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Controllable Spin-Split Phantom Scars in Quantum Dots

Michael Berger* and Jamal Berakdar*

Quantum states of systems with an underlying classical chaotic dynamics can
be “scarred,” meaning that the associated probability density is localized
around the short, unstable periodic orbits. Here, it is shown that, via
tunneling, the scarred state can be imaged to a region that does not support
scarring. This “phantom scar” is also present in the spin channel and has
marked influence on the spin-dependent system dynamics, as illustrated by
explicit calculations for the fidelity and correlation functions. Numerical
simulations and analysis are performed for the spin-dependent electron
dynamics in semiconductor-based double quantum dots, including disorder,
Rashba-type spin-orbital coupling, exchange fields, and external magnetic
fields. The results elucidate the unique feature of scarring as a coherent
phenomenon spanning the whole system and affecting its localization
properties in a narrow spectral window.

1. Introduction

Waves representing classical and quantum particles moving in
space with complex boundaries have been discussed widely for
a variety of systems such as classical (quantum) billiards or mi-
crowave resonators.[1–7] Particularly interesting is the issue of
classical-quantum crossover behavior. For quantum systemswith
underlying classical integrable behavior, the Bohr–Sommerfeld
quantization procedure provides an insight into the quantum dy-
namics based on classical periodic orbits. Considering the quan-
tum dynamics of a classically chaotic system (e. g., Bunimovich
stadium), it has been observed that short-term, unstable periodic
orbits[7–9] leave footprints in the spatial texture of the wavefunc-
tions. As put by Heller,[7] “They induce scars of larger than ex-
pected density in at least some of the wave functions.”[10,11] The
scarring-enhanced localization of the probability density and how
it shows up in physical observables have been investigated theo-
retically and experimentally[12] for a number of settings.[13–27]
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While in billiard systems the character-
istics of periodic orbits are sensitive to the
boundary geometry (in the quantum case,
Dirichlet boundary conditions are usually
imposed), introducing finite-size random
impurities may render (an otherwise in-
tegrable) dynamics chaotic, in which case
scars are observed[20,28,29] and disappear in
the absence of impurity scattering. Hence,
boundary induced scars are referred to
as geometrical scars, and impurity-induced
ones are called dynamical scars. Classical
many-body interacting systems are generi-
cally chaotic, raising the question of many-
body quantum scarring when varying the
interparticle interaction strength, an issue
that is currently under investigation[30–34]

and is distinct from many-body localization
in disordered quantum systems.[35–42]

For dynamical scarring, studies were mainly focused on scalar
impurities or spin-independent interparticle interactions. Here,
we consider dynamical scarring in confined electronic systems
with non-trivial spin dynamics. Generally, one may have scatter-
ing in the spin channel only (for instance, scattering from amag-
netic domain wall[43]) and yet act on the charge channel. For a
system hosting a spin-orbital coupling, scalar impurity scattering
can lead to spin-dependent scarring[44] and mix the spin chan-
nels for a magnetic system. Another aspect to be addressed here
is the possibility of teleportation of scarred states (as quantified
below) to a localized region which for itself does not exhibit scar-
ring. To this end, we study a fairly general model that can be real-
ized on the basis of exchanged split, spin-dependent 2D electron
gas (2DEG) confined to two coupled quantum dots (QDs) host-
ing a spin orbital coupling of the Rashba type. Impurities can
be dispersed over the whole system or only in one of the dots.
We calculate a large number of single-particle states sufficient
to quantify the appearance and the spectral properties of spin-
dependent scars and visualize them. It is found that at energies
above the tunneling barrier between theQDs, scars also appear in
the region without impurities. Even for energies below the tun-
neling barrier, and even if the isolated QD without impurities
does not exhibit any scars, tunneling scars appear as the image
of those formed in the dots with impurities. The influence of the
results on the revival probability is illustrated with full numerical
time propagation.
The rest of the paper is organized as follows. In Section 2.1 we

introduce the theoretical model and numerical tools. The statis-
tical methods are in Section 2.2. Results for various system pa-
rameters are presented and discussed in Section 3, followed by a
summary in Section 4.

Adv. Quantum Technol. 2023, 6, 2200160 2200160 (1 of 12) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH

http://www.advquantumtech.com
mailto:michael.berger@physik.uni-halle.de
mailto:jamal.berakdar@physik.penalty -@M uni-halle.de
mailto:jamal.berakdar@physik.penalty -@M uni-halle.de
https://doi.org/10.1002/qute.202200160
http://creativecommons.org/licenses/by/4.0/


www.advancedsciencenews.com www.advquantumtech.com

Figure 1. Cross-section of the double quantum dots potential confining the motion in the x–y plane. The centers of the QDs are shifted by a distance
±rc along the x-axis. The potential upper value V0 = 68.5meV is reached at x = rc + 𝛿. VB indicates the top of the tunneling barrier height between the
QDs. The green dots in contour plot indicate the locations of the impurities (bumps) in the right QD.

