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Summary 
 

Processing dynamically occluded objects, also known as motion extrapolation, is a most complex 

cognitive process and fundamental for the survival of human and non-human animals. 

Understanding how humans extrapolate occluded objects has been the focus of psychologists and 

cognitive scientists since the 40s, when there was a growing interest in comprehending how 

gunners can better track targets even if they are occluded by clouds. Early behavioural studies 

showed that motion extrapolation works through a tracking mechanism, rather than a simple 

internal countdown clocking, as once hypothesized. Later, other researchers concluded that 

extrapolating objects rely on spatially-specific mental representation. However, most fMRI studies 

so far only reported the engagement of higher-level visual areas during dynamic occlusion which 

lack a fine-grained spatial specificity. Here, I investigate the engagement of the primary visual 

cortex during the processing of motion extrapolation, by addressing three central questions: what 

is the role of the primary visual cortex in the processing of dynamic occluded objects? Can the 

manipulation of the predictability of temporal information of occluded target differently enhance 

activity of the primary visual cortex, as posited by the predictive coding theory? What is the causal 

relation between processing of temporal information of a moving stimulus and activity in the 

primary visual area?  

The first question was addressed by using a prediction motion paradigm and a combination of 

techniques, such as fMRI, retinotopic maps and multivariate pattern analysis (MVPA) at the single-

subject level, to account for subject-specific anatomical variability and other methodological issues. 

Results indicated that extrapolating occluded motion trajectories enhanced activity in low-level 

visual regions, including the primary visual area. Additionally, occluded motion direction could be 

predicted from activity patterns in low-level visual areas during visible period of motion, supporting 

the idea of a mental representation of motion trajectory in a visually-specific format.  

The second question was addressed by using the interception paradigm and the same combination 

of techniques. Results demonstrated that higher and lower predictability levels equally increased 

responses in the primary visual cortex; and here I discuss that if motion extrapolation is processed 

according to the predictive coding model, predictive error may have been silenced by additional 

attentional mechanisms, as proposed by an interactive prediction-attention model. In addition, it 

was observed that fast motion consistently enhanced activity pattern in the primary visual cortex, 

compared to slow velocity. Moreover, findings from the first study were replicated, by showing 

that response during visible and occlusion periods follow a similar pattern of activity.  

The third question was addressed by using transcranial magnetic stimulation (TMS) over the 

primary visual cortex and by observing the effect on stimulus temporal information. However, 

results did not provide robust evidence to draw conclusions about the causal involvement of V1 

with temporal information processing.  

In sum, these studies provided evidence that temporal information can be found along the stimulus 

trajectory potentially pointing at a conjoined spatio-temporal representation in low-level visual 

areas during visible and dynamically occluded stimulations, thereby significantly extending 

previous research. 
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Zusammenfassung 
 

Die Verarbeitung dynamisch verdeckter Objekte, auch bekannt als Bewegungsextrapolation, ist ein 

äußerst komplexer kognitiver Prozess und grundlegend für das Überleben von Menschen und 

nichtmenschlichen Tieren. Das Verständnis, wie Menschen verdeckte Objekte extrapolieren, war 

seit den 40er Jahren das Hauptaugenmerk von Psychologen und Kognitionswissenschaftlern, 

angesichts eines wachsenden Interesses daran, zu verstehen, wie Kanoniere Ziele besser verfolgen 

können, selbst wenn diese von Wolken verdeckt sind. Frühe Verhaltensstudien zeigten, dass die 

Bewegungsextrapolation über einen Verfolgungsmechanismus funktioniert und nicht über einen 

einfachen internen Countdown, wie früher angenommen wurde. Später kamen andere Forscher zu 

dem Schluss, dass die Extrapolation von Objekten auf einer räumlich spezifischen mentalen 

Repräsentation beruht. Die meisten fMRT-Studien berichteten bisher nur über eine Modulation der 

Aktivität in höheren visuellen Arealen während der dynamischen Okklusion, denen allerdings eine 

feinkörnige räumliche Spezifität fehlt. In der vorliegenden Arbeit untersuchte ich die Beteiligung 

des primären visuellen Kortex an der Verarbeitung von Bewegungsextrapolation, indem ich drei 

zentrale Fragen stellte: Welche Rolle spielt der primäre visuelle Kortex bei der Verarbeitung 

dynamischer verdeckter Objekte? Kann eine Manipulation der Vorhersagbarkeit zeitlicher 

Informationen von verdeckten Zielen die Aktivität des primären visuellen Kortex modulieren, wie 

dies von der prädiktiven Codierungstheorie postuliert wird? Welcher kausale Zusammenhang 

besteht zwischen der Verarbeitung zeitlicher Informationen eines Bewegungsreizes und der 

Aktivität im primären visuellen Cortex? 

Die erste Frage wurde durch die Verwendung eines Vorhersagebewegungsparadigmas und einer 

Kombination von Techniken wie fMRI, retinotoper Kartierung und multivariater Musteranalyse 

(MVPA) auf Einzelsubjektebene angegangen, um subjektspezifische anatomische Variabilität und 

andere methodische Probleme zu berücksichtigen. Die Ergebnisse weisen darauf hin, dass die 

Extrapolation einer verdeckten Bewegungsbahn die Aktivität in niederen visuellen Arealen, 

einschließlich des primären Sehbereichs, verstärkt. Darüber hinaus kann die verdeckte 

Bewegungsrichtung aus Aktivitätsmustern in niederen visuellen Arealen während sichtbarer 

Bewegungsperioden vorhergesagt werden, was die Idee einer mentalen Repräsentation der 

Bewegungsbahn in einem visuell spezifischen Format unterstützt.  

Die zweite Frage wurde unter Verwendung des Interception-Paradigmas und der gleichen 

Kombination von Techniken untersucht. Die Ergebnisse zeigen, dass höhere und niedrigere 

Vorhersagbarkeitsniveaus die Aktivität in primären visuellen Kortex gleichermaßen modifizieren; 

möglicherweise wird der Vorhersagefehler durch zusätzliche Aufmerksamkeitsmechanismen 

ausgeglichen - wie von einem interaktiven Prädiktions-Aufmerksamkeitsmodell vorgeschlagen. 

Darüber hinaus werden die Ergebnisse der ersten Studie repliziert, indem gezeigt wird, dass die 

neuronalen Antworten während sichtbarer und verdeckter Perioden einem ähnlichen 

Aktivitätsmuster folgen. Des Weiteren wird beobachtet, dass schnelle Bewegungen - im Kontrast 

zu langsamen - konsistent das Aktivitätsmuster in primären visuellen Kortex erhöhen. 

Die dritte Frage wurde durch die Verwendung transkranieller Magnetstimulation (TMS) über dem 

primären visuellen Kortex und durch Beobachtung der Wirkung auf die zeitliche Information des 

Stimulus beatwortet. Die hier angewandte TMS-Doppelpuls-Methode über dem primären visuellen 
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Kortex lieferte jedoch keine robusten Belege, um Schlussfolgerungen über die Beteiligung von 

primärem visuellem Kortex an der zeitlichen Informationsverarbeitung zu ziehen. 

Zusammenfassend liefern diese Studien Beweise dafür, dass der zeitlichen 

Informationsverarbeitung entlang der Stimulus-Trajektorie gefunden werden kann, was 

möglicherweise auf eine verbundene räumlich-zeitliche Repräsentation in niederen visuellen 

Arealen während sichtbarer und dynamisch verdeckter Stimulationen hinweist, wodurch bisherige 

Forschungsergebnisse erheblich erweitert werden. 
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Chapter 1 - General Introduction 
 
While driving or walking by a busy street, there are intrinsic rules that drivers and pedestrians 

commonly follow. For instance, in Germany, at a non-signalized crossing, drivers have the 

preference coming from the right side. Knowing that, the driver from the left stops and waits until 

the other driver passes by. Another situation in which drivers tend to give preference is when 

pedestrians cross a street with no traffic lights. In Brazil, this is not a common practice, but we 

always imagine that drivers in many countries in Europe always do that, as shown in movies or TV 

shows. When I came to Germany for the first time, I expected that it would happen when I crossed 

a non-signalized street. However, in many situations, this was not the case, while in others it did 

happen. When my expectation to have a car stopping so I could cross the street was first violated, 

my predictions about what would happen in the same situation in the future were updated. After 

experiencing both situations, I was uncertain: is it safe to cross or should I wait until the car passes 

by? In situations like this one, our brain systematically evaluates and potentially update its 

predictions. 

Prediction is of utmost importance in survival situations, as they help us planning next 

actions and making decisions. But what does is mean in a scientific context? In the next paragraphs, 

I will present the definition of this term as it highlights essential theoretical concepts underlying 

this thesis. In addition, the situation presented above will also follow us in the upcoming chapters, 

as it is a good example to illustrate the main questions of this work which are related to the 

investigation of the brain mechanisms involved in predicting and extrapolating missing information 

in motion. For instance, if a car gets occluded by a bus, its reappearance must be predicted in order 

to cross the street safely. Before defining prediction, it is important to explain how regularities, i.e. 

events presented in the environment, are learned by the brain. 

How does the brain learn regularities? 

The flow of events in the natural environment often follows a spatially and temporally organized 

structure, of which the patterns can be learned by humans. These patterns are also known as 

regularities or statistics, and usually they can be highly predictable (Turk-Browne, 2012; Schapiro 

& Turk-Browne, 2015). For instance, when walking around known surroundings, there is a high 

chance for the bus stop, traffic lights and other immobile elements to be at locations, predictable 

by our prior specific knowledge. Further, we do not expect to see a light pole on the top of a house 

based on our general knowledge about the world. Because many parts of the world are dynamic, 

regularities are characterized not only by where they appear, but also when they happen; thus, 
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structured and sequenced information extraction is fundamental for learning and predicting future 

events. In a recent review, Conway (2020) explains statistical learning in three dimensions: amount 

of structure in the input, amount of exposure to the input and amount of instruction/feedback 

related to the input. For the learning of regularities available in the environment to happen, it is 

necessary to have highly structured input and multiple exposures. For instance, learning a new 

language involves comprehending heavily structured patterns and being able to subsequently apply 

this knowledge. In early stage of ontogenetic development, it is already possible to observe learning 

through simple observation or through listening (Saffran et al., 1996; Sengupta et al., 2018). Also, 

through simple observation, studies reported that infants at around 4-5 months of age were able 

to represent moving objects which became temporarily occluded (Rosander & von Hofsten, 2004; 

von Hofsten, Kochukhova & Rosander, 2007). Von Hofsten and Rosander (2007) investigated how 

4-month-old infants extrapolated - i.e. estimate future position of - occluded moving objects. The 

authors measured the infants’ gaze shift when the occluder and the object velocity changed. After 

numerous exposures, the authors observed, in two experiments, that infants were able to follow 

the target before and after the occlusion in 89% and 77% of the time that the target moved. In 

addition, infants shifted the gaze to the final location before the reappearance, suggesting that 

they were able to track the occluded object and anticipate its final location. These findings 

corroborate Conway’s dimensions, as infants were able to learn due to the highly structured 

experimental environment, vast exposure and non-instructed learning.  

In the visual domain, extraction of temporal regularities from a continuous stream is rapidly 

achieved, often occurs in an unsupervised manner and can modify performance (Fiser and Aslin, 

2002), based on valid predictions of the future event. At the neural level, sequence of regularities 

presented in different predictive levels enhance response in different brain regions, suggesting that 

different processes are required, depending on the level of predictability. For instance, Wang and 

colleagues (2017) investigated differences between events presented in random and context-based 

levels (i.e. more or less regularity structure). In particular, participants observed sequences of four 

symbols which were generated probabilistically through a simple or a complex temporal Markov 

Model (MM). The simple MM was composed by random events, meaning that the following event 

was not related to the previous one, while in the complex MM, one stimulus was sequence-

dependent on each other. Participants were instructed to indicate what the upcoming stimulus 

would be. Functional magnetic resonance imaging results pointed to several brain areas with 

enhanced BOLD signal as a function of the level of randomness. The fully random level increased 

responses in bilateral frontal regions (Superior Frontal Gyrus, Precentral Gyrus and Inferior Frontal 

Gyrus), while the predictable level enhanced responses in dorsal frontal (SFG), limbic (Anterior 
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Cingulate Cortex) and subcortical (putamen) regions, suggesting that several regions are engaged 

in the learning and predicting new statistics, and may form flexible networks during this process.  

The level of predictability in the environment is intrinsically related to the level of volatility 

in it, and a volatile environment here can be understood as unstable, fast-changing (Behrens et al., 

2007). Studies presented evidence that the higher the volatility, the higher the learning rate 

(Zylberberg et al., 2016; Behrens et al., 2007). Behrens and colleagues (2007) investigated whether 

observers could keep track of statistics presented in a reward environment and adjust their learning 

rate according to the presented changes. The authors presented green and blue rectangles to the 

participants, which were modified at the trial-by-trial level, according to their expectations and 

outcome reward. Their responses were categorized in two stages: stable and volatile environment, 

and at each category a reinforcement-learning model was adjusted to the participant’s decision. 

Results indicated that humans are able to optimally estimate and use volatility, judging the value 

of each new learned statistics. In accord, Zylberberg and colleagues (2017) hypothesized that 

greater volatility would lead to a quick diffusion of decision variable, i.e. decision reached after 

enough evidence has been accumulated. To test this hypothesis, the study was conducted on 

humans and non-human primates. By presenting random-dot motion paradigm, the authors 

observed that, for both monkey and humans, higher introduced noise resulted in faster reaction 

time and more accurate choices, meaning that the higher the noise, the more rapid decisions were 

made and the more confident the individuals were over the presented stimuli. 

Overall, learning new regularities in the volatile environment can only happen when spatial and/or 

temporal information follow an extractable structure, meaning that the higher the amount of 

structure, the more effective is the learning and the more predictable an event will be. 

After all, what is prediction? How does it work? 

The term prediction can be defined as the process that generates or integrates information about 

the past to extrapolate likely future events of the natural environment (Bubic et al., 2010). 

Prediction rarely comes alone in the context of dealing with upcoming events. For instance, 

expectation frequently appears as a synonym, and etymologically they, indeed, have comparable 

meanings (prediction, from Latin praedicere, means foretell; expectation, from Latin 

expectare/exspectare means anticipation, await. https://www.etymonline.com/). In scientific 

context, Summerfield and Egner (2009) defined expectation as the brain state related to prior 

knowledge about possible future events from the environment. Most importantly, the employment 

of this prior knowledge may be used to decrease computational load in a way that expectations (or 

predictions) can aid visual information acquisition and facilitate the interpretation of the visual 
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input (Summerfield & Egner, 2009), thereby optimizing the processing of the incoming information 

(Zuanazzi & Noppeney, 2019). For this reason, many models tried to explain how prediction 

happens, such as predictive coding and its numerous variations (e.g. Mumford, 1992; Rao and 

Ballard, 1999; Friston, 2003; Spratling, 2017). 

Predictive Coding 

Models of predictive coding attempt to explain how different levels of a hierarchical model network 

propagate predictions to each other. Rao and Ballard (1999) suggested that higher levels of the 

visual system form a prediction and send it to the adjacent lower level through feedback 

connections. The higher levels receive the information about the difference between the prediction 

and the actual response via feedforward projections, and consequently this error is used by the 

system to make corrections on the estimation of the input signal. The authors illustrated these 

ideas through models as presented in Figure 1. Figure 1A depicts lower-level regions sending 

forward error about incoming discrepant information to a predictive estimator (PE), while PE sends 

backward predictions about the correct estimates from higher-level regions, i.e. generating new 

predictions. Figure 1B zooms into the predictive estimator unit which represents different types of 

neurons, such as feedforward neurons, which encode synaptic weights (UT); predictor estimator 

neurons, which maintain the current estimate r of the incoming stimulus; feedback neurons, which 

encode U and carry the prediction f(Ur) to lower stages; and finally, error detecting neurons, which 

compute the differences (r - rtd) between the current prediction r and the top-down prediction rtd 

from an adjacent higher level. In sum, this course of receiving feedback predictions and sending 

feedforward errors assumes that top-down input affects projections from low-level areas and 

bottom-up input influences projections from high-level areas (Rao & Ballard, 1999).  

Friston (2003) extended this idea suggesting that the brain’s hierarchical system, routed in 

its anatomical organization, could be explained by a Free-energy principle model. Free-energy is a 

term borrowed from statistical physics, as its meaning is related to converting complex integration 

problems, innate to inference, into easier optimisation problems (Friston & Stephan, 2007; Friston, 

2003; Friston et al., 2006; Friston & Kiebel, 2009). The model differs from the previous one in the 

sense that it attempts to consider the relation between action and perception and to explain how 

these processes are used to decrease energy consumption by using prior information (Friston & 

Stephan, 2007). For instance, the model is designed to account for attention and perceptual 

salience, the latter based on stimulus features. Even though Free-energy principle models expands 

the predictive coding approach, both attempts to explain how the brain predicts information which 

constantly overflows the systems streams (for mathematical formulations, see Spratling, 2017). 
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Additionally, predictive coding was further related to Bayesian inference (Aitchison & Lengyel, 

2017). The authors suggested that, while predictive coding explains responses at the neural level 

and Bayesian inference explains behaviour, both are complementary. Their relation is given by the 

fact that the second grants an optimized calculation for the computation of predictions which 

occurs in the neural circuits and will be handled by the first.  

 
Figure 1- Figure adapted from Rao and Ballard (1999). Rao and Ballard's Hierarchical Network of Predictive Coding. (A) 
Overall scheme of predictive coding model. The model depicts that lower levels send feedforward errors, obtained from 
discrepancies between top-down input and the actual input, and receive back predictions from predictive estimators. 
Predictive estimators are different types of neurons with different roles in the system. (B) Composition of a PE. A PE unit 
is formed by the synaptic weight UT which is encoded by feedforward neurons. Information is carried on to neurons which 
produces responses (r), used to maintain the ongoing estimation of the incoming signal. f(U) represents feedback neurons 
which encode and deliver predictions f(Ur) to lower levels. The differences obtained from the estimations is represented 
by r (the current prediction) – rtd (top-down prediction). 

  

Predictive coding models have been used to explain predictions in the different systems, 

such as auditory, multisensory, and even in the motor system (Adams et al., 2013). In the auditory 

domain, Todorovic and Auksztulewicz (2019) tested whether the primary auditory cortex would 

present low increase of activity once temporal predictability was high. While brain activity was 

monitored using MEG, participants listened to two pure tones of 5ms long: a standard (1000 Hz), 

followed by the same tone or a deviant (1200 Hz), and were instructed to press a button as soon 

as they heard the deviant tone. The interval between the tones could vary so temporal expectation 

could be built. Results indicated that networks involving the primary auditory cortex (A1), superior 

temporal gyrus (STG) and inferior parietal cortex (IPC) were differently modulated depending on 

the temporal expectation. In particular, activity in higher-level areas were enhanced by low 

predictable stimulation, but these regions were not affected by signals coming from the primary 

auditory cortex. The authors also suggested that prediction errors were not supressed by elapsed-

time prediction, they rather affect the connectivity pattern.  
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A recent fMRI multisensory integration study reported the enhancement of bottom-up 

stimuli and suppression of top-down information along the integration pathway (Krala et al., 2019). 

In this study, participants were asked to estimate their own motion speed in a visual, auditory or 

bimodal context. Results indicated an enhancement of fMRI-signals in areas related to the sensory 

stimulation, but a suppression in higher-level cortical regions, suggesting that predictions related 

to these modalities played a role in shaping information processing, in accord with other previous 

studies (Kok et al., 2012, van Kemenade et al., 2017). Additionally, the authors also stated that the 

availability of the sensory information, and thus bottom-up processing, may have been enhanced 

to boost the predictions in higher-level visual areas, and this enhancement was suggested to have 

occurred due to the interaction between task relevance and prediction. Finally, while the increase 

of sensory signals can promote perceptual inference improvement and prediction facilitation for 

future events, the decrease of signals in higher-level areas can be interpreted as a coherence 

between prediction and bottom-up information, regardless the sensorial system. 

How does the brain complete missing information? 

Hermann von Helmholtz revolutionized the way that researchers understand perception when he 

proposed that sensory images are not represented by the brain, but, instead, these images are 

extrapolated from sensory impressions, as the cause for their existence cannot be directly 

perceived (Helmholtz 1860/1962). Helmholtz added that, as we cannot perceive the cause of 

sensory images, the brain has to perform unconscious inferences, so that the image that is on the 

retina corresponds to the image of the real world. Having this in mind, the processing of complex 

images starts on the retina. The eye has evolved to primarily deal with complex types of information 

and one of them is motion. It is not rare that the visual system is confronted with missing 

information, such as simple eye blinks and other visually disruptive changes, which may also 

fragment part of the coming information. Through evolution, the eye adapted to track other living 

beings not only during visible periods, but also occlusion moments in a predator or, eventually in a 

prey role. Consequently, the human brain should be well equipped to process not only the 

completion of these missing information (Bosco et al., 2018), but also to perform complex 

computation to estimate the reappearance of a dynamically occluded objects (phenomenon also 

known as “Tunnel Effect” - Burke, 1952). In the modern times, we have to deal with similar situation 

as our ancestors in a completely different, yet dynamic, environment. We do not need to predict 

and estimate the reappearance of a prey, for instance, but the reappearance of a car occluded 

behind a bus, when driving or crossing a street to make our next action safely. Our survival goals 

changed, but the computation carried out by our brain may still be the same.  



 

7 

 

This fundamental ability is essential for survival and has been observed in humans starting 

from early age of development (Rosander & von Hofsten, 2004, Hosften, Kochukova & Rosander, 

2007), as well as other other animals (Assad & Maunsell, 1995). From now on I will refer to this 

ability as motion extrapolation (following Battaglini & Ghiani, 2021). Besides the extensive research 

on motion extrapolation, mostly at the behavioural level, the neural mechanisms underlying this 

process are still to be established. In particular, how do early stages of visual processing deal with 

dynamically occluded objects? How is the inherent temporal information of occluded moving 

objects processed in low-level visual areas? This work was developed to answer questions like 

these.  

Motion extrapolation 

Motion extrapolation is part of a phenomenon called amodal completion, which is comprehended 

as the process of completing an object which lacks direct visual input due to occlusion (see van Lier 

& Gerbino, 2015, for review), meaning that, although the physical visual input is missing (amodal), 

the occluded parts are still represented (completion). This term should not be confused with modal 

completion, which describe the illusion of vivid perception image features, as contours and 

surfaces, such as in the famous Kanizsa triangle (Kanizsa, 1976, 1985).  

In a recent overview, Battaglini & Ghiani (2021) pointed out the common confusion 

between “amodal phase” and motion extrapolation observed in some psychological and 

psychophysical studies which investigated the cognitive processes related to extrapolating motion 

behind an occluder. In general, amodal phase is the period that the physical stimulus is temporarily 

occluded and participants, during tasks, are instructed to make inferences about the feature of that 

stimulus or to detect something in the surroundings of the target. For instance, in a study using 

multiple object tracking (MOT) and occlusion, participants were instructed to tracked up to three 

targets which became occluded by two vertical occluders. At the same time, they had to detect a 

probe stimulus, which would appear on the centre of a target, when it appeared between the 

occluders or behind one occluder (Flombaum et al., 2008). In contrast, motion extrapolation is the 

estimation of the reappearance of an occluded object in movement, based on the past information 

(space, time and speed) acquired during the visible phase (Battaglini & Ghiani, 2021). Such term, 

also present in mathematics is defined as the estimation of values beyond the original and observed 

data range. Both definitions share the fact that extrapolation means estimating ahead of the known 

information, and for this reason, motion extrapolation is used here to define the cognitive process 

related to estimating the time-to-contact (time) and point-of-contact (space) of a dynamically 

occluded object. 
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The interest in understanding the processing of motion extrapolation dates from decades 

ago and the motivation for researching this topic varied. Gottsdanker (1952) pointed out that the 

interest in supporting such research, post-World War II, originated from scenarios, in which aerial 

gunners still needed to track the target even when it is occluded by clouds. The idea was to find 

means to test and select the best soldiers during recruitment and train them afterwards, in order 

to improve this ability. In seminal studies, Gottsdanker (1952, 1956) explore the ability of tracking 

occluded trajectories, focusing on the continuation after positive acceleration.  

In the same decade, Burke (1952) investigated the ability to perceive continuation based 

on the “Tunnel Effect” phenomenon (Burke, 1952; Michotte, 1946, 1950). If we imagine again the 

example of a moving car becoming occluded by a bus and reappearing, we have no doubts that the 

car was continuously in movement. Having this in mind, Burke (1952) posited the questions “Is this 

merely a matter of belief, or of knowledge based on past experience, or is the continuity of the 

movement actually “seen” by the observer?”. In his series of experiments, participants reported 

“seeing” the object moving during the occlusion period, which was supported by participants 

drawing. The findings of these experiments opened new questions about estimation and prediction 

of dynamic occluded objects which were tried to be answered and explained by different 

hypotheses.  

Motion extrapolation hypotheses 

Decades ago, Gibson (1968) ran a series of experiments to study the perception of motion and 

suggested a hypothesis that gave way to studies involving partially occluded stimulation and its 

time-to-contact (TTC). In general, he hypothesized that the visual information necessary for 

processing motion was dependent on the changes in the optic array of an individual’s eyes. He 

suggested that motion can be perceived when the retina registers continuous information of an 

object’s features, such as form and texture. Gibson’s assumption gave foundation to the tau (time 

quantity) hypothesis, which was vastly used as basis of subsequent studies. Lee (1974) 

mathematically described the tau hypothesis as the ration between the angular separation of two 

image points of an obstacle and the rate of separation of two image points. In his study, he 

developed a whole new theory to explain how drivers control their braking. His theory postulated 

that simple visual variables were necessary to provide drivers with enough information for 

controlling their brakes. Lee found out that the most relevant variable that a driver needs to 

consider is the TTC. Therefore, he proposed safety measurements for drivers to avoid accidents, 

such as an “imperative” brake light signal indicating that the driver from the back should start 

decelerating as soon as possible in case of abrupt brake.  
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The tau hypothesis was revisited by Tresilian (1995), who suggested a broader approach to 

be considered in different contexts. His extended tau hypothesis accounted not only for a simple 

event foresight, as Lee’s study suggested, but also the relative arrival judgement of two targets, in 

which one had to indicate which target would arrive first, before both disappeared. In other words, 

TTC would require a timing count down strategy and no visual imagery would be necessary (DeLucia 

& Liddel, 1998). In the late 90’s, the tau hypothesis was revised and falsified by Tresilian (1999). He 

acknowledged that TTC estimation is related to tau, but presented a series of limitations, such as, 

the acceleration is ignored, the TTC information is obtained by the eyes, objects should be 

spherically symmetric and object’s image size should be suprathreshold. Despite the fact that this 

hypothesis was used to stimulate many studies, TTC appears to be a much more complex process 

to be explained and other mechanisms should be considered.  

Another hypothesis suggested by Tresilian (1995) also proposed that people are able to 

estimate an occluded object’s TTC due to an internal clocking mechanism, in which they would use 

the visible information to accumulate time and count it down until the final position. This 

hypothesis was tested by DeLucia and Liddel (1998) and results indicated that individuals not only 

used a clocking mechanism, but also motion extrapolation through visual imagery. In this study, 

the authors used a prediction motion paradigm (PM - Box 1) in which they estimated the time-to-

contact of the target; and an interception paradigm (IP - Box 1) in which participants judged 

whether the reappearance location of the target was either correct or incorrect. The rationale to 

use both tasks was to compare the extrapolation and the clocking mechanisms, respectively; and 

investigate whether the outcome of both tasks was similar. The authors observed some level of 

 Box 1 – Motion extrapolation Paradigms 

 
On a general level, motion extrapolation can be accessed through two main different 
paradigms:  
Prediction Motion (PM) – in this paradigm, the participant’s time-to-contact (TTC) of an 
occluded target is measured (DeLucia & Liddell, 1998; Makin & Poliakoff, 2011; Battaglini & 
Ghiani, 2021). The target moves during a visible period and becomes occluded by a visible or 
invisible occluder. Participants are instructed to judge when the target reaches the end of the 
occluder or a certain mark. The important feature of this paradigm is that the target never 
reappears after the occlusion.  
Interception Paradigm (IP) – in this paradigm, opposing to PM, the target reappears. 
Participants are instructed to judge whether the reappearance of a target was earlier or later 
than a baseline, or whether the reappearance position was correct or wrong (DeLucia & 
Liddell, 1998; Makin & Poliakoff, 2011; Battaglini & Ghiani, 2021).  
The paradigm for testing motion extrapolation should be carefully picked up, as they can 
engage different neural processes and stimulation protocols, such as the lack or presence of 
the stimulus reappearance. 
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consistency between both tasks, suggesting that in both, extrapolation, rather than only 

countdown clocking mechanism, was necessary for performing the task accurately.  

Also, in contrast to the clocking hypothesis, Lyon & Waag (1995) investigated the 

extrapolation accuracy of time, hypothesizing that target tracking before and after the occlusion 

were essential to perform extrapolation. The rationale behind it was that: if individuals were 

accurate in tracking the visible trajectory, keeping tracking after the occlusion should reduce 

estimation error. Participants observed a target moving clockwise or counter clockwise in a circle 

marked with a perpendicular line, at one of three different velocities. At a certain period, the target 

disappeared, as well as the line. While the line was still present on the screen, participants were 

instructed to consider that the target was still moving and to indicate whether the it crossed the 

line or not. Results showed a significant decrease in the proportion of correct responses with 

extrapolation time, suggesting that accuracy time error increases after tracking the target during 

occlusion for a longer period. They additionally tested the same paradigm but with the inclusion of 

a distractor during the target occlusion and observed a decrease in accuracy, i.e. an impairment in 

the extrapolation performance. The author interpreted these results as evidence that participants 

use a tracking mechanism during occlusion and this mechanism requires visual attentional 

resources.  

In support to this tracking hypothesis, Makin and Poliakoff (2011) reported that the 

extrapolation of occluded objects is guided by reallocation of visuospatial attention, and 

manipulated free eye movements vs. fixed eye position. Participants performed two different tasks, 

one PM paradigm and the other, a modified version of the IP, but without the occluder. All in all, 

results indicated that better accuracy when participants could move their eyes to track the 

occluded stimulus. Additionally, the authors also observed small eye movements (<2°) during 

occlusion period even when participants were instructed to keep their gaze on a fixation point, and 

interpreted the results as possible visuospatial attention related to motor planning (premotor 

theory of attention – Rizzolatti et al., 1987); or a certain level of mental imagery (Huber & Krist, 

2004), in line with the postulation of DeLucia and Liddel (1998).  

In a series of experiments, Kerzel (2003) investigated whether attention would be related 

to disrupting or maintaining mental extrapolation, by asking participants to judge the final position 

of a moving target, with or without the present of a distractor. In all experiments, he observed that 

participants accurately estimated the final position of a target, even with the absence of a 

systematic eye movement or with the presence of distractors, suggesting that attention is 

associated with the maintenance of spatially-specific mental extrapolation. One possible 
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interpretation given by Kerzel is that attention maintains extrapolation due to a “spreading” of 

activation in different visual regions (Hubbard, 1995; Müsseler et al., 2002), meaning that visible 

motion stimulation would enhance activity in part of the visual regions and activation would be 

carried on during implied motion, engaging higher-visual areas. In contrast, Baurès and colleagues 

(2018) investigate the effect of attention in TTC estimation and found opposite results. The authors 

compared the participants’ TTC estimation in two contexts: (1) when they were required to simply 

estimate the time when a target would reach a vertical bar (single-task), and (2) when they had to 

do the same judgement but keeping the information of a previous unrelated stimuli in the working 

memory (dual-task). TTC estimations during dual-task performance were highly accurate, indicating 

that TCC can be performed without much attention. One possible interpretation for these results 

suggested by the authors is that the attention during the TCC dual-task may change higher cognitive 

mechanisms, as suggested by the common rate controller hypothesis (Makin, 2018). During the 

occlusion of a target, individuals can still keep its features in their mind, such as position, colour, 

speed. The common rate control hypothesis, postulated by Makin (2018), suggests that observers 

are able to do that, as they perform a mental simulation “at a chosen speed” in an amodal fashion. 

