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The importance of providing structural validity evidence for
test score(s) derived from psychometric test instruments is
highlighted by several institutions; for example, the
American Psychological Association (2014) demands that
evidence for the validity of an instruments’ internal structure
and its underlying measurement model must be provided
before it is applied in psychological assessment. The
knowledge about the latent structure of data obtained with
tests addressing the major question “What is/are the con-
struct[s] being measured” by psychological tests under in-
vestigation (Ziegler, 2014, 2020). The study of structural
validity is typically addressed with factor analyses when the
test scores reflect continuous latent traits. As most sub-
missions to Psychological Test Adaptation andDevelopment
(PTAD) deal with the adaptation and further development of
existing measures, authors typically test a measurement
model that is based on theoretical considerations and prior
findings on original versions (or adaptations) of the test
under investigation. Our literature review of PTAD’s pub-
lications showed that more than 90% of the articles contain
at least one confirmatory factor analysis (CFA).

As editor and reviewers of PTAD, we appreciate that
authors are rigorous in providing evidence on the struc-
tural validity of their tests’ data. However, since PTAD’s
inception in 2019, we experience that one comment is
frequently communicated to authors during the review
process, namely, the request to adjust the analytic ap-
proach in CFA from maximum likelihood (ML) estimation
toward using the mean- and variance-adjusted weighted
least squares (WLSMV; Muthén et al., 1997) estimator to
account for the ordinal nature of the data that psycho-
logical instruments typically generate on the item level. In
this editorial, we discuss the rationale behind choosing the
WLSMV estimator when analyzing test adaptations and

developments that are based on ordinal categorical data
and concisely illustrate the problems associated with using
the ML estimator (potentially in combination with robust
tests of model fit) for such data.

A Short Recap of Basic Confirmatory
Factor Analysis Principles

CFA aims at testing a predefined assumption about the
structure of data (e.g., items). In test construction and
evaluation, the measurement model of each test score is
such an assumption about the items reflecting the trait in
question (Ziegler & Hagemann, 2015). In particular, this
contains a hypothesis about whichmanifest indicators (i.e.,
items) should be loaded by which latent factor(s). The
relations between items and latent variables are one of the
laws Cronbach and Meehl (1955) list as part of the no-
mological net. This net also includes relations between
latent variables, which could also be tested using CFA. In
short, CFA allows for testing whether an a priori assumed
structure fits with the observed data. As mentioned,
submissions to PTAD typically rely on prior evidence that
provides assumptions regarding the dimensionality (i.e.,
the number of factors) and the item-factor assignment.

For illustration, one might imagine that we want to
examine the measurement model (or factor model) of a
translation of a self-report questionnaire that consists of 10
items. Let us assume that prior theoretical assumptions
and empirical evidence from previous studies suggest that
the 10 items reflect two latent factors. For example, prior
evidence might suggest that Items 1–5 should be loaded by
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Factor I and Items 6–10 by Factor II. We specify the mea-
surement model accordingly and as displayed in Figure 1,
with loadings > 0 being allowed for Items 1–5 by Factor I and
loadings > 0 for Items 6–10 by Factor II. At the same time,
unintended loadings are restricted (i.e., loadings of Items 1–5
by Factor II and loadings of Items 6–10 by Factor I are set to
be zero; thinned lines in Figure 1). When we assume re-
flective traits, the factors cause the intercorrelations among
the set of items that are loaded by each respective factor.
Thus, if the assumedmodel is correct, we would expect high
intercorrelations among Items 1–5, as they share the same
underlying factor, showing no substantial intercorrelations
with Items 6–10, because the latter represents a distinct
factor. On the other hand, we assume intercorrelations
between Items 6 and 10 (Factor II), which are in turn not
substantially correlated with Items 11–5.
CFA examines whether our hypothesized model and its

implications for the covariance structure (the implied co-
variance structure among items) fit with the observed item
responses (the observed covariance structure). In analyzing
the data, we are interested in the magnitude and direction
of the loading parameters and the overall model fit.
Model parameters are usually estimated with the

maximum likelihood (ML) estimator. In ML estimation,
one determines those parameter values (loadings, specific
variances, and factor intercorrelations) that make the
model implied covariancematrix as close as possible to the
observed covariance matrix. As close as possible is defined
via a discrepancy function that assesses the agreement
between the observed and the model implied covariance
matrix. The discrepancy function is zero when both ma-
trices are identical and greater than zero otherwise. Thus,
the smaller the discrepancy, the better does the assumed