2. Model and Methods

2.1. Hamiltonian

We study the spin-dependent quantum dynamics of charge car-
riers in coupled QDs in an external magnetic field. An exchange
field may be present (rendering the system magnetic) as well as
spin-orbital interaction. The carriers scatter elastically from NImp
localized scalar impurities. The aim is to trace the emergence and
stability of the spin-dependent quantum scars and the possibility
of quantum tunneling of the formed scars to a region that other-
wise does not host any scars.
The Hamiltonian of this setting reads

 = Π2

2m∗ + 𝛼(𝝈 ×𝚷)z + V(r) +
NImp∑
n=1

VImp(r, rn) +
1
2
g𝜇BB0𝜎z

+HEx(r) ⋅ 𝝈 (1)

where 𝚷 = p − eA(r) is the momentum in the electromagnetic
fields described by the vector potential A(r) associated with a
static, homogeneous externalmagnetic fieldB0ez applied perpen-
dicularly (along ez) to the QDs. m

∗ is the effective electron mass.
V(r) is the potential restricting themotion to be described here to
a region in the x–y plane. VImp is the impurity potential (cf. Fig-
ure 1). 𝛼 is the Rashba spin-orbit coupling strength. Additionally,
an effective (exchange) field HEx(r) is included as to capture the
spin-polarization for the magnetic case.[45] 𝝈 is the vector of the
Pauli matrices. We assume the dot to the right to be magnetic.
Unless otherwise stated, the effective massm∗ is set to unity. We
consider Gaussian impurities (the bumps within the right dot in
Figure 1) of the form

VImp(r, rn) = M exp
{
−
(r − rn)

2

2𝜎2

}
(2)

The parameters M and 𝜎 define the strength and width of an
impurity, respectively. For the sake of simplicity, all impurities
have the same shape. We studied the cases where the confin-
ing potential V(r) is a harmonic (V ∝ r2) potential for the left dot
(linear system) coupled to r5 potential for the right dot (nonlin-
ear system) and where both dots are described by r5 potentials.
The choice of the r5 potential is to connect with previous stud-
ies in some limiting cases[28,46] (i.e., for one spin-independent
dot). An electron in a single spin-independent r5 potential is
found to have states with star-shaped scars with five, seven, or
more corners.[28,46] Those patterns are found throughout the
whole eigenfunction spectrum, while the scarred fraction de-
pends on the number, width, and strength of the impurities,
which break the rotational symmetry. In the limit of strong per-
turbation (M ≫ 1), the scars vanish and the wave functions ex-
hibit a chaotic behavior. We reproduced these observations (in
the limits 𝛼 = 0, B0 = 0, HEx = 0, and only one dot).
For brevity, belowwe present results for the confining potential

shown in Figure 1. EachQD is radially symmetric around a center
point ±rc, the centers are separated by a distance w = 2rc. The
potential V0 sets the escape energy of the electron from the QDs.
Mathematically the confinement is described by

V(r) = Min
{1
2
(r − rc)

5, 1
2
(r + rc)

5, V0

}
, r(x, y) =

√
x2 + y2,

rc = rcex (3)

The eigenstates analyzed below are energetically well below V0.
Changing the parameter rc moves the dots toward or away from
each other along the x-axis, while preserving symmetry. There-
fore, in the overlapping region an effective tunnel barrier is cre-
ated for states with energies in the range of and below VB (cf.
Figure 1). The sharp value in the potential at x = 0 can be locally
Gaussian smoothed (with no observable effects on the results).
To quantify and illustrate the degree of localization, we cal-

culate for a given eigenstate energy Ei the eigenstates Ψ𝛼,Ei
(x, y)
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Figure 2. Partial probability densities 𝜌< (as defined by Equation (4)) in the left QD as the eigenstate energy increases starting from the ground state.
Distance between the QDs centers is w = 318 nm. Impurities reside in the right QD and have a width of 𝜎 = 5.3 nm (cf. Equation (2)). We consider
NImp = 261 independent impurities. The orange lines indicate the tunneling probability (T̃) for a state of given energy in WKB approximation along y = 0
(cf. Equation (5)). Top row: Impurity strength isM = 0 in (a) orM = 0.4meV in (b). When the eigenenergy is large enough (with respect the top of the
tunneling barrier), the wave functions tunnels and spreads evenly over the whole system, hence, the partial densities are equal, 𝜌< = 𝜌> = 0.5. Adding
impurities the left/right symmetry is broken. Bottom row: Impurity strength is fixed atM = 0.54meV and the QDs centers are shifted by c) 160 nm and
d) 185 nm. In comparison with panels (a,b), wave functions can localize in either QDs even when energetically, the tunneling barrier is surpassed.

where 𝛼 designates all other good quantum numbers beside Ei
(the dynamics along the z-direction is assumed to be frozen by
appropriately strong confinement). The probability density in the
left (𝜌x<0) and the right (𝜌x>0) QD (the impurities are elastic and
no environmental coupling is present) read

𝜌< = ∫
∞

−∞
dy∫

x=0

−∞
dx 1|𝜅| ∑

𝜅

|||Ψ𝜅,Ei
(x, y)|||2, 𝜌> = 1 − 𝜌< (4)

where 𝜅 counts degenerate states at energy Ei and |𝜅| is the num-
ber of degenerate states.
Due to symmetry in absence of impurities, the electron is

equally likely to reside in either of the dots (Figure 2). The
left/right symmetry is broken when adding impurities and the
states localize either to the left or right QD in the low-energy
regime (see Figure 2b). With increasing Ei, the wave function
penetrates the tunnel barrier. In the limit, where the eigenenergy
is in the range ofVB or higher, the states delocalize over bothQDs
but partial densities are not necessarily equal. Our findings are
supported by the semi-classical tunneling probability. We define
the WKB approximation along the line at y = 0, reading

T̃(E) = exp
⎛⎜⎜⎝−2

xB

∫
−xB

√
2m∗(V(xex) − E)

