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a b s t r a c t 

We develop a general approach for stress testing correlations of financial asset portfolios. 

The correlation matrix of asset returns is specified in a parametric form, where correlations 

are represented as a function of risk factors, such as country and industry factors. A sparse 

factor structure linking assets and risk factors is built using Bayesian variable selection 

methods. Regular calibration yields a joint distribution of economically meaningful stress 

scenarios of the factors. As such, the method also lends itself as a reverse stress testing 

framework: using the Mahalanobis distance or Highest Density Regions (HDR) on the joint 

risk factor distribution allows to infer worst-case correlation scenarios. We give examples 

of stress tests on a large portfolio of European and North American stocks. 
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1. Introduction 

Correlation is one of the most important, if not the most important risk factor in finance, driving everything from naïve

diversification to the effectiveness of hedges. It is well-established that correlations fluctuate over time and may be strongly 

affected by specific events ( Karolyi and Stulz, 1996; Longin and Solnik, 2001; Ang and Bekaert, 2002; Wied et al., 2012;

Pu and Zhao, 2012; Adams et al., 2017 ). Changes in correlation may lead to potentially unexpected or unquantified losses,

see e.g. LTCM ( Jorion, 20 0 0 ), Amaranth Advisors ( Chincarini, 2007 ), JPMorgan’s “London Whale” ( Packham and Woebbek-

ing, 2019 ). Regulators have since called for a better correlation risk management. 1 However, a unified and generally accepted

correlation risk management framework does not yet exist. 
� We acknowledge helpful comments from Martin Aichele, Carol Alexander, Michael Eichhorn, Bertrand Maillet, Radu Tunaru, two anonymous referees as 
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�� This research was supported by the Deutsche Forschungsgemeinschaft (DFG) through the International Research Training Group 1792 “High Dimensional 
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Building on the work of Packham and Woebbeking (2019) , this article develops a universal framework for building re-

alistic correlation scenarios, correlation stress testing and reverse stress testing. The novelty of this approach is the link 

between correlations and observable risk factors. “Classical” stress testing determines the impact on a financial position as 

a consequence of changes in risk factors, see e.g. ( EBA, 2021 ). Here, we consider the impact on asset correlations of a risk

factor scenario. With this framework, one can challenge diversification benefits based on economic scenarios. Likewise, one 

can assess the effectiveness and risks of hedges based on economic scenarios. In particular, correlation stress tests produce 

extreme, yet plausible correlation scenarios from economically relevant risk factors. Our method therefore addresses: first, 

the selection of appropriate correlation risk factors for a given portfolio; second, the parameterization of large correlation 

matrices and their mapping into risk measures; third, the identification of critical scenarios through reverse stress test- 

ing. The method is particularly relevant for supervisors who “are considering the ways in which stress tests can be integrated 

best into the regulatory framework ” ( Pliszka, 2021 ). Reverse stress testing complements other stress testing methods, such as 

stressed value-at-risk, introduced in the Basel 2.5 framework ( BIS, 2011 ). Stressed VaR determines portfolio risk using the 

parameters of a time period considered as stressful. Reverse stress testing, on the other hand, determines the risk factor 

configuration that is both stressful and plausible for a given portfolio. 

Contrary to extremely prudent scenarios where diversification effects are ignored, we are particularly interested in es- 

tablishing a link between risk factors and assessing the plausibility of scenarios. It is this link that enables reverse stress

testing, i.e., the identification of critical risk factor scenarios, which, from the point of view of a practitioner, may see as the

most valuable aspect of stress testing. 

A widespread method in financial risk management and in asset management is to capture correlations through factor 

models, see e.g. ( McNeil et al., 2005 , Section 3.4). A common choice for the factors are industries and geographic regions.

In this article, correlations are modelled by linking each asset to a subset out of the set of factors. Asset correlations are

specified in a functional form, where the correlation between any two assets is determined by the shared, resp. unshared 

links. The degree by which shared or unshared links affect correlations is obtained by calibrating “weight” parameters to 

empirical correlations. Scenarios are generated by varying these parameters. 

Given the history of calibrated parameters, the method lends itself to reverse stress testing as it is capable of identifying

the factor structure of worst case scenarios. More specifically, given the mapping of correlation risk factors to a risk measure,

one can find the global maximum of the risk measure and infer the corresponding risk factor scenario. As each parameter

represents an economically relevant correlation risk factor, it is therefore possible to identify critical portfolio structures 

(“smoking guns”) that might require particular attention from a risk management perspective. 

Plausibility, or lag thereof, is a common problem for scenarios that are generated through reverse stress testing. This 

article addresses plausibility by assigning a joint probability distribution to the correlation parameters, which in turn allows 

us to assess the plausibility of correlation scenarios. In this article, the constraint is specified via the Mahalanobis distance 

and Highest Density Regions (HDR), both of which can be thought of generalising the concept of a quantile to a multivariate

setting, as will be explained below. 

Assigning the appropriate correlation risk factors to an asset is a delicate exercise: ignoring relevant risk factors might 

lead to undetected correlation risk, while selecting an excessive amount of risk factors potentially renders the economic 

interpretation meaningless, as the impact of specific risk drivers becomes indistinguishable across assets. A good factor se- 

lection mechanism should therefore focus on a sparse selection of relevant factors for each asset. In addition, since typically 

some persistent information about the relationships between assets and factors is available (such as the country of the 

headquarter and the main industry), the factor selection method should offer the ability to incorporate prior knowledge. 

Bayesian variable selection methods support both of these requirements by allowing to specify prior information as well a 

giving control over the number of factors selected. 

