
ART I C L E

Abiotic and biotic drivers of tree trait effects on soil
microbial biomass and soil carbon concentration

Rémy Beugnon1,2,3 | Wensheng Bu4 | Helge Bruelheide1,5 |

Andréa Davrinche1,5 | Jianqing Du6,7 | Sylvia Haider1,5 |

Matthias Kunz8 | Goddert von Oheimb8 | Maria D. Perles-Garcia1,5 |

Mariem Saadani1,5 | Thomas Scholten9 | Steffen Seitz9 |

Bala Singavarapu1,5,10 | Stefan Trogisch1,5 | Yanfen Wang6,11 |

Tesfaye Wubet1,10 | Kai Xue6,11 | Bo Yang12 | Simone Cesarz1,13 |

Nico Eisenhauer1,13

1German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany

2Leipzig Institute for Meteorology, Universität Leipzig, Leipzig, Germany

3CEFE, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France

4College of Forestry, Jiangxi Agricultural University, Nanchang, China

5Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany

6College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China

7Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing, China

8Institute of General Ecology and Environmental Protection, Technische Universität Dresden, Tharandt, Germany

9Institute of Geography, University of Tübingen, Tübingen, Germany

10Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle, Germany

11State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Chinese Academy of Sciences, Beijing, China

12Jiangxi Key Laboratory of Plant Resources and Biodiversity, Jingdezhen University, Jingdezhen, China

13Institute of Biology, Leipzig University, Leipzig, Germany

Correspondence
Rémy Beugnon
Email: remy.beugnon@idiv.de

Funding information
Deutsche Forschungsgemeinschaft,
Grant/Award Numbers: Ei 862/29-1,
202548816, DFG-FZT 118, 319936945/
GRK2324; University of Chinese Academy
Sciences

Handling Editor: Melissa Cregger

Abstract

Forests are ecosystems critical to understanding the global carbon budget, due to

their carbon sequestration potential in both aboveground and belowground com-

partments, especially in species-rich forests. Soil carbon sequestration is strongly

linked to soil microbial communities, and this link is mediated by the tree commu-

nity, likely due to modifications of microenvironmental conditions (i.e., biotic con-

ditions, soil properties, and microclimate). We studied soil carbon concentration

and the soil microbial biomass of 180 local neighborhoods along a gradient of tree

species richness ranging from 1 to 16 tree species per plot in a Chinese subtropical

forest experiment (BEF-China). Tree productivity and different tree functional traits
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were measured at the neighborhood level. We tested the effects of tree productivity,

functional trait identity, and dissimilarity on soil carbon concentrations, and their

mediation by the soil microbial biomass and microenvironmental conditions. Our

analyses showed a strong positive correlation between soil microbial biomass and

soil carbon concentrations. In addition, soil carbon concentration increased with

tree productivity and tree root diameter, while it decreased with litterfall C:N con-

tent. Moreover, tree productivity and tree functional traits (e.g., fungal root associa-

tion and litterfall C:N ratio) modulated microenvironmental conditions with

substantial consequences for soil microbial biomass. We also showed that soil his-

tory and topography should be considered in future experiments and tree planta-

tions, as soil carbon concentrations were higher at sites where historical (i.e., at the

beginning of the experiment) carbon concentrations were high, themselves being

strongly affected by the topography. Altogether, these results implied that the quan-

tification of the different soil carbon pools is critical for understanding microbial

community–soil carbon stock relationships and their dependence on tree diversity

and microenvironmental conditions.

KEYWORD S
BEF-China, biotic conditions, microbial community, microclimate, microenvironment,
productivity, root morphology, soil carbon stock, soil quality, subtropical forest, tree diversity

INTRODUCTION

The rapid increase in atmospheric carbon is one of the
main causes of climate change and has become a major
threat to life on Earth (IPBES, 2019). Atmospheric carbon
concentrations can be reduced by both reducing carbon
emissions and increasing carbon fixation. Forest ecosys-
tems have been identified to be capable of mitigating
increases in atmospheric carbon dioxide by capturing and
fixing it aboveground and storing it both above and below
the ground (Bastin et al., 2019; Lewis et al., 2019).
Belowground carbon storage provides a high potential for
atmospheric carbon control due to the long residence time
of carbon in soil (Trumbore, 2009). However, our under-
standing of the balance between soil carbon influx
(e.g., due to photosynthesis) and efflux (e.g., due to soil
respiration and erosion) in forest systems is still limited.

Tree diversity can enhance carbon storage in forests
(Huang et al., 2018; Liu et al., 2018) via increased productiv-
ity, such as tree biomass, litterfall quantity, root biomass,
and exudation (Huang et al., 2017, 2018; Xu et al., 2020;
Zheng et al., 2019), even though these processes might lead
to higher soil respiration. Moreover, tree diversity should
decrease soil erosion and thus soil carbon effluxes, by reduc-
ing the impact of precipitation on surface soil (Goebes
et al., 2015; Seitz et al., 2016), for instance by increasing can-
opy closure (Perles-Garcia et al., 2021; Williams et al., 2017).
Consequently, tree diversity is expected to enhance carbon

storage in forests by increasing the ratio of carbon influxes to
carbon effluxes (Liu et al., 2018).

Recent studies linked soil carbon concentrations to tree
roots (Adamczyk et al., 2019). Specifically, morphological
traits, for example, root diameter (RD) and specific root
length (SRL), were shown to control the release of root
carbon to the soil by root turnover or exudation (Sun
et al., 2020) and to drive soil organic matter decomposition
(Adamczyk et al., 2019). For example, higher SRL increases
root carbon exudation and root turnover due to a higher
density of fine roots (Bergmann et al., 2020; Sun
et al., 2020; Wen et al., 2019). Additionally, the mycorrhizal
association of tree roots, for example, with arbuscular and
ectomycorrhizal fungi, is a key driver of soil carbon storage
(Averill et al., 2014; Averill & Hawkes, 2016; Craig
et al., 2018; Crowther et al., 2019), as differences in mycor-
rhizal associations can lead to variations in fungal
metabolic pathways due to different nutrient acquisition
strategies (Bonfante & Genre, 2010; Crowther et al., 2019),
and thus influence soil carbon dynamics. However, the
effects of themycorrhizal association on soil carbon dynam-
ics still remain unclear (Frey, 2019). In addition, mycorrhi-
zal colonization of roots increases with the increase of
cortical tissues, themselves being positively correlated with
RD (Bergmann et al., 2020). Thus, RD can determine soil
carbon concentrations bymodulating fungal colonization.

Soil microorganisms play a central role in soil carbon
dynamics by processing soil carbon, thereby being the
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main driver of carbon sequestration (Lange et al., 2015;
Schmidt et al., 2011). As microorganisms are the main con-
sumers of plant-derived and soil organic matter, one
would expect them to reduce soil carbon concentrations.
However, recent studies have highlighted that increased
microbial activity could increase soil carbon concentra-
tions by transferring higher amounts of soil organic matter
to a stable pool of microbial necromass (Buckeridge
et al., 2020; Lange et al., 2015; Miltner et al., 2012; Schmidt
et al., 2011; Trumbore, 1993). The relative contribution of
microbial derivatives in structuring soil organic carbon has
been underestimated in the past (Kästner & Miltner, 2018;
Simpson et al., 2007), whereas microbial residues are
expected to represent 50%–80% of the total soil organic car-
bon (Liang & Balser, 2011; Simpson et al., 2007).

Soil microorganisms and the functions provided
are strongly influenced by the above-mentioned root
traits and, thereby, the tree community composition
due to species-specific associations (Lareen et al., 2016;
Pei et al., 2016). Root biomass and litter production can
further increase habitat space and substrate availability for
soil microorganisms with increasing plant species richness
(Bardgett et al., 2014; Hooper et al., 2000). Moreover,
species-rich plant communities affect soil microorganisms
and generally increase soil microbial biomass and diversity
(Beugnon et al., 2021; Chapman et al., 2013; Eisenhauer
et al., 2010; Lange et al., 2015). Thereby, the positive effect
of high plant species diversity on soil microorganisms is
suggested to increase soil carbon concentrations (Lange
et al., 2015; Li et al., 2019; Liang & Balser, 2011). For exam-
ple, plant species diversity enhances soil microbial biomass
and increases soil carbon by enhancing litter diversity
(Thoms et al., 2010; Ushio et al., 2008), root biomass (Xu
et al., 2020), and the amount and diversity of root exudates
(Eisenhauer et al., 2017), and is due to the dissimilarity
between root traits (Kramer et al., 2016).

Next to root traits, environmental conditions, such as
biotic interactions, soil chemistry, and climate, influence soil
microbial biomass and community composition (Bernhard
et al., 2018; Beugnon et al., 2021; Cesarz et al., 2022;
Delgado-Baquerizo et al., 2016; Gottschall et al., 2019). One
example of biotic interactions is that understory plant diver-
sity can increase soil microbial biomass and activity in
temperate forests (Eisenhauer et al., 2011); however,
empirical evidence remains inconsistent (Xu et al., 2020).
Global studies have shown that climate and soil chemistry
are the two main drivers of microbial biomass and compo-
sition in drylands (Delgado-Baquerizo et al., 2016), but also
along large climate gradients from arid to humid
(Bernhard et al., 2018). Temperature and soil water con-
tent increase microbial biomass by increasing microbial
activity and growth (Delgado-Baquerizo et al., 2016).
Moreover, reduced water availability increases the osmotic

pressure, which, due to salt concentration and pH,
constrains microbial biomass and alters community com-
position, pointing to interactions among abiotic drivers
(Aciego Pietri & Brookes, 2009; Delgado-Baquerizo et al.,
2017; Wichern et al., 2006).

In forests, environmental conditions (i.e., biotic interac-
tions, soil chemistry, and microclimate conditions) can
be modulated by the tree community. For instance, forest
understory plant communities are connected to tree
community composition and diversity (Germany et al.,
2017). Tree diversity, for example, has been identified to
increase the cover of forbs, while the proportion of
forest-specific understory species increased with canopy
cover (Vockenhuber et al., 2011). However, herb layer pro-
ductivity is not necessarily affected by tree layer diversity
(Germany et al., 2017), or herb layer diversity (Both et al.,
2011). Furthermore, tree community composition can also
modify soil chemistry, such as soil pH and nutrient avail-
ability (Reich et al., 2005), with significant consequences for
soil microbial community composition (Delgado-Baquerizo
et al., 2017; Thoms et al., 2010). Likewise, soil moisture can
be affected by tree SRL, as this trait affects the hydraulic lift
(Burgess et al., 1998), with consequences for microbial com-
munities (Cesarz et al., 2022). In addition, tree canopies pro-
vide a buffering layer between macroclimatic fluctuations
and microclimatic fluctuations (de Frenne et al., 2019), as
species-rich forests have a higher spatial complementarity in
tree crowns and canopy closure (Kunz et al., 2019;
Perles-Garcia et al., 2021; Williams et al., 2017). Thereby,
tree diversity would stabilize the microclimate and enhance
ecosystem functions (Gottschall et al., 2019).

In this study, we aim to mechanistically understand the
effects of tree diversity, productivity, functional trait identity
and dissimilarity on soil carbon concentration and its medi-
ation by the soil microbial biomass andmicroenvironmental
conditions (i.e., biotic interactions, soil chemical properties,
and microclimatic conditions; Figure 1). We based our
study on the BEF-China experiment and investigated
180 small-scale neighborhoods distributed with a species
richness gradient ranging from 1 to 16. For each sample
location, wemeasured soil carbon concentration, soil micro-
bial biomass, and environmental conditions to mechanisti-
cally describe and understand tree diversity, productivity,
and functional trait effects on soil carbon concentrations.

We hypothesized tree diversity, productivity, func-
tional trait (e.g., SRL, RD, mycorrhizal statue) identity,
and dissimilarity between these root traits to drive soil car-
bon concentrations (Hypothesis 1; Figure 1). In addition,
tree diversity, productivity, and functional identity; dissim-
ilarity effects on soil carbon concentrations are mediated
by soil microbial biomass (Hypothesis 2). We further
hypothesized that tree community effects on soil microbial
biomass were mediated by microenvironmental conditions
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(biotic environment, soil chemical properties, and micro-
climate; Hypothesis 3). In order to control for soil history
and topography effects on erosion and, therefore soil car-
bon concentration, we considered historical soil carbon
concentration (measured before the onset of tree interac-
tions) and plot topography (i.e., plot altitude, slope, and
curvature) as covariates in our analyses (Figure 1).

MATERIAL AND METHODS

Study site

The study site is located in southeast China nearby the
town of Xingangshan (Jiangxi Province, 29.08–29.11� N,
117.90–117.93� E). Our experimental site is part of the
BEF-China experiment (site A; Bruelheide et al., 2014), and

it was planted in 2009 after a clearcut of the previous com-
mercial plantation. The region is characterized by a subtropi-
cal climate with warm, rainy summers and cool, dry winters
with a mean temperature of 16.7�C and amean annual rain-
fall of 1821 mm (Yang et al., 2013). Soils in the region are
Cambisols and Cambisol derivatives, with Regosol on ridges
and crests (Geißler et al., 2012; Scholten et al., 2017).
The natural vegetation consists of species-rich broad-leaved
forests dominated by Cyclobalanopsis glauca, Castanopsis
eyrei, Daphniphyllum oldhamii, and Lithocarpus glaber
(Bruelheide et al., 2011, 2014).