ℏ2
dx

⎞⎟⎟⎠ (5)

xB denotes the turning point of the classical trajectory, that is,
the point at which E = V(r). The examples 𝜌< in Figure 2 are dis-
played for 3000 eigenstates with maximum energies of Emax ≃
9meV alongside with the WKB approximation (Equation (5)).
In Figure 2a, rc = 185 nm and no impurities are added, there-
fore 𝜌< = 1∕2 = 𝜌>. Panel 2b shows the partial densities with
impurities (withM = 0.4meV, 𝜎 = 5.3 nm) residing in the right
QD which result in localization on either of the dots. The influ-
ence of the distance between the QDs on the partial densities
is shown in Figure 2c,d. In Figure 2c rc = 160 nm and in Fig-

ure 2d rc = 185 nm and impurities are placed on the right side of
the system in both cases (M = 0.54meV, 𝜎 = 5.3 nm). The bar-
rier heights are VB = 3.3 and 7.2meV, respectively. The first 500
states for rc = 160 nm can be considered to be independent, when
the impurities are added (Figure 2c). In a single electron picture,
the probability to find the particle on either side of the double po-
tential is one. Increasing the distance w to 370 nm, the transition
region between coupled (via tunneling) and uncoupled regions
broadens and the first 1500 states may be considered to be un-
coupled (Figure 2d). In Figure 2d the impurities are 30% stronger
with respect to Figure 2b, otherwise the setup is the same. Evi-
dently, the overall measure of the coupling in this sense does not
depend on the particular perturbation. Already impurities with
M = 54 μeV render similar results.

2.2. Quantifying Scarring

2.2.1. Statistical Measures

Scars for a single QD are well studied,[28] and the dependence of
multiple statistical parameters on the impurity parameters was
investigated previously.[20] We use statistical measures to judge
chaoticity. Statistics however is not a sufficient indicator for scar-
ring, as detailed below. Therefore, the energy spectrum is usu-
ally analyzed with further tools,[20,47–49] where multiple statisti-
cal parameters are introduced to have a quantitative measure for
chaoticity. Of a particular interest are the distances of consecu-
tive energy levels, that is, the distribution of the nearest neighbor
level spacings (NNLS). A common tool is the Brody-distribution
p𝜈(s)

[50] for NNLS s, given by

p𝜈(s) = a𝜈(𝜈 + 1)s𝜈 exp
(
−a𝜈s𝜈+1

)
,

a𝜈 = Γ
(
𝜈 + 2
𝜈 + 1

)𝜈+1 (6)
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Figure 3. NNLS distributions of the double QD system (left panel), left QD (middle panel), and right QD (right panel). The parameter q follows from
fitting the calculated data to Equation (7). The centers of the QDs are 580 nm apart, leading to the localization of the first 3050 (energies ranging from
0.2 to 9meV) states to either side. 500 impurities withM = 0.65meV and 𝜎 = 5.3 nm are randomly dispersed across the two QDs.

The parameter 𝜈 connects between different common distribu-
tions, for instance 𝜈 = 0 corresponds to the Poissonian, and 𝜈 = 1
to the Gaussian orthogonal ensemble (GOE) of Wigner.[47] A fur-
ther distribution proposed by Berry and Robnik[49] reads

Pq(s) = e−qs
[
q2erfc

(√
𝜋

2
q̄s

)
+
(
2q̄q + 𝜋

2
q̄3s

)
exp

(
−𝜋

4
q̄2s2

)]
,

q̄ = 1 − q

(7)

where s is normalized to the mean level spacing s̄. A Poissonian
(Wigner) distribution is obtained for q = 1 (q = 0). Themixing pa-
rameter q is a direct measure for the type of distribution signaling
the coexistence of regular and chaotic behavior in the underlying
classical phase-space.[47] Using Equation (7) to fit the NNLS ob-
tained numerically provides a signature of the phase-space struc-
ture.
Another distribution with a quantum-mechanical background

was presented by Izrailev,[48] where the NNLS distribution is ap-
proximated by the expression

P𝛽 (s) = As𝛽 exp
(
−𝛽𝜋2

16
s2 −

(
C − 𝛽

2

)
𝜋

2
s
)
,

1 =
∞

∫
0

P(s)ds,

1 =
∞

∫
0

sP(s)ds

(8)

The parameters A and C are fixed by the normalization condi-
tions, 0 ≤ 𝛽 ≤ 2, where for 𝛽 = 0 this function reduces to the
Poissonian distribution and for 𝛽 = 1, 2 the GOE, Gaussian uni-
tary ensemble (GUE)Wigner distributions[51] on a 5% (0.7%) con-
fidence level, when the number of levels does not exceed 104.[47,48]

Hence, this distribution is well-suited to describe spin-orbit cou-
pled systems or systems coupled to magnetic fields. We note that
the mixing parameters are to be viewed only as a reasonable indi-

cator for quantum chaos without quantitative statements regard-
ing the underlying phase space.
If not stated otherwise, the mixing parameters are obtained

directly from the energy data. The complete spectrum is split ac-
cording to the partial densities Equation (4) into energies belong-
ing to states localized mostly in one of the QDs (left or right).
TheNNLS are obtained and normalized to themeanNNLS value.
Then, the distributions Equations (6)–(8) are fitted to the respec-
tive normalized NNLS data. In this paper, the calculated eigen-
values are ordered by their magnitude and a histogram is calcu-
lated withΔs = 0.02, which corresponds to 0.55 μeV of theNNLS.
Then, we fit Equations (6)–(8) to our data and extract the mixing
parameters. If the QDs are effectively decoupled, the spectra are
divided into two sub spectra containing only energies belonging
to wave functions which are entirely localized in the left (right)
QD. In the case where one QD is perturbed by impurities, the
perturbed sub spectrum is expected to deviate from the Poisso-
nian distribution while the unperturbed one remains (almost)
unchanged (see Figure 3).