The framework developed here can be implemented for any financial application that bears correlation risk, such as asset 

allocation or hedging. As an example, we apply the factor-model approach to a large and well-diversified equity portfolio. 

For this particular portfolio, geographic regions and industries serve as correlation risk factors. 

A further application where correlation scenario and stress testing can reveal inherent risks is the practice of so-called 

“portfolio margining” in initial margin calculations of clearing houses. Here, netting of offsetting positions reduces the mar- 

gin requirement. However, if positions hedging each other are not perfect substitutes, but only highly correlated, then sig- 

nificant de-correlation could lead to substantial margin calls, thereby increasing counterparty risk at a systematic level. 

The literature on the role of correlation and dependence in finance is vast, but interestingly the literature on es- 

tablishing correlation stress tests is comparably scarce. It is well established that correlations are not constant over 

time and may be strongly affected by specific events ( Longin and Solnik, 2001; Wied et al., 2012; Pu and Zhao, 2012 ).

Adams et al. (2017) observe that correlations vary over time and, in addition, experience level shifts and structural breaks 

that occur in response to economic or financial shocks. The regime switching behaviour of financial asset correlations, 

especially in times of crisis, is confirmed and at the heart of several studies, including Sandoval Jr and Franca (2012) ,

Buccheri et al. (2013) , Papenbrock and Schwendner (2015) . Krishnan et al. (2009) and Mueller et al. (2017) provide empiri-

cal evidence that investors demand a correlation risk premium, which is related to the uncertainty about future correlation 

changes. Buraschi et al. (2010) develop a framework for inter-temporal portfolio choice that includes hedging components 

against correlation risk. Tumminello et al. (2010) , Keskin et al. (2011) analyse the topology of correlation matrices as net-

works or hierarchical trees, providing insights on the structure, taxonomy and hierarchy of financial asset correlations. This 
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last strand of the literature is probably closest to our framework in the sense that it provides an interpretation of the factors

driving correlation changes. 

Packham and Woebbeking (2019) introduce a correlation stress testing methodology tailored to the case of the so-called 

“London Whale”, a USD 6.2 billion loss on a credit derivatives portfolio at JPMorgan. The loss was partly due to the de-

correlation of positions that were supposed to act as hedges for each other. Correlation stress testing would have revealed 

this risk early on and might therefore have led to a more prudent assessment and de-leveraging of the position. The factors

in the “London Whale” case were tailored to match characteristics of the credit derivatives, such as their maturity, credit 

quality (investment grade versus high yield) and geographic origin (CDX in the US, iTraxx in Europe). 

The prominent role of correlation in financial portfolios has led regulatory agencies to call for risk model stress tests 

that account for “significant shifts in correlations” ( BCBS, 2006 , p. 207 ff.). However, there is little literature on parametric

correlation modelling, an exception being parametric functions for correlation and volatility in interest rate modelling (e.g. 

LIBOR market model), see Rebonato (2002) , Brigo (2002) , Schoenmakers and Coffey (2003) . Another strand of the literature

on correlation stress testing deals with the question of ensuring positive semi-definiteness of the matrix, see Higham (2002) ,

Qi and Sun (2010) , Ng et al. (2014) . 

The selection of plausible scenarios poses a challenge in the development of stress testing methods in general. The use of

historical or hypothetical scenarios is problematic, as the probability and thus the plausibility of a scenario is unknown and 

relevant scenarios might be neglected. In an extensive study, Alexander and Sheedy (2008) compare various well-known 

models in their ability to conduct meaningful stress tests. Glasserman et al. (2015) develop an empirical likelihood ap- 

proach for the selection of stress scenarios, with a focus on reverse stress testing. Kopeliovich et al. (2015) present a reverse

stress testing method to determine scenarios that lead to a specified loss level. Breuer et al. (2009) and Flood and Ko-

renko (2015) use the Mahalanobis distances to select scenarios from a multivariate distribution of risk factors. 

Breuer and Csiszár (2013) extend these approaches and consider various application scenarios, amongst them stressed 

default correlations, which refer to the correlations of Bernoulli variables denoting the default or survival of loans or obligors. 

Studer (1999) considers correlation breakdowns by identifying the worst-case correlation scenario in a constrained region of 

P&L scenarios. However, solving the problem turns out to be computationally intractable. 2 Also, the likelihood or plausibility 

of such a correlation scenario is not known. The difference in our setting is that we model correlation itself in a parametric

way and – imposing a risk factor distribution calibrated from historical data – find the risk-factor scenario that produces 

the worst loss within a given plausibility region. 

In summary, we contribute to the literature by proposing a flexible correlation stress testing framework that is capable of 

adapting to different requirements and settings. A central feature of our method is the Bayesian selection of correlation risk 

factors. Choosing the “right” factors is a timely and relevant exercise, especially from a regulatory perspective. 3 Furthermore, 

we explore how reverse stress testing can help to construct and understand extreme yet plausible risk factor scenarios. This 

article tests the method on a large equity portfolio; however, the method would easily adopt to any other financial portfolio.

The article is structured as follows: Section 2 lays out the factor model for correlation stress testing. Section 3 introduces

the Bayesian correlation factor selection mechanism. Section 4 applies the stress testing framework to a large stock portfolio; 

and Section 5 concludes. 

2. Correlation stress testing methodology 

This section presents the correlation stress testing framework. First, we define a factor model structure on correlations, 

which establishes a correlation matrix under stress. Second, we infer the impact of the stressed correlations by calculating 

value-at-risk with the modified correlation matrix. Finally, by imposing a probability distribution on the factors driving 

correlation, we determine plausible worst-case correlation stress scenarios. The last step is commonly known as reverse 

stress testing. 

