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Abstract

A variety of phenomena that are not accessible within the ordinary stationary quantum

mechanics emerges when subjecting a quantum system to a time-dependent external field.

The possibility of controlling the dynamics of quantum systems becomes then an issue

of great importance from both the fundamental and the practical points of view. The

designing of efficient electro-optical devices, the control of chemical reactions, the creation

of entangled states, and the realization of quantum computation are just few examples of

the potential applications that could result from an efficient dynamical control process.

When a quantum system is subject to the action of half-cycle pulses (HCPs), because of

their highly asymmetric nature, some effects, qualitatively different to those resulting when

employing continuous wave lasers or nearly symmetric laser pulses as the driving fields can

occur. In the present work we investigate the possibility of controlling the dynamics of

quantum systems driven by HCPs and under which conditions can the control process be

sustainable in time. The dynamics of three specific physical systems is studied.

The first quantum system considered here consists of a polar diatomic molecule driven

by a train of HCPs. Based on a simple analytical model we were able to estimate the

characteristics and parameters of the train of HCPs that is capable of inducing a strong

and sustainable molecular orientation in the non-adiabatic regime. In addition, the opti-

mization of the control process was performed for the NaI molecule through full numerical

calculations. The obtained results show that the molecular orientation obtained within our

scheme is stronger than that obtained within previous methods and that it is robust to

thermal average up to temperatures of about 10 K.

An electron confined in a symmetric double quantum well driven by HCPs is the second

specific system investigated in the present work. It is shown that when subjecting such

a system to an appropriately designed train of HCPs both the motion and the emission

spectrum of the electron can be engineered on a subpicosecond time scale. Some interesting

phenomena such as low-frequency and half-harmonic generations as well as the coherent

suppression of tunnelling in the absence of quasienergy degeneracy are predicted to occur.

Finally, we investigate the dynamical properties of a ballistic thin mesoscopic ring (MR)

iv



subject to the action of HCPs. We show that the application of a single HCP on a ballistic

thin MR can result in a postpulse, ultrafast build-up of the polarization of the ring. We

also show that when a ballistic thin MR is exposed to the action of two orthogonal, lin-

early polarized HCPs, a non-equilibrium current can be induced in the ring. The induced

non-equilibrium current lasts as long as the coherence of the wave function of the carriers is

preserved and its peak value can be more than one order of magnitude greater than the per-

sistent currents measured in ballistic MRs. Some potential applications and the possibility

of experimentally detecting the postpulses non-equilibrium current are also discussed.



Chapter 1

Introduction

The study of both fundamental and experimental aspects concerning the dynamics of
quantum systems constitutes a major area of investigation. Much progress in the creation
of new principle and techniques towards achieving the long-standing dream of controlling
the quantum dynamics of physical systems has been made in the last few decades. From
the fundamental point of view the study of explicitly time-dependent quantum systems
results a topic of great interest because it gives the possibility of revealing novel phenomena
that are not accessible within ordinary stationary quantum mechanics. From the practical
viewpoint, the control of the dynamics of quantum systems can result in a wide variety of
applications, e.g., the control of chemical reactions, the stabilization of a given configuration
of an atom or molecule, and the creation of entangled states. The coherent control of the
quantum dynamics of physical systems is also highly desirable for potential applications in
designing electro-optical devices and is essential for the realization of quantum computation.

The control of the dynamics of a quantum system requires the appropriate design of
the driving external fields capable to induce a desired time evolution to the system under
investigation. Thus, a considerable amount of investigations has been devoted to the de-
velopment of new principles and techniques for generating more sophisticated sources of
electromagnetic fields. In particular it has recently been possible the generation of highly
asymmetric mono-cycle pulses composed of a short and strong tail [called a half-cycle pulse
(HCP)] followed by a long and weak tail of opposite polarity. Experiments realized by ex-
posing Rydberg atoms to trains of HCPs have shown that the effects induced by the HCPs
can be qualitatively different to those resulting when the atoms are subject to continuous
wave lasers or nearly symmetric laser pulses. The experimental and theoretical investiga-
tions of the dynamics of quantum systems driven by HCPs have been limited, until now,
to the study of the ionization and dynamical stabilization of Rydberg atoms subject to
trains of HCPs. In the present work we explore the possibility of controlling the dynamics
of different quantum systems [such as polar diatomic molecules, double quantum wells, and
ballistic mesoscopic rings (MRs)] exposed to the action of HCPs. We show that a conve-
niently designed train of HCPs can lead to a fast and efficient control of the time evolution
of quantum systems. Phenomena such as non-adiabatic, sustainable molecular orientation
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of a polar diatomic molecule and half-harmonic generation together with the coherent sup-
pression of tunnelling in the absence of quasienergy degeneracy in a double quantum well
are shown to occur as a consequence of the peculiar nature of the HCPs. The possibil-
ity of inducing field-free currents in a ballistic thin MR subject to two linearly polarized,
orthogonal HCPs is another interesting effect that is addressed in the present work.

In Chap. 2 we present an overview of the properties, characteristics, and experimental
generation of HCPs.

General methods such as the generalized Bloch vector approach, the Floquet formalism,
and a numerical algorithm based on the splitting operator approach are discussed in Chap. 3
and are used throughout our study of the dynamics of driven quantum systems.

The definition of quasistationarity of a time-dependent quantum state is introduced in
Chap. 4, where the necessary and sufficient conditions for inducing quasiperiodic quasis-
tationarity to a quantum system driven by an external time-dependent field are discussed
within the generalized Bloch vector approach and the Floquet formalism.

The sustainable orientation of a polar diatomic molecule induced by a conveniently
designed train of HCPs is investigated in Chap. 5 by means of a simplified analytical model
and full numerical calculations.

An study of the dynamics and emission properties of an electron in a double quantum
well driven by a train of HCPs is given in Chap. 6.

The dynamical properties of electrons confined in a ballistic thin MR and subject to
linearly polarized HCPs are investigated in Chap. 7, where the possibility of generating a
postpulses current in the ring is discussed.

Finally, conclusions are summarized in Chap. 8 and some appendices are introduced as
an additional complement to the chapters.



Chapter 2

Half-Cycle Pulses (HCPs)

2.1 General overview

The control of the dynamics of a quantum system requires the appropriate design of external
fields capable of driving the system under investigation to a desired time evolution. Various
difficulties (imposed by technical limitations or by the quantum nature itself) can then
originate in the control process. In particular, the full control in designing electromagnetic
fields still constitutes a challenge for experimentalists. Nevertheless, an enormous progress
in the development of new principles and techniques for creating more powerful, efficient,
and sophisticated sources of electromagnetic fields has been achieved in the last decades.
Laser techniques available nowadays allow for the generation of electromagnetic pulses as
intense as ∼ 1020 W/cm2 (the so-called petawatt laser pulses [1]) and ultrashort pulses with
durations in the femtosecond [2, 3] and even in the attosecond [4, 5] regimes. In these pulses
the electric field oscillates in time between the opposite polarities in a nearly symmetric way.
However, in the last years, it has also been possible to produce highly asymmetric pulses.
Of particular interest are the asymmetric pulses composed by a single optical cycle. Such
highly asymmetric mono-cycle pulses are composed by a sharp tail with a given polarity
followed by a smooth tail of opposite polarity. As the amplitude (duration) of the sharp
tail is usually much larger (shorter) than the amplitude (duration) of the smooth one, the
dynamics of a system driven by such a pulse is, in general, determined by the sharp tail.
For this reason the sharp tail is called a half-cycle pulse (HCP). In what follows we will refer
to the entire mono-cycle pulse and its sharp tail as the full pulse and the HCP, respectively,
while the smooth tail will be referred just as the tail.

2.2 Experimental generation of HCPs

HCPs are usually generated by illuminating a wafer of biased gallium-arsenide (GaAs) semi-
conductor with a short pulse from a Ti:Sapphire chirped-pulse amplifier [6, 7]. The GaAs
wafer is photoconductive with a band gap of approximately 1.4 eV. The bias electric field
is then shorted across the semiconductor surface when one side of the wafer is illuminated
with the ∼ 770 nm laser pulse, which drives the GaAs into conduction. Due to the bias
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GaAs
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+ V
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Ti:Sapphire pulse

Half-cycle pulse

Figure 2.1: Schematics of the experimental procedure for generation of a HCP [6, 7, 8].

field, the electrons quickly accelerate when the Ti:Sapphire pulse hits the wafer and radiate
a short (nearly unipolar) coherent electromagnetic pulse (i.e., the HCP) which propagates
away from the wafer. The radiated HCP is polarized in the direction of the bias field and
its strength depends linearly on the bias field strength. A schematic representation of the
generation of a HCP is shown in Fig. 2.1.

Once the Ti:Sapphire laser pulse has past, the GaAs wafer returns to the insulating
state. However, this transition is much slower than the conduction band transition and the
electrons decelerate over a period of hundreds of picoseconds [8]. This deceleration produces
the subsequent tail with opposite polarity to that of the HCP (see Fig. 2.2). The peak field
of the tail is usually much smaller than the peak amplitude of the HCP. An amplitude
asymmetry ratio of ∼ 10 : 1 can be appreciated in Fig. 2.2, where the temporal profile of
an experimentally obtained HCP [6] is displayed. HCPs with amplitude asymmetry ratio
of ∼ 13 : 1 have also been experimentally obtained [6, 7, 9]. It is also notable that the
amplitude of the tail is significantly different from zero only during a time interval few
times longer than the HCP duration (see Fig. 2.2). We will refer to this part of the pulse
as the effective part of the tail. In Fig. 2.3 we summarize all the components of a highly
asymmetric mono-cycle pulse.

Within the above discussed procedure, HCPs with peak field of up to several hundreds
of kV/cm and duration in the picosecond and subpicosecond regimes can be experimentally
generated nowadays [6, 7, 9]. Furthermore, new theoretical alternatives for generating
shorter and stronger unipolar pulses have recently been proposed [10, 11, 12, 13]. Based on
these novel principles unipolar pulses as short as 0.1 fs and with intensities up to 1016 W/cm2

could be generated in the near future [10, 11].
Other aspect that deserves to be commented is the possibility of experimentally combin-

ing two or more HCPs. The Fig. 2.4 shows a diagram of an apparatus utilized for combining
two orthogonal, linearly polarized HCPs with a relative delay between them that can be
experimentally controlled [9]. Two biased GaAs wafers oriented at right angles with respect



5

0 1 2 3 4
-20

0

40

80

120

160

 

 

F 
[ k

V
 / 

cm
 ]

time [ ps ]

Figure 2.2: Typical pulse shape of an experimentally obtained HCP [6]. The HCP is
approximately 1 ps in duration, while the negative tail persists for hundreds of picoseconds.

to each other produce two counterpropagating HCPs with orthogonal linear polarization
(see Fig. 2.4). The peak field is varied by changing the bias voltage on both GaAs switches
simultaneously, while the polarization of the resultant field is varied continuously by increas-
ing the relative delay between the two Ti:Sapphire laser pulses used to illuminate the GaAs
wafers. In the particular case the time delay between the two counterpropagating HCPs
equals one-half of the HCP duration, a quarter-cycle analog of a circularly polarized pulse is
produced. Such subpicosecond quarter-cycle circularly polarized pulses have been employed
in the experimental investigation of the ionization of Na Rydberg atoms [9]. Similar meth-
ods for combining linearly polarized HCPs with polarizations in the same direction and used
for designing trains of HCPs are also experimentally available [14, 15, 16, 17, 18, 19]. Note
however, that in the case of combining linearly polarized HCPs with the same polarization
it is convenient to choose an appropriate value of the time delay in order to avoid the over-
lapping between the effective tail of each mono-cycle pulse and the HCP of the subsequent
one.

2.3 HCPs and kicked quantum systems

Because of their high asymmetry, the nature of HCPs and symmetric (or nearly symmetric)
fields [e. g., continuous wave (CW) lasers and laser pulses] is qualitatively different. A key
difference is that unlike CW lasers or laser pulses a HCP can deliver a non-zero momentum
transfer to the system over a large number of optical half-cycles (for the case of a highly
asymmetric mono-cycle pulse an optical half-cycle refers to the duration of the HCP). The
impulse ∆p transferred to a system by an electromagnetic field is, in general, determined
by the time integral of the field, i.e., [14, 15, 16, 17, 18, 19]

∆p =

∫

F(t)dt , (2.3.1)
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Figure 2.3: Parts of a highly asymmetric mono-cycle pulse

where F(t) is the time-dependent electric field. In the cases of CW lasers and laser pulses, the
electric field oscillates between opposite polarities and, as different polarities deliver opposite
momenta, the net transfer of momentum over an optical cycle is nearly zero (exactly zero
for CW lasers). This situation drastically changes when HCPs are considered because of
their nearly unipolarity. A HCP delivers a non-zero momentum transfer that is slightly
decreased (remember the asymmetry ratio can be 13:1) by the subsequent effective part of
the tail (see Fig. 2.3). The net momentum the field transfers to the system continuously
decreases in time and vanishes over a period corresponding to the duration of the full pulse.
However, the duration of the full pulse is, usually, several hundreds of times greater than
the HCP duration and the net momentum transferred by the HCP goes to zero very slowly
[note that after the effective part of the tail the field is extremely weak compared to the
HCP peak field (see Figs. 2.2 and 2.3)]. Therefore, a net non-zero transfer of momentum,
essentially determined by the HCP, becomes sustainable over a time period much shorter
than the duration of the full pulse (note that such a period can still be quite large as
compared to the HCP duration). This peculiarity of the HCPs has opened new possibilities
for the experimental realization of kicked quantum systems [14, 15, 16, 17, 18, 19]. If the
characteristic time corresponding to the system under investigation is much longer than the
duration of the HCP (but still shorter than the duration of the full pulse) the interaction of
the system with the HCP can be interpreted, in good approximation, as an instantaneous
momentum transfer or impulsive kick received by the system from the HCP. Within this
approximation, usually called impulsive approximation (IA) [20, 21], the interaction of the
system under investigation with a train of HCPs is given by [17, 18, 19]

V (r, t) ∼ r.
N
∑

k=1

∆pkδ(t− tk) , (2.3.2)

where ∆pk =
∫

F
HCP

(t)dt is the momentum transferred to the system by the kth HCP
[14, 15, 16, 20] , N is the number of applied HCPs (or kicks), δ(x) is the Dirac delta function
and tk corresponds to the time of application of the kth kick.

Kicked quantum systems have been experimentally realized by exposing highly exited
Rydberg atoms to trains of HCPs [7, 9, 14, 16, 17, 18, 19]. The classical orbital period
associated to the highly exited Rydberg atom is much longer than the duration of the
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Figure 2.4: Diagram of the apparatus utilized for creating two counterpropagating orthog-
onal, linearly polarized HCPs [9].

HCPs and, consequently, the train of HCPs can be modelled as a series of impulsive kicks
[16, 17, 18, 19]. On the basis of this considerations the ionization and dynamical stabilization
of Rydberg atoms subject to trains of HCPs have been extensively investigated from both
experimental and theoretical points of view [7, 14, 16, 17, 18, 19, 22, 23]. The possibility
of creating, designing, and probing electronic wave packets by using HCPs has also been
explored [14, 19, 24]. Furthermore recent theoretical investigations [21, 25] have suggested
that HCPs could also be useful for orienting polar molecules.

From all the above mentioned studies (both experimental and theoretical) we can con-
clude that for HCPs with duration much shorter than the characteristic time of the system
under investigation the impulsive approximation gives rather good results and that for an
asymmetry ratio between the HCP and the tail greater than 10:1 the effects of the effective
tail hardly affect the dynamics of the system, i.e., in this limit the system dynamics is
determined by the HCP only.



Chapter 3

Dynamics of driven quantum

systems

The dynamics of a non-relativistic quantum system subject to an external time-dependent
field is described by the Schrödinger equation

i~
∂Ψ

∂t
= HΨ , (3.0.1)

where the Hamiltonian of the system can be written as

H = H0 + V (r, t) (3.0.2)

being H0 the Hamiltonian of the field-free system and V (r, t) represents the interaction of
the system with the external time-dependent field.

In the present chapter we describe three different approximations for solving the time-
dependent Schrödinger equation (3.0.1). We firstly present, in Sec. 3.1 a generalization of
the Bloch vector approach to the case of an arbitrary N -level quantum system. A second
approach (the so-called Floquet theory), particularly useful for the case of time-periodic
external fields, is briefly reviewed in Sec. 3.2. Finally, in Sec. 3.3 we describe a numerical
scheme based in the splitting operator approximation for propagating the wave function of
the system through time.

3.1 Generalized Bloch vector approach (GBVA)

The main idea of the Bloch vector approach consists in performing a transition from the
complex spinor space of the wave function to the real space of a coherence vector called
the Bloch vector. The dynamics of the system then reduces to rotations of the (real) Bloch
vector, giving, at qualitative level, a clear and comprehensive picture of the system evolution.
The approach was originally formulated for the description of magnetic phenomena and is
based on the equation (see, for example, Ref. [26, 27])

∂S

∂t
= γB × S (3.1.1)

8
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that describes the spin dynamics (characterized by the Bloch vector S) of a spin system
subject to an external magnetic field B. In Eq. (3.1.1) γ represents the gyromagnetic ratio.

Although the Bloch vector approach was in principle formulated for the description of
spin systems, R. P. Feynman and coworkers [28] demonstrated that the Bloch vector can
also be used for describing nonspin systems. The standard treatment is valid only for spins
or other physical systems whose energy levels are equally spaced [27, 28, 29]. However, a
generalization (and that is why we call it the GBVA) of the standard Bloch vector approach
that is valid for any N -level non-relativistic quantum system interacting with external forces
of arbitrary strength and time dependence can be formulated, as shown in Refs. [30, 31, 32].

For an N -level system the solutions of (3.0.1) can be expanded on the eigenvectors of
the stationary states |k〉 of the unperturbed system (that we assume are known) as follows

|Ψ(t)〉 =
N
∑

k=1

Ck(t)|k〉 , (3.1.2)

where the stationary states |k〉 obey

H0|k〉 = E
(0)
k |k〉 , (3.1.3)

with E
(0)
k the energy corresponding to the kth unperturbed level. The Hamiltonian (3.0.2)

can then be rewritten as

H(t) =
N
∑

k=1

E
(0)
k Pkk +

N
∑

k,l=1

Vkl(t)Pkl , (3.1.4)

where Pkl = |k〉〈l| are projection operators and Vkl(t) = 〈k|V (r, t)|l〉.
The N2 projection operators Pkl are the generators of the U(N) group . However, for

our purposes it is convenient to perform a transition from these operators to operators of
SU(N). This transition can be done by introducing the following SU(N) operators [33]

Qkl = Pkl − δkl
(I

N

N

)

, (3.1.5)

where δkl and IN are the Kronecker delta function and the (N×N) unit matrix, respectively.
In terms of the new operators Qkl, the Hamiltonian (3.1.4) can be rewritten as

H(t) =
1

N

(

N
∑

k=1

Vkk(t)

)

I
N
+H(t) , (3.1.6)

where

H(t) =
N
∑

k=1

EkQkk +
N
∑

k,l=1

Vk,l(t)Qkl , (3.1.7)

and

Ek = E
(0)
k −

1

N

N
∑

k=1

E
(0)
k . (3.1.8)
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The operator H(t) belongs to the SU(N) group and can therefore be expanded in the
generators of SU(N), i.e.,

H(t) =
N
D
∑

i=1

ai(t)Fi = A(t) · F̂ , (3.1.9)

where
A(t) =

(

a1(t), a2(t), ..., aN
D
(t)
)

, (3.1.10)

and
F̂ =

(

F1,F2, ...,FN
D

)

. (3.1.11)

In the equations above N
D

= dim[SU(N)] = N2 − 1, Fi are the N
D

generators of the
SU(N) group, and the expansion coefficients ai can be found by solving the corresponding
N

D
-dimensional system of linear equations. We note that the expansion (3.1.9) is more

convenient than (3.1.7) because, unlike the operators Qkl, the generators Fi are linearly
independent.

If the generators Fi are chosen in such a way to satisfy

Tr[Fi,Fj ] = 2δij , (3.1.12)

then the expansion coefficients can be expressed as

ai(t) = Tr[H(t)Fi] . (3.1.13)

Note that the generators are defined as in [30, 32, 33] and are one half of the Gell-Mann
F -spin operators [33].

The wave function of the system is completely determined by the vector C(t) whose
components are the expansion coefficients Ck(t) (k = 1, 2, ..., N) in Eq. (3.1.2). According
to Eqs. (3.1.2), (3.1.6), and (3.1.9) the vector C(t) satisfies

i~
∂C(t)

∂t
=

[

1

N

(

N
∑

k=1

Vkk(t)

)

I
N
+

1

2
A(t) · F̂

]

C(t) . (3.1.14)

The vector C(t) is an N -dimensional complex vector. It is convenient, however, to perform
a transition to a real space. Such a transition can be done through a transformation from
U(N) [or SU(N) in the case Vkk = 0] to SO(N

D
) by introducing the generalized (real) Bloch

vector B(t) =
(

B1(t), B2(t), ..., BN
D
(t)
)

through the following map Ξ,

C(t) ∈ C
N : Ξ (C(t)) = B(t) = C†(t)F̂C(t) ∈ R

N
D . (3.1.15)

For the case of two-level systems the map Ξ resembles a Hopf map (see for example [34, 35,
36]). Note that we represented the standard Bloch vector by S in Eq. (3.1.1) and from now
on we use B for denoting the generalized Bloch vector.

From Eq. (3.1.15) one can find the following relations [30]

ρ(t) =
I
N

N
+

1

2

N
D
∑

i=1

Bi(t)Fi =
I
N

N
+

1

2
B(t) · F̂ , (3.1.16)
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and
Bi(t) = Tr[ρ(t)Fi] , (3.1.17)

where ρ(t) represents the density matrix.
In the particular case Vkk = 0 and N = 2, Eq. (3.1.14) reduces to

i~
∂C(t)

∂t
=

1

2

[

3
∑

i=1

ai(t)σi

]

C(t) , (3.1.18)

where σi are the Pauli matrices. In this special case, the Hamiltonian belongs to SU(2).
Since SU(2) and SO(3) are isomorphic, one can write by homomorphism the corresponding
equation for the 3-dimensional Bloch vector B(t), directly from Eq. (3.1.18), i.e.,

i~
∂B(t)

∂t
=

1

2

[

3
∑

i=1

ai(t)Ji

]

B(t) , (3.1.19)

where Ji are the angular momentum operators, generators of SO(3).
The above discussed procedure for obtaining the corresponding equation for B(t) is,

however, quite restrictive. It requires not only that Vkk = 0 but also the isomorphism (more
precisely the homomorphism) between the groups SU(N) and SO(N 2 − 1), something that
is possible only if N = 2. Therefore, in the general case, the equation for B(t) has to be
obtained from its definition (3.1.15). By introducing the antisymmetric structure constants
[33],

fjkl = −
i

4
Tr ([Fj ,Fk]Fl) , (3.1.20)

and the symmetric coefficients [33],

djkl =
1

4
Tr ({Fj ,Fk}Fl) (3.1.21)

of the Lie algebra of SU(N), it is possible to define the following inner products [37, 38]
for any two N

D
-dimensional real vectors X and Y (for a detailed discussion of the different

products and their properties see Appendix A),

(X ∧Y)j = fjklXkYl , (3.1.22)

(X ?Y)j = djklXkYl , (3.1.23)

where the Einstein’s summation convention has been assumed. Then, after some mathe-
matical manipulations, one can obtain from Eqs. (3.1.14), (3.1.15), (3.1.22), and (3.1.23)
that the N

D
-dimensional generalized Bloch vector satisfies the equation

∂B(t)

∂t
=

1

~
(A(t) ∧B(t)) , (3.1.24)

with A(t) given by (3.1.10).
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Taking into account that the structure constants fjkl are totally antisymmetric under
exchange of any two indices, we can rewrite (3.1.24) in matrix form as

∂B(t)

∂t
= A(t)B(t) , (3.1.25)

where A(t) is an (N
D
×N

D
) real matrix whose elements ãkl(t) are given by

ãkl(t) =
i

2~
Tr ([Fk,Fl]H(t)) . (3.1.26)

The formal solution of Eq. (3.1.25) can be expressed as

B(t) = U(t, t0)B(t0) , (3.1.27)

where the evolution operator from t0 to t is given by

U(t, t0) = Tt exp

[∫ t

t0

A(t)dt
]

, (3.1.28)

with Tt representing the time ordering operator. The evolution operator in (3.1.28) belongs
to SO(N

D
), i.e., it represents a rotation of the vector B(t0) in the Euclidean generalized

Bloch space. Therefore the action of U(t, t0) preserves the scalar product and the length of
the generalized Bloch vector is a constant of motion (|B(t)| = const.).

The length of the generalized Bloch vector B(t) can easily be calculated by taking
C = 1√

N
(1, 1, ..., 1)T in Eq. (3.1.15). One then obtains Bi = ξi/N , where ξi represents the

sum over all the elements of the generator Fi. Non-vanishing values of ξi are found only for
the N(N − 1)/2 non-diagonal symmetric generators, for which ξi = 2 [33]. Consequently,
the length of B(t) is given by

|B(t)| =

√

√

√

√

N
D
∑

i=1

B2i =

√

2(N − 1)

N
; ∀ t . (3.1.29)

It is well known that for the case N = 2 the evolution of the system in the generalized
Bloch space corresponds to the motion of a point in the two-dimensional unit sphere S

2,
embedded in the Euclidean three-dimensional space R

3 [27, 28, 29, 37]. One could, naively,
think that the domain D

N
of evolution of an N -level system in the generalized Bloch space

will correspond to a hypersphere S
N
D
−1 of radius |B(t)| embedded in R

N
D . This, however,

is not strictly correct and for N ≥ 3 (for the case N = 3, see for example, Ref. [37]) we
will show that D

N
6= S

N
D
−1. The space of pure states (in the quantum mechanical sense,

i.e., ρ = |Ψ〉〈Ψ|) corresponds to a complex projective space CP
N−1 in the Hilbert space

H
N ' C

N . It is known that the real dimension of CP
N−1 is equal to 2(N − 1) [38, 39].

