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Abstract
Arrhenotoky is the typical mode of reproduction in Hymenoptera. Diploid females develop from ferti-
lized eggs, whereas haploid males originate from unfertilized eggs. However, some taxa of Hymenoptera 
have evolved thelytoky, in which diploid females originate parthenogenetically from unfertilized diploid 
eggs. In contrast to some other hymenopteran lineages, like ants and parasitic wasps, thelytoky is generally 
very rare in bees.

Here, we evaluated the frequency of thelytoky in the small carpenter bee Ceratina dallatoreana, which 
was previously assumed to be thelytokous. By comparing genotypes of microsatellite loci between mothers 
and their offspring, we found that all female offspring were genetically identical to their mothers. We con-
clude that parthenogenesis is the prevailing and perhaps obligate mode of reproduction in C. dallatoreana. 
We also classify the cytological mode of this parthenogenesis as apomixis, or automictic parthenogenesis 
with central fusion and extremely reduced or non-existing recombination, because offspring showed no 
decrease of heterozygosity.

Because sociality is influenced by relatedness and Ceratina are ancestrally facultatively social, the high 
relatedness afforded by parthenogenesis should associate with social living in the nest. In accordance with 
previous work, however, we found no social nests of C. dallatoreana.
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Introduction

Sexual reproduction predominates in animals (Simon et al. 2003; Kooi et al. 2017). 
However, parthenogenesis (embryo development without fertilization) has evolved 
in many lineages (Normark 2003; Engelstädter 2008; Neiman and Schwander 2011; 
Thierry 2013; Gokhman and Kuznetsova 2018). Obligately parthenogenetic lineages 
are usually recent (Neiman et al. 2009; Fujita et al. 2020), and though obligate parthe-
nogenesis can be successful in the short-term (microevolutionary scale), sexual repro-
duction is more successful in the long-term (macroevolutionary scale) (Neiman and 
Schwander 2011; Thierry 2013). The frequency of parthenogenesis varies across insect 
orders, but it is especially common in stick insects and mayflies (Tvedte et al. 2019; 
Liegeois et al. 2021).

Different types of parthenogenesis most likely evolved by different mechanisms, 
with each type showing characteristic modes of inheritance (Engelstädter 2008). Only 
females are present in obligately parthenogenetic populations. More commonly, how-
ever, parthenogenesis is facultative, co-occurring with sexual reproduction and both 
sexes present in the population (Normark 2003; Liegeois et al. 2021)

Cytological mechanisms of parthenogenesis influence the genetic diversity and 
heterozygosity in the population (Pearcy et al. 2006; Engelstädter 2017; Hörandl et 
al. 2020). The presence or absence of meiosis defines two general processes: 1) mitotic 
parthenogenesis in the absence of meiosis, and 2) meiotic parthenogenesis, in which 
meiosis is present but diploidy is restored by several different mechanisms (Stenberg 
and Saura 2009). If mitotic parthenogenesis persists in a population, heterozygosity 
will increase, because the meiotic recombination leading to the loss of alleles is absent 
(Schwander and Crespi 2009; Tsutsui et al. 2014; Tvedte et al. 2019). On the other 
hand, meiotic parthenogenesis should lead to decreased heterozygosity, because dip-
loidy is restored by endomitosis or fusion of the products of meiosis. Therefore, the 
frequency of heterozygotes in offspring may be the same or smaller than that of a par-
ent in each locus. Typically, automictic parthenogenesis with terminal fusion (fusion of 
sister pronuclei) leads to a rapid decrease in heterozygosity (Engelstädter 2017; Alavi et 
al. 2018). However, heterozygosity can be retained in the case of meiotic parthenogen-
esis with central fusion if crossing over is absent during meiosis (Stenberg and Saura 
2009; Engelstädter 2017). In these cases, the different products of meiosis I merge, 
with complementary halves of the mother’s genetic information. Therefore, the het-
erozygosity in populations with this type of meiotic parthenogenesis increases similarly 
as in populations with mitotic parthenogenesis, despite differences in the cytological 
mechanisms of parthenogenesis (Engelstädter 2017).