2.1. Factor model 

An economically meaningful correlation stress testing framework requires linking correlations with risk factors, such as 

economic variables or financial market indicators. In the context of portfolio allocation or risk management, the factors 

could represent industries and countries. While Packham and Woebbeking (2019) applied correlation stress testing in a very 

specific context, this article aims to develop a generic and flexible correlation stress testing framework, intended to work in 

different contexts and for different applications. 

Consider a portfolio of p assets and assume that there are d risk factors. Each asset is associated with a number of these

risk factors. We will introduce details on how factors are assigned in Section 3 ; it should be noted, however, that for a stress

test to be meaningful, the number of factors associated with an asset needs to be sufficiently small. 
2 More precisely, the optimisation problem is NP-hard, i.e., requires a non-deterministic polynomial computation time. 
3 Banks, for example, present capital models that contain factor models to regulators. Approving these factor models is challenging as the literature 

provides little guidance on how to check if the factors in the model are well chosen. 
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The association of asset i ∈ { 1 , . . . , N} with factor k ∈ { 1 , . . . , K} is denoted by the indicator variable 1 { k,i } . The correlation

of asset returns i and j is modelled as 

c i j = tanh 

(
η + 

K ∑ 

k =1 

λk | 1 { k,i } − 1 { k, j} | 
︸ ︷︷ ︸ 

“inter”-correlations 

+ 

K ∑ 

k =1 

νk 1 { k,i } 1 { k, j} 
︸ ︷︷ ︸ 
“intra”-correlations 

)
, (1) 

with coefficients η, λ1 , . . . , λK , ν1 , . . . , νK ∈ R and tanh : R �→ [ −1 , 1] the tangens hyperbolicus. Aside from conveniently map-

ping to [ −1 , 1] and being monotone increasing, the main motivation for choosing the function tanh is its use in inferential

statistics on sample correlation coefficients. 4 The following summation formula serves as useful a approximation for the 

interpretation of individual coefficients, especially if the coefficients are close to zero: 

tanh (x + y ) = 

tanh x + tanh y 

1 + tanh x tanh y 
≈ tanh x + tanh y. (2) 

The constant η can be thought of as a “base” correlation. 5 The coefficients λ1 , . . . , λK model “inter-factor” correlations: 

the higher λk , the higher the correlation impact if exactly one of the two assets is associated with the k th factor (in which

case | 1 { k,i } − 1 { k, j} | = 1 ). Similarly, ν1 , . . . , νK express “intra-factor” correlation: the higher νk , the higher the correlation be-

tween assets jointly exposed to factor k (since in this case 1 { k,i } 1 { k, j} = 1 ). The concept of “inter”- and “intra”-correlations is

found in the context of credit risk in e.g. ( Düllmann et al., 2008 ). 

Given a sample correlation matrix at one point in time, the coefficients η, λ1 , . . . , λK , ν1 , . . . , νK can be determined e.g.

by ordinary least squares on arctanh (c i j ) , the inverse of tanh. Simple correlation scenarios such as “the correlation between

assets exposed to factor k and assets not exposed to factor k increases” is then implemented by increasing λk . Likewise, a

scenario such as “the correlation of firms exposed to factor k increases” is implemented by increasing νk . With time series

of historical data, the coefficients can be calibrated on a regular basis, from which reasonable scenarios can be determined. 

The matrix defined by Eq. (1) is not guaranteed to be positive semidefinite and thus may need to be further transformed

to yield a valid correlation matrix. Converting a non-positive-semidefinite matrix ˜ C ∈ R 

n ×n into a positive-semidefinite ma- 

trix can be approached as a matrix nearness problem, with nearness expressed by a suitable norm, such as the Frobenius

norm (sum of absolute difference of all matrix entries). Higham (2002) provides an algorithm that finds the correlation 

matrix satisfying min {|| ̃  C − C|| : C is a correlation matrix } by exploiting the spectral properties of ˜ C . It may also be possible

that a correlation matrix fails to be positive semidefinite due to computational precision, in which case the eigenvalues of 

the matrix are just slightly below zero. In this case it can be sufficient to transform the matrix as C = (1 − ε) ̃  C + εI, where

I is the identity matrix and ε is a small constant. 

2.2. Stress testing 

With a portfolio’s value being just the sum the constituents’ values, a ceteris paribus shift in correlation has no instan-

taneous effect on the value. Therefore, to reveal the impact of a correlation stress test requires calculating portfolio risk 

measures. In the simplest setting, portfolio risk is measured by value-at-risk (VaR) in a variance-covariance approach , i.e., 

VaR α = −N 1 −α · V 0 · ( w T

 � w ) 
1 / 2 

, (3) 

where N 1 −α denotes the (1 − α) -quantile of the standard normal distribution, V 0 denotes the current position value, w is

the vector of portfolio weights and � denotes the covariance matrix of the portfolio returns. In this setting we assume that

the expected return is zero, which is a common and reasonable assumption for short time horizons. 

The normal distribution assumption can easily be generalised, e.g. to a Student t-distribution. The t-VaR is discussed in 

Packham and Woebbeking (2019) , together with the possibility to jointly apply correlation and volatility stress scenarios. In 

fact, any model or method that takes a correlation matrix as an input is suitable for the correlation stress testing approach.

2.3. Reverse stress testing 

When stress testing, aside from understanding the impact of given scenarios, one is also interested in the opposite ques- 

tion: What is the worst scenario amongst all scenarios that occur within some pre-given range? In a univariate setting, one

would select a quantile of the risk factor distribution – this is the principal idea underlying value-at-risk. Different exten- 

sions of quantiles to a multivariate setting exist, for example the Mahalanobis distance ( Mahalanobis, 1936 ), Highest Density 

Regions (HDR) ( Hyndman, 1996 ) or concepts based on norms, see e.g. ( Serfling, 2002 ). 