Therefore, the domain of evolution of an N -level system can be identified with a 2(N − 1)-
dimensional submanifold of R

N
D and D

N
is, in general, only a part of the hypersphere

S
N
D
−1 with radius

√

2(N−1)
N , i.e., D

N
⊂ S

N
D
−1 ⊂ R

N
D . It is clear now that D

N
= S

N
D
−1

if, and only if, N satisfies 2(N − 1) = N
D
− 1, a condition that holds only for N = 2.
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It is worth noting note that Eq. (3.1.29) is, actually, equivalent to the condition Tr(ρ) =
1. This condition, however, is not sufficient, in general, for guaranteeing the positivity
of the density matrix (ρ ≥ 0), i.e., a vector satisfying (3.1.29) does not necessarily imply
the existence of a positive density matrix. We then search for further constraints on the
generalized Bloch vector that guarantee the positivity of ρ.

In order to determine the domain D
N
of evolution of an N -level system in the generalized

Bloch vector space, we firstly note the following identity,

(

B(t) ?B(t′) + iB(t) ∧B(t′)
)

· F̂ =
(

B(t) · F̂
)(

B(t′) · F̂
)

− 2

N

(

B(t) ·B(t′)
)

IN ; ∀ t, t′ , (3.1.30)

that can be obtained from Eqs. (3.1.20) - (3.1.23) (for the details see Appendix A). By
assuming t = t′ in the equation above and taking into account that for pure states ρ is a
projector (ρ2 = ρ) [note that this condition guarantees the positivity of the density matrix],
we obtain from Eqs. (3.1.16) and (3.1.30) the relation

|B(t)|2
N

I
N
+

1

2

(

B(t) ?B(t)
)

· F̂ =
2(N − 1)

N2
I
N
+

(N − 2)

N
B(t) · F̂ ; ∀ t . (3.1.31)

From (3.1.31) one again obtains the condition (3.1.29) and a new constraint for B(t) is also
obtained [38],

(

B(t) ?B(t)
)

=
2(N − 2)

N
B(t) ; ∀ t . (3.1.32)

The domain of the N -level system in the generalized Bloch space is then determined by
the points on the hypersphere S

N
D
−1 for which the corresponding generalized Bloch vectors

satisfy Eq. (3.1.32), i.e.,

D
N
=

{

B ∈ R
N
D | B ·B =

2(N − 1)

N
, B ?B =

2(N − 2)

N
B

}

⊂ S
N
D
−1 ⊂ R

N
D .

(3.1.33)
For two-level systems mutually orthogonal vectors in the two-dimensional Hilbert space
correspond to diametrically opposite points on D2 [37]. However, as a direct consequence
of the asymmetry of D

N
, mutually orthogonal vectors in the N -dimensional Hilbert space

H
N do not lead to antipodal points on D

N
when N 6= 2 [note from Eq. (3.1.33) that if

B(t) ∈ D
N

with N 6= 2, then −B(t) /∈ D
N
]. In fact, it results from (3.1.16) that

Tr[ρ(t)ρ(t′)] =
1

N
+

1

2
B(t) ·B(t′) . (3.1.34)

Therefore, as for pure states 0 ≤ Tr[ρ(t)ρ(t′)] ≤ 1, one then obtain the following inequality
relations [38],

− 2

N
≤ B(t) ·B(t′) ≤ 2(N − 1)

N
; ∀ t, t′ , (3.1.35)

or, equivalently,

− 1

N − 1
≤ cosϑ ≤ 1 ; ϑ = ∠(B(t),B(t′)) . (3.1.36)
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Consequently, mutually orthogonal states in H
N correspond, actually, to points with a

maximum opening angle ϑ = arccos
(

−1
N−1

)

.

The representation of a given observable O (corresponding to the operator o) in the
basis of the N stationary levels of the unperturbed system is given by

O =
N
∑

k,l=1

OklPkl , (3.1.37)

where Okl = 〈k|o|l〉.
Following the same procedure used for obtaining (3.1.6), one can rewrite (3.1.37) as [40]

O =
1

N

(

N
∑

k=1

Okk

)

I +W · F̂ , (3.1.38)

where W represents a vector whose components are the corresponding expansion coeffi-
cients.

In terms of the generalized Bloch vector, the expectation value 〈O〉(t) = 〈Ψ|O|Ψ〉 of the
observable O can be calculated from the following relation

〈O〉(t) = C†(t)OC(t) , (3.1.39)

that leads to [40]

〈O〉(t) = 1

N

N
∑

k=1

Okk +W ·B(t) . (3.1.40)

As previously commented, the motion of the system in the generalized Bloch space
is restricted to the domain D

N
specified in (3.1.33). Therefore, the possible values the

observable 〈O〉(t) can take are only those values corresponding to a point in D
N
. One can

then calculate upper and lower bounds for the quantity 〈O〉(t) through the optimization of
(3.1.40) under the constraint that every point compatible with the evolution of the system
must belong to D

N
[40].

Two important aspects regarding the GBVA deserve to be remarked. The first one is
that the GBVA is valid for every kind of time-dependent external perturbation, no matter
their form or strength. The second one refers to the price that has to be paid for the
elegance of the geometrical interpretation of the GBVA. This price is given by the fact that
the dimension N

D
= N2−1 of the generalized Bloch space rapidly increases with N . Hence,

quantitative calculations within the GBVA can become rather complicated for systems in
which the number of levels involved in the system evolution is not small.

3.2 Floquet approach (FA)

In this section we consider the important case corresponding to a time periodic external
field with period T , i.e., V (r, t) = V (r, t + T ). In such a case the Hamiltonian of the
system [Eq. (3.0.2)] is invariant under discrete time translations, t → t + T . Hence, one
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can study the system dynamics within the Floquet formalism [41, 42, 43, 44, 45]. The
Floquet theorem states that for time periodic Hamiltonians there exist particular solutions
(the so-called Floquet states) to Eq. (3.0.1) that have the form [41, 45]

|Ψλ(t)〉 = e−iελt/~|Φλ(t)〉 , (3.2.1)

where ελ is a real-valued function of the system parameters and the function |Φλ(t)〉, called
a Floquet mode, is periodic in time with the same period of the external field, i.e.,

|Φλ(t)〉 = |Φλ(t+ T )〉 . (3.2.2)

The substitution of Eq. (3.2.1) in the time dependent Scrödinger equation leads to the
following eigenvalue problem

S(t)|Φλ(t)〉 = ελ|Φλ(t)〉 , (3.2.3)

where

S(t) = H(t)− i~ ∂
∂t

; S(t) = S(t+ T ) (3.2.4)

represents the Schrödinger operator [46]. Because of their analogy with the energies of the
stationary states of the undriven system the eigenvalues ελ of (3.2.3) are termed quasiener-
gies and in the limit of an external field switched off adiabatically, they become truly energies
[45]. One can note from Eq. (3.2.3) that the Floquet modes

|Φλ′(t)〉 = einω0t|Φλ(t)〉 ; ω0 =
2π

T
(3.2.5)

with n being an integer number (n = 0,±1,±2, ...) leads to a solution identical to that
in (3.2.1), but with shifted quasienergy ελ → ελ′ = ελ + n~ω0. The quasienergies are
then unique up to multiples of ~ω0 and there is a whole class of solutions indexed by
λ′ = (λ, n). Therefore, the quasienergies can be mapped into a first Brillouin zone, defined
as −~ω0

2 ≤ ε ≤ ~ω0
2 , and any solution from the equivalence class {ελ′ , |Φλ′(t)〉} may be

chosen to represent the Floquet state |Ψλ(t)〉.
The eigenvectors of the Schrödinger operator S(t) belong to the composite Hilbert space

H = L⊗T (L and T are the spaces of square integrable functions in the configuration space
and of time periodic functions with period T , respectively) with the inner product [44, 45],

〈〈f |g〉〉 = 1

T

∫ t0+T

t0

〈f |g〉dt ; f, g ∈ H . (3.2.6)

Thus, the eigenvectors of S(t) (i.e., the Floquet modes) obey the following orthonormality
condition in the composite Hilbert space H,

〈〈Φλ′(t)|Φν′(t)〉〉 = δλ′ν′ = δλνδnm , (3.2.7)

and form a complete set in H,

∑

λ′

|Φλ′(t)〉〈Φλ′(t)| = I . (3.2.8)
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From the completeness of the Floquet modes in H [Eq. (3.2.8)] follows the completeness of
the Floquet states Ψλ(t) in L [45]. Therefore, the general solution of the time-dependent
Schrödinger equation in the case of a time periodic external field can be expanded in the
Floquet states, i.e.,

|Ψ(t)〉 =
∑

λ

Aλ|Ψλ〉 =
∑

λ

Aλe
−iελt/~|Φλ(t)〉 , (3.2.9)

with the time-independent expansion coefficients given by

Aλ = eiελt0/~〈Φλ(t0)|Ψ(t0)〉 . (3.2.10)

The evolution of the state vector from t = t0 to t = t′ is given by

|Ψ(t′)〉 = U(t′, t0)|Ψ(t0)〉 , (3.2.11)

where U(t′, t0) represents the evolution operator. One can then find from Eqs. (3.2.2), and
(3.2.9) the following eigenvalue problem

U(t0 + T, t0)|Φλ(t0)〉 = χ
λ
|Φλ(t0)〉 ; χ

λ
= e−iελT/~ (3.2.12)

for determining the quasienergies and the Floquet modes |Φλ(t0 + kT )〉 at stroboscopic
times (t = t0 + kT ; k = 0, 1, 2, ...). Note also that, because of the time periodicity of the
Floquet modes, at stroboscopic times Eq. (3.2.11) can be rewritten as [45]

|Ψ(t0 + kT )〉 = [U(t0 + T, t0)]
k|Ψ(t0)〉 ; k = 0, 1, 2, ... . (3.2.13)

The stroboscopical description of the system evolution [see Eq. (3.2.13)] can be particularly
useful when studying the long-time dynamics of a periodically driven quantum system, since
the evolution operator need to be calculated only within one period [17, 18, 22, 45].

Taking into account Eqs. (3.2.1), (3.2.3), and (3.2.4), the averaged energy Ēλ corre-
sponding to a Floquet state (note that as the Hamiltonian of the system is time-dependent,
the energy is no longer a constant of motion) is found to be given by

Ēλ = 〈〈Ψλ(t)|H(t)|Ψλ(t)〉〉 = ελ +

〈〈

Φλ(t)

∣

∣

∣

∣

i~
∂

∂t

∣

∣

∣

∣

Φλ(t)

〉〉

. (3.2.14)

The total phase change φλ experimented by the Floquet state |Ψλ(t)〉 during a period is
related to the corresponding quasienergy as [see Eq. (3.2.1)],

φλ = −ελT
~

. (3.2.15)

Therefore, from (3.2.14) follows that the phase change φλ can be written as

φλ = φ(λ)
D

+ φ(λ)
G

, (3.2.16)

where φ(λ)
D

is the dynamical phase of the Floquet state |Ψλ(t)〉 and is related to the averaged
energy as,

φ(λ)
D

= − ĒλT

~
, (3.2.17)
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while the phase

φ(λ)
G

= iT

〈〈

Φλ(t)

∣

∣

∣

∣

∂

∂t

∣

∣

∣

∣

Φλ(t)

〉〉

(3.2.18)

is a geometrical phase, the so called Aharonov-Anandan geometric phase [45, 47] (also called
nonadiabatic generalized Berry phase).

For an external field that if switched off (the field strength F → 0) adiabatically, the
Floquet modes and the quasienergies satisfy [45],

lim
F→0
|Φλ(t)〉 = einω0t|k〉 ; λ = (k, n) , (3.2.19)

and
lim
F→0

ελ = ε
(0)
λ = E

(0)
k + n~ω0 ; λ = (k, n) , (3.2.20)

where E0k and |k〉 are the eigenenergies and eigenvectors of the unperturbed system. One can
see from (3.2.20) that when F → 0, the quasienergies depend linearly on ω0, therefore there

exist frequency values at which different levels ε
(0)
λ intersect. A non-vanishing external field

(with F 6= 0) mixes these levels, depending on the symmetry properties of the Hamiltonian.
If the Hamiltonian has a well defined symmetry, the quasienergies can be separated into
symmetry classes. According to the von-Neumann-Wigner theorem [48], levels of the same
symmetry class will no longer intersect for a finite time-dependent external field (i.e., the
levels of the same class develop into avoided crossings) while levels belonging to different
classes exhibit exact crossings at finite strength of the external field. If, on the contrary, the
system does not have any symmetry, the quasienergies exhibit typically avoided crossings
at F 6= 0. The competition between avoided and exact crossings of the quasienergies can
determine interesting phenomena (e.g., the coherent suppression of tunnelling [45]) in driven
quantum systems.

It is worth noting that although the Floquet theory is, in principle, a formalism conceived
for the case of time periodic external fields, a generalization of the Floquet approach to the
case of nonperiodic driven quantum systems is also possible [45].

3.3 Splitting operator approach

In the present section we describe a computational procedure for the numerical propagation
of the wave function through time. The method is particularly efficient when the wave
function of the system is localized throughout its time evolution. It was proposed by Heather
and Metiu [49] and is based on the combination of a splitting operator approximation
[50, 51, 52] and a fast Fourier transform (FFT) scheme [53].

The basic idea is to exploit the fact that if the wave function is spatially localized one
can use very efficiently a set of coordinate eigenfunctions to compute expressions involving
the potential energy operator and a set of eigenfunctions of the conjugate momentum for
computing functions of the kinetic operator. Since the transformation matrix elements
between the coordinate and momentum representations are plane waves, all the matrix
operations required for the propagation of the wave function become Fourier transforms
and can be performed efficiently by using a FFT algorithm [53].
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For our purpose it is convenient to separate the kinetic energy operator from the poten-
tial energy terms by rewriting (3.0.2) as

H = K + V0(r) + V (r, t) , (3.3.1)

where K represents the kinetic energy operator, V0(r) is a time-independent potential (e.
g., a confinement potential) and V (r, t) represents the interaction of the system with the
external time-dependent field.

The state vector |Ψ(tf )〉 at the final time tf is related to the initial state |Ψ(ti)〉 as
follows

|Ψ(tf )〉 = U(tf , ti)|Ψ(ti)〉 , (3.3.2)

where U(tf , ti) represents the evolution operator (or propagator) from the initial time ti to
t = tf . The propagator satisfies the property,

U(tf , ti) =

lmax
∏

l

U(tl+1, tl) ; tl = (l − 1)∆t+ ti , (3.3.3)

where t1 = ti, tlmax+1 = tf , and

∆t =
(tf − ti)
lmax

. (3.3.4)

If we take a value for ∆t such that

∆t
∂V (r, t)

∂t

∣

∣

∣

t=tl
¿ V (r, tl) ; tl ≤ t ≤ tl+1 , (3.3.5)

the change of the potential V (r, t) in the time interval t ∈ [tl, tl+1] is very small. Hence
V (r, t) can be considered as constant for t ∈ [tl, tl+1]. The propagator in (3.3.3) can then
be approximated by

U(tl+1, tl) = exp

[

−i∆t
~

(K + V0(r) + V (r, tl))

]

. (3.3.6)

By using the symmetric splitting operator approach [50, 51, 52], one can rewrite (3.3.6) as
follows,

U(tl+1, tl) = exp

(

−i∆t
2~
K

)

exp

[

−i∆t
~
(V0(r) + V (r, tl))

]

exp

(

−i∆t
2~

)

+O[(∆t)3] .
(3.3.7)

Note that the equation above is accurate to order O[(∆t)3]. The substitution of (3.3.7) into
(3.3.3) leads to

U(tf , ti) = exp

(

−i∆t
2~
K

)

[

lmax
∏

l=1

Ul(∆t)

]

exp

(

i
∆t

2~
K

)

, (3.3.8)

where

Ul(∆t) = exp

[

−i∆t
~

(V0(r) + V (r, tl))

]

exp

(

−i∆t
~
K

)

. (3.3.9)
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Consequently, the wave function at time tf is given by

|Ψ(tf )〉 = exp

(

−i∆t
2~
K

)

[

lmax
∏

l=1

Ul(∆t)

]

exp

(

i
∆t

2~
K

)

|Ψ(ti)〉 . (3.3.10)

Now, if we denote
|ζ

l+1
〉 = Ul(∆t)|ζl〉 , (3.3.11)

with

|ζ1〉 = exp

(

i
∆t

2~
K

)

|Ψ(ti)〉 , (3.3.12)

then the wave function at t = tf can be expressed as

|Ψ(tf )〉 = exp

(

−i∆t
2~
K

)

|ζ
lmax
〉 , (3.3.13)

where, from (3.3.11) and (3.3.12), we have

|ζ
lmax
〉 =

lmax−1
∏

l=1

|ζ
l
〉 . (3.3.14)

The set of equations (3.3.11) - (3.3.14) can be used for the computation of |Ψ(tf )〉. By
inserting (3.3.11) with the initial condition (3.3.12), one can calculate the function |ζ

l
〉 at

each t = tl. After (lmax − 1) iterations |ζ
lmax
〉 is obtained and |Ψ(tf )〉 can be computed

from (3.3.13).
In order to efficiently compute the functions |ζ

l
〉 it is convenient to introduce discrete

coordinate and momentum representations. For the sake of simplicity we restrict our dis-
cussion to the case of systems with a single spatial degree of freedom (the generalization to
systems with multiple spatial degrees of freedom is straightforward).

If the spatial region of the evolution of the wave function has a length L on the x-axis,
one can introduce a coordinate grid {xn} by dividing the segment of length L into nmax
segments of equal length ∆x = L

nmax
. Then we can define a basis set |xn〉 (n = 1, 1, ..., nmax)

corresponding to a state in which the particle position is at the point xn = (n − 1)∆x of
the spatial grid {xn}. If the spatial grid has enough points then the completeness relation

nmax
∑

n=1

|xn〉〈xn| = 1 (3.3.15)

can be reached and the properties of the wave function at each t = tl, Ψ(x, tl) = 〈x|Ψ(tl)〉
are well described by its values Ψ(xn, tl) = 〈xn|Ψ(tl)〉 at the grid points xn.

In a similar way one can introduce a set of discrete momentum eigenstates |qj〉 corre-
sponding to the momentum grid {qj}, with qj =

(

j − nmax

2 − 1
)

2π
L , (j = 1, 2, ..., nmax). If

the grid {qj} is well defined, the momentum states satisfy

nmax
∑

j=1

|qj〉〈qj | = 1 , (3.3.16)
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and the wave function can be written in the momentum representation as Ψ(qj , tl) =
〈qj |Ψ(tl)〉.

Taking into account the completeness relations (3.3.15) and (3.3.16), the wave function
can be transformed from one representation to the other by means of the following relations

Ψ(qj , tl) = 〈qj |Ψ(tl)〉 =
nmax
∑

n=1

〈qj |xn〉〈xn|Ψ(tl)〉 (3.3.17)

and

Ψ(xn, tl) = 〈xn|Ψ(tl)〉 =
nmax
∑

j=1

〈xn|qj〉〈qj |Ψ(tl)〉 , (3.3.18)

where

〈qj |xn〉 =
e−ixnqj√
nmax

; 〈xn|qj〉 =
eixnqj√
nmax

, (3.3.19)

i.e., the transformation from the coordinate to the momentum representation (or viceversa)
can be carried out by performing the corresponding Fourier transform.

In the momentum representation the kinetic energy operator K is diagonal with eigen-

values ~
2q2

2m (with m, the mass of the particle) and the exponential operators involving K
in (3.3.8) can be written as

exp

(

−i∆t
~
K

)

=

nmax
∑

j=1

|qj〉Qj〈qj | , (3.3.20)

where

Qj = exp

(

−i∆t
2m

~q2j

)

. (3.3.21)

On the other hand, the exponential operators involving potential energies in (3.3.8) can be
expanded in the coordinate basis as follows

exp

[

−i∆t
~

(V0(x) + V (x, tl))

]

=

nmax
∑

n=1

|xn〉Xln〈xn| , (3.3.22)

with

Xln = exp

[

−i∆t
~

(V0(xn) + V (xn, tl))

]

. (3.3.23)

From (3.3.12), (3.3.20), and (3.3.21) one can easily find |ζ1〉 in the momentum representa-
tion,

〈qj |ζ1〉 = (Q∗j )
1/2〈qj |Ψ(ti)〉 . (3.3.24)

Similarly, one can obtain from (3.3.9), (3.3.11), and (3.3.22) - (3.3.24) the function |ζ2〉 in
the coordinate representation,

〈xn|ζ2〉 = X1n〈xn|ζ
′

1
〉 , (3.3.25)
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where

〈xn|ζ
′

1
〉 =

nmax
∑

j=1

〈xn|qj〉Qj〈qj |ζ1〉 (3.3.26)

is the Fourier transform of Qj〈qj |ζ1〉. By Fourier inverting Eq. (3.3.25) the momentum
representation of |ζ2〉 can be obtained and then used as an input in (3.3.11) for the compu-
tation of |ζ3〉 in the next time step (at t = t3). This procedure is iterated until |ζnmax

〉 is
obtained. Once |ζnmax

〉 has been calculated, the wave function of the system 〈qj |Ψ(tf )〉 at
t = tf can be found from (3.3.13), (3.3.20), and (3.3.21), as

〈qj |Ψ(tf )〉 = (Qj)
1/2〈qj |ζnmax

〉 . (3.3.27)

The Fourier inversion of the equation above gives then the final wave function in the coordi-
nate representation. We note that all the discrete Fourier transforms needed for propagating
the wave function can be performed very efficiently by implementing a FFT algorithm [53].

It is worth remarking that the above discussed scheme is particularly efficient when
the evolution of the wave function occurs in a localized spatial region. When the size of
that region increases a greater number of grid points is required and the efficiency of the
method decreases. In particular, a well pre-defined grid can lead to a good description of
the system evolution at early times. It can happen, however, that at some time, the wave
function approaches the edge of the pre-defined grid and, consequently, further propagation
would cause reflection from the grid’s edge and falsify the results. Of course, this problem
can be eliminated by increasing the length of the grid. However, as mentioned above,
the enlargement of the grid leads to a decreasing of the computational efficiency, and in
some cases it could be necessary to optimize the way the grid is enlarged (for example by
complementing the method here discussed with a wave function splitting algorithm [49]).



Chapter 4

Quasistationarity of a

time-dependent quantum state

4.1 General definitions

The variation in time of the expectation value 〈O〉(t) of an observable O, strongly depends
on the time evolution of the quantum system under investigation. Therefore, by driving the
system with an appropriately designed external field it is possible, in principle, to control
the range of values of 〈O〉(t) in a desired way.

Suppose the system is initially (at t = 0) in a known state for which the expectation value
of O is known to be 〈O〉0 = 〈O〉(0). Here, and from now on, we consider the expectation
values 〈O〉(t) are measured at any time with respect to its value 〈O〉(0) corresponding to
the ground state of the system. The main goal of the quantum dynamical control process
is then to promote the system from its initial state to a target state giving the desired
expectation value 〈O〉target . A step further consists in maintaining the values of 〈O〉(t)
close to the target expectation value 〈O〉target for a desired time interval, i.e., to make the
control process sustainable in time. The sustainability of the quantum dynamical control
of the expectation value of a given observable can be important from the practical point
of view, in order to avoid limitations imposed by the finite resolution of the experimental
measurements.

We are particularly interested in non-stationary systems whose time dependent evolution
can be well described by pure states composed by the coherent superposition of a finite
number N of unperturbed states, i.e., we assume the wave function of the system can
be expressed at any time as in (3.1.2) and the corresponding density matrix as ρ(t) =
|Ψ(t)〉〈Ψ(t)|. Therefore, from now on we restrict all our analysis to such kind of quantum
systems.

We focus now on the problem of the sustainability of the expectation value 〈O〉(t) of
a given observable O through time. In what follows we consider that the desired value
〈O〉target of 〈O〉(t) has been reached at t = t0 [i.e., 〈O〉target = 〈O〉(t0)] and that 〈O〉(t) is
time-dependent even when for t > t0 no external field is applied. Note that in the opposite
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case the problem of sustainability becomes trivial, since in such a situation the field-free
evolution of the system guarantees that 〈O〉(t) = 〈O〉target at any time t > t0, i.e., 〈O〉(t)
becomes sustainable by nature and no driving is required. We, therefore, exclude this case
from our study. For brevity, the observables O whose expectation values 〈O〉(t) are time-
dependent will be referred to, from now on, as time-dependent observables (note, however,
that the operator o corresponding to the observable O does not depend, in general, on time).

Taking as reference the field-free system, we introduce the deviation time τo = (t′ −
t0) of the observable O, where t′ denotes the time at which the expectation value 〈O〉(t)
reaches its maximum deviation from 〈O〉(t0), in the absence of the external field. Thus,
the deviation time τo represents the time the difference |〈O〉(t)− 〈O〉(t0)| lasts for evolving
from its minimum value at t = t0 to its maximum value at t = t′ in the case the system
is in the absence of external time-dependent fields. Note that the existence of maximum
and minimum of |〈O〉(t)− 〈O〉(t0)| is guaranteed, since we are considering time-dependent
observables [〈O〉(t) 6= const.] and 〈O〉(t) has upper and lower bounds [40].

On the basis of the above considerations, it is convenient to introduce some general
definitions.

Definition 4.1.1. A time-dependent observable [with 〈O〉(t0) 6= 0] is called a quasistation-

ary observable if for all η > ηo (η, ηo ∈ R
+) there exists tη > τo (tη, τo ∈ R

+) such that

if 0 < |t − t0| < tη then |〈O〉(t) − 〈O〉(t0)| < ηo, with ηo [ηo ¿ |〈O〉(t0)|] a parameter that

characterizes the degree of quasistationarity of 〈O〉(t).

From the above definition it results that the control process of the expectation value
〈O〉(t) of an observable O is sustainable within the time interval t0 < t < τo if the external
time-dependent field is capable of inducing quasistationarity to that observable.

We now introduce other definitions regarding some special cases of quasistationarity.

Definition 4.1.2. A time-dependent observable is called a cyclic quasistationary observ-
able if it is quasistationary and its expectation value satisfies 〈O〉(t0+ Tk) = 〈O〉(t0+ Tk−1)
(k = 1, 2, ..., nc), with T0 = 0, nc the number of cycles, and Tk (Tk > 0) the duration of the
kth cycle.