For that, it is proposed that the brain accounts for a rate control network, which is temporarily 

paired with the sensory maps during stimulus occlusion. This network would engage areas such as 

DLPFC, Basal ganglia, SMA and sensory regions (Makin, 2018; Makin & Chauhan, 2014; Lencer et 

al., 2004).  

The literature about motion extrapolation is rich with hypotheses that attempt to explain 

the mechanisms underlying the processing of dynamically occluded targets, as described above. 

Some of them indeed agree that there is some kind of visual representation of the stimulus (DeLucia 

& Liddell, 1998; Makin, 2018), and consequently an engagement of visual areas (Gilden et al., 1995; 

de’Sperati & Deubel, 2006). Gilden and colleagues (1995) tested whether there is an interaction 

between imagined time-to-contact and adaptation of the visible moving stimulus. They 

investigated changes in real motion adaptation by manipulating the occluder region and adapting 

a group of moving dots. Their findings indicated that when observers adapt to motion, a specific 

bias pattern, which does not depend on the direction orientation of the adaptation, emerges in the 

context of judgment of the mentally represented TTC. In line with this study, de’Sperati & Deubel 

(2006) tested whether there is a facilitation in detecting a probe stimulus during motion 

extrapolation of a main target. They compared the appearance of the probe in a location where 

the target was being imagined after occlusion with another location where it was not being 

imagined. Participants were instructed to keep their gaze in a fixation mark and make saccades to 

the imagined locations when the probe appeared. Results indicated that saccades happened faster 
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when the probe appeared in the vicinities of the imagined target location than when it was 

presented far from the imagined position, suggesting again that observers held some level of 

spatially-specific mental representation during target occlusion. Although studies showed evidence 

for the involvement of mental imagery as a mechanism of motion extrapolation, few fMRI studies 

investigated the involvement of low-level visual areas, especially the primary visual cortex, with 

motion extrapolation.  

What are the neural correlates of occluded information in motion? 

The neural underpinnings of dynamically occluded objects were found to be much more 

present in higher-level areas than in low-level visual regions (Olson et al., 2004; Shuwairi et al., 

2007). Accordingly, electrophysiological studies in non-human primates revealed an important role 

of posterior parietal cortex, specifically lateral intraparietal sulcus (LIP), which was found to be 

involved with the sustainability of activity during the absence of visual stimulus (Assad & Maunsell, 

1995), plus medial superior temporal sulcus (MTS) and medial intraparietal area (MIP), which was 

best related to inferred visual and hand motion (Eskandar and Assad, 1999). In humans, the 

homologue area, intraparietal sulcus (IPS), was also robustly seen to play an important role when 

visual extrapolation tasks involved oculomotor control or manual interception (Olson et al., 2004; 

Shuwairi et al., 2007), as well as lateral occipital cortex (LOC, Hulme and Zeki, 2007) and MT (Olson 

et al., 2003).  

 

 Box 2 – Functional Magnetic Resonance Imaging (fMRI) 

 
Since the beginning of 1990s, fMRI technique has become one of the most used methods in 
Neuroscience research (Poldrack, Mumford & Nichols, 2011). FMRI provides a high spatial 
resolution compared to other methods, such as electroencephalogram, which enable the 
researchers to make inferences about regions and its functionality, in a safe and non-invasive 
fashion. This functionality is accessed by measuring the signal changes which are related to 
the change in ratio of oxy- and deoxyhaemoglobin when neuronal activity increases, thus the 
signal obtained from fMRI is called blood oxygenation level dependent, or BOLD signal. 
The increase of BOLD response, followed by a short period of neural activity is called 
hemodynamic response. There are some characteristics of this response, which are essential 
to know before planning any experiment. For instance, hemodynamic response is slow, as the 
blood flow takes around 5-6 seconds to reach its peak. This peak is followed by decrease 
which does not go completely back to the baseline for approximately 15-20 seconds. The 
other characteristic is that the hemodynamic response can be handled as a linear time 
invariant system (Cohen, 1997; Dale, 1999), i.e. the response obtained from a longer-period 
activity can be computed by summing up shorter-period of activity (Poldrack, Mumford & 
Nichols, 2011). This linearity allows the computation of a statistical model which compares 
the estimated hemodynamic time course with the measured signal.  
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For instance, Hulme and Zeki (2007) presented faces and houses, which could become 

visible, occluded by a moving screen, while fMRI data were acquired. Participants were instructed 

to attend to the main stimulus, while keeping their eyes at a central fixation cross, and to monitor 

changes in this cross by pressing a button. The authors observed that during visible and occlusion 

phases, faces and houses equally enhanced fMRI-signals in fusiform area and in the LOC, 

respectively. These findings were attributed to the visual “awareness of the object’s presence”, as 

visible and occluded objects may share this brain state, which could be related to the active 

maintenance of the invisible object (Battaglini et al, 2013; Pasternak & Greenlee, 2005). Using a 

similar approach, Olson and colleagues (2003) compared occlusion and disappearance, and 

observed fMRI-response when participants watched a ball travelling behind an occluder. Results 

revealed greater engagement of IPS and MT during occlusion compared to disappearance, and a 

decrease in low-level visual areas, suggesting that dynamically occluded stimulation may mainly be 

processed in these areas. Similar findings were also observed by Schuwairi and colleagues (2007), 

who also reported that low-level visual regions showed enhanced responses during the 

presentation of unoccluded compared to occluded targets.In contrast, only few studies found 

dynamically occluded objects to be represented also in low-level visual cortex. However, these 

studies are mainly related to the representation of certain moving object features (Erlikhman & 

Caplovitz, 2017), active mental imagery (Emmerling et al., 2016), apparent motion (Ekman et al., 

2017), bistable stimulation (van Kemenade et al., 2021). A common approach of all these above 

mention studies is the combination of fMRI (Box 2) with retinotopic mapping (Box 3) and the use 

of multivariate pattern analysis (MVPA – Box 4). In particular, the differences between the studies 

which showed effect in low-level visual cortex and the other which did not could be due to the lack 

of the anatomical and function specificity provided by retinotopic mapping. The studies with 

retinotopic mapping usually define subject-specific ROIs in visual areas (Erlikhman & Caplovitz, 

2017), which provide a level of spatial accuracy much higher than the traditional voxel-based group 

approach with normalized brains. For instance, Emmerling and colleagues (2016) not only defined 

each ROI individually, but also presented results at the single-subject level. Their findings 

demonstrated robust evidence that individuals do engage low-level visual areas during mentally 

imagery of visual motion. Accordingly, in this project, we use the combination of all three methods 

– fMRI (Box 2), retinotopic maps (Box 3) and MVPA (Box 4) – to address the central questions of 

this thesis.  
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What is the role of the primary visual cortex in motion processing?   

Previously, I have introduced the Predictive Coding model, which proposes that the brain is 

hierarchically organized. In the visual domain, higher-level visual regions may send backward 

predictions about incoming information to lower-level regions and receive back errors from low-

level regions based on bottom-up information (Rao & Ballard, 1999; Mumford, 1992; Friston, 2003). 

In this section, I review the current knowledge on motion processing and the interaction between 

low-level visual regions, as V1, and high-level visual regions, as V5. 

 One of the core brain regions involved in motion processing is MT/V5. Many studies have 

observed the engagement of this area during motion processing in primates (Born & Tootell, 1992; 

Fellemann & Van Essen, 1991; Born & Bradley, 2005, for review) and in humans (Goebel et al., 1998; 

 Box 3 – Retinotopic Mapping 

 
The visual cortex is organised in a complex manner, with many functional separations, each 
area containing different neural properties (Zeki and Shipp, 1988). In addition, there is a high 
level of between-subject anatomical variability (Amunts et al., 2000) and accounting for this 
variability is fundamental to for prudent visual imaging research. For this reason, the method 
of mapping retinotopic fields is commonly used together with the conventional fMRI analysis. 
Retinotopic fields are areas organized in a such a way that a continuous mapping is formed 
between the visual field and the cortical surface (Warnking, 2002), and the visual field 
boundaries, lower and upper, can by identified by the change in orientation of the local visual 
representation (Sereno, et al., 1994). This delineation is the key factor for establishing 
subject-specific maps of low-level visual cortex. 
The method of retinotopy is based on connecting the position of each retinotopic neuron to 
the position in the visual field related to the centre of its receptive field, thus the spatial 
location of the neurons can be better depicted in two-dimensional coordinates: eccentricity 
and polarity, on the cortical sheet (Warnking, 2002). To obtain these two measures, specific 
stimuli are used. For eccentricity maps, a ring periodically and slowly contracts and expands 
while the participant fixates in a central point, whereas, for polarity maps, one (or two 
wedges, opposite to each other) rotates clock- and counterclockwise (Engel, et al., 1994; 
DeYoe et al., 1994). Both stimuli establish a connection between positions in the visual field 
and to an exclusive periodic stimulation delay, which is described as phase in the frequency 
domain. The opposite moving stimulation is used to correct a response phase shift created 
by the hemodynamic delay.  
The data acquired from retinotopic mapping also requires special analysis (for details, see 
Warnking, 2002). In general, it requires the construction of a surface model, i.e. a selection 
of the brain regions of interest (occipital cortex), which will be inflated and flattened. The first 
makes it possible to have the representation of the whole hemisphere without gyri and sulci, 
while the second requires surface cutting, in order to have a complete view of the whole 
occipital cortex. Therefore, results of retinotopic maps are commonly displayed over 
flattened brains, as the visualization of distant areas of the visual cortex can be readily 
displayed in one image. 
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Kolster et al., 2010; Muckli et al., 2002; Hampson et al., 2004). For instance, Born and Tootell (1992) 

reported that motion processing in monkeys happens in segregated columnar neurons in V5 and 

two different kinds of motion information are processed: local and global. Later on, Goebel and 

colleagues (1998) demonstrated that, in humans, not only visual motion stimulation, but also 

motion imagery, increased fMRI-responses in hMT/V5, when using apparent motion. Further, the 

study also showed that motion imagery enhanced activity in the primary visual area, although here 

we cannot discard the possibility that short-term memory could have influenced the imagery 

process (Kaas et al., 2010). Nonetheless, many other studies investigated the relation between V1 

and V5 during motion processing (Railo & Hurme, 2021, for review), and linked it to the awareness 

of the visual input.  

 

 Studies showed that, during motion processing, V1 sends feedforward projections to V5, 

which in turn sends back projections to V1 (Koivisto et al., 2010; Vetter et al., 2013). In a TMS (Box 

5) study, Koivisto and colleagues (2010) asked participants to discriminate the direction of moving 

dots, using a random-dot motion (RDM) paradigm, while a single-pulse TMS was applied over 

 Box 4 – Multivariate Pattern Analysis (MVPA) 

 
Machine Learning is an umbrella term to describe the use different kinds of tools to classify 
datasets. Using Machine Learning to investigate brain imaging data has helped lots of 
researchers from all kinds of fields to answer questions that traditional univariate analysis 
would not allow to answer (Haxby, 2012). For this reason, Multivariate Pattern Analysis 
(MVPA) became essential in neuroscience research, as it is formed by a collection of tools 
serving specific purposes. For instance, it allowed researchers to change the questions from 
“what is the function of this area?” to “which pattern of information can this area encode?”. 
Having said that, the main focus of MVPA is to detect pattern of activities which are 
informative regarding to participants’ perceptual or cognitive state. This approach can be 
divided in four steps (Norman et al., 2006): (1) selection of voxels which will be part of the 
analysis. This selection can be made including a subset of voxels (ROI-analysis, Cox and Savoy, 
2003) or all brain voxels at once (whole-brain analysis, Mourao-Miranda et al., 2005). (2) 
Experimental conditions will be categorized in numerical targets, chunks and labels. (3) An 
algorithm, as known as classifier, will be applied in part of this data, in which a separation 
boundary will define the difference between the targets. This part is commonly called training 
phase. Different classifiers can be chosen, such as Support Vector Machine (SVM, Cox and 
Savoy, 2003), Linear Discriminant Analysis (LDA, Kriegeskorte et al., 2006), Neural Networks 
(Hanson et al., 2004) and Gaussian Naïve Bayes (GNB, Mitchell et al., 2004). Finally, (4) the 
trained classifier will be applied to the remaining dataset to characterize if the learned 
pattern of activity can be used to accurately discriminate patterns of activity of different 
experimental conditions during the so-called test phase. In sum, MVPA is an effective 
approach to decode neural representational patterns, as it is takes as input activation 
patterns related to different tasks and stimuli (Mumford, et al., 2012). Therefore, this 
technique has superior sensitivity compared to the traditional univariate GLM analysis 
(Haxby, Connolly & Guntupalli, 2014). 
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V1/V2 and V5 on different intervals (20, 40, 60, 80 or 100 ms) after motion offset. The authors 

reported that when TMS pulse delivered at earlier (20 ms) and at later (60 ms) intervals over V1/V2, 

the conscious- and unconsciousness of visual perception were compromised, respectively. Note 

that, “conscious vision” was defined as the perception of visual stimulation which is capable of 

promoting any change in behaviour, such as accuracy or reaction time, and can also be reported as 

perceived by the observer, while “unconscious” vision follows the same definition, but perception 

cannot be reported by the observer (Railo & Hurme, 2021). Nonetheless, they suggested that on 

one hand, the observed impairment during the earlier interval might be related to the sending 

information to higher levels, such as V5 (“feedforward sweep” - Lamme, 2001). On the other hand, 

the later interval might be associated with the feedback projections from V5 to V1. This critical 

stimulation interval was different for V5, though. When stimulation was delivered at 40 ms, an 

impairment on conscious visual perception was observed, supporting the idea that this region is 

receiving and sending information to V1.  

 

In contrast, other studies suggested that motion information might not necessarily pass V1 

to reach V5. Studies with primates demonstrated that V5 also receives direct input from sub-

cortical regions, as superior colliculus (Berman & Wurtz, 2010, 2011; Lyon et al., 2010) and pulvinar 

(Baldwin et al., 2017). In line with these findings, early studies (Ffytche, Guy and Zeki, 1995; 1996) 

demonstrated that patients with cortical blindness in V1 are still able to react to fast motion 

(>15°/sec), compared to participants with lesion in V5, who could detect only very slow motion 

(<6°/sec). Based on these reports, Ffytche, Guy and Zeki (1995) postulated that motion might take 

two different pathways to reach V5 and introduced the Dynamic Parallelism theory. This theory 

 
Box 5 – Transcranial Magnetic Stimulation (TMS) 

 
Transcranial magnetic stimulation (TMS) is a non-invasive neurostimulation and 
neuromodulation method, based on the principle of electromagnetic induction of an electric 
field in the brain (Rossi, et al. 2009). The magnetic field generated and delivered by a specific 
coil is high enough to depolarize neurons, modulating their activity in an excitatory or 
inhibitory manner, depending on the established parameters: intensity, frequency and 
combination of pulses. 
What makes TMS such a potent tool is the possibility to draw causal inferences between 
behavioral phenomenon and brain activity, as the application of TMS pulse can temporarily 
disrupt activity in a cortical region. This intense manipulation of neural activity allows 
investigation of some brain lesion conditions, such as cortical blindness, in healthy patients. 
Additionally, TMS has been used as a therapeutic interventional to treat disorders such as 
depression, panic, hallucinations, bipolar disorders, post-traumatic stress disorder, drug 
craving, among others (George et al., 2007; Aleman et al., 2007; Fregni and Pascual-
Leone,2007). 
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was later on tested by Grasso and colleagues (2018) which used a double-pulse TMS on healthy 

participants, using random-dot motion paradigm. The authors used similar stimulation time 

window and also found that TMS over V5 delivered at an early (~30 ms) time window was related 

to impairment in the processing of fast motion, and a later (~80 ms), related to an impairment in 

slow motion processing. In contrast, TMS over V1 provoked an overall deterioration in motion 

discrimination unrelated to the TMS interval. Although, the results did not fully support the 

dynamic parallelism theory, results from V5 suggested that different motion may be to some extent 

processed by different pathways. For this reason, in this project, we further investigated the 

relation of V1 and V5 with one of the most important features of visual motion: speed. The 

rationale behind it is that, to our knowledge, the studies did not test speed per se, but usually 

direction discrimination, or apparent motion. Here, we extended the investigation of the dynamic 

parallelism theory, by directly accessing the role of V1 on speed discrimination. 

Overview of the thesis 

This work was divided in three main parts which address questions such as: what is the role of the 

primary visual cortex in the processing of dynamically occluded objects? Can the manipulation of 

temporal predictability of occluded target alter activity of the primary visual cortex, as posited by 

predictive coding theory? What is the causal relation between processing of temporal information 

of a moving stimulus and activity in the primary visual area?  

Chapter 2 introduces the first fMRI study of this thesis. Here, we investigated how the trajectory of 

an occluded moving stimulus is represented in low-level visual areas, specifically in the primary 

visual cortex. We rationalized that if stimulus occlusion enhances activity in low-level visual cortex 

in a spatially selective manner, this would indicate the existence of a mental representation in a 

visual-spatial format. To this end, we used a modified PM design, in which it was presented a visual 

stimulus moved horizontally and changed direction at a certain point (upward/downward). The 

upward and downward movement were associated with a particular velocity. Participants first 

learned velocity-direction associations with visible stimuli and secondly made temporal and spatial 

estimations of occluded stimuli without additional feedback (i.e. no reappearance of the stimulus). 

Participants’ brain activity during visible and partially occluded stimulation was measured using 

fMRI (Box 2), retinotopic mapping (Box 3) and data were analysed with univariate analysis and 

MVPA (Box 4). Functional MRI was here chosen, as it is the technique which offers the best spatial 

resolution among the available non-invasive imaging techniques. Besides the importance of having 

maximized spatial resolution to characterize the modulation of activity in the brain, MRI also 

enables to map the spatial layout of low-level visual cortex individually for each participant, and for 

that, we used retinotopic mapping (Warnking, et al., 2002; Amunts et al., 2000). In addition, for the 
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analysis of neural-activity, we used MVPA. MVPA is commonly used to measure the encoded 

informational pattern of activity in different brain areas, presenting advantages over the traditional 

univariate analyses (for review see, Anzellotti & Coutanche, 2018). This ensemble of techniques 

was applied at single-subject level, making it possible to obtain unprecedented results in the realm 

of motion extrapolation. Further, the results indicated that occluded motion direction could be 

predicted from activity patterns in low-level visual areas during visible period of motion, supporting 

the idea of a mental representation of motion trajectory in a visually-specific format.  

Chapter 3 presents the second fMRI experiment of this thesis, which replicates and extends the 

findings of the first study. In this second study, we manipulated the predictability of the velocity-

direction association and investigated the effect of this manipulation on the informational content 

in the primary visual cortex. We hypothesized that during the estimation of temporal information 

of an occluded moving stimulus, different predictability levels should modulate different response 

enhancement in V1. To test this hypothesis, we used an adapted version of the Interception 

Paradigm, using the reappearance of the stimulus as feedback for the participant to learn and make 

correct spatial and temporal estimations. The tasks had two levels of predictability: high (100%), in 

which the reappearance time and position of the dot were constant; and lower (70%), in which the 

reappearance position was certain, but the movement velocity changed in 30% of the trials, i.e. the 

reappearance occurred earlier or later than predicted. The same techniques used in the previous 

study was used here. Results demonstrated that higher and lower predictability levels equally 

increase responses in V1, and we discuss a possible prediction-attention interaction. We, further, 

replicated the finding from the first study, showing that activity during visible and occlusion periods 

are similar. Additionally, a remarkable result of this study was the difference between the 

movement velocities. Fast motion consistently enhanced activity pattern in V1, compared to slow 

velocity. These findings suggested that V1 may be more promptly receiving feedback projections 

from V5 during fast motion, which could increase the response signal, whereas processing of slow 

motion would be taking longer to reach V5 and reach V1 back. This relationship of V1 and V5 as a 

function of velocity was investigated in third study.  

Chapter 4 reports a TMS (Box 5) experiment, which investigated the role of V1 in velocity 

discrimination under the dynamic parallelism hypothesis, which postulates that V1 may be engaged 

in the processing of slow, but not necessarily fast velocity. If this theory proves correct, we would 

expect that disruption of V1 impairs the discrimination of slow velocity compared to a baseline 

velocity, while no impairment would be observed during discrimination of fast and baseline 

velocities. Here we used a simplified velocity discrimination paradigm with a robust within-subject 

stimulation approach. A double-pulse TMS was delivered to V1 as real and SHAM stimulation. In 
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addition, we stimulated V5 using the same paradigm – due to its engagement in the processing of 

motion – in order to directly compare the influence of both areas in the processing of velocity 

discrimination. Results indicated that stimulation applied to V1 and V5 did not yield difference in 

velocity discrimination, thus, lacking evidence to support the hypothesis of the dynamic parallelism. 

Reasons for this outcome is extensively discussed in this chapter. 

Chapter 5 compiles the findings from the three studies and discuss them, relating to the past studies 

and future perspectives of the prediction and motion extrapolation domains. In sum, the results of 

our studies shed light to the field of motion extrapolation, proposing that spatial information during 

visible and partially occluded stimulations is represented similarly in low-level visual areas, as well 

as temporal information. 
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Chapter 2 - Seeing and Extrapolating motion trajectories share common 

informative activation patterns in the primary visual cortex 
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Abstract  
 

The natural environment is dynamic and moving objects become constantly occluded, engaging the 

brain in a challenging completion process to estimate where and when the object might reappear. 

Although motion extrapolation is critical in daily life – imagine crossing the street while an 

approaching car is occluded by a larger standing vehicle – its neural underpinnings are still not well 

understood. While the engagement of low-level visual cortex during dynamic occlusion has been 

postulated, most of the previous group-level fMRI-studies failed to find evidence for an 

involvement of low-level visual areas during occlusion. In this fMRI-study, we therefore used 

individually-defined retinotopic maps and multivariate pattern analysis to characterize the neural 

basis of visible and occluded motion in humans. To this end, participants learned velocity-direction 

pairings (slow motion-upwards; fast motion-downwards or vice versa) during a training phase 

without occlusion and judged the stimulus direction, based on its velocity, during a following test 

phase with occlusion. We find that occluded motion direction can be predicted from the activity 

patterns during visible motion within low-level visual areas, supporting the notion of a mental 

representation of motion trajectory in these regions during occlusion. 

 

  



 

22 

 

Introduction  
 

 In our daily life, we often miss critical input from our visual environment: simple eye blinks, 

occlusion of moving objects and other internal and external disruptive changes may fragment part 

of the incoming information. The human brain has evolved to make adequate inferences about 

these missing inputs (for review, see e.g. Thielen et al., 2019). For instance, when driving or crossing 

a street, we are able to estimate the time when a vehicle will reappear, after being occluded by a 

bus, to plan our next action accordingly, which indicates that we can successfully infer the 

reappearance of a dynamically occluded object (e.g. Coull et al., 2008, Dittrich & Noesselt, 2018). 

Although such inference mechanisms underpin many actions of our daily life, little is known about 

their exact neural representations and their informational content. In this study, we used brain 

imaging to identify the low-level visual regions instrumental in the processing of dynamically 

occluded objects. In particular, we use fMRI (Box 3) and MVPA (Box 4) to compare the encoding of 

occluded and visible information in individually-defined low-level visual regions. 

Engagement of low-level visual areas in processes related to motion prediction remain 

ambiguous. For instance, a recent fMRI study (Ekman, Kok & de Lange, 2017) on apparent motion 

reported that enhanced fMRI-responses in V1 could be triggered by the sole presentation of the 

first stimulus of a series of spatially-distinct flashes. Remarkably, V1 activity resembled the entire 

stimulus sequence even though the subsequent visual input was not present. In addition, the 

activity pattern during prediction was temporally compressed, suggesting that V1 anticipates the 

presence of the expected targets. In the realm of continuous motion extrapolation, behavioural 

studies also suggest the engagement of V1 during dynamic occlusion of a moving object; and 

several hypotheses have been proposed to account for the mechanisms underlying motion 

prediction. One of the most common hypotheses postulates that time-to-contact (TTC, DeLucia & 

Liddell, 1998) estimation of the occluded object would engage early stages of visual processing by 

using a mental representation of the visual trajectory (de'Sperati & Deubel, 2006; Battaglini et al., 

2014) and memory of temporal information acquired during watching the visible trajectory 

(Pasternak & Greenlee, 2005; Khoei et al., 2013; Makin et al., 2008; Makin & Bertamini, 2014; Makin 

& Poliakoff, 2011; Battaglini et al., 2013). Additionally, enhanced attentional resource allocation 

was already observed at locations that contain temporarily occluded moving targets in behavioural 

studies (Scholl & Pylyshyn, 1999; Flombaum et al., 2008). In accord, an anisotropic distribution of 

representational enhancement was found in the direction of predicted motion (Verghese & McKee, 

2002; Atsma, Koning & van Lier, 2012; Frielink-Loing, Koning, van Lier, 2017). Importantly, such 

attentional extrapolation can usually only be observed with a very low number of simultaneously 
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relevant trajectories (Keane & Pylyshyn, 2006; Zhong, et al., 2014; Vul, et al., 2009). These 

behavioural studies all show modulations along a spatial gradient relative to the location of the 

extrapolated object, thus pointing at an involvement of retinotopically organized areas, i.e. low-

level visual regions, in motion extrapolation. 

In contrast, previous fMRI-studies focusing on the neural underpinnings of occluded 

moving objects often failed to observe evidence for the involvement of low-level visual areas and 

rather observed a recruitment of parietal regions especially intraparietal sulcus (IPS), (Shuwairi et 

al., 2007; O’Reilly, Mesulam, & Nobre, 2008); or reported decreased fMRI-signals in these regions 

instead (Olson et al., 2003). An alternative hypothesis, in accord with this reduction of fMRI-signal 

in low-level visual areas, would be that inference of predictable trajectories reduce neural activity, 

similar to signal decrease in other highly predictable environment in a variety of tasks (Alink et al., 

2010, Krala, et al., 2019, van Heusden et al., 2019). This hypothesis is in line with Rao and Ballard’s 

(1999) hierarchical predictive coding model, which postulates that feedback and feedforward 

connections convey predictions to lower levels and error estimates to higher levels, respectively, 

and that deviations from a predicted outcome would lead to enhanced signalling in low-level areas. 

Another reason why many of previous fMRI-studies on the neural basis of motion extrapolation 

may have failed to observe the involvement of low-level visual areas may be grounded in 

conceptual and methodological issues. The exact anatomical location of functionally distinct visual 

areas is highly variable across humans (Greenlee, 2000; Amunts, 2000), hence, any effects may be 

diminished when using standard voxel-based group mean analyses, as it was done by most previous 

investigations (Olson et al., 2003; Shuwairi et al., 2007; O’Reilly et al., 2008). So far, there are few 

studies which investigated dynamic occlusion used retinotopic maps to identify subject-specific 

regions of interest and observed modulations of fMRI-signal in low-level visual areas. Recently, 

Erlikhman and Caplovitz (2017) used subject-specific retinotopic mapping to identify subject-

specific the primary visual cortex together with multivariate pattern analysis (MVPA) to test 

whether differences in the shape of dynamically occluded objects moving along a single trajectory 

are already decodable in low-level visual areas. The authors reported enhanced activation in V1 

during occlusion, but failed to observe evidence for the objects’ shape in the activity patterns in 

this region.  

To our knowledge, no study so far investigated whether the neural representation of 

different extrapolated trajectories can already be decoded in low-level visual areas. Therefore, the 

main aim of this study was to differentiate patterns of activity in individually defined low-level 

visual cortex for different visible and occluded trajectories during the presentation of dynamically 

occluded stimulus. To this end, we employed a prediction motion paradigm (Box 1; Hecht & 
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Savelsbergh, 2004, Battaglini & Ghiani, 2021), where participants learned specific motion velocity-

trajectory associations during an initial familiarisation phase based on visible motion and had to 

judge time- and point-of-contact during a test phase in which the motion was dynamically 

occluded. We further employed a subject-specific ROI-based multivariate pattern analysis 

investigating systematic BOLD modulations within low-level visual cortex associated with the 

spatial trajectory of occluded and visible targets. Focusing on V1, we tested whether changes in the 

V1-activity pattern are predictive of the stimulus trajectory during occlusion. In addition, we tested 

for similarities in informational content during visible and dynamically occluded stimulation, not 

only in V1, but also in neighbouring regions V2 and V3, plus within regions which have been related 

to motion processing (V5) and object identity (LO1, LO2) using probability maps of these regions. 

We hypothesised that a spatially-specific mental representation of different trajectories should 

result in an engagement of low-level visual areas, especially V1, during the occlusion phase. We 

also hypothesised that the activation pattern during the visible and dynamically occluded stimulus 

motion periods should be similar in low-level visual areas. Finally, we tested for the spatial layout 

in the modulated subregions of low-level visual areas using receptive field mapping. To anticipate, 

classification analyses yielded above chance accuracies already in the primary visual cortex when 

the classifier was trained on the visible data and tested on occluded data. The patterns of predictive 

informational content were highly similar to the pattern observed for visible trajectories and this 

result was further corroborated by visual field mapping.  

Material & Methods 
 

Participants 

Twenty-two right-handed participants (mean age=24.45, ±4.47, 14 women), with normal or 

corrected-to-normal vision, no history of psychiatric or neurological disorders and no regular intake 

of medications known to interact with central nervous system functions were recruited from the 

student community of Otto-von-Guericke Universität Magdeburg and gave informed consent to 

participate in the study, which was approved by the ethics committee of the Otto-von-Guericke-

University. Participants could take part in the fMRI study only after successfully performing a 

velocity threshold determination task in a behavioural lab outside the scanner (see below for 

details). Six participants were excluded either due to poor performance during the main task (three 

with accuracy below 60%), absence on the last day of experiment (two participants) or poor quality 

of retinotopic mapping (one participant). The data of 16 participants (mean age=23.25, ±3.61, 12 

women) were included in the final analysis.  
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General overview of the study design 

The volunteers of this experiment performed a total of 8 tasks: a threshold determination task 

outside the scanner, one inside the scanner, twice familiarisation task with visible stimulation, 

twice prediction motion task with dynamically occluded stimulation, one independent functional 

localizer of the visual stimulation and a retinotopic mapping task. Here, we first present the 

chronological sequence of each task and below we describe the details of each paradigm. The first 

task was a behavioural threshold determination performed on a day prior to the scanning sessions, 

in which we ensured that participants could reliably perceive two different motion velocities. On 

day 1 of the scanning session, participants performed the same threshold determination task inside 

the scanner, to confirm the threshold of the previous session. This second threshold verification 

was followed by the functional localizer, and the first part of the main experiment (one session of 

familiarisation task followed by a session of the prediction motion task). On day 2, participants 

performed the second part of the main experiment (again one session of familiarisation followed 

by prediction motion task), and the retinotopic and receptive field mapping.  

Behavioural threshold determination: pre-scan session 

Participants were placed in a dark room, 70 cm from the monitor (a 22-in., 120 Hz, LCD Screen, 

Samsung 2233RZ, recommended for vision research; Wang & Nikolić, 2011). All tasks were 

programmed using Psychophysics Toolbox (Version 3; Brainard, 1997) and run in Matlab 2012b 

(Mathworks Inc., Natick, MA, USA). On each trial, a white dot (1.24° visual angle) moved from the 

left to the centre (-6° to 0°) of a black screen. First, we presented a standard velocity of 16°/s 

(duration=300ms) which was randomly followed by one of the 11 possible velocities (t=t+t*0.05)1 

including the standard velocity. The two moving stimuli were separated by an interstimulus interval 

(ISI) of 500 ms. Participants were instructed to keep their eyes fixed on the fixation cross (0.2°), 

attend to the movements and, after the disappearance of the second moving stimulus, to indicate 

whether the velocity of the second stimulus differed from the standard one. A total of 330 trials 

were presented divided in 6 blocks. The experiment lasted approximately 18 minutes. After the 

completion of the threshold experiment the data were fitted with a sigmoidal psychometric 

function (Curve Fitting Toolbox, Matlab, Mathworks Inc., Natick, MA, USA), and the time interval 

corresponding to 75% accuracy was estimated. This first task served to confirm that subjects were 

able to successfully discriminate velocities used in the main experiment. The same task was again 

                                                           

1 The intervals used for slow stimulation were taken from the set of milliseconds: in degrees/second: {16, 

15.23, 14.51, 13.8, 13.16,12.53, 11.93, 11.37, 10.82, 10.31, 9.822}. 
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performed inside the scanner in order to verify the participant’s threshold, which was used for all 

following prediction motion tasks inside the scanner.  