model explain the observed data structure. The discrep-
ancy of ML estimation can be interpreted as the likelihood
of the observed covariance matrix given the parameter
values of the assumed model (Lawley & Maxwell, 1962).
Hence, by minimizing the discrepancy, one determines
those model parameter values that are most likely con-
sidering the observed covariance matrix and the specified
model. Provided that the model holds, the ML estimator is
consistent. The ML estimator is efficient for normally
distributed data as in this case the sample covariances are
sufficient statistics. Sufficient statistics are statistics that
summarize the data without loss of information. More
technically, the covariance matrix is the only aspect of the
data that is relevant for the likelihood function, if themean
structure is ignored.
The degree ofmodel-to-data fit is evaluated on the basis of

goodness-of-fit indexes that inform about the absolute fit
(e.g., the χ2 value and root-mean-square error of approxi-
mation) and relative fit (i.e., relative to alternative models;
e.g., Tucker–Lewis index and comparative fit index). These fit
indexes allow gauging how well the assumed model can
reproduce the observed variance–covariancematrix between
the items. The fit indexes are typically evaluated on the basis
of cutoff values (e.g., Hu & Bentler, 1999; see also Greiff &
Heene, 2017; Heene et al., 2011; Hopwood & Donnellan,
2010, for a critical discussion). In case the fit indexes suggest
good fit, wewould conclude that the data reflect the assumed
structure well, with the loadings exceeding zero substantially
on their intended factor while being zero on their unintended
factor.1 On the contrary, if themodel does not fit the data, we
would, for example, test alternative models or examine
modification indexes and revise the model accordingly, and
then test the revised model in an independent sample to

Figure 1. Confirmatory factor analysis
model testing two correlated factors.
Note. Thinned paths represent load-
ings that are set to zero. Residuals not
displayed for simplicity. Double arrow
indicates the interfactor correlation.

1 Note that we simplify the interpretation of the CFA here. One is typically not only interested in the fit index but also examines factor loadings,
specificities, communalities, and factor intercorrelations.
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avoid overfitting the model to the data of a single sample
(Fokkema & Greiff, 2017).

While our description recapitulates the general pro-
ceeding in analyzing and interpreting the CFA, it must be
noted that the accuracy of the estimations of parameters of
the tested factor model and their SEs also rely on the
choice of the estimation method. One guiding principle of
choosing the best-suited estimator for CFA is to examine
whether the assumptions of the estimator are met by the
type of data analyzed.

Estimating the CFA Model on the
Basis of Continuous and Discrete
Data

Maximum Likelihood and Robust Maximum
Likelihood Estimation

The ML estimator is provided as the default estimator in
numerous standard statistical software packages. ML is
consistent as long as themodel andmild regularity conditions
hold. These conditions include the following:

• The model is correctly specified, and the observed
data are generated from this model.

• The observed variables are independent and have
continuous distributions.

• The model parameters are independent and have
continuous distributions.

• The sample size is large enough for the maximum
likelihood estimator to be consistent.

• The model parameters are identifiable, meaning that
they can be accurately estimated from the observed
data.

The ML estimator provides accurate estimates in many
scenarios dealing with continuously distributed variables
(i.e., inmultivariate normal distributed data). An example for
an indicator that provides continuous response data is the
visual analog scale, where test takers place their responses
on a continuum between two poles (e.g., between 0% and
100%; Flynn et al., 2004). However, the ML estimator has
limitations when analyzing data that do not follow a con-
tinuous distribution, such as ordered categorical data.

Categorical data are generated by items that are an-
swered using ordered categories, such as in dichotomous

indicators (e.g., items in ability tests are scored as 0 [in-
correct] and 1 [correct]; e.g., Gnambs et al., 2021) and rating
scales containing 3 to k response options, with anchors such
as 1 (strongly disagree) and k (strongly agree; e.g., Dierickx
et al., 2020). Many assessment instruments in psychology
and neighboring sciences generate this type of discrete data
(Simms et al., 2019). Likert (1932) proposed to use five
response options, and although he did not provide an ex-
planation from a psychometric point of view for this choice,
numerous scales have adopted this suggestion (Simms et al.,
2019). Accordingly, most psychological tests that are
evaluated in submissions to PTAD are based on item re-
sponses that are dichotomous or of ordinal nature.