2.2.2. Identifying Scarred States

The number of scarred states cannot be determined by spectral
measures. To calculate the scarred ratio, a base sample is selected
which will be compared to the rest of the wave functions. Lower-
energy as well as high-energy states (by means of the considered
part of the spectrum) are selected because of the rapid oscillations
and varying spacial extension. To find similar wave functions, the
pre-selected sample of states will be compared to all other calcu-
lated states by applying a Gaussian filter 𝜂 with a variance 𝜂 to
remove the fast oscillations and calculating the mean squared er-
ror (MSE)

d𝜂ij =

√
Mean

k,l

{|||𝜂Ψi(xk, yl) − 𝜂Ψj(xk, yl)
|||2
}

(9)

where the index i counts through all obtained eigenstates and j
through the base-sample states. If not stated otherwise, 𝜂 is set
to 190 nm for all calculations. When i = j the matrix element is

Adv. Quantum Technol. 2023, 6, 2200160 2200160 (4 of 12) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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Table 1. Number of obtained states and the fraction of scarred states for a double QDs with centers spaced by 370 nm and having 198 impurities
randomly distributed in r(x + rc, y) < 318 nm, with 𝜎 = 5.3 nm and strengths ranging from M = 0 to 0.54meV. The mixing parameter (Equation (7)) is
shown for the whole (left, right) system. Typical scars are found throughout the whole spectrum and are shown in the last column. The pictures are
convoluted with a Gaussian function with 𝜂 = 3.5 using scipy’s Gaussian_filter function for better visibility.

Impurity strength Obtained states % Scarred Mixing q (q<, q>) Scars

0 3032 9% 1.0 (1.0, 1.0)

54 μeV 3053 26% 1.0 (1.0, 1.0)

0.14meV 3052 24% 1.0 (1.0, 1.0)

0.27meV 3007 21% 1.0 (1.0, 1.0)

0.41meV 3042 32% 0.57 (1.0, 0.43)

0.54meV 3035 29% 0.39 (0.53, 0.26)

zero. IfΨi(xk, yl) ≃ Ψj(xk, yl) for all k, l, then dij ≪ 1 and the states
are considered similar. Every column of the matrix d ≡ d𝜂ij is fil-

tered with the mask dij > 𝜇MSE
j −

√
2𝜎MSE

j , where 𝜇MSE
j , 𝜎MSE

j are
the mean and the variance of the respective column. The result is
a matrix d̃, where every non-zero entry represents a pair of highly
similar states. This is a tedious task, which could be further au-
tomated by using an image classification algorithm using the
tensorflow package. For similar systems (without external fields,
equal shifts only varying the impurities) we found a good agree-
ment with the MSE-approach. However, for this approach a pre-
selected and classified large training data set is needed. Hence
for the spin-less and SOC case different models are needed as
well as for different magnetic fields, since those change the scar
patterns which we are looking for.

2.3. Numerical Details

Eigenstates and eigenvalues are obtained by applying a third or-
der finite central difference scheme to Equation (1) and solving
the eigenvalue problem utilizing the petsc4py library. A Krylov-
subspace method[52] was used with automatic parameter estima-
tion from the package and a convergence measure of 10−12. Fur-
ther, we ensured convergence by increasing the number of grid
points of the finite differences. Since the calculations presented
in this paper are quite time- and storage consuming, the order of
wavefunctions might change using other methods but the statis-
tics and the overall results remain valid.

3. Results

3.1. Influence of Coupling

Geometrical scarring can be observed for rc ≥ 132 nm in the en-
ergy range, where wavefunction tunneling according to Equa-

tion (5) is feasible. For smaller spacings, the shape of an individ-
ual QD is deformed such that, no typical scar (cf. Table 1) can be
formed. In those cases, bouncing ball scars dominate the scarred
wavefunction spectrum. For values ≥ 290 nm, the tunnel barrier
VB has reached the value V0. Further, this mechanism can be
viewed as an additional control parameter to enhance scarring
at a certain energy assumed that the system is perfectly symmet-
ric. In reality, this would not be the case. The influence of those
imperfections is modeled by symmetry-breaking perturbations.
Asymmetric perturbation is achieved by placing impurities in-
side the right QD, xImp > 0, near its center (away from the tunnel
barrier). The question is whether scars are formed and localized
in the unperturbed (left) QD.

3.1.1. Full Perturbation

For a QDs center distance of 580 nm we calculated the first 3050
eigenstates and found that all are fully localized in either QD.
500 impurities are randomly distributed in both QDs with an
individual strength of M = 0.65meV and 𝜎 = 5.3 nm. On both
sides, we find 5-point star-like scars such as those in Figure 4
but also straight paths (bouncing ball states). The statistical pa-
rameter derived from Equation (7) shows, that the whole system,
as well as the subsystems, are in the strong scarring regime.
In this case the statistics of the system and the two subsys-
tems behave similar. This is to be expected since both subsys-
tems are equally perturbed, leading to scarring. The values are
q = 0.39 ± 2.6 × 10−4 (all), q = 0.074 ± 1.6 × 10−4 (left subsys-
tem) and q = 0.067 ± 1.9 × 10−4 (right subsystem) for in total
3050 data points (“all”) and 1525 data points (“left” and “right”),
see Figure 3 for zero magnetic field. Hence, the difference be-
tween the whole spectrum and the subsystems’ spectra are not
numerical errors. We observe that levels with small energy spac-
ings are most affected by combining the subsystems. The pertur-
bations shift the two sub spectra with respect to each other but

Adv. Quantum Technol. 2023, 6, 2200160 2200160 (5 of 12) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 4. 5-Point star scars in the a) right and b) left QD, QDs separated by 580 nm, the tunnel barrier lies at VB = V0 = 68.5meV. The impurities with
(M = 0.65meV, 𝜎 = 5.3 nm, cf. Equation (2)) located in the right QD are marked green. The 2746th (6.3meV) and 1909th (8.1meV) state are shown. c)
The NNLS distribution of 3036 obtained eigenvalues.

do not lead to a strong level repulsion. These small energy-level
spacings are thus ruled out by analyzing the symmetry-resolved
spectra leading to a lower mixing parameter q, thus revealing the
perturbation induced level repulsion in each QD.

