

Otto-von Guericke-Universität Magdeburg

Fakultät für Verfahrens- und Systemtechnik

Formale Totalsynthese von (+)-Neosorangicin A

Doctor rerum naturalium

M. Sc. Maxim Munt

Geboren am 02.07.1989 in Semipalatinsk (Kasachstan)

Otto-von-Guericke Universität Magdeburg Fakultät für Verfahrens- und Systemtechnik (FVST) Institut für Chemie (ICH)

Autor M. Sc. Maxim Munt

- 1. Gutachter Prof. Dr. D. Schinzer
- 2. Gutachter Prof. Dr. E. Haak
- 3. Gutachter Prof. Dr. E. Gesing

Eingereicht am 28.11.2022

Verteidigt am 17.02.2023

Vorwort

In der vorliegenden Arbeit wird die Formale Totalsynthese von (+)-Neosorangicin A beschrieben. (+)-Neosorangicin A ist ein Makrolacton und zeigt in ersten biologischen *in vitro* Tests eine vielversprechende Hemmung der Zellteilung von Gram-negativen und Gram-positiven Bakterien.

Die Dissertation fängt mit einer allgemeinen Einführung über Antibiotika und insbesondere dem Aufbau, der Funktionsweise und den biologischen Daten der Sorangicine an. Im Anschluss wird der Stand der Forschung anhand von drei verschiedenen Arbeitskreisen, welche an Sorangicinen arbeiten oder arbeiteten, beschrieben. Im Hauptteil werden unsere Erkenntnisse im Bezug der Synthese erläutert. (+)-Neosorangicin A wurde für die Synthese retrosynthetisch in drei Schlüsselfragmente zerlegt. Namentlich in ein Dihydropyran-Fragment, ein Tetrahydropyran-Fragment und ein Bicyclooctan-Fragment. Es werden die Syntheserouten für diese drei Schlüsselfragmente und die finalen Kupplungen dieser beschrieben. Dabei liegt der Schwerpunkt der Arbeit auf der Synthese des Tetrahydropyran-Fragments, Teile des Dihydropyran-Fragments und die anschließenden Kupplungen dieser. Der Hauptteil endet mit den Erkenntnissen zum sogenannten "End Game" der Synthese und den "Dead End" Routen. Anschließend wird ein kurzes Fazit gezogen und einigen Gedanken und Überlegungen für die weitere Vorgehensweise diskutiert. Es folgt der experimentelle Teil mit den Versuchsvorschriften und den analytischen Daten.

Ich wünsche viel Spaß beim Lesen und hoffe, dass meine gewonnen Erkenntnisse von Nutzen für nachfolgenden Wissenschaftler sind.

Preface

In this thesis, the formal total synthesis of (+)-neosorangicin A is described. (+)-neosorangicin A is a macrolactone showing a promising inhibition against cell division of Gram-negative and Gram-positive bacteria in first biological *in vitro* tests.

The dissertation begins with a general introduction of antibiotics and in particular the structure, mode of action and biological data of sorangicins. Subsequently, the state of research is described based on three different research groups. In the main part, our findings are explained in relation with the synthesis. (+)-neosorangicin A was retrosynthetically disconnected into three key fragments for the synthesis. Namely, into a dihydropyran fragment, a tetrahydropyran fragment and a bicyclooctane fragment. The synthetic routes for these three key fragments and the final couplings of these are described. The focus of the work is on the synthesis of the tetrahydropyran fragment, parts of the dihydropyran fragment and the subsequent couplings of these fragments. The main part concludes with the findings on the so-called "end game" of the synthesis and the "dead end" routes. Afterwards, a short conclusion is drawn and some thoughts and considerations for the further research are discussed. This is followed by the experimental part with the corresponding experimental procedures and the analytical data.

Enjoy reading and I hope that my insights will be of use to future scientists.

Eidesstaatliche Erklärung und Erklärung zur strafrechtlichen Verurteilung

Ich erkläre hiermit, dass ich die vorliegende Arbeit ohne zulässige Hilfe Dritter und ohne Benutzung anderer als die angegebenen Hilfsmittel angefertigt habe. Die aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht.

Dritte habe von mir weder unmittelbar noch mittelbar geldwerte Leistungen für Arbeiten erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen.

Die Arbeit wurde bisher weder im Inland noch im Ausland in gleicher oder ähnlicher Form als Dissertation eingereicht und ist als Ganzes auch noch nicht veröffentlicht.

Ich erkläre hiermit, nicht wegen einer Straftat verurteilt worden zu sein, die Wissenschaftsbezug hat.

Ju uns

Unterschrift

Magdeburg, 23.03.23

Ort/Datum

Inhaltsverzeichnis

1	Einleitung.		1
	1.1	Antibiotika	1
	1.2	Die Sorangicine	3
	1.3	(+)-Neosorangicin A	8
2	Stand der F	orschung	11
	2.1	Totalsynthese von Amos B. Smith III et al.	11
	2.2	Formale Totalsynthese von M. T. Crimmins et al	21
	2.3	Teilsynthese von S. Nyalata und S. Raghavan	29
3	Hauptteil		37
	3.1	Retrosynthese	37
	3.2	Synthese des Bicyclooctan-Fragments	40
	3.3	Synthese des Tetrahydropyran-Fragments	43
	3.3	Synthese des Dihydropyran-Fragments	60
	3.4	Synthese des Seitenketten-Iodids	62
	3.5	Kupplung des lodids mit dem DHP-Methylketon	64
	3.6	Finale Modifikationen des DHP-Fragments	73
	3.7	Synthese des BCO/THP-Vinyliodids	81
	3.8	"End Game" der (+)-Neosorangicin A Synthese	89
4	Zusammen	fassung	92
5	Alternative	Synthesen und "Dead End"-Routen	94
	5.1	Alternative Route für das THP-Fragment	94
	5.2	Alternative Syntheseroute von L-Galactose	101
	5.3	Erste "Dead End"-Route	102
	5.4	Zweite "Dead End"-Route	106
	5.5	Alternative Synthese des DHP-Fragments	108

6	Experiment	eller Teil11	0
	6.1	Allgemeine Arbeitstechnik1	10
	6.2	Synthesevorschriften für (+)-Neosorangicin A 1	11
	6.3	Zusätzliche Synthesevorschriften16	64
	6.4	Analytische Daten von (+)-Neosorangicin A 17	77
Que	llenverzeichnis	5	I
Abb	ildungsverzeic	hnis	Ш
Tab	ellenverzeichni	S	III
Abk	ürzungsverzeid	chnis	IV

1.1 Antibiotika

Vor der Entdeckung der Antibiotika waren Menschen schon durch kleinste Schnittwunden oder bakterielle Infektionen oft zum Tode verurteilt. Die Menschheit konnte nur beten und hoffen, dass das Immunsystem des Betroffenen stark genug ist, um die Infektion zu besiegen. Mit der Einführung der ersten Antibiotika in den 1940er Jahren wurde eine der häufigsten Todesursachen der Menschheit plötzlich therapierbar. Es fällt uns heute schwer vorzustellen, was für ein Wunder dies für die Menschen zu dieser Zeit gewesen sein muss. Wir haben uns an dieses Wunder der Medizin gewöhnt und verwenden Antibiotika heute in unverantwortlicher Weise. Mit dem massiven Einsatz von Antibiotika in der Tiermast und der zu leichtfertigen Verordnung durch viele Ärzte in der Vergangenheit und Gegenwart, konnten Bakterien in den letzten Jahren vermehrt Resistenzen gegen viele Antibiotika ausbilden. In der Praxis wurden Antibiotika nicht mehr nur im akutem Krankheitsfall, sondern auch weitläufig prophylaktisch eingesetzt. Durch die schnelle Reproduktion vieler Mikroorganismen konnten einige Bakterienstämme Mutationen ausbilden, welche gegen einige der gängigen Antibiotika Ausweichmechanismen zur Folge haben. So zeigen die sogenannten ESKAPE-Erreger (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa und Enterobacter spp.) Resistenzen gegenüber mindestens drei Klassen von Antibiotika bzw. sogar gegenüber allen Klassen.^[1] Resistente Mikroorganismen entwickeln sich daher zu einer immer größer werdenden weltweiten Gefahr für die Gesundheit von Menschen und Tieren.

Gleichzeitig wurde die Entwicklung neuer Wirkstoffe von der Pharmaindustrie aus fehlendem wirtschaftlichem Interesse weitgehend eingestellt. Für die Pharmaunternehmen erscheint weitaus sinnvoller sich es auf lukrative Volkskrankheiten wie Krebs. Herz-Kreislauf-Erkrankungen und Demenz zu konzentrieren. Auch viele staatliche Institutionen haben sich aus der Antibiotikaforschung zurückgezogen, bzw. die Forschung verbleibt oft in der Grundlagenforschung. Doch die Evolution läuft im Hintergrund kontinuierlich weiter und Mikroorganismen entwickelt Ausweichmechanismen, um den für sie tödlichen

1

Antibiotika, etwas entgegensetzen zu können. In Tabelle 1 sind einige Einführungen neuer Antibiotika bzw. Antibiotika-Klassen in den vergangenen 90 Jahren aufgelistet. Man kann erkennen, dass die Großzahl der Entdeckungen schon mehr als ein halbes Jahrhundert zurückliegt. In den 1970er, 80er und 90er Jahren wurde beispielsweise keine einzige neue Antibiotika-Klasse entdeckt. Seit den 2000er Jahren nur zwei. Gleichzeitig kann man erkennen, dass die ersten Resistenzen gegen die jeweiligen eingeführten Antibiotika bereits 5 - 10 Jahre nach der Einführung nachweisbar sind.^[2]

Einführungszeitraum	Antibiotika	Resistenzen
1930er	Sulfonamide (1935)	
	Penicillin (1940)	
	Cephalosporine (1945)	
1940er	Tetracycline (1949)	Sulfonamid-Resistenz (1942)
	Aminoglycoside (1950)	
	Makrolide (1952)	
	Glycopeptide (1958)	
	Rifamycine (1957)	
1950er	Nitroimidiazole (1959)	β -Lactam-Resistenz
	Chinolone (1962)	Methicillin-resistenter
	Streptogramins (1962)	Staphylococcus aureus (1961)
1960er	Trimethoprim (1968)	Tetracyclin-Resistenz (1968)
1970er		multiresistente Salmonella typhi (1972)
1980er		Vancomycin-resistenten Enterokokken (1986)
		Fluorochinolon-Resistenzen
1990er		Vancomycin-intermediär-sensible Staphylococcus aureu Stämme (1997)
		Linezolid
		Daptomycin
2000er	Lipopeptide (2003)	Vancomycin-resistenter Staphylococcus aureus

Tabelle 1: Eingeführte Antibiotika-Klassen von 1930 bis 2000 und einige nachgewiesene Resistenzen

In diesem Zusammenhang kann man mit einer steigenden Gefahr ausgehend von multiresistenten Keimen in naher Zukunft rechnen. Schon jetzt erzeugen multiresistente Staphylococcus aureus (MRSA), Mycobacterium tuberculosis (MDR) und Extended-spectrum beta-lactamases (ESBL) erhebliche Kosten und Probleme bei der Behandlung von Patienten. MRSA-Erreger infizieren alleine in den USA mehr als zwei Millionen Menschen jährlich, Tendenz stark steigend. Für fast 90000 dieser Infizierten endet der Krankheitsverlauf tödlich. Das sind mehr Tote als aufgrund von HIV bzw. AIDS, Parkinson, Lungenemphysemen und Mord zusammen. Infektionskrankheiten haben den traurigen dritten Platz der häufigsten Todesursache in den USA erobert. Die Kosten durch die Behandlung der Patienten und Produktionsausfälle in den USA werden auf fünf Milliarden Dollar pro Jahr geschätzt. Falls wir die Bedrohung weiter ignorieren, könnten Infektionskrankheiten laut WHO bis zum Jahr 2050, wieder zur Todesursache Nummer Eins werden.^[2] Diese Tatsachen haben die Entwicklung neuer Wirkstoffe wieder in den Fokus von Industrie, Forschungsinstituten und Universitäten gerückt.

1.2 Die Sorangicine

Das Helmholtz-Zentrum für Infektionsforschung (HZI) in Braunschweig konnte bereits 1985 die Verbindungen Sorangicin A 1 und B 2 (Abbildung 1) aus Myxobakterien (Sorangium cellulosum) isolieren.^[3] Myxobakterien werden den Gram-negativen Bakterien zugeordnet und können beinahe weltweit aus Böden isoliert werden. Sie produzieren eine Vielzahl an bioaktiven, sekundären Metaboliten, darunter das Krebsmedikament Epothilon 3, das pilzhemmende Soraphen 4, sowie das bei Tuberkulose und Lepra zum Einsatz kommende Rifampicin 5 (Abbildung 2).^[4] Die Struktur von Sorangicin A 1 wurde bereits 1989 mittels Massenspektroskopischer- und Kernresonanzspektroskopischer-Analyse identifiziert und später durch Röntgenstruktur-Analyse verifiziert.^[3] Die Sorangicine gehören zur Gruppe der Polyketid-Antibiotika. Der häufigste Metabolit besteht aus einem 31-gliedrigen Lacton-Ring, welcher viele unübliche und synthetisch herausfordernde Eigenschaften aufweist. Eingebaut in den Makrozyklus sind ein tetrasubstituierter Tetrahydropyran-Ring (THP-Ring), ein trisubstituierter Dihydropyran-Ring (DHP-Ring) und ein, in der Natur selten vorkommender Bicyclooctan-Ether (BCO-Ether). Außerdem enthält der Makrozyklus eine gegenüber Isomerisierung empfindliche (E,Z,Z)-Trienester-

Funktion. Sorangicin B **2** unterscheidet sich strukturell gegenüber Sorangicin A **1** in einer fehlenden Hydroxy-Funktion am C22.

Sorangicin A ($R_1 = H, R_2 = OH$) 1 Sorangicin B ($R_1 = R_2 = H$) 2

Abbildung 1: Struktur von Sorangicin A 1 und Sorangicin B 2

Sorangicin A 1 zeigt eine minimale Hemmkonzentration von 0,004-0,1 µg/ml auf einige Gram-positive und 3-30 µg/ml auf einige Gram-negative Bakterienstämme (Mykobakterien, Staphylokokken, Pseudomonas, Enterokokken und Neisseria), sowie keine Wirkung auf eukaryotische Zellen.^[5,6] Darüber hinaus entfaltet Sorangicin A 1 eine hemmende Wirkung auf verschiedene Tumorzelllinien ($IC_{50} = 15-25 \mu g/mI$) und die reverse Transkriptase des "Maloney Murine Leukemia Virus" (IC₅₀ = 7 µg/ml) sowie transplantierte "human lung carcinoma in nu/nu mice" (10 mg/kg b.i.d.).^[7] Sorangicin B 2 zeigt eine erhöhte antibakterielle Wirkung und zusätzliche antivirale Wirkung gegen das Hepatitis B Virus.^[8] Der Wirkmechanismus der Sorangicine ist dabei dem des Rifampicin 5 sehr ähnlich, welches erfolgreich bei Infektionen mit Mykobakterien, insbesondere bei Tuberkulose und Lepra, eingesetzt wird.^[9] Beide Antibiotika binden an die β -Untereinheit der bakteriellen RNA-Polymerase. Anders als Rifampicin 5 verhindern die Sorangicine aber nicht die Fortsetzung der Transkription, sondern blockiert deren Initiation. Klinische Studien konnten Rifampicin-resistente RNA-Polymerasen nachweisen, welche eine Kreuzresistenz zu Sorangicin A 1 aufweisen. Allerdings fanden Darst et al. heraus, dass die Anfälligkeit gegenüber Veränderung in der Proteinsequenz und der damit einhergehenden Änderung der Bindungstaschen-

Geometrie, bei Sorangicin A **1** weniger ausgeprägt ist als bei Rifampicin, was auf die höhere konformative Flexibilität der Sorangicine zurückgeführt werden kann.^[10,11]

Abbildung 2: Epothilon A 3, Soraphen A 4 und Rifampicin 5

Für die Bestimmung der Struktur-Wirkungsbeziehung sind die Wechselwirkungen des Moleküls mit dem biologischen Target von großer Bedeutung. In diesem Fall handelt es sich um die Wechselwirkung der Sorangicine mit der RNA-Polymerase (RNAP). Hierzu wurden Studien von Campbell *et al.* zur Empfindlichkeit einer Reihe von *Thermus aquaticus*- und *Escherichia coli*-Mutanten gegenüber (+)-Sorangicin A **1** und Rifampicin **5**, sowie Derivatisierungsexperimente von Höfle *et al.* durchgeführt.^[7,10,12] Schützt man die Diol-Funktion (C21/C22) als Acetonid oder acetyliert bzw. formyliert beide Hydroxyl-Gruppen, verliert (+)-Sorangicin A **1** seine Wirkung nahezu vollständig. Formylierung, Acetylierung, Methylierung oder Mesylierung der C25-OH-Gruppe dagegen, verstärkt die Aktivität gegenüber *S. aureus* und *E. coli*. Eine enorme Steigerung der Aktivität wurde durch die Eliminierung der C25-OH-Gruppe oder deren Oxidation zum Keton erreicht. Dieses Derivat hemmt die RNA-Polymerase zwar schlechter als (+)-Sorangicin A **1**, wird aber besser von den Zielorganismen aufgenommen. Die Carboxyl-Gruppe der Sorangicin A **1** Seitenkette spielt ebenfalls

eine wichtige Rolle. Eine Veresterung dieser oder die Bildung verschiedener Amide verschlechterte die Wirkung der Derivate im Vergleich zu (+)-Sorangicin A **1**. Eine weitere wichtige Wasserstoffbrücke über einen Glutamin-Rest (Q393) wird zum Ether-Sauerstoff des Dihydropyran-Rings ausgebildet (Abbildung 3). Die Carbonyl-Gruppe des Makrolacton-Esters und der Pyran-Sauerstoff des Bicyclooctan-Fragments bilden je eine Wasserstoffbrücke zu einem Glutamin-Rest (Q390) und einem Phenylalanin-Rest (F394) aus. Sowohl für die Bindung mit (+)-Sorangicin A **1** als auch mit Rifampicin **5** von großer Bedeutung ist die Histidin-Seitenkette H406. Mit Sorangicin A **1** geht dieser Histidin-Rest wichtige Van der Waal'sche Wechselwirkungen im Bereich C20-C18 ein. Eine Substitution von H406 mit Prolin, Glutamin oder Tyrosin führte zu starker Resistenz gegenüber beiden Antibiotika.

Abbildung 3: Interaktion von Rifampicin **5** (A) und (+)-Sorangicin A **1** (B) mit der RNAP-β-Untereinheit. Simulation der Flexibilität von Rifampicin **5** (C) und (+)-Sorangicin A **1** (D) (10 Interrationen mit Molecular Dynamics simuliert)^[10]

Abbildung 3 zeigt die Wechselwirkungen zwischen Rifampicin und Sorangicin A 1 mit der β -Untereinheit der RNAP. Zu sehen sind die Van der Waal's Interaktionen (graue "Wimpern") und die Wasserstoffbrücken (Ball-Stick Repräsentation, die Wasserstoffbrücken als graue Linien) zwischen den Aminosäuren-Resten der RNAP und den jeweiligen Molekülen. Die Flexibilität beider Moleküle wurde per Molekulardynamiksimulation ermittelt. Die Anfangskonformation wird als dickere und hellere Bindung dargestellt (Rifampicin 5: orange, (+)-Sorangicin A 1: grün). Es wurden 10 unabhängige Simulationen durchgeführt, welche als dünnere und dunklere Linien dargestellt werden. Es ist sofort erkennbar, dass die Beweglichkeit von (+)-Sorangicin A 1 immens höher ist, als die von Rifampicin 5, was auch teilweise die größere Unempfindlichkeit gegenüber Risistenzenbildung erklären kann.^[10] Eine weitere schöne schematische Darstellung wurde von R. Schettino an unserem Arbeitskreis erstellt (Abbildung 4). Benutzt wurde die PyMOL Software. Erkennbar ist die Oberfläche des Enzyms (türkis), die β -Untereinheit (rosa) und (+)-Sorangicin A 1 (gelb mit rot-markierten Sauerstoffatomen).

Abbildung 4: Sorangicin A 1 in der Bindungstasche des Targets, Grafik erstellt mit PyMOL

Für die Gewinnung von (+)-Sorangicin A **1** ist die Fermentation derzeit noch das ökonomischste Verfahren. Zur Isolierung von (+)-Sorangicin A **1** wurden die Zellen zunächst aus der Kulturlösung abzentrifugiert und der Fermenterüberstand mit 1-1.5 Vol.-% XAD-1180-Adsorberharz extrahiert. Ein Großteil der polaren Begleitprodukte konnte durch Waschen mit 60% Methanol entfernt werden. Nach Säure-Base-Extraktion mit Ammoniak/Ether und anschließender azeotroper Trocknung mit Toluol,

wurde der Rückstand in Dichlormethan gelöst und mit Kieselgel gerührt. So vorgereinigt konnte des enthaltenen (+)-Sorangicin A **1** durch Kristallisation aus Ethylacetat erhalten werden. Eine Chromatographie der Mutterlauge lieferte weiteres (+)-Sorangicin A **1**. Aus 650 I Fermenterüberstand konnte so insgesamt 19.9 g (+)-Sorangicin A **1** gewonnen werden.^[7]

1.3 (+)-Neosorangicin A

Zusätzlich zu (+)-Sorangicin A 1 konnte am HZI in Braunschweig (+)-Neosorangicin A 6 isoliert werden (Abbildung 5). Die biologischen und chemischen Daten bezüglich (+)-Neosorangicin A 6 sind noch nicht veröffentlicht und wurden aus dem Patent EP 16 002 083.0 entnommen.^[13] Der strukturelle Aufbau ist dem des (+)-Sorangicin A 1 sehr ähnlich und unterscheidet sich nur in der Seitenkette am DHP-Ring. Die Konfiguration der Methyl-Gruppe am C3- (Abbildung 5) bzw. C6-Kohlenstoff (Abbildung 1) ist invertiert. Die Seitenkette am DHP-Ring besteht bei Sorangicin A 1 aus fünf C-Atomen und endet mit einer terminalen Carbonsäure. Bei (+)-Neosorangicin A 6 handelt es sich um zwei C-Atome mit einer chiralen sekundären Alkohol-Funktion am C2. (+)-Neosorangicin A 6 entfaltet eine ähnliche Wirkung auf Bakterienzellen wie (+)-Sorangicin A 1 und B 2, hemmt aber auch das Wachstum von widerstandsfähigen Gram-negativen Bakterienstämmen wie Pseudomonas aeruginosa und Acinetobacter baumannii. Im Vergleich zu Rifampicin 5 zeigt (+)-Neosorangicin A 6 gegen Acinetobacter-Wildtyp eine bescheidene Aktivität, allerdings konnte eine Aktivität gegen Rifampicin-resistente Acinetobacter-Stämme nachgewiesen werden. Des Weiteren zeigt (+)-Neosorangicin A 6 eine in etwa zehnfach höhere Aktivität gegenüber Staphylococcus aureus in in vitro Untersuchungen im Vergleich zu (+)-Sorangicin A 1. Die verwendete Konzentration von (+)-Neosorangicin A 6 betrug 0,01 und 0,08 µg/ml. Tabelle 2 listet einige MIC-Werte (µg/ml) von (+)-Neosorangicin A 6, (+)-Sorangicin A 1 und Rifampicin 5 auf. Die Werte von (+)-Neosorangicin A 6 liegen dabei im mittleren ng/ml- und unteren µg/ml-Bereich. Durchschnittlich ist (+)-Neosorangicin A 6 um den Faktor 2-10 aktiver als (+)-Sorangicin A 1. Sorangicin A 1 und Rifampicin 5 zeigen beide keine Aktivität gegenüber Rifampicin-resistenten Stämme, was zeigt, dass sich die Bindungsstelle in der Polymerase überschneiden. Interessant ist auch, dass sich die Effektivität stark erhöhen ließ, wenn man Polymyxin-B-Nonapeptide (PMBN) hinzugegeben hat. PMBN erhöht die Permeabilität der

äußeren Bakterienmembran. Eine gezielte Optimierung der Membrangängigkeit von (+)-Neosorangicin A **6** könnte somit ein vielversprechender Ansatz bei der Strukturoptimierung sein. Beide Antibiotika, (+)-Sorangicin A **1** und (+)-Neosorangicin A **6**, konnten intrazelluläre Staphylococci effektiv eliminieren ohne eine akute Toxizität gegenüber menschlichen Makrophagen aufzuweisen. Die signifikant höhere Aktivität deckt sich mit den Beobachtungen der *in vitro* Versuchen. Die Inhibierung der *S. aureus* RNA-Polymerase wurde dabei auch getestet. Der IC₅₀-Wert von (+)-Neosorangicin A **6** betrug 0,06 ± 0,01 µM, der von (+)-Sorangicin A **1** 0,21 ± 0,12 µM und Rifampicin **5** 0,03 ± 0,02 µM. Auch diese Ergebnisse bestätigen die allgemein erhöhte Aktivität von (+)-Neosorangicin A **6** gegenüber (+)-Sorangicin A **1**.