Functional Localizer: Delineating low-level visual ROIs 

The functional localizer was collected to identify areas in the visual cortex which responded to the 

visual stimulation used in our experimental runs and to later compare them with the location of 

the MVPA-spheres instrumental in motion extrapolation. We presented a high contrast 

checkerboard stimulus (1.6°) at seven different positions along the trajectories used in the main 

experiment (~6.2°, ~3.1°, ~0°, horizontally and ~6.2° and ~3.1° vertically up- and downwards, while 

participants were asked to maintain fixation. The fixation cross (0.26°) was placed 14.2° to the right 

side of the stimulus central position. The stimulus flashed for 160ms, with an ISI that could vary 

from 2 to 6 seconds (Poisson-distributed) for 25 s at each position. Participants were asked to 

covertly attend the stimulation while keeping their eyes on the fixation cross. Fourteen blocks were 

separated in two runs, lasting in total approximately 7min20sec to complete the session.  

Visible Phase: Association Learning during Visible Stimulation 

During this initial association-learning phase, participants performed a PM task (Box 1) and got 

familiarised with the main task by passively observing a stimulus moving first horizontally and then 

vertically on the screen (see Fig.1A). To this end, we used two velocities (fast = 300 ms, 20°/s or 

slow = individual participant’s threshold, on average 443.82 ms, ±24.20 ms or 14°/s) which were 

paired with two trajectories (upward or downward), leading to a 2 x 2 design with 4 possible 

combinations (order 1: up-fast, down-slow; order 2: down-fast, up-slow). The moving object 

consisted of a white dot (1.6°) moving from the left side of the screen to the centre (horizontal: 

6.2° to 0°), then from the centre to the bottom (vertical: 0° to -6.2°) or top (vertical: 0° to +6.2°) of 

the screen. The stimulus was visible during the whole motion (in contrast to the occluded phase, 

see below). Participants completed a total of 100 trials divided into five runs, which in total lasted 

around 10 minutes. The ISI varied from 2 to 6 seconds (Poisson-distributed). No information about 

the velocity-direction association was provided to participants. The order of velocity-direction 

association was reversed on day 2 and the starting order was counterbalanced across subjects.  

Participants were instructed to just observe the moving stimulus on the screen, with no 

further instruction for not priming them in any way. After the second run, we asked them, first, 

whether they had observed any regularities and, second, if they observed differences related to 

the direction-velocity information. We expected them to report the correct association (e.g. “when 

the dot moves fast it goes upward and when it moves slowly it goes downward”, or vice versa). If 
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the participants didn’t report this relationship after the second run, they would be asked again2 

after the next run. All participants completed a total of 5 runs of familiarisation. 

Occluded Phase: Prediction of Dynamically Occluded Stimulation 

Experimental set-up during testing was identical to the visible with the following 

exceptions: the moving stimulus was visible only during the horizontal movement and a grey 

rectangle (28.4° in width and 35.6° in height) was displayed during the whole run occluding the 

vertical trajectories. The respective end positions of the occluded vertical movements were marked 

by an “X” (1.6°) and the dot did not reappear. Participants performed a time and point of contact, 

i.e. prediction motion task. For this they were asked to respond when the moving stimulus would 

reach the top or bottom “X” mark (see Fig. 1B) and to indicate which of the two positions would be 

reached by pressing one of two buttons with their right index and middle finger. A total of 240 trials 

were presented divided in six runs. This experiment lasted approximately 33 minutes. 

 

Figure 2 - Display of the visual stimulation of the main experiment. (A) Visible Phase: Sequence of two trials observed by 

the participants. A white dot moved from the left side of the screen to the centre, then upwards or downwards as indicated 

by the arrows. The direction of the trajectory depended on the velocity of the dot here indicated by different types of line 

(solid and dashed). The full line represents fast movement and dashed line, slow movement. The lines are put here for 

illustrative purposes only, but were not displayed during the task. (B) Occluded Phase: The horizontal trajectories remained 

visible while vertical trajectories were occluded by a grey rectangle present during the whole trial. The “X” marks 

represented the stimulus final positions presented in the visible phase. Participants judged the time-to contact and the 

point-of-contact that the stimulus would reach using the velocity information acquired during the visible horizontal 

movement. 

                                                           

2 All participants were able to report the association after the third run. Some didn’t understand exactly 

what they had to report after the second run. However, after observing the third run, they all reported the 
correct association. 
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Retinotopic Mapping Phase 

Seventeen participants were scanned in two sessions (nine participants performed the session on 

separate days due to maximal scanning time restrictions). The procedure used for measuring the 

retinotopic maps was adapted from Warnking et al. (2002) and Bordier et al. (2015). Stimuli were 

presented on a grey background. Visual eccentricity was mapped using a checkerboard ring which 

slowly contracted or expanded from the fixation dot. The speed of the expansion and the 

contraction varied linearly with the eccentricity (Bordier et al., 2015) and the ring reached a 

maximum diameter eccentricity of 6.6° and a minimum of 0.2°. When the maximum (expansion) or 

the minimum (contraction) was reached, a new ring would start from the original position. Polarity 

was mapped using one checkerboard wedge (10°) slowly rotating at a constant speed. Specific 

stimulation parameters were similar as the ones described by Warnking and colleagues (2002): the 

checkerboard stimulation flickered at a frequency of 8 Hz, in 10 cycles of 36 s each. The aspect ratio 

of the checkboards was kept constant (1.09) by scaling the height linearly with the eccentricity. In 

order to account for the effects of the hemodynamic signal, the wedges were presented clock- and 

counter-clockwise, and the rings were presented expanding annuli and contracting annuli 

(Warnking et al., 2002). In total, eight functional runs were acquired, two for each modality and 

direction, in two days, which in total lasted around 24 minutes per day. 

fMRI Experiment 

The scanning sessions were conducted in a 3 Tesla Siemens PRISMA MR-system (Siemens, Erlangen, 

Germany), using a 64-channel head coil. The data of participants were acquired in 26 functional 

runs divided into two sessions, i.e. 210 volumes for the localization phase, 550 volumes for the 

visible phase and 1920 volumes for the occluded phase. Blood oxygenation level-dependent (BOLD) 

signals were acquired using a multi-band accelerated T2*-weighted echo-planar imaging (EPI) 

sequence (multi-band acceleration factor 2, repetition time (TR)=2000 ms, echo time (TE)=30 ms, 

flip angle=80°, field of view (FoV)=100 mm, voxel size=2.2 × 2.2 × 2.2 mm, no gap). Volumes were 

acquired in interleaved order. Identical slice selection on both days was achieved using the Head 

Scout Localizer which calculation is based on Autoalign (Siemens, Erlangen). Participants were 

placed inside the scanner and performed all tasks described above. Note that for threshold 

determination no fMRI data were collected. All visual stimuli were displayed on a rear-projection 

screen (302x170), approximately 350 mm from their eyes (± 10 mm depending on participant’s 

head size). Participants were asked to fixate on a cross (1.6°) and covertly attend to the stimuli. 

Fixation was controlled online during the whole fMRI-experiment using a fibre-optic camera 

(Kanowski et al., 2007). 
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In addition to the functional data a high-resolution three-dimensional T1-weighted 

anatomical map (TR = 2500 ms, TE = 2.82 ms, FoV = 256 mm, flip angle = 7°, voxel 

size = 1 × 1 × 1 mm, 192 slices, parallel imaging with a GRAPPA factor of 2, and 8 min scan duration) 

covering the whole brain was obtained using a magnetization-prepared rapid acquisition gradient 

echo (MPRAGE) sequence. This scan was used as a reference image to the EPI data during 

coregistration procedure and used as an overlay for the retinotopic and functional maps after 

inflation.  

Retinotopy 

Blood oxygenation level-dependent (BOLD) signals were acquired using a multi-band accelerated 

T2*-weighted EPI sequence (multi-band acceleration factor 2, TR=2000 ms, TE=30 ms, flip 

angle=90°, FoV=128 mm, voxel size=2.2 × 2.2 × 2.2 mm, no gap). For each run, 180 volumes were 

acquired in interleaved order.  

A high-resolution three-dimensional T1-weighted anatomical map was obtained only for 

the occipital lobe (TR=2500 ms, TE=2.82 ms, FoV=256 mm, flip angle=7°, voxel size=1 × 1 × 1 mm, 

192 slices, parallel imaging with a GRAPPA factor of 2, and 8 min scan duration) using a 

magnetization-prepared rapid acquisition gradient echo (MPRAGE) sequence. This scan was used 

as anatomical reference to the EPI data during the registration procedure. 

Statistical Analysis 
 

Behaviour 

Subjects’ temporal and spatial estimates of target stimulation were measured by subjects’ 

response time after stimulus occlusion and correct prediction of vertical direction (accuracy), 

respectively. Missed trials, trials with RT smaller than 0.1 s and greater than the mean + 3 std were 

excluded from the analysis. In addition, we calculated the temporal estimation error by taking the 

difference between the amount of time the stimulus travels behind the occluder and participants’ 

response time. We used a 2x2 repeated measures ANOVA (direction x velocity) for investigating 

differences in accuracy, response time and temporal estimation error. All analyses were calculated 

using JASP (v. 0.15.0, https://jasp-stats.org/). JASP was also used to compute post hoc tests (simple 

main effects function) and effect size (partial ƞ2). 

Retinotopy 

A three-dimensional reconstruction of the cortical sheet based on the structural image of each of 

the 16 subjects was performed using the recon-all function of Freesurfer 
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(https://surfer.nmr.mgh.harvard.edu/). Retinotopic maps along the polar and eccentricity 

dimensions were calculated for each of the cortical surfaces using the “selxavg3-sess” function of 

Freesurfer. The right-hemispheric low-level visual areas V1, V2, V3 were delineated manually on 

the flattened cortical sheets based on the boundaries of phase reversals within the polar angle 

maps (Abdollahi et al. 2014). Delineation of borders were created based on of Georgieva et al. 

(2009) and Kolster et al. (2010). Based on these delineations, we created six masks of V1, V2 and 

V3 for upper and lower visual areas, which later was used to identify region-specific local maxima 

during the visible and occluded phase. Probabilistic maps of MT and LOs as provided by Freesurfer 

parcellation for each subject were included in the analyses. Freesurfer labels were converted to 

volume ROIs based on Freesurfer mri_vol2roi function. LO masks were separated in LO1 and LO2 

using Georgieva et al. (2009) and Kolster et al. (2010) delimitations. Results of the LO and MT ROIs 

can be found in the appendix A. 

fMRI preprocessing 

Participants’ data from both days were analysed using SPM12 (www.fil.ion.ucl.ac.uk/spm, 

Wellcome Trust Centre for Neuroimaging, London, UK). The first five volumes of each run were 

discarded to allow for steady state magnetization. Functional images were slice-timing corrected 

and spatially realigned (registered to the mean image). Head motion parameters were later used 

as nuisance regressors in the general linear model (GLM). Finally, the structural image was 

coregistered (estimate and reslice) to first functional image of the first run. Resliced images were 

smoothed with a gaussian kernel of 6 mm.  

fMRI data Modelling 

The participants’ functional data of day 1 and day 2 for each task were modelled with a single 

general linear model (GLM, Friston et al., 1995), which included the run-wise condition parameters, 

derivatives, and six motion regressors as nuisance covariates. In particular, regressors of each 

condition (up-fast, down-slow, up-slow, down-fast or up-slow, down-fast, up-fast, down-slow) 

were specified by using canonical hemodynamic response function (HRF). Temporal and dispersion 

derivatives of each regressor were added to the model in order to account for variability in the 

onset response (Friston et al., 1998). From the condition-specific maps of beta weights averaged 

across runs of each participant, we extracted beta weights from subject-specific V1, V2, V3 (see 

below for details of retinotopic analysis) for the univariate group analysis using MarsBar 0.44 (Brett, 

et al., 2002). A 2x2x2x3 repeated measures ANOVA was calculated with the factors: direction 

(upward, downward), velocity (fast/slow), visual region quadrants (VQ; upper/lower) and visual 
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regions (V1, V2, V3) for both visible and occluded phases, followed by post-hoc analyses, when 

necessary. 

Multivariate Pattern Analysis 

In order to complement the univariate analysis, we executed a series of multivariate pattern 

analyses, using CoSMoMVPA (Oosterhof et al., 2016), designed to identify whether patterns of 

activity during visible stimulation can be used to accurately classify the patterns of activity during 

occlusion. To this end, we performed volume-based searchlight analyses with a 4.4 mm radius using 

run-wise beta weights (proportional to percent signal change), in native space for each condition, 

as datasets (two beta-values per run: one for each condition). Searchlight analyses were chosen to 

retain a high spatial specificity. In particular, a linear discriminant analysis (LDA) classifier was 

trained in the 10 runs of the visible phase (20 beta values), using a leave-one-run-out approach, 

and tested in the 12 runs of the occluded phase (24 beta values). As sanity checks, the classifier 

was also trained and tested on the runs of visible only and occluded only, using n fold partitions. As 

a further manipulation check, the classifier was also trained and tested on motion velocity (see 

Appendix A for this last sanity check).  

We carried out one searchlight analysis per region of interest (upper and lower V1-V3 etc.), 

to increase the spatial specificity to the classification and to be able to draw conclusions per 

functional region. For each searchlight within a given region one accuracy value was obtained. We 

focused the analysis on the specific spheres inside the ROIs which contained informative voxels 

and, for that, we adopted a thresholding procedure. We applied a cut-off allowing only values 

above 0.5 to be in the analysis, excluding chance level spheres, as we predicted that only a 

restricted number of searchlight spheres would contain meaningful information, and computed the 

average of the 5% highest accuracy values of the distribution. Hence, by using an information-based 

rather than a visual-localizer based criterion, we ensured to have a spatially unbiased selection 

criterion (see below next section 4.6. for an independent assessment of this novel thresholding 

approach introduced here).  

To evaluate the statistical significance for each ROIs, permutation tests was carried out for 

each subject. The permutation included 1,000 iterations which contained randomised data labels 

per run, keeping the same original dataset. For a spatially accurate comparison, we obtained the 

accuracy value from the same searchlight spheres included in the 5% highest accuracy sample, for 

all 1000 samples for each individual person. The 5% maximum values were averaged across spheres 

for the original and permuted dataset permutation. For group level analysis, we followed the Etzel 

(2017) approach. The null distribution contained the average across participants for each of the 
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1000 permutations with the addition of the true-labelled group-level average, resulting in 1001 

group-level accuracies. The permutation p value was computed by taking the sum of the permuted 

accuracies higher or equal to the true-labelled accuracy and dividing by the number of iterations 

plus 1.  

Projecting the spatial layout of MVPA-results on visual field maps 

By utilizing the well-established knowledge that low-level visual cortex is spatially organised, we 

tested whether the searchlight spheres with the highest decoding accuracy were overlapping 

across the independent statistical tests (decoding of visual motion, occluded motion and occluded 

motion by visual motion). The rationale behind that was to confirm whether the regions inside each 

visual area, which encoded trajectory information, were common across visible and occluded 

phases. To this end, statistical maps were first projected onto the flattened cortical sheets. Based 

on the specific polar and eccentricity maps, each vertex of the univariate and multivariate result 

maps could be associated with a specific location within the visual field and later be overlaid for 

comparison. Hence, in addition to showing flattened anatomical maps, visual field maps were used 

as well for a standardized projection of the results independent on individual cortical sheets. We 

restricted this analysis to lower and upper V1, as these regions contain neurons with the smallest 

receptive field size (Barbot et al., 2021). An overlap of significantly modulated spheres would 

suggest at least spatial proximity during the processing of the visible stimuli and during visual 

extrapolation. To further corroborate these findings, the univariate results of the functional 

localizer phase (contrast: up vs down condition) were also overlaid, to confirm independently that 

the regions containing patterns of significant MVPA-results were in close proximity to the areas 

responding to visual stimulation in the independent functional localizer.  

Results 
 

Behavioural results 

Spatial Estimation (Where): After the visible phase, we expected the participants to accurately 

indicate the motion direction according to the velocity-direction association. Results corroborate 

our expectations, indicating that participants had very high-performance accuracy (Figure 3.A). 

Group averages for all occluded conditions were above .92 accuracy (up-fast: mean (M)=.951, 

±.035; up-slow: M=.969, ±.025; down-fast: M=.923, ± .070; down-slow: M=.952, ±.039). Main 

effects of direction and velocity were not significant (F(1,15)=3.734, p=0.072, ɳ² =.199; 

F(1,15)=3.851, p=0.069, ɳ²=.204, respectively). No interaction between factors (F(1,15)=.318, 

p=.581, ɳ²= .021) was observed. These non-significant differences across conditions observed here 
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may suggest that the association learning had the same level of difficulty independently of direction 

and velocity.  

Temporal Estimation (When): Participants showed a high consistency in their time 

estimation (Figure 3.B): Average response times (RT) were consistent with physical stimulus 

velocity, i.e. the time-to-contact in the slow condition was estimated to be later than the fast 

condition (up-fast: M=.528, ±.154; up-slow: M=.694, ±.244; down-fast: M=.566, ±.114; down-slow: 

M=.654, ±.247). Accordingly, a main effect of velocity (F(1,15)=8.704, p=.010, ɳ²=.367) was 

observed. No significant main effect was found for direction (F(1,15)=.003, p=.957, ɳ²=.000), as well 

as no interaction between factors (F(1,15)=1.059, p=.320, ɳ²=.066).  

Temporal Estimation Error: Figure 3.C shows similar estimation errors across all conditions 

(up-fast: M=.228, ±.154; up-slow: M=.250, ±.241; down-fast: M=.266, ±.114; down-slow: M=.211, 

± .243). In accord, no significant main effect for direction (F(1,15)=.003, p=.957, ɳ²=.000) or velocity 

(F(1,15)=.157, p=.698, ɳ²=.010), and also no interaction (F(1,15)=1.059, p=.320, ɳ²=.066) was 

observed.  

The results above indicate that, at the behavioural level, participants accurately estimated 

the stimulus end position, as well as time-to-contact, the latter with a certain yet consistent bias 

from the reality across all conditions (temporal overestimation).  

  

 

Spatial Estimation Temporal Estimation 

Temporal Estimation  

Error 

Figure 3 - Behavioural results. In all bar graphs (from left to right), light green bar (1st bar) depicts fast condition, darker green (2nd 

bar) slow condition in upward direction, light blue bar (3rd bar) depicts fast condition and dark blue bar (4th bar) slow condition in 

downward direction. Red dots superimposed on each bar represent behavioural results of all individual subjects. (A) Group average 

accuracy for spatial estimation. (B) Group average reaction times for temporal estimations. (C) Group average reaction times for 

temporal estimation error (difference between physical stimulus displacement time and estimated time). 
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Univariate fMRI-results 
 
Subject-specific level 

In the first analysis step, we identified modulations in fMRI signal for each individual participant 

using univariate analysis. Comparisons of the trajectories (upward vs. downward) revealed 

significant patterns of activity in regions representing upper and lower visual quadrants 

contralateral to the stimulated hemifield, as expected (see Fig. 4 for an exemplary subject; all other 

subjects can be found in the Appendix A, Figure 1). In contrast, the comparison of speed levels (fast 

vs. slow) did not yield any significant modulations of fMRI signals in low-level visual areas.  

 

Figure 4 – Univariate analysis results of an exemplary participant during (A) Visible Phase and (B) Occluded Phase, for 

contrast between upward (warm colours) vs. downward (cold colours) projected on the individual flat map. Retinotopic 

map delimitations are indicated by stars (central visual field), plus white and black full and dashed lines indicating borders 

between visual fields (Abdollahi et al., 2014). Results from other participants can be found in the appendix A, Figure 1. 

 

Group level 

Statistical comparison of univariate Modulations during Visible & Occluded Phases: From all low-

level regions of each individual participant based on retinotopic masks, we extracted beta weights 

during the visible phase from the local maxima and averaged them across participants (Fig. 4A). To 

test – in a first manipulation check – if we would be able to differentiate upward and downward 

trajectories of visible stimuli in V1-V3, we then statistically compared these beta weights. During 

the presence of the target moving upward in the visible phase, lower V1, V2 and V3 showed 

enhanced fMRI-signals compared to downward movements (lower V1-upward: M=8.376, ±3.845 

vs. downward: M=2.985, ±2.818; V2-upward: M=7.081, ±3.880 vs. downward: M=1.868, ±2.092; 

V3-upward: M=6.450, ±3.165 vs. downward: M=1.998, ±2.010), as shown by the paired one-tail 

Student’s T-tests (upward > downward: t(15)=7.534, pholm<.001; t(15)=6.655, pholm<.001; 

t(15)=5.998, pholm<.001, respectively). During downward movements in upper V1 compared to 
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upward movements the analysis revealed similar results (upper V1-downward: M=11.797, ±5.845 

vs. upward: M=3.773, ±3.738; V2-downward: M=9.418, ±4.229 vs. upward: M=1.749, ±2.251; V3-

downward: M=7.788, ±3.162 vs. upward: M=1.381, ±2.457), (V1-; V2-; V3-), , as revealed by the 

paired one-tail Student’s T-tests (downward > upward: t(15)=7.944, pholm<.001; t(15)=6.902, 

pholm<.001; t(15)=8.653, pholm<.001, respectively). Together, these findings show that the visual 

stimulation was salient enough to elicit differential fMRI-signals in accord with motion direction. 

The identical locations independently identified during visible stimulation (see above) were 

then used to analyse activation patterns during occlusion. During the occluded phase, a pattern 

similar to the visible phase was present for the lower VF (Figure 4B): When participants were asked 

to temporally and spatially estimate upward movements, enhanced fMRI-signals compared to 

downward movements were observed in lower V1 (lower V1-upward: M=16.834, ±6.225 vs. 

downward-: M=15.696 ±6.428; V2-upward: M=13.057, ±7.234 vs. downward: M=11.806, ± 6.725; 

V3-upward: M=10.283, ±6.777 vs. downward: M=8.997, ±6.381). Statistical analyses revealed 

significant differences in all three regions (upward > downward: t(15)=2.261; pholm=.040; 

t(15)=1.990, pholm=.040; t(15)=2.919, pholm=.015, respectively). Unexpectedly, higher response 

during upward movements was also registered in the upper V1 (upper V1-upward: M=21.027, 

±11.401 vs. downward: M=20.435, ±10.059); however, this difference was not significant 

(downward > upwards: t(15)=-0.851; p=.796). In contrast, we found the hypothesised pattern for 

upper V2 (upper V2-upward M=14.174, ±5.896 vs. downward: M=14.891, ±5.061) and V3-upward: 

M=12.426, ±8.558 vs. downward: M=12.986, ±8.072). Yet, these results were not significantly 

different (downward > upwards – upper V2: t(15)=1.023, p=.161; upper V3: t(15)=-0.677, p=.254).  

Unfolding interaction between factors: While the t-tests above were pre-planned to 

directly test our main hypothesis, below we extend our analysis by including the factor velocity, 

visual area (V1, V2, V3) and visual quadrant (upper VQ = upper V1-V3; lower VQ = lower V1-V3) 

using repeated measures ANOVAs. In the visible phase statistical analysis revealed significant 

interaction between direction and VQ (F(1,15)=131.862, p<.001, ɳ²=.898), plus velocity and 

direction (F(1,15)=5.582, p=.032, ɳ²=.271) and velocity and VQ (F(1,15)=30.566, p<.001, ɳ²=.671). 

Post-hoc tests confirmed that fMRI-responses, due to downward direction, were higher than 

upward direction in the upper VQ (MD= -7.367, SE=.672, t=-10.962, pbonf<.001) and responses due 

to upward directions were higher in the lower VQ compared to downward direction responses in 

these regions (MD=5.019, SE=.672, t=7.468, pbonf <.001), confirming the above t-tests. In addition, 

slow motion resulted in significantly higher fMRI-signals in upper relative to lower visual quadrant; 

while no such effect was seen for fast motion (VQ *velocity - slow in upper VQ vs. slow in lower 

VQ: MD=5.940, SE=0.589, t=4.991, pbonf <.001) and the slow motion also differed for upward vs. 
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downward direction, while no such effect was observed for fast motion (direction*velocity: up-

slow vs. down-slow: MD=-2.185, SE=.586, t= -3.726, pbonf =.005). Finally, the distinct pattern of 

responses yielded main effects for direction (F(1,15) = 8.575, p=.010, ɳ²=.364), VQ (F(1,15)=5.744 , 

p=.030, ɳ²=.277, and visual areas (F(1,15)=9.327, p<.001 , ɳ²=.383) with higher responses for the 

downward vs. upward direction, higher responses for upper VF field than lower VF and enhanced 

responses in V1 compared to V2 (MD=1.704, SE=.558, t=3.053, pbonf=.014) and to V3 (MD = 2.328, 

SE = .558, t=4.172, pbonf =<.001).  

During the occlusion phase, statistical analysis again revealed interactions between 

direction and VQ (F(1,15)=5.331, p=.036, ɳ²=.262), supporting the t-test results, direction and 

velocity (F(1,15)=32.746, p<.001, ɳ²=.686), velocity and visual areas (F(1,15)=5.371, p=.010, 

ɳ²=.264), plus a triple interaction between direction, velocity and visual areas (F(1.22,18.4)=19.087, 

p<.001 (Greenhouse-Geisser-corrected), ɳ²=.560). A Post-hoc comparison for the hypothesized 

interaction indicated marginally significant results for downward motion in the lower visual 

quadrant compared to upper visual quadrant (MD=3.938, SE=1.412, t=2.788, pbonf =.077). In 

addition, post-hoc tests for interaction of direction and velocity revealed that fast motion led to 

enhanced responses compared to slow motion in the upward direction (MD=5.129, SE=1.280, 

t=4.006, pbonf=.003), while no significant effect for fast vs. slow motion was observed for the 

downward direction. Post-hoc tests of velocity*visual areas revealed that fast responses compared 

to slow response were most prominent in V1, whereas the triple interaction with direction revealed 

that this elevation in V1 was highest for upward motion, while significant differences for downward 

motion was seen only in V1 compared to V3 for fast condition (see Appendiy A, Figure 2. Finally, 

main effects revealed results similar to the visible phase with upper visual regions eliciting higher 

responses than lower visual regions (F(1,15)=5.439, p=.034, ɳ² = .266). Moreover, V1, V2 and V3 

again expressed differential effects (F(1,15)=16.534, p<.001, ɳ²=.524). Comparisons showed that 

V1 presented higher beta values than V2 (MD=5.016, SE=1.302, t=3.851, pbonf =.002) and V3 

(MD=7.325, SE=1.302, t=5.624, pbonf <.001).  

Together, results of our univariate analysis indicated that activity in low-level visual regions 

was enhanced by direction at least in one of the VQ during occlusion phase, thus they do in part 

support our hypothesis. However, the absence of significant effects in one quadrant might be due 

to the lower sensitivity of univariate analysis approaches as it is well known that multivariate 

pattern analysis has a higher sensitivity than traditional univariate analysis. Moreover, MVPA allows 

for drawing conclusions about the representational content within activation patterns (Anzellotti 

& Coutanche, 2018). To test our research question even more thoroughly, we performed run-wise 

GLM analysis and used the resulting beta values as input to multivariate pattern analysis.  
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Multivariate Pattern Analysis results 

A series of volume-based MVPA analyses was applied to test for pattern similarity between visible 

and partially occluded stimulation periods.  

Classifying Direction Patterns of Visible from Occluded Phase: This classification analysis 

was most crucial to test our hypothesis for a common engagement of low-level visual cortex during 

the presentation of visible and dynamically occluded motion. It was performed with the main 

purpose of decoding similar activation patterns for visible and occluded phases in upper and lower 

V1-3. For these multivariate analyses, maps of beta weights for upward and downward motion 

were calculated run-wise separately for visible and occluded phase and used as input.  

 

 

Figure 5 - Univariate beta weights (proportional to percent signal change) during visible phase (upper row) and occluded 
phase (lower row). Green bars depict average beta weights for downward trajectories, while purple bars average beta 
weights for upward trajectories. Stars indicate significance between conditions inside each region on interest. 

 

Results (Fig.6 and table 1.A) show that direction-specific informational patterns from the 

visible phase could be used to decode informational patterns in the occluded phase in the lower 

AND upper V1, V2 and V3 significantly extending the results from the univariate analysis by showing 
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the similarity in spatial layout of the informational content of these two phases (see below for a 

more thorough description of the spatial layout within V1).  

Classifying Direction Patterns from Visible & Occluded Phase: As manipulation checks, we 

performed MVPAs separately for the visible and occluded phase to check for reliability of the 

classification. For both phases we found direction-specific informational patterns of activity 

predicting motion trajectory. For these two separate analyses, we also expected accuracy values to 

be higher when the classifier was trained and tested in the visible phase, once the stimulus was all 

the time present. Indeed, results (Table 1.B) indicated higher accuracy values for visible phase 

compared to the cross-phase analysis and to the occluded phase analysis, and higher values of the 

latter compared to the cross-phase analysis (Fig.6). These results further confirmed that the 

classifier decoded the relevant direction-specific information and that the information was 

somewhat diluted during occlusion compared to visible stimulation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A               

  DIRECTION Quadrant ROI Accuracy SE Permutation p 

  

Visible- 
Occluded 

lower 

V1 0.602 0.005 < .001 

  V2 0.611 0.006 < .001 

  V3 0.611 0.006 < .001 

  

upper 

V1 0.607 0.009 < .001 

  V2 0.597 0.006 < .001 

  V3 0.608 0.007 < .001 

B     
        

  DIRECTION Quadrant ROI Accuracy SE Permutation p 

  

Visible 

lower 

V1 0.862 0.022 < .001 

  V2 0.817 0.020 < .001 

  V3 0.804 0.022 < .001 

  

upper 

V1 0.863 0.019 < .001 

  V2 0.857 0.020 < .001 

  V3 0.837 0.015 < .001 

  

Occluded 

lower 

V1 0.651 0.009 < .001 

  V2 0.660 0.009 < .001 

  V3 0.671 0.010 < .001 

  

upper 

V1 0.668 0.013 < .001 

  V2 0.681 0.013 < .001 

  V3 0.673 0.013 < .001 
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Above, we used averaged scores of accuracies across participants. For maximal 

transparency and to give the reader an impression of the interindividual variability, Fig. 7 shows 

the two relevant measures average decoding accuracies (top) and number of spheres for each ROI 

(from which average decoding accuracies are calculated, Fig. 7 bottom), for every subject. We 

observed a higher interindividual variability in decoding accuracy during the occluded phase, 

compared to the other phases. The number of spheres included in the 5% sample of most 

informative voxels adopted also varied across subjects, following a heterogeneous pattern, but did 

not show a bias towards one analysis. The average of spheres across the three analyses is 84.21 

(±30.08) spheres.  

  

 

Table 1 - Decoding accuracies for (A) visible-occluded: classification analysis was carried out by training the classifier in visible 

phase data and testing in occluded phase data and (B) visible and occluded: classification analyses were carried out by 

training and testing in visible and in occluded phase data separately. All analyses were performed in upper and lower V1-V3. 

 

Figure 6 - Decoding accuracies for all classification analyses in upper and lower V1-V3. Dashed line depicts the theoretical 

chance level, though note that the chance level used for statistical testing was derived from permutations tests. Purple bars 

show average accuracies for the classification analysis trained on visible data and tested on occluded data. Blue bars show 

the accuracies for the classification analysis with training and testing the visible phase only and green bars depict average 

accuracies for the analysis using occluded data also during both training and testing. 



