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Characterization of
neuroendocrine regulation-
and metabolism-associated
molecular features and
prognostic indicators with aid
to clinical chemotherapy and
immunotherapy of patients with
pancreatic cancer

Biao Zhang1†, Qihang Yuan1†, Bolin Zhang2†, Shuang Li1,
Zhizhou Wang1, Hangyu Liu1, Fanyue Meng1,
Xu Chen1* and Dong Shang1*

1Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian, Liaoning, China, 2Department of Visceral, Vascular and
Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle,
Halle, Germany
The worldwide prevalence of pancreatic cancer has been rising in recent

decades, and its prognosis has not improved much. The imbalance of

substance and energy metabolism in tumour cells is among the primary

causes of tumour formation and occurrence, which is often controlled by

the neuroendocrine system. We applied Cox and LASSO regression analysis to

develop a neuroendocrine regulation- and metabolism-related prognostic risk

score model with three genes (GSK3B, IL18 and VEGFA) for pancreatic cancer.

TCGA dataset served as the training and internal validation sets, and GSE28735,

GSE62452 and GSE57495 were designated as external validation sets. Patients

classified as the low-risk population (category, group) exhibited considerably

improved survival duration in contrast with those classified as the high-risk

population, as determined by the Kaplan-Meier curve. Then, we combined all

the samples, and divided them into three clusters using unsupervised clustering

analysis. Unsupervised clustering, t-distributed stochastic neighbor embedding

(t-SNE), and principal component analysis (PCA) were further utilized to

demonstrate the reliability of the prognostic model. Moreover, the risk score

was shown to independently function as a predictor of pancreatic cancer in

both univariate and multivariate Cox regression analyses. The results of gene

set enrichment analysis (GSEA) illustrated that the low-risk population was

predominantly enriched in immune-associated pathways. “ESTIMATE”

algorithm, single-sample GSEA (ssGSEA) and the Tumor Immune Estimation

Resource (TIMER) database showed immune infiltration ratings were enhanced
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in the low-risk category in contrast with the high-risk group. Tumour immune

dysfunction and exclusion (TIDE) database predicted that immunotherapy for

pancreatic cancer may be more successful in the high-risk than in the low-risk

population. Mutation analysis illustrated a positive link between the tumour

mutation burden and risk score. Drug sensitivity analysis identified 44 sensitive

drugs in the high- and low-risk population. GSK3B expression was negatively

correlated with Oxaliplatin, and IL18 expression was negatively correlated with

Paclitaxel. Lastly, we analyzed and verified gene expression at RNA and protein

levels based on GENPIA platform, HPA database and quantitative real-time

PCR. In short, we developed a neuroendocrine regulation- and metabolism-

associated prognostic model for pancreatic cancer that takes into account the

immunological microenvironment and drug sensitivity.
KEYWORDS

pancreatic cancer, neuroendocrine regulation, metabolism, prognosis, immune,
mutation, drug sensitivity
Introduction
Pancreatic cancer is becoming an increasingly major health

problem throughout the world, with the age-standardized

incidence rates rising from 5.0/100,000 persons in 1990 to 5.7/

100,000 in 2017 (1). Pancreatic cancer is projected to overtake

lung cancer as the major cancer killer in the United States by

2030, moving up from its current position as the third leading

contributor to cancer-associated deaths (2–4). Surgery is the

only current hope for curing pancreatic cancer, which is

exceedingly aggressive and has a very dismal prognosis.

However, about 80-85% of patients with pancreatic cancer are

diagnosed as unresectable or metastatic due to the occult onset

and lack of early screening methods. Even when diagnosed to be

resectable, pancreatic cancer prognosis is dismal, with just a 20%

5-year survival probability after surgery (5). Surgery and

chemotherapy are common treatment options for pancreatic

cancer, however, they have limited effectiveness. Researchers

discovered that the median survival periods for individuals with

metastatic pancreatic cancer treated with FOLFIRINOX

(leucovorin, irinotecan, oxaliplatin, and fluorouracil) or

gemcitabine were 11.1 months and 6.8 months, respectively,

while those with resected pancreatic cancer treated with

modified FOLFIRINOX or gemcitabine had median survivals

of 54.4 months and 35.0 months, respectively (6, 7). Although

the survival benefit of FOLFIRINOX is superior to gemcitabine,

there are also more toxic side effects. Targeted therapy and

immunotherapy have made enormous strides in recent years,

bringing revolutionary advances to the treatment of cancer, but

their effectiveness is not optimal for pancreatic cancer. A study

by Hong et al. (8) illustrated that the overall response rate
02
(complete or partial response) of ibrutinib plus durvalumab (a

PD-L1-targeting antibody) in the treatment of pancreatic cancer

was only 2%. Therefore, it is still extremely vital and urgent to

investigate the mechanism of occurrence and development and

to identify an effective therapy for pancreatic cancer.

Metabolic alteration is an important topic in cancer biology

research, and metabolic reprogramming is considered to be one of

the hallmarks of cancer, participating in the process of cancer

occurrence, development and metastasis (9). To adapt to the

microenvironment of hypoxia and nutrient deficiency, establish

survival advantages and achieve rapid growth, tumour cells change

their material and energy metabolism patterns, which is called

metabolic reprogramming (10). The research found that tumour

cells significantly increase the demand and uptake of glucose,

rapidly produce ATP through the glycolysis pathway, and aerobic

glycolysis is performed even in the presence of oxygen, also referred

to as the “Warburg effect”. Lactic acid produced by glycolysis will

accumulate in the tumourmicroenvironment (TME), boost tumour

cells invasiveness and reduce the anti-tumour immunity (11).

Glutamine is an important source of nitrogen and carbon in

biosynthetic reactions. Normal cells can synthesize glutamine by

themselves, while tumour cells can obtain glutamine from the

microenvironment by solute carrier group in addition to their

own synthesis to meet the proliferation needs (12). Lipids, mainly

including fatty acids, cholesterol, phospholipids and acrylamide, are

not only the basic structure of cell membranes, but also a source of

signalling molecules and energy, and the lipid metabolism

reprogramming of tumour cells can promote their proliferation,

invasion and metastasis (13, 14). Ringel et al. (15) showed that

obesity can cause the metabolic changes for fatty acid, impair the

function and infiltration for CD8+T cells, and thus inhibit anti-

tumour immunity. Hypoxia and nutrient deprivation in TME will
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lead to metabolic competition between immune and tumour cells,

and the high metabolism and strong adaptability of tumour cells

will further change the metabolic characteristics of the TME,

causing metabolic pressure on immune cells, while continuously

accumulating toxic metabolites, negatively affecting the immunity,

thereby promoting immune suppression and escape (16, 17).

