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A B S T R A C T   

Viroids are small, single-stranded, non-protein coding and circular RNAs able to infect host plants in the absence of any helper virus. They may elicit symptoms in 
their hosts, but the underlying molecular pathways are only partially known. Here we address the role of post-transcriptional RNA silencing in plant-viroid-interplay, 
with major emphasis on the involvement of this sequence-specific RNA degradation mechanism in both plant antiviroid defence and viroid pathogenesis. This review 
is a tribute to the memory of Dr. Ricardo Flores, who largely contributed to elucidate this and other molecular mechanisms involved in plant-viroid interactions.   

1. Introduction 

RNA silencing is a sequence-specific RNA-mediated mechanism that 
occurs in most eukaryotes and regulates gene expression and transposon 
activity (Fire, 1999). RNA silencing occurs at the transcriptional level 
(transcriptional gene silencing, TGS), either preventing or dampening 
transcription through DNA methylation and chromatin modifications, or 
at the post-transcriptional level (post-transcriptional gene silencing, 
PTGS) through RNA cleavage (slicing) or translational repression 
(Baulcombe, 2004; Vaucheret, 2006). RNA silencing pathways are 
triggered by double-stranded RNAs (dsRNAs) or highly structured single 
stranded RNAs of cellular or exogenous origin, which are processed by 
RNase-III type enzymes of the DICER family into small RNA (sRNA) 
molecules (Bernstein et al., 2001; Fire et al., 1998; Hamilton and Baul-
combe 1999). One of the strands of the sRNA duplex, the guide strand, is 
loaded onto an ARGONAUTE (AGO) protein to form the RNA-induced 
silencing complex (RISC) (Hammond et al., 2000, 2001); the other 
strand, called the star strand, is usually degraded. RISC specifically 
targets cognate nucleic acids based on the complementary to the guide 
strand. 

In plants, RNA silencing pathways control such key biological pro-
cesses as development, response to biotic and abiotic stresses and 

maintenance of genome integrity (Baulcombe, 2004). Plant sRNAs are 
typically divided in two classes, microRNAs (miRNAs) and small inter-
fering RNAs (siRNAs), which differ in their biogenesis pathways and in 
the spectrum of their target transcripts (Axtell, 2013). miRNAs originate 
from endogenous transcripts with imperfect self-complementary fold-
back structures that are processed by DICER-LIKE 1 (DCL1) and target 
other cellular transcripts (e.g. transcription factors). siRNAs may arise 
from transposons, centromeres, inverted repeats and invading nucleic 
acids (e.g. viral RNAs) and are generated by DCL2, DCL3, and DCL4 to 
silence their cognate targets (Bologna et al., 2014; Ding and Voinnet, 
2007; Lopez-Gomollon and Baulcombe, 2022). RNA silencing can be 
amplified by the action of RNA-dependent RNA-polymerases (RDRs) 
that typically synthesize dsRNAs from target transcripts cleaved by 
sRNA/AGO complexes. The newly produced dsRNAs re-enter the RNA 
silencing cycle as they are processed by DCLs to generate a second pool 
of siRNAs named secondary siRNAs (Voinnet, 2008). 

Here we assess the role of RNA silencing mechanism in viroid-host 
interactions with major emphasis on the involvement of the PTGS 
pathway in viroid pathogenesis. 
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2. Viroids are targeted by RNA silencing 

Viroids are plant infectious agents with small, circular, single- 
stranded, non-protein-coding RNA genomes (Flores et al., 2004; Nav-
arro et al., 2021). Despite the lack of protein-coding capacity, viroids are 
able to infect higher plants, replicate autonomously and move 
throughout their hosts. Several of them are capable of inducing symp-
toms and causing diseases in multiple hosts (Kovalskaya and Hammond, 
2014). Regarding replication, viroids are parasites of the cell’s tran-
scriptional machinery and are almost entirely dependent on the activity 
of host enzymes. According to the site of replication and accumulation of 
their genomes, structural features and replication mode, viroids are 
grouped into two families, Pospiviroidae and Avsunviroidae, including 
members that are located in nucleus and chloroplast, respectively 
(Flores et al., 2005). 