A haplodiploid sex determination system is widespread among Hymenoptera 
(Normark 2003; Kooi et al. 2017). Males originate from unfertilized eggs, and are 
therefore haploid. Females develop from fertilized eggs and are therefore diploid 
(Gerber and Klostermeyer 1970; Mueller 1991; Stubblefield and Seger 1994). The 
sex of offspring depends on whether the (mated) mother fertilizes an egg (Gerber and 
Klostermeyer 1970; Stubblefield and Seger 1994). Unmated females can produce only 
male offspring arrenotokously (Shukla et al. 2013).
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Thelytokous reproduction has evolved repeatedly in Hymenoptera (Vorburg-
er 2014; Kooi et al. 2017), such as sawflies and parasitic Hymenoptera (especially 
Chalcidoidea, Cynipoidea and Ichneumonoidea). It is found less frequently in acu-
leate Hymenoptera (Kooi et al. 2017). The best evidence for thelytoky in aculeate 
Hymenoptera is from social species (Wenseleers and Van Oystaeyen 2011; Goudie 
and Oldroyd 2018). It evolved repeatedly in ants and has been documented in at least 
50 species to date (Heinze 2008; Rabeling and Kronauer 2013; Goudie and Oldroyd 
2018). In bees, facultative thelytoky is known in Apis mellifera capensis, in which work-
ers lay thelytokous eggs, usually not in the nest where they originated (Goudie and 
Oldroyd 2014, 2018). However, thelytoky is rare in solitary nesting and weakly social 
Hymenoptera, with few exceptions (Kooi et al. 2017). Based on the sex ratio in popu-
lations of Ceratina bees (Apidae: Xylocopinae), thelytoky is predicted to occur in sev-
eral species, including C. dallatoreana (Daly 1966; Snelling 2003). Males are extremely 
rare in C. dallatoreana (Daly 1966, 1983), leading to the hypothesis that this species 
reproduces by thelytokous parthenogenesis. Here, we test this hypothesis.

C. dallatoreana females nest in broken dead stems with pith, constructing a linear 
series of cells (Daly 1966). Although facultative sociality is common in this genus 
(Sakagami and Maeta 1977; Rehan et al. 2009; Groom and Rehan 2018), social nests 
have not been detected in this species to date (Daly 1966; Mikát et al. 2022). This spe-
cies is endemic to the Mediterranean region and Central Asia (Terzo 1998; Terzo and 
Rasmont 2004; Fig. 1), and has been introduced into California, USA (Daly 1966). 
We used microsatellite genetic markers to examine the frequency of parthenogenesis in 
different populations across the native range of C. dallatoreana and to assess if the allele 
frequency aligns with Hardy-Weinberg equilibrium. Moreover, we attempt to infer the 
mode of parthenogenesis from the pattern heterozygosity inheritance.

Figure 1. Western Palearctic Region, showing the native range of Ceratina dallatoreana, based on Terzo 
and Rasmont (2004, 2011) and new localities from this study. Red – range of C. dallatoreana. Black tri-
angles – sources of samples for this study.
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Methods

We collected nests of C. dallatoreana in several locations across its native area of dis-
tribution, in Cyprus (2018, 2019), Italy (Puglia and Lazio regions, 2013 and 2017), 
Greece (Crete 2018, 2020), Albania (2018) and Tajikistan (2019) (Fig. 1). Coordi-
nates of collection locations are shown in Suppl. material 1. Additionally, we analyzed 
females collected in Georgia (2013–2014) and North Macedonia (2014). We collected 
these females outside of their nests with nets or pan traps.

Nests were collected from natural nesting opportunities, as well as in stems broken 
or cut by human management. The most common nesting substrates were Rubus spp. 
and Foeniculum vulgare. In Cyprus and Crete we cut stems of these plants to increase 
nest density for ease of sampling several months later. To ensure that all inhabitants 
were inside the nest, nests were collected in the evening after 18:00 local time. Nests 
were opened lengthwise with garden clippers, and the number of adults, number of 
juveniles, and the stages of juveniles were noted. All individuals were preserved in 96% 
ethanol for further analysis.

Extraction of DNA

We isolated DNA using the Chelex protocol (Coombs et al. 1999). DNA was usually 
isolated from part of an individual (one or two legs from adults or pupae, part of the 
body from most larvae), but whole eggs and whole bodies of small larvae were also 
used. Samples were transferred to microcentrifuge tubes and dried for at least three 
hours. Later, we added 8 μl of proteinase K and 50 μl of 10% Chelex solution. This 
mixture was vortexed and inserted into a thermo cycler. The mixture was heated to 
55 °C for 50 min and 97 °C for 8 min then cooled. The mixture was then vortexed and 
inserted into a centrifuge. After this 30 μl of supernatant were transferred to a well in 
the PCR plate.