Besides, metabolic alteration in tumour cells is also intimately

linked to the sensitivity of chemotherapy, targeted therapy,

immunotherapy, and radiotherapy (18–22). Obesity has been

shown to increase tumour cells’ resistance to chemotherapy,

radiation, and biological and endocrine-targeted treatments by

altering the way fatty acids are metabolized in TME (23).

The imbalance of material and energy metabolism of tumour

cells is often regulated by the neuroendocrine system. Therefore,

tumorigenesis and progression are aided by neuroendocrine

control. Cancers of the liver, pancreas, colorectal, breast, and

uterus are all thought to be linked to neuroendocrine regulation

disorders such as diabetes, obesity, and depression (24–28). An

analysis of data from a large-scale cohort study in the US

involving 112,818 women and 46,207 men found that those

with new-onset diabetes exhibited a 2.97-fold (95% CI, 2.31-

3.82) greater risk of developing pancreatic cancer than those

without diabetes, while those with long-term diabetes recorded a

2.16-fold (95% CI, 1.78-2.60) higher risk (29). As a digestive

organ, the pancreas has both endocrine and exocrine functions,

and its lesions are often accompanied by abnormal regulation of

blood glucose. Therefore, diabetes is not only a risk factor for

pancreatic cancer but also one of its secondary diseases. The

mechanism for diabetes causing pancreatic cancer is complex,

including hyperglycemia, hyperinsulinemia, insulin resistance,

chronic inflammation, and so on (30). Persons with a body mass

index (BMI) of 25 to 29.9 were found to have an odds ratio (OR)

for pancreatic cancer that was 1.19 (95% CI, 1.02-1.40), whereas

those with a BMI of 30 to 34.9 were found to have an OR of 1.62

(95% CI, 1.19-2.21) compared with normal-weight individuals

(31). A study by Rebours et al. (32) found that pancreatic fatty

infiltration was related to the formation of pancreatic

intraepithelial neoplasia.

Based on the above evidence, our study was the first to

develop a neuroendocrine regulation- and metabolism-related

prognostic model of pancreatic cancer utilizing The Cancer

Genome Atlas (TCGA) database, then verified the model

through Gene Expression Omnibus (GEO) database.

Unsupervised clustering, t-distributed stochastic neighbor

embedding (t-SNE), and principal component analysis (PCA)

were further conducted to demonstrate the consistency and

reliability for the prognostic model. In addition, the

association between prognostic models and clinicopathological

characteristics, the tumour immune microenvironment, the

tumour mutation load, and treatment sensitivity was

investigated. Finally, we explored and verified gene expression

at RNA and protein levels based on GENPIA platform, the

Human Protein Atlas (HPA) database and quantitative real-time
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PCR, and explored gene expression distribution in different

subcellular structures and cell types via HPA database.
Materials and methods

Data acquisition and processing

The transcriptome profiles (including 178 pancreatic

tumour tissues and 4 normal pancreatic tissues), somatic

mutation status, copy number variation (CNV), and matching

clinical data (including 185 pancreatic cancer samples) were

extracted in the TCGA database (https://portal.gdc.cancer.gov/).

To get the validation set, GSE28735 (including 45 pancreatic

cancer samples), GSE62452 (including 69 pancreatic cancer

samples) and GSE57495 (including 63 pancreatic cancer

samples) were derived in the GEO database (https://www.ncbi.

nlm.nih.gov/geo/). The “SVA” R package was utilized to

eliminate any batch effects that existed across various data sets

(33). To elucidate the differences between pancreatic tumors and

normal samples more precisely, the TCGA dataset (containing

178 pancreatic tumour tissues and 4 normal tissues) and the

Genotype-Tissue Expression Project (GTEx) project dataset

(containing 167 normal pancreatic tissues) were extracted in

the UCSC Xena database (https://xenabrowser.ucsc.edu/

datapages/) and the gene expression data were normalized

using the log2(x+1) transformation.
Identification of differentially-expressed
neuroendocrine regulation- and
metabolism-related genes

Based on the “limma” R packages, with the filter condition: |

log2FC| > 1, and adjusted p-values < 0.05, we detected differentially

expressed genes (DEGs) between tumour and normal samples. The

screened differential genes were visualized by the “ggplot2”R package.

Neuroendocrine regulation-related and metabolism-related genes

were retrieved in the GeneCards database (https://www.genecards.

org/) (33), setting filter parameters: relevance score > 5. We identified

differentially expressed neuroendocrine regulation- and metabolism-

related genes (NMRGs) by merging DEGs and NMRGs.
Development and analysis of protein-
protein interaction network

We explored the possible interactions for differentially

expressed NMRGs using the STRING database (https://cn.string-

db.org/) at a minimum interaction score of 0.4 (medium

confidence) (34). The PPI network was created and shown

utilizing Cytoscape (version 3.9.1). The PPI network’s critical
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modules and hub genes were then isolated utilizing the MCODE

plugin, with screening conditions established as below: Max depth =

100, k-score = 2, node score cutoff = 0.2, and degree cutoff = 2.
Genetic alteration and
enrichment analysis

Mutation landscape of hub genes in pancreatic cancer was

analyzed and visualized utilizing the “maftools” R package. The

“RCircos” R programme was applied to evaluate and illustrate

the CNV of hub genes. “org.Hs.eg.db”, “clusterProfiler”,

“enrichplot” and “ggplot2” R packages were applied to

perform Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment analyses for the

above differentially expressed NMRGs, based on the filter

condition: q value < 0.05. GO enrichment analysis involves

molecular function (MF), cellular component (CC), and

biological process (BP).
Construction and verification of the
prognostic model

Patients from TCGA were randomized at a ratio of 7:3 into

the training and internal validation sets by utilizing the “caret” R

package. The external validation set included patients from

GSE28735, GSE62452, and GSE57495. Firstly, we conducted

univariate Cox regression analysis to preliminarily filter the

genes linked to prognosis. Next, the least absolute shrinkage

and selection operator (LASSO) regression analysis was utilized

to overcome overfitting with the “glmnet” R package. Lastly, a

predictive model was developed utilizing multivariate Cox

regression analysis. Below is the risk score equation for the

prognostic model:

Risk   score =o
n

1
Coefficient  RNAið Þ �  Expression RNAið Þ

Patients were assigned a risk score using the approach and

then categorized into high- and low-risk groups as per how their

score compares to the training set’s median risk score. To

contrast the prognosis between the high- and low-risk groups,

survival curves were generated utilizing Kaplan-Meier method.