(+)-Neosorangicin A 6

Abbildung 5: Struktur von (+)-Neosorangicin A 6

(+)-Neosorangicin A **6** kann wie (+)-Sorangicin A **1** biotechnologisch gewonnen werden. Aus einer Fermentationsbrühe von 70 I konnte eine maximale Menge von bescheidenen 230 mg gewonnen werden, welche außerdem mit weiteren Metaboliten verschmutzt war. Die Optimierung der biotechnologisch gewinnbare Menge an (+)-Neosorangicin A **6** ist Gegenstand aktueller Forschung. Es wird angestrebt, einen reproduzierbaren 10 I Fermentation-Batch zu entwickeln und diesen dann auf 70 I zu skalieren. Um weitere MedChem- und SAR-Studien durchführen zu können, wird eine effizientere Methode für die Herstellung benötigt. Entweder auf biotechnologischem, semisynthetischem oder auf komplett synthetischem Wege. Die bisherigen Erkenntnisse und Ergebnisse lassen hoffen, dass strukturelle Analoga von

(+)-Neosorangicin A **6** möglicherweise eine neue Behandlungsmethode gegen Rifampicin-resistente Tuberkulose-Stämme ermöglichen, oder sich im Verlauf der MedChem-Studien weitere Anwendungsmöglichkeiten eröffnen könnten. In dieser Arbeit wird der synthetische Weg in Form einer Totalsynthese untersucht. Im Folgenden wird der Stand der Forschung anhand der bereits bekannten (+)-Sorangicin A **1** Totalsynthese und Semisynthesen erläutert.

	Spezies	Rifampicin	(+)-Sorangicin A	(+)-Neosorangicin A
	Enterococcus			
	faecalis DSM-20478	0.5	2	6.4
	Enterococcus			
	faecium DSM-20477	8	16	>6.4
	Staphylococcus			
. <u>></u>	aureus ATCC29213	0.01	0.03	0.01
osit	Staphylococcus			
d	aureus DSM-346	0.25	1	0.006
am	Staphylococcus			
ອັ	aureus Newman	0.01	0.1	0.01
	Staphylococcus			
	aureus Newman	> 64	> 64	>6.4
	Staphylococcus			
	pneumoniae DSM-			
	11865	0.5	32	0.1
	Acinetobacter			
	baumannii DSM-			
	30008	8	8	1.6
	Escherichia coli			
	DSM-1116	8	16	6.4
	Escherichia coli			
ltiv	DSM-1116 + 3 µg/ml			
eĝe	PMBN	0.25	0.25	0.4
Ę	Escherichia coli			
an	DSM-26863 (tolC3)	2	8	6.4
Ō	Escherichia coli	1	8	6.4
	Klebsiella			
	pneumoniae DSM-			
	30104	8	16	6.4
	Pseudomonas			
	aeruginosa DSM-			
	1128	8	32	>6.4

Tabelle 2: Minimale Hemm-Konzentration (MIC, μg/ml) von (+)-Neosorangicin A **6**, (+)-Sorangicin A **1** und Rifampicin **5** gegenüber verschiedenen Gram-negativen und Gram-positiven Bakterien ^[13]

2 Stand der Forschung

2.1 Totalsynthese von Amos B. Smith III et al.

Abbildung 6: Retrosynthese von Sorangicin A 1 nach Amos B. Smith III et al.

Die erste und einzige erfolgreiche Totalsynthese von Sorangicin A 1 wurde 2009 von Amos B. Smith III et al. veröffentlicht.^[14] In dem ausführlichen und interessanten Paper "(+)-Sorangicin A: evolution of a viable synthetic strategy", beschreiben A. B. Smith III et al. die zahlreichen Hindernisse, welche für die erfolgreiche Totalsynthese zu überwinden waren.^[15] Die finale Route ergab eine retrosynthetische Zerlegung in vier Schlüsselfragmente (Abbildung 6). Das Dioxabicyclooctan-Fragment 7 (BCO-Fragment) sollte über eine Julia-Kocienski-Olefinierung mit dem Tetrahydropyran-Fragment 10 (THP-Fragment) verknüpft werden. Das neu entstandene THP/BCO-Kupplungsprodukt wurde über eine weitere Julia-Kocienski-Olefinierung mit dem Dihydropyran-Fragment 8 (DHP-Fragment) gekuppelt. Anschließend war der Aufbau (*E*,*Z*,*Z*)-Trien-Systems mit Hilfe einer Stille-Kupplung zwischen des dem THP/BCO/DHP-Kupplungsprodukt und (Z,Z)-Zinnbutyldien 9 vorgesehen. Zuletzt sollte der Makrolacton-Ring mit Hilfe geeigneter Makrolactonisierungs-Bedingungen geschlossen werden. Im Folgenden werden die Syntheserouten der drei Schlüsselfragmente und die abschließende Kupplungen dieser im sogenannten "End Game" der (+)-Sorangicin A **1** Synthese beschrieben.

Abbildung 7: BCO-Fragment Synthese nach A. B. Smith III et al.

Die Synthese des BCO-Fragments 7 nach A. B. Smith III et al. beginnt mit einer literaturbekannten asymmetrischen Hetero-Diels-Alder Reaktion (Abbildung 7). Die Reaktion zwischen Aldehyd 11 und Danishefsky-Dien 25, katalysiert von der Chrom(III)-Schiffschen Base 22, lieferte nach saurer Aufarbeitung Enon 12 in sehr guter Ausbeute und hervorragender Selektivität. Als nächstes wurde eine Drei-Komponenten-Eintopf-Synthese entwickelt. Dabei wurde die Methylierung in α -Position und die Addition eines geeigneten Michael-Donors an die β -Position von Verbindung 12 verfolgt. Die Reaktivität des Micheal-Akzeptors 12 erwies sich als problematisch, da dieser aufgrund des Ring-Sauerstoffs in ß-Position deaktiviert wird. Die Anwendung des Noyori-drei-Komponenten-Protokolls, welches für die Synthese der Prostaglandine entwickelt wurde, brachte schließlich den Durchbruch. Li/Halogen-Austausch bei -78 °C des Vinylbromids 23 mit t-BuLi, Zugabe von ZnMe2 und Enon 12, lieferte das intermediäre Zinkenolat 13. Dieses wurde in Anwesenheit von HMPA, Cul PBu₃ und Mel erfolgreich zum hochfunktionalisierten Ketopyran **14** umgesetzt. Diastereoselektive Reduktion von 14 mit L-Selectrid lieferte Alkohol 15. Die relative Stereochemie wurde auf dieser Stufe per NOESY-Korrelation ermittelt. Acetonid 15 wurde als nächstes unter sauren, wässrigen Bedingungen gespalten und Triol 16 in 90% Ausbeute erhalten. Als nächstes wurde eine kritische Kaskaden-Reaktion untersucht, um den zweiten Ring zu bilden und Bicyclooctan-Alkohol 19 zu erhalten. Analog zu Crimmins et al. (Abschnitt 2.2) wurde zuerst versucht eine Eintopt-Synthese zu entwickeln. Dazu wurde Triol 16 mit 1 eq KHMDS und langsamer Zugabe von N-Triisopropylbenzensulfonylimidazol zum intermediären Diol umgewandelt. Zugabe von weiteren 2 eg KHMDS lieferten dann das Epoxid, welches spontan zu Alkohol 19 weiter reagierte. Leider wurde auch 36% Nebenprodukt 24 erhalten. Aus diesem Grund wurden die Reaktionsbedingungen mit Trisylchlorid und Pyridin abgemildert. Das mono-trisilylierte Produkt 17 erwies sich als stabil und bistrisilyliertes Produkt konnte nicht beobachtet werden. In einem zweiten Schritt wurde Diol 17 mit KHMDS behandelt und Bicycloether 19 in 70% Ausbeute über zwei Stufen erhalten. Alkohol 19 wurde anschließend unter Parikh-Doering-Bedingungen oxidiert. Der entstandene Aldehyd 20 wurde unmittelbar, um eine Isomerisierung zu verhindern, unter Takai-Bedingungen zu Vinyliodid 21 umgesetzt. Die Isomere (E/Z = 3.2:1) wurden chromatographisch getrennt und Vinyliodid 21 per Dihydroxylierung und anschließender Diol-Spaltung zum finalen Schlüsselfragment 7 umgesetzt. Erfreulicherweise konnten die beiden Olefin-Funktionen bei der Diol-Spaltung

differenziert werden, da aufgrund des einerseits elektronenschiebenden Phenylrestes und andererseits elektronenziehenden lodids, das elektronenreichere Olefin präferiert reagierte. Bicyclooctan-Fragment **7** konnte somit in insgesamt 10 Stufen mit einer Gesamtausbeute von 14% synthetisiert werden.

Abbildung 8: THP-Fragment Synthese nach A. B. Smith III et al. (Teil 1)

Die Synthese des THP-Fragments **10** begann mit einer Aldol-Kondensation zwischen Aldehyd **27** und Methylketon **30** (Abbildung 8). Beide Fragmente waren über bekannte Syntheseschritte leicht zugänglich. Lacton **28** wurde mit DIBAL-H reduziert und anschließend mit Trimethylsilyldiazomethan behandelt, um Alkohol **29** in 85%

Ausbeute über zwei Stufen zu erhalten. Oxidation, Methyl-Addition und eine anschließende zweite Oxidation lieferte Methylketon **30**. Aldehyd **27** konnte über das literaturbekannte Carbamat **26** erhalten werden. TES-Schützung des freien Alkohols, Reduktion des Carbamats und Oxidation der entstandenen primären Alkohol-Funktion, lieferte Aldehyd **27** über 3 Stufen in 91% Ausbeute. Für die kritische Aldol-Reaktion wurde zuerst Boran-Enolether **31** hergestellt, welcher nach Zugabe des Aldehyds **27**, die Aldolprodukte **32** in einem Diastereomerenverhältnis von 3.4:1 ergab. Nach Abspaltung der TES-Gruppe erfolgte eine spontane Zyklisierung zu den gemischten Acetalen **33** und **34** mit einer Gesamtausbeute von 87%. Das unerwünschte Diastereomer **34** konnte erfreulicherweise über eine zweistufige Sequenz von Oxidation des Ring-Alkohols und anschließender selektiver Reduktion mit L-Selektrid zum gewünschten Diastereomer **33** transformiert werden.

Abbildung 9: THP-Fragment Synthese nach A. B. Smith III et al. (Teil 2)

TMSOTf-aktivierte Et₃SiH-Reduktion und anschließende MOM-Schützung lieferte Tetrahydropyran **35** in hervorragender Ausbeute und als einziges Diastereomer. Hydrozirkonierung und Iodierung der Dreifachbindung lieferte ein terminales *E*-Vinyliodid, welches direkt in einer Suzuki-Miyaura-Kupplung mit BBN-Borinat **38** zu Olefin **36** umgesetzt wurde. Das gesamte Kohlenstoffgerüst von Zielmolekül **10** war somit etabliert und die finalen Funktionalisierungen konnten durchgeführt werden. Die Benzyl-Gruppen wurden mit LiDBB entfernt und die entstandene Diol-Funktion als Dimethylacetonid geschützt. Selektive Desilylierung des primären Silylethers unter basischen Bedingungen lieferte Alkohol **37** in 59% Ausbeute über drei Stufen. Mitsunobu-Reaktion und abschließende Oxidation des entstandenen Thioethers schloss die Synthese des Sulfon **10** in 17% Ausbeute über 17 Stufen ab.

Nun konnte die Synthese des letzten benötigten Schlüsselfragments, des Dihydropyrans 8, in Angriff genommen werden (Abbildung 10). Die Synthese begann mit dem literaturbekannten Enon 40, welches leicht mit Hilfe einer Diels-Alder-Reaktion zwischen Aldehyd **39** und Danishefsky-Dien **25** mit Hilfe von Katalysator **22** zugänglich ist. Nach saurer Aufarbeitung wurde Enon **40** in hervorragender Selektivität (ee = 90%) und beinahe quantitativer Ausbeute erhalten. Das für die anschließende Michael-Addition benötigte Vinylbromid 44, wurde per Myers-Alkylierung zwischen dem tertiäres Amid 41 und lodid 42 in optimaler Ausbeute und Diastereoselektivität (dr > 20:1) erhalten. Reduktion zum Aldehyd, anschließende Hydrozirkonierung und Bromierung, lieferte Vinylbromid 44. Die Reaktion von Vinylbromid 44 mit t-BuLi und CuCN lieferte ein Vinylcuprat, welches unmittelbar mit dem Michaelakzeptor 40 umgesetzt wurde. Erfreulicherweise lieferte die Reaktion das gewünschte Produkt in akzeptabler Ausbeute und ausgezeichneter Selektivität. Das Enolat wurde mit TESCI abgefangen und Enolether 45 wurde isoliert. Chemo- und stereo-selektive Oxidation mittels Rubottom-Oxidation und Schützung der entstandenen Alkohol-Funktion als TBS-Ether, lieferte 46 in 46% Ausbeute über drei Stufen. Kinetische Enolat-Bildung mit LDA in Anwesenheit von HMPA, Umsetzung mit Comins'-Reagenz und Palladiumkatalysierte Reduktion des Triflats, ergab Dihydropyran 47 in 71% Ausbeute über zwei Stufen. Entfernung der PMB-Schutzgruppe unter oxidativen Bedingungen, anschließende Oxidation der freien Alkohol-Funktion zur Carbonsäure und abschließende Veresterung mit t-Butanol lieferte Verbindung 48 in 69% Ausbeute über vier Stufen. Zum Schluss wurde die primäre TBS-Gruppe mit HF-Pyridin-Komplex entfernt und der freie Alkohol mit Dess-Martin-Periodinan zum Aldehyd 8 oxidiert.

Schlüsselfragment **8** konnte somit mit einer Gesamtausbeute von 5% über 19 Stufen synthetisiert werden.

Abbildung 10: DHP-Fragment Synthese nach A. B. Smith III et al.

Nachdem alle Schlüsselfragmente erfolgreich synthetisiert wurden, konnten die finalen Kupplungs-Reaktionen untersucht werden. Angefangen wurde mit einer Julia-Kocienski-Olefinierung zwischen BCO-Fragment **7** und THP-Fragment **10** (Abbildung 11). Das Auffinden geeigneter Reaktionsbedingungen erwies sich als komplizierter als

erhofft. LiHMDS in DMF/HMPA (3:1) ergab *E*-Olefin **50** in hervorragender Selektivität, aber niedriger Ausbeute von 24% (Tabelle 3). Erfreulicherweise konnten 63% des eingesetzten Sulfons **10** und 36% des Aldehyds **7** zurückgewonnen werden. Einsatz von NaHMDS unter denselben Bedingungen konnte die Ausbeute auf 40% erhöhen, verringerte aber die Selektivität auf 3.6:1. Die traditionellen *E*-selektiven Bedingungen (KHMDS in DME) ergaben die höchste Ausbeute, aber die geringste Selektivität von 2:1. Weder Barbier-Bedingungen noch Verwendung des Benzothiazol-Sulfons (BT-Sulfon) brachten eine Verbesserung. Letztendlich erwies es sich am sinnvollsten *t*-BuLi in DME/HMPA (3:1) zu verwenden. Zwar lieferte ein Reaktionszyklus nur eine Ausbeute von 39%, aber durch die Rückgewinnung der Ausgangsstoffe und Durchführung von mehreren Reaktionszyklen, konnte die Ausbeute auf 65% gesteigert werden.

Versuch	Reaktionsbedingungen	Ergebnis
1	LiHMDS, DMF/HMPA (3:1), -72 °C - RT	24%, 100% (<i>E</i>)
2	NaHMDS, DMF/HMPA (3:1), -72 °C - RT	40%, (<i>E/Z</i>) = 3.6:1
3	KHMDS, DME, -72 °C - RT	54%, (<i>E/Z</i>) = 2:1
4	LDA, DMF/HMPA (3:1), -72 °C - RT	11%, 100% (<i>E</i>)
5	<i>t</i> -BuLi, DMF/HMPA (3:1), -72 °C - RT	39%, 100% (<i>E</i>)

Tabelle 3: Rektionsbedingungen für die Julia-Kocienski-Olefinierung zwischen BCO-Fragment **7** und THP-Fragment **10**

Für die zweite Julia-Kocienski-Olefinierung wurde das BCO-THP-Olefin **50** zuerst in zwei Stufen zum Aldehyd **51** transformiert. Bei dieser Kupplung lieferten die traditionellen Reaktionsbedingungen mit KHMDS in DME erfreulicherweise Produkt **53** in ausgezeichneter Ausbeute von 87% und langwierige Optimierungsversuche blieben dem Team somit erspart. Schlussendlich wurde noch der sekundäre TBS-Ether am THP-Ring mit TBAF für die kritische Veresterungs-Reaktion entfernt.

Als nächstes musste das empfindliche (E,Z,Z)-Trien-System eingeführt werden und das "End Game" der Sorangicin A **1** Synthese wurde somit gestartet. Für die Einführung des Trien-Systems wurden verschiedene Model-Versuche durchgeführt

und letztendlich zeigte sich eine Stille-Kupplung zwischen Zinndienat **9** und Vinyliodid **53** mit einem Überschuss an Ph₂PO₂NBu₄ (12 eq) am effektivsten (Abbildung 12).

Abbildung 11: Kupplungen der Schlüsselfragmente nach A. B. Smith III et al.

Ph₂PO₂NBu₄ konnte die (*E/Z*)-Isomerisierung des entstandenen Trien-Systems aktiv unterdrücken. (E,Z,Z)-Trienmethylester 54 konnte isomerenrein in 88% Ausbeute isoliert werden und erwies sich als erstaunlich stabil. Die nach der Hydrolyse erhaltene Carbonsäure 55 unterdessen Anfälligkeit zeigte eine hohe gegenüber (E/Z)-Isomerisierung. Aus diesem Grund wurde die Säure nicht komplett charakterisiert, sondern direkt in der nächsten Stufe umgesetzt. Nach ausführlichen Untersuchungen konnten letztendlich geeignete Reaktionsbedingungen gefunden werden. Unter Verwendung von 56 und NaHCO₃ in DCM konnte Makrolacton 57 in 85% Ausbeute erhalten werden. Nach diesem Erfolg stellte sich augenblicklich wieder Ernüchterung ein. Es erwies sich als sehr schwierig geeignete Reaktionsbedingungen für die globale Entschützung zu finden. TFA in wässrigem THF bei 85 °C führte zur raschen Zersetzung. Ausführliche Entschützungs-Versuche zeigten, dass sich die MOM-Gruppe und die Acetonid-Gruppe sehr gut mit protischen Säuren bei 45 °C - 85 °C entfernen ließen. Allerdings konnte unter diesen Bedingungen die *t*-Butylester-Funktion nicht hydrolysiert werden. Aus diesem Grund wurde Verbindung **57** mit TBSOTf und 2,6-Lutidin zuerst zum TBS-Ester umgewandelt. Ohne weitere Aufarbeitung wurde der entstandene TBS-Ester dann mit 4 M HCl in THF für 24 h bei 85 °C gerührt. Unter diesen Reaktionsbedingungen konnten alle drei Schutzgruppen gleichzeitig entfernt werden und Sorangicin A **1** wurde in 70% Ausbeute erhalten. Die NMR-Daten des synthetischen Sorangicin A **1** wurde mit den NMR-Daten des natürlichen Sorangicin A **1** verglichen und erwiesen sich als identisch. Damit konnte die erste Totalsynthese von Sorangicin A **1** in einer hoch konvergenten Synthese veröffentlicht werden. Die drei Schlüsselfragmente konnten über zwei hochselektive Julia-Kocienski-Olefinierungen miteinander gekuppelt werden. Die finalen Stufen bestanden aus einer Stille-Kupplung, Mukaiyama-Makrolactonisierung und einer mit protischer Säure durchgeführten globalen Entschützung.

Abbildung 12: Einführung des (*E*,*Z*,*Z*)-Trienesters und "End Game" der Sorangicin A 1 Synthese nach A. B. Smith III *et al.*

2.2 Formale Totalsynthese von M. T. Crimmins et al.

Abbildung 13: Retrosynthese von Sorangicin A 1 nach M. T. Crimmins et al.

Auch M. Crimmins *et al.* zerlegten das Gesamtmolekül retrosynthetisch in drei Schlüsselfragmente (Abbildung 13). Die initiale Retrosynthese von M. Crimmins *et al.* sah vor, sowohl das THP-Fragment **62** mit BCO-Fragment **59**, als auch das entstandene THP/BCO-Kupplungsprodukt mit DHP-Fragment **60**, über jeweils eine Kreuzmetathese zu kuppeln. Aufgrund von zu geringer Ausbeute wurde die zweite Kupplung durch eine Julia-Kocienski-Olefinierung ersetzt. Im Folgenden werden die Synthesen der Teilfragmente und die Kupplungen vorgestellt.^[16]

Die Synthese des BCO-Fragments **77** nach Crimmins *et al.* beginnt mit einer Evans*anti*-Aldol-Reaktion zwischen (*E*)-Zimtaldehyd **64** und *N*-Propioylthiazolidinethion **63** (Abbildung 14). Aldol-Produkt **65** wurde mit 83% Ausbeute und einem Diastereomerenverhältnis von 91:9 erhalten. Das Evans-Auxiliar wurde reduktiv mit DIBAL-H entfernt und der entstandene Aldehyd **66** mittels Brown-Allylierung zum Diol **67** transformiert (90%, dr \ge 95:5). Die Diol-Funktion wurde anschließend als PMB-Acetal **68** geschützt. Als nächstes mussten einige Versuche durchgeführt werden, um die idealen Metathese-Bedingungen zu finden. Es zeigte sich, dass Acetal **68** mit 20 eq Ethylacrylat **69** und 5mol% Grubbs 2nd Gen. Kat. für 14 h bei RT die beste Ausbeute lieferte.

Abbildung 14: BCO-Fragment Synthese nach M. T. Crimmins et al.

Der α,β -ungesättigte Ethylester **70** wurde mit 95% Ausbeute isoliert. Dieser wurde mit DIBAL-H zum Allylalkohol 71 reduziert und anschließend über eine Sharpless-Epoxidierung zu Epoxid 72 umgewandelt (dr \geq 98:2). Nach einer Tosylierung der primären Alkohol-Funktion wurde Verbindung 73 erhalten. Zuerst wurde Tosylat 73 mit 10% iger HCI-Lösung in einem THF/MeOH-Lösungsmittelgemisch für 18 h gerührt. Das Acetal wird unter diesen Bedingungen gespalten und eine Säure-katalysierte Zyklisierung findet statt. Das 6-exo-Produkt wird gemäß Baldwin-Regeln stark bevorzugt und das 5-endo-Produkt konnte somit nicht beobachtet werden. Das Intermediat **75** wurde daraufhin *in situ* mit 10% iger NaOH-Lösung versetzt, bis leicht basische Bedingungen herrschten. Die intramolekulare nucleophile Substitution findet unter diesen Bedingungen innerhalb von Minuten statt und ergibt Epoxid 76. Abschließend wurde die Reaktionslösung wieder mit 10% iger HCI-Lösung angesäuert, um eine intramolekulare Epoxid-Öffnung zu bewirken und den zweiten Ring-Ether zu bilden. BCO-Ether 59 konnte somit in einer eleganten Eintopf-Synthese mit 62% Ausbeute über drei Stufen erhalten werden. Die Gesamtausbeute der Syntheseroute liegt bei 19% über 10 Stufen.

Beginnend mit dem literaturbekannten Aldehyd **78** wurde eine Kreuzmetathese mit Diacetat **86** und Grubbs 2nd Gen. Kat. durchgeführt, um Verbindung **79** zu erhalten (Abbildung 15). Anschließend wurde Aldehyd **79** per Brown-Allylierung und anschließender Verseifung mit K₂CO₃ in Methanol zu Diol **80** umgesetzt. Sharpless-Epoxidierung, saure Aufarbeitung und abschließende Schützung beider Alkohol-Funktionen als TES-Ether lieferte das finale THP-Fragment **62** in 62% Ausbeute über zwei Stufen. Bezogen auf Aldehyd **78** konnte THP-Fragment **62** mit einer Gesamtausbeute von 35% über fünf Stufen synthetisiert werden.

Nachdem geeignete Syntheserouten für das THP-Fragment **62** und BCO-Fragment **59** etabliert waren, konnte die Kreuzmetathese zwischen den beiden Fragmenten untersucht werden. Alkohol **59** wurde hierfür mit PivCI acyliert, der entstandene Piv-Ester ozonolysiert und der Aldehyd abschließend methyliert, um das finale Kupplungsprodukt **77** in 85% Ausbeute über 3 Stufen zu erhalten (Abbildung 14). Bevor die kritische Kreuzmetathese durchgeführt werden konnte, musste die C6-Seitenkette des THP-Fragments eingefügt werden (Abbildung 15). Modifizierte Swern-Bedingungen ermöglichten eine gleichzeitige Spaltung der primären TES-Gruppe und Oxidation der freien Alkohol-Funktion zum Aldehyd **81**. Anschließend

23

Stand der Forschung

wurde eine *anti*-Felkin-Anh, *α*-silyloxychelat-kontrollierte Addition an den Aldehyd **81**, mit einer *in situ* erzeugten Vinylzinkverbindung aus **87**, durchgeführt. Es wurden trennbare Diastereomere im Verhältnis von 8:1, zugunsten des gewünschten Produkts, erhalten. PPTS in Methanol/THF (4:1) spaltete die sekundäre TES-Gruppe und das entstandene Diol wurde mit Dimethoxypropan unter leicht sauren Bedingungen zu Acetonid **82** umgewandelt. THP-Acetonid **82** und BCO-Pivalat **77** wurden im nächsten Schritt per Kreuzmetathese gekuppelt. Die tatsächliche Ausbeute der Metathese beträgt 40%, bezogen auf das zurückgewonnene BCO-Fragment **77** allerdings 69%.

Abbildung 15: Kreuzmetathese zwischen dem THP- und BCO-Fragment nach M. T. Crimmins et al.

Reduktion der Piv-Schutzgruppe mit DIBAL-H, Entfernung der TIPS-Schutzgruppe mit TBAF, Reduktion des terminalen Alkins zum terminalen Alken mit Lindlar-Katalysator und Schützung des freien Alkohols als PMB-Ether schloss die Synthese ab. Die Synthese der vollständigen linke Hemisphäre **84** von Sorangicin A **1** konnte somit in 77% über vier Stufen aus Verbindung **83** erhalten werden.