 

40 

 

 

Spatial layout of significant spheres across classification analyses: The projection of 

location of the significant spheres map for each analysis onto the retinotopic maps was carried out 

to verify their exact anatomical location. Comparing the overlap of spheres maps across analyses 

will tell us where, within the visual field, the map can be found and what their exact spatial layout 

would be, i.e. scattered or concentrated. This, in turn, allows us to draw firm conclusions regarding 

their representational content, especially if they are concentrated in a portion within the visual 

field which encodes the visible stimulus. For this, we focused in V1 which contains neurons with 

the highest spatial acuity and projected retinotopic maps on visual field representations (Duncan 

& Boynton, 2003; Song et. al., 2015). Moreover, we also included the results from the univariate 

functional localiser as a further manipulation check. For the visual fields subject-specific density 

maps were computed signifying the concentration of significant spheres within specific regions of 

the visual field. Figure 8 (top) shows visual field maps of an exemplary subject, in which we 

observed overlapping density maps for the different statistical tests. Across participants, overlap 

of the functional localiser (green line) with significant spheres from the visible phase (blue line) was 

observed for 13 participants in lower V1 and for 8 participants in upper V1, which indicates a robust 

reliability, once the stimulus is physically present even across multivariate and univariate methods. 

For visible and occluded phases, the overlap was observed for all 16 in both upper and lower V1, 

while for visible and visible-occluded, we observed the overlap for 14 participants in the upper V1 

Figure 7 - Upper row depicts average decoding accuracies of each participant in each of the 6 ROIs. The lower row depicts the 

number of spheres included in the calculation of the 5% highest accuracy values, for each subject in each ROI. The left row 

represents results from classification analysis in which the classifier was trained in visible phase data and tested in occluded phase 

data; the middle row show results of analysis in which the classifier was trained and tested in visible phase data; and right row, 

train and test was carried out in occluded phase data. 
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and 15 for the lower V1. Finally, for occluded and visible-occluded phases, the overlap was found 

for 13 in the upper V1 and 14 participants in lower V1. It should be noted, however, that for some 

subjects we find that parts of the density map fall outside the stimulated visual quadrant. This 

scattering was most likely caused by the quality of the polarity maps which was not high enough in 

all parts of visual cortex to allow for an errorless transformation, though note that the delimitation 

of different visual fields was not affected by these local variations in polar maps. Importantly, when 

inspecting the location of significant spheres in anatomical space overlaid onto the curvature, 

polarity and eccentricity maps (see Fig. 8 - bottom), we could confirm that the significant clusters 

were located in the upper and lower lip of V1, respectively.  

 

Figure 8 - Significant decoding accuracy maps projected onto retinotopic maps and derived visual field maps of one 

exemplary subject. Top: Visual fields of lower V1 and upper V1. Black curvatures and dots depict the localization of the 

vertices with significant accuracies for the visible-occluded classification. Blue and red curvatures and dots represent the 

localization of the vertices with significant accuracies for the visible and occluded classifications, respectively. Green lines 

and dots represent the same, but here results from the univariate functional localizer was used. Dots which spread to 

other quadrants could indicate scattered representations, but might be partly reflect the quality of retinotopic mapping 

itself. Bottom: Significant decoding accuracy maps overlaid on flattened anatomical maps of occipital cortex (right), the 

retinotopic eccentricity (middle) and polarity maps (left).  

 

We interpret our findings as evidence that different types of information can be found in 

similar regions of the visual field within the primary visual cortex. Results for different analyses of 

spheres, selective for different types of visual stimulation, converge within topographically 

organized regions within the early visual cortex. Importantly, it should be noted that this pattern 
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of results is unbiased as the different analyses were spatially unrestricted within visual regions and 

carried out with independent data sets from different runs, at least for the analysis of the functional 

localiser, the visual only and occluded only MVPAs. That confirms that the information-based 

searchlight selection criterion did not randomly pick arbitrary voxels within the visual cortex. 

Rather, the selection reflected the spatial selectivity of cortical regions representing the very same 

stimulus throughout different conditions, even during occlusion.  

Discussion 
 

Our study tested the involvement of low-level visual regions in continuous motion extrapolation by 

comparing visible and occluded stimulus trajectories. Our behavioural results demonstrated that 

participants were highly accurate in judging the target’s direction and time of arrival. The general 

overestimation of time intervals that we observed seems to be related to our specific stimulus 

settings. Here, short intervals (around 250-800 ms) were employed which are often overestimated 

(Benguigui et al., 2003; Bennet et al., 2018; Vicovaro et al., 2019). Remarkably, univariate fMRI-

results showed that, to some extent, activity in low-level visual regions was tied to estimated 

motion trajectories. The more sensitive MVPA-analysis revealed that the activity pattern in V1 

evoked by visible motion was indeed informative about the direction of the trajectory during 

occlusion. Finally, the location of informative spheres was consistent across several independent 

classifications, strongly suggesting that the sub-regions within low-level visual areas, coding the 

stimulus trajectory, were selectively engaged; and this claim was further supported using fMRI-

based receptive field mapping of the informative regions. 

Univariate Analysis read-outs 

Our univariate fMRI-analysis compared velocity and direction in low-level visual areas. Results 

revealed that velocity did not differentially modulate fMRI-signals in any low-level areas 

consistently, while the motion trajectory selectively enhanced neural activity during the visible 

phase and partially during occlusion. We attribute this outcome to the dominance of spatial 

estimation over temporal estimation, which might be due to the well-known higher spatial acuity 

of the visual system (Klein et al., 2018, Welch & Warren, 1986). Our motion direction results 

indicated that low-level visual areas were engaged during the occlusion of the target, thereby 

extending previous observations on the involvement of the primary visual cortex in apparent 

motion (Ekman et al., 2017) to continuous motion extrapolation. In particular, the vertical visible 

trajectory elicited responses in the upper visual area for downward direction and in the lower visual 

area for upward direction, as expected. During the dynamic occlusion of the stimulus, similar 
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patterns of activation in the lower quadrants of the visual regions were observed, partly supporting 

particular theories about the mechanisms of motion extrapolation, which posit that a visual 

representation of a non-visible object is maintained during occlusion. These results are also in line 

with previous mental imagery findings which investigated imagery using retinotopic mapping and 

found activation in both striate and extrastriate cortex for imagined objects (Slotnick, et al., 2005).  

However, this similarity in univariate activation patterns was less pronounced for the upper 

visual areas (lower visual field), rather an overall higher activation in upper V1 relative to lower V1 

was observed regardless of visual trajectory. Asymmetry in the upper vs. lower visual quadrants 

has been previously reported and one possible explanation might be the distribution of ‘near-

preferring’ neurons, which tend to be more frequent in lower VF compared to upper VF (Nasr & 

Tootell, 2018, 2020; Karim & Kojima, 2017). In general, psychophysiological studies demonstrated 

that lower visual field seems to be more thoroughly engaged in tasks from different domains, such 

as motion (Danckert & Goodale, 2001; Levine & McAnany, 2005, Lakha & Humphreys, 2005), colour 

discrimination and hue sensitivity (Levine & McAnany, 2005). This difference between lower and 

upper visual field is known as vertical meridian asymmetry which is more pronounced at larger 

eccentricities (Carrasco et al., 2001, Barbot et al., 2021). Visual field asymmetries have also been 

reported for the crowding phenomenon (He et al., 1996), the spatial resolution of attention 

(Intriligator & Cavanagh, 2001), distribution of receptive field properties and orientation 

preference (Merkel et al., 2020) and may be further amplified by reading habits (Rinaldi et 

al., 2014). Finally, there might have been an evolutionary advantage preferring downward over 

upward movements (Previc, 1990), e.g. for catching things falling down than flying away, similar to 

the preference for looming vs. receding stimuli (e.g. Tyll et al., 2011), which could explain the 

asymmetry observed for the univariate results.  

In addition to the upper vs. lower VF asymmetry observed during the comparison between 

visible and occluded vertical trajectories, we also observed overall enhanced fMRI-signals during 

partially occluded relative to the visible phase. Note that participants passively observed the 

stimulus travelling on the screen during the visible phase, whereas during the occluded phase, they 

actively had to be engaged with the task. This latter task set may have required a higher level of 

attention (Zuanazzi & Noppeney, 2020; Klein et al., 2014). On the theoretical level, this difference 

may be explained in the light of the Rao and Ballard (1999) predictive coding model. In the visible 

phase, once the stimulus became predictable, less error-correction signals might have been 

exchanged between lower and higher visual areas, reducing the height of the neural response 

(Alink et al., 2010). On the other hand, the lack of visual information during the occluded phase 

might have intrinsically decreased the predictability level, leading to higher activity due to the need 
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of prediction. On a mechanistic level, the activity in V1 during occlusion may have also been 

primarily caused by feedback projections from higher cortical regions terminating in supragranular 

layers, whereas during passive viewing feedforward projections in the infragranular layer may have 

been primarily engaged. Accordingly, fMRI-responses in supragranular layers was recently found to 

be enhanced relative to lower cortical layers (de Hollander et al., 2021).  

In contrast to our univariate results, previous fMRI studies often failed to reliably observe 

the recruitment of low-level visual areas during motion prediction (Shuwairi et al., 2007). Olson and 

colleagues (2003) observed high engagement of inferior parietal sulcus and also reported a strong 

decrease in fMRI-signal in V1/V2 during occlusion. Our contradictory results could be attributed to 

the use of techniques such as retinotopy, which allowed us to precisely identify low-level visual 

areas individually in each participant, targeting the specific low-level visual regions, while 

accounting for inter-individual anatomical variability (Greenlee, 2000, Amunts et al. 2000). In 

accord with our results, two recent studies which based their analysis on subject-specific 

retinotopic mapping were able to observe effects in low-level visual cortex during imagery of 

motion (Emmerling et al., 2016) and shape predictions (Erlikhman & Caplovitz, 2017). Both studies 

also used multivariate pattern analysis, which allows to draw conclusions not only on correlative 

brain-behaviour relationships but on the informational content represented within brain regions.  

MVPA read-outs 

Our MVPA results further extended our findings by showing that the patterns of activity in upper 

vs. lower visual field representations could be used to predict encoded motion trajectories during 

visible stimulation and during occlusion on their own. Most importantly, the data from visual 

trajectory could also be used for training to predict invisible motion during occlusion. It should be 

noted that these results significantly extended the univariate results during the occlusion phase by 

showing that the pattern of activity in low-level visual areas shows some commonalities during 

visible motion and occlusion. These results are in line with a recent study which suggested that 

even with no stimulation in these regions, it is possible to decode information based on continuous 

perception (van Kemenade et al., 2022). Additionally, the successful prediction does not depend 

on the difference in activation height for upward vs downward tasks, as the lower visual regions 

did not show enhanced fMRI-signals for occluded upward vs. downward motion in the univariate 

analysis. Therefore, the pattern of activity, rather than an overall difference in response-amplitude 

most likely accounts for the results in V1 and also in V5 (see Appendix A), which did not show 

significant univariate results (see also Wang et al., 2014, for similar results), but yielded significant 

classification accuracies for motion direction and velocity during occlusion using MVPA.  
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Despite the similarities in activation pattern, which led to the significant prediction 

accuracies, it should also be noted that there were some differences in MVPA-results between 

occluded and visible conditions: group averaged accuracy values were systematically higher for 

visible classification than occluded classification. This difference may attribute to the fact that the 

classifier was capturing a more reliable response with visible stimulation compared to stimulus 

occlusion.  

Remarkably, the projection of significant spheres onto the retinotopic maps suggested that 

the location of the most informative voxels overlapped across the three independent classification 

analyses (visible and occluded stimuli, plus across category) and the univariate functional localizer. 

This overlap of visible and occluded informative activity patterns in the visual field may suggest that 

shared computational circuits in the primary visual cortex do exist, supporting both processes. 

However, layer-specific fMRI and/or single-cell studies are needed to further corroborate this 

interpretation. The spatial layout of our results also confirmed the plausibility of our sphere-

selection approach, since overlapping results were found across different analyses. Our subject-

specific approach was necessary once the target regions show considerable interindividual 

anatomical variability, thus differing from the standard fMRI-group analysis, which is traditionally 

based on the assumption of spatial commonalities across participants after spatial transformation 

of individual brains to a standard reference brain.  

Finally, a remarkable outcome from this study is that our results were similar to mental 

imagery studies (e.g. Albers et al., 2013), despite the fact that no explicit instruction was given to 

the participants to imagine the stimulation. Instead, we aimed to investigate whether low-level 

visual regions would engage during the presentation of a dynamically occluded target without the 

participant having previous knowledge about a specific strategy for performing the task. Future 

studies could explicitly instruct participants to imagine occluded trajectories and observe if the 

observed effects vary as a function of task instruction.  

To conclude, we investigated the neurobiological processes underlying motion 

extrapolation as indexed by patterns of activity in low-level visual regions during the presentation 

of visible and dynamically occluded trajectories. Our data supported the notion that virtually 

identical regions inside lower and upper V1, V2 and V3 represent information about visual stimulus 

trajectories in the absence of visual stimulation and suggested that shared neural circuits may be 

utilized when processing visible and extrapolated trajectories.  

This chapter can also be found at Bioarxv (doi: https://doi.org/10.1101/2022.05.26.493554) 
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Chapter 3 - Investigating prediction of dynamic occlusion under 

different predictability levels in the primary visual cortex 
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Abstract 
 

Predictive coding models postulate that high-level visual regions send back projections to low-level 

areas with high-level predictive information, while the latter compares this information with the 

incoming one, and sends prediction errors as feedforward information to update the predictions in 

higher-level areas. Some studies have showed that when the visual system is confronted with low 

level of predictability, prediction error may enhance activity in low-level visual areas, specifically 

the primary visual cortex. However, other studies showed that this might not always be the case, 

meaning that high level of predictability may also enhance activity in this region. One of the 

explanations for this apparent contradiction is based on the role of attentional mechanisms which 

might synergistically interact with predictive mechanisms. Our study investigated whether motion 

extrapolation in high and low predictable contexts could differently modulate fMRI-responses in 

the primary visual cortex during visible and partially occluded stimulation. To this end, participants 

performed a modified version of the interception paradigm in visible and occluded phases, in which 

they observed a stimulus moving horizontally, then vertically at two different velocities. They were 

instructed to press when and where the stimulus would reach a given point-of-contact. In high 

predictable context, the velocity would be the same during horizontal and vertical (occluded) 

trajectory; whereas, in low predictable context, the velocity could change during the vertical 

(occluded) trajectory. Univariate results showed no difference between high and low predictable 

contexts neither during visible nor during occlusion phases in low-level visual areas. MVPA results 

revealed accuracies above chance level for all classification analyses carried out with low and highly 

predictable context data. Here, we provide evidence that high predictability during motion 

extrapolation can enhance activity in the primary visual cortex, as much as low predictability, and 

suggest that attentional mechanisms might have contributed to the consistent enhancement of 

activity.  
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Introduction  
 

Completing dynamically occluded information from the environment is among the daily challenges 

that the brain has to deal with, and for that, predictive mechanisms are essential for cognitive 

systems. Prediction, as used here, can be understood as the ability of the brain to estimate future 

input based on the (recent) past information (Alink et al. 2010). This idea that the brain uses top-

down information to make predictions about incoming events dates back to Helmholtz. Helmholtz 

proposed that to build a systematic representation of experiences, the mind uses mental 

adaptations referred to as “unconscious inferences” (Helmholtz 1866/1962; Patton, 2018), 

meaning that inferences, or predictions, affect directly our behaviour. More recently, Kahneman 

and Tversky (1972) extensively investigated how predictions reflect and affect behaviour and 

postulated that when making predictions and judgements under uncertain circumstances, humans 

seem to rely on heuristics – mental shortcuts – which may lead either to accurate judgements or 

systematic errors (Kahneman & Tversky, 1972; Tversky & Kahneman, 1971, 1973).  

Early studies developed theoretical models to explain how our brain works in a predictive 

fashion (Mumford, 1992; Rao and Ballard, 1999; Friston, 2003). One model which gained special 

attention was the Predictive Coding model from Rao and Ballard (1999). In brief, the model 

assumes that different levels of a hierarchical model network make predictions and send them to 

lower levels via feedback connections, while higher levels receive back the information about the 

error between the prediction and the actual response via feedforward connections. This error is 

also used by the system to make corrections on the estimation of the input signal. It is further 

suggested that this process would explain how predictions are coded in visual regions. Lower visual 

areas learn statistical regularities from the environment and send forward the unpredictable 

feature of the received input. Besides Rao and Ballard, others also attempted to mathematically 

explain how different systems works, by varying only how the model is applied to the data and how 

much the error is minimized (for review, see Spratling, 2017; Aitchison & Lengyel, 2017). The 

Predictive Coding model has been used to test the mechanisms underlying temporal and spatial 

predictions in different domains, such as auditory (Baess et al., 2009; Heilbron & Chait, 2018, for 

review), motor (Shipp, Adams, & Friston, 2013), multisensory integration (Krala et al. 2019) and the 

visual domain. 

In the auditory domain, Baess and colleagues (2009) investigated middle latency response 

(MLR) in humans, which represents the early brain activity related to auditory information 

originated from thalamo-cortical feedback loops (McGee et al., 1991). The authors compared three 

conditions: auditory-motor, in which participants generated their own self-pace sound sequence; 
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auditory only, in which participants passively heard a sequence of sounds; and motor only, in which 

participants were instructed to generate their self-pace sequence, but no sound was presented. 

Electrophysiological results showed that self-paced sound sequences, compared to the other 

condition, were related to an attenuation of MRLs and a modulation of 40 Hz frequency band, 

suggesting that self-initiated auditory stimulation may reduce responses in the primary auditory 

cortex, in accord with Predictive Coding model.  

At the multisensory integration level, Krala and colleagues (2019) investigated whether the 

integration of different domains would follow a predictive coding model. In an fMRI study, 

participants were asked to estimate their own motion speed in a visual, auditory or bimodal 

context. Results indicated an increase in response in the respective sensory areas for all three 

contexts, but a suppression in higher-level cortical regions. These findings suggest that predictions 

related to these modalities played a role in shaping the information processing organized in a 

hierarchical order, in accord with other previous studies (Kok et al., 2012; van Kemenade et al., 

2017). Additionally, the authors also stated that the prediction of different modalities may affect 

not only their respective sensory areas, but also higher-level regions in a supramodal fashion.  

Finally, in the visual domain, Alink and colleagues (2010) directly tested the predictive 

coding model, by investigating whether highly predictable moving visual stimulus decreases activity 

in the primary visual area and whether the stimulus predictability also influences regions which 

send feedback information to V1, as hMT/V5+ (Vetter et al., 2015). In one experiment, participants 

observed apparent-motion-inducing bars which could appear along an apparent trajectory at a 

predictable or unpredictable time (with a large delay). In a second experiment, participants 

observed a similar environment, but along the trajectory, dots (random-dot motion (RDM) 

paradigm) could appear, moving in a predictable or unpredictable direction (opposite to the 

apparent motion direction). In particular, the authors tested whether the unpredictable temporal 

(delay) or spatial (RDM direction) information increased activity in V1, while predicted stimulation 

was expected to reduce activity in this region. Results indicated that on the first experiment, highly 

predictable stimulus onset indeed reduced activity in V1, compared to delayed onset. For the 

second experiment, they also observed a decrease in response in V1, as well as in hMT/V5+, when 

the random dot motion direction was predictable. These findings supported the predictive coding 

model by showing that temporal and spatial predictable visual stimulations reduce activity in V1, 

while unpredictable visual stimulation enhances activity in this region. Later, Schellenkes and 

colleagues (2016) extended these findings to V2 and V3, by testing how predictable and 

unpredictable contrast changes can modulate neural response in low-level visual regions, using 

random-dot motion at specific locations. Results indicated that when new dots entered the visual 
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field by being present on new locations, higher responses were registered in V1, V2 and V3 

compared to dots which were already displayed in these areas. 

Using more complex stimuli Fischer and colleagues (2013) investigated how temporal 

predictability affects neural processing in the low-level visual areas, during the categorization of 

predictable and unpredictable moving faces, when primed by an auditory alerting signal. One group 

of the participants was asked to judge whether the presented moving face was male or female, 

while the other group judged the direction of the stimuli. In half of the trials, the alerting signal was 

presented before the visual stimulus. Results indicated that participants’ behavioural performance 

was higher when the stimulus onset was predictable and when the alerting signal was coherent 

with it. However, a negative correlation was found between activity in V1 and the alerting signal, 

i.e. the larger the effect of the alerting signal in behavioural performance, the stronger the 

reduction in the primary visual cortex. These findings suggest, that the increase of temporal 

predictability reduced the BOLD signal in V1, corroborating previous studies and supporting the 

importance of temporal information in the prediction of future event.  

In contrast to the above-mentioned findings, Coull and colleagues (2008) reported results 

apparently contradicting the postulates of the predictive coding model. Using a time-to-contact 

(TTC) paradigm, the authors investigated how fMRI-responses in low-level visual areas were 

modulated by temporal predictability during egocentric (subjective viewpoint) and allocentric 

(external viewpoint) viewing. In an ecologically valid driving simulation, participants were 

instructed to predict whether a car would touch a wall in one task, and in another task whether the 

colour of the car and the wall matched. It was hypothesized that proper attentional allocation 

would enhance stimulus detection, considering that spatiotemporal predictability is implicitly 

related to object-motion TTC task, while temporal predictability is explicitly associated with 

temporal cueing task. The authors observed increased fMRI-responses in V1 for TTC prediction 

during the egocentric judgements, likewise a variation in activity as a function of increasing 

certainty of collision; while allocentric judgements selectively enhanced responses in V5.  

These findings were interpreted as an effect of attentionally-induced salience of time-to-

contact judgements leading to a modulation in activity in V1. Moreover, this interpretation is in line 

with the findings of another electrophysiological study, which investigated how temporal and 

spatial information during dynamically occluded stimulation can expand attentional resources 

applied during the occlusion period (Doherty et al., 2005). The authors observed that the P1 

component, which represent activity in many ventral and dorsal extrastriate visual regions (Di 

Russo et al., 2002; Foxe et al., 2005), was enhanced when spatial and temporal expectations were 
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combined, suggesting that temporal predictability of occluded target plays an important role in 

establishing the efficacy of sensory processing. Moreover, they observed that spatial and temporal 

predictability work synergistically together and this interaction may affect the attention allocation 

to the reappearance of the occluded moving stimulus (Doherty and colleagues 2005).  

Some researchers have tried to reconcile the contracting views generated by those studies 

which found evidence that predictability reduces response in the primary visual cortex, with those 

which found the opposite pattern. For instance, Kok and colleagues (2012) tested two hypotheses 

related to this contraction: (1) attention and prediction have an opposing relationship, meaning 

that the excitatory effect related to attention outweighs the inhibitory effect related to prediction 

by enhancing activity when predicted attended stimulation is presented compared to unattended 

predicted stimulation; (2) attention and prediction have an interactive relationship, meaning that 

attention boost the precision of prediction, resulting in an enhanced activity promoted by the 

predictive error. The authors tested these hypotheses by measuring fMRI-responses in bilateral 

low-level visual areas (attended and unattended sides), while presenting cues which indicated the 

likelihood of the side where a Gabor patch would appear. Participants were instructed to indicate 

the orientation of the Gabor patch on the attended side and to ignore Gabor patches on the 

unattended side. Results indicated that reduced responses in V1 were observed on the unattended 

side when they were expected there; compared to enhanced responses in V1, V2 and V3 on the 

attended side for expected stimuli. The study provided evidence supporting the first hypothesis, 

which suggested that attention cancels the response reduction during high predictability, as the 

excitatory response related to attention enhances activity in low-level visual areas, but only on the 

attended side.  

Here, we aim at extending these findings by probing the influence on temporal stimulus 

predictability in the context of motion extrapolation. To this end, we investigated whether 

dynamically occluded stimulation presented in high predictable (HP) and low predictable (LP) 

contexts differently modulate fMRI-signals in V1, by manipulating temporal information. We 

hypothesized that, according to the predictive coding theory, signal in this region should be smaller 

during stimulus presentation in the HP context, which requires less attention compared to the more 

volatile LP context. To test these hypotheses, we used an adapted version of the interruption 

paradigm (IP - Battaglini & Ghiani, 2021; Box 1), monitored brain activity using fMRI (Box 2) and 

acquired retinotopic maps (Box 3), in order to identify subject-specific regions of interest. 

Additionally, multivariate pattern analyses (Box 4) were carried out in right upper and lower V1 and 

right hMT/V5+, as the stimulation was presented only in the left hemisphere, in order to investigate 
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the representational pattern of activity in these regions, since the univariate analysis does not allow 

us to make inferences about the encoded informational pattern. 

Materials & Methods 
 

Participants 

Eighteen participants (mean age 25.5, ±4.23, eight women) with normal or corrected-to-normal 

vision, no history of psychiatric or neurological disorders and no regular intake of medicament 

known to interact with the central nervous system were recruited from the student community of 

Otto-von-Guericke Universität Magdeburg and gave informed consent to participate in the study 

according to the local ethics. In a two-day experiment, participants were exposed to eight tasks, 

four each day, while their brain activity was monitored by fMRI: two training phases (visible 

stimulation) and two tests phases (occluded stimulation). On a third day participants returned for 

a retinotopic mapping measurement. Volunteers were rewarded with 10 euros/hour or experiment 

credits. Two participants were excluded due to absence in one of the days. 

High Predictable Context - Visible Phase (training): On a black screen, a white dot moved 

continuously horizontally (200 px) from the left side to the centre, then vertically upwards (200 px) 

or downwards (200 px) until it crossed a “X” mark (+120 px) (see Fig.9). The vertical direction would 

be determined by the velocity was of the horizontal movement, which could be 16.6°/s (fast, 0.250 

s; 0.150 s after crossing the “X” mark) or 14.4°/sec (slow, 0.450 s; 0.266 s after crossing “X” mark). 

[Note that the velocities (or time displacement) used until the stimulus reached the “X” mark were 

the intervals used for modelling and comparison with participants’ response]. Hence, participants 

could learn associations, such as if the stimulus moves faster horizontally it will move faster 

upwards, or vice-versa, meaning that, until the point-of-contact, velocity during horizontal and 

vertical trajectories were identical. The participants were asked to keep their eyes on the fixation 

cross while attending to the sequence of movements and to indicate where and when the dot 

would end. We asked them explicitly to avoid pressing after the stimulus crossed the marks. 

Subjects responded by pressing the left button with their index finger or the right button with the 

middle finger in case the dot reached the upper “X” mark or lower one, respectively. Thirty trials of 

each condition were presented in four runs, i.e. 240 trials total (two runs with the configuration: 

up-fast/down-slow; and two runs: up-slow/down-fast). Intertrial interval was chosen from Poisson 

distribution with values between 2 and 6 seconds and each run lasted around 8 minutes.  
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Figure 9 - Experimental Paradigm: The full and dotted grey and red lines (not presented during the experiment) illustrate 
the two velocities (full = fast; dotted = slow). Different colours represent velocity changes (red = incongruent; green = 
congruent). The full red line represents fast incongruent trials, in which the stimulus would travel the horizontal trajectory 
with the fast velocity, but would slow down along the vertical trajectory. The dotted red line represents slow incongruent 
trials, in which the stimulus would travel the horizontal trajectory with the slow velocity, but would speeded up in the 
vertical trajectory (A) Visible Phase. Participants observed a white dot moving fast upwards or slow downwards (or vice-
versa) and were instructed to estimate when the dot would reach the upper or lower “x” mark, according to the observed 
velocity. The HP and LP contexts presented the same design, with the difference that in LP context, in 30% of the trials, 
the velocity-direction pairing would be incongruent, meaning that if they observed the dot going upwards in a fast velocity, 
in 30% of the trials, the dot would move slowly during the vertical trajectory. (B) Occluded Phase. During the occlusion 
phase, participants performed the exact same task as during the visible phase, with the difference that the vertical 
trajectory was occluded by a grey rectangle. The dot reappeared from behind the occluder, so participants could have the 
feedback of what velocity the stimulus had. For HP context, this was indifferent, as the velocity of the stimulus during the 
horizontal and vertical trajectory was always the same. However, for LP context, the reappearance was also the indication 
of whether the participants estimated the time-to-contact correct or not. Participants were explicitly instructed to respond 
when the target would reach the mark on the occlusion phase, i.e. before the reappearance of the stimulus.  

 

High Predictable Context - Occluded Phase (test): Our adaptation of the IP task was very 

similar to the visible task described above, with the difference that a grey rectangle, occluding the 

vertical trajectory, was presented during the whole trial. Participants extracted the temporal 

information from the horizontal trajectory, in order to make the judgement about the stimulus 

destination and time of reappearance. Once more, participants were explicitly instructed to avoid 

pressing the response button after the stimulus crossed the marks, i.e. reappeared. Fifty trials of 

each condition were presented in four runs, resulting in 400 trials (same configuration as above). 
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Intertrial interval was chosen from Poisson distribution with values between 2 and 6 seconds and 

each run lasted around 13 minutes. 

Low Predictable Context - Visible Phase (training): In this session, we manipulated the task 

predictability by introducing different probabilities of the temporal information. For an accurate 

comparison between high and low predictable context, the paradigm in this phase remained the 

same as described above with the following exception, if the stimulus moved slowly along the 

horizontal trajectory, it could change speed in 30% of the trials and move faster along the vertical 

trajectory, or vice-versa. Seventy-two out of 240 trials were presented with the incongruent 

displacement time and the number of trials were counterbalanced across conditions. Note that the 

overall duration of speeding up incongruent trials and slowing down incongruent trials in the 

vertical trajectory was identical (700 ms), until the point-of-contact. 

Low Predictable Context – Occluded Phase (test): The task for this phase remained the same 

as described in the test phase of the high predictable context with the changes reported above in 

the visible phase of the low predictable context. The challenge in this phase was to estimate the 

displacement time without having the visual information of the vertical trajectory, but still being 

able to use the stimulus reappearance from behind the occluder as feedback. One-hundred out of 

400 trials contained the incongruent displacement time and the amount of trials were 

counterbalanced across conditions.  

fMRI Data Acquisition 

The scanning sessions were conducted on 3 Tesla Siemens PRISMA MR-system (Siemens, Erlangen, 

Germany), using a 64-channel head coil. The data of participants were acquired in 16 functional 

runs divided in two sessions, totalizing 1840 volumes for the training phases and 3144 volumes for 

the test phases for each subject3. Blood oxygenation level-dependent (BOLD) signals were acquired 

using a multi-band accelerated T2*-weighted echo-planar imaging (EPI) sequence (multi-band 

acceleration factor 2, repetition time (TR)=2000 ms, echo time (TE)=30 ms, flip angle=80°, field of 

view (FoV)=220 mm, voxel size=2.2 × 2.2 × 2.2 mm, no gap). Volumes were acquired in interleaved 

order. Identical slice selection on both days was achieved using Head Scout Localizer whose 

calculation is based on Autoalign (Siemens, Erlangen). 

A high-resolution three-dimensional T1-weighted anatomical map (TR = 2500 ms, 

TE = 2.82 ms, FoV = 256 mm, flip angle = 7°, voxel size = 1 × 1 × 1 mm, 192 slices, parallel imaging 

                                                           

3 Some subjects had few volumes less due to the adjustment of scanning time and end of the experiment. 



 

55 

 

with a GRAPPA factor of 2, and 5:18 min scan duration) covering the whole brain was obtained 

using a magnetization-prepared rapid acquisition gradient echo (MPRAGE) sequence. This scan was 

used as anatomical reference to the EPI data during the registration procedure.  