Definition 4.1.3. A time-dependent observable is called quasiperiodic quasistationary if
it is quasistationary and there exists T > 0 such that 〈O〉(t0 + kT ) = 〈O〉(t0) with
k = 1, 2, ..., npc). The quantity T is then called the period of the observable and npc is
the number of periodic cycles.

We note that the number of periodic cycles npc does not necessarily coincide with the
total number of cycles nc, since each periodic cycle can contain sub-cycles (see Fig. 4.1).
Therefore, one has that nc ≥ npc.

The special case of quasistationarity given in the definition 4.1.3 is of particular interest,
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Figure 4.1: An example of a periodic cycle (of duration T ) composed of two sub-cycles of
durations T1 and T2.

since it contains as particular cases phenomena such as the coherent suppression of tun-
nelling [45, 54, 55, 56], dynamical localization [45, 57, 58, 59], and sustainable molecular
orientation [60, 61]. The coherent suppression of tunnelling, for example, occurs when a
particle initially (at t = t0) in one of the wells (say, the left well) of a symmetric double
quantum well is subject to an external CW laser field. For certain parameters of the exter-
nal time-dependent field the particle remains localized in the left well, i.e., the tunnelling
is coherently suppressed [45, 54, 55, 56]. In this case the observable utilized for monitoring
the system is the time-dependent probability P

L
(t) of finding the particle in the left well.

Coherent suppression of tunnelling then occurs when [45, 54, 55, 56]

P
L
(t0 + kT ) ≈ P

L
(t0) ; k = 1, 2, 3, ... , (4.1.1)

under the condition that the escaping time of the particle is much longer than the period T
of the applied CW laser field [this condition prevents the escape of the particle to the other
well within a period, i.e., it guarantees that P

L
(t) remains close to the initial value P

L
(t0)

inclusive for kT < t < (k + 1)T ]. Therefore, the coherent suppression of tunnelling can be
interpreted as a particular case of quasiperiodic quasistationarity in which the observable
of interest is P

L
(t) and its period T = T coincides with the period of the driving CW

laser. Because of its particular importance, we further focus on the study of the special
case corresponding to quasiperiodic quasistationarity.

Having in mind Def. 4.1.3 one can also define quasiperiodic quasistationary states as
follows.

Definition 4.1.4. A time-dependent quantum state |Ψ(t)〉 is called a quasiperiodic qua-
sistationary state if the expectation values of any set of observables are quasiperiodic qua-
sistationary, i.e., if

〈O〉(t0 + kT ) = 〈Ψ(t0 + kT )|o|Ψ(t0 + kT )〉 = 〈Ψ(t0)|o|Ψ(t0)〉 = 〈O〉(t0) , (4.1.2)
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(k = 1, 2, ..., npc) for any observable O.

From the above definition and taking into account that the wave function of a quantum
state is defined (in a unique way) up to a phase, one can see that a necessary condition for
a quantum state to be quasiperiodic quasistationary is the corresponding wave function to
have a quasiperiodic cyclic evolution, i.e.,

|Ψ(t0 + kT )〉 = eiφk |Ψ(t0)〉 ; k = 1, 2, ..., npc , (4.1.3)

where φk is a real number (the phase change within k periodic cycles) and T represents the
duration of each periodic cycle. Note, however, that condition (4.1.3) is not sufficient for the
quantum state to be quasiperiodic quasistationary, since it only guarantees the quasiperi-
odicity of the time-dependent observables but not their quasistationarity. The sufficient
condition for a quasiperiodic cyclic quantum system to be quasistationary is related to the
Aharonov-Anandan (AA) geometric phase (also called the nonadiabatic generalized Berry
phase) [34, 35, 47] as will be shown in the following sections. For completeness we discuss
now some general aspects regarding the AA geometric phase.

Let us consider, for simplicity that the wave function of the system performs a single
cycle during the time interval [t0, t0 + T ]. It results from Eq. (4.1.3) that

|Ψ(t0 + T )〉 = eiφ|Ψ(t0)〉 ; φ = φ1 . (4.1.4)

The wave function of the N -level system is determined by the complex vector C(t) =
(C1(t), C2(t), ..., CN (t))T [C(t) 6= 0, C(t) ∈ C

N ] whose components are the expansion coef-
ficients in (3.1.2). Let assume, without lost of generality, that C1(t) is nonzero throughout
the system evolution. Then the projective Hilbert space CP

N−1 can be characterized by
the complex coordinates

C̃k(t) =
Ck(t)

C1(t)
; k = 2, 3, ..., N . (4.1.5)

It is clear from (4.1.5) that all vectors C(t) ∈ C
N that differ by only a multiplicative phase

have the same image in the projective space CP
N−1. Hence, the evolution of a cyclic state

[C(t0+T ) = eiφC(t0), see also Eq. (4.1.4)] in C
N is characterized by a closed path Lcp in the

projective Hilbert space CP
N−1 [note that for cyclic states (4.1.5) gives C̃k(t0+T ) = C̃k(t0)

∀ k = 2, 3, ..., N ]. One can then expect C
N to be related to the product of CP

N−1 and the
group U(1) of phases. This relationship is not direct, as C

N = U(1)⊗CP
N−1 does not hold

in general [34, 35, 36]. However, it does hold locally, i.e., one can express the projective
space as the union of subsets CP

N−1
i [CP

N−1 =
⋃

CP
N−1
i ] such that C

N can be expressed

as C
N =

⋃

(

U(1)⊗ CP
N−1
i

)

. Consequently C
N is a principal fiber bundle over CP

N−1

[34, 35, 36, 47].
To specify some cyclic vector C(t0 + T ) = eiφC(t0) one has to specify a path Lc on C

N

that projects onto Lcp. Mathematically such paths are called lifts [34, 35, 36]. The initial
and final points of an arbitrary lift corresponding to a closed curve in CP

N−1 can differ by
only a multiplicative phase. This difference is called the holonomy (some times also referred
to as anholonomy [34, 35]) [34, 35, 36]. As it my depends on the choice of lift, in order to
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obtain the holonomy it is necessary a rule that enables one to chose a lift for each curve in
the projective space. Such a rule is called a connection [34, 35, 36]. Therefore the holonomy
depends also on the choice of connection and it is usually referred to as the holonomy of the
connection. It appears that for each path in the projective space there exists exactly one
natural lift that is orthogonal to its tangent vector [34, 35, 36, 62]. Hence this condition,
usually called parallel transport, defines a natural connection.

The most general vector G(t) ∈ C
N that is equal to C(t) modulo a multiplicative phase

and obeys G(t0) = C(t0) is given by [63]

G(t) = e−iφD (t)C(t) , (4.1.6)

where

φ
D
(t) = −i

∫ t

t0

C†(t′)
dC(t′)

dt′
dt′ . (4.1.7)

One can obtain from Eqs. (4.1.6) and (4.1.7) that

G†(t)
dG(t)

dt
= −idφD

(t)

dt
+C†(t)

dC(t)

dt
= 0 , (4.1.8)

i.e., the vectorG(t) ∈ C
N is orthogonal to its tangent vector dG(t)

dt and (4.1.8) determines the
connection. Consequently, the path in C

N corresponding to G(t) constitutes the natural
lift. The AA geometric phase φ

G
is defined as the holonomy of the natural connection

[34, 35, 47, 62], i.e.,
eiφG = G†(t0)G(t0 + T ) . (4.1.9)

In the vector state notation Eq. (4.1.9) can be rewritten as

eiφG = 〈Λ(t0)|Λ(t0 + T )〉 , (4.1.10)

where
|Λ(t)〉 = e−iφD (t)|Ψ(t)〉 , (4.1.11)

satisfies [see Eq. (4.1.8)]
〈

Λ(t)

∣

∣

∣

∣

d

dt

∣

∣

∣

∣

Λ(t)

〉

= 0 , (4.1.12)

and

φ
D
(t) = −i

∫ t

t0

〈

Ψ(t′)

∣

∣

∣

∣

d

dt′

∣

∣

∣

∣

Ψ(t′)

〉

dt′ . (4.1.13)

Note that φ
D
(t = t0 + T ) = φ

D
is the dynamical phase acquired by the system within

an evolution cycle. One then has from (4.1.4) and (4.1.10) - (4.1.13), that the total phase
change φ within an evolution cycle is given by φ = φ

D
+ φ

G
.

The AA geometric phase is clearly a geometric quantity in the sense that it does not
depend on the choice of the Hamiltonian as long as the Hamiltonians describe the same
closed path Lcp in the projective Hilbert space, i.e., it depends only on the closed path Lcp.
Consequently, the AA phase constitutes a “geometric” property of Lcp.

Before concluding this section, it is worth noting that although we have considered the
AA geometric phase for quantum systems following a cyclic evolution, it is also possible to
generalize the geometric phase to the case of non-adiabatic non-cyclic quantum evolution
[34, 35, 37, 39, 64, 65, 66].
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4.2 Quasistationarity within the GBVA

Within the GBVA one easily obtain from (3.1.40) that

〈O〉(t)− 〈O〉(t0) = |W||B(t)| (cos ν(t)− cos ν(t0)) ; ν(t) = ∠
(

W,B(t)
)

. (4.2.1)

On the other hand, taking into account (3.1.40), (4.1.2) can be rewritten in terms of the
generalized Bloch vector as follows:

B(t0 + kT ) = B(t0) ; k = 1, 2, ..., npc . (4.2.2)

Then it results from Defs. 4.1.1 - 4.1.4 that the quantum state is quasiperiodic quasista-
tionary if for all η > ηo there exists tη > τo such that

| cos ν(t)− cos ν(t0)| <
ηo

|W||B(t)| ¿ cos ν(t0) , (4.2.3)

or, equivalently, if
B(t) ≈ B(t0) , (4.2.4)

for all t ∈ [t0, tη], and condition (4.2.2) holds. Note that in (4.2.3) ν(t0) 6= π
2 , since by

definition we have assumed that 〈O〉(t0) 6= 0.
Let us investigate now under which conditions Eqs. (4.2.2) and (4.2.4) are fulfilled, i.e.,

which are the necessary and sufficient conditions for reaching quasiperiodic quasistationar-
ity.

The substitution of Eq. (3.1.27) into (4.2.2) leads to

U(t0 + kT , t0)B(t0) = B(t0) ; k = 1, 2, ..., npc , (4.2.5)

with the evolution operator U(t, t0) given by (3.1.28). Therefore a necessary and sufficient
condition for an N -level system to be quasiperiodic is its corresponding evolution operator
to periodically perform cyclic rotations in the generalized Bloch space, i.e.,

U(t0 + kT ) = I
N
. (4.2.6)

In the particular case of a periodic external field with period T (note that T does not
necessarily coincides with T ) one finds from (3.1.26) and (3.1.28) that the evolution operator
satisfies U(t0 + T, t0) = U(t0 + kT, t0 + (k − 1)T ) for k = 1, 2, ... and, consequently, the
generalized Bloch vector evolves as

B(t0 + kT ) = (U(t0 + T ))kB(t0) . (4.2.7)

If for some T = lT (with l a positive integer) the evolution operator obeys

U(t0 + T , t0) = IN , (4.2.8)

then the Bloch vector becomes quasiperiodic with period T .
Within the GBVA the evolution operator of an N -level system consists of a (N

D
×N

D
)

matrix whose elements are functions of the system parameters. Once U(t, t0) has been
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obtained, the relations (4.2.6) or (4.2.8) can be utilized for obtaining the field parameters
that lead to the quasiperiodic evolution of the generalized Bloch vector. We note, however,
that the existence or not of such specific values of the driving-field parameters will depend
essentially on the initial value of B(t0) and the form of the external field itself. Actually,
the relations (4.2.6) and (4.2.8) look quite restrictive but, as will be shown in the following
chapters, it is possible to achieve such conditions in actual physical systems.

We suppose now that we have already determined the appropriate field parameters that
induce the quasiperiodic evolution of the generalized Bloch vector. This, although necessary,
is still not sufficient for achieving quasiperiodic quasistationarity. The quasistationarity is
determined by the deviation |B(t) − B(t0)| of the generalized Bloch vector B(t) from its
initial value B(t0) throughout the system evolution. The fact that B(t) is quasiperiodic
means that it performs closed paths [containing the point B(t0)] in the generalized Bloch
space. Consequently, the area enclosed by these paths constitutes a measure of the deviation
|B(t)−B(t0)|. On the other hand each closed path of B(t) in the generalized Bloch space
is associated to an AA geometric phase. One can then expect the nonadiabatic geometric
phase to be useful in describing the degree of quasistationarity of a quantum system.

In the preceding section we briefly discussed some aspects and concepts regarding the
AA geometric phase in terms of complex vectors of the Hilbert space H

N ' C
N . It is

now convenient to express the AA geometric phase in terms of the (real) generalized Bloch
vectors. With this aim, we firstly introduce the map Π from the complex Hilbert space
H
N whose vectors |Ψ(t)〉 define pure quantum states to the space P

2N−1 of the pure state
density matrix ρ, i.e.,

|Ψ(t)〉 ∈ H
N : Π(|Ψ(t)〉) = ρ(t) = |Ψ(t)〉〈Ψ(t)| ∈ P

2N−1 . (4.2.9)

The space P
2N−1 is usually called the ray space [37, 39].

The AA geometric phase in terms of the vector state |Λ(t)〉 corresponding to the natural
lift in the complex Hilbert space was given in Eq. (4.1.10). We now try to find the AA
geometric phase in terms of the elements of the ray space P

2N−1 by noting that the map
(4.2.9) together with (4.1.11) lead to

ρ(t) = |Ψ(t)〉〈Ψ(t)| = |Λ(t)〉〈Λ(t)| , (4.2.10)

and therefore,
dρ(t)

dt
=
d|Λ(t)〉
dt

〈Λ(t)|+ |Λ(t)〉d〈Λ(t)|
dt

. (4.2.11)

Taking into account (4.1.12) and (4.2.11) one can easily obtain

d|Λ(t)〉
dt

=
dρ(t)

dt
|Λ(t)〉 . (4.2.12)

We can formally solve Eq. (4.2.12) as a Dyson-like ordered series. As a result, the following
expression is obtained,

|Λ(t)〉 = Tt

(

exp

[∫ t

t0

dt′
dρ(t′)

dt′

])

|Λ(t0)〉 . (4.2.13)
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By substituting (4.2.13) in (4.1.10) we arrive to the relation,

eiφG = Tr

{

ρ(t0)Tt

(

exp

[∫ t0+T

t0

dt
dρ(t)

dt

])}

. (4.2.14)

From Eqs. (3.1.16) and (4.2.14) one then obtains,

eiφG = Tr

{(I
N

N
+

1

2
B(t0) · F̂

)

Tt

(

exp

[

1

2

∫ t0+T

t0

dt
dB(t)

dt
· F̂
])}

. (4.2.15)

By introducing the matricesM(n) obeying the following iteration relation,

M(n)(t) =
1

2

∫ t

t0

(

dB(t′)

dt′
· F̂
)

M(n−1)(t′)dt′ ; M(0) = I
N
, (4.2.16)

we can rewrite (4.2.15) as follows,

eiφG = Tr

[

(I
N

N
+

1

2
B(t0) · F̂

)

( ∞
∑

n=0

M(n)(t0 + T )
)]

. (4.2.17)

An identity that results useful in the calculation ofM(n) is (see Appendix A),

(X · F̂)(Y · F̂) = 2

N
I
N
(X ·Y) + [(X ?Y) + i(X ∧Y)] · F̂ , (4.2.18)

where X and Y are any two vectors in R
N
D .

The computation of the trace in (4.2.17) for the case of an N -level system is, in general,
a complicated task. However, some qualitative information can be extracted by taking into
account that all the relations (4.2.16) for n > 1 contain the matrix

M(1)(t) = (B(t)−B(t0)) · F̂ (4.2.19)

as a factor in their integrands. Consequently if the system is in a quasiperiodic quasista-
tionary state Eq. (4.2.4) holds and M(1)(t) ≈ 0 , ∀ t ∈ [t0, t0 + τo]. In such a case if, in
addition, τo > T one has from (4.2.16) and (4.2.17) that

eiφG ≈ 1 , (4.2.20)

i.e., φ
G
≈ 0 (modulo 2π). After some lengthy mathematical manipulations one can obtain

from Eqs. (4.2.16) - (4.2.19) that φ
G
≈ 0 if B(t) ≈ B(t0) ∀ t ∈ [t0, t0 + T ] or if there exists

t′ ∈ [t0, t0+T ] such that B(t) evolves from t0 to t
′ and then from t′ to t0+T through closely

the same path. The latter condition is quite restrictive and physically unlikely to occur in
most of the physical systems of practical interest (e.g., for the systems here considered
such a situation never occurs). Therefore, excluding this unlikely situation, the relation
φ
G
≈ 0 (modulo 2π) can be regarded as a necessary and sufficient condition for the cyclic

evolution of the system to be quasistationary (in the case of quasiperiodic cyclic evolution
φ
G
corresponds to the AA geometric phase acquired during each evolution cycle). We note

that in the case φ
G
= 0, the system becomes truly stationary. The value of φ

G
can then be
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Figure 4.2: Closed path γ described by the Bloch vector B(t) on the sphere S
2. a) Strong

quasistationarity. b) Weak quasistationarity.

used for characterizing the degree of quasistationarity of a cyclic (in time) quantum system
on the basis of the following criterium: closer to zero φ

G
, strongest the quasistationarity

of the system. This conclusion becomes somehow trivial for the case of a two-level system.
In such a case the AA geometric phase is given by half of the solid angle Ωγ subtended by
the closed path γ (described by the Bloch vector on the two-dimensional sphere S

2 of unit
radius) at the center of S

2 [34, 35, 37, 39, 62]. The analysis of the quasistationarity for a
two-level system then becomes very simple since it is visually clear (see Fig. 4.2) that closer
Ωγ (and therefore φ

G
) to zero, strongest the quasistationarity of the Bloch vector.

It is worth remarking that for achieving quasistationarity the relation φ
G
≈ 0 has to be

fulfilled by the AA geometric phase acquired during each evolution cycle, i.e., during each
periodic cycle and its corresponding sub-cycles (if any).

In summary, Eq. (4.2.6) [or (4.2.8)] together with (4.2.20) constitute a necessary and
sufficient condition for inducing quasiperiodic quasistationarity to a quantum system.

For systems in which the number of levels involved in their evolution is not small, the
formalism described in the present section can turn inefficient for quantitative calculations
(remember that the dimension of the generalized Bloch space scales as N 2 − 1). As a
complement to the qualitative results of the GBVA we present in the following section a
study of the quasistationarity of quantum system driven by a time-periodic external field,
within a formalism (the Floquet approach) that is, in the general case, more convenient for
performing quantitative calculations.

4.3 Quasistationarity within the FA

As was shown in Sec. 3.2, if the time-dependent external field is periodic with period T
(and ω0 = 2π/T ), the state vector of the system can be written as

|Ψ(t)〉 =
∑

λ

Aλe
−iελt/~|Φλ(t)〉 , (4.3.1)

where the Floquet modes |Φλ(t)〉 have the same periodicity as the external field [see Eq. (3.2.2)].
Let us concentrate in the analysis of the quasiperiodic cyclic evolution of a quantum system.
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Without lost of generality, we can restrict our study to a single evolution cycle. Then it
follows from (4.1.4) and (4.3.1) that the condition for the evolution of the system to be
cyclic is given by

|Ψ(t0 + T )〉 = eiφ
∑

λ

Aλe
−iελt0/~|Φλ(t0)〉 . (4.3.2)

We now investigate how the AA geometric phase of the system described by the state vector
in (4.3.2) is related to the phases φ(λ)

D
and φ(λ)

G
corresponding to the Floquet modes |Φλ(t)〉.

We note that the dynamical phase φ
D

of the system is given by [see (4.1.13) and further
comments],

φD = −i
∫ t0+T

t0

〈

Ψ(t)

∣

∣

∣

∣

d

dt

∣

∣

∣

∣

Ψ(t)

〉

dt . (4.3.3)

If the duration T of the evolution cycle is a multiple of the period T of the external field
(i.e., T = lT , with l a positive integer) then one can obtain from Eqs. (3.2.3), (3.2.7),
(4.3.2), and (4.3.3) the following relation

φ
D
=
T
T

∑

λ

|Aλ|2 φ(λ)D
+

∑

λ,ν (λ6=ν)
A∗λAν

∫ t0+T

t0

e
i
~
(ε

λ
−εν )t

〈

Φλ(t)

∣

∣

∣

∣

d

dt

∣

∣

∣

∣

Φν(t)

〉

dt , (4.3.4)

with φ(λ)
D

determined by (3.2.17). The AA geometric phase acquired by the system within
an evolution cycle is then given by

φ
G
= φ− φ

D
(4.3.5)

For the sake of simplicity we consider at first the case of a two-level system. In such a
case the state vector at stroboscopic times can be written as,

|Ψ(t0 + kT )〉 = e−i
ε2kT

~

(

e−i
(ε1−ε2)kT

~ A1e
−i ε1t0

~ Φ1(t0) +A2e
−i ε2t0

~ Φ2(t0)
)

. (4.3.6)

In the equation above we have denoted by ε1 and ε2 the quasienergies ελ corresponding to
λ = (1, 0) and λ = (2, 0), respectively (i.e., ε1 and ε2 are the representatives of the two
quasienergy classes in the first Brillouin zone). One can see from (4.3.6) that the state
vector becomes quasiperiodic cyclic [see condition (4.1.3)] if all the relevant Floquet states
have the same phase (up to a multiple of 2π) at t = t0 + T , i.e., if one of the following
conditions is fulfilled [67]:

a) If ε1 − ε2 = n~ω0; (n ∈ Z).
b) If A1 = 0 or A2 = 0.
c) If (ε1 − ε2)l = m~ω0; (l,m ∈ Z, m/l /∈ Z).
The condition a) corresponds to the degeneracy of the quasienergies and leads to T = T .

The condition b) leads also to T = T and corresponds to the case in which the wave function
of the system collapses into a Floquet state. The condition c) leads to a quasiperiodic cyclic
evolution with the duration of each cycle being a multiple of the period of the external
field, i.e., T = |l|T . It is worth noting that conditions b) and c) do not require crossing
of quasienergies. The conditions a), b), and c) can be regarded as necessary and sufficient
conditions for the quasiperiodicity of the system. If these conditions are complemented with
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the requirement that the corresponding AA geometric phase acquired during each evolution
cycle approaches zero, then the quasiperiodic quasistationarity of the system is guaranteed.

In addition to the general equation (3.2.18), one can also obtain in the case of absence
of quasienergy degeneracy, an expression that relates the geometric phases φ(λ)

G
to the

corresponding quasienergies. The basic idea is to transform the composite Hilbert space
H associated to the Schrödinger operator S(t) [see (3.2.3) and (3.2.4)] into a space H

′

independent of the parameter T by changing the timescale through the introduction of the
new variable t = ω0t [45, 46]. The Schrödinger operator S ′(t) in H

′ is then given by

S ′(t, ω0) = H ′(t)− i~ω0
∂

∂t
; H ′(t) = H(t/ω0) . (4.3.7)

The partial derivative of (4.3.7) with respect to ω0 gives,

i~
∂

∂t
= −S

′(t, ω0)

∂ω0
. (4.3.8)

The substitution of (4.3.8) in (3.2.18) leads to the following relation,

φ(λ)
G

= −2π

~

〈〈

Φ
′

λ(t)

∣

∣

∣

∣

S ′(t, ω0)
∂ω0

∣

∣

∣

∣

Φ
′

λ(t)

〉〉

; Φ
′

λ(t) = Φλ(t) . (4.3.9)

If the Floquet mode Φλ(t) of the discrete spectrum of S(t) is a single-valued function of
ω0 in some interval ∆ω, and the associated quasienergy ελ is a differentiable function of ω0
in this interval, one can apply the Hellman-Feynman theorem [68] and Eq. (3.2.3) to obtain

〈〈

Φ
′

λ(t)

∣

∣

∣

∣

S ′(t, ω0)
∂ω0

∣

∣

∣

∣

Φ
′

λ(t)

〉〉

=
∂

∂ω0
〈〈Φλ(t) |S(t, ω0))|Φλ(t)〉〉 =

∂ελ
∂ω0

. (4.3.10)

Note that for (4.3.10) to holds it is also necessary the time-dependent Hamiltonian of the
system to be a continuous function of time.

From the equation above and the relation (4.3.9) it follows that

φ(λ)
G

= −2π

~

∂ελ
∂ω0

(4.3.11)

[we remark that (4.3.11) is valid only for the case of non-degenerate quasienergies and
Hamiltonians that are continuous in time].

Taking into account the periodicity of the Floquet mode Φλ(t) one can expand it in a
Fourier series and for an N -level system (4.3.1) can be rewritten as

|Ψ(t)〉 =
N
∑

λ=1

∞
∑

n=−∞
AλA

′

λn exp

[

−i(ελ − n~ω0)

~
t

]

, (4.3.12)

where A′λn is the nth Fourier coefficient in the expansion of Φλ(t). Following the same
procedure as for the case of a two-level-system, one can obtain from (4.3.12) that for the
cyclic evolution of an N -level system the conditions a), b), and c) or their combination have
to occur repeatedly. Thus, in the general case the necessary conditions for quasiperiodic
cyclic evolution corresponding to the cases a), b), and c) are given, respectively, by
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a’) εi − εj = nij~ω0 (i, j = 1, 2, ..., N ; nij ∈ Z).
b’) All but one of the products AλA

′
λn vanish.

c’)(εi − εj)l = mij~ω0 (i, j = 1, 2, ..., N ; l,mij ∈ Z; mij/l /∈ Z).
It is worth noting that if a quantum system satisfies not one but a combination of the

above conditions then its evolution becomes also quasiperiodic cyclic.
These conditions look quite restrictive but as will be shown in the following chapters,

inducing cyclic evolution to an N -level system can be achieved in actual physical systems.
Regarding the existence or not of cyclic states for a given system [i.e., whether or not
conditions a), b) or c) or their combinations can be fulfilled for a given system], it depends
essentially on the initial conditions as well as on the specific form of the Hamiltonian
of the system. If the initial wave function |Ψ(t0)〉 is an eigenfunction of the evolution
operator U(t0 + T , t0) then cyclic evolution occurs independently of the concrete form
of the Hamiltonian [69]. This situation is particular clear for the case of time-periodic
Hamiltonians. In such a case the existence of the Floquet modes |Φλ〉 is guaranteed since
they are the eigenvectors of the evolution operator U(t0 + T, t0) [see (3.2.12)] (note that
the evolution operator is an N × N matrix that can always be diagonalized). Now, if the
initial vector state |Ψ(t0)〉 = Aλ′ exp[−iελ′t0/~]|Φλ′(t0)〉 for some specific λ = λ′, then the
wave function of the system collapses into a pure Floquet mode, i.e., the condition b) is
realized and the state vector becomes cyclic |Ψ(t)〉 = Aλ′ exp[−iελ′t/~]|Φλ′(t)〉. On the
other hand, for the case of an arbitrary initial condition (different from the kind of initial
wave functions considered above) the existence or not of cyclic states has to be inferred after
performing explicitly the calculations by checking whether or not one of the conditions a’),
b’) or c’) can be reached, since, to our knowledge, a complete characterization of which kind
of Hamiltonians have a complete set of cyclic states is not known.