The prognostic model was evaluated utilizing a time-dependent

Receiver Operating Characteristic (ROC) curve and area under

the curve (AUC).
Cluster analysis

For identifying the prognostic model’s consistency and

dependability, we pooled patients from TCGA, GSE28735,

GSE62452, and GSE57495 and performed an unsupervised
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cluster analysis using the “ConsensusClusterPlus” R package.

The cumulative distribution function (CDF) curve and

consensus matrix were applied to get the best possible

clustering parameter values. The Kaplan-Meier technique was

utilized to compare survival times across the categories.

Additional verification of the clusters and prognostic model

was achieved via the use of PCA and t-SNE.
Clinicopathologic correlation,
independent prognostic analysis, and
nomogram model construction

We integrated patients’ clinical data and risk scores

categorized them as per the clinicopathological criteria,

followed by performing the Wilcoxon and Kruskal-Wallis rank

sum test to assess risk scores across groups. For identifying

whether the risk score independently acted as a predictor of

pancreatic cancer, univariate and multivariate Cox regression

analyses were conducted. Clinicopathological parameters (age,

stage, pathological grade, and gender) and risk scores were

considered in the development of the nomogram model for

predicting the prognosis of pancreatic cancer utilizing the “rms”

R package. The predictive performance of the nomogram model

was tested using the calibration curve (35).
Gene set enrichment analyses

To compare the variations in biological processes and

metabolic pathways between low- and high-risk groups, gene

set enrichment analyses (GSEA) based on gene sets

“c5.go.v7.5.1.symbols.gmt” and “c2.cp.kegg.v7.5.1.symbols.gmt”

was executed utilizing R package “limma”, “org.hs.eg.db”,

“ClusterProfiler” and “enrichplot”, the filter criteria was set as

follows: |normalized enrichment score (NES)| > 1 and q value

< 0.05.
Immune analysis

To evaluate the variations in TME between low- and high-risk

groups, the “ESTIMATE” algorithm was utilized to compute each

patient’s stromal, immune, and ESTIMATE scores (36). Single-

sample GSEA (ssGSEA) was carried out to determine the

infiltration scores of 16 distinct immune cells and the activity

score of 13 immune-associated pathways for each patient utilizing

the “GSVA” and “GSEABase” R packages. Immunocyte infiltration

scores of all TCGA tumors were retrieved from the Tumour

Immune Estimation Resource database (TIMER, http://timer.

cistrome.org/) to further evaluate their association with risk

scores. These scores were calculated using a variety of

algorithms, notably, MCPCOUNTER, EPIC, QUANTISEQ,
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XCELL, CIBERSORTABS, TIMER, and CIBERSORT (37).

Tumour immune dysfunction and exclusion (TIDE) can

measure the sensitivity of immune checkpoint blockade by

simulating tumour immune evasion mechanism (38). The online

TIDE platform (http://tide.dfci.harvard.edu/) was utilized to

determine the TIDE score, as well as T-cell dysfunction and

exclusion scores for each patient.
Mutation analysis

To compare and contrast the mutation profiles of

individuals at high and low risk, we utilized the “maftools” in

R package. Somatic, insertion, base substitution, coding, and

deletion mutations were all included in the definition of tumour

mutation burden (TMB) (39). TMB estimates are calculated as

overall mutation frequency divided by 38 Mb since this value is

commonly retrieved based on the length of human exons (40).

The association between risk scores and TMB was analyzed with

the use of the Spearman correlation test. The ideal cut-off value

of TMB was also determined, and the affect of TMB on the

prognosis of pancreatic cancer was assessed, with the use of the

“survminer” and “survival” R packages.
Drug sensitivity analysis

To analyze the disparity in medication responsiveness

between high- and low-risk groups, we used the “pRRophetic”

package in R (41). Using the CellMiner database (https://

discover.nci.nih.gov/cellminer/), we retrieved pertinent gene

expression data and Food and Drug Administration (FDA)

authorized drug sensitivity data to further assess the link

between drug sensitivity and the genes in the predictive model

(42). The connection between gene expression and drug

responsiveness was analyzed using the Pearson test.
Gene expression and
distribution exploration

Differences in the expression of GSK3B, IL18 and VEGFA at

the RNA level between normal and tumor pancreatic tissues

were analyzed via the GEPIA platform (http://gepia2.cancer-

pku.cn/#analysis). Protein expression patterns in normal cells,

tissues, as well as cancer tissues may be generated using the

public HPA platform (https://www.proteinatlas.org/) (43). For

protein-level confirmation of gene expression, we used

immunohistochemistry pictures of normal and pancreatic

cancer tissue obtained from the HPA database. We also

obtained relevant data and photos to examine the distribution

of gene expression in diverse subcellular structures and cell

types. In contrast to traditional bulk RNA-seq that generates
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mixed gene expression data from tissues, single cell RNA-seq can

provide a transcriptional data of individual cells (44). Tumor

Immune Single-cell Hub (TISCH, http://tisch.comp-genomics.

org) is a single cell RNA-seq database focusing on TME (45).

The distribution of model genes in different cells in the TME of

pancreatic cancer was further explored through the

TISCH database.
Cell lines and culture

Cell lines of HPDE6-C7, CF-PAC1, Panc-1 and BxPC-3

were from our laboratory, which were consistent with our

previous research. And the HPDE6-C7 was a human

pancreatic ductal epithelium, the others were pancreatic cancer

cell lines. We used the with DMEMmixed with 10% FBS (Gibco,

USA) to culture HPDE6-C7, BxPC-3, and Panc-1 cell lines. And

CF-PAC1 were cultured with IMDM mixed with 10% (FBS)

(Procell, China). All the cell lines were incubated at

Cell Incubator.
The validation of the hub RNA expression
with quantitative real-time PCR

The total RNAs was isolated from HPDE6-C7 cell lines and

CF-PAC1, Panc-1and BxPC-3 cell lines by extraction tool

named TRIzol (Accurate Biotechnology). We utilized the

Reverse Transcription Reagent to prepare the cDNAs. RT-PCR

was carried out by using qPCR Kit (Accurate Biotechnology).

