. This broadened

second maximum get slightly narrow and move to the left on τ  axis with increasing

deformation ratio, as show in Figure 6.2 (a), (b) and (c). We argue that if the polymer

network contains regions with different chain dynamics, ),2( ττβ  can detect them and

reflect as additional maxima to the major one. This additional maxima can be either side

of the major maximum, depending on their dynamics.

(a) (b)

(c)

Figure 6.2  Fits of the Beta function (equation 6.2) to the experimental data obtained from cis PB network

(CD2A) under different deformation ratios.
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Also it is important to note that in order to derive the expression (6.2) it was used the

exponential correlation function )/exp()( 2 stQtC τ−=  and this is related to the isotropic

slow chain motion, or in other words,  to the long-range center-of-mass motion.

However, the hierarchy of motions and their correlation functions are well described by

Callaghan et al.77.

From the other NMR methods which were used in this study (deuterium NMR and

usual transverse relaxation), one could probably get the information about the dominant

dynamics in the network. Therefore, for the comparison, the major maximum of the

),2( ττβ experiments were considered for the discussion.

However, before starting of the discussion of the latter subject the attention was paid

to Figures 6.3 and 6.4 in order to strengthen the idea about the possible sub-dynamics

which can be detected by ),2( ττβ  experiments. Figure 6.3 shows the experimental and

fitted results of ),2( ττβ  for the network CD2B (refer to Table 2.1 to learn the details of

the network samples).

Figure 6.3  Fits of the Beta function (equation 6.2) to the experimental data obtained from cis PB

network (CD2B). The two peaks (I and II) reveal two distinguishable dynamics in the polymer network.
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Obviously, there are two maxima named as I and II. Experimental data were fitted by

using an addition of two ),2( ττβ , each contained different 2Q  and sτ  parameters.

According to the fitting results, peak I corresponds to a region of polymer which is much

more solid like (obtained 0ν ~17 kHz).

(a)

(b)

Figure 6.4  (a) Fit of the Beta function (equation 6.3) to the experimental data obtained from CD2

network which is incorporated with high amount of free protonated PB chains (b) The fit for the peak at

very small time scale shown in (a).
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In Figure 6.4(a), one can see the results of ),2( ττβ  obtained from a polymer network

which was swollen to a higher degree by incorporating protonated free chains(Mn=1800

g/mol) (refer to Table 6.1 and to the section Chapter 4). Much narrow maximum was

observed in the short time scales (short τ  values). This region was expanded and fitted to

the ),2( ττβ  as shown in Figure 6.4(b). As expected the fitting resulted in a high value of

residual quadrupolar interaction (0ν ~23 kHz) indicating a highly solid like behaviour.

Indeed, the polymer sample was more solid like by the appearance one could break it

simply by bending. The discussion on the sub-dynamics which can be detected by

),2( ττβ  will be stopped here.

Hereafter, the discussion is mainly on the major maxima which were observed in

),2( ττβ  experiments. Once again the attention would be paid to the Figure 6.2 which

represents the results obtained at different deformation ratios. The macroscopic

deformation applied to the network increases the degree of orientation of the polymer

chains resulting more solid like behaviour. The ),2( ττβ  maximum moves slightly to the

left, that is to the region of low τ  values, when the deformation was increased. This

confirms the major idea which was discussed in last two paragraphs, and similar results

from deformed polymer networks were reported by Callaghan et al73.

Fittings of ),2( ττβ  to the experimental data in Figure 6.2(a), (b) and (c) resulted in

giving an increasing value of 0ν  when the deformation was increased, as was expected

(see Table 6.1). In other words, this analysis shows a monotonous increase in the value of

__

2Q  and hence in the values of 0ν  with the increasing deformation. The reliability of

sτ values derived from fittings appears to be robust. For example, the sτ  values were

independent on the magnitude of 
__

2Q . However, it is not obvious what kinds of

deformation dependent dynamical processes are responsible for the behaviour of the

correlation73. The 2nd maximum of Figure 6.3 and Figure 6.4(a) gave the values of the

0ν  which are comparable with the similar property investigated from CD2A network,
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indicating that it was the responsible maximum which gives the dynamics and orientation

that are comparable with other networks.
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Figure 6.5  Fits of the Beta function (equation 6.3) to the experimental data obtained from anionic PB
networks. (a): AD1 (b): AD2 (c): AD3 (d): AD4.

