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Zusammenfassung

Achiasmie und Albinismus sind die beiden wichtigsten Fälle von angeborenen
Störungen, bei denen eine Fehlentwicklung des Chiasma opticums zu einem erhe-
blich gestörten Signalfluss im visuellen System führt. Neben dem klinischen Inter-
esse an ihrer Diagnostik sind chiasmale Störungen auch für die wissenschaftliche
Forschung von Bedeutung, denn sie ermöglichen die durch den veränderten Sig-
nalfluss hervorgerufenen neuronalen Kompensationsmechanismen zu untersuchen,
um letztendlich das Ausmaß plastischer Prozesse im visuellen Gehirn des Men-
schen zu verstehen. Sowohl klinische als auch wissenschaftliche Studien zu chias-
malen Störungen erfordern eine universelle Methode zur Bewertung der Integrität
des Chiasmas, idealerweise aufgrund anatomischer Informationen, welche noch
nicht etabliert ist. Das Ziel der hier vorgestellten Dissertation war es, dieses De-
fizit zu beheben, indem (i) Methoden der diffusionsgewichteten Magnetresonanzto-
mographie (dMRT) in (ii) einen Auswerteprozess integriert wurden, der die Quan-
tifizierung der Konnektivitätsänderungen am Chiasma bei Albinismus ermöglicht,
und in einem separaten (iii) Fall von Chiasma-Hypoplasie anzuwenden. Die weit-
eren Arbeiten umfassten (iv) Konzeptnachweise zur Deep-Learning-basierten (DL-
basierten) Erkennung von Chiasma-Anomalien aus anatomischen Bildern und (v)
die Veröffentlichung von MRT-Daten von Patienten mit angeborenen chiasmalen
Störungen. Explizit umfasst die Arbeit folgende Studien:

(i) Empfehlungen für die Traktographie des visuellen Systems
Die Rekonstruktion neuronaler Verbindungen im Gehirn durch Traktographie,
wie bei dMRT, ist ein leistungsstarkes aber komplexes Werkzeug. Um seine
Verwendung in klinischen und experimentellen Studien zu fördern und zu er-
leichtern, wurde einen Review (Puzniak et al., 2021b) mit Empfehlungen zur
Etablierung einer dMRT-basierten Analyse, Akquisition, Vorverarbeitung und
Modellierung von dMRT sowie eine Diskussion über Algorithmen zur Rekon-
struktion neuronaler Verbindungen verfasst. Es wird erwartet, dass dieser
Review die Einbeziehung der dMRT in bestehende und zukünftige Projekte
fördert und ermöglicht.

(ii) dMRT-basierte Quantifizierung abnormaler neuronaler Projektionen am
Chiasma opticum
In Anbetracht der Tatsache, dass eine Fehlentwicklung des Chiasmas
dessen Konnektivität verändert, wurde untersucht, ob solche bei Albinis-
mus beobachteten Veränderungen mit dMRT-basierter Traktographie erkannt
und quantifiziert werden können (Puzniak et al., 2019). Die Analyse wurde
mit anatomischen MRT- (aMRT) und dMRT-Daten von gesunden Kontroll-
probanden (n=8) und Menschen mit Albinismus (PWA1; n=9) durchgeführt.
Diese wurden vorverarbeitet und mit Diffusionstensor- (DT) und Constrained

1People with Albinism
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Spherical Deconvolution- (CSD) Ansätzen modelliert und für die Traktogra-
phie verwendet. Die erhaltenen Schätzungen des prozentualen Anteils der
kreuzenden Fasern im Chiasma zeigten signifikante Unterschiede zwischen
PWA und Kontrollen sowohl für DT- (p=0.014) als auch für CSD-Modelle
(p=0.0009). Die Bewertung der Unterscheidungskraft mittels ROC AUC2

zeigte eine bessere Leistung des CSD-Modells (0.75 gegenüber 0.61 für DT),
was durch die Korrelation zwischen CSD- und fMRT-basierten Schätzungen
der Kreuzung (R2=0.83, p=0.012) zusätzlich unterstützt wurde. Diese Ergeb-
nisse zeigen, dass insbesondere die CSD-basierte Traktographie einen effizien-
ten Ansatz zur Erkennung von chiasmalen Anomalien darstellt und somit
einen neuartigen anatomie-basierten Ansatz für die Diagnostik von chias-
malen Anomalien darstellt.

(iii) Weitere Anwendungen des entwickelten dMRT-basierten Frameworks
Der obige dMRT-Auswerteprozess wurde in einer separaten Fallstudie zur
Chiasma Hypoplasie angewandt, um die Symmetrie der Projektionen aus den
nasalen Netzhäuten zu bewerten (Ahmadi et al., 2020). Die durchgeführte
Analyse bestätigte die Verringerung der Kreuzungsstärke und zeigte die asym-
metrischen Projektionen beider nasaler Hemiretinae (73% vom rechten Auge
und 27% vom linken Auge), die von denen bei Kontrollen abwichen (39-68%
bzw. 32-61%), während die Projektionen der temporalen Hemiretinae in die
normal beobachteten Werte fielen. Diese Ergebnisse bestätigten die Robustheit
des obigen Auswerteprozesses und zeigten die komplementäre Nutzung von
funktioneller und Diffusions-MRT.

(iv) DL-basierter Nachweis von chiasmalen Fehlbildungen
Trotz ihrer Wirksamkeit ist der Nutzen der dMRT-basierten Diagnostik durch
die Kosten der zeitaufwändigen Datenerfassung stark eingeschränkt. Dies
motivierte zur Erforschung alternativer, kosteneffizienter Methoden, die die
Erkennung von Fehlbildungen aus klinischen T1-gewichteten (T1w) Standard-
daten ermöglichen. Zu diesem Zweck wurde getestet, ob ein neuronales
Faltungsnetzwerk (CNN3), das für die Segmentierung normaler Sehnerven
aus T1w-Bildern trainiert wurde, ebenso genau die für menschlichen Al-
binismus typischen Fehlbildungen des Sehnervs segmentiert (Puzniak et al.,
2021c). Die Netzwerkleistung wurde anhand des Dice Similarity Coefficient
(DSC) bestimmt, der die Ähnlichkeit zwischen den CNN-Vorhersagen und den
manuell definierten Sehnervenmasken angibt. Die Ergebnisse zeigten, dass
das trainierte CNN zwar eine stabile Leistung für Kontrollen aus zwei unab-
hängigen Datensätzen - HCP und CHIASM4, hatte (Mittelwert ± SEM des DSC
gleich 79±2% bzw. 75±3%, FWE-korrigierter p-Wert von 1.0), seine Leistung
für Daten von PWA aus dem CHIASM-Datensatz jedoch deutlich geringer
war [44±8%; Vergleiche mit HCP- und CHIASM -Kontrollen führten zu p-
Werten (FWE-korrigiert) von 0.004 bzw. 0.04]. Die Diskrepanz, die zu einer
ROC AUC von 0.89 (CHIASM-Kontrollen vs. PWA aus CHIASM) und 0.84
(HCP-Kontrollen vs. PWA aus CHIASM) führt, liefert einen proof-of-concept
für eine DL-basierte Diagnostik chiasmaler Fehlbildungen, die in klinischem
Umfeld breit angewendet werden kann.

2Receiver Operator Characteristics Area Under Curve
3Convolutional Neural Networks
4(Puzniak et al., 2021a), Artikel (v)
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(v) Veröffentlichung von MRT-Daten zu angeborenen chiasmalen Störungen
Eine der größten Herausforderungen bei der Erforschung von Chiasmen-
fehlbildungen ist die Knappheit der Daten. Um dieses Hindernis zu beseit-
igen, wurde der Datensatz von T1- und diffusionsgewichteten Bildern einer
Kontrollgruppe (n=8) sowie PWA (n=9), Chiasmenhypoplasie (n=1) und Achi-
asma (n=1) (Puzniak et al., 2021a) veröffentlicht. Der Datensatz enthielt zusät-
zlich fMRT-Daten einer Untergruppe von 4 Kontrollen und 6 PWA, zu kor-
tikalen Antworten auf die monokulare visuelle Reizung beider Augen, sowie
manuell bearbeitete Masken zur Unterstützung der Traktographie des Chi-
asma opticums und Skripte zur Vorverarbeitung und Qualitätsbewertung.
Es wird erwartet, dass die auf der Cloud-Computing-Plattform brainlife.io
veröffentlichten Daten die Erkennung von angeborenen Chiasma-Störungen
verbessern und eine Vielzahl von Studien erleichtern werden, die von diesen
einzigartigen Daten profitieren können.
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Abstract

Achiasma and albinism are the two primary cases of congenital chiasm disorders,
where ill-development of the optic chiasm results in a substantially disrupted signal
flow in the visual system. Apart from the clinical interest in their diagnostics, the
chiasmal disorders are also of importance for scientific research that aims to study
compensatory mechanisms evoked by altered signal flow to ultimately understand
the scope of plasticity in the human visual brain. Both clinical and scientific studies
on chiasmal disorders require a universal method of assessment of chiasm integrity,
ideally based on anatomy, which is not fully established yet. The objective of work
presented in this thesis was to address this need through the incorporation of (i) dif-
fusion Magnetic Resonance Imaging (dMRI) methods into (ii) a framework capable
of quantifying connectivity changes at chiasm in albinism, which was applied in a
separate (iii) case of chiasm hypoplasia. The further works covered (iv) demonstra-
tion of proof-of-concept for Deep Learning-based (DL-based) detection of chiasmal
abnormalities from anatomical images and (v) the publication of MRI data of pa-
tients with congenital chiasmal disorders. Specifically, the thesis covers following
studies:

(i) Recommendations for tractography of the visual system
Reconstruction of neural connections within the brain through tractography,
as provided by dMRI, is a powerful, yet complex tool. To promote and facil-
itate its use in clinical and research studies, a review with recommendations
for establishing dMRI-based analysis was published (Puzniak et al., 2021b),
which discussed acquisition, preprocessing and modelling of dMRI, as well
as algorithms used for reconstruction of neural connections. As such, the re-
view is expected to promote and enable incorporation of dMRI in existing and
upcoming projects.

(ii) dMRI-based quantification of abnormal chiasmal crossing
Considering that maldevelopment of the chiasm alters its connectivity, it was
investigated whether such changes observed in albinism can be detected and
quantified with dMRI-based tractography (Puzniak et al., 2019). The analysis
was performed on anatomical MRI (aMRI) and dMRI data of controls (n=8)
and people with albinism (PWA; n=9), which was preprocessed, modelled
with Diffusion Tensor (DT) and Constrained Spherical Deconvolution (CSD)
approaches and used for tractography. The obtained estimates of percentage
of crossing fibers in the chiasm revealed significant differences between PWA
and controls for both DT (p=0.014) and CSD (p=0.0009) models. The assess-
ment of discriminative power with ROC AUC5 revealed better performance of
the CSD model (0.75 as opposed to 0.61 for DT), which was further reinforced
by correlation between CSD- and functional MRI-based estimates of crossing

5Receiver Operator Characteristics Area Under Curve
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(R2=0.83, p=0.012). These results demonstrate that especially CSD-based trac-
tography provides an efficient approach to detection of chiasmal abnormali-
ties, thus providing a novel anatomy-driven approach for diagnostics of chias-
mal abnormalities.

(iii) Further applications of developed dMRI-based framework
The developed dMRI-based framework was applied in a separate case study
on chiasm hypoplasia to assess the symmetry of projections from the nasal reti-
nas (Ahmadi et al., 2020). The conducted analysis confirmed the reduction of
crossing strength, as well as revealed the asymmetrical projections from the
nasal retinas (73% from the right eye and 27% from the left) which fell beyond
ranges observed in controls (39–68% and 32–61%, respectively), while the pro-
jections from temporal retinas fall into normally observed values. These re-
sults validated the robustness of previously developed framework, as well as
demonstrated complementary use of functional and diffusion MRI.

(iv) DL-based detection of chiasmal malformations
Despite its effectiveness, the utility of dMRI-based diagnostics is severely lim-
ited by costs of time-consuming data collection. This motivated the explo-
ration of alternative, cost-efficient methods that enables detection of malfor-
mations from clinically standard T1-weighted (T1w) data. For this aim it was
tested whether convolutional neural network (CNN) trained to segment nor-
mal optic chiasm from T1w images will equally accurately segment the mal-
formed optic chiasm as typical for human albinism (Puzniak et al., 2021c). The
performance of the network was measured by the Dice Similarity Coefficient
(DSC), which denoted the similarity between CNN predictions and manually
defined optic chiasm masks. The results revealed that while trained CNN
showed stable performance for controls from two independent datasets – HCP
and CHIASM6 (mean ± SEM of DSC equal to 79±2% and 75±3%, respectively,
FWE-corrected p-value of 1.0), its performance for data of PWA from CHIASM
dataset was significantly lower (44±8%, with comparisons against HCP and
CHIASM controls yielding FWE-corrected p-values of 0.004 and 0.04, respec-
tively). The observed discrepancy, translating into ROC AUC of 0.89 (controls
from CHIASM vs PWA from CHIASM) and 0.84 (controls from HCP vs PWA
from CHIASM) provides proof-of-concept for DL-based diagnostics of chias-
mal malformations that can be widely applied in clinical settings.

(v) Publication of MRI data on congenital chiasmal disorders
One of the major challenges of research on chiasmal malformations is the
scarcity of the data. To address this obstacle, the dataset of T1- and diffusion-
weighted images from a control group (n=8), PWA (n=9), chiasm hypoplasia
(n=1) and achiasma (n=1) was published (Puzniak et al., 2021a). The dataset
furtherly included fMRI data from a subset of 4 controls and 6 PWA which
contained recordings of the cortical response to the monocular stimulation of
both eyes, as well as manually edited masks supporting the tractography of
the optic chiasm and scripts for preprocessing and quality assessment. The
data, published on the cloud computing platform brainlife.io, is expected to
increase recognition of the congenital chiasmal disorders and to facilitate wide
range of studies that may benefit from this unique data.

6(Puzniak et al., 2021a), paragraph (v)
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Chapter 1

Introduction

“A disease is never a mere loss or excess. There is always a reaction on the part of the
organism or individual to restore, replace or compensate for and to preserve its identity,
however strange the means may be.”

(Sacks, 1987)

As much as can be learned about the human brain and its functioning from the con-
trol population, it is the disease that often grants unique insights into well described
systems. Investigations on neurological disorders not only allow for understanding
their causes and effects, but may also reveal new and key information about mecha-
nisms underlying brain functioning (Poldrack et al., 2012).

This applies as well to congenital disorders of visual system, as in achiasma (Ap-
karian et al., 1994; Apkarian et al., 1995) and albinism (Kolb et al., 1995). Although
the patho-physiology and mechanisms behind the afore-mentioned disorders differ,
they both result in ill-development of the visual system and misrouting of nerves
forming the optic chiasm. Notably, although such alterations disrupt the normal
flow of signal in the visual system, the functional integrity of vision is mainly pre-
served (Wolynski et al., 2010; Klemen et al., 2012; Hoffmann and Dumoulin, 2015).
This surprising finding extends the importance of albinism and achiasma beyond
their clinical profile, as they may serve as scientific models for understanding the
coupling between structure and function of visual system, or for neuroplasticity
mechanisms preserving the integrity of the visual system (Ahmadi et al., 2019b).
These potential applications of albinism and achiasma, together with detailed de-
scriptions of both diseases and their impact on the visual system, are provided in
the Chapter 2 (Background).

Naturally, the diagnostics and investigations on chiasmal malformations require ro-
bust methods for the assessment of the chiasm’s properties. Currently, this is be-
ing standardly achieved with functional measurements, such as Visual Evoked Po-
tentials [VEPs; (Hoffmann et al., 2015)] or functional Magnetic Resonance Imaging
[fMRI; (Hagen et al., 2008)]. The performance of these techniques is however depen-
dent on quality of visual functions and compliance of the participants, which limits
their applicability in cases of significant visual deficits, as observed in albinism or
achiasma (Sami et al., 2005). This motivates a need for development of alternative
imaging methods, such as anatomical measurements of chiasm with Computer To-
mography (CT) or Magnetic Resonance Imaging (MRI), which would allow for a
direct and independent assessment of the optic chiasm. Interestingly, such meth-
ods have not yet been definitely established. There are several reasons for this, (1)
The small and complex shape of the optic chiasm is poorly visible on CT images,
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which has been reported as early as 1984 (Daniels et al., 1984), and continues to af-
fect present studies (Ibragimov and Xing, 2017; Duanmu et al., 2020). This issue is
also present with MRI images of chiasm, which despite their sufficiently high res-
olution and contrast cannot effectively process with conventional methods, such as
atlas-based segmentation of MRI images (Isambert et al., 2008). These general prob-
lems can be further enhanced in case of particular MRI acquisition sequences, such
as Echo-Planar Imaging [EPI; (Stehling et al., 1991)], where chiasm’s image is af-
fected by geometry-induced distortions (Andersson and Skare, 2012). (2) Errors in
the quantitative measures derived from diffusion MRI [(Basser et al., 1994)] caused
by the presence of crossing populations of fibers (Jones et al., 2013). (3) Development
of methods for imaging malformed chiasms is limited by data scarcity, an effect re-
sulting from the low prevalence of both albinism [approximately 1:20000 according
to (Marçon and Maia, 2019)] and achiasma (fewer than 50 reported cases).

The purpose of the work presented in this thesis was to aid researchers and clinicians
in overcoming the challenges discussed above, and thus facilitate future studies on
chiasmal malformations. Specifically, I addressed the research questions, presented
in detail in Chapter 3 (Research Questions), which pertained to:

(1) limited literature on analysis of connectivity of the visual system and optic
chiasm,

(2) absence of validated framework for assessment of chiasmal misrouting,

(3) lack of anatomy-based methods for detection of malformations of chiasm,

(4) scarcity of imaging data on chiasmal disorders.

The aims of the thesis have been pursued using two non-invasive imaging tech-
niques i.e. anatomical MRI (aMRI) and diffusion MRI (dMRI), suited to the task
of imaging of the optic chiasm. These imaging modalities have been combined with
two distinct computational approaches. The first used neuroimaging algorithms and
models designed specifically for analysis of aMRI and dMRI data. The second one
involved the application of generalizable data-driven Neural Networks (NN) mod-
els to aMRI data. The detailed description of employed methods is provided in
Chapter 4 (Methods).

The resulting works gathered in this thesis consist of a:

• Review article on dMRI-based tractography of the visual system (Puzniak et
al., 2021b)(Chapter 5), addressing (1),

• Scientific article demonstrating a dMRI framework capable of robust quantifi-
cation of nerve decussation in chiasm (Puzniak et al., 2019)(Chapter 6), which
was successfully applied in further studies (Ahmadi et al., 2020)(Chapter 7),
addressing (2),

• Scientific article providing a proof-of-concept for novel detection of chiasmal
malformations from aMRI images (Puzniak et al., 2021c)(Chapter 8), address-
ing (3),

• Data descriptor of the first publicly available MRI dataset on chiasmal publi-
cations (Puzniak et al., 2021a) (Chapter 9), addressing (4).

The impact and importance of the above listed scientific findings and contributions
are summarized in Chapter 10 (General Discussion), which also includes the outlook
and concluding remarks.
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Chapter 2

Background

This chapter starts with an overview of visual system [subchapter 2.1 (Structural and
functional organization of the primary visual pathway)] in order to provide a wider
context into understanding the nature and impact of chiasmal malformations. Sub-
sequently, a comprehensive description of albinism and achiasma with their causes,
phenotypes and their impact on the integrity of the human visual system are dis-
cussed [subchapter 2.2 (Congenital chiasmal disorders)]. Finally, I discuss the rele-
vance of the studying chiasmal malformations for clinical and research purposes.

2.1 Structural and functional organization of the primary vi-
sual pathway

While the human visual system consists of multiple visual pathways (Kelts, 2010;
De Moraes, 2013), this thesis focuses on the one that is fundamental for vision, the
geniculo-striate pathway. The basic purpose of this primary visual pathway is to
capture and process visual information, which is then being transmitted through a
system of inter-connected brain structures (Figure 1). The structural organization of
those structures is presented in detail in subsequent series of paragraphs depicting
the flow of signal through visual system, specifically:

• subchapter 2.1.1 (Visual signal processing in the eye)

• subchapter 2.1.2 (Routing of signal in the optic chiasm)

• subchapter 2.1.3 (Organization of the lateral geniculate nucleus)

• subchapter 2.1.4 (Visual cortex organization)

2.1.1 Visual signal processing in the eye

The processing of a visual scene starts when the light, upon entering the eye, reaches
120 million rods and 20 million cones, the two types of photoreceptors located in
the outermost part of the retina [the third type of photoreceptors, melanopsin, is
not involved in conscious vision and is therefore not a part of the primary visual
pathway (Güler et al., 2008)]. This initiates the phototransduction in the photorecep-
tors, where through a series of chemical reactions started by conformational changes
in the photopigment, the input photons are translated into electrical signal (Wald,
1968). The outcome signal is subsequently transmitted to bipolar cells and the reti-
nal ganglion cells (RGC) which are the first neurons of visual pathway located in the
innermost retinal layers. There are several classes of RGC, with the parasol (magno-
cellular) and midget (parvocellular) cells being the most distinctive ones (Kim et al.,
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FIGURE 1: Flow of visual signal through the structures of primary visual pathway.
The projection of visual scene is projected onto the retina, where it is translated into elec-
trical signal. The signal propagates along optic nerve and enters the optic chiasm. Here,
depending whether it originates from temporal or nasal retina, the signal either remains on
the same brain hemisphere or crosses to contralateral, respectively. The signal travels fur-
ther along the optic tract and reaches via synaptic connection to lateral geniculate nucleus.
From the nucleus it propagates along optic radiation and reaches the primary visual cortex
– the first of several visual areas involved in processing the visual signal.
Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer
Nature, Nature Reviews Neuroscience; Imaging implicit perception: promise and pitfalls.
Hannula D. et al.; Copyright © 2005.

https://doi.org/10.1038/nrn1630
https://doi.org/10.1038/nrn1630
https://doi.org/10.1038/nrn1630
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2021). Due to their extensive branching the parasol cells have larger receptive fields,
and captures high level information about stimuli, such as motion or depth of objects
(Atkinson, 1992). The midget RGCs with smaller receptive field provide more de-
tailed information about stimuli, such as color. The axons of 1.2 million RGCs reach
the retinal nerve fiber layer and converge to form the optic nerve (Ogden, 1984),
which leads the signal further along the visual pathway.

Importantly, the resulting representations of the visual field is characterized by two
features, which are critical for its further processing and, effectively, for vision (a)
cortical magnification and (b) retinotopic organization of the signal. Specifically:

(a) The term “cortical magnification” refers to the fact, that the number of neurons
in the visual cortex representing a visual stimulus of given size is not constant,
but is rather dependent on the location of stimulus in the visual field (Rovamo
and Virsu, 1979). The largest cortical representation, and consequently highest
visual acuity, is observed for the central visual field [e.g. the central 2◦ of visual
field drive 50% of the visual cortex (Kandel et al., 1991)], whereas acuity at
periphery is about 50 times lower (Frisén and Glansholm, 1975). This effect
is a consequence of far greater density of cones and RGCs in the fovea than
in the periphery (Hendrickson, 2005) and is further enhanced by the presence
of foveal pit, which increases the amount of cortical surface per degree of the
visual field (Rodieck, 1998). The qualitative depiction of cortical magnification
is presented in the Figure 2.

(b) The term “retinotopic organization” refers to the fact, that the spatial continu-
ity of visual field is preserved upon its projection onto the retina. Effectively,
the adjacent RGCs encode adjacent portions of the visual field, whereas their
spatial relationships encode the organization of visual field. This important
information on the organization of signal is preserved at all stages of signal
processing in the visual system, including lateral geniculate nucleus [LGN;
(Schneider et al., 2004)] and visual cortex (Horton and Hoyt, 1991), as qualita-
tively depicted in the Figure 2. Effectively, the retinotopic organization guides
the retinal mapping of the signal onto neurons, enabling retinotopic organiza-
tion of visual cortex (Inouye, 1909), which plays a critical role in the integration
of signal in the cortex.

2.1.2 Routing of signal in the optic chiasm

The optic chiasm is a relatively small structure [mean width reportedly in the range
of 13-15 mm (Parravano et al., 1993; Wagner et al., 1997; Schmitz et al., 2003)] formed
by the crossing and non-crossing RGC axons. Specifically, the optic nerve bundles
split in the chiasm in two separate groups of axons corresponding to nasal and tem-
poral retina (Figure 3). The axons of the nasal RGCs cross in the optic chiasm to the
contralateral brain hemisphere, while the axons from temporal retina project to the
visual cortex of the ipsilateral hemisphere. This anatomical pattern formed by the
crossing and non-crossing axons [of ratio 53:47, respectively (Kupfer et al., 1967)]
ensures that processing of each visual hemifield is limited to a single (contralateral)
brain hemisphere only, where the visual representations from both eyes are being
integrated (Figure 2). Lastly, the nerves exit the chiasm forming the optic tracts,
eventually transmitting the signal to LGN.



Chapter 2. Background 6

FIGURE 2: Representations of visual signal throughout the visual system.
The visual field is asymmetrically projected onto left and right retina. In the chiasm the
RGC axons from temporal and nasal retina are being split between ipsi- and contralateral
brain hemispheres, respectively. The post-chiasmal segments of RGC axons, optic tracts,
end with synaptic connection to LGN. From the retinotopically organized LGN the signal
is projected to the striate cortex. Here, the significantly large portion of cortex is driven by
relatively small central portion of visual field, whereas large peripheral visual areas have
comparatively small representations.
Republished with permission of Elsevier Science & Technology Journals from Clinical
Anatomy and Physiology of the Visual System. Remington L.A. & Goodwin D. 2011; per-
mission conveyed through Copyright Clearance Center, Inc.

https://www.elsevier.com/books/clinical-anatomy-and-physiology-of-the-visual-system/remington/978-1-4377-1926-0
https://www.elsevier.com/books/clinical-anatomy-and-physiology-of-the-visual-system/remington/978-1-4377-1926-0
https://www.elsevier.com/books/clinical-anatomy-and-physiology-of-the-visual-system/remington/978-1-4377-1926-0
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FIGURE 3: Schematic of the optic nerve crossing in the optic chiasm.
The left visual field (point B) is projected onto nasal retina of the left eye and the temporal
retina of the right eye. In the optic chiasm, the axons of nasal RGCs cross to the contralat-
eral (right) brain hemisphere, while the ones from nasal retina remain on the same (right)
brain hemisphere. Consequently, the representations of left visual field from both eyes are
projected to the right brain hemisphere.
Reprinted with permission of the Licensor through PLSclear: Oxford Publishing Limited,
Neuroscience 2nd (Second) Revised Edition. Purves D. et al.; Copyright © 2001.

https://www.ncbi.nlm.nih.gov/books/NBK10799/
https://www.ncbi.nlm.nih.gov/books/NBK10799/
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FIGURE 4: Coronal section through the LGN of the rhesus monkey.
The red staining indicates layers receiving signal from magnocellular RGCs (with layer 1
receiving signal from contra- and layer 2 from ipsilateral eye). The blue staining indicates
parvocellular layers (with layers 4 and 6 receiving signal from contra- and layers 3 and 5
from ipsilateral eye). The dotted lines mark approximate border between hilum and horns.
Reprinted by permission from Wolters Kluwer Health, Inc., Journal of Glaucoma; Anatomy
of the Visual Pathways. De Moraes C.; Copyright © 2015.

2.1.3 Organization of the lateral geniculate nucleus

The optic tract ends with synaptic connections, which transmit the signal to the neu-
rons of the primary visual pathway that are located in the lateral geniculate nucleus
(LGN). Anatomically, LGN is divided into 6 layers, with layers 2, 3 and 5 receiv-
ing signal from temporal retina of the ipsilateral eye, while layers 1, 4 and 6 receive
signal from nasal retina of the contralateral eye. Further, the layers can be divided
into magnocellular layers (1, 2) and parvocellular layers (3-6), receiving signal from
parasol and midgets RGCs, respectively (Figure 4). Notably, the spatial organization
of LGN preserves the retinotopic organization. Here, the visual signal from the mac-
ula (central part of retina containing the fovea) is reaching the central area of LGN
(hilum), while the signal from inferior and superior parts of retina reaches lateral
and medial horns, respectively (Chacko, 1948). Upon reaching the LGN, the visual
signal is projected via the optic radiation to the occipital lobe, where the visual cortex
is located.

http://doi.org/10.1097/IJG.0b013e3182934978
http://doi.org/10.1097/IJG.0b013e3182934978
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2.1.4 Visual cortex organization

The visual cortex is a component of the visual system, where the sensory signal is
being integrated and processed. Functionally, the visual cortex comprises numerous
visual field maps which capture distinct features of visual input, and are located
in several distinct brain areas, such as occipital lobe, dorsal cortex, lateral occipital
cortex or ventral cortex (Wandell et al., 2007).

The visual area that receives the signal from the LGN is the V1, also referred to
as “primary visual cortex”, Brodmann area 17 or the striate cortex, which is located
around the calcarine fissure of the occipital lobe. Specifically, the visual signal is
projected to the layer 4 (out of 6 functional layers of the V1), with sub-layer 4Cα re-
ceiving mainly magnocellular input, while the sub-layer 4Cβ receives parvocellular
input (Hubel and Wiesel, 1972). Importantly, V1 of each hemisphere receives two
representations of contralateral visual field which demonstrate cortical magnifica-
tion and are retinotopically organized (Inouye, 1909), as presented in Figure 2. The
first of those two features allow for high visual acuity for the central portion of vi-
sual field, whereas the second is essential for organization and integration of visual
signal.

From V1, the visual signal is processed down through two separate streams. The
first one, the ventral stream (also known as “What Pathway”) is relevant for object
representation, and comprises V2, V4 and inferior temporal cortex. The second,
dorsal stream or the “Where Pathway” is responsible for motion and localization of
objects and involves V2, dorsomedial area of V6, medial temporal area of V5 and the
posterior parietal cortex (Mishkin et al., 1983).

2.2 Congenital chiasmal disorders

The presented structural, and consequently functional organization of the visual sys-
tem can be changed in differential ways by disorders, diseases and trauma. Partic-
ularly remarkable classes of those are congenital chiasmal disorders, described in
detail in subchapters 2.2.1 (Achiasma) and 2.2.2 (Albinism). Here, the abnormal de-
velopment of the visual system results in a seemingly subtle, yet very impactful
malformation of the optic chiasm, disrupting the flow of signal in the visual sys-
tem (Hoffmann and Dumoulin, 2015). Remarkably, such significant changes do not
harm the fundamental integrity of the visual system, apart from their clinical rele-
vance, described in the subchapter 2.2.3 (Clinical challenges). As such, the congeni-
tal chiasmal disorders provide valuable opportunities for research, as detailed in the
subchapter 2.2.4 (Research challenges).

2.2.1 Achiasma

Achiasma is a disorder of the visual system characterized by the absence or lack of
crossing fibers in the optic chiasm (Hoffmann et al., 2012; Hoffmann and Dumoulin,
2015). While the name “achiasma” is a generic term for a broad spectrum of chiasmal
abnormalities, some authors suggest to use more precise terms, such as “chiasmal
aplasia” for complete absence of chiasm (Taylor, 2007) and “chiasm hypoplasia” for
reduced crossing (Ahmadi et al., 2020). The mechanisms and phenotype of the achi-
asma, as well as its consequences for the visual system and diagnostics are described
in next subchapters.
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2.2.1.1 Mechanisms

Due to the extreme rarity of achiasma [fewer than 50 reported cases since it was first
reported by (Apkarian et al., 1994; Apkarian et al., 1995)], the underlying causes and
mechanisms are primarily unknown. Studies on animal models however suggest,
that the disorder is underpinned by genetic factors (Williams et al., 1994; Seth et al.,
2006).

2.2.1.2 Phenotype

Existing evidence indicates a correlation of achiasma with nystagmus, usually see-
saw (Apkarian et al., 1995; Thompson et al., 1999), which is usually included along
the VEP documentation of abnormal chiasmal connectivity and reduced size of chi-
asm on aMRI images in achiasma’s diagnostic criteria (Sami et al., 2005; Hoffmann
and Dumoulin, 2015). Furthermore, achiasma is reported together with general de-
velopmental delay and optic disc abnormalities (Sami et al., 2005), but is not in prin-
ciple associated with significant abnormalities e.g. of the optic disc (Victor et al.,
2000; Jansonius et al., 2001; Korff et al., 2003). Generally, achiasma can be classified
into 3 types (Sami et al., 2005):

• Type A: reduced decussation accompanied by apparently normal optic nerves
and visual fields. Possible see-saw (Apkarian and Bour, 2001) or purely hor-
izontal (Jansonius et al., 2001) nystagmus, as well as abnormal head posture
and strabismus. The only known anatomical abnormality is reduction of the
chiasm’s size (Sami et al., 2005).

• Type B: reduced decussation accompanied by chiasmal hypoplasia and mid-
line symptoms of septo-optic dysplasia (Thompson et al., 1999).

• Type C: reduced decussation accompanied by chiasmal hypoplasia and clefts
(abnormal fissures or openings, effects of abnormal embryonic development)
and encephaloceles (sac-like protrusions of the brain and its membranes
through openings in the skull) of the skull base (Hodgkins et al., 1998).

2.2.1.3 Consequences for the visual system’s integrity

The main consequence of achiasma is mis-routing of the signal in the visual path-
ways (Davies-Thompson et al., 2013). Here, the signal from nasal retina, instead of
crossing thorough the chiasm to other brain hemisphere, is partially or completely
redirected to the same brain hemisphere. As such, the LGN receives signal from
two opposite hemifields instead of one, which influences its representation. The ab-
normal mapping is propagated further down to the visual cortex. Here, instead of
the usual pattern, where a single visual hemifield is represented on the contralateral
brain hemisphere, each hemisphere receives an input from both the contra- and the
ipsilateral visual field. Interestingly, these opposing hemifields are superimposed
over each other, such that the same cortical region is driven by stimuli in two dis-
tinct visual field locations (Victor et al., 2000; Hoffmann et al., 2012; Purington et al.,
2012; Davies-Thompson et al., 2013). Consistently, it has been shown that each corti-
cal location has two populations of receptive fields – one for each hemifield that are
mirrored across the vertical meridian (Hoffmann et al., 2012). Furthermore, current
evidence indicates that the specific pattern of overlaid representations of opposing
hemifields also propagates across the visual hierarchy, responsible for high level



Chapter 2. Background 11

processing of visual stimuli (Davies-Thompson et al., 2013; Kaule et al., 2014). Sur-
prisingly, despite the high degree of abnormalities of the cortical representations and
further limitations such as nystagmus, reduced acuity or lack of stereovision, achi-
asmatic patients are being reported to demonstrate strikingly normal behavioural
vision (Thompson et al., 1999; Victor et al., 2000).

2.2.1.4 Diagnostics

Diagnosis of achiasma requires confirmation of an absence or a reduction of chiasmal
crossing, which can be achieved by either electrophysiology or MRI imaging. The
former relies on confirmation of positive contralateral asymmetry of the monocular
VEP response to flash (Hoffmann et al., 2015), but is susceptible to noise and may
suffer from limited reproducibility. Such limitations are absent in the alternative
MRI imaging, used to detect reduced size of chiasm, which however may encounter
problems caused by insufficient resolution and ambiguities in chiasmal sizes. Con-
sequently, a certain diagnostic is achieved by combination of both VEPs and MRI
imaging (Korff et al., 2003; Sami et al., 2005; Taylor, 2007).

2.2.2 Albinism

Albinism (from lat. "albus" –“white”) is a rare [estimated prevalence of 1:20 000
(Marçon and Maia, 2019)] condition characterized by visual system deficits in asso-
ciation with hypopigmentation (Montoliu et al., 2014). The heterogenous spectrum
of albinism is classically divided into:

• Oculocutaneous albinism (OCA), the most commonly recognizable form due
to the visible impact on hair and skin pigmentation, which is divided into 7
subtypes OCA1 – OCA7;

• Ocular albinism (OA) in the form of OA1 where the shortage of melanin alters
the visual system only;

• Syndromic albinism, which covers i.e. Hermansky-Pudlak or Chediak-Higashi
syndromes (Scheinfeld, 2003).

The discussion on albinism requires also mentioning the Fovea Hypoplasia, Optic
Nerve Decussation defect Anterior segment syndrome [FHONDA; (Pal et al., 2004;
Al-Araimi et al., 2013)], which shares several features with albinism (such as fovea
hypoplasia or abnormal nerve decussation), but due to different underlying mech-
anisms is not considered to belong to albinism’s spectrum (Poulter et al., 2013; Ah-
madi et al., 2019a).

The mechanisms and phenotype of albinism, as well as its consequences for the vi-
sual system and diagnostics are described in next subchapters.

2.2.2.1 Mechanisms

The underlying cause of all forms of albinism are genetic mutations that impair
melanocytes, rendering them unable to either synthetize melanin or distribute it
properly (notably, the total number of melanocytes remains unchanged, unlike in
piebaldism and vitiligo). Normally, melanocytes are derived from neural crest
(Cramer, 1991) and migrate through the developing embryo to specific locations,
such as skin, eyes, hair and inner ear. There, melanocytes, in their specialized or-
ganelles called melanosomes, synthetize melanin (Videira et al., 2013). However,
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the melanogenesis can be impaired in cases of specific genetic mutations, thereby
inducing a deficiency of melanin and effectively cause albinism. Until recently mu-
tations in 19 genes (inherited in autosomal recessive inheritance pattern) have been
reported to cause albinism – 6 out of 7 causing 7 forms of OCA (1 mutation still re-
mains unidentified), 1 causing OA1, 10 genes causing Hermansky-Pudlak syndrome
and 1 responsible for Chediak-Higashi syndrome (Lasseaux et al., 2018).

Importantly, the consequences of melanin deficits extend beyond increased suscepti-
bility to UV radiation, as this pigment, or rather precursors, also guides the develop-
ment of the visual system. This important feature explains the co-occurrence of two
characteristic albinism’s features, i.e. pigmentation and visual system deficits, since
it is the hypopigmentation that drives visual system’s abnormalities. Specifically,
the visual system alterations involve:

• Foveal hypoplasia: The foveal pit is typically located in the avascular zone and
shows increased density of cone photoreceptors (Hendrickson, 2005). This is
however not the case in albinism, as the PWA often lack the avascular zone
(Gregor, 1978; Abadi and Pascal, 1989) and the foveal pit [chiasm hypoplasia;
(Kinnear et al., 1985; Oetting et al., 1994)]. This outcome is explained by the
lack of developmental molecular barrier securing the future foveal avascular
zone (Provis and Hendrickson, 2008).

• RGC genesis: Reduced number of RGCs in albinism, as demonstrated on al-
binotic animals (Guillery et al., 1984; Leventhal and Creel, 1985). This leads
to thinner peripapillary nerve fiber layer (Mohammad et al., 2015) and smaller
optic nerves and chiasm width (Schmitz et al., 2003; Hagen et al., 2005; Mcket-
ton et al., 2014).

• Optic nerve misrouting: Enhanced crossing in the optic chiasm by the por-
tion of axons from temporal RGC abnormally projecting to contralateral brain
hemisphere (Guillery et al., 1975). This is attributed to the disruption of
molecular mechanisms at the retina that guide axons at the chiasm (Prieur
and Rebsam, 2017), most likely due to delayed neurogenesis (Rachel et al.,
2002; Bhansali et al., 2014). Specifically, the gathered evidence suggests that
the crossing or non-crossing of an axon is dependent on the moment at the
developmental stage when it reaches the chiasm, with “earlier” axons being
more likely to stay ipsilateral (Baker and Reese, 1993). In albinism, the lack of
melanin’s precursor, L-Dopa in the retinal pigment epithelium delays the de-
velopment of RGCs in the retina (Ilia and Jeffery, 1999; Kralj-Hans et al., 2006)
and, consequently, the time point their axons reach the optic chiasm, which
translates into a higher probability of projecting to the contralateral brain hemi-
sphere (Erskine and Herrera, 2014).

• Reduced volume of the visual cortical areas in case of albinism (Hagen et al.,
2005). Alterations to the visual cortex furtherly investigated on the geometric
models of cortical surfaces (Bridge et al., 2014) demonstrated that albinism
is associated with reduced gyrification in the occipital cortex (explaining the
reduction of cortical volume observed by Hagen et al.), as well as increased
cortical thickness at the occipital pole. These changes were attributed to the
absence of post-natal neuronal pruning, which was the effect of foveal under-
development and effective lack of high-resolution input to the visual cortex.
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2.2.2.2 Phenotype

The phenotype of albinism covers both dermatological and ophthalmological fea-
tures, and is significantly varied according to the form of albinism (Kruijt et al., 2018).
The dermatological features include hypopigmentation of hair, skin, eyebrows and
eyelashes, which may be complete (as in one of the forms of OCA – OCA1A), partial
(other forms of OCA: OCA2-OCA7) or absent (as in OA).