3.1.2. Partial Perturbation

When all impurities are in the right QD, strong localization and
prominent scars on both QDs are still observed. Two examples
are shown in Figure 4, where 261 Gaussian impurities with 𝜎 =
5.3 nm and M = 0.65meV are added only to the right QD (i.e.,
at x > 0). Even if the strength is lowered toM = 7 μeV, all states
are fully located either in the left or the right QD. Moreover, the
impurities lead to dynamical scarring. Prominent scars are visi-
ble similar to those reported in ref. [#0028] for a single QD. The
star-shaped scars are found in both QDs, the perturbed and the
unperturbed one, although, the QDs couple only weakly. This
seems to be counter intuitive. Both, the left and right QD wave
functions have (when considered separately) an exponentially de-
caying tail into the other subsystem, which is obviously sufficient
to trigger the formation of scars in an unperturbed region which
for itself does not host scars. We call such scars phantom scars.
The non-linearity of the left QD potential is not necessary for the
scar formation. Using a harmonic potential for the left QD, scars
are also formed (results not shown for brevity). We note here the
difference to Anderson-localized modes[53,54] which are usually
restricted to a perturbed region and less influenced by distant re-
gions such as system boundaries. The appearance of phantom
scars endorse the fact, that although scarring is limited to a very
narrow frequency window, scars span the whole system signaling
a quantum mechanical coherence between different parts of the
system. For example, one may conduct experiment on the left
QD only and evidence the presence of the phantom scars. Re-
moving the impurities in the right QD switch off this dynamical
scar state.
For a quantitative insight, Figure 4 shows the NNLS distri-

bution for the lowest 3036 eigenstates. The mixing parameter
q = 1 is inferred by fitting the distributions of NNLS to Equa-
tion (7). For impurity-assisted scarring a shift toward a Wigner
distribution is expected, however, a Poissonian distribution was
obtained. The same result is found when the sub spectra for
the left and right subsystem are fitted to Equation (7). In con-
trast, the scars found in Figure 4 are not isolated features, similar
states are found over the whole spectrum calculated for this anal-
ysis. The similarity analysis, with only star-shaped scars as basis,
shows that almost 22% of the eigenfunctions are scarred. In con-

trast, the full perturbed system shows around 6% scarred eigen-
functions, although the spectral statistics are hinting for much
stronger scarring. However, it seems that the perturbation is too
strong and the system is already in a regime where the impurities
destroy the quantum scars. This is surprising, since the param-
eters for the impurities chosen for the full perturbed system are
well suited for strong quantum scarring in a single r5-QD.
The impurities located inside the tunnel barrier are likely the

reason for scarring in the supposedly unperturbed system. To ad-
dress this, the impurities were shifted toward the center of the
right subsystem. Now, the impurities are placed in the area r(x +
rc, y) < 318 nm, the number of impurities is 198, 𝜎 = 5.3 nm and
M = 0.54meV. Again, scarred eigenfunctions are found both, in
the left (unperturbed) and right (perturbed) QD, where around
29% of 3046 wave functions are scarred. The eigenfunctions are
still completely localized either to the left or right subsystem.
Thus, the unperturbed subsystem is still influenced by the per-
turbation and scars are formed even in the uncoupled regime.
This finding is supported by the spectral statistics of the system.
If all eigenvalues are considered, the NNLS distribution is purely
Poissonian (q = 0), the same time both sub spectra for the left
and right QD are in the strongly mixed phase (q = 0.2).

3.1.3. Strong Tunneling Regime

Figure 2 indicates that (for the first 3000 states we calculated) an
inter-dot spacing below 370 nm allows for the formation of tun-
neling. We considered QDs with their centers spaced by 370 nm
with 198 impurities within the area encircled by r(x + rc, y) <
318 nm, with a strength M = 0.4meV and 𝜎 = 5.3 nm. Only the
lowest few hundred states are localized in either dots, all other
wave functions are spread over the whole system. The spectral
analysis of the NNLS shows that when interdot scattering is
strong, the mixing parameter for the system is q = 0.56, indicat-
ing the possibility of strong quantum scarring. The sub spectra
for the left and the right dots behave very differently. The right
subsystem which is subjected to the perturbing potential has a
mixing parameter q = 0.43, which is comparable to the one found
for the whole system. However, the left subsystem shows Poisso-
nian behavior (q = 0), where we expect the absence of scarring.
In contrast to this finding, the typical scars which have been pre-
sented before are still found among the states strongly localized
in the unperturbed QD.
Indeed, many of the eigenfunctions are scarred, but now a

multitude of other classical paths are found. In Figure 5 three dif-
ferent scarred wave functions are shown, namely the states 2765,

Adv. Quantum Technol. 2023, 6, 2200160 2200160 (6 of 12) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 5. Double QDs with centers spaced by 370 nm and with 198 impurities with 𝜎 = 5.3 nm. Corresponding states with the same energies without
(a–c) and with impurities (d–f with M = 0.4meV) are shown. In panel (d), the location of the impurities used for panels (d–f) are denoted by green
dots. Top: States 2809, 2813, and 2863 are shown with energies 8.25, 8.27, and 8.36meV. The blue line in panel (b) indicates the cross-section of the
potential at y = 0. The height of the potential at x = 0 is VB = 7.2meV. Bottom: 5-Point star scars in the left (d,e) and both (f) QDs. The state in panel
(d) is strongly localized in the unperturbed QD but is still scarred. The 2765th, 2775th, and 2818th state are shown (corresponding energies 8.25, 8.26,
and 8.35meV). Previously unscarred states are scarred after adding impurities.