(a) (b)

(c) (d)
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A series of anionic PB networks were subjected to investigate ),2( ττβ  and are

shown in Figure 6.5. The length of the precursor chain was varied in this prepared

anionic PB networks as AD1 has the longest and AD4 has the shortest deuterated

precursor chains (see Table 2.1). Mean molecular mass between two crosslinks Mc is

above the entanglement length (~1900 g/mol) for all the four networks as shown in Table

6.1, and hence the effect of Mc must be less dominant. Accordingly, the observed 0ν

values were ranging from 5200 Hz to 7900 Hz. 0ν  was decreasing slightly with

increasing precursor chain length. This changes would be due to the different Mc values.

However, the 0ν  values obtained from relaxation were by a factor of 2 to 4 less than that

observed from ),2( ττβ . In the relaxation experiment the most important information is

concentrated at the beginning of the relaxation curve. Therefore, in case, if one or few

first data points were missed (due to the receiver dead time), most of the information

would be probably lost (especially the information about highly oriented or solid like

features) and hence gives rise to a low 0ν  values.

Also this networks were used to observe deuterium line splitting and then to

determine the 0ν  (see Chapter 4). The results obtained from the latter method were in

good agreement with the results obtained from ),2( ττβ  and hence give strong evidence

for the correctness of the theoretical framework presented in Chapter 3 to explain the

deuterium NMR line splitting.
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CHAPTER 7

7.1  Orientation and Dynamics of Polymers Measured by Employing

Relaxation from Hahn-Echo

7.1.1  Introduction

In this chapter it will be discussed an another method presented by Simon et al.20 for

investigating the local order and dynamics of polymers well above glass transition

temperature. Also the results from this method will be compared with results discussed in

Chapter 3 and Chapter 6.

Firstly, it will be recapitulate the basic ideas for the interpretation of the relaxation of

the transversal proton magnetisation in polymer networks well above Tg in terms of a

modified single-chain approximation78. The second step will be a comparison with the

deuteron relaxation.

7.1.2  The Transverse NMR Relaxation Function

Since transversal 1H-NMR relaxation is determined by the dipolar magnetic

interaction of protons, a motional averaging of this interaction and, consequently, the

nuclear motions itself are detectable in this way. Therefore, at T>Tg a contrast in such a

relaxation picture of a polymer network can be formed by different mobile molecular

parts which produce separate relaxation signals of different form and/or length. In Figure

7.1 a rough sketch illustrates the principal different mobile parts.

Most of the chains are inter cross-linked chains. As a first step they could be thought

of as fixed at both ends. In this case the motional statistics provides a mean, small

anisotropy of the fast local motion78  (correlation time ≈fτ 10-8s) of the chain segments.
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Consequently, a small, mean residual part q́ ( ≈q́ 10-4) of the second moment 2M  of

the dipolar interaction in the rigid lattice1 (T<T2) remains. The residue can only be

destroyed by an overall isotropic motion of the whole inter cross link chain. This motion

is much slower ( ≈sτ 10-3s) as a result of the larger size of the moving object.

For dangling chain ends a reason for an anisotropy of the local motion (also fτ ) does

not exist ( ´q =0), and so sτ cannot be detected. Connecting this dynamical model with the

NMR theory of the transversal magnetic relaxation, a sum of two relaxation components

follows according to the two dynamical types of chains of a network.

7.1.2.1  Dangling Chain Ends

Since  1)2( 2
0

2 ≤= ffx τπ (liquid like, 0f - resonance frequency) and q=0 is valid

for chain ends, this component of the decay can be described by BPP (Bloembergan,

(b)

(a)

(c)

Figure 7.1  A schematic representation of the different mobile molecular parts in  a polymer network  (a)
inter-crosslink chains (b) dangling chain ends (c) sol molecules.
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Purcell, and Pound)79,80 theory. Consequently, this component is purely exponential

function of the type )/exp( 2Tt−  with the transversal relaxation rate 2/1 T  (BPP) formula:

[ ])41/()3/2()1/()3/5(1/1 22
22 xxMT f ++++= τ  . (7.1)

It must be emphasised that this formula was established by assuming an

intramolecular interaction of single spin pairs and an isotropic rotary motion of these

pairs. The real case of more than two interacting nuclei is taken into consideration by

assuming that spins are fixed at the Kuhn statistical segments78. Under these

circumstances the resulting decay should remain exponentially79.

