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A. Laref, E. Şaşıog̃lu and L. M. Sandratskii
J. Phys.: Condens. Matt. 17 4177 (2006)

• Search for half-metallic ferrimagnetism in V-based Heusler alloys Mn2VZ
(Z=Al, Ga, In, Si, Ge, Sn)
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Abstract

This work contains the theoretical investigations of the exchange interactions and Curie tem-
perature in various Heusler alloys. The calculations are performed within the parameter-free
density-functional theory with the state-of-the-art ASW-method. The calculation of the
exchange parameters is based on the frozen-magnon approach. The Curie temperature is es-
timated within mean-field (MF) and random-phase-approximation (RPA) approaches. The
obtained results are divided in three parts. In the first part, a systematic study of the both
intra-sublattice and inter-sublattice exchange interactions as well as Curie temperatures for
experimentally well-established Heusler alloys is presented. We focused on the microscopical
mechanisms of the formation of the long range magnetic order. For Ni-based compounds
Ni2MnZ (Z = Ga, In, Sn, Sb) we obtain a strong dependence of the exchange interactions
on the Z constituent (sp-atom) despite the closeness of calculated and experimental Curie
temperatures of all four compounds. The role of the sp-electrons in mediating exchange
interactions between Mn atoms is further revealed by studying non-stoichiometric composi-
tions of Pd- and Cu-based semi and full Heusler alloys. We found that an important factor
strongly influencing the electronic properties of the Heusler alloys is the spin polarization of
the sp-electrons. We obtained a clear relationship between the strength of the exchange inter-
action and the sp-electron spin polarization. In all considered systems the Mn-Mn exchange
interaction is long-ranged and shows RKKY-type oscillations.

In the second part, a detailed study of magnetism of half-metallic Heusler compounds
promising for magnetoelectronics applications is presented. We study both ferromagnetic and
ferrimagnetic compounds. The role of the inter-sublattice exchange interactions in formation
of the very high Curie temperature is revealed. We investigate the effect of the half-metallic
gap on the stability of exchange interactions and Curie temperature. We study spin wave
spectra and temperature dependence of the magnetization employing multi-sublattice Green
function technique within Tyablikov decoupling scheme. We predicted new semi Heusler
compounds with very high TC values.

In the last part, we study the pressure dependence of electronic structure, exchange inter-
actions, and Curie temperature in the ferromagnetic Heusler alloy Ni2MnSn. In agreement
with the experiment we obtain an increase of Curie temperature from 362 K at ambient
pressure to 396 K at 12 GPa. Extending the variation of the lattice parameter beyond the
range studied experimentally, we obtained non-monotonic pressure dependence of the Curie

v
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temperature and metamagnetic transition. We relate the theoretical dependence of TC on
the lattice constant to the corresponding dependence predicted by the empirical interaction
curve. The Mn-Ni atomic interchange observed experimentally is simulated to study its
influence on the Curie temperature.



Introduction

Heusler alloys are known for more than 100 years. They are named after Friedrich Heusler, a
German mining engineer and chemist, who discovered in 1903 Cu-Mn-Al to be ferromagnetic,
although the alloy consists of non-ferromagnetic elements. Today two classes of materials are
called Heusler alloys: The semi-Heusler alloys with general formula XYZ and the full-Heusler
alloys with X2YZ. The X and Y elements come from the transition metal group, whereas
the Z component is the element of the III-V group. The semi- and full-Heusler alloys are
characterized by the C1b and L21 structures, respectively. These compounds exhibit very
rich magnetic behavior. One finds in the same family of alloys diverse magnetic phenom-
ena: itinerant and localized magnetism, antiferromagnetism, helimagnetism, or non-collinear
magnetism. Recently, Heusler alloys have attracted considerable experimental and theoret-
ical interest due to three unique properties that they exhibit: i) Half-metallic behavior, ii)
magnetic shape memory effect and iii) inverse magnetocaloric effect.

The half-metallicity was first predicted by de Groot and collaborators in 1983 when study-
ing the band structure of a half-Heusler alloy NiMnSb. Then the half-metallic ferromagnets
have become one of the most studied classes of materials. The existence of a gap in the
minority-spin band structure leads to 100% spin polarization of the electron states at the
Fermi level and makes these systems attractive for applications in the emerging field of spin-
tronics. In half-metals, the creation of a fully spin-polarized current should be possible that
should maximize the efficiency of magnetoelectronics devices. Besides strong spin polarization
of the charge carriers in the ground state, the half-metallic materials should have a compati-
ble lattice structure with the industrially used zincblende semiconductors and possess a high
Curie temperature to allow the applications in the devices operating at room temperature.
Available experimental information shows that the Heusler alloys are promising systems also
in this respect.

The other properties are related to the combination of magnetic and structural features
of the Heusler alloys. At low temperatures several Heusler compounds, e.g. Ni2MnGa,
Co2NbSn etc., undergo a martensitic transition from a highly symmetric cubic austenitic to
a low symmetry martensitic phase. In the case when the Heusler alloys are magnetic in the
martensitic phase, they can exhibit the magnetic shape memory effect (MSM). In these alloys,
an external magnetic field can induce large strains when applied in the martensitic state.
Shape memory alloys are promising smart materials for future technological applications.

1
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They can be used as sensors and actuators in different fields. The inverse magnetocaloric
effect (MCE) has its origin in a martensitic phase transformation that modifies the exchange
interactions due to the change in the lattice parameters. For samples with compositions
close to Ni2MnZ (Z = Ga, Sn) stoichiometry an inverse MCE has been reported. At the
martensitic phase, applying a magnetic field adiabatically causes the sample to cool. This
feature is regarded promising for the development of economical and ecological refrigerants
working near room temperature.

In addition to these three unique properties, Heusler alloys also provide fundamental
aspects for magnetism in complex systems. This is due to their complex crystal structure and
observed diverse magnetic behavior. Thus, these systems are of great interest for fundamental
investigations concerning the understanding of microscopic physical mechanisms leading to
complex magnetic phenomena.

Despite very strong interest to the structural and half-metallic properties of Heusler alloys
and the fact that finite temperature magnetic behavior is governed by the exchange interac-
tions the theoretical study of these quantities and the Curie temperature in these systems
received less attention. The first contribution to the density functional theory (DFT) of the
exchange interactions and Curie temperatures in Heusler alloys was made in an early paper
by Kübler and collaborators where the microscopic mechanisms of the magnetism of these
systems were discussed on the basis of the comparison of the ferromagnetic and antiferro-
magnetic configurations of the Mn moments. To our knowledge no further studies have been
reported on this subject before the present work was started. The first-principles study of the
exchange interactions is one of the major tasks of the thesis. To predict new Heusler com-
pounds with desired properties, the theoretical understanding of the exchange interactions
in these systems is essential.

The thesis is divided into two parts. The first part contains the discussion of computa-
tional methods and materials. In the second part calculational results are presented. The
first part is organized as follows. In chapter 1, we discuss the main aspects of DFT with a
special emphasis on non-collinear magnetism. A brief introduction to the augmented spher-
ical wave (ASW) method used in the thesis is given. Chapter 2 is devoted to the brief
discussion of different aspects of magnetism in condensed matter and main exchange mecha-
nisms in local moment systems. First-principles approaches to the exchange interactions are
introduced. The calculation of exchange interactions for a multi-sublattice material within
the frozen-magnon method is discussed in detail. A brief introduction to the magnetism
at finite temperatures and the discussion of magnetic excitations is given in chapter 3. To
study the temperature dependence of magnetization in Heusler alloys we generalized the MF
and RPA approximations to the multi-sublattice case. In the last chapter of the first part
(chapter 4) we review previous experimental and theoretical studies on the structural and
magnetic properties of Heusler alloys.

The results of our extensive investigations on various Heusler alloys are collected in the
second part. The discussion of the results is split into three chapters. In chapter 5, we discuss
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the main exchange mechanisms in Heusler alloys paying special attention to the role of the
sp-electrons in establishing magnetic properties. We begin with well known stoichiometric
Ni-based full Heusler compounds Ni2MnZ (Z=Ga, In, Sn, Sb) and report a systematic study
of the exchange interaction between atoms of different sublattices and show that pattern
of exchange interactions in these systems deviates strongly from the physical picture that
can be expected on the basis of the experimental information. Indeed, despite the observed
macroscopic similarities such as common crystal structure, similar chemical composition, and
close experimental values of the Curie temperature the microscopic physical mechanisms of
the ferromagnetism appeared to be different. We found that the exchange interactions of
the compounds vary widely depending on the Z constituent. In particular, the intersublat-
tice interactions change strongly from system to system. We show that, in agreement with
experiment, different patterns of exchange interactions lead to similar values of the Curie
temperatures. Then to gain further insight into the role of the sp-electrons in mediating ex-
change interactions between Mn atoms we extended the calculations to the non-stoichiometric
compositions of Cu- and Pd-based semi- and full-Heusler alloys. In this case we find that an
important factor strongly influencing the electronic properties of the Heusler alloys is the spin
polarization of the sp-electrons. We obtain a clear relationship between the strength of the
exchange interactions and the sp-electron polarization. The larger the sp-electron polariza-
tion, the stronger the exchange interactions and, as a result the higher the Curie temperature.
In particular the systems with vanishing sp-electron spin polarization are characterized by
the value of the Curie temperature that is also very close to zero. This property reveals the
decisive role of the sp-electrons of the X and Z atoms in mediating the exchange interaction
between the Mn spin moments.

Chapter 6 is devoted to the study of magnetism of half-metallic (HM) Heusler compounds
that have potential for applications in the field of spintronics. We study both ferromagnetic
and ferrimagnetic Heusler compounds. We revealed the role of the intersublattice exchange
interactions in the formation of the very high Curie temperature in some full Heusler com-
pounds such as Co2MnSi and Mn2VAl. We investigate the effect of the half-metallic gap on
the stability of exchange interactions and Curie temperatures. We study spin wave spectra
and temperature dependence of the magnetization employing multi-sublattice Green function
technique within Tyablikov decoupling scheme. We predicted new half-metallic semi Heusler
compounds with very high TC values.

In chapter 7 we study the effect of pressure on magnetic properties of Heusler alloys by the
example of Ni2MnSn. In particular, we report the pressure dependence of electronic structure,
exchange interactions and Curie temperature focusing on the low pressure region where the
experimental information is available. We relate the theoretical dependence of TC on the
lattice constant to the corresponding dependence predicted by the empirical interaction curve.
The Mn-Ni atomic interchange observed experimentally is simulated to study its influence
on the Curie temperature. Finally, our conclusions are summarized in chapter 8.
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Methods and Materials
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Chapter 1

Density Functional Theory of

Magnetic Systems

1.1 Introduction

Density-functional theory (DFT) is one of the most popular and successful quantum mechan-
ical approaches to the study of matter. It offers a powerful and elegant way for calculating
the ground-state properties of interacting electrons. It is nowadays routinely applied for cal-
culating, e.g., the band structure of solids in physics and the binding energy of molecules in
chemistry. The systems may range in complexity from a single atom to a complex system
such as as proteins and carbon nanotubes. DFT has been extensively applied to many areas
of condensed matter physics. In particular, it has been remarkably successful in explaining
the magnetic properties of transition metals and their alloys.

Traditional methods in electronic structure calculations, like Hartree-Fock theory are
based on the complicated many-electron wavefunctions. The main idea of DFT is to replace
the many-body electronic wavefunction with the electronic density n(r) as the basic quan-
tity. Whereas the many-body wavefunction is dependent on 3N (or 4N if spin is included)
variables, the density n(r) is only a function of three variables and is a simpler quantity to
deal with both conceptually and practically. DFT reduces the calculations of the ground
state properties of systems of interacting particles exactly to the solution of single-particle
Hartree-type equations. This is why it has been most useful approach for many electron
systems.

In many-body electronic structure calculations of solids and molecules the Born-Oppenheimer
approximation provides the first simplification to the many body Hamiltonian. Due to their
masses the nuclei move much slower than the electrons. This means that one can consider the
electrons as moving in the field of fixed nuclei, i.e, the nuclear kinetic energy is zero and their
potential energy is merely a constant. Thus, the electronic part of the Schrödinger equation

5



1.2. Thomas-Fermi model 6

reduces to

HΨ(r1, r2, · · · rN ) = [T + Vext + Uee]Ψ(r1, r2, · · · rN ) (1.1)

=
[
− ~2

2m

N∑

i

∇2
i +

N∑

i

V (ri) +
N∑

i6=j

U(ri, rj)
]
Ψ(r1, r2, · · · rN )

= EΨ(r1, r2, · · · rN )

where Ψ(r1, r2, · · · rN ) is the wave function of stationary electronic state, N is the number
of electrons and Uee is the electron-electron interaction. The operators T and Uee are the
same for any system, while Vext is system dependent. As it is seen from Eq. (1.1) the
actual difference between a single-particle problem and the much more complicated many-
particle problem comes from the interaction term Uee. In principle, the solution of many-body
Schrödinger equation is possible with the sophisticated methods such as perturbation theory
in physics or configuration interaction methods in quantum chemistry. However, the problem
with these methods is the huge computational effort, which makes it practically impossible
to apply them efficiently to larger complex systems.

DFT provides a way to systematically map the many-body problem, with Uee, onto a
single-body problem without Uee. In DFT the key variable is the particle density n(r) which
is given by

n(r) = N

∫
dr2

∫
dr3

∫
dr4 · · ·

∫
drN |Ψ(r, r2, · · · rN )|2 (1.2)

1.2 Thomas-Fermi model

Historically, the density functional theory has its conceptual roots in the Thomas-Fermi
model. In 1927 Thomas and Fermi [1] showed that for interacting electrons moving in an
external potential vext(r), the relation between vext(r) and the density distribution n(r) can
be expressed as

n(r) = γ[µ− veff(r)]3/2 (1.3)

where γ = 1
3π2

(
2m
~2

)3/2 and µ is the r independent chemical potential and the second term in
Eq. (1.3) is the classical electrostatic potential generated by the electron density n(r).

veff(r) = vext(r) +
∫

n(r′)
|r− r′|dr

′ (1.4)

Eq. (1.3) works well for systems with slowly varying density. Although this was an impor-
tant first step, the Thomas-Fermi equation’s accuracy is limited because it neglects exchange
and correlation effects.

Hohenberg and Kohn started from Thomas-Fermi theory and established the connection
between the electron density n(r) and the many-electron Schrödinger equation [2]. Thus, the
work of Hohenberg and Kohn is considered to be at the heart of the density functional theory.



1.3. Hohenberg-Kohn theorems 7

1.3 Hohenberg-Kohn theorems

The first Hohenberg-Kohn theorem states that

• The ground state density n0(r) of the interacting electrons in some external potential
vext(r) determines this potential uniquely.

It follows from the first theorem that the ground state energy is a functional of n0(r)

E0 = E[n0] = 〈Ψ0|T + Vext + Uee|Ψ0〉 (1.5)

where Ψ0 = Ψ0[n0] and contribution of the external potential 〈Ψ0|Vext|Ψ0〉 can be written
explicitly in terms of the density

Vext[n0] =
∫

vext(r)n0(r)dr (1.6)

The functionals T [n0] and Uee[n0] and are called universal functionals while Vext[n0] is not
universal and depends on the system under consideration. The second Hohenberg-Kohn
theorem provides a variational principle

• For any given density n(r) associated to an N electron system with external potential
vext(r) the minimum of the energy functional is obtained with the ground state density.

E0 ≤ E[n] = T [n] + Vext[n] + Uee[n] (1.7)

The ground state can be obtained by minimizing the functional E[n] with respect to n(r) if
the functionals T [n] and Uee[n] are known. A successful minimization of the energy functional
will yield the ground state density n0(r) and thus all other ground state properties of interest.

1.4 Kohn-Sham equations

In 1965 Kohn and Sham showed that the variational problem of minimizing the energy
functional can be solved by applying the Lagrangian method of undetermined multipliers [3].
In order to proceed we will write the total energy functional E[n] as

E[n] = T [n] +
∫

vext(r)n(r)dr +
1
2

∫
drdr′

n(r)n(r′)
|r− r′| + Exc[n(r)] (1.8)

Eq. (1.8) contains the kinetic energy, the energy because of the the external potential, the
energy of the static electron-electron Coulomb repulsion (Hartree term) and the exchange
correlation energy. The Exc includes all the many particle interactions.

The main problem is to find the expressions for T [n] and Exc[n]. An explicit forms of
T [n] and Exc are not known in general, we use the variational principle on the total energy
functional to write

δE[n]
δn(r)

+ µ
δ(N − ∫

n(r)dr)
δn(r)

= 0 (1.9)
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where µ is a Lagrange multiplier which guaranties the particle number conservation. As
suggested by Kohn and Sham it is convenient to split up the kinetic energy term into two terms
T = T0 +Txc, where Txc stands for the exchange-correlation part of the kinetic energy and T0

is the the kinetic energy of non-interacting particles. The first assumption of the Kohn-Sham
theory is that Ψ(r1, r2, · · · rN ) many-body wave function is a Slater determinant(Ψ ≈ ΦSD).
Then using the density n(r) =

∑
i occ |ψi(r)|2 and taking the functional derivative in Eq. (1.9)

we arrive at a set of effective single-particle equations called the Kohn-Sham equations
[
− ~2

2m
∇2 + veff(r)

]
ψi(r) = εiψi(r) (1.10)

which are the single particle Schrodinger equations where the external potential has been
replaced by an effective potential given by

veff(r) = vext(r) + e2

∫
n(r′)
|r− r′|dr

′ + vxc(r) (1.11)

where the exchange-correlation potential is given by

vxc(r) =
δ(Exc[n])

δn(r)
(1.12)

Note that the exchange-correlation part of the kinetic energy Txc is included in Exc in
Eq. (1.12) .

The Kohn-Sham equation has to be solved self-consistently. Usually one starts with an
initial guess for the density n(r) , then one calculates the corresponding effective potential
veff(r) and solves the Kohn-Sham equations for the ψi . From these one calculates a new
density and starts again. This procedure is then repeated until convergence is reached. Once
this is done, the ground state energy can be expressed by the Kohn-Sham formula

E0 =
∑

i occ

εi − e2

2

∫
drdr′

n(r)n(r′)
|r− r′| + Exc[n(r)]−

∫
vxc(r)n(r)dr (1.13)

1.5 Approximations for Exc[n]

Although Kohn-Sham formalism reduces the many-particle interacting electron problem to
an effective single particle Schrödinger equation, the solution of the Eq. (1.10) requires certain
approximations. The major problem with DFT is that the exact functionals for exchange and
correlation are not known except for the free electron gas. However, approximations exist
which permit the calculation of certain physical quantities quite accurately.

1.5.1 The local density approximation (LDA)

The most commonly used and successful approximation is the Local Density Approximation
(LDA), where the exchange correlation energy depends only on the density at the coordinate
where the functional is evaluated

Exc[n] =
∫

n(r)εxc[n(r)]dr (1.14)
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where εxc[n(r)] is the exchange and correlation energy per particle of a uniform electron gas
of density n(r). This quantity can be further split into two parts:

εxc[n(r)] = εx[n(r)] + εc[n(r)] (1.15)

The exchange part,εx[n(r)] which represents the exchange energy of an electron in a uniform
electron gas of a particular density, was originally derived by Bloch in 1929 [4] which is given
as

εx[n(r)] = −3
4

(
3n(r)

π

)1/3

(1.16)

The correlation part cannot be derived analytically, but can be calculated numerically with
high accuracy by means of Monte Carlo simulations.

Although LDA is a simple approximation, it is surprisingly accurate for solids and solid
surfaces, including those with rapid density variations. However it tends to underestimate
atomic ground state energies and ionization energies, while overestimating binding energies.
The accuracy of LDA is certainly insufficient for most applications in chemistry. LDA also
fails in strongly correlated systems like heavy fermions.

1.5.2 The generalized gradient approximation (GGA)

The first attempt to go beyond the LDA is the use of not only the information about the
density n(r) at a particular point r but also the information about the density gradient
∇n(r) in order to account for the non-homogeneity of the true electron density. The resulting
approximation is so-called the generalized gradient approximation (GGA) which is given as

Exc[n] =
∫

n(r)εxc[n(r),∇n(r)]dr (1.17)

For systems where the charge density is slowly varying, the GGA has proved to be an im-
provement over LDA. Using the GGA very good results for molecular geometries and ground
state energies have been achieved.

1.6 Extension to spin-polarized systems

The initial formulation of Density functional theory dealt with non-spin polarized (non-
magnetic) systems. In principle DFT can be applied to magnetic systems where the spin
polarization leads to a magnetization density m(r), since the magnetization is a functional
m[n(r)] of ground state charge density n(r). In 1972 Barth and Hedin [5] extended the DFT
to the spin polarized case. The authors formulated the functionals in terms of the spin density
matrix ραβ(r) which is defined as

ραβ(r) = n(r)δαβ + m(r) · σαβ (1.18)

where σ ≡ (σx, σy, σz) are the Pauli matrices.
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To introduce the vector field m(r) in the formulation of DFT we will generalize the notion
of Kohn-Sham orbitals. In non-spin polarized case these orbitals are scalar functions. To
describe a general magnetization density using single particle wave functions, one has to
resort to a representation with two component spinors,

ψi(r) =
[

ϕiα(r)
ϕiβ(r)

]
(1.19)

where ϕiα(r) and ϕiβ(r) corresponds to the two spin projections.
In terms of these two component spinors the density matrix can be represented in the

form

ρ(r) =
∑

i occ

[
ϕiα(r)
ϕiβ(r)

]
[ϕiα(r) ϕiβ(r)]∗ =

∑

i occ

[
ϕiα(r)ϕ∗iα(r) ϕiα(r)ϕ∗iβ(r)
ϕiβ(r)ϕ∗iα(r) ϕiβ(r)ϕ∗iβ(r)

]
(1.20)

For a collinear ferromagnet the non-diagonal part of the density matrix becomes zero. But
this is not the case for non-collinear magnets as will be seen in the next section.

Using spinors the magnetization density m(r) and charge density n(r) can be expressed
as

m(r) = µB

∑

i occ

ψ†i (r)σψi(r) (1.21)

n(r) =
∑

i occ

ψ†i (r)Iψi(r) (1.22)

where µB is the Bohr magneton and I is the unit matrix.
As it is shown in Ref. [5] the density matrix is a basic physical quantity which uniquely

determines all ground-state properties of a magnetic electron system. In particular, the total
energy is a functional of the density matrix and assumes its minimum for the ground-state
value of the density matrix. In the first step, one determines the total energy as a functional
of the density matrix and then applies the variation procedure to find the minimum of the
functional. In spin polarized case a standard representation of the energy functional is given
by

E[ρ] = T [ρ] +
e2

2

∫
drdr′

n(r)n(r′)
|r− r′| +

∑

αβ

∫
vext
αβ (r)ραβ(r)dr + Exc[ρ] (1.23)

Following the same way as in the non-polarized case the single particle Kohn-Sham equations
can be given as ∑

β

[
− δαβ

~2

2m
∇2 + veff

αβ(r)
]
ϕiβ(r) = δαβεiϕiβ(r) (1.24)

where the effective potential matrix elements veff
αβ(r) can be written as

veff
αβ(r) = vext

αβ (r) + δαβe2

∫
n(r′)
|r− r′|dr

′ + vxc
αβ(r) (1.25)

with the exchange-correlation potential matrix elements

vxc
αβ(r) =

δ(Exc[ρ])
δραβ(r)

(1.26)
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1.7 Non-collinear magnetism

An essential difference between non-collinear and collinear magnets is the absence of a natural
spin quantization axis common for the whole crystal in the non-collinear case. As a result,
each one-electron state in a non-collinear magnet must be treated as a two-component spinor
function (see Eq. (1.19)). Here we follow the formulation given in Ref.[6]

We define the standard spin-1
2 rotation matrix U(θ, φ) as follows

U(θ, φ) =
[

cos(θ/2) exp(iφ/2) sin(θ/2) exp(−iφ/2)
− sin(θ/2) exp(iφ/2) cos(θ/2) exp(−iφ/2)

]
(1.27)

and the spinor wavefunction can be represented in the following form using Eq. (1.27)

[
ϕα(r)
ϕβ(r)

]
= U(θ(r), φ(r))

[
1
0

]
(1.28)

where the polar angles θ(r) and φ(r) determine the direction of the spin moment of the given
state at point r . Correspondingly the density matrix of the crystal is not diagonal in the
non-collinear case:

ρ(r) =
[

ραα(r) ραβ(r)
ρβα(r) ρββ(r)

]
(1.29)

The sum of the diagonal elements of ρ(r) gives the charge density, while the difference of
them gives the projection of the magnetization density on the global quantization axis. The
non-diagonal elements of the matrix determine the component of the magnetization density
perpendicular to the quantization axis and are responsible for the non-collinearity of the
magnetic structure.