Optimization of multiplex

We selected 12 female C. dallatoreana (9 from Cyprus and 3 from Tajikistan) for test-
ing of microsatellite loci. We used microsatellite primers developed for C. nigrolabiata 
(Mikát et al. 2019). Fourteen microsatellite loci were arranged in two multiplexes. 
The first multiplex was previously applied to C. nigrolabiata, C. chalybea and C. cya-
nea (Mikát et al. 2019). The second multiplex contained six loci. Four were different 
from loci in the first multiplex (17 and 36 marked by 6FAM, 9 marked by VIC and 
7 marked by PET), and two loci (12 and 51) were shared with the first multiplex but 
marked by a different color.

We evaluated results of amplification and obtained four possibilities for each locus: 
a) a locus was successfully amplified in all cases and was polymorphic (eight loci). b) 
a locus was successfully amplified in some cases and was polymorphic (two loci), c) a 
locus was amplified in all cases but was not polymorphic (three loci), or d) amplifica-
tion of locus failed (one locus, Suppl. material 2: table S1).
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Polymorphic and reliable loci were loci numbers 30, 23, 8, 67, 17, 36, 9, and 12 
(Suppl. material 2: table S1), locus numbers corresponding to C. nigrolabiata (Mikát 
et al. 2019). However, we excluded locus 30 for overlap with same color-marked loci 
and locus 8 for interaction of primers with primers for another locus. Six microsatellite 
loci were thus retained for final analysis (Suppl. material 2: tables S1, S2).

PCR and Fragmentation analysis

We used Type-it Multiplex PCR Master Mix (Quiagen) according to the manu-
facturer’s protocol. Primers of six microsatellite loci were use in a concentration of 
0.05 μmol/l. We used these PCR conditions: 95 °C for 15 min; 30 cycles of 94 °C for 
30 sec, 60 °C for 90 sec, 72 °C for 60 sec; and finally 60 °C for 30 min. After PCR, we 
mixed 0.8 μl of PCR product with 8.8 μl of formamide and 0.4 μl of marker Liz 500 
Size scanner (Applied Biosystems). We heated the mixture to 95 °C for 5 min and then 
cooled it to 12 °C. Fragmentation analysis was performed on a 16-capillary sequencer 
at the Laboratory of DNA Sequencing at the Biological section of Faculty of Science, 
Charles University, Prague. Identification of alleles was performed in Gene Marker 
(Soft Genetics) software.

Analysis of ploidy and heterozygosity

We included mothers from nests and additional individuals in this analysis. We did 
not include offspring, as they had the same genotypes as their mothers. For each locus, 
we checked if an individual had one allele (homozygote) or two alleles (heterozygote). 
Individuals were considered diploid when heterozygous at least one locus. Individuals 
with only one allele at each locus were considered haploid. We analyzed 132 females (30 
from Crete, 64 from Cyprus, 11 from Georgia, 12 from Italy, 9 from Tajikistan, 3 from 
Albania, and 3 from North Macedonia). We also analyzed one gynandromorph (indi-
vidual with female head morphology and male abdomen morphology) from Tajikistan.

Analysis of diversity of multilocus genotypes

We counted multilocus genotypes for different localities. As one locality we defined an 
area where collected samples are at most ten kilometers from each other. In this analy-
sis, we included adult females. We present only data from localities where at least three 
adult females were genotyped.

Analysis of deficit or surplus of heterozygotes

We used adult females for this analysis. We samples from two populations: Lefkara 
village, Cyprus (n = 50), and Georgioupoli village, Crete (n = 26). All individuals were 
collected at most 10 kilometers from each other in the same population. We calculated 
observed and expected heterozygosity using software Genepop, version 4.7.5. (Rousset 
2020). Finally, we tested the possible deviation from Hardy-Weinberg equilibrium and 
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heterozygote excess (proportion of heterozygotes higher than in populations in Hardy-
Weinberg equilibrium) or heterozygote deficiency (proportion of heterozygotes lower 
than in population in Hardy-Weinberg equilibrium), also using Genopop.