Therefore, the fτ values, which are derived according to equation (7.1), are effective

values and represent an average over several closely attached interacting spin pairs

mainly along the monomeric unit.

7.1.2.2  Inter-Crosslink Chains

The inter-crosslink component is influenced by the fast anisotropic motion as well as

by the slow isotropic motion. Since 1)2( 2
0

2 ≤= ffx τπ  (liquid like) and

1)2( 2
0

2 >>= ffx τπ  (solid like) is valid, the relaxation function has to be described by a

combination of the BPP theory1,79 and the Anderson-Weiss formula1. The latter takes into

consideration the residual solid like behaviour (0´≠q ) and leads to a shortening of the

decay and to an observable deviation from a simple exponential decay form (Gaussian-

like). According to Anderson-Weiss the magnetisation decay is given by

))()(exp(~)(
0

τττ dtGtM −−∫
∞

. (7.2)
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The correlation function )(τG should reflect the fact that the fast local motion is

anisotropic and cannot eliminate the dipolar interaction (2M ) totally:

[ ] )/exp(´)/exp(´)1()( 2 sf qqMG τττττ −+−−=

        )/exp(´)/exp( 22 sf MqM ττττ +−≈   . (7.3)

The latter expression is valid since sf ττ <<  and 1´<<q .

7.1.2.3  Total Relaxation Function

Including equation (7.2) and (7.3) and all the above dynamical and structural

assumptions, it follows for the total transversal magnetisation decay that

[ ] [ ]2
2

22 /exp)1/)/(exp(´/exp)( TtBttMqTtAtM ssss −+−+−−−= τττ (7.4)

with fMT τ22/1 = . The latter expression is identical with the more general formula of

equation (7.1) if 1)2( 2
0 >>ff τπ  (slow motion). That is the point of the formal

combination of BPP and Anderson-Weiss: 2/1 T  will always be identified with equation

(7.1). A  and B are the portions of proton magnetisation (equivalent to mass portions) of

the inter cross link chains and dangling chain ends, respectively.

For the transversal 2H-NMR quadrupolar relaxation the principal formalism1 is the

same. However, from the theoretical point of view the advantage of this relaxation is the

fact that most of the formulas, equations (7.1-4) (with changes indicated below) are valid

more strictly since the quadrupolar interaction is restricted to the C-2H bond and

corresponds to a “single proton pair” interaction. The second moment of dipolar

interaction 2M  must be replaced by the second moment of the quadrupolar interaction

sQ2 . The resonance frequency 0f  is 61.3 MHz for deuterons.
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An order parameter S  can be defined as

2/1

2

2'






=

s

s

Q

Qq
S .

The transversal magnetisation decay of deuteron was measured by the common Hahn

spin-echo technique which eliminates inhomogeneities of the magnetic field and of the

chemical shift.

7.1.3  Results and Discussion

Figure 7.2  Fits of the equation (7.4) to the experimental data. Top right of the figure shows the
fitting curves in short time region. Å - AD1, Õ - AD2, Ì- AD3
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Figure 7.2 shows relaxation data after Hahn echo experiment and the fits to the

equation (7.4). At the top right of the latter figure it is shown fit curves in the short time

region. If one looks at the table 2.1 it can be found that AD2 has the highest Mc value

among these three samples while AD1 has the intermediate and AD3 has the lowest Mc

Relaxation (Hahn-Echo)Sample

sτ  (ms) q´Q2.
.10-6(s-2) S .103

0ν  (Hz)

CD2B 100 4.1 6.0 970

AD1 100 26 15.0 2438

AD2 100 31 16.0 2663

AD3 100 19 13.1 2085

AD4 100 18 12.1 2029

values. Accordingly, in Figure 7.2, it can be noticed that the magnetisation from AD2

relaxes faster than that of the others. Due to the high crosslink density of AD2, polymer

chains experience more constraints and therefore shows the solid like behaviour. On the

other hand the polymer sample AD3 relax slowly showing experiencing less constraints.