Die Synthese des DHP-Fragments 60 beginnt mit einer Wittig-Reaktion zwischen dem α -chiralen Aldehyd **88** und Wittig-Reagenz **98** (Abbildung 16). Der entstandene Ester wurde über eine zweistufige Sequenz von Reduktion und Oxidation zu Aldehyd 89 transformiert. Brown-Alkyoxy-Allylierung lieferte syn-1,2-Diol 91 in 96% Ausbeute. Alkohol 91 wurde mit Acroleindiethylacetat unter sauren Bedingungen umgesetzt. Eine anschließende Ringschlussmetathese lieferte das gemischte Acetal 92 als Diastereomeren-Gemisch. Sakurai-Reaktion mit BF3[·]Et2O und Allyltrimethylsilan führte zu Allyl-DHP-Ether 60 mit 92% Ausbeute als einziges Diastereomer. Die Oxidation der Seitenkette wurde über einen vierstufigen Prozess erreicht. Zuerst wurde die PMB-Schutzgruppe unter oxidativen Bedingungen entfernt, anschließend mit Dess-Martin-Reagenz zum Aldehyd oxidiert, dann per Pinnick-Oxidation weiter zur Carbonsäure, welche abschließend mit t-Butanol verestert wurde (57%, 4 Stufen). Nach erfolgter Synthese beider Fragmente wurden diese über eine Kreuzmetathese gekuppelt. Beide Kupplungspartner sind Type-I Olefine und eine statistische Verteilung der Produkte Leider und Homodimere wurde angenommen. wurde das gewünschte Kupplungsprodukt 95 mit einer enttäuschenden Ausbeute von nur 16% erhalten. Dennoch konnte die Synthese bis Vinyliodid 96 fortgesetzt werden. Die PMB-Ether-Funktion wurde mit DDQ zur Alkohol-Funktion umgewandelt, der freie Alkohol mit Dess-Martin-Periodinan zur Aldehyd-Funktion oxidiert und diese abschließend per Takai-Reaktion zu E-Vinyliodid 96 transformiert (31%, 3 Stufen).

Aufgrund der geringen Ausbeute der Kreuzmetathese zwischen DHP-Fragment **94** und THP/BCO-Fragment **85**, wurde eine alternative Route nach Vorbild von Amos Smith III *et al.* untersucht (Abbildung 17). Dabei wurde die Kreuzmetathese durch eine Julia-Kocienski-Olefinierung ersetzt. Um das zu erreichen musste die Schutzgruppen-Strategie und einige Synthesestufen modifiziert werden. Zuerst wurde die BCO/THP-Fragment Route optimiert. Alkohol **59** wurde als PMB-Ether geschützt. Anschließende oxidative Spaltung nach dem Johnson-Lemieux Protokoll und Wittig-Reaktion lieferte Olefin **99**. Erfreulicherweise konnte die Ausbeute der Kreuzmetathese zwischen **99** und **62** mit dieser Strategie sogar gesteigert werden. Kupplungsolefin **100** konnte mit einer Ausbeute von 77% als reines *E*-Isomer isoliert werden. Wiederum modifizierte Swern-Bedingungen ermöglichten eine gleichzeitige Spaltung der primären TES-Gruppe und Oxidation des freien Alkohols zum Aldehyd, welcher anschließend direkt mit *in situ* erzeugter Vinylzinkverbindung **101** behandelt wurde. Alkohol **102** wurde so mit 64% Ausbeute über zwei Stufen erhalten.

Abbildung 16: DHP-Fragment Synthese und Kreuzmetathese zwischen dem DHP- und dem BCO/THP-Fragment nach M. T. Crimmins *et al.*

Stand der Forschung

Nachdem das Grundgerüst aufgebaut war, mussten noch einige Schutzgruppen und funktionelle Gruppen angepasst werden. Dafür wurde Verbindung **102** mit TBAF desilyliert. Das erhaltenen Tetraol wurde direkt in DMP unter Säurekatalyse an der Diol-Funktion als Acetonid geschützt. Die primäre Alkohol-Funktion an der C6-Seitenkette wurde als TBS-Ether und die sekundäre Alkohol-Funktion am THP-Ring als MOM-Ether geschützt (45%, 4 Stufen). Als nächstes wurde die Einführung der Vinyliodid-Funktion am BCO-Fragment in Angriff genommen. Der PMB-Ether konnte unter oxidativen Bedingungen mit DDQ gespalten und der entstandene freie Alkohol mit Dess-Martin-Periodinan oxidiert werden. Der Aldehyd wurde sofort per Takai-Olefinierung zum Vinyliodid **104** im Verhältnis von 4:1 (*E/Z*) transformiert.

Abbildung 17: Alternative Kupplungsstrategie zwischen dem THP/BCO-Fragment und dem DHP-Fragment nach Crimmins *et al.* (Teil 1)

Die Isomere wurden per Säulenchromatographie getrennt und *E*-Vinyliodid **104** mit 28% Ausbeute über drei Stufen erhalten. Vinyliodid **104** wurde über eine zweistufige Sequenz zum für die Julia-Kocienski-Olefinierung benötigten terminalen Aldehyd **105** umfunktionalisiert.

Abbildung 18: Alternative Kupplungsstrategie zwischen THP/BCO-Fragment und DHP-Fragment nach Crimmins *et al.* (Teil 2)

Nachdem der erste Kupplungspartner synthetisiert war, wurde die Aufmerksamkeit auf DHP-Sulfon **109** gerichtet (Abbildung 18). Ausgangspunkt der Synthese war Acetal **92**. Lewis-Säure katalysierte Addition von Vinylsilylether **106** an Acetal **92** ergab Aldehyd **61** in 82% Ausbeute als einziges Isomer. Als nächstes wurde der Aldehyd mit NaBH₄ reduziert und der MOM-Ether unter sauren Bedingungen gespalten. Das entstandene Diol wurde mit TBSOTf bissilyliert und Verbindung **107** in 83% Ausbeute über 3 Stufen erhalten. Die gewünschte Oxidationsstufe der Seitenkette wurde, wie bereits zuvor beschrieben (s. Abbildung 16), über einen vierstufigen Prozess erhalten und *t*-Butylester **108** konnte mit 72% Ausbeute isoliert werden. Abschließend wurde die

TBS-Schutzgruppe mit TBAF abgespalten und die primäre Alkohol-Funktion per Mitsunobu-Reaktion und anschließender Oxidation des Sulfids zu Sulfon **109** transformiert. Die finale Julia-Kocienski-Olefinierung zwischen Sulfon **109** und Aldehyd **105** konnte erfolgreich unter Standardbedingungen mit KHMDS in DME durchgeführt werden und Kupplungsprodukt **96** in 79% Ausbeute wurde erhalten. Die Synthese des hochkomplexen Fragments **96** konnte somit auf zwei unterschiedlichen Weisen realisiert werden und die formale Totalsynthese von (+)-Sorangicin A **1** wurde publiziert.

2.3 Teilsynthese von S. Nyalata und S. Raghavan

Abbildung 19: Retrosynthese von Sorangicin A nach S. Nayalata und S. Raghavan

Die Retrosynthese von S. Raghavan und S. Nayalata für Sorangicin A **1** führt zu fünf Schlüsselfragmenten (Abbildung 19).^[17] Das THP-Fragment **112** und BCO-Fragment **7** sollen demnach nach dem Vorbild von Crimmens *et al.* über eine Kreuzmetathese verknüpft werden. Eine Julia-Kocienski-Olefinierung zwischen dem Kreuzprodukt und DHP-Fragment **113** soll, mit Hilfe des symmetrischen Linker **114**, das Grundgerüst von
Sorangicin A **1** weitgehend aufbauen. Das Trien-System soll mit Hilfe von Verbindung **111** über eine Stille-Kupplung eingeführt werden. Eine Makrolactonisierung soll den Ring schließen und nach partieller Reduktion der Dreifachbindung das Trien-System eingeführt werden. Eine globale Entschützung soll die Synthese abschließen und Sorangicin A **1** liefern.

Abbildung 20: Erste Synthese des BCO-Fragments nach S. Nayalata und S. Raghavan

Die erste Bicylooctan-Synthese von S. Raghavan *et al.* beginnt mit der Synthese von Allylepoxid **118** und Homoallylalkohol **121** (Abbildung 20).^[18] Beide Synthesen starten mit Butendiol **115** als Ausgangsverbindung. Homoallylalkohol **121** wird über den bekannten Aldehyd **120** durch eine Brown-Crotylierung in einer guten Ausbeute und hohe *anti*-Stereoselektivität (76%, dr \geq 20:1) erhalten. Zuvor wird *E*-Butendiol **115** zweifach mit einer PMB-Gruppe geschützt und anschließend die Doppelbindung

mittels Ozonolyse gespalten. Die Synthese des Epoxids 118 beginnt mit der mono-Silylierung von 115 mit TBDPSCI. Alkohol 116 wird in der nächsten Stufe selektiv per Sharpless-Epoxidierung zu Epoxid 117 umgewandelt. Epoxid 117 wird anschließend mit Dess-Martin-Periodinan oxidiert und liefert nach einer Wittig-Reaktion Allylepoxid 118 über vier Stufen. Dien 122 wird mit Hilfe einer Lewis-Säure katalysierten Epoxidöffnung nach dem Mioskowski-Protokoll sauber erhalten. Eine Ringschlussmetathese, katalysiert durch Grubbs 2nd Gen. Kat., liefert Dihydropyran 123 mit 85% Ausbeute. Eine 5-endo-Iodringschluss-Reaktion von 123 mit NIS und katalytischen Mengen an Scandiumtriflat ergaben Verbindung 124 mit 64% Ausbeute. Eine radikalische Deiodierung mit Tributylzinnhydrid und AIBN vollendete die Synthese und das BCO-Fragment 125 konnte damit über acht Stufen mit einer Gesamtausbeute von 21% synthetisiert werden.

Abbildung 21: Seitenketten-Synthese des DHP-Fragments nach S. Nayalata und S. Raghavan

Die Synthese der Seitenkette **142** des Dihydropyran-Fragments **113** beginnt mit dem bekannten Sulfid **135** (Abbildung 21).^[17] Eine Schützung der Alkohol-Funktion als Benzylether und α -Chlorinierung mit *N*-Chlorsuccinimid lieferte α -Chlorsulfid **136**. Dieses wurde ohne Isolierung mit Alkynylzink-Reagenz **137** behandelt, um Propargylsulfid **138** zu erhalten. Reduktion der Dreifachbindung und der Sulfid-Funktion und gleichzeitige Hydrogenolyse lieferte einen intermediären Alkohol, welcher direkt per Swern-Oxidation zu Aldehyd **139** oxidiert wurde. Anschließend wurde, nach dem Ohira-Bestmann-Protokoll, Alkin **140** synthetisiert. Methylierung des *in situ* erzeugten Lithiumacetylids mit Mel lieferte Methylalkin **141** in 84% Ausbeute.

Methylalkin **141** wurde mit einem Überschuss an Cp₂ZrHCl zu einer Vinylzirkonium-Verbindung umgesetzt, welche nach Behandlung mit lod zu lodalken **142** transformiert wurde. Vinyliodid **142** wurde somit in 28% Ausbeute über acht Stufen erhalten.

Abbildung 22: DHP-Fragment 157 Synthese nach S. Nayalata und S. Raghavan (Teil 1)

Die DHP-Fragment Synthese 157 beginnt mit *D*-(-)-Weinsäure 143, welche nach bekannten Synthese-Schritten in vier Stufen zu Chloracetonid 144 umgewandelt

Stand der Forschung

wurde (Abbildung 22). Behandlung von **144** mit LiNH₂ in flüssigem Ammoniak ergab Alkynol **145** in 90% Ausbeute. Eine Schützung des sekundären Alkohols als MOM-Ether und anschließende Umsetzung mit Weinreb-Amid **152** unter basischen Bedingungen ergab Keton **147** in 87% Ausbeute. Eine stereoselektive Reduktion lieferte Alkohol **148** (82% Ausbeute, de = 99%). Allen **150** wurde aus Alkohol **148** nach Myers-Movassaghi-Protokoll synthetisiert. Reaktion von **148** mit Hydrazon **153** unter Mitsunobu-Bedingungen lieferte Zwischenstufe **149**, welche nach saurer wässriger Aufbereitung Allen **150** in 83% Ausbeute ergab. Eine Entschützung des PMB-Ethers unter oxidativen Bedingungen und Oxidation des freien Alkohols mit Dess-Martin-Periodinan lieferte Aldehyd **151** mit einer Gesamtausbeute von 38% über neun Synthesestufen.

Abbildung 23: DHP-Fragment Synthese nach S. Nayalata und S. Raghavan (Teil 2)

Als nächstes musste Vinyliodid **142** und Aldehyd **151** über eine geeignete metallorganische Addition miteinander gekuppelt werden (Abbildung 23). Reaktionen der Alkyllithiumverbindungen **154** mit Aldehyd **151** bei -78 °C führte zu Isomerisierung von **151**, was zu komplizierten Mischungen von Produkten führte. Transmetallierung

zu Organomagnesium- oder Organozink-Verbindungen brachte keine Verbesserung. Schließlich wurde erkannt, dass rasches Aufwärmen auf 0 °C für 10 min, kurz nach der Addition des Aldehyds **151** zu Alkyllithiumverbindung **154**, eine separierbare Mischung aus Verbindung **155** und **156** im Verhältnis 4:6 lieferte. Erfreulicherweise konnte die Alkohol-Funktion des ungewünschten Isomers **155** sauber in zwei Schritten invertiert werden. Oxidation mit Dess-Martin-Periodinan und Reduktion in Anwesenheit von (*S*,*S*)-Noyori-Katalysator lieferte Isomer **156** in 75% Ausbeute über zwei Stufen (dr = 9:1). Die AuCl(PPh₃)₂ katalysierte Umwandlung des Allenalkohols **156** zu Dihydropyran **157** erfolgte sauber in 62% Ausbeute. Nach der erfolgreichen Synthese des DHP-Fragments **157** wurde der letzte fehlende Baustein, das THP-Fragment **112**, in Angriff genommen.

Die Synthese von THP-Ringether 168 beginnt mit dem bekannten Silvlether 158 (Abbildung 24).^[19] Zuerst wurde das Evans-Auxiliar mit NaBH₄ abgespalten und Alkohol 159 erhalten. Dieser wurde nach Hata-Protokoll zu Sulfid 160 umgesetzt. Sulfid **160** wurde mit NCS behandelt und das entstandene α -Chlorsulfid mit Alkynylzinkbromid, erhalten aus **170**, zur Reaktion gebracht. Es wurde eine Mischung aus untrennbaren Epimeren von Propagylsulfid **161** (75%, dr = 5.5:4.5) erhalten. Da dieses chirale Kohlenstoffatom im Verlauf der Synthese zum prochiralen Keton oxidiert wird, wurden die folgenden Reaktionen mit dem Epimeren-Gemisch durchgeführt. Die Synthese wurde mit der Entschützung des Acetonids 161 und selektiver Schützung des entstandenen Diols als Pivalat 162 fortgesetzt. Oxidation des epimeren Sulfidanschließende [2,3]-sigmatrope-Umlagerung Gemisches und lieferte das α,β -ungesättigte Keton **163**. An dieser Stelle wurden verschiedene Routen für die finalen Stufen ausprobiert. Repräsentativ wird nur die beste Route gezeigt. Hierfür wurde das α,β -ungesättigte Keton **163** mit LiOH und H₂O₂ zu einem untrennbaren Isomeren-Epoxidgemisch 165 transformiert. Reduktion der Carbonyl-Funktion und anschließende säurekatalysierten Ketal-Bildung ergab Verbindung 166 und 167 (dr = 8.5:1.5) mit einer Gesamtausbeute von 90%. Unerfreulicherweise wurde das ungewünschte Isomer 166 als Hauptprodukt gebildet. Dieses konnte jedoch über eine zweistufige Oxidations/Reduktions-Sequenz zum gewünschten Isomer 167 umgewandelt werden (85%, 2 Stufen). Entfernung der PMB-Schutzgruppen unter reduktiven Bedingungen und anschließende Silylierung als TBS-Ether lieferte THP-Fragment 168 mit einer Gesamtausbeute von 13.6% über 15 Stufen.

34

Stand der Forschung

Abbildung 24: Synthese des THP-Fragments 168 nach S. Nayalata und S. Raghavan

Für die Kreuzmetathese zwischen BCO-Fragment **172** und THP-Fragment **168** musste zuvor die terminale Doppelbindung in Verbindung **125** eingeführt werden (Abbildung 25). Oxidative Entfernung der PMB-Gruppe, Oxidation der Alkohol-Funktion mit Dess-Martin-Periodinan und abschließende Wittig-Reaktion ergab das terminale Alken **172** in 66% Ausbeute über 3 Stufen. BCO-Fragment **172** und THP-Fragment **168** wurden mit 2mol% Grubbs 2nd Gen. Kat. in Toluol für 36 h gerührt. Anschließende Entfernung der Piv-Ester-Schutzgruppe lieferte Kreuzprodukt **173** mit 60% Ausbeute über zwei Stufen. Oxidation der Alkohol-Funktion zur Aldehyd-Funktion und Julia-Kocienski-Olefinierung mit Sulfon **175** ergab das finale Produkt **174** in 74% Ausbeute.

Abbildung 25: Finale Kupplungs-Reaktionen nach S. Nayalata und S. Raghavan

3.1 Retrosynthese

Abbildung 26: Retrosynthese von (+)-Neosorangicin A 6 (Teil 1)

Im Verlauf der Studien zur Totalsynthese von (+)-Neosorangicin A **6** haben sich einige Routen als sogenannten "Dead End"-Routen erwiesen. Der Übersicht halber wird an dieser Stelle nur die Retrosynthese der vielversprechendsten Route beschrieben. Die erfolglosen Syntheserouten werden im Verlauf des Hauptteils und vor allem im Abschnitt Alternative- und "Dead End"-Synthesen (Kapitel 5) im Detail erläutert.

Die Totalsynthese von (+)-Neosorangicin A 6 soll über eine Ringschlussmetathese und eine abschließende Entschützung aller Schutzgruppen globale erfolgen (Abbildung 26). Unter geeigneten Reaktionsbedingungen sollte es möglich sein, alle drei Schutzgruppen gleichzeitig zu entfernen. Bei der kritischen Ringschlussmetathese wird auf eine gute Gesamtausbeute und auf ein gutes Verhältnis zwischen den möglichen (E)- und (Z)-Isomeren gehofft. Ringschlussmetathese-Precurser 177 soll aus Vinyliodid 178 und Zinndienester 179 mit Hilfe einer modifizierten Stille-Kupplung synthetisiert werden. Dabei wurde vor allem eine mögliche Isomerisierung der Z-Doppelbindungen als mögliche Problemquelle vermutet. Vinyliodid 178 wiederum sollte unter geeigneten Bedingungen über eine Kreuzmetathese aus BCO-Ether 183 und THP-Ether 184 erhalten werden (Abbildung 27). Eine stereoselektive metallorganische Addition soll die C6-Seitenkette an Aldehyd 181 addieren und den sekundären Alkohol 180 in der korrekten Konfiguration liefern. Nach Entfernung der TES-Schutzgruppe soll die Diol-Funktion mit einer geeigneten Schutzgruppe geschützt werden, um eine orthogonale Entfernung der MEM-Gruppe zu ermöglichen und voraussichtlich den primären Alkohol 367 zu ergeben. Aldehyd 181 könnte aus Kreuzmetathese-Produkt 182 über eine Entschützungs/Oxidations-Sequenz synthetisiert werden. BCO-Ether 183 und THP-Ether 184 wiederum sollen über zwei jeweils lineare Syntheserouten über 19 Stufen bzw. 15 Stufen hergestellt werden. Geeignete Veresterungsbedingungen und eine anschließende Still-Gennari-Reaktion (Ando-Variante) könnte Zinndienester 179 liefern. Alkohol 186 soll wiederum aus DHP-Methylketon 189 und C4-lodid 188 gewonnen werden (Abbildung 28). Eine geeignete Additions/Eliminierungs-Reaktionssequenz zwischen Methylketon 189 und Iodid 188 sollten den geschützten DHP-Alkohol 187 liefern.

Im Folgenden werden zuerst die Syntheserouten aller Schlüsselfragmente im Detail erläutert. Dabei handelt es sich namentlich um die BCO-Synthese **183** nach L. Michaelis und L. Chang, die DHP-Synthese **189** nach R. Stoykova und M. Munt und die THP-Synthese **184** nach M. Munt. Im Anschluss werden die Kupplungen der

38

Schlüsselfragmente und weitere Anpassungen im sogenannten "End Game" der Synthese von (+)-Neosorangicin A **6** nach L. Chang und M. Munt beschrieben. Der Hauptteil schließt mit einem Abschnitt über zusätzliche Synthesen, 2nd Generation-Synthesen und "Dead End"-Routen ab.

Abbildung 27: Retrosynthese von (+)-Neosorangicin A 6 (Teil 2)

Abbildung 28. Retrosynthese von (+)-Neosorangicin A 6 (Teil 3)

3.2 Synthese des Bicyclooctan-Fragments

Die Synthese des Bicyclooctan-Ethers 183 wurde von L. Michaelis entwickelt, von L. Chang weiter optimiert und wird deshalb hier nur in Kürze zusammengefasst.^[20,21] Die Route beginnt mit einer anti-Aldol-Reaktion zwischen Evans-Edukt 63 und Zimtaldehyd 197 und liefert Alkohol 190 als anti-Aldolprodukt (Abbildung 29). Nachdem die sekundäre Hydroxy-Gruppe acetyliert und NaHMDS zugegeben wurde, konnte Ketolacton 192 isoliert werden. Dabei wird die Acetyl-Gruppe baseninduziert enolisiert, das intermediäre Enolat greift daraufhin intramolekular den Carbonyl-Kohlenstoff an und das Evans-Auxiliar wird ausgestoßen. Anschließend wird Ketolacton 192 wiederrum unter basischen Bedingungen enolisiert und das Enolat mit Dimethylsulfat als vinologer Methylester 193 abgefangen. Nach Reduktion der Carbonyl-Funktion zu einer Alkohol-Gruppe und anschließender saurer Aufarbeitung wird Michael-Akzeptor 194 mit 70% Ausbeute erhalten. Eine Scandiumtriflatkatalysierte, stereoselektive Mukaiyama-Michael-Reaktion zwischen Evans-Akzeptor 194 und Silylketal 198 lieferte Verbindung 195 in 72% Ausbeute. Verbindung 195 Kristallisation gebracht und die absolute Konfiguration mittels konnte zur Röntgenstrukturanalyse bestätigt werden.

Abbildung 29: Synthese des BCO-Fragments **183** nach L. Michaelis und L. Chang (Teil 1), rot = aus anderen Arbeiten übernommen, die Dissertation von L. Chang folgt in Kürze

Als nächstes wurde die Methylester-Funktion zur primären Alkohol-Funktion und die Carbonyl-Gruppe zum sekundären Alkohol reduziert, um Verbindung **196** zu erhalten. Diol **199** wird in einer Eintopf-Synthese in vier Stufen mit einer Ausbeute von 70% erhalten (Abbildung 30). Zunächst wird der geschützte Alkohol **196** mit TBAF entschützt und das entstandene 1,2-Diol mit einer Dimethylacetonid-Gruppe geschützt. Die freie Alkohol-Funktion wird acetyliert und anschließend die Ketal-Funktion wieder gespalten, um Acetat **199** zu erhalten. Acetat **199** wurde im nächsten Schritt chemoselektiv zum TIPS-geschützten Alkohol **200** transformiert. Die sekundäre Alkohol-Funktion wurde mit Trifluormethansulfonsäureanhydrid trifliert und Triflat **201** in 94% Ausbeute erhalten. Eine Entschützung der primären Alkohol-Funktion mit TBAF führt unmittelbar zur intramolekularen Substitutionsreaktion über Zwischenstufe **202** und Formation des Epoxids **203** unter Inversion der Konfiguration. Die Esterhydrolyse erfolgte basenkatalysiert in einem Methanol/THF-Gemisch (1:1). Eine zweite

intramolekulare Substitutions-Reaktion erfolgt über Zwischenstufe **18** um Bicyclooctan-Alkohol **19** in 62% Ausbeute zu ergeben. Die primäre Alkohol-Funktion wurde mit einer MEM-Gruppe geschützt und Verbindung **204** isoliert. Abschließend wurde die Vinylphenyl-Doppelbindung per Ozonolyse gespalten und der entstandene Aldehyd unmittelbar mit Hilfe einer Wittig-Reaktion zum terminalen Olefin **203** transformiert. Der BCO-Ether **183** konnte somit in einer linearen Synthese ausgehend von Verbindung **63** in 18 Stufen mit einer Gesamtausbeute von 4,5% synthetisiert werden.