Analysis of parthenogenesis

We compared the genotype of each mother with offspring from the same nest. We ana-
lyzed 188 offspring from 59 nests in total. For this analysis, we selected nests in which 
the mother and immature brood were present – nests in stages active brood nests or full 
brood nest. Nests in the active brood stage are nests where the mother currently perform 
provisioning of brood cells. These nests contained currently provisioned brood cells and 
in outermost brood cell was egg or this brood cell was only partially provisioned (Rehan 
and Richards 2010; Mikát et al. 2021). In contrast, full brood nests contained larvae or 
pupae in the innermost and outermost cells, as the females had already completed pro-
visioning and were guarding their offspring until adulthood (Rehan and Richards 2010; 
Mikát et al. 2021). Sampled nests for this analysis were from the following locations: 
Albania (10 offspring, two nests); Crete (23 offspring, six nests); Cyprus (89 offspring, 
32 nests), Italy (38 offspring; 10 nests) and Tajikistan (28 offspring, nine nests).

Results

Sex ratio of adults

We collected C. dallatoreana samples across its native range. In total, we found 476 
adult females, one gynandromorph and no adult males. Of the adult females, we col-
lected 253 in Cyprus, 137 in Crete, three in Albania, three in North Macedonia, 36 in 
Italy, 30 in Georgia, and 14 in Tajikistan. We found the gynandromorph in Tajikistan.

Ploidy

All analyzed adult females from the maternal generation (n = 132) were heterozygotes 
in at least one locus. One female was a heterozygote in only one locus, while all others 
(n = 131) were heterozygotes in at least two loci. Thus, we determined that C. dalla-
toreana females are diploid. The gynandromorph was homozygous in all loci, therefore 
we considered this individual to be haploid.

Heterozygosity

We generally detected high heterozygosity in our studied loci. Average heterozygosity 
across all locations and loci was 56.25%. However, heterozygosity differs between loci, 
with the highest proportion of heterozygotes at locus 36 (97.06%), and lowest propor-
tion at locus 12 (4.41%). The proportion of heterozygotes in each locus across differ-
ent geographical areas is shown in Table 1.
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Allele frequency deviated from Hardy-Weinberg equilibrium for all loci in Geor-
gioupoli (Crete) and in three of five variable loci in Lefkara (Cyprus). Heterozygosity 
was increased in some loci but decreased in others. Observed heterozygosity was sig-
nificantly higher than expected for loci 36 and 9 in Georgioupoli (Crete) and 36 and 
67 in Lefkara (Cyprus), but significantly lower for loci 17, 23 and 12 in Georgioupoli 
(Crete) and 17 in Lefkara (Cyprus) (Table 2). When we performed this analysis in 
reduced sample (n=26 for Lefkara, Cyprus, n=13 for Georgioupoli, Crete), which ex-
cludes possible close relatives sampled in the same shrub, we obtained the same pattern 
for Lefkara population and a very similar pattern for the Georgioupoli population 
(Suppl. material 2: table S4).

Table 1. Proportion of heterozygotes at each studied locus by geographical area. The category other 
includes samples from Albania (n = 3) and North Macedonia (n = 3).

Proportion of heterozygotes in locus
Country N 17 36 23 9 12 67 mean
Crete 30 0.33 1.00 0.73 1.00 0.03 0.97 0.68
Cyprus 64 0.16 0.98 0.16 0.58 0.00 0.97 0.47
Georgia 11 0.73 0.91 0.64 0.72 0.18 0.82 0.67
Italy 12 0.58 0.83 0.25 0.75 0.00 0.50 0.49
Tajikistan 9 0.33 1.00 1.00 0.78 0.00 1.00 0.69
Other 6 0.50 1.00 0.33 1.00 0.00 0.67 0.58
Total 132 0.32 0.97 0.41 0.73 0.04 0.90 0.56

Table 2. Comparison of expected (HetEXP) and observed (HetOBS) proportions of heterozygotes. P-
values of statistical tests from expected frequencies are shown: p(excess) = p-value of heterozygote excess 
test, p(deficit) = p-value of heterozygote deficit test, p(HW) = p-value test of difference from Hardy-
Weinberg equilibrium in allele frequency. All calculation performed in software Genepop. Bold indicates 
significant values. Locus 12 in Cyprus population had only one allele, therefore excess or deficit of het-
erozygotes could not be calculated.