As noted, the ML estimator has several merits, as it is
asymptotically unbiased, consistent, and efficient. How-
ever, these attributes only hold when certain assumptions
are met as listed above. For example, the responses, and
thus, the observed data to be analyzed, should follow a
continuous and multivariate normal distribution (see, e.g.,
Bollen, 1989). These assumptions are violated when an-
alyzing discrete data collected with rating scales that
contain ordered categories with discrete and only few
response options.

To illustrate the distribution of categorical responses, we
want to examine the distributions of empirical data that were
generated byN = 540 participants who responded to an item
assessing extraversion. Each participant responded to the
same item four times, namely, using a 2-, 4-, 6-, and 8-point
rating scale with the end poles does not apply and applies very
much, respectively.2 The data provide uswith an overviewof
how responses are typically distributed when using a
standard response scale with frequently used response
options (cf. Simms et al., 2019). Figure 2 shows the fre-
quency distributions for the 2-, 4-, 6-, and 8-response option
versions for the same item. The figure nicely portrays the
discrete distributions resulting from the discrete response
options. Of course, this is especially visible when checking
the responses to the 2-point and 4-point rating scales (upper
half of Figure 2), where we can see that the frequencies
represent the realization of discrete events that indicate if a
participant chose a response option k. Of course, the dis-
tribution is affected by the actual item difficulty, which
empirically affects the distribution of the responses. An
additional concern with discrete data from ordinal rating
scales is that empirical realizations representing all re-
sponse options are limited. For example, we see that re-
sponse option 1 is rarely chosen, even when using multiple
response categories: only 3.7% (n = 20) chose option 1 when
responding to the 4-point rating scale, 1.3% (n = 7) in the 6-

2 Item 6 of the German version of the Big Five Inventory-Short (BFI-S; Rammstedt & John, 2005). The data are taken from an ongoing study testing
effects of the response format (Brauer et al., 2022).
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point format, and 0.9% (n = 5) in the 8-point format. Thus,
some categories might be under-represented.
The categorical nature of the data goes along with the

misspecification of the factor analytic model. In other
words, the responses collected with rating scales that are
popular and frequently used in the field are not continu-
ously distributed but discrete. Hence, important assump-
tions required by the ML estimator are not satisfied when
analyzing discrete data, and in consequence, the estima-
tions of factor loadings, SEs, and model fit indexes are
potentially biased (e.g., Beauducel & Herzberg, 2006;
Kaplan, 2009; Li, 2016). However, if we base our inter-
pretation of findings on a measurement model with in-
accurate estimates, it increases the likelihood of making
erroneous conclusions about the model. Thereby, our
conclusions about the structural validity of the test under
investigation can be erroneous, too.
The robust maximum likelihood (MLR) estimator has

been introduced as an alternative. MLR eases the as-
sumption of normality (Bollen, 1989). In brief, the MLR
approach estimates model parameters with the regular ML
approach but uses statistical corrections to the SEs and χ2

model fit statistic (for details, see, e.g., Chou et al., 1991;

Satorra & Bentler, 1994; Yuan & Bentler, 1998). While the
MLR estimator eases the assumption of normality, it still
requires data to be continuous, and thus, its suitability for
ordered rating scales producing distinct data is still de-
batable. In a comprehensive simulation study, Bandalos
(2014) concluded that robust ML might be considered a
viable alternative but recommends another estimator.

WLSMV Estimation

TheWLSMV estimator has been introduced to account for
the ordinal nature of data as produced by ordered rating
scales (Muthén et al., 1997). In WLSMV estimation, the
ordinal response is interpreted as a result of a categori-
zation process, which describes how test takers respond to
an item: It is assumed that each response option on the
observed level defines a range on a continuum of the
response on the latent level. Whenever the latent response
value is within a certain range, the corresponding response
option on the observed level is chosen. We will illustrate
this process on the basis of simulated data. Figure 3
contains simulated latent continuous responses to two

Figure 2. Histograms of responses to an
extraversion item of N = 540 participants
using 2-, 4-, 6-, and 8-point rating scales.
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items (denoted as x1 and x2) by N = 500 test takers. The
continuous responses might, for example, reflect the
amount of agreement to the items of a personality
questionnaire.