Nuclear viroids share a central conserved region and adopt compact 
rod-like structures, while chloroplastic viroids contain hammerhead 
ribozymes motifs required for replication and their genomes fold into a 
less compact structure (Flores et al., 2009). Members of both families 
replicate by a rolling circle mechanism with RNA intermediates 
(asymmetric or symmetric in the case of Pospiviroidae and Avsunviroidae, 
respectively) that include dsRNA molecules, the main substrate of DCLs. 
Furthermore, viroid genomes possess strong secondary structures that 
could also be recognized by DCLs (Itaya et al., 2007). Consistent with 
these properties, the presence of viroid-derived sRNAs (vd-sRNAs) was 
first detected in plants infected with nuclear viroids (Itaya et al., 2001; 
Papaefthimiou et al., 2001) and later also in plants infected with peach 
latent mosaic viroid (PLMVd) and chrysanthemum chlorotic mottle 
viroid (CChMVd), two chloroplastic viroids (Martínez de Alba et al., 
2002), indicating that members of both families are targets of the host 
RNA silencing machinery. 

Although plant DCLs have all been assigned a nuclear localization 
based primarily on heterologous and/or overexpression studies (Fang 
and Spector, 2007; Xie et al., 2004), experiments based on immuno-
localization assays revealed DCL4 antibody staining in both the nucleus 
and cytoplasm (Hoffer et al., 2011). In contrast, most PTGS components, 
including RDR6 and AGO1, are entirely or partly cytoplasmic (Derrien 
et al., 2012; Kumakura et al., 2009; Martínez de Alba et al., 2015). Thus, 
the detection of vd-sRNAs generated from viroids that replicate and 
accumulate in the chloroplast (Martínez de Alba et al., 2002) raises the 
question of whether vd-sRNA biogenesis may occur in this organelle. 
Because no DCL protein has been localized in the chloroplasts so far, the 
most likely scenario is that vd-sRNAs of chloroplastic viroids are origi-
nated in the cytoplasm during viroid movement from cell to cell, with 
the possible involvement of host RDRs generating viroid-derived 
dsRNAs that are likely targeted by cytoplasmic DCLs (Navarro et al., 
2012). Overall, the mechanism of vd-sRNA biogenesis, especially in the 
case of chloroplast replicating viroids, remains still elusive. 

The role of DCL enzymes in viroid infections was investigated by 
inoculating potato spindle tuber viroid (PSTVd) into Nicotiana ben-
thamiana plants with reduced DCL activity. These experiments revealed 
that the combined activity of DCL2 and DCL3 is necessary for the plant’s 
defence against PSTVd (Katsarou et al., 2016), while DCL4 plays a 
positive role in the infection, as viroid accumulation was reduced in 
plants with decreased levels of this protein (Dadami et al., 2013). Since 
levels of other nuclear viroids, including tomato apical stunt viroid 
(TASVd) and hop stunt viroid (HSVd), were also decreased in plants with 
reduced DCL4 expression, Katsarau et al. (2016) suggested that mem-
bers of the Pospiviroidae family may have evolved to be primary targeted 
by the less detrimental DCL4. The involvement of DCLs in antiviroidal 
activity was further supported by the observation that a transgenic to-
mato line in which DCL2 and DCL4 were downregulated showed 
increased accumulation of PSTVd at early infection times, and devel-
oped lethal systemic necrosis accompanied by up-regulation of 
stress-responsive miRNAs and production of reactive oxygen species at 
later times (Suzuki et al., 2019). 