The Mahalanobis distance of a vector X ∈ R 

n with expectation μ ∈ R 

n and covariance � ∈ R 

n × R 

n n is defined as

D (x , μ, �) = (x − μ) T �−1 (x − μ) , see e.g. ( Mahalanobis, 1936; Kent et al., 1979; McNeil et al., 2005 ). The Mahalanobis dis-

tance is an appropriate measure for reverse stress testing if the underlying distribution is elliptic or at least symmetric. 
4 The argument of the tanh function, z := arctanh (c i j ) is the so-called Fisher z- transformation ( Fisher, 1915; 1921 ). See also e.g. Casella and 

Berger (2002) and Remillard (2016) . Fisher (1921) shows that if c n is the sample correlation determined from an n -sized sample of a bivariate normal 

distribution with correlation | ρ| < 1 , then 
√ 

n (z n − α) 
L −→ N(0 , 1) as n → ∞ . 

5 Due to multicollinearity issues, it may be necessary to omit the constant. 
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Moreover, if X is normally distributed, then D 

2 (X ) ∼ χ2 (n ) , where n is the length of X , which greatly simplifies identifying

if scenarios lie within a range specified by a probability. 

The highest-density region (HDR) ( Hyndman, 1996 ) generalises the idea of the Mahalanobis distance to arbitrary prob- 

ability distributions. It is defined as the region with probability 1 − α that has the smallest possible volume in the sample

space; equivalently, every point inside the region should have probability density at least as large as every point outside of

the region. Formally, if f (x ) is the density of X , then the (1 − q ) –HDR is the subset R ( f q ) of the sample space such that

R ( f q ) = { x : f (x ) ≥ f q } , where f q is the largest constant such that P (X ∈ R ( f q )) ≥ 1 − q . 

A straightforward way to calculate the HDR is via Monte Carlo simulation, see Hyndman (1996) . Note that P ( f (X ) ≥
f q ) = 1 − q ; in other words, f q is the q -quantile of f (X ) . Given an iid sample of observations, f q can be estimated from the

sample, and all samples in the HDR are easily identified by having a density value greater than f q . If the sample size is large

enough, then a reduction of the estimator’s variance is achieved by a variant of Latin Hypercube Sampling (LHS) targeted at

dependent random vectors ( Packham and Schmidt, 2010 ). 

In order to allow for skewness and more variation in tail heaviness than a normal distribution, we calibrate the 

time series of coefficients β = (η, λ1 , . . . , λK , η1 , . . . , ηK ) T
 to a multivariate normal inverse Gaussian (NIG) distribution (see

Appendix A ) 6 and infer reverse stress test scenarios as the worst scenarios within the HDR at a given level α, i.e., 

β
∗ = argmax 

{ β∈ R ( f q ) } 
VaR α( β) , (4) 

where VaR α is given by Eq. (3) with correlation matrix imposed by β. From Eq. (3) , it is obvious that maximising VaR α does

not depend on α and is equivalent to maximising the variance. A trivial consequence is that β
∗

also maximises expected 

shortfall ES α = 

1 

1 − α

∫ 1 

α
VaR u d u . 

3. Factor selection 

As mentioned in the introduction, Packham and Woebbeking (2019) demonstrate the correlation stress testing method- 

ology tailored to the case of the so-called “London Whale”, where the factors were manually chosen to match characteristics 

of the underlying credit derivatives portfolio, such as their maturity, credit quality (investment grade versus high yield) and 

geographic origin (CDX in the US, iTraxx in Europe). 

In general, the choice of factors will depend on the type of correlation stress test to be conducted, and the assignment

of relevant factors to assets may not be as straightforward as in the “London Whale” case. In a standard credit risk or asset

allocation setting, one could choose industries and geographic locations as factors. While it is straightforward to assign one 

industry and one geographic location to a company, this may fail to capture the dependence on further relevant industries 

and geographic locations of internationally operating firms. 

We employ Bayesian variable selection (BVS) methods using both the prior knowledge of the main industry and headquar- 

ter location of a firm and allowing to select further factors, while controlling the expected number of factors. This gives a

stable assignment of factors to assets to be used in (1) . 

To this end we impose a linear factor structure on asset returns. In a (linear) factor model (see e.g. Chapter 6 of

( McNeil et al., 2015 )), the return vector of N firms, r = (r 1 , . . . , r N ) 
T , is represented as 

r i = αi + βi 1 x 1 + βi 2 x 2 + · · · + βiK x K + ε i , i = 1 , . . . , N, 

where x 1 , . . . , x K are the common factors , βi 1 , βi 2 , . . . , βiK are the factor loadings and ε = (ε 1 , . . . , ε N ) 
T are the idiosyncratic

error terms , assumed to be uncorrelated and with mean 0. Contrary to an OLS estimator, which typically assigns non-zero

factor loadings to all factors, methods such as Lasso (e.g. Hastie et al. (2009) ) select a (small) subset of factors by assigning

both zero and non-zero factor loadings. If identical priors for all factors are used, then Lasso could be employed instead

of a BVS method (see ( Fahrmeir et al., 2013 , Section 4.4.2) for the connection of Lasso and BVS). However, given that prior

knowledge about some factors (e.g. the company VW is an automotive company headquartered in Germany) is available, a 

BVS method with non-identical priors is preferred. 

Below we outline Bayesian model selection, the method used in this article. A further popular BVS method, BVS with 

spike and slab priors, is developed in George and McCulloch (1997) . 