While deriving the Kohn-Sham equations in the previous section, we have not made any
assumption of collinearity, i.e. all spin parallel or anti parallel to a global quantization axis.
Therefore, for a non-collinear ferromagnet, the Kohn-Sham equations take the same form.
Additionally in the local approximation the spatial variation in the magnetization direction
does not influence the exchange correlation potential ( see Eq. (1.25)) at a given point. From
this property it follows that for such a system it is convenient to choose the system with
the z axis parallel to the magnetization direction in the point. In this reference frame the
non-diagonal elements of the density matrix becomes zero and the results of the theory of the
ferromagnetic electron gas can be employed to determine the form of the exchange correlation
potential.

With the help of the spin−1
2 rotation matrices (1.27) we can transform the density matrix

from the global coordinates system to the local system as

[
ραα(r) ραβ(r)
ρβα(r) ρββ(r)

]
= U(θ(r), φ(r))†

[
ρ+(r) 0
0 ρ−(r)

]
U(θ(r), φ(r)) (1.30)
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where the polar angles θ(r) and φ(r) determining the direction of the local magnetization in
point r are defined by the components of the density matrix in the global system:

tanφ(r) = − Im[ραβ(r)]
Re[ραβ(r)]

(1.31)

tan θ(r) =
2({Re[ραβ(r)]}2 + {Im[ραβ(r)]}2)1/2

ραα(r)− ρββ(r)
(1.32)

Finally, the effective potential veff(r) can be written in the form.

veff(r) = U(θ(r), φ(r))†
[

veff
+ (r) 0

0 veff− (r)

]
U(θ(r), φ(r)) (1.33)

where

veff
σ (r) = −e2

∑
nν

Zν

|r− (Rn + aν)| + e2

∫
n(r′)
|r− r′|dr

′ + vxc
σ [ρ+(r), ρ−(r)], σ = ±1 (1.34)

In Eq. (1.34) Zν is the atomic number, Rn are the lattice vectors and aν are the atomic
positions within a unit cell.

As in the non-spin polarized case the Kohn-Sham equations has to be solved in a self-
consistent way. Compared with the case of a collinear magnet the present problem is much
more involved. This is because of the additional degrees of freedom connected with the spatial
variation in the magnetization direction.

• Atomic sphere approximation (ASA)

In order to simplify the problem the atomic sphere approximation (ASA) is usually used.
It is supposed that within the atomic sphere of a given atom the magnetization direction is
constant and non-collinearity of the magnetic structure is reduced to the different directions
of the magnetic moments of different atoms. In this case the angles θ and φ in Eq. (1.34)
become r independent and can be determined through a formula similar to Eq. (1.31) but
with the use of integrated density matrices:

ρnν =
∫

Ωnν

ρ(r)dr (1.35)

where the integration is carried out over the (nν)th atomic sphere with radius Sν .
With the assumption of the spherical symmetry of the potential within the atomic spheres,

we can rewrite the effective potential (1.34) in the final form

veff(r) = U(θnν , φnν)†
[

veff
+,nν(|rnν |) 0

0 veff−,nν(|rnν |)

]
U(θnν , φnν)Θν(|rnν |) (1.36)

where

Θν(|rnν |) =
{

Θν(r) = 1, r < Sν

Θν(r) = 0, r > Sν

(1.37)

The implementation of the non-collinear magnetism in augmented spherical wave (ASW)
method is discussed in detail in Refs.[6, 7, 8] and will not be presented here. A brief intro-
duction to ASW method will be given in the last section of this chapter.
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Figure 1.1: A spin spiral structure with vector q parallel to the z axis.

1.7.1 Spin spirals

Spin spiral is a particular form of the non-collinear magnetic structure which is defined by
giving the Cartesian coordinates of the magnetization vector as

mnν = mν(cos(qRn + φν) sin θν , sin(qRn + φν) sin θν , cos θν) (1.38)

where mν is the magnitude of the magnetic moment of atom (ν), (qRn +φν) and θν are polar
angles, Rn is a lattice vector and q is the wave vector that characterizes the spin spiral.

A schematic representation of the spin spiral structure with vector q parallel to the z axis
is shown in figure 1.7.1. An apparent difficulty for the first-principles calculation of a spiral
structure is the lack of translational symmetry along the direction of the wave vector q. In this
case one has to resort to a large super-cell along this direction. Also the dimension of such a
super-cell must be at least as large as the wavelength of the spiral. In this case the treatment
of small-q excitations becomes impossible because of the extremely large super cells. However,
one can show that spin spiral configurations can be described without resorting to super-cells
[9, 10, 11]. This can be achieved with the help of generalized Bloch theorem which allows the
DFT treatment of spin spirals in chemical unit cells.

1.7.2 Generalized Bloch theorem

As it is seen from the figure 1.7.1 and Eq. (1.38) all atoms of the spiral structure separated
by a translation Rn posses magnetic moments of the same magnitude and hence they are
equivalent. This equivalence leads to the generalization of the Bloch theorem. This is first
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pointed out by Herring [9] and later by Sandratskii [10, 11]. Transformations combining a
lattice translation TR and a spin rotation about z axis by an angle φ = q ·Rn leave the spiral
structure invariant. The symmetry operators that describe these transformations belong to
a spin-space group (SSG). The generalized translations has the following properties: i) the
spinors transform according to

{qRn|TR}ψ(r) =
(

e−iqR/2 0
0 eiqR/2

)
ψ(r−R) (1.39)

ii) they commute with the Kohn-Sham Hamiltonian of a spin spiral structure, and iii) they
form an Abelian group isomorphic to the group of ordinary space translations by vector Rn.
Isomorphism of two groups leads to coincidence of their irreducible representation. Therefore,
they have the same irreducible representation, which constitutes the Bloch Theorem in the
case of ordinary space translations. The generalized Bloch theorem is then given as

{qRn|TR}ψk(r) = e−ik·Rnψk(r) (1.40)

where the vectors k lie in the first Brillouin zone which is defined in the usual way by the
vectors Rn. Eq. (1.40) permits us to write any eigenfunction in the form

ψk(r) = e−ik·Rnuk(r) (1.41)

where the spinors uk(r) have the generalized periodicity of the Hamiltonian

{qRn|TR}uk(r) = uk(r) (1.42)

These properties allows us to solve the Kohn-Sham equations in the presence of spin spirals
without using super-cells.

1.8 Augmented spherical wave (ASW) method

The Augmented Spherical Wave (ASW) was developed in the seventies by A. R. Williams,
J. Kübler, and C. D. Gelatt for the purpose of the solution of the one-particle Kohn-Sham
equations within DFT [12]. It is one of the most efficient methods for calculating electronic
and magnetic properties of real solids. The method is based on the Born-Oppenheimer
approximation and it makes use of crystalline periodicity and the Bloch theorem.

The ASW program package employs both the local density approximation (LDA) and
the generalized gradient approximation (GGA) for the exchange correlation potential within
the atomic sphere approximation (ASA). Full potential version is also developed [13, 14, 15].
Commercial version of the full-potential ASW package can be obtained from [15].

The ASW method fully includes both the core and the valence electrons in the self-
consistent field calculations. For this reason, it allows the treatment of the whole periodic
table including transition metal atoms as well as the lanthanides and actinides. Furthermore,
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its minimal basis set makes it one of the fastest scheme among the modern electronic structure
codes. For 3d elements it uses atomic-like s, p, d orbitals and thus each atom contributes
with 9 or 16 basis functions to the secular matrix, which is much less than the 100 functions
necessary in plane wave based methods. Additional speed-up comes from the fact that the
ASW method is a so-called linearized method.

Finally, ASW method allows non-relativistic as well as scalar-relativistic and full-relativistic
calculations and it can handle both spin-restricted and spin-polarized calculations. Also, a
distinct feature of the ASW method is that it allows the treatment of non-collinear magnetic
systems.



Chapter 2

First-Principles Calculation of

Exchange Interactions

Before introducing the first-principles methods for the calculation of exchange interactions
in magnetic systems we will briefly review two different aspects of magnetism in solids and
the main exchange mechanisms in local moment systems.

2.1 Models of magnetism

Magnetism has been a subject of great interest and intensive research in field of condensed
matter physics over the last century. Two different physical models have been proposed to
describe the magnetism in materials: one is localized and the other is the itinerant electron
model. The former has been used successfully in magnetic insulators and rare earth (RE)
elements and the latter for 3d transition metals and their alloys. These two models are
opposed but complementary to each other and illustrate the intrinsic properties of magnetism
of materials. However, they are still in the stage of development and in many cases they can
not be separated from each other. For a deep understanding of magnetism in condensed
matter there has been a trend to combine both models to develop a unified theory [16]. In
this section we will briefly present these two models and introduce classical Heisenberg model
for the treatment of the finite temperature magnetism in itinerant electron systems.

• Localized electron model

The modern theory of magnetism has started with the concept of a local magnetic moment of
a fixed size. Within this concept Langevin gave an explanation for the Curie law of magnetic
susceptibility [17]. Subsequently Weiss introduced the notion of an interaction (molecular
field) between the atomic magnetic moments to explain the spontaneous magnetic order in
solids. Combining this new concept with the studies of Langevin, Weiss was able to explain
the finite temperature properties of ferromagnetic 3d transition metals [18].

16
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Although Langevin-Weiss theory has explained quite successfully the essential properties of
ferromagnets both below and above the Curie temperature, the magnitude of the molecular
field which is responsible for magnetic order, could not be explained within the classical
physics. Since the magnetic dipole-dipole interactions were known to give a value for the
molecular field which is two or three orders of magnitude smaller than estimated from the
observed value of TC . This problem was resolved with the advent of quantum mechanics.

In 1928 Heisenberg attributed the origin of Weiss molecular field to the quantum mechan-
ical exchange interaction between the magnetic moments and proposed a more general model
[19]. If Si is the atomic magnetic moment for a given site then the Heisenberg model is given
by

H = −
∑

i,j

JijSiSj (2.1)

where Jij is the interatomic exchange interaction constant which is introduced phenomeno-
logically and its physical origin will be discussed in the next section. Jij > 0 for ferromagnets
while it is negative for antiferromagnets. In principle, various magnetic orderings such as fer-
rimagnetism, helimagnetism can be derived from Heisenberg model by generalizing the sign
and range of the exchange interactions. Moreover, Heisenberg model has led to discovery of
spin waves as elementary excitations.

• Itinerant electron model

Magnetism in metals is usually explained on the basis of itinerant electron picture. One of
the main reasons for this is that the saturation magnetization in 3d transition metals and
their alloys is not integer.

Bloch first discussed the possibility of ferromagnetism in an electron gas on the basis
of Hartree-Fock approximation [20]. Later Wigner pointed out the importance of electron-
electron interactions on the suppression of the occurrence of ferromagnetism in electron gas
[21]. Thus the occurrence of ferromagnetism in transition metals is considered to be connected
with the atomic character of 3d electrons and mainly intra-atomic exchange interactions.
Stoner developed an itinerant electron model to explain ferromagnetism in 3d transition
metals [22]. In the Stoner model, magnetism in metals arises from a splitting between the
up- and down-spin bands and it is favored when the density of states is high at the Fermi
level. The instability of non-magnetic state with respect to formation of ferromagnetic order
is given by the Stoner criterion which is define by

IN(EF ) > 1 (2.2)

where I is the intra-atomic exchange integral and N(EF ) is the density of states at Fermi
level. It can be seen from the Stoner criterion that whether there is ferromagnetism from
itinerant electrons depends on the product of exchange integral and the DOS at the Fermi
level. Stoner model explains very well why Fe, Co and Ni are ferromagnetic and several
others are not. The calculated values of the I and N(EF ) for transition metals can be found
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in [23]. It should be noted that the band structure calculations played a vitally important
role in understanding itinerant electron magnetism [8]. The application of local spin density
approximation (LSDA) in band theory has been remarkably successful in explaining ground
state properties of transition metals and their alloys.

However, the Stoner model fails to reproduce the measured TC and the observed Curie-
Weiss law above it. Calculated temperatures for 3d metals appeared to be too high compared
with observations. Improvements to the Stoner model have been made that take into account
the effect of spin fluctuations in a self consistent renormalized (SCR) way [16]. These studies
built a bridge between two extreme limits of models (localized and itinerant) and unified them
into one picture. In particular, these new theories have been very successful in describing
several properties of weak itinerant ferromagnets.

2.1.1 Classical Heisenberg model for itinerant electrons

Although magnetic properties of 3d transition metals and their alloys are essentially defined
by itinerant electrons, thermodynamic properties of such magnetic systems can quite often
be quantitatively described by the Heisenberg model. This is because of the fact that in
these systems the obtained Curie-Weiss susceptibility and observed temperature dependence
of the magnetization show the main characteristics of local moment systems. Spin fluctuation
theories show that only an effective classical Heisenberg model can be introduced for metals
which provides a simple and accurate description of magnetism in these systems [16]. The
procedure consists of mapping the complicated itinerant electron system onto an effective
Heisenberg Hamiltonian with classical spins:

Heff = −
∑

i,j

Jijeiej (2.3)

where Jij is the effective exchange parameter and ei is the unit vector pointing in the direction
of the magnetic moment at site i. The values of magnetic moments are absorbed by the
exchange parameter Jij . The effective exchange interactions Jij between magnetic moments
are determined from first-principles calculations.

Once the exchange parameters Jij are obtained, the spin dynamics and thermodynamic
properties such as spin wave stiffness and Curie temperature can be determined from the
effective Hamiltonian (2.3).

2.2 Origin of magnetism: Exchange interactions

In matter, magnetic moments are not usually free but interact with each other. These in-
teractions result in a collective behavior of magnetic moments which manifest itself, below a
critical temperature, by the onset of magnetic orders such as ferromagnetism or antiferromag-
netism. Among the different interactions in magnetic systems only exchange interactions are
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dominating and they are responsible for the microscopic magnetic behavior. It is thus of pri-
mary importance for determining the magnetic excitations and, hence, the Curie temperature
of ferromagnetic systems.

The description of the fundamental features of the exchange interactions invokes a quan-
tum mechanical approach, but their quantitative treatment is beyond the scope of this chap-
ter. Loosely speaking, exchange is a combined effect of Pauli exclusion principle, electrostatic
Coulomb repulsion and kinetic energy. Pauli exclusion principle keeps electrons with paral-
lel spins apart, so reduces their Coulomb repulsion. The difference in energy between the
parallel spin configuration and the antiparallel one is defined as the exchange energy. The
magnetically ordered structures are the results of direct or indirect interactions between the
local moments in sites or delocalized electronic moments in crystal. In the following we will
briefly describe the three main exchange mechanisms which are most frequently observed in
local moment systems.

• Direct exchange

This interaction is the direct consequence of the Pauli exclusion principle and depends
strongly on the overlap of the participating wave functions (see Fig.). For small interatomic
distances, antiferromagnetic coupling occurs (Cr and Mn). With increasing distance, ferro-
magnetic state becomes favorable (Fe, Co, Ni). For very large distances the coupling vanishes
and paramagnetism is present [24].

• RKKY exchange

RKKY indirect exchange interaction (after Rudermann, Kittel, Kasuya and Yosida) takes
over at distances beyond a few atomic spacings. It is mediated by the conduction electrons
(s, p). A magnetic moment at site i polarizes the s, p-electron gas and a second moment
at site j feels the induced polarization. This interaction starts out ferromagnetic at small
distances and oscillates between negative and positive values with a period of λF /2, where
λF = 2π/kF is the Fermi wavelength and kF is the Fermi wave-vector. In general the
RKKY interaction gives rise to ferromagnetism if kF is small (nearly empty bands) and to
antiferromagnetism when kF ∼ π/a (half-filled band). This interaction can lead to long
period magnetic structures (helimagnets, etc), that can be incommensurate with the lattice
spacing.

This same mechanism is also responsible for the oscillatory interlayer exchange coupling
in GMR structures [25, 26] and coupling of 4f electrons in rare earth elements. Furthermore
the physics of spin glasses is discussed within the same context.

• Superexchange

In most of the magnetic insulators such as MnO, the magnetic atoms separated by diamag-
netic atoms. Thus the magnetic ions are situated at distances too far for their 3d wave
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Figure 2.1: Left panel: Schematic illustrations of possible coupling mechanisms between localized
magnetic moments: (a) direct exchange between neighboring atoms, (b) superexchange mediated by
non-magnetic ions, and (c) indirect exchange mediated by the conduction electrons [27]. Right panel:
The relationship among five exchange interactions [28].

functions to overlap and exchange interactions are mediated by the diamagnetic atoms, i.e,
trough the overlap of 3d and p wave functions. The value and sign of the this exchange (or
so-called superexchange) interaction depend strongly on the types of 3d orbitals (eg or t2g)
involved, the number of electrons and also the angle Mn-O-Mn. This complex mechanism can
initiate ferro- and antiferromagnetic coupling character. Finally, this interaction is effective
only over short distances.

In left part of Fig. 2.1 we present the schematic representation of the these three main
exchange mechanisms between localized moments. In addition to them there are also other
mechanism which appear depending on whether the materials are insulators or metals and on
which magnetic atoms (rare earths or transition metals) are involved such as double exchange
and the exchange between the itinerant electrons. The most complicated situation is seen
in 3d transition metals. In this systems 3d electrons are partly delocalized into the Fermi
sea and partly localized around atomic sites. Furthermore, these two aspects can not be
distinguished completely, and this is related to correlated features of the 3d electrons in
these systems.

All these exchange interactions contribute to formation of diverse magnetically ordered
structures through cooperative phenomena for macroscopic magnetism. Although these five
kinds of exchange mechanisms were proposed for different cases and have been applied to
various circumstances appropriately, there are no clear borderlines between them [28]. They
are related to each other, and there are overlaps of their regions of applications. In right part
of Fig. 2.1 we present the relationship between these five exchange interactions. The solid
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circles represent the main region of application for each type of interaction, while the dashed
circles indicates enlarged regions of applications. In fact in real systems it is possible that
there are several exchange interactions which coexist and are mixed together.

Empirical values of the exchange interactions for various ferromagnetic metals have been
calculated from specific heat measurements and from spin-wave spectra, whereas theoret-
ical estimation of them have been one of the long standing and challenging problems in
magnetism. Early attempts to calculate exchange integrals based on model Hamiltonian ap-
proaches resulted in unsatisfactory and even wrong results in some 3d systems [24]. For a
quantitative study of magnetism and exchange interactions in solids the detailed considera-
tion of electronic structure is necessary and should be introduced into the magnetic theory.
This becomes possible with the recent developments of novel methods based on the results
of numerical calculations of the electronic structure of solids [29]. Pioneering work in this
field has been done mainly by two groups: the Russian group of Gubanov, Lichtenstein and
others and Kübler and coworkers (Darmstadt) [8].

2.3 First-principles calculation of the exchange interactions

As mentioned in preceding section first-principles methods are the only way of obtaining
exchange interactions in realistic systems. There are basically two different approaches,
both rely on the adiabatic approximation in which the precession of the magnetization due
to a spin-wave is neglected when calculating associated change of electronic energy. This
approximation is valid under the conditions that the precession time of the magnetization
should be large as compared to characteristic times of electronic motion, i.e., hopping time
of an electron from a given site to a neighboring one and the precession time of the spin of an
electron subject to the external field. Put differently, the spin-wave energies should be small
as compared to the band with and exchange splitting. This is well justified for 3d systems
(except Ni) and 4f rare earth elements. In principle, this approximation becomes exact in
the limit of long wavelength magnons.

• Real-space method

Real-space approach was introduced by Liechtenstein et al., in 1987 for the calculation of
interatomic exchange interactions from first-principles [30]. It is based on multiple-scattering
theory and employs the magnetic force theorem to calculate the energy change associated
with a constrained rotation of the magnetic moments at sites i and site j (see Eq. (2.3)). The
energy change can then be related to the exchange interactions as

Jij =
1
4π

∫ EF

dE Im TrL(∆iT̂
ij
↑ ∆jT̂

ji
↓ ) (2.4)

This formula gives the expression for the pair exchange interaction parameter in the classical
Heisenberg model (2.3). However, this approach has not been used in our calculations.
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• Frozen-magnon method

In contrast to real space approach frozen-magnon approach is a reciprocal space method
[31]. It is based on the total energy calculation for spiral magnetic configurations. With
the help of the generalized Bloch theorem discussed in preceding chapter such calculations
can be performed very efficiently without resorting to large super-cells. Additional help is
provided by the force theorem that allows to use band energy of non-self-consistent frozen
magnon states for the estimation of the total-energy differences. The following subsection is
devoted to the discussion of frozen-magnon method for the case of multi-sublattice Heisenberg
Hamiltonian.

The real-space and frozen-magnon methods are formally equivalent and complementary
to each other. The quantities that are directly calculated are the Jij and E(q) in the former
case and in the latter case, respectively. They are also related to each other by a Fourier
transformation. A detailed discussion on the comparison of both methods can be found in
Ref.[32].

2.3.1 Frozen-magnon method for multi-sublattice systems

Let us consider the following classical multi-sublattice Heisenberg Hamiltonian

Heff = −
∑
µ,ν

∑

R,R′

(µR 6=νR′)

Jµν
RR′s

µ
Rsν

R′ (2.5)

In Eq.(2.5), the indices µ and ν number different sublattices and R and R′ are the lattice
vectors specifying the atoms within sublattices, sµ

R is the unit vector pointing in the direction
of the magnetic moment at site (µ,R).

Calculate interatomic Heisenberg exchange parameters involve few steps within frozen-
magnon technique. In the first step, the exchange parameters between the atoms of a given
sublattice µ are computed. The calculation is based on the evaluation of the energy of the
frozen–magnon configurations defined by the following atomic polar and azimuthal angles

θµ
R = θ, φµ

R = q ·R + φµ. (2.6)

In the calculation discussed in this paper the constant phase φµ is always chosen equal to
zero. The magnetic moments of all other sublattices are kept parallel to the z axis. Within
the Heisenberg model (??) the energy of such configuration takes the form

Eµµ(θ,q) = Eµµ
0 (θ) + sin2 θJµµ(q) (2.7)

where Eµµ
0 does not depend on q and the Fourier transform Jµν(q) is defined by

Jµν(q) =
∑

R

Jµν
0R exp(iq ·R). (2.8)
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Figure 2.2: (a) Spin spiral to calculate intra-sublattice exchange interactions. (b) The same for
inter-sublattice exchange interactions.

In the case of ν = µ the sum in Eq. (2.8) does not include R = 0. Calculating Eµµ(θ,q) for
a regular q–mesh in the Brillouin zone of the crystal and performing back Fourier transfor-
mation one gets exchange parameters Jµµ

0R for sublattice µ.
To determine the exchange interactions between the atoms of two different sublattices

µ and ν the frozen-magnon configurations (Eq. 2.6) are formed for both sublattices. The
Heisenberg energy of such configurations takes the form

Eµν(θ,q) = Eµν
0 (θ) + sin2 θ [Jµµ(q) + Jνν(q)] + 2 sin2 θ ReJµν(q) (2.9)

where Eµν
0 (θ) is a q–independent part. Performing calculation of [Eµν(θ,q)−Eµν(θ,0)] and

subtracting single-sublattice contributions known from the previous step one finds [ReJµν(q)−
ReJµν(0)]. The back Fourier transformation of this expression gives for R 6= 0 the following
combinations of the interatomic exchange parameters:

Jµν
R ≡ 1

2
(Jµν

0R + Jµν
0(−R)) (2.10)

Jµν
R does not contain information about the interaction of the atoms within the first unit

cell corresponding to R = 0. These exchange parameters can be found in a different way. For
simplicity let assume that we have two magnetic atoms per unit cell. In this case we need at
least two different magnetic configurations to calculate exchange interactions between these
atoms. (see figure 2). The energies of such configurations is expressed as follows.

EI(0,0) = E0 − 2Jµν
0 (2.11)

EII(θ,0) = E0 − 2 cos θJµν
0 (2.12)
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Figure 2.3: Magnetic moment
configurations for the calculation
of inter-sublattice exchange interac-
tions.

where Jµν
0 =

∑
R Jµν

0R. From Eqs. (2.11) and (2.12) one gets for Jµν
0

Jµν
0 =

EI(0,0)−EII(θ,0)
2(1− cos θ)

(2.13)

Combining Eq. (2.13 with the sum
∑

R 6=0 Jµν
0R which is known from the preceding step one

can access the parameters with R = 0.
If one interested in estimation of the Curie temperature in mean field approximation

the above procedure of obtaining inter-sublattice exchange interactions greatly simplifies the
calculations. If there are n magnetic atoms per unit cell then the number of different magnetic
configurations required for estimation of intersublattice exchange parameters becomes

n(n− 1)
2

+ 1 =

{ 2, n = 2
4, n = 3
7, n = 4

(2.14)

As it seen from the Eq. (2.14) the number of different configurations scale as ∼ n2

2 with
number of magnetic atoms per unit cell. This requires few configurations for Heusler alloys
with two or three magnetic atoms per unit cell studied in this thesis. However, the intra-
sublattice exchange interactions should be obtained from the usual procedure.