The experiment reagents were from our laboratory. And the

GAPDH was served as the control standard. The analysis and

quantification of RNA expression level adopted the DDCt
method. All the primer sequences obtained from GenePharma

(Suzhou, China) were for human, which were as follows: IL18,

5’- TCTTCATTGACCAAGGAAATCGG-3’ (Forward), 5’- TCC

GGGGTGCATTATCTCTAC-3 ’ (Reverse); GSK3B, 5 ’-

GCCCAGAACCACCTCCTTTGC-3’ (Forward), 5’- CACC

TTGCTGCCGTCCTTGTC-3 ’ (Reverse); VEGFA, 5 ’-

GCCTTGCCTTGCTGCTCTACC-3’ (Forward), 5’- CTTCG

TGATGATTCTGCCCTCCTC-3’ (Reverse).
Statistical analysis

For this project, we utilized R (version 4.1.2) and GraphPad

Prism 9 to conduct statistical analysis and visual representation

of data. The Wilcoxon rank sum test was conducted to examine

the disparities between the two groups. More than two groups

were compared using the Kruskal-Wallis rank sum test.

Parametric and nonparametric variables were compared using

Pearson or Spearman correlations, respectively. Kaplan-Meier
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with log-rank test was utilized to analyze survival data. p-value <

0.05 denotes a remarkably outcome.
Results

Detection and analysis of differentially-
expressed NMRGs

The whole study process is depicted in Figure 1. We identified

5552 DEGs between pancreatic tumors and normal samples by

combining TCGA and GTEx databases (Figure 2A), 1173

neuroendocrine regulation-related genes and 1131 metabolism-

related genes from GeneCards database (Table S1). In total, 85

differentially-expressed NMRGs were detected by taking

intersection (Figures 2B, C). We constructed PPI using 85

differentially expressed NMRGs, and further identified three core

modules with 45 hub genes using the MCODE plug-in (Figures 2D,

E). 45 hub genes were preserved for subsequent analysis.
Genetic landscape and
enrichment analysis

We analyzed 45 hub genes for mutation landscape and CNV

in pancreatic cancer. The results showed that 15 (9.49%) of 158

samples had gene mutations, and the three most common

mutated genes were ATM (4%), CTNNB1 (3%) and SKT11
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(2%), missense mutation was the most common type, C>T

accounted for the highest proportion in single nucleotide

variants (SNV) (Figure 2F). CNV was present in all 45 hub

genes, and the three most frequent genes are AKT2, TNFRSF11B

and VEGFA (Figure 2G). Figure 2H depicted the chromosomal

position of the CNV for each of the 45 hub genes.

We conducted GO and KEGG enrichment analyses on these

45 hub genes to delve into their biological roles and mechanisms.

GO enrichment analysis illustrated that “regulation of small

molecule metabolic process”, “epithelial cell proliferation”,

“Positive regulation of kinase activity” and “regulation of

polysaccharide process” were the most remarkably enriched

pathways in BP, “secretory granule lumen”, “cytoplasmic

vesicle lumen”, “vesicle lumen” and “platelet alpha granule

lumen” were the most significantly enriched pathway in CC,

“signalling receptor activator activity”, “receptor ligand activity”,

“cytokine activity” and “insulin receptor binding” were the most

remarkably enriched pathway in MF (Figure 2I). KEGG

enrichment analysis illustrated that “PI3K−Akt signalling

pathway”, “Alzheimer’s disease”, “HIF−1 signalling pathway”,

“proteoglycans in cancer”, “non−alcoholic fatty liver disease”,

and “thyroid hormone signalling pathway” were the most

significantly enriched pathway (Figure 2J). We could find that

the enriched pathways are mainly related to metabolism,

neuroendocrine system diseases and tumors.
Establishment and validation of the
NMRGs-related prognostic model

Patients from the TCGA cohort were randomised at a 7:3 ratio

into the training and internal validation sets. Cox and LASSO

regression analyses were used to establish a prognostic model with

three NMRGs-related genes (Figures 3A-C). Below is the equation

of the prognostic model: risk score = (1.69076150270978 * GSK3B

expression) + (0.755709134258276 * IL18 expression) +

(0.453448880701734 * VEGFA expression). The patient’s survival

time in the low-risk group was considerably elevated as opposed to

that of patients in the high-risk group, as shown by a survival

analysis conducted on the training set, the internal validation set,

and the whole TCGA dataset (Figures 3D-F). In comparison to the

low-risk category, patients classified as the high-risk category fared

worse in terms of overall survival (OS) (Figures 3G-I). The AUC

value for 1, 3 and 5 years were 0.726, 0.669 and 0.787 in the

training cohort (Figure 3J), 0.652, 0.735 and 0.869 in the internal

validation cohort (Figure 3K), and 0.698, 0.700 and 0.840 in the

whole TCGA cohort (Figure 3L), respectively. All of these pointed

to the high predictive power of our prognostic model. We used

GSE62452, GSE57495 and GSE28735 datasets as external validation

sets to additionally illustrate the predictive significance of our

prognostic model. Longer survival rates were recorded for

patients classified in the low-risk category (Figures 3M-O).
FIGURE 1

Flowchart in this study.
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NMRG-based consensus clustering

To additionally illustrate the reliability of our prognostic

model, we combined all the samples from TCGA, GSE62452,

GSE57495 and GSE28735, and then divided them into three

clusters using unsupervised clustering analysis (Figures 4A-C).

Survival analysis showed that the survival time of Cluster 3 was

remarkably higher than Cluster 1 and Cluster 2 (Figure 4D). In

all the pooled datasets, the patients having a low risk had a

remarkably more favorable prognosis in contrast with those
Frontiers in Endocrinology 07
identified as having a high risk (Figure 4E). The alluvial diagram

displayed the patients’ distribution in the three NMRG-related

clusters and two NMRG-related risk score groups, and all cluster

3 patients were mapped to the low-risk subgroup, and all high-

risk patients were mapped to cluster 1 and cluster 3, which

indicated that our clusters and groups were reasonable and

reliable (Figure 4F). PCA and t-SNE results showed that our

clusters and groups could clearly distinguish different patients,

and this further demonstrates the good consistency and

reliability of our prognostic model (Figures 4G-J).
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FIGURE 2

Identification and analysis of differentially-expressed neuroendocrine regulation- and metabolism-related genes (NMRGs). (A) A volcano map of
differentially expressed genes. (B) A venn diagram of intersection of differentially expressed, neuroendocrine regulation-related and metabolism-
related genes. (C) A heat map of differentially-expressed NMRGs. (D) PPI of differentially-expressed NMRGs. (E) Three core modules in PPI.
(F) Genetic mutation of hub genes. (G) Frequencies of CNV gain and loss. (H) Location of the CNV on the chromosomes. (I) GO enrichment
analysis. (J) KEGG enrichment analysis.
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FIGURE 3