For every firm i , we estimate the posterior inclusion probability (PIP) of each factor k and set 1 k,i = 1 if the PIP is greater

than 1 / 2 . This is the so-called median probability model . Barbieri and Berger (2004) show that the median probability model

is often optimal in terms of prediction. In our example, prior is initially set to force inclusion of a firm’s headquarter’s

country and its primary industry, all other prior inclusion probabilities are set to include six factors on average. As the PIP’s

are recalibrated periodically, the current PIP’s are chosen as the new prior inclusion probabilities. This provides a greater 

stability of the parameters over time. 
6 The NIG distribution can be thought of a generalisation of the multivariate normal distribution, allowing for skewness and more variation in the tail 

while still being light-tailed, which appears appropriate for the parameters. 
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3.1. Bayesian linear model 

We consider the linear model 

y = X β + ε . 

In the Bayesian setting – see Section 3.5 ( Fahrmeir et al., 2013 ) – we assume that 

y | β, σ 2 ∼ N( X β, σ 2 I ) , 

with β and σ 2 stochastic. 

A conjugate prior, i.e., where the prior and the posterior distributions are from the same distribution family, is 

β| σ 2 ∼ N( m , σ 2 M ) 

σ 2 ∼ IG (a, b) , 

where IG (a, b) denotes the inverse gamma distribution with parameters a, b. An equivalent formulation is that the pair

( β, σ 2 ) follows an normal inverse gamma distribution 

( β, σ 2 ) ∼ N- �−1 ( m , M , a, b) . 

The posterior distribution is given as (see e.g. Fahrmeir et al. (2013) ) 

( β, σ 2 ) | y ∼ N- �−1 ( ̃  m , ˜ M , ̃  a , ̃  b ) , 

where 

˜ M = 

(
X 

′ X + M 

−1 
)−1 

˜ m = 

˜ M 

(
M 

−1 m + X 

′ y 
)

˜ a = a + 

n 

2 

˜ b = b + 

1 

2 

(
y ′ y + m 

′ M 

−1 m − ˜ m 

′ ˜ M 

−1 
˜ m 

)
. 

3.2. Bayesian model comparison and selection 

This method for variable selection considers candidate models M i , i = 1 , . . . , m . In the linear setting, each model M i in-

cludes a specific set of independent variables and excludes the other variables. For the posterior model probability we have 

p(M i | y ) ∝ p( y | M i ) p(M i ) , 

with p( y | M i ) the so-called marginal likelihood . Define indicator variables γ1 , . . . , γd , with γk = 1 { βk  =0 } ,i.e., if γk = 1 , then the

x k is included in the model. A prior model is then 

p(M i ) = 

d ∏ 

k =1 

w 

γk 

k 
(1 − w k ) 

1 −γk , 

where w k ∈ [0 , 1] , k = 1 , . . . , K. If w k = 1 / 2 , then p(M i | y ) ∝ p( y | M i ) . 

In our setting we set w k = 1 initially for the industry and location that is hard-coded for a firm (this data is available on

Bloomberg). All other weights w k are set to θ = E [ S] /K, where S is the (unknown) model size. Under the assumption that S

follows a binomial distribution B (K, θ ) , E (S) = θ · K, so θ is chosen to attain a target expected model size. 

The marginal likelihood can be calculated from the poster density for model M i , 

p( β, σ 2 | y , M i ) = 

p( y | β, σ 2 , M i ) p( β, σ 2 | M i ) 

p( y | M i ) 
, 

by re-arranging to 

p( y | M i ) = 

p( y | β, σ 2 , M i ) p( β, σ 2 | M i ) 

p ( β, σ 2 | y , M i ) 
. 

This can be calculated analytically or by Markov Chain Monte Carlo methods (MCMC) if the number of models, 2 K , is large.

The posterior probability of γk across all models is given by the posterior inclusion probability (PIP) , 

P (γk = 1 | y ) = 

∑ 

βk ∈ M i ,i =1 , ... , 2 K 

P (M i | y ) . (5) 

If MCMC is used (as in our case), then PIP’s are estimated as the frequency of visited models including the covariate relative

to the total number of visited models. 
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Table 1 

MSCI indices that are used as correlation risk factors. 

RIC Name Description 

.dMINA00000PUS MM-Americas North America price index 

.dMIEU00000PUS MM-Europe Europe price ondex 

.dMIPC00000PUS MM-Pacific Pacific price index 

.dMILA00000PUS EM-Americas Emerging markets Latin America price index 

.dMIEE00000PUS EM-EMEA Emerging markets EMEA price index 

.dMIMS00000PUS EM-Asia Emerging markets Asia price index 

.dMIWD0EN00PUS Energy ACWI energy sector price index 

.dMIWD0MT00PUS Materials ACWI materials sector price index 

.dMIWD0IN00PUS Industrials ACWI industrials sector price index 

.dMIWD0CD00PUS ConsDiscr ACWI consumer discretionary sector price index... 

.dMIWD0CS00PUS ConsStaples ACWI consumer staples sector price index 

.dMIWD0HC00PUS Healthcare ACWI health care sector price index 

.dMIWD0FN00PUS Financials ACWI financials sector price index 

.dMIWD0IT00NUS InfoTech ACWI information technology sector price index 

.dMIWD0TC00PUS Comm ACWI communications services sector price inde... 

.dMIWD0UT00PUS Utilities ACWI utilities sector price index 

.dMIWD0RE00PUS RealEstate ACWI real estate sector price index 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Application to stock market data 

In this section, we use historical data to demonstrate the outcome of correlation stress testing on a typical stock portfolio.

After introducing the data, we first look at the factor selection and resulting parameterisation, and then at the stress testing

results. 