Study design

We selected 180 small-scale sample locations across five
species richness levels (1, 2, 4, 8, and 16 species) per plot,

F I GURE 1 Conceptual framework of the study. Relationship between the different hypotheses tested in the study: H1: tree productivity

and functional trait identity and dissimilarity drive soil carbon concentration; H2: tree productivity and functional identity and dissimilarity

effects on soil carbon concentrations are expected to be mediated by soil microbial biomass; H3: tree community effects on soil microbial

biomass are mediated by microenvironmental conditions (microclimate, soil chemical properties, and biotic environment).
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according to the BEF-China planting design (Appendix S1).
These small-scale locations are local neighborhoods of
trees defined as the 12 trees directly adjacent in the plant-
ing grid with two central trees (Appendix S1: Figures S1
and S2; see Tree Species Pairs in Trogisch et al., 2021).
Each local neighborhood was replicated three times in
each richness level when available (see “broken stick”
design; Bruelheide et al., 2014).

Plot topography

To control for the topography effect on soil carbon con-
centration, topography measures were calculated from a
digital elevation model (DEM). The DEM was interpo-
lated in 2015 from elevation measurements with a differ-
ential global positioning system (DGPS) using the
ordinary kriging algorithm and a cell size of 5 � 5 m.
Slope, altitude, plan curvature (Curv. PL), and profile cur-
vature (Curv. PR) were calculated from the DEM at the
plot level due to the low intraplot variability (Scholten
et al., 2017).

Microclimate modeling

The daily air temperature was recorded using 35 data log-
gers (HOBO Pro v2, U23-001) installed at a 1-m height in
the center of 35 plots across the experiment, while a
meteorological station was set up in the central part of
the experimental site (see Appendix S2: Figure S1 for
more details; Bruelheide et al., 2014). To cover our full
experimental area, the air temperature was modeled for
all of our experimental plots using the available logger
data. We modeled the temperature measurements of the
35 data loggers (i.e., daily minimum, mean, and maxi-
mum temperature) as a function of the meteorological
station measurements (i.e., daily temperature, rainfall,
and solar radiation), plot topography (i.e., latitude, longi-
tude, altitude, orientation, slope, plot curvature, and
mean annual solar radiation), forest vertical stratification
(i.e., the effective number of layers index, “ENL,” see
below) and plot species richness (see Appendix S2 for
more details). Spatiotemporal trends for the whole exper-
iment were estimated using Gaussian radial basis func-
tions (functions “auto-basis,” “eval_basis” from the
R package FRK, see Appendix S2: Section S1 and Wikle
et al., 2019). Our model fits explained more than 90% of
the loggers’ temperature measurement variability. The
fitted models were used to predict daily minimum, mean,
and maximum temperature for all experimental plots
with a standard error from 0 to 2�C during our sampling
period (see Appendix S2 for the complete procedure).

Field sampling

Our field measurements were performed from mid-August
to the end of September 2018, before the main litterfall
season (from September to December; Huang et al., 2017).
To avoid spatiotemporal autocorrelation, each day another
sampling area was randomly chosen. To test the effect of
biotic conditions on soil microbial biomass and carbon
concentrations, understory plant cover in each location
was estimated on a five-level factorial scale from “no
understory plant” to “mainly covered by understory
plants.” Although this is a relatively coarse measurement,
while being comparable with the Londo scale (Londo,
1976), it allows considering the influence of understory
vegetation which was shown to be of importance
(Vockenhuber et al., 2011). We encourage subsequent
studies to assess the understory vegetation in a more
detailed way.

Starting from the center of the two central trees of the
local neighborhood, we extracted two soil cores with a
5 cm diameter and 10 cm depth, 5 cm away from the cen-
ter (Appendix S1: Figure S2). Two additional cores of the
same dimensions were taken 20 cm away from the center
in the direction of each tree. A composite soil sample was
built for soil analyses from these four soil cores and
sieved with a 2 mm mesh. As a first measure of the biotic
environment, root fragments contained in the sieving res-
idues were air dried at 40�C for 2 days and weighed
(±0.01 g), while the composite soil samples were stored
at −20�C.

To estimate the effect of biotic conditions and espe-
cially nutrient availability effect on soil microbial bio-
mass and soil carbon concentration, the litter cover on
the ground between the two central trees of each location
was estimated on a five-level factorial scale from
“no-litter” to “litter layer thicker than 5 cm.” Leaf litter
was collected between the central trees from the ground,
excluding green understory plant residuals, air dried at
40�C for 2 days, and milled to powder. Carbon and nitro-
gen concentrations were measured by microcombustion
from a subsample of 4 mg (Elementar Vario El III ana-
lyzer, Elementar, Hanau, Germany).

Soil analyses

Soil moisture was measured from a subset of 25 g soil by
drying the soil at 40�C for 2 days. A subsample was used
to quantify soil pH in a 1:2.5 soil:water solution. Soil total
nitrogen (TN) was determined on an autoanalyzer
(SEAL Analytical GmbH, Norderstedt, Germany) using
the Kjeldahl method (Bradstreet, 1954). Soil total phos-
phorus (TP) was measured after wet digestion with
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H2SO4 and HClO4 (Parkinson & Allen, 1975) using a
UV-visible light spectrophotometer (UV2700, SHIMADZU,
Japan). Soil total organic carbon (TOC)wasmeasured using
a TOC analyzer (Liqui TOC II; Elementar Analysensysteme
GmbH, Hanau, Germany). TOC in 2010 was quantified in a
previous study (Scholten et al., 2017) at the plot level using
the microcombustion method (Elementar Vario El III ana-
lyzer, Elementar, Hanau, Germany).

Soil microbial biomass

Soil microbial biomass was measured using phospholipid
fatty acid (PLFA) analysis. PLFAs were extracted from
5 g of frozen soil following Frostegård et al. (1991).
Biomarkers were assigned to microbial functional groups
according to Ruess and Chamberlain (2010) using markers
to assign bacteria (Gram-positive bacteria: i15:0, a15:0,
i16:0, i17:0; Gram-negative bacteria: cy17:0, cy19:0; general
bacteria markers: 16:1ω5; 16:1ω7), arbuscular mycorrhizal
fungi (20:1ω9), and saprophytic and ectomycorrhizal fungi
(18:1ω9 and 18:2ω6,9; see Appendix S3).

Tree functional traits

Tree biomass

Tree biomass was predicted for all neighbor trees using
tree basal area (BA) and species-specific allometric rela-
tionships estimated on the two central trees:
(1) Circumference at breast height (CBH) was measured
in September 2018 for all trees in order to calculate the
BAs of these trees as A¼ CBHð Þ2

4π . (2) Tree height was mea-
sured for the two central trees using a laser meter (4.9
± 2.1m, PLR 50C, Robert Bosch GmbH, Gerlingen,
Germany), and tree biomass was calculated following
Huang et al. (2018). BA and biomass of the central trees
were used to estimate species-specific allometric
BA–biomass relationships (see Appendix S4). (3) These
species-specific allometric relationships were used to cal-
culate the neighborhood biomass (i.e., the sum of the
12 surrounding trees’ biomass).

Leaf traits

For each tree species of the experiment, 10 samples
consisting of 10–25 pooled fresh leaves were collected across
all diversity levels from mid-August to October 2018
(Davrinche & Haider, 2021). Each sample was dried at
80�C for 2 days and milled for 5 min at 26 shakes per
second. Carbon and nitrogen concentrations weremeasured

by microcombustion from a subsample of 5 mg (Elementar
Vario El III analyzer, Elementar, Hanau, Germany).

Root traits

Root functional traits were measured from BEF-China
Site A from September to October 2013 using two to three
tree individuals per species per diversity level. First-order
roots were collected, cleaned, scanned, and analyzed by
WinRHIZO (Regent Software, Canada). After measure-
ments, roots were air dried at 60�C for 2 days and
weighed. Average RD (in mm) and SRL (in m g−1) were
calculated from the measurements of each species at all
species richness levels (Bu et al., 2017). The mycorrhizal
status of the tree species was determined from the litera-
ture (Haug et al., 1994; Hawley & Dames, 2004; Wang &
Qiu, 2006). The mycorrhizal status was assumed from the
literature and confirmed by recent measurements in the
same experiment (Singavarapu et al., 2021). However,
intraspecific root functional trait variability can be high
and may change over the course of an experiment,
depending on the biotic context (e.g., Zuppinger-Dingley
et al., 2014), which could not be considered in the present
study.

Root functional trait variables

We considered three functional root traits that are
related to soil processes (Bardgett et al., 2014): RD,
SRL, and mycorrhizal tree association (i.e., AM or EM).
For each location, trait identity and diversity were cal-
culated at the neighborhood level. At the neighborhood
level, we calculated community-weighted means
(CWM; Garnier et al., 2004) and functional dispersion
(FDis), defined as the weighted variance of the trait
values within the neighborhood (Laliberté &
Legendre, 2010). All measures were weighted using tree
BA. Calculations were made using the “dbFD” function
from the FD package in R (Laliberté et al., 2014).

Forest vertical stratification

To quantify the forest vertical stratification and estimate
crown complementarity, we computed the ENL (Ehbrecht
et al., 2016) using terrestrial laser scanning measurements.
A high ENL value indicates more evenly distributed layers,
which can be an indication of higher crown complemen-
tarity and, thus, an increase in canopy packing (Ehbrecht
et al., 2016). A terrestrial laser scanning campaign took
place in February–March of 2019 using a FARO Focus
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S120 and a FARO Focus X130 laser scanner (FARO
Europe, Korntal-Münchingen, Germany; for more infor-
mation see Perles-Garcia et al., 2021). The scanner was set
up on a tripod at 1.3 m height in the center of each plot
and a fully three-dimensional point cloud (360 � 305� field
of view) with a spatial resolution of 6 mm at a distance of
10 m was acquired.

For each plot, the ENL was computed. First, the scans
were filtered using a statistical outlier removal filter
(SOR, N = 10, SD = 3) in CloudCompare 2.9.1 software.
Taking into account the dimensions of each plot (~667 m2),
each point cloud was clipped in a 20-m2 around the scan
center (~400 m2). The point clouds were voxelized into a
voxel grid of 5 cm voxels using the R package VoxR
(Lecigne et al., 2018). Then, they were grouped in vertical
slices of 50 cm and, for each slice, we quantified the
proportion of filled voxels. The ENL was the result of cal-
culating the inverse Simpson Index: ENL¼ 1=

Pn
i¼1p

2
i ,

where n refers to the number of slices, calculated as
(heightmax−heightmin)/50 cm; and pi is the proportion of
filled voxels of the ith slice.

Leaf litterfall measurement

From September to December 2018, the freshly fallen leaf
litter between the two central trees of each location was col-
lected in a 1 m2 litter trap (1 cm mesh). The collected litter
was identified to species level, air dried at 40�C for 2 days,
and weighed (±0.01 g). Annual amounts of litter carbon
(i.e., “Clitterfall”) and nitrogen (i.e., “Nlitterfall”) deposited on
the ground were calculated using species-specific leaf car-
bon and nitrogen contents and species-specific table litter
mass collected in the traps. We calculated the litterfall car-
bon to nitrogen ratio (CNlitterfall) from these measurements.

Statistical analyses

A description of all the variables used in this study can
be found in Appendix S5: Table S1. All data handling
and statistical calculations were performed using the
R statistical software version 3.6.1. All R scripts used for
this project can be found in our Zenodo release (https://
doi.org/10.5281/zenodo.7225739).

In order to avoid any deviation due to scale differences
between variables, all explanatory variables were centered
and divided by two standard deviations for our analyses
using the R “rescale” function from the arm package.
Collinearity of root trait indices was inspected by Pearson’s
correlation (Appendix S6); highly correlated variables were
excluded by our both-way step selection algorithm favor-
ing the simplest model (Venables & Ripley, 2002), that is,

the R “step” function from the stat package. We first tested
the effects of tree species richness on our productivity and
structural variables (i.e., neighborhood biomass, ENL,
Clitterfall, and CNlitterfall) using linear models and normal
distribution assumptions. Similarly, we used linear models
to control for the effects of topography (plot slope, plan
curvature, profile curvature, and altitude) on soil historical
carbon concentration.

Drivers of soil carbon concentration (H1)

We used linear models and normal distribution assump-
tions to test the effects of initial soil carbon concentra-
tion (i.e., [C]2010), topography, tree productivity
variables, litterfall carbon deposition, and C:N ratio, and
root functional traits on soil carbon concentration
(i.e., [C]2018). Explanatory variables were selected by a
both-way step selection based on the Akaike informa-
tion criterion (AIC) (R “step” function from the stats
package with back and forward selection). We estimated
the drivers of soil carbon concentrations from the final
model. All significant variables of the model output (p
value < 0.05) were implemented with the effects of
topography on soil historical C concentrations and,
when applicable, with tree diversity effects on produc-
tivity in a structural equation model (SEM). Our SEM
was fitted using the R “sem” function from the lavaan
package (Rosseel, 2012). The quality of our model fit on
the data was estimated using three complementary indi-
ces: (1) the root-mean-squared error of approximation
(RMSEA), (2) the comparative fit index (CFI), and
(3) the standardized root-mean-squared residuals
(SRMR). A model fit was considered acceptable when
RMSEA < 0.10, CFI > 0.9, and SRMR < 0.08.

Drivers of soil carbon concentration mediated
by soil microbial biomass (H2)

We used the same procedure to select drivers of microbial
biomass. All selected drivers of microbial biomass were
implemented in the above-described SEM structure. The
relation between microbial biomass and soil carbon con-
centration (i.e., causal relation direction or correlation)
was tested by comparing the models AIC.