Chapter 3

Magnetism at Finite Temperatures

3.1 Introduction

The study of the temperature dependence of the magnetic properties of itinerant ferromagnets
is one of the fundamental problems of ongoing researches. Although density functional theory
has been very successful in description of the ground-state properties of the magnetic systems,
at finite temperatures it becomes rather difficult to calculate these properties from DFT,
particularly the Curie and the Néel temperatures. These difficulties are mainly related to
the Stoner picture of the magnetism in itinerant systems. Since the Stoner theory assumes
that the magnetic moment gradually decreases with temperature, i.e., by means of spin-flip
excitations across the Stoner gap ∆ (see next section) and vanishes above TC (see Fig. 3.2).
This process costs more energy than is actually needed to disorder magnetic moments and
because of that the calculated values of TC for 3d transition metals (Fe, Co and Ni) are much
higher than the experimental ones. There are also other weakness of the Stoner theory. For
instance the behavior of magnetization at low temperatures and the Curie-Weiss behavior
of the paramagnetic susceptibility cannot be described within the Stoner picture. Also the
observed short range order above TC from neutron scattering experiments is not explainable
within this picture.

On the other hand, the Heisenberg local moment model provides a better description of
magnetism in itinerant systems at finite temperatures in spite of its failure at zero temperature
in producing non-integer values of magnetic moments in 3d systems. In contrast to Stoner
model, this model assumes that a magnetic moment on each atom that persists beyond TC

and the magnetization vanishes by orienting the moments at random in the paramagnetic
phase. The energy of these transverse fluctuations is smaller than the energy of the Stoner
particle-hole transitions and they play a dominant role in the temperature behavior of an
itinerant magnet. Within this model, not only the observed reduction of magnetization at
low temperatures but also the Curie-Weiss behavior of the paramagnetic susceptibility of
majority of ferromagnets are well described. In fact, Heisenberg model is well suited for
systems with large exchange splitting like 3d transition metals and their alloys and rear
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T = 0

c

T > Tc

T < T

Stoner Unified Heisenberg

Figure 3.1: Comparison of the Stoner, Heisenberg and unified models.

earth elements where the spin-waves play a dominant role in a broad temperature interval in
the thermodynamic properties.

In spite of the success of the Heisenberg model in description of finite temperature prop-
erties in broad classes of ferromagnets, there are some systems like weak ferromagnet ZrZn2

which shows peculiar magnetic behavior at finite temperatures. This behavior can not be ex-
plained on the basis of either Stoner model or Heisenberg model and require the formulation
of a more realistic model (unified theory), which combines the both models. A discussion
and application of this approach is beyond the scope of this work.

In this thesis we will adopt the Heisenberg local moment picture in treatment of the finite
temperature properties of the studied systems, i.e., Heusler alloys and subsequent interpreta-
tion of the obtained results. This means that Stoner excitations will be completely neglected.
The use of Heisenberg model for these systems is well justified since they are considered to be
the best local moment systems, where the electrons are itinerant, on the basis of experimental
and theoretical information available.

3.2 Magnetic excitations

Temperature dependent properties of ferromagnets are governed by the magnetic excitations.
At low temperatures spin-waves play an important role while with increasing temperature
Stoner excitations become important.

• Stoner excitations

The fundamental single-particle excitations (or Stoner excitations) is a transition between
bands of opposite spin. An electron is excited from an occupied state of the majority-
spin band to an empty state of the minority-spin band and creates an electron-hole pair
of triplet spin. It requires a minimum energy ∆ in ferromagnets with a filled majority
spin band, such as Co and Ni (strong ferromagnets). These excitations are associated with
longitudinal fluctuations of the magnetization and play an important role in determination
of high temperature properties of ferromagnets with small exchange splitting like Ni.
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Figure 3.2: Magnetic excitations (a) Spin-split bands crossing the Fermi level in a strong ferromagnet.
A spin flip can occur via a single electron excitation by lifting an electron from the majority band into
the unoccupied part of the minority band (- - - ). Such excitations require a minimum energy transfer
equal to the Stoner gap ∆. (b) and (c) Schematic E(q) diagram of magnetic excitations for strong
and weak ferromagnets, respectively. One can distinguish between single-electron (Stoner) excitations
and many-electron excitations (magnons) [33].

• Spin waves or magnons

The low temperature properties of ferromagnets are completely governed by the spin waves or
magnons. These excitations correspond to collective transverse fluctuations of the direction
of the magnetization. They start out with a parabolic E(q) dispersion at q = 0 and broaden
out when they begin to overlap with single-particle excitations above the Stoner gap ∆. At
low temperatures they give rise to T 2/3 Bloch law for the reduction of the magnetization.
For calculational purposes it is a good approximation to neglect the Stoner excitations up to
the Curie temperature and to estimate the latter considering only spin-waves in ferromagnets
with large exchange splitting. However, this is less justified for Ni that has a small exchange
splitting.

3.3 Estimation of the Curie temperature

The discussion of the estimation of the Curie temperature will be based on two different
statistical mechanics approaches to the Heisenberg Hamiltonian with exchange parameters
calculated within a parameter-free DFT: mean-field (MF) and random phase approximation
(RPA). RPA provides a quantitative description for the behavior of the magnetization in
whole temperature interval while MFA captures qualitative features in this interval.
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3.3.1 Mean field approximation

The finite temperature properties of magnetic systems and the phase transition temperature
TC are first studied within mean-field theories. In 1907 Weiss proposed a phenomenological
mechanism leading to the ferromagnetic ordering in 3d transition metals [18]. This approach
is based on the assumption that each spin interacts with the same effective magnetic field
created by all other spins. The interpretation of this phenomenological mechanism in terms of
microscopic quantum models appears later with the work of Heisenberg. Due to its simplicity
mean-field approximation is widely used. It usually yields qualitatively correct results, and
provides insight into the nature of the magnetic phase transitions.

To illustrate the mean-field approximation let us consider following Heisenberg Hamilto-
nian with one magnetic atom per unit cell

H = − 1
S2

∑

ij

JijŜiŜj − gµBB
∑

i

Ŝz
i (3.1)

where Ŝi = (Ŝx
i , Ŝy

i , Ŝz
i ) and normalization factor S2 is introduced to ensure that exchange

parameters Jij are spin independent.
The partition function of the system in magnetic field B is

Z = Tr[e−H/kBT ] (3.2)

where Tr stands for sum over all spin quantum numbers.
Without exchange couplings Jij one would have independent spins, each polarized by the

magnetic field as
〈Ŝz

i 〉
S

=
Tr[Ŝz

i e−gµBB
P

i Ŝz
i /kBT ]

STr[e−gµBB
P

i Ŝz
i /kBT ]

(3.3)

But with the exchange couplings the problems becomes more complicated and can not be
solved exactly. Instead we have to use approximations and the simplest approximation is the
mean-field approximation. The central idea behind the mean-field approach is to approximate
the interacting problem by a simpler interacting partition function. In this case each spin
experiences an average field of many spins, and thus we can replace spin-spin interaction by
an interaction of each spin with an average magnetization of spins around it.

With Ŝi = (Ŝi − 〈Ŝi〉) + 〈Ŝi〉 the product ŜiŜj in Hamiltonian becomes

ŜiŜj = [(Ŝi − 〈Ŝi〉) + 〈Ŝi〉][(Ŝj − 〈Ŝj〉) + 〈Ŝj〉] (3.4)

Expanding this to first order in the deviations δŜi = Ŝi − 〈Ŝi〉
〈Ŝi〉〈Ŝj〉+ 〈Ŝj〉[Ŝi − 〈Ŝi〉] + 〈Ŝi〉[Ŝj − 〈Ŝj〉] + O(δŜ

2
i ) (3.5)

With this simplification our mean-field Hamiltonian becomes

HMF = − 2
S2

∑

ij

JijŜi〈Ŝj〉+
1
S2

∑

ij

Jij〈Ŝi〉〈Ŝj〉 − gµBB
∑

i

Ŝz
i (3.6)

= −2J0m + gµBBS

S

∑

i

Ŝz
i + J0Nm2
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where J0 =
∑

j J0j , m = 〈Ŝz
i 〉/S and N is the total number of sites. For the second part

of Eq. (3.6) we assumed that 〈Ŝi〉 = 〈Ŝj〉 in the lattice. The terms ignored in Eq. (3.6)
correspond to correlation of the spins. This maybe questionable when interactions are near-
est neighbor.In three dimensional systems for long range exchange interactions and for the
lattices like fcc, due to a large number of interacting spins and the central limit theorem,
the replacement of a sum of fluctuating spin variables by its average value is a reasonable
approximation.

Using Eq. (3.3) one can calculate temperature dependence of the magnetization as

m(T ) =
〈Ŝz

i 〉
S

=
Tr[Ŝz

i e−HMF /kBT ]
STr[e−HMF /kBT ]

=
Tr[Ŝz

i e(−2J0m+gmBBS)Ŝz
i /SkBT ]

STr[e(−2J0m+gmBBS)Ŝz
i /SkBT ]

(3.7)

In Eq. (3.7) the trace is a sum of all spin quantum numbers
∑S

l=−S so that

m(T ) =
∑S

l=−S le(−2J0m+gmBBS)l/SkBT

S
∑S

l=−S e(−2J0m+gmBBS)l/SkBT
(3.8)

=
2S + 1

2S
coth

[(2S + 1)(2J0m + gmBBS)]
2SkBT

− 1
2S

coth
(2J0m + gmBBS)

2SkBT

= BS [(2J0m + gmBBS)/kBT ]

Here BS(x) is called Brillouin function. For S = 1/2 it is reduced to a simple form B1/2(x) =
tanh(x). Eq. (3.8) allows us to calculate temperature dependence of the magnetization. It is a
self-consistent equation because the unknown variable m(T ) is on both sides of the equation.

Near TC where m(T ) is small the Brillouin function can be expanded,

BS(x) =
S(S + 1)

3S
x + O(x3) (3.9)

From Eq. (3.9) TC can be obtained as

TC =
2(S + 1)J0

3S
(3.10)

So far we have only considered quantum mechanical spins, the obtained formulas can
easily be generalized to the classical limit. In this case S →∞ the Brillouin function reduces
to Langevin function

L(x) = coth(x)− 1
x

(3.11)

and Tc is given as follows

TC =
2J0

3
(3.12)

As it is seen from Eqs. (3.10) and (3.12) TC in mean-field approximation is proportional to
the on-site exchange parameter J0 and does not depend on dimension of the system or crystal
structure. These are the main disadvantages of the mean-field approach. However, in three
dimensions MFA captures correctly all qualitative features of the magnetic phase transitions
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and it gives numerically accurate results for the Curie temperature in systems with long range
exchange interactions or large number of interacting neighbors like fcc lattice.

The above mean field formalism can easily be generalized to multi-sublattice systems. In
this case one has to solve the system of coupled equations by the same way as one atom per
unit cell. Here we only consider the calculation of Curie temperature in classical limit. The
TC can be estimated by solving the system of coupled equations [34]

〈Sz
µ〉 =

2
3kBT

∑
ν

Jµν
0 〈Sz

ν〉 (3.13)

where 〈Sz
ν〉 is the average z component of Sν . Eq.(3.13) can be represented in the form of

eigenvalue matrix problem
(Θ− T I)S = 0 (3.14)

where Θµν = 2
3kB

Jµν
0 , I is a unit matrix and S is the vector of 〈Sz

ν〉. The largest eigenvalue
of matrix Θ gives the value of Curie temperature. [34]

3.3.2 Random phase approximation for multi-sublattice Heisenberg model

In this section we will go beyond the mean-field theory and calculate temperature dependence
of the magnetization of a multi-sublattice Heisenberg model using Green function method
within Tyablikov decoupling scheme. Tyablikov proposed a method of approximation for the
Heisenberg model by suggesting a decoupling in the higher-order Green functions derived
within the equation of motion method [35]. In contrast to the mean field approximation
Tyablikov method takes properly into account the collective excitations (spin waves) and
allows a reliable calculation of magnetization over the entire range of temperature of interest.

We start with the Heisenberg Hamiltonian for quantum spins neglecting the Zeeman en-
ergy

H = −
∑

ij

∑
µν

Jµν
ij ei,µej,ν (3.15)

where ei,µ = (ŝx
i,µ, ŝy

i,µ, ŝz
i,µ)/(Sµ) is the normalized spin operator corresponding to site (i, µ).

In terms of the creation and destruction operators ŝ∓i,µ = ŝx
i,µ ∓ ŝy

i,µ the Hamiltonian can
be written in the form

H = −
∑

ij

∑
µν

J̃µν
ij [ŝ+

i,µŝ−j,ν + ŝz
i,µŝz

j,ν ] (3.16)

where J̃µν
ij = Jµν

ij /SµSν .
Following Callen [36] let us introduce Green function

Gµν
ij (τ) = − i

~
θ(τ)〈[ŝ+

i,µ(τ), exp(ηŝz
j,ν)ŝ

−
j,ν ]〉 (3.17)

where η is a parameter, θ(τ) is the step function (θ(τ) = 1 for τ ≥ 0), [. . .] denotes
the commutator and 〈. . .〉 is the thermal average over the canonical ensemble, ie., 〈F 〉 =
Tr[exp(−βH)F ]/Tr[exp(−βH)] with β = 1/kBT
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In order to evaluate the problem we employ the equation of motion method. Writing the
equation of motion for Gµν

ij (τ) we obtain

∂

∂τ
Gµν

ij (τ) = − i

h
δ(τ)〈[ŝ+

i,µ(τ), exp(ηŝz
j,ν)ŝ

−
j,ν ]〉 −

1
~2

θ(τ)

×〈[[ŝ+
i,µ(τ), Ĥ], exp(ηŝz

j,ν)ŝ
−
j,ν ]〉 (3.18)

The last commutator term in Eq. (3.18) generates higher-order Green functions. These
functions must be decoupled in order to make the problem numerically and analytically
tractable. This is done using the Tyablikov decoupling (random phase approximation) scheme
[35]. In the Tyablikov decoupling scheme ŝz

k,µ is separated from the spin-flip operators ŝ±i,µ
in the high-order Green function via the substitution

〈[ŝ+
i,µ(τ)ŝz

k,µ, ŝ−j,ν ]〉 ≈ 〈ŝz
k,µ〉〈[ŝ+

i,µ(τ), ŝ−j,ν ]〉 (3.19)

One then arrives at the equation

∂

∂τ
Gµν

ij (τ) = − i

h
δ(τ)〈[ŝ+

i,µ(τ), exp(ηŝz
j,ν)ŝ

−
j,ν ]〉+

2i

~
∑

k,ξ

J̃µξ
i,k [〈ŝz

i,µ〉Gξν
kj(τ)

−〈ŝz
k,ξ〉Gµν

ij (τ)] (3.20)

Eq. (3.20) can be solved for the Green function in momentum space with the standard
Fourier transformation

gµν(q, ω) =
1
2π

∑

i,j

∫
dωe−iq(Ri−Rj)Gµν

ij (τ) (3.21)

Thus we arrive at the expression

~ωgµν(q, ω) =
1
2π
〈[ŝ+

µ , exp(ηŝz
ν)ŝ

−
ν ]〉δµν − 2

∑

ξ

{J̃µξ(q)〈ŝz
i,µ〉gξν(q, ω)

−J̃µξ(0)〈ŝz
k,ξ〉gµν(q, ω)} (3.22)

Eq. (3.22) can be written in a compact matrix form

[~ωI−M(q)]g(q, ω) = u (3.23)

where g(q, ω) is a symmetric square matrix, I is a unit matrix and the inhomogeneity matrix
u is expressed by

uµν =
1
2π
〈[ŝ+

µ , exp(ηŝz
ν)ŝ

−
ν ]〉δµν , (3.24)

matrix M(q) is defined by

Mµν(q) =
{ ∑

ξ

2J̃µξ(0)〈ŝz
ξ〉

}
δµν − 2J̃µν(q)〈ŝz

µ〉 (3.25)
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Next, we introduce the transformation which diagonalizes matrix M(q):

L(q)M(q)R(q) = Ω(q) (3.26)

where Ω(q) is the diagonal matrix whose elements give the spin wave energies ωµ(q). The
number of branches in the spin wave spectrum is equal to the number of magnetic atoms in the
unit cell. The transformation matrix R(q) and its inverse R−1(q) = L(q) are obtained from
the right eigenvectors of M(q) as columns and from the left eigenvectors as rows, respectively.

Using the spectral theorem and Callen’s technique [36] one obtains the thermal averages
of the sublattice magnetizations:

〈ŝz
µ〉 =

(Sµ − Φµ)(1 + Φµ)2Sµ+1 + (Sµ + 1 + Φµ)Φ2Sµ+1
µ

(1 + Φµ)2Sµ+1 − (Φµ)2Sµ+1
(3.27)

where Φµ is an auxiliary function given by

Φµ =
1
N

∑
q

∑
ν

Lµν(q)
1

eβων(q) − 1
Rµν(q) (3.28)

In Eq. (3.28), N is the number of q points in the first BZ. Furthermore, Eq. (3.27) can be
expressed in terms of Brillouin function using Callen-Shtrikman theorem as follows

〈ŝz
µ〉 = SµBSµ

[
Sµ ln

(
1 + Φµ

Φµ

)]
(3.29)

where BSµ is the Brillouin function.
Eq. (3.27) is the central equation for the calculation of the sublattice magnetizations. It

must be solved self-consistently. The Curie temperature TC is determined as the point where
all sublattice magnetizations vanish.

Near TC (Φµ → ∞ and 〈ŝz
µ〉 → 0) Eq. (3.27) can be simplified. Expanding in Φµ and

using Eq. (3.28) one obtains

〈ŝz
µ〉 =

(Sµ + 1)
3Sµ

{
1

S2
µN

∑
q,ν

Lµν(q)
1

eβων(q) − 1
Rµν(q)

}−1

. (3.30)

From Eq. (3.30), it follows that for spin-independent Heisenberg exchange parameters [Eq. (3.15)]
the dependence of the Curie temperature on the spin value is defined by the factor (Sµ+1)/Sµ.

The classical limit can be obtained by letting Sµ → ∞ in Eqs. (3.27) and (3.30). Factor
(Sµ + 1)/Sµ in Eq. (3.30) becomes in this case unity. The temperature dependence of the
magnetization can be calculated using the Eq. (3.29) which is reduced to Langevin function
for Sµ = ∞

〈ez
µ〉 = L

({
1
N

∑
q,ν

Lµν(q)
1

eβων(q) − 1
Rµν(q)

}−1)
(3.31)

where L(x) = coth(x)−1/x is the Langevin function and eµ is the angular momentum vector
of size one.



Chapter 4

Heusler Alloys: Experimental and

Theoretical Background

4.1 Introduction

The discovery of Heusler alloys dates back to 1903 when Heusler reported that the addition
of sp elements (Al, In, Sn, Sb or Bi) turn Cu-Mn alloy into a ferromagnetic material even
though the alloy contains none of the ferromagnetic elements [37]. The basic understanding of
crystal structure and composition of these alloys remained unknown for a long time. In 1929
X-ray measurements of Potter [38] on Cu-Mn-Al alloy revealed that all constituents of this
system was ordered on an fcc super lattice. Bradley and Rodgers [39] investigated Cu-Mn-Al
system in detail using X-ray and anomalous scattering. The authors established a relationship
between composition, chemical order and magnetic properties. After complete understanding
of crystal structure numerous investigations were made. It is found that the Heusler structure
is formed essentially from the ordered combination of two binary B2 compounds XY and XZ.
Both compounds may have the CsCl type crystal structure, for instance CoMn and CoAl yield
Co2MnAl. Thus the ability of compounds to form B2 structure indicates the possibility of
forming new Heusler compounds. It was also discovered that it is possible to leave one of the
four sublattices unoccupied (C1b structure). The latter compounds are often called half- or
semi-Heusler alloys, while the L21 compounds are referred to as full-Heusler alloys. Extensive
experimental studies showed that the majority of Heusler compounds order ferromagnetically
in stoichiometric composition. Crystal structure, composition and heat treatment were found
to be important parameters for determining magnetic properties.

With the discovery of half-metallic ferromagnetism in NiMnSb and the observation of
shape memory effect in Ni2MnGa compound, Heusler alloys received tremendous experimen-
tal and theoretical interest. In this chapter we will briefly present the previous experimental
and theoretical studies on structural and magnetic properties of Heusler alloys. Also, an
overview of the experimental and theoretical studies on exchange coupling will be given.

33
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Figure 4.1: (a) C1b and L21 structures adapted by the half- and full-Heusler alloys. The lattice is
consisted of 4 interpenetrating f.c.c. lattices. In the case of the half-Heusler alloys (XYZ) one of the
four sublattices is vacant. Note also that if all atoms were identical, the lattice would be simply the
bcc. (b) Three possible configuration of the occupation of Y and Z sublattices in B2-type disordered
structure.

4.2 Structural properties

Heusler alloys are defined as the ternary intermetallic compounds. At the stoichiometric
composition, full Heusler alloys (X2YZ) and semi Heusler alloys (XYZ) crystallize in L21 and
C1b structures (see figure4.1), respectively. The elements normally associated with the X, Y
and Z are indicated in table1. The unit cell consists of four interpenetrating fcc sublattices
with the positions (000) and (1

2 , 1
2 , 1

2) for X, (1
4 , 1

4 , 1
4) for Y and (3

4 , 3
4 , 3

4) for Z atom. The
site (1

2 , 1
2 , 1

2) is vacant in semi Heusler compounds. The two structures are closely related
with vacant cite. C1b structure can be obtained from L21 one by replacing the half of the
X sites in an ordered manner. Consequently, the structure no longer centro-symmetric. In
majority of the Heusler alloys Mn element enters as the Y element. The compounds where
Mn assumes the X positions are very rare. Up to now, only two systems of this type were
studied experimentally: Mn2VAl [40] and Mn2VGa [41].

At the stoichiometric composition, disorder can exist in the form of partial interchange of
atoms in different sublattices. Johnston and Hall [42] proposed a single disordering parameter
α to describe the effects of certain types of preferential disorder on the structure amplitudes
of alloys of the type X2YZ. For alloys ordered in L21 structure α is defined as the fraction of
either Y or Z atoms being not on their correct sites. Partial occupation of Y and Z atoms
on each others sublattices leads to L21-B2 type disorder. B2-type structure can be obtained
by allowing half of the Y and Z atoms interchange their positions. The ratio of the L21/B2
depends on the heat treatments. Due to smaller interatomic distances in B2-type structure,
an antiferromagnetic ordering becomes energetically favorable.
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4.2.1 Martensitic phase transitions

At low temperatures several Heusler alloys, e.g. Ni2MnGa, Co2NbSn etc., undergo a marten-
sitic transition from a highly symmetric cubic austenitic to a low symmetry martensitic phase.
Unlike atomic order-disorder transitions a martensitic transition is caused by non-diffusional
cooperative movement of the atoms in the crystal [43]. It has been suggested that these
transitions were driven by a band Jahn Teller mechanism [44] and there has not been any ex-
perimental evidence to confirm this conjecture for a long time. Recently the suggested model
was confirmed by polarized neutron scattering experiments, where the transfer of magnetic
moment from Mn to Ni was found in the martensitic phase of Ni2MnGa [45, 46].

In the case when the Heusler alloys are magnetic in the martensitic phase, they can exhibit
the magnetic shape memory effect (MSM). This occurs especially when the Y constituent is
Mn, but other transition elements are also possible. In these alloys, an external magnetic
field can induce large strains when applied in the martensitic state. Extensive experimental
and theoretical investigations of the martensitic phase transition in the ferromagnet Ni2MnGa
have been made. This compound transforms martensitically at 202 K to a tetragonal structure
below. There is a modulation of the (110) atomic planes with a periodicity of five atomic
layers [50]. The transition is accompanied by a strong soft mode behavior in the transverse
acoustic phonon branch with q along the [110] direction and polarization along [1-10] in the
high-temperature phase. Below the transition the system becomes magnetically anisotropic.
In the martensitic phase of Ni2MnGa an applied field of about 1 T can induce strains as
large as 10% [47, 48]. The field induced strain is due to the reorientation of the tetragonal
martensite variants by twin boundary motion [49].