Abbildung 30: Synthese des BCO-Fragments **183** nach L. Michaelis und L. Chang (Teil 2), rot = aus anderen Arbeiten übernommen, die Dissertation von L. Chang folgt in Kürze

3.3 Synthese des Tetrahydropyran-Fragments

Abbildung 31: Synthese des Homoallylalkohol 206 nach M. Munt

Die Synthese des THP-Fragments **184** startet mit der *mono*-Silylierung von Propandiol **205** (Abbildung 31). Nach der Deprotonierung mit NaH fällt das *mono*-Natriumsalz als grauer Feststoff aus und eine zweite Deprotonierung und Silylierung wird dadurch erfolgreich unterbunden. Der *mono*-silylierte Alkohol wurde ohne weitere Aufarbeitung direkt unter Swern-Bedingungen oxidiert und Aldehyd **39** mit 82% Ausbeute über zwei Stufen erhalten. Zur Herstellung von Homoallylalkohol **206** wurde eine von H. C. Brown *et al.* publizierte Crotylierungs-Reaktion eingesetzt.^[22] Das Crotylierungs-Reagenz **210** wird *in situ* erzeugt (Abbildung 32). Zuerst wird *cis*-Buten **207** mit Schlosser-Base bei -40 °C deprotoniert, es entsteht ein orangefarbener Kalium-(*Z*)-Crotyl-Komplex **208**, welcher mit *B*-Methoxydiisopinocamphenylboran bei -78 °C direkt umgesetzt wird. At-Komplex **209** wird daraufhin mit BF₃-Et₂O behandelt, um Crotylierungs-Reagenz **210** zu erhalten.^[23]

Abbildung 32: Herstellung des Crotylierungs-Reagenz 210

Die Stereoselektivität der Crotylierungs-Reaktion wird mit Hilfe des Zimmerman-Traxler-Modells erklärt.^[24] Im Allgemeinen wird ein sechsgliedriger

"Sessel-Übergangszustand" (Abbildung 31) angenommen. Der größte Substituent nimmt dabei die äquatoriale Position ein. Die übrigen Substituenten werden so angeordnet, dass die sterischen Wechselwirkungen minimiert werden. Die chiralen Liganden bestimmen ob die Re- oder Si-Seite des Aldehyds kinetisch gehemmt wird und damit die absolute Konfiguration des Produkts. Mit der Wahl eines (Z)- bzw. (E)-Alkens wird die relative Konfiguration vorgegeben. E-Alkene ergeben im Allgemeinen das anti-Produkt und Z-Alkene das syn-Produkt. ^[25] Nach Addition von Crotylierungs-Reagenz 210 zu Aldehyd 39 und abschließender oxidativer Aufarbeitung wurde Homoallylalkohol 206 mit 80% Ausbeute und einem Diastereomerenüberschuss von de ≥ 95% erhalten. Die absolute Konfiguration von 206 wurde mit Hilfe der Mosher-Ester-Methode von C. Schulz ermittelt.^[26] C. Schulz gibt einen spezifische Drehwert von $\left[\alpha\right]_{546}^{21}$ = -8.6° (c = 1.1, Chloroform) an. Gemessen wurde ein Drehwert von $\left[\alpha\right]_{589}^{25}$ = -7.4° (c = 1.1, Chloroform). Die Differenz von ungefähr einem Grad lässt sich mit der verwendeten Wellenlänge und Messunsicherheiten erklären. Um im nächsten Schritt die Alkohol-Funktion am C2 von Homoallylalkohol 206 in der richtigen Konfiguration einzuführen, wurde eine stereoselektive Dihydroxylierung eingesetzt (Abbildung 33).

Abbildung 33: Triol 211 Synthese nach M. Munt und vorgeschlagener Reaktionsmechanismus

Diese Technologie wurde 2014 von P. Morken et al. publiziert und ermöglicht die Hydroborierung von Homoallylalkoholen und Bishomoallylalkoholen mit hoher Selektivität.^[27] Bei dieser Reaktion kommen Bis(pinacolato)diboran, Cäsiumcarbonat und Methanol als Reagenzien zum Einsatz. Versuche von P. Morken et al. mit katalytischen Mengen Base und 5 eg Methanol ergaben eine relativ hohe Selektivität, aber einen langsamen Umsatz. Um die Reaktionsgeschwindigkeit zu beschleunigen wurde die Basenmenge auf 0.3 eq erhöht. Dies führte zu einem schnelleren Umsatz, verschlechterte aber die Selektivität. Als nächstes wurde versucht, diesen Selektivitätsrückgang mit Erhöhung des Methanol-Anteils rückgängig zu machen. Mit gleichbleibender 17 Aquivalenten Methanol konnte die Selektivität, bei Reaktionsgeschwindigkeit, wiederhergestellt werden. Die genaue Funktion des Methanols ist zurzeit nicht vollständig geklärt. Computersimulationen von Fernandez legen nahe, dass sich zuerst ein Säure-Base-Gleichgewicht zwischen Methoxy- und Substrat-alkoholat woraufhin Substratalkoholat einstellt. das an das Bis(pinacolato)diboran addiert und Verbinduna 212 bildet.^[28] Das Bis(pinacolato)diboran wird dadurch für die Addition an das Alken aktiviert. P. Morken et al. schlagen vor, dass 213 über einen dreigliedrigen Übergangszustand zwischen Bor-Anion und den Alken-Kohlenstoffen an das Alken addiert. Die Konfiguration der Alkohol-Funktion am C4 in 206 gibt dabei die Konfiguration des neuen Stereozentrums am C2 vor. Nach oxidativer Aufarbeitung von 214 wird syn-Triol 211 mit einer Ausbeute von 80% und sehr guter Selektivität von mindestens 10:1 (syn/anti) erhalten. Eine langsame und milde oxidative Aufarbeitung ist für die Selektivität ein entscheidender Faktor. Die Aufarbeitung ist stark exotherm und bedarf intensiver Kühlung, da bei erhöhter Temperatur rapide Stereoinformation verloren geht. Um die Temperatur um Gefrierpunkt zu halten, wurde ein NaCl/Eis-Bad eingesetzt und die den Wasserstoffperoxid-Lösung sehr langsam hinzugetropft. Nach dem Zutropfen wurde Eis erneuert und die Reaktion über Nacht stehen gelassen. Das das Diastereomerenverhältnis wurde über die Integration der Methyl-Kohlenstoff-Signale im ¹³C-NMR-Spektrums bestimmt. Die relative Konfiguration wurde über die Kopplungskontante zwischen H2 und H3 mit Hilfe von Verbindung 215 ermittelt (Abbildung 34). Allgemein ergeben cis-ständige Cyclohexan-Protonen eine vicinale Kopplung von 0 - 5 Hz und trans-ständige von 6 - 14 Hz.^[29] Eine mono-Silylierung der primären Alkohol-Funktion mit TBSCI und Schützung des 1,3-Diols ergab Verbindung

45

215. Die Kopplungskontante zwischen H2 und H3 betrug ${}^{3}\mathcal{J}^{(H2-H3)} = 2.2$ Hz. Damit wurde Verbindung **211** eindeutig als *syn*-Triol identifiziert.

Abbildung 34: Ermittlung der relativen Stereochemie von Triol 211

Um die vier Alkohol-Funktionen im späteren Verlauf differenzieren zu können, wurde als nächstes entschieden, Triol **211** selektiv in 1,2-Position als Dimethylacetonid zu schützen. Dazu wurden verschieden Versuche durchgeführt, welche in Tabelle 4 zusammengefasst sind. Alle Versuche lieferten das gewünschte Produkt, aber die Ausbeuten und die Verhältnisse von 216 zu 217 variierten zum Teil erheblich (Abbildung 35). Mit CSA und DMP in Gegenwart von Molsieb (4 Å) konnte ein Verhältnis von 10:1 (216/217) und eine Ausbeute von 79% erreicht werden. Einsatz von PPTS führt zu einem schlechteren Verhältnis von 1:1 und zu einer langsameren Reaktionsgeschwindigkeit. p-TsOH·H₂O führt zur teilweisen Entschützung der TBS-Schutzgruppe und Bildung von Bisacetonid 218. Auch längere Reaktionszeiten erhöhen die Wahrscheinlichkeit, dass Bisacetonid 218 entsteht. Einsatz von Aceton anstelle von DMP ergab eine geringere Ausbeute. 1,2- und 1,3-Acetonoide können im Allgemeinen anhand der chemischen Verschiebung ihrer guartären Kohlenstoffatome unterschieden werden.^[29] Für 1,3-Acetonid **220** wird eine chem. Verschiebung des quartären C-Atoms von 98.4 ppm und für 1,2-Acetonid 221 von 108.8 ppm gemessen. Für Alkohol 217 wurde eine chemische Verschiebung von 108.4 ppm gemessen, was eindeutig auf ein 1,2-Acetonid hindeutet. Um letzte Zweifel zu beseitigen, wurde zusätzlich eine zweite Bestimmungsmethode angewandt. Dazu wurden beide Verbindungen mit PCC oxidiert und die chemischen Verschiebungen der

Carbonyl-Kohlenstoffe von Verbindung **222** und **223** gemessen. Auch diese Methode lieferte das gleiche Bild und somit konnte die richtige Verbindung eindeutig identifiziert werden.

Versuch	Reaktionsbedingungen	Ergebnis
1	<i>p</i> -TsOH [·] H ₂ O, Aceton, RT	38%, 217/216 (8:1)
2	PPTS, CuSO4, Aceton, RT, ON	218
3	DMP, PPTS, DCM, RT	58%, 217/216 (1:1)
4	DMP, <i>p</i> -TsOH·H ₂ O, DCM, RT	50%, 217/216 (9:1)
5	DMP, CSA, MS (4 Å), DCM, 0 °C	79%, 217/216 (10:1)

Tabelle 4: Versuche zur selektiven Acetonid-Bildung

Nachdem Verbindung 216 und Verbindung 217 per Säulenchromatographie getrennt wurden, konnten Versuche zur Rückgewinnung des Nebenprodukts 216 unternommen werden. Zuerst wurde hierfür eine selektive Entschützung zu Triol 211 angestrebt (Tabelle 5). Dabei kam im ersten Versuch PPTS in MeOH zum Einsatz. Bei diesem Versuch konnte Tetraol 219 und ein Gemisch von verschiedenen mono-TBSgeschützen Alkoholen isoliert werden. TFA in mit Wasser gesättigtem DCM lieferte ausschließlich Tetraol 219. CeCl₃ in Acetonitril und CuCl₂·2H₂O in Acetonitril ergaben keine Reaktion. Die Lewis-Säure TiCl₄ in DCM entfernte wiederum beide Schutzgruppen und lieferte Tetraol 219. Essigsäure in THF erwies sich als zu schwach um eine Reaktion zu bewirken. HBr in THF erwies sich als zu stark und lieferte wiederum Tetraol **219**. Zuletzt wurde von P. Hristova BiCl₃ in DCM getestet.^[30] Bei RT konnte hauptsächlich die Bildung von Tetraol 219 beobachtet werden. Zusätzlich konnte eine geringe Menge vom Isomerisierungs-Produkt 217 isoliert werden. Im nächsten Versuch wurde die Temperatur auf -78 °C gebracht und anschließend stufenweise erhöht, bis eine saubere Isomerisierungs-Reaktion beobachtet werden konnte. Bei -20 °C konnte man eine langsame Reaktion ohne Bildung von Nebenprodukten beobachten. Nach 24 h bei -20 °C kann mit katalytischen Mengen an Lewis-Säure eine komplette Isomerisierung von 1,3-Acetonid 216 zu 1,2-Acetonid 217 beobachtet werden. Damit konnte das anfallende Nebenprodukt 216 in einer Stufe sauber wiedergewonnen werden.

47

Abbildung 35: Selektive Acetonid-Bildung in 1,2-Position und die Bestimmung der Regioisomere

Auf dieser Stufe der Synthese wurde die absolute Konfiguration des C7-Kohlenstoffs bestimmt. Dazu wurden die diastereomeren Mosher-Ester **224** und **225** synthetisiert (Abbildung 36).^[31] Mit der Mosher-Ester-Methode kann die absolute Konfiguration eines Kohlenstoffzentrums bestimmt werden. In Lösung sollte das Carbinol-Proton, die Estercarbonyl-Gruppe und die Trifluormethyl-Gruppe statistisch gehäuft in einer Ebene liegen, da es sich um die stabilste Konformation handelt. Dabei wird je nach Diastereomer jeweils die andere Molekülseite von der Phenyl-Gruppe flankiert. Die Phenyl-Gruppe übt nun einen diamagnetischen Effekt aus, welcher zur Verschiebung der 1^H-NMR Signale zum höheren Feld hinführt. Als nächstes muss man nun die Differenzen der Protonen-Signale ($\Delta \delta = \delta_S - \delta_R$) bilden und den einzelnen Protonen-Signalen eindeutig zuordnen (Tabelle 6). Vergleicht man nun die gemessene Verschiebung der Protonen mit der erwarteten Verschiebung, kann man leicht sehen, ob es sich um die gewünschte absolute Konfiguration handelt. Um die Analyse zu

vereinfachen, sollte man unbedingt die Moleküle als Modell nachbauen. Die erwarteten Differenzen entsprachen den gemessen und somit sollten die absoluten Konfigurationen korrekt sein.

Versuch	Reaktionsbedingungen	Ergebnis
1	PPTS, MeOH, 0 °C, 3 h	219, TBS-Hopping
2	TFA, H2O, DCM, 0 °C, 1 h	219
3	CeCl ₃ , MeCN, RT, ON	keine Reaktion
4	CuCl ₂ ·2H ₂ O, MeCN, RT, ON	keine Reaktion
5	TiCl₄, DCM, -78 °C, 1 h	219
6	THF, AcOH, RT, ON	keine Reaktion
7	THF, HBr, 0 °C, 1 h	219

Tabelle 5: Versuche zur Rückgewinnung des Nebenprodukts 217

Abbildung 36: Diasteromere Mosher-Ester und Ausrichtung dieser im Raum

Atom- nummer	S-Mosher-Ester δ in ppm	<i>R</i> -Mosher-Ester δ in ppm	Δ (ppm)	∆ (Hz)
1	1.36	1.33	0.03	-19
2	1.3	1.26	0.04	-23
3	4	3.94	0.06	-37
3`	3.56	3.48	0.08	-48
4	3.92	3.78	0.14	-82
5				
6	1.02	0.99	0.03	-14
7	5.26	5.23	0.03	-16
8				
9	3.49	3.6	0.11	66
10	0.01	0.03	0.02	10
11	0.88	0.89	0.01	4

 Tabelle 6: Gemessene chemische Verschiebungen der Mosher-Ester-Analyse, grau = nicht sicher

 zuordbare Signale

Nachdem diese Unklarheiten beseitigt waren, konnte mit der Synthese fortgefahren werden (Abbildung 37). Die freie sekundäre Alkohol-Funktion des Acetonids **217** wurde als TIPS-Ether geschützt. Einsatz von Pyridin und TIPSOTf ermöglicht eine glatte Reaktion und lieferte Verbindung **226** mit 97% Ausbeute. Interessanterweise konnte mit Imidazol oder 2,6-Lutidin keine Reaktion festgestellt werden. Der Versuch TIPSCI als Reagenz einzusetzen, blieb ebenfalls erfolglos. Generell sind tertiäre Silylether stabiler als sekundäre, welche wiederum stabiler als primäre Silylether sind. Zusätzlich sind TIPS-Ether stabiler als TBS-Ether. Somit sollte einer selektiven Desilylierung der primären TBS-Ether-Funktion nichts im Wege stehen. Der generelle Ansatz in saurer, wässriger Lösung konnte allerdings nicht verfolgt werden, da die Dimethylacetonid-Gruppe unter diesen Bedingungen labil ist. Versuche mit HF·Pyridin-Komplex (70% HF/30% Pyridin) ergaben nach Zugabe von zusätzlichem Pyridin eine gute Ausbeute. Das zusätzliche Pyridin mildert die Bedingungen etwas ab und macht

eine zeitlich kontrollierte Reaktion möglich. Ohne zusätzliches Pyridin betrug die Ausbeute lediglich 25%, mit 97%! Für die Oxidation zu Aldehyd 228 wurden die Ley-Oxidation und die Swern-Oxidation erfolgreich angewandt. Die Ausbeute beträgt mit beiden Methoden in etwa 80%. Vorteil der verwendeten Ley-Oxidation liegt in der Einfachheit der Durchführung. Die Swern-Oxidation ist im Gegensatz dazu etwas aufwendiger, benötigt dafür aber günstigere Chemikalien. Der entstandene Aldehyd **228** wurde als nächstes mit Hilfe einer HWE-Reaktion zum α,β -ungesättigten Carbonsäuremethylester 229 umgesetzt. Bei dieser Variante der Wittig-Reaktion kommen resonanzstabilisierte Phosphonate zum Einsatz und ergeben hauptsächlich E-Alkene. Verwendung von NaH als Base, THF als Lösungsmittel und Trimethylphosphonoacetat als Reagenz mit Aldehyd **228**, ergab α,β -ungesättigten Carbonsäuremethylester 229 in 94% Ausbeute und einer hervorragenden Selektivität von \geq 20:1 (*E*/*Z*). Der Reaktionsmechanismus ist noch nicht genau bekannt, aber beginnt sicher mit der Deprotonierung des Phosphonats und Bildung eines Phosphonat-Anions. Darauf folgt die nucleophile Addition an den Aldehyd 228. Es entstehen Zwischenprodukte, welche im chemischen Gleichgewicht zueinanderstehen. Durch die elektronenziehenden Gruppen des Reagenzes kann sich ein thermodynamisches Gleichgewicht einstellen, was zum stabileren E-Produkt führt. Der (*E*)- α , β -ungesättigte Carbonsäuremethylester **229** wurde im nächsten Schritt mit zwei Äquivalenten DIBAL-H bei -78 °C zum Allylalkohol 230 reduziert. Auch diese Reaktion läuft mit nahezu quantitativer Ausbeute ab und liefert Allylalkohol 230 mit 94% Ausbeute. Allylalkohol 230 bildet nun die Grundlage für einen weiteren kritischen Reaktionsschritt, welcher die letzten beiden Stereozentren des THP-Fragments 184 einführt. Um diese mit möglichst hoher Selektivität einzuführen, wurde die Sharpless-Epoxidierung als geeignete Reaktion ausgewählt. Als Reagenzien kommen dabei L-Diethyltartrat, Tetraisopropylorthotitanat, t-Butylhydroperoxid und aktiviertes Molsieb zum Einsatz. Normalerweise wird Diethyltartrat und Tetraisopropylorthotitanat in katalytischen Mengen eingesetzt. Versuche mit Substrat **230** ergaben allerdings einen sehr langsamen und nicht vollständigen Umsatz. Stöchiometrische Mengen verringern normalerweise die Selektivität, blieben hier allerdings alternativlos. Glücklicherweise blieb die Selektivität in einem annehmbaren Rahmen. Bei -25 °C für 20 h in DCM konnte das gewünschte Epoxid 231 mit einer guten Selektivität von bis zu 10:1 und einer sehr guten Gesamtausbeute von 90% isoliert werden. Die Isomere können im Verlauf der Synthese leicht per Säulenchromatographie getrennt werden. Nachdem

51

eine geeignete Synthese für Epoxid **231** gefunden wurde, konnte im nächsten Schritt die Zyklisierung und Bildung des THP-Rings untersucht werden.

Abbildung 37: Fortsetzung der THP-Fragment Synthese nach M. Munt

Die Herausforderung bestand darin Bedingungen herzustellen, welche die Acetonid-Gruppe spalten und eine gleichzeitige Säure-katalysierte Zyklisierung induzieren (Abbildung 38). Zuerst wurde nach U. Koert *et al.* mit CSA als Protonenquelle, DCM/Isopropanol (30:1) als Lösungsmittelgemisch und einen Temperaturgradienten von -40 °C - 0 °C gearbeitet (Tabelle 7). ^[32] Aus unklaren Gründen konnte mit dieser Methode kein reproduzierbares Ergebnis erzielt werden. Der umgesetzte Anteil des Epoxids **231** variierte stark und scheinbar zusammenhangslos zwischen 5% und 60%. Durch längere Reaktionszeiten, höhere Temperaturen und/oder mehr CSA konnten keinen eindeutigen Verbesserungen erreicht werden. Eine weitere literaturbekannte Methode verwendete Weinsäure und FeSO₄ als Reagenzien-Kombination, welche leider mit Substrat **231** keine beobachtbare Reaktion bewirkten. Glücklicherweise konnte mit der nächsten Methode direkt ein gutes Ergebnis von 82% Ausbeute erzielt werden. Dabei wurde DCM/TFA/H₂O im Volumenverhältnis von 20:1:1 bei 0 °C

verwendet. Versuche mit größeren Mengen Epoxid lieferten konstante Ergebnisse von 80% - 90% Ausbeute.

Abbildung 38: Fortsetzung der THP-Synthese nach M. Munt und Kristallstruktur von Alkohol 234

Mechanistisch kann diese Transformation folgendermaßen beschrieben werden: zuerst wird das Dimethylacetonid säurekatalytisch gespalten und das Triol-Epoxid **232** entsteht. Dieses reagiert spontan in einer *6-exo-tet*-Reaktion nach Baldwin zum THP-Triol **233**.^[33] Dabei wird die Epoxid-Funktion mit Hilfe der Säure aktiviert und die Zyklisierung energetisch ermöglicht. Die alternativen Produkte, die durch einen Angriff der C1-Alkohol-Funktion an den C6- oder C7-Epoxid-Kohlenstoff, bzw. Angriff der C2-Alkohol-Funktion an dem C7-Epoxid-Kohlenstoff, ergeben würden, konnten nicht beobachtet werden. Als nächstes mussten die drei Alkohol-Funktionen differenziert werden. Es ist naheliegend, die 1,2-Diol-Funktion des Triols **233** mit einer Acetonid-Gruppe zu schützen. Nur die Kombination der C7- und C8-Alkohol-Funktionen ergibt einen thermodynamisch begünstigten 5-Ring. Reaktion der C7- und C1-Alkohole einen 9-Ring.

Eine Kombination von *p*-TsOH, CuSO₄ in Aceton bei 0 °C lieferte das gewünschte Produkt in guter Ausbeute von 87%. Auf dieser Stufe können die durch die Epoxidierung entstandenen Diastereomere leicht durch Säulenchromatographie getrennt werden. Alkohol **234** konnte zur Kristallisation gebracht werden und nach röntgenspektrometrischer Messung eine saubere Kristallstruktur erstellt werden. Mit diesem Erfolg konnte man nun die Einführung der terminalen Olefin-Seitenkette untersuchen.

Versuch	Reaktionsbedingungen	Ergebnis
1	CSA, DCM/Isopropanol (30:1), -45 °C - 0 °C	233 (5% - 60%)
2	FeSO₄, Weinsäure	keine Reaktion
3	DCM/TFA/Wasser (20:1:1), TFA, 0 °C, 1 h	233 (82%)

Tabelle 7: Versuche zur Synthese des THP-Triols 233

Die ersten Versuche konzentrierten sich darauf, eine geeignete Abgangsgruppe an der freien Alkohol-Funktion einzuführen und das terminale Olefin-C2-Fragment über eine Substitutionsreaktion mit einer Vinylmetall-Spezies direkt einzuführen (Abbildung 39). Die Tosylierung und Mesylierung von Alkohol 234 funktionierten reibungslos und lieferten Tosylat **235** und Mesylat **236**. Allerdings erwiesen sich diese in der Folge als äußerst reaktionsträge und selbst sehr harsche Reaktionsbedingungen konnten keine Reaktion herbeiführen. Aus diesem Grund wurde eine stärkere Abgangsgruppe in Form des Triflats 237 eingeführt. Das Triflat 237 ist ein paar Tage im Kühlschrank stabil, wurde aber in der Regel direkt umgesetzt. Zuerst wurde eine direkte Substitution mit Vinylmagnesiumbromid in THF ausprobiert (Tabelle 9). Bei niedrigen Temperaturen konnte keine Reaktion beobachtet werden, bei erhöhten Temperaturen trat eine rapide Zersetzung der Ausgangsverbindung ein. Als nächstes wurde ein Cuprat aus Vinylmagnesiumbromid und Li2CuCl4 erzeugt und dann bei -78 °C mit Triflat 237 zur Reaktion gebracht. Unter diesen Reaktionsbedingungen konnte erstaunlicherweise eine glatte Umsetzung zu Bromid 243 beobachtet werden. Um die Anwesenheit von Bromidionen auszuschließen wurden daraufhin einige Versuche mit Tetravinylzinn durchgeführt. Zuerst wurde Tetravinylzinn mit *n*-BuLi und CuCN für eine Stunde bei -78°C gerührt. Anschließend wurde das Triflat 237 hinzugegeben und für zwei Stunden bei -78 °C gerührt. Es konnte ein glatter Umsatz der Ausgangsverbindung beobachtet werden. Nach Isolation und NMR-Analyse wurde

das Produkt als Verbindung **244** identifiziert. Im Anschluss wurde ein weiterer Versuch mit Tetravinylzinn, PhLi und 12-4-Kronenether bei -78° C durchgeführt. Nach Zugabe des Triflats und Aufwärmen auf RT konnte keine Reaktion beobachtet werden. Nach diesen ernüchternden Ergebnissen wurde entschieden eine andere Strategie zu verfolgen.