4.1. Data 

The methods developed in this article apply to any portfolio of risky assets. As a showcase, we download daily equity

data from Refinitiv Eikon for the period of 1999 to 2021. The data set includes 505 constituents from the S&P 500 and 30

constituents from the German DAX index. An equally weighted portfolio of these assets will build the baseline. 

Given a portfolio of risky assets, it is necessary to select a universe of relevant correlation risk factors, which will be the

basis for the Bayesian factor selection. We choose to stress country and industry factors and, hence, download historical eq- 

uity index data from Refinitiv Eikon that represents these factors (see Table 1 ). 7 More specifically, from the MSCI All Country

World Index family (ACWI) we download 8 regional indices, including 4 mature market (MM) and 4 emerging market (EM) 

indices. Industry factors are represented by 11 MSCI Global Industry Classification Standard (GICS) sector indices. 

4.2. Factor selection and fit 

Using the Bayesian factor selection procedure from Section 3 , correlation risk factors are assigned to each asset in the

portfolio. Knowledge of a company’s primary country and industry is used by setting their initial prior probabilities to one, 

which ensures they are included as risk factors. These are the country where the company is headquartered and its primary

industry as provided by Refinitiv Eikon. 

Factors are re-selected at a quarterly frequency. For every firm i we estimate the posterior inclusion probability (PIP) of 

each factor k and set 1 k,i = 1 if the PIP is greater than 1 / 2 (cf. Section 3.2 ). Every quarter, the previous parameter inclusion

probabilities enter as prior probabilities. This modelling choice supports a robust allocation of factors, yet leaves enough 

flexibility to add or remove factors if the evidence at the time of selection is strong enough. This caters to the fact that

most companies have a relatively rigid business model, but evolve through time and tend to occasionally enter or exit 

different markets and sectors. 

Figure 1 shows the factor allocation for four exemplary assets. As factors are re-calibrated on a quarterly basis, the plots

show how often a factor has been included. Of the 88 quarters in the sample, SAP SE (SAPG.DE) – a German IT company –

has both MM-Europe and InfoTech always included. Both factors are also the initial prior. In contrast, the BVS consistently 

selected InfoTech and MM-Europe as additional correlation risk factors for Amazon Inc. (AMZN.O). This is a very reasonable 

result as Amazon is not only a large US online retailer, but also the world’s largest provider of computing services (AWS)

with a very strong presence in Europe. Looking at the extremes, PPG Industries Inc. (PPG) provides materials to a broad

range of companies worldwide, thereby exposing itself to the highest number of correlation risk factors in our sample. 

The parameters η, λ1 , . . . , λK and ν1 . . . , νK are easily determined by standard regression techniques such as OLS on the 

transformed correlations tanh 

−1 (c i j ) . The fit is computationally efficient and hence, allows the processing of very large and 

complex portfolios. With parameters calibrated on a regular basis, the parameter history can be used to better understand 
7 One could easily extend this by adding additional indices, e.g. MSCI’s Small Cap, Large Cap, Growth, Value or Momentum indices. 
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Fig. 1. Correlation factor allocation. Factors are re-calibrated on a quarterly basis; the plots show how often a factor has been included. Top left: SAP is a 

German IT company. Top right: Amazon is a US based online retailer; however, it is also the world’s largest provider of computing services (AWS) with a 

strong presence in Europe. Bottom: lowest (left) and highest (right) factor allocation. 

Fig. 2. Heatmaps of empirical (left) and fitted (right) correlations. The spike in correlations between 18 Feb (top) and 18 Mar 2020 (bottom) was caused 

by markets reacting to the COVID-19 crisis. Empirical correlations are calculated on a window of 250 trading days. 

 

 

 

correlation dynamics and to put a plausibility constraint on correlation scenarios. Here, parameters are calibrated daily from 

the 250 log-returns preceding day t . As outlined in Section 2.1 , we test for positive-semidefiniteness and, if necessary, use

the search algorithm in Higham (2002) to find the nearest correlation matrix that tests positive definite. 

The heatmaps in Fig. 2 show empirical correlations over 250 trading days (left) as well as the corresponding fitted cor-

relation matrices (right), where a brighter colour indicates a higher correlation. The model is capable of capturing a number 

of correlation structures that are visible as shaded areas or stripes in all heatmaps. The top rows and left most columns

show correlations between German DAX assets and US S&P 500 assets. Naturally, cross-country correlations are structurally 

lower than within country correlations. 
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Fig. 3. Top: fitted parameters for risk factors with high loads. Bottom left: fitted “inter” parameters for regional risk factors (“λk ”). Bottom right: fitted 

“intra” parameters for regional risk factors (“νk ”). Grey vertical lines indicate factor selection intervals. 

 

 

 

 

 

 

Owing to the COVID-19 outbreak, New York City – one of the world’s largest financial centres – started to lock down on

Friday, 13 March 2020. The following days saw some of the largest market drops in history. As is symptomatic for falling

markets, correlations spiked during the downturn. The heatmaps, being depicted on an identical color scale, show this by 

jumping from a dark purple (top) to a bright orange (bottom). We will later show that this constituted, at least partially,

the worst-case scenario of the portfolio. In other words, diversification benefits diminished at times when they would have 

been needed most. 

The time series of fitted correlation parameters in Fig. 3 shows correlation dynamics over time. One can clearly see 

the spikes in correlation during the 2008 financial crisis, the subsequent debt crisis and most recently the 2020 COVID-19 

pandemic. The correlation dynamics within the financial sector during 2008 are particularly interesting. The factor load on 

financials is almost entirely consumed by global factors as soon as the crisis spills over into the whole economy. To this

end, recall the summation formula in (2) , which approximates correlations in our model by sums of individual correlation 

risk factor loads. It is therefore natural that the (financial) sector specific correlation structure was temporarily subsumed 

by the more common Americas factors. For the 250 trading days leading up to the default of Lehman Brothers, the average

correlation among all assets was 0.32 while the correlation within the financial sector was 0.40. The model would therefore 

add sector specific correlation through the corresponding “intra_Financials” factor load, which at the time was roughly 0.1. 