4.3 Magnetic properties

Heusler alloys possess very interesting magnetic properties. One can study in the same fam-
ily of alloys a series of interesting diverse magnetic phenomena like itinerant and localized
magnetism, antiferromagnetism, helimagnetism, Pauli paramagnetism or heavy-fermionic be-
havior [50, 51, 52, 53].

4.3.1 Ferromagnets

The majority of the Heusler alloys order ferromagnetically and saturate in weak applied
magnetic fields. If the magnetic moment is carried by Mn atoms, as it often is in the alloys
X2MnZ, a value close to 4µB is usually observed. Although they are metals, these compounds
have localized magnetic properties and are ideal model systems for studying the effects of
both atomic disorder and changes in the electron concentration on magnetic properties.

In order to reveal the role of the 3d (X) and sp (Z) atoms on magnetic properties of
Heusler alloys extensive magnetic and other measurements have been performed on qua-
ternary Heusler alloys [50]. It has been shown that sp electron concentration is primarily
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Table 4.1: Composition, magnetic order and crystal structure of Heusler alloys. The experimental
information is taken from the reference [50].

Y X Z Magnetic order Crystal structure

V Mn Al, Ga FM* L21

Fe Al, Ga FM L21

Fe Si PM L21

Co Al, Ga, Sn FM L21

Cr Co Al, Ga FM L21

Fe Al, Ga FM L21

Mn Cu Al, In, Sn FM L21

Cu Sb AFM C1b

Ni Al AFM B2
Ni Sb FM C1b

Ni Al, Ga, In, Sn, Sb FM L21

Co Al, Si, Ga, Ge, Sn FM L21

Co Sb FM* C1b

Fe Al, Si FM L21

Pd Al AFM B2
Pd In AFM L21-B2
Pd Ge, Sn, Sb FM L21

Pd Sb FM C1b

Pd Te AFM C1b

Rh Al, Ga, In FM B2
Rh Ge, Sn, Pb FM L21

Rh Sb FM C1b

Ru Ga FM C1b

Au Zn, Cu AFM B2
Au Al, Ga, In AFM L21

Au Sb FM C1b

Pt Al, Ga AFM L21

Pt Ga FM C1b

Ir Al AFM L21

Ir Ga AFM C1b

Fe Fe Al, Si FM D03

Co Al, Si, Ga FM L21

Co Fe Ga FM L21

Ni Fe Al, Ga PM L21

FM*:Ferrimagnetic
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important in establishing magnetic properties, influencing both the magnetic moment forma-
tion and the type of the magnetic order.

In table 4.1 we present magnetic Heusler alloys containing 3d transition metals (V, Cr,
Mn, Fe, Co, Ni) as the Y site and 3d, 4d and 5d elements as the X site.

4.3.2 Antiferromagnets and ferrimagnets

Although the majority of Heusler alloys are ferromagnetic some of them order antiferro-
magnetically, in particular those compounds containing 3d element in which the magnetic
moment is only carried by Mn atoms at Y site. Experimentally antiferromagnetic order is
measured both in semi Heusler(in C1b structure) and in full Heusler alloys (in L21 and B2
structure). Antiferromagnetism is more favorable in full Heusler alloys which has B2-type
crystal structure due to smaller interatomic Mn-Mn distances. Indeed, antiferromagnetic be-
havior in several B2-type disordered X2MnZ (X=Ni, Pd; Z=Al, In) Heusler alloys has been
reported [50].

The situation is different in semi Heusler alloys. Due to large Mn-Mn distances in C1b

structure the antiferromagnetic interaction between Mn atoms is assumed to be mediated
intermediate atoms (X or Z).

Ferrimagnetic ordering (antiferromagnetic coupling of X and Y atoms) is very rare in
Heusler alloys compared to ferromagnetic or antiferromagnetic one. Ferrimagnetism has been
detected [50] only in CoMnSb, Mn2VAl and Mn2VGa compounds. Mn2VAl received much
experimental attention. The neutron diffraction experiment gave the ferrimagnetic state of
compound with Mn magnetic moment of 1.5± 0.3µB and V moment −0.9µB [40].

4.3.3 Localized versus itinerant magnetism

Metals exhibiting local moment behavior are usually alloys and they are classified as dis-
ordered and ordered systems. Disordered alloys like Fe impurities in Cu or Ag have been
intensively studied during the last four decades and a variety of magnetic behavior has been
observed. Heusler alloys fall into the category of ordered systems. In these systems atoms car-
rying the magnetic moments are separated by other (usually non-magnetic) atoms and they
are believed to carry well-defined local moments. The manganese moment, which is usually
close to 4µB, remains fixed in amplitude when going from the ordered to the paramagnetic
state. The formation of local moments in Heusler alloys will be discussed below.

A qualitative evidence for the localized magnetic behavior can be obtained by comparing
ground state magnetic moment p0 with that extracted from the slope of the Curie-Weiss
reciprocal susceptibility curve, i.e., peff =

√
p(p + 2µB). A ratio p/p0 ∼ 1 is expected for

localized systems whereas for itinerant magnetism a ratio greater than 1 is expected. This
allows one to analyze different mechanism for magnetic order. Indeed, a ratio close to one is
obtained in several Heusler alloys [50] which reveals the nature of magnetism in these systems
at least roughly.
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The most direct quantitative evidence for localized magnetic behavior is provided by neu-
tron scattering data. Measurements on Pd2MnSn, Ni2MnSn, Cu2MnAl and Pd2MnIn1−xSnx

Heusler compounds have been performed in order to study collective excitations [54, 55]. In
all systems well defined spin waves were observed in the entire Brillouin zone below the Curie
temperature Tc and highest energy at the zone boundary was approximately 1-2Tc. Stoner
excitations are well separated in energy from the collective excitations (spin waves) due to
large exchange splitting 4 (4 ∼ 1−2 eV ) and thus they can be neglected in consideration of
thermodynamic properties. Also, measurements in the paramagnetic phase have established
the absence of spatial magnetic correlations (spin waves), and have shown the value of atomic
moment to be in agreement with that obtained from static susceptibility measurements.

However, the situation is different for those systems in which the moment is associated
with the X atoms or both the X and Y atoms (Co2MnZ or Mn2VAl). For such compounds
the magnetic atoms are close enough for significant overlap of the d wave function to occur
and there is then a tendency towards itinerant behavior [50, 51]. Hence Stoner excitations
may be important.

4.4 Band structure calculations

The band structure calculations of Heusler alloys has been initiated by Ishida et al., in the
early eighties. The authors used non-self-consistent spherical augmented plane wave method
(SAPW) to study electronic structure of Ni2MnSn, Pd2MnSn [56] and Cu2MnAl [57]. In
1983 Kübler et. al., gave a detailed study on the formation and coupling of the magnetic
moments in several Heusler alloys using self-consistent augmented spherical wave method
(ASW). At the same year de Groot et al., [59] discovered the half-metallic ferromagnetism
in semi Heusler compounds NiMnSb and PtMnSb. Since then much effort has been devoted
to the study of electronic and magnetic properties of these systems on the basis of band
structure calculations.

4.4.1 Formation of local moments

The mechanisms of magnetic moment localization in transition metals and their alloys is one
of the most interesting problems in modern magnetism. The origin of ferromagnetic behav-
ior in Heusler alloys is rather complicated. The picture that emerged from the systematic
calculations of Kübler et. al. for the microscopic mechanism responsible for the formation of
magnetic moments in these systems is that the magnetization is very much confined to the
Mn atoms [58]. The localized character of the magnetic moment results from the fact that
the large exchange splitting of the Mn d states implies that Mn atoms support d states of
only one spin direction. In the ferromagnetic state the spin-up d electrons of the Mn atom
hybridize with those of the X atoms in forming a common d band, but spin-down d electrons
are almost completely excluded from the Mn sites. Thus we are left with the completely
localized magnetic moments composed of completely itinerant electrons. In figure 4.2 we
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Figure 4.2: Left panel: Localized magnetic moments from delocalized electrons. Schematic diagram
of up-spin and down-spin d electrons in Heusler alloys (X2MnZ) [58]. Right panel: The corresponding
non-schematic site and spin projected d electron density of states for Cu2MnIn.

present the physical picture that is just described. The same discussion is also valid for semi
Heusler alloys (see next section).

Using the calculated total energies, it was possible to compare the relative stability of
various magnetic phases (ferromagnetic one and two different antiferromagnetic ones) for a
number of Heusler compounds [58]. Indeed, the magnetic moments of Mn atoms were found to
be practically insensitive to the type of magnetic ordering. This behavior is obviously related
to the localized nature of magnetism in these systems. Kübler et al., also proposed that in
full Heusler compounds, X2MnZ, X atoms (e.g., Cu, Ni, Pd) serve primarily to determine the
lattice constant, while Z atoms (Al, In, Sb) mediate the interaction between the Mn d states.
However, experiments, particularly on quaternary systems have demonstrated that both X
and Z atoms play similar role in establishing the magnetic properties [60, 61]. Furthermore,
the magnetic properties are primarily determined by the conduction electron concentration.

4.4.2 Half-metallic ferromagnetism

The concept of half-metallic ferromagnetism was introduced by de Groot et. al., on the basis
of band structure calculations in NiMnSb and PtMnSb semi Heusler compounds [59]. In
these materials one of the spin subbands (usually majority spin band) is metallic, whereas
the Fermi level falls into a gap of the other subband (see Fig. 4.3). Ishida et al. have proposed
that also the full-Heusler alloys of the type Co2MnZ, (Z=Si,Ge), are half-metals [62]. Since
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then a number of further systems were predicted to be half-metallic. Among them are the
binary magnetic oxides (CrO2 and Fe3O4), colossal magnetoresistance materials (Sr2FeMoO6

and La0.7Sr0.3MnO3) [63], diluted magnetic semiconductors (Ga1−xMnxAs) and zinc-blende
compounds MnAs and CrAs [64, 65, 66]. The origin of the appearance of half-metallic gap
Heusler compounds will be discussed in detail in the following subsection.

• Origin of the half-metallic gap

The half-metallic ferromagnetism of semi Heusler alloys is intimately connected to their
special so-called C1b crystal structure and consequently the symmetry of the system. Due to
a vacant site at the position (1

2
1
2

1
2) in the C1b crystal structure the symmetry of the systems

is reduced to tetrahedral from the cubic in the case of L21–type full Heusler alloys. Thus
the gap originates from the strong hybridization between the d states of the higher valent
and the lower valent transition metal atoms [67]. This is shown schematically in figure 4.4.
All Mn atoms are surrounded by six Z (Z is usually Sb) nearest neighbors (for the Mn atom
at the (000) these neighbors are at (1

200), (01
20), (001

2), (−1
200), (0 − 1

20) and (001
2)). As

a result the interaction of Mn with the Z-p states splits the Mn-3d states into a low-lying
triplet of t2g states (dxy, dxz and a higher lying doublet of eg states (dx2−y2 , d3z2−r2). The
splitting is partly due to the different electrostatic repulsion, which is strongest for the eg

states which directly point at the Z atoms. In the majority band the Mn 3d states are shifted
to lower energies and form a common 3d band with X (X=Ni, Co) 3d states, while in the
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Figure 4.4: Schematic illustration of the
origin of the gap in the minority band in
semi-Heusler alloys [67].

minority band the Mn 3d states are shifted to higher energies and are unoccupied, so that a
band gap at EF is formed, separating the occupied d bonding states from the unoccupied d
antibonding states (see figure). Thus NiMnSb is a half-metal with a gap at EF in minority
band and a metallic DOS at the fermi level in majority band.

The calculated total magnetic moment is 4 µB per unit cell and mostly located in Mn
atom. NiMnSb has 22 valance electrons per unit cell, 10 from Ni, 7 from Mn and 5 from
Sb. Because of the gap at EF , in the minority band exactly 9 bands are fully occupied (
1 Sb-like s band, 3 Sb-like p bands and 5 Ni-like d bands) and remaining 13 electrons are
accommodated in majority band resulting a magnetic moment of 13-9=4 µB per unit cell.
Note that semi Heusler alloys like CoTiSb with 18 valence electrons shows semiconducting
behavior.

It should be noted that the half-metallic character of semi Heusler compounds is highly
sensitive to the crystal structure and symmetry e.g., the cubic point symmetry at Mn sites in
ordinary X2MnZ Heusler alloys gives rise to a symmetry of Mn-3d -t2g states that is different
from the symmetry of the Sb-p states. Hence, these states do not hybridize, so that no gap
is opened in the minority spin band. The appearance of half-metallic ferromagnetism in full
Heusler alloys is a subtle issue and explanation of it is very complicated. Recently Galanakis
et. al. discussed this problem in detail [68].

• Slater-Pauling behavior

The total moment of the half-metallic semi- and full-Heusler alloys follows the simple rule:
Mt = Zt−18 and Mt = Zt−24 where Zt is the total number of valence electrons [67, 68]. The
total number of electrons Zt is given by the sum of the number of spin–up and spin–down
electrons, while the total moment Mt is given by the difference Zt = N↑+N↓ , Mt = N↑−N↓.
Since 9 (12) minority bands of semi (full) Heusler alloys are fully occupied, a simple rule of
18 (24) is obtained for half-metallicity in C1b–type (L21) Heusler alloys.

This is analogues to the well-known Slater-Pauling behavior of the binary transition metal
alloys [69]. The difference with respect to these alloys is, that in the half-Heusler alloys the
minority population is fixed to 9 and 12, so that the screening is achieved by filling the
majority band, while in the transition metal alloys the majority band is filled with 5 d -states
or completely empty and charge neutrality is achieved by filling the minority or majority
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represents the Slater-Pauling behavior. Open circles indicates the compounds deviating from the SP
curve [67]. Right panel: The same for the full Heusler alloys [68].

states. Therefore in the TM alloys the total moment is given by Mt = 10−Zt for the systems
on the left side and Mt = Zt for the systems on the right side of the Slater-Pauling curve.

For the half-metallic zinc-blende compounds like CrAs the rule is: Mt = Zt − 8, since
the minority As-like valence bands accommodate 4 electrons [70]. In all cases the moments
are integer. In Fig. 4.5 we have gathered the calculated total spin magnetic moments for
both Heusler alloys which we have plotted as a function of the total number of valence
electrons. The dashed line represents the rule Mt = Zt − 18 (Mt = Zt − 24) obeyed by these
compounds. The total moment Mt is an integer quantity, assuming the values 0, 1, 2, 3, 4
and 5 if Zt = 18. In the case of full Heusler alloys (Zt = 24) Mt can also take -2, -1 and 6.
The value 0 corresponds to the semiconducting phase.

4.5 Exchange coupling: An overview

In view of the large separation of the Mn atoms (> 4 Å) and available inelastic neutron scat-
tering experiments in Heusler alloys, the electrons of the unfilled Mn 3d shell can presumably
be treated as very well localized, so that the 3d electrons belonging to different Mn atoms
do not overlap considerably. The ferromagnetism in these systems is thought to arise from
an indirect interaction, by way of conduction electrons, between the Mn moments. The first
important information on the exchange coupling in these systems is provided by the inelastic
neutron scattering experiments of Noda and Ishikawa in the late seventies [54]. The authors
measured the spin wave spectra of Ni2MnSn and Pd2MnSn for various directions in the Bril-
louin zone and analyzed the results within the Heisenberg model. The obtained results for
the exchange parameters were in good agreement with the assumption of indirect exchange
coupling in Heusler alloys. Indeed, the pattern of exchange interactions was oscillatory and
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long range reaching beyond the eight nearest neighborhood distance.
This behavior of exchange interactions has been taken as an evidence for Friedel oscillations

and the results have been interpreted using either an RKKY model

JR = −9πn2I2

8EF

cos(2kF R)
(kF R)3

(4.1)

or Hartree-Fock treatment of double resonance model

JR = − 25
4S

EF sin2 φ−
cos(2kF R− 2φ−)

(kF R)3
(4.2)

where n is the number of conduction electrons, I is the s-d exchange constant, EF and kF

are Fermi energy and wave vector, respectively, and φ− is the phase shift of the scattered
wave function of the down spin electrons of the Mn atoms. φ− is given by

φ− =
π

5
(5− nB) (4.3)

where nB is the Mn magnetic moment divided by mB.
Although both models gave good agreement with experiments for the exchange interac-

tions at large distances, they were unable to account for either the sign and magnitude of
the nearest and next nearest neighbor exchange parameters. The failure of these models for
close distances was attributed to the involved asymptotic approximations. Price, however,
showed that double resonance model unrestricted by any asymptotic approximation was able
to capture qualitative features of the observed spin wave spectra in Pd2MnSn [71]. Malm-
ström and Geldart discussed the effect of the finite spin distribution on the RKKY interaction
between the Mn moments [72]. The authors showed that, in spite of simplified treatment
of electron band structure, finite spin distribution could bring the calculated values of the
exchange interactions into agreement with that determined for the Ni2MnSn and Pd2MnSn
compounds from the experimental studies. Reitz and Stearns, in addition to indirect s-d
coupling, proposed two more coupling mechanisms to achieve agreement with experimental
data: d-d exchange between itinerant and localized d electrons and super exchange via the
Z atoms [73]. This model was capable of accounting for a wide range of properties in many
different compounds because of the arbitrary adjustable parameters in latter mechanisms.

It is worth to note that all these model Hamiltonian approaches have certain advantageous
and disadvantageous. The most prominent useful feature of them is that they provide a qual-
itative physical picture of magnetic interactions and reveal different intrinsic parameters for
the mediation of exchange interactions between Mn atoms such as the number of conduction
electrons, their polarization and finite spin distribution around Mn atoms. On the other
hand, the main drawback of such approaches become obvious when one tries to predict the
properties of new systems. This is mostly due to large number of arbitrary parameters and
the use of simplified band structure model. Complete information on the magnetic interac-
tions in solids can be, in principle, obtained from the solution of the Schrödinger equation as
discussed in the preceding chapters.
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The first quantitative study of the exchange interactions in Heusler alloys is given by
Kübler et al., within parameter free density functional theory [58]. The authors proposed a
mechanism of super exchange type via the diamagnetic group III-V elements responsible for
the Mn-Mn coupling. The calculation of the Mn-Mn exchange parameters is based on the
comparison of the ferromagnetic and antiferromagnetic configurations of the Mn moments
within the super cell relying on the Heisenberg model with localized moments. Although this
approach works very well for systems with short range exchange interactions, i.e, interactions
do not reach beyond the second nearest neighborhood (since in this case exchange parameters
can be easily obtained from few magnetic configurations with the use of small super-cells),
the situation is very different for systems with long range exchange coupling. In this case one
needs large super cells and quite large number of magnetic configurations to extract all ex-
change parameters which obviously makes calculations very complicated and very expensive.
This is also why Kübler et al., reported only first two nearest neighbor exchange parame-
ter in Heusler alloys, although they are known to be quite long range from experiments. It
should be, however, noted that, in principle the obtained exchange parameters from simple
calculations appear as the sum of all parameters if they are long range. Furthermore, within
this method one can exactly get on-site exchange parameter J0 =

∑
R J0R, but this does not

provide any information about the distribution of exchange parameters. Among the further
findings of the Kübler et al., is the absence of the considerable direct overlap of Mn 3d wave
functions in Heusler alloys. The discussion is based on the comparison of the density of states
for ferromagnetic and antiferromagnetic configurations.

Consequently, although the calculations of Kübler et al., were an important step, however
they were not able to explain the observed spin wave spectra of Heusler alloys. The most
quantitative treatment of the exchange interactions in ferromagnets became possible after
the implementation of the non-collinear magnetism in modern electronic structure codes.
Developments in this field yields reliable and efficient calculation of exchange interactions up
to the arbitrary distance from a magnetic atom in the crystal.

Coming back to the discussion of microscopic mechanisms for indirect exchange coupling
in Heusler alloys we see on the the basis of model Hamiltonian approaches that two main
points are central to understand them: conduction electrons and their spin polarization.
Since the problem of interaction between local moments is rather closely connected with the
problem of conduction electron polarization around a magnetic moment. To clarify this issue
it is important to obtain information on the conduction electron spin polarization, and im-
portant information in this regard is provided by measurement and analysis of the hyperfine
fields in non-magnetic sites (X,Z) in several Heusler alloys. The strength of the transferred
hyperfine fields correlates with the amplitude of the s conduction electron polarization. In-
deed measurements by Campbell and Khoi et al., shoved that maximum conduction electron
polarization is found in the systems with high Curie temperatures such as Cu2MnAl and
Cu2MnIn [74, 75].

However, hyperfine fields are only sensitive to the s electron polarization and do not
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say anything about the polarization of p electrons which are dominated in Heusler alloys
and expected to play the same role as s electrons. To probe the whole conduction electron
polarization we have to resort to another method. Compton scattering profiles are proved
to be quite useful tool in this respect. Indeed, using this method, recent measurements of
Zukowski et al., on Cu2MnAl gave a large sp electron polarization which is antiferromagneti-
cally coupled to Mn moment [76]. Also similar result is obtained for Ni2MnSn by Deb et al.,
[77].



Part II

Results of Calculations
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Chapter 5

Exchange Mechanisms in Heusler

Alloys

5.1 Introduction

As we have seen in preceding chapter Heusler alloys exhibit very rich magnetic behavior. One
can study in the same family of alloys a series of interesting diverse magnetic phenomena like
itinerant and localized magnetism, antiferromagnetism, helimagnetism, or non-collinear mag-
netism. This diverse magnetic behavior reflects the complex nature of exchange interactions
in these systems. Depending on the number of magnetic atoms within the unit cell there
can be several exchange mechanisms which coexist and are mixed together. For instance in
some Mn-based systems where the total magnetic moment is confined to Mn sublattice an
indirect exchange mechanism seems most probable due to large distance between Mn mag-
netic moments. Indeed, for these systems early model Hamiltonian based studies assuming
an indirect exchange coupling (s-d) between the Mn atoms via conduction electrons provided
a qualitative information on the nature of magnetism. On the other hand, we know that
in several full Heusler alloys (X2MnZ; X = Fe, Co, Ni, Rh) X atoms also carry a substan-
tial magnetic moment. In this case things get more complicated since there will be many
exchange interactions between different magnetic atoms each of which will contribute to the
formation of the magnetic state in a cooperative manner. For example, magnetic properties
of quaternary Heusler alloys NiCoMnSb with three different magnetic atoms within the unit
cell is governed by at least six different exchange interactions.

Our objective in this chapter as well as in the following chapters is a comprehensive
study of exchange interactions and Curie temperature in both families of Heusler alloys. The
calculational methods both for the exchange interactions and finite temperature properties
are introduced in chapters 2 and 3, respectively. An overview of the previous experimental
and theoretical studies on these materials is given in chapter 4. For a general discussion it is
convenient to divide Heusler alloys into two groups. First group contains the systems with
one magnetic atom per unit cell. Almost all semi Heusler alloys as well as some Mn-based
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full Heusler alloys enter this group. Compounds with more than one magnetic atom per unit
cell are included in the second group. The magnetism of the systems within the first group is
relatively easy to understand but still very interesting since they present a diverse magnetic
behavior as mentioned above. On the basis of available experimental information and early
model Hamiltonian calculations an indirect exchange coupling mechanism is proposed for
the first group of systems. This model is also supported by parameter-free first-principles
calculations of Kübler et al [58]. However, the situation is not so easy for the compounds in
the second group. Thus, the understanding of magnetism in these systems constitutes one of
the aims of the present thesis.

Our extensive investigations on the second group of systems showed that the magnetism
in these systems is rather complicated. First, due to Friedel oscillations there is always
an indirect exchange interaction among the magnetic atoms, which strongly depends on
conduction electron concentration. Second, because of the small distances between Mn and
X atoms there is also a considerable overlap of 3d wave functions of these atoms (direct
exchange). This interaction can be ferromagnetic or antiferromagnetic depending on the
filling of the 3d orbitals of the atoms. Co2MnZ and Mn2VZ compounds which will be studied
in the next chapter are the best examples for the former and latter case, respectively. Another
distinct feature of this interaction is that it strongly depends on the value of the magnetic
moment of the X atom. For small values of the X magnetic moment (0.1-0.3 µB) this
interaction plays a secondary role while it becomes extremely important with increasing
X moment. The former case will be illustrated by the example of Ni2MnZ compounds in
the following section. Intermediate and large X moment limits will be considered in the next
chapter.