Abbildung 39: Syntheseversuch des THP-Olefin 239 nach M. Munt

riduption

Versuch	Reaktionsbedingungen	Ergebnis
	1) 238 , <i>t</i> -BuLi, Et ₂ O, -78 °C, 30 min	
1	2) ZnBr ₂ , THF, 0 °C, 30 min	241 (79%)
	3) Vinylbromid, Pd(PPh ₃) ₄ , 0 °C, 1 h	
2	1) 238 , Cu/Zn, Toluol/DME (10:1), 60 °C, 2 h	2/11 (55%)
Z	2) Vinylbromid, Pd(PPh ₃) ₄ , 0 °C, 1 h	241 (3378)
-	1) Vinylbromid, <i>t</i> -BuLi, THF, -78 °C - 0 °C, 1 h	
3	2) CuCN, 0 °C, 1 h	keine Reaktion
	3) 238 , -78 °C - RT, 20 h	
4	238, 242, Cul, LiO <i>t</i> Bu, DMF, RT, ON	239 (36%)
5	1) 238 , CuBr·Me ₂ S, HMPA, -15 °C, 30 min	238 (20%), 239 (6%),
	2). VinylMgBr, -15 °C - RT, 2 h	241 (55%)

Tabelle 8: Versuche mit Iodid 238 zur Synthese von Olefin 239

lodid 238 wurde über eine Appel-Reaktion synthetisiert und konnte unter Standardbedingungen auf Anhieb in einer hervorragenden Ausbeute von 90% isoliert werden. Mit lodid 238 wurden nun Palladium-katalysierte Kreuzkupplungen möglich. Zuerst wurde lodid 238 mit t-BuLi und anschließend mit Zinkbromid behandelt. Zum so entstandenen Zinkalkyl-Reagenz wurde anschließend Vinylbromid und Pd(PPh₃)₄ hinzugegeben. Es konnte ein sauberer Umsatz der Ausgangsverbindung beobachtet werden und eine unbekannte Substanz wurde isoliert. Nach NMR-Analyse wurde das Produkt allerdings als Verbindung 241 identifiziert. Vermutlich entsteht nach dem Li/Halogen-Austausch Anion 240, welches über eine Ringöffnung zu Alkohol 241 weiter reagiert. Als nächstes wurde mit Hilfe von Cu/Zn-Amalgam bei 60 °C in einem Toluol/DMF-Lösungsmittelgemisch eine Art Alkylcuprat aus Iodid 238 erzeugt, welches im Verlauf wiederum mit Pd(PPh₃)₄ und Vinylbromid zu Olefin **239** reagieren sollte. Leider wurde auch unter diesen Bedingungen Alkohol 241 mit 54% Ausbeute gebildet. Als nächstes wurde eine Substitutionsreaktion mit einem Cuprat, welches aus Vinylbromid, t-BuLi und CuCN hergestellt wurde, durchgeführt. Leider konnte unter diesen Reaktionsbedingungen keine Reaktion beobachtet werden. Daraufhin wurde unter Barbier-Bedingungen Iodid 238 und Vinylborverbindung 242 in DMF gelöst, Cul und LiOtBu hinzugegeben und über Nacht bei RT gerührt. Tatsächlich konnte unter diesen Bedingungen Olefin 239 in 36% Ausbeute isoliert werden. Nachfolgende

Versuche ergaben allerdings eine noch geringere Ausbeute und weitere Optimierungsversuche wurden eingestellt. Zuletzt wurde eine weitere Substitutionsreaktion mit einem Cuprat, gewonnen aus Vinylmagnesiumbromid und unternommen. Bei diesem Versuch konnten 20% CuBr·Me₂S in HMPA, Ausgangsverbindung 238, 6% des gewünschten Olefins 239 und 55% des 241 isoliert unerwünschten Alkohols werden. Keine der getesteten Reaktionsbedingungen lieferte ein zufriedenstellendes Ergebnis und deshalb wurde auch längere Reaktions-Sequenzen in Betracht gezogen.

Versuch	Reaktionsbedingungen	Ergebnis	
1	237, Vinylmagnesiumbromid, THF, -78 °C - 80 °C	Zersetzung	
2	237, Vinylmagnesiumbromid, Li2CuCl4,	243 (34%)	
	THF, -78 °C - RT		
3	1) Tetravinylzinn, <i>n</i> -BuLi, CuCN, THF, -78 °C, 1 h	244 (200/)	
	2) 237 , -78 °C, 2 h	244 (30%)	
4	1) Tetravinylzinn, PhLi, 12-C-4, THF, 0 °C, 1 h	keine Reaktion	
	2) 237 , -78 °C, 2 h		
5	237 , Vinyllithium, Et ₂ O, - 78 °C - Reflux	Zersetzung	

Tabelle 9: Reaktionsbedingungen mit Triflat 237 zur Synthese des Olefins 239

Nach intensiver Literaturrecherche wurde erkannt, dass das Triflat **237** möglicherweise zu Nitril **245** transformiert werden könnte. Nitril **245** sollte dann zu Aldehyd **246** reduziert werden und Aldehyd **246** anschließend per klassischer Wittig-Reaktionen zu Alken **239** umgesetzt werden (Abbildung 40). Erfreulicherweise reagierte Triflat **237** und NaCN in DMSO in einer sauberen Substitutions-Reaktion zu Nitril **245** mit einer nahezu quantitativen Ausbeute. Das Nitril **245** ist ein klares Öl, welches zur spontanen Kristallisation neigt. Langsames Zutropfen von 1.1 eq DIBAL-H bei -78 °C ergab Aldehyd **246** mit ebenfalls sehr guter Ausbeute von über 90%. Überreduziertes Nebenprodukt konnten nicht beobachtet werden. Olefin **239** konnte anschließend mittels Wittig-Reaktion mit Methyltriphenylphosphoniumbromid und *t*-BuOK als Base in 81% Ausbeute erhalten werden. Diese Drei-Stufen-Sequenz liefert konstant gute Ergebnisse und kam deshalb als präferierte Route zum Einsatz. Um die Synthese des THP-Fragments **184** abzuschließen, musste die Dimethylacetonid-Gruppe wieder gespalten und eine geeignetere Schutzgruppe für die weitere Synthese eingeführt

werden. DCM/TFA/Wasser im Verhältnis von 20:1:1 bei 0 °C lieferte Diol **247** in nahezu quantitativer Ausbeute von 96%. Im letzten Schritt wurden beide Alkohol-Funktionen, nach Vorbild von Crimmens *et al.*, mit TESCI silyliert und das finale Tetrahydropyran-Fragment **184** mit 83% Ausbeute erhalten.

Abbildung 40: Abschluss der THP-Fragment 184 Synthese

Tetrahydropyran-Synthese Abbilduna 41 wird die nochmal übersichtlich In zusammengefasst. Dabei werden nur die Stufen gezeigt, welche eine säulenchromatographische Aufreinigung benötigten. Ausgangsverbindung 1,3-Propandiol 205 wird mono-silyliert und oxidiert. Der entstandene Aldehyd 39 per Crotylierungs-Reaktion zu Homoallylalkohol 206 umgesetzt. Dieser wird stereoselektiv dihydroxyliert, das entstandene Triol regioselektiv als 1,2-Dimethylacetonid geschützt und Verbindung 217 erhalten. Weitere Schutzgruppen-Anpassungen liefern Alkohol 227 in 85% Ausbeute über zwei Stufen. Oxidation der freien Alkohol-Funktion ergibt Aldehyd 228 in 80% Ausbeute. Eine zweistufige Sequenz aus HWE-Reaktion und Reduktion liefert Allylalkohol 230 in 81% Ausbeute. Sharpless-Epoxidierung, säurekatalysierte Zyklisierung und selektive Schützung der 1,2-Diol-Funktion ergibt Acetonid 234 in 61% Ausbeute über drei Stufen. Triflierung der Alkohol-Funktion und

Substitution des Triflats mit Cyanid-Anionen liefert Nitril **245**. Dieses wurde zum Aldehyd **246** reduziert und anschließend per Wittig-Reaktion zu Olefin **239** umgesetzt. Nach Austausch der Schutzgruppen wird Tetrahydropyran-Fragment **184** über 19 Stufen mit einer Gesamtausbeute von 7,7% erhalten.

Abbildung 41: Zusammenfassung der THP-Synthese 184 nach M. Munt

3.3 Synthese des Dihydropyran-Fragments

Abbildung 42: Synthese des DHP-Fragment **189** nach R. Stoykova (Teil 1), rot = aus anderen Arbeiten übernommen^[35]

Die Grundlage für die Synthese des DHP-Methylketons **189** wurde von Prof. R. Orii gelegt, von R. Stoykova weiterentwickelt und deshalb wird die Synthese hier nur zusammengefasst erläutert. ^[34] Die Synthese des DHP-Methylketons **189** beginnt mit der Inversion aller Stereozentren der natürlich vorkommender *D*-Galactose **248** und ergibt *L*-Galactose **254** über sechs Synthesestufen (Abbildung 42). Die originale Vorschrift wurde von R. Orii *et al.* publiziert und wurden für unsere Synthese in Bezug auf Ausbeute und Durchführbarkeit weiter optimiert. ^[35] Ausgehend von *D*-Galaktose **189** wird zuerst die primäre Hydroxyl-Funktion mit Tritylchlorid bei 50 °C in Pyridin selektiv geschützt und Tritylether **249** erhalten. Als nächstes wurde die Lactol-Funktion mit NaBH₄ in Methanol reduziert und Pentaol **250** erhalten. Die freien Hydroxyl-Funktionen wurden mit Essigsäureanhydrid in Pyridin acetyliert und Verbindung **251**

in 33% Ausbeute über drei Stufen erhalten. Die primäre Trityl-Schutzgruppe konnte unter Verwendung eines TFA/H₂0/DCM-Lösungsmittelgemisches wieder sauber entfernt werden. Alkohol **252** wurde unter Swern-Bedingungen zum Aldehyd **253** oxidiert. Zemplen-Deacytilierung führt zur Wiederherstellung des Halbacetals und ergibt *L*-Galaktose **254**. Als nächstes wurden alle Alkohol-Funktionen mit Essigsäureanhydrid in Pyridin acetyliert und Penta-Acetat **255** erhalten. HBr in Essigsäure führt zur Substitution einer Acetat-Gruppe und liefert Verbindung **256**. Unter reduktiven Bedingungen wird das Bromid **256** zu Olefin **257** umgewandelt. Ausgehend von Verbindung **251** konnte Verbindung **257** über sechs Stufen mit einer Ausbeute von 28% synthetisiert werden.

Abbildung 43: Synthese des DHP-Fragment 189 nach R. Stoykova und M. Munt (Teil 2)

Eine mit TMSOTf aktivierte Ferrier-Umlagerung lieferte, nach Zugabe von Allyltrimethylsilan, Allyl-DHP-Ether **259** in 92% Ausbeute (Abbildung 43). Die Umlagerung verläuft über das Allyloxocarbenium **258**, welches vom Allyltrimethylsilan nucleophil angegriffen wird, um DHP-Diacetat **259** zu bilden. Basische Deacetylierung

lieferte Diol **260** in 93% Ausbeute. Die primäre Alkohol-Funktion wurde selektiv mit TIPSCI und Imidazol in DCM als TIPS-Ether geschützt. Bissilyliertes Produkt wird unter diesen Bedingungen nicht gebildet. Nach Schützung der sekundären Alkohol-Funktion mit MOMCI wurde Verbindung **261** mit 84% Ausbeute über zwei Stufen erhalten. Desilylierung mit TBAF ergibt den primären Alkohol **262**. Dieser wurde unter Swern-Bedingungen oxidiert und lieferte Aldehyd **263** mit 73% Ausbeute. Eine klassische Grignard-Reaktion mit Methylmagnesiumbromid lieferte diastereomere Alkohole, welche ohne weitere Aufarbeitung direkt mit Dess-Martin-Periodinan zu Methylketon **189** oxidiert wurden. Ausgehend von *D*-Galaktose **248** konnte das Dihydropyran-Fragment **189** somit über 17 Stufen mit einer Ausbeute von 4.3% synthetisiert werden.

ен отвѕ (-)-lpc₂BCrt^Z, THF, TBSOTf, Pyridin, -78°C, 3 h THF, 0 °C, 1 h (66%, de > 95%) (89%) Ē Ē 264 266 265 1) O₃, DCM/MeOH (10:1), -78 °C, 30 min OTBS 1) TsCl, Et₃N, DMAP, DCM, RT, 20 h 2) NaBH₄, -78 °C - 0 °C, 1 h 2) Nal, Aceton, 80 °C, 4 h но (84%, 2 Stufen) (75%, 2 Stufen) İ 267 отвѕ 188

3.4 Synthese des Seitenketten-lodids

Abbildung 44: Synthese des Iodids 188 nach M. Munt

Die Synthese von Iodid **188** beginnt mit einer Brown-Crotylierung von Acetaldehyd **264** (Abbildung 44).^[36] Homoallylalkohol **265** wird dabei mit einer sehr guten Selektivität und einer Ausbeute von 66% erhalten. Die freie Alkohol-Funktion wurde mit TBSOTf in THF bei 0 °C geschützt und TBS-Olefin **266** erhalten. Erstaunlicherweise mussten verschiedene Silylierungs-Methoden ausprobiert werden, da die Ausbeuten zum Teil erheblich variierten (Tabelle 10). TBSCI, Imidazol als Base und DMF als Lösungsmittel ergab eine Ausbeute von nur 25%. Als nächstes wurde das Lösungsmittel ausgetauscht und DMAP hinzugegeben. Diese Bedingungen verbesserten die

Ausbeute etwas auf 41%. Zuletzt wurde noch das Silylierungs-Reagenz variiert. TBSOTf in THF und Pyridin als Base liefert das Produkt **266** mit sehr guter Ausbeute von 89%. Nachdem der Alkohol geschützt war, konnte mit der Ozonolyse der Olefin-Funktion und anschließender Reduktion des entstandenen Aldehyds fortgefahren werden.

Versuch	Reaktionsbedingungen	Ergebnis
1	TBSCI, Imidazol, DMF, 0 °C - RT, ON	25%
2	TBSCI, Imidazol, DMAP, DCM, 0 °C - RT, 3 h	41%
3	TBSOTf, Pyridin, THF, 0 °C, 1 h	89%

Tabelle 10: Silylierungsversuche des Homoallylalkohols 265

Zuerst wurde die Ozonolyse mit DCM als Lösungsmittel und unter Verwendung von Triphenylphosphin durchgeführt (Tabelle 11). Ohne den entstandenen Aldehyd zu isolieren wurde direkt mit DIBAL-H bei -78 °C reduziert. Leider konnte auf diese Weise kein Produkt isoliert werden. Möglicherweise stört Triphenylphosphin bei der Reduktion und der Aldehyd muss vorher abgetrennt werden. Als nächstes wurde ein DCM/Methanol-Lösungsmittelgemisch von 10:1 verwendet. Zur Lösung wurde bei -78 °C, bis diese eine bläuliche Färbung annahm, gasförmiges Ozon eingeleitet und anschließend auf RT erwärmt. Als Reduktionsmittel wurde diesmal LAH verwendet. Auch mit dieser Methode konnte kein Produkt isoliert werden. Nach Analyse der zugehörigen Dünnschicht-Chromatogramme wurde eine Zersetzung des Edukts vermutet. Möglicherweise eignet sich LAH für dieses Substrat nicht als Reduktionsmittel. Deshalb wurde die Ozonolyse ein weiteres mal mit dem DCM/Methanol-Lösungsmittelgemisch durchgeführt, aber diesmal mit NaBH4 ein milderes Reduktionsmittel verwendet. Nach einigen Optimierungsversuchen in Bezug auf die Durchführung konnte mit dieser Methode eine sehr gute Ausbeute von 89% über zwei Stufen erreicht werden. Nachdem der Alkohol 267 erfolgreich synthetisiert wurde, konnte die letzte Transformation zu lodid 188 angegangen werden. Eine Appel-Reaktion mit PPh₃, I₂, und Imidazol als Reagenzien lieferte das gewünschte Produkt mit einer moderaten Ausbeute von 40% - 50% (Tabelle 12). Aufgrund der mäßigen Ausbeute wurde entschieden, eine Finkelstein-Reaktions-Seguenz durchzuführen. Dazu wurde zuerst Alkohol 267 tosyliert und das entstandene Tosylat anschließend in

Versuch	Reaktionsbedingungen	Ergebnis
	1) Ozon, DCM, -78 °C	
1	2) PPh3, -78 °C, 1 h	0%
	3) DIBAL-H, -78 °C - RT	
2	1) Ozon, DCM/MeOH (10:1), -78 °C - RT, 2 h	0%
	2) LiAlH4, Et2O, RT, 12 h	0 /8
2	1) Ozon, DCM/MeOH (10:1), -78 °C, 30 min	800/
3	2) NaBH₄, -78 °C - 0 °C, 1 h	09%

kochendem Aceton mit Nal substituiert. Mit dieser Vorgehensweise konnte die Ausbeute signifikant auf mindestens 75% über zwei Stufen gesteigert werden.

Tabelle 11: Ozonolyse/Reduktions-Sequenz zur Synthese von Alkohol 267

lodid **188** konnte somit über eine kurze Syntheseroute von sechs Stufen mit sehr hoher Selektivität und einer Ausbeute von mindestens 37% synthetisiert werden. Um die absolute Konfiguration zu bestätigen, wurde die optische Rotation des lodids **188** gemessen und mit den publizierten Daten von W. Tochtermann und B. Bollbuck verglichen.^[37] Mit der erfolgreichen Synthese des lodids **188** und des DHP-Methylketons **189** konnte als nächstes die Kupplung zum Aufbau der trisubstituierten Doppelbindung untersucht werden.

Versuch	Reaktionsbedingungen	Ergebnis
1	PPh ₃ , I ₂ , Imidazol, DCM, 0 °C, 2 h	40% - 50%
2	1) TsCl, Et ₃ N, DMAP, DCM, RT, ON	750/
2	2) Aceton, Nal, 80 °C, 4 h	15%

Tabelle 12: Versuche zur Synthese des Iodids 188

3.5 Kupplung des lodids mit dem DHP-Methylketon

Die Herausforderung bei der Kupplung beider Verbindungen bestand darin, die Doppelbindung in der richtigen Geometrie (*E*) und akzeptabler Ausbeute einzuführen. Zuerst wurde dabei eine klassische Wittig-Reaktion mit Wittig-Reagenz **268** durchgeführt (Abbildung 45). Wittig-Reagenz **268** konnte aus Iodid **188** mit PPh₃ in Acetonitril bei 130 °C synthetisiert werden. Nach Zugabe von *n*-BuLi bei 0 °C entstand

ein tiefrotes Phosphoryilid, welches daraufhin mit Methylketon 189 behandelt wurde. Leider konnte keine Reaktion beobachtet werden und Methylketon 189 wurde reisoliert. Gleichzeitig wurde eine Art HWE-Reaktion mit Verbindung 269 durchgeführt. Phosphonoester 269 konnte mit Triethylphosphit bei 220 °C in der Mikrowelle erhalten werden. Es wurden verschieden Lösungsmittel und Basen für die Deprotonierung untersucht. Unerfreulicherweise konnte auch mit dieser Methode keine Reaktion beobachtet werden. Um sicherzustellen, dass die Deprotonierung von 268 erfolgt, wurde Wittig-Reagenz 268 mit Benzaldehyd umgesetzt. Dabei konnte eine glatte Reaktion zu Verbindung 270 beobachtet werden. Die Schlussfolgerung liegt nahe, dass das Methylketon 189 aus sterischen Gründen für diesen Reaktionstyp nicht zugänglich ist. Eine weitere Methode wurde von der Gruppe um C. S. Schindler an der "University of Michigan" beschrieben. ^[38] Dabei konnten Ketone und terminale Olefine, unter Verwendung von FeCl₃, zu internen tri-, bzw. tetra-substituierter Olefine transformiert werden. Olefin 265, Methylketon 189 und FeCl₃ wurden in DCM gelöst und über Nacht bei 80 °C gerührt. Leider konnte auch mit dieser Methode keine Reaktion beobachtet werden und die Ausgangsverbindungen wurden reisoliert.

Abbildung 45: Verschiedene Versuche zur Synthese von DHP-Fragment 187
Als nächster logischer Schritt erschien es, Julia-Kocienski-Olefinierungen mit Benzthiazol-Sulfon **271** (BT-Sulfon) und Phenyltetrazol-Sulfon **272** (PT-Sulfon) durchzuführen (Abbildung 46). ^[39] Beide Sulfone konnte über eine Mitsunobu-Reaktion und anschließender Oxidation der entstandenen Thioether synthetisiert werden. Benzothiazol bzw. Phenyltetrazolthiol in Gegenwart von PPh₃ und DIAD führten zu den beiden Thioethern, welche nach wässriger Aufarbeitung direkt mit Ammoniumheptamolybdat zu BT-Sulfon **271** und PT-Sulfon **272** oxidiert wurden. Beide Verbindungen waren mit einer Ausbeute von circa 70% über zwei Stufen zugänglich.

Abbildung 46: Julia-Kocienski-Olefinierungs Versuche zur Synthese von DHP-Fragment 187

Als nächstes wurde BT-Sulfon **271** mit LDA bei -78 °C in THF deprotoniert (Tabelle 13). Nach Zugabe von Methylketon **189** und langsamen Aufwärmen auf RT konnte ein nicht separierbares Gemisch an (E)- und (Z)-Isomeren im Verhältnis von 1:1 und einer Gesamtausbeute von 20% isoliert werden. Erstmals konnte eine kleine Menge des gewünschten Produkts isoliert werden und die prinzipielle Machbarkeit des Fragments bewiesen werden. Natürlich war das Ergebnis in Bezug auf Ausbeute und Selektivität

nicht zufriedenstellend und es wurde nach weiteren Optimierungsmöglichkeiten gesucht. Die Tatsache des untrennbaren Isomeren-Gemisches wurde ignoriert, in der Hoffnung diese im weiteren Verlauf der Synthese trennen zu können. Im zweiten Versuch wurde BT-Sulfon **271** mit LiHMDS in einem DMF/HMPA-Lösungsmittelgemisch (3:1) deprotoniert, dann Methylketon **189** hinzugegeben und langsam auf RT aufgewärmt. Leider konnte unter diesen Reaktionsbedingungen keine Reaktion beobachtet werden.

Versuch	Reaktionsbedingungen	Ergebnis	
1	1) LDA, THF, -78 °C, 1 h	107/376 (200/ 1·1)	
	2) 189 , -78 °C - 0 °C, 3 h	107/270 (20%, 1.1)	
2	1) LiHMDS, DMF/HMPA (3:1), -45 °C, 1 h	koino Poaktion	
	2) 189 , -45 °C - RT, 24 h	Keine Keakuon	

Tabelle 13: Reaktionsbedingungen zur Julia-Kocienski-Olefinierung mit Sulfon 271

Parallel dazu wurden Versuche mit PT-Sulfon **272** durchgeführt (Tabelle 14). Zuerst wurde PT-Sulfon **272** mit LiHMDS, in Anwesenheit von CeCl₃ deprotoniert und anschließend Methylketon **189** hinzugegeben. Nach 18 h bei RT wurde die Reaktion ohne beobachtbaren Umsatz abgebrochen. Auch eine Deprotonierung mit LDA bzw. NaHMDS und Zugabe von Methylketon **189** konnte keine Reaktion bewirken. Zuletzt wurde PT-Sulfon **272**, Methylketon **189** und Cäsiumcarbonat für 20 h in einem THF/DMF-Lösungsmittelgemisch gerührt. Wiederum konnte keine Reaktion beobachtet werden und Methylketon **189** wurde zurückgewonnen. Zuletzt wurde ein Modellversuch mit PT-Sulfon **272** und Zimtaldehyd durchgeführt. Dabei konnte unter Standartbedingungen (LDA in THF) Phenyldien **273** mit einer Ausbeute von 75% als sauberes (*E,E)*-Isomer isoliert werden.

Versuch	Reaktionsbedingungen	Ergebnis
1	1) LiHMDS, CeCl₃, DCM, -45 °C	keine Reaktion
I	2) 189 , 18 h, RT	
2	1) LDA, THF, -78 °C	keine Reaktion
Z	2) 2) 189 , 19 h, RT	
2	1) NaHMDS, THF, -78 °C	keine Reaktion
3	2) 189 , 16 h, RT	
4	189 , Cs ₂ CO ₃ , THF/DMF (3:1), 20 h, 60 °C	keine Reaktion

Tabelle 14: Reaktionsbedingungen zur Julia-Kociensky-Olefinierung mit Tetrazol-Sulfon 272

Nach diesen ernüchternden Ergebnissen wurden die Julia-Kocienski-Olefinierung vorerst eingestellt und stattdessen eine metallorganische Addition der Seitenkette und anschließender Dehydratisierung des entstandenen Alkohols in Angriff genommen.

Abbildung 47: Metallorganische Addition von Iodid 188 an Methylketon 189

Für die Additionsreaktion wurde lodid **188** mit *t*-BuLi bei -78 °C in THF zur Reaktion gebracht (Abbildung 47). Nach dem Metall/Halogen-Austausch wurde Methylketon **189** langsam zur Lösung hinzugetropft. Der Reaktionsmechanismus der Addition sagt zwei Diastereomere voraus. Im Verlauf der Dehydratisierungs-Versuche wurde klar, dass diese isomeren Alkohole in unterschiedlichen Verhältnissen entstehen und zu den Produkten **275**, **187** und **276** dehydratisieren. Im Verlauf wurde auch erkannt, dass für die Dehydratisierungs-Methode der Wahl, nur ein Diastereomer benötigt wird. Die exakte Konfiguration der Isomere des Isomerengemisches **274a/b** wurde nicht ermittelt. Der erste Versuch ergab eine Gesamtausbeute von 60% und ein Isomerenverhältnis von 4:1. Nun wurde versucht die Selektivität in Bezug des gewünschten Isomers zu erhöhen, da dieses präferiert zum gewünschtem *E*-Olefin **187** eliminierte. Metall/Halogen-Austausch mit *t*-BuLi in Diethylether und Zugabe von Methylketon **189**, lieferte ein Verhältnis von 3:1. Als nächstes wurden Barbier-Bedingungen getestet. Dabei wurde das Methylketon **189** und lodid **188** in Diethylether bzw. in THF gelöst und auf -78 °C gekühlt. Anschließend wurde *t*-BuLi langsam

hinzugetropft und für 2 h bei -78 °C gerührt. Erstaunlicherweise konnte mit dieser Methode die Selektivität komplett zugunsten des gewünschten Isomers gedreht werden. In Diethylether wurde ein Verhältnis von 1:4, in THF sogar von 1:15 erreicht. Im Folgenden werden die Dehydratisierungs-Versuche, welche diese Optimierungsversuche nötig gemacht haben, im Detail erläutert.