Drivers of microbial biomass mediated by
microenvironmental conditions (H3)

Microenvironmental conditions were described by
(1) biotic conditions, (2) soil chemical properties, and

ECOLOGICAL MONOGRAPHS 7 of 20

 15577015, 0, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecm

.1563 by Fak-M
artin L

uther U
niversitats, W

iley O
nline L

ibrary on [13/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.5281/zenodo.7225739
https://doi.org/10.5281/zenodo.7225739


(3) microclimatic conditions. Correlations between micro-
environment variables are explored in Appendix S7:
Figure S1: (1) Biotic conditions were described using field
measurements of understory plant cover, soil root bio-
mass, litter cover, and leaf chemical traits (i.e., litter car-
bon and nitrogen contents). (2) To describe soil chemical
properties, we used a soil carbon to nitrogen ratio (“C:N”),
and carbon to phosphorus ratio (“C:P”). (3) Microclimatic
conditions were estimated using both soil humidity
(RH) and air temperature.

The air temperature was used at the plot level on
the day of sampling (minimum, average, and maximal
temperature, “T.min,” “T.mean,” “T.max,” respec-
tively) and during the week before sampling (mini-
mum, average, and maximal temperature, “T.min.
week,” “T.mean.week,” “T.max.week,” respectively, see
Appendix S7: Figure S2). The first axis of the PCA pro-
jection was negatively correlated with temperature var-
iables (Appendix S7: Figure S2). Given that the first
PCA axis was negatively correlated with temperature
indices and to simplify the presentation to the readers,
we used the positive value of the vector for the first
PCA axis as a proxy for air temperature variables in
further analyses.

For each microenvironmental variable, we used linear
models and normal distribution assumptions to test the
effects of tree productivity, litterfall carbon deposition
and C:N ratio, and root functional traits. However, only
relationships with a strong biological reason described in
the introduction were included in the analyses. We used
linear models and normal distribution assumptions to
test the effects of microenvironmental variables on soil
microbial biomass. Explanatory variables were selected
by a both-way step selection based on AIC. We estimated
the drivers of microbial biomass from the final model.
All variables selected and their relations to tree variables
had been implemented in our previous SEM.

All the statistical assumptions of our linear models
were tested using the “check_model” function from the
R package performance (Appendix S8).

RESULTS

Local history and topography effects on soil
carbon concentrations

On average, forest soil carbon concentrations were stable
across years (mean ± SD:−0.33 ± 0.86 gcarbon gsoil

−1 year−1),
but we observed high variability between the sampled loca-
tions (from −3.00 to +1.85 gcarbon gsoil

−1 year−1,
Figure 2A). Soil carbon concentrations measured in 2018

were higher at sites where historical soil carbon concen-
trations were high in 2010, before the experiment
(estimate ± SD: 0.265 ± 0.078, Figure 2D–F, Appendix S9).
As historical soil carbon concentrations were affected by
local topography (slope: estimate ± SD: 0.175 ± 0.038,
plan curvature: 0.357 ± 0.038, R2 = 10%, Figure 2B), topog-
raphy indirectly affected soil carbon concentrations mea-
sured in 2018 by the modification of historical soil carbon
concentrations (Figure 2E,F).

Tree species richness effects on tree
productivity

At the neighborhood level, plot tree species richness sig-
nificantly increased the different aspects of tree produc-
tivity: neighborhood tree biomass (0.427 ± 0.073,
R2 = 18%), litterfall production (i.e., “C.litterfall,” 0.416
± 0.078, R2 = 17%), and forest vertical stratification
(i.e., ENL, 0.248 ± 0.070, R2 = 32% when accounting for
topography effects, Figure 2C). These different aspects of
forest productivity were correlated to each other (Pearson
correlation: neighborhood biomass—ENL = 0.38, neigh-
borhood biomass—“C litterfall” = 0.4, “ENL”—“C
litterfall” = 0.61, see Appendix S6).

Tree effects on soil carbon
concentrations (H1)

Plot tree species richness did not directly affect soil carbon
concentrations (Figure 2D), but tree productivity, espe-
cially forest vertical stratification (i.e., ENL), increased soil
carbon concentrations (0.256 ± 0.093, Figure 2E) and
increased with increasing tree species richness (Figure 2C).
In contrast, increasing litterfall C:N ratio decreased soil
carbon concentration (−0.187 ± 0.081; Figure 2D–F;
Appendix S9). Belowground, increasing RD strongly
decreased soil carbon concentration (−0.183 ± 0.084;
Figure 2F; Appendix S9).

Tree effects on soil microbial biomass (H2)

Our analyses showed a positive effect of tree species
richness on soil microbial biomass (estimate ± SD:
0.202 ± 0.079, R 2 = 3%; Figure 3A). By considering
tree functional traits and productivity, we achieved a
better understanding of the factors affecting soil micro-
bial biomass (R 2 = 11%, AICsp. rich. based model = 222
vs. AICtrait based model = 214). Soil microbial biomass
was affected by root morphological traits identity and
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F I GURE 2 Tree diversity effects on tree productivity and consequences for soil carbon concentration, while controlling for soil history and

topography effects. (A) Soil carbon balance between 2010 and 2018. (B) Topography effect on historical soil carbon concentrations. For each driver

of soil historical carbon concentration on the y-axis (i.e., slope, plan curvature: “Curvature PL,” profile curvature: “Curvature PR,” altitude), the dot
represents the estimated effect of the driver on historical soil carbon concentration, the line represents the 95% confidence interval (CI) for a given

estimated value. The drivers excluded during model selection have neither estimates nor CI. (C) Tree species richness effect on tree productivity. For

each response variable on the y-axis—neighborhood biomass (i.e., “neigh. biomass”), forest vertical stratification (i.e., “ENL”), and litterfall carbon
deposition (i.e., “C litterfall”)—The standardized estimate of plot tree species richness (i.e., “Sp., Rich.”) was shown with the significance of the

relationship. ENLmodel controlled for topography effects. Tree species richness (D), tree productivity, and functional traits effects (E) on soil

carbon concentration (“Soil C 2018”) controlling for soil history (“Soil C 2010”) and topography effects (i.e., “Slope,” profile curvature: “Curvature
PR,” plan curvature: “Curvature PL” and “Altitude”). For each driver on the y-axis, the dot represents the estimated effect of the driver on soil

carbon concentrations; the line represents the 95% CI for a given estimate value. Estimates and CI were drawn in dashed lines when the effect of the

driver on soil carbon concentration was nonsignificant (i.e., p values > 0.05). The drivers excluded duringmodel selection have neither estimates

nor CI. Six groups of explanatory variables were built: Species richness variables (i.e., plot species richness: “Sp. rich.”), soil history variables
(i.e., “Soil C 2010”), plot topography (i.e., “Slope,” “Curvature PR,” “Curvature PR,” “Altitude”), neighborhood root trait indices (i.e., neighbors’
AM vs. EM tree association: “AM/EM,” community-weighted mean of root diameter and specific root length: “RD” and “SRL,” functional
dissimilarity of tree fungal association, root diameter, and specific root length: “FDis AM/EM,” “FDis RD,” and “FDis SRL,” respectively),
aboveground productivity and traits (i.e., neighbor biomass: “neigh biomass,” litterfall C:N ratio: “CN litterfall,” litterfall carbon deposition:

“C litterfall”). (F) Structural equation model showing the relationships between topography (i.e., “Slope,” “Curv. PR,” and “Curv. PL”), soil history
(i.e., “[C]2010”), tree species richness, tree aboveground productivity and functional traits (i.e., “ENL” and “CN.litterfall”) and root functional
traits (i.e., “RD”), and soil carbon concentration (i.e., “[C]2018”). Each node represents a group of variables (selected from panels B–E), and each
arrow summarizes all the significant effects between all the variables of two nodes. Arrow widths were sized by the sum of the standardized effect

size of significant relations between all variables of the two nodes. When nonsignificant relations were found between any variables of two nodes,

the arrows were drawn with dashed lines. The variance in soil carbon concentration explained by the model (R2, in %) was added after the node

name; see Appendix S9 for detailed output. The significance levels were standardized across the panel (p value > 0.05: n.s., p value < 0.05: *,

p value < 0.01: **, p value < 0.001: ***). AIC, Akaike information criterion; CFI, comparative fit index; ENL, effective number of layers;

RMSEA, root-mean-squared error of approximation; SEM, Structural Equation Model; SRMR, standardized root-mean-squared residuals.
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dissimilarity. Soil microbial biomass decreased with
increasing RD (−0.259 ± 0.088) and decreased with
increasing AM:ECM ratio (−0.176 ± 0.086). In addi-
tion, soil microbial biomass decreased with the

increasing functional dissimilarity of SRL (−0.235
± 0.104) and increased with the increasing dissimilar-
ity of tree fungal association (0.217 ± 0.104;
Figure 3B).

F I GURE 3 Biotic drivers of soil microbial biomass (A, B) and relationship with soil carbon concentrations (C–E). Tree species richness (A),
and tree productivity and functional trait effects (B) on soil microbial biomass. For each driver on the y-axis, the dot represents the estimated effect

of the driver on soil microbial biomass; the line represents the 95% CI for a given estimate value. Estimates and CI were drawn in dashed lines

when the effect of the driver on soil microbial biomass was nonsignificant (i.e., p values > 0.05). The drivers excluded during model selection have

neither estimates nor CI. Four groups of explanatory variables were built: Species richness variables (i.e., plot species richness: “Sp. rich.”),
neighborhood root trait indices (i.e., neighbors’ AM vs. EM tree association: “AM/EM,” community-weighted mean of root diameter and specific

root length: “RD” and “SRL,” functional dissimilarity of tree fungal association, root diameter, and specific root length: “FDis AM/EM,” “FDis
RD,” and “FDis SRL,” respectively), aboveground productivity and traits (i.e., neighbor biomass: “neigh biomass,” litterfall C:N ratio: “CN
litterfall,” litterfall carbon deposition: “C litterfall”). (C) Linear regression between soil carbon concentration and soil microbial biomass.

(D) Directionality of the relationship between soil carbon concentration and soil microbial biomass tested in the SEM including the drivers of soil

microbial biomass (A, B) and soil carbon concentration (Figure 2F). (E) Structural equation model showing the relationships between topography

(i.e., “Slope,” profile curvature: “Curv. PR” and plan curvature: “Curv. PL”), soil history (i.e., “[C]2010”), tree species richness, tree aboveground
productivity, and functional traits (i.e., “ENL” and “CN.litterfall”), root functional traits (i.e., “RD”), soil carbon concentration (i.e., “[C]2018”), and
soil microbial biomass. Each node represents a group of variables (selected from (A, B) and Figure 2F) and each arrow summarizes all the

significant effects between all the variables of two nodes. Arrow widths were sized by the sum of the standardized effect size of significant relations

between all variables of the two nodes. When no significant relations were found between any variables of two nodes, the arrows were drawn with

dashed lines. The variance in soil carbon concentration and microbial biomass explained by the model (R2, in %) were added after the node name,

see Appendix S10 for detailed output. The significance levels were standardized across the panel (p value > 0.05: n.s., p value < 0.05: *,

p value < 0.01: **, p value < 0.001: ***).
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Relationship between soil microbial
biomass and soil carbon concentration (H2)

We found a strong positive correlation between soil car-
bon concentration and soil microbial biomass (Pearson
correlation = 62.7%, p value < 0.001; Figure 3C). Taken
together with the other drivers of soil carbon and micro-
bial biomass, we tested the directionality of the relation-
ship between soil carbon concentration and soil
microbial biomass (Figure 3D). The AIC comparison
between the models was in favor of the model with a
causal effect from soil carbon concentration to soil micro-
bial biomass and the model took into account both causal
links (i.e., soil carbon concentration effect on microbial
biomass and vice versa). The latter, being the most con-
servative model, is given in Figure 3E. This SEM showed
a strong positive effect of soil carbon concentration on

microbial biomass (0.608 ± 0.059; Figure 3E), but a non-
significant effect of soil microbial biomass on soil carbon
concentration (p value = 0.72; Appendix S10). The tree
productivity and root functional trait effects on soil micro-
bial biomass were mostly mediated by soil carbon concen-
tration (remaining direct root effect −0.147 ± 0.063;
Figure 3E; Appendix S10).

Tree effects on microenvironmental
conditions (H3)

Tree species richness effects on microenvironmental condi-
tions (i.e., biotic conditions, soil chemical properties, and
microclimate) were limited to a negative effect on air tem-
perature (−0.208 ± 0.082, R2 = 3%) and a positive effect on
the amount of litter collected on the ground (0.168 ± 0.080,

F I GURE 4 Tree species richness (A), and tree productivity and functional traits effects (B) on microenvironmental variables. For each

driver on the y-axis, the dot represents the estimated effect of the driver on the microenvironmental variable, the line represents the

95% CI for a given estimate value. Estimates and CI were drawn in dashed lines when the effect of the driver was nonsignificant (i.e., p

values > 0.05). The drivers excluded during model selection have neither estimates nor CI. Four groups of explanatory variables were built:

Species richness variables (i.e., plot species richness: “Sp. rich.”), neighborhood root trait indices (i.e., neighbors’ AM versus EM tree

association: “AM/EM,” community-weighted mean of root diameter and specific root length: “RD” and “SRL,” functional dissimilarity of

tree fungal association, root diameter, and specific root length: “FDis AM/EM,” “FDis RD,” and “FDis SRL,” respectively), aboveground
productivity and traits (i.e., forest vertical stratification: “ENL,” neighbors biomass: “neigh biomass,” litterfall C:N ratio: “CN litterfall,”
litterfall carbon deposition: “C litterfall”). In the case of air temperature (i.e., “Temperature”), only tree aboveground productivity and

functional traits were considered in the trait-basal model. ENL, effective number of layers.
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R2 = 2%; Figure 4A). However, the trait-based model
showed the major role of trees in controlling environmental
conditions. Above ground, higher forest vertical stratifica-
tion (i.e., ENL) reduced air temperature (−0.406 ± 0.078),
understory plant abundance (−0.457 ± 0.009), root biomass
(−0.389 ± 0.091), and amount of litter (−0.342 ± 0.083),
but also litter C:N ratio (−0.342 ± 0.086). Increasing
litterfall C:N ratio decreased soil humidity (−0.197 ± 0.078),
soil nitrogen (−0.228 ± 0.083) and phosphorus contents
(−0.186 ± 0.080), and plant abundance (−0.173 ± 0.078,
Figure 4B), while it increased C:N ratio of the residual
litter on the ground (0.233 ± 0.077). Belowground, envi-
ronmental conditions were affected by the root func-
tional traits identity and diversity. While SRL decreased
soil humidity (−0.285 ± 0.078), RD increased soil phos-
phorus contents (0.408 ± 0.097), and AM:ECM fungal
association ratio increased root biomass and litter C:N ratio
(0.276 ± 0.078 and 0.367 ± 0.081, respectively). Moreover,
root functional trait dissimilarity played a major role in
controlling soil chemical properties and biotic conditions,
AM:ECM fungal association dissimilarity increased the
litter C:N ratio (0.192 ± 0.081), and fungal dissimilarity in
RD reduced soil phosphorus content (−0.446 ± 0.096;
Figure 4B). In addition, plant cover was positively corre-
lated with root biomass and the amount of litter (Pearson
correlation: plant cover—root biomass = 0.30, plant
cover—amount of litter = 0.37; Appendix S7).