In section 5.2 we discuss magnetism of the systems within the second group of alloys
considering experimentally well known Ni2MnZ compounds. Section 5.3 is devoted to a
detailed study on the role of the conduction electrons in mediating exchange interactions
between Mn atoms both in semi- and full-Heusler alloys from the first group. Many of the
systems investigated in this thesis show half-metallic character. Due to the vital importance
of these systems for spintronics applications the results for them are presented in a separate
chapter (chapter 6).

5.2 Ni2MnZ (Z = Ga, In, Sn, Sb) compounds

Recently these Ni-based Heusler alloys received tremendous experimental and theoretical in-
terest because of the two unique properties that they exhibit: Shape memory effect and
inverse magnetocaloric effect. In the preceding chapter we introduced shape memory effect.
Shape memory alloys are promising materials for future applications. They can be used as
sensors and actuators in different fields. The currently used materials (e.g. NiTi, CuAlNi
alloys) use the temperature as a parameter to trigger the shape change. However, in fer-
romagnetic shape memory alloys magnetic field plays the same role as temperature. Thus,
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Table 5.1: Experimental lattice parameters, magnetic moments (in µB) and mean-field estimation of
the Curie temperatures for Ni2MnZ (Z = Ga, In, Sn, Sb). Lattice parameters and the experimental
Curie temperature values are taken from Ref.[50]

Compound a(Å) Mn Ni Z Cell MFA[Mn-Mn] MFA[all] Exp.

Ni2MnGa 5.825 3.570 0.294 -0.068 4.090 302 389 380
3.43a 0.36a -0.04a 4.11a

4.17b

Ni2MnIn 6.069 3.719 0.277 -0.066 4.208 244 343 315
Ni2MnSn 6.053 3.724 0.206 -0.057 4.080 323 358 360

3.53c 0.24c -0.03c 4.08c

Ni2MnSb 6.004 3.696 0.143 -0.033 3.950 343 352 365

aRef.[85]
bRef.[86] (Exp.)
cRef.[87]

switching process can be made much faster and better controlled compared to conventional
shape memory alloys. Among the ferromagnetic shape memory alloys Ni2MnGa is the most
studied one, it undergoes a magnetic phase transition at around 370 K and a martensitic
phase transition at approximately 200 K. At the martensitic phase of Ni2MnGa an applied
field of about 1 T can induce strains as large as 10% [47, 48].

The inverse magnetocaloric effect (MCE) has its origin in a martensitic phase transforma-
tion that modifies the exchange interactions due to the change in the lattice parameters. For
samples with compositions close to Ni2MnZ (Z = Ga, Sn) stoichiometry an inverse MCE has
been reported. This is an extrinsic effect arising from the coupling at the mesoscale between
the martensitic and magnetic domains [78]. Applying a magnetic field adiabatically, rather
than removing it as in ordinary MCE, causes the sample to cool. This is very important
for room temperature refrigeration as an environment-friendly alternative to conventional
vapor-cycle refrigeration. This has prompted intensive research in this field [79, 80, 81, 82].

In spite of substantial theoretical and experimental research aimed at understanding these
two mechanisms, the study of exchange interactions in these systems received less attention.
It is worth to note that the second effect (inverse MCE) is closely related to the distance
dependence of the exchange interactions in these systems [82]. Recently Enkovaara et al
studied the spin-spirals in Ni2MnZ (Z = Al, Ga) and estimated Curie temperature from the
calculated dispersions [83]. The authors showed that the Ni sublattice plays important role
in the magnetic properties of the systems.

The main purpose of the present section is a detailed study of the exchange interactions
in these systems. In particular we report a systematic study of the exchange interaction
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Figure 5.1: The parameters of the
Mn-Mn (intra-sublattice) exchange
interactions and Mn-Ni (inter-
sublattice) exchange interactions in
Ni2MnZ (Z = Ga, In, Sn, Sb). The
distances are given in the units of the
lattice constant. The significance
of the oscillations of the exchange
parameters is verified by varying
the q mesh in the frozen-magnon
calculations.

between atoms of different sublattices and show that pattern of exchange interactions in
these systems deviates strongly from the physical picture that can be expected on the basis
of the experimental information available. Indeed common crystal structure, similar chemical
composition and close experimental values of the Curie temperature make the assumption
natural that the exchange interactions in these systems are similar. Our study shows, however,
that this assumption is not correct [84]. The exchange interactions vary strongly depending
on the Z constituent. In particular, the inter-sublattice interactions change strongly from
system to system. We show that different exchange interactions lead, in agreement with
experiment, to similar values of the Curie temperatures. We analyze the relation between
the properties of the exchange interactions and the Curie temperatures.

• Magnetic moments and exchange parameters

In Table 5.1 we present calculated magnetic moments. For comparison, the available experi-
mental values of the moments and the results of previous calculations are presented. Relative
variation of the Mn moment is small. On the other hand, the moment of Ni and Z atoms
show strong relative variation and are in Ni2MnSb about two times smaller than in Ni2MnGa
or Ni2MnIn. The values of the magnetic moments are in good agrement with the results of
previous calculations.

The calculated Heisenberg exchange parameters are presented in Fig. 5.1. As mentioned in
the introduction, the assumption that the closeness of the experimental Curie temperatures
is the consequence of the similarity of the exchange interactions is not confirmed by the
calculations. We obtain strong dependence of the exchange interactions on the type of the Z
atom. For Z = Ga and Z = In that belong to the same column of the Mendellev’s table (see
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inset in Fig. 5.2) we obtain similar pattern of Heisenberg exchange parameters. On the other
hand, for Z atoms belonging to different columns the changes in the exchange interactions are
very strong (Fig. 5.1). These changes concern both the Mn-Mn intra-sublattice interactions
and the Ni-Mn inter-sublattice interaction.

Considering the Mn-Mn interactions we notice that in Ni2MnGa and Ni2MnIn the inter-
action with the coordination spheres from the first to the forth is positive. The interaction
with the first coordination sphere is weaker than with the following ones. The interaction
with the fifth sphere is very small. The interaction with the 6th sphere is negative. The
interaction with further coordination spheres is very weak.

In Ni2MnSn the interaction with the first sphere strongly increases compared with Ni2MnGa
and Ni2MnIn. On the other hand, the interaction with the third sphere becomes small. The
interaction with the forth sphere is strongly negative. The interaction with further neighbors
are weak.

The trend observed in transition from Ni2MnGa and Ni2MnIn to Ni2MnSn becomes even
stronger in the case of Z = Sb. Here the interaction with the first neighbor increases further
and is the only strong exchange interaction between the Mn atoms.

The inter-sublattice Mn-Ni interaction behaves very differently. A sizable direct interac-
tion takes place only between nearest neighbors. This interaction is very strong in Ni2MnGa
and Ni2MnIn and quickly decreases for Z = Sn and, especially, Z = Sb.

In spite of substantial experimental works on the structural and magnetic properties
of Heusler alloys the information for the exchange interactions is very limited. Noda and
Ishikawa [54] measured the spin wave spectra of Ni2MnSn and Pd2MnSn for various direc-
tions in the Brillouin zone and analyzed the results within the Heisenberg model. They found
an long range and oscillatory character for the exchange interactions. Especially these os-
cillations were reaching beyond the the eight nearest neighbor distance in both compounds.
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Figure 5.3: Band structure of Ni2MnZ along the high symmetry line (Γ-X).

Interestingly, we obtained a very similar pattern of exchange parameters for Ni2MnSn. Com-
bining our theoretical findings with experimental results of Noda and Ishikawa we can draw
a rough conclusion that exchange coupling in Mn-based Heusler alloys is indirect via the con-
duction electrons. A detailed analysis for the role of the conduction electrons in mediating
exchange interactions will be given in the next section.

• Frozen-magnon energies and band structure

To reveal the physical origin of the strong difference in the exchange parameters of these
systems we plot in Fig. 5.2 the frozen-magnon energies as a function of wave vector q for
one direction in the Brillouin zone. The energy of the frozen magnon with a given q can be
seen as a result of a complex interaction of the ferromagnetic states separated by vector q
in the reciprocal space [6]. This interaction is stronger if the states have close energies and
weaker for the states separated by a large energy interval. We remind the reader that the
inter-atomic exchange parameters are Fourier transforms of the E(q) functions and therefore
reflect their form. Indeed, E(q) curves for Ni2MnGa and Ni2MnIn are close to each other
that leads to a similar set of interatomic exchange parameters (Fig. 5.1). These curves
deviate strongly from a simple cosinusoid having a maximum at q about 0.6 and a rather
weak variation at q > 0.6. The complexity of E(q) means that several Fourier components
are needed to describe the features of the function. This is reflected in the the Heisenberg’s
parameters of Ni2MnGa and Ni2MnIn.

On the other hand, the E(q) curve of Ni2MnSb is well described by one cosinusoid (Fig.
5.2) that results in a single large Mn-Mn exchange parameter (Fig. 5.1). The E(q) of Ni2MnSn
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assumes an intermediate position from the viewpoint of the complexity of the function. This
property is also reflected in the exchange parameters (Fig. 5.1).

• Density of states and Curie temperature

Note that the character of the q-dependence of the energy illustrated by Fig. 5.2 is a con-
sequence of the properties of the electronic structure of the compounds. Indeed, in Fig. 5.3
we see that the electronic structures of Ni2MnGa and Ni2MnIn are similar. Transition along
the row In-Sn-Sb leads to increasing difference in the electron spectrum. This increasing
difference can be traced back to the change in the number of valence electrons: a Sb atoms
has two more valence electrons than In and one more electron than Sn. As the result an
important difference in the electron structure of the system is a relative shift of the Fermi
level to a higher energy position in the sequence In-Sn-Sb. This shift is clearly seen in the
DOS presented in Fig. 5.4. The positions of the same features of the DOS in different systems
are well described by linear functions with negative angle coefficients. For the Mn peaks all
three lines are almost parallel. This means that the change in the Mn DOS from system to
system can be treated as a rigid shift with respect to the Fermi level. In the case of the Ni-
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DOS the situation is more complicated since, besides the variation of the electron number,
an additional influence on the peak positions is exerted by the variation of the Ni atomic
moment (see Table 5.1).

The E(q) curves determining the Mn-Ni interactions are presented in Fig. 5.2. The form
of the curves is in all cases close to a cosinusoid. Therefore, only one exchange parameter has
sizable value. The strength of the interaction is in correlation with the value of the magnetic
moment of the Ni atoms.

The interatomic exchange parameters are used to evaluate the Curie temperature. If only
the Mn-Mn interactions are taken into account we obtain values shown in Table 5.1. Despite
very strong difference in the Mn-Mn exchange parameters in these systems the difference in
the corresponding Curie temperatures is not very large. The explanation for this result is the
property that in MFA to a one-sublattice ferromagnet the value of the Curie temperature is
determined by the sum of the interatomic exchange interactions J0 =

∑
R6=0 J0R. J0 gives

the average value of E(q) and is less sensitive to the detailed form of the E(q) function.
The comparison of the Curie temperatures calculated with the use of the Mn-Mn ex-

change parameters only with experimental Curie temperatures shows that the agreement
with experiment is not in general good. In the case of Ni2MnGa the error is about 30%.

Account for inter-sublattice interactions improves the agreement with experimental TC

values considerably (Table 5.1). This shows that the Ni moment provides a magnetic degree
of freedom which plays important role in the thermodynamics of the system.

5.3 Role of the conduction electrons in mediating exchange

interactions between Mn atoms

Our studies on experimentally well established Ni-based compounds in the preceding section
revealed a complex character of the magnetism in these systems. In particular, long range and
oscillatory behavior of the exchange interactions as well as their strong dependence on the Z
constituent gave an evidence for the conduction electron mediated exchange interactions in
Heusler alloys. Also, as we have seen in the preceding chapter an indirect exchange coupling
model was used to interpret the observed spin wave spectra of several Heusler alloys. The
first DFT calculations of the exchange interactions by Kübler et al. for a number of full
Heusler alloys gave a strong support for the above indirect exchange coupling model.

To gain further insight into the role of the conduction electrons in exchange coupling
we performed a systematic study on several Mn-based semi- and full Heusler alloys going
beyond the stoichiometric compositions. In particular, we focus on the systems in which
total magnetic moment is confined to Mn sublattice in order to avoid further complexities
due to the additional exchange interactions between different magnetic atoms. These systems
also provide a great simplification in calculations and subsequent interpretation of the results.
Several Heusler compounds of XYZ and X2YZ type satisfy above condition if X element is
chosen from the late transition metals (i.e., Cu, Pd, Ag, Pt, Au). Among them especially Pd-
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Table 5.2: Experimental lattice parameters in XkMnZ ( X = Pd, Cu; k = 1, 2; Z = In, Sn,
Sb, Te) for stoichiometric compositions. The last column gives the lattice constants used
in calculations which are obtained by taking the average of lattice constants in sequence
In-Sn-Sb-Te for experimentally existing compounds.

Compound a[In](Å) a[Sn](Å) a[Sb](Å) a[Te](Å) a[Z](Å)

PdMnZ - - 6.25 6.27 6.26
CuMnZ - - 6.09 - 6.09
Pd2MnZ 6.37 6.38 6.41 - 6.38
Cu2MnZ 6.20 6.17 - - 6.18

and Cu-based stoichiometric full Heusler compounds Pd2MnZ (Z=In, Sn, Sb) and Cu2MnZ
(Z=In, Sn) and non-stoichiometric ones Pd2MnZ1−xZ′x [(Z,Z′)=(In, Sn), (Sn, Sb), (In, Sb)]
and Cu2MnIn1−xSnx received huge experimental interest. Early measurements by Webster
et al. on quaternary full Heusler alloys Pd2MnIn1−xSnx demonstrated the importance of
the conduction electrons in establishing magnetic properties [50]. Recent experiments on
quaternary semi Heusler compounds Ni1−xCuxMnSb and AuMnSn1−xSbx gave even more
interesting results which reveal the decisive role of the conduction electron number in magnetic
order and phase transition temperature TC [88, 89].

We consider Pd and Cu containing Mn-based semi and full Heusler alloys which is ex-
pressed in compact a form as XkMnZ1−mZ′m [X = Pd, Cu; k = 1, 2; (Z, Z′)=(In, Sn), (Sn,
Sb), (Sb, Te); 0 ≤ m ≤ 1]. We use the virtual crystal approximation (VCA) to vary elec-
tron concentration. Half of the considered systems are not studied experimentally and thus
their lattice constants are not known. As it is seen from Table 5.2 one or two compounds
exist experimentally from semi-Heusler compounds and more in the case of full Heusler com-
pounds. Therefore we use only an average lattice constant in the sequence In-Sn-Sn-Te. (see
Table 5.2). This is a good approximation since, as we know from experiments, Heusler al-
loys containing different sp-atoms from the same row of Periodic Table have similar lattice
parameters [50, 51]. Indeed, as it is seen in Table 5.2 the maximum variation of the lattice
parameters from In to Te is less than 1%. An important increase is observed in transition
from 3d to 4d systems due to large size of the 4d atoms.

Going beyond the stoichiometric compositions provided very important information on
the nature of magnetism especially for semi Heusler alloys. For these systems we obtain
a strong dependence of the exchange interactions on the number of the valence electrons.
The systems with the same number of valence electrons, like PdMnSn and CuMnIn, have
qualitatively similar patterns of exchange parameters and, as a result, similar Curie temper-
atures. We find a clear relationship between the strength of the exchange interactions and
the conduction electron polarization. The larger the conduction electron polarization the
stronger the exchange interactions. For zero polarization the calculated Curie temperature
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Figure 5.5: Left panel: Spin-projected atom-resolved density of states of PdMnZ and CuMnZ (Z=In,
Sn, Sb, Te) for stoichiometric compositions. With shaded green color we show the DOS of Z con-
stituent. The broken vertical lines denote the Fermi level. Left panel: The same for full Heusler
compounds Pd2MnZ and Cu2MnZ.

also vanishes. However, the situation is not so evident for full Heusler alloys. We find a
qualitative correlation between conduction electron polarization and Curie temperature but
no relation between the exchange interactions for the systems with same number of valance
electrons like Cu2MnIn and Pd2MnSb. In both families of systems the calculated exchange
parameters are quite long range that indicates an indirect coupling between Mn atoms via
the conduction electrons.

In last part of this section we investigate the role of 3d and 4d atoms in exchange cou-
pling by comparing the results for Ni2MnZ and Pd2MnZ (Z=In, Sn, Sb, Te) for two different
lattice parameters. Our calculations showed that 3d or 4d -atoms have practically no ef-
fect on mediation of the exchange interactions. Magnetism of both systems appeared to be
strongly depending on the Z constituent and conduction electron polarization. For the same
Z constituent we obtain a similar pattern of exchange interactions in the case of almost equal
conduction electron polarizations.

• Density of states and magnetic moments

In Fig. 5.5 we present the atom resolved density of states of XkMnZ ( X = Pd, Cu; k = 1, 2;



5.3. Role of the conduction electrons in mediating exchange
interactions between Mn atoms 57

3.8

4

4.2

4.4
Mn
Cell

Mn
Cell

-0.08

0

0.08

0.16
Pd
Z

Cu
Z

Mn
Cell

4

4.4

4.8
Mn
Cell

-0.12

0

0.12

0.24 Pd
Z

Cu
Z

PdMnZ                    CuMnZ                                            Pd2MnZ                  Cu2MnZ

In        Sn        Sb      Te In       Sn        Sb       Te In        Sn        Sb      Te In       Sn        Sb       Te

(a)                                                                                             (b)

M
ag

ne
ti

c 
 m

om
en

t 
(µ

Β
)

M
ag

ne
ti

c 
 m

om
en

t 
(µ

Β
)

Figure 5.6: (a) Calculated atom-resolved and total spin moments (in µB) in PdMnZ and CuMnZ as a
function of the sp-electron number of the Z constituent. (b) The same for full Heusler alloys Pd2MnZ
and Cu2MnZ.

Z = In, Sn, Sb, Te) for stoichiometric compositions. In agreement with the commonly
accepted picture of magnetism for Mn-based Heusler alloys we obtain a strong localization
of magnetization on the Mn sublattice with a value of magnetic moment close to 4µB. The
localized nature of magnetism will be further discussed in the next subsection. An important
difference in the electron structure of these compounds is a relative shift of the Fermi level
to a higher energy position in sequence In-Sn-Sb-Te due to change of the number of valance
electrons within the same row of Periodic Table. This shift is clearly seen in the DOS
presented in Fig. 5.5. Note that a Sb atom has two more valence electrons than In, one more
electron than Sn and one less electron then Te. The DOS for semi-Heusler compounds show
an interesting feature that different compositions give similar behavior if the total number
of the sp electrons coming from different atoms is equal. This similarity is more pronounced
near Fermi level. For example the peaks in Mn spin down states of PdMnSn and CuMnIn
are very much similar to each other. This distinct feature of the DOS for semi-Heusler alloys
is related to the symmetry properties of the wave functions in C1b-type crystal structure
[67, 68].

In Fig. 5.7 we present calculated atom resolved and total magnetic moments in both
family of Heusler alloys PdMnZ, CuMnZ, Pd2MnZ and Cu2MnZ as a function of the sp-
electron number of the Z constituent. As mentioned above, the magnetic moment is mostly
confined to Mn sublattice. A small induced moment is found on Cu and Pd sublattices which
is positive in a broad composition interval while this moment is negative for Z constituent.
An interesting observation in Z dependent properties of the induced moments is that they
almost follow the behavior of the Mn moment from In to Te. This correlation is more
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Figure 5.7: (a) Upper panel: Calculated Mn spin moment in PdMnSn and CuMnSn as a function of
θ for spin spiral with q = (0 0 1

2 ), (0 0 1) in units of π/a. Lower panel: Corresponding total energies
∆E(θ,q) = E(θ,q) − E(0, 0). For comparison results of force theorem (broken lines) is presented.
Jq(θ) stand for Jq ×M2

θ , M is the magnetic moment. (b) The same for Pd2MnSn and Cu2MnSn full
Heusler compounds.

pronounced in semi-Heusler alloys (see Fig. 5.7). Furthermore, in semi Heusler compounds
different compositions give similar values for magnetic moments with a small shift in the case
of equal total number of valance electrons. This small shift stems from the different lattice
constants. Additionally, the changes associated with total magnetic moment is very large in
semi-Heusler compounds. In PdMnZ this is about 1 µB, half of it comes from the change in
Mn magnetic moment. On the other hand, the situation is different in full Heusler alloys,
neither a correlation nor a substantial change in magnetic moments is obtained.

5.3.1 Local moment behavior

As we have seen in preceding chapter Mn-based Heusler compounds are considered to be
ideal local moment systems on the basis of experimental information available. This feature
was theoretically confirmed by early DFT calculations of Kübler et al. for a number of full
Heusler compounds [58]. Considering PdMnSn, CuMnSn, Pd2MnSn and Cu2MnSn from
semi and full Heusler compounds as a prototype we calculated magnetic moments an total
energies as a function of θ for spin spiral with two different q values chosen in z direction and
compare the relative stability of the different magnetic configurations. Note that spin spiral
technique allows one to treat all possible magnetic configurations between ferromagnetic and
antiferromagnetic states. Here we restrict ourselves to the two q values: q = (0 0 1

2) and
q = (0 0 1). θ angle varied between 0 and 90. Note also that spin spiral having θ = 0 with
any value of q and θ = 90 with q = (001) corresponds to ferromagnetic and antiferromagnetic
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Figure 5.8: Left panel: First six nearest neighbor Mn-Mn exchange parameters in PdMnZ and
CuMnZ as a function of the sp-electron number of the Z constituent. Also given are the number
of atoms within corresponding coordination spheres. Right panel: The same for full Heusler alloys
Pd2MnZ and Cu2MnZ.

states, respectively.
The obtained results are presented in Fig. 5.7. For all considered systems the magnetic

moment of the Mn atom is practically insensitive to the type of the magnetic ordering. The
relative change of the Mn moment in transition from ferromagnetic to antiferromagnetic state
is less than 3%. On the other hand, the calculated total energy increases with increasing θ

angle and reaches the maximum value for θ = 90 with q = (001) that corresponds to antifer-
romagnetic phase. This shows that ground state is ferromagnetic in all cases. The obtained
stability of the magnetic moments reflects the localized nature of magnetism in both family
of Heusler alloys as well as justifies the approach used in calculation of exchange parameters.
Furthermore, the agreement between calculated values of ∆E(θ,q) and Jq(θ) sin2 θ implies
the possibility of using large angles (30 < θ < 90) in calculation of exchange parameters in
local moment systems which is not usually the case for 3d transition metals.

5.3.2 Indirect exchange coupling

In Fig. 5.8 we present calculated first six nearest neighbor Mn-Mn exchange parameters for
both families of compounds as a function of sp-electron concentration together with number of
atoms within corresponding coordination spheres. Behavior of the same quantities for larger
distances (∼ 10 a) is given in Fig. 5.9 for selected compounds PdMnIn, CuMnIn, Pd2MnIn
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Figure 5.9: (a) Upper panel: Mn-Mn exchange interactions in PdkMnIn (k = 1, 2) as a function of dis-
tance up to the 10a. Lower panel: RKKY-type oscillations in exchange parameters for corresponding
compounds. (b) The same for CukMnIn (k = 1, 2).

and Cu2MnIn. As it is seen from Figs. 5.8 and 5.9 the Mn-Mn interactions are long-ranged
reaching beyond the 6th nearest neighborhood distance and have the RKKY-type oscillating
character. The absolute value of the parameters decays quickly with increasing interatomic
distance and the main contribution to TC comes from the interaction between atoms lying
closer than 3a. No sizable contribution is detected after 5a. Nevertheless, even at very large
distances RKKY-type oscillations becomes visible when exchange parameters are multiplied
by (d/a)3 (see Fig. 5.9) that reveal the indirect exchange coupling in these systems mediated
by conduction electrons.

In agreement with the results of preceding section we obtain a strong dependence of the
exchange parameters on the Z constituent for both families of Heusler compounds. As it is
seen from Fig. 5.8 all exchange parameters oscillates between ferromagnetic and antiferro-
magnetic values with increasing sp-electron concentration. These oscillations are related to
the detailed electron structure of the systems. Considering first two nearest neighbor ex-
change parameters we see that they have ferromagnetic character for a broad composition
range and dominate over the rest of the parameters. The remaining ones are very weak and
have similar energy dependencies. Note that it is these first two nearest neighbor exchange
interactions which give rise to very high Curie temperatures in Cu-based full Heusler alloys
as well as both classes of semi Heusler alloys. Furthermore, we obtain a strong correlation
between strength of the exchange interactions and sp-electron (conduction electron) polariza-
tion (see Fig. 5.10). The larger the conduction electron polarization the stronger the obtained
exchange parameters.