Chapter 5

Sustainable orientation of polar

molecules

In the last few decades there has been an impressive progress in the creation of new
techniques an methods towards achieving the long-standing dream of controlling chem-
ical reactions. In particular, it has been shown both theoretically and experimentally
[70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80] that the initial orientation of molecules (here
orientation refers to that of the direction of the molecular axis with respect to an applied
external field, see Fig. 5.1) can play an important role for the outcome of molecular colli-
sions as well as in chemical reaction dynamics. The steric effects in atom-molecule reactions
strongly depend on the reagent orientation. By controlling the mutual orientation of the
reagents one then observes its influence on the reaction probability, i.e., the total reaction
cross section, or, better yet, the angular distribution of products from the reaction of ori-
ented reagents. For example, it has been found that in the reactions K+CH3I→ KI+CH3
and Rb + CH3I → RbI + CH3 products are formed more likely if the atoms approach the
iodine end of the molecule (head) than if they encounter the CH3-end (tail) [71, 72, 73].
Thus, molecular orientation should greatly expand its range of applications in stereodynam-
ical studies of chemical reactions [77, 79]. Furthermore, it has been shown that molecules
subject to a laser field exhibit an enhanced ionization along the direction of the laser electric
field [81, 82]. Other applications for which the molecular orientation results relevant are the
laser-induced isomerization [83], molecular trapping [84], catalysis [85], high-order harmonic
generation [86], and nanoscale design by laser focusing of molecular beams [84, 87].

There exist several methods for orienting molecules. For example, it has been experimen-
tally demonstrated that an hexapole electric field can be used for orienting polar symmetric
top or symmetric top-like molecules [70, 71, 72]. Other methods based on the notion that
molecular rotation can be transformed into pendular motion by the interaction of a perma-
nent dipole moment with an external field, resulting in orientation of the molecular axis,
have also been proposed [75, 76, 88]. The pendular states are created by a field-induced
coherent superposition (hybridization) of the field-free rotor states. The hybridization oc-
curs most easily for the lowest rotational states and therefore rotationally cold molecules
and strong fields (brute force) are required.

34
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Figure 5.1: a) Perfect orientation: the molecular axis R is perfectly oriented in the direction
of the external field F with probability P→ = 1. b) Perfect alignment: the configurations
corresponding to orientation and anti-orientation are equiprobable and P→ = P← = 0.5.

A similar version of hybridization, applicable to nonpolar as well as polar molecules,
exploits the induced dipole moment resulting from the interaction of an intense, nonresonant
plane-polarized laser field with the anisotropic polarizability of the molecule [89, 90]. This
procedure leads to the alignment of the molecule (here alignment refers to axial anisotropy
but, unlike orientation that corresponds to a single-headed arrow, it corresponds to a double-
headed arrow, see Fig. 5.1). However, no orientation is induced, since the electric field of the
laser rapidly switches directions and its interaction with the permanent dipole averages out.
To overcome such a problem, a procedure that combines a relatively weak electrostatic field
and nonresonant induced dipole forces has been recently proposed for orienting molecules
[91, 92].

It has been pointed out that Stark effects by electrostatic fields may not be desirable
in some precise spectroscopic studies [93]. For such situations, general alternative schemes
that exclude electrostatic fields and yield molecular orientation have recently been proposed
[21, 25, 60, 61, 93]. For example, it is possible to orientate polar molecules by using the field
interaction with the permanent dipole moment, the polarizability, and the hyperpolarizabil-
ity of the molecule [93]. Within this scheme an adiabatic molecular orientation stronger
than that obtained within the brute force methods (but weaker than the obtained with the
scheme discussed in the following sections) is achieved. Note that in the adiabatic limit
the molecular orientation can be maintained for several nanoseconds but the orientation
process (i.e., the time needed for rising the orientation from zero to its maximum value)
also lasts several nanoseconds [93]. Consequently, for some specific applications requiring a
rapid orientation of the molecule, the adiabatic regime may not be appropriate.

In the nonadiabatic regime, it has been shown that the application of a short HCP can
lead to a fast orientation of polar molecules [21, 25]. However, the resulting molecular orien-
tation within such a procedure is not sustainable in time, since the effective duration of the
HCP is much smaller than the rotational period of the molecule. Hence, once it has passed
by the molecule evolves in a field-free manner, oscillating from oriented to nonoriented con-
figurations. As a result, the time average of the orientation over the rotational period of
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the molecule vanishes [21, 25]. Although the postpulse (and therefore field-free) orientation
of the molecule can be desirable in some specific situations it could also lead to limitations
imposed by the time resolution of the phenomena under study and/or of the experimental
capabilities. Therefore, it could be also desirable to have a method capable of inducing
strong and sustainable molecular orientation in the nonadiabatic regime. In the following
sections we focus on this problem and show that a conveniently designed train of HCPs
can induce a strong and sustainable molecular orientation without disturbing the electronic
and vibrational modes. The molecule evolves in a quasi-field-free manner in the sense that
between consecutive pulses the electric field is practically zero. The molecular orientation
obtained within our scheme is stronger than that obtained with previous methods and it is
shown to be robust to thermal average up to temperatures of about 10 K [60, 61].

5.1 General formulation

We consider a diatomic molecule in its electronic ground state. The molecule, which is
assumed to have a relatively large permanent dipole moment and a large moment of inertia
is subject to a conveniently designed train of short HCPs. The HCPs utilized throughout
our study have the following properties:

i) they are weak enough so as to avoid any ionization damage of the molecule upon the
action of the HCPs (for typical diatomic molecules such as LiCl, LiF, LiH, NaI, the peak
amplitude of the HCPs can be of several hundreds of kV/cm [21, 25, 94, 95]).

ii) they are very short with respect to the rotational period of the molecule.
We note that the property ii) can be achieved in actual physical situations, since the

duration of experimentally generated HCPs can be of a few picoseconds or even of fractions
of picoseconds (see Chap. 2), while the rotational period of typical diatomic molecules ranges
from tents to hundreds of picoseconds. Under these circumstances, the use of the impulsive
approximation (IA) (see Sec. 2.3) is well justified. Consequently, the IA is used throughout
our calculations. In addition, it has been shown that HCPs satisfying the properties i) and
ii) do not induce any vibrational excitation [21, 25, 94, 95]. One can therefore consider the
molecule as a rigid rotor.

Within the IA and the rigid rotor approximation, the dynamics of the molecule subject to
a train of short HCPs is determined by the following time-dependent Schrödinger equation:

i~
∂Ψ(θ, φ, t)

∂t
=

[

L2

2I
− µ0V (t) cos(θ)

]

Ψ(θ, φ, t) , (5.1.1)

where I = mR20 is the moment of inertia at the internuclear equilibrium distance R0 and
m is the reduced mass of the nuclei. L stands for the angular momentum operator, µ0 is
the permanent dipole moment, θ represents the angle between the molecular axis and the
applied field and φ specifies the corresponding azimuthal angle. The time-dependent shape
V (t) of the HCPs train is modelled, within the impulsive approximation, by a series of N
consecutive kicks, i.e.,

V (t) =
N
∑

k=1

∆pkδ(t− tk). (5.1.2)
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Here tk is the time at which the kth pulse is applied and ∆pk is the area beneath the kth
pulse. Physically, ∆pk is the momentum transferred by the kth pulse to the molecule (see
Sec. 2.3).

It is worth noting that as long as the duration of the HCPs remains shorter than the
rotational period τrot of the molecule under study, the specific shape of the pulses is irrelevant
and the dynamics is essentially determined by the amount of momentum transferred to the
system by the pulses [21]. It has also been shown that the effective tail of the pulse (see
Fig. 2.3) hardly influences the dynamics of the system [21]. For a pulse with amplitude
asymmetry ratio ∼ 13 : 1 (see Sec. 2.2), for example, the effect of the effective tail reduces
to a very small correction to the amount of momentum transferred to the molecule by the
pulse. Anyway, these effects can easily be incorporated by taking into account the effective
tail when calculating the corresponding ∆pk.

If the applied HCPs are linearly polarized and in the absence of any other symmetry
breaking fields the molecule retains the cylindrical symmetry around the molecular axis.
As a consequence, the projection of the angular momentum M

J
onto the field polarization

axis is conserved. The time-dependent wave function that describes the quantum dynamics
of the molecule under the action of the HCPs can be written as an expansion in terms of
the stationary eigenstates, namely

Ψ
M
(θ, φ, t) =

Jmax
∑

J=0

C
J,M

(t)Y
J,M

(θ, φ) . (5.1.3)

We assume that the initial value of MJ is M . Y
J,M

(θ, φ) are the spherical harmonics, and
Jmax corresponds to the highest eigenstate which is relevant for the time evolution of the
system.

Substituting Eq. (5.1.3) into Eq. (5.1.1) we obtain the following system of differential
equations for determining the expansion coefficients

i~
∂C

M
(t)

∂t
= E

M
C

M
(t)− µ0V (t)U

M
C

M
(t) , (5.1.4)

where C
M
(t) is a vector of the form

C
M
(t) = (C0,M (t), C1,M (t), ...C

Jmax,M
(t))T , . (5.1.5)

The matrix U
M

is composed of the elements

U
JM,J′M

= 〈Y
J,M

(θ, φ)| cos θ|Y
J′,M

(θ, φ)〉 . (5.1.6)

Analytical expressions for the scalar products appearing in the equation above can be ob-
tained by taking into account that cos θ ∼ Y1,0(θ, φ). Then after performing the integration
of the corresponding product of three spherical harmonics [96] one obtains,

〈Y
J,M

(θ, φ)| cos θ|Y
J+1,M (θ, φ)〉 =

√

(J +M + 1)(J −M + 1)

(2J + 3)(2J + 1)
, (5.1.7)

〈Y
J,M

(θ, φ)| cos θ|Y
J−1,M (θ, φ)〉 =

√

(J +M)(J −M)

(2J + 1)(2J − 1)
, (5.1.8)
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and
〈Y

J,M
(θ, φ)| cos θ|Y

J′,M
(θ, φ)〉 = 0 for J ′ 6= J ± 1 . (5.1.9)

Furthermore, we define

E
M

= diag(E0,M , E1,M , ...EJmax,M
) , (5.1.10)

where E
J,M

are the eigenenergies of the stationary states.
Integrating Eq. (5.1.4) over the time we obtain the following stroboscopic map from

t = tk to t = tk+1 (see Appendix B):

C(k+1)
M

= ei
µ0∆pk

~
U

M e−
i
~
E
M
(tk+1−tk)C(k)

M
. (5.1.11)

In this relation we introduced the notation C(n)
M

= C
M
(tn) and employed the initial con-

dition C(0)
M

= C
M
(t = 0). In addition to the stroboscopic description [Eq. (5.1.11)] of

the wave function evolution a (continuous) propagation between consecutive pulses is per-
formed. This can be done by noting that between consecutive kicks the system evolves in
a field-free fashion. Therefore, the system dynamics can be described in the time intervals
tk ≤ t < tk+1 by

C
M
(t) = e−

i
~
E
M
(t−tk)C(k)

M
; tk ≤ t < tk+1 . (5.1.12)

Alternating Eqs. (5.1.11) and (5.1.12) the all-time evolution of the system is obtained.
The degree of the orientation of the molecule can be characterized by the expectation

value
〈cos θ〉

M
(t) = 〈Ψ

M
(θ, φ, t)| cos θ|Ψ

M
(θ, φ, t)〉 . (5.1.13)

The orientation parameter 〈cos θ〉
M
(t) varies in the interval [−1, 1]. Perfect orientation

is achieved when 〈cos θ〉
M
(t) reaches its extremal values. A direct visual picture on the

overall quantum dynamics of the system is offered by the angular resolved, time-dependent
probability density

P
M
(θ, t) =

∫ 2π

0
|Ψ

M
(θ, φ, t)|2dφ . (5.1.14)

The quantities 〈cos θ〉
M
(t) and P

M
(θ, t) are the central objects of the analytical and the

numerical analysis presented in the following sections.
Due to the smallness of the rotational level spacing the rotational modes can be thermally

excited. Therefore, a realistic treatment including the effects of finite temperatures (T) has
to include the corresponding thermal average. For the orientation parameter the thermal
average 〈〈cos θ〉〉(t) is obtained, at low temperatures, from the relation

〈〈cos θ〉〉(t) = Z−1
Jmax
∑

J=0

P (J)
J
∑

MJ=−J
〈cos θ〉

J,MJ
(t) . (5.1.15)

In the equation above 〈cos θ〉
J,MJ

refers to the orientation parameter corresponding to a
molecule initially in the |J,M

J
〉 stationary state. The function

P (J) = exp

[−BJ(J + 1)

kBT

]

(5.1.16)
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is the Boltzmann distribution function associated with the rotational states. The rotational
constant of the molecule is represented by B = ~

2/(2I) and kB is the Boltzmann constant.
The partition function is denoted by

Z =

Jmax
∑

J=0

(2J + 1)P (J). (5.1.17)

5.1.1 Analytical approach

For a clear understanding of the time evolution of the system we develop in this section a
two-level system approximation (TLSA). This approximation is based on the assumption
that only the two lowest eigenstates are involved in the system evolution. The TLSA is
in general of a limited validity, in particular it breaks down with increasing temperatures
and/or for strong HCPs. Under appropriately chosen conditions, however, the TLSA pro-
vides a useful and comprehensive picture of the evolution of the system. In addition, as
detailed below it is possible to deduce from this model analytical conditions for the optimal
control of the molecular orientation.

Within the TLSA the complex vector C
M
(t) reduces to a two-dimensional spinor. Fol-

lowing the ideas of the GBVA, one can introduce the Bloch vector B(t) through the map
Ξ [see Eq. (3.1.15)] and taking account of the fact that the Pauli matrices σi (i = x, y, z)
are the generators of the SU(2) group. One then finds from Eqs. (5.1.11), (5.1.12), and
the corresponding map Ξ from C

2 to R
3 that the action of the kth pulse on the system is

determined, in the Bloch space, by the following relation [60, 61]:

B(tk) =







1 0 0

0 cosαk − sinαk

0 sinαk cosαk






B(t−k ) , (5.1.18)

where

αk =
2µ0∆pk

~
√
3

, (5.1.19)

and t−k = tk − ε (with ε→ 0+) and tk refer to the times just before and right after the kth
pulse, respectively. On the other hand the field-free evolution of the system in the time
intervals tk ≤ t < tk+1 is determined by

B(t) =







cosβk − sinβk 0

sinβk cosβk 0

0 0 1






B(tk) , (5.1.20)

where

βk =
2π(t− tk)

τrot
, (5.1.21)

and τrot denotes the rotational period of the molecule [for details on the obtention of (5.1.18)
and (5.1.20) see Appendix B]. Equations (5.1.18) and (5.1.20) offer a clear geometrical
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Figure 5.2: Geometrical illustration of the time-evolution of the system. (a) The Bloch
vector is at t = t1 = 0. (b) The Bloch vector is at t = t−2 =

τrot
4 +δ−ε (δ ¿ τrot/4, ε→ 0+).

(c) The position of the Bloch vector at the time t = t2.

interpretation of the evolution of the system. The action of the kth pulse represents an
counterclockwise rotation of the Bloch vector B by an angle αk round the x axis, while
the field-free motion between the kth and the (k + 1)th pulses amounts to rotating B
counterclockwise by an angle βk round the z axis.

Within the TLSA the orientation parameter [Eq. (5.1.13)] can be rewritten in terms of
the Bloch vector as follows

〈cos θ〉M (t) =
1√
3
Bx(t) . (5.1.22)

In the Bloch space, the initial state of the system is given by the vector (0,0,1) [note that this
vector is invariant to rotations round the z axis, i.e., it actually represents a stationary state],
while the state of optimal orientation corresponds to the vector (1,0,0) [see Eq. (5.1.22)].
The process of inducing molecular orientation consists then in transforming the vector
(0,0,1) into (1,0,0) through rotations around the x and z axes. One then searches for pulse
parameters of field-induced rotations that leave quasi-invariant the Bloch vector (1,0,0)
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corresponding to the optimal molecular orientation. This simple geometrical interpretation
leads to the procedure illustrated in Fig. 5.2 for inducing and maintaining the molecular
orientation of a molecule initially in its rotational ground state. One applies, at t = t−1 = −ε
(ε → 0+), an auxiliary pulse with a peak amplitude such that α1 = π

2 and the initial
Bloch vector (0,0,1) evolves to (0,-1,0) [see Fig. 5.2 (a)]. After a subsequent time delay, at
t = t−2 =

τrot
4 + δ − ε (0 < δ <

τrot
4 ; ε→ 0+), the Bloch vector evolves as shown in Fig. 5.2

(b) and the molecule is well oriented [note that now the vector B is close to the vector
(1,0,0) corresponding to the optimal molecular orientation], i.e., at t = t−2 the observable
〈cos θ〉

M
(t) has reached the desired value. Following the ideas discussed in Chap. 4, we

search for a procedure to induce quasiperiodic quasistationarity to the system. By applying
at t = t−2 a second pulse with parameters such that α2 = π, the Bloch vector evolves as
shown in Fig. 5.2 (c). Then upon a time delay 2δ, the Bloch vector returns to the position
depicted in Fig. 5.2 (b), i.e., its evolution becomes cyclic: B(t−2 ) = B(t−2 +2δ). Iterating this
procedure one can induce quasiperiodic cyclic evolution to the system and the Bloch vector
will oscillate between the positions displayed in Figs. 5.2 (b) and (c) with a period T = 2δ.
The solid angle Ωγ corresponding to the closed path γ described by the Bloch vector on
the sphere S

2 during each evolution cycle can easily be obtained and the corresponding AA
geometric phase is found to be given by

φ
G
=

Ωγ

2
=

1

2

∫ π

0

∫ (2πδ)/τrot

0
sin θdθdϕ =

π

2

(

1− cos

(

2πδ

τrot

))

. (5.1.23)

Now, if the parameter δ is chosen such that δ ¿ τrot
4 , the condition for quasistationarity [see

(4.2.20)] is approximately fulfilled. It is worth noting, however, that in an actual physical
situation there are some limitations on the possible values of the period T (and therefore
on the parameter δ = T /2) imposed by the duration of the pulses (note that in the present
case T = T and T has to be longer than the duration of each HCP together with the
corresponding effective tail, in order to avoid the overlapping between consecutive pulses).

Following the scheme proposed above, quasiperiodic quasistationarity is induced to
the system, the Bloch vector performs a cyclic evolution in a close vicinity of the vec-
tor (1, 0, 0), and the molecule attains and maintains its maximal orientation 〈cos θ〉 ≈ 1√

3

[see Eq. (5.1.22)] until the train of pulses is turned off [we note that for the quasiperiodic
quasistationarity of 〈cos θ〉 to occurs it is necessary the train of pulses to lasts for a time
longer than the corresponding deviation time τo that, in the present case, is related to the
rotational period of the molecule as τo = τrot ].

Summarizing, the TLSA leads to the following sequence of HCPs for a large sustainable
molecular orientation: One applies, at first, an auxiliary pulse with a peak amplitude that

provides the kick ∆p1 =
√
3~π
4µ0

(i.e., α1 = π/2) and, after a time delay t2 − t1 = τrot
4 + δ, a

periodic train of HCPs with period T ≈ 2δ and ∆pk = 2∆p1 (k > 1). The value of δ can
be arbitrarily chosen within the restriction δ ¿ τrot

4 but not too small (to avoid the overlap
of consecutive pulses).

The geometrical interpretation discussed above offers the following physical picture of
the evolution of the system which serves as the basis for the control schemes proposed here
(it will be shown below that this picture is not only valid for TLSA but, also viable for the
general case). The application of an auxiliary HCP (or several auxiliary pulses as discussed
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in the following section) creates a rotational wave packet. Applying the external field the
molecule begins to orientate along the field direction until it reaches a maximum orientation.
We recall that the molecules here considered have a large moment of inertia. Therefore,
once the maximum molecular orientation is achieved, the molecule reverses its rotational
motion to orientates in the opposite direction. This process of reaching maximal orientation
followed by orientation reversal is periodically repeated. This is because after the pulse has
passed by, the molecule evolves in a field-free fashion. Strong molecular orientation is
only achieved at time intervals close to the time at which the molecule reaches its optimal
orientation. As a result of this behavior, if we subject the molecule only to a single pulse
we cannot achieve a sustainable molecular orientation. In fact, within a rotational period,
the time average of the orientation parameter vanishes [21, 25, 94].

The above picture of the creation and the time evolution of the molecular orientation
changes if a second HCP is applied at the time when the molecule reaches the maximal
orientation (due to the first HCP) and starts to reverse its rotational motion [cf. Fig. 5.2
(b)]. Provided the second pulse is strong enough a new reversal of the rotational wave
packet motion is induced. Consequently, the molecule returns to its maximal orientation
[cf. Fig. 5.2 (c)].

From the above we conclude that the application of several appropriately designed pulses
renders possible the creation of sustainable molecular orientation lasting as long as the
duration of the train of HCPs. The ideas behind this scheme are also valid in the general
case when all the levels participate in the evolution of the system. The key question for
practical implementation of the scheme is how to determine the parameters of the required
pulses. A first hint for answering this question was provided by our discussion of the
TLSA. However, as the TLSA is not valid for arbitrary values of the pulse parameters
and is expected to fail especially when increasing temperatures, we also performed full
numerical calculations for the optimization of the molecular orientation. This calculations
are discussed in the following sections.

5.1.2 Numerical approach

In the general case, when subjecting the molecule to a strong HCP at finite temperature T,
a large number of levels has to be included for a proper treatment of the time evolution of
the system. An analytical approach becomes then intractable and one has to resort to full
numerical methods. This section provides the details of the numerical model for optimizing
the molecular orientation.

To obtain the wave function [Eq. (5.1.3)] one has to determine the expansion coefficients.
Those are deduced from Eq. (5.1.12) between consecutive pulses and from the matching
conditions Eq. (5.1.11) at the time steps when the pulses are applied. The quantities
characterizing the molecular orientation are then evaluated using Eqs. (5.1.13) and (5.1.14).
The highest relevant angular momentum value Jmax of J is determined by inspecting the
convergence condition

Jmax
∑

J=0

J
∑

MJ=−J
|CJ,M |2 ≈ 1 , (5.1.24)

which states that the angular momentum states beyond Jmax are irrelevant.
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Figure 5.3: (a) Time dependence of the orientation parameter 〈cos θ〉 in units of the ro-
tational period of the molecule. The pulse width is 1 ps (≈ 0.0072 τrot). The opti-
mal orientation pulse parameters are derived from the TLSA [ t1 = 0, t2 = 39.5 ps
(≈ 0.29 τrot), tk = t2 + (k − 2)T , T = 10 ps (≈ 0.072 τrot), F1 = 93.5 kV/cm, and
Fk = 187 kV/cm (k ≥ 2)]. The results of the TLSA (solid curve) are shown along with the
full numerical calculations (dashed curve). (b) Numerical results (including all the spec-
trum) for the angular and time dependence of the probability density P (θ, t) normalized to
its maximum value Pmax. The pulse parameters are the same as in (a).

For the calculations we used the parameters corresponding to NaI molecules. This
particular molecule is chosen as prototypical example for a polar molecule with a large
moment of inertia (the rotational constant B ≈ 0.12 cm−1) and has a permanent dipole
µ0 = 9.2 D. As stated in Sec. 5.1, for the treatment of the HCPs within the impulsive
approximation it is essential the rotational period τrot to be much longer than the pulse
durations (∼ 0.5 − 1 ps). This condition is well fulfilled for NaI since its rotational period
is τrot = 138 ps. Thus the impulsive approximation [Eq. (5.1.2)] is justified and used
throughout the calculations. As done in Ref. [21], we assume sine-square HCPs with peak
amplitudes Fk up to 600 kV/cm and durations in the range of d ∼ 0.5 − 1 ps. The pulse
areas are then obtained as ∆pk = Fkd/2. A reasonable choice for the ratio R of the pulse
duration as compared to the time delay between them is essential. This choice has to be
made in such a way as to avoid the overlap of consecutive pulses. In the present study we
employ for this ratio a maximum of R = 1/8.

5.2 Orienting NaI molecules

In this section we present the results of our calculations for the case of NaI molecules. The
calculations were performed for the scheme provided by the TLSA in Sec. 5.1.1. Further
schemes based on applying multiple auxiliary pulses and a subsequent train of HCPs for



44

optimizing the molecular orientation were also numerically implemented and their corre-
sponding results are discussed bellow.

In order to test the predictions of Sec. 5.1.1, we performed a full-fledge numerical calcu-
lation with the pulse parameters predicted by the TLSA. The results are shown in Fig. 5.3
(a), where the time dependence of the orientation parameter is displayed.