Microenvironmental mediation of tree
effects on microbial biomass (H3)

Microbial biomass was affected by the microenvironment
(i.e., biotic conditions, soil chemical properties, and microcli-
mate; Figure 5A). Soil microbial biomass decreased with
increasing air temperature (−0.288 ± 0.054). In addition, soil
microbial biomass increased with increasing litter C:N ratio
(0.222 ± 0.055; Figure 5A; Appendix S8). By adding these
drivers to the previous SEM, we explained up to 57% of the
variability in soil microbial biomass (Figure 5B; vs. 47%
without environmental drivers). Microbial biomass was
mostly affected by variations in soil carbon concentration
(total effect: 0.613) and microenvironmental conditions
(total effect: 0.511), which were themselves strongly medi-
ated by tree productivity and functional traits (total effect:
on soil carbon concentration = 0.655, on microenviron-
mental conditions = 1.961; Figure 5B; Appendix S11).

DISCUSSION

The present study revealed strong effects of forest diver-
sity, productivity, and functional traits on soil carbon

concentrations as well as the underlying biotic and
abiotic drivers in a tree diversity experiment. In addition
to the effects of topography, our analyses showed a strong
positive effect of tree species richness on tree productivity
(i.e., tree biomass, amount of litterfall, and forest vertical
stratification). Tree productivity and tree functional traits
modulated microenvironmental conditions, such as biotic
conditions, soil chemical properties, and microclimate.
These changes in microenvironmental conditions had
significant consequences for soil microbial biomass
(e.g., a decrease in temperature increased soil microbial
biomass), in addition, root functional traits modulated
soil microbial biomass. Soil microbial biomass was
strongly correlated with soil carbon concentration, and
our analyses found more support for a positive effect of
soil carbon concentration on soil microbial biomass than
vice versa. Moreover, soil carbon concentration increased
with tree productivity and root morphological traits.
Taken together, these findings showed how tree diversity,
productivity, and functional traits shape forest abiotic
and biotic conditions and soil functioning.

Soil carbon concentration dynamics in
BEF-China (H1)

Our analyses showed a slight loss of soil carbon during
the first 10 years of the experiment in low diversity level
plots. Site A of the BEF-China experiment was planted in
2009 after a clearcut of the previous conifer plantation
(Yang et al., 2013). Clearcut harvestings are known to
enhance soil carbon loss during the following decade (Li
et al., 2019; Seedre et al., 2014). This is mainly caused by
a massive input of deadwood into the soil acting as a
primer of soil organic matter decomposition as well as by
the removal of litterfall and exudation causing a shift in
microbial physiology (Taylor et al., 2008). However, this
average decrease of soil carbon concentrations was
accompanied by a large range variability of plot-level
values (ranging from −3.33 to 1.85 g year−1), suggesting
strong local drivers of soil carbon dynamics. First, we
found a positive effect of soil historical carbon concentra-
tions on current soil carbon concentrations. Second, we
found that the topography had affected historical carbon
concentrations with consequences for the current soil
carbon concentration (Liu et al., 2020; Scholten
et al., 2017). This result highlights the importance of soil
history for in situ experiments and the need to consider
historical variables in the analyses. Moreover, recent
studies have shown the central role of soil history and
temporal changes in BEF relationships to better under-
stand ecosystem functions and their underlying drivers
(Guerrero-Ramírez et al., 2017; Vogel et al., 2019).
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Therefore, future research should not only consider the
mechanisms behind BEF relationships but also consider
their temporal dynamics and evolution over time
(Eisenhauer et al., 2019).

Neighborhood tree traits and productivity
drive soil carbon concentrations (H1)

Once controlling for topography and soil history effects,
small-scale tree communities influenced soil carbon

concentrations, both through aboveground and below-
ground mechanisms. Aboveground, soil carbon concentra-
tion was increased by forest vertical stratification, which
decreased litter C:N ratio, that is, increasing litter quality.
This emphasizes the central role of the biotic processes in
transforming fresh litter into stable carbon forms
(Buckeridge et al., 2020). The positive effects of forest verti-
cal stratification can be further related to two independent
mechanisms: on the one hand, the increase in tree biomass
production and, thereby, enhanced inputs to the soil (Liu
et al., 2018); on the other hand, the reduction of erosion due

F I GURE 5 Mediation of tree effects on soil microbial biomass by microenvironmental conditions. (A) Effects of microenvironmental

conditions on microbial biomass. For each driver of microbial biomass on the y-axis, the dot represents the estimated effect of the driver on

microbial biomass, the line represents the 95% CI for a given estimated value. The drivers excluded during model selection have neither

estimates nor CI. (B) Structural equation model showing the relationships between topography (i.e., “Slope,” profile curvature: “Curv. PR”
and plan curvature: “Curv. PL”), soil history (i.e., “[C]2010”), tree species richness, tree aboveground productivity and functional traits

(i.e., “ENL” and “CN.litterfall”) and root functional traits (i.e., “RD”), soil carbon concentration (i.e., “[C]2018”), soil microbial biomass, and

microclimatic conditions (i.e., “temperature,” soil relative humidity: “RH,” soil nitrogen concentration: “Soil N 2018,” litter collected on the

ground C:N ratio: “Litter CN”). Each node represents a group of variables (selected from (A), Figures 3E, and 4B) and each arrow

summarizes all the significant effects between all the variables of two nodes. Arrow widths were sized by the sum of the standardized effect

size of significant relations between all variables of the two nodes. When no significant relations were found between any variables of two

nodes, the arrows are drawn with dashed lines. The variance in soil carbon concentration and microbial biomass explained by the model

(R 2, in %) were added after the node name; see Appendix S11 for detailed output. The significance levels were standardized across the panels

(p value > 0.05: n.s., p value < 0.05: *, p value <0.01: **, p value < 0.001: ***). CFI, comparative fit index; ENL, effective number of

layers; RD, root diameter; RMSEA, root-mean-squared error of approximation; Sp. rich., plot species richness; SRL, specific root length;

SRMR, standardized root-mean-squared residuals.
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to the reduction of the kinetic energy of throughfall with
higher crown complementarity (i.e., higher ENL; Goebes
et al., 2015; Seitz et al., 2015).

Belowground, root morphological traits, such as RD,
have been related to belowground biomass allocation and
productivity (Bardgett et al., 2014) and were shown to
increase soil carbon concentrations (Adamczyk et al.,
2019). However, our measurements of root traits were
based on species-specific values and did not consider trait
plasticity (Sun et al., 2017; Zuppinger-Dingley
et al., 2014). Tree diversity and forest productivity have
been shown to influence fine root traits, such as RD (Sun
et al., 2017). Our study again stresses the need for nonin-
vasive methods and measurements of belowground pro-
ductivity and root traits (Bu et al., 2017; Sun et al., 2017).
Such measures will allow us to consider trait plasticity
and disentangle productivity and physiological effects.

Soil microbial biomass and soil carbon
concentration are strongly related (H2)

Our analyses highlighted a robust positive correlation
between soil microbial biomass and soil carbon concen-
trations. We expected feedback mechanisms between
soil microbial biomass and soil organic carbon
(Clemmensen et al., 2013; Kästner & Miltner, 2018;
Lange et al., 2015). On the one hand, soil microbial
growth is maintained and limited by soil organic carbon
availability (Bollag & Stotzky, 1993). On the other hand,
soil organic carbon is consumed and processed by soil
microbes and is altered by their activity (Clemmensen
et al., 2013; Schmidt et al., 2011). Therefore, soil micro-
bial biomass and soil organic carbon are strongly related
to each other across spatial scales (Serna-Chavez
et al., 2013; Xu et al., 2013). However, in the present
study, we could only verify the strong positive effect of
soil carbon concentration on soil microbial biomass,
while the potential feedback effect of soil microbes on
soil carbon accumulation (Kästner & Miltner, 2018;
Lange et al., 2015; Miltner et al., 2012) was not signifi-
cant. Microbial necromass accumulation might become
relevant on a longer time scale, thus repeated sampling
of the experiment might help to better quantify micro-
bial necromass accumulation and positive effects on soil
carbon storage. Moreover, measurements of the differ-
ent soil carbon pools (see Miltner et al., 2012; von
Lützow et al., 2007) and more detailed assessments of
soil microbial community structure and the activities of
main groups therein would be needed to understand the
fluxes of carbon between these carbon pools and the
role of soil microbes as main consumers and producers
of soil carbon (Goto et al., 1994; Liski et al., 2005).

Microenvironmental conditions and root
morphological traits drive soil microbial
biomass (H2, H3)

We highlighted the negative effect of AM-associated trees
on soil microbial biomass, these observations in forest top-
soils (0–10 cm) fall in line with previous studies showing
higher concentrations of carbon and nitrogen in ECM asso-
ciated forest topsoils in comparison with AM-associated
forests (Craig et al., 2018). Therefore, microbial biomass
and activity would be enhanced by higher nutrient avail-
ability (Beugnon et al., 2021; Cesarz et al., 2022; Smith
et al., 2021). In addition, we showed that twomicroenviron-
mental parameters drove soil microbial biomass: tempera-
ture, and litter C:N ratio. In contrast to our expectations,
soil microbial biomass decreased with increasing air tem-
perature. Notably, we sampled during the summer with an
average daily temperature of 27 ± 3�C and an average
maximum daily temperature of 35 ± 8�C. These high
temperatures may exceed the thermal activity niche of
some microbial taxa and thus repress microbial growth
(Barcenas-Moreno et al., 2009). Further efforts are now
needed to better grasp the temporal extent of the tree diver-
sity effect on microenvironmental conditions, thus conse-
quences for variables with slower dynamics such as soil
carbon storage.

Tree diversity enhances productivity with
consequences for microenvironmental
conditions (H3)

Our analyses confirmed previous results showing
increased productivity with tree species richness (Fichtner
et al., 2018; Huang et al., 2017, 2018; Kunz et al., 2019).
Interestingly, our results highlighted that tree species rich-
ness simultaneously enhances tree biomass, litter produc-
tion, and forest vertical stratification. This positive effect
of tree species richness is also expected belowground (Liu
et al., 2018, 2020; Xu et al., 2020). However, further efforts
are needed to better quantify belowground productivity in
space and time (Liu et al., 2020). A major challenge is the
development of noninvasive quantification methods to
measure belowground biomass and turnover (Clark
et al., 2011; Metzner et al., 2014; Mooney et al., 2012).

Tree productivity combined with root functional traits
allowed us to explore how tree effects are mediated by
microenvironmental conditions: biotic conditions, soil
chemical properties, and microclimate. Our results, by
showing a negative effect of forest vertical stratification on
temperature, confirmed previous findings emphasizing the
role of forests as a heat buffer (de Frenne et al., 2019;
Zhang et al., 2022). In the same line, we found negative
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effects of tree SRL on soil water availability, which can be
explained by increased water uptake with a denser root
system (Zhang et al., 2020). This increase in water con-
sumption, consequently decreasing soil water availability,
would increase the competition for water between trees
and understory plants and would explain the negative
effects of SRL on understory productivity (i.e., plant cover
and root biomass). In addition to the belowground compe-
tition, our results suggested an aboveground competition
for light with negative effects of forest vertical stratification
on understory productivity (Hakkenberg et al., 2020;
Mueller et al., 2016). In addition, we confirmed the role of
trees in controlling soil nitrogen and phosphorus contents
by modifying the litter C:N ratio and root morphological
traits related to desiccation and exudation (i.e., N-rich and
P-rich compounds; Bardgett et al., 2014; Sun et al., 2020).

CONCLUSION

First, we highlighted that tree productivity and tree func-
tional traits, modulated microenvironmental conditions
with significant consequences for soil microbial biomass.
Future studies would therefore gain to consider tree diver-
sity mediation of microenvironmental conditions to better
understand tree diversity effects on ecosystem functioning.
Second, our analyses showed a strong positive correlation
between soil microbial biomass and soil carbon concentra-
tion, suggesting a significant interplay between soil micro-
bial communities and soil carbon stocks. Third, we found
that soil carbon concentrations increased with historical
carbon concentrations, with the latter being strongly
affected by the plot topography. These results stress the
need to consider topography and the historical baseline in
order to understand soil carbon dynamics. To conclude,
future mechanistic studies on the drivers of soil microbial
biomass and carbon sequestration need to consider the
local neighborhood in which the underlying mechanisms
act. Moreover, the quantification of the different soil car-
bon pools is critical to the understanding of microbial
community–soil carbon stock relationships.