During the following 250 trading days, i.e. during the financial crisis, the average correlation increased to a level of 0.50

overall and 0.51 for financials, which explains the increase in “Americas” and decrease in “Financials” factors. 
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Fig. 4. Reverse stress test, i.e., worst-case scenario within the 95% highest density region as of 2020-02-18. Triangles indicate stress scenarios from Monte 

Carlo and historical simulation. The stress scenario was partially realized by 2020-03-18. Stars indicate correlation parameters for specific dates. The large 

shift in correlations around that time is owed to the COVID-19 crisis. 

 

 

 

 

 

 

 

 

 

 

Figure 4 presents box-plots of coefficients of correlations between factors (left) and within factors (right). Unsurprisingly, 

the factor representing correlations within North America (“intra_MM-Americas”) captures the majority of the correlation 

dynamics in our portfolio, followed by the factor capturing correlations between North America and other countries. This 

shows that the method adapts well to the underlying portfolio, which comprises only US and German assets. 

In general, intra-correlations are higher than inter-correlations. This is not surprising as correlations are higher for similar 

assets, such as assets within the same country or industry. 

4.3. Stress test results 

A shift in correlation has, ceteris paribus, no instantaneous effect on a portfolio’s value, therefore, to reveal the impact 

of a correlation stress test requires calculating portfolio risk measures. Value-at-risk (VaR) in a variance-covariance approach 

has been proposed in Section 2 as a straightforward portfolio risk measure. 

In order to impose a plausibility constraint on the correlation stress scenario we fit the correlation parameters to a 

multivariate normal-inverse Gaussian (NIG) distribution (cf. Section 2.3 ). The (multivariate) NIG distribution belongs to the 

family of normal-mean-variance mixtures, which generalise the (multivariate) normal distribution. It allows for skewness 

in the margins as well as a higher variation in tail behaviour compared to the normal distribution, while still being a

light-tailed distribution, which is appropriate for the correlation parameters. For reasons of computation time, the NIG dis- 

tribution is calibrated using every 10th observation from the parameter data set, ie., 552 samples over time. Calibration is 

done using the expectation-maximization (EM) algorithm described in McNeil et al. ( 2005 , Chapter 3), which goes back to

Dempster et al. (1977) . We use a KolmogorovSmirnov test to assess the quality of the calibration. The null hypothesis of

the test is not rejected for 19 out of 34 marginal distributions at the 5% level, despite being fit to 34-dimensional data.

The boxplots in Fig. 4 show the range (whiskers) and inter quartile range (box) of the correlation parameters from the NIG

distribution. The highest density region that is relevant for the stress test is represented by a grey area. 

Figure 4 shows the worst correlation stress scenario at the 95% level. Two approaches are used to determine the stress

scenario. First, historical simulation, where each empirically observed set of correlation parameters is associated with a 

portfolio risk metric (here VaR). The parameter constellation that yields the highest risk within the 95% quantile is indicated 

by a right pointing triangle. Second, Monte Carlo simulation, where we sample from the continuous parameter distribution. 

The sample space is then restricted to all scenarios that fulfil f (x ) ≥ f 0 . 05 (cf. Section 2.3 ). Within that restricted sample, the

parameter constellation that produces the highest risk is indicated by a left pointing triangle. 

Both, historical simulation and Monte Carlo simulation yield similar scenarios. However, the Monte Carlo scenario is 

more extreme, as it reaches a broader range of potential parameter constellations. In any case, the worst scenario for the

test portfolio is always an increase in correlations. This result is intuitive as the portfolio at hand only benefits from naïve

diversification. A hedged portfolio, on the other hand, would likely suffer under decorrelation scenarios. 

Stars in Fig. 4 represent correlation parameters for specific dates. One can see that on 2020-02-18 most parameters 

were close to the center of their distribution. One month later, on 2020-03-18, the worst case has been partially realized,

as indicated by the stars shifting closer to the triangles. The parameter constellation of the correlation stress scenario itself 

remains unchanged because it depends primarily on the portfolio weights and the correlation risk factors associated with the 

portfolio constituents. This consistency of the worst case scenario is a welcome result, from a risk management perspective, 

as it shows that the method is capable of providing stable guidance on the risks of a specific portfolio. 
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Fig. 5. One day 99% VaR and stressed VaR. The stressed war uses the reverse stress scenario of 2021-05-04. The difference between both VaRs diminishes 

occasionally, indicating that the stress scenario has been realized. 

 

 

 

 

 

 

 

 

Figure 5 shows the 1-day VaR 99% with and without stressed correlations. All VaR’s are calculated using Eq. (3) . Stressed

VaR uses the correlation matrix from the 95% -stress scenario of 2021-05-04, the last day in the data. 8 As stressed VaR

measures the impact of a plausible correlation stress scenario on historical data, the difference between stressed VaR and 

unstressed VaR gives insights into the severity of this scenario in the recent history. Loosely speaking, the difference in VaR’s

can be attributed to correlation risk. The distance between both VaRs is highest during “normal” markets (i.e., when VaR 

is comparably low), where it often exceeds 50% of the unstressed VaR. This is a significant value, given that the stressed

portfolio is equally weighted and, thus, only benefits from naïve diversification. A portfolio that benefits from greater di- 

versification, e.g. because it is “optimally-weighted” or hedged to minimize risks, would presumable react more sensitive to 

correlation changes. 