When responding to the items of the questionnaire, the
test takers’ latent continuous responses are mapped to the
categories of the rating scale as follows. As displayed in
Figure 3, the response labels define a range on the latent
response continuum. In our example, we assume that the
data are based on responses to three response categories
(strongly disagree, neutral, and strongly agree). Whenever
the latent continuous response falls in the range of one of
the response labels, the response category is chosen. For
example, if a test taker’s response to item x1 lies between
the values of �1.5 and �0.5 on the latent continuum, this
would represent choosing the neutral response option on
the observed level. These ranges are defined by thresholds
that are denoted by the Greek letter τ. There are k � 1
thresholds, defining the ranges between the k discrete
response options. In Figure 3, the ranges are defined by the
thresholds τ11 and τ12 for Item x1, and τ21 and τ22 for item
x2. All test takers with a value below τ11 on the latent
continuum choose the first discrete response option
strongly disagree for item x1. Those with a value between τ11

and τ12 choose response option neutral, and those with a
value above τ12 choose the third response option (strongly
agree). In the same way, responses to item x2 are chosen on
the basis of the location of the score on the latent con-
tinuum in relation to the thresholds τ21 and τ22. However,
note that the scatterplot displayed in Figure 3 cannot be
observed directly. Instead, the categorized responses can
be tabulated from the observed data. Table 1 gives the
cross-tabulation of the observed categorized data from
Figure 3.

Based on the simulated latent response data from
Figure 3 and the observed discrete data provided in
Table 1, we can estimate and compare the correlations
between the two latent dimensions and the manifest an-
swers to items x1 and x2. The correlation between the items
when considering the observed categorical data is r = .24,
whereas the correlation between the continuous responses
is r = .49. Thus, the correlation of the observed categorical
data is substantially lower than the correlation of the latent
continuous data (z = 4.59, p < .001).

In general, the correlations (or covariances) between
observed discrete data are not a valid estimate for the
correlations between the continuous latent responses.
This is problematic in case we use the observed discrete

Figure 3. Continuous latent responses
and categorized observed responses
for two items. Note. Dots represent
continuous responses for 500 partic-
ipants in two items. τ11 to τ22 denote
the thresholds that are employed
when the continuous response is
categorized into the three response
options: SA = strongly agree,
N = neutral, and SD = strongly
disagree.
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data to estimate a factor model for the continuous latent
responses. The observed covariance matrix does not
converge to the true covariance matrix of the latent re-
sponses. The WLSMV estimator, however, aims at re-
covering the correlation between the continuous latent
responses from the cross-tabulations of all items and their
observed responses (see Muthén et al., 1997, for technical
details). As the correlation and the thresholds determine
the table frequencies, it is possible to estimate the cor-
relations from the cross-tabulations and to account for the
issue of dealing with noncontinuous data. Such correla-
tions are denoted as tetrachoric correlations in case the
discrete variables are binary or as polychoric correlations
when the variables have more than two categories. The
recovered correlation matrix is then used to determine
the parameters of the factor model. In WLSMV estima-
tion, one proceeds as in ML estimation by determining
those parameter values that make the model implied
correlation matrix as similar as possible to the recovered
correlation matrix (which is based on the observed one).
Similarity is again assessed by a discrepancy function.
The discrepancy function of WLMSV estimation, how-
ever, differs from the function used in ML estimation to
account for the fact that the data are not normally dis-
tributed. In its core, the discrepancy is assessed by the
sum of the squared differences between the recovered
and implied correlations. The squared differences are
weighted to increase the efficiency of the estimator. The
WLMSV is consistent and asymptotically normally dis-
tributed (Muthén et al, 1997). It can be complemented by
corresponding tests of model fit that parallel the ones
used in robust ML estimation.
In consequence, estimates for the model parameters

depend on the correlations among items and the esti-
mator used. In other words, we can infer that the esti-
mates for the CFA are affected by whether the same data
are continuous or categorized into discrete options. With
regard to distributional assumptions, WLSMV assumes
that the continuous latent responses follow a multivar-
iate normal distribution, which is in line with assump-
tions for the majority of constructs studied in psychology
(Li, 2016), whereas the observed data are not required to
be normally distributed (Muthén et al., 1997). Thus, the

WLSMV estimator is specifically designed to analyze the
ordinal response data mostly generated by psychological
measures.