AUTHOR CONTRIBUTIONS
The authors contributed to the manuscript by (1) funding
(Nico Eisenhauer, Helge Bruelheide, Sylvia Haider,
Goddert von Oheimb, Yanfen Wang, Tesfaye Wubet, Kai
Xue, Simone Cesarz), (2) field sampling (Rémy Beugnon,
Wensheng Bu, Andréa Davrinche, Sylvia Haider,
Matthias Kunz, Maria D. Perles-Garcia, Mariem Saadani,
Thomas Scholten, Steffen Seitz, Bala Singavarapu, Stefan
Trogisch, Tesfaye Wubet, Bo Yang), (3) laboratory
measurements (Rémy Beugnon, Wensheng Bu, Andréa
Davrinche, Jianqing Du, Maria D. Perles-Garcia, Thomas

Scholten, Steffen Seitz, Bo Yang, Simone Cesarz),
(4) project conceptual framework (Rémy Beugnon, Nico
Eisenhauer, Helge Bruelheide, Jianqing Du, Simone
Cesarz), (5) statistical analyses (Rémy Beugnon), (6) manu-
script framing (Rémy Beugnon, Nico Eisenhauer, Simone
Cesarz) (7) manuscript writing (Rémy Beugnon, Nico
Eisenhauer, Simone Cesarz), (8) manuscript revisions
(Helge Bruelheide, Andréa Davrinche, Jianqing Du, Sylvia
Haider, Matthias Kunz, Goddert von Oheimb, Maria
D. Perles-Garcia, Mariem Saadani, Thomas Scholten,
Steffen Seitz, Bala Singavarapu, Stefan Trogisch, Yanfen
Wang, Tesfaye Wubet, Kai Xue).

ACKNOWLEDGMENTS
We gratefully acknowledge funding by the Deutsche
Forschungsgemeinschaft (DFG; German Research
Foundation – 319936945/GRK2324) and the University of
Chinese Academy Sciences (UCAS). We acknowledge the
support of the TreeDì research group, especially many
local helpers involved in collecting the samples. We also
thank the laboratory members of the Experimental
Interaction Ecology group for their support, especially
Alfred Lochner, Anja Zeuner, Alla Kavtea, and Linnea
Smith for their help during the laboratory measurements.
The Experimental Interaction Ecology group is supported
by the German Centre for Integrative Biodiversity
Research (iDiv). We gratefully acknowledge the support
of iDiv funded by the German Research Foundation
(DFG-FZT 118, 202548816). Nico Eisenhauer acknowl-
edges funding by the DFG (Ei 862/29-1). Open Access
funding enabled and organized by Projekt DEAL.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT
Data (Beugnon et al., 2022) are available in Dryad at
https://doi.org/10.5061/dryad.pvmcvdnqc. All R scripts
(remybeugnon, 2022) are available in Zenodo at https://
doi.org/10.5281/zenodo.7225739.

ORCID
Rémy Beugnon https://orcid.org/0000-0003-2457-5688
Wensheng Bu https://orcid.org/0000-0002-5617-9789
Helge Bruelheide https://orcid.org/0000-0003-3135-0356
Andréa Davrinche https://orcid.org/0000-0003-0339-
2997
Sylvia Haider https://orcid.org/0000-0002-2966-0534
Matthias Kunz https://orcid.org/0000-0002-0541-3424
Goddert von Oheimb https://orcid.org/0000-0001-7408-
425X
Maria D. Perles-Garcia https://orcid.org/0000-0003-
2475-4918

ECOLOGICAL MONOGRAPHS 15 of 20

 15577015, 0, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecm

.1563 by Fak-M
artin L

uther U
niversitats, W

iley O
nline L

ibrary on [13/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.5061/dryad.pvmcvdnqc
https://doi.org/10.5281/zenodo.7225739
https://doi.org/10.5281/zenodo.7225739
https://orcid.org/0000-0003-2457-5688
https://orcid.org/0000-0003-2457-5688
https://orcid.org/0000-0002-5617-9789
https://orcid.org/0000-0002-5617-9789
https://orcid.org/0000-0003-3135-0356
https://orcid.org/0000-0003-3135-0356
https://orcid.org/0000-0003-0339-2997
https://orcid.org/0000-0003-0339-2997
https://orcid.org/0000-0003-0339-2997
https://orcid.org/0000-0002-2966-0534
https://orcid.org/0000-0002-2966-0534
https://orcid.org/0000-0002-0541-3424
https://orcid.org/0000-0002-0541-3424
https://orcid.org/0000-0001-7408-425X
https://orcid.org/0000-0001-7408-425X
https://orcid.org/0000-0001-7408-425X
https://orcid.org/0000-0003-2475-4918
https://orcid.org/0000-0003-2475-4918
https://orcid.org/0000-0003-2475-4918


Mariem Saadani https://orcid.org/0000-0002-9276-
2568
Thomas Scholten https://orcid.org/0000-0002-4875-
2602
Steffen Seitz https://orcid.org/0000-0003-4911-3906
Bala Singavarapu https://orcid.org/0000-0002-0147-
895X
Stefan Trogisch https://orcid.org/0000-0002-1426-1012
Tesfaye Wubet https://orcid.org/0000-0001-8572-4486
Kai Xue https://orcid.org/0000-0002-5990-4448
Simone Cesarz https://orcid.org/0000-0003-2334-5119
Nico Eisenhauer https://orcid.org/0000-0002-0371-6720

REFERENCES
Aciego Pietri, J. C., and P. C. Brookes. 2009. “Substrate Inputs

and PH as Factors Controlling Microbial Biomass, Activity
and Community Structure in an Arable Soil.” Soil Biology and
Biochemistry 41(7): 1396–405. https://doi.org/10.1016/j.soilbio.
2009.03.017.

Adamczyk, B., O.-M. Sietiö, P. Strakov�a, J. Prommer, B. Wild,
M. Hagner, M. Pihlatie, H. Fritze, A. Richter, and J. Heinonsalo.
2019. “Plant Roots Increase Both Decomposition and Stable
Organic Matter Formation in Boreal Forest Soil.” Nature
Communications 10(1): 3982. https://doi.org/10.1038/s41467-
019-11993-1.

Averill, C., and C. V. Hawkes. 2016. “Ectomycorrhizal Fungi Slow
Soil Carbon Cycling.” Ecology Letters 19(8): 937–47. https://
doi.org/10.1111/ele.12631.

Averill, C., B. L. Turner, and A. C. Finzi. 2014.
“Mycorrhiza-Mediated Competition between Plants and
Decomposers Drives Soil Carbon Storage.” Nature 505(7484):
543–5. https://doi.org/10.1038/nature12901.

Barcenas-Moreno, G., M. Gomez-Brandon, J. Rousk, and E. Bååth.
2009. “Adaptation of Soil Microbial Communities to
Temperature: Comparison of Fungi and Bacteria in a
Laboratory Experiment.” Global Change Biology 15(12):
2950–7. https://doi.org/10.1111/j.1365-2486.2009.01882.x.

Bardgett, R. D., L. Mommer, and F. T. de Vries. 2014. “Going
Underground: Root Traits as Drivers of Ecosystem Processes.”
Trends in Ecology & Evolution 29(12): 692–9. https://doi.org/
10.1016/j.tree.2014.10.006.

Bastin, J.-F., Y. Finegold, C. Garcia, D. Mollicone, M. Rezende,
D. Routh, C. M. Zohner, and T. W. Crowther. 2019. “The
Global Tree Restoration Potential.” Science 365(6448): 76–9.
https://doi.org/10.1126/science.aax0848.

Bergmann, J., A. Weigelt, F. van der Plas, D. C. Laughlin, T. W.
Kuyper, N. Guerrero-Ramirez, O. J. Valverde-Barrantes, et al.
2020. “The Fungal Collaboration Gradient Dominates the
Root Economics Space in Plants.” Sciences Advances 6: 1–9.

Bernhard, N., L.-M. Moskwa, K. Schmidt, R. A. Oeser, F. Aburto,
M. Y. Bader, K. Baumann, et al. 2018. “Pedogenic and Microbial
Interrelations to Regional Climate and Local Topography: New
Insights from a Climate Gradient (Arid to Humid) along the
Coastal Cordillera of Chile.” Catena 170: 335–55. https://doi.org/
10.1016/j.catena.2018.06.018.

Beugnon, R., D. Jianqing, S. Cesarz, S. D. Jurburg, Z. Pang,
B. Singavarapu, T. Wubet, K. Xue, Y. Wang, and N. Eisenhauer.

2021. “Tree Diversity and Soil Chemical Properties Drive the
Linkages between Soil Microbial Community and Ecosystem
Functioning.” ISME Communications 1(1): 41. https://doi.org/
10.1038/s43705-021-00040-0.

Beugnon, R., B. Wensheng, H. Bruelheide, A. Davrinche,
D. Jianqing, S. Haider, M. Kunz, et al. 2022.
“Beugnon-et-al-2022_Soil-Carbon-and-Microbial-Biomass-
Drivers: Data.”Dryad. https://doi.org/10.5061/dryad.pvmcvdnqc.

Bollag, J.-M., and G. E. Stotzky, eds. 1993. Soil Biochemistry. Boca
Raton: CRC Press.

Bonfante, P., and A. Genre. 2010. “Mechanisms Underlying
Beneficial Plant–Fungus Interactions in Mycorrhizal
Symbiosis.” Nature Communications 1(1): 48. https://doi.org/
10.1038/ncomms1046.

Both, S., T. Fang, M. Böhnke, H. Bruelheide, C. Geißler, P. Kühn,
T. Scholten, S. Trogisch, and A. Erfmeier. 2011. “Lack of Tree
Layer Control on Herb Layer Characteristics in a Subtropical
Forest, China.” Journal of Vegetation Science 22(6): 1120–31.
https://doi.org/10.1111/j.1654-1103.2011.01324.x.

Bradstreet, R. B. 1954. “Determination of Nitro Nitrogen by
Kjeldahl Method.” Analytical Chemistry 26(1): 235–6.

Bruelheide, H., M. Böhnke, S. Both, T. Fang, T. Assmann,
M. Baruffol, J. Bauhus, et al. 2011. “Community Assembly dur-
ing Secondary Forest Succession in a Chinese Subtropical
Forest.” Ecological Monographs 81(1): 25–41. https://doi.org/
10.1890/09-2172.1.

Bruelheide, H., K. Nadrowski, T. Assmann, J. Bauhus, S. Both,
F. Buscot, X.–. Y. Chen, et al. 2014. “Designing Forest
Biodiversity Experiments: General Considerations Illustrated
by a New Large Experiment in Subtropical China.” Methods in
Ecology and Evolution 5(1): 74–89. https://doi.org/10.1111/
2041-210X.12126.

Bu, W., B. Schmid, X. Liu, Y. Li, W. Härdtle, G. von Oheimb,
Y. Liang, et al. 2017. “Interspecific and Intraspecific Variation
in Specific Root Length Drives Aboveground Biodiversity
Effects in Young Experimental Forest Stands.” Journal of Plant
Ecology 10(1): 158–69. https://doi.org/10.1093/jpe/rtw096.

Buckeridge, K. M., K. E. Mason, N. P. McNamara, N. Ostle,
J. Puissant, T. Goodall, R. I. Griffiths, A. W. Stott, and
J. Whitaker. 2020. “Environmental and Microbial Controls on
Microbial Necromass Recycling, an Important Precursor for
Soil Carbon Stabilization.” Communications Earth &
Environment 1(1): 36. https://doi.org/10.1038/s43247-020-
00031-4.

Burgess, S. S. O., M. A. Adams, N. C. Turner, and C. K. Ong. 1998.
“The Redistribution of Soil Water by Tree Root Systems.”
Oecologia 115(3): 306–11. https://doi.org/10.1007/
s004420050521.

Cesarz, S., D. Craven, H. Auge, H. Bruelheide, B. Castagneyrol,
J. Gutknecht, A. Hector, et al. 2022. “Tree Diversity Effects on
Soil Microbial Biomass and Respiration Are Context
Dependent across Forest Diversity Experiments.” Global
Ecology and Biogeography 31(5): 872–85. https://doi.org/10.
1111/geb.13461.

Chapman, S. K., G. S. Newman, S. C. Hart, J. A. Schweitzer, and
G. W. Koch. 2013. “Leaf Litter Mixtures Alter Microbial
Community Development: Mechanisms for Non-Additive
Effects in Litter Decomposition.” PLoS One 8(4): e62671.
https://doi.org/10.1371/journal.pone.0062671.

16 of 20 BEUGNON ET AL.