A distinct feature of the magnetism in semi-Heusler alloys is that the maximum of the
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exchange interactions for both PdMnZ and CuMnZ corresponds to the similar number of the
sp-electrons. The shift of the maxima for two systems is explained by the fact that Pd has
one sp-electron less than Cu. The properties of the exchange interactions are reflected in the
properties of the Curie temperature (see Fig. 5.10) where we also obtained a relative shift of
the maxima of the two curves corresponding to one sp-electron. On the other hand, no such
correlation is obtained for the full Heusler compounds.

5.3.3 Conduction electron polarization and Curie temperature

The problem of interaction between local moments and resulting Curie temperature is rather
closely connected with the problem of conduction electron polarization around a magnetic
moment. To clarify this issue it is important to obtain information on the conduction electron
spin polarization. In Fig. 5.10 we present calculated sp-electron spin polarization and Curie
temperatures for both families of Heusler alloys. For both classes of systems we obtain a
qualitative correlation between the spin polarizations and Curie temperatures. In particular
the systems with vanishing sp-electron spin polarization are characterized by the value of
the Curie temperature that is very close to zero. Also, large spin polarization gives rise
to high TC values in both families of alloys. Additionally, the sign of the spin polarization
gives information on the nature of magnetic structure. For negative spin polarizations we
obtain a ferromagnetic order in a large interval of compositions while positive polarization
results in an antiferromagnetic order. A non-collinear magnetic structure is obtained for
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vanishing values of sp-electron spin polarization. These properties reveal the decisive role of
the sp-electrons of the X and Z atoms in mediating the exchange interaction between the Mn
spin moments as well as magnetic ordering. This makes spin-polarization of the sp-electrons
important parameter for tuning the value of the Curie temperature in these systems. The
obtained values of Curie temperatures are in good agreement with the available experimental
data (see Fig. 5.10).

The first experimental information on the conduction electron polarization of Heusler
alloys is provided by measurement and analysis of the hyperfine fields in non-magnetic sites
(X,Z) in these systems. The strength of the transferred hyperfine fields correlates with the
amplitude of the s-electron polarization. Indeed measurements by Campbell and Khoi et
al., shoved that maximum conduction electron polarization is found in systems with high
Curie temperatures such as Cu2MnAl and Cu2MnIn [74, 75]. Recently, Zukowski et al.,
using Compton scattering profiles, obtained a large conduction electron spin polarization in
Cu2MnAl which is antiferromagnetically coupled to Mn moment [76]. Also, a similar result
is obtained for Ni2MnSn by Deb et al.,[77]. Our calculations are in agreement with these
recent experiments.
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Table 5.3: Magnetic moments and sp-electron polarization (in µB) in Ni2MnZ and Pd2MnZ
(Z = In, Sn, Sb, Te) for two different lattice parameters.

a = 6.07 Å a = 6.37 Å

Compound X Mn Z sp Cell X Mn Z sp Cell

Ni2MnIn 0.27 3.72 -0.07 -0.16 4.19 0.27 3.99 -0.07 -0.17 4.45
Pd2MnIn 0.11 3.81 -0.05 -0.14 3.98 0.17 4.10 -0.05 -0.15 4.26

Ni2MnSn 0.21 3.74 -0.06 -0.13 4.10 0.21 4.00 -0.06 -0.14 4.35
Pd2MnSn 0.09 3.79 -0.06 -0.13 3.91 0.07 4.07 -0.06 -0.14 4.15

Ni2MnSb 0.15 3.76 -0.03 -0.09 4.04 0.22 4.04 -0.02 -0.06 4.46
Pd2MnSb 0.08 3.82 -0.03 -0.08 3.95 0.09 4.13 -0.03 -0.07 4.29

Ni2MnTe 0.22 3.83 0.03 0.01 4.31 0.21 4.04 0.02 -0.03 4.48
Pd2MnTe 0.14 3.89 0.04 0.04 4.21 0.13 4.17 0.03 0.02 4.45

5.3.4 3d versus 4d electrons

The role of the sp-electrons in mediating exchange interactions is further emphasized by
a correlation between exchange parameters of different systems with a similar polarization.
Fig. 5.11 present the exchange parameters of Ni2MnZ and Ni2MnZ (Z=In, Sn, Sb, Te) for two
different lattice spacings. For each lattice parameter we obtain a similar pattern of exchange
parameters for X=Ni and Pd also in the case of similar sp-electron spin polarizations (see
Table 5.3). As it is seen from Table 5.3 and Fig. 5.11 this similarity is more pronounced for
Ni2MnSn and Pd2MnSn compounds that they have equal sp-electron spin polarizations. For
both lattice parameters the strong deviations in exchange parameters occur in the case of
Z=Te where also the conduction electron spin polarizations assume quite different values.

In conclusion, we have shown that the magnetism of the Heusler alloys is characterized
by the complex pattern of the exchange interactions that cannot be predicted without direct
calculation. On the other hand our calculations show that the magnetic properties of the
broad classes of the Heusler alloys can be tuned by the variation of the number and spin-
polarization of the sp-electrons. This finding suggests a practical tool for the design of the
materials with given properties.



Chapter 6

Magnetism of Half-Metallic Heusler

Compounds

6.1 Introduction

This chapter is devoted to the study of half-metallic Heusler compounds because of their po-
tential applications in the field of spintronics. The concept of half-metallicity and its origin
is introduced in chapter 4. In these systems at the Fermi energy EF one spin direction is
metallic and the other has an energy gap, resulting in 100 % spin polarization while normal
transition metal ferromagnets (Fe, Co, and Ni) possess the spin polarization of 40% − 50%.
Consequently, half-metallic ferromagnets are expected to provide the huge tunnel magnetore-
sistance (TMR) and giant magnetoresistance (GMR) in magnetoelectronics devices. They
can also be used as perfect spin filters and spin-injection devices as an alternative to ferro-
magnetic 3d metals. Since 3d systems cause serious problems due to large difference between
the resistances of metal and semiconductor substrate.

Among the half-metallic ferromagnets the Heusler compounds are much more suitable
for device applications due to their very high Curie temperatures, low coercivities and crys-
tal structure compatibility with the zincblende semiconductors used industrially. Recently,
several groups achieved very large TMR values using half-metallic Heusler alloys.

Our extensive investigations on ferromagnetic Heusler alloys (non-half metallic) presented
in the preceding chapter provided a clear physical picture for the exchange coupling mech-
anism, in particular the role of conduction electrons in mediating interactions between Mn
atoms is revealed. In principle, the same discussion also holds for the half-metallic Heusler
compounds considered in this chapter. The only difference is that in these systems the cal-
culated pattern of exchange interactions are rather short range. This behavior originates
from the absence of Fermi surface for one spin direction in half-metallic ferromagnets which
introduce an additional damping factor in RKKY model.

However, in this chapter we will discuss rather specific problems related to the nature of
magnetism in half-metallic Heusler compounds aiming to provide a guideline for the further

64
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experimental studies. For experimentally well established systems like NiMnSb and Co2MnSi
(section 6.2) we consider effect of the half-metallic gap on the stability of exchange interactions
and resulting Curie temperature by contracting the lattice spacing which moves the position
of Fermi level within the gap. Role of the inter-sublattice exchange interactions is revealed
for the formation of very high Curie temperatures in some full Heusler compounds such as
Co2MnSi. We also study spin wave spectra and temperature dependence of the magnetization
employing multi-sublattice Green function technique within Tyablikov decoupling scheme. In
section 6.3 we demonstrate the role of the strong antiferromagnetic intersublattice exchange
interactions in establishing ferrimagnetic order. Last section of this chapter is reserved for
the discussion of predicted new semi Heusler compounds with very high TC . Last part of this
section dwells on an important problem which is the relation between half metallicity and
Curie temperature by the example of these new systems.

6.2 NiMnSb, CoMnSb, Co2CrAl and Co2MnSi compounds

Recently, these compounds received considerable theoretical and experimental interest as
promising device candidates due to their high Curie temperatures, large minority-spin band
gaps and the possibility to grow on common semiconductors.

Experimental investigations were in the direction of the utilization of these materials in
fundamental spintronics devices. Kämmerer et al. integrated Co2MnSi, as a representative of
the full-Heusler compound family, as one magnetic electrode in magnetic tunnel junctions and
found a tunnelling magnetoresistance effect much larger than in the case that the Ni0.8Fe0.2 or
Co0.3Fe0.7 are used as magnetic electrodes [90]. Similar experiments have been undertaken by
Okamura and collaborators using Co2Cr1−xFexAl as the magnetic electrode [91]. Girgis et al.
have fabricated current-in-plane giant magnetoresistive (GMR) devices based on multilayers
of epitaxial NiMnSb and sputtered Cu and CoFe. They measured magnetoresistance of up
to 3.5% at room temperature [92].

On the theoretical side, the studies are mainly focused on the stability of the half-metallic
gap under different circumstances. For NiMnSb and Co2MnSi compounds it was shown that
half-metallicity is preserved under tetragonalization of the crystal lattice [93]. For a number of
Heusler alloys Mavropoulos et al. studied the influence of the spin-orbit coupling on the spin-
polarization at the Fermi level and found the effect to be very small [94] that is in agreement
with a small orbital moment calculated by Galanakis. [95] Larson et al.[96] have shown that
the structure of Heusler alloys is stable with respect to the interchange of atoms and Orgassa
and collaborators and Picozzi and collaborators have demonstrated that a small degree of
disorder does not destroy the half-metallic gap.[97, 98] Dowben and Skomski have shown that
at non-zero temperatures the spin-wave excitations lead to the presence at the Fermi level of
the electron states with opposite spin projections leading to decreasing spin-polarization of
the charge carriers [99].

Despite very strong interest to the half-metallic ferromagnetism in Heusler alloys the
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Figure 6.1: (a) Calculated spin-resolved density of states of NiMnSb and CoMnSb for three values
of the lattice parameter. (b) The same for Co2CrAl and Co2MnSi. The upper panels present the
results for the experimental lattice constant [50]. The middle panels show the results for the lattice
parameter aII that is determined by the coincidence of the Fermi level with the upper edge of the
half-metallic gap. The bottom panels present the results for lattice parameter aIII that is obtained
by a 1% contraction of aII .

study of the exchange interactions and finite temperature magnetic properties received less
attention. The latter constitutes the main purpose of the present section. Here we study
the exchange interactions and Curie temperatures in both half- and full-Heusler alloys for
three different lattice spacings. The investigation of the influence of the value of the lattice
parameter on the properties of the Heusler alloys is important since the samples grown on
different substrates can have different lattice spacings. The last part of this section is devoted
to the consideration of the temperature dependence of magnetization at the experimental
lattice parameters.

6.2.1 Effect of lattice parameter on magnetic properties

In this subsection we report the calculation of density of states, magnetic moments, inter-
atomic exchange interactions and Curie temperatures at different lattice parameters for all
four compounds.

• NiMnSb and CoMnSb

The electronic structure of both compounds has been extensively studied earlier and the
reader is referred to the review [100] and references therein for detailed discussion. Here we
present a brief description of the calculational results aiming to provide the basis for further
considerations and to allow the comparison with previous work.



6.2. NiMnSb, CoMnSb, Co2CrAl and Co2MnSi compounds 67

In Table 6.1 we collect the atomic and total spin moments for three different lattice
parameters. The first calculation is performed for the experimental bulk lattice constant
[50]. The calculated densities of states (DOS) for this case are presented in the upper panel
of Fig. 6.1. For both NiMnSb and CoMnSb the Fermi level lies in the low-energy part of
the half-metallic gap. The compression of the lattice pushes the majority p states to higher
energies that results in increased energy position of the Fermi level with respect to the half-
metallic gap. At the lattice parameter aII the Fermi level coincides with the upper edge of
the gap (Fig. 6.1). In the next step we further contracted the lattice constant by 1% (lattice
parameter aIII , bottom panel in Fig. 6.1). In this case the Fermi level is slightly above the
gap and the total spin moment is slightly smaller than the integer values of 3 and 4 µB for
CoMnSb and NiMnSb respectively.

The contraction of the lattice leads to an increase of the hybridization between the d

orbitals of different transition-metal atoms. This results in a decrease of the spin moment
of Mn. In the case of NiMnSb this change is small: the reduction of the Mn spin moment
under lattice contraction from the experimental lattice parameter to aII is ∼0.2 µB. The Ni
spin moment increases by about the same value to preserve the integer value of the total spin
moment of 4 µB.

In CoMnSb, the half-metallic gap is larger than in NiMnSb. As a result, the transition of
the Fermi level to the upper gap-edge requires a large lattice contraction of 11% (Table 6.1).
This leads to a strong decrease of the Mn moment by 0.84µB. To compensate this decrease
the Co moment changes its sign transforming the magnetic structure from ferrimagnetic to
ferromagnetic.

In Fig. 6.2 we present the exchange constants calculated for various lattice spacings. The
Co-Co, Ni-Ni exchange interactions as well as the exchange interactions between the moments
of the 3d atoms and the induced moments of Sb atoms are very weak and are not shown.
The weakness of the effective Co-Co and Ni-Ni exchange interactions can be explained by a
relatively large distance between atoms and relatively small atomic moments.

On the other hand, each Ni(Co) atom is surrounded by four Mn atoms as nearest neigh-
bors that results in strong Mn-Ni(Co) exchange interaction (Fig. 6.2). Also the exchange
interaction between large Mn moments is strong.

The ferromagnetic Mn-Mn interactions are mainly responsible for the stable ferromag-
netism of these materials. For both systems and for all lattice spacings studied the leading
Mn-Mn exchange interaction is strongly positive. In NiMnSb, the Mn-Ni interaction of the
nearest neighbors is positive for all three lattice parameters leading to the parallel orienta-
tion of the spins of the Mn and Ni atoms. In CoMnSb the situation is different. At the
experimental lattice parameter the leading Mn-Co interaction is negative resulting in the fer-
rimagnetism of the system. For the contracted lattices the interaction changes sign resulting
in the ferromagnetic ground state of the alloy.

The analysis of the strength of the exchange interaction as a function of the lattice pa-
rameter shows that in CoMnSb the contraction leads to a strong increase of both leading
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Table 6.1: Calculated atom-resolved and total spin moments in µB for NiMnSb, CoMnSb, Co2CrAl
and Co2MnSi. All compounds are half-metallic at the experimental lattice constants taken from Ref.
[50]. aII means the use of the lattice constant that places the Fermi level at the upper edge of the
half-metallic gap and aIII corresponds to 1% contraction of the lattice constant with respect to aII .

Compound a(Å) X Y Z Void Total

NiMnSb - aI[exp] 5.93 0.20 3.85 -0.09 0.04 4.00
NiMnSb - aII 5.68 0.32 3.68 -0.05 0.05 4.00
NiMnSb - aIII 5.62 0.33 3.64 -0.04 0.05 3.97

CoMnSb - aI[exp] 5.87 -0.32 3.41 -0.11 0.02 3.00
CoMnSb - aII 5.22 0.45 2.57 -0.06 0.04 3.00
CoMnSb - aIII 5.17 0.48 2.52 -0.05 0.04 2.99

Co2CrAl - aI[exp] 5.74 0.62 1.83 -0.08 3.00
Co2CrAl - aII 5.55 0.69 1.68 -0.06 3.00
Co2CrAl - aIII 5.49 0.69 1.66 -0.05 2.99

Co2MnSi - aI[exp] 5.65 0.93 3.21 -0.06 5.00
Co2MnSi - aII 5.49 0.97 3.10 -0.04 5.00
Co2MnSi - aIII 5.43 0.97 3.01 -0.04 4.97

Mn-Co and Mn-Mn interactions. On the other hand, in NiMnSb the increase of the Mn-Ni
interaction is accompanied by a decrease of the leading Mn-Mn interaction. Simultaneously,
the interaction between the second-nearest Mn atoms increases with contraction in the case
of NiMnSb staying almost unchanged in CoMnSb. This complexity of the behavior reflects
the complexity of the electronic structure of the systems.

The interatomic exchange parameters are used to evaluate the Curie temperature within
two different approaches: MFA and RPA. In Table 6.2 we present the values of the Curie
temperature obtained, first, by taking into account the Mn-Mn interactions only and, sec-
ond, with account for both Mn-Mn and Mn-Ni(Co) interactions. The contribution of the
inter-sublattice interactions to the Curie temperature appears to be less than 5 % for both
compounds and the Curie temperature is mainly determined by the intra-sublattice Mn-Mn
interaction.

The MFA and RPA estimations of the Curie temperature differ rather strongly (Table
6.2). The relative difference of two estimations is about 20%. The reason behind this differ-
ence will be discussed below. For the systems considered here the RPA estimations of the
Curie temperatures are in good agreement with the experiment, somewhat overestimating
the experimental values.

Recently Kübler [101] reported estimations of the Curie temperature of NiMnSb. His ap-
proach is based on the evaluation of the non-uniform magnetic susceptibility on the basis of
the Landau-type expansion for the free energy. Within some approximations the parameters
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Figure 6.2: The variation of the
interatomic exchange parameters for
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corresponds to the experimental lat-
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and aIII parameters.

used in the study of the thermodynamical properties can be expressed in terms of the quanti-
ties evaluated within the first-principles DFT calculations. The estimated values of the Curie
temperature are 601 K for a static approach and 701 K if the frequency dependence of the
susceptibility is taken into account. These estimations are somewhat lower than the value of
880 K given by the RPA approach (Table 6.2). A detailed comparative analysis of the two
calculational schemes is needed to get an insight in the physical origin of this difference.

The contraction of the lattice in the case of the NiMnSb compound leads to an increase
of the Mn-Ni interactions (Fig. 6.2). This results in increased difference between the Curie
temperatures calculated with the Mn-Mn interactions only and with both Mn-Mn and Ni-Mn
interactions taken into account (Table 6.2). For CoMnSb, the leading exchange interactions
of both Mn-Mn and Mn-Co types increase in the value under transition from the experimental
lattice constant to aII (Fig. 6.2). As a result, the Curie temperature increases with contraction
by about 50%.

• Co2CrAl and Co2MnSi

The second group of materials studied in the paper is formed by the full-Heusler compounds
Co2MnSi and Co2CrAl. The electronic structure of these systems has been studied earlier
[68]. Compared to half-Heusler systems, the presence of two Co atoms per formula unit results
in an increased coordination number of Co atoms surrounding Mn atoms (eight instead of
four in CoMnSb). This leads to an increased hybridization between the 3d orbitals of the
Mn and Co atoms. The spin moment of Co in Co2MnSi is about 1 µB that is considerably
larger than the Co moment in CoMnSb. In Co2CrAl the Co moment is about 1/3rd smaller
than in Co2MnSi that reflects a smaller value of the Cr moment compared to the Mn moment
(Table 6.1).
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Table 6.2: Calculated Curie temperatures. The second and third columns contain the T
MFA(RPA)
C

obtained with the account for Mn-Mn (Cr-Cr) interactions only. In the next two columns all in-
teractions are taken into account. The last column presents the experimental values of the Curie
temperature from Ref. [50].

Compound MFA[Y-Y] RPA[Y-Y] MFA[all] RPA[all] Exp.

NiMnSb - aI[exp] 1096 880 1112 900 730
NiMnSb - aII 1060 853 1107 908 -
NiMnSb - aIII 1008 802 1063 869 -

CoMnSb - aI[exp] 785 619 815 671 490
CoMnSb - aII 1185 940 1276 1052 -
CoMnSb - aIII 1140 893 1252 1032 -

Co2CrAl - aI[exp] 148 141 280 270 334
Co2CrAl - aII 168 159 384 365 -
Co2CrAl - aIII 164 154 400 379 -

Co2MnSi - aI[exp] 232 196 857 740 985
Co2MnSi - aII 142 118 934 804 -
Co2MnSi - aIII 110 75 957 817 -

As in the case of the half-Heusler compounds discussed above, the variation of the lattice
parameter leads to the change in the position of the Fermi level. At the experimental lattice
parameter the Fermi level of Co2CrAl lies in the lower part of the half-metallic gap while
for Co2MnSi it is close to the middle of the gap (Fig. 6.1b). The contraction of the lattice
needed to place the Fermi level at the upper edge of the gap is smaller than for CoMnSb. As
a result, the change in the magnetic moments is also relatively weak (Table 6.1).

The presence of an extra Co atom in the full-Heusler alloys makes the interactions more
complex than in the case of the half-Heusler alloys. In CoMnSb the important interactions
arise between nearest Mn atoms (Mn-Mn interactions) and between nearest Mn and Co atoms
(Mn-Co interaction). In the case of Co2MnSi (Fig. 6.3) the interactions between Co atoms
at the same sublattice (Co-Co) and between Co atoms at different sublattices (Co1-Co2)
must be taken into account. The cobalt atoms at different sublattices have the same local
environment rotated by 90o about the [001] axis. The leading interaction responsible for the
stability of the ferromagnetism is the Mn-Co interaction between Mn atoms and eight nearest
Co atoms (Fig. 6.3). This interaction changes weakly with the contraction of the lattice. Our
exchange parameters agree well with the parameters of Kurtulus et al. (Fig. 6.3) who also
found the Co-Mn exchange interaction to be leading [124].

The interaction between nearest Co atoms at different sublattices (filled green spheres in
Fig. 6.3) favors the ferromagnetism also and is stronger than the ferromagnetic interaction
between the nearest Mn atoms (empty spheres). Although the spin moment of Mn atoms
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Figure 6.3: (a) The exchange constants for Co2CrAl as a function of the interatomic distance. (b)
The same for Co2MnSi. The left panels correspond to the experimental lattice constant, the middle
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in the presentation: + for the Mn-Mn and Mn-Co interactions and ? for the Co-Co and Co1-Co2

interactions.

is larger than the moment of Co atoms (Table 6.1) the opposite relation between exchange
parameters can be the consequence of the smaller distance between the Co atoms: a/2
between the Co atoms and

√
2a/2 between the Mn atoms. An interesting feature of the intra-

sublattice Mn-Mn and Co-Co interactions is different signs of the exchange parameters for
different distances between atoms. This leads to a RKKY-like oscillations of the parameters
(Fig. 6.3).

In Co2CrAl the leading Cr-Co interactions (empty triangles) are much smaller than cor-
responding Mn-Co interactions in Co2MnSi. On the other hand, the leading inter-sublattice
ferromagnetic Co-Co interactions are comparable in both systems. The compression of the
lattice leads to an increase of the magnitude of the inter-sublattice Co-Cr and Co1-Co2 cou-
pling. The intra-sublattice Cr-Cr and Co-Co interactions oscillate with varying inter-atomic
distances.

The difference in the properties of the exchange parameters of the half- and full-Heusler
alloys is reflected in the calculated Curie temperatures (Table 6.2). In contrast to CoMnSb
where the Mn-Mn exchange interactions are dominant, in Co2MnSi they play a secondary
role. The T

MFA(RPA)
C calculated taking into account these interactions only is much smaller

than the Curie temperature calculated with all inter-atomic exchange interactions taken into
account (Table 6.2). The same conclusion is valid for Co2CrAl where the Cr-Cr interac-
tions give about half of the Curie temperature obtained with all interactions included into
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consideration.
A striking feature of the full Heusler compound Co2CrAl that differs it strongly from the

half-Heusler systems considered in the previous Section is a very small difference between the
TC values calculated within the MFA and RPA approaches. A similar behavior was obtained
for the Curie temperatures of the zincblende MnSi and MnC [102]. In Co2MnSi, the relative
difference of the MFA and RPA estimations assumes an intermediate position between the
half-Heusler systems and Co2CrAl.

To understand the origin of the strong variation of the relative difference of the MFA
and RPA estimations of the Curie temperature we compare in Fig. 6.4 the frozen magnon
dispersions for two compounds. The magnons correspond to the Mn sublattice in the case of
NiMnSb and to the Cr sublattice in the case of Co2CrAl. As seen from Table 6.2 the MFA
and RPA estimations obtained with the use of these dispersions differ by 20% for NiMnSb
and by 5% for Co2CrAl.

The Curie temperature is given by the average value of the magnon energies. In MFA
this is the arithmetic average while in RPA this is harmonic average. Therefore we need
to understand why for Co2CrAl these two averages are much closer than for NiMnSb. The
following properties of the averages are important for us. The arithmetic average takes all
the magnon values with equal weight whereas in the harmonic average the weight decreases
with increasing energy of the magnon. It is an arithmetic property that the MFA estimation
is larger than the RPA one or equal to it if all numbers to be averaged are equal to each
other. In terms of magnon energies, TMFA

C is equal to TRPA
C in the case that the magnon

spectrum is dispersion-less.
Considering the frozen-magnon dispersions from the viewpoint of these properties we

indeed can expect that the arithmetic and harmonic averages will be closer for Co2CrAl.
In Fig. 6.4 both curves are scaled to have almost the same maximal value. It is seen that
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the Co2CrAl dispersion has smaller relative contribution of the low-energy magnons because
of the steeper increase of the curve at small wave vectors. It has also smaller contribution
of the magnons with the largest energies because the maxima have the form of well-defined
peaks opposite to NiMnSb where we get a plateau. Thus the main contribution in the case of
Co2CrAl comes from intermediate energies that makes the MFA and RPA estimations closer.