2775, and 2818 with eigenenergies 8.25, 8.27, and 8.35meV. In
total, around 31% of the calculated wave functions (total 3042 ob-
tained) were scarred, see Figure 5 (not counting straight paths
like panel b). This shows, that scarring in this system is very ro-
bust against coupling it to another system.
A relevant question concerns the stability of scarring against

perturbation, that is, with increasing strength M of the impuri-
ties. Scarring is destroyed for most systems calculated in this pa-
per at impurity-strength above 0.65meV. The results for the cal-
culations of six different impurity strengths (0, 54 μeV, 0.14meV,
0.27meV, 0.41meV, 0.54meV) are shown in Table 1 along with
their spectral statistics obtained from fitting the NNLS to Equa-
tion (7). In all calculations typical scars are found. Surprisingly,
this is not supported by the spectral statistics. When impurities
are present, in every system more than 20% of the calculated
states were scarred, but the spectral analysis predicts no scarring.
At least none, which are purely impurity-assisted. When no im-
purities are placed inside the right subsystem (M = 0), around
9% of the states were scarred. The true number for all consid-
ered configurations is even higher, when bouncing-ball scars are
considered as well. However, most scars are present in the high-
energy regime, while in the other cases already the first few hun-
dred states may show scar features.
The geometry of the system favors inherently the formation of

scars which are only found when perturbing a single QD. When
bothQDs are decoupled, no scars are found, but when the system
is moved into the coupling regime, individual and coupled scars
emerge. This also happens without impurities. Table 1 shows,
that this process is strongly enhanced, when the system is per-
turbed. In this case, it is of no relevance where the perturbations
are placed, it is already enough when only one subsystem is sub-
jected to impurities.
For the configurations presented in Table 1 the enhancement

of scarring is largest at a strength ofM = 0.41meV with around
3.5 times more scars. This is accompanied by an increase of os-
cillations away from the classical path. Also, when the QDs are
coupled, the 5-point stars tend to align with each other. They ei-
ther touch in one corner or in two corners, see Table 1 (M = 0).
In a single QD the orientation of the path is quite random, the

scar maximizes the overlap with impurities but our calculations
showed that multiple orientations are found nonetheless. This
makes the configuration presented here interesting for transport
applications since the orientation of scars is deterministic due to
the geometry.

3.2. Magnetic Fields and (Local) Spin-Orbit Coupling

For an applied magnetic field B = B0ez we use the symmetric
gauge A = B0∕2(−y, x, 0). The field strength B0 varies from 0 to
0.94 T. The magnetic field leads to a deflection of the charge car-
riers resulting in new short periodic orbits. For a magnetic field
strength B0 = 0.7 T we find elliptical, triangular, and deformed
five-point-structured scars. Performing calculations of the corre-
sponding classical billiard reveal these periodic orbits in the clas-
sical case as well.
Without impurities and magnetic field (M = 0, B0 = 0), the

system is left/right symmetric with respect to y = 0.When amag-
netic field is applied, the system is point-symmetric around the
origin. Overall, the partial densities show the same features as
without magnetic field, uncoupled and coupled regimes exist de-
pending on the distance of the QDs and the energy of the consid-
ered eigenstates. Due to the vector potential, particles will be de-
flected in different directions in each QD. Hence, the individual
QDs have the same energy-spectra but the wave functions have
different phases, which can lead to a localization to either QD
in the uncoupled regime, even without impurities. The analysis
of the NNLS for each system are shown in Figure 6. the mag-
netic field strength varies from 0 to 0.94 T in steps of 4.7mT. The
qualitative behavior for a half-perturbed system in dependence
on impurity strength and magnetic field is well captured qualita-
tively for thewhole, as well as for the sub spectra, nomatter which
fit-model (Equations (6)–(8)) was used. For these calculations 198
impurities were scattered in the rightQD (see Figure 5d).With in-
creasing impurity strengthM, the statistical parameters hint for
increasing chaoticity in the system. However, we observe a jump
within all statistical models (Figure 6) when the magnetic field
is switched on. This could be due to the lifted degeneracy, shift-
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Figure 6. Fitting values of all considered distributions, see Equations (6)–(8), of a half-perturbed system with rc = 185 nm without SOC (𝛼 = 0). In
total 3000 eigenvalues were calculated and the spectra for the whole (all), left and right QDs were investigated. Note the larger y-range for the Izrailev-
parameter 𝛽. In all cases, the deviation from the Poissonian distribution of spectra belonging to the right subsystem increases with increasing impurity
strength. The left unperturbed QD is in all cases almost Poissonian (q = 0, 𝜈 = 0, 𝛽 = 1). For the spectra of the whole system, the strongest deviations
occur for the Berry–Robnik–Izrailev-distributions. These models occur to be more sensitive to impurity-induced perturbation. However, the qualitative
behavior is well captured by all models.