Retinotopic Mapping 

In the third session, retinotopic mapping of participants were measured. The procedure used for 

measuring the retinotopic maps was the similar to the one used by Warnking et al. (2002) and 

Bordier et al. (2015). Eccentricity was mapped using a checkerboard ring which slowly contracted 

or expanded from the fixation dot, while presented on a grey background. The speed of the 

expansion and the contraction varied linearly with the eccentricity, so that the activation wave kept 

travelling at an approximate constant speed (Bordier et al., 2015). The ring reached a maximum 

diameter eccentricity of 6.6 deg and a minimum of 0.2 deg. When the maximum (expansion) or the 

minimum (contraction) was reached, a new ring would start from the origin. Polarity was mapped 

using one checkerboard wedge (10 deg) slowly rotating at a constant speed. Specific parameter 

calculations were similar as the ones described by Warnking and colleagues (2002). The 

checkerboard stimulation flickered at a frequency of 8 Hz, in 10 cycles of 36 s each. The aspect ratio 

of the checkboards was kept constant (1.09) by scaling the height linearly with the eccentricity. In 

order to account for the effects of the hemodynamic delay, the wedges were presented clock- and 

counter-clockwise, and the rings were presented expanding annuli and contracting annuli 

(Warnking et al., 2002). In total, eight functional runs were acquired, two for each modality and 

direction, and each run lasted approximately 6 minutes. 

Statistical Analysis 
 

Behaviour 

Participants performance was assessed through the averaged correct responses (accuracy), 

response time and response time error (difference between individual’s response time and the 

presented stimulus duration). We excluded missed trials, trials greater than 1.5 s, i.e. above 3 

standard deviations (mean RT=0.864, (SE)± 0.027; mean excluded trials > 3sd = 1.015, ± 0.265 per 

subjects). Note that the slow stimulus duration of the vertical (occluded) trajectory was 0.450 s, 

meaning that the mean of the excluded trials was way above this value, meaning that the inclusion 

of these values could be misleading. 

The three measurements were calculated for training and test phases using three different 

repeated measures (rm) ANOVA: (1) for HP context, we used a 2x2 within-subject design (direction: 

up-down vs. velocity: fast-slow); (2) for LP context, we used a 2x2x2 within-subject design 
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(direction: up-down vs velocity: fast-slow vs. congruency: congruent-incongruent); (3) for the 

comparison of HP vs. LP contexts, we carried out a 2x2x2 within-subject design as well (direction: 

up-down vs. velocity: fast-slow vs. predictability: high vs. low predictable) using the congruent trials 

only, as no incongruent trials were present in the HP context. Note that, when presenting the LP 

context results, we refer to the trials in which the stimulus travelled the horizontal trajectory fast 

and was slowed-down during the vertical trajectory in the visible or occlusion phases as 

incongruent fast, whereas the trials in which the stimulus travelled the horizontal trajectory slow 

and was speeded-up during the vertical trajectory in both phases as incongruent slow, i.e. we use 

the initial speed for classification. Additionally, for each analysis, we included task order as a 

between subject factor, however in no statistical analysis any significant effect was observed (all 

p’s > 0.213). All analyses were calculated using JASP (v.0.15.0 - https://jasp-stats.org/). JASP was 

also used to compute post hoc tests (simple main effects function) and effect sizes (partial ƞ2).  

Retinotopy 

We performed a three-dimensional reconstruction of the cortical sheet based on the structural 

image of each of the 16 subjects using recon-all function from Freesurfer (v.6 - 

https://surfer.nmr.mgh.harvard.edu/). Retinotopic maps along the polar and eccentricity 

dimensions were calculated for each of the cortical surfaces using the “selxavg3-sess” function 

from Freesurfer. Lower and upper primary visual area were delineated manually on the flattened 

cortical sheets based on the boundaries of phase reversals within the polar angle and eccentricity 

maps (Abdollahi et al. 2014). Delineation of borders were created based on of Georgieva et al. 

(2009) and Kolster et al. (2010). The regions were later used to identify the local maxima during the 

visible phase in HP context. These local maxima were thus used to independently localise the region 

of interest within the functional region for the occluded phase. Probabilistic map of MT as provided 

by Freesurfer parcellation for each subject was included in the analyses.  

fMRI preprocessing 

All data (except retinotopic data) were analysed using SPM12 (www.fil.ion.ucl.ac.uk/spm, 

Wellcome Trust Centre for Neuroimaging, London, UK). The first five volumes of each run were 

discarded to allow for steady state magnetization. We performed slice-timing corrected and 

spatially realignment (registered to the mean image) of all remaining functional volumes. Head 

motion parameters were later used as nuisance regressors in the general linear model (GLM). 

Finally, the structural image was coregistered (estimate and reslice) to first functional image of the 

first run. Resliced images were smoothed with a gaussian kernel of 6 mm.  
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fMRI data Modelling 

Data of individual contexts (HP and LP) were modelled with general linear model (GLM, Friston et 

al., 1995), which included the run-wise condition parameters, derivatives, and six motion 

regressors as nuisance covariates. In particular, regressors of each condition (up-fast, down-slow, 

up-slow, down-fast or up-slow, down-fast, up-fast, down-slow, and respective incongruent 

conditions of LP contexts) were modelled with the canonical hemodynamic response function 

(HRF), using the onset of the initial stimulus trajectory of each trial. Temporal and dispersion 

derivatives of each regressor were added to the model in order to account for variability in the 

onset response and shape (Friston et al., 1998). Estimated beta weights of the HRF of each 

participant were extracted using MarsBar 0.44 (Anton et al., 2002) from subject-specific lower and 

upper V1 masks (see below for details of retinotopic analysis). We performed three rmANOVAs: (1) 

for HP context, we used a 2x2x2 (direction, velocity, V1 Quadrant), (2) for LP context for, we used 

a 2x2x2x2 direction, velocity, V1 Quadrant and congruency) and for combined congruent HP and 

LP, a 2x2x2x2 (direction, velocity, V1 Quadrant and predictability). Task order was included in the 

analysis as between-subject effect, but no significant analysis was observed (all p’s > 0.078). A full 

rmANOVA (direction, velocity, predictability, V1 quadrant, task order) was run for comparisons in 

which all tasks were included, however no difference between tasks were observed. Results are 

presented in the appendix B, table 1. For the MVPA, we modelled single trial GLMs (Least Square 

Separate a (LSS) approach, Mumford, 2012 – script adapted from 

https://github.com/ritcheym/fmri_misc/blob/master/generate_spm_singletrial.m). 

Multivariate Pattern Analysis 

A series of trial-wise multivariate pattern analyses was performed on beta values from GLMs of low 

and high predictable context for both Visible and Occluded Phases. To this end, trial-wise GLMs 

were carried out, and for the MVPA, the trials were calculated using Least Square Separate 

approach (Mumford, et al., 2012). Trial-wise MVPA was chosen here, due to the low number of 

runs for each task. Two runs are not enough to make valid train and test partitions as we would 

have only one in each part. For these cases, trial-wise analyses are recommended as the number 

of trials allow enough data in each partition (Mumford, et al., 2012). For all analyses, we used the 

searchlight method with a 4.4 mm sphere, a linear discriminant analysis (LDA) classifier and leave-

25%trials-out (Etzel  & Braver, 2013). All partitions were balanced and repeated 4 times. All 

analyses were carried out at the single-subject level, as the searchlight analyses were performed 

inside each individual mask.  
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We applied a cut-off at the accuracy of 0.5 (chance level) to filter out all the voxels which 

contained below chance accuracies, and included in the analysis only the values which belonged to 

the highest 5% values of the distribution. This additional thresholding was done in order to obtain 

only the most informative voxels of the decoding. This procedure was applied to all the 

classification analyses below described. The statistical significance of the accuracies of each analysis 

were accessed using the same procedure as in chapter 2. Permutations were carried out at the 

subject-level and 1000 iterations which contained randomised data labels per run, keeping the 

same original dataset. In order to have the spatial comparison, the same searchlight spheres 

included in the 5% highest accuracy sample were obtained for all 1000 samples of each individual 

participant. These sampled values were averaged across spheres for the original and permuted 

dataset permutation. For group level analysis, analyses were done based on Etzel (2017) approach. 

The null distribution carried the average across participants for each of the 1000 permutations plus 

the true-labelled group-level average (1001 group-level accuracies). The permutation p value was 

computed by taking the sum of the permuted accuracies higher or equal to the true-labelled 

accuracy and dividing by the number of iterations plus 1, as in chapter 2. Each analysis described 

below served a different purpose, such as decoding spatial, temporal information from both 

contexts, and congruency information from low predictable context.  

Classifying Direction in HP & LP Context: Here, we carried out two classification analysis in 

which the classifier was trained in the visible phase and tested in the occluded phase using data of 

each context independently. We attempted to decode spatial visible information - upward vs 

downward motion trajectory - from occluded phase and compared accuracies from both analyses. 

We expected accuracies from LP context classification analysis to be significantly lower than HP 

contexts, due to the presence of incongruent trials, i.e. unpredictability.  

Classifying Velocity in HP & LP Context: As the classification analyses above, we trained the 

classifier on the data of the visible phase and tested on data of the occluded phase within contexts. 

In this case, we attempted to decode temporal visible information - fast vs slow - from occluded 

data and compared accuracies from the different contexts. Here, we also expected decoding 

accuracies from LP context to be smaller than accuracies from HP context, also due to the presence 

of incongruent trials. 

Manipulation checks: To verify whether the classifier was really decoding relevant 

information, classification analyses were performed on the visible and occluded data separately for 

both contexts. For HP contexts, direction and velocity were classified from both phases, as well as 

for LP contexts. Additionally, for the latter, congruent vs. incongruent information were classified. 
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Here, we expected that decoding accuracies from visible phases were higher than occluded phases, 

as the longer exposure of the stimulus during the visible phase may allow a more robust 

representation of the information, whereas during occlusion, participants are expected to mentally 

represent the trajectory, thus less bottom-up input would drive the response.  

 We further ran pairwise Student’s T-test to compare HP and LP contexts in all conditions in 

lower and upper V1 quadrants and in V5 to investigate whether conditions in LP context would 

encode more or less information, hence higher or lower accuracy values, compared to HP context.  

Results 
 

Behaviour: Spatial estimation  

Visible Phase 

High predictable context 

Results indicated a main effect of velocity, suggesting a higher performance during slow motion 

(F(1,14)=44.061, p <.001, ŋp
2=0.759; fast-slow: mean difference (MD)=-0.058, (SE)±.009, t=-6.638, 

pbonf <.001) and marginally significant main effect for direction, pointing to a tendency of higher 

performance during upward direction (F(1,14)=3.709, p=.075, ŋp
2=.209; upward vs. downward: 

MD=.032, ±.016, t=2.926, pbonf=.075). No interaction was observed between factors. Figure 10A 

shows averaged accuracy for all direction-velocity paired conditions during visible period. 

Low predictable context 

We observed a triple interaction (Figure 10A) between direction, velocity and congruency 

(F(1,14)=19.174, p<.001, ŋp
2 =.578; congruent fast vs. incongruent fast in downward: MD=.104, 

±.022, t=4.736, pbonf<.001; congruent slow vs. incongruent slow in upward: MD=.102, ±.022, 

t=4.643, pbonf<.001). Among incongruent conditions (incongruent fast=expected fast, but stimulus 

slowed down; incongruent slow=expected slow, but stimulus speeded up), we observed 

differences between both velocities in both upwards and downwards direction (upward fast vs. 

downward fast: MD=.108, ±.029, t=3.785, pbonf=.012, and upward slow vs. downward slow: MD=-

0.107, ±.029, t=-3.759, pbonf=.013). Within downward direction, performance during incongruent 

slow motion was significantly higher (downward fast vs. downward slow: MD=-0.128, ±.026, t=-

4.871, pbonf<.001). We still found an interaction between direction and velocity (F(1,14)=5.014, 

p=.042, ŋp
2 =.264; fast vs. slow in downward: MD=-0.068, ±.021, t=-3.219, pbonf=0.024). Additionally, 

results indicated main effect of congruency (F(1,14)=10.721, p=.006, ŋp
2 =.434, congruent vs. 

incongruent: MD=.037, ±.011, t=3.274, pbonf=.006) and a main effect of velocity (F(1,14)=6.914, 
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p=.020, ŋp
2 =.331, fast-slow: MD=-.026, ±.010, t=-2.630, pbonf=.020). Figure 10B depicts averaged 

accuracy for all conditions. 

High x Low Predictability 

In the comparison of congruent results from both high and low predictable phases during the visible 

task, we observed a triple interaction between direction, velocity and predictability (F(1,14)=6.481, 

p=.023, ŋp
2 =.316). Significant differences were observed in LP context between upwards fast and 

slow motion (MD=-0.056, ±.016, t=-3.498, p=.028); in HP context between downward fast and slow 

motion (MD= -0.077, ±.016, t=-4.777, p<.001) and between HP and LP contexts during downward 

fast motion (MD= -0.059, ±.015, t=-3.829, p=.010). Results also pointed to interactions between 

predictability and velocity (F(1,14)=6.800, p=.021, ŋp
2 =.327), with differences between fast and 

slow motion in HP context (fast vs. slow: MD=-0.058, ±.010, t=-5.945, p<.001) and LP context (fast 

vs. slow: MD=-0.032, ±.010, t=-3.278, p=.020), indicating higher performance during slow motion. 

An interaction between predictability and direction (F(1,14)=7.167, p=.018, ŋp
2 =.339) pointed to a 

marginally significant difference in HP context between upward and downward conditions 

(MD=.034, ±.013, t=2.574, p=.094). Finally, we observed a main effect of velocity (F(1,14)=28.794, 

p<.001, ŋp
2 =.673; fast vs. slow: MD=-0.045, ±.008, t=-5.366, p<.001). 

Occluded Phase 

High Predictable Context 

As in the HP visible phase, here we observed only a main effect of velocity, again revealing higher 

performance during slow motion (F(1,14)= 15.996, p<.001, ŋp
2 =.533; fast vs. slow: MD=-0.050, 

±.013. t=-4, pbonf<.001). No interaction was observed. Figure 10B shows averaged accuracy for all 

direction-velocity paired conditions during occlusion period. 

Low Predictable Context 

During this phase, analyses pointed to a triple interaction between direction, velocity and 

congruency (Figure 10B), indicating that higher performance during congruent trials compared to 

incongruent trials (F(1,14)= 23.749 p<.001, ŋp
2 =.629; congruent fast vs. incongruent fast in 

downward: MD=.124, ±.024, t=5.140, pbonf <.001; congruent slow vs. incongruent slow in upward: 

MD=.100, ±.024, t=4.162, pbonf =.004). For incongruent trials different pattern of results were 

observed (incongruent fast in upwards vs. incongruent fast in downward: MD=.130, ±.028, t=4.670, 

pbonf =.001; incongruent fast vs. incongruent slow in upward: MD=.115, ±.029, t=3.910, pbonf =.009; 

incongruent fast vs. incongruent slow in downward: MD=-0.127, ±.029, t=-4.340, pbonf=.002; 

incongruent slow in upwards vs. incongruent slow in downward: MD=-0.112, ±.028, t=-4.028, 
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pbonf=.007). An interaction between direction and velocity (F(1,14)= 4.731 p=.047, ŋp
2 =.253; post-

hoc failed to show significant results). A main effect of congruency was also revealed by the analysis 

(F(1,14)= 7.856 p =.014, ŋp
2 =.359; congruent-incongruent: MD=.034, ±.012, t=2.803, pbonf =.014).  

 

Figure 10 - Averaged accuracy across conditions. Dark purple bars depict results of fast motion in upward trajectory, blue 
bars depict results of slow motion in upward trajectory, dark green bar, fast motion in downward direction and light green, 
slow motion in downward trajectory. Note that the accuracy results were highly similar for occluded and visible motion 
trajectories. (A) Results of visible period during HP (left) and LP contexts (right) show differences between conditions. 
Differences were observed between congruent fast and slow in downward condition in HP context, and also difference 
between the concurrent conditions up-slow/down-fast (condition presented within the same task). Analysis also yielded 
differences between congruent and incongruent conditions in LP contexts, as well as a significant difference between HP 
and LP, indicating that slow in downward trajectory in LP presented higher accuracy than slow during downward 
trajectory in HP. (B) Results of occluded period during HP (left) and LP contexts (right) showed differences between slow 
and fast in downward trajectory during HP, and also difference between the concurrent condition up-slow/down-fast 
(condition presented within the same task), as in visible phase. During occluded phase in LP contexts, differences between 
congruent and incongruent conditions were observed, as during the visible phase.  

High x Low Predictability 

Here we compare the congruent results from both high and low predictable phases during the 

occluded task. Results indicated a triple interaction between direction, velocity and predictability, 

suggesting higher performance during slow motion in downward direction in HP context 

(F(1,14)=16.085, p=.001, ŋp
2 =.535; downward slow in LP context vs. downward slow in HP context: 

MD=-0.052, ±.015, t=-3.429, pbonf =.035; downward fast vs. downward slow in HP context: MD=-

0.070, ±.019, t=-3.598, pbonf =.021). We also observed an interaction between velocity and 
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predictability (F(1,14)=18.557, p<.001, ŋp
2=.570; slow in LP vs. slow in HP context: MD=-0.038, 

±.010, t=-3.849, pbonf =.005; fast vs. slow in HP context: MD=-0.050, ±.012, t=-4.213, pbonf =.002). 

Besides a main effect for velocity (F(1,14)=6.684, p=.002, ŋp
2 =.323; fast vs. slow: MD=-0.028, ±.011, 

t=-2.585, pbonf =.022) was observed, as well as a marginally significant main effect for predictability 

(F(1,14)=3.337, p=.083, ŋp
2 =.192). 

Temporal Estimation 

Visible Phase 

High predictable context 

Statistical analysis revealed main effects of velocity (F(1,14)=78.964, p<.001, ŋp=.849; fast vs. slow: 

MD=-0.112, ±0.013, t=-8.886, pbonf <.001) and direction (F(1,14)=15.200, p =.002, ŋp
2 =.521; upward 

vs. downward: MD=-0.023, ±.006, t=-3.889, pbonf =.002), indicating that participants answered 

slower to slow motion, as expected, and also to downward direction. No interaction was observed. 

Figure 11A shows averaged reaction time for all conditions during visible phase. 

Low predictable context 

Results revealed a triple interaction between direction, velocity and congruency (Figure 11A), 

which indicated slower response time during incongruent in both directions, and for congruent 

slow in upward direction (F(1,14)=5.882, p=.029, ŋp
2=.296; congruent fast vs. incongruent fast in 

upward: MD=-0.106, ±.014, t=-7.539, pbonf<.001; congruent fast vs. incongruent fast in downward: 

MD=-0.073, ±.014, t=-5.168, pbonf<.001; congruent slow vs. incongruent slow in upward: MD=.061, 

±.014, t=4.313, pbonf=.002). We also observed an interaction between velocity and congruency 

(F(1,14)=52.895, p<.001, ŋp
2=.791; congruent fast vs. incongruent fast: MD=-0.089, ±.011, t=-8.292, 

pbonf <.001, and congruent slow vs. incongruent slow: MD=.040, ±.011, t=3.709, pbonf =.006). As well 

as in spatial estimation, difference between incongruent fast and slow was significantly high 

(MD=.080, ±.010, t=8.072, pbonf<.001). Main effects were seen for congruency (F(1,14)=16.446, 

p=.001, ŋp
2=.540, congruent-incongruent: MD=-0.025, ±.006, t=-4.055, pbonf=.001) and 

velocity(F(1,14)=12.269, p=.004, ŋp
2=.467, fast-slow: MD=.015, ±.004, t=3.503, pbonf=.004).  

High x Low Predictability 

In these analysis, only congruent trials were analysed, from both high and low predictable phases 

during the visible task, we observed a triple interaction (Figure 11A) between direction, velocity 

and predictability (F(1,14)=5.340, p=.037, ŋp
2 =.276). Significant differences were observed in HP 

context between upwards fast and slow motion (MD=-0.091, ±.013, t=-7.087, pbonf<.001) and 
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downward fast and slow motion (MD=-0.114, ±.013, t=-8.892, pbonf<.001). However, differences 

between downward and upward trajectories were also observed during slow motion (MD=-0.043, 

±.012, t=-3.540, pbonf=.027). In LP context, differences were seen between upward fast and slow 

motion (MD= -0.065, ±.013, t=-5.065, p<.001). Reaction time was also significant difference in HP 

compared to LP context during downward slow motion (MD= .073, ±.011, t=6.457, pbonf<.001). We 

further observed an interaction between predictability and velocity (F(1,14)=28.829, pbonf<.001, ŋp
2 

=.673), with differences between fast and slow motion in HP context (fast-slow: MD=-0.103, ±.008, 

t=-13.345, pbonf<.001); in LP context (fast-slow: MD=-0.049, ±.008, t=-6.409, pbonf<.001), and 

between HP and LP context, indicating higher reaction time during slow motion in HP (fast-slow: 

MD=.039, ±.009, t=4.501, pbonf<.001). An interaction between predictability and direction 

(F(1,14)=23.795, p<.001, ŋp
2 =.630) pointed to a significant difference in HP context between 

upward and downward direction (MD=-0.032, ±.007, t=-4.787, pbonf<.001); and between HP and LP 

during downward direction (MD=.033, ±.008, t=3.956, pbonf=.004). Additionally, we observed a main 

effect of velocity (F(1,14)=167.373, p<.001, ŋp
2 =.923; fast vs. slow: MD=-0.076, ±.006, t=-12.937, 

pbonf<.001) and direction (F(1,14)=4.996, p=.042, ŋp
2 =.263; upward vs. downward: MD=-0.012, 

±.005, t=-2.235, pbonf=.042). 

Occluded Phase 

High Predictable Context 

Results with response time indicated main effect of velocity (F(1,14)= 78.964, p<.001, ŋp
2 =.849; 

fast vs. slow: MD=-0.112, ±.013. t=-8.886, pbonf <.001), as well as of direction (F(1,14)= 15.200, p= 

.002, ŋp
2 =.521; upward vs. downward: MD=-0.023, ±.006. t=-3.899, pbonf =.002), pointing to higher 

response time to slow motion and downwards direction, such as during HP visible phase. No 

interaction was observed. Figure 11B shows averaged reaction time for all direction-velocity paired 

conditions during occluded phase. 

Low Predictable Context 

Analysis did not yield significant results for reaction time during low predictable context. Instead a 

marginally significant triple interaction was observed (direction, velocity and congruency: F(1,14)= 

3.473, p=.083, ŋp
2 =.199). No significant or marginally significant differences were observed in the 

post-hoc analyses. 
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Figure 11 - Averaged reaction time across conditions. Dark purple bars depict results of fast motion in upward trajectory, 
blue bars depict results of slow motion in upward trajectory, dark green bar, fast motion in downward direction and light 
green, slow motion in downward trajectory. (A) Results of visible period during HP (left) and LP contexts (right) show 
differences between conditions. We observed differences between fast and slow conditions in up- and downward 
trajectories, indicating that participants were estimating the time-to-contact accordingly (answering fast when the 
stimulus was fast and answering slow when the stimulus was slow). This pattern can be clearly observed during visible 
condition in HP and LP, but not during occluded condition in LP (B). In Figure B, we could observe, for instance, that 
participants responded slower during incongruent compared to congruent fast, as in incongruent fast, the stimulation 
indeed reappeared slower. 

 

High x Low Predictability 

Response time results indicated an interaction for direction and predictability (F(1,14)=10.252, 

p=.006, ŋp
2 =.423; upward vs. downward in HP context: MD=-0.023, ±.005, t=-4.822, pbonf <.001) 

and velocity and predictability (F(1,14)=83.224, p<.001, ŋp
2 =.856; fast vs. slow in HP context: MD=-

0.112, ±.010, t=-10.817, pbonf<.001; slow in HP vs. slow in LP context: MD=.079, ±.013, t=6.015, pbonf 

<.001), suggesting higher response time for estimation for slow velocity during HP context, but 

lower response times for fast velocity in the HP context. This suggests that participants may have 

chosen a different strategy, as response times for the congruent trials showed a central tendency. 

We also observed significant main effects for direction (F(1,14)=13.216, p=.003, ŋp
2=.486; upward 

vs. downward: MD=-0.012, ±.003, t=-3.635, pbonf=.003), velocity (F(1,14)=45.490, p<.001, ŋp
2=.765; 
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fast vs. slow: MD=-0.057, ±.008, t=-6.745, pbonf<.001) and a marginally significant effect for 

predictability (F(1,14)=4.136, p=.061, ŋp
2 =.228; HP vs. LP context: MD=-0.024, ±.012, t=2.034, 

pbonf=.061). Interaction between direction and velocity did not reach significance, but post-hocs 

show significant differences between conditions, indicating that participants were estimating time-

to-contact accordingly.  

Temporal Estimation Error 

Visible Phase 

High predictable context 

Results showed main effect of velocity (F(1,14)=137.095, p<.001, ŋp
2=.907; fast vs. slow: (MD=.098, 

±.008, t=11.709, pbonf <.001) and direction (F(1,14)=16.309, p=.001, ŋp
2 .538; upward vs. downward: 

MD=-0.032, ±.008, t=-4.038, pbonf =.001), revealing an overestimation for fast motion and upward 

direction. Analysis did not reveal significant interaction. Figure 4A depicts averaged reaction time 

error for all conditions during visible phase. 

Low predictable context 

We observed again the triple interaction between direction, velocity and congruency (Figure 12A), 

suggesting that errors were smaller during fast incongruent trials than during congruent trials in 

upward direction, but not downward direction (F(1,14)=12.269, p=.004, ŋp
2 =.467; congruent fast 

vs. incongruent fast in upward: MD=.159, ±.012, t=13.660, p<.001; congruent fast vs. incongruent 

fast in downward: MD=.125, ±.012, t=10.686, p<.001); congruent slow vs. incongruent slow in 

upward (MD=-0.142, ±.012, t=-9.904, p<.001; congruent slow vs. incongruent slow in downward: 

MD=-0.115, ±.012, t=10.686, p<.001). Results still revealed an interaction between velocity and 

congruency (F(1,14)=231.417, p<.001, ŋp
2 =.943; congruent fast vs. incongruent fast: MD=.142, 

±.010, t=14.611, pbonf=.001; congruent slow vs. incongruent slow: MD=-0.129, ±-0.129, ±.010, t=-

13.259, pbonf<.001). Main effects were observed for direction (F(1,14)=16.445, p=.001, ŋp
2 =.540, up 

vs. down: MD=-0.019, ±.008, t=-2.425, pbonf<.001), and velocity (F(1,14)=5.882, p=.029, ŋp
2 =.296; 

fast vs. slow: MD=-0.019, ±.008, pbonf=.029). 

High x Low Predictability 

Analysis of congruent trials of HP and LP contexts from pointed to an interaction between 

predictability and velocity (F(1,14)=4.930, P=.043, ŊP
2 =.260), similar to results from reaction time. 

Differences were observed between fast and slow motion in HP (MD=.097, ±.011, t=8.881, 

pbonf<.001) and LP (MD=.117, ±.011, t=-10.663, pbonf<.001). Main effects were observed for direction 
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(F(1,14)=10.229, p=.006, ŋp
2 =.424; upward vs. downward: MD=-0.027, ±.008, t=-3.209, pbonf=.006) 

and velocity (F(1,14)=113.799, p<.001, ŋp
2 =.860; fast vs. slow: MD=.107, ±.010, t=10.668, 

pbonf<.001). 

Occluded Phase 

High Predictable Context 

Main effect was observed for velocity (F(1,14)= 44.235, p<.001, ŋp
2 =.747; fast vs. slow: MD=-0.086, 

±.013. t=-6.651, pbonf <.001) and direction (F(1,14)= 16.420, p=.001, ŋp
2 =.523; up vs. down: MD=-

0.024, ±.006. t=-4.052, pbonf =.001), showing an overestimation, this time, during fast motion as well 

as during downward direction. No significant interactions were observed. Figure 12B depicts 

averaged reaction time error for all conditions during occluded phase. 

Low Predictable Context 

We observed an interaction between velocity and congruency, indicating an overestimation during 

congruent fast and incongruent slow (speeded-up stimulus)(F(1,14)=483.345, p<.001, ŋp
2 =.972; 

congruent fast vs. congruent slow: MD=.0172, ±.014, t=11.879, pbonf <.001; congruent fast vs. 

incongruent fast: MD=.193, ±.010, t=19.806, pbonf<.001; congruent slow vs. incongruent slow: MD=-

0.190, ±.010, t=-19.525, pbonf <.001; incongruent fast vs. incongruent slow: MD=-0.212, ±.014, t=-

14.658, pbonf<.001). A marginally significant triple interaction (Figure 12B) was observed (direction, 

velocity and congruency: F(1,14)=4.248 , p=.058, ŋp
2 =.233). Post-hoc comparisons pointed to 

differences between congruent fast vs. congruent slow in upward (MD=.168, ±.019, t=8.904, 

pbonf<.001); congruent fast vs. congruent slow in downward (MD=.175, ±.019, t=9.260, pbonf<.001); 

congruent fast vs. incongruent fast in upward (MD=.198, ±.011, t=17.939, pbonf<.001); congruent 

slow vs. incongruent slow in upward (MD=-0.200, ±.011, t=-18.065, pbonf<.001); congruent fast vs. 

incongruent fast in downward (MD=.188, ±.011, t=17.009, pbonf<.001); incongruent fast vs. 

incongruent slow in upward (MD=-0.230, ±.019, t=-12.148, pbonf<.001); and incongruent fast vs. 

incongruent slow in downward (MD=-0.194, ±.019, t=-10.299, pbonf<.001). 
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Figure 12 - Averaged reaction time error across conditions. Dark purple bars depict results of fast motion in upward 

trajectory, blue bars depict results of slow motion in upward trajectory, dark green bar, fast motion in downward direction 

and light green, slow motion in downward trajectory. Although the conditions were clearly (and significantly) different in 

HP context during visible (A-left) phase and occluded (B-left), the analysis did not show interaction between direction and 

velocity. (A) Differences were observed in LP context during visible phase and occluded phases (B) when congruent and 

incongruent trials were compared. Note that the bars in fast congruent conditions are similar to the slow in incongruent 

conditions, showing that participants were trying to estimate according to the congruent velocity of the stimulus. During 

the slow conditions (and incongruent fast), we could observe an underestimation, while during fast (and incongruent slow) 

condition we see that participants overestimated their responses. In appendix B, it is possible to observe a plot of reaction 

time error of incongruent condition during occlusion in the LP context calculated based on the expected velocity subtracted 

from participants’ response. Interestingly, we observed the same pattern of response seen in congruent condition during 

occlusion in the LP context, suggesting that participants were not estimating according to the feedback, rather they were 

responding according to the learned velocity-direction association. 

 

High x Low Predictability 

Reaction time error analysis yielded similar results compared to reaction time. We observed an 

interaction for direction and predictability (F(1,14)=5.069, p=.041, ŋp
2 =.266; upward vs. downward 

in HP context: MD=-0.023, ±.006, t=-3.914, pbonf =.003), velocity and predictability (F(1,14)=38.000, 

p<.001, ŋp
2 =.731; fast vs. slow in HP context: MD=.088, ±.013, t=6.873, pbonf<.001; slow in HP vs. 

slow in LP context: MD=.063, ±.013, t=4.890, pbonf <.001; fast vs. slow in LP context: MD=.172, ±.013, 

t=13.420, pbonf <.001). We also observed significant main effects for direction (F(1,14)=10.491, 

p=.006, ŋp
2=.428; upward vs. downward: MD=-0.014, ±.004, t=-3.239, pbonf=.006), velocity 
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(F(1,14)=143.372, p<.001, ŋp
2=.911; fast vs. slow: MD=.130, ±.011, t=11.974, pbonf<.001) and a 

marginally significant effect for predictability (F(1,14)=3.783, p=.072, ŋp
2 =.213). 

Univariate fRMI-results 

Visible Phase 

High predictable context 

Analysis of beta weights during visible stimulation presented in HP context indicated an interaction 

between direction and V1 Quadrant (Figure 13A), which suggests that the vertical stimulations 

were salient enough to elicit higher responses in the opposite quadrant (F(1,14)=76.090, p<.001, 

ŋp
2=.845; upward vs. downward in the upper V1: MD=-2.485, ±.511, t=-4.865, pbonf <.001; upward 

vs. downward in lower V1: MD=2.230, ±.511, t=4.364, pbonf <.001). We also observed a triple 

interaction between direction, velocity and V1 quadrant (Figure 14A), mainly pointing to higher 

fMRI-responses during fast motion in downward direction in upper V1 (F(1,14)=6.761, p=.021, 

ŋp
2=.326; downward fast vs. downward slow in upper V1: MD=5.019, ±1.442, t=3.480, pbonf =.043; 

downward fast in upper V1 vs. downward fast in lower V1: MD=4.200, ±1.155, t=3.636, pbonf =.031, 

upward slow vs. upward fast in lower V1: MD=5.252, ±1.442, t=3.642, pbonf =.028). A main effect of 

velocity was also seen (F(1,14)=35.717, p<.001, ŋp
2=.718; fast vs. slow: MD=3.690, ±.617, t=5.976, 

pbonf<.001). No effect for task order was observed for any of the conditions. 