Analysis in N. benthamiana plants infected with PSTVd provided the 
first direct evidence for the recruitment of vd-sRNAs by AGO proteins 
(Minoia et al., 2014). Immunoprecipitation of Arabidopsis thaliana 
(Arabidopsis) AGO proteins agroexpresssed in PSTVd-infected plants 
followed by deep-sequencing analysis revealed that vd-sRNAs are 
bound, with different affinities, by AGO1, AGO2, AGO3, AGO4, AGO5 
and AGO9 (Minoia et al., 2014). As in the case of viral- and host-derived 
sRNAs, the sorting of the vd-siRNAs into the different AGO proteins 
depended on their 5́-terminal nucleotides, and, furthermore, AGO1, 
AGO2 and AGO3 preferentially associated with 21 and 22 nt-long 
vd-sRNAs while AGO4, AGO5 and AGO9 also bound those of 24 nt. 
The observation that vd-sRNAs are unevenly distributed along the viroid 
genome, accumulating in particular hotspots, suggested that the 
genomic RNA or its precursors are targeted by RISC. Consistent with this 
hypothesis, transient overexpression of AGO1, AGO2, AGO4 and AGO5 
proteins in PSTVd-infected plants resulted in a reduction of viroid 
genomic RNA, supporting their role in antiviroid defence. 

The role of plant RDRs in viroid infections has been analysed in 
several viroid/host pathosystems. RDR1 expression was reported to in-
crease in tomato and cucumber plants infected with PSTVd and HSVd, 
respectively (Schiebel et al., 1993; Schiebel et al., 1998; Xia et al., 2017), 
suggesting its involvement in antiviroid defence (Sano, 2021). However, 
in other studies RDR1 expression in tomato remained unchanged upon 
infection by a different PSTVd strain (Zheng et al., 2017) or citrus 
exocortis viroid (Thibaut and Bragard, 2018), thus raising the possibility 
of differential responses depending on viroid-host combinations. In 
N. benthamiana, RDR1 expression is disrupted due to a natural sequence 
insertion that contains in-frame stop codons in the 5’ portion of the 
respective ORF (Yang et al., 2004). Notably, accumulation of PSTVd and 
its vd-sRNAs was delayed in transgenic N.benthamiana plants over-
expressing a functional N. tabacum RDR1 (Li et al., 2021). The same 
authors also showed that downregulation of RDR1 in tomato correlated 
with an increased susceptibility to PSTVd infection, thus supporting the 
involvement of RDR1 in restricting the early viroid systemic invasion of 
the host. Silencing of RDR6 in transgenic N. benthamiana (NbRDR6i) 
plants resulted in increased accumulation of PSTVd genomic RNA early 
after infection and in invasion of the vegetative meristem by the viroid 
(Di Serio et al., 2010), showing that RDR6 activity restricts the systemic 
spread of PSTVd and its entry into the floral and vegetative meristems. 
Further evidence for a role of RDR6 in reducing PSTVd accumulation has 
been obtained by knocking-down its expression in wild-type 
N. benthamiana plants prior to viroid infection (Adkar-Purushothama 
and Perreault, 2019). In this later study, PSTVd genomic RNA was 
shown to accumulate to higher levels in RDR6-silenced plants than in 
control plants, reinforcing the idea that RDR6 is involved in the defen-
sive pathway against viroid infections. 

Finally, the discovery of vd-sRNAs in infected plants led to the hy-
pothesis that, as reported for viruses (Tenllado and Diaz-Ruiz, 2001), 
co-inoculation with viroid-derived dsRNAs and vd-sRNAs might also 
protect plants against viroid infections. In agreement with the results 
obtained with viruses, co-inoculation of nuclear (citrus exocortis viroid, 
CEVd) or chloroplastic (CChMVd) viroid RNAs with their respective 
dsRNAs protected hosts from viroid infection, resulting in either 
non-infected plants or delayed onset of symptoms (Carbonell et al., 
2008). Similar results were obtained when either the infectious viroid 
genomic RNAs were co-inoculated with a population of sRNAs derived 
from the corresponding in vitro processed sequences or when a construct 
allowing the expression of a hairpin RNA containing a partial sequence 
of PSTVd was co-infiltrated with an infectious PSTVd clone (Carbonell 
et al., 2008). 

An independent study by Schwind et al. (2009) provided additional 
evidence that viroids can undergo sRNA-mediated degradation. These 
investigators showed that transgenic tomato plants expressing inverted 
repeats of the PSTVd sequence accumulated high levels of 
hairpin-derived sRNAs, that these plants were resistant to PSTVd 
infection, and that the degree of resistance was directly correlated with 
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the levels of sRNAs. In line with these results, citrus tristeza 
virus-encoded RNA silencing suppressor proteins, both during natural 
infections and when transgenically expressed, enhanced the accumula-
tion levels of citrus dwarfing viroid (CDVd) in mexican lime, further 
confirming viroid targeting by the host post transcriptional RNA 
silencing (Serra et al., 2013). 