Figure 7. Ratio of scarred states of a full perturbed and half perturbed system with a QDs centers spacing of 370 nm, a magnetic field strength of
700mT and three corresponding examples of the examined eigenstates for each perturbation. Black curves show the similarity ratios when the MSE
dij is calculated without Gaussian smoothing (𝜎 = 0). Other data points are the mean value of the MSE for 𝜂 = 130 and 190 nm. Without smoothing,
Equation (9) provides no reliable results due to short wavelength oscillations of the wave functions. Scars in the unperturbed case (M = 0) remain scarred
(blue curve), while new scarred states emerge with increasing impurity strength (red and green curves). With strong perturbations (M > 0.4meV), scars
are destroyed. Note the matching color of the frame of each eigenstate. Around 3000 states were calculated for each configuration.

ing smaller values in the NNLS to the right part of the spectrum,
leading to stronger deviations from the Poissonian distribution.
In line with the findings for the field-free case, a strong in-

crease in the number of scarred eigenstates is observed when an
external magnetic field is applied. Some results for a fully per-
turbed and half perturbed system with a separation of the QDs
of 370 nm and a magnetic field of 700mT are shown in Figure 7.
There, the MSE (Equation (9)) was calculated for selected states
which are scarred in systems without impurities (green, fully
perturbed and blue, half perturbed). Unscarred states in a sys-
temwithout impurities transform into scars when impurities are
added, even when they are solely located in the right subsystem.
A typical example is shown in the top row (blue framed states)

of Figure 7. Without impurities the state can be represented as a
sum of independent unperturbed eigenfunctions of a single QD.
When the perturbation becomes stronger, an elliptical scar in the
perturbed region forms. In total, this increases the number of
scarred eigenstates in the spectrum. We observe a peak of the ra-
tio of scarred states at around 20% to 30% for the fully perturbed
and the half perturbed system,which supports our findings in the
field-free case. With even stronger perturbation, the wave func-
tions become more chaotic, as exhibited by the wave functions
in Figure 7 for M = 0.27 and 0.4meV. Also, the fixed orienta-
tion (see the green framed state atM = 0 of Figure 7) which was
previously found in the field-free case is destroyed in the limit
of strong perturbation. This state splits up into partial scars in

Adv. Quantum Technol. 2023, 6, 2200160 2200160 (8 of 12) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 8. Spin density sz(r) for the states 2886 a) with 𝛼 = 7meV∀ and 2768 d) with 𝛼 = 22meV∀. Double QDs centers are spaced by 370 nm. 198
impurities are present in the right QD with 𝜎 = 5.3 nm. Magnetic field strength is B0 = 940mT. Spin density sz(r) with local Rashba impurities (Equa-
tion (11)), QDs centers are spaced by 370 nm, and ten impurities with 𝜎 = 5.3 nm were added. Magnetic field strength is B0 = 700mT and the SOC
strength is 𝛼 = 14, 22, 29, 36meV∀ (b,c,e,f).

the right and the left QDs when impurities are present. Figure 7
shows only the scar, where the density shifts toward the unper-
turbed subsystem.
Spin-orbit coupling roughly doubles the number of wave func-

tions needed to cover the same energy range compared to the
spin-less case. We rely on parameters found from previous calcu-
lations to identify scarred eigenstates. Without SOC (i. e., 𝛼 = 0),
the spin-up and -down states are energetically degenerate. For
weak SOC, a dominant contribution to the distribution of the
NNLS near s = 0 arises. For an insight it is beneficial to analyze
the spin-resolved spectra.[44,55] Here, the magnetic field was var-
ied from 60 to 940mT, and three values for the SOC parameter
𝛼 were chosen, 7, 14, and 22 meV∀. Even with SOC, scars are
found. Typical examples are shown in Figure 8 where the spinor-
components are shown in the first two columns (Ψ̄ = (Ψ↑,Ψ↓))
and the third column shows the local spin density

sz(r) = |Ψ↑(r)|2 − |Ψ↓(r)|2 (10)

The Rashba SOC couples the components of the spin with the
kinetic momentum by the terms 𝜎xpy and 𝜎ypx. A large contri-
bution of these terms is expected at regions where the momen-
tum vector changes its direction. This can be observed in Figure 8
(third column), where a flip in the z-component is visible at the
corners of the trajectory or regions with strong curvature. In con-
trast, radially symmetric wave function have spatially separated
spin paths, that is, Ψ↑ concentrates around a circle of radius r↑
and Ψ↓ around r↓. In the case with localized SOC, we assume a
local enhancement of the SOC parameter. Hence, the SOC part
of Equation (1) changes to

HLSOC =
(
𝛼
∑NImp

n=1 VImp(rn)
)
(𝝈 ×𝚷)z (11)

where the impurities represent localized SOC. Further, we as-
sume that the local coupling is dominating. Hence, a strong

change in the local spin density is expected at the impurity loca-
tions while, for example, the sz component is constant away from
the perturbing potential. This can be seen in the second and third
column of Figure 8, where in contrast to conventional SOC spin
flip (color change fromblue to red or vice versa) occurs in regions,
where only a small change in the momentum is expected.

3.3. Correlators and Wavepacket Dynamics

Next, we computed the correlators of the form

C(i, j)d = i(r̃)j(r̃ + d) − j(r̃)i(r̃ + d) (12)

where r̃ (0 ≤ r̃ ≤ 1) is the arc length measured along the scar tra-
jectory and d is the shift, 0 ≤ d ≤ 1 and i,j(r̃) are expectation val-
ues of any operator along the trajectory. Here, d = 1 represents a
full rotation of the trajectory, d = 0.5 is a half shift (in case of a cir-
cle it is a 180◦ rotation). Hence, the function C(𝜎x, 𝜎y) is symmet-
ric to the point d = 0.5. Some examples are shown in Figure 9,
where the correlation between the x- and y-components of the
spin expectation (Equation (12)) value along various trajectories
are shown. In most cases, the correlator has random oscillations
which might be connected to strong local density oscillations of
the state along the trajectory. The purity of the scar has a strong
influence on the correlator, leading to increased correlation by
orders of magnitude for isolated states (Figure 9a (green curve),
Figure 9c (yellow curve)). Therefore, we expect a vanishing effect
of correlation of any observable due to scars in the weak scarring
regime, namely when a small fraction of states is scarred.
The wavepacket dynamics in a system with local SOC

was investigated. Previous studies indicated clear recurrence
features for single-particle as well as for the many-body
dynamics.[20,28,56,57] Here, a wavepacket is launched along the
scar, that is, an electron is injected into the nanostructure, for
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Figure 9. Spin-expectation value correlator C(𝜎x , 𝜎y) (Equation (12)) for a
system with local SOC (left panel, B0 = 700mT, 𝛼 = 14meV∀,NImp = 10)
and magnetic impurities (B = 940mT, NImp = 197, 𝛼 = 7 (middle) and
14 meV∀ (right)). Note the logarithmic scale. d denotes the shift of the
oberservables along the path (1 corresponds to a shift amounting to the
full path length).