Construction and verification of the NMRGs-related prognostic model. (A) LASSO regression analysis with coefficient path diagram. (B) LASSO
regression analysis with cross-validation curve. (C) Coefficient of three genes in the prognostic model. Kaplan-Meier curve of the training set
(D), internal validation set (E) and the whole TCGA dataset (F). Risk score and survival status distribution of training set (G), internal validation set
(H) and the whole TCGA dataset (I). ROC curve of the training set (J), internal validation set (K) and the whole TCGA dataset (L). Kaplan-Meier
survival curve of GSE62452 (M), GSE57495 (N) and GSE28735 dataset (O).
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Clinicopathologic correlation,
independent prognostic analysis, and
nomogram model construction

The results showed that there was no difference in risk scores

between different age and gender groups (Figures 5A, B). Risk

scores were higher in higher pathological grade and the difference

was statistically significant (Figure 5C). Risk scores increased

gradually in the higher TNM stage, and the differences were close

to statistical significance (Figure 5D). The expression of IL18 was
Frontiers in Endocrinology 09
associated with higher pathological grade and TNM stage (Figure

S1). Univariate and multivariate Cox regression analyses confirmed

that age and risk score independently acted as prognostic markers

for pancreatic cancer (Figures 5E, F). Subsequently, utilizing

clinicopathological parameters and risk score, we designed a

nomogram model to predict the survival of patients with

pancreatic cancer (Figure 5G). The calibration curve illustrated

that the 1-, 3-, and 5- years survival rate predicted by the nomogram

was close to the real survival, which signified that our nomogram

model has outstanding predictive significance (Figure 5H).
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FIGURE 4

Consensus clustering. (A) Cumulative distribution function (CDF) curve. (B) Relative change of the area under the CDF curve when cluster
number k = 2–9, and the optimal k = 3. (C) Heat map of consensus matrix when k = 3. (D) Kaplan-Meier curve of three clusters. (E) Kaplan-
Meier curve of the high- and low-risk score groups. (F) Alluvial diagram of changes in three clusters and two risk score groups. (G) PCA analysis
of three clusters. (H) PCA analysis of the high- and low-risk score groups. (I) t-SNE analysis of three clusters. (J) t-SNE analysis of the high- and
low-risk score groups.
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Gene set enrichment analyses

The GSEA was executed to investigate the variations between

the high- and low-risk groups in terms of biological processes and

metabolic pathways. In total, 274 pathways were considerably

enriched in the gene set “c5.go.v7.5.1.symbols.gmt” (Table S2). In
Frontiers in Endocrinology 10
the high-risk group, the top 5 pathways with considerable

enrichment were “epidermis development”, “keratinization”,

“keratinocyte differentiation”, “skin development” and “cadherin

binding” (Figure 6A). Additionally, the top 5 enriched pathways in

the low-risk group were “B cell receptor signalling pathway”,

“regulation of ion transport”, “signal release”, “presynapse”
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FIGURE 5

Clinicopathologic correlation, independent prognostic analysis, and nomogram model construction. Differences in risk score in age groups
(A), gender groups (B), grade groups (C) and stage groups (D). (E) The forest map of univariable Cox regression. (F) The forest map of
multivariable Cox regression. (G) The nomogram prediction model based on risk score and clinicopathological characteristics. (H) Calibration
curve of nomogram model of predicting 1, 3, 5 years survival rate.
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and“T cell receptor complex” (Figure 6B). In total, 6

pathways were considerably enriched in the gene set

“c2.cp.kegg.v7.5.1.symbols.gmt”. The pathways with remarkable

enrichment in the high-risk group were “cell cycle”, “pathways in

cancer”, “small cell lung cancer” and “steroid hormone

biosynthesis” (Figure 6C). Furthermore, the substantially enriched

pathways in the low-risk were “neuroactive ligand-receptor

interaction” and “primary immunodeficiency” (Figure 6D).

According to the GSEA results, a remarkable enrichment in the

high-risk group was mainly enriched in some pathways related to

cancer, whereas the low-risk group was predominantly enriched in

pathways linked to immune response.
Immune analysis

To analyze the link between immune infiltration and risk

scores, we used several algorithms to contrast high- and low-risk

groups. The “ESTIMATE” algorithm proved that stromal score

had no significantly difference between high- and lowrisk groups

(Figures 7A). The low-risk category has elevated immune and
Frontiers in Endocrinology 11
ESTIMATE scores in contrast with the high-risk population

(Figures 7B, C). ssGSEA findings demonstrated that the low-risk

category exhibited superior performance in immune cell

infiltration and immune-related pathway in contrast with the

high-risk subgroup, including NK cells, mast cells, CD8+ T cells,

pDCs (Plasmacytoid dendritic cells), TIL (tumour Infiltrating

lymphocyte), cytolytic activity, Type II IFN response, and T cell

co-stimulation (Figures 7D, E). Immune cell infiltration analysis

indicated that the risk score was significantly and inversely

linked to naive CD4+ T cells, CD8+ T cells, macrophage M2,

NK T cells, B cells, and T cell regulatory (Tregs) infiltration,

significantly positively correlated with neutrophil and

endothelial cell infiltration (Figure 7F). The expression of

GSK3B was significantly inversely linked to the naive CD4+ T

cells, memory B cells, NK T cells, and Tregs infiltration, and

significantly positively linked to macrophage, neutrophil,

cancer-associated fibroblast (CAFs), B cell plasma and

activated mast cell infiltration (Figure 7G). The expression of

IL18 was strongly and inversely linked to macrophage M2, mast

cell and endothelial cell infiltration, and significantly positively

correlated with neutrophil, macrophage M1, B cells, and CD8+ T
A B
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FIGURE 6

Gene set enrichment analyses. The top 5 significantly enriched pathways in gene set “c5.go.v7.5.1.symbols.gmt” of the high- (A) and low- (B) risk
score groups. The significantly enriched pathways in gene set “c2.cp.kegg.v7.5.1.symbols.gmt” of the high- (C) and low- (D) risk score groups.
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cell infiltration (Figure 7H). The expression of VEGFA was

significantly inversely linked to CD8+ T cell, B cell naïve,

macrophage M2, endothelial cell infiltration, and significantly

positively correlated with eosinophil and macrophage M0

infiltration (Figure 7I). Based on the calculated TIDE score, as

well as T cell dysfunction and exclusion scores for each sample,
Frontiers in Endocrinology 12
we discovered that the high-risk population exhibited

remarkably elevated T cell exclusion score (Figure 7J), whereas

the low-risk population had significantly elevated T cell

dysfunction score and TIDE score (Figures 7K, L). In addition,

further analysis showed that the expression of GSK3B, IL18 and

VEGFA were significantly associated with lower TIDE score
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FIGURE 7