More recent studies have demonstrated the feasibility of RNAi-based 
strategies for the control of viroid infections, both through the use of 
artificial microRNAs and synthetic trans-acting siRNAs (Carbonell and 
Daròs, 2017) and through the development of transgenic lines express-
ing non-infectious truncated viroid sequences (Adkar-Purushothama 
et al., 2015), thus providing evidence that engineering viroid resistance 
is feasible (Dalakouras et al., 2015; Flores et al., 2017). 

3. RNA silencing plays a role in viroid pathogenesis 

The discovery of vd-RNAs in tomato plants infected by PSTVd (Itaya 
et al., 2001; Papaefthimiou et al., 2001), a representative 
nuclear-replicating viroid, immediately raised the possibility that 
vd-sRNAs derived from nuclear-replicating viroids could guide the RNA 
silencing-mediated degradation of complementary and physiologically 
relevant mRNAs. Evidence supporting this hypothesis include (i) ob-
servations of typical PSTVd-induced symptoms in transgenic plants 
expressing non-replicating PSTVd hairpin RNAs (Wang et al. 2004) and 
(ii) the identification, in plants infected by PSTVd or related viroids, of 
specific vd-sRNAs that target for degradation several specific host 
mRNAs possibly involved in the elicitation of systemic symptoms 
(reviewed by Adkar-Purushothama and Perreault, 2020). Although the 
targeting of various host mRNAs by specific vd-sRNAs has been docu-
mented for several nuclear-replicating viroids, whether RNA silencing is 
actually responsible for the initial event in the elicitation of complex 
developmental disorders like the epinasty (leaf curling) or stunting 
induced by these viroids in some hosts seems difficult to ascertain. 

Indeed, different viroids or viroid variants frequently induce very 
similar symptoms in the same host, making it difficult to identify a single 
targeted gene initiating the pathogenic process and to discriminate be-
tween early and late effects (reviewed by Flores et al., 2020). In potato, 
PTGS of gene StTCP23, which encodes a transcription factor, is triggered 
by vd-sRNAs derived from the virulence modulating region of PSTVd, 
and downregulation of its expression results in tuber and plant devel-
opmental disorders very similar to those observed in PSTVd-infected 
potato plants, likely through the impairment of gibberellic acid (GA) 
biosynthesis and signaling pathways (Bao et al., 2019). Interpretation of 
these results may not be easily extended to other viroid-host combina-
tions, however, because a recent attempt to identify vd-sRNA-targeted 
genes common to both tomato and N. benthamiana plants infected by 
the same PSTVd severe variant and showing similar developmental 
defects (stunting and epinasty) was unsuccessful (Navarro et al., 2021). 

The situation is less complex for the chlorosis symptoms induced by 
specific variants of PLMVd, a chloroplast-replicating viroid (Hernández 
et al., 1992). In this case, viroid variants inducing a disease denoted as 
peach calico (PC), consisting of a severe chlorotic mosaic (albinism) in 
leaves, stems and fruits of peach trees, were shown to contain a specific 
pathogenicity determinant; i.e. a short 12–13 nt insertion (Malfitano 
et al., 2003). Furthermore, in a symptomatic host the severe PLMVd 
variants were strictly associated with the albino tissues which contain 
immature chloroplasts, while variants lacking the pathogenic determi-
nant accumulated in green and infected tissues containing completely 
developed chloroplasts (Rodio et al., 2006; 2007). Importantly, 
vd-sRNAs with the pathogenic determinant were present only in albino 
tissues, where they specifically target chloroplastic heat shock protein 
90 (cHSP90) mRNA for RNA silencing-mediated degradation (Fig. 1A, 
Navarro et al., 2012). cHSP90 is a nuclear-encoded protein that is 
translocated to plastids where it is involved in chloroplast development. 
Interestingly, Arabidopsis plants in which this gene is mutated exhibit a 
phenotype resembling that observed in PC albino tissues (Cao et al., 