Comparisons of the Performance of
ML, MLR, and WLSMV

The choice of the estimator is important for the accurate
estimation and interpretation of CFAs that are used to
draw conclusions about structural validity. We aimed at
providing a nontechnical understanding of the issues when
applying the ML and MLR estimators to discrete data in
CFA and discussed the WLSMV estimator that has been
specifically introduced to deal with categorical data.
Simulation studies have addressed the accuracy of factor

loadings, interfactor correlations, their respective standard
errors, convergence rates, and fit indexes in relation to
sample size, model complexity, in normal and non-normal
distributions, and with regard to the number of response
categories for the ML, MLR, and WLSMV estimators. We
want to shortly discuss two important studies from the field
that compared the estimators focused here.
Beauducel and Herzberg (2006) examined the perfor-

mance of theML andWLSMV estimator for indicators that
were answered with 2, 3, 4, 5, and 6 response categories in
samples containing responses by N = 250, 500, 750, and
1,000 simulated respondents. They fixed the loading to
.50 (oblique models) and .55 (orthogonal models) and
found that the WLSMV outperformed the ML estimator in
case of few response categories (i.e., 2 and 3 response
options) with regard to more accurate estimates of load-
ings, standard errors, and fit indexes. Moreover, Beau-
ducel and Herzberg found that loadings were estimated
more accurately by the WLSMV estimator, that is, ML
underestimated loadings and yielded higher standard er-
rors in comparison to the WLSMV estimator when analyzing
categorical data, irrespective of the number of response
options. While their findings provided initial systematic ev-
idence on the performance of ML andWLSMV estimators, it
must be noted that their simulations did only consider ap-
proximatively normally distributed responses and did not
consider their performance when distributions are non-
normal (i.e., characterized by robust skewness and/or kur-
tosis), which is of particular importance when analyzing data
generated from ordered categories.
To our knowledge, Li (2016) provided the most com-

prehensive simulation study to date, comparing the most
frequently used estimators for ordered noncontinuous
data (MLR andWLSMV). They examined the performance
of the estimators in sample sizes of N = 200, 500, and

Table 1. Cross-tabulation of frequencies of observed discrete
responses to items x1 and x2

Item Response

x1

Strongly disagree Neutral Strongly agree

x2 Strongly disagree 35 87 222

Neutral 0 15 104

Strongly agree 0 3 34

Note. N = 500 simulated responses.
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1,000 participants, slightly and moderately non-normal
distributed data sets, and concerning whether 4, 6, 8, or 10
response categories were used. In short, Li concluded that
WLSMV outperformed MLR concerning the estimation of
factor loadings (MLR underestimated loadings), irre-
spective of the number of response categories, sample
sizes, and distribution characteristics. Factor intercorre-
lations were slightly overestimated by WLSMV when
sample size is small (i.e., ≤ 200) and/or the underlying
latent distribution deviates from normality in comparison
to MLR. Standard errors of factor loadings were sensitive
to sample size in MLR and WLSMV alike, but MLR out-
performed WLSMV when sample size is small (N = 200),
but differences were negligible in larger samples. Finally,
the χ2 fit index tends to over-reject the models for both
WLSMV and MLR. Taking the findings together, Li con-
cludes that findings derived with MLR should be in-
terpreted cautiously due to the bias in parameter estimates
in combination with small standard errors. While Li ex-
tended the knowledge on the performance of WLSMV and
MLR on the basis of ordered categorical responses that
follow normal and non-normal distributions, their simu-
lations are also not free from restrictions that also limit the
interpretations. Most importantly, it must be noted that the
simulations assumed loadings of .70 for each item, which
is uncharacteristically high for rating scale items.

When combing the knowledge from those studies, the
findings from Beauducel and Herzberg (2006) and Li
(2016) converge regarding the WLSMV estimator
yielding more accurate loadings than the ML-based
estimators.

Recommendation and Conclusion

MLR and WLSMV estimators have their advantages and
disadvantages. Thus, there is no one-solution-fits-all recom-
mendation, and it depends on the data and what researchers
are interested in when analyzing structural validity with CFA.
Fromour experience, themajority of submissions toPTADare
interested in evaluating the loading structure of their assumed
models. Considering the current knowledge in the field (e.g.,
Beauducel & Herzberg, 2006; Li, 2016), authors might want
to favor the WLSMV estimator when the major focus lies on
accurately estimating the factor loadings on the basis of
categorical data. On the contrary, MLR provides more ac-
curate estimates of factor interrelations thanWLSMV inmany
cases. Thus, if a study’s main aim is in testing hypotheses
concerning the factor interrelations instead of primarily testing
factor loadings, the MLR estimator might be favored.