The ophthalmological features may include refractive errors (astigmatism, myopia,
hyperopia), foveal hypoplasia, fundus hypopigmentation, nystagmus, strabismus,
reduced binocular vision, reduced iris pigmentation, iris trans-illumination and mis-
routing in the optic chiasm (Federico and Krishnamurthy, 2021). Importantly, al-
though the retrospective cohort study on over 500 patients by (Kruijt et al., 2018)
revealed that some of the aforementioned features are only rarely absent in patients
with albinism, such as nystagmus (absent in 8%), iris translucency (9%), fundus hy-
popigmentation (4%), foveal hypoplasia (1%) and chiasmal misrouting (16%), none
of these features were consistently present in the cohort.

2.2.2.3 Consequences for the visual system’s integrity

The structural abnormalities of visual system clearly bear consequences for its func-
tion:

• Deficiency of pigment in the retinal pigment epithelium, which normally ab-
sorbs most of the incoming light, enhances the ocular straylight [scattering of
light on parts in the eye which creates glare; (Kruijt et al., 2011)] and induces
photophobia.

• Foveal hypoplasia combined with limited stability of vision (due to nystag-
mus) and possible light-induced retinal damage effectively reduces visual acu-
ity.

• The optic nerve misrouting in chiasm causes re-direction of signal flow in the
visual system. As a consequence, both the LGN and visual cortices receive ab-
normal input, which in addition to the typical representation of contralateral
visual field also contains signal from the ipsilateral visual field (Schmitz et al.,
2004; Hagen et al., 2008). The resulting retinotopic maps of two opposing vi-
sual hemifields were found to be superimposed (Hoffmann et al., 2003; Kaule
et al., 2014; Ahmadi et al., 2019b), which disrupts the integration of visual in-
formation and, consequently, stereovision (Hoffmann and Dumoulin, 2015).
Importantly, despite the highly disruptive nature of the observed alterations,
the fundamental aspects of vision are still preserved (Wolynski et al., 2010;
Klemen et al., 2012; Hoffmann and Dumoulin, 2015). This surprising effect is
accounted to the presence of adaptive mechanisms mitigating the disruptions,
which include re-wiring of cortico-cortical connections in the extrastriate cor-
tex (Ahmadi et al., 2019b).

2.2.2.4 Diagnostics

In general, the wide heterogeneity of the albinism’s spectrum and graduation of
symptoms poses a considerable challenge for development of diagnostic methods.
These can be divided in 3 categories, described in detail below:
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• Identification of gene mutations underlying albinism enabled the diagnostics
of albinism through gene testing (Arveiler et al., 2020). In principle, this ap-
proach offers the most certain diagnosis, but is not universal due to still in-
complete information about mutations causing specific types of albinism, such
as OCA5. Effectively, the most recent studies on molecular characterization of
PWA reported successful molecular diagnosis for approx. 73% out of 990 index
patients (Lasseaux et al., 2018). Additionally, due to its relatively high costs,
genetic testing is more suited as a confirmation of suspected albinism rather
than a method for common application (e.g. screening).

• Dermatological examinations, despite its relative simplicity offers ambiguous
results and as such cannot be relied upon (Federico and Krishnamurthy, 2021).

• Considering the causal relationship between the hypopigmentation and visual
system’s abnormalities, which translates into their co-occurrence (Kruijt et al.,
2018), ophthalmological evaluation is a highly relevant tool for diagnostics.
This approach is, however, still limited by albinism’s heterogeneity. To ad-
dress this challenge, the Krujit et al. proposed a comprehensive approach to al-
binism diagnostics, which uses a combination of major (major foveal hypopla-
sia, ocular hypopigmentation and chiasm misrouting) and minor (nystagmus,
hypopigmentation of skin and hair, fundus hypopigmentation, minor foveal
hypoplasia) clinical criteria to determine the albinism.

2.2.3 Clinical challenges

Clearly, due to their negative impact on individual’s functioning, both achiasma and
albinism are relevant targets for clinical studies. This chapter focuses on the clinical
aspects of both disorders, which are presented in the subchapters 2.2.3.1 (Diagnos-
tics) and 2.2.3.2 (Treatment).

2.2.3.1 Diagnostics

In the case of achiasma diagnostics, the recommended approach involves a combi-
nation of functional and anatomical methods Sami et al., 2005. The functional assess-
ment is typically done using electrophysiology methods, such as VEPs (Hoffmann et
al., 2015), but can be also achieved using functional MRI (Bao et al., 2015) and is well
established in the clinical routine. The complementary anatomical measurements,
standardly based on MRI (Korff et al., 2003), usually provide more robust estimates,
but may not be able to resolve the borderline cases, such as partial achiasma (“chiasm
hypoplasia”) and requires an examination by the radiologists, which is an increas-
ingly more resource expensive (Rimmer, 2017). This highlights a need for a more
automated and objective method of assessment of misrouting from anatomical MRI
images, or more advanced imaging techniques. A promising alternative measuring
technique is the diffusion MRI [(Basser et al., 1994); described in detail in chapter 4
(Methods)], which is capable of capturing the neural fibers of the brain and can be
used for direct assessment of absence of crossing (Hoffmann et al., 2012). Utility of
this approach for diagnostic purposes requires a thorough testing, however, which
has not yet been resolved.

The challenges of diagnostics are even more expressed in case of the more heteroge-
nous spectrum of albinism. Here, between the two extremes of highly accurate and
highly expensive genetic testing on one side, and the low cost and low precision der-
matological examination on the other, ophthalmological assessment offers a sound
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balance between those two worlds. Furthermore, the proposal of using multiple di-
agnostic criterions (Kruijt et al., 2018) allows to offset the limitations of uni-modal
techniques (Park and Oh, 2013; McCafferty et al., 2015), but at the same time high-
lights the need for using a wide range of robust diagnostic techniques. This is par-
ticularly important for the assessment of chiasm’s integrity, since this is the only
structure that cannot be directly measured during ophthalmological examination.
Currently, the assessment of misrouting is being performed with VEPs (Hoffmann
et al., 2005; Hagen et al., 2008; Hoffmann et al., 2015), which is used to track the corti-
cal response to monocular simulation in order to identify misrouting. This approach,
however, is susceptible to noise, limiting the reproducibility (Sami et al., 2005), and
is furthermore dependent of the participant’s visual function, which is of particu-
lar issue given that low visual acuity and nystagmus are inherent characteristics in
albinism. Similarly, in achiasma, this challenge can be addressed by using direct
measurements of chiasm’s integrity, which can be done using either aMRI or dMRI.
Unfortunately, despite the past attempts, none of these techniques were shown to
be capable of the individual diagnostics. Specifically, the first study using MRI to
compare morphological features of chiasm in controls and people with albinism re-
ported no inter-group differences (Brodsky et al., 1993). While those findings were
later contradicted by three independent reports that demonstrated significant group-
level differences in the width of optic nerves and chiasm (Schmitz et al., 2003; Hagen
et al., 2005; Mcketton et al., 2014), but did not attempt to evaluate the relevance of
these anatomical biomarkers in the individual diagnostics. As such, the possibility
of detection of abnormally enhanced crossing in the chiasm from aMRI images is still
unresolved. Additionally, the chiasmal misrouting observed in albinism was also in-
vestigated with the dMRI, which attempted to directly measure portions of crossing
and non-crossing fibers in the chiasm (Ather et al., 2018). Interestingly, while dMRI
also revealed group-level differences, the testing of its potential for individual di-
agnostics showed a performance that is insufficient for clinical applications. This
aspect of dMRI can be, however, potentially improved with use of newly developed
acquisition protocols and modelling approaches, which are yet to be tested for this
purpose.

2.2.3.2 Treatment

Due to the congenital nature of both disorders, their effective treatment is possi-
ble only during the developmental phase of the visual system and is until now
unavailable. Apart from isolated pioneering attempts on reversing some of their
aspects [such as increasing melanin content in individuals with albinism (Adams
et al., 2019)], majority of therapeutic approaches involves mitigating the disorder’s
consequences. Those actions are critical, however, as e.g. the individuals with al-
binism are more susceptible to UV radiation and require increased protection from
sun to avoid skin cancer. As such, this highlights the importance of awareness of
one’s condition and, consequently, the high relevance of robust and widely avail-
able diagnostics.

2.2.4 Research challenges

Notably, the relevance of congenital chiasmal disorders extends beyond the clinical
context. The significantly altered, yet in principle functional organization of the vi-
sual system in achiasma and albinism represents a unique biological model that can
be utilized in a wide range of studies. Generally, these can be divided into basic
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research, aimed at gaining deeper understanding of structure-function coupling in
the brain [subchapter 2.2.4.1 (Basic research)] and methods development, using the
unique organization of visual system to design and test novel neuroimaging meth-
ods [subchapter 2.2.4.2 (Methods development)].

2.2.4.1 Basic research

In terms of basic research, the biological model provided by congenital chiasmal dis-
orders grants insight into fundamental aspects of brain organization. A prime exam-
ple here is the understanding of structure-function coupling, which can be studied in
novel ways by analysing the properties of chiasmal malformations and their impact
on structural and functional organization of the rest of visual system (e.g. defini-
tion of disrupted cortical maps). As such, this kind of analyses may provide new
information about the principles guiding the development and organization of vi-
sual system (Hoffmann and Dumoulin, 2015). However, what truly distinguishes
albinism and achiasma from other visual system diseases is the fact, that despite
their highly disruptive nature for the visual system, the fundamental integrity of
vision is mainly intact (Wolynski et al., 2010; Klemen et al., 2012). This highly sur-
prising finding suggests the presence of unexplored neuroplasticity mechanisms,
capable of adjusting to the congenitally disrupted input (Hoffmann and Dumoulin,
2015). While existing evidence suggests that cortico-cortical rewiring may play an
important role in the observed adaptation (Ahmadi et al., 2019b), the understanding
of this potentially highly valuable plasticity mechanisms requires further studies.

2.2.4.2 Methods development

The chiasmal congenital disorders may be, however, also placed in an interesting
perspective where they represent the two extremes of the chiasmal connectivity, ab-
sence (or severe reduction) in case of achiasma, and enhanced crossing in albinism.
As such, the chiasmal malformations combined with “neutral” crossing observed in
the control group (Kupfer et al., 1967) represent a range of gradually varying (both
structurally and functionally) visual systems. This unique setup provides an excel-
lent testbed for development of neuroimaging methods. The prime example here
is the development of retinotopic mapping, where new methods can be tested and
validated on the highly varied biological retinotopic maps. This approach is particu-
larly relevant in the case of development of methods requiring little a priori informa-
tion, as it was demonstrated with micro-probing (Carvalho et al., 2020). Importantly,
the utility of chiasmal malformation models extends beyond functional methods, as
they also offer a prime testing dataset for methods of structural imaging, such as dif-
fusion MRI-based tractography (Mori and Zijl, 2002). Here, the information about
diffusivity of water in brain, captured by diffusion MRI (Basser et al., 1994), is used
to reconstruct the neural fibers. This method, although highly successful in a wide
range of applications (Rokem et al., 2017), suffers from several limitations, with one
of those being the “crossing fibers problem” (Tournier et al., 2004; Staempfli et al.,
2006; Descoteaux et al., 2007; Descoteaux et al., 2009; Thomas et al., 2014; Reveley
et al., 2015). This term refers to the problem of poor performance of tractography
when performed in brain regions where multiple fibers are crossing (Oouchi et al.,
2007; Jones et al., 2013), which is estimated to be the case for to up to 90% of brain’s
volume (Jeurissen et al., 2012). Accordingly, the data on chiasmal malformations
capturing a full range of configurations of two crossing fibers populations offers an
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excellent asset for validation and development of diffusion MRI and tractography
methods.
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Chapter 3

Research questions and steps taken
to address them

Robust imaging of chiasmal malformations is a critical component of both clinical
and research studies on albinism and achiasma. However, currently available meth-
ods offer only limited insights, particularly in the case of direct anatomical measure-
ments. Considering this, the primary goal of my work was to develop and evaluate
novel methods designed for anatomy-based detection and assessment of chiasmal
malformations. Ideally, this would facilitate further scientific research on chiasm’s
properties, encourage use of data on chiasmal malformations in methods develop-
ment and enable novel diagnostics of visual system disorders. In order to achieve
these goals, I have contributed to answering 4 research questions as detailed below:

3.1 How to image the visual system with dMRI?

Chapter 5 presents a review paper on the basics and intricacies of dMRI-based imag-
ing of the visual system (Puzniak et al., 2021b). The primary motivation behind
this work was to increase awareness about the relevance and clinical applications of
dMRI methods, and to provide guidance for dMRI imaging of visual system. Specif-
ically, the review covered discussion on:

• importance and application of dMRI in epilepsy,

• acquisition and modalities of MRI images required of visual system imaging,

• software available and data processing pipeline for dMRI analysis,

• delineation of visual system structures,

• computational models applicable to dMRI data,

• reconstruction of neural connections (tractography) from dMRI data.

The published review provided a comprehensive link between dMRI methods and
studies on epilepsy/visual system, which will hopefully facilitate further research
in those directions.

3.2 Is it possible to detect and quantify chiasmal malforma-
tions?

Chapter 6 presents a scientific article on the quantification of nerve decussation in
normal and abnormal (albinotic) chiasms using dMRI (Puzniak et al., 2019). The
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primary motivation behind this work was to test the capabilities of advanced dMRI
tools, assess the detectability of enhanced nerve crossing with dMRI and design a
robust framework serving this purpose. To accomplish this, the following steps were
taken:

• acquisition of high quality aMRI and dMRI data from controls and patients
with albinism,

• establishing and validation of state-of-the-art preprocessing and modelling-
steps of dMRI data,

• tractography within the chiasm and post-processing of the resulting stream-
lines,

• calculation of the index of decussation (ID) from the tractography data,

• assessment of obtained IDs via:

- group-level inferences,

- evaluation of ID-based classification of individuals,

- comparison of ID with fMRI-based estimates of misrouting,

• evaluation of the techniques used for tractography validation.

Importantly, the developed dMRI-based framework allowed not only for detection
of group differences in the calculated IDs, but also demonstrated a robust separa-
tion of individuals from both groups, indicating the potential of the dMRI-based
diagnostics. Those important findings were additionally reinforced by the cross-
validation of dMRI-based results with fMRI-based estimates of misrouting calcu-
lated in a separate study (Ahmadi et al., 2019b). Furthermore, the study demon-
strated the strengths and limitations of a range of post-processing methods for trac-
tography. Consequently, the presented study is expected to benefit future attempts
on tractography of the chiasm (and in general tractography of crossing fibers popu-
lations).

Furthermore, the robustness of developed framework allowed for its application in
an additional study, presented in the chapter 7, where it was used in a case study
of chiasmal hypoplasia to detect asymmetric chiasmal connectivity (Ahmadi et al.,
2020). Specifically, my contribution involved:

• preprocessing and modelling of dMRI data,

• tractography within the chiasm and postprocessing of the resulting stream-
lines.

The results of the conducted dMRI analysis provided a complementary proof for
fMRI-based results indicating a surprising presence of three superimposed cortical
maps. As such, this study provided novel insights into the organization of the hu-
man visual cortex.

3.3 Is it possible to detect chiasmal malformations in aMRI
images?

The scientific article presented in chapter 8 investigated a possibility of detection
of chiasmal malformations directly from aMRI with deep learning (DL) methods
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(Puzniak et al., 2021c). The primary motivation behind this work was development
of a direct, anatomy-based diagnostic method suitable for clinical setting. For this
purpose, the following steps were taken:

• gathering of publicly available MRI data of a large cohort of controls and pa-
tients with albinism,

• generation of accurate optic chiasm masks by combination of atlas-based seg-
mentation with custom correction algorithm,

• implementation and supervised training of the convolutional neural network
(CNN) for the purpose of segmentation of optic chiasm from whole-brain
aMRI images,

• deployment of the trained network on the aMRI brain images of controls and
participants with albinism,

• evaluation of the performance of the CNN.

The obtained results demonstrated that the accuracy of segmentation varies between
control and patient groups, which indicate a differential spatial organization of nor-
mal and abnormal chiasms. Consequently, this finding provides a proof-of-concept
for development of novel tools for detection of chiasmal malformations.

3.4 How to facilitate future research on chiasmal misrouting?

The article presented in chapter 9 describes a publication of anatomical MRI, diffu-
sion MRI and functional MRI data from rare patients showing a wide range of chias-
mal malformations (Puzniak et al., 2021a). The primary motivation behind this work
was to enable incorporation of rare data on chiasmal malformations into datasets for
public use enabling its usage in a wide range of studies. For this purpose, the fol-
lowing steps were taken:

• collection of the previously gathered aMRI, dMRI and fMRI data on chiasmal
malformations,

• preprocessing and anonymization of the collected data,

• extensive assessment of the data quality,

• publication of the raw and preprocessed data on the online computational plat-
form,

• publication of the accompanying supplementary data files and scripts on two
further online platforms.

The provided data was published on a specialized computational platform brain-
life.io (Avesani et al., 2019), where it can be processed online using available cloud-
based services or downloaded for offline preprocessing. As such, the published data
is expected to benefit researchers working on modeling of diffusion MRI signal, de-
velopment of tractography algorithms and deep learning methods, basic research of
visual system and plasticity, as well as clinicians investigating albinism.

http://www.brainlife.io
http://www.brainlife.io
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Chapter 4

Methods

In principle, the main techniques available for non-invasive imaging of the human
brain anatomy are Computed Tomography (CT) and MRI. Given that, CT imaging
involves exposure to radiation and its contrast is reportedly insufficient for chiasm’s
imaging (Daniels et al., 1984; Ibragimov and Xing, 2017; Duanmu et al., 2020), the
optimal imaging technique for the outlined task is the MRI (Lauterbur, 1973), which
is devoid of the above listed limitations. Furthermore, MRI supports a range of spe-
cialized modalities providing valuable information which is otherwise unavailable
with CT imaging. The overview of employed imaging methods is provided in the
subchapter 4.1 (Principles of Magnetic Resonance Imaging), which focuses on the
two modalities designed for structural imaging – T1-weighted (T1w) and diffusion-
weighted (DW) imaging (Basser et al., 1994).

The acquired data has been analysed with two kinds of computational approaches
based on, respectively, dMRI and aMRI. The first involved specialized algorithms,
tools and models designed exclusively for the purpose of dMRI data analysis, as
described in the subchapter 4.2 (Analysis of the MRI Data). The second approach
instead used aMRI data in combination with DL techniques (LeCun et al., 1989;
Krizhevsky et al., 2012), which are well generalizable, data-driven models excelling
at a wide range of medical imaging tasks (Lundervold and Lundervold, 2019), as
described in the subchapter 4.3 (Deep Learning models).

4.1 Principles of Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is a non-invasive technique that uses strong
magnetic fields to image anatomy and physiological processes of the body (Rabi et
al., 1938). At its core lies the magnetic resonance, a phenomenon where atomic nu-
clei placed in external magnetic field are able to absorb and emit radio frequency
(RF) energy (Bloch, 1946). Inducing, controlling and measuring an outcome of this
process, as it is done during MRI measurements, reveals the properties of tissue
composed of measured nuclei, ultimately allowing for creation of 3D images of de-
sired structure (Pooley, 2005; Currie et al., 2013). Importantly, the parameters of the
acquisition can be tuned to capture specific types of interactions that influence the
property of magnetic resonance. Effectively, this allows for the development of sev-
eral MRI techniques, with the most notable being anatomical, diffusion and func-
tional MRI (aMRI, dMRI and fMRI, respectively). The purpose of this subchapter
is to describe the former two, which were used for anatomy imaging – subchap-
ter 4.1.1 (Analysis of the T1-weighted images) and subchapter 4.1.2 (Analysis of the
Diffusion-weighted Images), unlike fMRI which is used for measurements of brain’s
neuronal activity (Soares et al., 2016).
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4.1.1 T1-weighted images

The aMRI is a broad term for MRI sequences (Rabi et al., 1938) which provide in-
sights into the anatomical organization of the body. As for each MRI measurement,
the aMRI sequence starts with placing the participant in a scanner’s strong, constant
magnetic field B0. While the magnetic field affects magnetic moments of all par-
ticles, the effects are particularly pronounced in protons, due to their distinctively
high magnetic moment (Frisch and Stern, 1933) and their high concentration in tis-
sues. Consequently, the MRI measurements are driven by protons, and as such are
most sensitive to tissues with high concentration of protons, such as water and fats.
In the presence of strong magnetic field the magnetic moments of protons will tend
to be aligned in either parallel or anti-parallel direction to the B0 direction, with the
probabilities given by the Boltzmann distribution (Boltzmann, 1868; Hanson, 2008).
Effectively, this leads to most of the spins being in the lower energy state (paral-
lel alignment), which altogether contribute to net magnetization vector M, parallel
(longitudinal) to B0. Importantly, considering that MRI is majorly driven by protons
contributing to M, in the rest of this section only their role will be considered.

In principle, the nuclei placed in an external magnetic field precess with a specific
cyclic frequency f0, also known as Larmor’s frequency, which is given by Larmor’s
equation:

f0 =
γ

2π
B0 (Equation 1)

where the γ denotes gyromagnetic ratio. This applies also to the protons contribut-
ing to M, which Larmor’s frequency in 3 T field equals 127.74 MHz. Importantly,
the net magnetization vector M can be altered by an additional rotating magnetic
field B1, provided that the rotational frequency matches (resonates with) the Lar-
mor’s frequency of protons (Hanson, 2008). This is commonly being realized with
a perpendicular radiofrequency (RF) field B1, which tips M from its primary lon-
gitudinal direction by desired angle α. The typically used α is 90◦, so that vector
of magnetization will be in perpendicular, or transversal, plane while longitudinal
magnetization will be equal 0, or 180◦. After the RF pulse, the net magnetization
M will start returning to its initial state (regrowing its longitudinal magnetization)
where it was parallel to B0 in a process of “relaxation” (Hahn, 1950). In this pro-
cess, the protons that were excited by the RF pulse dispose of the excess energy by
transferring it to nearby nuclei in the form of kinetic energy (heat). The speed of this
process is described by the value of T1, the time required for longitudinal magneti-
zation to regrow from 0 to 63% of its nominal value (Bloch, 1946). Most importantly,
T1 captures the dynamics of energy flow between the spins and their external en-
vironment, which varies between tissues and is a source of image’s contrast (e.g.
white matter has short T1, while the cerebrospinal fluid requires long relaxation).
Effectively, the T1-weighted brain images provide contrast between different types
of tissues such as white and gray matter of cerebrospinal fluid. This allows for mul-
tiple highly relevant applications, such as diagnostics of injuries (contrast), tracking
the development of potential diseases (morphology) or locating critical structures for
the purpose of surgery planning. Those properties make T1w images also invalu-
able for combinations with other modalities, such as dMRI, as it provides detailed
information about regions of interest (ROIs) identified by other modalities.

Notably, T1-weighting is one of the several available contrasts, such as T2-weighting
or the proton density maps. Although detailed explanation of T1-weighting and
other contrasts extends beyond the scope of this chapter, for more elaborative infor-
mation please refer to (Pooley, 2005; Currie et al., 2013; Elster, 2021).
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4.1.2 Diffusion-weighted images

While aMRI enables localization and delineation of brain tissues, it does not offer
any further insight into structural organization of the brain. This gap can be filled
by dMRI (Basser et al., 1994), a MRI modality excelling at revealing the connectiv-
ity and microstructural properties of the brain. For this purpose, dMRI utilizes the
phenomenon of diffusion, a random motion of molecules caused by their kinetic
energy, which was first described by Robert Brown (hence “Brownian motion”) and
later studied by Albert Einstein (Einstein, 1956). Initially, diffusion was perceived
as an undesirable factor in the studies on spin echo (Hahn, 1950), which prompted
extension of Bloch’s MR formalism by additional terms related to diffusion (Torrey,
1956). This provided a fundament for the breakthrough work by Stejskal and Tanner
(Stejskal and Tanner, 1965), who suggested improvements to the existing spin echo
sequences, which greatly improved measurements of diffusion of water molecules.
The proposed sequence for measuring diffusion along a specific direction given by
vector x (Figure 5) involves application of magnetic field gradient along x. Since
the frequency of the spin precession is dependent on the effective magnetic field
(Equation 1), the presence of gradient field will alter the frequencies of the nuclei’s
precession based on their location. Importantly, after the gradient pulse ends, the nu-
clei from different locations along x will regain their original precession frequency,
but they won’t be in the same phase anymore. Effectively, the phases of preces-
sion are used to label water molecules along the x. After a short delay (typically
20-50 ms) a second gradient of opposed polarity (-x) is applied, which is used for
phase rewinding (refocusing). If the molecules haven’t moved between the pulses,
the phases will be perfectly refocused and the total signal will remain unchanged.
However, in case of motion of water molecules along the x (due to diffusion), the
phase refocusing will be imperfect, what will be indicated by an attenuation of the
MR signal.
Mathematically, this process can be described by the Stejskal-Tanner equation
(which was derived by solving the Bloch-Torrey partial differential equations for
a symmetric pair of pulsed gradients):

S = S0 · e−bD (Equation 2)

where S denotes the signal strength in a discussed pulse sequence, S0 denotes the
signal strength in analogical experiment but without the diffusion gradient pair, D
denotes coefficient of diffusion along the chosen direction and b is a collective term
controlling for the sensitivity to diffusion. Specifically, b is defined as:

b = γ2G2δ2(τ − 1
3

δ) (Equation 3)

where γ denotes gyromagnetic ration of nuclei, G - strength of gradients, δ - their
duration and τ - interval between them. Notably, the parameters G, δ, τ and conse-
quently b can be controlled during the acquisition and adjusted to the problem e.g.
by setting high b-value to measure slow diffusion (which would be undetectable in
case of low b-values) or low b-value to measure quick diffusion (since dMRI mea-
sures loss of signal, application of high b-value in such scenario leads to complete
attenuation of signal).

Given that S and S0 can be measured and b can be controlled for, from the two
separate measurements of signals S1 and S2:
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FIGURE 5: A schematic diagram depicting the idea of diffusion-weighted measurement.
Each circle depicts a water molecule at different locations, with the arrows inside indicat-
ing the phase of the local signal. If the molecules are stationary between the two gradi-
ent pulses, the 2nd gradient refocuses signal perfectly. However, in case of the diffusion-
induced movement of water molecules the rephasing will lead to loss of signal. Notably,
only the movement in the direction parallel to that of gradient pulses (here – horizontal)
will affect refocusing.
Reprinted from Neuron, 51(5), Mori S. & Zhang J., Principles of Diffusion Tensor Imaging
and Its Applications to Basic Neuroscience Research, pp. 527-539, Copyright 2006, with
permission from Elsevier.

https://doi.org/10.1016/j.neuron.2006.08.012
https://doi.org/10.1016/j.neuron.2006.08.012
https://doi.org/10.1016/j.neuron.2006.08.012
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S = S1 · e−b1D (Equation 4)

and

S = S2 · e−b2D (Equation 5)

The diffusion coefficient D can be calculated as:

D =
− ln( S2

S1
)

b2 − b1
(Equation 6)

Importantly, this rationale applies to diffusion that is free from any barriers. The
water in the brain is however bound by cellular walls, which effectively restrict the
diffusion and limit the attenuation of signal as compared to free diffusion. As such,
measurements of restricted diffusion reveal presence and orientation of objects such
as nerve membranes, and are used to identify the orientation of neural fibers in the
brain. Notably, despite the increased complexity of mathematical model of restricted
diffusion, Equation 2 and Equation 3 are still used for calculations, with the most
fundamental difference lying in requirement of measurement of diffusion along at
least 6 non-collinear directions in order to use simplest models of restricted diffusion
(Bammer, 2003; Mori and Zhang, 2006; Hrabe et al., 2007; Mueller et al., 2015).

While the breakthrough work by Stejskal and Tanner laid foundations for modern
dMRI, the method itself was first established on the clinical scanners nearly 35 years
later by Le Bihan and colleagues (Le Bihan, 1990). As of now, thanks to numerous
advances, the dMRI is a widely used imaging technique that grants insight into mi-
crostructural parameters of the brain (Basser and Pierpaoli, 1996), as well as enables
imaging of the neural fibers with tractography (Mori and Zijl, 2002), a technique that
uses information about local diffusivity to reconstruct the neural pathways.

4.2 Analysis of the MRI Data

The analysis of the MRI can be divided into 2 primary steps – preprocessing and
modeling. The prime objective of the data preprocessing is to evaluate and en-
sure the quality of acquired images. This typically involves corrections for typi-
cal artifacts and distortions that are specific to chosen modalities, MRI acquisition
sequences and their parameters. The secondary purpose of preprocessing is to pre-
pare the data for further analysis, which may involve co-registration of acquired
images (e.g. in case of studies using multiple modalities) or derivation of specific
information that will be later required (e.g. segmentation of T1-weighted images
into different types of tissues). Since these afore-mentioned steps reflect the gen-
eral needs shared across a wide range of projects, the preprocessing is commonly
done with widely recognized tools such as FSL (Smith et al., 2001; Jenkinson et al.,
2012) or FreeSurfer (Fischl, 2012) and with respect to well-established preprocessing
pipelines acknowledged as a golden standard, such as Human Connectome Project
(HCP) preprocessing pipeline (Glasser et al., 2013). The modeling step involves the
application of computational models and tools to previously preprocessed data, al-
lowing for organization of information and extraction the meaningful features from
the input data. Similar to preprocessing, modeling of MRI data is also highly depen-
dent on the type and properties of the data to be modelled.
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Accordingly, the overview of the aMRI and dMRI data divided into two separate
subchapters: 4.2.1 (Analysis of the T1-weighted images) and 4.2.2 (Analysis of the
Diffusion-weighted images), respectively.

4.2.1 Analysis of the T1-weighted images

Typically, the handling of T1w data follows the standardized approach based largely
on the HCP pipelines (Glasser et al., 2013), which aims to correct the acquired struc-
tural images, co-align them (in case of multiple structural scans from a single indi-
vidual) and transform the images to space of choice to support cross-subjects and
-studies comparisons, such as standard MNI152 space (Brett et al., 2002). This sub-
chapter provides a brief overview of selected steps in T1w data analysis, including
the steps present in HCP pipelines as well as other approaches.

Generally, the first recommended step is to perform correction for gradient
nonlinearity-induced distortions, which are inherent to MRI data acquisition. No-
tably, while several scanners apply this online during image acquisition, this step
can, or in case of specific vendors must, be also done offline using the information
files provided by the MRI scanner vendors (Jovicich et al., 2006).

Standardly, the next step involves linear or non-linear transformation of T1-
weighted image to the space of choice. The linear, or rigid-body, transformations
usually have 6 degrees of freedom (3 for translation and 3 for rotation) in order to
transform the image to the space of choice, such as anterior commissure – posterior
commissure space, one of the standardly defined spaces [e.g. Talairach space (Ta-
lairach et al., 1997)] or custom space (e.g. a chosen image’s). As such, linear trans-
formations are generally used to standardize orientation of the images in the dataset
(which eases future handling) and to match different images of the same subject (e.g.
T1-weighted and diffusion-weighted images). The non-linear transformations [per-
formed either to a user-defined template, or one of the standardly defined templates
such as the MNI152 (Mazziotta et al., 2001)] allow for effective matching of brain
regions across all datasets, at the cost of deformation of individual images.

Typically, after transforming to the desired space, the T1-weighted images are seg-
mented into different regions. Depending on the objective, this may involve only
stripping the skull from the image, resulting in a brain mask [e.g. by using BET tool
(Smith, 2002) from FSL software], segmentation of the T1-weighted image into white
matter, grey matter and cerebrospinal fluid or full-scale segmentation of image into a
wide range of brain structures and parcellation of cortex (Fischl, 2012). Notably, the
obtained data derivatives can be used for standalone analysis e.g. for the purpose of
morphological studies, as done by (Bridge et al., 2014), or be combined with other
modalities e.g. dMRI in order to improve the tractography by limiting it to white
matter only (Smith et al., 2012).

Finally, it is worth to consider inclusion of data anonymization steps, where both
sensitive metadata, as well as notable facial features [such as face and ears; (Bischoff-
Grethe et al., 2007; Jeong et al., 2020)] are removed from T1-weighted image to pro-
tect participant’s identity (Ravindra and Grama, 2019). Although this step is gener-
ally optional, it is a critical requirement for sharing MRI data in public domain, the
relevance of which increases together with the spread of the Open Science values
(Vicente-Saez and Martinez-Fuentes, 2018).
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4.2.2 Analysis of the Diffusion-weighted images

In contrast to the standardized T1-weighted images, the analysis of dMRI is in prin-
ciple a complex topic. The main reason for this is a wide range of applications of
dMRI and controllable dMRI acquisition parameters [e.g. number and value of b-
values (Tuch et al., 2002; Jbabdi et al., 2012; Tournier et al., 2013), number and ori-
entation of directions, spatial resolution]. These choices determine the specific ap-
plicable preprocessing methods and models [Diffusion Tensor, or DT, (Basser et al.,
1994); Constrained Spherical Deconvolution, or CSD, (Tournier et al., 2004; Tournier
et al., 2007); Diffusion Spectrum Imaging, or DSI, (Wedeen et al., 2008); Q-Ball imag-
ing (Tuch, 2004) or Composite Hindered and Restricted Model of Diffusion (Assaf
and Basser, 2005)], which in turn define a range of furtherly available computational
methods (Mori and Zijl, 2002; Smith et al., 2006; Descoteaux et al., 2009; Dhollander
et al., 2021). Considering that dMRI analysis should additionally take into account
the choice of software [e.g. FSL (Smith et al., 2001; Jenkinson et al., 2012), MRtrix
(Tournier et al., 2012; Tournier et al., 2019)] and avoidance of commonly observed
ill-advised practices (Jones et al., 2013), there’s a clear gap between proper introduc-
tion to dMRI methods and the space available for their comprehensive description
(as witnessed in this chapter). This gap can be however addressed with practical
reviews, as the one presented in the chapter 5 (Tracking the visual system—from the
optic chiasm to primary visual cortex), which covers the basics of data acquisition,
preprocessing, data modeling and tractography necessary to a degree that is suffi-
cient for this thesis (Puzniak et al., 2021b). For further information, please refer to
reviews of (Tournier et al., 2011; Soares et al., 2013) and an excellent work by (Jones
et al., 2013).

4.3 Deep Learning models

Machine Learning (ML) is a broad term for computer algorithms that are able to
improve from experience or data, namely: regression analysis, genetic algorithms,
support-vector machines, Bayesian networks, decision trees and artificial neural net-
works (ANNs). The last category describes computing systems inspired by biolog-
ical neural networks. Accordingly, the ANNs consists of multiple nodes, “artificial
neurons”, which are able to receive signal from other neurons, compute it and send it
to further neurons through connections mimicking synapses. Typically, the modern
ANNs are composed of thousands of neurons that are grouped in the input layer,
output layer and multiple hidden layers in between. This organization led to coin-
ing the term Deep Neural Networks (DNN) that represents ANNs with multiple
hidden layers, and Deep Learning (DL) for this subfield of ML.

Although after almost 80 years of development the DL became a complex (and
rapidly growing) subfield of ML, its fundamental ideas can be well understood by
following the history of DNN. While the fundaments for DNN were laid first by
novel discoveries of Santiago Ramon y Cajal (Cajal, 1910), the first recorded model
of artificial neurons was proposed by McCulloch and Pits in 1943 (McCulloch and
Pitts, 1943) and is presented on the Figure 6.

In principle, the model uses multiple binary inputs Xi, which are weighted either by
a corresponding Wi of 1 (for excitatory inputs) or -1 (for inhibitory inputs). The sig-
nal from all input connections is summarized in a neuron and input to thresholding
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FIGURE 6: A schematic diagram depicting the McCulloch-Pits neuron.
The binary inputs Xi are multiplied by corresponding weights wi and summed in the neu-
ron. The summarized signal is compared against the arbitrary value θ, if the threshold
value is reached, the neurons activates and outputs 1, otherwise 0.
Reprinted from Neurocomputing, 465, He J. et al.. Neural networks based on vectorized
neurons, pp. 63-70, Copyright 2021, with permission from Elsevier.

function f , which compares it against parameter θ. If the sum exceeds the threshold-
ing parameters, the neuron is activated and outputs signal y equal to 1, otherwise 0.
Mathematically, the McCulloch-Pits (MP) neuron is described by equations:

y = f

(
M

∑
i=1

XiWi

)
(Equation 7)

where f , generally referred to as activation function, performs thresholding (similarly
to the Heaviside step function), such that for any input A:

f (A) = 1 if A ≥ θ and 0 otherwise (Equation 8)

Notably, despite the simplistic model the MP neuron can represent a subset of
Boolean logical functions, such as AND, OR or NOT. The simplicity of MP neuron
was however also its main limitation, as it was able to operate only on binary inputs
and outputs.

The next vital step in the development of artificial neurons was done by David Hebb,
who postulated that “When an axon of cell A is near enough to excite a cell B and repeat-
edly or persistently takes part in firing it, some growth process or metabolic change takes
place in one or both cells such that A’s efficiency, as one of the cells firing B, is increased” and
that this is fundamental for learning and memory (Hebb, 1949). Application of this
“Hebbian rule”, later paraphrased as “what fires together, wires together” (Shatz, 1992),
to the MP neuron model led to the development of the first “perceptron” (Rosen-
blatt, 1961). The novelty of the perceptron lied in fact, that the weights Wi were
non-binary and could be adjusted to different values, which enabled the networks
of stacked perceptrons to learn in a Hebbian sense. At the same time, the percep-
trons were inherently limited to solving problems, where both classes were linearly
separable (and could not be resolved by stacking layers of perceptrons, since the
combination of linear functions is a linear function itself). The further (later proven
to be unjust) strong criticism by Minsky and Papert, who pointed out that training
of multi-layer perceptron networks in a finite time is nearly impossible (Minsky and
Papert, 1969) effectively halted all the research in this direction, thus starting a so-
called “AI Winter”. It took a new generation of scientists to resume the research on
neural networks and introduce new, critical concepts, such as backpropagation al-
gorithm (Lecun, 1985; Rumelhart et al., 1986), which enabled effective training of the

https://doi.org/10.1016/j.neucom.2021.09.006
https://doi.org/10.1016/j.neucom.2021.09.006
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multi-layer neural networks, or universal approximation theorem (Cybenko, 1989),
that laid theoretical foundations for modernly used non-linear activation functions.
This, combined with further method (Robbins, 2007) and hardware developments
provided foundations for modern DL models (Vaswani et al., 2017) which set state-
of-the-art techniques for Natural Language Processing (Brown et al., 2020) and com-
puter vision tasks (O’Mahony et al., 2020). Importantly, the latter is realized by a spe-
cialized subset of ANN known as Convolutional Neural Networks (CNNs), which,
due to their high relevance for medical imaging and presented studies, is described
in more detail in next subchapter 4.3.1 (Convolutional Neural Networks).

4.3.1 Convolutional Neural Networks

Analogous to the ANNs they stem from, the design of CNNs was based on the bi-
ological visual system. Specifically, the inspiration for the development of CNNs
were works by Hubel and Wiesel, who showed on cats that individual neurons of
visual cortex respond to small areas of the visual field, termed as receptive fields
(Hubel and Wiesel, 1959). This finding was followed by the discovery of simple and
complex cells (Hubel and Wiesel, 1968), which, respectively, are specialized in de-
tection of straight lines of particular orientation within their receptive field (simple
cells) and which have larger receptive field, but are less sensitive to edges’ orien-
tations (complex cells). The discoveries of Hubel and Wiesel inspired the first im-
plementation of CNN known as “neocognitron” (Fukushima, 1980). Technically, the
neocognitron consisted of two types of layers – convolutional and downsampling
layers. The convolutional layers, analogous of simple cells, were built from multiple
units whose receptive fields covered a patch from the previous layer. The sensitiv-
ity of units to patterns was determined by sets of adaptive parameters (filters) that
were shared across units. The downsampling layers, analogous of complex cells,
were built from multiple units which covered patches of previous convolutional lay-
ers. The purpose of those layers was to average local responses from convolutional
layers, thus improve network’s shift-invariance. Importantly, it was the congnitron
that inspired the first modern CNN, which aggregated simpler features into model
complex patterns in order to successfully recognize hand-written digits (LeCun et
al., 1998). This and other developments of CNNs, such as the introduction of the
concept of max-pooling, where the downsampling layers use only maximal activa-
tion from their receptive field instead of average (Riesenhuber and Poggio, 1999) or
proposal to use backpropagation for filters’ training, furtherly unlocking CNNs’ ca-
pabilities. The most notable display of this emerging technique is dated back to 2012,
when the CNN reached the state-of-the-art performance in the ImageNet challenge
(Krizhevsky et al., 2012). This started the surge of interest in the CNN, which helped
in establishing the CNNs as the state-of-the-art model in the computer vision tasks.
As of now, the capabilities of CNNs are successfully utilized in a wide range of fields,
including medical imaging (Lundervold and Lundervold, 2019), which was one of
the motivations for establishing DL-based diagnostics of chiasmal malformations, as
presented in this thesis.