Fig. 1. (A) Upper panel: symptoms of peach calico (albinism) 
induced by PLMVd variants containing a pathogenic determi-
nant consisting of a 12–13 nt insertion. Middle panel: patho-
genic determinant of peach calico reported in red in the 
branched secondary structure of minimal free energy of 
PLMVd. Lower panel: hybrid formed between the vd-sRNA 
containing the PC determinant (in red) and the complemen-
tary host mRNA coding for cHSP90. (B) Symptoms of peach 
yellow mosaic (PYM) induced by PLMVd variants containing a 
pathogenic determinant mapped at a single nucleotide. Middle 
panel: pathogenic determinant of PYM indicated in red in the 
branched secondary structure of minimal free energy of 
PLMVd. Lower panel: hybrid formed between the vd-sRNA 
containing the PC determinant (in red) and the complemen-
tary host mRNA coding for cpSecA. (Figure reproduced from 
Navarro et al., 2020, FEMS Microbiology Reviews 44, 386–398 
with permission).   
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2003). In the PC pathosystem, the close association of specific viroid 
pathogenic variants with the macroscopic symptoms facilitated the 
identification of the link between the primary molecular event (silencing 
of cHSP90 by vd-sRNAs containing the pathogenic determinant), a very 
specific cytopathic alteration (impairment of chloroplast development) 
and the early macroscopic symptom (albinism). 

A similar mechanism has also been proposed for PLMVd variants 
causing peach yellow mosaic disease (PYM), which differs from PC 
because of the progression and the intensity of the mosaic that is a 
yellowing never evolving in albinism (Delgado et al., 2019). The path-
ogenic determinant of PYM has been mapped to a single nucleotide in 
the PYM-inducing PLMVd variants that, similarly to PC, were strictly 
associated with the symptomatic tissues. Moreover, it was shown that 
vd-sRNAs containing the pathogenic determinant directed the RNA 
silencing-mediated degradation of an mRNA that encodes a thylakoid 
translocase subunit (cpSecA) required for chloroplast development 
(Fig. 1B, Delgado et al., 2019). These findings show that PC and PYM, 
two different chlorosis syndromes caused by PLMVd variants with a 
specific pathogenic determinant, have different primary causes. Inter-
estingly, an RNA silencing mechanism similar to that operating in 
PLMVd-induced chlorosis has been shown to operate in the elicitation of 
the leaf chlorosis caused by severe variants of CChMVd, another 
chloroplast-replicating viroid (Serra et al., manuscript in preparation), 
thus highlighting a common molecular pathway for the induction of 
chlorotic symptoms by members of the family Avsunviroidae. However, 
chlorotic symptoms are only one of the many alterations induced by 
these chloroplastic viroids in their hosts. For example, it is known that 
PLMVd may induce additional defects in peach fruits and petals, delay in 
flowering and fruit maturation and developmental alteration (open 
habit) of the infected trees (Desvignes, 1976). The molecular pathways 
underlying these symptoms are currently unknown and may not involve 
RNA silencing. 

4. Other molecular pathways implicated in viroid pathogenesis 

Viroid infections have long been recognized to cause far reaching 
changes in the regulation of host gene expression, an effect documented 
for several viroid-host combinations. Transcriptomic and proteomic 
studies have identified differential regulation of genes involved in many 
different molecular pathways upon viroid infection (reviewed by Owens 
et al., 2017). Genes implicated in plant hormone signaling, defence, 
protein metabolism, RNA binding, processing and modification were 
reported to be differentially expressed in viroid infected plants as 
compared with non-infected controls (Zheng et al., 2017; Štajner et al., 
2019; Takino et al., 2019; Thibaut and Bragard, 2018; Wang et al., 
2019). Notably, genes involved in plant innate immune responses are 
among those induced by viroid infection. Whether and how viroids 
might directly or indirectly trigger such immunity is not clear, however. 
Pathogen-associated molecular pattern (PAMP) or effectors, which are 
known to activate these plant defences against other pathogens, are 
recognized by host receptors (Bent et al.,2007), but if viroid RNAs 
(either genomic or replicative intermediates) may actually be perceived 
as a PAMP or as an effector triggering the immune response of the plant 
is not known. 