One could argue that it could be fruitful to analyze data
generated by responses to ordered categorical rating scales

with both approaches MLR and WLSMV and transparently
reporting findings and their convergence acrossmethods. The
findings of ML(R) and WLSMV estimations should overlap
comparatively well when the analyzed data follow a normal
distribution (e.g., Beauducel & Herzberg, 2006). On the
contrary, if findings from WLSMV and ML analyses do not
converge, Li’s (2016) study could provide us with hints and
guide authors in checking whether certain features of their
data might be responsible for differences across estimation
methods. The latter could contribute to expand the knowledge
and inform future research of the factorial validity of a test
under investigation. In general, we suggest contextualizing the
findings of factor analyses of a test adaptation in relation to
prior findings such as the original test and alternative
adaptations.

Finally, it must be noted that CFA is only one potential
approach to investigate the structural validity of measures
that generate noncontinuous data. Alternatively, the field of
item response theory (IRT) offers approaches to examine
the trait structure underlying tests as well (Bond et al., 2020;
van der Linden, 2016). In fact, it has been shown that the
assumptionsmade by theWLSMVestimator and the graded
response model are similar (Takane & de Leeuw, 1987).
Item response models, however, are ideally estimated with
full information approaches, which are more efficient than
the WLMSV estimator (Forero & Maydeu-Olivares, 2009).
However, one must consider that the complexity of IRT
models often requires substantially increased computa-
tional power and time in comparison to CFA, when testing
high-dimensional models. The computational time in-
creases nonlinearly also depending on the estimator and the
dimensionality of the test. However, we encourage that
authors submitting to PTAD consider IRT analyses as one
alternative to the classical CFA framework.

In conclusion, our discussion is a response to the ob-
servation that PTAD receivesmany submissions that rely on
the nonrobust ML estimator when analyzing ordered cat-
egorical data. We can only speculate, but one reason for this
observation might be that popular software packages such
asMplus (Muthén &Muthén, 1997–2017), AMOS (Arbuckle,
2019), and CRAN R’s lavaan (Rosseel, 2012) use the ML
estimator as preset default estimationmethod which can be
used conveniently. However, there is no certainty that the
ML estimator provides accurate findings when treating
responses as approximately continuous and ignoring the
categorical and noncontinuous nature of the data. Con-
sidering classical and recent findings (e.g., Beauducel &
Herzberg, 2006; Li, 2016), WLSMV seems to provide more
accurate estimates of loadings when data are generated
through categorical responses. We hope that our discussion
contributes to provide an understanding of why editors and
reviewers working for PTAD request authors to consider
using the WLSMV estimator for their CFAs.

Psychological Test Adaptation and Development (2023), 4, 4–12 © 2023 The Author(s). Distributed as a Hogrefe OpenMind article
under the license CC BY-NC-ND 4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0)

10 Editorial

 h
ttp

s:
//e

co
nt

en
t.h

og
re

fe
.c

om
/d

oi
/p

df
/1

0.
10

27
/2

69
8-

18
66

/a
00

00
34

 -
 T

ue
sd

ay
, A

pr
il 

18
, 2

02
3 

4:
26

:1
1 

A
M

 -
 U

ni
ve

rs
itä

ts
- 

un
d 

L
an

de
sb

ib
lio

th
ek

 S
ac

hs
en

-A
nh

al
t I

P 
A

dd
re

ss
:1

41
.4

8.
67

.8
7 

https://creativecommons.org/licenses/by-nc-nd/4.0


References

American Psychological Association. (2014). Standards for edu-
cational and psychological testing. AERA Publications.

Arbuckle, J. L. (2019). Amos (Version 26.0) [Computer program]. IBM
SPSS.

Bandalos, D. L. (2014). Relative performance of categorical diag-
onally weighted least squares and robust maximum likelihood
estimation. Structural Equation Modeling, 21(1), 102–116. https://
doi.org/10.1080/10705511.2014.859510

Beauducel, A., & Herzberg, P. Y. (2006). On the performance of
maximum likelihood versusmeans and variance adjustedweighted
least squares estimation in CFA. Structural Equation Modeling,
13(2), 186–203. https://doi.org/10.1207/s15328007sem1302_2

Bollen, K. A. (1989). Structural equations with latent variables. Wiley.
Bond, T., Yan, Z., & Heene, M. (2020). Applying the Rasch model:

Fundamental measurement in the human sciences. Routledge.
Brauer, K., Nussbeck, F. J., Zwiky, E., & Proyer, R. T. (2022). Testing

effects of the response scale on indicators of interpersonal
perception [Manuscript in preparation].