30

Chapter 5

Tracking the visual system— from
the optic chiasm to primary visual
cortex

This chapter contains the permitted reprint of the study “Tracking the visual sys-
tem—from the optic chiasm to primary visual cortex” published in Zeitschrift für
Epileptologie:

Puzniak, R. J., Prabhakaran, G. T., Buentjen, L., Schmitt, F. C., and Hoffmann, M. B.
(Feb. 2021). “Tracking the visual system—from the optic chiasm to primary visual
cortex”. In: Zeitschrift für Epileptologie 34.1, pp. 57–66. DOI: 10.1007/s10309-020-
00384-y
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Tracking the visual system—from
the optic chiasm to primary
visual cortex

Introduction

While epilepsy is a complex andnot thor-
oughlyunderstoodphenomenonofbrain
malfunction, the key to its understanding
is in some cases actually hidden in the
structure of the brain. This applies, for
instance, to acquired causes of epilepsy,
such as serious brain trauma, strokes,
tumors, and other lesions [5], as well as
to observed interactions between struc-
ture and function [24]. The comprehen-
sive and accurate description of brain
anatomy and connectivity is even more
important for surgical interventions, par-
ticularly those with a high risk of caus-
ing damage to the integrity of the vi-
sual system (e.g., anterior temporal lobe
resections and amygdalohippocampec-
tomy, see . Fig. 1b). These examples
demonstrate that research on and treat-
ment of epilepsy greatly benefits from
the integration of brain imaging tech-
niques, such as diffusion magnetic res-
onance imaging [23]. Diffusion MRI
is a noninvasive imaging technique ca-
pable of capturing microstructural tis-
sue properties and of mapping the fiber
architecture, e.g., trajectories of neural
pathways, which has been demonstrated
to significantly contribute to the field of
epilepsy. Its capability of capturing the
microstructural properties has made it
possible to link the structural compro-
mise of fibers tracts in temporal lobe
epilepsy (TLE) with memory and lan-
guage impairments [24] and, as demon-
strated in somecases of focal cortical dys-

plasias, to reveal thinning ofwhitematter
fibers and reduced connectivity between
subcortical gray matter and the dysplas-
tic cortex [10]. The latter study employed
also the second feature of dMRI, i.e., its
capability of reconstruction of trajecto-
ries of neural pathways. This process,
referred to as “tractography” or “fiber
or streamline tracking” [26], uses esti-
mates of local fiber orientations (calcu-
lated from dMRI data) to produce a trac-
togram, i.e., the reconstruction of the
given pathways in the brain.

The inherent risk of surgical in-
terventions for visual function is well
known in standard procedures, such
as anterior temporal lobectomy and
amygdalohippocampectomy. Although
mostly nondisabling, a significant num-
bers of visual field defects were reported
(respectively 78% and 73%; [14]), as for
temporal lobe resections, where postop-
erativeupperquadrantvisualfielddeficits
were reported for 29 of 38 patients [36].
Between the aforementioned resective
approaches, there is no significant dif-
ference concerning the risk for visual
field deficit [14]. The indicated need for
more tailored surgical approaches can
be addressed by incorporating tractog-
raphy in the routine [32, 45], which is
known to predict postoperative visual
field deficits based on pre- and post-
operative tractography [8, 20]. Apart
from resective interventions, dMRI can
also be integrated for the prevention
of visual function deficits in minimally
invasive approaches, such as laser in-

terstitial thermal therapy (LiTT; also
known as “MRI-guided laser ablation” or
“stereotactic laser-thermoablation”; [7]),
e.g., for amygdalohippocampectomies
in mesial temporal lobe epilepsies ([11,
31]; see . Fig. 1a) or parieto-occipital
lesionectomies typically performed for
periventricular heterotopias ([44]; see
. Fig. 1b). At least for mesial temporal
lobe epilepsies, more definitive infor-
mation on risk can be awaited by larger
prospective studies in the near future.
However, initial results from consecutive
case series suggest that the surgical risk
for a visual field deficit after LiTT is less
than that with the aforementioned resec-
tive procedures, particularly if an initial
technical learning curve is acknowledged
[17].

One risk-posing structure for all tem-
poral surgical approaches is the individ-
ual anatomy of Meyer’s loop. Nilsson
et al. examined the intra- and interindi-
vidual variability ofMeyer’s loop in seven
healthy volunteers and two patients un-
dergoing anterior temporal lobe resec-
tion by measuring the distance between
the anterior edge of the loop and the
temporal lobe: the distance varied con-
siderably between 34 and 51mm (mean
44mm; [27]) indicating the need for an
individual approach during the presurgi-
cal planning (see section “Primary visual
cortex”).

Tractography allows for the visualiza-
tion and assessment of the connectivity
between brain regions [10] and thus can
also provide vital information for surgi-

Zeitschrift für Epileptologie 1 · 2021 57



Review

a b

Fig. 18 Relevance of visual system imaging in clinical routines.a Presur-
gical planning for LiTT on T1-weighted image in pseudo-sagittal view.
Stereotactic trajectory (red line) and the aimed for lesion zone depicted by
a brachytherapy planning tool (arbitrarily chosen: red contour resembles
50Gy Isodoseasdesired limit of the irreversibledamage zone,green contour
resembles 100Gy Isodose as core heat zonewhich needs to bemonitored
for peak temperatures). Neither trajectory nor lesion zone interferewith
the visual tract (as definedby deterministic tractography;whitearea above
trajectory), thusminimizing the risk of visual field loss.bPeriventricular het-
erotopia (pink contour)adjacent tosuperimposedoptic radiation (asdefined
by deterministic tractography;whitestreak adjacent to the pinkcontour) on
T1-weighted imagewith gadolinium contrast. (Image courtesy of Dept. for
Stereotactic Neurosurgery/Otto vonGuericke UniversityMagdeburg)

a

b c

Fig. 28 Tractographyof the visual pathways.aA3Dgraphic in sagittal view
displaying orientation of right optic tract and optic radiation streamlines.
b T1-weighted images includingoptic tract (left) andoptic tract streamlines
(right) in false color (color code describes streamline orientation:green an-
terior–posterior; red left–right; blue inferior–superior). Streamlines are not
croppedtotheshownslices. (ImagecourtesyofOttovonGuerickeUniversity
Magdeburg)

cal interventionplanning and risk assess-
ment in epilepsy. In the following, the
different concepts of imaging the visual
system using dMRI are introduced.

Methods

In order to generate the tractogram of
the visual system (. Fig. 2), it is neces-
sary to acquire data, select the analysis
tools, preprocess the diffusion-weighted
(DW) data, segment the structures of the
visual system defining starting and end-
ing points of reconstructed streamlines,
fit the model to DW images, and per-
form the tractography. While each of
these steps will be discussed separately,
it should be noted that they should not be
perceived as separate entities, but rather
as interconnected and dependent.

Overview of required MRI data

The optimal MRI dataset acquired for
the purpose of tracking of the visual sys-
tem should comprise (a) T1-weighted
(. Fig. 3a), and optionally a proton den-
sity (PD) map, to allow for the compre-
hensive delineation of brain tissue and
structures, and (b) DW images necessary
for the tractography (. Fig. 3b). In the
dMRI analysis, the T1-weighted images

andPDmaps are used in order to identify
and segment regions of interest (ROIs)
and white matter mask, which enhances
tractography. The DW images provide
information aboutmicrostructural prop-
erties (. Fig. 3c) and what is critical for
tractography, spatial organizationof neu-
ral fibers (additionally, tractography may
also provide its own contrast as shown in
. Figure 3d). The basic underlying con-
cept is the measurement of dephasing of
excited protons along the given direc-
tion simultaneously in all of the brain
voxels [37]. The contrast in a DW image
depends on the properties of diffusion

processes occurring in the tissue and is
controlled by two parameters set for MR
scanning: b-value (determines the sensi-
tivity to diffusion; b0 is the lowest, where
b-value equal to, e.g., 3000 s/mm2 is con-
sidered high) and b-vector (describes the
direction along which the diffusion is
measured). The selection of DW acqui-
sition parameters is a complex issue, as
one needs to considerMRI scanner capa-
bilities, the focus of study (imaging of the
whole brain or a single structure), data
quality requirements (signal-to-noise ra-
tio, spatial resolution, number of b-val-
ues, andgradientdirections)andexternal
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factors, e.g., scanning time (detailed in:
[22, 40]). An efficient alternative solu-
tion is the adaptation of already validated
andwell-establishedprotocols suchas the
Human Connectome Project (HCP) ac-
quisition protocols [42]. Publicly avail-
able datasets should also be considered
an option to tune the analysis procedures
(see . Table 1).

Processing

Apart from the data acquisition param-
eters, it is important to consider the
choice of tools for data preprocessing
and tractography (see . Table 2). Diffu-
sion-weighted data preprocessing is an
important stage, as it determines the data
quality and may affect the final outcome
of the study. While the applicability
and/or necessity of constituent prepro-
cessing steps depends on parameters
of the data and specifics of the study,
the preprocessing pipelines applied in
the HCP project [16] are a commonly
recognized standard. . Table 3 provides
a list of recommended preprocessing
steps, created by extending the HCP
preprocessing pipeline by more recent
utilities, which result in a corrected DW
dataset aligned to the T1-weighted image
(. Fig. 4). A recently emerging alterna-
tive to data preprocessing and analysis on
localmachines are online platforms, such
as BrainLife [1]. BrainLife allows one to
upload one’s own data, or to use existing
publicly available datasets (which are
either stored directly on BrainLife or can
be downloaded from other repositories)
and perform neuroimaging analysis in
the cloud using online services.

Segmentation of visual system
structures

While the previous sections can be gen-
eralized for any study involving dMRI
data, the selection of regions of inter-
est (ROIs) is determined individually for
each study. In the case of tractography
of the visual system, it is required to
delineate at least the optic chiasm, lat-
eral geniculate nucleus (LGN), and the
primary visual cortex (V1), as depicted
in . Fig. 5. The idea here is to localize
the structures being connected by visual
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Abstract
Epilepsy surgery is a well-establishedmethod
of treatment for pharmacoresistant focal
epilepsies, but it carries an inherent risk
of damaging eloquent brain structures.
This holds true in particular for visual
system pathways, where the damage to, for
example, the optic radiation may result in
postoperative visual field defects. Such risk
can be minimized by the identification and
localization of visual pathways using diffusion
magnetic resonance imaging (dMRI). The aim
of this article is to provide an overview of
the step-by-step process of reconstructing
the visual pathways applying dMRI analysis.

This includes data acquisition, preprocessing,
identification of key structures of the visual
system necessary for reconstruction, as well
as diffusion modeling and the ultimate
reconstruction of neural pathways. As a result,
the reader will become familiar both with the
ideas and challenges of imaging the visual
system using dMRI and their relevance for
planning the intervention.
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Traktographie des Sehsystems – vom Chiasma opticum zum
primären visuellen Kortex

Zusammenfassung
Epilepsiechirurgische Interventionen
sind etablierte Ansätze zur Behandlung
pharmakoresistenter fokaler Epilepsien,
bergen jedoch das Risiko der Schädigung
eloquenter Hirnstrukturen. In Bezug auf
die Sehbahn kann dies, beispielsweise bei
Läsionen im Bereich der Sehstrahlung, zu
postoperativen Gesichtsfelddefekten führen.
Die Identifikation und Lokalisierung der Seh-
bahnstrukturen mittels Diffusionsbildgebung
(diffusionsgewichtete Magnetresonanz-
tomographie, dMRT) ermöglicht es, diese
Risiken einzuschätzen und zu reduzieren. Der
vorliegende Artikel vermittelt eine Schritt-
für-Schritt-Darstellung der Prozesse, die der
dMRT-basierten Sehbahnrekonstruktionen

zugrunde liegen. Dies umfasst die Daten-
akquise, Vorverarbeitung, Identifikation
essenzieller Schlüsselstrukturen sowie die
Diffusionsmodellierung und abschließend
die Rekonstruktion der Sehbahn. So wird
dem Leser ein Verständnis sowohl der
Möglichkeiten und Herausforderungen
der Bildgebung des Sehsystems mittels
dMRT als auch ihrer Relevanz für die
Interventionsplanung vermittelt.

Schlüsselwörter
Visuelles System · Diffusionsgewichtete
Magnetresonanztomographie · dMRT · DTI ·
Epilepsiechirurgie

pathways and to perform the tractogra-
phy in order to reconstruct these con-
nections. It should be noted that while
tractography directly between the optic
chiasm and V1 is theoretically possible,
in practice it is extremely challenging due
to its length and complexity. Therefore, it
is recommended to incorporate the LGN
in the tractography.

In terms of segmentation there are
two main approaches—manual, where
the structures are identified and marked
by hand by a trained user, or automated,
which is performed by designated soft-
ware. For the latter, the FreeSurfer seg-

mentation software (. Table 2) is widely
used and functions as a semi-standard
of automated segmentation. It should
also be noted that recent rapid develop-
ments in deep learning (DL) methods,
although not yet widely established, re-
sulted in new emerging tools that are of
great promise.

Optic nerves

If required, the currently recommended
strategy would be a manual delineation
based on T1-weighted images. This may
change with emerging DL-based meth-
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Fig. 38 T1-weighted anddMRI-derived sample images. a T1-weighted images.b Single post-pro-
cesseddiffusion-weightedvolumeacquiredwithb-value= 1600 s/mm2. cMapoffractionalanisotropy
(FA) describing anisotropy of local diffusion. d Track-density imaging (TDI), tractography-derived con-
trast obtained bymapping density of streamlines. (Image courtesy of Otto vonGuericke University
Magdeburg)

ods, which demonstrate good perfor-
mance [25], but are not yet widely avail-
able.

Optic chiasm

AFreeSurfer software, regarded as a stan-
dard tool in automated brain segmenta-
tion, is capable of segmenting the optic
chiasm, yet its results can be subopti-
mal (. Fig. 5b, top). As such it is rec-
ommended to segment the optic chiasm
manually in order to achieve optimal ac-
curacy (. Fig. 5b, bottom)—an approach
widelyused inoptic chiasm imaging [30].
Similar to optic nerves, current DL de-
velopments allow for the segmentation
of the optic chiasm, but they are still not
widely tested and available—especially in
the case of optic chiasm malformations.

Lateral geniculate nucleus

The segmentation of the LGN is partic-
ularly challenging, as this structure does
not stand out in T1-weighted images.
While it is possible to use automated seg-

mentation tools (e.g., FreeSurfer, SPM,
FSL, GIF, MALP-EM, Mipav) to this
end, this approach has limitations, e.g.,
LGN segmentation can even vary be-
tween versions (as shown for FreeSurfer
in . Fig. 5c). Furthermore, the lack of
validation undermines the study’s relia-
bility. Therefore, it is recommended to
obtain PDmaps during the data acquisi-
tion, as their contrast allows for an LGN
identification. In the absence of this in-
formation, an alternative strategy is the
tractography-based identification of the
LGN [28]. We propose that this strategy
would be even further improved by si-
multaneous tractography from both the
optic chiasmandV1with the target in the
thalamus. The intersectionof the stream-
line endpoints might serve to identify
the LGN, which can be combined with
thepreviously introducedFreeSurfer seg-
mentation.

Primary visual cortex

For the identification of the primary
visual cortex (V1), three approaches

are available: (1) the use of automated
segmentation tools, (2) individualized
retinotopic mapping, and (3) the estima-
tion of retinotopic maps from anatomi-
cal priors. (1) Automated segmentation
tools in principle allow for an estimation
of V1; however, individual differences
from the general template introduce
errors in the results of the V1 ROI defi-
nition. Further, this approach does not
provide an estimate of the retinotopy
of V1. (2) The alternative is to obtain
retinotopic maps of the visual cortex
specifically for the respective individuals
with dedicated functional magnetic res-
onance imaging (fMRI) measurements
[32]. Due to the retinotopic organization
of the visual cortex, visual areas can be
identified via fMRI-based retinotopic
mapping (reviewed in [18, 19, 43]). T2*-
weighted BOLD gradient-EPI sequences
are acquired in fMRI scans during visual
stimulation, typically with a contrast-in-
verting or moving checkerboard pattern
section that travels through the visual
field in a systematic manner to create
a specific spatiotemporal response pat-
tern on the visual cortex. Conventional
phase-encoded retinotopic mapping
[33] or the neuro-computationally more
demanding population receptive field
mapping [13] can be applied to obtain
cortical maps of the eccentricity and
polar angle representations of the visual
field. These are typically visualized on
the computationally inflated or flattened
surface of the visual cortex as derived
from high-resolution T1 images. Visual
area boundaries can be delineated from
these maps [33] as depicted in . Fig. 5d
(top row) for the primary visual cortex
(V1). (3) Based on the evidence of
qualitatively consistent organization of
primary (V1) and extra-striate (V2 and
V3) visual area topography [12], Benson
et al. [4] demonstrated the ability of
an anatomical template to predict the
retinotopic organization of the visual
cortex with high accuracy using only
a participant’s brain anatomy, i.e., the
patterns of the gyral and sulcal cur-
vatures. In the absence of retinotopic
mapping data, a viable alternative is
therefore the use of Benson’s atlas, which
utilizes knownanatomical priors in order
to estimate V1 location, as well as polar
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Table 1 Sample of online, publicly available repositories offering dMRIdatasets
Source Modality Sample size Link

Human Connectome
Project (HCP; [42])

dMRI, T1w 1206 controls http://www.humanconnec
tomeproject.org/

Beijing Normal Univer-
sity data

dMRI, T1w 180 controls http://fcon_1000.projects.
nitrc.org

Image & Data Archive
(IDA; 138 studies)

Various Various https://ida.loni.usc.edu

Information eXtraction
from Images (IXI)

dMRI, T1w, PD 500 controls http://brain-development.org

dMRI diffusion magnetic resonance imaging, PD proton density, T1w T1-weighted

Table 2 Sample list of neuroimaging tools used inDWand T1wdata processing
Name Format

conversion
T1w pro-
cessing

DWpro-
cessing

Analysis of mi-
crostructural
properties

Tracto-
graphy

Function and remarks

dcm2niix X – – – – Well-established converter from Digital Imaging
and Communications in Medicine format (DICOM;
scanner output) to Neuroimaging Informatics
Technology Initiative format (NIfTI; neuroimaging
standard)

FSL [21] – X X X X Well-established, high-quality distortion correc-
tion tools

FreeSurfer [15] – X – – – Well-established standard in T1-weighted image
segmentation

mrDiffusion X X X X X MATLAB-dependent, part of VISTASOFT package

MRtrix [41] X X X X X Notable software for processing, analysis and
visualization of dMRI data

Trekker [2] – – – – X Uses state-of-the-art parallel transport tractogra-
phy algorithm

FiberNavigator – – – – X Supports real-time tractography from the data

DIPY X X X X X Python library for analysis of dMRI data

DW diffusion weighted, dMRI diffusion magnetic resonance imaging, PD proton density, T1w T1-weighted

Table 3 SuggestedDWpreprocessing pipeline
Name Software Purpose Comments

Conversion from
DICOM

dcm2niix Converting the scanner’s DICOM to format
standardly handled by neuroimaging soft-
ware (NIfTI)

Diffusion image in NIfTI format is accompanied by files stor-
ing information on b-values (.bvals) and gradient directions
(.bvecs)

Denoising MRtrix Removal of noise Requires unmodified data, therefore must be first in the pre-
processing

Gibbs rings MRtrix Removal of Gibbs ringing artifacts from im-
age

Must be run before any interpolation is performed on the
data

Topup MRtrix/FSL Estimation of motion in the images Benefits from low b-value volumes interspersing the DW
series (. Fig. 4a)

Eddy MRtrix/FSL Correction of motion, geometry-induced and
eddy current distortions

Acquisition of at least portion volumes with opposite
phase-encoding direction is recommended (. Fig. 4b)

Gradient non-linear-
ity correction

FSL Correction of gradient non-linearity of diffu-
sion gradients

Recommended if not performed automatically during data
acquisition

Bias field correction MRtrix/ANTS Removes bias field in order to normalize
voxels intensities

MRtrix function interactingwith ANTs software

Alignment MRtrix/FSL Aligns the DW and T1w and PDmaps in order
to ensure match between images on the
voxel scale

Any transformations of DW imagemust also be applied to
gradient directions (.bvecs file) (. Fig. 4c)

Upsampling MRtrix Optional step allowing data to be interpo-
lated to increase resolution

Optional, in some cases recommended

DW diffusion weighted, dMRI diffusion magnetic resonance imaging, PD proton density, T1w T1-weighted
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Fig. 48 Exemplary distortions affecting the quality of the diffusion-weighted (DW) b0 images. a Ex-
ampleofmotion-induceddistortions. First (left)andlast (middle)b0 imageintheDWseries. Calculation
of voxel-wise difference between volumes reveals displacement introducedbymotion.b Example of
Echo-Planar Imaging (EPI) distortions. Discontinuity of themedium causes the inhomogeneity of the
magnetic field, whichwarps the image.These distortions are particularly pronounced in the region of
the optic chiasm (white arrows) andnear the ear canals, anddependingon the phase-encodingdirec-
tion (PED) aremanifestedeitherby squeezing (left) or stretching (middle). Images acquiredwithoppo-
site PEDs can be combined in order to unwarp the distortion (right).cAlignment of the T1-weighted
(T1w;middle)andDWimage(left)ensuresthecorrespondencebetweenvoxels (right). (Imagecourtesy
of Otto vonGuericke UniversityMagdeburg)

angle and eccentricity map (see. Fig. 5d,
middle row). This information can be
used to specify ROIs for the purpose of
tractography.

White matter

In order to enhance the accuracy of the
tractography it is recommended to use
the known anatomical priors, such as the
limitation of the reconstructed pathways
to white matter only. Such white matter
masks can be extracted using, e.g., FSL
or FreeSurfer software. This approach
can be further extended by taking into
account other types of tissues, such as
in five-tissue-type segmentation (imple-
mented in MRtrix), which is a critical
component in their proposed anatom-
ically constrained tractography (ACT;
[34]).

DWdatamodeling

Subsequent to DWdata preprocessing, it
is necessary to fit the diffusion model to
the data (. Fig. 6b). The available mod-
eling approaches depend on the quality
and properties of DW data, such as the
number of gradient directions, number
of shells etc. As the in-depth discussion
of available models is beyond the scope
of this paper, the following section will
cover a sample of two well-established
models.

Diffusion tensor

Basic, yet successful andwell-established,
is the DT [3] model (. Fig. 6b, right),
which’s popularity caused confusion of
Diffusion Tensor Imaging (DTI; appli-
cation of DT model) with the general
dMRI term (covering all models). The
DT model represents diffusion as a 3× 3
matrix with six independent terms (i.e.,
fromat least six volumeswithunique gra-

dient directions), which can be graphi-
cally represented as an ellipsoid. This
model has limitations, as it models only
one diffusion direction per voxel, and
as such fails to represent more complex
structures, such as the optic chiasm (due
tothepresenceofcrossingfibers),Meyer’s
loop (due to its curvature), or posterior
parts of optic radiation (due to fanning).

Constrained spherical
deconvolution

Among other alternatives (such asQ-ball
imaging, diffusion spectrum imaging),
we would like to discuss in detail CSD
[39], which treats signal in each voxel
as a convolution of the response from
a single fiber population and distribu-
tion of the local fiber’s orientations. As
such, CSD is capable of resolving multi-
ple fiber bundles crossing a single voxel,
which are described by orientation dis-
tribution functions (ODFs). The fitting
of the CSD model requires more than
six gradient directions (typically 30–60),
which grants noise reduction and higher
angular resolution at the cost of longer
scanning time.

Tractography

Inadditiontothechosendiffusionmodel,
theoutcometractogramdependsonmul-
tiple parameters governing the tracking
process (. Fig. 6). These options are in-
troduced and briefly discussed here.

Probabilistic vs. deterministic
algorithms

Generally, there are two classes of track-
ing algorithms—deterministic and prob-
abilistic. Deterministic algorithms as-
sume that fibers in each voxel are ori-
ented inonlyonedirectionasdetermined
by the given model (see . Fig. 6c)—as
such they offer robust results, but fail
to grasp complex architectures. Alter-
native probabilistic algorithms at each
step of tracking sample the final direc-
tion from the distribution of all possible
directions. This approachmakes it possi-
ble to uncover connections missed by the
deterministic algorithms (. Fig. 6c) and
has been proven to be superior to deter-
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Fig. 58 Segmentation of visual system structures.aA sagittal view of the 3Dgraphic displaying the
optic chiasm (orange), left and right lateral geniculate nucleus (LGN; purple) and primary visual cortex
(dark gray) and their location in the T1-weighted image.b Tilted axial slices displaying comparison of
the optic chiasmmasks obtained via FreeSurfer software (top) andmanual segmentation (bottom).
cAxial slices comparing LGNmasks from FreeSurfer v6.0 (purple) or FreeSurfer v7.1 (cyan; overlap in
blue). d Correspondence of the functionalmagnetic resonance imaging (fMRI)-derived retinotopic
maps, their estimates derived from anatomy using Benson’s atlas and the volumetric representation
of the latter. Left and right columns depict eccentricity andpolar anglemaps, respectively.Top row
displays surface representation of retinotopicmaps of the right hemisphere derived from fMRIdata
usingpopulationReceptive Field (pRF)models.Middle rowdisplays analogical representationderived
directly from T1-weighted image using Benson’s atlas.The bottom row displays Benson’s prediction in
a volumetric representation. It should be noted that the representation is limited to the central visual
field (14° radius). (Image courtesy of Otto vonGuericke UniversityMagdeburg)

ministic tracking. Consequently, mod-
ern tracking algorithms relying on ad-
vanced models, such as CSD, employ
probabilistic tracking algorithms.

Algorithm types

Evenwithintheclassofprobabilisticalgo-
rithms, there exists a wide range of possi-
ble choices, which impacts the outcome
tractogram. The difference between
two probabilistic algorithm—iFOD2
(implemented in MRtrix) and parallel
transport tractography (implemented in
Trekker)—is demonstrated in . Fig. 6c.

Seeding region

The term “seed” refers to locations cho-
sen as starting points for reconstructed
streamlines. Global seeding describes al-
lowance to track from any brain voxel
(usually white matter voxel), while ROI
seeding refers to limiting seeds to de-
fined ROIs. Global seeding allows for
the reconstruction of all possible path-
ways, which is important in studies on
the connectivity within the whole brain,
but at the same time is much more com-
putationally demanding. It also does not
guarantee that the pathways of interest
will indeed be reconstructed. The ROI
seeding limits the tractography only to
the selected structures, which is faster,
but may, at the same time, limit the ap-
plication of streamline post-processing
options (see next section).

Target ROIs

For the recommended probabilistic al-
gorithms, the generated streamlines will
not only be limited to the “true” path-
ways between seeds, but will also cover
awide range of positive, but anatomically
implausible, connections (. Fig. 6d). In
order to limit the tractography outcome
to only valid streamlines, it is advised to
employ information about the destina-
tion of the streamlines, known as a “tar-
get.”A combinationof information about
start (seed) and end (target) ROIs greatly
improves the accuracy of tractography
(. Fig. 6d).
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Fig. 68 Exemplary diffusionmodels, tractography algorithms, and tracking strategies. a The axial
slice of the T1-weighted imagewith highlighted LGN(cyan) and V1 (red). b Two exemplarymodels fit
to the data: constrained spherical deconvolution (CSD; left) and diffusion tensor (DT; right). c Sample
streamlines connecting LGNandV1 generated using different tracking algorithms (from left to right):
second-order Integration over Fiber OrientationDistrbutions (iFOD2) based on CSDmodel, Parallel
Transport Tractography (PTT) based on CSDmodel, deterministic algorithmbased onDT, andproba-
bilistic algorithmbased onDT.d Impact of incorporating regions of interest (ROIs) in the iFOD2-based
tractography. From left to right: streamlines connecting LGNto V1, but not limited towhitematter
(WM); streamlinesgenerated inLGNandlimitedtowhitematterbutnot requestedtoreachV1; stream-
lines connecting LGNandV1 and limited towhitematter; streamlines connecting LGNandV1, limited
towhitematter and requested to pass through user-defined ROI(enforcing anatomical plausibility of
streamlines). (Image courtesy of Otto vonGuericke UniversityMagdeburg)

Additional inclusion/exclusion
ROIs

Still, the definition of seed and tar-
get ROIs does not necessarily unam-
biguously determine the reconstructed
streamlines, especially in the case of
complex neural connections, such as the
optic radiation. Therefore, it is necessary
to always visually inspect the tractog-
raphy results. For uncertain results,
it is recommended to introduce fur-
ther inclusion or exclusion ROIs (based
on anatomical knowledge) in order to
impose other restrictions on generated
streamlines and remove implausible con-
nections (. Fig. 6d). A good and widely
used example of the incorporation of
anatomical priors in tractography is us-
ing the white matter mask as a limitation
for the tractography. This option is sup-
ported in all tracking software, as well as

its extensions to tissue types other than
WM (such as in ACT; [34]).

Other parameters and ensemble
tractography

Apart from the aforementioned points, it
is alsonecessary tochoose theparameters
governing tracking, such as the number
of steps, maximal angle between consec-
utive steps, and possible thresholds pre-
venting tractography from entering false
regions etc. A detailed discussion of this
topic requires a separate study, as the
selection of fixed parameters introduces
tracking bias. A solution to this problem
is the repetition of tractography multiple
times (using different algorithms, sets of
parameters, and possibly even models)
and combining all these into one out-
come [38]. This will, however, naturally
extend the complexity of the analysis and
its duration.

Streamline post-processing—
editing and filtering

Once the tractogram is generated, it can
be subjected to further editing and ad-
justments. All approaches can generally
be grouped into two classes: (a) User-
informed tractograms can be merged,
divided with respect to the number of
streamlines or their properties (such
as length), split using newly defined
ROIs, transformed to different templates
etc. The common denominator here is
the user-made decision about the ac-
tion. (b) Signal-informed tractograms
are automated methods that refine the
selection of streamlines using initially
measured signal as a reference, a val-
idation process referred to as filtering.
As an example, linear fascicle evaluation
(LiFE; [29]) calculates the predicted sig-
nal based on generated streamlines and
compares it with the currently measured
signal. Redundant streamlines with zero
contribution to the currently measured
signal are subsequently discarded. Other
filtering methods include, e.g., Spher-
ical-deconvolution Informed Filtering
of Tractograms (SIFT; [35]) or Convex
Optimization Modeling for Microstruc-
ture Informed Tractography (COMMIT;
[9]).

Outlook

The previous sections presented the pro-
cedure involved in the tractographyof the
visual systemand its relevance forpresur-
gical planning. From a more general
viewpoint, dMRI with its unparalleled
capability of capturing the architecture
and microstructural properties is a ver-
satile tool also in research on epilepsy, or
any kind of neuroscientific research in-
volving brain anatomy. Neurosurgery is
continuously seeking to be less invasive,
yet attempts in this direction are often
hindered by limitations in knowledge,
e.g., of the functionofhigher-ordervisual
cortices. This is expected to eventually
change with the scientific progress re-
garding structure–function relationships
in the visual system and thus foster its
integration with clinical applications and
presurgical planning. A fine example of
such developments are research initia-
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tives aiming to design visual prosthesis
by microelectrode stimulation of the V1
[6]. Here, it is anticipated that dMRI
will be of assistance in deciphering reti-
nal projection fields in V1 a priori to the
application of the high-resolution stim-
ulation grids. As such, this would be
a meaningful step in the development of
visual prosthesis, even though it is still
a long way from creating phosphenes ca-
pable of inducing meaningful visual im-
pressions by neuronal stimulation.

Practical conclusion

4 Surgical planning and risk assess-
ment in epilepsy benefit greatly from
an individualized reconstruction of
the visual pathways.

4 Integrated diffusion magnetic reso-
nance imaging (dMRI)-based tractog-
raphy allows for the individualized
identification of the visual path-
ways, including optic tracts and optic
radiation.

4 To acquire the information essential
for successful tractography and
to cope with imaging artifacts,
dMRI requires careful consideration
of data acquisition settings and
preprocessing tools.

4 Tractography requires the segmen-
tation of seed structures, i.e., optic
chiasm, lateral geniculated nucleus,
primary visual cortex, and white
matter masks.

4 The choice of the correct dMRI
data modeling framework is critical
for the successful tractography-
based reconstruction of the visual
pathways.
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Chapter 6

Quantifying nerve decussation
abnormalities in the optic chiasm

This chapter contains the permitted reprint of the study „Quantifying nerve decus-
sation abnormalities in the optic chiasm” published in Neuroimage: Clinical:

Puzniak, R. J., Ahmadi, K., Kaufmann, J., Gouws, A., Morland, A. B., Pestilli, F., and
Hoffmann, M. B. (Jan. 2019). “Quantifying nerve decussation abnormalities in the
optic chiasm”. In: NeuroImage: Clinical 24, p. 102055. DOI: 10.1016/j.nicl.2019.
102055
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A B S T R A C T

Objective: The human optic chiasm comprises partially crossing optic nerve fibers. Here we used diffusion MRI
(dMRI) for the in-vivo identification of the abnormally high proportion of crossing fibers found in the optic
chiasm of people with albinism.
Methods: In 9 individuals with albinism and 8 controls high-resolution 3T dMRI data was acquired and analyzed
with a set of methods for signal modeling [Diffusion Tensor (DT) and Constrained Spherical Deconvolution
(CSD)], tractography, and streamline filtering (LiFE, COMMIT, and SIFT2). The number of crossing and non-
crossing streamlines and their weights after filtering entered ROC-analyses to compare the discriminative power
of the methods based on the area under the curve (AUC). The dMRI results were cross-validated with fMRI
estimates of misrouting in a subset of 6 albinotic individuals.
Results: We detected significant group differences in chiasmal crossing for both unfiltered DT (p=0.014) and
CSD tractograms (p=0.0009) also reflected by AUC measures (for DT and CSD: 0.61 and 0.75, respectively),
underlining the discriminative power of the approach. Estimates of crossing strengths obtained with dMRI and
fMRI were significantly correlated for CSD (R2 = 0.83, p=0.012). The results show that streamline filtering
methods in combination with probabilistic tracking, both optimized for the data at hand, can improve the
detection of crossing in the human optic chiasm.
Conclusions: Especially CSD-based tractography provides an efficient approach to detect structural abnormalities
in the optic chiasm. The most realistic results were obtained with filtering methods with parameters optimized
for the data at hand.
Significance: Our findings demonstrate a novel anatomy-driven approach for the individualized diagnostics of
optic chiasm abnormalities.

1. Introduction

The optic chiasm is a core component of the human visual system.
Here the fate of the axons is decided, such that fibers from the nasal
retina cross to the contralateral hemisphere, while those from the
temporal retina do not cross and remain on the ipsilateral hemisphere.
This partial decussation of the optic nerves guarantees that each
hemisphere receives binocular input from the contralateral visual
hemifield. Beyond its clinical relevance (Hoffmann and
Dumoulin, 2015) and its relevance as a model for neuronal pathfinding
in basic neuroscience (Prieur and Rebsam, 2017; Petros et al., 2008) the

optic chiasm can be used as a powerful test-bed for the development of
methods that allow the in-vivo-reconstruction of fiber tracts in the
human brain. A common tool for this purpose is diffusion MRI (dMRI),
which uses random thermal motion of water molecules (Stejskal and
Tanner, 1965) to identify markers of the neuronal tissue organization.
This approach, initially using the Diffusion Tensor model [DT;
Basser et al., 1994], was, however, proven to be confounded by tissues
with a complex microstructure comprising a mixture of crossing and
non-crossing nerves (Alexander et al., 2002; Tuch et al., 2002). This
leads to misestimations of microstructural parameters (Oouchi et al.,
2007) and the underlying fiber distribution (Jones et al., 2013).
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Moreover, this is particularly relevant in areas with crossing fibers,
which may affect as much as 90% of the brain volume (Jeurissen et al.,
2013), making it an important challenge for dMRI. In order to address
this challenge new models were developed, such as Q-Ball imaging
(Tuch, 2004), Diffusion Spectrum Imaging [DSI; (Wedeen et al., 2005)]
or Constrained Spherical Deconvolution [CSD; Tournier et al., 2007;
Descoteaux et al., 2006]. Those and other emerging approaches, how-
ever, require a sound testing model.

The optic chiasm reflects the complex microstructure of other brain
structures and has the decisive advantage that (i) the ratio of crossing
and non-crossing nerve fibers is a well-known ground truth and that (ii)
human diseases are known, where this ratio is significantly altered.
Based on previous work (Kupfer et al., 1967), we have a clear under-
standing that in the neurotypical case 53% of nerve fibers in the optic
chiasm travel across the optic chiasm to the contralateral lateral geni-
culate nucleus (LGN), while 47% project to the ipsilateral LGN. The
optic chiasm was investigated in several studies evaluating the accuracy
of dMRI, such as the qualitative evaluation of tracking algorithms
(Staempfli et al., 2007) or the quantification of fiber crossing strength
in ex-vivo chiasms (Roebroeck et al., 2008). While both studies were
successful in capturing qualitative features of the optic chiasm, neither
provided an accurate quantitative estimation of crossing strength that
was in agreement with expected values; Staempfli et al. (2007) per-
formed qualitative analyses only and Roebroeck et al. (2008) estimated
only up to 5% of nerve fibers to cross to the contralateral hemisphere.

The optic chiasm as a test-bed for differentiating crossing and non-
crossing fibers can be extended further by the inclusion of known
neuropathies affecting the human optic chiasm that reveal clear ab-
normalities. The most frequent of these rare conditions is albinism,
which is associated with an enhanced crossing of the optic nerve fibers
(Guillery 1986; Morland et al., 2002; von dem Hagen et al., 2005). Here
the line of decussation that separates the retinal ganglion cells with a
crossed projection from those with an uncrossed projection and which
is normally aligned with the fovea, is shifted by on average 8° into the
temporal retina (Hoffmann et al., 2005; von dem Hagen et al., 2007;
von dem Hagen et al., 2008). As a result, the crossing of the optic nerves
is enhanced (Hoffmann and Dumoulin, 2015). Recently, the first study
to report group differences in chiasm tractography between albinism
and controls was published (Ather et al., 2019). It used the DT model
and demonstrated that dMRI can be used to identify, at the group level,
differences in chiasmal connectivity between albinism and controls.

The dMRI approach can be extended beyond the DT model
(Basser et al., 1994), by incorporating an additional Constrained
Spherical Deconvolution model [CSD; Tournier et al., 2007], as well as
the state-of-the-art tractography evaluation: Linear Fascicle Evaluation
[LiFE; Pestilli et al., 2014b; Caiafa and Pestilli, 2017], Convex Opti-
mization Modeling for Microstructure Informed Tractography
[COMMIT; Daducci et al., 2013, 2015], and Spherical-deconvolution
Informed Filtering of Tractograms [SIFT2; Smith et al., 2015]. In the
present study, we compared the efficacy of these methods in identifying
and quantifying optic nerve fiber misrouting at the optic chiasm in al-
binism and its relation to fMRI-based estimates of misrouting extent.

2. Methods

2.1. Participants

Nine participants with diagnosed albinism (5 females) and eight
control subjects (6 females) were recruited for the study. The controls
had no neurological or ophthalmological history, normal decimal visual
acuity [≥1.0, Freiburg Visual Acuity Test (Bach, 1996)] and normal
stereo vision (Lang and Lang 1988; Donzis et al., 1983). Each partici-
pant was instructed about the purpose of the study and the methods
involved and gave written informed study participation and data
sharing consents. The study was approved by the Ethics Committee of
the Otto-von-Guericke University Magdeburg, Magdeburg, Germany.

2.2. Data acquisition

All MRI data was acquired with a Siemens MAGNETOM Prisma 3
Tesla scanner with syngo MR D13D software and a 64-channel head
coil. Diffusion and functional data was acquired in separate scanning
sessions. During both sessions additional T1-weighted images were
acquired.

2.2.1. T1-weighted data acquisition
T1-weighted images, obtained during both dMRI and fMRI scanning

sessions, were collected in sagittal orientation using a 3D-MPRAGE
sequence resolution [0.9× 0.9× 0.9mm3, FoV 230×230mm, TR
2600ms, TE 4.46ms, TI 1100ms, flip angle 7°, image matrix:
256× 256×176, acquisition time 11min 6 s; Mugler and Brookeman
1990].