Immune analysis. Stromal (A), immune (B) and ESTIMATE (C) score in the high- and low-risk score groups. 16 immune cell infiltration scores
(D) and the activity score of 13 immune-related pathways (E) in the high- and low-risk score groups. Relationship between immune cell
infiltration and risk score (F), GSK3B (G), IL18 (H) and VEGFA (I) expression level. T cell exclusion (J), T cell dysfunction (K) and TIDE score (L) in
the high- and low-risk score groups. *p<0.05;**p<0.01.
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(Figure S2). This illustrated that pancreatic cancer in the high-

risk population had a greater likelihood of responding to

immunotherapy as opposed to the low-risk population.
Tumor mutation burden

The “maftools” R package was utilized to analyze the mutation

landscape in the high- and low-risk groups. A greater mutation

frequency was seen in the high-risk group for the five most

frequently mutated genes (TTN, CDKN2A, SMAD4, TP53, and

KRAS) (Figures 8A, B). Previous studies indicated that activation

mutations of the proto-oncogene KRAS and inactivation mutations

of the tumour suppressor gene TP53, SMAD4 and CDKN2A were

intimately linked to the occurrence, progression and dismal

prognosis of pancreatic cancer (46, 47). TMB was depicted to be

substantially enhanced in the high-risk group as per the Wilcoxon

test (Figure 8C). Spearman test indicated a positive link between

TMB and risk score (Figure 8D). We further analyzed the

relationship between model genes and TMB, and the results

showed that the expressions of GSK3B and VEGFA were

significantly positively correlated with TMB (Figure S3). Survival

analysis confirmed that TMB was linked to a worse outcome for

patients with pancreatic cancer (Figure 8E). Accordingly, low risk

and low TMEwere correlated with the best prognoses, whereas high

risk and high TMB were linked to the worst prognoses (Figure 8F).
Drug sensitivity

Drug therapy is an important treatment for pancreatic

cancer, especially for advanced pancreatic cancer. However,

different patients have different sensitivity to different drugs.

Therefore, it may be more effective and scientific to make

individualized treatment plans for different patients. By

applying the “pRRophetic” package in R software to predict

drug sensitivity, we discovered that in high-risk group patients,

18 drugs (including BIBW2992, Bicalutamide, Gefitinib,

Lapatinib, etc.) had significantly lower IC50 values, and in the

low-risk group, 26 drugs (including Axitinib, Metformin,

Roscovitine, Sunitinib, Vinblastine, etc.) had significantly

lower IC50 values (Table 1). We selected 14 drugs shown in

Figure 9A. Based on the relevant data from CellMiner database,

we found that three genes in the model were associated with the

sensitivity of 78 drugs (Supplementary Table 3), and the top 25

drugs with the most significant sensitivity were shown in

Figure 9B. VEGFA expression was positively linked to the

sensitivity of Abiraterone and Zoledronate, and inversely

linked to Fludarabine, Cytarabine and Cladribine. GSK3B

expression was inversely linked to Oxaliplatin and brigatinib.

IL18 expression was negatively linked to Paclitaxel,

VINORELBINE, Vinblastine and Sulfatinib.
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Gene expression verification and
distribution analysis

We used the GEPIA platform and discovered that GSK3B,

IL18 and VEGFA RNA expression levels were elevated in tumors

than in normal tissues (Figures 10A-C). qRT-PCR suggested that

GSK3B, IL18 and VEGFA RNA expression level in tumor cells

was remarkably higher in contrast with that in normal cells, in

line with findings based on GEPIA platform (Figures 10M-O).

Immunohistochemistry images derived from the HPA database

showed that GSK3B and IL18 expression at protein level in

tumour tissues was elevated in contrast with that in normal

tissues, in line with findings of RNA expression levels

(Figures 10D, E). However, there was no remarkably variations

in the protein expression level of VEGFA in tumour tissues in

contrast with normal tissues (Figure 10F). Subsequently, we

additionally examined the distribution of the three genes’

expression in various subcellular structures and cell types by

HPA database. GSK3B was detected in the nucleoplasm and

mainly expressed in pancreatic endocrine, ductal and exocrine

glandular cells (Figures 10G, J). IL18 was detected in the

nucleoplasm, Golgi apparatus, and cytosol, and was also

predicted to be secreted extracellular and mainly expressed in

mixed cell types (Figures 10H, K). VEGFA was predicted to be

secreted extracellular and predominantly expressed in pancreatic

endocrine and ductal cells (Figures 10I, L). In addition, the

single-cell dataset CAR001160 from the TISCH platform was

utilized for further exploring the distribution of model genes in

different cells in the TME of pancreatic cancer. Results showed

that in the tumor microenvironment of pancreatic cancer,

GSK3B was mainly distributed in endothelial cells, malignant

cells and B cells, IL18 was mainly distributed in dendritic cells,

monocytes/macrophages and malignant cells, and VEGFA was

mainly distributed in malignant cells, monocytes/macrophages

and ductal cells (Figure S4).
Discussion

Pancreatic cancer is a very challenging malignant tumour with

insidious onset, rapid progression and poor prognosis (48). The

only current hope for curing pancreatic cancer is viamajor surgery.

Unfortunately, by the time most patients are diagnosed, their

chances of undergoing radical surgery have already been missed,

and the effect of adjuvant therapy such as chemotherapy and

radiotherapy on pancreatic cancer is not obvious (49). Finding

effective new treatments for pancreatic cancer is crucial. In addition

to antiangiogenic therapies and immunotherapies already in clinical

practice, metabolic regulation is considered another promising

approach for cancer treatment (50). Cancer is characterised in

part by the metabolic reprogramming of its tissues. Compared with

normal cells, pancreatic cancer cells undergo a series of metabolic
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FIGURE 8