Results from the fitting are shown in Table 7.1. The behaviour of the fast decay at the

very short time scales (Figure 7.2) influence strongly to the parameters determined by

fitting the relaxation function (7.4) to the data.

Table 7.1 The parameters obtained by fitting equation (7.4) to the data obtained from relaxation.
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7.2  A Brief Comparison of Results

7.2.1  Introduction

In this chapter the results obtained from the three different methods, which were

already explained in Chapter 3, 6 and 7, are discussed. The main focus is to the residual

quadrupolar interaction 0ν  observed from these methods. Approaches of the different

methods is briefly analysed in order to understand the final results.

7.2.2 Background of the Methods, and Comparison of the Results

In Chapter 3, an analytic result (3.10) was derived that takes into account two

contributions to the total orientation of the constituent polymer chains.  It was found that

the free induction decay readily separates the effect of chain interactions with their

environment from that of the network constraint, i.e. the presence of crosslinks within the

rubber matrix, on the polymer segmental anisotropy. The residual quadrupolar interaction

0ν  is extracted from the fitting of the analytical expression to experimental data as a ratio

of N/0ν . Here N  is the number of statistical segments between two effective crosslinks.

Hence, the result is giving the residual quadrupolar interaction which is rescaled to the

N . In this chapter, 0ν  itself is an averaged quadrupolar interaction which is rescaled to

number of monomers per statistical segment aN . This primary averaging has done in an

earlier study39 by employing computer simulations. In that study 0ν  is expressed as

a

q

N

νκν
42

3
0 = , (8.1)

κ  is the constant to be found by employing the simulations using the expression:

( ) ( )θκυ coscos 22 P
N

P
a

=  , (8.2)
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where υ  and θ  are the angles that C-D bond and a segment make with the applied

magnetic field (Figure 1.5). In fact (8.2) compares averaging of two fast dynamics of the

C-D bond and the statistical segment.

For methylene deuterated poly(butadiene), it was found39 the value of κ  as 0.55 and

aN  as 4.4  and hence giving the value of 7730 Hz to 0ν .

However, in the derivation of the beta function73,75,77 (Chapter 6) there exist no such

primary rescaling. It takes into account the slow re-orientation of a chain in which the

both ends are crosslinks. This chain is divided into small sub-units in order to rescale the

residual interaction of a bond. Latter sub-units seem to be approximately the number of

monomers between two crosslinks. In this manner the residual interaction of the bond is

directly rescaled to a chain which consists of a certain number of sub-units. It is the

similar scaling procedure used in the model explained in Chapter 7,  which is based on

relaxation20. Therefore, it is difficult to compare straightforward the results from above

three models. However, one can discuss qualitatively the trend of the results.

Line Splitting β - Function Relaxation

N/0ν  (Hz) 0ν  (Hz) sτ  (ms) 0ν  (Hz) sτ  (ms)

AD1 5200 1225 58 2438 100

AD2 5100 1210 15 2663 100

AD3 3800 1299 18 2085 100

AD4 3700 1301 10 2029 100

Table 8.1 compares some of the results from the three models. Residual quadrupolar

interaction determined by usual relaxation and β  function seem agree qualitatively each

Table 8.1  The residual quadrupolar interaction determined by employing three different methods for
anionic polymer samples. All the residual interactions stated here are rescaled values although only in
the first case (line splitting) it is indicated up to which stage it is rescaled.
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other. These values remain more or less constant although the network structure of the

anionic poly(butadiene) samples slightly differs.

In contrast, the result obtained from NMR line splitting seems sensitive to this

difference of the network structure. Polymer sample AD1 is prepared with the longest

precursor chains, the length of it is reduced consecutively for AD2, AD3 and AD4.