2.2.2. dMRI data acquisition
The dMRI acquisition protocol was initiated with a localizer scan,

followed by a T1-weighted MPRAGE scan and two diffusion-weighted
scans [one with anterior-posterior (A> > P) and the other with pos-
terior-anterior (P> > A) phase-encoding direction]. All data was col-
lected during a single continuous scanning session. dMRI images were
acquired with Echo-Planar Imaging (EPI) [b-value 1600 s/mm², re-
solution 1.5×1.5× 1.5mm3, anterior to posterior (A> > P) phase-
encoding direction, FoV 220×220mm, TR 9400ms, TE 64.0ms, ac-
quisition time 22min and 24 s]. The b-value was chosen with regard to
the reported range of b-values optimal for resolving two-way crossing
[for single shell acquisition: 1500–2500 s/mm2 (Sotiropoulos et al.,
2013)]. Each scan was performed with 128 gradient directions, there-
fore the obtained diffusion-weighted data could be described as High
Angular Resolution Diffusion Imaging [HARDI; Tuch et al., 2002] data.
The high number of gradient directions, while excessive for angular
contrast allowed by b-value of 1600s/mm2, enhanced the effective
signal-to-noise-ratio (SNR) and thus supported residual bootstrapping.
This is of importance for diffusion-MRI of the optic chiasm with its
reduced SNR. The gradient scheme, initially designed for 3 shell ac-
quisition, was generated using Caruyer's tool for q-space sampling
(Caruyer et al., 2013). Due to the acquisition time constraints, however,
we limited the set of directions to single shell only. Diffusion-weighted
volumes were evenly intersected by 10 non-diffusion weighted volumes
for the purpose of motion correction. The second diffusion-weighted
series was acquired with a reversed phase-encoding direction relative to
the previous scan, i.e., posterior to anterior (P> >A). Apart from that,
all scan parameters were identical to those corresponding to the pre-
ceding acquisition. The acquisition of two diffusion-weighted series
with opposite phase-encoding directions enhanced the correction of
geometrically induced distortions (Andersson et al., 2003). Further-
more, the additional scans provided a boost of the effective SNR in the
dMRI data.

2.2.3. fMRI data acquisition
Functional T2*-weighted images were acquired with EPI [resolution

2.5×2.5× 2.5mm3; 54 axial slices covering the whole brain, FoV
210× 210mm, TR 1500ms, TE 30.0ms, flip angle 70°] during the
course of a different study (Ahmadi et al., 2019), where methods are
detailed. Briefly, the fMRI scanning session consisted of 6 functional
scans, 168 time-frames each, resulting in a scan length of 252 s. The
dominant eye of the albinotic participants was stimulated with moving
bars that appeared within a circular aperture of 9.5° radius covering
either the left or the right visual hemifields (three repetitions per
hemifield stimulation). All data was acquired in a single continuous
scanning session.
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2.3. Data analysis

2.3.1. dMRI data analysis
2.3.1.1. dMRI data preprocessing. The data was preprocessed using a
combination of software toolboxes: MRtrix 3.0 (http://www.mrtrix.
org/), FMRIB's FSL 5.0.9 (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki),
FreeSurfer 6.0.0 (https://surfer.nmr.mgh.harvard.edu/), ANTS 2.1.0
(http://stnava.github.io/ANTs/) and MrDiffusion (https://github.
com/vistalab/vistasoft/tree/master/mrDiffusion). The preprocessing
of the dMRI data from DICOM involved converting it to .mif format
(compatible with MRtrix) [mrconvert command], denoising of the
dMRI data [dwidenoise command; Veraart et al., 2016a, 2016b],
removal of Gibbs ringing in the dMRI data [dwidegibbs command;
Kellner et al., 2015], estimation of the susceptibility induced field in the
dMRI data [topup command; Andersson et al., 2003] using FSL
(Smith et al., 2004), correction for geometry-induced, eddy current
and motion distortions in the dMRI data [eddy command;
Andersson and Sotiropoulos, 2016; Andersson and
Sotiropoulos, 2016], and correction for the bias field (low frequency
intensity inhomogeneities caused by uneven absorption of RF power
across scanned tissue) in the dMRI data [ANTS, N4 algorithm;
Tustison et al., 2010]. Finally, the dMRI data was coregistered to the
T1-weighted images aligned to the Anterior Commissure - Posterior
Commissure (AC-PC) space (mrAnatAverageAcpcNifti command from
https://github.com/vistasoft/vistalab). Notably, this step also required
the application of an exact transformation to the gradient table, since
the gradient vectors were defined in the space of the dMRI data. The T1-
weighted image was segmented into white, grey and subcortical grey
matter and cerebrospinal fluid using FSL [FIRST command;
Patenaude et al., 2011]. The white matter masks were additionally
manually corrected in the region of the optic chiasm using the T1-
weighted images (Fig 1A, left and middle image).

2.3.1.2. dMRI data modeling and tractography. Two distinct diffusion
signal models were applied to the dMRI data - Diffusion Tensor [DT;
Basser et al., 1994] and Constrained Spherical Deconvolution [CSD;
Tournier et al., 2007; Descoteaux et al., 2011]. The DT model was
selected in order to compare our results with previous studies that used
this model alone (Roebroeck et al., 2008; Ather et al., 2019). Due to the
limited performance of the DT model for populations of crossing fibers,
an additional model, CSD, was also tested. The rationale behind this
choice was to investigate whether the results can be improved by using
a model that is more sensitive to crossing fiber populations and at the
same time benefits from the high angular resolution of collected dMRI
data. The modeling for DT was performed with MRtrix tool tckgen
(Tensor_Prob algorithm), where dMRI data in each voxel for each
streamline was residually bootstrapped, prior to DT fitting (Jones,
2008), such that tracking along the principal eigenvectors of tensors
was probabilistic. For the purpose of CSD modeling, an estimation of a
response from voxels containing only single fiber population (single
fiber response, SFR) was acquired using Tournier's approach
[dwi2response tool with -tournier option (Tournier et al., 2013)] for
a maximum harmonic order (Lmax) of 6. The fibre orientation
distribution functions [fODFs; Jeurissen et al., 2014] were obtained
for 3 different maximum harmonic orders Lmax= 6, 8 and 10
(command dwi2fod using msmt_csd algorithm, as its hard constraints
prevents the estimation of negative peaks).

For the purpose of tracking for both DT and CSD, four regions of
interest (ROIs) were manually drawn on T1 images for each individual
data set - two covering intersections of left and right optic nerves and
two covering intersections of left and right optic tracts. ROIs were
placed to be as close to the optic chiasm as possible without intersecting
it (Fig 1A, right image). ROI widths and heights (in coronal view) had
the minimal values required to fully cover the optic nerves or tracts,
and each of the ROIs was 3 voxels (4.5mm) thick to ensure proper
termination of streamlines during tractography. In total there were four

pairs of ROIs connecting optic nerves and optic tracts. For each model,
tracking was performed between 2 ROIs, one of two optic-nerve ROIs
and one of the two optic tract ROIs (Fig 1B), such that the created
streamline groups could be either classified as crossing or non-crossing.
For each pair of ROIs the streamlines were generated twice, with a
switched definition of seed and target ROI, and merged into a single
group of streamlines, such that the tracking results were not biased
towards the direction of tracking. The tracking was limited to pre-
viously obtained and manually corrected white matter masks [fol-
lowing Anatomically-Constrained Tractography framework;
Smith et al., 2012]. In addition, to reduce a potential bias in tracto-
graphy caused by the specific choice of tracking parameters, Ensemble
Tractography (Takemura et al., 2016) was used for all analyses. Ac-
cordingly, the tractography was performed multiple times, with each
run using a different set of parameters. The modified parameters were,
specifically: fractional anisotropy threshold (FAthresh) and maximum
curvature angle between consecutive tracking steps (Curvmax). In case
of CSD this list was extended by the maximal harmonics order (Lmax) of
the fitted fODFs. Notably, the CSD used the SFR obtained for only a
single Lmax=6. The values of the parameters applied are summarized in
Table 1.

For each subject, for a given combination of parameters the trac-
tography was performed for the 4 distinct seed-target ROI pairs, and for
each pair of ROIs it was performed twice (reversal of seed-target defi-
nitions), with 139 000 seeds (random locations within the seed ROI,
which served as starting points for tracking) and 1000 tracking at-
tempts per seed. This resulted in a total of 6.672×109 tracking attempts
per subject for the DT-based analysis and 20.016×109 attempts for the
CSD-based analysis. The DT-based tracking used the Tensor_Prob al-
gorithm (Jones, 2008), the CSD-based was performed with the iFOD2
algorithm (Tournier et al., 2010).

The tracking with a fixed number of attempts resulted in unevenly
populated streamline groups, where the count depended on the overall
success ratio of tracking for (Smith et al., 2012) given set of parameters
and ROIs. The tractograms were therefore biased toward the underlying
structural connectivity, which allowed them to be used for the esti-
mation of crossing strength. Furthermore, the resulting tractograms can
be used as an input to filtering, where the input streamlines are mod-
eled forward in order to explain the measured diffusion signal. This, in
turn, allows for the estimation of the contribution of each generated
streamline to the original signal, thus addressing the stochasticity of
tracking. It is of interest to investigate how well filtering performs, if
the initial tractogram does not accurately represent the underlying
microstructure, i.e., when it contains high-levels of noise. In order to
answer this question, a second set of tractograms was created, where all
the parameters were identical with the previous tractography, except
for the restriction to a fixed number of streamlines per combination of
groups and parameters. Precisely, the generated tractograms, further
referred to as “streamline number targeted” (SNT) tractograms, were
restricted to the generation of 139 streamlines or reaching 139 000
seeds with 1000 attempts per seed, with the latter condition preventing
excessively long computations in cases of very low success ratio of
tractography.

2.3.1.3. Tractography filtering. To further investigate the robustness of
the results on intra-study level, tractograms, both normally generated
and SNT tractograms, were filtered with 4 separate algorithms: (1)
Linear Fascicle Evaluation [LiFE; Pestilli et al., 2014b; Caiafa and
Pestilli 2017; Takemura et al., 2016], (2) Convex Optimization
Modeling for Microstructure Informed Tractography [COMMIT-SZB;
Daducci et al., 2013, 2015)] using the Stick-Zeppelin-Ball model, (3)
COMMIT using the Stick-Ball model [COMMIT-SB; Daducci et al., 2015,
2013], and (4) Spherical-deconvolution Informed Filtering of
Tractograms [SIFT2; Smith et al., 2015]:

LiFE (Pestilli et al., 2014b; Caiafa and Pestilli, 2017;
Takemura et al., 2016; Avesani et al., 2019). LiFE evaluates the
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individual streamline paths by scoring their contribution (expressed as
weights assigned to each individual streamline) to predict the measured
diffusion signal across the brain white matter voxels; good streamlines
positively contribute to predicting the dMRI signal (non-zero weights,
higher value represents higher contribution), poor streamline paths do
not contribute positively to predicting the measured dMRI signal (zero
weights).

COMMIT-SZB (Daducci et al., 2013, 2015) using a Stick-Zeppelin-
Ball model. The COMMIT framework follows a similar rationale as LiFE
(as well outputting weights for the whole tractogram), extending the
range of model parameters that can be used for predicting the dMRI
signal (i.e., it adds additional parameters in order to model both intra-
and extra-axonal cellular contributions to the dMRI signal prediction).
The Stick-Zeppelin-Ball model, as in (Panagiotaki et al., 2012), de-
scribes one anisotropic intra-axonal (here implemented with a tensor
with axial diffusivity equal to 1.7×10−3 mm2/s and null radial dif-
fusivity), one anisotropic extra-axonal (implemented with axial diffu-
sivity equal to 1.7×10−3 mm2/s and radial diffusivity calculated as
such, that according to tortuosity model the intra-cellular volume
fractions are equal to 0.7) and one isotropic extra-axonal (implemented
with tensors with isotropic diffusivities equal to 1.7×10−3 and
3.0×10−3 mm2/s) compartment contributing to modeling and pre-
dicting the dMRI signal for each segment of analyzed streamlines. This
model was chosen due to its overall good previous performance, as
demonstrated in Panagiotaki et al. (2012).

COMMIT-SB (Daducci et al., 2013, 2015) using a Stick-Ball model.
Although simpler, this multi-compartment model is a more fitting
match for our acquired single shell dMRI data. While the single shell
data allows for the discrimination between anisotropic and isotropic
contributions to the signal, it severely limits the distinction of extra-
and intra-axonal signals. Therefore a model using one anisotropic intra-
axonal compartment and one isotropic extra-axonal compartment is
expected to be optimal for our data and was implemented using the
corresponding components from the COMMIT-SZB approach.

SIFT2 (Smith et al., 2015). SIFT2 filters a tractography solution by
assigning weights to the streamlines in order to optimize a model that
matches the densities generated from the weighted streamline counts
with the size of the modelled fiber Orientation Distribution Functions
(fODFs) estimated from the signal within the individual voxels
(Smith et al., 2015).

While the filtering used only a subset of whole-brain tractograms
and a subset of voxels from diffusion-weighted images, the information

was complete, i.e., tractograms covered all anatomically connecting
regions and all white matter voxels within the region we analyzed. This
feature of input tractograms allows for the application of filtering – if
this criterion is not fulfilled, filtering leads to erroneous results, i.e. is
not applicable. It should be noted that two of the methods, i.e. LiFE and
SIFT2, were applied with their default parameters, while in the case of
COMMIT a wider range of parameters was tested. This, in combination
with the established knowledge, demonstrates that the better the model
fit to the data, the better the evaluation (Pestilli et al., 2014b;
Takemura et al., 2016; Rokem et al., 2015, 2017).

2.3.2. fMRI data analysis
The fMRI data analysis is detailed in (Ahmadi et al., 2019). Briefly,

the functional data was preprocessed using FreeSurfer 6.0.0, FMRIB's
FSL 5.0.9, Vistasoft (https://github.com/vistalab/vistasoft) and a
toolbox developed by Kendrick Kay (https://github.com/kendrickkay/
alignvolumedata). The T1-weighted images were automatically seg-
mented into white matter volume and cortical surface using FreeSurfer.
The fMRI data was corrected for motion with FSL, averaged across runs
for each participant and subsequently aligned to the T1-weighted image
with Vistasoft and Kendrick Kay's alignment toolbox. The cortical sur-
face reconstruction at the white and grey matter boundary as well as
rendering of the smoothed 3D mesh (Wandell et al., 2000) was per-
formed with Vistasoft.

The estimation of the pRF properties, the delineation of the visual
areas, and the visualization on the smoothed mesh surface were per-
formed using Vistasoft, as described in (Ahmadi et al., 2019a, b). Polar
angle and eccentricity maps were extracted and the misrouting extent
was measured by calculating the mean eccentricity value [in degrees of
visual angle] for the most eccentric abnormal representation in a ROI
drawn at the fundus of the calcarine sulcus that coincided with the
representation of the horizontal meridian. The maximal extent that
could be determined was limited to the stimulus size of 9.5°. In ac-
cordance with the well-known variability of misrouting in albinism,
particularly evident in cortical measures of the representation in al-
binism (Hoffmann et al., 2003, 2005), these values ranged between 3.0°
and 9.3° (Ahmadi et al., 2019).

2.4. Quantitative and statistical analysis

The crossing strength was expressed using either the weights pro-
vided by tractogram filtering or, in the case of unfiltered tractograms,
the number of the obtained streamlines (which is equivalent to the
assumption that all weights are equal). For both metrics, the crossing
strength was described by a pair of values - sums of streamlines/weights
of streamlines that cross at the optic chiasm to the other brain hemi-
sphere (crossing streamlines) or that remain on the same side (non-
crossing streamlines). In order to reduce the dimensionality of the re-
sults, as well as to allow for cross-study comparison (Ather et al., 2019),
the decussation index (ID) was calculated:

=
+

I
weights

weights weightsD
crossing

crossing non crossing

where the weightscrossing and weightsnon-crossing for each streamline were

Fig. 1. Optic chiasm – white matter mask, ROI definitions, example of tractography and quantitative results. A. T1-weighted image of a representative control subject
overlaid with the automatically generated white matter mask (left column), manually corrected mask (middle column) and ROIs covering the intersections of the
ends of optic nerves and the beginnings of the optic tracts (right column). B. Representative subsets of tractograms (0.125% of the total number of streamlines)
created using the CSD signal model for a control (top row) and a participant with albinism (bottom row), i.e., streamlines projecting through the chiasm ipsilaterally
(non-crossing; left column), contralaterally (crossing; middle column), and a combination of both streamlines (right column). C. Numbers of crossing vs non-crossing
streamlines calculated from tractograms based on the DT model. D. Numbers of crossing and non-crossing streamlines calculated from tractograms based the on DT
model expressed as ID. E. Correlation between the estimates of the extent of crossing obtained with dMRI using the DT model and fMRI-based pRF mapping. F.
Numbers of crossing streamlines plotted vs non-crossing streamlines calculated from tractograms based on the CSD model. G. Numbers of crossing and non-crossing
streamlines calculated from tractograms based on the CSD model expressed with ID. H. Correlation between the estimates of crossing obtained with dMRI, using the
CSD model, and fMRI-based pRF mapping.

Table 1
Tractography parameters. Sets of parameters used in generating DT- (left
column) and CSD-based (right column) tractograms. The rows correspond to
different parameters, from top to bottom, respectively, the cut-off FA threshold
(FAthresh), maximum angle between consecutive tracking steps (Curvmax),
maximal harmonic order of SFR (SFR Lmax) and fODF (fODFs Lmax).

DT CSD

FAthresh 0.04, 0.08 0.04, 0.08
Curvmax [°] 30, 45, 60 30, 45, 60
SFRs Lmax – 6
fODFs Lmax – 6, 8, 10
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either used according to the filtering results (for filtered tractograms) or
set to 1 (for unfiltered tractograms).

The IDs obtained for each group (control and albinism), signal
model (DT or CSD) and applied filtering model (none, LiFE, COMMIT-
SB, COMMIT-SZB, and SIFT2) were tested for normality using the
Kolmogorov–Smirnov test. As all the data samples were normally dis-
tributed, the equality of means was tested with one-tailed, two-sample
t-tests at an alpha level of 5%. Additionally, for better comparability of
our estimates, we calculated mean, median and standard deviation
values of IDs.

The calculated IDs were subsequently entered into a Receiver
Operating Characteristic (ROC) curve analysis, which returned the Area
Under Curve (AUC) measure for a given combination of signal model
(DT or CSD) and applied various filtering methods (none, LiFE,
COMMIT-SB, COMMIT-SZB, and SIFT2). It should be noted that the
estimated values were derived from the classification of the training
data. As such, the obtained AUCs reflect the ability to separate already
measured groups.

Finally, we tested whether the variability in the fMRI-based extent
of misrouting was related to the estimates of misrouting derived from
dMRI. This was tested by correlating the IDs derived from dMRI with
the fMRI-based extent of misrouting. The results were expressed with
the coefficient of determination R2, which describes the proportion of
variance in the dependent variable (dMRI-based ID) explained by the
independent (fMRI-based extent of misrouting). It should be noted that
the fMRI-based eccentricity measures were available only for a subset of
six albinotic participants.

3. Results

In order to compare different dMRI-based approaches to assess optic
chiasm integrity, we assessed (i) non-validated DT-based tractograms,
(ii) non-validated CSD-based tractograms, (iii) the impact of filtering
techniques on the identification of chiasmal abnormalities at both the
group and the individual level and (iv) its robustness to noise in the
tractograms.

3.1. Efficacy of non-validated DT-based tractograms for the detection of
chiasma abnormalities

In analogy to Ather et al. (2019) we quantified the crossing strength
by comparing the streamline counts for crossing and non-crossing
streamlines as depicted in Fig 1B and C. In order to compare different
dMRI-based approaches to assess optic chiasm integrity, we further
expressed the extent of crossing at the optic chiasm in the albinotic and
the control group via ID (Fig 1D) as detailed in Methods. In accordance
with Ather et al., 2019, our results demonstrated a significant ID dif-
ference between the albinism and the control group [t= −2.43;
p=0.014; median (mean± SEM) ID: 17.9% (40.5% %± 40.1) and
6.4% (5.8% %± 4.4), respectively]. A ROC analysis to assess the ac-
curacy of the detection of chiasmatic abnormalities at an individual
level, yielded an AUC of 0.61, i.e., short of that reported by Ather et al.,
2019 (AUC = =0.73).

3.2. Comparison of non-validated CSD- and DT-based tractograms

The CSD-based approach also allowed for the detection of differ-
ences in the chiasm crossing at the group level [t = =−3.78;
p=0.0009; median (mean± SEM) decussation index 43.5%
(41.1% %± 15.2) and 18.5% (19.2% %± 6.2)], between the albinism
and the control group, respectively as depicted in (Fig 1F and G). Im-
portantly, the ROC analysis yielded a higher AUC, i.e. 0.75, than the
DT-based approach, which underlines a greater discriminative power at
the individual level for CSD derived streamlines. Interestingly, IDs vary
across the albinotic subjects, for both the CSD and for the DT model. We
now tested whether this variability in ID across albinotic subjects was
related to the well-known variability of the extent of misrouting in al-
binism, which is particularly evident in the cortical measures of the
representation abnormality in albinism (Hoffmann et al., 2003, 2005).
For this purpose, we correlated the dMRI-derived ID of six albinotic
participants with the strength of their misrouting as determined from
fMRI-based pRF mapping [see Methods]. There was a clearly significant
positive correlation for the CSD model (R2 = =0.83; p=0.012;
Fig 1H), while there was only a non-significant trend of a positive
correlation for the DT model (R2 = =0.65, p=0.052; Fig 1E). This
indicates a remarkable precision of the dMRI-based detection of mis-
routing in reflecting the extent of misrouting in albinism.

3.3. Relevance of tractography filtering

While the previous analyses were exclusively performed for un-
filtered tractograms, we now assessed the effect of tractography fil-
tering as detailed in Methods for the DT and the CSD modeling ap-
proaches. As for the above analyses, their outcome is quantified via the
ROC-derived AUC values and the R2 values for the correlation of ID and
fMRI-based extents of misrouting (Table 2 and Supplementary Fig A.1).

3.3.1. DT-based approach
For each filtering technique the group differences in the mean ID

values were detected. However, only for SIFT2 the actual p-value was
lower than for the original unfiltered tractogram (0.013 versus 0.014,
respectively) - all other techniques showed higher values. The original,
non-filtered, tractogram also returned similar results to the filtered ones
with regard to the AUC values (0.61, the highest values for filtering
were obtained for SIFT2 and LiFE, 0.61 and 0.60, respectively) and to
the R2 values (0.65 for non-filtered, with SIFT2 and LiFE returning 0.64
and 0.52, respectively, neither being significant). It should be noted,
however, that the derived ID values were generally improved, i.e. closer
to the known ground truth in comparison to their non-filtered ID
counterparts (where estimates of crossing are lower; Table 2 and Sup-
plementary Fig A.1).

3.3.2. CSD-based approach
For the CSD-based approaches, except for LiFE, all filtered techni-

ques yielded significant group differences for ID and, including LiFE,
higher IDs for both albinism and controls closer to the ground truth,
compared to the unfiltered approaches. The good performance of

Table 2
Results derived from original and filtered tractograms. The rows describe different filtering techniques. The columns describe separate estimates including the p-
values derived from statistical testing of equality of the IDs for albinism and controls. Each column is divided into two sub-columns, corresponding to the two signal
models, i.e., DT and CSD.

mean ID for albinism [%] mean ID for controls [%] p-value for ID AUC R2

DT CSD DT CSD DT CSD DT CSD DT CSD

Unfiltered 40.5 ± 40.1 41.1 ± 15.2 5.8 ± 4.4 19.2 ± 6.2 0.014 0.00009 0.61 0.75 0.65 0.83
LiFE 37.0 ± 33.4 42.3 ± 10.0 11.0 ± 7.1 35.9 ± 5.4 0.024 0.0635 0.60 0.74 0.52 0.51
COMMIT - SB 42.0 ± 27.2 41.3 ± 6.0 20.3 ± 8.4 28.6 ± 4.2 0.024 0.00008 0.56 0.94 0.34 0.32
COMMIT- SZB 46.3 ± 29.8 44.8 ± 8.4 22.5 ± 11.0 30.6 ± 5.0 0.025 0.0004 0.58 0.92 0.29 0.63
SIFT2 40.2 ± 35.3 39.1 ± 12.9 8.9 ± 4.5 20.5 ± 5.3 0.013 0.0009 0.61 0.94 0.64 0.79
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filtering was also reflected in the highly increased AUC values (with
non-filtered tractograms yielding an AUC of 0.75, the COMMIT-SB,
COMMIT-SZB and SIFT2 returned AUCs of 0.94, 0.92 and 0.94, re-
spectively). Surprisingly, filtering did not improve the correlation be-
tween dMRI and fMRI. Out of 4 tested filtering techniques only SIFT2
returned a significant correlation (R2 = =0.79). The best results
(highest R2 and AUC) were obtained for SIFT2, with COMMIT-SZB
being the second best.

3.4. Robustness of tractography filtering
Given the remarkable similarity of the unfiltered tractograms and

the SIFT2-filtered tractograms, it was tested whether applied filtering
models are robust to noise in input tractograms. For this purpose, the
filtering techniques were applied to SNT (“Streamline Number
Targeted”, see Methods) tractograms with forcibly equalized numbers
of streamlines as detailed in Methods. This effectively caused for the
unfiltered tractograms an overrepresentation of the crossing stream-
lines, especially in the control population (Supplementary Table C.1).
The group mean IDs were not significantly different, neither for the DT-
[median (mean ± SEM) ID = =36.8% (46.9% %± 33.3) and 34.7%
(28.4% %± 18.2), for albinism and controls respectively; p=0.093]
nor for the CSD-based approaches [median (mean ± SEM) decussation
index 48.7% (44.2% %± 7.9) and 48.3% (46.2% %± 5.4), for al-
binism and controls respectively; p=0.726]. Subsequent filtering and
analysis of filtered SNT tractograms resulted in the following results for
the DT- and CSD-based approaches (Supplementary Table C.1):

3.4.1. DT-based approach
Already prior to filtering there was a tendency to group differences

in the initial mean ID values, which turned significant for all filtered
SNT tractograms. With regard to the AUC values, all filtering techniques
returned increased AUC values with respect to the unfiltered tracto-
gram. The filtering, however, did not improve the R2 values, neither
made it the correlation statistically significant.

3.4.2. CSD-based approach
The initial mean ID values were much less distinguishable between

groups than for the DT-based approach. This made the group differ-
ences after filtering more meaningful. In agreement with the above
results (Suppl. Table C.1), LiFE failed to detect group differences
(p=0.58), but this also applied to the SIFT2 results (p=0.68). SIFT2
also returned a lower AUC than without filtering. In contrast, for the
COMMIT-SB and the COMMIT-SZB model the group ID differences were
significant (0.006 and 0.024, respectively), and the reported AUC va-
lues were higher than without filtering (0.83 and 0.78, respectively).
All filtering methods failed to detect strong and significant correlations
between dMRI and fMRI estimates.

4. Discussion

We used diffusion weighted imaging to identify decussation ab-
normalities at the optic chiasm and compared different tractography
methods (DT and CSD) and filtering schemes (LiFE, COMMIT-SZ,
COMMIT-SZB, and SIFT2). Even in the case of unfiltered tractograms
we reported a significant difference of the decussation index (ID) be-
tween albinism and controls, which was more pronounced for the CSD
than for the DT model. This result is consistent with previous reports
that CSD-based tracking can return valuable results that outperform DT-
based methods (Pestilli et al., 2014). The ROC analyses for the CSD
model suggested its potential as an aid for individualized diagnostics.
This was further supported by the better linear correlation of the CSD-
derived ID values with the extent of misrouting estimated from fMRI.
Further analyses for the tested models and filtering methods con-
sistently confirmed that the CSD model yields better classification ac-
curacies for all investigated approaches. We used two filtering methods
with default parameters (LiFE and SIFT2), and a third one that varied in

the parameters set to fit the diffusion kernel that optimally matches the
dMRI data (COMMIT-SB and -SZB). We replicated previous results de-
monstrating that the choice of parameters matters (Takemura et al.,
2016). We demonstrate that even a single implementation of an eva-
luation method (COMMIT in our case) can return very different results
depending on the choice of parameter set and corresponding quality of
fit to the data. Indeed, COMMIT-SB was comparable in performance to
the default LiFE and SIFT2. Instead, COMMIT with a kernel model that
returned a better fit to the diffusion signal (the -SZB kernel) improved
results, with both increased evaluation performance and decreased
NRMSE (Supplementary Fig. B.1.). These findings are consistent with
established knowledge; the better the model fit to the data, the better
the evaluation (Pestilli et al., 2014b; Takemura et al., 2016;
Rokem et al., 2015, 2017).

4.1. Comparison of results for DT with the literature

Our results are in accordance with those reported by
Ather et al. (2019) demonstrating that dMRI can detect structural ab-
normalities of the optic chiasm at a group level. Notably, the findings
were reproduced despite several differences in the study design, e.g.
acquisition protocols, preprocessing pipeline, implementation of the DT
model, tracking algorithms and sample size, which indicates the ro-
bustness of the effect. However, the numerical values of mean ID we
obtained differ from those previously reported (Ather et al., 2019).
While Ather et al. (2019) report mean ID for albinism and controls of
42.0% %± 18.7 and 27.8% %± 17.5, respectively, we note that,
while our estimates of crossing in albinism show similar values
(40.5%±40.1), we underestimate crossing in the control group
(5.8% ± 4.4). Our values for controls, however, correspond very well
with those reported by Roebroeck et al. (2008). In their study, a ultra-
high field (9.4 T) and sub-millimetre resolution (156× 156×312 μm)
dMRI analysis of 3 ex-vivo human chiasms using the DT model, they
also reported values corresponding to ID ≈ 5%. The discrepancy of the
results across studies appears to be linked to different b-values – while
Ather et al., 2019 used b-value of 1000 s/mm2, Roebroeck et al. used b-
value of 1584 s/mm2, similar to our study (1600 s/mm2). Generally
speaking, lower b-values preserve more signal originating from extra-
axonal compartments, which results in more isotropic tensors. This, in
turn, eases tractography and results in the generation of a higher
number of streamlines. Those differences would be expected to parti-
cularly impact on challenging conditions, such as the mixture of
crossing and non-crossing streamlines in the chiasm of controls. Higher
b-values, in turn, would severely impair the success ratio of tracking in
such conditions, as observed here. More generally, it should be noted
that all the estimates of ID inferred from DT analyses of dMRI which
were reported thus far (Roebroeck et al., 2008; Ather et al., 2019 )
heavily underestimate the actual ground truth ratio of crossing to non-
crossing nerves in the optic chiasm (53:47, respectively) as reported by
Kupfer et al. (1967). One of the causes of this is an intrinsic limitation of
the DT model, as it assumes only one, dominant direction per voxel and
as such is ill-defined for populations of crossing fibers. Consequently,
the application of DT in those cases leads to the neglect of valid fibers
and erroneous estimates of the primary direction (Wiegell et al., 2000).

4.2. Comparison of results between CSD and DT

Given the established limitations of DT for the crossed fibers as in
the chiasm, we extended our study by incorporating a CSD model. This
model is believed to be superior to DT in resolving crossing fibers and
additionally benefits from the HARDI protocol we used for the acqui-
sition of our data. Accordingly, we found that for non-filtered CSD-
based tractograms the mean ID values for albinism and control
(41.1 ± 15.2 and 19.2 ± 6.3%, respectively) were higher and closer
to the biological ground truth than those we reported for DT. This is
further supported by the cross-modality validation with fMRI-estimated
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misrouting [R2
CSD vs R2

DT : 0.83 (p=0.012) and 0.65 (n.s., p=0.052)]
and by the ROC-based classification (AUCCSD vs AUCDT: 0.75 and 0.61).
These findings are in good agreement with theoretical expectations and
provide strong support for using models directly incorporating crossed
fiber populations in future studies on chiasmal connectivity
(Pestilli et al., 2014; Tournier et al., 2008; Wedeen et al., 2008;
Tournier et al., 2012).

4.3. Choice of model parameters and optimal filtering results

We tested only a few filtering methods, not exhaustively as this was
not a primary goal of our study. Specifically, two methods were used
with default parameters, without optimizing the parameters for the
properties of the diffusion data at hand, these methods were LiFE and
SIFT2. The COMMIT method was used with two types of parameters
(we changed the kernel used for predicting the diffusion, see SZB and
SB results). Our results show that the non-optimized methods can re-
turn a higher NRMSE in fitting the data, optimized methods instead can
fit the data better. As a result of the better fit to the data, filtering
improved and allowed higher detection of group differences, i.e. higher
AUC-values as compared to the unfiltered tractograms. Even though a
full-comparison of all the filtering methods goes beyond the scope of
the current work, the results demonstrate that no filtering method is
good or bad per-se. Instead careful attention must be taken to assure
that the method used in a study achieves a good fit to the diffusion
signal, before interpreting and evaluating the results.

4.4. Limitations

The study is mainly limited by the challenges posed by the diffusion-
weighted imaging of the optic chiasm. Specifically, the small size of the
optic chiasm and its location in a highly heterogeneous brain region
impact on the quality of dMRI images and subsequent analysis stages,
such as tractography. While the design of our acquisition protocol and
preprocessing pipeline allowed us to address those challenges, we note
that this study aspect may be further improved in the future with
emerging methods (Bastiani et al., 2019). In the present work, we
provide proof-of-principle results for the potential to identify crossing
abnormalities in the chiasm. Our study was limited in the number of
participants, and it is possible that future studies with higher partici-
pant numbers will allow for refined ROC-analyses and thus suggest
diagnostic criteria with higher classification accuracy. For example, in
our case, doubling the sample size, would have allowed us to divide the
data into a “training” and “test” set to cross-validate the ROC analysis
(Pestilli et al., 2014; Rokem et al., 2015; Pestilli 2015). Unfortunately,
no datasets of similar quality and scope are currently openly available
to perform additional analyses. Such lack of data speaks to the im-
portance of the promotion of open sharing of data and algorithms to
advance methods development and scientific understanding
(Avesani et al., 2019; Gorgolewski et al., 2017, 2016).

4.5. Practical relevance

A key objective of our study was to explore the efficacy of dMRI-
based assessment of chiasm integrity and hence its potential as a di-
agnostic. This is particularly relevant as the identification of chiasmatic
abnormalities is a key for the correct diagnosis, especially in pheno-
types of albinism with mild pigmentation defects (Montoliu et al.,
2014). Functional tests established for this purpose (Apkarian et al.,
1983; von dem Hagen et al., 2008) have the disadvantage that they
require visual stimulation which in turn relies on the cooperation of the
often severely visually impaired participants. While procedures based
on purely anatomical MRI procedures do not allow for an in-
dividualized identification (Schmitz et al., 2003), our results indicate
that dMRI combined with CSD modeling might be able to fill this gap.
In fact, as suggested above, testing a greater sample of participants is

now required. Although the protocol used in the study is clinically
suboptimal due to its length (dMRI and fMRI protocols being, respec-
tively, ~45 and ~25 min long), the use of simultaneous multi-slice EPI
and limiting acquisition of opposing phase-encoding direction to b0 vol
only will shorten dMRI protocol by factor 3–4, i.e., to 10–15 min. The
full scanning session, including localizer and acquisition of T1-weighted
image, would in that case take no longer than an hour.

5. Conclusions

We investigated the application of state-of-the-art dMRI to detect
optic chiasm abnormalities and report CSD-based models to identify
abnormalities with high accuracy (AUC = =0.75) and to correlate well
with functional (fMRI) measures of the optic nerve misrouting
(R2 = =0.83). The classification accuracy (AUC = =0.92), as well as
veridicality of estimates of crossing strength can be further improved by
the application of filtering techniques with optimized parameters (in
our case COMMIT-SZB). dMRI combined with CSD-modeling and fil-
tering techniques therefore appear to offer promising approaches for
the individualized identification of chiasmatic abnormalities.
Moreover, our investigations highlight the great value of the optic
chiasm as a test-bed for dMRI methods-optimization. In order to further
support these activities, we are in the process of making the data set
publicly available for the benefit of the general neuroimaging com-
munity.
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Chapter 7

Triple visual hemifield maps in a
case of optic chiasm hypoplasia

This chapter contains the permitted reprint of the study “Triple visual hemifield
maps in a case of optic chiasm hypoplasia” published in Neuroimage:

Ahmadi, K., Fracasso, A., Puzniak, R. J., Gouws, A. D., Yakupov, R., Speck, O., Kauf-
mann, J., Pestilli, F., Dumoulin, S. O., Morland, A. B., and Hoffmann, M. B. (July
2020). “Triple visual hemifield maps in a case of optic chiasm hypoplasia”. In: Neu-
roImage 215, p. 116822. DOI: 10.1016/j.neuroimage.2020.116822
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A B S T R A C T

In humans, each hemisphere comprises an overlay of two visuotopic maps of the contralateral visual field, one
from each eye. Is the capacity of the visual cortex limited to these two maps or are plastic mechanisms available to
host more maps? We determined the cortical organization of the visual field maps in a rare individual with
chiasma hypoplasia, where visual cortex plasticity is challenged to accommodate three hemifield maps. Using
high-resolution fMRI at 7T and diffusion-weighted MRI at 3T, we found three hemiretinal inputs, instead of the
normal two, to converge onto the left hemisphere. fMRI-based population receptive field mapping of the left
V1–V3 at 3T revealed three superimposed hemifield representations in the left visual cortex, i.e. two represen-
tations of opposing visual hemifields from the left eye and one right hemifield representation from the right eye.
We conclude that developmental plasticity including the re-wiring of local intra- and cortico-cortical connections
is pivotal to support the coexistence and functioning of three hemifield maps within one hemisphere.

1. Introduction

Topographic maps of the contralateral visual field are instrumental
for the functionality of the human visual cortex and are considered a core
principle of the notion of hemispheric specialization (Huberman et al.,
2008; Wandell et al., 2007). A fundamental prerequisite for the forma-
tion of these maps is the partial decussation of the optic nerves at the
optic chiasm. Here, the fate of axons from the eyes is decided such that
axons from the nasal retina cross the midline and project to the contra-
lateral hemisphere, while fibers from the temporal retina remain

uncrossed and project ipsilaterally. As a consequence of this partial
decussation, each hemisphere receives binocular input from the contra-
lateral visual field. While acquired damage to the optic chiasm results in
bitemporal hemianopia (Weber and Landau, 2013), congenital chiasma
malformations leave major aspects of visual function intact (Hoffmann
et al., 2007; Hoffmann and Dumoulin, 2015; Klemen et al., 2012). This
renders these conditions invaluable models to study the foundations of
visual pathway formation and the scope of its plasticity in humans.

In individuals affected with congenital chiasmatic abnormalities
[absence of optic nerve crossing in achiasma and hemihydranencephaly
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(Apkarian et al., 1994; Fracasso et al., 2016; Hoffmann et al., 2012;
Muckli et al., 2009; Victor et al., 2000) or enhanced crossing in FHONDA
and albinism (Ahmadi et al., 2019; Apkarian et al., 1983; Hoffmann et al.,
2003; von dem Hagen et al., 2008)], the visual cortex receives erroneous
input from the ipsilateral visual field in addition to the normal input from
the contralateral visual field. This results, at the macroscopic scale, in two
superimposed retinotopic maps of opposing hemifields in V1 (Ahmadi
et al., 2019; Bao et al., 2015; Davies-Thompson et al., 2013; Hoffmann
et al., 2012, 2003; Kaule et al., 2014; Muckli et al., 2009). Remarkably, at
the mesoscopic scale, these maps are interdigitated and form hemifield
dominance domains (Olman et al., 2016), that are reminiscent of the
ocular dominance domains in the normal visual system. It appears
therefore that the reassignment of ocular dominance domains to hemi-
field dominance domains is a simple mechanism to accommodate two
hemifield maps, either two representations of one visual hemifield via
binocular input in normal vision or two representations of opposing
hemifields via monocular input in congenital chiasma malformations
(Hoffmann and Dumoulin, 2015).

These observations prompt the important question, whether V1 is
limited to hosting two hemifield maps, or whether the scope of plasticity
in human V1 allows for the accommodation of even more maps. To
address this question, we determined the cortical organization in an in-
dividual with chiasma hypoplasia whose misrouting pattern deviated
from the typical hallmark of complete achiasma, i.e., the entire absence
of crossing projections. In fact, the clinical spectrum of congenital
achiasma ranges between the complete absence of the optic chiasm and
consequently an absence of crossing nasal fibers i.e., complete achiasma,
to a hypoplastic optic chiasm with a reduction of crossing nasal fibers
(Sami et al., 2005). This is depicted as a schematic in Fig. 1, which jux-
taposes control, complete achiasma, and the case of chiasma hypoplasia
investigated in the present study.