Mutation analysis. Genetic mutation landscape in the high- (A) and low- (B) risk score groups. (C) Tumour mutation burden (TMB) of the high-
and low-risk score groups. (D) Correlation between TMB and risk score. (E) Kaplan-Meier curve of the high- and low-TMB categories.
(F) Kaplan-Meier curve of the different TMB and risk score categories.
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alterations: (1) reprogramming the metabolism of intracellular

nutrients, such as lipids, amino acids, and glucose; (2) enhancing

nutrient supply through scavenging and recycling; (3)

microenvironmental interactions involving metabolic processes

and other components (51). These metabolic changes are

conducive to the survival and division of pancreatic cancer cells

in an environment of hypoxia and nutrient deprivation. The

metabolism of tumors is often regulated by the neuroendocrine

system, and abnormal neuroendocrine regulation may cause
Frontiers in Endocrinology 15
metabolic disorders. Studies showed that obesity could lead to

abnormal adipose metabolism, chronic inflammation, insulin

resistance, and hyperglycemia, and further affect the secretion of

different hormones, growth factors, inflammatory cytokines,

adipokines, and free fatty acids, which were considered to be the

risk biomarkers for cancer morbidity and mortality (25, 52). Besides

obesity, neuroendocrine diseases such as diabetes, depression, and

anxiety can also enhance the risk of many malignancies and are

linked to dismal prognoses (53, 54).
TABLE 1 The sensitive drugs in the high- and low-risk score groups.

Group Sensitive drugs

Low
risk

ABT.263, ABT.888, AMG.706, ATRA, Axitinib, AZ628, AZD8055, BMS.536924, CEP.701, EHT.1864, GDC0941, KU.55933, Metformin, MK.2206,
MS.275, Nutlin.3a, NVP.BEZ235, PD.173074, PD.0332991, PF.02341066, Roscovitine, Salubrinal, Sunitinib, TW.37, Vinblastine, Vorinostat.

High
risk

A.443654, AUY922, BI.2536, BIBW2992, Bicalutamide, Bryostatin.1, Epothilone.B, Erlotinib, FTI.277, Gefitinib, GSK.650394, Lapatinib, LFM.A13,
Midostaurin, NSC.87877, PLX4720, RDEA119, Thapsigargin.
A

B

FIGURE 9

Drug sensitivity analysis. (A) Drug sensitivity in the high- and low-risk score groups. (B) Correlation between drug sensitivity and GSK3B, IL18 and
VEGFA expression level.
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We developed an NMRGs-related prognostic model for

pancreatic cancer using data in the TCGA database and by

performing Cox and LASSO regression analyses, and the

prognostic model was verified by GSE62452, GSE57495 and

GSE28735 datasets. Unsupervised clustering, PCA and t-SNE

analysis additionally proved the prognostic model’s reliability
Frontiers in Endocrinology 16
and consistency. The prognostic model included three genes:

GSK3B, IL18 and VEGFA. GSK3B is a multifunctional serine/

threonine kinase, which is implicated in various biological

activities such as metabolism, cell cycle, DNA damage repair,

cell proliferation, and apoptosis, and is associated with diabetes,

tumors, psychiatric and neurodegenerative diseases (55–59).
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FIGURE 10

Gene expression verification and distribution analysis. Differences in the expression of GSK3B (A), IL18 (B) and VEGFA (C) at RNA level between
pancreatic normal tissues and tumor tissues based on GEPIA platform. Immunohistochemical images of GSK3B (D), IL18 (E) and VEGFA (F) in
pancreatic normal and tumor tissues. Distribution of GSK3B (G), IL18 (H) and VEGFA (I) expression in different subcellular structures. Distribution
of GSK3B (J), IL18 (K) and VEGFA (L) expression in different cell types. Differences in the RNA expression of GSK3B (M), IL18 (N) and VEGFA
(O) between pancreatic normal cells and tumor cells based on RT-PCR. ns, no statistical significance; *p<0.05;**p<0.01;***p<0.001.
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Darrington et al. (60) discovered that GSK3B expression level

was elevated in prostate cancer (PCa) tissue in contrast with that

in normal prostate tissue, and GSK3B inhibitors could reduce

the growth of PCa cells. Mamaghani et al. (61) and Ougolkov

et al. (62) illustrated that GSK3B expression was elevated in

pancreatic cancer samples in contrast to normal pancreatic

samples, which was congruent with our findings. Furthermore,

the GSK3B inhibitor could suppress the survival and

proliferation of pancreatic cancer cells by attenuating the

activity of nuclear factor-kappaB (NF-kB). Studies indicated

that GSK3B may play two roles in tumors: (1) promoting

cancer through induced activation of NF-kB; (2) anti-cancer

effect by preventing epithelial to mesenchymal transition (EMT)

and metastasis (59, 63). Histone deacetylases (HDACs) could

down-regulate the expression of E-cadherin in pancreatic cancer

to promote EMT and metastasis, and HDACs inhibitors could

suppress the proliferative and migratory capacities of pancreatic

cancer cells (64). Edderkaoui et al. (63) found that metavert, a

molecule that inhibits both GSK3B and HDACs activity, could

significantly reduce tumour size, prevent metastasis, increase the

killing of paclitaxel- and gemcitabine-resistant pancreatic cancer

cells. IL-18 is a pro-inflammatory and immunomodulatory

cytokine of the IL-1 family that is converted from an inactive

precursor protein (pro-IL18) by caspase-1-induced cleavage of

an N-terminal fragment and may have anti-cancer and

oncogenic effects depending on the tissue and cellular

environment (65, 66). Liu et al. (67) found that tongue

squamous cell carcinoma may be prevented from advancing if

IL18 is overexpressed since it may cause apoptosis and decrease

the activity of the cells. However, Li et al. (68) illustrated that

individuals with colorectal cancer who had an elevated blood IL-

18 level had a worse prognosis. Kim et al. (69) found that IL18

could directly enhance the migratory ability of gastric cancer

cells by filamentous-actin polymerization and tensin down-

regulation. Guo et al. (70) illustrated that the expression level

of IL18 was remarkably elevated in pancreatic cancer patient

plasma in contrast with pancreatic benign tumors, pancreatitis,

and healthy human plasma, elevated in pancreatic cancer tissues

in contrast with normal tissues and was linked to a dismal

prognosis of pancreatic cancer. This was consistent with our

study results. VEGFA is a member of the vascular endothelial

growth factor family, which participates in tumour angiogenesis

and is intimately linked to tumour development and metastasis,

and may be employed as a possible target for tumour therapy

(71–73). Our study discovered that high expression of VEGFA

was linked to the poor prognosis for pancreatic cancer.