Coming back to the considerations of the Curie temperatures, we conclude that, in general,
the Curie temperatures of Co2MnSi and Co2CrAl calculated within both MFA and RPA are
in good agreement with experiment while the MFA values in the case of NiMnSb and CoMnSb
overestimate the Curie temperature strongly.

The lattice contraction leads in both compounds to an enhancement of the Mn-Co(Cr-Co)
exchange constants that results in an increase of the Curie temperature.

Kurtulus and collaborators have calculated the Curie temperature for Co2MnSi within
MFA and found the value of 1251 K that is considerably larger than our MFA estimate of
857 K. This difference is unexpected since the values of the exchange parameters obtained
by Kurtulus et al. agree well with our parameters (Fig.6.3). To reveal the origin of the
discrepancy we performed the MFA calculation of the Curie temperature with the exchange
parameters of Kurtulus et al. and obtained the TC value of 942 K which is in reasonable
agreement with our estimate. Apparently the reason for the inconsistency is in the procedure
of the solving of the multiple-sublattice MFA problem used by Kurtulus et al. that should
deviate from the standard one [34].

6.2.2 Spin-wave spectra

In Fig. 6.5 we present the calculated spin-wave spectra for NiMnSb and Co2CrAl. The spin-
wave energies are obtained by the diagonalization of the matrix of exchange parameters that
contains all important intra- and inter-sublattice interactions. The number of branches in
the spectrum is equal to the number of magnetic atoms in the unit cell: two in NiMnSb and
three in Co2CrAl. One of the branches is acoustic and has zero energy for zero wave vector.
Also in the spin-wave spectra, we see strong difference between two systems. In NiMnSb, the
acoustic branch is predominantly of the Ni type stemming from the weak interaction between
Mn and Ni magnetic moments (see Fig. 6.2). On the other hand, the optical branch is of
predominantly the Mn type. The strong hybridization between two sublattices is obtained
only about q = 0. In Co2CrAl, the energy scale of the branches differs much smaller and the
hybridization between sublattices is stronger than for NiMnSb.

6.2.3 Temperature dependence of the magnetization

In this section we will present the results of the calculation of the temperature dependence of
magnetization that is based on the consideration of the Heisenberg hamiltonian with exchange
parameters calculated within a parameter-free DFT approach. To calculate the temperature
dependence of the magnetization we use the RPA method as described in chapter 3. We
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consider both classical-spin and quantum-spin cases.
In the classical-spin calculations the calculated values of the magnetic moments (Table 6.1)

are used. To perform quantum-mechanical RPA calculation we assign integer values to the
atomic moments. In the semi Heusler compounds we ignore the induced moments on Ni and
Co atoms and assign the whole moment per formula unit to the Mn atom: 4µB (S = 2) in
NiMnSb and 3µB (S = 3/2) in CoMnSb. In Co2MnSi we take the values of 3µB (S = 3/2) and
1µB (S = 1/2) for Mn and Co atoms respectively. This assignment preserves the value of the
total spin moment per chemical unit. In Co2CrAl we use in the quantum-RPA calculations
the atomic moment of 2µB (S = 1) for Cr and 1µB (S = 1/2) for Co.

In Fig. 6.6(a), we present in the normalized form the calculated temperature dependence of
the magnetization for both families of Heusler compounds. The calculations are performed for
the experimental lattice parameter. For comparison, the experimental curves are presented.
The nature of the spin (quantum or classical) influences the form of the curves considerably.
The classical curve lies lower than the quantum one. This results from a faster drop of the
magnetization in the low-temperature region in the case of classical spins. In general, the
quantum consideration gives better agreement of the form of the temperature dependence of
the magnetization with experiment.

In Fig. 6.6(b) we present the temperature dependence of the magnetization of individual
sublattices. As expected from the previous discussions in half-Heusler systems the main
contribution to the magnetization comes from the Mn sublattice while for the full-Heusler
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Figure 6.6: (a) The calculated temperature dependence of the total magnetization for both families
of Heusler alloys. For comparison the experimental temperature dependencies [50, 51] are presented.
The calculations are performed for both classical and quantum Hamiltonians. Both the magnetization
and the temperature are given in reduced form. (b) Calculated sublattice magnetizations as a function
of temperature. The temperature is given in reduced form.

systems both 3d atoms contribute substantially.
Considering the calculated Curie temperatures we notice that the value of TC calculated

within the quantum-mechanical RPA is substantially larger than the corresponding classical
estimation (see Fig. 6.6). This property is well-known and has its mathematical origin in
the factor (S + 1)/S entering the RPA expression for the Curie temperature. In Fig. 6.7 we
show the dependence of the Curie temperature calculated within the quantum mechanical
RPA approach on the value of S. The exchange parameters are kept unchanged in these
calculations. We see that the dependence has a monotonous character tending to a classical
limit for large S.

Presently we do not have an explanation why quantum-mechanical calculations give better
form of the temperature dependence while the classical calculation provides better value of
the Curie temperature. We can suggest the following arguments. The quantum treatment
is more appropriate than the classical one in the low-temperature region. At high tempera-
tures characterized by strong deviation of the atomic spins from the magnetization axis the
quantum treatment gives too slow decrease of the magnetization. It is worth noting that
the consequent theory should take into account not only the orientational disorder of the
atomic moments but also the single-particle (Stoner-type) excitations leading to the decrease
of atomic moments. Another important aspect is related to the fact that the exchange param-
eters used in the calculations are estimated within the picture of classical atomic moments
described above. It is possible that the values of the exchange parameters must be modified
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for the use in the quantum-mechanical case. These questions belong to fundamental problems
of the quantum-mechanical description of the magnetic systems with itinerant electrons.

6.3 Competing Mn-Mn exchange interactions in ferrimagnetic

Mn2VZ (Z = Al, Ge) compounds

Half-metallic ferrimagnetic materials, like FeMnSb or the Mn2VAl compounds, are much more
desirable than their ferromagnetic counterparts in magnetoelectronics applications. This is
mostly due to the fact that the small value of the total magnetic moment in these systems
provides additional advantageous. For example they do not give rise to strong stray fields in
devices or are less affected by the external magnetic fields.

The ideal case for applications would be a half-metallic antiferromagnet like CrMnSb. It
is a special antiferromagnet in the sense that the majority spin and minority spin densities of
states are not identical, as for common antiferromagnets and the material is better described
as a fully compensated ferrimagnet, having a magnetic moment that is, due to the half-
metallic character, precisely equal to zero. Such a half-metallic antiferromagnet would be a
very interesting magnetoelectronics material since it would be a perfectly stable spin-polarized
electrode in a junction device. And moreover if used as a tip in a spin-polarized STM, it
would not give rise to stray flux, and hence would not distort the domain structure of the
soft-magnetic systems to be studied. Unfortunately, CrMnSb does not crystallize in the
ordered C1b crystal structure adopted by the semi-Heusler alloys. However, these results
show that such an important magnetoelectronics material could exist. Van Leuken and
de Groot have recently suggested a possible route towards a half-metallic antiferromagnet
starting from the semiconducting C1b-type compound FeVSb [103]. It is isoelectronic with
the non-existing half-metallic antiferromagnet CrMnSb. A 12.5% substitution of Mn for V,
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Table 6.3: Lattice parameters, magnetic moments (in µB) and mean-field estimation of the Curie
temperatures for Mn2VZ (Z= Al, Ge). The second (third) column gives the Curie temperature
calculated with account for Mn-Mn (Mn-V) interactions only. In the fourth column both types of
interactions are taken into account. The experimental value of Curie temperature for Mn2VAl is
taken from Ref.[50].

a(Å) Mn V Z Cell MF[Mn-Mn] MF[Mn-V] MF[all] Exp

Mn2VAl 5.93 1.53 -1.02 -0.03 2.00 30 623 638 760
5.87a 1.50a -0.90a -0.10a 2.00a

5.93b 1.41b -0.79b -0.02b 2.02b

5.92c 1.94c

Mn2VGe 6.09 1.00 -0.97 -0.04 1.00 -170 488 413 -
5.93b 0.75b -0.48b -0.02b 1.00b

aRef.[106]
aRef.[68]
cRef.[104]

and (in order to keep the system isoelectronic, In for Sb) was predicted to already yield half-
metallic ferrimagnetism, with local Mn moments of about 2.3 µB and a band gap of about
0.35 eV.

Here we consider experimentally well established Mn2VAl compound and theoretically
predicted Mn2VGe compound. The latter one close to ideal case. Both systems have half-
metallic ferrimagnetic ground state. Mn2VGe is not yet synthesized. On the other hand,
Mn2VAl received much experimental and theoretical attention. The neutron diffraction ex-
periment by Itoh et al. [40] gave the ferrimagnetic state of compound with Mn magnetic
moment of 1.5±0.3µB and V moment −0.9µB. Jiang et al. examined the magnetic structure
of Mn2VAl by X-ray diffraction and magnetization measurements [104]. They found that
Mn2VAl was nearly half-metallic with the total magnetic moment of 1.94µB at 5 K. The
Curie temperature of the sample was found to be about 760 K and the loss of half-metallic
character was attributed to the small amount of disorder. The electron structure calculation
by Ishida et al. performed within the local-density approximation (LDA) to the density func-
tional theory resulted in a ground state of Mn2VAl close to half-metallicity [105]. Recently
a detailed theoretical study of the magnetism of Mn2VAl was reported by Weht and Pickett
[106] who used the generalized gradient approximation (GGA) for the exchange correlation
potential and have shown that Mn2VAl is a half-metallic ferrimagnet with the atomic mo-
ments of 1.5µB and -0.9µB on Mn and V in very good agreement with experiment. The
Fermi level was found to lie in the minority spin band.

Our main purpose here is a detailed study of the exchange interactions in two half-metallic
Mn2VZ compounds: Mn2VAl and Mn2VGe. It is shown that the pattern of exchange inter-
actions in these systems deviates from the physical picture that can be expected on the basis
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of the experimental information available [107]. Indeed, the Mn-Mn distance of 2.96Å(3.04Å)
in Mn2VAl (Mn2VGe) is substantially smaller than the Mn-Mn distance of about 4.2Å in the
X2MnZ-type Heusler alloys [50]. (For Mn2VGe we use the interatomic distance of Mn2VGa
[108]). On the other hand, it is comparable with the Mn-Mn distance in the antiferromag-
netic fcc Mn (2.73Å) [109]. According to the Bethe-Slater curve [110] there are physical
reasons to expect that smaller distances between the 3d atoms stimulate the formation of
the antiferromagnetic structure whereas larger distances make the ferromagnetic structure
energetically preferable. Among the Heusler alloys, a smaller distance between pairs of the
Mn atoms is obtained in the case of random occupation by Mn and Z atoms of the Y and Z
sublattices (see, e.g., the system with the B2-type crystal structure in Ref. [50]). Indeed, the
experiment gives for such systems the antiferromagnetic ordering [50]. Therefore in the case
of Mn2VAl an antiferromagnetism of the two Mn sublattices can be expected. Our study
shows, however, that the situation is more complex. Although a large magnetic moment
is carried by Mn atoms, competing ferromagnetic (inter sublattice) and antiferromagnetic
(intra sublattice) Mn-Mn interactions in Mn2VAl almost cancel each other in the mean-field
experienced by the Mn atoms. In Mn2VGe the leading Mn-Mn exchange interaction is an-
tiferromagnetic. In both compounds the ferromagnetism of the Mn subsystem is favored by
strong antiferromagnetic Mn-V interactions.

The crystal structure is presented in chapter 4. The two Mn sublattices are equivalent.
The nearest Mn atoms belong to two different sublattices. In Table 6.3 we present calculated
magnetic moments. For comparison, the available experimental values of the moments and
the results of previous calculations are given. The net magnetic moment per unit cell is 2µB

for Mn2VAl and 1µB for Mn2VGe. The magnetic alignment is ferrimagnetic in both systems.
The Mn moments are parallel and assume the values close to 1.5 µB in Mn2VAl and to 1 µB

in Mn2VGe. The moment of V is close to −1µB in both systems. The values of the moments
are in agreement with the results of previous calculations.

• Exchange parameters and Curie temperature

The calculated Heisenberg exchange parameters are presented in figure 6.8. We obtained a
strong dependence of the pattern of the Mn-Mn and V-V exchange interactions on the type
of the Z atom. Actually, this is an expected result on the basis of our theoretical findings for
the exchange mechanism in Heusler alloys presented in previous chapter. The nearest Mn-
Mn distance is half of the lattice constant a. The exchange interaction between the nearest
Mn atoms is ferromagnetic (Fig. 6.8) for both compounds while second nearest neighbor
interaction is antiferromagnetic. In both systems substantial Mn-Mn interactions reach only
fourth nearest neighbor and show RKKY-type oscillations.

If only Mn-Mn exchange interactions are considered, in Mn2VAl prevail ferromagnetic
interactions while in Mn2VGe the Mn-Mn dominate antiferromagnetic interactions. The
corresponding Curie and Néel temperature are given in table 6.3.

The interactions between V atoms are very small and can be neglected. The formation of
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tion of the distance given in units of
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the ferrimagnetic structure with all Mn moments being parallel to each other and the V mo-
ments directed oppositely is determined by the strong antiferromagnetic exchange interactions
between the nearest Mn and V moments. In Mn2VAl this interaction is 5 times larger than
the nearest neighbor Mn-Mn interaction. In Mn2VGe this factor increases to 10. The strong
Mn-V antiferromagnetic coupling makes a parallel direction of the Mn moments surrounding
a V atom energetically preferable leading to the ferromagnetism of the Mn sublattices. In
Mn2VGe this trend overcomes the direct antiferromagnetic Mn-Mn interaction.

In the 8th column of Table 6.3 we present the Curie temperature calculated with the Mn-
Mn exchange interaction being neglected. The Curie temperature given in the last column
takes into account both Mn-V and Mn-Mn interactions. It is clearly seen that the main
contribution for both systems comes from the Mn-V interaction. In Mn2VAl, the correction
of TC due to the Mn-Mn exchange interaction is positive and very small. In Mn2VGe, it is
negative and amounts to 15%.

In Mn2VAl, where the experimental estimation of the Curie temperature is available,
both the theoretical and experimental values are in good agreement. The theoretical Curie
temperature of Mn2VGe should be considered as prediction.

6.4 Prediction of high Tc in NiVAs and NiCrZ (Z = P, Se, Te)

compounds

In recent years, the first-principles calculations have become established as a complementary
tool to experiments in the design of new materials. In this section we illustrate this in the
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Table 6.4: Lattice parameters, magnetic moments (in µB) and MFA and RPA estimations of the
Curie temperatures for NiVAs, NiCrZ (Z=P, Se, Te) and NiMnSb. The last column represents the
relative difference of the MFA and RPA estimations.

a(Å) Ni V,Cr,Mn Void Z Cell MFA RPA [MFA−RPA
RPA ]

NiVAs 5.85 -0.02 2.05 0.06 -0.09 2.0 723 603 % 20
5.87(a) -0.03 2.06 0.06 -0.09 2.0 715 595 % 20

NiCrP 5.59 -0.01 3.08 0.07 -0.15 3.0 1030 848 % 21
5.65(b) -0.06 3.16 0.06 -0.16 3.0 938 770 % 22

NiMnSb 5.93 0.19 3.86 0.04 -0.10 4.0 1096 880 % 24

NiCrSe 5.64 0.24 3.64 0.12 -0.01 4.0 537 508 % 6
5.65(b) 0.23 3.65 0.12 -0.01 4.0 543 515 % 5

NiCrTe 5.84 0.24 3.68 0.11 -0.03 4.0 868 805 % 8
5.87(a) 0.23 3.70 0.11 -0.03 4.0 874 812 % 8

(a) Lattice constant of InP
(b) Lattice constant of GaAs

case of Ni-based half-metallic semi-Heusler compounds NiCrZ (Z = P, Se, Te) and NiVAs by
calculating the magnetic phase transition temperatures. Our aim is to provide a guideline
for experimental work, stimulating the fabrication of these new materials.

These systems were recently predicted to be half-metals [111, 112]. For each compound
we performed calculations for two values of the lattice parameter (Table 6.4): the theoretical
equilibrium parameter [111, 112] and the lattice parameter of a binary semiconductor that
can be considered as a possible substrate for growing the corresponding Heusler alloy: GaAs
for NiCrP and NiCrSe and InP for NiVAs and NiCrTe.

The two lattice parameters used in the calculations resulted for all systems in very similar
physical properties (see, e.g., Table 6.4). Therefore the most of the results will be presented
for one lattice constant. All the discussion in this section is valid for both lattice spacings.

• DOS and magnetic moments

In Fig. 6.9, we present the calculated electron densities of states (DOS) of the ferromagnetic
phases of the four Heusler compounds. All systems are found to be half-metallic with the
Fermi level lying in the semiconducting gap of the minority-spin channel. Our DOS are in
good agreement with the DOS obtained in Refs.[111, 112].

In Table 6.4, the calculated magnetic moments are collected. Since the systems are half-
metallic, the magnetic moments per formula unit are integer: 2µB for NiVAs, 3µB for NiCrP
and 4µB for NiCrSe and NiCrTe. The major part of the magnetic moment comes from the
second formula atom (V,Cr). Small induced magnetic moments are found on Ni and sp

atoms.
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Figure 6.9: Spin-projected den-
sity of states of NiVAs and
NiCrZ (Z=P, Se, Te).

6.4.1 Frozen-magnon dispersions and exchange parameters

Figure 6.10(a) presents the frozen-magnon dispersion for NiCrZ (Z=P, Se, Te) and NiVAs. To
compare we show the results for NiMnSb as well. The five systems can be subdivided into two
groups. One group contains NiVAs, NiCrP and NiMnSb. Here the frozen-magnon dispersions
are monotonous and resemble, visually, a simple cosinusoid. The second group contains
NiCrSe and NiCrTe and is characterized by non-monotonous dispersions with a maximum
close to the center of the q-interval (Fig. 6.10a). Note, that the sp elements (the third
chemical-formula constituents) within each of the group belong to the same column of the
Mendeleev’s table whereas for different groups these columns are different. The importance
of the valency of the sp element for magnetic properties of Heusler alloys has been already
observed in our earlier studies (see previous chapter).

The calculated exchange parameters are given in Fig. 6.10(b). Since the inter-atomic
exchange parameters are the Fourier transforms of the frozen-magnon dispersions they reflect
the properties of the dispersions: The exchange parameters belonging to the same group
show similar qualitative behavior. On the other hand, there is strong difference between the
systems belonging to different groups (Fig. 6.10(b)). In the first group (Fig. 6.10(b), left
panel), the strongest exchange interaction takes place between nearest magnetic 3d atoms.
This strongest interaction determines the cosinusoidal form of the corresponding magnon
dispersion. The sizable interaction between the second-nearest magnetic 3d atoms describes
the deviation of the dispersion from a simple cosinusoid.

In the second group of compounds (Fig. 6.10(b), right panel), the strongest interac-
tion is between the second-nearest magnetic atoms. Because of the decreased period of
the Fourier component corresponding to the second exchange parameter the dispersions are
nonmonotonous and have the maximum not at the boundary of the Brillouin zone but inside
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Figure 6.10: (a) Frozen-magnon dispersions for NiVAs, NiMnSb and NiCrZ (Z=P, Se, Te). The
spectrum is shown for [0 0 q] direction in the reciprocal space. The wave vector is given in the units
of 2π/a. In the calculations only the V-V, Cr-Cr and Mn-Mn interactions were taken into account.
(b) Interatomic exchange interactions. The calculational data for NiVAs and NiCrZ are presented for
the theoretical equilibrium lattice constant.

of it.
A remarkable feature of the exchange interactions is their short range character: the lead-

ing contribution into the Curie temperature of all systems is provided by the interactions
within the first two coordination spheres. The interactions with further coordination spheres
are very weak and can be neglected in the calculation of the Curie temperature. The inter-
actions between Ni atoms and the interactions of Ni with V and Cr are very weak and are
not presented.

• Curie temperature

The calculated exchange parameters are used to evaluate the Curie temperature (Table 6.4).
It is important to note that the similarity of the form of the magnon dispersions within one
group of compounds is not accompanied by a quantitative closeness of the curves (Fig. 6.10a).
Therefore the Curie temperatures can differ strongly for compounds belonging to the same
group.

The Curie temperatures are estimated within two different schemes: MFA and RPA. For all
systems and for both theoretical schemes the calculated Curie temperatures are substantially
higher than room temperature. The MFA always gives the value of Tc that is larger than the
corresponding RPA value and usually overestimates the experimental Curie temperature.

The analysis of the calculational data allows to make a number of important conclusions.
First, there is a strong influence of the sp atom on the value of Tc. Indeed, the comparison
of NiCrSe and NiCrTe that differ by the sp atom shows that the Curie temperature changes



6.4. Prediction of high Tc in NiVAs and NiCrZ (Z = P, Se, Te) compounds 83

from about 500 K in NiCrSe to about 800 K in NiCrTe. This strong dependence reveals
the sensitivity of the exchange interactions and the Curie temperature to the details of the
electron structure.

An interesting feature of the calculated Curie temperatures (Table 6.4) is a large difference
between the MFA and RPA estimations for the first group of compounds in contrast to a
small difference for the second group. Characterizing the relative difference of the MFA and
RPA values of the Curie temperature by the relation [TMFA

c − TRPA
c ]/TRPA

c we get for the
first group of compounds a large value of 20-24% compared to a small value of 5-8% for
the second group. This feature reflects the properties of the corresponding frozen-magnon
spectra.

From Fig. 6.10(a) we see that the frozen-magnon curves of the second group of compounds
are flat in the second half of the q interval demonstrating here very weak dispersion. On
the other hand, the first group of compounds have considerable dispersion in this part of
the q interval. In addition, the low-q part of the curves for the second group of compounds
lie higher than the corresponding part of the curves for the first group. Therefore, the
relative contribution of the low-energy magnons to the RPA value of the Curie temperature
is smaller in the second group of compounds. This combination of features of the wave-vector
dependencies of the frozen-magnon energies is responsible for a larger difference between the
RPA and MFA estimations of the Curie temperature of the first group of compounds.

6.4.2 Curie temperature and half-metallicity

An important question concerning the magnetism of the half-metallic systems is the relation
between half-metallicity and Curie temperature. Indeed, a number of studies has shown
that the half-metallicity can stimulate an increase of the Curie temperature [101, 113, 114].
The analysis of Fig. 6.11 allows us to establish a correlation between the value of the Curie
temperature and the energy distance δ between the Fermi level and the upper edge of the
semiconducting gap. This quantity determines the spacing between the highest occupied
spin-up state and the lowest empty spin-down state. For very small δ of 0.03 eV in NiCrSe
we obtained the lowest Curie temperature of 508 K. On the other hand, for large δ in NiCrP
and NiMnSb we obtained the Curie temperature substantially above 800 K.

Since the value of the Curie temperature is determined by the magnetic excitations to
interpret the δ − TC correlation we need to understand the origin of the influence of the δ

value on the spin-wave energies.
The magnon energies reflect the energy prize for the deviations of the atomic moments from

parallel directions [6]. In the ground-state ferromagnetic configuration the spin-projection is a
good quantum number and the electron states with opposite spin projections do not interact.
The deviation of the atomic moments from parallel directions leads to the mixing of the
majority-spin and minority-spin states. The hybridization of a pair of the states leads to
their repulsion. As a result, the energy of the lower state decreases (bonding state) and the
energy of the upper state increases (antibonding state). If the lower state is occupied and the
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upper state is empty this process leads to the decrease of the energy of the magnon making
ferromagnetic state energetically less favorable. The smaller is the energy distance between
interacting states the stronger is the effect.

Coming back to the half-metallic compounds considered in the paper we note that the
hybridizational interaction of this type takes place between the occupied majority-spin states
below the Fermi level and the empty spin-down states at the bottom of the conduction band.
The distance between these states is given by parameter δ. Therefore this process provides a
mechanism for the correlation between δ and Curie temperature.