The mechanism of reassigning ocular dominance domains alone
would suggest that only two inputs can be accommodated, so any addi-
tional input would necessarily need to engage further plastic mechanisms
to establish a useful visual representation. The condition of chiasma
hypoplasia provides the opportunity to explore the limits of plasticity in
V1 and beyond.

Three types of investigations were performed using 3 and 7 T MRI: (i)
diffusion-weighted imaging (DWI) to specify the projection error of the
optic nerves at the optic chiasm, (ii) population receptive field (pRF)
mapping (Ahmadi et al., 2019; Dumoulin and Wandell, 2008) to

determine the cortical visual field maps, and (iii) high-resolution fMRI.
Our results demonstrate that maps from three hemifields can be
accommodated within a single V1. We propose that mechanisms of
developmental plasticity that are exceeding the simple reassignment of
ocular dominance domains to hemifield dominance domains enable
these three maps to be hosted in V1.

2. Materials and methods

2.1. Case description

A 26-year-old female with chiasma hypoplasia (‘CHP’) participated in
the study. Her best-corrected decimal visual acuity (Snellen acuity) was
0.63 (20/32) for the dominant right eye and 0.25 (20/80) for the left eye.
She had moderate vertical nystagmus, strabismus [alternating stra-
bismus, esotropia (5�), and vertical deviation (7�) with alternating sup-
pression of each eye] and no stereoscopic vision. Humphrey-like visual
field testing revealed normal visual fields in both eyes. Decussation
anomalies were confirmed with visual evoked potentials (VEPs) and T1-
weighted MRI at the age of 22. She reported an otherwise normal
developmental and medical history and there was no family history of
ophthalmological or neurological disorders. MRI measurements on CHP
were performed at two sites. CHP was first scanned at Magdeburg Uni-
versity, Germany, at the age of 24. In two consecutive days, she under-
went high-resolution fMRI at 7T and DWI scanning sessions at 3T. Due to
limited availability of CHP, pRF mapping data were acquired two years
later at York Neuroimaging Center, UK, at 3T.

2.2. Control Participants

12 respective control participants were also included in the current
study. The first four controls (C1 – C4; mean age ¼ 31, range ¼ 25–49
years, 2 females) took part in a pRFmapping session at 3T while the other
eight controls (C5 – C12, mean age¼ 29, range¼ 22–52 years, 6 females)
participated in the DWI sessions. The last control participant (C12) also
underwent high-resolution fMRI at 7T. All experiments on controls were
conducted in Magdeburg. Informed written consent was obtained from
all participants prior to the study investigations. The procedures followed
the tenets of the declaration of Helsinki and the respective protocols were
approved by the ethical committees of the University of Magdeburg and
York Neuroimaging Centre.

Fig. 1. Schematic optic nerve projections and
eccentricity representations in V1 for control,
achiasma, and chiasma hypoplasia. Control
(right eye): the nasal (red) and temporal (blue)
retinal fibers of the right eye project to the left
and right hemispheres respectively (frame color
follows fiber color coding). Consequently, the
eccentricity representations reside in the V1
contralateral to the respective hemifield.
Achiasma (right eye): Due to the complete
absence of crossing nasal fibers, the right V1 is
organized as a cortical overlay of orderly eccen-
tricity maps from both the contra- and ipsilateral
hemifields. Chiasma hypoplasia (right and left
eyes): Similar to complete achiasma, the pre-
dominance of non-crossing nasal fibers leads to
the superimposed eccentricity maps of opposing
hemifields in V1. In contrast to complete
achiasma, however, there is a portion of crossing
nasal fibers resulting in a residual representation
of the contralateral hemifield via the contralat-
eral eye in V1. As a consequence, each hemi-
sphere receives not only input from the
ipsilateral, but also some input from the contra-
lateral eye.
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2.3. High-resolution fMRI

Visual stimulation: Visual stimuli were presented by back-
projection onto a screen with a resolution of 1920 X 1080 pixels and
viewed at a distance of 100 cm via an angled mirror. Presentation soft-
ware package (Neurobehavioral Systems, Berkeley, CA, USA) was used to
control stimulus presentation. The stimuli extended �12.9� by � 7.4� of
visual angle from the center of the screen and comprised bilateral,
contrast reversing (8 reversals per second) black and white checker-
boards with 24 segments and 26 rings (mean luminance 62 cd/m2,
contrast 99%). A block design, alternating between the two eyes was
selected. It consisted of 14 checkerboard presentation blocks (7 blocks
per eye), each of which lasted for 12 s and was followed by a rest block
(mean luminance gray background) with the same duration. The pre-
sentation blocks were preceded by an additional rest block of 12 s for
dummy stimulation. Participants wore a custom-made manually oper-
ated shutter that allowed monocular viewing through either the left or
right eye. They fixated a central fixation cross, which changed its color 1 s
after initiation of each rest block, lasting for 23 s (11 s of the rest block
plus 12 s of the next presentation block). The participants were requested
to occlude the right eye and view the stimuli with the left eye for a green
fixation cross, and vice versa for a red one. An MRI-compatible camera
was used to view the dominant eye, to ensure that the participants were
doing the task correctly.

MRI acquisition: For functional imaging, T2*-weighted volumes
were acquired using a 2D gradient-echo EPI sequence with a 7T whole
body MRI scanner (Siemens Healthineers, Erlangen, Germany) using a 32
channel head coil (Nova Medical, Wilmington, MA) with the following
acquisition parameters: TR | TE ¼ 3000 | 22 ms, flip angle ¼ 90�, FOV ¼
169 (right-left) � 130 (anterior-posterior) � 27 (feet-head) mm3, accel-
eration factor (r) ¼ 4 with GRAPPA reconstruction, phase-encoding di-
rection ¼ right-left, phase partial Fourier ¼ 5/8, bandwidth (BW) ¼
1086 Hz/px, echo-spacing¼ 1.13 ms and voxel size¼ 0.65 x 0.65� 0.65
mm3. Forty-one oblique axial slices were acquired for the duration of
348 s with 116 time frames, of which the first four were discarded. The
slice placement for the functional volumes covered a portion of the oc-
cipital cortex parallel to the calcarine sulcus. Foam padding was used to
minimize headmotion. Four runs of bilateral stimulation were performed
for each participant in a single session.

A high-resolution anatomical volume was obtained using a 3D T1-
weighted MPRAGE sequence (TR | TE | TI ¼ 2500 | 2.76 | 1050 ms,
total duration¼ 14:14 min, flip angle ¼ 5�, FOV: 350� 263� 350 mm3,
and voxel size ¼ 0.65 � 0.65 � 0.65 mm3). In addition, a proton density
weighted volume without the inversion module (identical parameters
except for TR ¼ 1820 ms and total duration ¼ 5:33 min) was acquired to
correct for receive coil biases (Van de Moortele et al., 2009).

Data analysis: To obtain an inhomogeneity corrected anatomical
volume, the T1-weighted MPRAGE reference volume was divided by the
proton density weighted volume. Gray and white matter (GM/WM) were
segmented based on the resulting anatomical volume in MIPAV (https://
mipav.cit.nih.gov/) using the TOADS/CRUISE algorithm (Bazin and
Pham, 2007; Han et al., 2004). Manual editing was performed in
ITK-GRAY (https://web.stanford.edu/group/vista/cgi-bin/wiki/index.ph
p/ItkGray) to minimize the segmentation error. An equi-volume distance
map was employed (Waehnert et al., 2014) to build a coordinate system
along the cortical depth, taking the local curvature into account.

The functional data were corrected for motion artifacts and spatial
distortion using MCFLIRT function of FSL (https://www.fmrib.ox.ac.
uk/fsl) and a point spread function (PSF) mapping method (In and
Speck, 2012) respectively. Motion and distortion corrected data were
then analyzed using AFNI (https://afni.nimh.nih.gov/afni). Time series
were averaged across repetitions for each participant to increase the
signal-to-noise ratio (SNR). Afterwards, the averaged functional volume
was aligned to the T1-weighted anatomical volume using an affine
transformation. The alignment was performed in three steps: First, the
T1-weighted anatomy and the averaged EPI were clipped in the

anterior-posterior direction, leaving only the occipito-temporal cortex. A
good starting point was provided by centering the functional volume on
the anatomy using the respective centers of mass. Next, the averaged
functional volume was affinely aligned to the T1-weighted volume via
AFNI’s ‘align_epi_anat.py’ with the local Pearson’s coefficient (LPC) cost
function (Saad et al., 2009), using the two-pass option. This procedure
blurs the functional volume and initially allows for large rotation and
shift, and then refines the alignment by an affine transformation. Finally,
the resulting alignment was further improved via 3dAllineate, using the
one-pass option. In this step, the functional volume is not blurred. Only a
small amount of shift and rotation is allowed, using an affine trans-
formation that is obtained by concatenating the transformation matrices
generated in previous steps (Fracasso et al., 2018; Klein et al., 2018).

A general linear model (GLM) was used to analyze the functional
data. For each voxel, the percentage of BOLD signal changes to stimu-
lation of the left and right eye was estimated via 3dDeconvolve function
of AFNI. Nuisance regressors were modelled using polynomials up to the
second order to remove any linear and quadratic trends. The GLM
analysis was performed on the native EPI space. The obtained GLM maps
(F-maps and beta-coefficient-maps) were co-registered to the T1-
weighted space using the affine transformation matrix estimated in the
alignment step. Multiple comparisons were corrected using false dis-
covery rate (FDR) with a q value of 0.045. For each of the cortical layers,
a 3D mesh was generated using AFNI’s IsoSurface function.

2.4. Diffusion-weighted imaging

MRI acquisition: DWI data were acquired using a 3T MAGNETOM
Prisma syngo MR D13D scanner (Siemens Healthineers, Erlangen, Ger-
many) with a 64 channel head coil. MRI acquisition was initiated by a
localizer scan, followed by a T1-weighted and two diffusion-weighted
scans. All data were collected during a single scanning session. The T1-
weighted volume was obtained in sagittal orientation using a 3D-
MPRAGE sequence (TE | TR ¼ 4.46 | 2600 ms, TI ¼ 1100 ms, flip
angle ¼ 7�, resolution ¼ 0.9 x 0.9 � 0.9 mm3, FoV ¼ 230 � 230 mm2,
image matrix ¼ 256 � 256 x 176, acquisition time (TA) ¼ 11:06 min).
The first diffusion-weighted scan was acquired with Echo-Planar Imaging
(EPI) with the following parameters: b-value ¼ 1600 s/mm2, TR | TE ¼
9400 | 64.0 ms, voxel size ¼ 1.5 x 1.5 � 1.5 mm3, phase-encoding di-
rection ¼ anterior to posterior, FoV ¼ 220 � 220 mm2, and TA ¼ 22:24
min. Scanning was performed with 128 unique gradient directions, thus
the obtained diffusion-weighted data can be described as High Angular
Resolution Diffusion Imaging (HARDI) data (Tuch et al., 2002). Gradient
tables were generated using E. Caruyer’s tool for q-space sampling
(Caruyer et al., 2013). Diffusion-weighted volumes were evenly inter-
sected by 10 non-diffusion weighted volumes for the purpose of motion
correction. The second diffusion-weighted scan was acquired with iden-
tical parameters except for reversed phase-encoding direction in compar-
ison to the preceding scan, i.e., posterior to anterior direction. Acquisition
of two diffusion-weighted scans with opposite phase-encoding directions
enhances the correction of susceptibility-induced geometric distortion
(Andersson et al., 2003) and improves the SNR of the total DWI data.

Data analysis: Conversion of DICOM images to NIFTI format,
denoising of the DWI data and removal of Gibbs ringing were performed
with MRtrix 3.0 (http://www.mrtrix.org/). FSL was employed for the
correction of susceptibility-induced geometric distortions, eddy current
distortions, and motion artifacts. The bias field in the DWI data was
corrected using ANTS (http://stnava.github.io/ANTs/). Afterwards, DWI
data were co-registered to the T1-weighted volume, which was aligned
beforehand to Anterior Commissure – Posterior Commissure line, via
mrDiffusion (https://github.com/vistalab/vistasoft/tree/master/mr
Diffusion). The T1-weighted volume was automatically segmented
using FIRST function of FSL. Subsequently, manual editing was per-
formed to mitigate segmentation errors in the region of the optic chiasm.

Each voxel of the preprocessed DWI data was modelled using the
Constrained Spherical Deconvolution (CSD) approach (Tournier et al.,
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2008), which is particularly sensitive when resolving populations of
crossing fibers, like those observed in the optic chiasm, and benefits from
the high angular resolution of HARDI data. The application of the CSD
model involved the estimation of single fiber response function with
Tournier’s algorithm (Tournier et al., 2013) for maximum harmonic
order (Lmax ¼ 6) and the estimation of fiber orientation distribution
functions (Jeurissen et al., 2014) for 3 different maximum harmonic
orders i.e. Lmax ¼ 6, 8 and 10. Four ROIs were manually drawn on the
T1-weighted volume, two covering cross-sections of the two optic nerves,
and the other two covering cross-sections of the two optic tracts. The
ROIs were placed as close to the optic chiasm as possible, but did not
intersect it. Each ROI had a width of 3 voxels (anterior-posterior) to
assure proper streamline termination during tractography. Fiber tracking
was performed between the ROIs of the two optic nerves as seeds and the
ROIs of the two optic tracts as targets, resulting in 4 connectivity pairs (2
ipsilateral and 2 contralateral fiber bundles). Tracking was done in two
directions i.e. from seed to target ROI and backwards to ensure the
indifference of the results to direction of tracking. The corresponding
generated connectivity pairs were subsequently merged together. The
tracking employed an ensemble tractography (ET) framework (Takemura
et al., 2016), where tracking is performed several times, each time for a
different set of parameters. As such, the bias in the outcome tracts, caused
by parameter selection, is avoided. The tracking was performed with the
probabilistic tracking algorithm iFOD2 (Tournier et al., 2010) using
unique combinations of 2 different fractional anisotropy (FA) thresholds
(FA¼ 0.04 and 0.08), 3 maximum curvature angles (30�, 45�, 60�), and 3
CSDmodels estimated for different maximum harmonic orders (Lmax¼ 6,
8, 10) for each of 139,000 seeding attempts. Additionally, tractography
employed an anatomically-constrained tractography (ACT) approach
(Smith et al., 2012), which constrains tractography with anatomical
priors derived from the anatomical image using white/gray matter,
subcortical gray matter and CSF masks obtained with FSL’s FIRST func-
tion. As a result of the tractography, 4 streamline groups corresponding
to 4 distinct connectivity pairs were obtained. The proportion of
streamlines in each group was subsequently used as an estimate of the
connectivity strength in the optic chiasm.

2.5. Population receptive field (pRF) and connective field (CF) modeling

Visual stimulation: Visual stimuli consisted of drifting bar apertures
(stimulus size in York and Magdeburg: 11� and 10� radius, respectively),
exposing a moving high-contrast checkerboard pattern (Dumoulin and
Wandell, 2008) at four different directions i.e. upward, downward, left
and right. The bars were presented to each eye separately within a mask,
covering either the left or the right hemifields for stimulation of either
the nasal or the temporal retina in separate experiments. The width of the
bars subtended one-quarter of the stimulus radius. Each pass of the bars
lasted for 30 s, followed by a mean luminance block (zero contrast) of 30
s. The stimuli were generated in MATLAB (Mathworks, Natick, MA, USA)
using the Psychtoolbox (Brainard, 1997; Pelli, 1997) and rear-projected
onto a screen (screen resolution in York and Magdeburg: 1920 x 1080
and 1140 x 780 pixels, respectively) inside themagnet bore. In York, CHP
viewed the screen at a distance of 57 cm via an angled, front-silvered
mirror whereas the eye to screen distance in Magdeburg was 35 cm.
Participants were required to fixate a centered dot and to report color
changes between red and green by means of a button press.

MRI acquisition: Identical 3T Prisma scanners (Siemens Healthi-
neers, Erlangen, Germany) were used at both sites. At York Neuro-
imaging Center, functional T2*-weighted volumes were acquired with a
64 channel head coil. A total of 30 EPI slices were obtained within a FOV
of 192 mm, with 3 x 3 � 3 mm3 voxels (TR | TE ¼ 1500 | 26 ms and flip
angle¼ 80�). Each functional scan comprised 168 time frames, lasting for
252 s. The first eight time-frames (12 s) were removed to allow magne-
tization to reach a steady-state. Foam padding was used to minimize head
motion. Additionally, a T1-weighted anatomical volume was acquired at
a resolution of 1 x 1� 1 mm3 (TR | TE¼ 2500 | 42.26 ms and flip angle¼

7�). Eight functional scans were obtained in a single session (4 scans per
eye). The right eye was stimulated during the first 4 runs while the left
eye was patched. The stimulation of each of the left and right hemifields
was repeated twice in a counterbalanced manner. After a short break in
the scanning, the left eye was stimulated while the right eye was
occluded. The same stimulation procedure was performed for the left eye.
At Magdeburg University, functional images (TR | TE¼ 1500 | 30 ms and
flip angle ¼ 70�) were acquired at a resolution of 2.5 x 2.5 � 2.5 mm3

with 54 axial slices, using a 64 channel head coil. Every functional scan
had 168 time frames (252 s). In addition, a high resolution whole-brain
anatomical volume (voxel size ¼ 0.9 x 0.9 � 0.9 mm3, TR | TE ¼ 2600 |
4.46 ms, and flip angle ¼ 7�) was obtained. Foam padding limited the
head movements. In each session, left and right hemifield stimulation
conditions were performed monocularly and repeated six times (three
repetitions per hemifield).

Data analysis: The same analysis pipeline was used for data sets
acquired in both sites. The T1-weighted anatomical volume was auto-
matically segmented using the recon-all function of FreeSurfer (https
://surfer.nmr.mgh.harvard.edu). The cortical surface was reconstructed
at the white/gray matter boundary and rendered as a smoothed 3D mesh
(Wandell et al., 2000). The MCFLIRT function of FSL was used for motion
correction of the functional data. Motion corrected data were then
analyzed using freely available Vistasoft software package for MATLAB
(https://github.com/vistalab/vistasoft). Time series for the same condi-
tions were averaged together for each participant to increase the SNR.
Afterwards, the averaged functional image was co-registered to the
anatomical scan using a combination of Vistasoft and Kendrick Kay’s
alignment tools (https://github.com/kendrickkay/alignvolumedata).
Visual areas were mapped using the population receptive field (pRF)
modeling (Dumoulin and Wandell, 2008). Briefly, the BOLD (blood ox-
ygen level dependent) response of each voxel was predicted using a
2D-Gaussian model of the neuronal populations defined by three
stimulus-referred parameters i.e. x0, y0, σ where x0 and y0 are the co-
ordinates of the receptive field center and σ is it’s spread (Dumoulin and
Wandell, 2008; Fracasso et al., 2016; Harvey and Dumoulin, 2011). The
predicted BOLD signal was then calculated by convolution of the stimulus
sequence for the respective pRF-model and its three parameters with the
canonical hemodynamic response function (Friston et al., 1998). The
optimal pRF parameters were found by minimizing the sum of squared
errors (RSS) between the predicted and observed BOLD time-course. For
all subsequent analyses including derivation of the polar angle and ec-
centricity maps, required for the delineation of the visual areas, and the
visualization on the inflated cortical surface, only the voxels were
included whose pRF fits exceeded 15% of the variance explained.

The connective field parameters were estimated from the fMRI time-
series, using CF modeling method that predicts the neuronal activity in
one brain area with reference to aggregate activity in another area (Haak
et al., 2013). The BOLD response in each voxel of a target ROI i.e. V2 or
V3, was predicted with a symmetrical, circular 2D Gaussian CF model
folded to follow the cortical surface of the source ROI, i.e. V1. The CF
model was defined by two parameters i.e. Gaussian position and spread
across the cortical surface. The optimal CF parameters were determined
by minimizing the residual sum of squares between the predicted, and
the observed time-series. For this purpose, many fMRI time-series pre-
dictions were generated by changing the CF positions across all voxel
positions and Gaussian spread values on the surface of the source ROI.
Best models were selected when the explained variance in the fMRI
time-series survived a threshold of 15%.

2.6. 2.6 Visual field testing

We simulated the Humphrey visual field testing using PsychoPy
(https://www.psychopy.org) on a calibrated CRT monitor (22-inch
Mitsubishi, 2070SB at 85 Hz). Background luminance was set to 10 cd/
m2, equal to 30 dB. Goldmann size III stimuli i.e., white circular patches
(0.43� diameter) were displayed for 235 ms and placed at 54 locations
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according to the Humphrey 24-2 standard test. In addition, four stimuli
were placed at 12, 15, 18, and 21� into the temporal field along the
horizontal meridian in order to capture the blind spot. The detection
threshold was tested in both eyes with one-up-one down staircase pro-
cedure with a minimum of 30 trials per location. Responses were within
800 ms after the stimulus presentation. An initial adaptive staircase with
4 dB/2 dB step sizes was used to coarsely estimate the threshold at 16
locations in the visual field (4 in each visual quadrant), starting at the
maximum gun value. Subsequently, a second adaptive staircase with
finer step sizes (minimum 0.25 dB) was used to more accurately find the
threshold starting at a gun value of 25% of the maximum (35 cd/m2).

3. Results

3.1. Atypical lateralization pattern revealed by high-resolution fMRI data

High-resolution fMRI at 7T was used to evaluate the cortical lateral-
ization pattern in response to bilateral contrast reversing black and white
checkerboards presented to each eye separately (see Methods). In a
neuro-typical visual system, bilateral stimulation of each eye leads to
bihemispheric activation (Figure S1). In CHP, however, bilateral stimu-
lation of the left eye yielded predominant responses on the ipsilateral
occipital cortex i.e. on the left hemisphere, and only a marginal activa-
tion was observed on the contralateral hemisphere (Fig. 2A). In contrast,
considerable bilateral activation was found during bilateral stimulation
of the right eye (Fig. 2B). It should be noted that regardless of the
stimulated eye, the contralateral activity in CHPwas weaker compared to
the control participant (the ratio of contralaterally activated voxels to all
active i.e. ipsilateral plus contralateral voxels for left and right eye
stimulation, respectively in CHP: 5.4% and 20.1%, and in control: 51.3%
and 50.6%). Nonetheless, the robust activation on the left hemisphere
upon the stimulation of the right eye in CHP indicated that part of the
nasal afferents decussate at the chiasm and project to the contralateral
hemisphere. This revealed that her misrouting pattern is distinct from
complete achiasma where bilateral stimulation of each eye results in
complete ipsilateral activation.

3.2. Optic nerve misrouting revealed with DWI

The above results predicted that the proportion of crossing fibers from
the right eye would exceed that from the left eye. More direct evidence
for this specific misrouting of the optic nerves in CHP was provided by a
quantitative assessment of the streamlines at the optic chiasm based on
DWI data (see Methods). For CHP and 8 individuals of a control cohort, a
total of four ROIs were selected, one in each of the two optic nerves and
one in each of the two optic tracts, to identify streamlines connecting
each optic nerve with the (i) ipsilateral and (ii) contralateral optic tract,
i.e. uncrossed and crossed projections.

The results are presented in Table 1. The proportion of the uncrossed,
i.e. ipsilateral, projections was similar for the right and left optic nerves
in CHP and within the ranges observed in controls though not between
the first and third quartiles. In contrast, the proportion of the crossed, i.e.
contralateral, projections was far greater for the right than for the left eye
in CHP, exceeding the observed range for the right eye in controls (see
Table 1). This underscores the asymmetric distribution of crossing

Fig. 2. Cortical response lateralization during bilateral stimulation of each eye in CHP. The cortical activation is projected onto a clipped anatomical image of
the occipital cortex and onto the inflated cortical surfaces of the deep, middle, and superficial layers. A) Left eye stimulation vs rest elicits predominantly unilateral
activation on the ipsilateral hemisphere with a small residual activation on the contralateral hemisphere, indicated by white arrows. B) Right eye stimulation vs rest
elicits bilateral activation, i.e. on the ipsilateral hemisphere and also on part of the contralateral hemisphere (white arrows). The activation maps consist of signal
amplitude expressed as the β coefficient from the GLM thresholded by cluster size and F statistic (cluster ¼ 20, threshold by F ¼ 10.477 and 10.040 for A and B,
respectively, p < 0.002, corrected). Note that the cortical surfaces are generated from different cortical depths. Consequently, they look different, delimit to different
volumes and have different number of nodes.

Table 1
Comparison of ipsi- and contralateral streamlines between right and left
eye of CHP and controls. It should be noted, that the values indicate the pro-
portion of ipsilateral streamlines of each eye relative to all ipsilateral streamlines,
and the proportion of contralateral streamlines of each eye relative to all
contralateral streamlines; i.e., the values are not the proportion of ipsilateral or
contralateral projections relative to all streamlines.

Ipsilateral streamlines
per eye normalized to all
ipsilateral streamlines

Contralateral streamlines
per eye normalized to all
contralateral streamlines

right eye left eye right eye left eye

CHP Value 42% 58% 73% 27%

Controls Values range 40–68% 32–60% 39–68% 32–61%
Median 54% 46% 48% 52%
1st and 3rd
quartile

47 and
58%

43 and
53%

42 and
59%

41 and
58%
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afferents at the optic chiasm in CHP, which is in accordance with the
above fMRI findings. A 3D rendering of the tracked streamlines is illus-
trated in Fig. 3.

The proportion of the contra- and ipsilateral streamlines in CHP was
further compared to all controls as well as an individual with complete
achiasma and a cohort of 9 albinotic participants whose tractography
results were extracted from a previous study (Puzniak et al., 2019). As
expected, the crossing at the optic chiasm in CHP was lower than the
controls and the cohort with albinism and higher than the participant
with complete achiasma (see Figure S2).

3.3. Three overlaid hemifield representations revealed by pRF mapping

Based on the response lateralization pattern observed in the high-
resolution fMRI data, we speculated that a significant part of the visual
cortex on the left occipital lobe receives input from three hemiretinae,
from the two hemiretinae of the ipsilateral, i.e. left, eye and from the
nasal hemiretina of the contralateral, i.e. right eye. To test this hypothesis
and to determine the specific mapping of the three inputs, pRF mapping
(Dumoulin and Wandell, 2008) was performed during monocular stim-
ulation of each eye and hemifield separately (see Methods). In the control
participant, visuotopic maps of each hemifield were found on the
contralateral hemisphere (Fig. 4). Remarkably, stimulation of the left eye
in CHP revealed orderly organized eccentricity and polar angle maps of
both ipsi- and contralateral hemifields on the left hemisphere across the
three early visual areas (V1–V3; Fig. 5 A & B). Left and right hemifield
representations were superimposed within each visual area in a
mirror-symmetrical manner, in accordance with previous reports of
complete achiasma (Hoffmann et al., 2012; Kaule et al., 2014). There was
a small normal representation along the horizontal meridian on the
contralateral, i.e. right, hemisphere (Fig. 5B).

For hemifield mapping of the right eye in CHP, a similar picture was
obtained, i.e. mirror-symmetrical superposition of orderly visuotopic
maps of opposing hemifields (Fig. 5 C & D). Importantly, the residual
normal representation from the right eye was much more extensive than
that from the left eye (Fig. 5C), which is consistent with the above high-
resolution fMRI at 7T and DWI findings. The activation patterns
measured at 7T (Fig. 2B), specifically in the middle and superficial layers,
largely correspond to the residual representation from the right eye
observed in Fig. 5C. It should be noted that there is stronger contralateral
activity from the right eye for 7T compared to 3T fMRI, likely due to
enhanced SNR for the former. This might also be the cause of the
emergence of response signature in the dorsal portions of the early visual
cortex for the 7T data. Importantly, the residual normal representation on
the left hemisphere appeared to be superimposed onto the other two
maps from the left eye (Fig. 5 A & B). As shown in Fig. 5C, the residual

normal representation of the right hemifield covered a large part of V1
and spanned the entire polar angle range, from the lower vertical me-
ridian in the dorsal portion of V1, through the horizontal and to the upper
vertical meridian in the ventral portion of V1 and thus followed the
normal retinotopic pattern. The observed retinotopic pattern of this re-
sidual input was not restricted to V1 and partially spread to V2 and V3.

In conclusion, we found a superposition of three retinotopic repre-
sentations i.e., two representations from opposing visual hemifields
mediated by the left eye plus an additional representation of the
contralateral hemifield from the right eye, in the left hemisphere of CHP.
This is in contrast to the retinotopic organization of the neuro-typical
visual system where each hemifield is represented on the contralateral
hemisphere (Fig. 4). A summary of this finding is provided in Fig. 6 which
illustrates the co-localization of three retinotopic representations in the
left visual cortex of CHP. Furthermore, the comparison of the eccentricity
values between the representations of the i) right vs left hemifields of the
left eye, ii) right hemifield of the left vs right hemifield of the right eye,
and iii) right hemifield of the right eye vs left hemifield of the left eye
revealed a good alignment of the three retinotopic representations within
the area of overlap in the left V1 (R2 ¼ 0.81, 0.15, and 0.16 respectively,
p < 0.00001 for all three comparisons; see Figure S3). The lower R2

values observed for the two later comparisons might be associated with a
slight shift in the eccentricity maps as evident in Fig. 5B and C, which
could be attributed to the noise intrusion in the data, possibly due to
imperfect fixation. As the circular nature of the polar angle values is a
confound of this analysis, it was only performed for the eccentricity
values.

3.4. Responsivity of the visual cortex receiving triple hemifield input

The above findings prompted the question of the functional charac-
teristics of these maps in V1 and beyond. To compare the activation of the
early visual cortex across the three hemifield-mapping conditions and to
assess how the activation is propagated from V1 to V2 and V3, we
determined the area of activated cortex in the early areas of the left
hemisphere of CHP. As a reference, we used the condition of contralateral
hemifield mapping via the left, i.e. ipsilateral, eye (normal input) for
normalization and thus determined the relative activated area for both
ipsilateral hemifield mapping via the left eye (abnormal input) and
contralateral hemifield mapping via the right eye (residual normal
input). The normal and abnormal inputs from the left eye activate a
similar expanse of V1, V2 and V3. In contrast, the residual normal input
from the right eye activates smaller proportions of V1, V3, and specif-
ically V2 (Fig. 7A).

Subsequently, we obtained a measure of the reliability of the input for
the ROIs that comprise the overlay of the three hemifield representations

Fig. 3. Tractography of the optic chiasm. Axial slices without and with tractography overlay. The scale bar represents 1 cm. L-R and A-P stand for left-right and
anterior-posterior directions, respectively. Top row) in CHP, the ipsilaterally projecting streamlines (blue and green for right and left optic nerve, respectively) are
largely symmetrically distributed, while there is a predominance of contralaterally projecting streamlines for the right compared to the left optic nerve (yellow and
red, respectively). Bottom row) in the control participant, both ipsi- and contralaterally projecting streamlines of the right and left optic nerves are largely sym-
metrically distributed. For clarity, only 0.25% of the generated streamlines are rendered.
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(ROI3maps). For this purpose, we determined the goodness of fit of the
pRF model, i.e. mean variance explained (VE; Fig. 7B). Although the area
of cortex mapping the residual contralateral input of the right eye is
smaller, the VE associated with this input does not appear to be markedly
reduced compared to those driven by the normal and abnormal inputs of
the left eye. These findings indicate the propagation of the triple hemi-
field input from V1 to the extrastriate cortex. The assessment of pRF-size
properties and V1-referred connective field (CF) estimates in V2 and V3
suggest that the cortico-cortical connectivity underlying this propagation
might be altered in CHP. This is depicted for the overlap of the three
hemifield representations (ROI3maps) in left V1–V3 in Figure S4 together
with a detailed account on the respective pRF and CF signatures and their
peculiarities in CHP.

Finally, the visual field coverage was assessed with pRF center and
coverage plots as depicted in Figures S5 and S6, respectively. The pRF
center distributions for the left and right V1 – V3 are presented for all
four stimulation conditions for both CHP and a control participant
(Figure S5). For the control, pRF centers predominantly cover the
contralateral visual field; far less voxels represent the ipsilateral visual
field, possibly due to a combination of the residual ipsilateral represen-
tation, noise intrusions and modelling limitation (see below). In CHP, the
pRF centers of left V1 – V3 were predominantly located on the left and
right hemifields following the left and right hemifield stimulation of the
left eye, respectively (Figure S5 A, top panels).

For the left hemifield stimulation of the right eye, the pRF centers of
the left V1 and V2 were mainly located in the upper left quadrant,
whereas the pRF centers of the left V3 were mostly in the right hemifield
(Figure S5 A, bottom left panel); as the right hemifield was actually not
stimulated here, the latter is taken as an indication of the limitations of
the model fit to the actual stimulus time course. Similarly, other ipsi-
lateral extension into the non-stimulated hemifields, are partially due to
the use of a circularly symmetric 2D Gaussian for the pRF model.
Application of asymmetric models or models with minimal priori as-
sumptions might reduce this ipsilateral coverage (Amano et al., 2009; Lee
et al., 2013; Zeidman et al., 2018). Importantly, for the right eye’s input
during right hemifield stimulation, the pRF centers of these areas were
primarily located in the right hemifield (Figure S5 A, bottom right panel),
which reflects the residual normal input of the right eye to the left V1 (see
also the corresponding pRF center values in control, Figure S5 C). This

illustrates for the left visual areas in CHP, a combination of the pattern of
representations typical of complete achiasma with the additional input
from a third representation mediated by the right eye’s input. In contrast,
CHP’s right visual areas are dominated by right eye input mediating
representations from both visual hemifields (Figure S5 B, bottom panels),
i.e., the typical hallmark of complete achiasma, with only little left eye
input from the contralateral hemifield, found specifically a lower quad-
rant representation (Figure S5 B, top left panel).

The pRF-center findings are complemented by the visual field
coverage plots which depict a combination of pRF center and size esti-
mates (Amano et al., 2009). For clarity, only the coverage plots of V1 are
presented in Figure S6. In principle, similar results are indicated by both
pRF-center and visual field coverage plots. However, due to the incor-
poration of the pRF-sizes in the coverage plot, their coverage is more
extensive than for the pRF center plots. In combination with the large
pRF-size estimates for left V1 upon right hemifield stimulation of the
right eye (compared to the corresponding pRF sizes for both left and right
hemifield stimulation of the left eye, see Figure S4 A), this results in
almost full field coverage for this condition. It should be highlighted that
since the observed atypicalities in the left V1 do not occur for the
coverage maps of the right V1, the inherent constraints of the pRF model
should not be regarded as the only explanation. Other reasons, such as
elevated noise in the data associated with imperfect fixation, may also
lead to the observed ipsilateral extension of the visual field coverage
maps.

4. Discussion

In the case of chiasma hypoplasia examined here, input from three
visual hemifields converges onto the same cortical area. This puts a
critical challenge on the organization of the visual cortex, which nor-
mally comprises a retinotopically aligned overlay of only two maps. The
current study, therefore, provides novel insights into the scope and
mechanisms of human visual system development and plasticity. Using
high-resolution fMRI at 7T, DWI and fMRI-based pRF mapping at 3T, we
report asymmetrical crossing of the nasal fibers of the two eyes that re-
sults in three overlaid representations of opposing hemifields on the left
visual cortex. These findings suggest that the scope of cortical plasticity
in the human visual system is sufficient to accommodate input from three

Fig. 4. Visual field representations for
unilateral stimulation of the right eye in a
control participant. Eccentricity (top row)
and polar angle maps (bottom row) on the
inflated occipital cortex for left (A) and right
(B) hemifield stimulation. In both cases,
orderly eccentricity and polar angle maps
were obtained predominantly on the hemi-
sphere contralateral to the stimulated hemi-
field. Residual ipsilateral representations of
the vertical meridians and fovea were
observed in V1–V3 as reported previously
(Hoffmann et al., 2003; Tootell et al., 1998).
Note that this residual representation is
clearly different from the additional third
hemifield map in CHP (Fig. 5C) which is
more widespread and follows a retinotopic
progression.
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visual hemifields.
The retinotopically registered overlay of the representation of visual

hemifields is a key property of the primary visual cortex. Remarkably,
this is not only observed in the neuro-typical visual system, where these
two maps comprise the binocular input of the contralateral visual

hemifield it also holds for conditions with abnormal predominantly
monocular input, as achiasma, albinism, or FHONDA (Ahmadi et al.,
2019; Hoffmann et al., 2012, 2003). While the two maps segregate into
ocular dominance domains in the neuro-typical case, they segregate into
hemifield domains (Guillery et al., 1984; Olman et al., 2016) for

Fig. 5. Visual field representations for hemifield pRF-mapping in CHP for right and left eye stimulation. Eccentricity (top row in each panel) and polar angle
(bottom row in each panel) maps are depicted on the inflated occipital cortex of CHP. For left eye stimulation, orderly eccentricity and polar angle maps are obtained
on the left hemisphere for both right and left hemifield stimulation (A, B) and vice versa for right eye stimulation (C, D). In addition, there is normal input to the
hemisphere contralateral to the stimulated eye (white arrows). It is small for left eye stimulation and sizable for right eye stimulation, where it spans the entire polar
angle range. The residual ipsilateral activation observed on the left hemisphere during left hemifield stimulation of the right eye (D) is reminiscent of the residual
ipsilateral representation of the fovea and vertical meridian in controls (see Fig. 4). Furthermore, the considerable activation on the anterior regions of dorsal V3
observed for the aforementioned stimulation condition (D) is likely due to the callosal projections leading to binocular interactions at intermediate visual areas, as
reported in complete achiasma (Davies-Thompson et al., 2013).
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conditions with congenital chiasma malformations. This is taken as evi-
dence for largely unaltered geniculo-striate connections despite
congenitally abnormal input to the LGN (Hoffmann and Dumoulin,
2015), as summarized in Fig. 8A and B. In fact, it appears that the
neuro-typical geniculo-striate projection is in general largely unaffected
by enhanced or absent crossing at the optic chiasm as in albi-
nism/FHONDA or achiasma, respectively (Ahmadi et al., 2019; Hoff-
mann and Dumoulin, 2015). Consequently, we asked which cortical
organization pattern would result from such stability in the
geniculo-cortical projections in the present case of chiasma hypoplasia, in
whom the left V1 receives triple hemifield input. Such an input is ex-
pected to result in a combination of the normal organization, i.e. ocular
dominance domains (Fig. 8A), and the organization found in complete
achiasma, i.e. hemifield domains (Fig. 8B) as depicted in Fig. 8C: the
abnormal ipsilateral input from the left nasal hemiretina and the residual
normal input from the right nasal hemiretina are expected to converge
into the same domain (Fig. 8C). In the absence of geniculo-striate
rewiring, the resulting cortical organization pattern is a retinotopic
representation of the contralateral visual hemifield, via the left eye, that

is interleaved with combined retinotopic representations of the ipsilat-
eral and contralateral hemifield, via the left and right eye respectively.
We, therefore, termed it in analogy to the nomenclature introduced
previously (Hoffmann and Dumoulin, 2015), ‘Interleaved Combined
Representation’. In fact, such a pattern would result in the macroscopic
cortical mapping we observed in the left occipital lobe. It should be noted
though that the domain receiving input from the right visual hemifield,
receives input from both eyes, thus reducing the differential activation
via the two eyes. Further, we can, at present, not tell whether the
neuronal populations representing the right hemifield input from both
eyes segregate into distinct neuronal populations, due to the unavail-
ability of data with sufficient resolution. Taken together, stable
geniculo-striate projections still hold true even in the presence of triple
input as observed in CHP. This conservative projection scheme, there-
fore, appears to be the most parsimonious concept to explain the cortical
maps observed in a set of congenital projection abnormalities of the optic
nerves, i.e. for enhanced, reduced or absent crossing.

Remarkably, the triple hemifield input to the left hemisphere affects
only, albeit extensively, part of the primary visual cortex. In fact, another
part of the visual cortex receives largely exclusive input from both
hemiretinae of the left eye, as typical for complete achiasma. As a
consequence, there is a coexistence of the ‘Interleaved Representation’
(Fig. 8B) and ‘Interleaved Combined Representation’ (Fig. 8C), occu-
pying different regions of the left primary visual cortex. This is in
accordance with the reports of animal models of albinism indicating a
mixed organization pattern in the primary visual cortex (Cooper and
Blasdel, 1980). Taken together, this suggests that the relevant adaptive
developmental mechanisms can act locally.