As clear from Fig. 5.3 (a), the TLSA (solid line) cannot reproduce quantitatively the full
dynamics of the system (dashed line), but it is in qualitative agreement with the numerical
calculation, showing that the scheme suggested in Sec. 5.1.1 for inducing an efficient and
sustainable molecular orientation is essentially valid even when all the levels are incorporated
in the system evolution. The results obtained within the TLSA [solid line in Fig. 5.3 (a)]
show a strong induced quasistationarity of the molecular orientation (note that in this case
the curve representing the time dependence of the orientation is practically flat during the
time the system is driven by the train of HCPs). This behavior can be well understood
from the fact that the period T of the train of pulses has been taken as T = 10 ps, i.e.,
δ = 5 ps. Therefore, taking into account that for NaI molecules τrot = 138 ps, one obtains
from Eq. (5.1.23) that φ

G
= 0.04 rad, i.e., an AA geometric phase very close to zero,

reflecting the strong quasistationarity of the induced molecular orientation.
A further useful quantity for the understanding of the time evolution of the system

is the angular and time-resolved probability density P (θ, t) which is shown in Fig. 5.3
(b). Initially [before applying the first pulse (t < 0)], the probability density P (θ, t) is
isotropically distributed, signifying the absence of orientation. After the application of the
second pulse the angular distribution of P (θ, t) is squeezed in a localized region around
θ = 0 [cf. Fig. 5.3 (b)]. The strong localization (orientation) effect is time-dependent and
lasts for τf ≈ 250 ps (i.e., τf ≈ 1.8 τrot). When the HCPs train is over the system evolves
in a field-free manner with the rotational period of the molecule, regaining again its strong
orientation at t ≈ τf + τrot .

The TLSA guided us to the procedure of Fig. 5.3 which, compared to previous schemes
(e.g. [21, 25, 92, 93, 94, 97, 98]), yields a strong and sustainable molecular orientation. On
the other hand, the full numerical results indicate the possibility of achieving even stronger
orientation when higher levels are included (see Fig. 5.3). Therefore, we envisage a second
scheme based on applying two auxiliary pulses. Within this scheme we apply at first two
auxiliary pulses for inducing strong orientation. The duration of the pulses is set to 1 ps
(≈ 0.0072 τrot) and the time delay between them to 36 ps (≈ 0.26 τrot). Note that the time
delay assumed is a few picosecond smaller than the value provided by the TLSA (39.5 ps)
in order to take into account that when higher levels are included the orientation after the
first pulse occurs faster than within the TLSA [see Fig. 5.3(a)]. The strengths F1 and F2 of
the pulses are then numerically determined by imposing the condition 〈cos θ〉 > 0.8. Several
combinations obey this requirement, here we just show some of them in Fig. 5.4.

The results displayed in Fig. 5.4 are in agreement with those reported in Ref. [99],
where an accumulative squeezing approach for inducing strong orientation was proposed.
The scheme of Ref. [99] is based on the application of a sequence of pulses. Each pulse is
applied when the molecule, after application of the previous pulse, reaches its maximum
orientation (a similar behavior can be appreciated in Fig. 5.4). We note, however, that the
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Figure 5.4: (a) Time dependence of the orientation parameter 〈cos θ〉 obtained with a first
pulse applied at t1 = 0 and a second one at t2 = 36 ps (≈ 0.26 τrot) for different values of
their strengths. Dashed line corresponds to F1 = 50 kV/cm and F2 = 240 kV/cm. Solid and
dash-dotted lines correspond to F1 = 60 kV/cm and F2 = 220 kV/cm, and F1 = 70 kV/cm
and F2 = 420 kV/cm, respectively. (b) Normalized angular distribution of the probability
density corresponding to the dash-dotted line in (a) as a function of time and θ.

accumulative squeezing approach proposed in [99] requires the time delay between consec-
utive pulses to decrease exponentially with the number of pulses making the scheme too
restrictive when a large number of pulses need to be considered (in an actual experimental
situation the procedure will lead to the overlapping of the pulses). The authors of [99]
proposed then to overcome this problem by the introduction of the τrot shift (during which
the time average of the orientation is zero) between the pulses. Consequently, within the
accumulative squeezing approach the molecular orientation is not sustainable (in the sense
that between the successive times at which the molecule is well oriented, the time average of
the orientation is zero). As suggested by the TLSA, to maintain the molecular orientation
induced by the auxiliary pulses for times of the order of τrot or longer, the pulses have to
be applied after the molecule has reversed its rotational motion, i.e., at certain delay time
after the molecule reaches its optimal orientation.

Once the parameters of the two auxiliary pulses that lead to a strong orientation have
been determined, a periodic train of HCPs which maintains the strong molecular orientation
is applied. The optimal peak field and the period of the pulses are found by fixing the values
of the pulse width (we assumed 1 ps) and setting the time t3 of application of the train
of HCPs close to the time at which the molecule, after application of the second auxiliary
pulse, has reversed its rotational motion (i.e., a short time after the molecule reaches its
maximum orientation). We then compute the time average of the orientation

Q =
1

(τf − τi)

∫ τf

τi

〈cos θ〉(t′)dt′ , (5.2.1)

where τi and τf are the times at which the HCPs train is respectively applied and turned
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Figure 5.5: (a) Time dependence of the orientation parameter 〈cos θ〉 obtained with the field
parameters t1 = 0, t2 = 36 ps (≈ 0.26 τrot), t3 = 49 ps (≈ 0.36 τrot), tk = t3+(k−3)T , T = 8
ps (≈ 0.06 τrot), F1 = 50 kV/cm, F2 = 240 kV/cm, and Fk = 540 kV/cm (k ≥ 3). (b) The
corresponding normalized angular distribution of the probability density as a function of
time and θ.

off, and determine the values of the peak field and the period of the sequence of HCPs that
lead to optimal orientation, i.e., those that maximize the averaged orientation Q.

The dynamics of the molecular orientation and the angular distribution corresponding to
the maximum value of Q [see Eq. (5.2.1)] are displayed in Figs. 5.5 (a) and (b), respectively.
The same qualitative behavior as in Fig. 5.3 is observed, but now the molecular orientation
is stronger.

Generally, the orientation strength is destroyed at high temperatures T [25, 93, 94].
Thus, to achieve appreciable orientation at finite T we developed a three-auxiliary-pulses
scheme. We use pulses with a duration of 0.5 ps (≈ 0.0036 τrot) separated by a delay time
of 4 ps (≈ 0.03 τrot). The strengths of the first and the second auxiliary pulses are taken
as F1 = 400 kV/cm, and F2 = 200 kV/cm. Following a similar procedure as for the two-
auxiliary-pulses scheme, the optimization was performed with respect to the strength F3 of
the third auxiliary pulse while keeping the peaks of the subsequent train at Fk = 600 kV/cm
(k > 3). To suppress the adverse effect of the thermal average on the molecular orientation,
generally stronger pulses with shorter delay times are required. That is why we have taken
the limit values (within the range of pulse parameters here considered) for the duration of
the pulses and the time delay between them as well as for the peak amplitudes of the train
of HCPs.

The results are depicted in Fig. 5.6, where the time dependence of the thermally averaged
orientation is displayed for different values of the temperature. As shown in Fig. 5.6, within
our scheme, a strong molecular orientation (compared to other methods [25, 93, 94]) can be
achieved and maintained even at finite temperatures. It is worth noting that the fact that
the orientation shown in Fig. 5.6 is maintained for a shorter interval of time than in the
case of Fig. 5.5 is not a temperature effect. It is due to the fact that in Fig. 5.6 the period
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Figure 5.6: The thermal average (〈〈cos θ〉〉) of the orientation parameter versus the time
at different temperatures T as depicted in the figure. HCPs are applied at times tl =
(l − 1)T [T = 4 ps (≈ 0.03 τrot), l ≥ 1] with strengths F1 = 400 kV/cm, F2 = 200 kV/cm,
Fk = 600 kV/cm (k > 3). The optimal values of F3 are found to be about 375 kV/cm,
528 kV/cm, and 593.6 kV/cm for temperatures 2 K, 5 K, and 10 K, respectively.

of the pulses has been set to a half of the period used in Fig. 5.5 while keeping the same
number of applied kicks. Therefore one can maintain the molecular orientation for longer
times by applying more pulses.



Chapter 6

Control of electronic motion in

double quantum wells

A variety of novel phenomena has been unravelled by studying the quantum dynamics of
explicit time-dependent systems. In particular, the role of the time-dependent driving on the
coherent tunnelling between two locally stable quantum wells has recently been investigated
[45, 54, 55, 56, 100]. As an interesting result it has been found that an appropriately
CW-laser driving can bring coherent tunnelling to an almost complete standstill. This
driving induced phenomenon was termed coherent suppression of tunnelling [45, 54, 101] and
yields other new quantum effects such as low frequency generation (LFG) and/or intense,
nonperturbative harmonic generation in symmetric double quantum wells [45, 56, 100, 102].
Although these phenomena, as well as the possibility of controlling quantum coherence in
double-well potentials [45, 54, 56, 100] and in two-level systems [45, 55, 102, 103] by using
CW lasers have been extensively studied, only recently the possibility of a femtosecond
control of the electronic motion in semiconductor double quantum wells driven by HCPs
has been considered [67, 104, 105].

From the fundamental point of view it is interesting to investigate whether or not coher-
ent suppression of tunnelling can be induced by a train of HCPs. In the case of symmetric
double quantum wells driven by CW lasers, the coherent suppression of tunnelling is a direct
consequence of the occurrence of accidental degeneracy of the quasienergies [45, 54, 100].
In fact, the requirement of accidental degeneracy of the quasienergies is usually referred to
as a necessary condition for achieving coherent suppression of tunnelling [45, 54, 100, 103].
In the case of a train of HCPs as the driving field quasienergy degeneracy is not expected
to occur because of the absence of well defined generalized parity of the Floquet modes,
and the achievement of coherent suppression of tunnelling could be surprising at first sight.
However, as we briefly commented in Chap. 4, the coherent suppression of tunnelling is
just a particular case of induced quasistationarity. Then one can expect that coherent sup-
pression of tunnelling induced by HCPs could occur through other than the quasienergy
degeneracy mechanism [see conditions b) and c) in Sec. 4.3].

In the present chapter we perform a detailed study of the dynamical and emission
properties of an electron in a semiconductor double quantum well driven by a train of

48
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Figure 6.1: Electron confining potential. The central barrier hight is ∼ 240 meV. The
well and barrier widths are ∼ 50 Å and ∼ 60 Å, respectively. Dashed lines indicate the
lowest-energy levels.

HCPs. We show that a conveniently designed train of HCPs can indeed induce a strong
localization of the electron in one of the wells by an efficient suppression of the tunnelling.
The localization process can be controlled in the femtosecond scale. Therefore, the proposed
scheme could be potentially useful for applications such as the designing of ultrafast switches
[67, 104]. The emission spectrum is also investigated and phenomena such as LFG and half-
harmonic generation (HHG) are also discussed.

6.1 General formulation

We consider a conduction electron confined in a typical AlxGa1−xAs based double quantum
well. Within the parabolic band and the effective-mass approximations, the time-dependent
Schrödinger equation describing the dynamics of the system under a train of HCPs can be
written as

i~
∂Ψ

∂t
= HΨ ; H = H0 + Vconf + V (z, t) (6.1.1)

where H0 represents the bare Hamiltonian, Vconf refers to the double-well confinement
potential, and V (z, t) corresponds to the interaction of the electron with the pulses. We
use a symmetric shape for the confinement potential similar to that in [56, 100]. The
central barrier hight is assumed to be about 240 meV and the well and barrier widths are,
approximately, 50 Å and 60 Å, respectively (see Fig. 6.1). The electron effective mass m∗ =
0.067m0 is considered constant throughout the heterostructure. Effects of elastic scattering
and electron-phonon interaction are neglected. For typical electron concentrations in high
quality Ga(Al)As-GaAs heterostructures these effects lie in a scale of several picoseconds
[106] that is longer than the time scale of interest in the present study.

The electron interaction with the train of strongly asymmetric pulses can be modelled
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by the potential

V (z, t) = −z
N−1
∑

k=0

FkU(t− tp − kT ) , (6.1.2)

where

U(t) =

{

exp
[

− t2

2σ2

]

cosΩt if − π
2Ω ≤ t < T − π

2Ω

0 otherwise
. (6.1.3)

In Eqs. (6.1.2) and (6.1.3) Fk denotes the peak field of the kth pulse, tp =
π
2Ω corresponds to

the time at which the positive tail of the first applied pulse is centered, T is the time between
consecutive pulses, N is the number of applied pulses, and σ characterizes the width of the
pulses. The parameter Ω = π

3σ
√
ln 2

in Eq. (6.1.3) guarantees a ratio 8:1 between the peak

amplitudes of the positive and negative tails of the pulses. The duration d of the positive
tail of each pulse is given by d = 3σ

√
ln 2.

6.1.1 Numerical approach

The time-dependent Schrödinger equation [Eq. (6.1.1)] cannot be solved analytically, we
therefore implemented a fast-Fourier-transform based numerical method as described in
Sec. 3.3 for the propagation of the initial wave function in time. After computation of the
time-dependent wave function Ψ(z, t), we calculated the time-dependent probability

PL(t) =

∫ 0

−∞
Ψ∗(z, t)Ψ(z, t)dz (6.1.4)

and the average probability

〈PL〉τ =
1

τ

∫ τ

0
PL(t)dt (6.1.5)

of finding the electron in the left well. The emission properties are studied through the
quantity

I(ω) =

∣

∣

∣

∣

∫ ∞

−∞
µ(t) exp[−iωt]dt

∣

∣

∣

∣

, (6.1.6)

where µ(t) = 〈Ψ(z, t)|z|Ψ(z, t)〉 is the time-dependent dipole moment. All calculations were
performed with σ = 20 fs and T = 100 fs.

6.1.2 Analytical approach

For a better understanding of dependencies of the electron motion on the various parameters
of the pulses we developed, in addition to the numerical scheme, a simple analytical approach
that is capable of reproducing and explaining the main features of the numerical calculations.
The analytical model is based on the observation that for the system under study the two
lowest-energy levels are well separated from the other energy states (see Fig. 6.1). Hence, for
a certain range of pulse parameters the system will behave, basically, as a two-level system.
Although, the two-level system approximation (TLSA) introduces certain simplifications,
the corresponding time-dependent Schrödinger equation with the interaction potential in



51

Eq. (6.1.2) cannot be solved analytically. However, further simplification is brought about
by the fact that for ultrashort HCPs the duration of each pulse is much smaller than the
typical characteristic time Tc of the undriven system (in the double quantum well studied
here, we have, for example, Tc ≈ 665 fs in the absence of the pulses, while the duration of
the employed pulses is about 80 fs). As the width of the pulses is very small compared to
the characteristic time of the undriven system, one can apply the impulsive approximation.
Within the IA the kth actual pulse is replaced by an instantaneous kick that transfer the
momentum

∆pk =

∫ T− π
2Ω

− π
2Ω

FkU(t)dt (6.1.7)

to the system (see Sec. 2.3). The electron-pulses interaction can then be approximated as

V (z, t) ≈ −z
N−1
∑

k=0

∆pkδ(t− tp − kT ) , (6.1.8)

where δ(x) represents the Dirac delta function. Note that the kth kick is applied at the
same time the actual kth pulse reaches its maximum amplitude. Hence, the actual train
of pulses [Eq. (6.1.2)] starts at t = 0, while within the IA the HCPs sequence [Eq. (6.1.8)]
starts at t = tp. For the sake of generality, in what follows we will denote by t0 the time at
which the train of pulses is turned on (i.e., t0 = 0 for the exact calculation and t0 = tp for
the analytical approach) and in the case some confusion may appear we then specify the
particular value of t0.

We note that within the TLSA and the IA the time-dependent Schrödinger equation
describing the dynamics of the electron in the double quantum well acquires the same
structure than the Schrödinger equation treated in Sec. 5.1.1 for describing the two-level
molecule. Therefore, in the present case the evolution of the system in the Bloch space
is also determined by Eqs. (5.1.18) and (5.1.20) but now with the angles corresponding to
the rotations induced by the kth pulse and the field-free evolution during the time interval
t ∈ [tk, tk+1) given by

αk =
2µ12∆pk

~
, (6.1.9)

and

βk =
2π(t− tk)

Tc
, (6.1.10)

respectively. In (6.1.9) µ12 represents the dipole corresponding to the transitions between
the two lowest eigenstates of the unperturbed system.

The probability PL(t) of finding the electron in the left well can be written, in terms of
the Bloch vector, as follows

PL(t) =
1−Bx(t)

2
, (6.1.11)

while the time-dependent dipole reads as

µ(t) = µ12Bx(t) . (6.1.12)
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Eqs. (6.1.11) and (6.1.12) lead to

µ(t) = −µ12 [2PL(t)− 1] , (6.1.13)

an expression that relates the dynamics of the electron motion [characterized by PL(t)] to
its emission properties [characterized by the Fourier transform of µ(t)].

In the case of a quasiperiodic train of pulses, the study of the properties of the Floquet
states and their quasienergies is of particular interest for understanding the dynamics of
the system as well as its emission spectrum. Following the ideas of the FA (see Sec. 3.2)
one can find without much effort that within the TLSA and the IA, the quasienergies are
determined by

ελ = εl + n~ω0 , (6.1.14)

where λ = (l, n) (l = 1, 2; n = 0,±1,±2, ...) and (see Appendix C)

ε1 = −
~ω0
2π

arccos(cosϕ cosϑ) ; ε2 = −ε1 , (6.1.15)

with ϕ =
µ12∆p

~
and ϑ = πωc

ω0
(ωc =

2π
Tc

is the characteristic frequency of the field-free system

and ω0 =
2π
T is the frequency corresponding to the train of pulses). For an explicit treatment

of periodically kicked two-level systems within the Floquet formalism see Appendix C.
In the coordinate representation, the Floquet modes Φl(z, t) satisfy the equation

(

H − i~ ∂
∂t

)

Φl(z, t) = εlΦl(z, t) . (6.1.16)

We note that for HCPs the Eq. (6.1.16) is not invariant under the transformations (z →
−z; t → t + T/2) as it is in the case of a CW laser. Consequently, the Floquet modes
Φl(z, t) do not have well defined generalized parity. In such a situation we know from the
von Neumann-Wigner theorem [48] that the existence of exact quasienergy crossings when
a single system parameter is varied is no longer guaranteed and the quasienergies exhibit
typically avoided crossings.

6.2 Coherent control of the electron dynamics

As the evolution of the wave function strongly depends on the initial conditions, we consider
two possibilities for the initial wave function corresponding to initially localized (tunnelling
initial condition) and initially delocalized (optical initial condition) states.

6.2.1 Tunnelling initial condition

In this case we consider an electron whose state at t = 0 is given by |Ψ0〉 = (|1〉 − |2〉)/
√
2,

where |1〉 and |2〉 are the two lowest-energy eigenstates of the electron in the absence of
the pulses. This case corresponds to a particle trapped initially in the left well. As in this
case the coherent suppression of tunnelling leads to the maintenance of the localization of
the electron in the left well, in what follows we will refer to the coherent suppression of
tunnelling just as localization.
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Figure 6.2: Time average of PL as a function of the pulse strength for tunnelling initial
condition.

The dependence of the average probability 〈PL〉 of finding the electron in the left well
on the pulse strength is displayed in Fig. (6.2) for the case of a quasiperiodic train of HCPs.
The solid and dashed lines correspond to the full numerical calculation (including all the
levels) and the analytical approximation, respectively. A good agreement between both
calculations can be appreciated in the region of small pulse amplitudes. For strong pulses
the TLSA is no longer valid and the differences between the analytical model and the exact
numerical results become larger.

A remarkable fact is that, contrary to the case of a CW laser as a driving field, a train
of HCPs can maintain the localization of the initially trapped particle in a wide range of
pulse parameters. The existence of certain pulse amplitudes leading to optimal localization
and delocalization can also be appreciated in Fig. (6.2). This behavior can be explained
(within the analytical approximation) from the geometrical interpretation of the dynamics
of the system in the Bloch space. In the Bloch space the tunnelling initial condition is
represented by the vector (−1, 0, 0). Before applying the first pulse, the vector B rotates
counterclockwise around the z axis until the first pulse is applied at t = tp. Just before

the first kick, the vector B has then rotated an angle β =
2πtp
Tc

(see position 1 in Fig. 6.3).
The first kick induces a rotation of B around the x axis. If the angle α of the kick-induced
rotation is

α =
2µ12∆p

~
= (2n+ 1)π (n ∈ Z) , (6.2.1)

then after the kick the vector B will be at position 2 (see Fig. 6.3), i.e., before the first pulse
the particle was leaving the left well and now, after the pulse, the particle is returning to
that well. If this procedure is iterated with T = 2tp and tp ¿ Tc/4 (this condition, as for
the case discussed in Sec. 5.1.1, guarantees the achievement of quasistationarity) the vector
B will remain oscillating in the vicinity of (−1, 0, 0), i.e., the particle will remain localized
to a large extent in the left well. We note that a similar situation in which B remains
quasistationary in the vicinity of (−1, 0, 0) occurs also if T 6= 2tp with max(T, tp) ¿ Tc/4
(in fact, all the results shown in the present chapter correspond to the case T > 2tp) but in
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Figure 6.3: Geometrical interpretation of the localization condition, Eq. (6.2.1)

such a case sub-cycles can appear within each periodic cycle. Therefore, if T ¿ Tc/4 (this
condition prevents the delocalization of the particle during an evolution cycle), Eq. (6.2.1)
represents a condition for determining the pulse parameters leading to the optimization
of the electron localization in the left well. This behavior is illustrated in Fig. 6.4 (a),
where the time dependence of the probability PL of finding the electron in the left well is
displayed for a pulse amplitude F = 84.068 kV/cm corresponding to n = 0 in Eq. (6.2.1).
Solid and dashed lines correspond to the exact numerical calculations and to the analytical
approximation, respectively (we stress that the exact numerical calculation is not a two-
level system calculation but a full numerical solution of the Schrödinger equation, including
all the levels of the system). If, on the contrary, the parameters of the pulse are such that

α =
2µ12∆p

~
= 2nπ (n ∈ Z) , (6.2.2)

then after the pulse the vector B returns to position 1 (see Fig. 6.3), i.e., in this case the
particle does not feel the field and behaves as in the field-free case, oscillating from one well
to the other with a period approximately equal to the characteristic time of the unperturbed
system. This situation is shown in Fig. 6.4 (b), where the probability of remaining in the
left well as a function of time is shown for a pulse amplitude F = 168.37 kV/cm that
corresponds to the case n = 1 in Eq. (6.2.2).

The dependence of the quasienergies (calculated within the analytical approximation)
on the pulse strength is displayed in Fig. 6.5, showing that for the system here studied no
crossing (and, therefore, no accidental degeneracy) of quasienergies occurs when a single
system parameter (the pulse strength in the present case) is varied. This situation, as
mentioned in the preceding section, is a consequence of the lack of well defined generalized
parity of the Floquet modes.

The existence of localization in the absence of accidental degeneracy of the quasienergies
can result surprising at first sight, since the existence of quasienergy crossings in the space
of system parameters is usually regarded as a necessary condition for the achievement of
coherent suppression of tunnelling [45, 54, 100, 103]. However, as discussed in Sec. 4.1,
the actual necessary condition for inducing a sustainable localization (recall the coherent
suppression of tunnelling is just a particular case of quasiperiodic quasistationarity) by a
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Figure 6.4: Tunnelling initial condition. (a) Time dependence of PL for a pulse amplitude
corresponding to n = 0 in the localization condition, Eq. (6.2.1). (b) Same as in (a) but for
a pulse amplitude corresponding to n = 1 in the delocalization condition, Eq. (6.2.2).

quasiperiodic external field is the requirement of quasiperiodic cyclic evolution of the wave
function of the system and, as was shown in Sec. 4.3, the existence of accidental degeneracy
of the quasienergies is not the only mechanism that can lead to quasiperiodic cyclic evolution
[see conditions a), b), and c) in Sec. 4.3]. For the system under investigation we found [see
Eqs.(C.0.15) and (C.0.16) in Appendix C] that for T = 2tp and pulse amplitudes obeying
Eq. (6.2.1) the localization mechanism is determined by the condition b) (see Sec. 4.3) for
which the wave function of the system collapses into a pure Floquet state. In this case we
obtain A1 = 0 (A2 = 0) for n even (odd) in Eq. (6.2.1).

Unlike for the case T = 2tp, in the case T > 2tp each periodic cycle performed by the
Bloch vector is composed of two sub-cycles with durations 2tp and 2(T − tp) as sketched
in Fig. 6.6. In such a case the wave function of the system becomes cyclic quasiperiodic
with period T = 2T and the localization mechanism corresponds to the condition c) (see
Sec. 4.3) with l = 2. One can easily prove that the AA geometric phases corresponding to
the first and second sub-cycles are given by

φ
G,1 =

π

2

[

1− cos

(

2πtp
Tc

)]

, (6.2.3)

and

φ
G,2 =

π

2

[

1− cos

(

2π(T − tp)
Tc

)]

, (6.2.4)

respectively. Thus, both sub-cycles obey the quasistationarity condition if tp ¿ Tc/4 and
(T − tp) ¿ Tc/4. For tp = 25 fs, T = 100 fs and Tc = 665 fs the values of the AA
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Figure 6.5: Dependence of the quasienergies on the pulse amplitude.

geometric phases obtained from Eqs. (6.2.3) and (6.2.4) are φ
G,1 ≈ 0.04 and φ

G,2 ≈ 0.38,
respectively, reflecting the achievement of strong quasistationarity as shown in Fig. 6.4 (a).
It can also be appreciated from Fig. 6.4 that each periodic cycle is indeed composed by two
sub-cycles. One of the sub-cycles reflects stronger localization than the other as expected,
since φ

G,1 ¿ φ
G,2 .

A localization condition corresponding to the case T = 2T [equivalent to Eq. (6.2.1)]
can be written, in terms of the quasienergies, as

ελ =

(

n± 1

2

)

~ω0
2

. (6.2.5)

In obtaining Eq. (6.2.5) we took into account Eqs. (6.1.14) and (6.1.15).
The condition in Eq. (6.2.5) is represented in Fig. 6.5 by the intersection of the straight

dotted lines with the quasienergies (dashed lines). The comparison of Figs. 6.2 and 6.5
confirms that Eq. (6.2.5) determines the pulse amplitudes corresponding to optimal local-
ization.