During distress periods, the distance between VaR and stressed VaR diminishes, indicating that the stress scenario is at 

least partially realized. This can be observed during the 2008 financial crisis, the subsequent government debt crisis and 

most recently during the 2020 COVID-19 crisis. This shows that the method indeed produces correlation stress scenarios 

that are extreme yet probable enough to occasionally materialize. 

5. Conclusion 

Correlation, as the driver of diversification, has been extensively studied in the finance literature. For example, multi- 

variate time series models such as DCC-GARCH capture the time variation of correlation. The more recent literature uses 

hierarchical clustering methods to infer dependence networks from correlation data, which allows to determine economic 

linkages between assets. However, other than that the literature on linking economic risk factors and correlations is scarce. 

Likewise, stress testing of correlations by translating an economic scenario into a change of correlations, is largely an unex- 

plored field. 

We develop a flexible correlation stress testing framework that links risk factors with asset correlations. The process 

consists of three steps: 

First, the correlation matrix of asset returns is specified as a parametric function of risk factors, involving both “intra”- 

and “inter”-correlations amongst the risk factors. “Intra”-correlations are correlation contributions where assets share a risk 

factor, and “inter”-correlations are correlation contributions where assets do not share a risk factor. The functional form 

is calibrated to market data in two steps: Identifying an assets’ relevant risk factors is achieved using Bayesian variable

selection, which allows to specify prior information (such as the country of the firm’s headquarter) as well as control the

number of factors selected. The risk factor loadings are calibrated from an empirical correlation matrix. 

Second, scenarios, in particular stress scenarios, are applied by adjusting the risk factor loadings. The impact from the 

correlation stress scenario is determined as the change to a risk measure such as value-at-risk, expected shortfall or any 

other measure that employs a correlation matrix. 

Third, with correlation factor loadings calibrated on a regular basis, the parameter history can be used to better under- 

stand correlation dynamics and to put a plausibility constraint on correlation scenarios. In particular, reverse stress tests can 

be conducted, identifying critical risk factor scenarios for the portfolio at hand. The idea is to fit the risk factors loadings to

a probability distribution and define plausible scenarios as those that lie within a given confidence level. In a multivariate 

setting, the range of plausible scenarios can be identified as those that lie within a certain Mahalanobis distance or Highest 

Density Regions (HDR) of the average scenario. In this sense, the Mahalanobis distance and HDR can be thought of as multi-

variate generalisations of quantiles. The scenario with the highest risk (value-at-risk) within the confidence level represents 
8 The scenario itself is very similar to the scenario shown in Fig. 4 as ‘Worst-case (MC)’. Naturally, given the large number of US assets in the data, the 

worst case scenario is dominated by increasing correlations among ‘Americas’ assets. 
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the outcome of the reverse stress test: it is both extreme and plausible. Being able to identify the relevant risk factors of

the scenario provides valuable information for portfolio managers and risk managers in order to understand the correlation 

risk drivers of their portfolio. 

In an extensive empirical example, we calculate the stressed value-at-risk over time and identify worst-case stress sce- 

narios. We find that these scenarios are extreme enough to pose a relevant threat from a risk management perspective, yet

are common enough to be realized on several occasions in our data history. 

The framework developed in this paper can be employed by any stakeholder wishing to identify the economic risk of 

adverse correlation changes. The method is particularly relevant to regulators, for example when approving banks’ capital 

models that contain factor models. Future directions of research may lead to extensions involving other kinds of risk factors, 

such as macroeconomic factors or latent factors (e.g. principal components). 
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Appendix A. Normal-inverse Gaussian (NIG) distribution 

The NIG distribution arises as a special case of so-called normal-mean-variance mixtures (NMVM) , and more specifically 

as a special case of the family of Generalized Hyperbolic (GH) distributions. NMVM combine a number of useful proper- 

ties, amongst them their flexibility in modelling skewness and heavy tails as well as their tractability, both for numerical 

calculations and simulation purposes. We refer to Section 3.2.2 of ( McNeil et al., 2005 ) for more details. 

Definition 1. The random vector X is said to have a (multivariate) normal mean-variance mixture distribution if 

X 

L = m (W ) + 

√ 

W A Z , 

where 

(i) Z ∼ N k (0 , I k ) ; 

(ii) W ≥ 0 is a non-negative, scalar-valued random variable independent of Z ; 

(iii) A ∈ R 

d×k is a matrix; 

(iv) m : [0 , ∞ ) → R 

d is a measurable function. 

We have 

X | W = w ∼ N d (m (w ) , w �) , 

where � = AA 

′ . A possible concrete specification of m (W ) is 

m (W ) = μ + W γ , (A.1) 

where μ and γ are vectors in R 

d . If γ = 0 , then the distribution is a NVM. 

A special case are the generalized hyperbolic (GH) distributions , which are NMVM’s with mean specification (A.1) and 

mixing distribution W ∼ N 

−(λ, χ, ψ) , a generalised inverse Gaussian (GIG) distribution. We write X ∼ GH d (λ, χ, ψ, μ, �, γ ) .

The specification is not unique in the sense that scaled versions of the parameters describe the same distribution. 

The NIG distribution arises as the special case where λ = −1 / 2 . An extensive treatment of the NIG distribution is found

in Barndorff-Nielsen (1997) . Amongst other useful properties, closed formulas for the moment-generating function exist, 

so all moments are easily calculated; linear combinations of NIG variables are again NIG-distributed; the NIG distribution 

features infinite divisibility, giving rise to the NIG Lévy process, which may be represented as a Brownian motion with a

random time change. 
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