Versuch	Reaktionsbedingungen	Ergebnis	
1	1) <i>t-</i> BuLi, THF, -78 °C	60%, 274a/274b (4:1)	
I	2) 189 , -78 °C, 1 h		
2	1) <i>t</i> -BuLi, Et ₂ O, -78 °C	68% 27/a/27/h (3:1)	
	2) 189 , -78 °C, 1 h	00 %, 21 4a/21 4b (3.1)	
3	189 , <i>t</i> -BuLi, Et ₂ O, -78 °C, 2 h	72%, 274a/274b (1:4)	
4	189 , <i>t</i> -BuLi, THF, -78 °C, 2 h	75%, 274a/274b (1:15)	
5	Li, THF, RT, ON	keine Reaktion	

Tabelle 15: Reaktionsbedingungen der metallorganischen Addition von Iodid 188 an Methylketon 189

Zuerst wurde Diethylaminoschwefeltrifluorid **281** (DAST) als Dehydratisierungs-Reagenz eingesetzt (Tabelle 16) (Abbildung 48). Bei 0 °C und auch bei -20 °C in DCM wurde eine sehr schnelle Zersetzung des Edukts beobachtet. Bei -78 °C - -45 °C über 2 Tage konnte erstmals etwas Produkt **187** und das (*Z*)-Isomer **276** in einem Verhältnis von 1:1 und einer Ausbeute von 8% erhalten werden. Zusätzlich konnte etwas MOMentschütztes Produkt **277** isoliert werden. Als nächstes fiel die Wahl auf das Burgess-Reagenz **280**. 1.5 eq Burgess-Reagenz in Toluol bei 80 °C lieferte die Eliminierungsprodukte **187** und **275** im Verhältnis von 3:2 mit einer Gesamtausbeute von 13%. In diesem Fall konnten die Produkte per Säulenchromatographie getrennt werden. Interessanterweise konnte mit dieser Methode das (*Z*)-Produkt **276** nicht beobachtet werden. Aufgrund der geringen Ausbeute wurde die Temperatur auf RT verringert und für 20 h gerührt. Dies führte zu einer höheren Ausbeute, verminderte aber die Selektivität.

Parallel dazu wurden Versuche mit Thionylchlorid und Thionylbromid untersucht. Nach Rühren für 2 Tage in Pyridin konnte im Falle von Thionylchlorid keine Reaktion und im Falle von Thionylbromid eine Zersetzung beobachtet werden. Auch wenn die Ausbeute und Selektivität der Burgess-Reagenz Versuche eher bescheiden ausfielen, konnte dennoch reines *E*-Produkt **187** reproduzierbar synthetisiert werden. Im Folgenden wurden daher die Reaktionsbedingungen in Bezug auf Selektivität und Ausbeute weiter optimiert.

Versuch	Reaktionsbedingungen	Ergebnis
1	281 , DCM, 0 °C, 2 h	Zersetzung
2	281 , DCM, -20 °C, 2 d	Zersetzung
3	281 , DCM, -78 °C45 °C, 2 d	8%, 187/276 (1:1) + 277
4	280 , Toluol, 80 °C, 2 h	13%, 187/275 (1.5:1)
5	278, Toluol, RT, ON	36%, 187/275 (2:3)
6	279 , -45 °C, DCM	Zersetzung
7	Pyridin, (SOCI) ₂ , 0 °C - RT, 2 d	keine Reaktion
8	Pyridin, (SOBr) ₂ , 0 °C - RT, 2 d	Zersetzung

Tabelle 16: Dehydratisierungs-Versuche der Alkohole 274a/b

Die ersten Optimierungsversuche wurden bei RT durchgeführt. Die Ausbeute und die Selektivität ließen unter diesen Bedingungen stark zu wünschen übrig. Eine weitere Absenkung der Reaktionstemperatur auf 0 °C beeinflusste die Ausbeute und Selektivität kaum, verlängerte aber die Reaktionszeit erheblich. Ein weiterer Versuch bei 50 °C ergab eine etwas bessere Selektivität von 1.5:1 aber eine geringere Ausbeute. Als nächstes wurde das Lösungsmittel variiert und die Reaktionszeit und Temperatur konstant gehalten. Auch die Versuche in THF bzw. Diethylether ergaben eine Ausbeute von 34-38% und eine Selektivität von etwa 1:1. Unerfreulicherweise konnte kein eindeutiger Zusammenhang der Reaktionsbedingungen und des erhaltenen Resultats hergestellt werden. Die Ergebnisse deutet darauf hin, dass eine erhöhte Temperatur die Selektivität zu erreichen, müssten vermutlich die Schutzgruppen ausgetauscht werden, worauf aus Zeitgründen verzichtet wurde. An

dieser Stelle wurden die Optimierungsversuche eingestellt und die bis hierhin besten Bedingungen mit dem Isomeren-Gemisch der Alkohole **274a** und **274b** durchgeführt (Abbildung 49).

Versuch	Reaktionsbedingungen	Ergebnis
1	274, 280 , Toluol, RT, 16 h	40%, 187/275 (1:1)
2	274, 280 , Toluol, 0 °C, 24 h	41%, 187/275 (1:1)
3	274, 280 , Toluol, 50 °C, 2 h	33%, 187/275 (1.5:1)
4	274, 280 , THF, RT, 2 h	38%, 187/275 (1:1)
5	274, 280 , Et ₂ O, RT, 2 h	34%, 187/275 (1:1.5)

Tabelle 17: Optimierungs-Versuche zur Dehydrierung von Alkohol 274 mit Burgess-Reagenz

1.3 eq lodid **188** und 1 eq Methylketon **189** wurden in trockenem THF gelöst und auf -78 °C gekühlt. Anschließend wurden 2.6 eq *t*-BuLi langsam hinzugetropft und für 1 h bei -78 °C gerührt. Nach wässriger Aufarbeitung wurde das erhaltene Rohprodukt in trockenem Toluol gelöst, 1.5 eq Burgess Reagenz hinzugegeben und für 3 h bei 35 °C gerührt. Mit dieser Methode wurde eine Gesamtausbeute von 50% über zwei Stufen im Verhältnis von 1:1 (**275/187**) erhalten. Auch wenn keine Selektivität erreicht wird, konnte eine reproduzierbare und leicht durchzuführen Methode für die Synthese von Olefin **187** gefunden werden. Ein großer Vorteil dieser Methode ist, dass (*Z*)-Isomer **276** nicht entsteht, welches sich als untrennbar gezeigt hat.

Abbildung 49: Metallorganische Addition und Eliminierung zur Synthese von 187

Die gemachten Beobachtungen deuten darauf hin, dass die Selektivität eher primär vom Reaktionsmechanismus, der Art des Substrates und des Reagenzes abhängt, als von Parametern wie Lösungsmittel und Temperatur. Mechanistisch betrachtet addieren die Alkohole zuerst an das Schwefel-Atom des Carbamats **280** und Triethylamin wird eliminiert (Abbildung 50). Nach der Addition folgt eine Eliminierungsreaktion, welche auf zwei möglichen Wegen erfolgen kann. Dabei kann

entweder das Proton der Methyl-Gruppe (**282b**), oder der Seitenkette (**282a**) abstrahiert werden. Daraus ergeben sich die beobachteten Produkte **187** und **275**. Die Abwesenheit des (*Z*)-Isomers kann wahrscheinlich damit erklärt werden, dass die benötigte Ausrichtung des Zwischenprodukts für die *syn*-Eliminierung, aufgrund der sterischen Gegebenheiten, nicht erfolgen kann. Versuche das Nebenprodukt **275** in das thermodynamisch stabilere Olefin **187** zu isomerisieren schlugen fehl. Eine Mukajama-Hydration mit Mn(dpm)₃, Phenylsilan und Sauerstoff ergab ein komplexes Gemisch von verschiedenen Alkoholen (Abbildung 47). Nach Eliminierung mit Burgess-Reagenz, konnte lediglich eine minimale Menge von 3% des gewünschten Produkts **187** erhalten werden.

Abbildung 50: Vorgeschlagener Reaktionsmechanismus für die Dehydratisierung von Alkohol **274a/b** mit Burgess-Reagenz **280**

Zusammenfassend kann gesagt werden, dass der Aufbau der *tri*-substituierten *E*-Doppelbindung am DHP-Fragment sich als äußerst diffizil erwies. Eine Erklärung für die geringe Reaktivität und Selektivität könnten stereoelektronische Effekte des Pyran-Sauerstoffs sein. Dennoch konnte eine reproduzierbare Synthese für das DHP-Fragment **187** etabliert werden.

3.6 Finale Modifikationen des DHP-Fragments

Abbildung 51: Selektive Entfernung der MOM-Gruppe des DHP-Fragments 187

Für die finalen Modifikationen des DHP-Fragments 187 musste zuerst die MOM-Schutzgruppe selektiv entfernt werden (Abbildung 51). DHP-Fragment 187 wurde zuerst mit Bromocatecholboran bei 0 °C behandelt, was zur sofortigen Zersetzung führte (Tabelle 18). Erfreulicherweise konnte die Reaktivität durch Verringerung der Temperatur auf -78 °C soweit reduziert werden, um Alkohol 283 in 34% Ausbeute zu erhalten. Aufgrund der niedrigen Ausbeute wurden weitere Versuche mit wässriger HBr in verschiedenen Lösungsmitteln durchgeführt. Wässrige HBr in THF bei RT für 24 h ergab Alkohol 283 mit 31% Ausbeute. Verwendung von HBr in MeCN ergab eine Ausbeute von 27%. Als nächstes wurde anstatt von wässriger HBr, HBr in Essigsäure verwendet. Einige Tropfen HBr (33% in Essigsäure) in MeCN bei -45 °C ergab Alkohol 283 mit 38% Ausbeute. In THF bei 0 °C für 24 h konnte eine Zersetzung und in MeOH für 1 h Diol 284 beobachtet werden. Acetylchlorid in MeOH bei 0 °C führte ebenfalls zu einer doppelten Entschützung und Diol 284. Zuletzt wurde das Edukt in MeOH mit PPTS gerührt. Unter diesen Reaktionsbedingungen konnte eine saubere Desilylierung zu Alkohol 285 beobachtete werden. Scheinbar ist die TBS-Gruppe instabiler gegenüber Säuren als die MOM-Gruppe. Einsatz von TMSBr in DCM führte bei 0 °C zur rapiden Zersetzung des Edukts und bei -78 °C zu Diol 284. Somit konnten einige

Methoden gefunden werden, welche Alkohol 283 direkt lieferten, auch wenn die Ausbeuten unter allen getesteten Reaktionsbedingungen eher unbefriedigend ausfielen. Da Diol 284 oft als Nebenprodukt beobachtet werden konnte, wurde entschieden die TBS-Gruppe durch die stabilere TIPS-Gruppe zu ersetzen. Zur Desilylierung konnte PPTS in MeOH, oder TBAF in THF verwendet werden. Für die Einführung der TIPS-Schutzgruppe kam TIPSOTf und Pyridin in DCM zum Einsatz. TIPS-geschütztes DHP-Fragment 286 konnte somit mit 91% Ausbeute über zwei Stufen erhalten werden. Erfreulicherweise erwies sich Verbindung 286, wie erhofft, als stabiler. Verbindung 286 wurde in DCM gelöst, auf -95 °C gekühlt und 2 eg Bromocatecholboran, in etwas DCM gelöst, langsam hinzugetropft. Mit dieser Methode konnte Alkohol 186 mit einer reproduzierbaren Ausbeute von 50 - 60% isoliert werden. Als primäres Nebenprodukt unter diesen Reaktionsbedingungen wurde Bromid 287 erhalten. Dieses bildet sich mit einem Überschuss an Bromochatecholboran bei höheren Temperaturen. Eine schnelle wässrige Aufarbeitung bei kalten Temperaturen erwies sich als hilfreich, um Nebenreaktion zu minimieren und die Ausbeute in einem annehmbaren Rahmen zu halten.

Versuch	Reaktionsbedingungen	Ergebnis
1	Bromocatecholboran, DCM, 0 °C, 1 h	Zersetzung
2	Bromocatecholboran, DCM, -78 °C, 1 h	187 (28 - 34%)
3	THF, wässrige HBr, RT, 1 h	187 (31%)
4	MeCN, wässrige HBr, RT, 2 h	187 (27%)
5	MeCN, HBr (33% in Essigsäure), -45 °C, 2 h	187 (38%)
6	TMSBr, DCM, 0 °C, 1 h	Zersetzung
7	TMSBr, DCM, -78 °C, 1 h	284 (44%)
8	HBr (33% in Essigsäure), THF, 0 °C, 24 h	Zersetzung
8	HBr (33% in Essigsäure), MeOH, 0 °C, 1 h	284
10	AcCl, MeOH, 0 °C, 30 min	284
11	PPTS, MeOH, 0 °C - RT, ON	285 (90%)
12	Chlorocatecholboran, DCM, 0 °C, ON	keine Reaktion

Tabelle 18: Entschützungsversuche der MOM-Gruppe

Nachdem die MOM-Gruppe mit einer akzeptablen Ausbeute entfernt werden konnte, wurde die Einführung eines geeigneten Trienester-Precurser untersucht. Die ersten retrosynthetischen Überlegungen führten zu Verbindung 288 (Abbildung 52). In dieser sollte das Trien-System von (+)-Neosorangicin A 6 als En-in-en-Ester maskiert werden. Im Verlauf der Synthese sollte die Dreifachbindung partiell zu einer Z-Doppelbindung reduziert werden und somit den benötigten (E,Z,Z)-Trienester 177 liefern. Verbindung 288 könnte über eine Sonogashira-Kupplung aus Vinyliodid 178 und dem Ester 289 hergestellt werden. Im Folgenden werden die Synthesebedingungen und Ergebnisse der Synthese von Verbindung 289 beschrieben. Die Synthese des Vinyliodids **178** folgt im nachfolgenden Abschnitt.

Abbildung 52: Retrosynthetische Überlegungen um die empfindliche Trienester-Funktion einzuführen

Um eine möglichst konvergente Synthese zu ermöglichen, wurde Säurechlorid **295** synthetisiert (Abbildung 53). Dieses würde anschließend idealerweise mit Alkohol **186** zur Reaktion gebracht werden und DHP-Ester **289** liefern. Säurechlorid **295** konnte über eine fünfstufige Synthese aus Propionsäure **290** hergestellt werden.^[40] Propionsäure **290** wurde zuerst in wässriger Jodwasserstoffsäure für 24 h bei 85 °C gerührt. (*Z*)-3-lodacrylsäure **291** konnte nach Umkristallisation aus Hexan in sehr guter

Reinheit und einer Ausbeute von 82% erhalten werden. Eine Schützung der Säure-Funktion als MEM-Ester und anschließende Sonogashira-Kreuzkupplung mit Ethintrimethylsilan lieferte Verbindung **293**. Nachdem die MEM-Schutzgruppe mit Hilfe von HCl in THF entfernt wurde, konnte Säure **294** als weißer Feststoff isoliert werden. In einem letzten Reaktionsschritt wurde die Säure **294** in Oxalylchlorid gelöst und für 20 h bei RT gerührt. Nach Kugelrohrdestillation konnte Säurechlorid **295** mit 59% Ausbeute über 2 Stufen erhalten werden. Das Säurechlorid **295** ließ sich somit mit einer Gesamtausbeute von 22% über fünf Stufen ausgehend von Propionsäure **290** gewinnen.

Abbildung 53: Synthese des Säurechlorids 295

Die Reaktion von Alkohol **186** mit Säurechlorid **295** in Anwesenheit von Triethylamin lieferte Verbindung 306 mit 64% Ausbeute (Abbildung 54) (Tabelle 19). Offenbar isomerisiert das Säurechlorid im Verlauf der Reaktion komplett und liefert Ester 306. Ähnliche Isomerisierungen wurden bereits von Amos B. Smith III et al. beobachtet.^[15] Seiner Meinung nach liegt der Grund dafür an der Art der aktivierten Zwischenstufe. Deshalb wurden als nächstes verschiedene Versuche mit Carbonsäure 294 durchgeführt. Zuerst wurden die gängigen Methoden, wie die Mukajama-, Steglich-Veresterungen Yamaguchi-, und Modifikationen davon untersucht. Umsetzungen mit 186, 294, NaHCO₃ und PyBr·BF₄ in DCM sowie 186, 294, Et₃N und DMAP in THF ergaben keine Reaktion. Als nächstes wurden ähnliche

Reaktionsbedingungen mit (*Z*)-3-lodacrylsäure **291** untersucht. Auch unter diesen Bedingungen konnte keine Reaktion beobachtet werden. Es wurde vermutet, dass die aktivierten Intermediate nicht reaktiv genug sind. Deshalb wurde das gemischte Anhydrid **299** hergestellt und anschließend mit DHP-Alkohol **186** zur Reaktion gebracht. TFAA in DCM bei -78 °C reagierte mit (*Z*)-3-lodacrylsäure **291** in einer sauberen Reaktion und bildet das gemischte Anhydrid **299**. DHP-Alkohol **186** wurde bei -78 °C hinzugegeben und für 1 h gerührt. Jedoch konnte keine Reaktion beobachtet werden und das Gemisch wurde langsam auf RT aufgewärmt, was zu einer Zersetzung des Anhydrid **299** führte.

Abbildung 54: Veresterungs-Versuche mit verschiedenen Reagenzien und deren Herstellung

Versuch	Reaktionsbedingungen	Ergebnis
1	295 , Et ₃ N, DCM, -78 °C - 0 °C, 2 h	306 (64%)
2	294 , NaHCO ₃ , PyBr·BF ₄ , DCM, RT, ON	keine Reaktion
3	294 , Et₃N, DMAP, THF, RT, 2 h	keine Reaktion
4	291, DCC, DMAP, DCM, RT, ON	keine Reaktion
5	291 , NaHCO ₃ , PyBr [·] BF ₄ , DCM, RT, ON	keine Reaktion
6	1) 291 , Tf ₂ O, DCM, -78 °C, 2 h 2) 186 , -78 °C - RT	keine Reaktion
	204 2.6 Lutidia DuBr DE, DTEAC DOE DT 1 h uN/	
7	294 , 2,0-Lutidin, PyBr BF4, BTEAC, DCE, RT, Th, μW. 80 °C, 15 min - 100 °C, 15 min	keine Reaktion
8	1) 294 , 2,2-Dithiodipyridin, PPh ₃ , DCM, RT, 1 h	keine Reaktion
	2) 186 , AgBF₄, Toluol, μW: 1 h, 100 °C	
9	1) 294 , Carbonylimidazol, DMF, RT, 3 h	keine Reaktion
	2) Imidazol, 186 , DMF, μW: 100 °C, 1 h	
10	 294, Ethoxyacetylen, Ru[Cl₂(p-cymene)]₂, Toluol 	keine Reaktion
	2) 186 , CSA, DCE, RT - 80 °C, ON	
11	294, 186, DCC, DMAP, DCM, RT, 1 h	306 (50%)

Tabelle 19: Veresterungsbedingungen für die Synthese von 289

Nach intensiver Literaturrecherche wurden weitere Reaktionsbedingungen gefunden, welche Veresterungen mit ähnlichen Systemen beschrieben. Carbonsäure **294**, 2,6-Lutidin, PyBr-BF4 **298** und BTEAC in DCE wurden für 1 h bei RT gerührt. Als keine Reaktion festzustellen war, wurde das Gemisch zuerst bei 80 °C und anschließend bei 100 °C für jeweils 15 min in der Mikrowelle gerührt. Auch unter diesen extremen Bedingungen konnte keine Reaktion erzwungen werden. Aktivierung der Carboxyl-Gruppe mit 2,2-Dithiodipyridin und PPh₃ führt zum Thioester **300**, Aktivierung mit Carbonyldiimidazol führte zu Carbonylimidazol **301**. Thioester **300** wurde daraufhin mit Alkohol **186** und der Lewis-Säure Ag·BF4 für 1 h bei 100 °C in der Mikrowelle gerührt. Auch Carbonylimidazol **301** wurde in Anwesenheit von Imdiazol in DMF für 1 h bei 100 °C in der Mikrowelle gerührt. Leider konnte auch unter diesen Reaktionsbedingungen kein Produkt beobachtet werden. Eine weitere ungewöhnliche Veresterungsmethode

verwendet Ethoxyacetylen und Ru[Cl₂(*p*-cymene)]₂, um voraussichtlich über Zwischenstufe **302a**, säurekatalysiert zu Zielmolekül **289** zu reagieren. Die zuletzt gemachten Erfahrungen wurden bestätigt und auch mit dieser Methode konnte kein Produkt isoliert werden. Abschließend wurde nochmals eine klassische Steglich-Veresterung durchgeführt. Unter diesen Bedingungen konnte die Bildung eines Produkts beobachtet werden. Nach NMR-Analyse stelle sich heraus, dass wiederum nur reines *E*-lsomer **306** gebildet wurde. Zusammenfassend kann man sagen, dass alle untersuchten Reaktionsbedingungen entweder kein Produkt oder reines *E*-lsomer **306** lieferten.

Abbildung 55: Synthese von 289 über eine Still-Gennari-Reaktion

Da sich das (*Z*)-En-In-System als sehr anfällig für Isomerisierung präsentierte, wurde im nächsten Ansatz die Bildung der (*Z*)-Doppelbindung auf einem anderen Weg ins Auge gefasst. Eine Still-Gennari-Reaktion mit Phosphonat **304** und Aldehyd **305** sollte (*Z*)-Ester **289** ergeben (Abbildung 55). Trifluoroethoxyphosphorylacetat **302b** wurde mit Hilfe von Lipase in einer wässrigen Phosphatpuffer-Lösung bei 37 °C zu Trifluoroethoxyphosphorylcarbonsäure **303** hydrolysiert. Erfreulicherweise lieferte eine Steglich-Veresterung von Alkohol **186** und Trifluoroethoxyphosphorylcarbonsäure **303** Phosphatester **304** in 67% Ausbeute. Dieser konnte mit KHMDS und 18-C-6 in THF bei -78 °C sauber deprotoniert werden. Nach Zugabe des Aldehyds **305** konnte auch bei diesem Versuch nur das unerwünschte (*E*)-Isomer **306** isoliert werden.

Aufgrund der fehlenden Selektivität und Anfälligkeit gegenüber Isomerisierung wurde parallel eine weitere Methode untersucht. Die sogenannten Ando-Variante wurde unter

ähnlichen Bedingungen als sehr milde und selektive Einführung von (*Z*,*Z*)-Di-en-Zinnesters beschrieben.^[41] Versuche von K. Ando und X. Francis wiesen darauf hin, dass für (*Z*)-Zinnacrylaldehyd **312** besondere Reaktionsbedingungen nötig sind, um eine hohe (*Z*)-Selektivität zu erhalten.^[42] Verschiedene Bedingungen, wie die Still-Gennari-Variante mit KHMDS, 18-C-6 in THF oder Triton B in THF und DBU mit Nal wurden untersucht. Für ausnahmslos alle untersuchten Systeme, ausschließlich des (*Z*)-Zinnacrylaldehyds, wurde eine hohe (*Z*)-Selektivität beobachtet. K. Ando beschrieb daher als erster modifizierte Bedingungen, um auch für diese Art von Aldehyden eine hohe (*Z*)-Selektivität zu ermöglichen. Die Substituenten der Phosphonat-Gruppe wurden hierfür modifiziert (Aryloxyl-Reste) und als Base kam NaH oder Triton B in THF zum Einsatz.

Abbildung 56: Synthese von 179 über die Ando-Variante einer HWE-Reaktion

Um diese modifizierten Bedingungen zu testen, musste zuerst Diphenoxyphosphorylcarbonsäue **309** synthetisiert werden (Abbildung 56). Die Synthese startet mit Diphenylphosphonat **307**, welches mit Mel und NaH in THF zu Methyldiphenylphosphonat umgesetzt wurde. Dieses wurde direkt mit Benzylchloro-

format und LiHMDS zu Benzyldiphenoxyphosphorylacetat 308 umgesetzt. Im letzten Schritt wurde die Benzyl-Gruppe mit Hilfe von Pd/C/H₂ in Etyhlacetat hydrogenolytisch entfernt. Nach Umkristallisation konnte Diphenoxyphosphorylcarbonsäure 309 in 47% Ausbeute über drei Stufen isoliert werden. Eine Reaktion von 309 mit DHP-Alkohol 186 unter Steglich-Bedingungen lieferte Verbindung 313 in hervorragender Ausbeute von 78%. Für die nächste Stufe wurde anstelle von TMS-Acetylenaldehyd 305, (Z)-Tributylzinnacrylaldehyd 312 verwendet. Aldehyd 312 konnte über eine dreistufige Synthese aus Propagylalkohol **310** hergestellt werden.^[41] Propagylalkohol **310** wurde zuerst mit LiAIH₄ in THF hydroaluminiert. Das entstandene nucleophile Alan konnte im nächsten Schritt mit t-Butylzinnchlorid umgesetzt werden, um (Z)-Tributylzinnacrylaldehyd 311 in 43% Ausbeute über zwei Stufen zu ergeben. Nach Dess-Martin-Oxidation wurde (Z)-Tributylzinnacrylaldehyd 312 mit 56% Ausbeute erhalten. Diese Verbindung erwies sich als relativ unempfindlich gegenüber Isomerisierung und konnte für einige Wochen bei -20 °C gelagert werden. Nachdem das Phosphonat 313 und der Aldehyd 312 erfolgreich synthetisiert wurden, konnte die nächste kritische Reaktionsstufe untersucht werden. Phosphonat 185 wurde in trockenem THF vorgelegt und NaH hinzugegeben. Nach 1 h Rühren bei 0 °C wurde der in trockenem THF gelöste Aldehyd **312** zum deprotonierten Phosphonat hinzugetropft. Glücklicherweise stellten sich alle Annahmen als richtig heraus und das gewünschte (Z,Z)-Zinndienesterdihydropyran **179** konnte mit einer Ausbeute von 40% und eine Selektivität von 1:2 (E/Z) erhalten werden. Vermutlich läuft die Reaktion über Übergangszustand 366 ab. Nach der Addition wird ein Komplex zwischen dem Zinnatom, dem Sauerstoffanion und dem Phosphoratom gebildet. Eine syn-Eliminierung schließt den Prozess ab und 179 entsteht. Das unerwünschte (E)-Isomer kann leicht nach Hydrolyse mit K₂CO₃ in Methanol als DHP-Alkohol 186 zurückgewonnen werden. Damit konnte (Z,Z)-Zinndienesterdihydropyran 179 über 24 lineare Stufen mit einer Gesamtausbeute von 0.22% erfolgreich synthetisiert werden.