TME is an intricate and comprehensive system in which

tumour cells originate and live, which consists of tumour cells,

stromal cells, immune cells, and extracellular matrix. TME is

intimately linked to tumorigenesis, progression, and patient

prognosis (74). GSEA results illustrated that pancreatic cancer

in the low-risk group was predominantly enriched in immune-

associated pathways. Furthermore, the “ESTIMATE” algorithm
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confirmed that patients in the low-risk subgroup had an elevated

immune score. ssGSEA analysis further confirmed that

immunocyte infiltration scores and immune-associated

functional pathway scores were elevated in the low-risk group.

Immune cell infiltration analysis confirmed that the infiltration

degree of CD8+ T cells and NK cells was elevated in the low-risk

group, whereas the infiltration degree of CAFs and neutrophil

cells was elevated in the high-risk. CD8+ cytotoxic T cells

perform an instrumental function in anti-tumour immunity by

killing tumour cells, and can also inhibit angiogenesis by

secreting interferon-gamma (IFN-g), which is widely believed

to be linked to improved prognosis of tumour patients (75, 76).

Similar to CD8+ cytotoxic T cells, NK cells also perform an

integral function in anti-tumour immunity, which can produce

cytotoxic effects through effector cytokines, cytotoxic molecules

and Fas pathway, and then kill tumour cells (74, 77). CAFs

constitute the majority of stromal cells in the TME, including

antigen-presenting CAFs (apCAFs), inflammatory CAFs

(iCAFs), and Myofibrotic CAFs (myCAFs) and can reshape

the extracellular matrix to enhance interstitial sclerosis,

promote tumour invasion, induce chemotherapy resistance,

inhibit antitumor T-cell response, and promote tumour

growth (78). Tumour-associated neutrophils have been

recognized as key players in malignant transformation, tumour

progression, anti-tumour immunity and angiogenesis, and were

associated with poor prognosis for advanced cancers and poor

outcomes of immune checkpoint inhibitors therapy (79–81).

CXCR2, the CXC receptor expressed by neutrophils, can bind

with its ligand chemokine family (CXCL1, CXCL2, CXCL3,

CXCL5, CXCL7, and CXCL8) to recruit neutrophils to the

TME and participate in the mobilization of tumour-associated

neutrophils (81, 82). Steele et al. (46) showed that inhibition of

CXCR2 could slow tumour formation, prevent metastasis, and

enhance the response to chemotherapy and immunotherapy in

pancreatic cancer.

Immunotherapy is a promising treatment that has revealed

considerable efficacy in numerous tumors, including melanoma,

non-small cell lung cancer, renal cell carcinoma, hepatocellular

carcinoma, and Hodgkin’s lymphoma (83–85). However,

pancreatic cancer does not appear to be sensitive to

immunotherapy, with a low overall response rate. The TIDE

score was utilized to predict the link between immunotherapy

and risk score, and the findings revealed that patients in the high-

risk group exhibited a high likelihood of responding to

immunotherapy. A greater TMB is often related to a greater rate

of immunotherapy response, as evidenced by a series of studies (86,

87). TMB was considerably enhanced in the high-risk, as shown by

our research, suggesting a positive link between risk score and TMB.

Therefore, patients with pancreatic cancer in the high-risk group

may have a greater sensitivity to immunotherapy, which is

consistent with the result of TIDE score prediction. Besides

surgery, chemotherapy is the main treatment for pancreatic

cancer, especially for advanced pancreatic cancer. Our research
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revealed that the high- and low-risk groups differ remarkably in

their susceptibility to certain small molecular drugs and

chemotherapeutic medications. The level of IL18 expression is

inversely linked to Paclitaxel sensitivity. GSK3B expression was

inversely linked to the sensitivity of Oxaliplatin. Paclitaxel is often

used together with gemcitabine to enhance the prognosis of patients

with pancreatic cancer (88). Oxaliplatin is one of the

chemotherapeutic drugs in FOLFIRINOX regimen (first-line

treatment for pancreatic cancer) (89). Therefore, our risk score

model is helpful to develop individualized treatment plans for

patients with pancreatic cancer.

To our knowledge, this is the first study to use bioinformatics to

comprehensively analyze the prognostic role of NMRGs in

pancreatic cancer. Nonetheless, this investigation is not without

its drawbacks. First, our data are from online databases TCGA and

GEO, and the real prospective clinical cohorts are needed for further

validation. Secondly, basic investigations still need to be conducted

to better comprehend the function of NMRGs in the etiology and

progression of pancreatic cancer.
Conclusion

In summary, we established an NMRGs-related prognostic

risk score model through the TCGA database, and the model

was validated using GSE62452, GSE57495 and GSE28735

datasets. Unsupervised clustering analysis, PCA and t-SNE

analysis further illustrated that the prognostic model has very

good reliability. The prognostic risk score model contained three

genes: GSK3B, IL18 and VEGFA, all of which were highly

expressed in pancreatic cancer tissue and were associated with

poor prognosis. In addition, our prognostic risk score model and

model genes were closely linked to the immune infiltration

microenvironment, TMB, and drug sensitivity, and can

provide evidence for the treatment strategy of pancreatic

cancer patients.
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SUPPLEMENTARY FIGURE 1

Clinicopathologic correlation. Differences of GSK3B expression in grade
groups (A) and stage groups (B). Differences of IL18 expression in grade

groups (C) and stage groups (D). Differences of VEGFA expression in grade

groups (E) and stage groups (F).

SUPPLEMENTARY FIGURE 2

The relationship between TIDE score and model genes. TIDE score in

different GSK3B (A), IL18 (B) and VEGFA (C) expression groups.

SUPPLEMENTARY FIGURE 3

The relationship between TMB and model genes. TMB in different GSK3B
(A), IL18 (B) and VEGFA (C) expression groups. Correlation between TMB

and GSK3B (D), IL18 (E) and VEGFA (F) expression.

SUPPLEMENTARY FIGURE 4

Single-cell analysis of model genes expression. (A) CAR001160
annotation of all cell types and percentage of each type. (B, C)
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Percentages and expressions of GSK3B, IL18 and VEGFA in different cells
of pancreatic cancer tissues.

SUPPLEMENTARY TABLE 1

5552 differentially expressed genes between pancreatic tumour and
normal tissues were identified by TCGA and GTEx databases, and 1173

neuroendocrine regulation-related genes and 1131 metabolism-related
genes were obtained in the GeneCards platform.
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SUPPLEMENTARY TABLE 2

Gene set enrichment analyses (GSEA) identified 274 remarkably enriched
pathways between the high- and low-risk score groups.

SUPPLEMENTARY TABLE 3

Three genes in the model were associated with the sensitivity of 78 drugs

based on the relevant data from CellMiner database.
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