Consistent with the reports on complete achiasma (Davies-Thompson
et al., 2013; Hoffmann et al., 2012; Olman et al., 2016; Victor et al.,
2000), the participant of the present study made effective use of vision in
daily life, including sport activities and reading, and did not present
specific visual field defects. Nevertheless quantitative testing is required
to assess the behavioral consequences of chiasma hypoplasia and the
intactness of the visual perception in CHP. Despite the binocular input to
the left visual cortex, the disruption of binocular and stereo-vision is
expected in CHP due to vertical and horizontal deviations between the
two eyes. This suggests that there is no relevant interaction of the three
representations in the left visual cortex.

In analogy to findings in other conditions with chiasma abnormalities
(Klemen et al., 2012; Olman et al., 2016; Victor et al., 2000), the three

Fig. 6. Overlapping representation of the input from three hemifields in
the left occipital lobe of CHP (based on the data shown in Fig. 5). The portions
of visual cortex activated by stimulation of the left and right hemifield via the
left eye [as typical for complete achiasma (Hoffmann et al., 2012)], colored
yellow and blue, and of the right hemifield (as specific to the present case of
CHP), colored red, are arranged as transparent overlays and combined into a
single inflated representation of the occipital lobe.

Fig. 7. Activated area and goodness of
pRF model fit across left hemisphere
V1–V3 of CHP. A) Activated area (normal-
ized with respect to right hemifield, left eye
stimulation condition) of left V1–V3 for left
hemifield stimulation of the left eye (black
bars) and right hemifield stimulation of the
right eye (gray bars). For left hemifield
stimulation of the left eye, the activated area
of the left V1–V3 does not decrease below
92%. For the right hemifield stimulation of
the right eye, the relative activated area of
V1, V2 and, V3 is smaller, covering 50%,
28%, and 85%, respectively. B) Comparison
of the goodness of fit, i.e. mean variance
explained (VE) � SEM, of the pRF model
between right and left hemifield stimulation
of the left eye (white and black bars) and
right hemifield stimulation of the right eye
(gray bars) in V1–V3 restricted to the over-
lapping area of the three maps (ROI3maps).
The VE for all three maps is relatively similar
in V1 and V3 ranging from (49-37%) and
(41–45%), respectively. For V2 it is reduced
to 34% for the right hemifield right eye
condition.
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representations of the hemifields in the left primary visual cortex might
drive visual perception independently. Further research addressing the
independence of the three different maps is motivated by the current
findings. Lack of integration of information across the ocular dominance
and/or across the hemifield dominance domains in CHP would require
plasticity of the intracortical micro-circuitry to cope with the abnormal
visual input and to support independent processing of the three

superimposed hemifields (Fig. 8).
Akin to other visual pathway abnormalities, it is therefore assumed

that the aberrant representation in CHP is made available for relatively
normal visual perception through the interplay of subcortical stability
and cortical plasticity. The cortical plasticity might not be confined to
changes in the intra-cortical connectivity and, in addition, affect the
cortico-cortical connectivity as suggested by changes in pRF and CF size

Fig. 8. Schematic of visual field repre-
sentations in primary visual cortex for
control, complete achiasma and chiasma
hypoplasia. A) Control. The binocular input
to the left LGN is organized as retinotopic
maps of the right visual field (color coded
red; negative numbers) that are separate for
each eye (subscript indicates L – left, R –

right eye input; the LGN is schematized as
only two LGN layers with input from either
eye). The geniculo-striate projections (solid
red arrows for the left and dashed red arrows
for the right eye input) result in interleaved
retinotopic representations of the two eyes in
V1. The integration of binocular input from
corresponding locations in the contralateral
visual field leads to binocular and stereo-
vision. B) Complete achiasma. The left LGN
receives monocular input from the nasal
(blue) and from the temporal (red) hemi-
retina of the ipsilateral eye (i.e. left the eye,
indicated by the subscript L). Consequently,
there is in addition to the normal input from
the contralateral visual field (red fields with
negative numbers) input from the ipsilateral
visual field (blue fields with positive
numbers). This leads to an interleaved rep-
resentation of opposing hemifields in V1,
which is associated with a conservative, i.e.
unchanged, geniculo-striate projection
despite the abnormal LGN input (dashed
cyan arrows). The absence of integration of
the monocular input from opposing visual
hemifields counteracts cross-talk of infor-
mation between the hemifield. C) Chiasma
hypoplasia. The left LGN receives binocular
input from the contralateral visual field (red
fields with negative numbers) as well as
ipsilateral input (blue fields with positive
numbers) only from the left eye. The triple
hemifield input to the left LGN is organized
as an interleaved representation of the
contralateral visual field from the left eye
(red fields with negative numbers in separate
boxes) and combined representation of
opposing hemifields from both eyes (red
fields with negative numbers and blue fields
with positive numbers in shared boxes). A
conservative geniculo-striate projection to
V1 would result in an interleaved combined
representation pattern, obtained by the
combination of cortical organization
schemes for the control (A) and complete
achiasma (B). Specifically, while the contra-
lateral input of the left eye is incorporated
via a separate domain, the contralateral
input of the right eye together with the
ipsilateral input of the left eye are assumed
to be accommodated within a shared
domain. Similar to complete achiasma, no
integration is expected to occur across the
three hemifield representations, supporting
independent processing of the three maps.
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estimates (Figure S4). It, therefore, appears that the extra-input from the
right eye impacts on the cortico-cortical connectivity of the early visual
areas in CHP.

Studying visual system abnormalities is a unique approach for
advancing our insights into the interplay of pathology and plasticity
directly in humans and for gaining an understanding of the underlying
developmental principles. A common limitation, however, is the rarity of
relevant conditions and hence the limited availability of affected in-
dividuals. This also applies to the field of congenital malformations of the
optic chiasm. While the well-known enhanced crossing of the optic
nerves in albinism is already a rare condition [1.17:000 (Grønskov et al.,
2007);], reduced crossing, i.e. achiasma, is much rarer [< 50 cases
published worldwide (Hoffmann and Dumoulin, 2015),]. In fact,
fMRI-data have been reported in the past two decades for only 6 different
individuals (Bao et al., 2015; Davies-Thompson et al., 2013; Hoffmann
et al., 2012; Nguyen et al., 2018; Victor et al., 2000). Thus, investigating
a subtype of achiasma, i.e. with the specific hypoplasia of the optic
chiasm reported in the present study, is an exceptional case. As such, we
did not have the opportunity to obtain additional data for this condition,
neither from the present nor from other individuals, despite the poten-
tially informative value of e.g. additional high-resolution fMRI data.
Another limitation of investigating visual system pathologies is related to
fixation instabilities. Particularly, the dependence of the retinotopic data
on the fixation stability may be questioned. However, previous studies
(Baseler et al., 2002; Levin et al., 2010) have shown that nystagmus and
fixation instability result in an enlargement of the pRF sizes without
having a major effect on the eccentricity and polar angle maps. The high
quality of the retinotopic maps, i.e., systematic response signatures
typical of retinotopic maps, in CHP implies sufficiently stable fixation,
though it could have been ideal to record the fixation performance in
each eye separately.

Furthermore, while the present case is unique, it shares features,
previously reported for achiasma, i.e. the retinotopic overlay of opposing
visual hemifields (Hoffmann and Dumoulin, 2015). This is taken as an
indication of the overall quality of the functional data obtained. Specif-
ically, the data-set allowed reproducing previous results, i.e. orderly
eccentricity and polar-angle maps from opposing visual hemifields via
the ipsilateral (left) eye, and adding a further feature, i.e. the third input
to the left visual cortex via the contralateral (right) eye. Stimulus-induced
deviations from central fixation would be expected to be specific to the
visual stimuli applied. Importantly, the activation in the cortical region
comprising the additional third input was reproducible for different
stimulation conditions applied via the right eye, i.e., for bilateral stim-
ulation (Fig. 2B) and for right hemifield mapping (Fig. 5C).

Further, the amount of the overlap between the 3T and 7T data could
not be quantified due to inherent differences in data acquisition one of
which was the acquisition of 2 distinct anatomical volumes with different
spatial resolutions. The visual area boundaries obtained by the pRF
mapping could have been projected to the 7T data at the expense of
downsampling the high resolution anatomy acquired at 7T. Nonetheless,
careful visual inspection suggests a high degree of overlapping activity in
cortical regions receiving the additional third input in both stimulation
conditions. We conclude that fixation instabilities are a highly unlikely
source of the observed cortical triple maps.

It might be argued that the comparison of the observed findings in
CHP with strabismic amblyopes with a similar level of visual acuity and
strabismus might be more informative than that with healthy controls.
However, the effects of amblyopia on the organization of the visual
cortex remain controversial. While some studies suggest a shift in ocular
dominance of neural activity toward the fellow eye (Goodyear et al.,
2002; Crawford and Harwerth, 2004), others have found no alteration or
shrinkage of the ocular dominance domains (Horton and Hocking, 1996).
Importantly, it has been demonstrated that despite the increased pRF
sizes for the amblyopic eye, the retinotopic representations are preserved
in strabismic amblyopia (Clavagnier et al., 2015). It is therefore

concluded that the interpretation of the observed striking cortical orga-
nization in CHP does not hinge on the comparison group.

In addition, a few methodological considerations should be
addressed. In the present study, partial Fourier acquisition (Feinberg
et al., 1986) was employed in the high-resolution fMRI data. This
approach is commonly used to accelerate the acquisition time or shorten
the echo train length, albeit at the cost of image blurring (Feinberg et al.,
2018). The blurring can be mitigated by use of partial Fourier imaging
with a higher factor or with full Fourier acquisition. This results in a
prolonged TE, whereas minimal acquisition time and consequently
reduced motion artifacts had a higher priority in this experiment. It
should also be noted, that the accuracy of the DWI analysis depends on
the angle of crossing fibers (Tournier et al., 2008). This limitation is of
particular relevance to this study, where the analyzed groups displayed
various angles between crossing fibers. To address this issue, the DWI
data were collected with the custom protocol designed to resolve crossing
fibers [b-value of 1600 s/mm2 selected according to reported range of
1500–2500 s/mm2, optimal for resolving two-way crossing (Sotiropoulos
et al., 2013); high angular resolution granted by 128 unique gradient
directions (Tuch et al., 2002)] and analyzed with the methods ensuring
the optimal discrimination between separate fiber populations, such as
the Multi-Tissue constrained spherical deconvolution (Jeurissen et al.,
2014).

5. Conclusion

Congenital visual pathway abnormalities are powerful models to
further our understanding of the scope of developmental stability and
plasticity in the human visual system, which may impact on novel ther-
apeutic approaches. Here, we demonstrate that the gross topography of
the geniculo-striate projections in CHP remains chiefly unaltered
resulting in triple hemifield input to the visual cortex. This reflects an
unaltered geniculo-cortical axonal guidance by chemoaffinity gradients
(Cang et al., 2005; McLaughlin and O’Leary, 2005), even in the face of
severely erroneous input to LGN. The additional input to the left visual
cortex is assumed to be incorporated by sharing the same domain be-
tween the abnormal input of the left eye and normal input of the right
eye. This underlines that intra-cortical plasticity provides sufficient scope
to accommodate highly atypical visual input for comparatively normal
visual processing.
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Chapter 8

Deep learning-based detection of
malformed optic chiasms

This chapter contains the permitted reprint of the study “Deep learning-based de-
tection of malformed optic chiasms from MRI images” published in Frontiers in the
Neuroscience:

Puzniak, R. J., Prabhakaran, G. T., and Hoffmann, M. B. (2021). “Deep Learning-
Based Detection of Malformed Optic Chiasms From MRI Images”. In: Frontiers in
Neuroscience 15, p. 1332. DOI: 10.3389/fnins.2021.755785
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Deep Learning-Based Detection of
Malformed Optic Chiasms From MRI
Images
Robert J. Puzniak1†, Gokulraj T. Prabhakaran1 and Michael B. Hoffmann1,2*†

1 Visual Processing Lab, Department of Ophthalmology, Otto-von-Guericke-University, Magdeburg, Germany, 2 Center
for Behavioral Brain Sciences, Otto-von-Guericke-University, Magdeburg, Germany

Convolutional neural network (CNN) models are of great promise to aid the segmentation
and analysis of brain structures. Here, we tested whether CNN trained to segment
normal optic chiasms from the T1w magnetic resonance imaging (MRI) image can be
also applied to abnormal chiasms, specifically with optic nerve misrouting as typical for
human albinism. We performed supervised training of the CNN on the T1w images of
control participants (n = 1049) from the Human Connectome Project (HCP) repository
and automatically generated algorithm-based optic chiasm masks. The trained CNN
was subsequently tested on data of persons with albinism (PWA; n = 9) and controls
(n = 8) from the CHIASM repository. The quality of outcome segmentation was assessed
via the comparison to manually defined optic chiasm masks using the Dice similarity
coefficient (DSC). The results revealed contrasting quality of masks obtained for control
(mean DSC ± SEM = 0.75 ± 0.03) and PWA data (0.43 ± 0.8, few-corrected
p = 0.04). The fact that the CNN recognition of the optic chiasm fails for chiasm
abnormalities in PWA underlines the fundamental differences in their spatial features.
This finding provides proof of concept for a novel deep-learning-based diagnostics
approach of chiasmal misrouting from T1w images, as well as further analyses on
chiasmal misrouting and their impact on the structure and function of the visual system.

Keywords: chiasmal malformations, albinism, convolutional neural network, CNN, nerve misrouting, misrouting
detection, optic chiasm

INTRODUCTION

The optic chiasm is a key structure in the visual system, where the fate of axons from the retina is
decided, such that axons carrying information from the right visual hemifield are guided to the left
hemisphere and vice versa. Accordingly, the axons split in the chiasm into two bundles, i.e., axons
from the nasal retina that project to the contralateral brain hemisphere (also referred to as “crossing
nerves”), and axons from the temporal retina that project to the ipsilateral hemisphere (“non-
crossing nerves”). While the normal proportion of axons in the crossing and non-crossing bundle
is well established and determined by histological studies to be equal to 53:47, respectively (Kupfer
et al., 1967), several congenital disorders are known to affect this arrangement. One example is
albinism, where the abnormal development of the visual system (Rebsam et al., 2012) leads to
enhanced crossing of the optic nerves at the chiasm resulting in an altered organization of the
signal flow in the visual system (Hoffmann et al., 2003). Interestingly, although the altered input
to the visual cortex would be expected to fundamentally disrupt signal integration, basic aspects
of visual function are preserved, while others (binocular vision, visual acuity, fixation stability) are
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reduced (Hoffmann and Dumoulin, 2015). This preservation of
basic aspects is likely related to processes of cortical plasticity
(Hoffmann et al., 2003; Hoffmann and Dumoulin, 2015; Ahmadi
et al., 2019) and as such makes human albinism a unique and
powerful model of neuroplasticity, granting insights into the
structure–function relationship of the visual system. This kind
of analysis, however, requires unambiguous and noninvasive
mapping of chiasm’s structural features, which is not yet resolved.
The first anatomical MRI-based reports (aMRI) of chiasm
morphology reported the absence of meaningful anatomical
features distinguishing normal and abnormal chiasms (Brodsky
et al., 1993). In contrast, two later studies reported differences
when comparing chiasm sizes and configurations between
controls and people with albinism [PWA; (Schmitz et al., 2003;
von dem Hagen et al., 2005)]. Specifically, both studies provided
significant evidence of reductions in the width of optic nerves
and optic chiasm in PWA, with Schmitz et al. additionally
reporting thinner optic nerves and wider angles between optic
tracts. Unfortunately, both studies reported group differences but
did not explain the aforementioned distinguishing features in
the context of diagnostics of chiasmal malformations. Effectively,
it is unknown which anatomical features of the chiasm may
be employed in an individualized detection of malformations
or whether such a detection is possible in the first place.
Recently, the application of anatomy-sensitive diffusion MRI
(dMRI), capable of estimating the proportion of crossing and
non-crossing nerves via tractography (Puzniak et al., 2021), has
demonstrated chiasmal malformations in albinism at the group
level (Ather et al., 2018) with potential for an individualized
diagnostic utility (Puzniak et al., 2019). It must be noted, however,
that dMRI as compared to aMRI is time consuming at the
level of both data acquisition and data analysis. Considering
the aforementioned challenges of accurate modeling of chiasmal
malformations, it would be of benefit to revisit this issue using
models capable of autonomous feature extraction from aMRI
data, such as convolutional neural networks [CNNs; (LeCun
et al., 1989; Krizhevsky et al., 2012)].

Convolutional neural networks (CNN) are a class of artificial
neural networks, i.e., data-driven models inspired by biological
systems which are shown to greatly benefit fields relying on
computer vision, such as medical imaging (Lundervold and
Lundervold, 2019). They are being successfully applied in
tasks requiring recognition (segmentation) of brain structures,
including the ones involving the optic chiasm (Ibragimov and
Xing, 2017; Tong et al., 2018; Chen et al., 2019; Zhu et al.,
2019; Duanmu et al., 2020; Mlynarski et al., 2020). This is in
particular true for the attempts using MRI data, which have been
demonstrated to provide superior contrast and recognition of
optic chiasm boundaries compared to other imaging techniques,
such as computer tomography (Ibragimov and Xing, 2017;
Duanmu et al., 2020). The CNNs, however, are not a universal
tool, as their performance is largely dependent on both the
quantity and quality of the training data. Consequently, this
hinders the development of CNNs in the fields with limited
data availability (e.g., due to high data acquisition costs),
such as neuroimaging. The above-described limitation is even
further augmented in the proposed comparative analysis of

normal and abnormal chiasms, where the rarity of albinism
[estimated prevalence of albinism equal to 1: 20,000 according
to Marçon and Maia (2019)] severely impacts the availability
of data from such rare patient groups. These limitations
may be counteracted to some degree by known techniques,
e.g., transfer learning, allowing to fine-tune existing networks
to new data with smaller samples instead of training from
scratch. In the present work, we explored the potential of
CNNs for the detection of chiasmal abnormalities. For this
end, we employed a method that is independent of hardly
available, sizable datasets of abnormal chiasms at the expense
of interpretability, as discussed in Limitations. Specifically, we
investigated whether CNNs trained for the purpose of optic
chiasm segmentation on control data only, lead to erroneous
segmentations for abnormal optic chiasms, e.g., in albinism. Such
a differential performance of CNN on normal and abnormal
chiasms could be utilized in a quantitative approach for the
detection of chiasm abnormalities in albinism and potentially
beyond. Currently, albinism diagnosis is based on several
morphological and functional features (Hoffmann et al., 2007;
Hoffmann and Dumoulin, 2015), with abnormal crossing in the
chiasm being one of the major criteria (Kruijt et al., 2018). This
is being routinely assessed with functional methods (Hoffmann
et al., 2005; von dem Hagen et al., 2008), which are, however,
affected by patients’ functional limitations, such as low visual
acuity or nystagmus as typical for albinism. Although these
limitations would be absent for anatomy-based assessments, the
only up-to-date successful reported attempt of an individualized
detection of the chiasm abnormalities was achieved with dMRI
(Puzniak et al., 2019), which required complex and time-
consuming data acquisition and analysis extending beyond
the clinical standards. Consequently, the successful CNN-based
identification of abnormal chiasms via aMRI might provide proof
of concept for a novel tool which can be applied to diagnostics,
e.g., in albinism.

MATERIALS AND METHODS

Rationale
The objective of this study was to investigate the scope
of diagnosing chiasmal malformations using the CNN’s
performance as an indicator. For this purpose, we trained
a CNN for the segmentation of normal optic chiasms from
T1-weighted (T1w) MRI images. This would ideally be achieved
by using already developed networks. However, their lacking
validation on external datasets, a common issue in the field of
DL (Yao et al., 2020), required the development of a custom new
network for this purpose and subsequent testing on MRI images
of PWA with malformed chiasms. The accuracy of the CNN,
determined via the comparison of predicted chiasmal masks
with previously hand-curated ground-truth masks, is expected
to reveal whether representations of malformed chiasms can
be learned from control data only. Consequently, the results
provide a deeper understanding on whether malformed chiasms
are included in the segmentation of representations learned from
the control data. This finding is expected to be of value for the
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clinical diagnostics of malformations, as well as basic research on
mechanisms guiding malformation of the chiasms.

Workflow
This section details the description of the process, the pipeline,
and its components, specifically the type of MRI data employed
in the training and testing of the CNN, generation of optic chiasm
masks by automatic and manual delineation, data augmentation,
CNN training, evaluation of CNN on MRI data of controls
and PWA, and the metrics used. The graphical overview of the
workflow is provided in Figure 1.

MRI Data
T1w anatomical MRI images of the brain were acquired using
3T MRI. The MRI data came from two separate, publicly
available datasets and were used in the (i) training and (ii)
evaluation of CNN. Specifically, the CNN was (i) trained on the
Human Connectome Project (HCP) dataset (Van Essen et al.,
2013), containing nearly 1,200 T1w structural MRIs from control
participants, and (ii) tested on the CHIASM dataset (Puzniak
et al., in revision)1, a repository containing T1w images of
patients with rare chiasmal disorders including PWA (n = 9) and
controls (n = 8).

HCP Dataset
The CNN was trained on control T1w images (n = 1049) from the
HCP Dataset—Diffusion MRI 3T 1200 Subjects (S1200) Release
(Glasser et al., 2013; Van Essen et al., 2013) downloaded from
the brainlife.io platform (Avesani et al., 2019)2. As detailed in
the PreFreeSurfer pipeline from HCP Minimal Preprocessing
Pipelines (Glasser et al., 2013), for each subject, the T1w images
acquired with native 0.7-mm isotropic resolution were defaced
(Milchenko and Marcus, 2013), aligned to MNI152 template
space (rigid-body transformation with 6 degrees of freedom), and
corrected for readout distortions (van der Kouwe et al., 2008).
The preprocessed images were further resampled to 1.25-mm
isotropic resolution to match the resolution of the HCP DWI
data. Importantly, the downsampling was also a prerequisite for
further segmentation of T1w images with FreeSurfer software.

CHIASM Dataset
The performance of the trained CNN was tested on the T1w
MRI images of PWA (n = 9) and controls (n = 8) from the
CHIASM dataset (Puzniak et al., in revision, see footnote 1)
downloaded from the brainlife.io platform (Avesani et al., 2019)3.
As preprocessing steps, for each subject, T1w images acquired
with native resolution of 0.9 mm were defaced, aligned to
Anterior Commissure—Posterior Commissure (ACPC) space,
and downsampled to 1-mm isotropic voxel (in order to support
FreeSurfer segmentation).

1Puzniak, R. J., et al. (in revision). CHIASM, The Human Brain Albinism and
Achiasma MRI Dataset.
2https://brainlife.io/project/5941a225f876b000210c11e5
3https://brainlife.io/pub/5dea42a96c0bd9c0508554a2

Optic Chiasm Masks
The T1w MRI images were further used to generate several binary
optic chiasm masks through varied approaches. Specifically, this
included manually defined ground-truth masks, automatically
created masks used for CNN training, and masks of the chiasm
computed by the CNN (Figure 2). Although automatically
created masks from neuroimaging data are known to be of
suboptimal quality (as opposed to ones manually defined by
experts), we decided for this approach as it enabled us to
analyze a wide range of chiasmal morphologies. This is, in
fact, a requisite for the CNNs to robustly identify the well-
generalizing features of the chiasm. An overview of the employed
masks is provided below, followed by detailed descriptions in the
subsequent sections:

• X-maskmanual—optic chiasm mask defined manually
on T1w MRI images.
• X-maskatlas−initial—optic chiasm mask created by

FreeSurfer’s atlas-based segmentation of HCP training
set (n = 1049) and CHIASM (n = 17) T1w images.
• X-maskatlas−corrected—improved optic chiasm masks

obtained by correcting X-maskatlas−initial with a custom
correction algorithm.
• X-maskCNN—optic chiasm mask computed by the CNN

from input T1w image. The X-maskNN were generated only
for the CHIASM (n = 17) dataset and a subset of HCP
datasets (n = 10; HCP test-controls), which were excluded
from CNN’s training and validation procedure (Figure 2A).

Importantly, for the purpose of quality evaluation (see
Computational methods), the assessed masks were limited only to
the axial slices, where the optic chiasm was present, as determined
by the X-maskmanual (Figure 2A). This step was performed to
ensure that the evaluation is focused on the optic chiasm only and
is not perturbed by neighboring white matter structures, such as
optic nerves and tracts.

X-maskmanual
The X-maskmanual were defined in PWA (n = 9; CHIASM
albinism) and controls (n = 8; CHIASM controls) from the
CHIASM dataset, and 10 HCP test-controls were excluded from
CNN training. Specifically, the delineation was performed by
a trained researcher in all the T1w image slices with chiasmal
presence, as according to the guidelines detailed in (Puzniak et al.,
in revision, see footnote 1). The X-maskmanual were deemed a
ground truth and consequently used as reference for the quality
assessment of other masks (Figure 2A).

X-maskatlas−initial
The X-maskatlas−initial were extracted from the existing atlas-
based segmentation of the HCP T1w images (Van Essen et al.,
2013) processed according to the HCP FreeSurfer pipeline
(Glasser et al., 2013) using FreeSurfer v5.2 (Fischl, 2012).
Although such atlas-based masks were successfully used in
previous studies aiming to accelerate brain segmentation using
CNNs (Fedorov et al., 2017a,b; McClure et al., 2019), our
comparison of X-maskatlas−initial with X-maskmanual revealed a
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FIGURE 1 | Workflow chart. Graphical illustration of the experiment design. Initially, the training T1w images from the Human Connectome Project (HCP) dataset (top
left) were used to generate accurate optic chiasm masks (“Mask generation”; marked by the orange color, left) in a two-step procedure validated on test T1w
images. The image–mask pairs were subsequently preprocessed (“Data augmentation”; marked by the green color, bottom right) and used as an input target in the
supervised training of the CNN (“CNN training”; marked by the red color, top right). In the final step, the test T1w images from both controls and PWA were used in
evaluation of the CNN’s performance (“CNN evaluation”; marked by the yellow color, middle).

significantly lower quality of the former (see Results), thereby
making them (as expected) a suboptimal choice as training data.

X-maskatlas−corrected
Although X-maskatlas−initial were found to be of insufficient
quality for training, we observed that their shortcomings can be
mitigated by incorporating information about voxel intensities
in the mask delineation process. This allowed us to formulate
the following seven-step algorithm generating a corrected mask,
X-maskatlas−corrected from the X-maskatlas−initial:

1. Calculate the distribution of intensities of T1w image’s
voxels within the initial mask, X-maskatlas−initial. Notably,
apart from optic chiasm’s white matter voxels, this will
include also false-positive voxels from adjacent tissue.

2. Calculate the 98th percentile of the obtained distribution.
This threshold was identified empirically as the one
resulting in the optimal separation of hyperintense voxels
with blood vessel contributions from the surrounding.

3. Calculate the 66th percentile of the obtained distribution.
This threshold was identified empirically as the one
resulting in a robust and conservative separation of
white matter voxels from partial-volume voxels and
surrounding tissue.

4. Binarize a copy of the entire T1w image of the brain,
setting all voxels to 0, except for those within the 66-98th
percentile range.

5. From the binarized T1w image, extract a bounding box
around the initial optic chiasm mask, extended by five

voxels in left–right and posterior–anterior directions. This
step is intended to exclude neighboring white matter
structures which may interfere with step #6 and #7.

6. Extract the biggest cluster of nonzero voxels. This will
represent the optic chiasm.

7. Dilate the cluster by one voxel in each direction. The
conservatively chosen percentile thresholds, introduced
in step #2 and #3, allowed extracting only non-surface
voxels of optic chiasm, as they are affected by partial
volume. As such, this step allows the possibility to include
voxels at the surface.

The quantitative comparison (see Computational methods)
of outcome for the X-maskatlas−corrected with X-maskmanual
demonstrated a significantly improved quality of the former
(see Results) in comparison to X-maskatlas−initial. Given
this validation, the correction procedure was subsequently
performed for all of the HCP X-maskatlas−initial, and the
resulting X-maskatlas−corrected were used as targets for supervised
training of the CNN.

Convolutional Neural Network
This section describes in detail the architecture of the tested CNN,
as well as the data preprocessing steps prior to training, training
itself, and postprocessing of the output.

Network’s Architecture
The developed CNN used a 3D version (Çiçek et al., 2016) of
the U-Net architecture (Ronneberger et al., 2015). Although the
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FIGURE 2 | Overview of X-mask from the exemplary HCP dataset (ID 304727). (A) Axial slices displaying the optic chiasm region on T1w image (leftmost column).
Blue-colored masks superimposed on the T1w slices correspond to, respectively, from left to right: X-maskmanual, X-maskatlas−initial, X-maskatlas−corrected, and
X-maskCNN. The top row displays the most inferior slice, with subsequent rows showing incrementally superior slices. All images are presented in neurological
convention. (B) QR codes allowing for the inspection of 3D representations of the masks, respectively, from left to right: X-maskmanual, X-maskatlas−initial,
X-maskatlas−corrected, and X-maskCNN.

3D version involves a higher computational load which may
limit the upper resolution of processed images, the inclusion
of additional dimension was shown to be of significant benefit
to the segmentation (Chen et al., 2019; Mlynarski et al.,
2020). Another reason for using the U-Net architecture was its
reported robustness to jagged boundary-localized errors (Heller
et al., 2018), which is a helpful feature in case of training on
automatically generated masks.

Specifically, the network consists of analysis (encoding)
and synthesis (decoding) paths. The analysis path contains
four layers, each containing a standard U-net block [two
3 × 3 × 3 × convolutions followed by batch normalization
and rectified linear unit (ReLu)] and subsequent 2 × 2 × 2
max pooling (stride of 2). For each subsequent step in the
analysis path, the number of feature maps derived from input
was doubled in each layer. The synthesis path consists of
2× 2× 2 upconvolution followed by a U-net block. Importantly,
each decoding layer receives concatenated feature maps from

a previous decoding layer and corresponding encoding layer,
which allows for preservation of both low- and high-level
features. Finally, in the last layer, the two output feature maps
(background and target class, here optic chiasm) are being
normalized with a voxelwise softmax function. The total number
of parameters is 2,206,482.

Data Augmentation
Prior to being fed into the network, the training images and
target X-maskatlas−corrected were subjected to the following data
augmentation procedure [performed using the TorchIO package
(Pérez-García et al., 2021)], respectively:

• Normalization of maximal voxel intensity to 1. This
adjusts for varied ranges of intensities between MR
images originating from different sources, by rescaling
intensities to 0-1 range.
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• Random flip along any axis. This accounts for variations in
the coordinate systems used for storing MRI images, such
as in case of radiological and neurological conventions.
• Random crop to 160 × 160 × 160. This allows for

generalization on the incomplete whole-brain data and
eases the computational load.
• Random affine (rotation up to 15◦, translation up to 20

voxels, bspline interpolation). This accounts for varied
orientations and positions of the patient’s brain in
the scanner space.

Performing these steps on the training data allowed us to
enhance CNN’s generalization capabilities without resorting to
explicit regularization, which has been demonstrated to limit
the model’s capacity (Hernández-García and König, 2018). This
was particularly important considering the misalignment of HCP
training images (stored in MNI152 space) and CHIASM testing
images (aligned to ACPC space).

Training and Loss Function
The HCP grayscale T1w images (n = 1049) and corresponding
X-maskatlas−corrected were divided into training (n = 932, 87.5%;
HCP training—controls), validation (n = 107, 10%; HCP
validation—controls), and testing (n = 10, 2.5%) subgroups
augmented and subsequently fed in batches of 2 to U-Net CNN
using the Dice similarity coefficient (see Computational methods)
loss function and Adam optimizer (Kingma and Ba, 2017) for
the purpose of weight updating. The training was performed
five times, using different combinations of hyperparameters,
specifically the maximal numbers of epochs (13, 15, 30, 40, 100)
and learning rates (respectively, 0.0025, 0.0030, 0.0025, 0.0015,
and 0.0005). The resulting weights of trained networks were saved
and are provided (see Availability of data and material).

X-maskCNN
The trained CNN returned a grayscale image of the input’s size
(160 × 160 × 160), where each voxel’s intensity depicted the
probability of belonging to the optic chiasm (ranging from 0
to 1). This output was turned into a binary optic chiasm mask
by thresholding the image to an empirically selected value (here
we tested a range of 0.25, 0.50, 0.75, and 1.00 thresholds) and
selecting the biggest cluster of nonzero elements present in the
image. The quality of final X-maskCNN generated by the tested
range of training hyperparameters and threshold values were
evaluated against X-maskmanual for both HCP test-controls and
CHIASM controls datasets (see Supplementary Material), with
the best-reported performance achieved for 30 epochs, and a
learning rate equal to 0.0025 at a threshold of 1.

Computational Methods
The employed computational methods incorporate the
quantitative comparison of overlap of two masks by means
of the Dice similarity coefficient (specified below), testing of
mean equality using t-tests, and a range of classification metrics
describing the discrepancy in results.

Dice Similarity Coefficient
In order to measure the quality of optic chiasm masks, we
employed the Dice similarity coefficient [DSC; (Dice, 1945;
Sørensen, 1948)] statistic, which describes the amount of overlap
between two masks, in our case. The DSC ranges from 0
(lack of overlap) to 1 (perfect overlap of identical shapes).
Specifically, we calculated the value of DSC between the ground-
truth X-maskmanual and the candidate X-mask‘candidate′ , where
the latter has been previously limited only to axial slices where
X-maskmanual was present (the excessive voxels were cropped).
For brevity, the value of DSC calculated between X-maskmanual
and candidate X-mask‘candidate′ is further being denoted to
as DSCmanual_vs_‘candidate′ , and in case of group-level results,
statistics is presented as mean± standard error of mean (SEM).

Statistical Comparisons
The obtained DSC values, grouped with respect to compared
candidate mask group (X-maskinitial, X-maskatlas−corrected, and
X-maskCNN) and participant group (HCP test-controls, CHIASM
controls, and CHIASM albinism), were subjected to statistical
testing. All samples were tested for normal distribution using the
test by D’Agostino and Pearson (D’Agostino and Pearson, 1973),
and for all but one (X-maskatlas−initial : HCP test-controls) the
null hypothesis of coming from normal distribution could not
be rejected. Accordingly, in case of comparison of two normally
distributed samples, we used two-tailed, two-sampled t-test at
an alpha level of 5%; otherwise, we used the Wilcoxon rank-
sum test, which tests the null hypothesis that two samples are
drawn from the same distribution. Finally, we controlled for the
familywise error (FWE) rate by applying Bonferroni’s correction
to all calculated p-values.

Classification Metrics
In order to evaluate any potential discrepancy in the X-mask
quality obtained for PWA and controls, we classified the obtained
DSCmanual_vs_CNN using C-support vector classification (C-SVC)
model with polynomial kernel (Platt, 1999; Chang and Lin,
2011). The measure of interclass discrepancy was subsequently
quantified using well-established machine learning classification
metrics, specifically

• Accuracy = TP+TN
TP+TN+FP+FN ′

• Precision = TP
TP+FP ′

• Recall
(
sensitivity

)
=

TP
TP+FN ′

• Specificity = TN
TN+FP ′

where TP, TN, FP, and FN are, respectively, true positives,
true negatives, false positives, and false negatives. Importantly,
it should be noted that the classifier has been trained and
evaluated on the same data, which is a clearly forbidden practice
in case of evaluating a classifiers’ performance. Our goal was,
however, to quantitatively express the intergroup differences in
DSCmanual_vs_CNN and the overlap in data points, which is why
we decided on such an approach. In line with that purpose, we
used the support vector classification model which attempts to
maximize the margin around the decision boundary.
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TABLE 1 | Mean and standard error of mean of DSC of X-mask and significance of cross-group differences.

Group HCP test-controls CHIASM controls CHIASM albinism

X-mask Atlas-initial Atlas-
corrected

CNN Atlas-
initial

Atlas-
corrected

CNN Atlas-
initial

Atlas-
corrected

CNN

HCP test-
controls

Atlas-initial 57 ± 3 %

Atlas-corrected p = 0.0251,a 75 ± 3 %

CNN n.s.b 79 ± 2 %

CHIASM
controls

Atlas-initial n.s.1,a 50 ± 4 %

Atlas-corrected p < 0.001a p = 0.02a 28 ± 4 %

CNN n.s.c p < 0.001b 75 ± 3 %

CHIASM
albinism

Atlas-initial 53 ± 5%

Atlas-corrected 33 ± 4 %

CNN p = 0.004c p = 0.04c n.s.b 44 ± 8%

The diagonal displays the values of DSC of a specific X-mask (atlas-initial, atlas-corrected, CNN) compared to the corresponding X-maskmanual (0%: no overlap; 100%:
identical masks, i.e., complete overlap) for each of the test groups (10 HCP test-controls, 8 CHIASM controls, and 9 CHIASM PWA). A total of 10 specific statistical
tests were performed (corrected for familywise error using Bonferroni’s correction): four tests for cross-comparison of quality of X-maskatlas−initial and X-maskatlas−corrected
for two control groups (marked by symbol a), three tests for comparison of X-maskatlas−corrected with X-maskCNN for all groups (marked by symbol b), and three tests
for cross-comparisons of X-maskCNN for all groups (marked by symbol c). The p-values of the tests (either Wilcoxon rank-sum tests marked by symbol 1, or t-tests)
comparing group DSC scores are displayed on the intersection of respective rows and columns (non-significant: n.s.; absence of test: blank cell). Blue color – HCP
test-controls, yellow color – CHIASM controls, red color – CHIASM albinism.
1Wilcoxon rank-sum tests.
aTests for cross-comparison of quality of X-maskatlas−initial and X-maskatlas−corrected for two control groups.
bTests for comparison of X-maskatlas−corrected with X-maskCNN for all groups.
cTests for cross-comparisons of X-maskCNN for all groups.

RESULTS

This section provides a detailed qualitative and quantitative
insight into the two key aspects of our investigation: (i) quality
assessment of X-maskatlas−initial and X-maskatlas−corrected and (ii)
evaluation of the CNN’s performance on the CHIASM dataset.
An overview of the quantitative results is given in Table 1.

Quality of Optic Chiasm Masks
As detailed in Methods, the quality of a candidate mask is
determined based on its conformance with the ground-truth
masks, i.e., DSCmanual_vs_‘candidate′ . The DSCmanual_vs_atlas−initial
calculated for the 10 HCP test-controls was equal to 57 ± 3%
(mean ± SEM). Upon correction of the X-maskatlas−initial with
the custom-designed algorithm, the quality of the corrected
masks (X-maskatlas−corrected) improved significantly (mean
DSCmanual_vs_atlas−initial and DSCmanual_vs_atlas−corrected: 57 ± 3%
and 75 ± 3%, respectively, FWE corrected p-value = 0.025;
see also Figures 2, 3 for a quantitative and qualitative account,
respectively). These results for the HCP test-controls provide
support for the custom mask correction procedure, and as
such X-maskatlas−corrected. For this reason of better quality,
X-maskatlas−corrected were later used for the CNN training.

Although the CNN training was based only on HCP
data, the mask correction algorithm was tested also on
the CHIASM dataset. The quality of X-maskatlas−initial
(DSCmanual_vs_atlas−initial) of the CHIASM controls compares
similarly to the HCP test-controls [HCP vs. CHIASM:
57 ± 3% vs. 50 ± 4 (mean ± SEM); p-value = 1.00].

In contrast, applying the mask correction procedure on
the CHIASM data resulted in significantly lower DSC-
measures for X-maskatlas−corrected than X-maskatlas−initial
(DSCmanual_vs_atlas−initial vs. DSCmanual_vs_atlas−corrected: 50 ± 4%
vs. 28 ± 4%; p-value = 0.02; see Figure 3). Despite a comparable
quality of initial masks, the quality of X-maskatlas−corrected
from the CHIASM dataset was reduced compared to the
HCP X-maskatlas−corrected [DSCmanual_vs_atlas_corrected (HCP vs.
CHIASM): 75 ± 3% vs. 28 ± 4%; p-value < 0.001]. The findings
reveal the limited generalization of the custom mask correction
procedure. It should be noted that this is not of relevance for
the hypothesis tested in this study: during training, the CNN
is interacting with data and target masks corresponding to the
HCP dataset only. Accordingly, while it is critical to ensure
the high quality of training X-maskatlas−corrected, the CNN
itself is agnostic to their derivation process and its limitations
on other datasets. This will be proven further in the Results
section (see Transferability of CNNs) where it will be shown that
X-maskatlas−corrected and X-maskCNN of CHIASM controls are
fundamentally different.