Apart from the conditions a), b), and c) discussed in Sec. 4.3, the wave function of the
system can be written as in Eq. (4.1.3) with T = Tc in the cases the system dynamics is
similar to the field-free case (i.e., when the system behaves as transparent to the external
field). We have found that this situation occurs if [67]

ε2 − ε1 = (1− j)~ω0 + (2j − 1)~ωc (6.2.6)

with j = 0 or j = 1. The condition in Eq. (6.2.6) leads to quasiperiodic cyclic evolution. It
does not lead, however, to a sustainable localization, since the localization of the particle
within one evolution cycle cannot be guaranteed (note that in this case T = Tc and the
system behaves, essentially, as in the absence of external field) and quasistationarity cannot
be achieved. In such a situation the periodic cycle described by B(t) on the sphere S

2 is
composed of N + 1 sub-cycles (with N the number of applied pulses within the periodic
cycle). There are N sub-cycles corresponding to the N kick-induced rotations of B(t).
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t2 = tp + 2T = tp + �
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Figure 6.6: Sketch of the evolution of the Bloch vector for the case T > 2tp and pulse
parameters obeying the localization condition Eq. (6.2.1). The horizontal dashed line rep-
resents the equator of the sphere S

2. Solid lines represent the trajectory of the Bloch vector
(note that the horizontal solid lines have been shifted for better visualization but they all
lie on the equator line). The first sub-cycle (blue line) starts at t = t0 and has a duration
T1. The second sub-cycle (red line) starts at t = 2tp and has a duration T2. The duration
of the periodic cycle is T = T1+ T2 and is completed at t = t2 = tp+ T . The centers of the
green rectangles correspond to the times of application of the HCPs.

Recall that under the condition (6.2.6) each kick rotates the vectorB(t) by an angle α = 2nπ
[see Eq. (6.2.2)] round the x axis. The other sub-cycle corresponds to the equator (assuming
the north and south poles lie in the z axis) of S

2, and therefore to a solid angle Ω = 2π.
The AA geometric phase acquired by the wave function within this equatorial sub-cycle
is then equal to π and the condition for quasistationarity is not fulfilled. Consequently,
no quasistationarity is induced and the suppression of tunnelling is not achieved. In fact,
Eq. (6.2.6) corresponds to avoided crossings of the quasienergies (see Fig. 6.5) and leads
to optimal delocalization, as can be appreciated from the comparison of Figs. 6.2 and 6.5
[i.e., Eq. (6.2.6) constitutes a delocalization condition, equivalent to Eq. (6.2.2) with n odd
(even) corresponding to j = 0 (j = 1)].

The IA introduced in the analytical model neglects the finite duration of the actual
pulses, hence the duration of the evolution cycles corresponding to the actual system be-
comes longer that in the case of the analytical approach. Note, for example, that within
the analytical approach the pulse induced rotation of the Bloch vector from position 1 to
position 2 in Fig. 6.3 occurs instantaneously, while the corresponding evolution in the actual
system lasts a finite time and, therefore, the evolution cycle for the actual system is longer.
The differences in the evolution cycle durations originate then a dephasing between both
models, as can be seen in Fig. 6.4.

After performing a procedure similar to that used in [100], we found that the emission
spectrum [Eq. (6.1.6)] is determined by

I(ω) = |I1(ω) + I2(ω) + I3(ω)| , (6.2.7)
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Figure 6.7: Emission spectrum for different values of the pulse strength.
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where

I1(ω) = 2π

2
∑

l=1

∞
∑

m,n=−∞

[

|Al|2

×
∫ ∞

−∞
b∗ln(z) z blm(z)dz δ[(m− n)ω0 − ω]

]

, (6.2.8)

I2(ω) = 2πA1A
∗
2

∞
∑

m,n=−∞

[

∫ ∞

−∞
b∗2n(z) z b1m(z)dz

× δ[(m− n)ω0 + (ε2 − ε1)/~− ω]
]

, (6.2.9)

and

I3(ω) = 2πA2A
∗
1

∞
∑

m,n=−∞

[

∫ ∞

−∞
b∗1n(z) z b2m(z)dz

× δ[(m− n)ω0 + (ε1 − ε2)/~− ω]
]

. (6.2.10)

In Eqs. (6.2.8) - (6.2.10) Al represents the expansion coefficients in Eq. (3.2.9) (see also
Appendix C) and bln(z) are the coefficients of the Fourier expansion of the lth Floquet
mode, i.e.,

Φl(z, t) =
∞
∑

n=−∞
bln(z)e

inω0t ; l = 1, 2 . (6.2.11)

Unlike for the case of a CW laser as the driving field, in the present case the coefficients
bln(z) do not have well-defined parity. Therefore, no selection rules for the integrals in
Eqs. (6.2.8) - (6.2.10) can be stated and the emission spectrum is composed, in general, by
a static component at ω = 0 [corresponding to m = n in Eq. (6.2.8)], integer harmonics at
ω = (m − n)ω0 [corresponding to m 6= n in Eq. (6.2.8)], a bandhead at ω = (ε2 − ε1)/~
[corresponding to m = n in Eq. (6.2.9)], and doublets at ω = (m − n)ω0 ± (ε2 − ε1)/~
[corresponding to m 6= n in Eqs. (6.2.9) and (6.2.10)] around the integer harmonics. One
can design the emission spectrum by using Eq. (6.1.15) for the estimation of the appropriate
pulse parameters.

The emission spectrum (vertical lines represent the emission peaks) obtained through
exact numerical calculations for different values of the pulse strength is shown in Fig. 6.7.
The general case in which the four kind of emission lines are present is shown in Fig. 6.7
(a), where the phenomena of low-frequency generation (LFG) is also quite apparent. Be-
cause of the absence of accidental degeneracy of the quasienergies there is a lower limit
for the LFG determined by the lowest value of the difference ε2 − ε1 (note that this lowest
value corresponds precisely to the characteristic frequency ωc of the undriven system), i.e.,
at the pulse parameters leading to optimal delocalization (see Figs. 6.2 and 6.5). Under
the condition of optimal delocalization only the line corresponding to LFG (that in this
limit coincides with ωc) survives, while the other lines collapse, i.e., the system behaves as
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Figure 6.8: Time average of PL as a function of the pulse strength for optical initial condi-
tion.

transparent to the external field [see Fig. 6.7 (b)]. On the contrary, when ε2 − ε1 = ~ω0/2,
the doublets coincide at odd multiples of ω0/2. This situation corresponds to the process
of optimal localization and the corresponding emission spectrum is displayed in Fig. 6.7
(c), where half-harmonic generation [i.e., at ω = nω0/2 (n = 0, 1, 2, 3, ...)] can be clearly
appreciated. As clear from Eq. (6.1.13), the large static component present in Fig. 6.7 (c)
is a manifestation of the strong localization effects [note also that in the case of optimal
delocalization displayed in Fig. 6.7 (b) the static component vanishes].

6.2.2 Optical initial condition

Although the preceding case is widely treated in the literature, in practice, the more realistic
situation is that the initial state corresponds to the ground state of the field-free system.
Therefore, in the present case we consider this particularly important situation. Because
of the symmetry of the double-well heterostructure, before applying the pulses, the particle
is completely delocalized, with the same probability of being in the left or right well. This
situation is represented by the vector (0,0,1) in the Bloch space [note that the vector (0,0,1)
actually corresponds to a stationary state, since it is invariant to rotations around the z
axis]. On the basis of the analytical approach one can find several strategies for inducing the
electron localization with a quasiperiodic train of HCPs. By setting, for example, T = Tc/4
and pulse amplitudes such that

2µ∆p

~
= (4n+ 1)

π

2
, (n ∈ Z) , (6.2.12)

the Bloch vector will follows periodically the cycle A-B-C-D-A [here A (B) represents the
positive direction of the z (y) axis and C (D) the negative direction of the x (y) axis]
and the electron will be localized in the left well. As we are specially interested in the
case T < Tc/4 we also studied the possibility of inducing electron localization for that
case. Following the geometrical interpretation of the evolution of the system one can find
(although now the situation is less intuitive) that for T < Tc/4 the Bloch vector performs
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Figure 6.9: Optical initial condition. (a) Time dependence of PL for a pulse amplitude
corresponding to n = 0 in the localization condition, Eq. (6.2.13). (b) Same as in (a) but
for a pulse amplitude corresponding to n = 1 in the delocalization condition, Eq. (6.2.14).

closed circuits corresponding to localization in the left (right) well if the pulse amplitudes
obey the relation

2µ∆p

~
= (2n+ 1)

π

2
+ (−1)n+1π

4
; n ∈ Z , (6.2.13)

with n even (odd). On the other hand, for T < Tc/4 and pulse amplitudes such that

2µ∆p

~
= nπ ; n ∈ Z (6.2.14)

the electron will remain delocalized.
The average probability 〈PL〉2ps as a function of the pulse amplitude is displayed in

Fig. 6.8 for the case T = 100 fs < Tc/4. Solid and dashed lines correspond to the exact
numerical calculations and to the analytical approximation, respectively. It is clear from
Fig. 6.8 that the initially delocalized electron can be steered to one well or to the other
by choosing an appropriate value for the pulse amplitudes. A similar effect is achieved by
changing the direction of the pulses. The time dependence of the probability of finding
the electron in the left well is shown in Figs. 6.9 (a) and (b) for pulse amplitudes obeying
Eqs. (6.2.13) and (6.2.14), respectively.

The process of inducing the electron localization of an initially delocalized electron
by using a train of uniform quasiperiodic HCPs is not highly efficient (compare Figs. 6.2
and 6.8). Therefore we consider the possibility of optimizing the localization process by
applying at first an auxiliary HCP and, after an appropriate time delay, a quasi periodic
train of HCPs.
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Figure 6.10: Optimal localization process for the case of optical initial condition.

By application of an auxiliary pulse with peak amplitude Faux such that the condition
2µ∆paux

~
= π

2 holds [this pulse will rotate the Bloch vector from its initial direction (0,0,1)

into (0,1,0)] and after a subsequent time delay τ = Tc
4 + δ (δ ¿ Tc/4), the Bloch vector of

the system evolves to the position 1 in Fig. 6.3. One can then induce a strong localization
of the electron in the left well by applying a train of HCPs with period T ≈ 2δ and obeying
the localization condition, Eq. (6.2.1). Thus, the first pulse pushes the electron into the left
well and the subsequent train of HCPs maintains the particle localization in that well.

The results corresponding to the exact numerical calculations are shown in Fig. 6.10.
One can see from Fig. 6.10 that a strong localization of the initially delocalized electron
can be achieved in times of the order of hundreds of femtoseconds. This finding is in sharp
contrast to the case when CW lasers are used as driving fields [56, 100], where it has not
been possible to achieve such a strong localization and, in addition, the time needed for
the control of the electron motion is found to be on the order of few picoseconds [56, 100].
Thus, the use of HCPs for controlling the electron motion in symmetric double quantum
wells can be potentially useful for applications in designing electro-optical devices such as
efficient ultrafast switches.



Chapter 7

HCPs induced currents in ballistic

mesoscopic rings

Mesoscopic systems have been the object of considerable attention in the last decades be-
cause of their technological applications and their unique properties (see, for example,
Refs. [107, 108, 109, 110, 111]). Of particular interest are the mesoscopic systems with
ring-confining geometries. At low enough temperature, the phase coherence length of elec-
trons in a mesoscopic ring (MR) can be considerably large compared to the size of the ring
and the interference effects become important. As a manifestation of the interference effects,
when a MR is threaded by a magnetic field, the thermodynamic properties of the system
become periodic functions of the magnetic flux. The flux dependence of the free energy
then leads to the existence of the so-called persistent currents [111, 112, 113, 114, 115, 116]
and to the Aharonov-Bohm conductance oscillations [107].

The properties of persistent currents generated in MRs threaded by a static magnetic
field have been studied in details. In particular, the electron-electron interaction [117, 118,
119], impurity scattering [117], and disorder [115, 118] effects on the persistent currents
have been considered by various researchers. Persistent currents in carbon nanotube based
rings have recently been studied [120]. Several experiments in which persistent currents
have been measured, have also been reported [121, 122, 123, 124].

The dynamical effects produced by a time-dependent electric field acting on a MR
threaded by a static magnetic field have been investigated in Refs. [125, 126, 127, 128], where
the existence of a stationary non-equilibrium current has been theoretically demonstrated.
The direct non-equilibrium current is a consequence of the nonlinear effects and is an odd
function of the static magnetic flux (as for the case of persistent currents) that, consequently,
vanishes if the static magnetic flux is zero [126, 127, 128]. Further investigations concerning
the dynamical properties of MRs subject to external CW laser fields have also been reported
[129, 130, 131].

In the present chapter we investigate the dynamics of non-interacting electrons confined
in a ballistic thin MR subject to linearly polarized HCPs. We show that the application of a
linearly polarized HCP on a ballistic thin MR induces a polarization that persists even after
the HCP has passed by. Although once the HCP has passed by, the attenuated external
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field is not strictly zero, it is, however, too weak (see Chap. 2) as to produce any appreciable
change in the evolution of the system, that will behave, essentially, as in the zero field case.
For this reason we also refer to the postpulse polarization as a field-free polarization. In
general, the applied HCP delivers an impulsive momentum transfer (or kick) to the system
inducing postpulse, time-dependent charge oscillations that will last as long as the coherence
is preserved. No current is induced, however, in the ring when a single linearly polarized
HCP is applied. As one can expect from an intuitive point of view, the application of a
single linearly polarized pulse does not destroy the clockwise-counterclockwise symmetry of
the paths in the ring and the total current vanishes. This situation changes qualitatively, if
a second HCP polarized in a direction other than the polarization direction of the first pulse
is applied after the ring has been subject to the first HCP. In such a case the second HCP
brakes the clockwise-counterclockwise symmetry and a non-equilibrium current is generated
in the ring as will be shown in the following sections.

7.1 Postpulse polarization of mesoscopic rings

We consider a gas of non-interacting particles confined to an isolated 1D mesoscopic ring
at low temperature (T ≈ 0 K). Despite the relative simplicity of this model, it has been
shown to provide the main physical features in the description of thin MRs in the ballistic
regime [111, 112, 113, 114, 115, 116, 123, 129]. A linearly polarized HCP is applied in the
x direction at t = t1. The duration of the pulse is assumed to be much shorter than the
ballistic time τF a particle at the Fermi level requires for completing one turn along the
ring (note that this condition is experimentally feasible since for typical ballistic rings τF
is of the order of several tens of picoseconds [123, 132] and, as discussed in Chap. 2, HCPs
as short as 1 ps can be generated with modern techniques). Consequently, one can safely
treat the interaction of the system with the HCP within the impulsive approximation.

The Schrödinger equation describing the evolution of the system is given by

i~
∂Ψ

∂t
=

[

− ~
2

2m∗ρ20

∂2

∂θ2
− qρ0ε1(t) cos θ

]

Ψ , (7.1.1)

where
ε1(t) = p1δ(t− t1) . (7.1.2)

In Eqs. (7.1.1) and (7.1.2) ρ0 represents the radius of the ring, δ(x) denotes the Dirac δ
function, θ is the polar angle, and m∗ and q are the effective mass and charge of the carriers,
respectively. The pulse is applied at t = t1 and transfers a momentum denoted by p1 (p1
is given by the area of the actual pulse) to the system (see Chap. 2). From now on we will
assume t = t1 = 0.

The solutions of Eq. (7.1.1) obey the following matching condition (see Appendix B)

Ψ(θ, t = 0+) = Ψ(θ, t = 0−)eiα1 cos θ , (7.1.3)

where α1 = qρ0p1/~ and t = 0− and t = 0+ refer to the time just before and right after the
application of the pulse, respectively.
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The solution of Eq. (7.1.1) corresponding to a particle that is initially in the m0th state
can be written on the basis of the stationary eigenstates as

Ψm0
(θ, t) =

1√
2π

∞
∑

m=−∞
Cm(m0 , t)e

imθe−i
Emt

~ , (7.1.4)

where

Em =
~
2m2

2m∗ρ20
, m = 0,±1,±2, ... (7.1.5)

are the eigenenergies of the unperturbed states.
Taking into account the matching condition (7.1.3) and after applying the expansion

theorem one finds that the expansion coefficients are given by

Cm(m0 , t) =

{

δm,m0 for t ≤ 0

im0−mJm−m0 (α1) for t > 0
, (7.1.6)

with Jl(x) representing the Bessel functions and δm,n is the Kronecker symbol. In obtaining
(7.1.6) the identity (D.0.1) was considered.

The energy spectrum of the particle is rearranged after the application of the pulse. The
energy corresponding to a particle initially in the m0th state is given by

Em0
(t) = 〈Ψm0(θ, t)|H|Ψm0(θ, t)〉 = i~

〈

Ψm0(θ, t)

∣

∣

∣

∣

∂

∂t

∣

∣

∣

∣

Ψm0(θ, t)

〉

. (7.1.7)

The substitution of Eqs. (7.1.4) - (7.1.6) in (7.1.7) leads to a postpulse energy (i.e., for
t > 0),

Em0
(t > 0) =

~
2

2m∗ρ2
0

∞
∑

m=−∞

[

mJm0−m(α1)
]2

. (7.1.8)

The infinite sum involved in (7.1.8) can be performed exactly [see Eq. (D.0.3) in Appendix
D] and the energy corresponding to a particle initially in the m0th state is given by

Em0
(t) =











~
2m2

0

2m∗ρ20
for t ≤ 0

~
2

2m∗ρ20

(

m2
0
+

α2
1
2

)

for t > 0
, (7.1.9)

i.e., the HCP shifts the unperturbed energy spectrum by an amount that scales quadratically
with the strength of the pulse and does not depend on the size of the ring. The initial
degeneracy is therefore preserved after the pulse is applied. We remark that Eq. (7.1.9) is
only valid for times much shorter than the duration of the complete pulse.

It is not difficult to prove from Eqs. (7.1.4) - (7.1.6) that Ψm0
(θ, t) = Ψ−m0 (−θ, t) i.e.,

the clockwise-counterclockwise symmetry is preserved after the application of the pulse,
and therefore, currents carried by particles initially in the m0 and −m0 states compensate
each other. This fact together with the degeneracy of the states [see Eq. (7.1.9)] confirms
the intuitive expectation that no total current will be induced in the ring.
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In order to characterize the degree of polarization in the direction of the pulse (i.e.,
along the x axis), we introduce the localization parameter

〈cos θ〉m0 (t) =
∫ 2π

0
|Ψm0

(θ, t)|2 cos θdθ . (7.1.10)

This parameter [analogue to the parameter commonly used for characterizing molecular
orientation (see Sec. 5.1)] constitutes a measure of how strong a particle initially in them0th
state localizes in the x direction. The parameter 〈cos θ〉m0 (t) varies in the interval [−1, 1],
taking the extreme values −1 and 1 when the particle is perfectly localized at the angles
θ = π and θ = 0, respectively. Note, however, that 〈cos θ〉m0 (t) = 0 does not necessary
mean that the particle is localized at θ = ±π/2. In such a case one only can say that the
localization of the particle is symmetric with respect to the y axis, i.e., that the polarization
in the x direction vanishes. Note also that the dipole moment on the x axis corresponding
to a particle initially in the m0th stationary state is proportional to 〈cos θ〉m0 (t) and, more
precisely, is given by

µm0 (t) = qρ0〈cos θ〉m0 (t) . (7.1.11)

After some mathematical manipulations one can obtain from Eqs. (7.1.4) - (7.1.6) and
(7.1.10) the following relation

〈cos θ〉m0(t) = Θ(t)α1h(Ω) sin

[

2πt

τp

]

cos

[

4πm0t

τp

]

, (7.1.12)

where Θ(x) denotes the Heaviside step function,

Ω = α1

√

2− 2 cos[4πt/τp] ; τp =
4πm∗ρ20

~
, (7.1.13)

and
h(Ω) = J0(Ω) + J2(Ω) . (7.1.14)

In obtaining (7.1.12) we took into account Eq. (D.0.4).
From Eq. (7.1.12) it results 〈cos θ〉m0 (t) = 〈cos θ〉−m0 (t). Therefore, the contributions

of particles initially in the m0 and −m0 states to the polarization interferes constructively
and a non-vanishing total polarization is generated.

The total dipole moment on the x axis induced in the ring is given by

µ(t) =
∑

m0 ,σ

f(m0 , t)µm0 (t) , (7.1.15)

where σ refers to the spin of the particle, f represents the non-equilibrium distribution
function, and µm0 (t) is given by Eq. (7.1.11). At low temperatures and for relatively weak

pulses (
~
2α2
1

4m∗ρ20
¿ E

F
), the non-equilibrium distribution function can be calculated within

the relaxation time approximation [133, 134].
Within the relaxation time approximation, the non-equilibrium distribution function is

determined by the Boltzmann equation:

∂f(m0 , t)

∂t
= −f(m0 , t)− nF

(m0)

τrel
, (7.1.16)
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where τrel represents the relaxation time and

n
F
(m0) =

[

1 + exp

(

Em0
(t)− η0
k
B
T

)]−1
(7.1.17)

denotes the Fermi-Dirac distribution function corresponding to the equilibrium. In the
equation above T, k

B
, and η0 represent the temperature, the Boltzmann constant and the

chemical potential, respectively.
The Eq. (7.1.16) has to be complemented with the boundary condition specifying the

value of the distribution function right after the application of the pulse,

f(m0 , 0
+) = n(1)

F
(m0) =

[

1 + exp

(

Em0
(0+)− η1
k
B
T

)]−1

. (7.1.18)

The values of the chemical potentials η0 and η1 depends on the physical nature of the system.
If the ring is connected to a reservoir of particles, for example, the chemical potential is
fixed and η0 = η1 . In the particular case of our interest, in which the MR is isolated, the
chemical potentials η0 and η1 have to be calculated, however, by requiring the number of
particles N in the ring to be a constant. Thus, for a given isolated ring with N particles, η0
is a function of the temperature, while η1 depends on both the temperature and the pulse
amplitude.

It is worth noting that in the case of an isolated MR the relaxation mechanism has to
include, necessarily, inelastic scattering. The interaction of the carriers with the phonons is
then crucial for the estimation of τrel. Here, however, we consider, for simplicity, τrel as a
phenomenological parameter.

The Eq. (7.1.16) with initial condition (7.1.18) can be integrated over the time dura-
tion of the complete pulse for an arbitrary time-dependence of n

F
(Em0

(t)). After solving
(7.1.16), taking into account that for times much shorter than the duration of the complete
pulse (i.e., the time scale of our interest here) Em0

(t) is approximately given by (7.1.9), and
considering that the value of the dipole moment before the application of the pulse (i.e., its
equilibrium value) is zero, one can rewrite (7.1.15) as follows,

µ(t) = e
− t

τrel

∑

m0 ,σ

n(1)
F

(m0)µm0 (t) . (7.1.19)

At zero temperature only the lowest-lying states are occupied. In such a case the sum
in Eq. (7.1.19) can be performed analytically by taking into account the dependence of the
filling of the levels bellow the Fermi level on whether the carriers are spinless or spin- 12
particles as well as on the number N of particles in the ring.

In the case of spinless particles at T = 0 K the filling of the levels bellow the Fermi level
depends on whether there is an odd or even number of particles in the ring (we remark that
we are considering an isolated ring and therefore the number of particles is a constant). In
the case N is an odd number all the occupied levels are completely filled [see Fig. 7.1 (a)]
and Eq. (7.1.19) reduces to

µ(t) = e
− t

τrel

(N−1)
2
∑

m0=−
(N−1)
2

µm0 (t) . (7.1.20)
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Figure 7.1: Filling of the energy levels at T = 0 K for the case of N spinless particles. a) N
is an odd number and all the occupied levels are completely filled. b) N is an even number
and, because of the energy degeneracy, the highest occupied levels are half-filled.

The substitution of (7.1.11) and (7.1.12) in (7.1.20) leads to the following expression

µo(N, t) = −Θ(t)qα1ρ0h(Ω) sin

[

2πNt

τp

]

e
− t

τrel , (7.1.21)

for the dipole moment corresponding to an odd number of spinless particles in the ring.
In the case of an even number of spinless particles, because of the energy degeneracy

[see Eq. (7.1.9)], the highest occupied levels are half-filled [see Fig. (7.1)]. Consequently, in
such a case (7.1.19) reduces to

µ(t) = e
− t

τrel

(N−2)
2
∑

m0=−
(N−2)
2

µm0 (t) +
1

2

[

µ−N
2
(t) + µN

2
(t)
]

. (7.1.22)

Taking into account (7.1.11), (7.1.12) and (7.1.22) one then obtains that the dipole moment
corresponding to the case of an even number of spinless particles in the ring is given by

µe(N, t) = −Θ(t)qα1ρ0h(Ω) sin

[

2πNt

τp

]

cos

[

2πt

τp

]

e
− t

τrel . (7.1.23)

For the case of spin- 12 particles the induced dipole moment can be written as

µσ(t) = µ↑(t) + µ↓(t) , (7.1.24)

where µ↑(t) and µ↓(t) refer to the contribution from the spin up and spin down configu-
rations, respectively. Four cases regarding the number of particles in the ring need to be
considered separately. The situation is shown in Fig. 7.2, where the filling of the levels by
spin-up (red circles and semicircles) and spin-down (blue circles and semicircles) particles
is sketched. The comparison between Figs. 7.1 and 7.2 reveals the possibility of expressing
the dipole moment corresponding to the case of spin- 12 particles as a function of the dipole
moment corresponding to the spinless particles case (see also Ref. [135]). We now study in
details the four cases of interest.
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Figure 7.2: Filling of the energy levels at T = 0 K for the case of N spin- 12 particles. Red
and blue circles and semicircles correspond to spin-up and spin-down particles, respectively.
a), b), c), and d) correspond to the cases N = 0 (mod 4), N = 1 (mod 4), N = 2 (mod 4),
and N = 3 (mod 4) particles.

1) An even number of pairs, i.e., N = 0 (mod 4)
In such a case one easily obtain from the comparison of Figs. 7.1 and 7.2 (a) that the

contributions to the dipole moment resulting from up spins and down spins are

µ↑(N, t) = µ↓(N, t) = µe(N/2, t) , (7.1.25)

i.e., they are identical and each is equal to the dipole moment corresponding to the case of
N/2 spinless particles (note that N/2 is even).

2) An even number of pairs plus an extra particle, i.e., N = 1 (mod 4)
From the comparison of Figs. 7.1 and 7.2 (b) it results that

µ↑(N, t) = µo((N + 1)/2, t) ; µ↓(N, t) = µe((N − 1)/2, t) . (7.1.26)

3) An odd number of pairs, i.e., N = 2 (mod 4)
It results from the comparison of Figs. 7.1 and 7.2 (c) that

µ↑(N, t) = µ↓(N, t) = µo(N/2, t) , (7.1.27)

i.e., they are identical and each is equal to the dipole moment corresponding to the case of
N/2 spinless particles (note that N/2 is odd).