Low predictable context 

During visible stimulation presented in low predictable context, we observed again direction and 

V1 Quadrant interaction (Figure 13B - F(1,14)=26.231, p<.001, ŋp
2=.652), which demonstrated that, 

the insertion of the noise through the incongruent trials still led to higher responses in the opposite 

quadrant; this effect was significant for upper V1 (MD=-2.630, ±.472, t=-5.573, pbonf <.001), but 

marginally significant for lower V1 (upward vs. downward in lower V1: MD=1.304, ±.472, t=2.764, 

pbonf =.063). Further interactions between velocity and congruency (Figure 15A) was also seen, 

interestingly presenting higher fMRI-signal during congruent fast motion and incongruent slow 

motion (F(1,14)=99.931, p<.001, ŋp
2=.877; congruent fast vs. slow: MD=4.240, ±.374, t=11.329, pbonf 

<.001; congruent fast vs. incongruent fast: MD=3.319, ±.455, t=7.286, p<.001; congruent slow vs. 

incongruent slow: MD=-1.706, ±.455, t=-3.746, pbonf =.006).  

We further observed an interaction between direction and velocity (F(1,14)=4.694, p=.048, 

ŋp
2=.251; downward fast vs. downward slow: MD=4.212, ±1.180, t=3.570, pbonf =.016), and a 

marginally significant triple interaction between direction, velocity and V1 Quadrant (Figure 14B), 

which yielded significant post-hoc comparisons (F(1,14)=4.240, p=.059, ŋp
2=.232; upward fast vs. 
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downward fast in upper V1: MD=-5.799, ±1.284, t=-4.517, pbonf =.005; downward fast vs. downward 

slow in upper V1: MD=4.766, ±1.237, t=3.852, p=.031). Main effects for direction (F(1,14)=5.841, 

p=.030, ŋp
2=.294; upward-downward: MD=-0.663, ±.274, t=-2.417, pbonf =.030), velocity 

(F(1,14)=38.808, p<.001, ŋp
2=.735; fast-slow: MD=1.727, ±.277, t=6.230, pbonf <.001) and marginally 

significant effect for congruency (F(1,14)=4.504, p=.052, ŋp
2=.243; congruent-incongruent: 

MD=.806, ±.380, t=2.122, pbonf =.052) were also seen in the results.  

 

 

Figure 13 - Beta weights of HP and LP contexts during (A) visible and (B) occluded phase, indicating an interaction between 

direction and V1 Quadrant. Purple bars represent upward trajectory and green bars represent downward trajectory. (A) 

During visible phase in HP context, as expected, we observed that downward trajectory modulated higher responses in 

upper V1, compared to upward trajectory, whereas upward trajectory elicited higher responses in lower V1 compared to 

downward trajectory. (B) During visible phase in LP context, we observed the same pattern as in HP context, however, 

significant results were seen only in upper V1, while results in lower V1 were just marginally significant. 

 

High x Low Predictability 

When comparing congruent beta values from both contexts, we observe interactions between 

direction and V1 Quadrant (F(1,14)=54.439, p<.001, ŋp
2=.795; upward vs. downward in the upper 

V1: MD=-2.777, ±.456, t=-6.087, pbonf <.001; upward vs. downward in lower V1: MD=1.515, ±.456, 

t=3.320, pbonf =.016), which indicated that the vertical stimulations were salient enough to elicit 
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higher responses in the opposite quadrant. Additionally, triple interactions were seen between 

direction, velocity and V1 Quadrant (F(1,14)=12.864, p=.003, ŋp
2=.479; upward fast vs. upward slow 

in lower V1: MD=4.075, ±1.137, t=3.585, pbonf =.004; upward fast vs. downward fast in upper V1: 

MD=-4.965, ±1.118, t=-4.441, pbonf=.005; downward fast vs. downward slow upper V1: MD=6.158, 

±1.137, t=5.418, pbonf<.001) and velocity, V1 quadrant and predictability (F(1,14)=6.408, p=.024, 

ŋp
2=.314; post-hoc comparisons were not observed for factors between different contexts). A main 

effect was observed for velocity (F(1,14)=78.946, p<.001, ŋp
2=.849; fast vs. slow = MD=3.965, ±.446, 

t=8.885, pbonf <.001). 

Occluded Phase 

High predictable context 

Beta weights during high predictable occluded phase indicated an interaction between direction 

and V1 Quadrant (Figure 13C), which demonstrated that during occlusion, downward direction 

elicited a similar pattern of response in upper V1, but not lower V1, compared to visible phase, in 

which the stimulus was visible (F(1,14)=10.927, p=.005, ŋp
2=.438; upward vs. downward in upper 

V1: MD=-0.945, ±.285., t=-3.315, pbonf=.016). Further, it was observed a main effect of velocity 

(F(1,14)=42.861, p<.001, ŋp
2=.754; fast vs. slow: MD=4.013, ±.613, t=6.547, p<.001). Although no 

difference was observed for the triple interaction between direction, velocity and VF (Figure 14C), 

but for the sake of comparison, we ran post-hocs and found significant differences between upward 

fast vs. upward slow in lower V1 (MD=4.013, ±.613, t=6.547, p=.044); downward fast vs. downward 

slow in lower V1 (MD=4.230, ±1.054, t=4.015, p=.009); upward fast vs. upward slow in upper V1 

(MD=3.667, ±.1.054, t=3.480, p=.039); downward fast vs. downward slow in upper V1 (MD=4.531, 

±1.054, t=4.301, p=.004). 

Low predictable context 

During low predictable context, we once more observed interaction between direction and V1 

quadrant (Figure 13D - F(1,14)=19.683, p<.001, ŋp
2=.584; post-hoc comparisons revealed the 

difference only when incongruent trials were not included in the analysis: F(1,14)=14.691, p=.002, 

ŋp
2=.517; upward vs downward in the upper V1: MD=-1.532, ±.436, t=-3.511, p=.014). Additionally, 

it was seen interactions between velocity and congruency (Figure 15B - F(1,14)=30.281, p<.001, 

ŋp
2=.684; congruent fast vs. congruent slow: MD=3.953, ±.602, t=6.561, pbonf<.001; congruent vs. 

incongruent fast: MD=2.767, ±.461, pbonf<.001), and direction and congruency (F(1,14)=15.575, 

p=.001, ŋp
2=.527; congruent vs. incongruent downward: MD=1.462, ±.349, t=4.192, pbonf=.003). 

Further, results revealed a marginally significant interaction between direction and velocity 
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(F(1,14)=4.016, p.065, ŋp
2=.223; downward fast vs. slow: MD=4.119, ±1.101, t=3.743, pbonf=.007). 

We have also seen main effect for velocity (F(1,14)=18.184, p<.001, ŋp
2=.565; fast vs. slow: 

MD=2.162, ±.507, t=4.264, pbonf <.001) and congruency (F(1,14)=8.946, p=.010, ŋp
2=.390; congruent 

vs. incongruent: MD=.976, ±.326, t=3.000, pbonf=.010). Here as well, for the sake of completeness, 

we ran post-hocs related to the triple interaction between direction, velocity and VF (Figure 14D) 

and observed significant difference between downward fast vs. downward slow in upper V1 

(MD=4.288, ±1.171, t=3.610, pbonf=.035). 

 

Figure 14 - Beta weights of HP and LP contexts during visible and occluded phase, indicating interaction between direction, 

velocity and V1 Quadrant. Purple bars represent upward trajectory and green bars represent downward trajectory. (A) 

During visible phase in HP context, we observed higher responses for fast compared to slow motion in downward 

trajectory in upper V1, which was also higher compared to fast downward in lower V1. In lower V1, responses during fast 

motion was higher than slow motion in upward trajectory. (B) During visible phase in LP context, fast motion compared 

to slow motion seemed to have modulated higher responses in downward trajectory in upper V1, which was also higher 

compared to fast motion in upward trajectory. However, fast upward motion was higher in lower V1 compared to upper 

v1. (C) During occlusion phase in HP context, differences were observed with the same quadrant only. Fast motion in 

upward, as well as in downward trajectory elicited higher responses compared to slow motion in the respective 

trajectories. (D) In LP context, during occlusion phase, fast motion compared to slow motion in downward trajectory 

modulated higher responses in upper V1. 
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High x Low Predictability 

During occlusion, comparison between both contexts yielded interaction between direction and V1 

quadrant (F(1,14)=18.134, p<.001, ŋp
2=.564; upward vs. downward in the upper V1: MD=-1.238, 

±.301, t=-4.116, pbonf=.003), revealing a marginally significant interaction between direction and 

velocity (F(1,14)=3.451, p=.084, ŋp
2=.198; upward fast vs. upward slow: MD=2.701, ±.894, t=3.020, 

pbonf=.033; downward fast vs downward slow: MD=5.265, ±.894, t=5.889, pbonf<.001). We further 

observed a main effect of direction (F(1,14)=5.489, p=.034, ŋp
2=.282; upward vs. downward: MD=-

0.616, ±.263, t=-2.343, pbonf=.034) and velocity (F(1,14)=49.106, p<.001, ŋp
2=.778; fast vs. slow: 

MD=3.983, ±.568, t=7.008, pbonf<.001), but no main effect or interaction with predictability. 

Multivariate Pattern Analysis results 

We performed a series of trial-wise volume-based MVPA analyses to investigate the 

representational pattern of activity during visible and occlusion phases in HP and LP contexts, 

separately, in lower and upper V1 quadrants and in rhV5. Additionally, a comparison between both 

contexts were carried out to investigate whether LP context encoded more information, i.e. 

predictive error, than HP context. Table 1 and 2 depict the accuracy values of all analyses, of which 

we decoded spatial information, i.e. upward and downward trajectory; and temporal information, 

i.e. fast and slow motion, respectively 

 

 

Figure 15 - Congruent and Incongruent comparison in visible and occlusion phases. Fast congruent trials showed 

higher fMRI-responses in both V1 quadrants during (A) visible and (B) occluded phases, compared to slow congruent 

and incongruent conditions. Note, however, that slow incongruent (speeded-up stimulus in the vertical trajectory) 

elicited higher responses compared to fast incongruent (slowed-down stimulus in the vertical trajectory), meaning 

that fast, though expected slow, trials showed higher responses during visible, but not during occlusion phase, 

suggesting that fast motion engage higher response in V1, compared to slow motion. 
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Spatial Information 

Classifying Direction Patterns of Visible Phase from Occluded Phase in HP and LP contexts. In these 

analyses we trained the classifier in the visible phase and tested in the occluded phase data using 

upward and downward conditions as labels regardless of predictability. Here we expected to 

decode visible information from the occluded data, as we have seen in the previous study (chapter 

2) that the different modalities can share the same spatial layout in low-level visual areas. In order 

to obtain the most informative voxels, we averaged the highest 5% most informative spheres 

(range of 45 to 112 selected spheres), similar to the previous chapter. Results showed accuracies 

above chance level (Fig. 16: “Visible-Occluded”, and table 2), suggesting that we could successfully 

decode direction-specific informational patterns from the visible phase in the occluded phase in 

the lower and upper V1 and V5. Additionally, all analyses with the true labels yielded significantly 

higher accuracies compared to the permutation analyses (table 2A). Together, these findings 

indicate that MVPA significantly extended the results from the univariate analyses by showing that 

both phases share similar informational pattern in the primary visual area and V5. Furthermore, 

these classification analyses replicate the results of our previous study, in which we demonstrated 

a common engagement of low-level visual cortex during the presentation of visible and dynamically 

occluded motion. 

Figure 16 – Classifying Spatial Information: Decoding accuracies of all classification analyses in different ROIs when 

classifying directions. The decoding accuracies represent the averaged values of the 5% most informative spheres of the 

searchlight analyses. Purple bars depict averaged accuracy of classification analyses in which the classifier was trained 

and tested in visible phase (“Visible”), blue bars depict the averaged accuracy of classification analyses in which the 

classifier was trained and tested in occluded phase (“Occluded”); and green bars show averaged accuracy of analysis in 

which the classifier was trained in visible phase and tested in the occluded phase (“Visible-Occluded”). The three triple 

bars from the left (showing analyses on Lower V1, Upper V1 and hMT/V5, respectively) represent the averaged accuracies 

of the analyses with HP context data, whereas the three triple bars from the right represent the averaged accuracies of 

the analyses with LP context data. The dashed line on 0.5 represent the cut-off of accuracies below chance level 
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As a manipulation check, we tested the classifier in visible and occlusion phases separately. 

Results indicated that accuracies from the classification analysis in which we trained and tested in 

visible phase data were higher compared to the two other classification analyses (Figure 16 - 

“Visible”, “Occluded, table 2B-C). Such results were expected, as during the visible period more 

visual information is available to be encoded by the visual system. In contrast, the other two 

analyses presented very similar averaged decoding accuracies. Note that the decoding accuracies 

of this analysis were generally smaller compared to the first experiment as we used trial-wise rather 

than run-wise estimates as input to the MVPA, which includes an increased noise level. 

When comparing accuracies of HP and LP context (table 2), we observed significantly higher 

accuracies decoded from LP context data compared to accuracy decoded from HP context data in 

all analyses, this may suggest that the incongruent condition might have led to an encoding of more 

information. Further, we present results of congruent and incongruent decoding. 

 

Table 2 – Decoding accuracy of spatial information: Accuracy values of all analyses of all conditions are displayed on the 

table above, together with the standard error of the mean (SE). Permutation p-values demonstrate that the permuted 

accuracy distributions were highly significant different from the true label accuracy distribution. The average number of 

spheres included in the sample of 5% most informative spheres can be seen in the range of 45 to 112.  

Spatial Information: Direction

ROI Predictability Accuracy SE
Permutation 

p-value

N spheres 

(average)
Paired T-Test

High 0.551 0.005 <.001 100 (±42.93)

Low 0.564 0.005 <.001 96 (±42.84)

High 0.545 0.004 <.001 71 (±46.59)

Low 0.554 0.005 <.001 77 (±48.21)

High 0.548 0.004 <.001 66 (±21.61)

Low 0.571 0.005 <.001 72 (±23.80)

ROI Predictability Accuracy SE
Permutation 

p-value

N spheres 

(average)
Paired T-Test

High 0.594 0.005 <.001 101 (±44.52)

Low 0.629 0.010 <.001 112 (±48.75)

High 0.585 0.009 <.001 73 (±57.19)

Low 0.612 0.011 <.001 83 (±56.88)

High 0.553 0.003 <.001 49 (±24.03)

Low 0.581 0.005 <.001 59 (±20.77)

ROI Predictability Accuracy SE
Permutation 

p-value

N spheres 

(average)
Paired T-Test

High 0.554 0.005 <.001 74 (±39.94)

Low 0.571 0.004 <.001 88 (±38.88)

High 0.556 0.005 <.001 45 (±33.92)

Low 0.569 0.006 <.001 62 (±43.10)

High 0.558 0.004 <.001 51 (±23.52)

Low 0.578 0.005 <.001 58 (±21.17)

t=-2.501. 

p = .024

t=-2.579. 

p = .021

t=-5.628. 

p <.001

Lower V1

Lower V1

Upper V1

V5

Lower V1

Upper V1

Upper V1

V5

Visible-

Occluded

Visible

Occluded

t=-4.303. 

p <.001

t=-3.373. 

p = .004

t=-5.378. 

p <.001

t=-4.763. 

p <.001

t=-2.548. 

p = .023

t=-3.740. 

p = .002
V5
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Temporal Information: classifying velocity 

Classifying Velocity Patterns of Visible Phase from Occluded Phase in HP and LP contexts. Here, we 

carried out the same analyses as in the previous session by training the classifier in the visible phase 

and tested in the occluded phase data, but using fast and slow conditions as labels. We expected 

to decode motion information in the primary visual area and V5. As well as in the previous analyses, 

decoding accuracies, obtained from the sample of the 5% most informative spheres (range of 81 to 

132 spheres) were above chance level (Figure 17: “Visible-Occluded”, table 3), suggesting that 

temporal information may be also encoded in visual areas and may share similarity patterns during 

visible and occluded phases.  

 Manipulation checks were carried out also here (Figure 17: “Visible”, “Occluded”), by 

analysing visible and occluded phases separately. Note, however, that, in comparison with the 

decoding of spatial information, we did not observe higher accuracy for visible phase analysis 

compared to the other two analyses. This may indicate that the pattern of temporal information 

was encoded similarly independently of the availability of the stimulus (visible or occluded). In 

contrast with the comparison of spatial information decoding accuracies from HP and LP context, 

in which we observed higher accuracies for the latter, accuracies from analyses with LP context 

data were not higher than accuracies from analyses with HP context data (Table 3). Instead, 

classification analyses with visible phase only or occluded phase only did not yield significant 

Figure 17 - Classifying Temporal Information: Decoding accuracies of all classification analyses in different ROIs when 

classifying velocity. The decoding accuracies represent the averaged values of the 5% most informative spheres of the 

searchlight analyses. Purple bars depict averaged accuracy of classification analyses in which the classifier was trained and 

tested in visible phase (“Visible”), pink bars depict the averaged accuracy of classification analyses in which the classifier was 

trained and tested in occluded phase (“Occluded”); and orange bars shows averaged accuracy of analysis in which the 

classifier was trained in visible phase and tested in the occluded phase (“Visible-Occluded”). The three triple bars from the 

left (showing analyses on Lower V1, Upper V1 and hMT/V5, respectively) represent the averaged accuracies of the analyses 

with HP context data, whereas the three triple bars from the right represent the averaged accuracies of the analyses with LP 

context data. The dashed line on 0.5 represent the cut-off of accuracies below chance level. 
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different results between both contexts; whereas analyses in which the classifier was trained in 

visible and tested in occluded HP context data yielded higher accuracies than the same analysis 

with LP context data. These findings might suggest that temporal information can be better 

decoded when the encoding is not affected by some noise, such as the incongruency factor. 

 

 

Table 3 –Decoding accuracy of temporal information: Accuracy values of all analyses of all conditions are displayed on 

the table above, together with the standard error of the mean (SE). Permutation p-values demonstrate that the permuted 

accuracy distributions were highly significant different from the true label accuracy distribution. The average number of 

spheres included in the sample of 5% most informative spheres can be seen in the range of 81 to 132.  

 

Congruent Information in LP context 

Classifying Incongruent trials of Visible Phase and Occluded Phase in LP context: These analyses 

were carried out by training the classifier in the visible and occluded data separately, using 

congruent and incongruent conditions as labels. Results indicated that averaged accuracies 

(average of the number of the 5% most informative spheres is 75, ±41.05) were significantly above 

chance level compared to permutation analyses of visible phase in lower V1 (mean (M) = 0.572, 

Temporal Information: Velocity

ROI Predictability Accuracy SE
Permutation 

p-value

N spheres 

(average)
Paired T-Test

High 0.577 0.005 <.001 132 (±52.52)

Low 0.561 0.004 <.001  125 (±50.57)

High 0.577 0.005 <.001 100 (±63.11)

Low 0.562 0.004 <.001 95 (±61.80)

High 0.569 0.005 <.001  81 (±18.38)

Low 0.558 0.004 <.001 73 (± 20.93)

ROI Predictability Accuracy SE
Permutation 

p-value

N spheres 

(average)
Paired T-Test

High 0.586 0.006 <.001 112 (±44.48)

Low 0.576 0.004 <.001 94 (±42.10)

High 0.581 0.007 <.001 86 (±51.98)

Low 0.582 0.005 <.001 75 (±46.26)

High 0.580 0.005 <.001  73 (±20.16)

Low 0.577 0.005 <.001  58 (±20.87)

ROI Predictability Accuracy SE
Permutation 

p-value

N spheres 

(average)
Paired T-Test

High 0.573 0.003 <.001  124 (±47.70)

Low 0.568 0.005 <.001 107 (±45.36)

High 0.576 0.004 <.001  94 (±60.94)

Low 0.571 0.004 <.001  86 (±59.31)

High 0.581 0.005 <.001  76 (±18.42)

Low 0.575 0.004 <.001  67 (±18.63)

Lower V1

Lower V1

Visible-

Occluded

t = 3.487. 

p = .003

Upper V1
t = 3.208. 

p = .006

V5
t=3.390. 

p = .004

Visible

t=1.352. 

p = .196

Upper V1
t=-0.192. 

p = .850

V5
t=0.484. 

p = .636

Lower V1

Occluded

t=1.120. 

p = .280

Upper V1
t=1.054. 

p = .308

V5
t=1.359. 

p = .194
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±.024, permutation p (pperm) <.001; upper V1 (M=.566, ±.019, pperm<.001) and V5 (M=.571, ±.022, 

pperm<.001), as well as of occluded phase in lower V1 (M=.554, ±.015, pperm<.001), upper V1 

(M=.552, ±.014, pperm<.001) and V5 (M=.580, ±.023, pperm<.001). These results indicated that 

incongruent trials were successfully classified differently from congruent trials, suggesting that 

different information was encoded during the tasks with lower temporal predictability. 

Additionally, these findings significantly extend the univariate analysis which also showed different 

pattern of activity between congruent and incongruent conditions. 

 

 

Overlap of sphere centres 

To evaluate that our approach of choosing the 5% highest accuracy values is robust and free of bias, 

we calculated the number of spheres which share the same centres across different classification 

analyses. Interindividual results indicated that all participants d shared spheres across different 

analysis in different probability context in all masks. Heatmaps with individual results can be seen 

in the appendix B. The averaged overlapped spheres centre for all classification analyses performed 

here can be seen in tables 1 and 2. The overall average of all analyses is 83.19 (sd: ±21.63). Note 

that this value is similar to the number of sphere centres reported in the previous study (chapter 

2). This similarity between overall averages of both studies may be a result of the down-sampled 

space, as the analyses were carried out in the reduced space of ROI masks. Together, these results 

suggested that our approach of selecting the 5% highest informative voxels are robust, supporting 

Figure 18 - Classifying congruent and incongruent information: The decoding accuracies represent the averaged values of the 
5% most informative spheres of the searchlight analyses. Yellow bars depict averaged accuracy of classification analyses in 
which the classifier was trained and tested in visible phase (“Visible”), Orange bars depict the averaged accuracy of 
classification analyses in which the classifier was trained and tested in occluded phase (“Occluded”). The two bars from the 
left, middle and right (showing analyses on Lower V1, Upper V1 and hMT/V5, respectively) represent the averaged accuracies 
of the analyses with LP context data. The dashed line on 0.5 represent the cut-off of accuracies below chance level 
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the interpretation that when different decoding analyses share the same sphere centre, the decode 

pattern is truly informative, rather than random noise.  

Discussion 
 

Our study investigated whether motion extrapolation mechanisms presented in high and low 

predictable contexts, throughout the manipulation of the temporal information, could differently 

modulate fMRI-responses in the primary visual cortex during visible and occlusion period. Our 

behavioural results demonstrated that during visible phase, differences were observed between 

HP and LP contexts, indicating that performance was higher for HP compared with LP especially for 

slow motion in downward trajectory. Moreover, accuracies were also higher during congruent trials 

compared to incongruent trials presented in LP context. In contrast, during occlusion phase 

participants performed equally well in both HP and LP contexts. However, we observed differences 

between velocities. Performance was better during slow motion compared to fast motion 

stimulation. These results are in line with the notion of evidence accumulation proposed by the 

Theory of Magnitude (ATOM), which assumes that different magnitudes, here temporal and spatial, 

interfere with one another and predicts relatable but not always symmetrical interaction between 

the magnitudes (Lambrechts et al., 2013). Moreover, participants might just have had more time 

to respond more accurately. 

Reaction time results during visible stimulation showed that participants attempted to 

estimate the time-to-contact of the stimulus accordingly (faster responses during fast motion, 

slower responses during slow motion), in HP and LP context, following the expected pattern, 

corroborating our first study (chapter 2; Agostino et al., under revision). However, we, further, 

observed an interaction between velocity and predictability which indicated that participants 

responded faster during LP context. During occlusion, temporal estimation in LP context did no 

longer follow the same pattern, meaning that faster trials were not estimated faster and slower 

trials were not estimated longer. Rather, reaction time was similar across conditions in LP context, 

suggesting that temporal estimation indeed was hindered by lower predictability. This effect could 

be explained by post-error adaptations (Danielmeier & Ullsperger, 2011; King et al., 2010), which 

mainly happen in frontal areas, such as medial frontal cortex (MFC). Post-error adaptations alter 

future behaviour, leading to potential improvements, such as faster reaction times or higher 

accuracies. One of these adaptations is known as post-error speeding and it was showed that it is 

related to an enhancement of performance after a given threat (Caudek et at, 2015) and an 

increase of activity in task-relevant visual areas (King et al., 2010). However here, we didn’t observe 

the improvement of fast stimulus estimation, as participants were still trying to adequately respond 
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according to the learned pattern. This was also found in a reversal of responses for incongruent 

relative to congruent trials during occlusion, pointed by reaction time error, which demonstrated 

that participants applied the learned congruent direction-velocity change. In appendix B, it possible 

to see this effect when reaction time error is calculated based on the velocity that the participants 

are expecting subtracted from their response time. The plots showed that for incongruent 

condition during occlusion, congruent and incongruent trials followed the same pattern.  

Univariate analysis read-outs 

At the neural level, results of our univariate analysis indicated no significant differences between 

HP and LP context, neither during visible nor during occlusion phase. This finding is not in line with 

our initial hypothesis that we should see enhanced fMRI-signals in the LP context which should 

have required a greater amount of attention. However previous studies which observed an 

enhancement in activity in the primary visual cortex during the processing of dynamically occluded 

stimulation due to attention did not modulate attentional demands parametrically (Kok et al., 2012; 

Coull et al. 2008; Doherty et al., 2005), thus it is conceivable that a certain amount of attention, 

present in HP and in LP contexts, increased the signal to the maximum. Hence, attention would 

affect prediction processing not gradually but categorically and the manipulation of attentional 

demands would not further modify fMRI-responses. Moreover, it is important to emphasize that 

during occlusion participants did not make a simple time-to-contact judgement, but rather they 

were required to make a more complex prediction due to the velocity-direction association. 

Potentially the reappearance of the stimulus may have automatically captured attention and thus 

may have generated a response high enough to cancel the pattern of activity related to the 

predictive error, thus equalizing the response pattern in HP and LP contexts.  

We further observed that upwards trajectories enhanced responses in lower V1 and 

downward trajectories enhanced responses in upper V1, not only during the visible phase, but also 

and most importantly, during occlusion phase. These results corroborated the univariate results of 

our previous study presented on chapter 2, which demonstrated that the mechanisms related to 

visualizing and extrapolating a moving stimulation indeed engage activity in low-level visual areas. 

However, here observed that the expected pattern was seen in visible and occlusion phase in HP 

and LP contexts in upper V1, hence lower visual field. Differences between vertical hemifields are 

robust. The literature of the so-called vertical meridian asymmetry (Carrasco et al., 2001; Rijsdijk 

et al., 1980; Previc, 1990) indicates a dominance of the lower visual field over the upper visual field 

in different tasks, such as spatial resolution (Talgar & Carrasco, 2002), visual acuity (Skrandies, 

1987), motion (Levine & McAnany, 2005), among others (Karim & Kojima, 2010, for review). An 
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ecological explanation for this difference between vertical meridians was given by Previc (1990), 

who proposed that the dominance of the lower visual field comes from the primordial of the 

primate visual system, which was functionally more developed due to forelimb manipulatory skills. 

Later, studies indicated that the lower VF contains a larger amount of “near-preferring” neurons 

most commonly found in the latter compared to the first (Nasr & Tootell, 2018, 2020; Karim & 

Kojima, 2017). These findings could explain the difference between this and our previous study, 

given that in this study we introduced the reappearance of stimulus, which might also have led to 

an automatic capture of attention (Lakha & Humphreys, 2005). It is important to mention once 

more that the portion (voxels) in the respective quadrants which could have been modulated by 

the reappearance of the stimulus was carefully excluded from the analyses to avoid misleading 

conclusions. 

While in the spatial domain the stimulation modulated different patterns of activity, in the 

temporal domain univariate results were unanimous. The presentation of fast stimulation 

consistently enhanced activity in both upper and lower visual quadrants. Interestingly, even during 

incongruent conditions of visible stimulation, there was a tendency for the incongruent slow 

(speeded-up stimulus) to follow the same pattern of enhanced activity observed during the 

presentation of congruent fast. One possible explanation for these findings is that velocity might 

be coded based on neural mechanisms engaged in the memory of speed (Pasternak & Greenlee, 

2005). Another is that V1 may be more promptly receiving feedback projections from V5 during 

fast motion (Edwards et al. 2017; Sterzer et al., 2006; Muckli et al. 2005), which could increase the 

response signal, while processing of slow motion would be taking longer to reach V5 and reach V1 

back.  

Note that the univariate results partially oppose to the behaviour results in which we 

observed that a major effect for slow, rather than fast motion. However, during LP context, the 

reversal pattern seen during incongruent trials in reaction time, could be seen as a tendency in the 

univariate results. Accordingly, MVPA results also pointed to decoding differences between 

congruent and incongruent trials, which we discuss in the next section. Note, as well, that in the 

next chapter we follow-up on this observation and investigate causal relation between the primary 

visual cortex and velocity discrimination. 

MVPA read-outs 

The series of multivariate pattern analyses extended the results of the univariate analyses 

throughout a different perspective. Although in the latter analyses, no difference was observed 

between fMRI-response signal in V1 during HP and LP contexts stimulation, the decoding analyses 
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indicated that the encoded representational pattern of activity differ between both contexts. First, 

we observed that representational patterns of activity from visible phase could be decoded from 

occluded phase in upper and lower V1, suggesting that both types of information share similar 

representational pattern in the very same voxels, replicating the results from the first study 

(chapter 2; Agostino et al., under revision). The robustness of this decoding and the sphere 

selection that we used was further confirmed by computing the overlap of sphere centres. This 

overlap indicated that a significant number of spheres, regarding the ROI size, shared the same 

centre in upper or lower V1 across different types of classification (train in visible, test in occluded; 

train and test in visible; and train and test in occluded), suggesting that the algorithm was decoding 

relevant information rather than noise, and also corroborating our previous study. The effect was 

observed in HP and LP predictable contexts. Remarkably, we observed higher values when 

classification analyses were carried out using the LP context data compared to HP context data. 

These results suggested that the decoding captured a relevant pattern of information, and this 

pattern may be related to the incongruent trials, which was not captured by the univariate analyses 

when the factors were modelled together, but separately. We did, though, observe a difference 

between congruent and incongruent trials when we analysed the difference between them, as well 

as we successfully classified congruent and incongruent trials from visible and occluded data 

separately, confirming that the representational patterns of both trial types were significantly 

different. Future high-field fMRI-studies with increased resolution could disentangle the effects of 

congruent and incongruent trials by segregating the areas of V1 which represent the horizontal and 

vertical trajectory in greater detail and would thus be able to separately test the similarity of 

responses for fast and slow velocities in congruent and incongruent trials.  

Furthermore, we mentioned above that computations involved in post-error adaptations 

are located in medial frontal areas. Therefore, this difference between congruent and incongruent 

trials observed in the univariate results and in the decoding analysis might be explained by feedback 

from higher level regions (Noesselt, et al., 2002; Summerfield et al., 2006). For instance, 

Summerfield and colleagues (2006) investigated how decision-making neurons may access 

predicted information from lower-level regions, in order to compare with sensory information. In 

this study, the authors presented face and non-face stimulation and asked participants to 

discriminate between both, while measuring fMRI. Results indicated that face stimulation does not 

directly elicit response in MFC, as synchronization between activity in this region and stimulus 

presentation was not robust enough, suggesting that the information is coming from visual regions. 