 15577015, 0, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecm

.1563 by Fak-M
artin L

uther U
niversitats, W

iley O
nline L

ibrary on [13/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0002-9276-2568
https://orcid.org/0000-0002-9276-2568
https://orcid.org/0000-0002-9276-2568
https://orcid.org/0000-0002-4875-2602
https://orcid.org/0000-0002-4875-2602
https://orcid.org/0000-0002-4875-2602
https://orcid.org/0000-0003-4911-3906
https://orcid.org/0000-0003-4911-3906
https://orcid.org/0000-0002-0147-895X
https://orcid.org/0000-0002-0147-895X
https://orcid.org/0000-0002-0147-895X
https://orcid.org/0000-0002-1426-1012
https://orcid.org/0000-0002-1426-1012
https://orcid.org/0000-0001-8572-4486
https://orcid.org/0000-0001-8572-4486
https://orcid.org/0000-0002-5990-4448
https://orcid.org/0000-0002-5990-4448
https://orcid.org/0000-0003-2334-5119
https://orcid.org/0000-0003-2334-5119
https://orcid.org/0000-0002-0371-6720
https://orcid.org/0000-0002-0371-6720
https://doi.org/10.1016/j.soilbio.2009.03.017
https://doi.org/10.1016/j.soilbio.2009.03.017
https://doi.org/10.1038/s41467-019-11993-1
https://doi.org/10.1038/s41467-019-11993-1
https://doi.org/10.1111/ele.12631
https://doi.org/10.1111/ele.12631
https://doi.org/10.1038/nature12901
https://doi.org/10.1111/j.1365-2486.2009.01882.x
https://doi.org/10.1016/j.tree.2014.10.006
https://doi.org/10.1016/j.tree.2014.10.006
https://doi.org/10.1126/science.aax0848
https://doi.org/10.1016/j.catena.2018.06.018
https://doi.org/10.1016/j.catena.2018.06.018
https://doi.org/10.1038/s43705-021-00040-0
https://doi.org/10.1038/s43705-021-00040-0
https://doi.org/10.5061/dryad.pvmcvdnqc
https://doi.org/10.1038/ncomms1046
https://doi.org/10.1038/ncomms1046
https://doi.org/10.1111/j.1654-1103.2011.01324.x
https://doi.org/10.1890/09-2172.1
https://doi.org/10.1890/09-2172.1
https://doi.org/10.1111/2041-210X.12126
https://doi.org/10.1111/2041-210X.12126
https://doi.org/10.1093/jpe/rtw096
https://doi.org/10.1038/s43247-020-00031-4
https://doi.org/10.1038/s43247-020-00031-4
https://doi.org/10.1007/s004420050521
https://doi.org/10.1007/s004420050521
https://doi.org/10.1111/geb.13461
https://doi.org/10.1111/geb.13461
https://doi.org/10.1371/journal.pone.0062671


Clark, R. T., R. B. MacCurdy, J. K. Jung, J. E. Shaff, S. R. McCouch,
D. J. Aneshansley, and L. V. Kochian. 2011.
“Three-Dimensional Root Phenotyping with a Novel Imaging
and Software Platform.” Plant Physiology 156(2): 455–65.
https://doi.org/10.1104/pp.110.169102.

Clemmensen, K. E., O. Ovaskainen, A. Dahlberg, A. Ekblad,
H. Wallander, J. Stenlid, D. A. Finlay, D. A. Wardle, and B. D.
Lindahl. 2013. “Roots and Associated Fungi Drive Long-Term
Carbon Sequestration in Boreal Forest.” Science 339(6127):
1615–8. https://doi.org/10.1126/science.1232728.

Craig, M. E., B. L. Turner, C. Liang, K. Clay, D. J. Johnson, and
R. P. Phillips. 2018. “Tree Mycorrhizal Type Predicts
Within-Site Variability in the Storage and Distribution of Soil
Organic Matter.” Global Change Biology 24(8): 3317–30.
https://doi.org/10.1111/gcb.14132.

Crowther, T. W., J. van den Hoogen, J. Wan, M. A. Mayes, A. D.
Keiser, L. Mo, C. Averill, and D. S. Maynard. 2019. “The Global
Soil Community and its Influence on Biogeochemistry.” Science
365(6455): eaav0550. https://doi.org/10.1126/science.aav0550.

Davrinche, A., and S. Haider. 2021. “Intra-Specific Leaf Trait
Responses to Species Richness at Two Different Local Scales.”
Basic and Applied Ecology 55: 20–32. https://doi.org/10.1016/j.
baae.2021.04.011.

de Frenne, P., F. Zellweger, F. Rodríguez-S�anchez, B. R. Scheffers,
K. Hylander, M. Luoto, M. Vellend, K. Verheyen, and
J. Lenoir. 2019. “Global Buffering of Temperatures under
Forest Canopies.” Ecology and Evolution 3: 744–9.

Delgado-Baquerizo, M., F. T. Maestre, P. B. Reich, P. Trivedi, Y. Osanai,
Y.-R. Liu, K. Hamonts, T. C. Jeffries, and B. K. Singh. 2016.
“Carbon Content and Climate Variability Drive Global Soil
Bacterial Diversity Patterns.”EcologicalMonographs 86(3): 373–90.

Delgado-Baquerizo, M., P. B. Reich, A. N. Khachane, C. D.
Campbell, N. Thomas, T. E. Freitag, W. A. Al-Soud,
S. Sørensen, R. D. Bardgett, and B. K. Singh. 2017. “It Is
Elemental: Soil Nutrient Stoichiometry Drives Bacterial
Diversity.” Environmental Microbiology 19(3): 1176–88. https://
doi.org/10.1111/1462-2920.13642.

Ehbrecht, M., P. Schall, J. Juchheim, C. Ammer, and D. Seidel. 2016.
“Effective Number of Layers: A New Measure for Quantifying
Three-Dimensional Stand Structure Based on Sampling with
Terrestrial LiDAR.” Forest Ecology and Management 380:
212–23. https://doi.org/10.1016/j.foreco.2016.09.003.

Eisenhauer, N., H. Beßler, C. Engels, G. Gleixner, M. Habekost,
A. Milcu, S. Partsch, et al. 2010. “Plant Diversity Effects on
Soil Microorganisms Support the Singular Hypothesis.”
Ecology 91(2): 485–96. https://doi.org/10.1890/08-2338.1.

Eisenhauer, N., M. Bonkowski, U. Brose, F. Buscot, W. Durka, A.
Ebeling, M. Fischer, et al. 2019. “Biotic Interactions,
Community Assembly, and Eco‐Evolutionary Dynamics as
Drivers of Long‐Term Biodiversity–Ecosystem Functioning
Relationships.” Research Ideas and Outcomes: 5. https://doi.
org/10.3897/rio.5.e47042.

Eisenhauer, N., A. Lanoue, T. Strecker, S. Scheu, K. Steinauer, M. P.
Thakur, and L. Mommer. 2017. “Root Biomass and Exudates
Link Plant Diversity with Soil Bacterial and Fungal Biomass.”
Scientific Reports 7: 44641. https://doi.org/10.1038/srep44641.

Eisenhauer, N., K. Yee, E. A. Johnson, M. Maraun, D. Parkinson,
D. Straube, and S. Scheu. 2011. “Positive Relationship between
Herbaceous Layer Diversity and the Performance of Soil Biota

in a Temperate Forest.” Soil Biology and Biochemistry 43(2):
462–5. https://doi.org/10.1016/j.soilbio.2010.10.018.

Fichtner, A., W. Härdtle, H. Bruelheide, M. Kunz, Y. Li, and
G. von Oheimb. 2018. “Neighbourhood Interactions Drive
Overyielding in Mixed-Species Tree Communities.” Nature
Communications 9(1): 1144. https://doi.org/10.1038/
s41467-018-03529-w.

Frey, S. D. 2019. “Mycorrhizal Fungi as Mediators of Soil Organic
Matter Dynamics.” Annual Review of Ecology, Evolution, and
Systematics 50(1): 237–59. https://doi.org/10.1146/annurev-
ecolsys-110617-062331.

Frostegård, Å., A. Tunlid, and E. Bååth. 1991. “Microbial Biomass
Measured as Total Lipid Phosphate in Soils of Different
Organic Content.” Journal of Microbiological Methods 14(3):
151–63. https://doi.org/10.1016/0167-7012(91)90018-L.

Garnier, E., J. Cortez, G. Billès, M.-L. Navas, C. Roumet,
M. Debussche, G. Laurent, et al. 2004. “Plant FunctionalMarkers
Capture Ecosystem Properties during Secondary Succession.”
Ecology 85(9): 2630–7. https://doi.org/10.1890/03-0799.

Geißler, C., P. Kühn, M. Böhnke, H. Bruelheide, X. Shi, and
T. Scholten. 2012. “Splash Erosion Potential under Tree
Canopies in Subtropical SE China.” Catena 91: 85–93. https://
doi.org/10.1016/j.catena.2010.10.009.

Germany, M. S., H. Bruelheide, and A. Erfmeier. 2017. “Limited
Tree Richness Effects on Herb Layer Composition, Richness
and Productivity in Experimental Forest Stands.” Journal of
Plant Ecology 10(1): 190–200. https://doi.org/10.1093/jpe/
rtw109.

Goebes, P., S. Seitz, P. Kühn, Y. Li, P. A. Niklaus, G. von Oheimb,
and T. Scholten. 2015. “Throughfall Kinetic Energy in Young
Subtropical Forests: Investigation on Tree Species Richness
Effects and Spatial Variability.” Agricultural and Forest
Meteorology 213: 148–59. https://doi.org/10.1016/j.agrformet.
2015.06.019.

Goto, N., A. Sakoda, and M. Suzuki. 1994. “Modelling of Soil
Carbon Dynamics as a Part of Carbon Cycle in Terrestrial
Ecosystems.” Ecological Modelling 74(3–4): 183–204. https://
doi.org/10.1016/0304-3800(94)90119-8.

Gottschall, F., S. Davids, T. E. Newiger-Dous, H. Auge, S. Cesarz,
and N. Eisenhauer. 2019. “Tree Species Identity Determines
Wood Decomposition via Microclimatic Effects.” Ecology
and Evolution 9(21): 12113–27. https://doi.org/10.1002/ece3.
5665.

Guerrero‐Ramírez, N. R., D. Craven, P. B. Reich, J. J. Ewel, F.
Isbell, J. Koricheva, J. A. Parrotta, et al. 2017. “Diversity‐
dependent Temporal Divergence of Ecosystem Functioning in
Experimental Ecosystems.” Nature Ecology & Evolution 1(11):
1639–42. https://doi.org/10.1038/s41559-017-0325-1.

Hakkenberg, C. R., R. K. Peet, T. R. Wentworth, K. Zhu, and M. P.
Schafale. 2020. “Tree Canopy Cover Constrains the
Fertility-Diversity Relationship in Plant Communities of the
Southeastern United States.” Ecology 101(10): e03119. https://
doi.org/10.1002/ecy.3119.

Haug, I., R. Weber, F. Oberwinkler, and J. Tschen. 1994. “The
Mycorrhizal Status of Taiwanese Trees and the Description of
some Ectomycorrhizal Types.” Trees 8(5): 237–53. https://doi.
org/10.1007/BF00196628.

Hawley, G. L., and J. F. Dames. 2004. “Mycorrhizal Status of
Indigenous Tree Species in a Forest Biome of the Eastern

ECOLOGICAL MONOGRAPHS 17 of 20

 15577015, 0, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecm

.1563 by Fak-M
artin L

uther U
niversitats, W

iley O
nline L

ibrary on [13/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1104/pp.110.169102
https://doi.org/10.1126/science.1232728
https://doi.org/10.1111/gcb.14132
https://doi.org/10.1126/science.aav0550
https://doi.org/10.1016/j.baae.2021.04.011
https://doi.org/10.1016/j.baae.2021.04.011
https://doi.org/10.1111/1462-2920.13642
https://doi.org/10.1111/1462-2920.13642
https://doi.org/10.1016/j.foreco.2016.09.003
https://doi.org/10.1890/08-2338.1
https://doi.org/10.3897/rio.5.e47042
https://doi.org/10.3897/rio.5.e47042
https://doi.org/10.1038/srep44641
https://doi.org/10.1016/j.soilbio.2010.10.018
https://doi.org/10.1038/s41467-018-03529-w
https://doi.org/10.1038/s41467-018-03529-w
https://doi.org/10.1146/annurev-ecolsys-110617-062331
https://doi.org/10.1146/annurev-ecolsys-110617-062331
https://doi.org/10.1016/0167-7012(91)90018-L
https://doi.org/10.1890/03-0799
https://doi.org/10.1016/j.catena.2010.10.009
https://doi.org/10.1016/j.catena.2010.10.009
https://doi.org/10.1093/jpe/rtw109
https://doi.org/10.1093/jpe/rtw109
https://doi.org/10.1016/j.agrformet.2015.06.019
https://doi.org/10.1016/j.agrformet.2015.06.019
https://doi.org/10.1016/0304-3800(94)90119-8
https://doi.org/10.1016/0304-3800(94)90119-8
https://doi.org/10.1002/ece3.5665
https://doi.org/10.1002/ece3.5665
https://doi.org/10.1038/s41559-017-0325-1
https://doi.org/10.1002/ecy.3119
https://doi.org/10.1002/ecy.3119
https://doi.org/10.1007/BF00196628
https://doi.org/10.1007/BF00196628


Cape, South Africa.” South African Journal of Science 100(11):
633–7.

Hooper, D. U., D. E. Bignell, V. K. Brown, L. Brussard, J. Mark
Dangerfield, D. H. Wall, D. A. Wardle, et al. 2000.
“Interactions between Aboveground and Belowground
Biodiversity in Terrestrial Ecosystems: Patterns, Mechanisms,
and Feedbacks.” BioScience 50(12): 1049.

Huang, Y., Y. Chen, N. Castro-Izaguirre, M. Baruffol, M. Brezzi,
A. Lang, Y. Li, et al. 2018. “Impacts of Species Richness on
Productivity in a Large-Scale Subtropical Forest Experiment.”
Science 362(6410): 80–3. https://doi.org/10.1126/science.
aat6405.

Huang, Y., Y. Ma, K. Zhao, P. A. Niklaus, B. Schmid, and J.-S. He.
2017. “Positive Effects of Tree Species Diversity on Litterfall
Quantity and Quality along a Secondary Successional
Chronosequence in a Subtropical Forest.” Journal of Plant
Ecology 10(1): 28–35. https://doi.org/10.1093/jpe/rtw115.