Lefkara (Cyprus), N=50
Locus p(deficit) p(excess) p(HW) HetEXP HetOBS n alelles
17 0.0000 1.0000 0.0000 0.59 0.18 5
36 1.0000 0.0000 0.0000 0.54 0.98 4
23 1.0000 0.7339 1.0000 0.15 0.16 3
9 0.4326 0.5688 0.0900 0.63 0.58 3
12 NA NA NA 0.00 0.00 1
67 1.0000 0.0000 0.0000 0.64 0.96 3

Georgioupoli (Crete), N=26
Locus p(deficit) p(excess) p(HW) HetEXP HetOBS n alelles
17 0.0027 0.9974 0.0000 0.61 0.27 6
36 1.0000 0.0048 0.0000 0.82 1.00 9
23 0.0176 0.9824 0.0000 0.70 0.69 4
9 1.0000 0.0000 0.0000 0.63 1.00 4
12 0.0007 1.0000 0.0003 0.15 0.00 3
67 0.3422 0.6578 0.0000 0.72 0.96 6
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Diversity of genotypes

We found a high diversity of multilocus genotypes. In all localities, we collected at 
least two multilocus genotypes. In Cyprus, we collected the largest sample in Lefkara 
(n = 50). In this location, we collected females with 26 multilocus genotypes. Eighteen 
of these genotypes were collected only once. Two of the most common genotypes had 
a frequency of 14.0% (7/50). We sampled another three locations in Cyprus: Agios 
Theodoros (n = 4, three multilocus genotypes); Mathiatis (n = 3, three multilocus 
genotypes); and Pyrgos (n = 5, four genotypes).

In Crete, we collected the largest sample in Georgioupoli (n = 26). In this loca-
tion, we found 15 multilocus genotypes. The most common genotype had frequency 
36.4% (9/26). Another sampled location was Chania airport, where we found three 
multilocus genotypes in three sampled individuals.

In Italy, we sampled at Pescariello (n = 5, five genotypes), Cassino (n = 3, two 
genotypes) and Santa Marinella (n = 3, three genotypes). In Georgia, we analyzed fe-
males from Vashlovani (n = 4, three genotypes) and Kvareli (n = 3, three genotypes). In 
Tajikistan, we analyzed samples from Shariston (n = 4, two genotypes).

Comparison of maternal and offspring genotypes

Almost all offspring genotypes were identical to those of their mother (97.87%, 
184/188 out of 59 nests). The same genotype in mother and offspring was found 
in all nests in Albania (two nests, 10 offspring), Crete (six nests, 23 offspring), and 
Italy (10 nests, 38 offspring). In Cyprus, we found one out of 89 offspring (32 nests) 
with a different genotype than its mother and in Tajikistan we found 3 such offspring 
out of 28 offspring (9 nests). However, all offspring for which we detected different 
genotypes from those of the mother had much lower detection peak for multiple mi-
crosatellite loci than most of the analyzed individuals. All four individuals contained 
at least one allele which was not shared with their mother. Two individuals from Ta-
jikistan had both alleles different from the mother at least one locus. One individual 
from Cyprus and two from Tajikistan had a unique allele not found in any other 
individual. We can also exclude the effect of null alleles, because all four individuals 
were heterozygotes at least one locus with alleles that would disagree with the ma-
ternal genotype. Therefore, the apparent differences between offspring and maternal 
genotypes was the result of genotyping errors.

Discussion

Previously, Ceratina dallatoreana was believed to reproduce parthenogenetically (Daly 
1966, 1983), but without direct genetic evidence. We observed parthenogenesis in 
several locations in the Mediterranean (Albania, Italy, Crete, Cyprus) and central Asia 
(Tajikistan), providing evidence for parthenogenesis from a large part of the native 
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range of the species. As males are extremely rare in North Africa (Daly 1983) and Cali-
fornia, where the species was introduced (Daly 1966), parthenogenesis would appear 
to be the prevailing or only mode of reproduction across populations.

Thelytokous parthenogenesis is rare in bees. Outside of Apis mellifera capensis 
(Rabeling and Kronauer 2013; Goudie and Oldroyd 2014), it was previously in evi-
dence only in the genus Ceratina, where populations of several species were found 
without known males. These evidence include C. acantha (Slobodchikoff and Daly 
1971), C.  dentipes (Snelling 2003; Shell and Rehan 2019; M. Mikát unpublished 
data), C. parvula (Terzo et al. 2007; M. Mikát, unpublished data) and C. dallatoreana 
(Daly 1966). These species are not closely related, belonging to different subgenera 
(Rehan and Schwarz 2015; Ascher and Pickering 2020). Parthenogenesis is probably 
not the prevailing mode of reproduction in C. dentiventris and C. sakagamii which are 
considered to be the most closely related to C. dallatoreana, because they do not show 
a skewed sex ratio (Daly 1983; Terzo 1998). However males have not been found in 
C. rasmonti, which is known from only a few individuals and is closely related to C. dal-
latoreana (Terzo 1998). Given the distribution of parthenogenesis across Ceratina line-
ages, there may be a trend for parthenogenesis to arise in the Ceratina genus. Future 
research that includes the sampling of more species with a high-resolution phylogeny 
is needed for understanding evolution of parthenogenesis in this genus.