4) An odd number of pairs plus an extra particle, i.e., N = 3 (mod 4)
From the comparison of Figs. 7.1 and 7.2 (d) one obtains that

µ↑(N, t) = µe((N + 1)/2, t) ; µ↓(N, t) = µo((N − 1)/2, t) . (7.1.28)
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Figure 7.3: Time dependence of the localization parameter 〈cos θ〉m0 .

Taking into account the four cases above discussed, one obtains from Eq. (7.1.24) that
for the case of spin- 12 particles, the total induced dipole moment µσ(t) can be expressed in
terms of spinless case dipole moments [Eqs. (7.1.21), (7.1.23)] as follows

µσ =























2µe(
N
2 , t) if N = 0 (mod 4)

µo(
N+1
2 , t) + µe(

N−1
2 , t) if N = 1 (mod 4)

2µo(
N
2 , t) if N = 2 (mod 4)

µe(
N+1
2 , t) + µo(

N−1
2 , t) if N = 3 (mod 4)

. (7.1.29)

At low temperatures, if the MR is thin enough and contains a large number of elec-
trons, all the close-lying states corresponding to the ground state of the system belong to
different angular momentum and as a result of the angular momentum conservation, the
Coulomb interaction cannot couple them. That is why the effects of the electron-electron
interaction in thin MRs (in the ground state) are usually irrelevant [116, 119]. When the
HCP hits the MR, the system is promoted into an excited state and starts to relax after the
HCP has passed by. The relaxation of the system can occur through various mechanisms,
e.g., electron-electron inelastic scattering, electron-phonon scattering, etc. Here the relax-
ation processes are introduced phenomenologically through the relaxation time τrel that is
assumed as a parameter.

In order to have an estimation of the dependence of the induced polarization on the
different parameters of the system we performed calculations for a ballistic GaAs-AlGaAs
ring similar to that used in the experiment reported in Ref. [123] with ρ0 = 1.35 µm, electron
effective mass m∗ = 0.067me, and N = 1400. A Sine-square HCP with time duration of 1
ps was assumed. Zero temperature was considered in all calculations.

The time dependence of the localization parameter 〈cos θ〉m0 corresponding to the
ground state (m0 = 0) is displayed in Fig. 7.3 (a) for different values of the amplitude
F of the HCP. As can be clearly appreciated in the figure, a particle initially in the ground



71

-5

0

5

10

15

0 10 20 30 40 50
0

1

2

time [ ps ]

F 
[ k

V
 / 

cm
 ]

-10
0
10
20
30

(b) µµµµσσσσ [ MD ]

 

 

µµ µµσσ σσ
 [ 

M
D

 ]

 ττττrel
 = 5 ps

 ττττrel
 = 10 ps

 ττττrel
 = 30 ps

(a)

ττττrel
 = 30 ps

T = 0 K
F = 1 kV / cm
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1
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strength F (b).

stationary state reaches its maximum localization around θ = π after a time of the order
of 20 ps for a peak field F = 1 kV/cm. However, when stronger fields are applied, the
localization of the particle oscillates faster, and for the case of F = 2 kV/cm the particle
localizes around the angles θ = π and θ = 0 after times of about 8 and 27 ps, respectively.
This behavior is comprehensible, since stronger pulses induce larger momentum change and
enhance the energy of electronic states [cf. Eq. (7.1.9)] leading thus to faster oscillations
in the charge-density localization parameter 〈cos θ〉m0 with increasing F . From these argu-
ments it is also clear that, if the carrier is initially in a high-angular-momentum state, the
localization 〈cos θ〉m0 will have an oscillatory behavior, even for small fields. This situation
is illustrated in Fig.7.3 (b), in which case m0 = 300. From Fig.7.3 (b), it is also evident that
stronger fields are helpful to achieve swiftly a certain degree of directional localization of
the charge distribution. However, a strong field does not necessarily means stronger local-
ization. It is important to note that the localization parameter 〈cos θ〉m0 is strictly periodic
with a period determined by τp [see Eq. (7.1.12)]. However, since τp ≈ 13.26 ns is much
longer than the typical relaxation time τrel, the field-free (postpulse) charge oscillations
decay before the τp periodic dependence becomes apparent.

Using the relaxation time approximation we present the time dependence of the total
dipole moment µσ for different values of τrel and for varying pulse amplitudes in Figs. 7.4
(a) and (b), respectively. A field-free mesoscopic polarization is generated within 10 ps after
the application of the pulse (note that µσ is depicted in units of 106 D). The maximum
absolute value of the postpulse dipole moment decreases when shortening the relaxation
time [see Fig. 7.4 (a)]. The postpulse polarization, however, is still appreciable within a
typical range of values of τrel in ballistic semiconductor MRs [109, 110, 111] as shown in
Fig. 7.4 (a). On the other hand, the dipole moment increases with the pulse strength but
the time within which it is created decreases with stronger fields [see Fig. 7.4 (b)]. Thus
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the amount and duration of the induced dipole moment can, to a certain extent, be tuned
by applying an appropriately designed HCP. In principle, the postpulse polarization and
dipole moment can be enhanced considerably by increasing the field amplitude beyond the
values shown in Fig. 7.4. Here, we use relatively weak pulses to ensure that the energy
delivered to the system is much smaller than EF . Stronger excitations results in shorter
relaxation times and hence the postpulses polarization and dipole moment will decay faster.
The time dependence of the postpulse dipole moment corresponding to an even number of
spin-12 carriers, shows a damped oscillating behavior with nodes [see Eqs. (7.1.21), (7.1.23),
and (7.1.29)] at t =

nτp
N (with n an integer number) and at those values of t for which

h(Ω) = 0. Therefore the duration of the first half-cycle of the polarization (note that this
cycle gives the strongest polarization, since the dipole moment is exponentially damped by
the relaxation of the system) depends, essentially, on the number of carriers in the ring.
This situation can be clearly appreciated in Fig. 7.5, where the time evolution of the induced
dipole moment is displayed for different values of the number of particles in the ring.

We remark that the charge polarization effect depicted in Figs. 7.4 and 7.5 emerges
after the HCP has passed by and hence it occurs in a nearly field-free environment. This
fact offers a unique opportunity for studying relaxation processes in the absence of external
perturbations and differs, qualitatively, from the case when a stationary polarization is
induced by a dc electric field.

It is worth noting that the polarization of the MR can be sustained for longer times if
it is subject to a train of HCPs. For example, by applying a periodic train of HCPs (with a
period longer than the relaxation time) the behavior of the polarization shown in Fig. 7.4
can be periodically repeated as many times as the number of applied pulses. Because
of the periodic charge oscillations thus induced, the driven MR can result in a source of
electromagnetic radiation whose characteristics can be controlled (to a certain extent) by
appropriately designing the sequence of HCPs [136, 137].

From the obtained results and taking into account that all the system parameters utilized
in our investigation are in a range experimentally feasible nowadays, we believe that the
predicted field-free polarization could, in principle, be experimentally detected with modern
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techniques. Since the optical absorption properties of a system strongly depend on its charge
polarization, the postpulse polarization of the ring could be monitored by performing a
pump-probe experiment analogous to that reported in Ref. [138]. In our case the HCP would
play the role of the pump pulse inducing the ring charge polarization. A second delayed
probe femtosecond pulse is then applied to monitor in time the absorption properties of
the system (by varying the time delay between the pump and the probe fields). It is worth
noting, however, that the nature of the postpulse polarization here discussed is qualitatively
different to that on which the experiment in Ref. [138] is based. In the present case the
postpulse polarization strongly depends on the amount of momentum transferred to the
system by the pulse. That is the reason why a HCP should be employed as the pump pulse
instead of a nearly time symmetric femtosecond pulse as was used in Ref. [138] (note that
a time symmetric pulse transfer no momentum to the system).

Concerning the dimensionality of the ring it is instructive to analyze whether the results
of the single channel 1D model here studied can offer a qualitatively correct picture of
the electron dynamics in more realistic thin, ballistic MRs involving a small number of
channels. For these rings and weak fields, the angular and radial motions are adiabatically
decoupled [139] and the decisive effect of including the different radial channels is a lowering
of the Fermi energy compared to the Fermi energy of the single-channel case. We expect
that the peak of the polarization will increase when other channels are included [139],
since the system will be more easily excited (a similar situation occurs for the case of
persistent currents, where the peak current scales as the square root of the number of
channels [114, 123]). On the other hand, lowering EF is accompanied by a reduction of the
angular velocity of the particles near the Fermi level and, consequently, one could expect
the time oscillations of the single-channel polarization to occur in a slower time scale when
the different radial channels are included [139].

As mentioned above, the lack of total current in the ring is a consequence of the fact that
a single pulse is unable to destroy the energy degeneracy and the clockwise-counterclockwise
symmetry of the wave function. However, one can intuitively expect that if a second HCP
is applied (in a direction different than x in order to brake down the clockwise-anticlockwise
symmetry) after a certain delay time from the application of the first pulse, a non-vanishing
postpulses current will be induced in the ring [140]. The possibility of inducing currents in
a ballistic MR subject to a two counterpropagating orthogonal, linearly polarized HCPs is
investigated in the following section.

7.2 Field-free currents in mesoscopic rings

Let us investigate now the dynamics of a ballistic MR similar to the one studied in the
preceding section, but now subject to the action of two counterpropagating orthogonal,
linearly polarized HCPs . Such pulses, as was discussed in Sec. 2.2, can be experimentally
generated with nowadays techniques.

The time-dependent Schrödinger equation describing the dynamics of the system is given
by
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i~
∂Ψ

∂t
=

[

− ~
2

2m∗ρ20

∂2

∂θ2
− qρ0[ε1(t) cos θ + ε2(t) sin θ]

]

Ψ , (7.2.1)

where

εk(t) = pkδ(t− tk) ; k = 1, 2 . (7.2.2)

The time of application of the kth pulse and the momentum it transfers to the system (i.e.,
the area of the actual pulse) are denoted by tk and pk, respectively. From now on we will
assume the first and second pulses are applied at t = t1 = 0 and t = t2 = τ , respectively,
i.e., τ represents the time delay between the two pulses.

The solutions of (7.2.1) obey the matching conditions (see Appendix B)

Ψ(θ, t+1 ) = Ψ(θ, t−1 )e
iα1 cos θ ; Ψ(θ, t+2 ) = Ψ(θ, t−2 )e

iα2 sin θ , (7.2.3)

where αk = eρ0pk/~ and t−k and t+k refer to the time just before and right after the appli-
cation of the kth pulse.

The wave function corresponding to a particle initially in the m0th stationary state can
be expanded as in (7.1.4). Taking into account that before, between, and after the pulses
the system evolves in a field-free fashion and after application of the matching conditions
(7.2.3), we found, through the expansion theorem that the expansion coefficients are given
by

Cm(m0 , t) =











δm,m0 for t ≤ 0

im0−mJm−m0 (α1) for 0 < t ≤ τ
∑∞

n=−∞
im0−nJn−m0 (α1)Jm−n(α2)e

− i
~
(En−Em)τ for t > τ

. (7.2.4)

In obtaining (7.2.4), the identities (D.0.1) and (D.0.2) were considered and it was assumed
that during the time interval 0 < t ≤ τ the coherence of the wave function is preserved.
Consequently, for consistency, the time delay τ between the pulses has to be shorter than
the relaxation time of the system.

The Eq. (7.1.6), corresponding to the case in which a single pulse is applied, is easily
obtained from (7.2.4) by taking into account that Jm−n(α2 → 0) = δm,n.

The energy spectrum of a particle initially in the m0th state can be calculated from
Eqs.(7.1.4), (7.1.5), (7.1.7), and (7.2.4). After some mathematical manipulations, we ob-
tained

Em0
(t) =



















~
2m2

0

2m∗ρ20
for t ≤ 0

~
2

2m∗ρ20

(

m2
0
+

α2
1
2

)

for 0 < t ≤ τ

ε1(m0) + ε2(m0) + ε3(m0) for t > τ

, (7.2.5)

where

ε1(m0) =
~
2

2m∗ρ20

(

m2
0
+
α2
1

2
+
α2
2

2

)

, (7.2.6)

ε2(m0) =
~
2

2m∗ρ20

α2
2

2
J2(ϑ) cos

(

8πm0

τ

τp

)

, (7.2.7)
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with

ϑ = 2α1 sin

(

4π
τ

τp

)

, (7.2.8)

and

ε3(m0) = −
~
2

2m∗ρ20
α1α2 [g+(m0)− g−(m0)] , (7.2.9)

with

g±(m0) =

[(

m0 ∓
1

2

)

J0(ϕ) +

(

m0 ±
1

2

)

J2(ϕ)

]

sin

[

2π(2m0 ∓ 1)
τ

τp

]

, (7.2.10)

and

ϕ = 2α1 sin

(

2π
τ

τp

)

. (7.2.11)

In obtaining Eqs. (7.2.6) - (7.2.11) the identities (D.0.3), (D.0.5), and (D.0.6) were used.
Two aspects regarding the energy spectrum (7.2.5) deserve to be commented. The

first one is that in the case a single pulse is applied (i.e., α2 = 0), Eq. (7.2.5) reduces
to Eq. (7.1.9) as it must be. The second one concerns to the fact that ε1(m0) = ε1(−m0),
ε2(m0) = ε2(−m0), and ε3(m0) = −ε3(−m0). Consequently, the initially degenerated energy
levels E±m0 (t ≤ τ) split into E±m0 (t > τ) = ε1(m0) + ε2(m0)± ε3(m0), i.e., Em0

(t > τ) 6=
E−m0 (t > τ), and the initial energy degeneracy is destroyed after the application of the
second pulse.

It results from Eqs. (7.1.4) and (7.2.4) that Ψ
(t≤τ)
m0

(θ, t) = Ψ
(t≤τ)
−m0 (−θ, t). Consequently,

the first pulse does not destroy the clockwise-counterclockwise symmetry and the currents
curried by particles initially in them0 and −m0 states compensate each other. As the energy
degeneracy of ±m0 states is preserved for t ≤ τ , no current is expected to be induced by the
first pulse. This situation changes, however, after the application of the second pulse, when

the clockwise-counterclockwise symmetry is broken [Ψ
(t>τ)
m0

(θ, t) 6= Ψ
(t>τ)
−m0 (−θ, t)] and a total

non-vanishing current is induced. Note that in order to brake the clockwise-counterclockwise
symmetry, the pulses have to be polarized in different directions.

The total current induced in the ring is given by

I(t) =
∑

m0 ,σ

f(m0 , t)Im0 (t) , (7.2.12)

where f(m0 , t) denotes the non-equilibrium distribution function,

Im0 (t) =

∫ 2π

0
jm0 (θ, t)dθ (7.2.13)

[with jm0 (θ, t), the corresponding density current] is the current carried by a particle initially
in the m0th stationary state. After some mathematical manipulations and taking into
account Eqs. (D.0.4) and (D.0.8) we found that

Im0 (t) =











I
(0)
m0

for t ≤ 0

I
(0)
m0

for 0 < t ≤ τ

I
(0)
m0

+ I
(1)
m0

for t > τ

, (7.2.14)
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where

I(0)m0
=
q~m0

m∗ρ20
, (7.2.15)

and

I(1)m0
=

q~

m∗ρ20
α1α2 [J0(ϕ) + J2(ϕ)] sin

(

2π
τ

τp

)

cos

(

4πm0

τ

τp

)

(7.2.16)

with ϕ given by Eq. (7.2.11).
By comparing Eqs. (7.1.11) - (7.1.14) with (7.2.16) one can easily see that

I(1)m0
=

~

m∗ρ30
α2 µm0 (τ) . (7.2.17)

Thus, for t > τ the current carried by a particle initially in the m0th stationary state
depends on the corresponding dipole moment µm0(τ) right before the application of the
second pulse.

It is clear from (7.2.5) and (7.2.14) that Em0(t ≤ τ) = E−m0(t ≤ τ) and Im0(t ≤
τ)+I−m0(t ≤ τ) = 0. Consequently, the total current I(t ≤ τ) = 0, as was discussed above.

The non-equilibrium distribution function f(m0 , t) can be calculated, within the relax-
ation time approximation, as done in the preceding section. However, unlike for the case
in which a single pulse is applied, when the two orthogonal, linearly polarized HCPs are
applied the energy levels are redistributed in a non-trivial way and the boundary condi-
tions for determining the non-equilibrium distribution function depends on the relaxation
processes between the different system states.

Before the application of the first pulse (t ≤ 0) the energy levels are degenerated. At
T = 0 K only the lowest energy levels are occupied. We will refer to this equilibrium state
as the state A. After the application of the first pulse, in the time interval 0 < t ≤ τ , the
initial energy levels are just shifted. Therefore the degeneracy, ordering and occupation of
the energy levels are preserved when the system evolves from t ≤ 0 to 0 < t ≤ τ . The state
of the system in the time interval 0 < t ≤ τ will be referred to as the state B. Right after the
application of the second pulse the system state B evolves into an excited state that will be
denoted by C. The non-equilibrium state C is reached at t = τ+ and its energy levels are, in
general, non-degenerated and rearranged in a new ordering. The occupation of the energy
levels is, however, preserved during the system evolution from the state B to the state C.
Depending on the nature of the system two different relaxation processes involving carrier
relaxation between different coherent one-particle states or from a coherent to a stationary
one-particle state could, in principle, occur after the system has reached the non-equilibrium
state C. If the time the system requires for relaxing from the state C to the state D (with
D denoting the system state resulting from the same energy levels configuration as state C
but with the particles occupying the lowest energy levels only) is longer than the time the
coherence of the wave functions is preserved, then the system will relax directly from the
system state C to the initial equilibrium state A with a rate characterized by a relaxation
time τrel. If, on the contrary, the coherence of the wave functions is preserved for a long
enough time, the system can relax with a rate determined by τ ′rel from the state C to
state D, and then, from state D to the initial equilibrium state A with a relaxation rate
characterized by τ ′′rel. For a better understanding of the notation used for the system states
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Figure 7.6: Schematics of the time evolution of ordering and occupation of the energy levels
at T = 0 K. If τrel < τ ′rel, the system state evolves in the sequence A-B-C-A. If, on the
contrary, τrel > τ ′rel, the evolution of the system state occurs according to the sequence
A-B-C-D-A.

and the different relaxation processes, we shown in Fig. 7.6 a qualitative representation of
a possible time evolution of the system state for the case of N = 6 spin- 12 particles.

Although all the relaxation mechanisms (C-A, C-D, and D-A) have to be inelastic,
there is a significant difference between the intermediate relaxation process C-D (involving
transitions between different coherent one-particle states) and the relaxation to the equi-
librium C-A and D-A (involving transitions from a coherent to a stationary one-particle
state). We note that, in general, the relaxation from the state C to D involves transitions
of the type m0 → −m′0 with |m0 | close to |m′

0
|. For a particle in a state with a large

value of |m0 | such a transition can occur only if the carrier loses small energy and large
momentum simultaneously. Thus, while the intermediate relaxation process C-D requires
the existence of inelastic backscattering mechanisms involving small energy and large mo-
mentum transfers (for example, the simultaneous scattering by impurities and phonons or
the electron-electron scattering), the relaxation to the equilibrium (C-A and D-A) does not
require such mechanisms and could, indeed, occur through phonon scattering only.

The determination of whether the system evolves through the sequences A-B-C-A or
A-B-C-D-A, depending of the system parameters is an interesting issue that requires the
evaluation of the different relaxation times by including the corresponding scattering mech-
anisms. Such an investigation is currently under way and here we limit our analysis just to
the study of the two possible processes separately and assume the involved relaxation times
as given parameters.

We firstly study the case in which the state of the system evolves through the sequence
A-B-C-A. Following a procedure similar to that used in the preceding section we found
from Eqs. (7.2.12), (7.2.14), and (7.2.17) that, within the relaxation time approximation,
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Figure 7.7: Time dependence of the induced current (corresponding to the case in which
the system state evolves through the sequence A-B-C-A) for different values of the time
delay τ .

the total current induced in the ring is given by

I(t) =
~

m∗ρ30
α2 Θ(t− τ)e−

(t−τ)
τrel

∑

m0 ,σ

n(1)
F

(m0)µm0 (τ) . (7.2.18)

In the obtention of (7.2.18) we have also taken into account that at T = 0 K the contribution

to the total current corresponding to the sum of I
(0)
m0

over the occupied states vanishes. From
the comparison of Eqs. (7.1.19) and (7.2.18) one obtains that

I(t) =
~

m∗ρ30
α2 Θ(t− τ)e−

(t−2τ)
τrel µ(τ) . (7.2.19)

Thus the total current induced in the ring depends on the total dipole moment right before
the application of the second pulse. Analytical expressions for evaluating the total current
I(t) in the different cases of spinless and spin- 12 particles can be obtained by substituting
the corresponding analytical expressions for µ(t) given in the preceding section.

The time dependence of the postpulses induced current corresponding to spin- 12 particles
in a ballistic MR with the same characteristics that the one studied in the preceding section
is displayed in Fig. 7.7 for different values of the time delay τ , pulse amplitudes Fk =
0.5 kV/cm (k = 1, 2), τrel = 30 ps, and T = 0 K. The instantaneous rising of the current
right after the application of the second pulse (see Fig. 7.7) is just a consequence of the
assumed impulsive approximation and have the meaning that, as for the duration of the
pulses, the actual current rising time is much shorter than the ballistic time τ

F
a particle

at the Fermi level (in the absence of the external field) requires for a turn along the ring.
For time delays between the pulses such that τ ¿ τp (a condition that holds in the

time domain of our interest since τp = 13.26 ns) and for the relatively weak pulses here
considered, the behavior of the peak current Ip as a function of τ is mainly dominated by
the sine oscillations with nodes at τ =

nτp
N [see Eqs. (7.1.21), (7.1.23), (7.1.29), and (7.2.19)],

with n being a positive integer. Thus the sign of the peak current can be controlled by
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Figure 7.8: Peak current Ip (corresponding to the state C) as a function of the time delay
τ .

choosing the appropriate value of τ . This situation can be clearly appreciated in Fig. 7.8,
where the dependence of the peak of the induced current on the delay time τ between the
pulses is displayed for the case of spin- 12 particles and different combinations of the pulse
amplitudes Fk (k = 1, 2). Note also that even for the weak fields here considered, the peak
of the induced current can be more than one order of magnitude greater than the persistent
currents (∼ 5 nA) measured in ballistic MRs [123].

In the case the coherence time is longer than the time the system needs for relaxing
from the state C to the state D (see Fig. 7.6), the evolution of the system state occurs
according to the sequence A-B-C-D-A. In such a case one finds, within the relaxation time
approximation, that the total current in the ring within the time interval τ < t ≤ (τ + t′)
[here t′ (t′ > τ ′rel) represents the time the system needs for completely relaxing from state
C to state D] is given by

I(t) =
~

m∗ρ30
α2 Θ(t− τ)e

− (t−2τ)
τ ′
rel µ(τ) +

(

1− e
− (t−τ)

τ ′
rel

)

(

I(0)(t) + I(1)(t)
)

, (7.2.20)

where

I(0)(t) =
q~

m∗ρ20
Θ(t− τ)

∑

m0 ,σ

n(2)
F

(m0)m0 , (7.2.21)

I(1)(t) =
~

m∗ρ30
α2 Θ(t− τ)

∑

m0 ,σ

n(2)
F

(m0)µm0 (τ) , (7.2.22)

and

n(2)
F

(m0) =

[

1 + exp

(

Em0
(t > τ)− η2
k
B
T

)]−1
. (7.2.23)

In Eq. (7.2.23) η2 represents the chemical potential corresponding to the system state D
and has to be calculated from the condition that the number of particles in the isolated MR
is a constant.



80

-4

-2

0

2

4

0 5 10 15 20 25 30
-6

-3

0

3

6
 

 Ip  [ µµ µµA
 ]

 

 F2 = 0.25 kV / cm
 F2 = 0.5 kV / cm

T = 0 K F1 = 0.25 kV / cm

(a)

 

 

I p 
[ µµ µµ

A
 ]

ττττ [ ps ]

 F2 = 0.25 kV / cm
 F2 = 0.5 kV / cm

F1 = 0.5 kV / cm

(b)

Figure 7.9: Peak current Ip (corresponding to the state D) as a function of the time delay
τ .

It is worth noting that the system state D corresponds to a non-trivial rearrangement
of the initial energy levels induced by the second applied pulse. Such energy levels con-
figuration depends sensitively on the system and pulse parameters. Consequently, in the
general case (even at T = 0 K) the sums involved in Eqs. (7.2.21) and (7.2.22) have to be
performed numerically. We note also that unlike in the case the system state evolves in the
sequence A-B-C-A, in the present case the contribution to the current corresponding to the
sum of Im0 over all the occupied state does not vanish in general [see Eq. (7.2.21)]. This
fact opens the possibility of the existence of a non-zero total current in the ring even when
at the time of application of the second pulse the ring is unpolarized. In such a case the
total current constitutes a consequence of the inelastic backscattering processes that lead
the system to relax into the state D.

Once the system has completely relaxed to the system state D at t = τ + t′ it begins
to relax to the equilibrium state A with a relaxation time τ ′′rel. Within the relaxation time
approximation the total current for t > τ + t′ is found to be given by

I(t) = e
− (t−τ−t′)

τ ′′
rel

(

I(0)(t) + I(1)(t)
)

; t > τ + t′ . (7.2.24)

The peak current Ip corresponding to the system state D (i.e., at t = τ+t′) as a function
of the time delay τ between the application of the HCPs, is displayed in Fig. 7.9 for different
combinations of the pulse amplitudes Fk (k = 1, 2). From the comparison of Figs. 7.8 and
7.9 one can see that the peak current can increase in near one order of magnitude due to
the inelastic backscattering processes (we recall that to reach the state D, the system has to
relax, necessarily, through inelastic backscattering mechanisms involving small energy and
large momentum transfers). Thus, in contrast to the usual destructive effects produced by
inelastic scattering in mesoscopic phenomena, in the present case the inelastic scattering
could lead to a significative increase in the peak of the postpulses current. A similar effect
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was found in Ref. [132], where the possibility of observing constructive effects produced by
inelastic scattering in a MR threaded by a time-dependent magnetic field was investigated.