They further observed that when face-type information is implicit (“top-down-generated”), activity 

in ventral MFC is enhanced. To extend the investigation, the authors carried out a connectivity 
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analysis and observed enhanced feedback signal, during top-down processing, from MFC to 

amygdala and fusiform area, region related to face recognition (Nars & Tootell, 2012), but no 

feedforward enhanced activity during bottom-up processing. Although, we focus our analysis on 

low-level visual regions, it is conceivable that the hierarchical organization related to predictive 

coding may be also engaging frontal regions during the processing of dynamic occluded stimulation 

(top-down information) and error-monitoring in the low predictability context. Future studies could 

analyse functional connectivity, for instance with psychophysiological interactions (Friston et al., 

1997) or dynamic causal modelling (Friston et al., 2003), to directly investigate connectivity 

between high- and low-level regions during motion extrapolation in higher and lower predictability 

contexts. 

In conclusion, we tested whether visible motion processing or motion prediction would 

differentially modulate fMRI-responses in the primary visual cortex in higher or lower predictability 

contexts. According to the predictive coding model, it was expected that stimulation presented in 

low predictable context would enhance activity in V1 compared to high predictable contexts. 

However, alternatively, activity during high predictable context would also increase activity in this 

region if any amount of attention outweighs predictive mechanism in an all-or-nothing rather than 

a gradual way. Our results provided evidence supporting the latter hypothesis, by showing no 

difference in fMRI-response signal of high and low predictable context tasks. In contrast, our MVPA 

results indicated that, although response signal in both cases did not differ, the decoded 

representational pattern of activity was significantly different, and this difference may be due to 

the incongruent stimulation. Future experiments are needed to directly test the effect of attention 

in motion extrapolation by parametrically modulating attentional demands and compare whether 

the effect remains unchanged. Finally, it is worth mentioning that we replicated the results from 

the previous experiment, which revealed shared informational patterns for visible and extrapolated 

changes in motion direction in the primary visual cortex. 
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Chapter 4 - Finding causal relation between temporal information of 

dynamic occlusion, V1 and V5 
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Abstract 
 

Predictive coding models proposes that the visual system follows a hierarchical architecture, in 

which the low-level visual areas, such as V1, feed forward errors from feedback predictions. During 

the processing of motion, for instance, higher-level regions of visual system and beyond send and 

receive information input from V1. However, early studies with cortical blindness patients 

suggested that V1 might not always be engaged in motion processing, depending on the velocity 

of the moving stimulus, giving rise to the dynamic parallelism theory; whereas studies with Riddoch 

patients present opposing results. Here we investigated the role of the primary visual cortex in 

motion processing, specifically velocity discrimination, by examining possible pathways that motion 

information of different velocities may take to reach V5. To this end, we used a double-pulse TMS 

to examine causal evidence of the involvement of V1, and compared to the role of V5 in this process 

using behavioural read-outs. Results did not provide evidence to establish a robust conclusion. We 

discuss possible methodological confounds that led us to inconclusive results and suggest 

improvement for future studies. 
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Introduction 
 

The amount of information available in the environment constantly challenges the brain to extract 

and process the relevant information fast and efficiently. It has been proposed that the brain 

utilizes a hierarchical architecture with predictive top-down signals sent from higher levels and 

compared to incoming sensory information at lower levels. The difference between this 

comparison, i.e. the predictive error, is sent back via feedforward loops to higher levels (Rao and 

Ballard, 1999, Mumford, 1992, Friston, 2003). In this so-called predictive coding models in visual 

domain, the low-level visual areas, such as V1 sends forward the error from feedback predictions 

(Alink, 2010). For instance, during the process of motion, higher-level regions of visual system, such 

as hMT/V5+, sends and receives projections from V1 (Koivisto, Mäntylä, Silvanto, 2010). However, 

early studies with cortical blindness patients suggested that V1 might not always be engaged in the 

visual processing, depending on the speed of the moving stimulus (Ffytche, Guy and Zeki, 

1995,1996). Given the differences in behavioural and brain read-outs in the earlier studies, here 

we investigated possible pathways that motion information of different velocities may take to 

reach V5 by using a double-pulse TMS to examine causal evidence of the involvement of V1, and 

compare with the role of V5 in this process.  

Previous studies have shown the engagement of V5 in primates (Born & Tootell, 1992; 

Fellemann & Van Essen, 1991; Born & Bradley, 2005, for review) and in humans (Goebel, et al., 

1998; Kolster et al., 2010; Muckli et al., 2002; Hampson et al., 2004) during motion processing. The 

moving visual information takes a path to reach higher levels of processing which starts in the retina 

and travels all along the optical nerve until it reaches the thalamus. From there, the magnocellular 

layers of the lateral geniculate nucleus (LGN) forward most of the motion information to V1 

(Fellemann & Van Essen, 1991), which feedforward it to higher-level regions, such as V5. In accord, 

Hampson and colleagues (2004) compared brain activity during resting state and processing of 

moving stimuli and found a network of functionally connected areas involving thalamus, dorsal 

cuneus, lingual gyrus, middle occipital gyrus and hMT/V5. Other studies also reported that V5 sends 

back projections to V1 (Laycock et al., 2007) and this feedback information was seen to be related 

to awareness of visual motion (Pascual-Leone & Walsh, 2001; Bullier, 2001; Lamme, 2001). In line 

with that, studies with patients suffering from blindsight and healthy individuals provided robust 

evidence for the engagement of V1 in conscious motion perception.  

Blindsight is a term used to describe patients with cortical blindness who can still use visual 

information to guide their actions (Pöppel et al., 1973; Cowey, 2010). The first studies which 

investigated visual-cortical-lesioned patients reported that, even though patients were blind to the 
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presented stimulation, they were still able to guess its location (Pöppel et al., 1973; Sanders et al., 

1974). These findings raised questions about the engagement of low-level visual cortex, specifically 

V1, in conscious and unconscious visual motion perception. Conscious vision is defined as the visual 

perception which is supported by subjective experience, while unconscious vision refers to the lack 

of subjective experience of a certain visual stimulation, although this input may still guide 

individual’s behaviour in some circumstances (Railo & Hurme, 2021, for review). For instance, 

Hurme and colleagues (2017), in a TMS study, investigated the direct influence of V1 on both 

processes by inhibiting activity in V1 in two different time intervals (60 ms and 90 ms), while 

participants responded to detect the appearance of one or more stimuli, as fast as they could. After 

their response they were asked to indicate how many stimuli they detected, followed by a 

confidence rating scale, in which they evaluate how certain they were about their response. The 

authors observed that stimulating V1 in different time intervals result in different visual processing. 

TMS to V1 delivered at the late interval affected the detection of the visual stimulus, i.e. 

unconscious vision, but still influenced reaction time, suggesting that the unconscious stimulus 

affected participants’ behaviour. However, TMS to V1 delivered at the early interval was enough to 

affect conscious vison, but it did not modulate behaviour, indicating that V1 plays different roles in 

different processing phases. These findings corroborated the study from Koivisto and colleagues 

(2010), in which they also observed that TMS pulse delivered to V1 at different time windows (20 

ms and 60 ms) can impair visual awareness. This study also indicated that this critical time window 

can be found during TMS delivered to V5, consequently impairing back projections to V1 (Vetter et 

al., 2015).  

In contrast to Blindsight patients, Riddoch patients, who also have lesion in the primary 

visual cortex, still report visual consciousness, especially during motion perception (Schönfeld et 

al., 2002a; Zeki & Ffytche, 1998). Studies have shown that moving information can take other 

pathways to reach V5 without necessarily engaging activity in V1. Studies in primates have 

supported that V5 also receives information from subcortical regions, such as pulvinar (Baldwin, 

Balaram, Kaas, 2017) and superior colliculus (Berman & Wurtz, 2010, 2011; Lyon, Nassi, & Callaway, 

2010; Schönfeld et al., 2002b). The seminal work of Ffytche, Guy and Zeki (1995) postulated that 

motion can be processed through different pathways, depending on the speed of the stimulus. The 

motivation for this hypothesis came from clinical study cases in which patients had either V1 or V5 

lesioned. For the patient with lesion in V1, it was observed that only fast-moving (>15°/sec) 

stimulation could be detected. In contrast, when another patient with lesion in V5 was tested, it 

was seen that only very slow speed (<6°/sec) could be discriminated, suggesting that this motion 

was processed by intact regions of the cortex, including V1. From these observations, Ffytche and 
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colleagues suggested the theory of dynamic parallelism, proposing the existence of two pathways 

recruited for motion processing: a slow-motion pathway (LGN→V1→V5), and a fast motion 

pathway (SC→V5). In support to this theory, electrophysiological evidences demonstrated that 

when participants observed a moving checkerboard stimulus, early visual evoked potentials (VEP) 

could be registered with an onset before 30 ms and with a peak at approximately 45 ms in V5 

(Buchner et al., 1997). However, the authors also observed a second VEP which happened around 

50 ms with the peak at 70 ms in V1, suggesting that V5 received a visual input without necessarily 

engaging V1. 

To directly test the dynamic parallelism theory, Grasso and colleagues (2018) applied TMS 

for provoking a virtual lesion in healthy participants, by disrupting V5 and V1, while participants 

performed a 2AFC random dot motion task. An inhibitory double-pulse TMS was delivered in 

different time windows and after each trial, participants were required to rate their perception. 

Results indicated that, when V5 was disrupted, participants’ performance was impaired for both 

fast and slow motion, in different time windows (~30ms and ~80ms, respectively). In contrast, TMS 

over V1 was related to a general decrease of motion discrimination performance, unrelated to 

velocity or time window compared to SHAM stimulation. The authors suggested that this overall 

performance decrease might be related to the impairment of visual processing. However, results 

did not offer a robust support for the theory.  

The presented literature suggests the involvement of V1 in two different processes in a 

normally developed brain: general conscious (and unconscious) visual processing and visual motion 

processing. Here, we focus on the latter to investigated the two possible pathways that motion 

information might take to reach higher levels in the hierarchical visual cortical organization. 

Although previous studies already showed some evidence of the engagement of V1 in motion, to 

our knowledge no study measured directly velocity discrimination in a continuous motion context, 

which is also more ecologically valid compared to other tasks such as random dot motion (RDM). 

In this study, we tested the dynamic parallelism theory by mainly disrupting V1. To this end, 

participants were instructed to discriminate between a baseline velocity compared to a faster and 

a slower, while we delivered a double-pulse TMS to V1, a SHAM double-pulse TMS to V1, and for 

replication and control purposes, a double-pulse to V5. According to the dynamic parallelism 

theory, we expected that (1) disrupting V1 should impair performance during slow velocity 

discrimination but not fast, as slow-motion information may be conveyed from LGN to V5 through 

V1, while fast-motion information may take direct pathway potentially from SC to V5; (2) TMS over 

V5 should result in a general velocity discrimination impairment, as this region is well-known to be 
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related to motion processing (Vetter et al., 2018); (3) perception ratings should decrease for TMS 

during early time windows (Hurme et al., 2017). 

Materials & Methods 
 

Participants 

Fifteen participants (mean age 24.06 ±5.40, 12 women) volunteered to take part in a three-day 

experiment and were recruited from an MRI compatible participant list and after filling a selection 

criteria questionnaire (Appendix C). Six participants were excluded from the analyses: four of them 

did not return on the third day; one was excluded due to technical problems during the stimulation 

and one participant was excluded due to below chance accuracy in one of the task blocks. 

Therefore, nine participants (mean age 23.45 ±5.14, 9 women) were included in the analyses. All 

participants were naïve to the purpose of the experiment, had normal or corrected-to-normal 

vision, presented no history of psychiatric or neurological disorders and followed all the criteria to 

take part into a TMS (Box 5) study (Rossi, Hallett, Rossini, Pascual-Leone & Safety of TMS Consensus 

Group, 2009). All procedure was approved by the local ethical committee of Otto-von-Guericke 

Universität. Note that, due to the COVID-19 pandemic, it was not possible to recruit and measure 

more participants. 

Neuronavigation 

In order to locate the regions of interest as precise as possible a neuronavigation system was used. 

The system counts with a software (ANT Neuro Visor2-Version 2.4.4.45541; https://www.ant-

neuro.com/products/visor2) and an infrared camera used to localize reflective spheres strategically 

positioned on the participant’s head with the use of a band. Individuals’ anatomical image (T1) 

were acquired in a separate session, uploaded on the neuronavigation PC and a model of the brain 

was created for ROI localization. Markers were set on right M1, using the central sulcus as 

reference; right V1, using the calcarine sulcus as reference; and right V5 using the middle temporal 

gyrus as reference. The M1 marker was used as starting point to find the motor threshold, markers 

on V1 and V5 were used as starting point for eliciting phosphenes to guarantee that we were 

stimulating the regions of interest.  

Motor Threshold 

Single pulse TMS applied to the motor cortex is commonly used to evoke contralateral motor 

potentials, i.e. muscle contractions, at a visible level, in order to establish a stimulation threshold 

based on a smallest level of stimulation capable of still causing some muscle twitch. This smallest 
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level of stimulation is known as motor threshold (McConnell, et al., 2001) and it is usually identified 

using the contralateral thumb (abductor pollicis brevis, Pascual-Leone, et al 1992). In this study, 

motor threshold was searched on the right M1, so we observed movements on the left thumb, 

using an initial intensity of 40%, which is below the safety value commonly used (Rossi et al., 2009) 

and increasing until we observed the first movements. This procedure was used with the only 

intention of having an initial safe stimulation intensity based on each subject’s threshold, meaning 

that, as soon as we observed and the participant reported a muscle twitch 3 out of 5 times, we 

used this intensity to start stimulating the occipital cortex to elicit phosphenes.  

Phosphene Threshold 

The perception of illusionary small light spots when the occipital cortex is stimulated are called 

phosphenes (Brindley & Lewin, 1968; Marg and Rudiak, 1994, Kammer, 1999; Kammer & Baumann, 

2010). Single-pulse TMS is commonly used to elicit phosphenes on participants in order to identify 

the region of interest inside the occipital cortex; and subject-specific intensity stimulation threshold 

are used to adequately excite or inhibit the neurons (Harllet, 2000; Merabet et al., 2003). In this 

study, we identified V1 using the neuronavigation marker as reference and the elicitation of 

phosphenes. To guide our search and to avoid stimulating areas outside V1, we made sure to be 

around a region 2 cm above the inion and 2 cm to the right (Grasso et al., 2018). When participants 

reported seeing phosphenes 3 out of 5 times, we registered the intensity and used 90% of the value 

for the main experiment. All participants reported seeing a small spotlight during a very short 

amount of time in the central or left upper visual field or foveal. If foveal phosphene was reported 

we moved the coil until they reported seeing it more lateral in the visual field. The same procedure 

was done over V5, however there we expected participants to report moving phosphenes. For 

some participants, the stimulation intensity had to be adjusted for phosphene induction in V5, 

meaning that intensity was increased until they reported seeing moving phosphenes. All 

participants reported seeing a moving phosphene like a “thin white line”.  

Experimental Design 

The experiment followed a within-subject design (Fig. 19A). On day 1, participants performed 6 

blocks of the main task, without any stimulation, for training purposes (Pre-test). After this pre-

test, we adjusted the neuronavigation to localize the participant’s head (see Neuronavigation 

session, for details) and to identify the first region to be stimulated: M1. Over M1 we measured 

individual’s motor threshold, followed by the phosphene threshold measurement over V1, and, 

consecutively, the main experiment with the double-pulse TMS application. This procedure was 

common for all participants, only the order of real and sham stimulation over V1 was 
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counterbalanced across subjects. On day 2, participants performed additional 6 blocks of the main 

task as training, followed by the neuronavigation and phosphene threshold over V1. The same TMS 

intensity used on the first day was also used on the second day, but we repeated the phosphene 

threshold procedure to confirm that the same intensity could be used. After that, the 

counterbalanced version of the main task was performed by the participants. As sham condition 

(Fig. 2B), the coil orientation was used in the vertical position, as studies show that stimulation over 

V1 should be done with the coil in the horizontal position, i.e. perpendicular to the columnar 

organization of neurons in the visual cortex, meaning that coil orientation is fundamental for a 

successful stimulation (Jansen et al., 2015; Gomez-Tames et al., 2018; de Goede, Braack & Putten, 

2018). Changing the coil orientation allowed us to keep all the other parameters of the stimulation, 

giving the participant the same haptic and auditory sensations. On day 3 (Fig. 19A), participants 

performed the main task, while double-pulses were delivered over V5. The region of interest was 

again localized with the help of the neuronavigation, and once it was identified, phosphene 

threshold was measured (for details, see Phosphene Threshold session).  

Stimuli 

The stimulus consisted of a white dot (0.14°) moving from the left to the centre of the screen in 

three different velocities: baseline (14°/s - 500 ms motion time), fast (35°/s - 200 ms) or slow (8.7°/s 

- 800 ms). After the presentation of the moving stimuli, a rating scale containing five sentences was 

displayed on the screen. A white square framing the first sentence could be moved towards to the 

right or back (Fig. 19C) by using the same arrows, and to confirm their choices, the upper arrow 

was pressed. No time limit was imposed during rating. The stimuli were displayed on an Asus 

RogPG258Q monitor (200 Hz, 1920x1080 px) and ran on Matlab 2020b (MatWorks) under a 64-bit 

Linux distribution (Ubuntu 20.04.2).  

Task 

Participants were placed 70 cm away from the monitor and instructed about the experiment. Their 

task consisted of fixating on a cross, while covertly observing the two dots moving consecutively 

from left to the centre, and judge if the second dot was faster or slower than the baseline, by using 

the left and right arrow of the keyboard, respectively. After their response, a rating scale containing 

five sentences displayed on the screen, in which they could choose the sentence that best 

represented their perception about the previous trial (Fig.19C). The statements, adapted from 

Grasso et al. (2018), were: 1 = "I did not perceive any motion at all after the first stimulus"; 2 = "I 

perceived a motion, but did not perceive any difference"; 3 = "I perceived a difference, but I cannot 

say if it was faster or slower"; 4 = "I perceived a motion and the difference and I am almost confident 
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of my answer"; 5 = " I perceived a motion and the difference and I am extremely confident of my 

answer". The task was presented in a training and test sessions (with TMS). The training phase 

consisted of 6 blocks of 36 trials each, and the test phase, 12 blocks also of 36 trials each. While 

participants performed the tasks, we monitored the eye movement online with an eye-tracking 

device (Eyelink: https://www.sr-research.com/eyelink-1000-plus/).  

Figure 19 - Overview of the Experiment. (A) Experimental Design: Participants performed a three-day experiment, in which 

a double-pulse TMS was delivered to their visual cortex. On day 1, they performed a training phase (Pre-test), which was 

identical to the main experiment, but only half of the blocks were available, the other half was performed on day 2. The 

Pre-test was followed by the neuronavigation set up, in which we anatomically localized M1, V1 and V5 of each individual 

participant. After that, the motor threshold was acquired, using the localized M1 on the neuronavigation system as a 

reference for the search of the muscle movement of the Abductor pollicis brevis (ABP, i.e. thumb muscle). When we 

observed the movement 3 out of 5 times, we registered the motor threshold. After the threshold was established, the coil 

was placed over V1 as localized by the neuronavigation system and the motor threshold intensity was used to start 

eliciting phosphenes. Intensity was adjusted until participants reported 3 out of 5 times that they saw one or more 

phosphenes. Following the phosphene threshold, participants performed the main experiment. On day 2, participants 

went through a similar sequence of events, but without the motor threshold acquisition. The order of real and SHAM 

stimulation over V1 was counterbalanced across subjects. The third session happened four days after day 2, when 

participants returned for stimulation over V5. Before the stimulation task, we prepared again the neuronavigation for 

using the localized V5 and elicited phosphenes on this region, expecting participants to report seeing phosphenes in 

movement. The intensity was adjusted until they reported 3 out of 5 times that they could see the virtual stimulus. (B) Coil 

orientation and localization according to the stimulation. The first image from left to right depicts the coil rotated in 90° 

for real stimulation over V1. The centre of the figure-8 coil was touching the region of interested in order to provide the 

best stimulation condition. The middle image depicts the coil oriented in 0° for SHAM stimulation. Changing just the coil 

orientation gave us the possibility to keep the same parameters of the stimulation, without perturbating the neurons in 

V1, as it should happen when the coil is perpendicular to the columnar organization of the visual neurons. The rightmost 

image shows the coil oriented around 45° to stimulate V5. This orientation could slightly vary across participants. (C) 

Experimental Task: Participants were asked to fixate their eyes on a fixation cross, while two dots moved consecutively 

(interval of 20 ms) from the left to the centre and were instructed to respond if the second dot moved faster (dashed line) 

or slower (dashed line) compared to the baseline velocity (full line) of the first dot. Double-pulse TMS was always delivered 

after the first stimulation. After the response was given, a screen displaying a rating scale with five sentences (here 

represented by numbers) was presented, and participants chose the sentence that best represented their motion 

perception. (D) SOAs for the stimulation triggers in ms: Double-pulse TMS could be delivered before the onset of the second 

stimulus (double pulse: T1=-40 -20) or after the onset of the stimulus (T2=20, 40; T3=40, 60; T4=60, 80; T5=80, 100), for 

the same proportion of trial there was no TMS pulse.  
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The double-pulse TMS could be delivered in different time intervals (Fig.19 D). These 

intervals were chosen, to establish a series of SOAs, as there is no consensus in the literature about 

the ideal intervals, in which double-pulse TMS should be delivered during the experiment. The 

double-pulse TMS could be delivered before the onset (T1= -40, -20), after the onset (T2= 20, 40; 

T3= 40, 60; T4=60, 80; T5=80, 100) or it could not be delivered (T0 = no pulse), as an additional 

control condition.  

Statistical Analyses 
 

Behaviour measurements were accuracy, reaction time and the responses of a perception rating 

scale. We computed accuracy by averaging the proportion of correct responses and reaction time 

(RT) by averaging the response time locked to the disappearance of the second stimulus. Trials with 

RT exceeding 1.5 s were excluded from the analyses, as well as trials greater than 3 sd. Two 

exclusion criteria were here used to avoid long reaction times what would no longer allow us to 

make inferences about the effect of the stimulation, given that the disruption should have a short 

effect. For the perception rating scale, the median of the rating values was also computed. A 2x3x6 

repeated measures ANOVA with within-factors Velocity (fast motion, slow motion); Stimulation 

(TMS-V1, SHAM-V1, TMS-V5); TMS trigger SOA (T0=no pulse, T1= -40 -20; T2= 20 40; T3= 40 60; T4= 

60 80; T5= 80 100) and task order as between subject factor was carried out on JASP (v.0.15.0.0 - 

https://jasp-stats.org/) for all measurements. Additionally, we averaged the 12 task blocks 

performed before the TMS application on day 1 and day 2, and used a pairwise Student T-test to 

compare the averages of accuracies and reaction time for fast and slow conditions, in order to 

verify if participants were able to discriminate the stimulus velocity.  

Results 
 

Training phase 

Results of accuracy (figure 20A) indicated a marginally significant difference between fast 

(mean=.985 ±.023) and slow (mean= .959 ±.037) conditions (t=2.066, df=8, p=.073), suggesting that 

participants discriminated fast condition from the baseline slightly easier than slow condition. For 

reaction time (Figure 20B) during training phase, no significant difference was observed between 

fast (mean=.571 ±.239) and slow (mean=.606 ±.185) conditions (t=-0.464, df=8, p=.655). 
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Figure 20 - Accuracy and reaction time during training sessions before stimulation. (A) No differences in accuracy were 

observed during discrimination between fast and baseline, as well as, between slow and baseline. (B) Results of reaction 

time were in accord with accuracy, no difference was observed. Error bars represent standard deviation in both measures.  

 

Test phase 

Accuracy: Figure 21. A1 depicts the accuracies for fast and slow motion as a function of trigger 

onset. Results indicated an interaction between velocity and trigger onset (Figure21. A2 - 

F(5,35)=4.235, p=.004, ŋp
2=.378). Post-hoc pointed to significant differences for slow condition 

during T1 and T2 (MD=-0.055, SE=.016, t=-3.527, pbonf=.051), T1 and T3 (MD=-0.064, SE=.016, t=-

4.076, pbonf =.009), T1 and T4 (MD=-0.057, SE=.016, t=-3.627, pbonf =.037), and T1 and T5 (MD=-

0.033, SE=.016, t=-4.162, pbonf =.006). We expected to observe differences between stimulation 

conditions, but no further significant main effect or interactions were observed, moreover no 

significant task order effect was found.  

Reaction Time: Figure 21. B1 depicts reaction time for fast and slow motion as a function 

of trigger onset. We observed again an interaction between velocity and trigger (Figure 21. B2F - 

(5,35)=5.847, p<.001, ŋp
2=.455) and between stimulation and trigger (F(10,70)=1.992, p=.047, 

ŋp
2=.222). For the first interaction, post-hoc indicates significant differences for fast condition 

during T0 and T1 (MD=-0.102, SE=.025, t=-3.990, pbonf =.011); T0 and T2 (MD=-0.091, SE=.025, t=-

3.570, pbonf =.045); T0 and T3 (MD=-0.093, SE=.025, t=-3.671, pbonf =.032); T0 and T5 (MD=-0.123, 

SE=.055, t=-4.821, pbonf <.001), and for slow condition T0 and T4 (MD=0.091, SE=.025, t=3.588, pbonf 

=.042). No further significant main effect or stimulation was observed, as well as no difference for 

task order.  

Rating: Figure 21.C1 depicts perception rating scale for fast and slow as a function of trigger 

onset. The statistical analysis revealed an interaction between velocity and trigger once more 

(Figure 21.C2 - F(10,35)=3.148, p=.019, ŋp
2=.310), and stimulation and velocity (F(2,14)=4.067, 

p=.041, ŋp
2=.367). Post-hoc analysis showed differences for the first interaction during slow 
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condition for T1 and T3 (MD=-0.558, SE=.135, t=-4.142, pbonf =.006), T1 and T4 (MD=-0.558, SE=.135, 

t=-4.142, pbonf =.006), and T1 and T5 (MD=-0.567, SE=.135, t=-4.93, pbonf =.005), in accord with the 

accuracy results. For the second interaction, significant differences were found between TMS-V1 

and TMS-V5 during slow condition (MD=0.333, SE=.097, t=3.450, pbonf =.034). Additionally, a main 

effect of trigger (F(5,40)=2.494, p=.049, ŋp
2=.263) was observed, with marginally significant 

difference between T0 and T1 (MD=.279, SE=.094, t=2.977, pbonf =.079). 

 

Figure 21 - Results of behavioural measurements. For A1, B1 and C1, red line and dots depict the TMS condition over V1, 

green line and dots depict results of the sham condition over V1 and blue line and dots, the TMS condition over V5. Plots 

on the left column depict results from the discrimination between baseline velocity and fast velocity, while plots on the 

middle column represent results from the discrimination between baseline velocity and slow velocity. Error bars show the 

difference between T0 (no pulse) and the other triggers. (A1) Accuracies, based on the proportion of correct responses, 

did not differ between stimulation neither during discrimination of fast nor slow motion. However, we observed a 

difference between TMS trigger SOA during discrimination of slow motion. Figure A2 shows the interaction between 

trigger and velocity, suggesting difference in T1 (TMS trigger before the onset of the moving stimulus) compared to all 

other triggers. (B1) No difference between stimulation was observed during discrimination of both velocities, but an 

interaction between velocity and trigger (Figure B2). Figure C1 depicts the rating scale representing participants’ 
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perception of the moving stimulus. During discrimination between fast and baseline movement, participants were 

confident about their perception and their answer during all TMS triggers, while during discrimination between slow and 

baseline, they were less confident during T1. A significant interaction between velocity and trigger (Figure C2) was 

observed also for this measure (see main text). 

 

Individual Differences 

Among many challenges that a TMS experiment brings, individual differences are the most 

important one, as individuals differ not only in their macronatomical gyral-sulcal layout (Amunt et 

al., 2000), but also in their functional and cognitive organisation (Gießing et al., 2020; Nicolo, Ptak 

& Guggisberg, 2015). For this reason, here we present individual results from all three measures in 

all three conditions during training (Figure 22) and test (Figure 23) phases. It is evident that some 

of the results were caused by one subject (59) which behaved as an outlier in all stimulation 

conditions during discrimination of slow motion. Therefore, we carried out the analysis again, 

without this outlier. However, besides the exclusion of one more subject, the interaction between 

trigger and velocity was consistently present across the three measures, with differences between 

T1 compared to other triggers, suggesting that TMS pulses delivered before the onset of the visual 

stimulation indeed affected the behaviour. 

Training Phase 

 

Figure 22 - (A) Accuracy during training session showed consistency between subjects. (B) Reaction time varies 

considerably between subjects, but not within subject, except for subject 51 (light green). Points on the left indicate results 

for fast condition and on the right, for slow condition in figures A and B. Error bars depict standard deviations. 

 

Results after removal of outlier 

Accuracy: Analysis of the proportion of correct responses indicated an interaction between velocity 

and trigger (F(5,30)=3.666, p=.010, ŋp
2=.379). Post-hoc comparisons pointed to significant 

differences in slow motion discrimination when stimulation was delivered in T0 compared to T3 
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(MD=-0.056, SE=.015, t=-3.784, pbonf =.024); and T1 compared to T3 (MD=-0.057, SE=.015, t=-3.826, 

pbonf =.021). A main effect of velocity was also observed (F(1,6)=8.527, p=.027, ŋp
2=.587), showing 

that accuracy was greater for fast than slow motion (MD=.014, SE=.005, t=2.920, pbonf =.027). 

Test Phase 

 

Figure 23 - Individual behavioural responses in each measure for each TMS trigger. (A1) Accuracy during TMS over V1. 

Each line represents one subject. We can observe, for slow condition (right column), one outlier, subject 59. This subject 

behaved differently from the others also during TMS over V5 (A2) and SHAM (A3). Reaction time during TMS over V1 (B1), 

V5 (B2) and SHAM (B3) varied considerably across subjects, but it is possible to see that subjects behaved consistently 

across different stimulations. Figures C1 to C3 depict once more subject 59 (light blue) as an outlier, but also subject 75 

(dark blue). 

 

Reaction Time: Analysis of reaction time showed a triple interaction between stimulation, 

trigger and task order (F(10,60)=2.227, p=.028, ŋp
2=.271), as well as interactions between velocity 

and trigger (F(5,60)=4.461, p=.004, ŋp
2=.426) and trigger and task order (F(5,60)=2.793, p=.035, 

ŋp
2=.318), and a marginally significant interaction between stimulation and trigger (F(10,60)=1.813, 

p=.078, ŋp
2=.232). Post-hoc of the triple interaction indicated that subjects starting with sham 

condition when TMS was applied over V1 showed smaller reaction time when pulse was delivered 

in T1 compared to when no pulse was delivered (MD=-0.161, SE=.036, t=-4.421, pbonf =.018), as well 

as T1 compared to T3(MD=.151, SE=.036, t=4.165, pbonf =.046) and marginally significant difference 
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between T1 and T4 (MD=.145, SE=.036, t=3.990, pbonf =.086). Post-hoc of the interaction between 

velocity and trigger pointed to differences between T0 and T5 in fast condition (MD=-0.115, 

SE=.027, t=-4.209, pbonf =.006); while for trigger and task order, the differences, in subjects which 

started with sham condition, were found between T0 and T1 (MD=-0.086, SE=.023, t=-3.762, pbonf 

=.048) and T1 and T4 (MD=.107, SE=.023, t=4.648, pbonf =.004). Comparisons between stimulation 

and trigger interaction showed a marginally significant difference between stimulation over V1 

delivered in T1 and T3 (MD=.093, SE=.026, t=3.636, pbonf =.071).  

Ratings: Similar to the accuracy and reaction time measures, analysis of perception rating 

also showed double interaction for velocity and trigger (F(5,30)=2.661, p=.042, ŋp
2=.307). 