Since the strength of the hybridizational repulsion increases with decreasing energy dis-
tance between interacting states the negative contribution to the spin-wave energies is larger
in the case of smaller δ. However, the correlation between parameter δ and TC or, more
general, between the half-metallicity and TC should not be considered as a universal rule.
The hybridizational repulsion considered above is only one of numerous processes arising in
a complex multi-band system with the deviation of the atomic moments from the parallel
directions. The combined result of these processes cannot be predicted without the direct
calculation of the excitation energies. Such a calculation must take into account the complex-
ity of the electron structure of a real system. Indeed, the comparison of NiVAs and NiCrTe
shows that both systems have the same δ of 0.14eV. However, their Curie temperatures differ
strongly.



Chapter 7

Effect of Pressure on Magnetic

Properties of Heusler Alloys

The understanding of the magnetic properties of transition metals and their alloys is one of
the chief aims of the theory of itinerant magnetism. The pressure dependence of the Curie
temperature in ferromagnetic systems provides an important information in this respect and
is an object of intensive studies both experimental and theoretical. The key question here
is the character of the variation of various magnetic properties with decreasing distances
between magnetic atoms. Considering Ni2MnSn Heusler compound as an example we study
pressure dependence of electronic structure, exchange interactions and Curie temperature
focusing on the low pressure region where the experimental information is available. We
relate the theoretical dependence of TC on the lattice constant (and pressure for large a)
to the corresponding dependence predicted by the empirical interaction curve. The Mn-Ni
atomic interchange observed experimentally is simulated to study its influence on the Curie
temperature.

7.1 Empirical interaction curve

In an early work, Castellitz [115] proposed an empirical rule (interaction curve) that describes
the dependence of the Curie temperature of the Mn-containing ferromagnetic alloys with 4-
5 valence electrons per molecule on the ratio R/d where R is the nearest-neighbor Mn-Mn
distance and d is the radius of the atomic Mn 3d shell. The curve is supposed to represent the
Curie temperatures of various systems at ambient pressure as well as the pressure dependence
of Tc of a given system. The function is not monotonous and has a maximum at the R/d value
of about 3.6 (see Fig. 7.6). According to the interaction curve, one can expect dTc/dP > 0 for
alloys with R/d > 3.6 (e.g., Ni2MnSn and Cu2MnIn). On the other hand, the systems with
R/d < 3.6 (e.g., NiAs-type MnAs, MnSb and MnBi) are expected to have negative pressure
dependence of the Curie temperature. These predictions are in agreement with experiment
[116, 117, 118].
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Recently Kanomata et al. suggested a generalization of the interaction curve to the case
of 6-7 valence electrons per chemical formula [119]. These systems form a new branch of
the dependence of the Curie temperature on the Mn-Mn distance (Fig. 7.6). The available
experimental values of the pressure derivative of the Curie temperature, dTc/dP , for Heusler
alloys are consistent with those expected from the interaction curve [120, 121, 122].

7.2 Pressure dependence of the exchange interaction and

Curie temperature in Ni2MnSn

The Heusler compound Ni2MnSn received much interest from the experimental point of view.
Early experiments on the pressure dependence of the Curie temperature of this system have
been performed in a low pressure region (less than 0.5 GPa) [120]. Recently Gavriliuk et al.
[123] have studied structural and magnetic properties of Ni2MnSn in the pressure interval
up to 10.8 GPa. The authors have found an increasing linear dependence of the Curie
temperature on applied pressure. The Mössbaurer spectroscopy revealed partial interchange
of the Mn and Ni atoms.

Motivated by this recent experiment and empirical interaction curve we studied the elec-
tronic structure, exchange interactions and Curie temperature in Ni2MnSn as a function of
pressure. The main attention is devoted to the interval of the interatomic Mn-Mn distances
from 4.26Å to 4.06Å that corresponds to the available experimental variation of this param-
eter. These values of the Mn-Mn distance are far above the value of 3.6Å that, according
to interaction curve, separates the regions of positive and negative pressure gradients of the
Curie temperature for this group of systems. To verify the appearance of the non-monotonous
behavior we extended the calculation to smaller values of the lattice constant correspond-
ing to larger applied pressures. We compare empirical and calculated dependencies. The
influence of the Mn-Ni atomic interchange on the magnetism of the system is also studied.

We will subdivide the discussion of the influence of the pressure on the electronic properties
of Ni2MnSn in two parts. First, we present a detailed study of the low-pressure region
where an experimental information is available (We extend this interval up to ∼20 GPa).
In particular we verify the monotonous increase of the Curie temperature with increasing
pressure in this region. Then we consider a much larger interval of the variation of the lattice
parameter to study the occurrence of the non-monotonous behavior of the Curie temperature.

7.2.1 Low pressure region

To establish the relation between the lattice parameters and applied pressure we use the
following expression obtained experimentally in Ref.[123]

(V − V0)
V0

= −aP + bP 2
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Table 7.1: Lattice parameters, magnetic moments and Curie temperatures in Ni2MnSn at
ambient pressure and applied pressure of 16 GPa with and without Mn-Ni swap.

Ni2MnSn Ni2MnSn (Mn-Ni swap)

a = 6.02 Å[0 GPa] a = 5.82 Å[16 GPa] a = 6.02 Å[0 GPa] a = 5.82 Å[16 GPa]

Ni1 0.21 0.19 0.21 0.26
Ni2 0.21 0.19 0.08 0.05
Mn 3.73 3.47 3.24 2.80
Sn -0.05 -0.05 -0.04 -0.03
Total 4.09 3.81 3.50 3.09
Tc[Calc] 362 400 340 562
Tc[Expt] (338-360)a - - -

aRef.[50, 123, 125]

where a = 8.64 · 10−3GPa−1, b = 1.13 · 10−4GPa−2 and V0 is the volume of the unit cell at
the ambient pressure.

We begin with the discussion of the effect of pressure on the electronic structure. In
Fig. 7.1(a), we compare the density of states calculated for the ambient pressure and the
applied pressure of 16 GPa. As expected, the pressure leads to the broadening of the bands
that stems from the decreasing inter-atomic distances and, therefore, increasing overlap of the
atomic states. One of the consequences of the band broadening is the trend to the decrease of
the magnetic moments. This trend is demonstrated in table 7.1 and Fig. 7.1(b). In Fig. 7.1(b)
we present a detailed information on the atomic and total magnetic moments for the range
of pressures up to 20.6 GPa. The dependence of the Mn magnetic moment on pressure can
be well represented by a linear function with a negative slope. The behavior of the induced
moment of Ni is more peculiar. The dependence deviates strongly from the straight line
and shows weak oscillations in the high-pressure part of the curve. This behavior reflects the
details of the pressure dependence of the band structure, in particular, the form of the DOS in
the energy region close to the Fermi level and the character of the Mn-Ni hybridization. Since
these weak oscillations do not play noticeable role in the issues we focus on in this paper we
do not further investigate their origin. The induced moment on Sn has the direction opposite
to the direction of the Mn moment. Its value decreases slowly with increasing pressure. The
spin polarization at the Fermi level shows very weak pressure dependence.

Thus the decreasing lattice constant produces a clear trend to a monotonous decrease of the
atomic magnetic moments. For our purpose of the investigation of the pressure dependence
of the Curie temperature it is important to relate the increasing band width and decreasing
magnetic moments to the properties of the inter-atomic exchange interactions.

In the spirit of the Heisenberg model of localized moments one expects that decreasing
atomic moments produce the trend to the decrease of the inter-atomic exchange interactions
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Figure 7.1: (a) Upper panel: Spin projected density of states of Ni2MnSn for ambient pressure and
applied pressure of 16 GPa. Lower panel: The same for the case of Mn-Ni atomic interchange. (b)
Pressure dependence of magnetic moments in Ni2MnSn.

by the factor of M2
p /M2

0 where Mp is the atomic moment at pressure P and M0 is the
moment at the ambient pressure. Correspondingly, one expects the trend to decreasing Curie
temperature resulting from decreasing atomic moments.

An opposite monotonous trend to increasing interatomic exchange interactions is produced
by increasing electron hopping and, as a result, more efficient mediation of the exchange in-
teractions between magnetic atoms. The competition of two opposite trends opens possibility
for both increase and decrease of the Curie temperature with applied pressure as well as for
a nonmonotonous pressure dependence in a larger pressure interval.

In Fig. 7.2(a), we present the calculated inter-atomic exchange parameters of Ni2MnSn for
pressures of 0 and 16 GPa. For comparison, a zero-pressure result of previous calculation is
also presented. At both pressures the patterns of inter-atomic exchange interactions are very
similar. This similarity involves both Mn-Mn and Mn-Ni exchange interactions. The Mn-
Mn interactions are long-ranged reaching beyond the 8th nearest neighborhood distance and
have the RKKY-type oscillating character. The inter-sublattice Mn-Ni interaction behaves
very differently. A sizable interaction takes place only between nearest neighbors. Note that
Fig.7.2(a) does not present all calculated exchange parameters: the exchange parameters
have been evaluated up to the inter-atomic distances of 8.7a that corresponds to about 70
coordination spheres. The absolute value of the parameters decays quickly with increasing
interatomic distance. In Fig. 7.2(b), we demonstrate the convergence of the calculated Curie
temperature with respect to increasing number of the atomic coordination spheres. The main
contribution to TC comes from the interaction between atoms lying closer than 3a. After 5a
no sizable contribution is detected.
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Figure 7.2: (a) Upper panel: Interatomic exchange parameters of Ni2MnSn for ambient pressure
and applied pressure of 16 GPa. Lower panel: The same for the case of Mn-Ni atomic interchange.
Zero pressure comparison of both Mn-Mn (+) and Mn–Ni (?) exchange parameters with Ref.[124] is
also shown. (b) Pressure variation of the Curie temperature with increasing number of coordination
spheres with and without Mn-Ni atomic interchange.

In Fig.7.2(a), we compare our exchange parameters for Ni2MnSn at zero pressure with
the exchange parameters calculated recently by Kurtulus et al. [124] Kurtulus et al. used
TB-LMTO-ASA method and local spin-density approximation (LSDA). The inter-atomic
exchange parameters were evaluated using the real-space approach by Liechtenstein et al.
[30] This approach and the frozen-magnon technique employed in the present paper are
equivalent to each other. In the real-space method by Liechtenstein et al. the inter-atomic
exchange parameters are calculated directly whereas in the frozen-magnon approach they are
obtained by the Fourier transformation of the magnon dispersion.

In Table 7.1 we present the MFA estimation of the Curie temperature. It is in good agree-
ment with available experimental values overestimating them somewhat. An overestimation
of the Curie temperature is a usual feature of the MFA as discussed in previous chapter.

The pressure dependence of the interatomic exchange parameters is presented in Fig. 7.3.
The corresponding Curie temperature is shown in inset in Fig 7.6. The analysis shows that
the leading contribution into Curie temperature is given by the Mn-Mn exchange interactions
within the first three coordinations spheres. The numbers of the atoms in these spheres are
12, 6 and 24, respectively for the first, second and third spheres. The exchange parameters
corresponding to the second and third coordination spheres increase monotonously with in-
creasing pressure determining the increase of the Curie temperature (Fig 7.6). Thus, the
increase of the experimental Curie temperature with pressure in the corresponding pressure
region [123] is well confirmed by the calculations. In terms of the competition of the two
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opposite trends discussed above this result means a stronger effect of the increasing hopping
compared with the effect of decreasing atomic moments. Such a behavior is expected for
large inter-atomic distances.

Note that in the interval from 9 GPa to 16 GPa we obtain a flat feature in the pressure
dependence of the Curie temperature. This behavior is in a correlation with the recent
experiment of Kyuji et al. [125] who obtained the Curie temperature increase from 338K
at the ambient pressure to 395K at 12 GPa. At ∼7 GPa they obtained a decrease of the
pressure gradient that can be put into correspondence to the theoretical flat feature.

Both measured and calculated Curie temperatures are in good agreement with the empir-
ical interaction curve for the corresponding region of the Mn-Mn distances (Fig. 7.6).

7.2.2 High pressure region: Metamagnetic behavior

To verify the non-monotonous pressure dependence of Tc predicted by the interaction curve
we extended the calculation to smaller Mn-Mn distances down to 3.09Å. The calculated
magnetic moments are presented in Fig. 7.4. The Mn moment decreases with the reduction
of Mn-Mn distance. An interesting feature is obtained at dMn−Mn = 3.416Å where the value
of the magnetic moment changes discontinuously. To study the origin of the discontinuity we
employed the fixed-spin-moment method [126, 127, 128] that allows the calculation of the total
energy as a function of the spin moment for a given lattice parameter. The corresponding
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curves are presented in the inset in Fig. 7.4. For large Mn-Mn distance the curve has one
minimum corresponding to a high-spin state. In the region of the discontinuity the curve has
two local minima revealing the presence of a metastable state. At the point of discontinuity
the minimum corresponding to the low-spin state becomes lower. With further decrease
of the lattice volume the minimum corresponding to the high-spin state disappears. At
dMn−Mn = 3.09Å the magnetic moment vanishes and the ground state of the system becomes
a Pauli-paramagnet.

In Fig. 7.5, the first four nearest neighbor Mn-Mn exchange interactions are presented for
the broad interval of the Mn–Mn interatomic distance. The pressure region discussed in the
preceding section corresponds to the last three points in the plot. Three of the four leading
parameters show nonmonotonous behavior that is reflected in the nonmonotonous behavior
of the Curie temperature (Fig. 7.6). The absolute values of the 2nd, 3rd and 4th neighbor
Mn-Mn parameters first increase with pressure, reach their maxima at the Mn-Mn distances
in the region from about 4.0Å to about 3.6Å and decrease strongly with further decrease
of the Mn-Mn distance. There are some weak peculiarities in the behavior of the exchange
parameters at the region after the discontinues transition such as additional local extreme in
the 1st, 3th and 4th neighbor parameters. They, however, compensate each other and the
Curie temperature has only one maximum at the Mn-Mn distance of about 3.8 Å (Fig.7.6).

The non-monotonous behavior of the exchange parameters and TC can be interpreted as
a result of the competition of two opposite monotonous trends appearing with the variation
of the Mn-Mn distances discussed in the previous section. In the low–pressure region the
influence of the increasing hopping prevails while in the high-pressure region the influence of
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decreasing magnetic moments becomes more important.
Qualitatively, the calculated pressure dependence of TC in the broad pressure interval is

in agreement with the Kanomata’s empirical interaction curve. Indeed, we obtained non-
monotonous pressure dependence characterized by one maximum separating the regions of
positive and negative pressure gradients. The low-pressure part of the calculated dependence
is in reasonable quantitative agreement with the Kanomata’s interaction curve. For smaller
lattice volumes the calculated Curie temperature decreases faster than it is prognosticated by
the interaction curve. The calculations predict the discontinuity in the pressure dependence
of the Curie temperature of Ni2MnSn which is absent in the empirical interaction curve. The
extension of the measurements to higher pressures is desirable to verify the predictions of the
calculations.

7.3 Effect of the Mn-Ni swap on Curie temperature of Ni2MnSn

The calculations of the Curie temperature of Ni2MnSn discussed in the preceding sections are
in good correlation with measured Tc values for the range of pressures studied experimentally.
A detailed numerical comparison shows, however, that the theoretical pressure derivative,
dTc/dP , estimated as 3.22 K/GPa is substantially smaller than the experimental estimation
of 7.44K/GPa obtained by Gavriliuk et al. To verify the role of the atomic interchange
between Ni and Mn sublattices observed experimentally [123] we performed calculation for
a model system where the atoms of the Mn sublattice are interchanged with the atoms of
one of the Ni sublattices. Although this model is a strong simplification of the experimental
situation it allows the investigation of the trends resulting from the Mn-Ni interchange.

With Mn-Ni interchange we obtain a substantial difference in the electron structure of the
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system. The corresponding DOS and magnetic moments for ambient and applied pressure
of 16 GPa are presented in Fig.7.1(a) and table 7.1. In this case the Mn states hybridize
differently with the states of two Ni atoms. As a result the magnetic moments of the Ni
atoms assume different values. The total magnetic moment per formula unit decreases from
3.50µB at ambient pressure to the 3.09µB at the applied pressure of 16 GPa. The decrease
of the total magnetic moment is mostly the result of the reduction of the Mn moment. Note
that at the pressure of 16 GPa the relative variation of the total magnetic moment is two
times larger than in Ni2MnSn without Mn-Ni interchange. The change in the shape of the
3d peaks and broadening of the bands are similar to those for the system without swapping.

At zero pressure the pattern of exchange parameters (Fig. 7.1(b)) and resulting Curie
temperature (Table 7.1) are very similar to the case without Mn-Ni interchange. However,
the situation is different at applied pressure of 16 GPa. Both Mn-Mn and Mn-Ni1 nearest-
neighbor exchange parameters increase substantially. The remaining exchange parameters
show small pressure dependencies. The interaction of the Mn moment with the moment of
the second Ni atom is slightly reduced. The substantial increase of the leading exchange
parameters with pressure results in considerable change of the Curie temperature from 400
K at ambient pressure to 562 K at 16 GPa. Assuming a linear variation of TC with pressure
we estimate the pressure derivative, dTC/dP , as 12.5 K/GPa. This value of dTc/dP exceeds
strongly the corresponding value for the system without Mn–Ni atomic interchange. Since
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the number of the swaped Mn and Ni atoms in our model is much larger than in the sam-
ples measured the calculated dTC/dP cannot be directly compared with the experimental
pressure derivative. Important, however, that the Mn-Ni atomic interchange increases the
pressure derivative of TC that gives an explanation for the low value of the theoretical pres-
sure derivative in the case of the system without swapping. A detailed study of the influence
of the inter-sublattice atomic interchange on the electron properties of the Heusler systems
is an interesting extension of the present study.



Chapter 8

Summary and Conclusions

In this thesis, a systematic study of the exchange interactions and Curie temperature for
various Heusler alloys are presented. The calculations are done within the parameter-free
density-functional theory with the state-of-the-art ASW-method. We use the frozen-magnon
approach to calculate interatomic exchange parameters. The Curie temperature is estimated
within MF and RPA approaches.

The main focus is on the microscopic mechanisms of the formation of the long range
magnetic order. In the choice of the compounds for the investigations, priority was given to
the experimentally well-established systems. For Ni-based compounds Ni2MnZ (Z = Ga, In,
Sn, Sb) we found that, despite closeness of the experimental Curie temperatures for all four
systems, the exchange interactions vary widely depending on the Z constituent (sp-atom) and
show RKKY-type oscillations. In particular, the intersublattice interactions change strongly
from system to system. We show that, in agreement with experiment, different patterns
of exchange interactions lead to similar values of the Curie temperatures. The role of the
sp-electrons in mediating exchange interactions between Mn atoms is further emphasized
by studying non-stoichiometric compositions of Pd- and Cu-based semi and full Heusler
alloys. In this case we found that an important factor strongly influencing the electronic
properties of the Heusler alloys was the spin polarization of the sp-electrons. We obtained a
clear relationship between the strength of the exchange interactions and the sp-electron spin
polarization. The larger the sp-electron polarization, the stronger the exchange interactions
and, as a result the higher the Curie temperature. In particular the systems with vanishing
sp-electron spin polarization are characterized by the value of the Curie temperature that is
also very close to zero. This property reveals the decisive role of the sp-electrons of the X
and Z atoms in mediating the exchange interaction between the Mn spin moments.

Half-metallic Heusler compounds form one of the most promising classes of materials for
spintronics applications. A detailed investigation of magnetism in these systems is reported.
We study the exchange interactions and Curie temperature in both ferromagnetic and ferri-
magnetic compounds. The role of the inter-sublattice exchange interactions in formation of
the very high Curie temperature in some full Heusler compounds (i.e., Co2MnSi and Mn2VAl)
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is revealed. We investigate the effect of the half-metallic gap on the stability of exchange in-
teractions and Curie temperature. We study spin wave spectra and temperature dependence
of the magnetization employing multi-sublattice Green function technique within Tyablikov
decoupling scheme. We predict new semi Heusler compounds with very high TC values.

The pressure dependence of the Curie temperature in ferromagnetic systems provides an
important information on the nature of magnetism. Our detailed study of the pressure de-
pendence of exchange interactions and Curie temperature of the full Heusler alloy Ni2MnSn
shows that the character of the pressure dependence of the exchange interactions is a conse-
quence of a complex interplay of competing trends in the electronic properties of the system.
In agreement with experiment, the Curie temperature increases with increasing pressure in
the pressure region studied experimentally. Extending our theoretical study to a larger pres-
sure interval, we obtained non-monotonic TC dependence and the presence of a metamagnetic
transition. The TC behavior in the whole pressure interval is in qualitative correlation with
Kanomatas empirical interaction curve. In the low-pressure region there is good quantitative
agreement between the calculated values and the prediction of the empirical rule. Mn-Ni
atomic interchange is shown to increase the pressure derivative of the Curie temperature
which suggests a physical mechanism for the improved agreement between the experimental
and theoretical estimations of this parameter.



Zusammenfassung

Gegenstand dieser Arbeit waren theoretische Untersuchungen der Austauschinteraktionen
und der Curie-Temperatur in verschiedenen Heusler-Legierungen. Die Berechnungen wur-
den im Rahmen der parameterfreien Dichtefunktionaltheorie mit Hilfe der ASW-Methode
durchgeführt. Die Berechnung der Austauschwechselwirkungsparameter basiert auf der frozen-
magnon- Näherung. Die Curie-Temperatur wurde innerhalb des mean-field (MF) und der
random-phase-approximation (RPA) geschätzt.

Wir führten systematische Untersuchungen der intra- und inter-sublattice Austauschwech-
selwirkungen sowie der Curie-Temperatur von experimentell untersuchten Heusler-Legierungen
durch. Wir behandelten besonders die mikroskopischen Mechanismen, welche zur Bildung
der langreichweitigen magnetischen Ordnung führten. Bei den auf Ni basierenden Verbindun-
gen Ni2MnZ (Z = Ga, In, Sn, Sb) war eine starke Abhängigkeit der Austauschwechsel-
wirkungen von Z (dem sp-Atom) festzustellen, obwohl die berechnete und experimentelle
Curie-Temperatur aller vier Verbindungen sehr ähnlich war. Untersucht man die nicht-
stöchiometrischen Verbindungen der auf Pd und Cu basierenden semi und full Heusler-
Legierungen, wurde auch deutlich, welche Rolle die sp-Elektronen bei den Austauschwech-
selwirkungen zwischen den Mn-Atomen spielten. Es wurde festgestellt, dass die Spinpo-
larisation der sp-Elektronen die elektronischen Eigenschaften der Heusler-Legierungen stark
beeinflussten. Es konnte ein klarer Zusammenhang zwischen der Stärke der Austauschwech-
selwirkung und der sp-Elektronen-Spinpolarisation festgestellt werden. In allen untersuchten
Systemen war die Mn-Mn-Austauschwechselwirkung langreichweitig und es gab RKKY Os-
zillationen.

Desweiteren wurden ausführliche Untersuchungen zum Magnetismus von halbmetallischen
Heusler-Verbindungen, die ein hohes Anwendungspotential im Bereich Magnetoelektronik
besitzen, durchgeführt. Es wurden ferro- und ferrimagnetische Verbindungen untersucht.
Die Rolle der inter-sublattice Austauschwechselwirkungen in der Anordnung der sehr hohen
Curie-Temperatur wurde aufgedeckt. Weiterhin wurden die Auswirkungen der halbmetallis-
chen Lücke auf die Stabilität der Austauschwechselwirkungen und der Curie-Temperatur
untersucht. Außerdem wurden Spinwellenspektren und die Temperaturabhängigkeit der
Magnetisierung unter Verwendung der multisublattice-Greenfunktion innerhalb des Entkop-
plungsschemas nach Tyablikov untersucht. Schließlich berechneten wir neue semi Heusler-
Verbindungen mit sehr hohen TC-Werten voraus.
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Zuletzt befassten wir uns mit der Druckabhängigkeit von elektronischen Struktur, Aus-
tauschwechselwirkungen und der Curie-Temperatur in der ferromagnetischen Heusler-Legierung
Ni2MnSn. Wir bekamen einen Anstieg der Curie-Temperatur von 362 K bei Umgebungs-
druck auf 396 K bei 12 GPa. Dies wurde auch experimentell bestätigt. Legte man die
Gitterparamenter außerhalb des bereits experimentell untersuchten Grenzbereichs, gab es
eine nicht-monotonische Druckabhängigkeit der Curie-Temperatur und einen metamagnetis-
chen Übergang. Wir brachten die berechnete Abhängigkeit der TC von Gitterkonstante
in Verbindung mit der entsprechenden Abhängigkeit, die durch die empirische Wechsel-
wirkungskurve vorausgesagt wurde. Es wurde die bei Experimenten festgestellte atomische
Mn-Ni Austausch simuliert, um den Einfluss auf die Curie-Temperatur zu untersuchen.
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