Although we found several offspring with genotypes that were not identical to 
genotypes of mothers, we suspect that these cases were the result of genotyping errors 
such as allelic dropout or false alleles. Situations in which offspring showed different 
genotypes from the mother were usually not compatible with scenarios of sexual re-
production. These results were also incompatible with any mode of parthenogenesis, 
because we detected alleles in offspring that were not detected in the mother. In two 
of four cases, offspring bear in at least one locus both alleles different from the mother. 
In case of parthenogenesis we can suppose allele loss, but not the rise of novel alleles.

Offspring resulting from parthenogenesis should bear only alleles shared by their 
mother. However, the cytology of parthenogenesis determines the rate of loss of het-
erozygosity from mother to offspring (Pearcy et al. 2006). We did not observe any 
heterozygosity loss, as all offspring were genetically identical to their mothers (when 
four improperly genotyped individuals are excluded) and are therefore clones of their 
mothers. This is compatible with two types of parthenogenesis: apomixis and au-
tomixis with central fusion. Apomixis is the more likely of the two, because under 
automixis with central fusion there would be at least some loss of heterozygosity due 
to recombination (Goudie and Oldroyd 2014; Engelstädter 2017). Empirical stud-
ies on organisms with central fusion automixis using microsatellites showed at least 
some heterozygosity loss (Rey et al. 2011; Fougeyrollas et al. 2015). Studies of Apis 
mellifera capensis show that homozygotes arise due to recombination, but they often 
die during early development. Therefore, high heterozygosity would be preserved by 
selection (Goudie and Oldroyd 2014). As we did not find any case of a homozygous 
offspring with a heterozygous mother even at the developmental egg stage, apomixis 
is the more probable mechanism.
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We have shown that thelytokous parthenogenesis is the prevailing mode of reproduc-
tion in C. dallatoreana. However, there remains the question of whether sexual reproduc-
tion is only extremely rare or not occur at all. The existence of males is rarely reported for 
this species, but most of the reports of males could have been confused with closely re-
lated species (Daly 1983; Terzo 1998). Males are undoubtedly reported from California, 
where C. dallatoreana is invasive and no similar species are present (Daly 1966). However, 
the existence of males alone does not prove their involvement in reproduction. Strictly 
apomictic species usually have only one or a few genotypes in one location or region 
(Lorenzo-Carballa and Cordero-Rivera 2009; Ryskov et al. 2017). Although we detected 
some genotypes repeatedly, there was usually a high genotype diversity in each location, 
suggesting that sexual reproduction sometimes occurs in C. dallatoreana, even if rare.

The best documented examples of thelytoky in aculeate Hymenoptera are found 
among advanced eusocial species, and features of thelytoky are influenced by their social 
organization (Goudie and Oldroyd 2018). On the other hand, Ceratina are often facul-
tatively social (Groom and Rehan 2018; Rehan 2020). Although most studied species 
are able to establish social colonies, the larger proportion of the population is solitary, 
and social colonies contain only two or a few females (Sakagami and Maeta 1977; 
Rehan et al. 2009; Groom and Rehan 2018; Mikát et al. 2022). Reversion to strict soli-
tary nesting is also evident in some species (Groom and Rehan 2018; Mikát et al. 2020). 
Social nests have not yet been documented in C. dallatoreana (Daly 1966; Mikát et al. 
2022), although the number of nests so far analyzed does not preclude the possibility of 
occasional sociality. This is quite surprising, because parthenogenesis may be expected 
to facilitate group living due to high relatedness between mother and offspring (Ham-
ilton 1964). Moreover, two other species of Ceratina where parthenogenesis probably 
occurs (C. dentipes and C. parvula) are facultatively social (Terzo et al. 2007; Rehan et 
al. 2009; Mikát et al. 2022). The social status of one parthenogenetic species, C. acantha 
(Slobodchikoff and Daly 1971), is not yet known. Ceratina bees are an excellent group 
for the study of social evolution, due to their within- and between-species variability in 
social behavior (Groom and Rehan 2018; Rehan 2020). The existence of parthenogen-
esis in Ceratina species that are not closely related provides us unique system for study 
how between-species variability in relatedness influences social evolution.
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