IPBES. 2019. “Global Assessment Report on Biodiversity and
Ecosystem Services of the Intergovernmental Science-Policy
Platform on Biodiversity and Ecosystem Services.” Zenodo.
https://doi.org/10.5281/ZENODO.3831673.

Kästner, M., and A. Miltner. 2018. “SOM and Microbes—What Is
Left from Microbial Life.” In The Future of Soil Carbon, edited
by C. Garcia, P. Nannipieri, and T. Hernandez, 125–63.
Cambridge, MA: Elsevier. https://doi.org/10.1016/B978-0-12-
811687-6.00005-5.

Kramer, S., D. Dibbern, J. Moll, M. Huenninghaus, R. Koller,
D. Krueger, S. Marhan, et al. 2016. “Resource Partitioning
between Bacteria, Fungi, and Protists in the Detritusphere of
an Agricultural Soil.” Frontiers in Microbiology 7: 1524. https://
doi.org/10.3389/fmicb.2016.01524.

Kunz, M., A. Fichtner, W. Härdtle, P. Raumonen, H. Bruelheide,
and G. von Oheimb. 2019. “Neighbour Species Richness and
Local Structural Variability Modulate Aboveground
Allocation Patterns and Crown Morphology of Individual
Trees.” Ecology Letters 22(12): 2130–40. https://doi.org/10.
1111/ele.13400.

Laliberté, E., P. Legendre, B. Shipley, and M. E. Laliberté. 2014.
“Package FD: Measuring Functional Diversity from Multiple
Traits, and Other Tools for Functional Ecology.” https://
citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=
99009d911cb83b2bd2bc1ea6e7399b0d05e5cb63.

Laliberté, E., and P. Legendre. 2010. “A Distance-Based Framework
for Measuring Functional Diversity from Multiple Traits.”
Ecology 91(1): 299–305. https://doi.org/10.1890/08-2244.1.

Lange, M., N. Eisenhauer, C. A. Sierra, H. Bessler, C. Engels, R. I.
Griffiths, P. G. Mellado-V�azquez, et al. 2015. “Plant Diversity
Increases Soil Microbial Activity and Soil Carbon Storage.”
Nature Communications 6: 6707. https://doi.org/10.1038/
ncomms7707.

Lareen, A., F. Burton, and P. Schäfer. 2016. “Plant Root-Microbe
Communication in Shaping Root Microbiomes.” Plant
Molecular Biology 90(6): 575–87. https://doi.org/10.1007/
s11103-015-0417-8.

Lecigne, B., S. Delagrange, and C. Messier. 2018. “Exploring Trees
in Three Dimensions: VoxR, a Novel Voxel-Based R Package
Dedicated to Analysing the Complex Arrangement of Tree
Crowns.” Annals of Botany 121(4): 589–601. https://doi.org/
10.1093/aob/mcx095.

Lewis, S. L., C. E. Wheeler, E. T. A. Mitchard, and A. Koch. 2019.
“Restoring Natural Forests Is the Best Way to Remove
Atmospheric Carbon.” Nature 568(7750): 25–8. https://doi.org/
10.1038/d41586-019-01026-8.

Li, Y., H. Bruelheide, T. Scholten, B. Schmid, Z. Sun, N. Zhang, B.
Wensheng, X. Liu, and K. Ma. 2019. “Early Positive Effects of
Tree Species Richness on Soil Organic Carbon Accumulation
in a Large-Scale Forest Biodiversity Experiment.” Journal of
Plant Ecology 12(5): 882–93. https://doi.org/10.1093/jpe/
rtz026.

Liang, C., and T. C. Balser. 2011. “Microbial Production of
Recalcitrant Organic Matter in Global Soils: Implications for
Productivity and Climate Policy.” Nature Reviews Microbiology
9(1): 75–5. https://doi.org/10.1038/nrmicro2386-c1.

Liski, J., T. Palosuo, M. Peltoniemi, and R. Sievänen. 2005. “Carbon
and Decomposition Model Yasso for Forest Soils.” Ecological
Modelling 189(1–2): 168–82. https://doi.org/10.1016/j.
ecolmodel.2005.03.005.

Liu, C., W. Xiang, B. Xie, S. Ouyang, Y. Zeng, P. Lei, and C. Peng.
2020. “Decoupling the Complementarity Effect and the Selection
Effect on the Overyielding of Fine Root Production along a Tree
Species Richness Gradient in Subtropical Forests.” Ecosystems 24:
613–27. https://doi.org/10.1007/s10021-020-00538-z.

Liu, X., S. Trogisch, J.-S. He, P. A. Niklaus, H. Bruelheide, Z. Tang,
A. Erfmeier, et al. 2018. “Tree Species Richness Increases
Ecosystem Carbon Storage in Subtropical Forests.”
Proceedings. Biological Sciences 285(1885): 20181240. https://
doi.org/10.1098/rspb.2018.1240.

Londo, G. 1976. “The Decimal Scale for Releves of Permanent Quadrats.”
Vegetatio 33(1): 61–4. https://doi.org/10.1007/bf00055300.

Metzner, R., D. van Dusschoten, J. Bühler, U. Schurr, and
S. Jahnke. 2014. “Belowground Plant Development Measured
with Magnetic Resonance Imaging (MRI): Exploiting the
Potential for Noninvasive Trait Quantification Using Sugar
Beet as a Proxy.” Frontiers in Plant Science 5: 469. https://doi.
org/10.3389/fpls.2014.00469.

Miltner, A., P. Bombach, B. Schmidt-Brücken, and M. Kästner.
2012. “SOM Genesis: Microbial Biomass as a Significant
Source.” Biogeochemistry 111(1–3): 41–55. https://doi.org/
10.1007/s10533-011-9658-z.

Mooney, S. J., T. P. Pridmore, J. Helliwell, and M. J. Bennett.
2012. “Developing X-Ray Computed Tomography to
Noninvasively Image 3-D Root Systems Architecture in
Soil.” Plant and Soil 352(1–2): 1–22. https://doi.org/10.
1007/s11104-011-1039-9.

Mueller, K. E., N. Eisenhauer, P. B. Reich, S. E. Hobbie, O. A.
Chadwick, J. Chorover, T. Dobies, et al. 2016. “Light,
Earthworms, and Soil Resources as Predictors of Diversity of
10 Soil Invertebrate Groups across Monocultures of 14 Tree
Species.” Soil Biology and Biochemistry 92: 184–98. https://doi.
org/10.1016/j.soilbio.2015.10.010.

Parkinson, J. A., and S. E. Allen. 1975. “A Wet Oxidation Procedure
Suitable for the Determination of Nitrogen and Mineral
Nutrients in Biological Material.” Communications in Soil
Science and Plant Analysis 6(1): 1–11. https://doi.org/10.1080/
00103627509366539.

Pei, Z., D. Eichenberg, H. Bruelheide, W. Kröber, P. Kühn, Y.
Li, G. von Oheimb, et al. 2016. “Soil and Tree Species
Traits Both Shape Soil Microbial Communities during

18 of 20 BEUGNON ET AL.

 15577015, 0, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecm

.1563 by Fak-M
artin L

uther U
niversitats, W

iley O
nline L

ibrary on [13/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1126/science.aat6405
https://doi.org/10.1126/science.aat6405
https://doi.org/10.1093/jpe/rtw115
https://doi.org/10.5281/ZENODO.3831673
https://doi.org/10.1016/B978-0-12-811687-6.00005-5
https://doi.org/10.1016/B978-0-12-811687-6.00005-5
https://doi.org/10.3389/fmicb.2016.01524
https://doi.org/10.3389/fmicb.2016.01524
https://doi.org/10.1111/ele.13400
https://doi.org/10.1111/ele.13400
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=99009d911cb83b2bd2bc1ea6e7399b0d05e5cb63
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=99009d911cb83b2bd2bc1ea6e7399b0d05e5cb63
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=99009d911cb83b2bd2bc1ea6e7399b0d05e5cb63
https://doi.org/10.1890/08-2244.1
https://doi.org/10.1038/ncomms7707
https://doi.org/10.1038/ncomms7707
https://doi.org/10.1007/s11103-015-0417-8
https://doi.org/10.1007/s11103-015-0417-8
https://doi.org/10.1093/aob/mcx095
https://doi.org/10.1093/aob/mcx095
https://doi.org/10.1038/d41586-019-01026-8
https://doi.org/10.1038/d41586-019-01026-8
https://doi.org/10.1093/jpe/rtz026
https://doi.org/10.1093/jpe/rtz026
https://doi.org/10.1038/nrmicro2386-c1
https://doi.org/10.1016/j.ecolmodel.2005.03.005
https://doi.org/10.1016/j.ecolmodel.2005.03.005
https://doi.org/10.1007/s10021-020-00538-z
https://doi.org/10.1098/rspb.2018.1240
https://doi.org/10.1098/rspb.2018.1240
https://doi.org/10.1007/bf00055300
https://doi.org/10.3389/fpls.2014.00469
https://doi.org/10.3389/fpls.2014.00469
https://doi.org/10.1007/s10533-011-9658-z
https://doi.org/10.1007/s10533-011-9658-z
https://doi.org/10.1007/s11104-011-1039-9
https://doi.org/10.1007/s11104-011-1039-9
https://doi.org/10.1016/j.soilbio.2015.10.010
https://doi.org/10.1016/j.soilbio.2015.10.010
https://doi.org/10.1080/00103627509366539
https://doi.org/10.1080/00103627509366539


Early Growth of Chinese Subtropical Forests.” Soil Biology
and Biochemistry 96: 180–90. https://doi.org/10.1016/j.
soilbio.2016.02.004.

Perles-Garcia, M. D., M. Kunz, A. Fichtner, W. Härdtle, and G. von
Oheimb. 2021. “Tree Species Richness Promotes an Early
Increase of Stand Structural Complexity in Young Subtropical
Plantations.” Journal of Applied Ecology. 58: 2305–14. https://
doi.org/10.1111/1365-2664.13973.

Reich, P. B., J. Oleksyn, J. Modrzynski, P. Mrozinski, S. E. Hobbie,
D. M. Eissenstat, J. Chorover, O. A. Chadwick, C. M. Hale,
and M. G. Tjoelker. 2005. “Linking Litter Calcium,
Earthworms and Soil Properties: A Common Garden Test with
14 Tree Species.” Ecology Letters 8(8): 811–8. https://doi.org/
10.1111/j.1461-0248.2005.00779.x.

remybeugnon. 2022. “Remybeugnon/Beugnon-et-al-2021_Soil-
Carbon-and-Microbial-Biomass-Drivers: Major Revision of
the Analyses during Review Process (Manuscript-Update).”
Zenodo. https://doi.org/10.5281/zenodo.7225739.

Rosseel, Y. 2012. “lavaan: An R Package for Structural
Equation Modeling and More. Version 0.5–12 (BETA).”
Journal of Statistical Software 48(2): 1–36.

Ruess, L., and P. M. Chamberlain. 2010. “The Fat that Matters: Soil
Food Web Analysis Using Fatty Acids and their Carbon Stable
Isotope Signature.” Soil Biology and Biochemistry 42(11):
1898–910. https://doi.org/10.1016/j.soilbio.2010.07.020.

Schmidt, M. W. I., M. S. Torn, S. Abiven, T. Dittmar,
G. Guggenberger, I. A. Janssens, M. Kleber, et al. 2011.
“Persistence of Soil Organic Matter as an Ecosystem
Property.” Nature 478(7367): 49–56. https://doi.org/10.1038/
nature10386.

Scholten, T., P. Goebes, P. Kühn, S. Seitz, T. Assmann, J. Bauhus,
H. Bruelheide, et al. 2017. “On the Combined Effect of Soil
Fertility and Topography on Tree Growth in Subtropical
Forest Ecosystems—A Study from SE China.” Journal of Plant
Ecology 10(1): 111–27. https://doi.org/10.1093/jpe/rtw065.

Seedre, M., A. R. Taylor, B. W. Brassard, H. Y. H. Chen, and
K. Jõgiste. 2014. “Recovery of Ecosystem Carbon Stocks in
Young Boreal Forests: A Comparison of Harvesting and
Wildfire Disturbance.” Ecosystems 17(5): 851–63. https://doi.
org/10.1007/s10021-014-9763-7.

Seitz, S., P. Goebes, Z. Song, H. Bruelheide, W. Härdtle, P. Kühn, Y.
Li, and T. Scholten. 2016. “Tree Species and Functional Traits
but Not Species Richness Affect Interrill Erosion Processes in
Young Subtropical Forests.” Soil 2(1): 49–61. https://doi.org/
10.5194/soil-2-49-2016.

Seitz, S., P. Goebes, P. Zumstein, T. Assmann, P. Kühn, P. A.
Niklaus, A. Schuldt, and T. Scholten. 2015. “The Influence
of Leaf Litter Diversity and Soil Fauna on Initial Soil
Erosion in Subtropical Forests.” Earth Surface Processes and
Landforms 40(11): 1439–47. https://doi.org/10.1002/esp.
3726.

Serna-Chavez, H. M., N. Fierer, and P. M. van Bodegom. 2013.
“Global Drivers and Patterns of Microbial Abundance in Soil.”
Global Ecology and Biogeography 22(10): 1162–72. https://doi.
org/10.1111/geb.12070.

Simpson, A. J., M. J. Simpson, E. Smith, and B. P. Kelleher. 2007.
“Microbially Derived Inputs to Soil Organic Matter: Are
Current Estimates Too Low?” Environmental Science &
Technology 41(23): 8070–6. https://doi.org/10.1021/es071217x.