3.7 Synthese des BCO/THP-Vinyliodids

Die Synthese des Vinyliodids **178** beginnt mit der Kupplung von BCO-Fragment **183** und THP-Fragment **184** via Kreuzmetathese (Abbildung 57). Diese Reaktion wurde nach Vorbild von Crimmins *et al.* für unsere Fragmente von Le. Chang optimiert und durchgeführt. ^[16]

Abbildung 57: Kreuzmetathese des BCO-Fragments **183** mit THP-Fragment **184**, rot = aus anderen Arbeiten übernommen

In entgastem Toluol wurde 1.5 eq BCO-Fragment **183** gelöst und 5mol% Grubbs 2nd Gen. Kat. hinzugegeben. THP-Fragment **184** und 10mol% Grubbs 2nd Gen. Kat. wurden in getrennten Kolben in etwas entgastem Toluol gelöst und über 6 h parallel zur BCO-Lösung hinzugetropft. Kreuzkupplungsprodukt **182** konnte mit diesem Verfahren in 60% Ausbeute erhalten werden. Zusätzlich konnte noch etwas THP-Homodimer **313** isoliert werden. Dieses wurde über einen zweistufigen Prozess via Ozonolyse und Wittig-Reaktion wieder zurückgewonnen. Im nächsten Schritt wurde Kreuzkupplungsprodukt **182** unter modifizierten Swern-Bedingungen zu Aldehyd **181** oxidiert. Dafür kamen 5 eq Oxalylchlorid und 10 eq DMSO zum Einsatz. Nach 1 h bei -45 °C konnte eine komplette Entschützungs/Oxidations-Sequenz erreicht werden. Abkühlen auf -78 °C und langsames Hinzutropfen von Triethylamin lieferte Aldehyd **181** mit 75% Ausbeute über zwei Stufen. Inspiriert von Crimmins *et al.* wurde im nächsten Schritt Vinyliodid **315**, in einer Cram-chelat-kontrollierten Addition, an Aldehyd **181** addiert (Abbildung 58). P. J. Walsh beobachtete, dass *α*-Siloxy-Aldehyde unter geeigneten Reaktionsbedingungen die Felkin-Anh-Selektivität

übersteuern können, indem die metallorganische Spezies an die Silyloxy-Gruppe komplexiert.^[43] In diesem Fall wurde Vinyliodid **315** zur intermediären Vinylzink-Spezies **316** transformiert. Vinyliodid **315** ließ sich über eine einstufige Sequenz aus 4-Pentenal **314** per Takai-Reaktion synthetisieren. Intermediat **316** bildet einen Komplex mit der Silyloxy-Gruppe und der Aldehyd-Funktion des Elektrophils **181**. Der nukleophile Angriff findet daraufhin von der sterisch weniger gehinderten Seite statt und addiert die Seitenkette diastereoselektiv an Aldehyd **181**. Nach einigen Optimierungsversuchen wurde das beste Verhältnis zwischen Selektivität und Ausbeute mit 3 eq Vinyliodid, 6 eq *t*-Buli und 4.5 eq Dimethylzink in THF bei -95 °C erreicht. Die Alkohole **317a/b** konntem mit einer Ausbeute von 80% und einer Selektivität von mindestens 10:1 isoliert werden.

Abbildung 58: "Cram-chelation-controlled" Addition von Vinyliodid 315 an Aldehyd 181

Um die relative Stereochemie des neuen Stereozentrums zu ermitteln, wurden die Acetonide **318** und **319** aus dem erhaltenen Isomerengemisch synthetisiert (Abbildung 59). Über das NOE-Signal zwischen dem *tert.* H-Atom des Acetonids und einer Methyl-Gruppe des Acetonids kann man die relative Stereochemie bestimmen. Liefern beide Protonen ein starkes NOE-Signal zu den Methyl-Protonen, handelt es sich dabei um das gewünschte *anti*-Felkin-Anh-Produkt **318**. Ergibt dagegen nur ein Proton ein starkes NOE-Signal, handelt es sich um das unerwünschte Nebenprodukt **319**.

Abbildung 59: Ermittlung der relativen Stereochemie von Verbindungen **317a** und **317b** mit Hilfe der Acetonide **318** und **319** sowie ein beispielhafter Entschützungs-Versuch von Verbindung **319**

Nachdem dieses Problem gelöst war, konnte die Entschützung der MEM-Gruppe, bzw. vorige Schützung der Diol-Funktion mit einer geeigneten Schutzgruppe, bearbeitet werden. Zuerst wurde mit PPTS in MeOH/THF (4:1) die sekundäre TES-Gruppe entfernt. Aufgrund von Orthogonalitäts- bzw. Stabilitätsproblemen, musste die Diol-Schutzgruppe mehrfach geändert werden (Abbildung 60). Zunächst wurde das Diol als Siloxan **321** mit Hilfe von BIPS(OTf)₂ geschützt (Tabelle 20). Siloxan **321** erwies sich als relativ stabil, aber die Ausbeute blieb bei bescheidenen 50%. Verbindung **321** zeigte sich jedoch im Verlauf der MEM-Entschützung als sehr instabil. Es wurden mehrere Versuche durchgeführt, welche fast immer in der Zersetzung endeten. Beispielhaft ist die versuchte Entschützung mit der Lewis-Säure ZnBr₂ gezeigt (Abbildung 60). Bei -78 °C konnte keine Reaktion beobachtet werden, während des Aufwärmungsprozesses trat ein rapider Zerfall der Verbindung ein. Aufgrund der unzureichenden Stabilität von **321** wurde ein weiteres Siloxan **322** synthetisiert. Erstaunlicherweise konnte diese Schutzgruppe nicht im befriedigenden Maße

eingeführt werden, bzw. die entstandene Verbindung zerfiel direkt nach der Entstehung. Schützung beider Alkohol-Funktionen als TBS-Ether mit TBSCI lieferte ein mono-silyliertes Produkt. Da Versuche mit TBSOTf keinen Erfolg brachten, wurde versucht die Reaktivität des Substrates zu erhöhen. Ionische Bedingungen mit KH und 18-C-6-Kronenether bewirkte eine spontane Zersetzung des Diols 320. Im weiteren Verlauf wurde festgestellt, dass bei den Silvlether-Schutzgruppen beinahe durchgängig nach wenigen Tagen Lagerung im Kühlschrank signifikante Zersetzungsprodukte beobachtet werden konnten. Das erklärt möglicherweise auch die rapide Zersetzung unter Lewis-sauren Bedingungen. Aus diesen Gründen wurde auf die weitere Untersuchung der Si-basierte Schutzgruppen verzichtet und stattdessen der Fokus auf Acetonide gerichtet. Schützung des Diols mit Dimethoxypropan und PPTS bei RT ergab Acetonoid 318 in 60% Ausbeute. Mit Acetonoid 318 wurde, wie bereits erwähnt, die relative Stereochemie bestimmt. Zusätzlich wurden einige Entschützungs-Experimente der MEM-Gruppe durchgeführt. Wieder beispielhaft wird die Entschützung mit Bromochatecholboran bei -78 °C in DCM gezeigt. Unter diesen Bedingungen konnte eine glatte Reaktion beobachtet werden. Nach Isolierung und NMR-Analyse wurde das Produkt allerdings als Diol 320 identifiziert.

Versuch	Reaktionsbedingungen	Ergebnis
1	BIPSOTf, Et ₃ N, DCM, RT, 3 h	321 (46%)
2	BTBSOTf, Et₃N, DCM, RT, 3 h	Zersetzung
2		mono-TBS-
3	IBSCI, Et3N, DMAP, DCM, RT, ON	Schützung
4	TBSOTf, Pyridin, DCM, -78 °C - RT	keine Reaktion
5	TBSOTf, Imidazol, DMAP, DCM, RT, 3 h	keine Reaktion
6	KH, 18-C-6, TBSCI, THF, 0 °C, 1 h	Zersetzung
7	DMP, PPTS, DCM, RT, ON	318 (60%)
8	Cyclohexanon, PPTS, DCM, RT, ON	324 (75%)

Tabelle 20: Reaktionsbedingungen für die Schützung der Diol-Funktion

85

Nach intensiver Literaturrecherche konnten Bedingungen gefunden werden, welche es im "End Game" erlauben würde, ein Cyclohexenylketal und die sekundären TIPS-Schutzgruppen unter gleichen Reaktionsbedingungen zu entfernen. Diol **320**, Cyclohexanon und PPTS in DCM bei RT ergab Cyclohexenylketals **324** mit 75% Ausbeute (Abbildung 61). Erfreulicherweise erwies sich diese Verbindung als stabil genug, um die Reaktionsbedingungen für die MEM-Entschützung zu fixieren.

Abbildung 60: Schützung der Diol-Funktion mit verschiedene Schutzgruppen und beispielhafter Entschützungs-Versuch der MEM-Gruppe

Cyclohexenylketal **324** wurde zuerst mit CeCl₃·7H₂O in MeCN behandelt. Auch nach mehreren Tagen bei RT konnte unter diesen Bedingungen keine Reaktion beobachtet

worden und der Versuch wurde abgebrochen. Nachdem keine guten Ergebnisse mit Lewis-Säuren erzielt wurden, kamen jetzt Experimente mit protischen Säuren ins Kalkül. Erfreulicherweise konnte auf Anhieb mit HBr in THF bei 0 °C Alkohol **179** sauber isoliert werden. Nach etwas Optimierungsarbeit konnte mit HBr (33% in Essigsäure) in THF bei 0 °C über 20 h eine reproduzierbare Ausbeute von 60 - 75% erreicht werden. Dabei ist es sehr wichtig die HBr-Konzentration möglichst nicht über einen Schwellenwert kommen zu lassen, da sonst Nebenreaktionen beobachtet werden können. Dies wurde durch eine langsame Zugabe im stündlichen Zeitabstand erreicht. Auch sollte das Reaktionsgemisch penibel um die 0 °C gehalten werden, da sonst HBr mit THF in einer säureinduzierten-nucleophilen Ringöffnung abreagiert.

Abbildung 61 Finale Schutzgruppenaustausch und selektive Entfernung der MEM-Gruppe

Abbildung 62: Finale Syntheseschritte für das Vinyliodid 178

Die primäre Alkohol-Funktion von **179** wurde daraufhin unter Parikh-Doering Bedingungen zu Aldehyd **325** oxidiert (Abbildung 62). Dieser wurde, aufgrund der Anfälligkeit gegenüber Epimerisierung, direkt per Colvin-Umlagerung zum terminalen

Alkin 326 umgesetzt. Nach mehreren Fehlversuchen, mit sehr geringen Ausbeuten, wurde erkannt, dass restliches Pyridin bzw. Triethylamin der vorrangegangenen Oxidation die Colvin-Umlagerung stark beeinflusst. Aus diesem Grund muss darauf geachtet werden, die Amin-Überschüsse gründlich zu entfernen. Für die Colvin-Umlagerung wurde TMSCHN₂ mit *n*-BuLi bei -78 °C deprotoniert. Nach Zugabe von Aldehyd 325 und Rühren für eine Stunde, konnte Alkin 326 mit einer Gesamtausbeute von 30-50% über zwei Stufen isoliert werden. Bei der folgenden Hydrozirkonierung muss sorgfältig auf Wasserausschluss geachtet werden. Das Vinyliodid 178 konnte tatsächlich über eine Hydrozirkonierung der Dreifachbindung und anschließende Substitution der intermediären Vinylmetall-Spezies 327 erhalten werden. Das Schwarz-Reagenz wurde dabei unter Lichtausschuss in situ erzeugt und mit Alkin 326 umgesetzt. Es entsteht die intermediäre Zirkoniumvinyl-Spezies 327. Nach erfolgter Addition wurde NIS hinzugegeben und nochmals für 30 min bei RT gerührt. Um eine Hydrozirkonierung der terminalen Olefin-Funktion in 326 zu verhindern, darf ein Überschuss von 1.5 eq an Schwarz-Reagenz nicht überschritten werden. Vinyliodid 178 konnte somit mit 55% Ausbeute über zwei Stufen aus Alkin 326 synthetisiert werden. Das (Z)-Isomer kann aus mechanistischen Gründen mit dieser Methode nicht beobachtet werden. Somit wurde das finale Kupplungsprodukt **178** in einer 30-stufigen Synthese mit einer Gesamtausbeute von etwa 0.2% hergestellt.

3.8 "End Game" der (+)-Neosorangicin A Synthese

Nachdem beide Fragmente erfolgreich synthetisiert werden konnten, wurde nun das sogenannte "End Game" der (+)-Neosorangicin A **6** Synthese begonnen. Vinyliodid **178** und Zinndienester **179** wurden im nächsten Schritt in einer Stille-Kupplung miteinander verknüpft und lieferten Verbindung **177** (Abbildung 63). Um die Isomerisierung des sensiblen Dien-, bzw. Trien-Systems zu verhindern wurde bei der Kupplung Ph₂PO₂NBu₄ hinzugegeben, welches bereits von A. B. Smith III für die Synthese von Sorangicin A **1** verwendet wurde.^[15] Die Reaktion verlief ohne größere Probleme, auch wenn die Ausbeute mit 30% relativ bescheiden ausfiel, was allerdings bei der Komplexität der Molekülarchitektur zufriedenstellend erscheint. Zum ersten Mal konnte das gesamte Gerüst von (+)-Neosorangicin A **6** mit allen C-Atomen und den korrekt etablierten 16 Asymmetrie-Zentren synthetisch erzeugt werden. Mit Hilfe einer Probe von natürlichem (+)-Neosorangicin A **6** und Verbindung **177** konnten viele

Protonensignale genau zugeordnet werden. Im nächsten Versuch wurde untersucht ob Verbindung **176** mithilfe eines Metathese-Katalysators aus **177** synthetisiert werden kann. Dabei wurden 5 mg von Verbindung 177 in 10 ml trockenem, entgastem DCM gelöst. Die Verdünnung muss sehr hoch gewählt werden, um eine intramolekulare Reaktion zu begünstigen. 10mol% Grubbs 2nd Gen. Kat. wurde in 3 ml entgastem DCM gelöst und langsam zu Verbindung 177 hinzugetropft. Bei diesem Versuch konnte per Dünnschichtchromatographie die Bildung von zwei Verbindungen und etwas übrig gebliebener Ausgangsverbindung beobachtet werden. Über massenspektrometrische Untersuchungen konnten Verbindung 176 eindeutig nachgewiesen werden. Die Geometrie der entstandenen neuen Doppelbindung konnte mit dieser Methode allerdings nicht bestimmt werden. Leider konnte nach Entfernung des Lösungsmittels und säulenchromatographischer Aufarbeitung keine nennenswerte Masse an Substanz isoliert werden. Dennoch konnte die exakte Masse nachgewiesen werden und die Grundidee einer Ringschlussmetathese für den letzten kritischen Reaktionsschritt wurde aufgezeigt. Zu diesem Zeitpunkt ist keine ausreichende Menge von Verbindung 177 verfügbar, um weitere Optimierungsversuche der RCM durchzuführen.

Da eine Probe von 10 mg von natürlichem (+)-Neosorangicin A **6** vorhanden war, wurde ein Teil davon in Verbindung **176** umgewandelt, um die abschließende Entschützung zu untersuchen. Dabei wurde eine kleine Menge an natürlichem (+)-Neosorangicin A **6** in DCM gelöst und in einer zweistufigen Sequenz zu Verbindung **176** umgewandelt. Mit Cyclohexanon und PPTS wurde zuerst die Diol-Funktion geschützt. Anschließend wurde mit einem Überschuss an TIPSOTf in Pyridin die übrigen Alkohol-Funktionen silyliert. Verbindung **176** erwies sich als erstaunlich stabil und konnte unter relativ harschen Bedingungen sauber entschützt werden. HF·Pyridin-Komplex in THF für zwei Tage bei RT lieferte (+)-Neosorangicin A **6** in einer sauberen "spot to spot"-Reaktion. Die Ausbeute wurde nicht bestimmt, aber eine massen-spektrometrische Untersuchung lieferte einen eindeutigen Peak von (+)-Neosorangicin A **6**.

Abschließend bleibt zu sagen, dass zu diesem Zeitpunkt daran gearbeitet wird, eine größere Menge der Schlüsselfragmente herzustellen, um die letzten Stufen zu optimieren und die globale Entschützung mit synthetischem (+)-Neosorangicin A **6** durchführen zu können. Im nächsten Abschnitt werden die Ergebnisse nochmals in

90

Kürze zusammengefasst, bevor die alternativen Syntheserouten und die gescheiterten "Dead End"-Routen erläutert werden.

Abbildung 63: "End Game" der (+)-Neosorangicin A 6 Synthese

4 Zusammenfassung

Abbildung 64: Ergebnisse der Studien zur Totalsynthese von (+)-Neosorangicin A 6, türkis = diese Arbeit, rot = aus anderen Arbeiten übernommen

Zusammenfassung

Alle Schlüsselfragmente für die (+)-Neosorangicin A 6 Synthese konnten reproduzierbar, stereoselektiv und im Grammmaßstab synthetisiert werden (Abbildung 64). In dieser Arbeit wurde dabei die Synthese des THP-Fragments 184, des C4-lodids 188 und die Kupplung des C4-lodids 188 mit dem DHP-Fragment 189 beschrieben. Des Weiteren konnte die Synthese des Vinyliodids 178 und Zinndienesters 179 und das "End Game" der Synthese untersucht werden. Das BCO-Fragment 183 wurde von L. Chang über 18 Stufen mit einer Gesamtausbeute von 4.5% hergestellt. Das DHP-Fragment 189 wurde primär von R. Stoykova über eine 19-stufige Synthese hergestellt. Das THP-Fragment ist über eine von mir entwickelte 19-stufigen Synthese mit einer Gesamtausbeute von 7.7% zugänglich. Das BCO-Fragment 183 und THP-Fragment 184 wurden per Kreuzmetathese gekuppelt und nach weiteren elf konvergenten Synthesestufen konnte Vinyliodid 178 mit einer Ausbeute von 4.6%, ausgehend von der Kreuzmetathese, hergestellt werden. Für den Zinndienester 179 wurde das DHP-Fragment 189 und das C4-lodid 188 über eine metallorganische Additions/Eliminierungs-Sequenz gekuppelt. C4-lodid 188 konnte über eine kurze Syntheseroute von sechs Stufen mit 37% Ausbeute und sehr hoher Selektivität hergestellt werden. Anschließend wurden einige Schutzgruppen ausgetauscht und, nach Steglich-Veresterung und modifizierter HWE-Reaktion von 185 mit Aldehyd 312, Zinndienester 179 erhalten. Das Vinyliodid 178 und der Zinndienester 179 wurden anschließend mit Hilfe einer Stille-Kupplung gekuppelt. Im nächsten Schritt wurde versucht, dass so entstandene offenkettige Fragment 177, mit Hilfe einer Ringschlussmetathese zu zyklisieren. Aus Materialmangel heraus konnte dieser Syntheseschritt allerdings bis zum Zeitpunkt dieser Dissertation nicht ausreichend untersucht werden. Die exakte Masse konnte zwar ermittelt werden, aber keine genügende Menge Produkt isoliert werden, um den letzten Entschützungsschritt durchzuführen. Allerdings gelang die Entschützung ausgehend von geschütztem natürlichen (+)-Neosorangicin A 6, sodass erstmals eine formale Totalsynthese von (+)-Neosorangicin A 6 realisiert wurde. Während der Niederschritt dieser Dissertation wird daran gearbeitet mehr Material zu produzieren und möglicherweise folgt auf diese Arbeit schon in Kürze die Veröffentlichung der ersten Totalsynthese von (+)-Neosorangicin A 6.

93

5 Alternative Synthesen und "Dead End"-Routen

5.1 Alternative Route für das THP-Fragment

Da die Synthese der terminale Olefin-Funktion des THP-Fragments **184** über eine semioptimale vierstufige Sequenz (siehe Abbildung 40) erreicht wurde, wurde nach alternativen Synthesemöglichkeiten gesucht. Dazu wurde die Syntheseroute bis Triol **211** beibehalten. Anschließend sollte die primäre Alkohol-Funktion des Triols **211** selektiv tosyliert und die beiden sekundären Alkohol-Funktionen mit einer geeigneten Schutzgruppe geschützt werden (Abbildung 65). Sollte dies möglich sein, könnte man mit einem geeigneten Nucleophil das terminale Olefin direkt einführen. In der Tat konnten die ersten beiden Transformationen nach einigen Optimierungen mit guter Ausbeute erreicht werden.

Abbildung 65: Alternative Syntheseroute für das THP-Fragment, Einführung einer Abgangsgruppe und zwei Schutzgruppen an Triol **211**

Versuch	Reaktionsbedingungen	Ergebnis
1	DBTO, ET₃N, <i>p</i> -TsCl, DCM, RT, 3 h	329 (92%)
2	DBTO, ET ₃ N, <i>p</i> -Ts ₂ O, DCM, -45 °C - 0 °C, 5 h	330 (28%)
3	DBTO, ET ₃ N, Ms ₂ O, DCM, -45 °C, 4 h	333 (13%)
4	Et ₃ N, TrisCl, DMAP, DCM, RT, 2 h	329
5	Et ₃ N, TrisCl, DMAP, DCM, 0 °C, 7 h	334 (32%)
6	Et ₃ N, TrisCl, DMAP, DCM, -15 °C, 5 h	329
7	Tf ₂ O, DBTO, Et ₃ N, DCM, -78 °C, 2 h	329
8	1) DBTO, ET ₃ N, <i>p</i> -Ts ₂ O, DCM, -45 °C, 3 h 2) TBSOTf, 3 h, -45 °C	331 (82%, 2 Stufen)

Alternative Synthesen und "Dead End"-Routen

Tabelle 21: Reaktionsversuche zur Synthese von Verbindung 331

Zuerst wurde die primäre Alkohol-Funktion direkt mit TsCl und Dibutylzinnoxid (DBTO) bei RT tosyliert (Tabelle 21). Die genaue Funktion des DBTOs ist nicht bekannt, man kann damit allerdings chemoselektiv primäre Alkohol-Funktionen in Anwesenheit von sekundäre Alkohol-Funktionen tosylieren, alkylieren, acylieren und phosphorylieren.^[44] Die Reaktion erfolgte sauber und lieferte eine Verbindung mit 92% Ausbeute. Nach Analyse der NMR-Daten wurde festgestellt, dass das intermediäre Tosylat 328 unter diesen Reaktionsbedingungen spontan zu Verbindung 329 zyklisiert. In weiteren Untersuchungen konnte das Intermediat 330 und das finale Produkt 329 dünnschichtchromatographisch erfasst und nachverfolgt werden. Es wurde festgestellt, dass die Zyklisierung bei niedrigeren Temperaturen langsamer abläuft als die Tosylierung. Wenn man die Reaktionstemperatur soweit reduzieren könnte, bis die Zyklisierung stoppt, aber eine langsame Tosylierung stattfindet, könnte man möglicherweise die Zyklisierung unterdrücken. TsCl als Reagenz kommt dafür nicht in Frage, da schon bei 0 °C keine Tosylierung mehr beobachtet werden konnte. Tosylanhydrid wurde für den nächsten Versuch ausgewählt und in der Tat konnte bei -45 °C nach 3 h eine Umsetzung zu Verbindung 330 erreicht werden. Die Zyklisierung setzt dabei sichtbar ab einer Temperatur von -30 °C ein. Leider konnte die instabile Verbindung 330 nicht gut gelagert und nur in bescheidener Ausbeute von 28% isoliert werden. Es wurden verschiedene Aufarbeitungsmethoden ausprobiert, aber mit

geringem Erfolg. Der Einsatz von Mesylanhydrid unter den gleichen Bedingungen lieferte Mesylat **333** in nur 13% Ausbeute. Auch TrisCl, unter Verwendung von DMAP, bei Temperaturen zwischen 0 °C und RT führte zur Zyklisierung oder Verbindung **334** in geringer Ausbeute. Da die Isolierung nicht in zufriedenstellenden Ausbeuten möglich war, wurde das Tosylat **330** direkt bei -45 °C in einer zweiten Stufe geschützt. Glücklicherweise konnten mit TBSOTf bei -45 °C beide sekundäre Alkohol-Funktionen silyliert werden und Verbindung **331** mit einer Ausbeute von 82% über zwei Stufen wurde erhalten.

Abbildung 66: Alternative Syntheseroute für den THP-Fragment 184

Nachdem Verbindung **331** erfolgreich synthetisiert werden konnte, galt es die terminale Olefin-Funktion einzuführen. Dazu kamen verschiedene Optionen in Frage (Abbildung 66). Eine direkte Substitution (B) mit Hilfe einer metallorganischen Vinylverbindung würde den kürzesten Weg ergeben. Falls dies nicht möglich sein sollte, könnte man das Tosylat **331** zu lodid **335** (A) in einer Finckelstein-Reaktion umwandeln und dieses wiederum in einer Übergangsmetall-katalysierten Kreuzkupplung umsetzen. Alternativ könnte man auch weitere Nucleophile wie beispielsweise Acetylide einsetzen, um das terminale Alkin **336** herzustellen und dieses dann wiederum zu Zielverbindung **337** reduzieren.