Evaluation of Convolutional Neural
Network’s Performance on the Testing
Data
We calculated the DSCmanual_vs_CNN of control (n = 8) and PWA
(n = 9) from the CHIASM dataset and HCP test-controls. This
allowed us to gain insight into the (i) transferability of CNNs (i.e.,
how well the CNN performs on data from entirely new sources;
for this purpose, we compared the quality of X-maskatlas−corrected
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FIGURE 3 | Evaluation of the mask correction procedure. Scatter plot of DSCmanual_vs_atlas−corrected (x-axis) and DSCmanual_vs_atlas−initial (y-axis) values for a subset of
10 HCP test-controls and 8 controls from the CHIASM dataset. The values are additionally presented in the form of marginal histograms of the two
distributions—DSCmanual_vs_atlas−corrected (top horizontal) and DSCmanual_vs_atlas−initial (right vertical). The black contour marks the data point of the representative
participant detailed in Figure 1.

to X-maskCNN) and (ii) differences between optic chiasm masks
computed by the CNN for controls and PWA.

(i) Transferability of CNNs. The comparison of
DSCmanual_vs_atlas−corrected with DSCmanual_vs_CNN
performed for the 10 HCP test-controls failed to reveal a
statistically significant difference [75 ± 3% and 79 ± 2%,
respectively, p-value = 1.00]. This considerably deviated
from results obtained for the CHIASM controls, where
DSCmanual_vs_CNN (75 ± 3%) was significantly higher than
DSCmanual_vs_atlas−corrected (28 ± 4%, p-value < 0.001).
Interestingly, the values of DSCmanual_vs_CNN for both
HCP test-controls and CHIASM controls were similar
(79 ± 2% and 75 ± 3%, respectively; p-value = 1.00). The
robust performance of the CNN on the CHIASM dataset
reinforces the argument that CNN is agnostic to and does
not copy the correction algorithm that generated training
X-maskatlas−corrected data (which was shown to fail on the
data of CHIASM controls), but rather uses more general
and robust processing that is well transferable to datasets
different from the training one.

(ii) CNN-computed masks for controls vs. albinism.
Comparing the DSCmanual_vs_CNN between CHIASM
controls (75 ± 3%) and albinism participants (44 ± 8%)
revealed a significantly lower quality of the latter (p-
value = 0.04). These results also applied when substituting
the CHIASM controls with the HCP test-controls
(79 ± 2%, p-value = 0.004). An overview of the results is
displayed in Figures 4, 5.

The observed differentiation between the controls and
albinism was further investigated by measuring the performance
of a C-SVC model (see Methods) applied to CHIASM
albinism—CHIASM controls and CHIASM albinism—HCP
test-controls data pairs (with PWA as positives and controls
as negatives). The results of classification were subsequently
evaluated with the metrics specified in Methods and detailed in
Table 2.

The observed discrepancy in values of DSCmanual_vs_CNN
for controls and albinism indicates that malformed chiasms
are ill-represented by models “learned” from normal chiasms.
This leads to the conclusion that both types of chiasms
are described by diverse spatial features. This important
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FIGURE 4 | Comparison of quality of X-maskatlas−initial and X-maskCNN. Scatter plot of DSCmanual_vs_atlas−initial (x-axis) and DSCmanual_vs_CNN (y-axis) values for
CHIASM albinism (n = 9), CHIASM controls (n = 8), and HCP test-controls (n = 10). The values are additionally presented in the form of marginal histograms of the
two distributions—DSCmanual_vs_atlas−initial (top horizontal) and DSCmanual_vs_CNN (right vertical). The black contours mark the data point of the representative
participants, depicted in Figure 5. The outlier data point indicating DSCmanual_vs_CNN = 0 corresponds to a single case, where the chiasm could not be correctly
identified. Specifically, X-maskCNN was defined as a largest cluster of voxels with positive predictions (as output by CNN). In this unique case, however, the largest
cluster was located outside the chiasm, in the cerebellum.

observation provides a proof of concept for CNN-based
direct classification of chiasms with regard to misrouting.
At the same time, it should be noted that due to the
limited sample of testing data, it is beyond the scope of
the present study to provide an optimal DSC threshold for
distinguishing controls from PWA. Given the clinical relevance
of a threshold, we emphasize the need for future research to
estimate this value through extensive evaluation of multiple
datasets from several sources. While such a study is expected
to provide the value for the optimal decision boundary (e.g.,
via a receiver operating characteristic curve analysis), the final
proposed value should also factorize the consequences of type I
and type II errors.

DISCUSSION

We aimed to investigate whether normal optic chiasms and
those with misrouting as in albinism are represented by CNNs
differently and, if yes, whether such differences could be used
in the diagnostics of abnormal chiasms. In order to investigate

this, we built and trained a CNN to segment optic chiasms
based on control T1w images and algorithm-generated training
masks. Our findings of a differential performance of the CNN
in predicting normal and abnormal chiasms indeed highlight a
potential utility of CNNs in identifying patients with chiasmal
abnormalities. In the context of our findings, we intend to discuss
two key aspects of our study: (i) use of automated masks in the
training of CNN and (ii) application of control chiasms learned
by CNN to abnormal cases.

Use of Automated Masks in the Training
of CNN
Automatically generated algorithm-based masks are bound to be
a suboptimal solution for the purpose of image segmentation
as compared to manual segmentations, specifically in medical
images. Remarkably, we observed that in the case of a dataset
with a specific structure, tailored adjustments can significantly
increase the fidelity of automated masks to the ground truth.
This strategy is useful in mitigating the disadvantages of
a trade-off between mask quality and big sample size, as
encountered when using automatically generated training data
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FIGURE 5 | Overview of X-maskCNN from a representative HCP test-control,
CHIASM control, and CHIASM albinism participant. Axial slices display the
optic chiasm region on the T1w image; blue-, yellow-, and magenta-colored
masks show the X-maskCNN defined for the HCP test-control, CHIASM
control, and CHIASM albinism participants, respectively (marked by a black
edge on Figure 4).

(McClure et al., 2019). This is further reinforced by the robust
performance of the trained CNN here, demonstrating that the
approximate masks despite individual flaws allow for a successful
capture of the structure’s properties by the neural networks
(Heller et al., 2018).

Application of Control Chiasms Learned
by Convolutional Neural Network to
Abnormal Cases
Finally, the reported results demonstrated that the features of
chiasms “learned” by training on control data does not apply to
chiasms with enhanced misrouting, as present in albinism. This
finding allows for a number of conclusions:

a. The chiasmal misrouting significantly alters the spatial
organization of the optic chiasm [supporting the findings
of Schmitz et al. (2003) and von dem Hagen et al.
(2005)], which thus cannot be represented by data-driven
models trained on control data only. Consequently, deep
learning frameworks which exclude data of malformed
chiasms from the training datasets will not be able to
accurately represent them.

b. At the same time, the fundamental differences between
CNN representations of normal and abnormal chiasms,
as demonstrated by the quantified inaccuracy of masks,
indicate the possibility of the identification of chiasmal
misrouting from the T1w MRI images. Establishing such a
method would provide direct and robust methods for the
identification of misrouting in the clinical environment,
which in turn is expected to reinforce the diagnostics

TABLE 2 | Accuracy of cross-group classification based on DSCmanual_vs_CNN.

Metrics CHIASM albinism vs.
CHIASM controls

CHIASM albinism vs.
HCP test-controls

Accuracy 0.89 0.84

Precision 0.80 0.82

Recall (sensitivity) 1.00 0.9

Specificity 0.78 0.78

of albinism. Further studies are needed to explore how
our specific findings related to albinism translate to the
detection of chiasma abnormalities in general.

c. The distinguished CNN representations of normal
and abnormal chiasms are also a promising starting
point for further studies addressing the association
between chiasm malformations (with its further
impact on white matter of visual system) and related
reorganization at the level of the visual cortex (Hoffmann
and Dumoulin, 2015). Additionally, the complexity of
this phenomenon may greatly benefit from more complex
methods, such as CNNs.

d. Finally, it should be noted that our current study
underlines the general need for public datasets of
rare, not infrequently overlooked, patient groups
(Puzniak et al., in revision, see footnote 1). This is
particularly important in the context of the current
influx of deep learning-based tools in the healthcare
system, such as CNNs trained to segment organs at risk
(including chiasm as well) for therapy planning, which
may not be available to rare patient groups not represented
in training data. Considering this, the current study
highlights the opportunities of improved diagnostics
for the example of albinism and is intended to inspire
the publication of further datasets to be utilized for the
development of robust and transferable neural networks
capable of accurate classification of chiasmal abnormalities
from T1w MRI images.

Limitations
The study limitations come from several distinct sources. Firstly,
we note the limitations stemming from (i) lack of evidence
on specific anatomical biomarkers of chiasmal malformations.
Secondly, we acknowledge the limitations caused by data scarcity
affecting the (ii) interpretability of the model, (iii) quantity
and heterogeneity of the data, and (iv) quality of the data
and labels. Finally, we note that the study might be partially
affected by unavoidable (v) limitations in the design and
training of the CNN.

Identification of Anatomical Biomarkers of Chiasmal
Malformations
An important step in the validation of a diagnostic tool is the
demonstration of its sensitivity to meaningful individualized
biomarkers of the disease. Unfortunately, the evidence for such
specific anatomical biomarkers of chiasmal malformations
is missing. Although previous studies (Schmitz et al., 2003;
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von dem Hagen et al., 2005) provided a list of candidate
features distinguishing normal from abnormal chiasms (width
of chiasm, optic nerves and optic tracts, angle between
optic tracts), none of these features were investigated in the
context of individualized diagnostics. This lack of literature
on the anatomy-based detection of chiasmal malformations
was also the primary reason for the choice of our method
here, which aimed at the investigation of the generalized
applicability of CNNs for the purpose of detection of
chiasmal malformations.

Interpretability of the Convolutional Neural Network
While the missing knowledge on specific relevant anatomical
biomarkers of chiasmal misrouting can be retrieved by the
identification of features driving the correct diagnostics, this
process requires the CNN to be interpretable, i.e., to grant
insight into identifying the input features driving the outcome
decision. This property is, however, not generally available
for all the CNNs but is rather dependent on their task.
Specifically, in the case of described segmentation CNN (as
chosen in this study to avoid dependence on the scarce data
on chiasmal malformations), there are strong limits of the
possibilities for visualization of the inference process. This
limitation does not apply to the classification CNNs, where
several interpretation techniques (Montavon et al., 2018) such
as Grad-CAM (Selvaraju et al., 2017) can be implemented.
These, however, require extensive datasets. Additionally, as
this type of network uses both normal and abnormal data
for training, it allows for extensive validation of features that
drive the CNN’s decision that will lead to understand their
placing in the normal–abnormal spectrum. In summary, we
note that while the employed approach provides the evidence
that certain anatomical biomarkers of chiasmal malformations
exist, the next step should involve their identification with a
classifying CNN trained on larger datasets comprising both
normal and abnormal data.

Quantity and Heterogeneity of the Data
Although our study’s design enabled us to take advantage
of the massive HCP dataset and train the CNN on much
bigger samples than typically used, the rarity of albinism (and
other cases of congenital malformations of the chiasm) severely
limited the size of the training sample. For the same reasons,
we were limited to testing data from only one site, which
prevented us from investigation of impact of scanner and data
acquisition protocol on the method’s outcome. Moreover, this
limited our estimates of the accuracy and robustness of the
presented method.

Quality of Data and Labels
Although the HCP dataset is well-known for setting standards
in MRI data quality assessment, it does not contain
any clinical information pertaining to the participants’
visual system evaluations. Furthermore, the training
dataset might include participants with retinal and/or
optic nerve disorders in proportions corresponding to
their representation in the real world. This prevalence

is, however, not expected to influence the outcome
of CNN training, but even if so, this would cause
underestimation of our method’s performance, rather
than overestimation.

Similarly, although the CHIASM datasets provides findings of
ophthalmologic examination of included participants, it does not
provide information about the types of albinism represented in
the dataset (e.g., oculo-cutaneous, ocular albinism).

Finally, the quality of automatically generated training labels
is inferior to the ones created manually. Although we provide
evidence that this does not impact the general outcome of the
study, we acknowledge the use of manually defined labels to be
the optimal approach.

Convolutional Neural Network Design and Training
Due to the models’ complexity and high dependence on
the underlying data, the Deep Learning modeling approach
is mainly driven by empirical, rather than theoretical,
evidence. Consequently, despite the choice of employing
an established 3D U-Net architecture, which was reported
to perform well in similar task, we cannot rule out that
other architectures would not provide better results.
Similarly during CNN training, although we tried several
combinations of hyperparameters and reported the ones
yielding the best results, it is nearly impossible that we
found the globally optimal configuration of the CNN
network’s parameters.
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Chapter 9

CHIASM, the human brain
albinism and achiasma MRI
dataset

This chapter contains the permitted reprint of the study “CHIASM, the human
brain albinism and achiasma MRI dataset” published in Scientific Data:

Puzniak, R. J., McPherson, B., Ahmadi, K., Herbik, A., Kaufmann, J., Liebe, T.,
Gouws, A., Morland, A. B., Gottlob, I., Hoffmann, M. B., and Pestilli, F. (Nov. 2021).
“CHIASM, the human brain albinism and achiasma MRI dataset”. In: Scientific Data
8.1, p. 308. DOI: 10.1038/s41597-021-01080-w
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CHIASM, the human brain albinism 
and achiasma MRI dataset
Robert J. Puzniak1, Brent McPherson2,10, Khazar Ahmadi1,10, Anne Herbik1, 
Jörn Kaufmann   3, Thomas Liebe4, Andre Gouws5, Antony B. Morland   6, Irene Gottlob7, 
Michael B. Hoffmann1,8,11 & Franco Pestilli   9,11 ✉

We describe a collection of T1-, diffusion- and functional T2*-weighted magnetic resonance imaging 
data from human individuals with albinism and achiasma. This repository can be used as a test-bed to 
develop and validate tractography methods like diffusion-signal modeling and fiber tracking as well as 
to investigate the properties of the human visual system in individuals with congenital abnormalities. 
The MRI data is provided together with tools and files allowing for its preprocessing and analysis, 
along with the data derivatives such as manually curated masks and regions of interest for performing 
tractography.

Background & Summary
We present CHIASM, the human brain albinism, and achiasma dataset, a unique collection of magnetic reso-
nance imaging (MRI) data of brains with congenital abnormalities in the visual system. The unique feature of 
these subjects is the varied amount of crossing found in a specific structure –the optic chiasm– across partici-
pants with albinism. More specifically, it is well established1 that the number of crossing fibers crossing at the 
human optic chiasma to reach the contralateral brain hemisphere (right and left respectively) varies between 
certain groups. The percentage of fiber crossing at the chiasm has been reported for normal-sighted (control) 
participants to be about 53%2. In brains affected by albinism instead, the number of crossing fibers at the optic 
chiasm grows above 53%3. Crossing fibers within the optic chiasma in individuals affected by chiasm hypoplasia 
is lower than 53%4. Finally, data from individuals with achiasma have been shown to completely lack neuronal 
fiber crossing at the optic chiasm1,5,6.

The data covers four participant groups: the controls (n = 8, Fig. 1a), albinism (n = 9, Fig. 1b), chiasma 
hypoplasia (n = 1; Fig. 1c) and achiasma (n = 1; Fig. 1d), and comprises three different MRI modalities: (A) 
T1-weighted (T1w; Fig. 1, top row) images, (B) diffusion-weighted images (DWI, Fig. 1, middle row) and (c) 
T2*-weighted functional MRI (fMRI; Fig. 1, bottom row) images. More specifically: (A) T1w images are pro-
vided together with further derivatives (masks and labels obtained through segmentation, white matter mask 
manually curated in optic chiasm region), (B) DWI data was acquired using high angular7,8 and spatial9–11 res-
olution and is provided with further derivatives, such as tractography results, (C) fMRI data is provided for the 
subset of participants from control and albinism groups (n = 4 and n = 6, respectively) and is accompanied with 
meta-files describing stimulus and acquisition. All the data, both in the raw and preprocessed form are availa-
ble on the cloud computing platform https://brainlife.io11 and Github repository https://github.com/rjpuzniak/
CHIASM.
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Psychotherapy, Jena University Hospital, Philosophenweg 3, 07742, Jena, Germany. 5York Neuroimaging Centre, 
Department of Psychology, University of York, York, YO10 5DD, United Kingdom. 6Centre for Neuroscience, Hull-
York Medical School, Heslington, York, YO10 5DD, United Kingdom. 7Department of Neuroscience, Psychology & 
Behaviour, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom. 8Center for Behavioral 
Brain Sciences, Otto-von-Guericke-Universität, Universitätsplatz 2 (G24-205), 39106, Magdeburg, Germany. 
9Department of Psychology, Center for Perceptual Systems, Center for Theoretical and Computational Neuroscience, 
Institute for Neuroscience, The University of Texas, 108 E Dean Keeton Street, Austin, Texas, 78712, United States. 
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work: Michael B. Hoffmann and Franco Pestilli. ✉e-mail: pestilli@utexas.edu
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The data we present here can be of value to the scientific community for multiple reasons. First, it can serve 
as a reference dataset to support basic research for clarifying the neuroscientific underpinnings of the differ-
ent conditions. Currently, there are no reference datasets available covering similar conditions measured with 
high-resolution DWI data. Second, this dataset can be used by investigators to validate independent results 
and advance studies on the disease and neuroplasticity mechanisms. This is possible as chiasmal malforma-
tions induce abnormal representations within the visual pathways, which are expected to trigger neuroplastic 
mechanisms e.g. to resolve potential sensory conflicts1,12–19. Finally, the dataset presented here can be used to 
advance tractography methods development. The field of brain tractography has faced a long-lasting challenge 
commonly referred to as the “crossing fibers problem” or simply CFP18,20–35. CFP can lead to poor estimates of 
the number of crossing fibers through brain regions containing multiple fiber populations36,37. It has been estab-
lished that up to 90% of total brain white matter volume might have crossing fibers38. Advancing methods for 
accurate tracking in regions with crossing fibers is fundamental in clarifying the role of white matter in human 
health and disease18,39,40. As of today, several important approaches to tractography evaluation and validation 
have been proposed. These approaches can be classified into four primary categories: synthetic phantoms41,42, 
physical phantoms43, biological phantoms44,45, and statistical9,32,46–49. Most of these approaches have helped 
advance tractography methods, but major challenges remain30,31,42. The data made available here opens the pos-
sibility to assess crossing strength at the optic chiasm by first using anatomical data (T1w, DWI) to model the 
crossing at the optic chiasm and cross-validating the proposed findings with functional estimates (fMRI) of mis-
routing based on the BOLD signal4,50,51 (see Suppl. Table 1). This provides a unique opportunity for testing novel 
tractography methods that assess crossing strength by providing an independent modality for their evaluation.

Methods
MRI Data sources.  The described MRI data was analyzed in previously published studies4,50,51, where acqui-
sition protocols and data properties are detailed.

Participants.  A single participant with achiasma, a single participant with chiasm hypoplasia, 9 participants 
with diagnosed albinism, and 8 control participants [no neurological or ophthalmological history; normal visual 
acuity (≥1.0 with Freiburg Visual Acuity Test52) and normal stereo vision53,54] were recruited for the MRI meas-
urements. Each participant was instructed about the purpose of the study and the methods involved and gave 
written informed study participation and data sharing consent. The study was approved by the Ethics Committee 
of the Otto-von-Guericke University Magdeburg, Magdeburg, Germany. The patients and control participants 
underwent ophthalmological examination (Suppl. Table 1), which incorporated methods described in55,56.

Fig. 1  Overview of structural abnormalities of the optic chiasm and provided MRI data. (a) Exemplary control 
participant (CON1). (b) Exemplary participant with albinism (ALB1). (c) Participant with chiasma hypoplasia 
(CHP1). (d) Participant with achiasma (ACH1). The fMRI data is not provided due to severe nystagmus and 
motion compromising the quality of data. Top, middle and bottom rows display respectively T1w, DW, and 
fMRI data. Images show pseudo-axial views of a T1w image cropped to the brain mask.
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MRI Data acquisition.  MRI data was acquired with a Siemens MAGNETOM Prisma 3 Tesla scanner with 
the Syngo MR D13D software and a 64-channel head coil. The acquisition protocol for T1w and DW data was 
initiated by a localizer scan, followed by a whole-brain T1w 3D-MPRAGE scan and two DW scans - respec-
tively with anterior-posterior (A-P) and posterior-anterior (P-A) phase-encoding direction. T1w and DW 
images were collected during a single continuous scanning session, fMRI data was acquired in separate sessions 
(patients data was acquired on two consecutive days). T1w images were obtained in sagittal orientation using a 
3D-MPRAGE sequence (TE/TR = 4.46/2600 ms, TI = 1100 ms, flip angle = 7°, resolution = 0.9 × 0.9 × 0.9 mm3, 
FoV: 230 × 230 mm²; image matrix: 256 × 256 × 176, acquisition time = 11 min:06 s57) and corrected simulta-
neously during acquisition for gradient nonlinearity distortions. Each individual’s T1w data was screened by 
a radiologist for unexpected abnormalities present in the data. Apart from the abnormalities given in Methods 
(Participants), no clinically relevant abnormalities were detected.

DWI were acquired with Echo-Planar Imaging (EPI) sequence (TE/TR = 64.0/9400 ms, b-value 1600 s/
mm², resolution 1.5 × 1.5 × 1.5 mm³, FoV 220 × 220 mm², anterior to posterior (A-P) phase-encoding direc-
tion, acquisition time = 22 min:24 s, no multi-band). The b-value was chosen with regard to reported optimal 
values for resolving two-way crossing58 (1500–2500 s/mm2). Scans were performed with 128 gradient directions, 
so the obtained DWI data can be described as High Angular Resolution Diffusion Imaging7 (HARDI) data. The 
redundantly high number of gradient directions for the maximal angular contrast provided by a b-value of 1600 
s/mm2 supported residual bootstrapping. This enhanced the effective signal-to-noise ratio (SNR), which is an 
important feature considering the reduced SNR of the DWI of the optic chiasm. The gradient scheme, initially 
generated using E. Caruyer’s tool for q-space sampling59 for 3 shells acquisition, was narrowed to the single shell 
in order to address the acquisition time constraints. DW volumes were evenly intersected by 10 non-diffusion 
weighted (b-value = 0, hereafter referred to as b0) volumes for the purpose of motion correction. The second 
DW series were acquired with reversed phase-encoding direction in comparison to the previous scan, specifi-
cally posterior to anterior (P-A). Apart from that, all scan parameters were identical to ones corresponding to 
the preceding acquisition. Acquisition of two DW series with opposite phase-encoding directions enhanced the 
correction of geometrically induced distortions60. Furthermore, the additional scans improve the signal-to-noise 
ratio (SNR) of the total DWI data.

fMRI data was acquired from 4 controls and 6 participants with albinism (see Suppl. Tables 1 and 2) with 
T2*-weighted EPI sequence (TE/TR = 30.0/1500 ms, flip angle = 70°, resolution 2.5 × 2.5 × 2.5 mm³, FoV 
210 × 210 mm2, acquired with multi-band and in-plane acceleration factor = 2) during visual stimulation. Visual 
stimulation was performed in either the left, right or both visual hemifields in separate runs. A single repetition 
comprised 168 volumes acquired within 252 seconds. Each of these three stimulation conditions was repeated 
three times, resulting in a total of nine functional runs acquired within a single session. The visual stimulation is 
detailed in51. Briefly, it employed a moving high-contrast checkerboard pattern61 presented within the aperture 
of a drifting bar (width: 2.5°) within a circular aperture (radius: 10°). The bar aperture was moving in four 
directions (upwards, downwards, left, and right) across the stimulus window in 20 evenly spaced steps within 
30 s. The sequence of the visual stimulation runs was interspersed by equally long (30 s) mean luminance blocks 
with zero contrast. The stimuli, generated with Psychtoolbox62,63 in MATLAB (Mathworks, Natick, MA, USA), 
were projected onto a screen (resolution 1140 × 780 pixels) placed at the magnet bore. The participants viewed 
the stimuli monocularly with their dominant eye (see Suppl. Tables 1 and 2) via an angled mirror at a distance 
of 35 centimeters, and were instructed to fixate on a central dot and respond with a button press to dot color 
changes.

Data preprocessing.  Data preprocessing was mainly performed online, using web services available on the 
brainlife.io platform (https://brainlife.io), with a few exceptional steps done offline. The source code for the Apps 
used for online preprocessing is to be found at https://github.com/brainlife. The offline preprocessing involved 
conversion of DICOM data to NIfTI format, data anonymization, and, in the case of DW data, correction of gra-
dient nonlinearity distortions and alignment to T1w image. The scripts for all of the offline preprocessing steps 
are available on https://github.com/rjpuzniak/CHIASM. Data preprocessing was meant to provide minimally 
processed data and standardized T1w, DWI, and fMRI data files.

The following software packages were used for data preprocessing: MRtrix28,64, FMRIB’s FSL65–67, ANTs68,69, 
FreeSurfer70, dcm2niix71, MIPAV72, VISTASOFT package (including mrVista and mrDiffusion tools; 
https://github.com/vistalab/vistasoft), AFNI73, fMRIPrep74, Mindboogle75, Nipype76, Nilearn77 and Human 
Connectome Project gradunwarp package (https://github.com/Washington-University/gradunwarp). The 
computing environment of the brainlife.io uses Docker (https://docker.com) as well as Singularity containers 
(https://sylabs.io/singularity/ and https://singularity.lbl.gov).

Preprocessing of the T1w data.  In the offline preprocessing steps, T1w images were converted into the 
NIfTI format using dcm2niix71 and subsequently anonymized through the removal of facial features using mri_
deface algorithm78 from FreeSurfer 6.0.0. Anonymized T1w images were aligned to the Anterior Commissure 
- Posterior Commissure (ACPC) plane using the mrAnatAverageAcPcNifti.m command from mrDiffusion 
package (https://github.com/vistalab/vistasoft/wiki/ACPC-alignment). The outcome T1w images were used 
as the reference image for the coregistration of DWI. Further, T1w images were automatically segmented into 
five-tissue-type (cerebrospinal fluid, white, grey, and subcortical grey matter, and eventual pathological tissue; 
5TT) segmented images79 through the use of commands from FSL 6.0.365,80–82. Finally, the T1w data was uploaded 
to brainlife.io, where it was segmented once again using FreeSurfer 7.1.1 (Fig. 2a, top row). Detailed information 
about the preprocessing code is provided in the Code Availability section (Table 1).
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Preprocessing of the DWI data.  The DICOM DWI data preprocessing followed the well-established out-
line proposed by the Human Connectome Project (HCP) consortium83. Initially, DW files were converted offline 
into NIfTI format using dcm2niix and uploaded to brainlife.io. Next, the DWI data was corrected online for 
the Rician noise using dwidenoise84,85 and for Gibbs ringing using mrdegibbs86 commands from MRtrix 3.0. The 
following step of preprocessing involved estimation of the susceptibility-induced off-resonance field in the DW 
data with FSL’s topup command60,65 using two DW series with opposite phase encoding directions. The output of 
topup was subsequently fed to eddy command87 in order to correct for susceptibility- and eddy current-induced 
off-resonance field, as well as the motion correction. The topup and eddy command were implemented through 
dwifslpreproc command from MRtrix 3.0, which final output was a single file containing the corrected DW series. 
In the final online preprocessing step, the data was corrected for the field biases using dwibiascorrect from MRtrix 
3.0, which, in turn, used the N4 algorithm from ANTS88 in order to estimate the MR field inhomogeneity. At 
this stage, the DWI data were downloaded and corrected in an offline mode for the gradient nonlinearities 

Fig. 2  Qualitative overview of preprocessing for a representative participant (CON1). (a) Axial view of surfaces 
of white and pial matter (blue and red color, respectively) overlaid on T1w (top row), non-diffusion weighted 
(b0; middle row) and fMRI (T2*; bottom row) images. (b) Axial (top row), sagittal (middle row) and coronal 
(bottom row) views of fMRI images. The red contour marks brain mask estimated from BOLD signal, magenta 
contour marks combined CSD and WM masks, where voxels with partial GM volume were removed, blue 
contour marks the top 2% most variable voxels within brain mask.

Preprocessing step Software/Tool Software website/App

1. DICOM conversion dcm2niix http://people.cas.sc.edu/rorden/mricron/dcm2nii.html

2. Anonymization FreeSurfer 6.0.0/mri_deface https://surfer.nmr.mgh.harvard.edu/fswiki/mri_deface

3. ACPC Alignment mrDiffusion/mrAnatAverageAcPcNifti https://github.com/vistalab/vistasoft

4. Tissue Segmentation MRtrix 3.0/5ttgen https://www.mrtrix.org

5. Tissue segmentation FreeSurfer 7.1.1/recon-all
https://surfer.nmr.mgh.harvard.edu

https://doi.org/10.25663/brainlife.app.462124

Table 1.  List of preprocessing steps applied to the T1w images, together with web links to relevant software and, 
if available, brainlife.io Apps. Web services used to process that are available for reuse on https://brainlife.io/apps.
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distortions. This step involved using the gradunwarp package and information about Legendre coefficients in 
spherical harmonics for the scanner’s gradient coil, provided by the vendor (stored in the https://github.com/
rjpuzniak/CHIASM repository). As for the final step of preprocessing, the DWI data was coregistered to T1w 
data using the Boundary-Based Registration (Fig. 2a, middle row). At first, the transformation matrix from DWI 
to T1w image space was estimated with the epi_reg command from FLIRT89–91, a part of FSL 6.0.3 package. The 
transformation matrix was subsequently applied to DWI data by the flirt command from the same package, and 
to the corresponding b-vectors by shell script from HCP repository (https://github.com/Washington-University/
HCPpipelines/blob/master/global/scripts/Rotate_bvecs.sh). The resulting data, in NIfTI format, have been 
uploaded to brainlife.io and were published as a preprocessed DW data set. Detailed information about the pre-
processing code is provided in the Code Availability section (Table 2).

Preprocessing of the fMRI data.  The fMRI data was converted into NIfTI format using dcm2niix. 
Subsequent preprocessing was performed online using two Apps wrapping the fMRIPrep tool74: fMRIPrep - 
Surface output92 (which output data as the surface vertices) and fMRIPrep - Volume output93 (which output data 
in volumetric format). The preprocessing, in both cases, involved correction for susceptibility distortions using  
antsRegistration from ANTs 2.3.3, registration to T1w image using bbregister command from FreeSurfer 
6.0.1 (Fig. 2a, bottom row), slice-time correction using 3dTshift from AFNI and correction for head-motion. 
Additionally, the BOLD (blood-oxygen-level-dependent) data was subject to Component-Based Noise 
Correction (CompCor)94, which uses information principal components from noise-driven regions (defined 
as top 2% variable voxels in BOLD image; Fig. 2b, blue contour) in order to reduce the standard deviation of 
resting-state BOLD data. The noise-driven regions selection was limited only to voxels not affected by gray matter 
partial volume (Fig. 2b, pink contour). The output files created during preprocessing with fMRIPrep Apps are 
described in detail in section Data Records. Detailed information about the preprocessing pipeline is provided in 
the HTML report files generated by fMRIPrep application in the Data Records, while the code is provided in the 
Code Availability section (Table 3).

Drawing of the optic chiasm mask.  Due to the limited accuracy of the automatically generated optic 
chiasm mask (Fig. 3a), manual segmentation was necessary to ensure the proper anatomical definition of the 
structures in each participant. The procedure comprised the following steps:

	 1)	 Initial segmentation of voxels unambiguously belonging to the optic chiasm (i.e. outer voxels affected by 
partial volume effects were excluded). This segmentation was performed only in an axial view and was 
done in multiple slices covering optic nerves, optic chiasm,and optic tract.

	 2)	 Second step where voxels affected by partial volume effects, previously omitted, were included. The two 
main criteria for the inclusion of candidate voxels were (a) relative intensity (compared to neighboring 
voxels identified in the previous step) and the coherence/continuity of the optic chiasm structure (already 
defined by voxels selected in the previous step).

	 3)	 A third and final step involved corrections performed in axial, coronal, and sagittal views at the same time. 
The main criterion here was to assure the continuous borders.

The outcome masks covered posterior optic nerves, whole optic chiasm, and anterior optic tracts (Fig. 3b) 
and were used for correction of white matter definition in previously generated 5TT masks. The corrected white 

Preprocessing step Software/Tool Software website/App

1. DICOM conversion dcm2niix http://people.cas.sc.edu/rorden/mricron/dcm2nii.html

2. Denoising MRtrix 3.0/dwidenoise
https://www.mrtrix.org

https://doi.org/10.25663/bl.app.68125

3. Removal of Gibbs ringing MRtrix 3.0/mrdegibbs
https://www.mrtrix.org

https://doi.org/10.25663/bl.app.68125

4. Geometrical distortions corrections FSL/topup
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki

https://doi.org/10.25663/bl.app.68125

5. Eddy currents distortions corrections FSL / eddy
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki

https://doi.org/10.25663/bl.app.68125

6. Correction for head motion FSL/eddy
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki

https://doi.org/10.25663/bl.app.68125

7. Correction for bias field MRtrix 3.0/dwibiascorrect
https://www.mrtrix.org

https://doi.org/10.25663/bl.app.68125

8. Correction for gradient nonlinearities gradunwarp/gradunwarp https://github.com/Washington-University/gradunwarp

9. Coregistration to T1w image & Rotation of b-vectors FSL/epi_reg & flirt MRtrix/mrresize HCP 
Pipelines/rotate_bvecs

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki

https://www.mrtrix.org

https://github.com/Washington-University/HCPpipelines/
blob/master/global/scripts/Rotate_bvecs.sh

Table 2.  List of preprocessing steps applied to the DW images, together with web links to relevant software and, 
if available, brainlife.io Apps. Web services used to process that are available for reuse on https://brainlife.io/apps.
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matter masks were extracted from 5TT images using mrconvert command, transformed to the space of T1w 
image (in order to ensure matching of QForm and SForm transformation matrices) with flirt command from 
FSL and mrconvert commands from MRtrix, and uploaded to the brainlife.io. Detailed information about the 
code for preprocessing can be found in the Code Availability section (Table 4).

Drawing regions of interest in the optic chiasm.  Four ROIs were manually drawn and curated in each 
participant (Fig. 3c) on the T1w images. These ROIs identified the anterior and posterior aspects of the optic 
chiasm in each individual. The two anterior ROIs identified the location of the left and right optic nerve (Fig. 3c,e, 
yellow, and magenta). The posterior ROIs identified the left and right optic tract (Fig. 3c,f, cyan, and red). Once 
created, ROIs were transformed to the space of T1w image with mrconvert and mrtransform and thresholded with 
mrthreshold commands from MRtrix (in order to remove interpolation artifacts) and uploaded to the brainlife.
io. Detailed information about the code for preprocessing can be found in the Code Availability section (Table 4).

Diffusion signal reconstruction, tractography, and statistical evaluation.  The whole-brain trac-
tography was performed using MRtrix 0.2.1264. The tractography was based on diffusion tensor (DT) and con-
strained spherical deconvolution (CSD) models and was performed using both deterministic and probabilistic 
methods25,28,95–99. The DT model was used for deterministic tracking, in the case of CSD both deterministic and 
probabilistic tracking was applied. The tractography utilized Anatomically-Constrained Tractography79, where the 
tracking was restricted to gray matter-white matter boundary from the newly created FreeSurfer 7.1.1 segmen-
tation of the provided T1w image to ensure the agreement of the obtained tracks with the underlying anatomical 

Preprocessing step Software/Tool Software website/App

1. DICOM conversion MRtrix 3.0/mrconvert https://www.mrtrix.org

2. Geometrical distortions corrections ANTS 2.3.3/antsRegistration

http://stnava.github.io/ANTs/

https://doi.org/10.25663/brainlife.app.16093.

https://doi.org/10.25663/brainlife.app.26792

3. Registration to T1w image FreeSurfer 7.1.1/bbregister

https://surfer.nmr.mgh.harvard.edu/.

https://doi.org/10.25663/brainlife.app.16093

https://doi.org/10.25663/brainlife.app.26792

4. Slice-time correction AFNI/3dTshift

https://afni.nimh.nih.gov/

https://doi.org/10.25663/brainlife.app.16093

https://doi.org/10.25663/brainlife.app.26792

5. Motion correction FSL 5.0.9/mcflirt

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki

https://doi.org/10.25663/brainlife.app.16093

https://doi.org/10.25663/brainlife.app.26792

6. Removal of physiological noise CompCor
https://doi.org/10.25663/brainlife.app.16093

https://doi.org/10.25663/brainlife.app.26792

Table 3.  List of preprocessing steps applied to the fMRI images, together with web links to relevant software and, if 
available, brainlife.io Apps. Web services used to process that are available for reuse on https://brainlife.io/apps.

Fig. 3  Masks and regions of interest used to define the location of the optic chiasm, tract, and nerve. Left-hand 
column, the pseudo-axial view of the anatomical image of exemplary control participant (CON6) and overlaid 
optic-chiasm white matter mask before (a) and after (b) manual correction. Middle column, four representative 
ROIs covering the optic nerves and optic tracts in pseudo-axial (c) and sagittal (d) view. Right-hand column, 
four representative ROIs covering a cross-section of optic nerves (e) and optic tracts (f) in pseudo-coronal view.



7Scientific Data |           (2021) 8:308  | https://doi.org/10.1038/s41597-021-01080-w

www.nature.com/scientificdatawww.nature.com/scientificdata/

structure. Additionally, an Ensemble Tractography100 framework was used, which negates bias of different param-
eter options in tractography by merging results of several tracking approaches, with each generating tracks with 
different properties18,41,101–104. Merging all tractograms mitigates the bias introduced from the variability of indi-
vidual tractography parameters. Adhering to this, the final tractogram consisted of streamlines generated using: 
(A) deterministic tracking97 based on Diffusion Tensor95,105, (B) deterministic tracking25 based on Constrained 
Spherical Deconvolution model106 (CSD), and (C) probabilistic CSD-based tracking using iFOD2 algorithm28. 
The tractography was performed for several harmonic orders L = 2, 4, 6, 8, 10, 12, which were estimated using 
dwi2reponse tournier107 and dwi2fod msmt_csd108 commands from MRtrix 3.0. The full set of parameters guiding 
tractography is as follows: step size 0.15 mm for (A) and (B), 0.75 mm for (C); minimal length 7.5 mm, maximal 
length 200 mm, maximum angle between consecutive steps 5, 10, 20, 40, 80°, 15,000 fibers per parameters combi-
nation. The tracking has been performed using Ensemble Tracking (dwi)109 brainlife.io application.

The whole-brain tractogram was evaluated and optimized using the Linear Fasiscle Evaluation method9,49 
(LiFE). Over the course of the evaluation process, every streamline is assigned a weight indicating its unique 
contribution in explaining the measured diffusion signal based on a tensor fit of the preprocessed diffusion data. 
Streamlines with non-zero weights are deemed as significant, while others are being discarded. The brainlife.io 
application implementing LiFE evaluation9 can be found at110.

Data Records
The data includes T1w, DW, and (if available) fMRI images of: single participant with achiasma (ACH1), single 
participant with chiasma hypoplasia (CHP1), 9 participants with albinism (ALB1 - ALB9) and 8 control par-
ticipants (CON1 - CON8). The data from control participants are provided under an open license. To assure 
anonymity of the participants with clinical conditions, their data are made available upon direct request (as 
regulated by the Data Use Agreement, Suppl. Box 1).

The data is publicly accessible via brainlife.io platform11 at https://doi.org/10.25663/brainlife.pub.9111. 
When downloaded, the files are organized as defined by brainlife.io DataTypes (https://brainlife.io/docs/
user/datatypes/ and https://brainlife.io/datatypes), and, if applicable, as the most updated version of the Brain 
Imaging Data Structure specification112 (BIDS). Due to the developmental nature of the BIDS format, at the 
present time, it does not support all the data derivative types presented here; the data records detailed below 
are presented according to brainlife.io Data Types. The data files stored for each subject on brainlife.io can be 
divided into three general categories: (A) source data, which consist of anonymized and aligned to the anterior 
commissure - posterior commissure (AC-PC) space T1w image, raw DW and fMRI data in NIfTI format, (B) 
preprocessed data, which consist of preprocessed DW and fMRI data, as described in Data Preprocessing sec-
tion and (C) data derivatives, as described in Data Derivatives section. Additionally, the fMRI NIfTI data stored 
on brainlife.io are provided together with (D) MrVista.mat files (further referred to as “fMRI meta-files”), which 
are necessary for the analysis of the former. Those files are stored in a separate Open Science Framework (OSF) 
repository: https://doi.org/10.17605/osf.io/XZ29Q113 and are described in detail in the ‘fMRI meta-files’ section.

Source data.  Source data (raw) files consist of two DWI datasets, one T1w set per participant, and, in the case 
of 6 participants from the albinism group and 4 controls, fMRI T2*-weighted images.

DW source data.  Source DWI data covers two DW series acquired with opposite phase encoding directions 
(PEDs) - Anterior-Posterior (AP, Box 1a) and Posterior-Anterior (PA, Box 1b), as indicated by the tags.