The time dependence of the postpulses induced current corresponding to the case in
which the system state follows the time evolution sequence A-B-C-D-A is shown in Fig. 7.10
for different values of the time delay τ . As it can be appreciated from Fig. 7.10, the time
dependence of the postpulses current can acquire different behaviors by changing the time
delay τ . Note that in the case the system evolution follows the sequence A-B-C-D-A, by
changing the values of τ one can change not only the sign of the induced current in the
ring [as for the A-B-C-A case (see Fig. 7.7)] but it is also possible to induce a current that
changes its sign during the relaxation processes.

The postpulses current I(t) induced in the ring generates a field-free magnetizationM(t)
that can be calculated through the relationM(t) = πρ20I(t). A direct estimation of the field-
free magnetization M of the ring can be easily obtained from the curves corresponding to
the current by taking into account that for the ring parameters here considered a current
of 1 µA corresponds to a magnetization of 112.27 eV/Tesla.

It is worth to stress that the proposed model gives only a qualitative idea of the re-
laxation processes and therefore of the precise time dependence of the postpulses current.
Hence, such processes require a more detailed study. Nevertheless, we believe the obtained
values for the peak currents constitutes a good approximation for think ballistic MRs at low
temperature. We note that the assumed zero-temperature approximation is also expected
to be accurate within the range of temperature commonly considered in actual experi-
mental situations (measurements of persistent currents in MR, for example, are commonly
performed at temperatures of the order of a few tents of mK [121, 122, 123, 124]).

From the obtained results and taking into account that all the system parameters (ring
and pulse parameters as well as the amplitude of the postpulses current and magnetization)
utilized in our investigation are in a range experimentally feasible nowadays, we believe that
the predicted field-free current could be experimentally detected with modern techniques.
The crossed HCPs can be generated in a way similar to that discussed in Sec. 2.2 and
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Figure 7.11: A representative experiment for measuring the postpulses induced current and
magnetization of a ballistic thin MR.

the induced postpulses current (or magnetization) could be detected by employing the
same experimental techniques used in Ref. [123], where low-temperature measurements of
persistent currents (even weaker than the obtained in the present study) for a ballistic MR
with similar characteristics than the one considered in our calculations were performed.

Various applications could result from the effects investigated in the present section. As
the amplitude and time dependence of the postpulses current depends on the characteristics
of the relaxation processes, estimations of the relaxation times as well as information about
the role of the different scattering mechanism on the destruction of the coherence could be
obtained by measuring the induced current (or magnetization).

We also note that although within the two-pulses procedure investigated in this work
one expects the postpulses current and magnetization to decay after a relaxation time, it
is in principle possible to induce sustainable currents by applying two orthogonal, linearly
polarized periodic trains of HCPs. By controlling the parameters of the HCPs the time de-
pendence of the induced current could be designed over a time of the order of the duration
of the train of pulses. In particular, for crossed trains of HCPs with period longer than the
relaxation time of the system, it could be possible to create periodic trains of pulsed currents
(and a time-dependent magnetization) whose characteristics can be controlled by appropri-
ately designing the sequence of HCPs. The time-dependent magnetization thus generated
in the MR could be useful for applications in designing micro-electromechanical actuators.
As an example, we show in Fig. 7.11 a schematic representation of a possible experimental
realization of a micro-electromechanical actuator that could serve for monitoring the mag-
netization induced by the HCPs. The sample (containing the MR) is placed on a cantilever.
An iron particle mounted on a piezoelectric translator is positioned at a distance d from the
sample. The magnetized iron particle produces an inhomogeneous magnetic field (dotted
lines). In the absence of the pulses, the system is in equilibrium and the magnetization
of the ring is zero. By applying two crossed trains of HCPs an oscillating magnetization
is induced in the ring. The oscillating magnetization in presence of the inhomogeneous
field of the iron particle generates an oscillating magnetic force and causes the cantilever
to vibrate. By measuring the vibration amplitude (it can be done with the use of a fiber
optic interferometer and a lock-in amplifier [141, 142]) the time dependence of the induced
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magnetic force (and, consequently, of the magnetization and the current) can be monitored.
We note that the experimental situation here described is quite similar to that discussed
in Refs. [141, 142]. If one neglects the effects of the iron particle on the quantum states of
the ring, the order of the z component of the generated magnetic force can be estimated
directly from the results obtained for the peak current (see Figs. 7.8 and 7.9). As done
in Ref. [141], we assume the value ∂Bz/∂z ' 600 Tesla/m for the magnetic field gradient
created by the iron particle. One then obtains that a current of 0.1 µA (or a magnetization
of 11.27 eV/Tesla for the ring here studied) corresponds to a force of about 11× 10−16 N,
a force that is in the range of sensitivity of nowadays experimental apparatuses [141, 142].



Chapter 8

Conclusions

In the present work we have investigated the possibility of controlling the quantum dynamics
of different physical systems driven by half-cycle electromagnetic pulses.

General methods such as the generalized Bloch vector approach, the Floquet formal-
ism, and a numerical algorithm based on the splitting operator approach have been used
throughout our study of the dynamics of driven quantum systems. The combination of
these methods constitutes a powerful tool for describing the time evolution of quantum
systems as well as for the analysis of different strategies that can lead to an efficient con-
trol of the dynamics of a given quantum system. The sustainability in time of the control
process is another important issue that has been addressed in the present work through
the introduction of the definition of quasistationarity of a time-dependent quantum state.
The definition of quasistationarity is shown to be particularly useful since it allows us to
treat phenomena such as the coherent suppression of tunnelling, dynamical localization,
and sustainable molecular orientation in a general and unified way. Necessary and suffi-
cient conditions for inducing quasiperiodic quasistationarity to a time-dependent quantum
system are found within the generalized Bloch vector approach and the Floquet formalism.
It is shown also that the Aharonov-Anandan geometric phase plays an important role in
achieving quasiperiodic quasistationarity, and in fact, it can be used as a measure of the
degree of quasistationarity of a time-dependent quantum system that evolves cyclically.

When a physical system is subject to the action of a highly asymmetric mono-cycle pulse,
its HCP can deliver a non-zero momentum transfer to the system over a time much longer
than the duration of the HCP. This peculiarity of the HCPs has opened new possibilities for
the experimental realization of kicked quantum systems and for the efficient control of the
dynamics of quantum systems in the non-adiabatic regime. In particular, we have shown
in the present work that subjecting a diatomic molecule to a conveniently designed train
of HCPs can result in a strong and sustainable molecular orientation without disturbing
the electronic and vibrational modes of the molecule. Explicit calculations were performed
for the NaI molecule showing that the molecular orientation obtained within our scheme is
stronger than that obtained with previous methods and that it is robust to thermal average
up to temperatures of about 10 K.

We have also studied the dynamics and emission properties of an electron in a double
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quantum well driven by a train of HCPs. Phenomena such as the low-frequency generation,
half-harmonic generation, and the coherent suppression of tunnelling in the absence of
accidental quasienergy degeneracy were shown to occur and were discussed in detail within
the concept of quasiperiodic quasistationarity. We performed calculations for the case of a
typical AlxGa1−xAs based double quantum well. The obtained results show that when the
system is driven by an appropriately designed train of HCPs, a strong localization (in one
of the two wells) of an initially delocalized electron can be achieved in a fast and efficient
way.

The study of mesoscopic systems constitutes an issue of great interest in physics because
of their technological applications and their unique properties. In the present work we report
about the first investigation of the dynamical properties of electrons confined in a ballistic
thin MR and subject to linearly polarized HCPs. We showed that at low temperatures the
application of a single linearly polarized HCP on a ballistic thin MR induces a polarization
in the ring that persists even after the HCP has passed by, i.e., under field-free conditions.
The dependence of the field-free polarization induced in the ring on the pulse parameters
was investigated. We also showed that subjecting a ballistic thin MR to a sequence of
two orthogonal, linearly polarized HCPs can result in the generation of a non-equilibrium
field-free current (and a magnetization) in the ring that lasts as long as the coherence of the
wave functions of the carriers is preserved. Some potential applications and the possibility
of experimentally detecting the field-free current and magnetization were also discussed.



Zusammenfassung

Wird ein Quantensystem einem zeitabhängigen externen Feld ausgesetzt, tritt eine
Vielzahl von Phänomenen auf, die innerhalb der gewöhnlichen stationären Quantenmechanik
nicht zugänglich sind. Zudem lassen sich diese Phänomene oftmals durch die gezielte An-
wendung geeigneter Felder kontrollieren und manipulieren. Moderne opto-elektronische
Geräte, Laser-kontrollierte chemische Reaktionen sowie die Erzeugung von verschränkten
Zuständen zum Einsatz in der Quanteninformatik sind nur einige Beispiele der Anwen-
dungsmöglichkeiten resultierend aus einer effizienten Kontrolle der Quantendynamik.

Wird ein Quantensystem einem Halb-Zyklus-Puls (half-cycle pulse, HCP) ausgesetzt,
können Effekte auftreten, die sich aufgrund der hoch asymmetrischen Eigenschaften des
HCP in ihrer Qualität deutlich von denen unterscheiden, die beobachtbar sind, wenn ein
kontinuierlicher Laser (CW lasers) oder fast symmetrische Laserpulse verwendet werden.
In der vorliegenden Arbeit untersuchen wir Möglichkeiten zur Kontrolle der Dynamik von
Quantensystemen durch den Einsatz von HCPs. Insbesondere betrachten wir die Dynamik
von drei physikalischen Systemen.

Das erste hier betrachtete Quantensystem besteht aus einem polaren zweiatomigen
Molekül angetrieben von einer Sequenz von HCPs. Basierend auf einem einfachen analytis-
chen Modell haben wir die Charakteristika und Parameter der HCPs bestimmt, die eine
starke und dauerhafte nicht-adiabatische Orientierung der molekularen Achse veranlassen
können. Zusätzlich wurde eine Optimierung des Kontrollprozesses für das NaI-Molekül mit
Hilfe von voll-numerischen Berechungen durchgeführt. Die Ergebnisse zeigen, dass die in-
nerhalb unseres Schemas erlangte molekulare Orientierung stärker ist als bei herkömmlichen
Methoden und dass sie gegenüber Temperaturschwankungen bis zu ca. 10 K stabil bleibt.

Das zweite physikalische System, welches in dieser Arbeit untersucht wird, ist die Quan-
tendynamik eines in einem symmetrischen Doppel-Quantentrog eingeschlossenen Elektrons,
das zudem von HCPs zeitlich angetrieben wird. Unterliegt solch ein System einer Sequenz
von HCPs, können sowohl die Bewegung als auch das Emissionsspektrum des Elektrons
auf einer Femtosekunden-Zeitskala verändert werden. Einige interessante Phänomene wie
die Emission von Strahlung niedriger Frequenzen sowie die kohärente Unterdrückung des
Tunnelprozesses in Abwesenheit der Entartung der Quasi-Energien werden vorhergesagt.

Schließlich untersuchen wir die dynamischen Eigenschaften eines dünnen ballistischen
mesoskopischen Rings (MR) in Anwesenheit von HCPs. Wir zeigen, dass die Anwendung
eines einzelnen HCPs auf einen ballistischen MR zu einer ultraschnellen Erzeugung einer Po-
larisation der Ladungsdichte im Ring führt. Wird ein dünner ballistischer MR der Wirkung
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von zwei orthogonal und linear polarisierten HCPs ausgesetzt, kann im Ungleichgewicht ein
Strom im Ring induziert werden. Der induzierte Strom hält an, solange die Kohärenz der
Ladungsträger erhalten bleibt. Einige potentielle Anwendungen und die Möglichkeit des
experimentellen Nachweises dieses Stromes werden erläutert.



Appendix A

Products: Definitions and

properties.

Different kind of products involving vectors and matrices are used throughout this disser-
tation.

The standard product between two matrices A and B is represented, as usually, by AB,
i.e., without any product symbol between them.

A dot product between two vector-like objects X and Y is defined as

X ·Y = XjYj , (A.0.1)

where Xj and Yj represent the jth component of X and Y, respectively. We refer to X and
Y as vector-like objects because they can be vectors (in the usual sense) or vectors whose
components are matrices. In the particular case X and Y are both vectors, the dot product
as defined in (A.0.1) reduces to the standard scalar product between two vectors [note that
in Eq. (A.0.1), and in what follows, we adopt the Einstein’s summation convention].

The SU(N) group has N
D

= dim[SU(N)] = N2 − 1 generators that we denote by Fj
(j = 1, 2, ..., N

D
). The generators Fj satisfy the following commutation

[Fj ,Fk] = 2ifjklFl (A.0.2)

and anticommutation

{Fj ,Fk} =
4

N
δjkIN + 2djklFl (A.0.3)

relations, respectively. In the equations above,

fjkl = −
i

4
Tr ([Fj ,Fk]Fl) (A.0.4)

and

djkl =
1

4
Tr ({Fj ,Fk}Fl) (A.0.5)
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are the asymmetric and symmetric structure constants of the Lie algebra of SU(N) and I
N

represents the (N ×N) unit matrix. By summing Eqs. (A.0.2) and (A.0.3) one obtains the
following relation

FjFk =
2

N
δjkIN + (djkl + ifjkl)Fl . (A.0.6)

Inner products involving the structure constants are introduced for vectors in R
N
D as

follows. Let the vectors X,Y ∈ R
N
D , then the wedge product X ∧Y is a vector in R

N
D

with components given by
(X ∧Y)j = fjklXkYl , (A.0.7)

and the star product X ?Y is a vector in R
N
D with components

(X ?Y)j = djklXkYl . (A.0.8)

In the particular case of SU(2) the wedge product as defined in (A.0.7) reduces to the
standard vector product, while the star product vanishes for any two vectors in R

3.
Taking into account the symmetry properties of the structure constants, one can easily

verify that for X,Y,Z ∈ R
ND , the following properties hold:

1) X ?Y = Y ?X
2) X · (Y ? Z) = Y · (X ? Z) = Z · (X ?Y)
3) (X ∧Y) = −Y ∧X ⇒ (X ∧X) = 0
4) X · (Y ∧ Z) = Y · (Z ∧X) = Z · (X ∧Y)
5) X ∧ (Y ? Z) = Y ? (X ∧ Z) + Z ? (X ∧Y)
6) X ∧ (Y ∧ Z) = Y ∧ (X ∧ Z)− Z ∧ (X ∧Y)
In obtaining the properties 5) and 6) we used the identities

fjkldlmn + fnkldlmj + fmkldjln = 0 (A.0.9)

and
fjklflmn + fmklflnj + fjmlflnk = 0 . (A.0.10)

Let X,Y ∈ R
ND and let F̂ be a vector whose components are the generators of SU(N),

i.e., F̂ = (F1,F2, ...,FND
), then from Eq. (A.0.1) we can write

(

X · F̂
)(

Y · F̂
)

= XjFjYkFk = XjYkFjFk . (A.0.11)

By substituting Eq. (A.0.6) in (A.0.11) and having into consideration that the structure
constants djkl and fjkl are completely symmetric and antisymmetric, respectively, under
the permutation of any two subindexes, one obtains the following identity relation:

(

X · F̂
)(

Y · F̂
)

=
2

N
I
N
(X ·Y) + ((X ?Y) + i(X ∧Y)) · F̂ . (A.0.12)



Appendix B

Solving the TDSE for kicked

systems

We are interested in solving the time-dependent Schrödinger equation (TDSE),

i~
∂Ψ

∂t
=

(

H − r.e
N0
∑

k=1

∆pkδ(t− tk)
)

Ψ , (B.0.1)

corresponding, within the impulsive and dipole approximations, to a quantum system in-
teracting with a train of N0 HCPs. We have assumed, for simplicity, that all the pulses are
linearly polarized in the same direction (determined by the unit vector e).

For an N -level system, the solutions of (B.0.1) can be expanded on the eigenfunctions

Ψ
(0)
n (r) of the unperturbed system (that are assumed to be known) as follows:

Ψ(r, t) =
N
∑

n=1

Cn(t)Ψ
(0)
n (r) . (B.0.2)

The substitution of (B.0.2) into (B.0.1) leads to the following system of differential equations
for determining the expansion coefficients,

i~
∂C(t)

∂t
= EC(t)−W

N0
∑

k=1

∆pkδ(t− tk)C(t) , (B.0.3)

where C(t) is a vector whose components are the expansion coefficients, i.e., C(t) =
(C1(t), C2(t), ..., CN

(t))T , the matrix W is composed of the elements

Wij = 〈Ψ(0)i |r.e|Ψ
(0)
j 〉 , (B.0.4)

and
E = diag

(

E
(0)
1 , E

(0)
2 , ..., E

(0)
N

)

, (B.0.5)

with E
(0)
n representing the eigenenergies of the stationary states.
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Let assume that the kth kick is applied at t = t−k = tk− ε (ε→ 0) and finishes at t = tk.
As between consecutive kicks the system evolves in a field-free manner, the integration of
(B.0.3) in the time intervals tk ≤ t < tk+1 can be easily performed and leads to the following
continuous time propagation of the wave function,

C(t) = e−
1
~
E(t−tk)C(k)(t) ; tk ≤ t < tk+1 , (B.0.6)

where we used the notation C(k)(t) = C(tk). For a complete description of the evolution of
C(t) one needs to complement Eq. (B.0.6) with appropriate matching conditions relating
the values of the vectorC(t) just before and right after each pulse. For the obtention of these
matching conditions one can be tempted to directly integrate (B.0.3) by making use of the
sifting property of the Dirac δ function [143, 144]. However, the use of the sifting property
is inappropriate since the vector C(t) has discontinuities at the time of application of each
kick (for a detailed discussion see [145]). One can overcome such a problem by introducing
the area a(t) of the δ function as a new variable. The advantage of doing that is that
although C(t) is not a continuous function of time, it is a continuous function of the area
a(t) [145].

The Dirac δ function can be represented as

δ(t− tk) =
{

lim
ε→0

1
ε for t−k < t ≤ tk

0 elsewhere
, (B.0.7)

and the area of the δ function as a function of time can be written, in the interval t−k < t ≤ tk,
as

a(t) =

∫ t

tk−ε
δ(t′ − tk)dt′ =

(t− tk + ε)

ε
. (B.0.8)

Thus, right before and after the kth pulse we have a(t−k ) = 0 and a(tk) = 1, respectively.
In terms of the new variable a(t), and after performing the limit ε → 0, the Schrödinger
equation in the vicinity of t = tk reduces to

i~
∂C(k)(a)

∂a
= −W∆pkC

(k)(a) , (B.0.9)

whose general solution is given by

C(k)(a) = e
i
~
aW∆pkC(k)(0) . (B.0.10)

Taking into account that C(k)(a = 0) = C(t−k ) and C(k)(a = 1) = C(tk), we obtain from
(B.0.10) the following matching condition:

C(tk) = e
i
~
W∆pkC(t−k ) , (B.0.11)

that relates the values of the vector C(t) just before and right after the application of the
kth kick. Then, by combining (B.0.6) and (B.0.11) it results the following stroboscopic map
from t = tk to t = tk+1,

C(tk+1) = ei
W∆pk

~ e−
i
~
E(tk+1−tk)C(tk) . (B.0.12)
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For a two-level system Eq. (B.0.6) can be rewritten as

C(t) =

(

e
i
2
ωc(t−tk) 0

0 e−
i
2
ωc(t−tk)

)

C(tk) ; tk ≤ t < tk+1 , (B.0.13)

where we have introduced the characteristic frequency ωc =
E
(0)
2 −E

(0)
1

~
. On the other hand ,

if the two-level system is such that W is traceless, one can rewrite (B.0.12) as

C(tk) = e
i∆pk

~
Q·σ̂C(t−k ) , (B.0.14)

where σ̂ = (σx, σy, σz) with σi (i = x, y, z) denoting the Pauli matrices andQ = (Qx, Qy, Qz)
with Qi (i = x, y, z) representing the coefficients of the expansion

W =
∑

i

Qiσi . (B.0.15)

In the particular caseW = −µσx with µ a real number (note that the cases discussed in
Secs. 5.1.1 and 6.1.2 correspond to this particular situation with µ = µ0/

√
3 and µ = µ12 ,

respectively), the relation (B.0.14) reduces to

C(tk) =





cos
(

µ∆pk
~

)

i sin
(

µ∆pk
~

)

i sin
(

µ∆pk
~

)

cos
(

µ∆pk
~

)



C(t−k ) . (B.0.16)

By performing the transition to the generalized Bloch space through the transformation
B(t) = C†(t)σ̂C(t), one easily obtain from (B.0.13) that the field-free evolution of the Bloch
vector between consecutive kicks is determined by

B(t) =







cosβk − sinβk 0

sinβk cosβk 0

0 0 1






B(tk) ; tk ≤ t < tk+1 , (B.0.17)

where
βk = ωc(t− tk) . (B.0.18)

On the other hand, we obtain from Eq. (B.0.16) that the action of the kth kick on the
system is determined, in the Bloch space, by the relation

B(tk) =







1 0 0

0 cosαk − sinαk

0 sinαk cosαk






B(t−k ) , (B.0.19)

where

αk =
2µ∆pk

~
. (B.0.20)

In the cases µ = µ0/
√
3 and µ = µ12 , Eqs. (B.0.17) and (B.0.19) reduce to the corresponding

expressions utilized in Secs. 5.1.1 and 6.1.2, respectively.



Appendix C

Floquet analysis of a kicked

two-level system

We consider the two-level system studied in Sec. 6.1.2 for the case of a quasiperiodic train
of kicks with period T as the driving field.

From Eqs. (B.0.13) and (B.0.16) one can easily obtain that if a kick is applied at t = t0,
then

C(t0 + T ) = U(t0 + T, t0)C(t0) , (C.0.1)

with the one-period evolution operator given by

U(t0 + T, t0) =

(

u11 u12

u21 u22

)

, (C.0.2)

where

u11 = e
i
2
ωcT cos

(

µ12∆pk
~

)

; u22 = u∗11 , (C.0.3)

and

u12 = ie
i
2
ωcT sin

(

µ12∆pk
~

)

; u21 = −u∗12 . (C.0.4)

The Floquet modes Φλ(t0) and the quasienergies ελ are the corresponding eigenvectors
and eigenvalues of the following eigenvalue problem [see Eq. (3.2.12)],

U(t0 + T, t0)Φλ(t0) = e−
i
~
ελTΦλ(t0) . (C.0.5)

Taking into account Eqs. (C.0.2) - (C.0.5) it is not difficult to find that the quasienergies
corresponding to the first Brillouin zone are determined by

ε1 = −
~

T
arccos

[

cos

(

µ12∆pk
~

)

cos

(

ωcT

2

)]

; ε2 = −ε1 . (C.0.6)
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On the other hand, for the case u12 = −u∗21 6= 0 (in the opposite case the problem is trivial,
since the evolution operator becomes diagonal) the corresponding Floquet modes are found
to be given by

Φ1(t0) =
1

√

|u12|2 + |κ1 − u11|2

(

u12

κ1 − u11

)

, (C.0.7)

and

Φ2(t0) =
1

√

|u21|2 + |κ2 − u22|2

(

κ2 − u22
u21

)

, (C.0.8)

where κl = exp(−iεlT/~) (l = 1, 2).
If the system parameters are such that the localization condition [see Eq. (6.2.1)]

µ12∆p

~
= (2n+ 1)

π

2
(n ∈ Z) , (C.0.9)

is fulfilled, then Eqs. (C.0.6) - (C.0.8) reduce to

ε1 = −
~ω0
4

; ε2 =
~ω0
4

; ω0 =
2π

T
, (C.0.10)

Φ1(t0) =
i√
2

(

(−1)ne i
2
ωcT

1

)

, (C.0.11)

and

Φ2(t0) = −
i√
2

(

1

(−1)n+1e− i
2
ωcT

)

, (C.0.12)

respectively.
The vector C(t) determining the evolution of the wave function is given, at stroboscopic

times, by [see Eq. (3.2.9)]

C(t0 + kT ) = A1e
− i

~
ε1(t0+kT ))Φ1(t0) +A2e

− i
~
ε2(t0+kT ))Φ2(t0) . (C.0.13)

The expansion coefficients Al are determined by [see Eq. (3.2.10)],

Al = e
i
~
εlt0Φ†l (t0)C(t0) ; l = 1, 2. (C.0.14)

In the case of tunnelling initial condition (see Sec. 6.2.1) and under the localization
condition (C.0.9) the expansion coefficients are given by

A1 =
i

2
e

i
~
ε1t0
[

(−1)n+1e i
2
ωc(t0−T ) + e−

i
2
ωct0
]

, (C.0.15)

and

A2 =
i

2
e

i
~
ε2t0
[

(−1)ne− i
2
ωc(t0−T ) + e

i
2
ωct0
]

. (C.0.16)



Appendix D

Sums involving Bessel functions

Here we present some mathematical identities that result useful for the calculations per-
formed in Chap. 7.

In all the following identities m,n ∈ Z and a, b ∈ R.

∫ 2π

0
eimθeia cos θdθ = 2πimJm(a) = 2πimJ−m(−a) . (D.0.1)

∫ 2π

0
eimθeia sin θdθ = 2πJ−m(a) = 2πJm(−a) . (D.0.2)

∞
∑

m=−∞
[mJn−m(a)]

2 = n2 +
a2

2
. (D.0.3)

∞
∑

m=−∞
Jm(a)Jm+1(a)

{

cosmb

sinmb

}

= J1(ω)







√

1−cos b
2

sin b√
2(1−cos b)







. (D.0.4)

∞
∑

m=−∞
Jn−m(a)Jn−m−2(a) cos[(m+ 1)b] = −J2(ω) cos(nb) (D.0.5)

In Eqs. (D.0.4) and (D.0.5) ω = a
√
2− 2 cos b.

∞
∑

m=−∞
(2m+ 1)Jn−m(a)Jn−m−1(a) sin[(2m+ 1)b] = a[g+(n)− g−(n)] , (D.0.6)

where

g±(n) =

[(

n∓ 1

2

)

J0(ϕ) +

(

n± 1

2

)

J2(ϕ)

]

sin [(2n∓ 1)b] , (D.0.7)

and ϕ = 2a sin(b).
∞
∑

m=−∞
m [Jm−n(a)]

2 = n . (D.0.8)

All the identities above were obtained, after some mathematical manipulations, from
identities reported in [146]. In addition we also proved numerically their validity.
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