Singavarapu, B., R. Beugnon, H. Bruelheide, S. Cesarz, J. du, N.
Eisenhauer, L. D. Guo, et al. 2021. “Tree Mycorrhizal Type
and Tree Diversity Shape the Forest Soil Microbiota.”
Environmental Microbiology. 24: 4236–55. https://doi.org/
10.1111/1462-2920.15690.

Smith, L. C., A. Orgiazzi, N. Eisenhauer, S. Cesarz, A. Lochner,
A. Jones, F. Bastida, et al. 2021. “Large-Scale Drivers of
Relationships between Soil Microbial Properties and Organic
Carbon across Europe.” Global Ecology and Biogeography
30(10): 2070–83. https://doi.org/10.1111/geb.13371.

Sun, L., M. Ataka, M. Han, Y. Han, D. Gan, X. Tianle, Y. Guo, and
B. Zhu. 2020. “Root Exudation as a Major Competitive
Fine-Root Functional Trait of 18 Coexisting Species in a
Subtropical Forest.” The New Phytologist 229: 259–71. https://
doi.org/10.1111/nph.16865.

Sun, Z., X. Liu, B. Schmid, H. Bruelheide, B. Wensheng, and K. Ma.
2017. “Positive Effects of Tree Species Richness on Fine-Root
Production in a Subtropical Forest in SE-China.” Journal of
Plant Ecology 10(1): 146–57. https://doi.org/10.1093/jpe/
rtw094.

Taylor, A. R., J. R. Wang, and W. A. Kurz. 2008. “Effects of
Harvesting Intensity on Carbon Stocks in Eastern Canadian
Red Spruce (Picea Rubens) Forests: An Exploratory Analysis
Using the CBM-CFS3 Simulation Model.” Forest Ecology and
Management 255(10): 3632–41. https://doi.org/10.1016/j.
foreco.2008.02.052.

Thoms, C., A. Gattinger, M. Jacob, F. M. Thomas, and G. Gleixner.
2010. “Direct and Indirect Effects of Tree Diversity Drive Soil
Microbial Diversity in Temperate Deciduous Forest.” Soil
Biology and Biochemistry 42(9): 1558–65. https://doi.org/10.
1016/j.soilbio.2010.05.030.

Trogisch, S., X. Liu, G. Rutten, K. Xue, J. Bauhus, U. Brose,
W. Bu, et al. 2021. “The Significance of Tree-Tree
Interactions for Forest Ecosystem Functioning.” Basic and
Applied Ecology. 55: 33–52. https://doi.org/10.1016/j.baae.
2021.02.003.

Trumbore, S. 2009. “Radiocarbon and Soil Carbon Dynamics.”
Annual Review of Earth and Planetary Sciences 37(1): 47–66.
https://doi.org/10.1146/annurev.earth.36.031207.124300.

Trumbore, S. E. 1993. “Comparison of Carbon Dynamics in
Tropical and Temperate Soils Using Radiocarbon
Measurements.” Global Biogeochemical Cycles 7(2): 275–90.
https://doi.org/10.1029/93gb00468.

Ushio, M., R. Wagai, T. C. Balser, and K. Kitayama. 2008.
“Variations in the Soil Microbial Community Composition of
a Tropical Montane Forest Ecosystem: Does Tree Species
Matter?” Soil Biology and Biochemistry 40(10): 2699–702.
https://doi.org/10.1016/j.soilbio.2008.06.023.

Venables, W. N., and B. D. Ripley. 2002. Modern Applied Statistics
with S. New York: Springer.

Vockenhuber, E. A., C. Scherber, C. Langenbruch, M. Meißner,
D. Seidel, and T. Tscharntke. 2011. “Tree Diversity and
Environmental Context Predict Herb Species Richness and
Cover in Germany’s Largest Connected Deciduous Forest.”
Perspectives in Plant Ecology, Evolution and Systematics 13(2):
111–9. https://doi.org/10.1016/j.ppees.2011.02.004.

Vogel, A., A. Ebeling, G. Gleixner, C. Roscher, S. Scheu, M.
Ciobanu, E. Koller‐France, et al. 2019. “A New Experimental
Approach to Test Why Biodiversity Effects Strengthen as

ECOLOGICAL MONOGRAPHS 19 of 20

 15577015, 0, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecm

.1563 by Fak-M
artin L

uther U
niversitats, W

iley O
nline L

ibrary on [13/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1016/j.soilbio.2016.02.004
https://doi.org/10.1016/j.soilbio.2016.02.004
https://doi.org/10.1111/1365-2664.13973
https://doi.org/10.1111/1365-2664.13973
https://doi.org/10.1111/j.1461-0248.2005.00779.x
https://doi.org/10.1111/j.1461-0248.2005.00779.x
https://doi.org/10.5281/zenodo.7225739
https://doi.org/10.1016/j.soilbio.2010.07.020
https://doi.org/10.1038/nature10386
https://doi.org/10.1038/nature10386
https://doi.org/10.1093/jpe/rtw065
https://doi.org/10.1007/s10021-014-9763-7
https://doi.org/10.1007/s10021-014-9763-7
https://doi.org/10.5194/soil-2-49-2016
https://doi.org/10.5194/soil-2-49-2016
https://doi.org/10.1002/esp.3726
https://doi.org/10.1002/esp.3726
https://doi.org/10.1111/geb.12070
https://doi.org/10.1111/geb.12070
https://doi.org/10.1021/es071217x
https://doi.org/10.1111/1462-2920.15690
https://doi.org/10.1111/1462-2920.15690
https://doi.org/10.1111/geb.13371
https://doi.org/10.1111/nph.16865
https://doi.org/10.1111/nph.16865
https://doi.org/10.1093/jpe/rtw094
https://doi.org/10.1093/jpe/rtw094
https://doi.org/10.1016/j.foreco.2008.02.052
https://doi.org/10.1016/j.foreco.2008.02.052
https://doi.org/10.1016/j.soilbio.2010.05.030
https://doi.org/10.1016/j.soilbio.2010.05.030
https://doi.org/10.1016/j.baae.2021.02.003
https://doi.org/10.1016/j.baae.2021.02.003
https://doi.org/10.1146/annurev.earth.36.031207.124300
https://doi.org/10.1029/93gb00468
https://doi.org/10.1016/j.soilbio.2008.06.023
https://doi.org/10.1016/j.ppees.2011.02.004


Ecosystems Age.” Mechanisms Underlying the Relationship
between Biodiversity and Ecosystem Function: 221–64. https://
doi.org/10.1016/bs.aecr.2019.06.006.

von Lützow, M., I. Kögel-Knabner, K. Ekschmitt, H. Flessa,
G. Guggenberger, E. Matzner, and B. Marschner. 2007.
“SOM Fractionation Methods: Relevance to Functional
Pools and to Stabilization Mechanisms.” Soil Biology and
Biochemistry 39(9): 2183–207. https://doi.org/10.1016/j.
soilbio.2007.03.007.

Wang, B., and Y.-L. Qiu. 2006. “Phylogenetic Distribution and
Evolution of Mycorrhizas in Land Plants.” Mycorrhiza 16(5):
299–363. https://doi.org/10.1007/s00572-005-0033-6.

Wen, Z., H. Li, Q. Shen, X. Tang, C. Xiong, H. Li, J. Pang, M. H.
Ryan, H. Lambers, and J. Shen. 2019. “Tradeoffs among Root
Morphology, Exudation and Mycorrhizal Symbioses for
Phosphorus‐Acquisition Strategies of 16 Crop Species.” New
Phytologist 223(2): 882–95. https://doi.org/10.1111/nph.15833.

Wichern, J., F. Wichern, and R. G. Joergensen. 2006. “Impact of
Salinity on Soil Microbial Communities and the
Decomposition of Maize in Acidic Soils.” Geoderma 137(1–2):
100–8. https://doi.org/10.1016/j.geoderma.2006.08.001.

Wikle, C. K., A. Zammit-Mangion, and N. A. C. Cressie. 2019.
Spatio-Temporal Statistics with R. Chapman & Hall/CRC the R
Series. Boca Raton, FL: CRC Press.

Williams, L. J., A. Paquette, J. Cavender-Bares, C. Messier, and
P. B. Reich. 2017. “Spatial Complementarity in Tree Crowns
Explains Overyielding in Species Mixtures.” Nature
Ecology & Evolution 1(4): 63. https://doi.org/10.1038/
s41559-016-0063.

Xu, S., N. Eisenhauer, O. Ferlian, J. Zhang, G. Zhou, L. Xiankai,
C. Liu, and D. Zhang. 2020. “Species Richness Promotes
Ecosystem Carbon Storage: Evidence from Biodiversity-
Ecosystem Functioning Experiments.” Proceedings. Biological
Sciences 287(1939): 20202063. https://doi.org/10.1098/rspb.2020.
2063.

Xu, X., P. E. Thornton, and W. M. Post. 2013. “A Global Analysis of
Soil Microbial Biomass Carbon, Nitrogen and Phosphorus in
Terrestrial Ecosystems.” Global Ecology and Biogeography
22(6): 737–49. https://doi.org/10.1111/geb.12029.

Yang, X., J. Bauhus, S. Both, T. Fang, W. Härdtle, W. Kröber, K. Ma,
et al. 2013. “Establishment Success in a Forest Biodiversity and
Ecosystem Functioning Experiment in Subtropical China
(BEF-China).” European Journal of Forest Research 132(4):
593–606. https://doi.org/10.1007/s10342-013-0696-z.

Zhang, S., D. Landuyt, K. Verheyen, and P. De Frenne. 2022. “Tree
Species Mixing Can Amplify Microclimate Offsets in Young
Forest Plantations.” Journal of Applied Ecology, March
1365–2664: 14158. https://doi.org/10.1111/1365-2664.14158.

Zhang, Z., Y. Liu, C. Brunel, and M. van Kleunen. 2020. “Evidence
for Elton’s Diversity-Invasibility Hypothesis from Belowground.”
Ecology 101: e03187. https://doi.org/10.1002/ecy.3187.

Zheng, L., H. Y. H. Chen, and E. Yan. 2019. “Tree Species
Diversity Promotes Litterfall Productivity Through Crown
Complementarity in Subtropical Forests.” Journal of Ecology
107(4): 1852–61. https://doi.org/10.1111/1365-2745.13142.

Zuppinger-Dingley, D., B. Schmid, J. S. Petermann, V. Yadav, G. B.
De Deyn, and D. F. B. Flynn. 2014. “Selection for Niche
Differentiation in Plant Communities Increases Biodiversity
Effects.” Nature 515(7525): 108–11. https://doi.org/10.1038/
nature13869.

SUPPORTING INFORMATION
Additional supporting information can be found online
in the Supporting Information section at the end of this
article.

How to cite this article: Beugnon, Rémy,
Wensheng Bu, Helge Bruelheide,
Andréa Davrinche, Jianqing Du, Sylvia Haider,
Matthias Kunz, et al. 2023. “Abiotic and Biotic
Drivers of Tree Trait Effects on Soil Microbial
Biomass and Soil Carbon Concentration.”
Ecological Monographs e1563. https://doi.org/10.
1002/ecm.1563

20 of 20 BEUGNON ET AL.

 15577015, 0, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecm

.1563 by Fak-M
artin L

uther U
niversitats, W

iley O
nline L

ibrary on [13/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1016/bs.aecr.2019.06.006
https://doi.org/10.1016/bs.aecr.2019.06.006
https://doi.org/10.1016/j.soilbio.2007.03.007
https://doi.org/10.1016/j.soilbio.2007.03.007
https://doi.org/10.1007/s00572-005-0033-6
https://doi.org/10.1111/nph.15833
https://doi.org/10.1016/j.geoderma.2006.08.001
https://doi.org/10.1038/s41559-016-0063
https://doi.org/10.1038/s41559-016-0063
https://doi.org/10.1098/rspb.2020.2063
https://doi.org/10.1098/rspb.2020.2063
https://doi.org/10.1111/geb.12029
https://doi.org/10.1007/s10342-013-0696-z
https://doi.org/10.1111/1365-2664.14158
https://doi.org/10.1002/ecy.3187
https://doi.org/10.1111/1365-2745.13142
https://doi.org/10.1038/nature13869
https://doi.org/10.1038/nature13869
https://doi.org/10.1002/ecm.1563
https://doi.org/10.1002/ecm.1563

	Abiotic and biotic drivers of tree trait effects on soil microbial biomass and soil carbon concentration
	INTRODUCTION
	MATERIAL AND METHODS
	Study site
	Study design
	Plot topography
	Microclimate modeling
	Field sampling
	Soil analyses
	Soil microbial biomass
	Tree functional traits
	Tree biomass
	Leaf traits
	Root traits
	Root functional trait variables

	Forest vertical stratification
	Leaf litterfall measurement
	Statistical analyses
	Drivers of soil carbon concentration (H1)
	Drivers of soil carbon concentration mediated by soil microbial biomass (H2)
	Drivers of microbial biomass mediated by microenvironmental conditions (H3)


	RESULTS
	Local history and topography effects on soil carbon concentrations
	Tree species richness effects on tree productivity
	Tree effects on soil carbon concentrations (H1)
	Tree effects on soil microbial biomass (H2)
	Relationship between soil microbial biomass and soil carbon concentration (H2)
	Tree effects on microenvironmental conditions (H3)
	Microenvironmental mediation of tree effects on microbial biomass (H3)

	DISCUSSION
	Soil carbon concentration dynamics in BEF-China (H1)
	Neighborhood tree traits and productivity drive soil carbon concentrations (H1)
	Soil microbial biomass and soil carbon concentration are strongly related (H2)
	Microenvironmental conditions and root morphological traits drive soil microbial biomass (H2, H3)
	Tree diversity enhances productivity with consequences for microenvironmental conditions (H3)

	CONCLUSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

	REFERENCES