Chou, C.-P., Bentler, P.M., & Satorra, A. (1991). Scaled test statistics
and robust standard errors for non-normal data in covariance
structure analysis: A Monte Carlo study. British Journal of
Mathematical and Statistical Psychology, 44(2), 347–357.
https://doi.org/10.1111/j.2044-8317.1991.tb00966.x

Cronbach, L. J., & Meehl, P. E. (1955). Construct validity in psy-
chological tests. Psychological Bulletin, 52(4), 281–302. https://
doi.org/10.1037/h0040957

Dierickx, S., Smits, D., Corr, P. J., Hasking, P., & Claes, L. (2020). The
psychometric properties of a brief Dutch version of the Rein-
forcement Sensitivity Theory of Personality Questionnaire.
Psychological Test Adaptation and Development, 1, 20–30.
https://doi.org/10.1027/2698-1866/a000004

Flynn, D., van Schaik, P., & van Wersch, A. (2004). A Comparison of
multi-item Likert and Visual Analogue Scales for the assessment
of transactionally defined coping function. European Journal of
Psychological Assessment, 20(1), 49–58. https://doi.org/10.1027/
1015-5759.20.1.49

Fokkema, M., & Greiff, S. (2017). How performing PCA and CFA on
the same data equals trouble: Overfitting in the assessment of
internal structure and some editorial thoughts on it. European
Journal of Psychological Assessment, 33(6), 399–402. https://
doi.org/10.1027/1015-5759/a000460

Forero, C., & Maydeu-Olivares, A. (2009). Estimation of IRT graded
response models: Limited versus full information methods. Psy-
chologicalMethods, 14(3), 275–299. https://doi.org/10.1037/a0015825

Gnambs, T., Scharl, A., & Rohm, T. (2021). Comparing perceptual speed
between educational contexts: The case of students with special
educational needs. Psychological Test Adaptation and Develop-
ment, 2, 93–101. https://doi.org/10.1027/2698-1866/a000013

Greiff, S., & Heene, M. (2017). Why psychological assessment needs
to start worrying about model fit. European Journal of Psy-
chological Assessment, 33(5), 313–317. https://doi.org/10.1027/
1015-5759/a000450

Heene, M., Hilbert, S., Draxler, C., Ziegler, M., & Bühner, M. (2011).
Masking misfit in confirmatory factor analysis by increasing
unique variances: A cautionary note on the usefulness of cutoff
values of fit indices. Psychological Methods, 16(3), 319–336.
https://doi.org/10.1037/a0024917

Hopwood, C. J., & Donnellan, M. B. (2010). How should the internal
structure of personality inventories be evaluated? Personality
and Social Psychology Review, 14(3), 332–346. https://doi.org/
10.1177/1088868310361240

Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in
covariance structure analysis: Conventional criteria versus new

alternatives. Structural Equation Modeling, 6(1), 1–55. https://
doi.org/10.1080/10705519909540118

Kaplan, D. (2009). Structural equation modeling: Foundations and
extensions (2nd ed.). Sage.

Lawley, D., & Maxwell, A. (1962). Factor analysis as a statistical
method. Journal of the Royal Statistical Society: Series D, 12(3),
209–229. https://doi.org/10.2307/2986915

Li, C. H. (2016). Confirmatory factor analysis with ordinal data:
Comparing robust maximum likelihood and diagonally weighted
least squares. Behavior Research Methods, 48(3), 936–949.
https://doi.org/10.3758/s13428-015-0619-7

Likert, R. (1932). A technique for the measurement of attitudes.
Archives of Psychology, 140, 44–53.

Muthén, B., du Toit, S. H. C., & Spisic, D. (1997). Robust inference
using weighted least squares and quadratic estimating equa-
tions in latent variable modeling with categorical and continuous
outcomes. Retrieved from https://www.statmodel.com/
download/Article_075.pdf

Muthén, L. K., & Muthén, B. O. (1997–2017). Mplus user’s guide.
Muthén & Muthén.

Rammstedt, B., & John, O. P. (2005). Kurzversion des Big Five In-
ventory (BFI-K): Entwicklung und Validierung eines ökonomischen
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