Preprocessing step Software/Tool Software source/App

1. Alignment of the custom mask to T1w image FSL/flirt https://www.mrtrix.org

2. Alignment of the ROIs to T1w image MRtrix/mrtransform https://www.mrtrix.org

3. Removal of interpolation artifacts MRtrix/mrthreshold https://www.mrtrix.org

Table 4.  List of preprocessing steps applied to the custom white matter masks and ROIS, together with web 
links to relevant software and, if available, brainlife.io Apps. Web services used to process that are available for 
reuse on https://brainlife.io/apps.

Box 1 Organization of the DW source data files according to the brainlife.io Data Types. (a) DW data files 
corresponding to acquisition with AP PED, (b) DW data files corresponding to acquisition with PA PED.

(a)  � proj-5ddfa986936ca339b1c5f455/sub-{}/dt-neuro-dwi.tag-raw.tag-AP.
tag-normalized.tag-single_shell.id-{}/

       dwi.bvals
       dwi.bvecs
       dwi.nii.gz
       _info.json
	(b)	 proj-5ddfa986936ca339b1c5f455/sub-{}/dt-neuro-dwi.tag-raw.tag-PA.

tag-normalized.tag-single_shell.id-{}/ 
dwi.bvals

      dwi.bvecs
      dwi.nii.gz
      _info.json
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fMRI source data.  The source fMRI data is available for 6 participants with albinism (ALB1, ALB5, ALB6, 
ALB7, ALB8 and ALB9) and 4 controls (CON1, CON2, CON3 and CON8) and incorporates BOLD series 
acquired in 6 runs (3 runs corresponding to monocular stimulation of right visual hemifield, and 3 runs for left), 
except for ALB5 (3 runs for right and 2 for left hemifield) and CON1 (2 runs for right and 3 for left hemifield). 
Importantly, the fMRI files for the participant are stored in separate sessions (e.g. CON1/run4, Box 2).

T1w source data.  Source T1w images (already anonymized and aligned to ACPC plane) were uploaded to 
participant’s main folder (e.g. CON1/, Box 3a), and, if applicable, all fMRI sessions (e.g. CON1/run4, CON1/run5 
etc., Box 3b).

Preprocessed data.  Preprocessed files are divided into 2 main categories: DW and fMRI files. The former 
are stored in each participant’s main folder, whereas fMRI files, if provided, are stored in folders corresponding 
to separate sessions.

DW preprocessed data.  Preprocessed DW data consists of two files, tagged as “preprocessed” and “clean”. 
The ‘preprocessed’ tag marks the data (Box 4), which has been processed online, but lacks correction for gradient 
nonlinearity distortions and was not aligned to T1w image (those last two steps were performed offline) - the 
details are described in the “Data preprocessing” section.

The “clean” tag marks the data which has been completely preprocessed and aligned to T1w image (Box 5). 
Consequently, the files tagged as “clean” are recommended for further analyses.

fMRI preprocessed data.  fMRI data processing was performed both for surface and volume representations of 
the data, and in both cases several output files were created.

In case of surface output92, the output files consist of surface vertices (3D mesh), for pial and white matter, as 
well as inflated representation, defined for both hemispheres (Box 6a), surface data in NIfTI format containing 
measures at each vertices (Box 6b), surface time series data in CIFTI format (Box 6c), HTML preprocessing 
report (Box 6d), volumetric mask of brain (Box 6e) and confounds (nuisance regressors) representing fluctua-
tions with a potential non-neuronal origin, identified using CompCor (Box 6f).

Box 2 Organization of the fMRI source data files according to the brainlife.io Data Types.

proj-5ddfa986936ca339b1c5f455/sub-{}.ses-run{}/dt-neuro-func-task.tag-
raw.tag-retinotopy.id-{}/
     bold.nii.gz
     _info.json

Box 3 Organization of the T1w source data files according to the brainlife.io Data Types. (a) T1w images uploaded 
to participant’s main folder, (b) T1w images uploaded to all folders corresponding to separate fMRI sessions.

	(a)	 proj-5ddfa986936ca339b1c5f455/sub-{}/dt-neuro-anat-t1w.tag-ACPC.
id-{}/

      T1.nii.gz
     _info.json
	(b)	 proj-5ddfa986936ca339b1c5f455/sub-{}.ses-run{}/dt-neuro-anat-t1w.

tag-ACPC.id-{}/
T1.nii.gz

      _info.json

Box 4 Organization of the preprocessed DW data files, tagged as “preprocessed”, according to the brainlife.io 
Data Types.

proj-5ddfa986936ca339b1c5f455/sub-{}/dt-neuro-dwi.tag-raw.tag-AP.
tag-normalized.tag-single_shell.tag-preprocessed.id-{}/
    dwi.bvals
    dwi.bvecs
    dwi.nii.gz
    _info.json

Box 5 Organization of the preprocessed DW data files, tagged as “clean”, according to the brainlife.io Data 
Types.

proj-5ddfa986936ca339b1c5f455/sub-{}/dt-neuro-dwi.tag-clean.tag-ACPC.
tag-normalized.tag-single_shell.id-{}/
    dwi.bvals
    dwi.bvecs
    dwi.nii.gz
    _info.json
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Volumetric preprocessing output93 shares a majority of files with surface preprocessing (Box 6c–f ), 
except for files containing data in surface representation (Box 6a,b). Furthermore, two additional files are 
included in the volumetric input: brain mask based on BOLD image (Box 7a) and volumetric BOLD image 
(Box 7b).

Data derivatives.  Provided data derivatives consist of manually curated and automatically generated white 
matter masks, custom ROIs, T1w image segmentation, tractograms, and filtered tractograms.

Box 6 Organization of the fMRI preprocessed data files (surface output) according to the brainlife.io Data 
Types. (a) surface vertices (3D mesh), for pial and white matter, as well as inflated representation, defined 
for both hemispheres, (b) surface data in NIfTI format containing measures at each vertices, (c) surface time 
series data in CIFTI format, (d) HTML preprocessing report, (e) volumetric mask of brain and (f) con-
founds (nuisance regressors) representing fluctuations with a potential non-neuronal origin, identified using 
CompCor.

	(a)	 proj-5ddfa986936ca339b1c5f455/sub-{}.ses-run{}/dt-neuro-surface-ver-
tices.id-{}/

      _info.json
      left/
             inflated.gii
             pial.gii
             white.gii
      right/
             inflated.gii
             pial.gii
             White.gii
	(b)	 proj-5ddfa986936ca339b1c5f455/sub-{}.ses-run{}/dt-neuro-surface-da-

ta.id-{}/
      _info.json
      left.gii
      Right.gii
	(c)	 proj-5ddfa986936ca339b1c5f455/sub-{}.ses-run{}/dt-neuro-cifti.

tag-dtseries.id-{}/
      cifti.nii
      _info.json
	(d)	 proj-5ddfa986936ca339b1c5f455/sub-{}.ses-run{}/dt-report-html.

tag-fmriprep.id-{}/
      html/
             sub-{}/
                   figures/
                           …
             sub-{}.html
      _info.json
	(e)	 proj-5ddfa986936ca339b1c5f455/sub-{}.ses-run{}/dt-neuro-mask.tag-

anat.tag-brain.id-{}/
      _info.json
      Mask.nii.gz
	(f)	 proj-5ddfa986936ca339b1c5f455/sub-{}.ses-run{}/dt-neuro-func-regres-

sors.id-{}/
      _info.json
      regressors.json
      regressors.tsv

Box 7 Organization of the additional fMRI preprocessed data files (volume output), with regard to files 
from surface output, according to the brainlife.io Data Types. (a) brain mask based on BOLD image and (b) 
volumetric BOLD image.

	(a)	 proj-5ddfa986936ca339b1c5f455/sub-{}.ses-run{}/dt-neuro-mask.tag-
brain.tag-bold.tag-func.id-{}/

      _info.json
      mask.nii.gz
	(b)	 proj-5ddfa986936ca339b1c5f455/sub-{}.ses-run{}/dt-neuro-func-task.

tag-raw.tag-retinotopy.tag-preprocessed.id-{}/
      bold.nii.gz
      _info.json
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Manually curated and automatically generated masks.  White matter masks manually curated in the 
optic chiasm region (Fig. 3b; creation described in “Data preprocessing” section) sampled to match the original 
T1w image resolution (Box 8):

Additional white matter mask (created from FreeSurfer segmentation of white matter), generated by brain-
life.io App performing tractography109 (Box 9):

Custom ROIs.  We provide a set of four masks covering the left and right optic nerve and left and right optic 
tract (Fig. 3e). ROIs (Box 10) are provided as individual NIfTI files containing the left and right optic tract (OT) 
and the left and right optic nerve (ON). Data in the files contain a ‘1’ for each voxel within the ROIs, 0 otherwise. 
These ROIs can be used for tracking start-end.

T1w image segmentation.  A FreeSurfer (v 7.1.1.) segmentation of T1w image, which was generated as a 
part of data preprocessing (see section “Data preprocessing”) and was used in tractography (Box 11a) and fMRI 
data preprocessing (Box 11b) is provided exclusively in brainlife.io Data Types format.

Box 9 Organization of the data files of automatically generated optic chiasm masks according to the brainlife.
io Data Types.

proj-5ddfa986936ca339b1c5f455/sub-{}/dt-neuro-mask.tag-white_matter.
tag-anat.id-{}/
      _info.json
      mask.nii.gz

Box 10 Organization of the data files of custom ROIs covering optic nerves and optic tracts according to the 
brainlife.io Data Types.

proj-5ddfa986936ca339b1c5f455/sub-{}/dt-neuro-rois/tag-aligned.id-{}/
    _info.json
      rois/
      {}-left_ON.nii.gz
      {}-left_OT.nii.gz
      {}-right_ON.nii.gz
      {}-right_OT.nii.gz

Box 11 Organization of the T1w segmentation data files (generated by the FreeSurfer) according to the 
brainlife.io Data Types. Data files used for (a) tractography and (b) fMRI data preprocessing purposes.

	(a)	 proj-5ddfa986936ca339b1c5f455/sub-{}/dt-neuro-freesurfer.tag-ACPC.
id-{}/

      _info.json
      output/
         label/
         mri/
         scripts/
       stats/
         surf/
         tmp/
         touch/
         trash/
	(b)	 proj-5ddfa986936ca339b1c5f455/sub-{}.ses-run{}/dt-neuro-freesurfer.

tag-ACPC.id-{}/
      _info.json
      output/
         label/
         mri/
         scripts/
         stats/
         surf/
         tmp/
         touch/
         trash/

Box 8 Organization of the data files of manually curated optic chiasm masks according to the brainlife.io 
Data Types.

proj-5ddfa986936ca339b1c5f455/sub-{}/dt-neuro-mask.id-{}/
      _info.json
      mask.nii.gz
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Tractograms and filtering results.  The results of tractography performed for the purpose of technical 
validation of the DW data (Box 12a) and results of its filtering with LiFE (Box 12b) are provided as part of the 
repository:

fMRI meta-files.  fMRI meta-files (for a subset of 6 albinism and 4 control participants, for which fMRI 
source data are provided) are available on the Open Science Framework (OSF) platform: https://doi.org/10.17605/
osf.io/XZ29Q113. The files are in MATLAB format.mat and provide all the necessary information for performing 
the retinotopy data analysis using the MrVista package (https://github.com/vistalab/vistasoft). For each partic-
ipant there is a total of 6 files: description of visual stimulus presented during left and right visual hemifield 
stimulation (Box 13a,b, respectively), full information about the acquisition parameters, participant’s response 
and stimulus for left and right visual hemifield stimulation (Box 13c,d, respectively; this also includes contents 
of visual stimulus corresponding to given hemifield stimulation as in Box 13a,b, respectively), file containing all 
parameters necessary for initialization of session in MrVista (such as paths to files required in analysis; Box 13e) 
and mrSession file storing all information about the analysis (Box 13f):

Technical Validation
This section provides a quality assessment of the published DW and fMRI data and is based on a previously 
published approach11 comprising qualitative and quantitative measures.

Qualitative assessment.  The qualitative assessment involves (A) demonstration of the quality of alignment 
between anatomical, DWI, and fMRI images, and (B) demonstration of reconstruction of diffusion signal and 
tractography in the optic chiasm.

Registration of anatomical, DW, and fMRI data.  A critical step in data preprocessing is to obtain the precise 
alignment between images of various modalities (T1w, DWI, and fMRI images; for a detailed description see 
Methods). The quality of registration is demonstrated by overlaying FreeSurfer’s 7.1.1 segmentation contours 
of white and pial matter (Fig. 2a; blue and red colors, respectively) on top of T1w image (from which they were 
derived; Fig. 2a, top row), DWI (Fig. 2a, middle row) and BOLD image (Fig. 2a, bottom row) for a representative 
participant (CON1).

Diffusion signal reconstruction and tractography in the optic chiasm.  Considering the role of optic chiasm mal-
formations as a major factor driving group differences, the quality assessment included diffusion signal mode-
ling and tractography in this structure. Figure 4a displays representative optic chiasms in the T1w images, next 
to aligned dMRI b0 images (Fig. 4b). The DWI signal in each voxel was modeled using a CSD106,114 model in a 
process where an estimated single fiber response (SFR; Lmax = 6) was used as a deconvolution kernel in the pro-
cess of calculating the fiber orientation distribution function20 (FOD; Lmax = 12) from acquired DWI. Figure 4c 
demonstrates the fit of calculated FOD in an optic chiasm region. Figure 4d demonstrates tracking results in the 
region of the optic chiasm. Presented results are limited only to probabilistic CSD-based tractography (iFOD2 
algorithm, step size = 0.75 mm, FOD cutoff amplitude = 0.06, maximum angle between successive steps = 45°) 
based on already calculated ODFs (Lmax = 12; Fig. 4c), which was done between pairs of ROIs and within man-
ually corrected white matter mask defined in the Data derivatives paragraph of the Methods section. For the 
purpose of clarity, only 0.25% of the total number of generated streamlines is displayed.

Box 12 Organization of the tractography data according to brainlife.io Data Types. (a) outcome tractogram 
generated for the purpose of technical validation and (b) results of its filtering with LiFE algorithm.

	(a)	 proj-5ddfa986936ca339b1c5f455/sub-{}/dt-neuro-track-tck.tag-ensem-
ble.id-{}/

      Track.tck
	(b)	 proj-5ddfa986936ca339b1c5f455/sub-{}/dt-neuro-life-tck.tag-ensemble.

id-{}/
      Track.tck

Box 13 Organization of the fMRI meta-files stored on OSF repository. Description of visual stimulus 
presented during (a) left and (b) right visual hemifield stimulation, full information about the acquisition 
parameters, participant’s response and stimulus for (c) left and (d) right visual hemifield stimulation [this 
also includes contents of visual stimulus corresponding to left and right hemifield stimulation as in (a) and 
(b), respectively], (e) file containing all parameters necessary for initialization of session in MrVista (such as 
paths to files required in analysis) and (f) mrSession file storing all information about the analysis).

	(a)	 {}/{}_images_left_images.mat
	(b)	 {}/{}_images_right_images.mat
	(c)	 {}/{}_params_left_mod.mat
	(d)	 {}/{}_params_right_mod.mat
	(e)	 {}/{}_mrInit_params.mat
	(f)	 {}/{}_mrSession.mat
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Quantitative assessment.  The quantitative validation includes (A) assessment of participants’ motion 
during DW data acquisition, (B) SNR in raw and preprocessed DW images, (C) modeling of DW data, (D) trac-
tography, (E) temporal SNR of fMRI data, and (F) pRF-mapping.

Participant’s motion during DW data acquisition.  The participants’ motion in DWI has been calculated for 
concatenated AP and PA series (acquired subsequently during a single scanning session, see Methods) by calcu-
lating the RMS of each voxels’ displacement using the Eddy command from FSL. The displacement calculation 
used the first acquired voxels as a reference for all volumes and included only voxels within the brain mask. The 
slow, yet steadily increasing drift visible for all participants (Fig. 5a) can be well tracked with b0 images intersect-
ing DW series, which benefited motion correction. While, the lowest RMS was observed for the control group 
(which can be justified by the inclusion of trained control participants, well accustomed to MRI scanning), no 
proof for inequality of mean displacement RMS between participants with albinism and controls was found 
(Student’s t-test p-value = 0.11). It should be noted that the increased motion shown by achiasmatic participant 
ACH1 matches the observations from the fMRI scanning session, where the data had to be discarded due to 
extensive motion.

The output data of eddy describing motion for each participant is available online on the Github repository 
(https://github.com/rjpuzniak/CHIASM/tree/main/Plots/Fig.5_Motion), where it is provided together with the 
MATLAB code of Fig. 5a.

SNR in DW data.  In order to evaluate the quality of the DWI data, the signal-to-noise ratio (SNR) of raw and 
preprocessed images was measured. The computations were performed for b0 (Fig. 5b) and diffusion-weighted 
(along with X-, Y- and Z-axis; Suppl. Fig. 1) for corpus callosum and optic chiasm voxels. Specifically, the SNR 
was defined as the mean ratio of the signal in voxels (from the selected structure) to standard deviation of noise 
(measured in voxels outside the brain), as described in37,115. In the case of the corpus callosum, the SNR was 
calculated separately for b0 images of two raw DW series (one with AP PED and one with opposite PA PED) 
and for the fully preprocessed DW image (“corrected”). As expected, the comparable SNR of corrected images is 
increased while the preprocessing (unwarping) is performed (Fig. 5b).

Comparable analysis of SNR in optic chiasm was obstructed by the severe geometry-induced distortions 
present in this region, which introduce spatial warping of the chiasm. Although theoretically this problem can 
be addressed by using new sets of optic chiasm masks (created separately for images warped in AP and PA 
directions), drawing new masks on top of DW images in heavily distorted regions is practically extremely chal-
lenging and is highly likely to introduce inaccuracies. Instead, the SNR was calculated for the fully preprocessed 

Fig. 4  Diffusion signal reconstruction and tractography. The rows correspond to exemplary participants 
representing, respectively from top to bottom: control (CON1), albinism (ALB1), chiasma hypoplasia (CHP1) 
and achiasma (ACH1). (a) Pseudo-axial view of T1w image of the optic chiasm. (b) Pseudo-axial view of 
b0 image of the optic chiasm. (c) Pseudo-axial view of the anatomical image with overlaid estimated fiber 
orientation distribution function (FOD; Lmax = 12). (d) Pseudo-axial view of an anatomical image with overlaid 
results of tractography performed between pairs of ROIs defined in Methods.
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(corrected) DWI images, where the optic chiasm mask was cropped from a manually curated white matter mask 
(Fig. 5b). The observed higher SNR in optic chiasm (compared to corpus callosum) could be due to multiple 
reasons that were not tested by the authors. We speculate that it might be the result of using a 64-channel Radio 

Fig. 5  Quantitative assessment of motion, SNR, and modeling of DW data, as well as the quality of derived 
tractograms. (a) Left plot displays motion in the DW volumes (expressed as Root Mean Square of voxel 
displacements within brain mask, calculated with respect to the first volume) where 138 volumes with AP PED 
were followed by 138 volumes with opposite PED. Markers indicate the values calculated for the b0 volumes. 
The right-hand plot displays the mean motion RMS calculated for each participant. The color code and markers 
shape correspond to groups: orange circle - control, magenta square - albinism, violet up-pointing triangle 
- achiasma, blue down-pointing triangle - chiasma hypoplasia. (b) SNR in b0 images for each participant 
calculated from callosal voxels (selected from raw AP PED DW series, raw PA PED DW series, and corrected 
DWI) and optic chiasm (only for corrected DWI). (c) Values of zero phase (m = 0) coefficients of SFR calculated 
for each participant. (d) Results of evaluation of tractogram using LiFE method. Y-axis displays the number of 
fascicles remaining after filtering with LiFE, x-axis displays voxel-wise error between original signal and the 
one predicted from optimized tractograms. The bright markers correspond to the published datasets, while the 
dimmed display results for representative datasets from other publicly available DW repositories (such as 3T 
and 7T HCP datasets).
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Frequency coil, which measures stronger signals from peripheral brain regions in comparison to deeper regions 
such as the corpus callosum. The brainlife.io application implementing the SNR computation in the corpus cal-
losum can be found at116 which follows the outlined SNR calculation strategy presented in37,115.

Coefficients of the single fiber response (SFR) function.  The quality of modeling of DWI was assessed by plot-
ting the zero phase coefficient of the SFR function (calculated for Lmax = 6 with dwi2response command from 
MRtrix, which used a iterative algorithm for SFR voxels selection and response function estimation;107 Fig. 5c). 
The observed plot is in agreement with theoretical expectations, where successive non-zero (even) terms are of 
opposite signs and of decreasing absolute value.

Quality of tractography.  Finally, the quality of the created tractogram has been assessed with the LiFE algo-
rithm (see Diffusion signal reconstruction, tractography and statistical evaluation in Methods). Figure 5d 
demonstrates the correlation between the number of fascicles of non-zero weights (y-axis) and Connectome 
Root Mean Square Error (RMSE;9,103). The data points for all CHIASM participants demonstrate a high number 
of weighted fascicles (positively contributing to measured signal, y-axis on Fig. 5d) combined with a low con-
nectome’s RMSE (measuring the discrepancy between signal predicted from weighted fascicles and measured 
signal, y-axis). Those measures replicate previous findings of high-quality diffusion scans (HCP/O3D11,117).

tSNR of fMRI data.  The quality of fMRI images was assessed using a temporal SNR (tSNR) measure (Fig. 6). 
Specifically, the tSNR in the BOLD images was calculated for two areas - whole brain volume (derived from 
BOLD images with fMRIPrep - Volume Output93 App) and primary visual cortex (V1) mask derived from T1w 
image using Benson’s atlas118–120. The tSNR has been calculated using the code provided in121 (https://github.
com/psychoinformatics-de/studyforrest-data-aligned). The mean values of tSNR calculated for participants with 
albinism and controls (51.0 and 57.7, respectively) correspond well to the tSNR previously reported for voxel 
volumes of 16.625 mm3 122.

Population Receptive Fields (pRF) Mapping.  The pRF-mapping data derivatives and methods were described 
in a previous publication51. Briefly: The pRF sizes and positions can be estimated from the fMRI data and visual 
stimulus position time course. The BOLD response of each voxel can be predicted using a circular 2D-Gaussian 
model of the neuronal populations receptive field defined by three stimulus-referred parameters i.e. x0, y0, σ 
where x0 and y0 are the coordinates of the receptive field center and σ is it’s spread61. The predicted BOLD signal 
can be calculated by convolution of the stimulus sequence for the respective pRF-model and its three param-
eters with the canonical hemodynamic response function123. Based on this, the optimal pRF parameters can 
be found by minimizing the residual sum of squared errors (RSS) between the predicted and observed BOLD 
time-course. Only voxels will be retained whose explained variance exceeded a threshold of 15%.

Usage Notes
This data is organized according to BIDS standard112, whenever applicable (additionally, in all cases the data is 
organized according to brainlife.io Data Types), and are stored in documented standard NIfTI format. The data 
is to be accessed at the brainlife.io computing platform either by (A) the web interface of brainlife.io and/or (B) 
a command-line interface (https://github.com/brainlife/cli). CLI offers means to query and download partial or 
full data. This utility is further expanded when using a web interface, which in addition to selection and down-
load of data allows for online processing with provided brainlife.io Apps Table 5.

Fig. 6  BOLD image temporal SNR in V1 and whole-brain volume. (a) Histograms of tSNR calculated in whole 
brain volume (orange) and V1 region (defined according to Benson’s atlas; violet). (b) Whole brain (orange) and 
V1 (violet) masks overlaid on maps of tSNR calculated for representative participants (top - control participant 
CON1, bottom - participant with albinism ALB1).
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Code availability
The processing was performed mainly using brainlife.io services (https://brainlife.io/apps), which together with 
the code are available online. The offline preprocessing was performed with freely accessible neuroimaging tools. 
The preprocessing steps, together with the references to the Software/Apps are provided separately for the T1w, 
DW, fMRI data, and hand-curated ROIs and mask (Tables 1–4, respectively). The web links to source code are 
provided separately in the Table 5.
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Type Preprocessing step URL to code

T1w
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2. Anonymization —

3. ACPC Alignment —

4. Tissue 
Segmentation —
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DWI
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4. Eddy currents 
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5. Geometrical 
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https://github.com/brain-life/app-mrtrix3-preproc
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Table 5.  Code implementing each processing step. Code implementing the processing pipeline is available on 
https://github.com/rjpuzniak/CHIASM.
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Chapter 10

General Discussion

Despite the relevance of chiasmal malformations for clinical and scientific studies,
their potential remains still untapped. One of the major causes of this situation are
the challenges in imaging the chiasm, which is further enhanced by the scarcity of
the data and general lack of awareness about congenital chiasmal disorders and
their impact on individuals. The main objective of my work was to facilitate the
recognition of the importance of albinism and achiasma by clinical and scientific
communities, which is hoped to benefit both the patients (by development of diag-
nostic methods) and the general society (by improvement of understanding of brain
functioning). Subchapter 10.1 (Summary of main contributions) provides detailed
description of my contributions, which is summarized in the final subchapter 10.2
(Concluding remarks).

10.1 Summary of main contributions

My contributions to research on and understanding chiasmal malformations can be
in principle divided in two categories. The first includes novel scientific findings,
which were focused on the imaging methods enabling detection and quantification
of chiasmal misrouting. Specifically, those include:

• development of dMRI pipeline aimed at quantification of nerve misrouting in
the chiasm – subchapter 10.1.2 (dMRI-based quantification of abnormal chias-
mal crossing),

• confirmation of asymmetrical projections from eyes to brain in a case study on
chiasmal hypoplasia – subchapter 10.1.3 (Further applications of developed
dMRI-based framework),

• application of DL methods for detection of malformations directly from
anatomical MRI images – subchapter 10.1.4 (DL-based detection of chiasmal
malformations).

The second category covers contribution of knowledge and data to the general sci-
entific community, specifically:

• communication of knowledge on dMRI imaging and tractography of the visual
system – subchapter 10.1.1 (Recommendations for tractography of the visual
system),

• sharing of the highly uncommon MRI data on chiasmal malformations with
the scientific community – subchapter 10.1.5 (Publication of MRI data on con-
genital chiasmal disorders).
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10.1.1 Recommendations for tractography of the visual system

Although the incorporation of dMRI in the studies provides considerable advan-
tages, the utility of this approach is partially limited by the complexity of the anal-
ysis. This, combined with limitations of imaging particular brain structures or sys-
tems may pose a considerable obstacle in establishing dMRI-based study. In ac-
knowledgement of this issue, I have first-authored a review article (chapter 5) with
recommendations for a dMRI-based tractography of the visual system for the pur-
pose of epilepsy surgery (Nilsson et al., 2007; Chen et al., 2009; Winston et al., 2011;
Schmitt et al., 2014; James et al., 2015) and research (McDonald et al., 2008; Diehl
et al., 2010). Specifically, the review has listed the recommended modalities to be
acquired during data acquisition (T1w and dMRI images, as well as proton density
maps) and discussed approaches to data acquisition – either through scanning with
carefully chosen sets of parameters (Jones et al., 2013; Soares et al., 2013; Tournier
et al., 2013), or by accessing public datasets (Van Essen et al., 2013). Furthermore, it
provided a comprehensive list of tools for dMRI analysis which covered both stan-
dard analysis software, such as MRtrix (Tournier et al., 2012; Tournier et al., 2019)
or FSL (Smith et al., 2001; Jenkinson et al., 2012), as well as newly emerging online
services for neuroimaging (Avesani et al., 2019). Furtherly, the review provided an
insight into the most common distortions present in dMRI data and suggested cor-
rection methods and packages (Andersson et al., 2003; Andersson and Skare, 2012).
These widely applicable recommendations were followed by a detailed discussion
on tractography of the visual system. Specifically, this section covered delineation of
structures of visual system (Fischl, 2012), modelling of dMRI signal with DT (Basser
et al., 1994) and CSD models (Tournier et al., 2004; Tournier et al., 2007), discussion
on tractography types [deterministic (Basser et al., 2000) and probabilistic (Jones,
2008)], algorithms [e.g. iFOD2 (Tournier et al., 2010)] and further approaches and
parameters relevant for the outcome of tractography. Finally, the review presented a
discussion on the methods for post-processing of tractography results, such as Lin-
ear Fascicle Evaluation [LiFE; (Pestilli et al., 2014; Caiafa and Pestilli, 2017)] or Con-
vex Optimization Modeling for Microstructure Informed Tractography [COMMIT;
(Daducci et al., 2015)].

The main objective of this review was to raise awareness about the benefits of the
dMRI and tractography in the clinical and research routines, as well as to provide
the readers with knowledge and sources enabling establishing their own dMRI anal-
ysis. Importantly, although the review was primarily focused on the epilepsy, the
recommended approaches and good practices are well applicable to wide range of
studies utilizing anatomical information about the brain. As such, the review is ex-
pected to facilitate a wide community of clinicians and researchers in incorporation
of dMRI-based analysis and tractography in the ongoing and future research.

10.1.2 dMRI-based quantification of abnormal chiasmal crossing

Considering that congenital chiasmal disorders primarily affect the crossing of the
nerves in the chiasm, with the subsequent reorganization of visual system being the
secondary effect, the dMRI-based tractography would be expected to be particularly
well suited for the quantification of changes in the chiasm. In order to investigate
the efficiency of this approach and potential for diagnostics, I have explored the sen-
sitivity of dMRI-based tractography to abnormal connectivity patterns, as observed
in the chiasm of PWA. Specifically, I aimed to: (i) evaluate and test advanced dMRI
methods on the chiasms with varied connectivity pattern, as observed in controls
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and PWA, (ii) probe whether such biological models can be treated as robust biolog-
ical models of crossing fibers and (iii) evaluate dMRI as a tool for clinical diagnostics
of albinism.

In order to achieve these goals I acquired MRI data (T1w and dMRI) from a group of
controls (n=8) and PWA (n=9). Furthermore, I designed a preprocessing pipeline
that used a range of methods (MRtrix, FSL, FreeSurfer, ANTS and MATLAB’s
package MrDiffusion) in order to achieve the optimal distortion correction and co-
registration of T1- and diffusion-weighted data. Importantly, preprocessing of the
data also involved manual definition and correction of ROIs necessary for the suc-
cessful tractography within the chiasm. Afterwards, I have modeled the dMRI data
using a conventional DT model [in order to compare results with previous dMRI in-
vestigations of chiasmal connectivity (Roebroeck et al., 2008; Ather et al., 2018)] and
advanced CSD model recognized for its sensitivity to populations of crossing fibers.
In the next step, I have performed ROI-to-ROI tractography to reconstruct 4 dis-
tinct groups of fibers that form the chiasm. Notably, the tractography was repeated
twice, separately for DT and CSD models, and adhered to Ensemble Tractography
(Takemura et al., 2016); multiple repetitions of tractography with different condi-
tions to avoid bias choice of parameters] and Anatomically-Constrained Tractogra-
phy [(Smith et al., 2012); limiting the tractography to white matter only] approaches.
Finally, I have tested the impact of tractography post-processing methods on the
final results by filtering the obtained tractograms with several different methods.
The results of the analysis were expressed by an ID parameter, which denoted the
percentage of crossing fibers in the reconstructed 4 groups of streamlines.

The results of the analysis based on DT model revealed a significant difference be-
tween IDs calculated for albinism and control groups (mean ± SEM: 41±40% and
6±4%, respectively; p=0.014), as well as lower ROC AUC of 0.61. The CSD ap-
proach, expected to perform better, provided a more pronounced cross-group dif-
ference (mean ID of 41±15% for albinism and 19±6% for controls, p=0.0009) as well
as higher ROC AUC of 0.75. Furtherly, in order to validate dMRI-based estimates
of crossing, I have compared them to fMRI-based estimates of chiasmal misrouting
calculated for the same patients in a separate study (Ahmadi et al., 2019b). Impor-
tantly, the results for the CSD model demonstrated a significant positive correlation
with the fMRI-based estimates (R2=0.83, p=0.012), while DT model showed a non-
significant trend of positive correlation (R2=0.05, p=0.052). Finally, the application
of tractography post-processing methods revealed preservation of group-level dif-
ferences in the IDs between controls and PWA, as well as improved separation of
data points reaching a ROC AUC in the range of of 0.92-0.94 (though surprisingly
they did not increase a correlation between dMRI and fMRI estimates).

The above results provide relevant insights for the general dMRI, as well as the goals
of the study:

(i) The study demonstrated that careful choice of methods, models (specifically
CSD) and application of post-processing improves the performance of dMRI-
based analysis in the region of crossing fibers. As such, this bears important
message for future dMRI studies of the brain.

(ii) The robustness of results observed for the various approaches employed in the
study indicates that chiasmal malformations can be reliably used as a general
biological model of crossing fibers with gradable degrees of crossing. Such
a model is expected to highly benefit development and validation of future
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tractography algorithms (which is still necessary, considering that even in the
case of best configuration the calculated IDs were falling short of ground truth
known from histological studies).

(iii) The achieved ROC AUC of greater than 0.90 indicates the potential of dMRI-
based methods in the detection of chiasmal misrouting from anatomical im-
ages. This provides a foundation for a novel method for diagnostics of achi-
asma and albinism, which is not dependable on patient’s visual functions or
attention.

As such, the presented study increased the knowledge about advantages and lim-
itations of dMRI and paved a way for a novel method of diagnostics of chiasmal
malformations.

10.1.3 Further applications of developed dMRI-based framework

In addition to the detection of enhanced crossing, qualitative dMRI can be also
used to assess the brain’s connectivity. Consequently, dMRI can be used for cross-
validation of functional studies, which was the primary motivation for its applica-
tion in the below described study on chiasmal hypoplasia. Specifically, I used the
previously established dMRI framework to assess the possible asymmetries in the
contralateral projection from the eyes. This investigation that while the contribution
of the right and left eye to ipsilateral (non-crossing) streamlines (42 and 58%, respec-
tively) was within the range observed in controls (40–68% and 32–60%, respectively),
the proportion of contralateral (crossed) streamlines was greater for right eye than
for the left (73 and 27%, respectively; with the values for controls in range of 39–68%
and 32–61%, respectively).

The results of dMRI analysis confirmed the existence of residual connectivity in the
chiasm and furthermore prove the asymmetry of the contralateral projections. These
findings provided an important cross-validation for the findings of the conducted
fMRI analysis, which ultimately demonstrated, previously unseen, presence of 3 su-
perimposed hemifield representations in the visual cortex. While this finding itself
bears important consequences for our understanding of V1’s plasticity, the main im-
portance of my contribution was the demonstration of the robustness, capabilities
and applications of the dMRI-based tractography framework I have established.

10.1.4 DL-based detection of chiasmal malformations

Although the dMRI-based diagnostics of chiasmal misrouting demonstrated
promising results, the applicability of such as approach in clinical environment is
severely limited by the high cost of required dMRI data acquisition. This observa-
tion motivated me to research the possibilities of detection of chiasmal malforma-
tions from clinically common T1w images with the DL methods. To investigate this
approach I have performed an experiment designed to reveal whether CNN models
are sufficiently sensitive to detect differences between normal and malformed chi-
asms (as captured on T1w images) and whether those differences can be leveraged
in the future diagnostics. Specifically, I have trained a CNN for segmentation of
the chiasm from the T1-weighted images of control population. This training has
been performed in a supervised manner on T1-weighted images of controls from
HCP dataset (Van Essen et al., 2013), which was paired with the corresponding set
of automatically generated, binary optic chiasm mask The trained network was sub-
sequently deployed on a test subset of controls from HCP dataset, and a group of
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controls and PWA from the CHIASM dataset I’ve published (chapter 9). The accu-
racy of the CNN was assessed by comparison of the predicted optic chiasm mask
to the manually defined ground truth masks with the DSC (denoting the range of
overlap, with 0 being lack of overlap and 100% being complete overlap). Impor-
tantly, while the results indicated a similar performance of the CNN in case of con-
trols from HCP and CHIASM datasets (mean ± SEM of DSC equal to 79±2% and
75±3%, respectively, FWE-corrected p-value of 1.0), the accuracy of the masks ob-
tained for PWA was significantly lower (44±8%, with comparisons against HCP and
CHIASM controls yielding FWE-corrected p-values of 0.004 and 0.04, respectively).
The separation of data points was further evaluated with the ROC AUC which re-
turned an accuracy of 0.89 (PWA vs controls from CHIASM dataset), and 0.84 (PWA
vs controls from HCP dataset).

In summary, the performed analysis revealed a fundamental difference in the way
the CNN process normal and abnormal optic chiasm represented on T1-weighted
images. This provides a critical proof-of-concept for DL-based detection of chiasmal
malformations, which is an inexpensive method that uses data standardly used in
clinics. As such, such a method can be applied in addition to already existing inves-
tigations using T1w images, as well as can be retrospectively run on data acquired in
the past. At the same time, the reported findings emphasize the need of inclusion of
data from rare patient groups in development of data-driven methods in healthcare,
to ensure robust performance of developed tools for the general population.

10.1.5 Publication of MRI data on congenital chiasmal disorders

One of the main hurdles in a scientific and clinical research on chiasmal malforma-
tions is limited access to data, which is a consequence of is their rarity. This problem
is even more expressed in the light of expansion of data-driven DL models (Lunder-
vold and Lundervold, 2019), which performance strictly depends on training data.
In order to facilitate further scientific and clinical research on congenital chiasmal
disorders I have released the first public MRI dataset on congenital chiasmal disor-
ders. Specifically, the published dataset included T1w and dMRI data from a con-
trols (n=8), PWA (n=9), chiasm hypoplasia (n=1) and achiasma (n=1). Additionally,
the shared data included fMRI data from a subset of 4 controls and 6 participants
with albinism which contained recordings of the cortical response to the monocular
stimulation of both eyes, as well as white matter masks that were manually corrected
in the region of optic chiasm and manually drawn ROIs used for the purpose of trac-
tography in the optic chiasm. The published data has been anonymized, subjected
to through quality assessment and uploaded on the neuroscientific cloud computing
platform brainlife.io (Avesani et al., 2019), where it is available together with a wide
range of service that can be used for online preprocessing and further analysis.

This contribution is expected to increase general recognition of the congenital chi-
asmal disorders, as well as to facilitate a wide range of studies benefiting from this
high quality multi-modal MRI data of the very rare participants. In particular, this
dataset is expected to be used by the vision scientist, scientists researching the neu-
roplasticity, developers of the tools and methods for the tractography, as well as
clinicians and researchers researching diagnostics of chiasmal abnormalities, as well
as general DL-based tools in healthcare.
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10.2 Concluding remarks

The presented projects represent the frontiers of research on structural imaging of
the chiasmal malformations and provided valuable information about both their na-
ture, as well as capabilities of imaging methods applied to this problem. But even
more importantly, those contributions pave the way for future developments in this
field, as well as provide means to facilitate this process. As such, I hope that:

• The published work will help in increasing the visibility of congenital chiasmal
malformations in the scientific and general community,

• The congenital chiasmal malformations will become more commonly recog-
nized as a unique window granting insights into brain plasticity and in future
will help unravel the big mystery of neuroplasticity, learning and degenera-
tion,

• The published data will facilitate further clinical and research studies focused
on this subject, in particular the data-driven DL models, thus enabling them to
support rare patients’ group which may be otherwise omitted.

But foremost, I hope that my work will make the life of people with achiasma and
albinism better.
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List of Abbreviations

aMRI anatomical Magnetic Resonance Imaging
ANN Artificial Neural Network
AUC Area Under Curve
CNN Convolutional Neural Network
COMMIT Convex Optimization Modeling for Microstructure Informed Tractoraphy
CSD Constrained Spherical Deconvolution
CT Computed Tomography
dMRI diffusion Magnetic Resonance Imaging
DSC Dice Similarity Coefficient
DT Diffusion Tensor
FHONDA Fovea Hypoplasia, Optic Nerve Decussation defect Anterior segment syndrome
FWE Family-Wise Error
fMRI functional Magnetic Resonance Imaging
HCP Human Connectome Project
LGN Lateral Geniculate Nucleus
LiFE Linear Fascicle Evaluation
MRI Magnetic Resonance Imaging
OA Ocular Albinism
OCA Oculocutaneous Albinism
PWA People With Albinism
RGC Retinal Ganglion Cells
ROC Receiver Operator Characteristics
ROI Region Of Interest
SIFT Spherical-deconvolution Informed Filtering of Tractograms
T1w T1-weighted
V1 Primary Visual Cortex
VEP Visual Evoked Potentials
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Physical Constants

gyromagnetic ratio of proton γproton = 267.522 187 44(11)× 106 rad s−1 T−1
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List of Symbols

B magnetic flux density T (kg s−2 A−1)
M magnetization (A m−1)
f frequency Hz (s−1)
γ gyromagnetic ratio (rad s−1 T−1)
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