Therefore, one can expect a heavier entangled situation for AD1 and reducing the effect

for others. Effect of the different entangled situation is to give different values for the N

through the effective molecular mass xM , the lowest value for AD1 while the highest

value for AD4. This difference of the values of N  gives feasibility to understand the

reducing values of N/0ν  from AD1 to AD4. In any case the residual interaction

observed from this method is almost two times higher than the results from the other

methods.

sτ  represents an apparent correlation time of slow motion of the entire chain.  Both

β  function and relaxation models constructed without taking into account a correlation

time distribution. However, in networks there exists a distribution of chain lengths

between crosslinks. The results observed for sτ  do not show any systematic trend.
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CONCLUSIONS

NMR has been used to measure the orientation of chain segments within deformed

poly(butadiene) networks.  An analytic result was derived that takes into account two

contributions to the total orientation of the constituent polymer chains.  It was found that

the free induction decay readily separates the effect of chain interactions with their

environment from that of the network constraint, i.e. the presence of crosslinks within the

rubber matrix, on the polymer segmental anisotropy.  This makes NMR a useful

complementary tool to techniques such a birefringence that measure the total average

orientation.

The theoretical NMR relaxation function from a strained network was found to

consist of an oscillation within a decay envelope.  The oscillation is related to the

anisotropy stemming from the interactions of the chains with their environment.  This

interaction of a monomer with its many surrounding segments can be described by an

effective mean field34. Under deformation this mean field becomes anisotropic in

nature31. The frequency of the oscillations in the signal is directly related to the

magnitude of the induced orientation from this mean field through equation (3.10a).

Therefore the splitting in frequency space is indicative of chain interactions.  In contrast

the decay envelope is specified by the distribution of network vectors in the rubber.

The analytic result for the NMR response of a strained network was compared to

experimental data from a range of deformed poly(butadiene) rubbers.  It was found that

the theoretical decay modelled the data well, until the deformation became too large

λ ~ 2.  Here assumptions such as the affine deformation of effective crosslink points are

expected to break down63.

The theoretical decay envelope is fully specified by the crosslink density through

(3.10).  A value of ~1000g/mol was required to fit the experimental signals, with this

comparing well with the mechanical tests on the same sample19. This analytic result

therefore allows NMR to monitor crosslink density.
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It was found that the contribution to the orientation from the mean field corresponded

to a ~30% perturbation from the non-interacting case.  Brereton and Ries31 have

attributed this anisotropic mean field to the excluded volume interactions between chain

segments.  The contribution from this mean field was expressed in terms of an Edwards’

screening length via equation (3.15).  By comparing the λ  dependence of this

contribution with their theoretical predictions, Figure 3.3, it was possible to determine an

Edward's screening length of 25. A
o

.  This indicates that at distances greater than that of

one or two bond lengths the excluded volume interactions are screened.

The ability of the theoretical NMR result to measure a crosslink density that

compares well with mechanical tests and a screening length of a reasonable size, strongly

supports the use of this framework to interpret the NMR response from strained

elastomers.

The NMR line splitting is found to be depend on the network concentration and also

on the Flory interaction parameter χ . It is shown that one should take into account not

only the χ parameter arising from different chemical structures but also that arising from

the crosslinks of the network, in order to explain the experimental NMR line splitting.

The latter is found to be proportional to T/1 . The Edward's screening length is found to

be independent of precursor chain length and crosslink density.

It is shown that the asymmetric NMR spectra observed from strained filled networks

could be explained by considering the susceptibility of the carbon black particles.

Polymer segments closely associated with the filler particles experience a different local

field and contribute an off-resonance term to the free induction decay.  In the NMR

spectrum this appears as a frequency shifted component relative to the non closely

attached chain signal.  The resultant spectrum is then asymmetric.
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We applied the theoretical work (equation 3.10) to model the NMR lineshapes

quantitatively.  A very simple approach was adopted in that the signal was considered to

comprise of only two components; polymer segments closely attached to the carbon black

particles and those that are not.  It was found that the signal from the attached chains

needed to be off resonance by -50Hz, with this comparing extremely well with

susceptibility measurements on carbon black64. The crosslink density determined from

this analysis was in close agreement with the stress-strain measurements on this sample19.

The fraction of signal attached to the carbon black was found to be 28% with this being

in reasonable agreement with other NMR work on similar filled networks70. An

interesting point is that the chains attached to the carbon black experience a different

local deformation to that from the bulk sample, with these segments remaining isotropic.