a system with ten impurities acting as a source of local SOC (see
Equation (11)). We calculated the fidelity F(t) with respect to the
initial state, the overlap OImp of the wavepacket with the impu-
rity potential and the expectation value of the sz component. We
defined the fidelity and overlap as

F(t) =
||||∬ Ψ(0)Ψ∗(t)dx dy

||||2

OImp(t) =
NImp∑
n=1

∬
⎛⎜⎜⎝

||Ψ↑(t)||2VImp(rn)

𝜀 + ||Ψ↑(0)||2VImp(rn)
+

||Ψ↓(t)||2VImp(rn)

𝜀 + ||Ψ↓(0)||2VImp(rn)

⎞⎟⎟⎠dx dy
(13)

where Ψ(t) = (Ψ↑(t),Ψ↓(t)) denotes the spinor at time t and 𝜀 is
a real positive number to ensure convergence in case the de-
nominator equals zero. Here, we used a value of 𝜀 = 10−2. In
Figure 10, the fidelity, the impurity overlap, and 𝜎z expectation
value are plotted for a wavepacket launched on the scar of Fig-
ure 8 (top row, last column) at r0 = (76,−37) nm, with momen-
tum p = (4.37,−1.6)meV1∕2. Cases with two FWHMs along the
scar of 120 and 250 nm and a perpendicular FWHM of 12 nm
were considered, with similar results for the time propagation.
The scarred state has an expectation value sz = 4 × 10−2, it is al-
most unpolarized in total, while the local spin density fluctu-
ates along the trajectory. Flips of the local density are observ-
able near the SOC impurities, in the upper right part of Figure 8
the separation of the spin-up and spin-down trajectories are ob-
served. Five resonances of the fidelity are clearly visible, where
after T1 = 20 ps only 10% to 20% of the wavepacket coincide with
its initial form. The first recurrence time T1 varies from 19.3 ps
(sz(0) = −1) to 19.8 ps (sz(0) = 1). Apparently, the wavepacket is
slowed down depending on its preparation state, but the influ-
ence is still minor compared to the total propagation time. Also
the value F(T1) depends on the initial spin polarization of the
wavepacket. The strongest recurrence is observed, when its to-
tal polarization equals +1. However, the initial polarization is de-
stroyed after about 10 ps for all considered cases. This time is ex-
actly when the overlap OImp(t) maximizes for the first time. Due
to the local SOC, the polarization state of the wavepacket is de-
stroyed and starts to fluctuate with a frequency of about 20 ps,
which matches the recurrence time T1.

4. Summary and Discussion

We studied the impact of scalar and magnetic perturbations on
the carrier dynamics in double quantum dots subject to external
fields and Rashba-type SOC. We find two types of quantum scar-
ring, geometrical and perturbation-induced scarring. Different
regimes were identified, where the subsystems are effectively de-
coupled or tunneling is significant; these regimes are quantified
on the basis of partial densities. Analyzing the spectra evidences
the mixed nature of the phase space for a large number of ge-
ometries and fields. Numerous types of quantum scars are iden-
tified. A partial perturbation leads to scars in the unperturbed
subsystem even in the weak tunneling regime. Geometrical scars
formed even without impurities proved to be stable against
strong perturbations. The fraction of scarred wave functions
could be enhanced by perturbation up to a factor of three. The
wavepacket recurrence is studied. Recurrence persists for rather
strong SOC and perturbations caused by locally varying SOC.
The results illustrate the versatile nature of scarring and also the
difference of quantum scarring to other localization phenomena
such as Anderson and weak localization.[53,54] The latter occurs
usually at low frequencies whereas scarring emerges at high fre-
quencies. In addition, Anderson-localizedmodes are basically re-
stricted to subregion and are less affected by details of remote
regions (such as boundary details or distant inhomogeneities).
As demonstrated by the phantom scars, scarring occurs in a nar-
row frequency window but is a global phenomena spanning the
whole system domain and depends on a coherent interplay be-
tween far separated regions including their boundaries. For in-

Adv. Quantum Technol. 2023, 6, 2200160 2200160 (10 of 12) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH

 25119044, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/qute.202200160 by Fak-M

artin L
uther U

niversitats, W
iley O

nline L
ibrary on [10/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advquantumtech.com


www.advancedsciencenews.com www.advquantumtech.com

Figure 10. Fidelity F(t), sz expectation value and perturbation potential overlapOImp(t) (Equation (13)) of a wavepacket launched on the scar of Figure 8
(top row, last column) with five different spin-polarizations. The fidelity shows recurrences at multiples of about 20 ps (inset shows peak at 20 ps) up to
100 ps, where the wavepacket is fully delocalized. At 10 ps, the interaction with the perturbing potential has drastically increased rendering the expectation
value of the z-component of the spin dropping (increasing).

stance, a change of the impurity configuration in a scarred QD
affects directly the phantom scar in another quantum dot.
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