Additionally, an interaction between stimulation and trigger was observed (F(2,12)=4.053, p=.045, 

ŋp
2=.403). Post-hoc of the first interaction pointed to differences for slow motion condition during 

triggers T1 and T3 (MD=-0.542, SE=.148, t=-3.654, pbonf =.036), T1 and T4(MD=-0.583, SE=.148, t=-

3.935, pbonf =.014) and T1 and T5 (MD=-0.625, SE=.148, t=-4.216, pbonf =.006). For the second 

interaction, differences were found also for slow condition during stimulation of V1 and V5 

(MD=.354, SE=.104, t=3.392, pbonf =.049). 

Discussion 
 

In this study, we investigated the causal relation of V1 with the processing of motion, by 

probing participants’ velocity discrimination, while disrupting V1 with a double-pulse TMS 

paradigm, compared to SHAM condition over the same region. We further delivered TMS pulses 

over V5, in order to have a control condition, when attempting to disrupt general motion 

perception. When TMS is applied over V1, we expected to observe an impairment in the 

discrimination of the slow-moving target, but not fast, compared to the baseline motion. In 

contrast, when applying TMS over V5, we expected to observe a general impairment in the velocity 

discrimination. Our results did not show significant difference between conditions, including the 

SHAM, which does not allow us to draw conclusions about velocity discrimination and the 

stimulated regions. Although, results did not show consistent significant differences, we could be 

observed a pattern of a general decrease in the proportion of the correct responses (accuracy) 

when the pulse was delivered before the onset of the stimulus (T1: -40, -20 ms). This decrease in 

accuracy was intensified by one outlier, however other subjects showed the same tendency. The 

inverted pattern was also seen in this time window, as response time of the participants increased 

as well as the rating scale decreased. As a matter of fact, we see interaction between trigger pulse 

and velocity in all three measures, indicating that the pulse before the onset was significantly 
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different from some of the other triggers. Below we present possible explanations for the outcome 

of our study. 

Stimulus 

 Our study differed from previous ones in terms of the velocity/display time of our moving 

target. Most of the studies which investigated the involvement of V1 with motion processing, 

presented paradigms with very fast stimulation, such as random-dot motion (Silvanto et al., 2005; 

Grasso et al., 2018; Laycock et al., 2007; Koivisto et al., 2010; Silvanto & Muggleton, 2008), in which 

the stimulus duration was below 80 ms. It is important to emphasize that we chose a single moving 

target, because we aimed to test the dynamic parallelism theory adapting the paradigm used in 

previous studies4 without decreasing dramatically the target display time, therefore keeping a 

consistency among the studies. For the same reason, we kept the stimulus appearance the same, 

although, a stimulus with a higher size and contrast, such as a checkerboard pattern could have 

yielded better effect for stimulating V5. Nonetheless, even our faster moving, i.e. shorter target 

may have been simply too long (200 ms of display time), meaning that, even if there was a 

disruption in the V1 or V5, the stimulus was long enough to enable participants to still perceive it 

after the disruption period. This would also explain why we see a pattern of impairment in 

behaviour and perception of motion (rating scale) when the trigger is sent before the pulse, 

whereas, any pulse after the onset, which could cause a disruption, thus an impairment in 

behaviour, might not have a long-lasting effect capable of accounting for the continuity of the 

moving stimulus. It is worth-noting that studies which delivered TMS pulses before the onset of the 

moving target focused on testing the dynamic parallelism theory (Grasso et al., 2018; Laycock et 

al., 2007), while studies which investigated the role of V1 in visual consciousness and 

unconsciousness presented the pulse trigger intervals exclusively after the offset of the stimulation 

(Silvanto et al., 2005; Koivisto et al., 2010; Silvanto & Muggleton, 2008). This means that, not the 

processing, but the judgement of the stimulus would be compromised, which was not our goal. 

Future studies could account for that in two ways. First, the target velocity could be 

decreased down to 100 ms, so the last trigger of the double-pulse would be sent together with the 

offset of the stimulus and judgment wouldn’t be impaired, as it was seen that the earliest time 

window related to visual unconsciousness is approximately 20ms (Koivisto et al., 2010). The second 

is the TMS paradigm itself. By choosing to have a longer motion stimulation, maybe for a more 

ecological validity (Boulinguez et al., 2009; Thompson et al., 2009; Thompson et al., 2016), a long-

                                                           

4 Studies presented on chapters 2 and 3. 
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lasting TMS effect would be preferable, such as repetitive TMS (rTMS), which will be discussed 

ahead.  

TMS Paradigm 

The choice of the TMS paradigm was based on the use of double-pulse TMS following two previous 

studies which investigated the dynamic parallelism theory (Grasso et al., 2018; Laycock et al., 2007). 

Other studies also suggested that double-pulse is to be preferred, as it enables a stronger 

modulation of the visual network (Kammer & Baumann, 2010; Moliadze et al., 2005). In contrast, 

single-pulse protocols show weaker effects though they can also be effective for inhibitory activity 

(Amassian et al., 1998; Sack et al., 2006; Hurme et al., 2017, Hurme et al., 2019; Koivisto et al., 

2017). However, as above mentioned, for longer visual stimulation, neither single- nor double-

pulse TMS seem to be well suited.  

Inhibitory rTMS is performed with 1Hz or less (Kosslyn et al., 1999; Thompson et al 2009; 

Thompson et al., 2016) and it know to last up to 15 min (Thompson et al., 2009), depending, of 

course, on the session duration. For instance, Thompson and colleagues (2016) tested whether the 

hypothesis that pairs of stimuli moving in the opposite direction suppress activity in V5, but not V1. 

In this study, participants received a 1Hz rTMS over V1 and V5 prior to the experimental task. After 

the rTMS session, they performed the task which consisted of moving paired-dots with duration of 

200 ms of display time after. Results indicated that the rTMS over V5 impaired discrimination 

accuracy for paired-dots moving in the same direction, while, rTMS over V1 hindered discrimination 

accuracy for stimuli moving in the opposite direction. Another early study using 1 Hz rTMS to 

investigate the relation between the primary visual cortex and imagery also reported relevant 

findings. Kosslyn and colleagues (1999) monitored activity in V1 using PET imaging, while 

participants performed an imagery task, in which first they were instructed to observe and 

memorize quadrants containing different stripes orientations and sizes. Next, participants closed 

their eyes and received an auditory instruction to imagine a specific feature of the stripes in two of 

the quadrants, such as length, and reported in which quadrant there were stripes with the larger 

feature (e.g. “quadrant 1 has longer stripes compared to quadrant 2”). After the PET scan, 

participants received rTMS pulses over V1, as well as a SHAM stimulation for control purposes, 

while performing the same perception and imagery tasks as before. It was observed that, 

behaviourally, response time increased when TMS was delivered over V1, compared to sham 

condition, in both perception and imagery tasks, suggesting that rTMS caused a disruption in this 

area.  
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In contrast, other studies also showed that higher frequencies can also inhibit the 

stimulated region of interest. A TMS-fMRI study investigated the causal relation between virtual 

lesion and brain networks focusing on the interconnexion between V1 and V5+ (Raffin et al., 2022). 

Using short trains of 10 Hz TMS on healthy participants over the two regions of interest, the authors 

observed their behaviour during a motion discrimination task. Results indicated that when TMS 

bursts were delivered over hMT/V5+ at around 130 ms, a decrease in general motion discrimination 

occurred together with a deterioration in the performance awareness compared to no TMS 

condition. Similarly, motion discrimination was also disturbed when TMS bursts were applied over 

V1 and the same effect was, once more, seen for motion awareness, i.e. a certain number of moving 

stimuli was perceived as static. Moreover, imaging results observed BOLD signal change when TMS 

bursts were applied to both regions, suggesting that a perturbation not only in the regions 

independently, but also in the V1-hMT/V5+ network related to motion discrimination. Taken 

together, future studies could opt for a higher frequency, such as 10Hz for stimulating V1 and V5, 

but application should be done in short trains or even double-pulse. In contrast, 1Hz-rTMS could 

also be an option, but as the effect is stronger, it is important to consider that a temporary 

blindness might occur, so it is not adequate to all kinds of visual experimental design. 

Individual Differences 

In addition to interindividual macroscopic differences in brain structures, functional regions, such 

as the primary visual cortex, can still vary substantially with respect to their exact positioning on 

the microanatomical gyral-sulcal pattern (Amunts et al., 2000). To account for macroscopic 

variability, we used participants’ anatomical images (T1) to create a model for the neuronavigation 

system. To account for the functional variability, we measured static and moving phosphene 

threshold in V1 and V5, respectively, to make sure that we were stimulating the right region using 

the right intensity. Although we tried to control for structural and functional differences, additional 

retinotopic mapping and functional localisation of V5 could be used to improve the precision of the 

neuronavigation. Moreover, functional connectivity can also be different between subjects 

(Gießing and colleagues, 2020; Nicolo, Ptak, Guggisberg, 2015, for review). In a recent study, 

Gießing and colleagues (2020) investigated inter-individual differences in connectivity between 

parietal regions and other areas, before and after rTMS over the first. Participants took part in a 

resting state and a visuospatial detection task, while brain activity was monitored using fMRI, 

followed by a 1Hz rTMS and sham stimulation. The authors observed that behavioural results were 

significantly associated with individual functional connectivity states of each brain region, 

particularly the ones which were not directly stimulated. Furthermore, the stimulation over parietal 

regions caused significantly different individual changes in the accuracy of the visuospatial 
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detection task, depending on the current state of the brain network. In accord, Nicolo and 

colleagues (2015) also stated that inhibitory or excitatory TMS does not only depend on the 

combination of parameters, but also the cortical excitability and baseline activity of each individual, 

and even cognitive attributes, as attention, which might have played a role on task of this study. 

We observed that some participants demonstrated a huge drop for all three measures (sub.59) or 

mainly for the rating scale (sub.77), hence, we did not discard the possibility that the attentional 

level of these participants might have been compromised. Moreover, after the exclusion of subject 

59 and reanalysis of the data, changes in the results were observed, however the interaction 

between trigger and velocity remained consistently across measurements, suggesting, once more, 

that stimulation before the onset affected participants’ behaviour. 

In conclusion, we aimed at testing the dynamic parallelism theory, by investigating the role 

of V1 with velocity discrimination, compared to V5, while participants compared the velocity of two 

stimuli moving consecutively on the screen. Our findings do not support the hypothesis that 

disrupting V1 impairs the processing of slow stimulus compared to fast stimulus. We also observed 

no impaired in the general motion discrimination when double-pulse TMS is applied over V5, as it 

is established by the common literature. Here, we discussed potential reasons why we obtained 

inconclusive results, such as the duration of the stimulation and the choice of the TMS paradigm, 

which were chosen, based on our previous studies and the literature, respectively. Future studies 

could test this continuous motion paradigm with rTMS, as its long-lasting effect may accounts 

better for long stimulus duration. 
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Chapter 5 - General Discussion 
 

In the beginning of this thesis, I presented some examples of daily situation which require complex 

prediction processes from the brain. For instance, when crossing the streets, our brain 

automatically estimates the time and space of a car in order to perform the next action safely. To 

add another level of complexity, our brain also makes these estimations if a car becomes 

dynamically occluded by a larger vehicle. Throughout this thesis I aimed at investigating the 

mechanisms behind this process focusing on the visual cortex to answer the question as: Is the 

primary visual cortex instrumental in the processing of dynamic occluded objects? Does the primary 

visual cortex respond differentially when the temporal predictability of occluded targets is 

manipulated, as proposed by the predictive coding model? Is there a causal relation between the 

primary visual cortex and processing of the temporal information of a moving object? To address 

these questions, I conducted here three studies, used fMRI (Box 2) and TMS (Box 5) techniques and 

analysed the data using univariate and multivariate pattern analyses (Box 4). Below, I will discuss 

the findings, relate the common aspects between the three studies, present limitations of the 

studies and offer future perspectives on the topic under investigation. 

In chapter 2, I answered the first question about the relationship of the primary visual 

cortex and the processing of dynamically occluded objects by showing evidence that 

simultaneously predicting temporal and spatial information from occluded stimulus enhanced fMRI 

responses not only in V1, but also in V2 and V3. These findings were particularly important, because 

to my knowledge this was the first study which used a Prediction Motion task with a higher level of 

complexity, as the participants had to perform two estimation at once, and showed the high 

engagement of low-level visual cortex during partially occluded stimulation. These findings are 

extending previous studies which often failed to find modulation in V1 in the context of stimulus 

occlusion. The positive outcome may be attributed to the level of specificity applied to the analyses, 

which covers two main approaches: Subject-specific definition of functional regions and subject-

specific statistical analysis. For the definition of functional regions, masks for functionally defined 

low-level visual regions were created based on individual’s retinotopic map. This is relevant 

because studies have showed immense anatomical differences across subjects (Greenlee, 2000; 

Amunts, 2000), so controlling for these differences should be of utmost important when it comes 

to investigation in these regions. Second, all analyses – univariate and MVPA – were performed at 

single-subject level, which allowed a huge spatial specificity advantage compared to other studies, 

which used normalized voxel-based analyses (Olson et al., 2003; Shuwairi et al., 2007; O’Reilly, 

Mesulam, & Nobre, 2008).  
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Extending and supporting the univariate results, the MVPA results indicated that 

informational pattern of activation of the stimulus presented during the visible phase could be 

decoded from the occlusion phase. Moreover, it was observed that regions inside the low-level 

visual areas are common across both domains, suggesting that the same regions can encode and 

possibly integrate both bottom-up and top-down information. To complement this analysis, we 

projected the spatial accuracy maps onto retinotopic maps and observed an overlap across 

different modalities, i.e. visible and occlusion, supporting the notion that the informative patterns 

were located along the stimulus-trajectory. Future studies could investigate the involvement of the 

primary visual cortex during the presentation of visible and dynamically occluded stimulation by 

using layer-specific fMRI.  

In chapter 3, I demonstrated that using a similar paradigm, but with a “feedback” 

mechanism, in which the stimulus reappeared, I answered the second question about a possible 

difference in responses of the primary visual cortex when temporal predictability of occluded 

objects is manipulated. The findings indicated that, in contrast with what is assumed by the 

predictive coding model, no difference in fMRI-response was observed in V1 when task stimulation 

was presented with a higher or lower level of temporal predictability. This suggests that either the 

difference between the predictability levels was not large enough, so the predictive error could 

modulate stronger responses in V1, or attentional mechanisms were cancelling the effect of 

predictive error, as postulated by Kok and colleagues (2012). The findings of this study supported 

the second hypothesis. It is worth-mentioning that the task used in this study may have engaged a 

high level of attentional resources, as the participants had to make two estimations, temporal and 

spatial, before the reappearance of the stimulation. Moreover, the reappearance of the stimulus 

might also have automatically captured attention promoting an increase of response. Thus, 

attentional resources may have led to high fMRI-response modulation in V1. Future studies could 

modulate attention during occlusion phase and see if the effect remains.  

Expanding the univariate results, the MVPA results demonstrated that informational 

pattern presented at higher and lower predictability could be decoded in all classification analyses 

performed in this study. However, accuracy values of decoding performed with low predictable 

context data were higher than the with high predictable context data. This difference may be due 

to the processing of the incongruent trials, which, in a separate classification analysis, were seen 

to be differently classified compared to the congruent trials. Potentially, incongruent trials did not 

only affect the processing of the temporally unexpected stimuli within the incongruent trials but 

changed the processing of congruent trials following incongruent trials. Similar effects have been 

reported for auditory and visual omission responses in ERP-research (e.g. Dercksen et al., 2022) 
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and often trials following stimulus omissions were not analysed there. Future analyses, beyond the 

scope of this thesis, could investigate the responses to congruent trials following incongruent trials. 

Moreover, future studies could also modulate the volatility of trials in low predictable context and 

investigate connectivity patterns of low-level visual areas with high-level regions, such as MFC.  

Finally, one of the most relevant aspect of this second study is that it corroborates the first 

study. At the univariate level in both studies, not only visible but also, and most importantly, 

occlusion phase enhanced fMRI-responses in the primary visual cortex. Moreover, MVPA results 

revealed the same pattern of decoding accuracy values. For instance, higher values were observed 

when the classifier was trained and tested in the visible phase, compared to the accuracy values 

from the analysis in which the classifier was trained and tested in the occluded phase, which, in 

turn, were higher than the values from the analysis carried out by training the data in visible phase 

and testing in occluded phase. However, in addition to the many similarities there were a few 

differences between the two studies which I will discuss one by one below. 

In the first study, the V1 quadrant showed similar response pattern during visible and 

occluded stimulation phase was the lower one, while in the second study, it was the upper one. 

This difference can be explained by an effect known as vertical meridian asymmetry, discussed in 

both second and third chapters (see also below next section). Another difference concerns the 

difference in response height of the activity pattern of visible and occluded in the first study, which 

was not the same observed in the second one. In the first study, beta weights were higher for 

occluded phase compared to visible phase. It is conceivable that this difference might be related to 

the predictability level of the task, i.e. due to the lack of novelty during the visible phase, the system 

did not compute many predictive errors, decreasing the response in V1, V2 and V3. However, 

during occlusion, the stimulus did not reappear and this could be related to a lower level of 

predictability, thus an increase of the signal. This effect would be in line with the predictive coding 

model. However, when predictive coding model was tested on the second study, this effect 

disappeared and response enhancement was similarly observed in visible and occlusion phase and 

might be due to attentional load related to the task performance and/or the reappearance of the 

stimulus, as mentioned above.  

Visual Asymmetry 

Differences between lower and upper V1, thus upper and lower visual fields (VF), respectively, were 

seen in both studies and can be explained by the vertical meridian asymmetry. This phenomenon 

indicates that the difference between upper and lower VF is due to the amount of “near-preferring” 

neurons most commonly found in the latter compared to the first (Nasr & Tootell, 2018, 2020; 
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Karim & Kojima, 2017). A recent study also showed that presaccadic attention – the preparation of 

saccadic eye movement for the future eye position – increases the sensitivity in the lower but not 

at the upper vertical hemifield (Hanning et al., 2022). Participants were asked to fixate on the 

middle point and perform a saccadic eye movement towards the direction indicated by a small blue 

line which could appear on right, left, above or below the fixation point. Results indicated that 

presaccadic attention does not alter asymmetries in visual performance. The authors, hypothesized 

that the distribution of cortical surface region in the primary visual cortex might be responsible, as 

V1 contains considerably less cortical sheet assigned to the processing of information in the upper 

vertical (lower quadrant) compared to the lower vertical (upper quadrant) hemifield (Benson et al., 

2021; Himmelberg et al., 2020; Himmelberg et al., 2021 a,b).  

In contrast, another recent study which investigated redundancy masking – a phenomenon 

in which individuals are asked to report items presented in one of the hemifields and they fail to 

report one or more item – found divergent results (Yildirim, Coates & Sayim, 2022). In this study, 

participants were presented to three parallel lines, which could appear in different positions all 

over the vertical hemifields, and were asked to indicate the number of perceived lines. The authors 

observed similar results for upper and lower vertical hemifields, meaning that no asymmetry was 

found there, opposing to the redundancy masking phenomenon. Nonetheless, the vast majority of 

studies present evidence that lower visual field has advantages over the upper visual field in many 

aspects, such as spatial resolution (De Lestrange-Anginieur & Kee, 2020; Greenwood et al., 2017), 

motion (Danckert & Goodale, 2001; Levine & McAnany, 2005, Lakha & Humphreys, 2005), colour 

discrimination and hue sensitivity (Levine & McAnany, 2005), and accumulation of speed 

information (Carrasco et al., 2004). Carrasco and colleagues (2004) demonstrated that covert 

attention cancels the vertical asymmetries in temporal performance. This suggests that during the 

temporal estimation required for performing the tasks, results should not differ across quadrants, 

which is in line with the velocity effect observed in the second study of this thesis.  

 To avoid any quadrant-specific or any laterality effects future studies could introduce a few 

changes and present the stimulation only in one quadrant. Potentially, in a first step, cortical 

magnification stimuli should be used to account for the size of cortical sheet activated as a function 

of eccentricity, while the task would remain the same, in which the direction-velocity association 

would still be present. In a second step, the task could be also modified. The current task used in 

the fMRI experiments builds on several mechanisms: spatial and temporal estimation to perform 

the task, and velocity discrimination to judge the direction change. In follow-up experiments, these 

parts, instrumental in task performance, should be disentangled and compared with the results 

presented here. One could see if the fMRI-response height would still keep being high or would 
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decrease, as now participants would have only one estimation to perform. Additionally, one could 

observe potential laterality effects of motion extrapolation by presenting them in different 

hemispheres.  

Predictive coding model and attention 

The first study found notorious differences regarding fMRI-response height between visible and 

occluded phases. As mentioned before, one possible explanation for that is that the high 

predictability of the stimulus during visible phase may have decreased the response signal, while 

the intrinsic lower predictability caused by the lack of stimulation during the occlusion phase may 

have increased responses in low-level visual area. This effect, which can be explained by the 

predictive coding model, was further tested on the second study, which, however, did not, in this 

regard, corroborate the first one. The second study did not find a selective increase of activity in 

the primary visual cortex in the lower predictable context, which would be expected given the 

results of enhanced learning in high volatility contexts should also recruit more attentional 

resources. One could, however argue, that the interaction of attention and prediction happens in 

an all-or-nothing way and not gradual, boosting the response in both high and low levels of 

predictability. These findings are in line with Rao’ simulation study (Rao, 2005). Rao developed a 

model to account for attention in predictive coding using Bayesian models. While modelling 

neurons of primate visual cortex, he observed that stimulation of feedback connections coming 

from higher levels may simulate the effects of attention by generating a modulatory tuning 

behaviour and decreasing uncertainty in the presence of a complex scenario. Later, Feldman and 

Friston (2010) suggested that attention is a phenomenon that naturally emerges in a Bayesian-

optimal model and improves synaptic gain to boost the precision of the predictive error, what was 

later tested by Kok and colleagues (2012).  

However, in the study from Kok and colleagues (2012), attention and prediction could not 

be properly disentangled. Participants were primed with a prediction cue, indicating the likelihood 

of the side in which the stimulus would appear, followed by an attentional cue indicating the side 

that they should attend. The problem with this paradigm is that both cues are entangled into each 

other, meaning that both explicitly relate to the direction (word “right” or “left”, for the prediction 

cue, and arrow pointing to one of the directions, for the attentional cue). To account for that, future 

studies could test the relation between attention and predictive coding, by using a different cue 

and just one, such as colour, and adopt tasks with different levels of difficulty for comparison. To 

test temporal prediction, the first and control task could be the simple paradigm introduced above. 

In the second task a fixation cross, which changes the colour, could be presented to indicate which 
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velocity, consequently the direction as well, the stimulus would move, given the learned 

association. Taken together, I propose future studies to characterize the interplay of attention in 

greater detail. 

Backward and Forward projections: from V5 to V1 and back 

We have seen that the predictive coding model assumes that top-down information is sent 

backwards from higher areas to lower areas, where the information will be compared to bottom-

up one, and the error between this comparison is forwarded to higher areas. Many studies showed 

that this interaction occurs between the motion area hMT/V5+ and the primary visual cortex 

(Vetter et al., 2015; Edwards et al. 2017; Sterzer et al., 2006; Muckli et al., 2005). However, these 

studies investigated mainly apparent motion, and not continuous motion. Therefore, in the third 

study of this thesis, I simplified the tasks from the studies one and two, by presenting the stimulus 

travelling only in the horizontal trajectory and eliminating the occlusion, meaning that participants 

just needed to discriminate between velocities. Specifically, I aimed at investigating the relation 

between the primary visual cortex and temporal information discrimination, by using TMS to 

stimulate V1 and V5, as additional control condition, under the perspective of the dynamic 

parallelism theory (Grasso et al., 2015). This theory assumes that motion information can take two 

pathways to reach V5, depending on the velocity. Fast moving stimulus would go from LGN, pass 

through superior colliculus or putamen and reach V5, while slow moving stimulus would engage V1 

to reach V5. By disrupting V1, I would expect to see an impairment in the discrimination of slow, 

but not fast stimulation. However, results did not provide robust evidence to support this theory, 

as no difference was observed between both fast and slow motion.  

In the chapter 5, I presented some reasons why these results were not consistent to the 

theory. Two of the reasons was the type of TMS stimulation paradigm and the other was the 

duration of the stimulus. Therefore, here I suggested that future studies, by opting for the same, 

thus long, stimulus duration, could choose repetitive TMS paradigm. This paradigm over V1 would 

be correspondent to a virtual lesion in which participants would not be able to see the stimulus, 

but still be able to judge the stimulus velocity, simulating the phenomena of Blindsight (Cowey & 

Stoering, 1991) or Riddoch (Zeki, 1998; Riddoch, 1917) syndrome. Alternatively, future studies 

could opt for using a shorter stimulus duration, which would be within the double-pulse interval 

window. Finally, TMS could also be combined with fMRI (Bergmann et al., 2021; Raffin et al., 2022) 

to directly measure changes in local activity and interregional connectivity when participants 

perform temporal estimations.  
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Final remarks 

In conclusion, the studies presented in this thesis show robust evidence that voxels in V1 - activated 

when predicting dynamically occluded stimulation - do not only overlap with active voxels during 

visible stimulation, but that the activity patterns evoked by visible stimulation can be used to 

accurately predict the extrapolation of occluded changes in motion trajectory, hence both 

representations share a common informational pattern. This observation was found in two 

independent experiments with different tasks and across different sets of subjects. The 

engagement of V1 is of special relevance, as it points at a visual-spatial format of predictions. 

Moreover, previous studies which investigated this type of stimulation failed to show the 

engagement of lower-level visual regions, most likely due to methodological issues. This brings us 

to the next important contribution of this thesis. Here a combination of methods was presented, 

such as the use of retinotopic maps, multivariate analyses, and the option of single-subject level 

over group-level analysis, which most likely contributed to the robust results in the first study, 

replicated on the second study. Results of the second study also presented evidence of the intrinsic 

engagement of attention and its relation with prediction, potentially hinting at the possibility that, 

independently of the predictability level and thus independent of the size of attentional 

engagement, attention might boost the perception of the occluded moving stimulus and outweigh 

the predictive signal, which should reduce activity in sensory areas. Finally, future high-field studies 

are needed, focusing on the laminar profile of activations during visible motion processing and 

occluded motion extrapolation to shed light on the fine-grained activation pattern during visible 

motion processing and motion extrapolation. In this thesis I showed that V1 might be a worthy 

target for these future investigations. 
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Appendix A – Chapter 2 
  

Univariate Analysis 

 Subject-specific results  

Figure 1 depicts modulations in fMRI signals during Visible (left maps) and Occluded (right maps) 

phases. Trajectory comparisons (upward vs. downward) revealed increased pattern of activity in 

regions representing upper and lower visual quadrants opposite to the stimulated visual field, as 

expected. 
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Group-specific results 

 Appendix A. Figure 1 - Univariate results of all participants, during (A) Visible Phase and (B) Occluded Phase, for the contrast 

upward (warm colours) vs. downward (cold colours) motion projected on the individual flat map. Visual flat maps were 
created by cutting V1 along the fundus of the calcarine figure. However, this fundus was not the border between lower and 
upper field representations in all subjects (see, for instance subject 10, whose upper visual field representations reach into 
the upper lip of the calcarine sulcus). Therefore, activations corresponding to upper and lower field representations are not 
always restricted to the upper and lower anatomical part of low-level visual areas, but appear to spread into the other 
quadrant as well. 
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Post-hoc tests indicated that significant differences from the interaction between velocity and 

visual fields (VFs) resulted from fast motion in V1 compared to V2 (MD=6.349, SE=1.386, t=4.581, 

pbonf <.001) and V1 compared to V3 (MD=8.681, SE=1.386, t=6.264, pbonf<.001). Comparison from 

the triple interaction (velocity*VFs*direction) showed significant differences, mainly in V1 (see 

suppl. Fig. 2). Fast motion in upward direction was more prominent compared to fast motion in 

downward direction (MD=5.912, SE=0.837, t=7.061, pbonf <.001) and to slow motion in upward 

direction (MD=8.549, SE=1.419, t=6.025, pbonf <.001). Fast motion in upward direction also 

modulated higher fMRI-signals in V1 compared to V2 (MD=7.665, SE=1.418, t=5.405, pbonf <.001) 

and V3 (MD=10.356, SE=1.418, t=7.303, pbonf <.001). In contrast, differences in fast motion was also 

observed in downward direction in V1 compared to V3 (MD=7.006, SE=1.418, t=4.940, pbonf <.001).  

 

Appendix A. Figure 2 - Univariate beta weights (proportional to percent signal change) occluded phase. Purple bars (from 
left to right) depict average beta weights for fast motion, while green bars, the average beta weights for slow motion. 
Stars indicate significance between conditions inside each region on interest 

 

Multivariate Pattern Analysis - Complementary Analysis 

In addition to the low-level visual ROIs V1-V3, we also performed classification analyses with LO1, 

LO2 and hMT/V5+, for easy comparison with previous results. 

Classifying additional ROIs: We trained a classifier on the distinction of up vs. downward condition 

during the visible phase and tested on the occluded up- vs. downward trajectories. Accuracy levels 

above chance were found in right LO1 (Accuracy (Acc)=0.589, SE=0.007, permutation p 

(pperm)<.001), right LO2(Acc=0.597, SE=0.007, pperm <.001), right hMT/V5+ (Acc=0.597, SE=0.006, 

pperm<.001) and left (Acc=0.588, SE=0.005, pperm<.001). Results suggested that these regions also 

carried a similar pattern of information found in low-level visual areas.  
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Classifying Velocity Patterns of Visible from Occluded Phase: Here we carried out a classification 

analysis training in visible and testing in occluded phases (same procedure used in the first 

described analysis), but setting fast and slow as targets. Results indicated accuracies significantly 

above chance in lower V1 (Acc=0.607, SE=0.005, pperm<.001), upper V1 (Acc=0.597, SE=0.006, 

pperm<.001) and bilateral hMT/V5 (rh: Acc=0.608, SE=0.004, pperm<.001, lh: Acc=0.605, SE=0.006, 

pperm<.001).  
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Appendix B – Chapter 3 
 

Behavioural Analysis 

 

Appendix B. Figure 1 – Reaction time error of visible and occlusion phases in low predictability context. Differently from 

what was showed in the main text, for the sake of comparison, reaction time error here was calculated based on the 

expected velocity subtracted from participants’ response. Interestingly, we observed the same pattern of response seen 

in congruent condition during occlusion in the LP context, suggesting that participants were not estimating according to 

the feedback, rather they were responding according to the learning velocity-direction association.  
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Univariate Analysis 

Below we presented the results of the full 2x2x2x2x2 repeated measures ANOVA (direction: up vs 

down, velocity: fast vs. slow, predictability: low vs high, V1 quadrant: upper vs. lower, task order: 

70 vs 100).  
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Appendix B. Table 1 – Full 2x2x2x2x2 repeated measures ANOVA (direction: up vs down, velocity: fast vs. slow, 
predictability: low vs high, V1 quadrant: upper vs. lower, task order: 70 vs 100).  
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Multivariate Analysis 

 

Appendix B. Figure 2 - Single-subject classification analysis of Direction. The upper row depicts the number of spheres 
included in the calculation of the 5% highest accuracy values, for each subject in each ROI, for classifications which used 
data from high predictable context and lower row, for classifications which used data from low predictable context. The 
left row represents number of spheres from classification analysis in which the classifier was trained in visible phase data 
and tested in occluded phase data; the middle row show results of analysis in which the classifier was trained and tested 
in visible phase data; and right row, train and test was carried out in occluded phase data. 
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Appendix B. Figure 3 - Single-subject classification analysis of Velocity. The upper row depicts the number of spheres 
included in the calculation of the 5% highest accuracy values, for each subject in each ROI, for classifications which used 
data from high predictable context and lower row, for classifications which used data from low predictable context. The 
left row represents number of spheres from classification analysis in which the classifier was trained in visible phase data 
and tested in occluded phase data; the middle row show results of analysis in which the classifier was trained and tested 
in visible phase data; and right row, train and test was carried out in occluded phase data. 
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Appendix C – Chapter 4 
 

Example of questionnaires that participants were required to fill in order to participant in the TMS 

experiment.  
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