As a test of this two component model we used the parameters determined from the

analysis of the λ = 18.  data to predict the undeformed network result.  It was found that

for a no free parameter fit that the theory and data were in good agreement.  It is

interesting to note that the undeformed sample shows little asymmetry and that this off-

resonance component also theoretically remains somewhat hidden at low deformations.

From our model a prediction was made that at high deformations the isotropic off-

resonance component will become visible as a third peak in the NMR spectrum.  This

was illustrated qualitatively by the theoretical function (eq 5.2) in Figure 5.6a.  In Figure

5.6b data from a highly deformed filled network ( )0.3=λ  is shown for comparison,

where this predicted third peak can clearly be seen.

The sine correlation function (introduced by Callaghan et al.)73,75,77 and the NMR

relaxation function (introduced by Simon et al.)20  were also employed to study the NMR

response of the poly(butadiene) networks and linear chains. The residual quadrupolar

interaction determined by all the above mentioned procedures was compared. It is shown

that the results from sine correlation function and conventional NMR relaxation show the

same tendency though they differ in the numbers.
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Appendix:  Spectrum from a Strained Network with an added

Orientation due to a Mean Field

The aim of this section is to calculate the NMR spectrum, ( )G ν λ, , from a strained

polymer network.  From equations (3.4) and (3.6) we have

( ) ( )G G Gν λ, = ++ −
1

2
(A.1)

with

( ) ( ) ( )( )G P P P do
V± = ± +











∫ R R
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δ ν ν
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θ θ2 2cos cos (A.2)
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where { }X Y Zo o o, ,  are the undeformed Cartesian coordinates of an end-to-end network

vector.

The average orientation due only to the network constraint on a statistical segment in

a chain comprising N  units is given by

( )P
N

Z X Y

Nb
o o o

2

2 2 2 2

2
1

2
2

cosθ λ λ λ
R

= − −










    . (A.4)

For compactness we define a term ∆ν  such that

( )∆ν ν
π

θ= 2 2
o

V
P cos   . (A.5)
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The NMR spectrum (A.1) combined with (A.2) - (A.5) can be expressed in terms of

scaled cylindrical co-ordinates

r
X Y

Nb
z

Z

Nb
o o o2
2 2

2
2

2 2

2
= + =

λ
λ

,  (A.6)

as

( ) ( ) ( )[ ]G I Iν λ ν λ ν λ, , ,= ++ −
1
2

  , (A.7)

where
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(A.8)

The two integrals ( )I+ ν λ,  and ( )I− ν λ,  must be evaluated separately.  The following

analysis will only consider ν νo ≥ 0, as the signal must be symmetric.  It will also be

assumed that ∆ν ≥ 0, which implies that the induced orientation due to the mean field is

in the same direction as the strain.

For ( )I+ ν λ,  the integrand is zero unless r
N

z
o

2 22
2

= +



 +











π
ν

ν ν∆
.  Since r 2 will

remain positive for all z, ν νo ≥ 0  and ∆ν ≥ 0, the remaining integral over z is

unrestricted.  From the property of a δ  function we have
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This is now in the form of a standard Gaussian integral, so
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For the ( )I− ν λ,  the integrand is zero unless r
N

z
o

2 22
2

= − −





+










π
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ν ν∆
.  The

integration over the variable z must be constrained so as to keep r 2 0≥ .  This then

defines two intervals over which ( )I− ν λ,  should be considered.

In the range ν ν≤ ∆
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 the variable z is unrestricted as r 2 0≥ .  In this region we have

( )I
N N

dz z
o o

−
−∞

+∞
=













−













 − +













∫ν λ π

ν π
πλ

ν
υ ν λ

λ
, exp exp

/2 3
2

1 3
2

3
2

2
13 2

2
2∆

 . (A.11)

The integral is again in a standard Gaussian form, giving
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In the second region ν ν> ∆
2

 the variable z must be constrained so as to keep r 2 0≥ .

Thus for a non zero integrand 
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The integral can then be written in terms of the error function ( )erf �  as
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The resultant spectrum must be symmetric about ν = 0, so it can be written from the

above analysis as
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