The direct degradation of host-mRNAs by vd-sRNAs discussed in the 
previous section is likely only one of several molecular pathways 
involved in viroid pathogenesis. Other post-transcriptional events, such 
as changes in alternative splicing and the generation of phased sec-
ondary siRNAs with potential trans-acting functions, must also be 
considered as potential source of regulatory disruption (Zheng et al., 
2017). In addition, viroids could reprogram host transcription through 
epigenetic mechanisms such as DNA methylation and histone modifi-
cation (reviewed by Gómez et al., 2022). 

An important early observation leading to the discovery of RNA- 
directed DNA-methylation (RdDM) was the fact that a replicating 
viroid (PSTVd) is able to induce the methylation of its corresponding 

transgene (Wassenegger et al., 1994; reviewed by Wassenegger and 
Dalakouras, 2021). Several studies highlighted a possible correlation 
between viroid infection and epigenetic alterations in the genome of 
either host plant (Castellano et al., 2015; 2016a; 2016b; Martínez et al., 
2014; Lv et al., 2016) or a co-infecting DNA virus (Torchetti et al., 2016). 
Epigenetic changes in infected cucumber plants were correlated with a 
direct in vivo interaction between mature forms of hop stunt viroid 
(HSVd) with the histone deacetylase 6 (HDA6), an enzyme recognized as 
a component of the RdDM pathway (Castellano et al., 2016a). 

A correlation between viroid infection status and hypermethylation 
of a trangene promoter has been reported in transformed N. benthamiana 
plants expressing GFP, with a potential role in this phenomenon pro-
posed for the bromodomain containing viroid-binding protein VirP1 (Lv 
et al., 2016). Previous studies have identified other major roles in viroid 
infectivity for this protein (Kalantidis et al., 2007; Martínez de Alba 
et al., 2003). A generalized over-expression of genes involved in RdDM 
has also been reported in tomato plants infected by PSTVd (Torchetti 
et al., 2016). Taken altogether these studies support the ability of viroids 
to interfere with the epigenetic status of their hosts and consequently to 
modify the expression of many important genes. Although the under-
lying mechanism(s) is not completely known, several scenarios 
involving either direct or indirect interactions with viroid RNAs have 
been envisaged (Gómez et al., 2022). 

And finally, changes in gene expression associated with viroid 
pathogenesis may be at least partially modulated through impairment of 
the host translational machinery. Evidence supporting this view in-
cludes i) viroid-induced alteration of pre-rRNA processing (Jakab et al., 
1986), ii) changes in the expression of ribosomal genes and translation 
factors (Adkar-Purushothama et al., 2017; Lisón et al., 2013), and (iii) 
changes in ribosome biogenesis and functionality (Cottili et al., 2019) 
associated with certain viroid infections. 

Taken together the effects described above depict a complex scenario 
for viroid pathogenesis in which a large variety of molecular mecha-
nisms might simultaneously contribute to the development of the 
cytopathic effect and macroscopic alterations we observe in the infected 
and diseased hosts. 

5. Concluding remarks 

Viroids are both triggers and targets of post-transcriptional RNA 
silencing. The resulting vd-sRNAs may drive the sequence-specific 
degradation of the invasive viroid RNAs, thus having an antiviroid 
defence role. At the same time, certain vd-sRNAs may target host mRNAs 
for degradation and, when the encoded protein has a major physiolog-
ical role, trigger or contribute to the development of specific symptoms. 
Therefore, the same molecular process (RNA silencing) may simulta-
neously act as both plant defence mechanism and pathogenic pathway in 
the plant-viroid interplay. Although RNA silencing has been shown to be 
the primary molecular lesion leading to the development of symptoms 
for certain viroids, it represents only one of several possible molecular 
mechanisms implicated in viroid pathogenesis. A broader view suggests 
that viroid disease is the resultant of a more complex network of mo-
lecular lesions and signalling elicited, either directly or indirectly, by 
these infectious non-coding RNAs. 
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