Abbildung 67: Nebenprodukte der Substitutionsversuche

Gestartet wurde mit dem direkten Weg B. Mit Vinylmagnesiumbromid und Tosylat **331** bei RT für 12 h in THF konnte keine Reaktion beobachtet werden (Tabelle 22). Als nächstes wurde Tetravinylzink mit PhLi für 1 h bei 0 °C gerührt und anschließend Tosylat **331** hinzugegeben. Nach 20 h bei RT konnte keine Reaktion beobachtet werden und der Versuch wurde abgebrochen. Auch zusätzlicher Einsatz von BF₃.Et₂O unter denselben Bedingungen konnte das Molekül nicht genügend aktivieren und keine Reaktion fand statt. Anschließend wurden einige Cuprate aus VinylMgBr hergestellt und diese mit Tosylat **331** zur Reaktion gebracht. VinylMgBr mit CuCl₂ und BF₃.Et₂O, sowie VinylMgBr mit CuBr₂-Me₂S konnten keine Reaktion bewirken. Anschließend wurde VinylMgBr mit Li₂CuCl₄ gerührt und dann Tosylat **331** hinzugegeben. Auch mit dieser Reagenzien-Kombination konnte keine Reaktion erreicht werden. Zuletzt wurde wieder Tetravinylzink mit PhLi unter Zugabe von DMPU untersucht. Erstaunlicherweise wurde unter diesen Bedingungen die Tosylat-Gruppe entfernt und Alkohol **338** erhalten (Abbildung 67). Nach diesen Ergebnissen wurden die Reaktionspfade A und C untersucht.

Versuch	Reaktionsbedingungen	Ergebnis
1	VinylMgBr, THF, RT, 12 h	keine Reaktion
2	Tetravinylzink, PhLi, THF, RT, 20 h	keine Reaktion
3	Tetravinylzink, PhLi, THF, RT, 5 min	kaina Baaktian
	BF ₃ Et ₂ O, 1 h, -78 °C - RT, 2 h	Keine Reaktion
4	VinylMgBr, CuCl ₂ , BF ₃ ·Et ₂ O, Et ₂ O, -78 °C - RT	keine Reaktion
5	VinylMgBr, CuBr ₂ ·Me ₂ S, Et ₂ O, -78 °C - RT, 20 h	keine Reaktion
6	VinylMgBr, Li ₂ CuCl ₄ , THF, RT, 12 h	keine Reaktion
7	Tetravinylzink, PhLi, DMPU, THF, RT, ON	338

Tabelle 22: Reaktionsbedingungen für Reaktionspfad B

Die Versuche Tosylat **331** mit Hilfe von Acetylid-Nucleophilen zu substituieren und Verbindung **336** zu erhalten, starteten mit Verwendung von Lithiumacetylid-Ethylendiamin-Komplex in DMSO. Nach 20 h bei RT konnte eine Zersetzung der Ausgangsverbindung beobachtet werden. Allerdings lieferte der Lithiumacetylid-Ethylendiamin-Komplex, unter Zugabe von DMPU, Zielverbindung **336** mit einer Ausbeute von 40%. Zusätzlich wurden noch 20% Ausgangsverbindung **331** rückisoliert. Um die Umsetzung der Ausgangsverbindung zu beschleunigen, wurde im nächsten Versuch die Reaktionstemperatur auf 80 °C erhöht und über Nacht gerührt. Leider zersetzt sich die Ausgangsverbindung unter diesen Bedingungen.

Versuch	Reaktionsbedingungen	Ergebnis	
1	Lithiumacetylid-Ethylendiamin-Komplex,	Zaraatzung	
I	DMSO, RT, 20 h	Zersetzung	
	Lithiumacetylid-Ethylendiamin-Komplex,	226 (400/) 221 (200/)	
2	DMPU, RT, 20 h	330 (40%), 331 (20%)	
	Lithiumacetylid-Ethylendiamin-Komplex,	Zorootzung	
3	DMSO, DMPU, 80 °C, ON	Zersetzung	
4	Lithiumacetylid, DMF/DMPU (1:1)	336 (20%), 331 (60%)	
5	Natriumacetylid, DMSO, RT, ON	336 (50%)	
6	Natriumacetylid, DMF, 0 °C, 2 d	336 (70%), 331 (20%)	
7	AcetylenMgBr, CuBr ₂ -Me ₂ S, DCM, RT, 3 d	keine Reaktion	
8	AcetylenMgBr, CuBr ₂ ·Me ₂ S, Et ₂ O, RT, ON	keine Reaktion	
9	AcetylenMgBr, Li2CuCl4, Et2O, RT, ON	keine Reaktion	

Tabelle 23: Reaktionsbedingungen für Reaktionspfad C

Lithiumacetylid in einem Lösungsmittelgemisch aus DMF/DMPU (1:1) ergab Acetylid **336** mit einer Ausbeute von 20% und 60% nicht abreagiertes Tosylat **331**. Als nächstes wurde Natriumacetylid in DMSO zusammen mit Tosylat **331** bei RT über Nacht gerührt. Erfreulicherweise konnte Acetylid **336** mit einer erstmals akzeptablen Ausbeute von 50% isoliert werden. Zusätzlich konnten einige Zersetzungsprodukte beobachtet werden. Natriumacetylid in DMF bei 0 °C für 2 Tage ergab Acetylid **336** mit einer Ausbeute von 70%. Allerdings konnte auch hier noch etwa 20% Tosylat **331** zurückgewonnen werden. Mit dieser Methode könnte durch Erhöhung der Natriumacetylid-Menge oder durch Verlängerung der Reaktionszeit möglicherweise ein kompletter Umsatz erreicht werden. Zusätzlich wurden noch zwei Versuche mit Acetylenmagnesiumbromid und CuBr₂·Me₂S untersucht. Mit diesen Reagenzien konnte weder in Diethylether, noch in Dichlormethan eine Reaktion beobachtet werden. Auch wenn noch kleinere Optimierungen vorgenommen werden müssen, kann Verbindung **336** in akzeptabler Ausbeute hergestellt werden. Anschließend sollte einer erfolgreichen partiellen Reduktion nichts mehr im Wege stehen. Aus Zeitgründen wurde diese aber bis zum jetzigen Zeitpunkt nicht untersucht.

Versuch	Reaktionsbedingungen	Ergebnis
1	Nal, Aceton, RT, 3 d	Entschützung
5	Lil, Aceton, 80 °C, 2 h	335 (30%), 340
6	Lil, TMEDA, Aceton, 80 °C, 2 d	335 (70%)
7	LiBr, TMEDA, Aceton, 80 °C, 2 d	335 (60%)
8	Lil, DMPU/DMF (1:1), 4 h, RT - 50 °C, ON	335, 340
9	Nal, DMSO, 70 °C, ON	335, 340
10	Lil, DMSO, 70 °C, ON	335, 340
11	LiBr, DMPU/DMF (1:1), 6 h, 60 °C - 2 d, RT	339 (80%)

Tabelle 24: Reaktionsbedingungen für Reaktionspfad A

Parallel den Acetylid-Versuchen, wurden Substitutionsreaktionen zu mit verschiedenen Halogenid-Quellen durchgeführt. Natriumiodid in Aceton für 3 Tage bei RT führte zu einem Gemisch verschiedener entschützter Alkohole. Daraufhin wurde Lil als Iodid-Quelle verwendet. Lil in Aceton bei 80 °C führte mit 30% Ausbeute zum gewünschte lodid 335 und zur Entschützung einiger TBS-Gruppen. Lil in Aceton unter Zugabe von TMEDA ergab nach 2 Tagen bei 80 °C das gewünschte lodid 335 in 70% Ausbeute. LiBr unter den gleichen Bedingungen ergab das Bromid 339 in 60% Ausbeute. Des Weiteren wurde LiBr in einem Lösungsmittelgemisch von DMPU und DMF (1:1) untersucht. Auch hier konnte Bromid 339 beobachtet werden, aber hauptsächlich massive TBS-Entschützungen. Auch Nal und Lil in DMSO bei 70 °C führte zu vielen entschützen Nebenprodukten und ergab etwas der gewünschten Produkte. Eine zufriedenstellende Ausbeute von 80% konnte mit LiBr in einem Lösungsmittelgemisch von DMPU/DMF (1:1) für 2 d bei RT erreicht werden.

Es konnten somit verschiedene Bedingungen gefunden werden, unter denen die gewünschten Produkte mit akzeptabler Ausbeute erhalten wurden. Das Hauptproblem

besteht in der teilweisen Entschützung der TBS-Gruppen und der Reaktivität der Ausgangsverbindung.

lodid **335** wurde als Nächstes mit *t*-BuLi lithiiert und anschießend mit ZnBr₂ transmetalliert (Abbildung 68) (Tabelle 25). Die *in situ* erzeugte Zink-Verbindung wurde anschließend mit Vinylbromid und Pd(PPh₃)₄ über Nacht bei 50 °C gerührt. Leider konnte unter diesen Reaktionsbedingungen kein Produkt isoliert werden. Als nächstes wurde lodid **335** mit Vinylborsäurepinakolester, Cul und LiO*t*-Bu für 3 h bei 110 °C in DMF gerührt. Erfreulicherweise konnte unter diesen Bedingungen gleich auf Anhieb 15% des gewünschten Alkens **342** isoliert werden. Auch wenn die Ausbeute sehr bescheiden ausfiel, konnte zumindest die theoretische Machbarkeit der Syntheseroute bewiesen werden. An dieser Stelle wurde aus Zeitgründen von weiteren Versuchen abgesehen.

Abbildung 68: Der weitere hypothetischer Verlauf der 2nd Generation THP-Fragment Synthese

Abschließend bleibt zu sagen, dass sich verschiedene Möglichkeiten eröffnet haben, um die THP-Fragment Synthese zu verkürzen. Alkin **336** und lodid **335** können in jeweils 7 Stufen mit guten Ausbeuten synthetisiert werden. Nach partieller Reduktion des Alkins **336** und anschließender selektiver Entschützung sollte Alkohol **341** zugänglich sein. Iodid **335** wiederum kann mit optimierten Bedingungen im basischen

Alternative Synthesen und "Dead End"-Routen

mit Vinylborsäurepinakolester und Cul zu Alken **342** umgesetzt werden. Nach Entschützung sollte auch hier Alkohol **341** zugänglich sein. Im weiteren Verlauf der Synthese wird Alkohol **341** zuerst oxidiert, gefolgt von einer HWE-Reaktion und Reduktion zu Allylalkohol **343**. Eine Sharpless-Epoxidierung, Zyklisierung und TES-Schützung würde die 2nd Gen. THP-Fragment Synthese abschließen und Verbindung **344** liefern. Damit könnte das THP-Fragment **344** über 15 Stufen, anstatt wie bisher über 19 Stufen, zugänglich sein.

Versuch	Reaktionsbedingungen	Ergebnis
1	1) <i>t</i> -BuLi, Et ₂ O, 30 min, -78 °C	Zersetzung
	2) ZnBr ₂ , THF, 30 min, 0 °C	
	3) Vinylbromid, Pd(PPh ₃) ₄ , ON, 50 °C	
2	Vinylborsäurepinakolester, Cul, LiOt-Bu, DMF	342 (15%)
	Tabelle 25: Reaktionsbedingungen zur Synthese von Verbindung 342	

5.2 Alternative Syntheseroute von *L*-Galactose

Abbildung 69: Alternative Syntheseroute für die Konvertierung von D-Galactose zu L-Galactose
Die alternative *L*-Galactose-Synthese verwendet TBDPSCI, Et₃N und DMAP bei 50 °C in DMF, um die primäre Alkohol-Funktion selektiv zu schützen. Verbindung **345** wird anschließend ohne säulenchromatographische Aufreinigung mit NaBH₄ in MeOH reduziert. Pentaol **346** konnte erfolgreich in Pyridin mit einem Überschuss an Essigsäureanhydrid zu Pentaacetat **347** umgewandelt werden. Diese dreistufige Sequenz wurde im 10 g Maßstab erfolgreich durchgeführt und ergibt eine Gesamtausbeute von 55% über drei Stufen. Die anschließende Entschützung der primären TBDPS-Ether-Funktion konnte im kleinen Maßstab mit einer Mischung aus TBAF und Essigsäure in THF bei 0 °C mit 60% Ausbeute erreicht werden. Leider schlug der ScaleUp-Versuch mit Grammmengen fehl und bedarf deshalb weiterer Optimierungsarbeit. Sollte diese Reaktion mit größeren Mengen gelingen, kann von Verbindung **348** aus, wie gewohnt weiterverfahren werden. Dabei wird Alkohol **348** per Swern-Oxidation oxidiert und anschließend mit K₂CO₃ in Methanol hydrolysiert, um *L*-Galaktose **254** zu erhalten.

5.3 Erste "Dead End"-Route

Abbildung 70: Retrosynthetische Überlegungen zur Kupplung aller drei Schlüsselfragmente über eine metallorganische Addition

Unsere ersten retrosynthetischen Überlegungen führten zu Aldehyd 181 und **DHP-Vinyliodid** 350 (Abbildung 70). Diese sollten über eine geeignete chelat-kontrollierte-metallorganische Addition miteinander verknüpft werden und Alkohol **349** ergeben. In diesem Sinne musste zuerst eine geeignete Syntheseroute für DHP-Vinyliodid 350 entwickelt werden und anschließend geeignete Bedingungen für die metallorganische Addition von Vinyliodid 350 and Aldehyd 181 untersucht werden.

Abbildung 71: Synthesen von DHP-Vinyliodid 350

Zuerst wurde eine direkte Kreuzmetathese zwischen Vinyliodid 315 und DHP-Fragment 187 untersucht (Abbildung 71). Es wurden verschiedene Lösungsmittel (DCM, Toluol), Metathese-Katalysatoren (Grubbs 2nd Gen. Kat., Grubbs-Hoyveda 2nd Gen. Kat.), Temperaturen (RT - 80°C) und Stoffmengenverhältnisse ausprobiert. Unter keinen Reaktionsbedingungen konnte ein befriedigendes Ergebnis in Bezug auf Ausbeute erreicht werden. Die Ausbeuten variierten zwischen 0% - 30% und es scheint so, als ob Vinyliodid **315** als Katalysatorgift wirkt und die Katalysatoren deaktiviert. Als nächstes wurde DHP-Fragment 187 mit 4-Pentenal 314 unter wiederum verschiedenen Reaktionsbedingungen via Kreuzmetathese gekuppelt. Im Anschluss sollte eine Takai-Reaktion Vinyliodid 350 ergeben. Hier konnte die Ausbeute teilweise auf bis zu 60% erhöht werden, aber dennoch keine reproduzierbaren Bedingungen etabliert werden. Die Ausbeuten variierten sehr stark und auch 4-Pentenal 314 scheint deaktivieren. Erfreulicherweise den Katalysator teilweise zu konnte mit Ethylpenteonat, Grubbs-Hoyveda 2nd Gen. Kat. in Toluol bei RT über 20 h Ester 352 in 82% Ausbeute synthetisiert werden (Abbildung 72). Eine Homodimerbildung von DHP-Fragment **187** konnte mit sechs Äquivalenten Ethylpenteonat nahezu komplett unterdrückt werden. Im Anschluss wurde der DHP-Ester 352 selektiv zu DHP-Aldehyd

351 reduziert. Eine Überreduktion konnte bei -78 °C und langsamen Zutropfen von 1.1 eq DIBAL-H effektiv unterbunden werden und DHP-Aldehyd **351** wurde mit 77% Ausbeute isoliert. Die Synthese von Vinyliodid **350** wurde über eine Takai-Reaktion abgeschlossen. Dabei kamen CrCl₂ und Iodoform in THF bei 0 °C zum Einsatz. Unter diesen Bedingungen wurde DHP-Vinyliodid **350** mit 62% Ausbeute und akzeptabler Selektivität von 5:1 (*E/Z*) erhalten.

Abbildung 72: Finale Synthesen von DHP-Vinyliodid 350

Mit der erfolgreichen Synthese des DHP-Vinyliodids **350**, wurde nun die kritische metallorganische Kupplungsreaktion mit Aldehyd **181** untersucht (Abbildung 73).

Abbildung 73: Metallorganische Kupplungsversuche zwischen Aldehyd 181 und DHP-Vinyliodid 350

Dafür wurde DHP-Vinyliodid **350** zu einer nucleophilen Organometall-Spezies **353** umgewandelt, dann Aldehyd **181** hinzugegeben. Metall/Halogen-Austausch mit *t*-BuLi

Alternative Synthesen und "Dead End"-Routen

und anschließende Transmetallierung mit Dimethylzink, sollte eine nucleophile Vinylzink-Verbindung **353** liefern (Tabelle 26). Aldehyd **181** wurde anschließend bei -78 °C in THF langsam hinzugetropft. Nach mehreren Stunden Reaktionszeit konnte keine Reaktion beobachtet werden und Aldehyd **181** wurde zurückgewonnen. Zusätzlich konnte eine nicht definierbare Verbindung, welche aus einer Entfernung der MEM- und MOM-Schutzgruppen und anschließenden Folgereaktionen entstanden ist, isoliert werden. Der Versuch wurde nochmals in Diethylether wiederholt, mit dem Ergebnis, dass zusätzlich zum Aldehyd **181** noch etwas Vinyliodid **350** und das terminale Olefin **354** isoliert wurde. Die Anwesenheit von Olefin **354** deutet darauf hin, dass die Erzeugung der Metallvinyl-Spezies **353** zumindest teilweise stattfindet, aber aus ungeklärten Gründen keine Addition an Aldehyd **181** erfolgt.

Versuch	Reaktionsbedingungen	Ergebnis
1	1) <i>t</i> -BuLi, THF, -78 °C, 1 h	
	2) ZnMe ₂ , -78 °C, 30 min	keine Reaktion
	3) 181	
2	<i>i</i> -PrMgCl·LiCl, THF, -38 °C, ON → -20 °C, ON	keine Reaktion
	→ RT, ON	
3	1) <i>t</i> -BuLi, Et ₂ O, -78 °C, 1 h	354
	2) ZnMe ₂ , -78 °C, 30 min	
4	NiCl ₂ , CrCl ₂ , DMF, RT, 20 h	keine Reaktion
5	1) MeLi, THF, -78 °C, 1 h	Zersetzung von 350
	2) ZnMe ₂ , -78 °C, 15 min	
	3) MeZnCl	

Tabelle 26: Reaktionsbedingungen der metallorganischen Addition von DHP-Vinyliodid **350** an Aldehyd **181**

Als nächstes wurde nach P. Knochel versucht, eine Organomagnesium-Verbindung herzustellen.^[45] Dazu wurde DHP-Vinyliodid **350** mit *i*-PrMgCl·LiCl in THF bei -38 °C über Nacht gerührt. Die Insertion wurde per Dünnschichtchromatographie nachverfolgt, aber es konnte keine Reaktion festgestellt werden. Anschließend wurde stufenweise auf -21 °C, dann 0 °C und abschließend auf RT aufgewärmt. Auch bei RT über Nacht konnte keine Insertion beobachtet werden und der Versuch wurde schließlich abgebrochen. Des Weiteren wurde die Nozaki-Hiyama-Kishi-Reaktion durchgeführt.^[46] Vinyliodid **350** und Aldehyd **181** wurden zusammen mit NiCl₂ und

CrCl₂ in entgastem DMF für 20 h bei RT gerührt. Wiederrum konnte keine Reaktion beobachtet werden und der Versuch wurde abgebrochen. Zuletzt wurde ein Metall/Halogen-Austausch mit MeLi durchgeführt, was jedoch zur rapiden Zersetzung von DHP-Vinyliodid **350** führte. Nach diesen Ergebnissen wurde diese Route auf Eis gelegt und stattdessen auf eine Kreuzmetathese (Kapitel 5.4) gesetzt.

5.4 Zweite "Dead End"-Route

Abbildung 74: Retrosynthetische Überlegungen zur Kupplung aller drei Schlüsselfragmente über eine Kreuzmetathese zwischen Fragment **317** und **187**

Unsere zweiten retrosynthetischen Überlegungen führten zu Alkohol **317** und DHP-Fragment **187** (Abbildung 74). Beide Fragmente können nach den bekannten Routen synthetisiert werden. Da es sich bei beiden Substraten um Typ-I Olefine handelt, wurde angenommen, dass eine Erhöhung eines Reaktionspartners (in diesem Fall das DHP-Fragment **187**) zu einer statistischen Verteilung der Produkte führen müsste. Das heißt, bei einem Verhältnis von 1:1 des Alkohols **317** zu dem DHP-Fragment **187** sollten 50% des Kreuzprodukts **349** und 25% der jeweiligen Homodimere entstehen. Bei einem Verhältnis von 1:2 des Alkohols **317** zu dem DHP-Fragment **187** sollten 66% des Kreuzprodukts **349** und 17% der jeweiligen Homodimere entstehen.^[47]

Abbildung 75: Kreuzmetathese zwischen DHP-Fragment 187 und Alkohol 317

Drei Äquivalente des DHP-Fragments **187** und ein Äquivalent Alkohol **317** wurden mit 10mol% Grubbs-Hoyveda 2nd Gen. Kat. für 4 h in kochendem DCM gerührt (Abbildung 75). Anschließend wurde etwas DCM entfernt und direkt per Säulenchromatographie aufgearbeitet. Unter diesen Reaktionsbedingungen konnten 21% Kreuzprodukt **349**, 28% DHP-Homodimer **355** und 40% DHP-Fragment **187** isoliert werden. Als nächstes wurde untersucht, ob man das reisolierte DHP-Homodimer **355** in einer weiteren Metathese-Reaktion wiederverwenden kann. Dazu wurden drei Äquivalente DHP-Homodimer **355** und ein Äquivalent Alkohol **317** mit 20mol% Grubbs-Hoyveda 2nd Gen. Kat. für 3 h in 70 °C heißem Toluol gerührt. Erfreulicherweise konnte unter diesen Reaktionsbedingungen 54% des Kreuzkupplungsprodukts **349** erhalten werden. Man kann vermuten, dass eine größere Menge des DHP-Fragments **187** bei erhöhten

Alternative Synthesen und "Dead End"-Routen

Temperaturen und einer längeren Reaktionszeit, eine höhere Ausbeute an Kreuzprodukt **349** ergeben sollte. Als nächstes wurde die freie Alkohol-Funktion in Verbindung **349** als TES-Ether geschützt. TESOTf mit Imidazol und DMAP in DCM ergab Verbindung **356** in 76% Ausbeute. An dieser Stelle wurden noch einige MEM-Entschützungs-Reaktionen unter verschiedenen Bedingungen durchgeführt. Unter Lewis-sauren Bedingungen konnte eine teilweise Entschützung der TES-Ethers beobachtet werden. Die MEM- und MOM-Schutzgruppen blieben stabil. Mit protischen Säuren konnte eine rapide Zersetzung von Verbindung **356** beobachtet werden. An dieser Stelle wurde, aufgrund der schwer zu lösenden Schutzgruppen-Orthogonalität und auch eher bescheidener Ausbeute der Kreuzmetathese diese Syntheseroute nicht weiter untersucht.

5.5 Alternative Synthese des DHP-Fragments

Eine mögliche alternative Route für das DHP-Fragment **187** nutzt die Synthese bis DHP-Aldehyd **263**, wie zuvor beschrieben (Abschnitt 3.3). Dieser DHP-Aldehyd **263** wurde mit lodid **188** unter Barbier-Bedingungen umgesetzt. Zu einem Äquivalent DHP-Aldehyd **263** und 1.1 Äquivalenten lodid **188** in THF wurden 2.2 Äquivalenten *t*-BuLi hinzugetropft und für eine Stunde bei -78 °C gerührt (Abbildung 76). Nach wässriger Aufarbeitung wurden die so erhaltenen diastereomeren Alkohole **357a/b** direkt mit Dess-Martin-Periodinan oxidiert und Keton **358** in 33% Ausbeute über zwei Stufen erhalten. An dieser Stelle bieten sich zwei Vorgehensweisen an.

Mit Hilfe einer baseninduzierten Enolisierung unter kinetischen Bedingungen könnte das entstandene Enolat als Enoltriflat **359** abgefangen werden (Pfad A). Dieser könnte dann unter geeigneten Reaktionsbedingungen zum erwünschten DHP-Fragment **187** umgewandelt werden. Hierbei könnte sich allerdings eine selektive Enolisierung als größtes Hindernis erweisen. Da einige Versuche ohne eindeutige Ergebnisse durchgeführt wurden, wird an dieser Stelle nur darauf hingewiesen, dass es für Pfad A weitere systematische Experimente bedarf, um stichhaltige Aussagen treffen zu können.

DHP-Keton **358** könnte auch mit Arylsulfonhydrazid zur Reaktion gebracht werden, um Arylhydrazin **360** zu erhalten (Pfad B). Arylhydrazin kann daraufhin mit 2 eq Methyllithium deprotoniert werden. Das entstandene Dianion stabilisiert sich daraufhin

unter Abspaltung von Arylsulfinat und molekularem Stickstoff über Zwischenstufe **361** und **362**. Das lithierte Alken **363** könnte mit Methyliodid abgefangen werden und DHP-Fragment **187** liefern.^[47] Die Shapiro-Reaktion wurde aus Zeitgründen nicht getestet, könnte aber ein weiterer vielversprechender Ansatz sein, um die alte Eliminierungsroute zu ersetzen.

Abbildung 76: Alternative Syntheserouten für das DHP-Fragment 187

6 Experimenteller Teil

6.1 Allgemeine Arbeitstechnik

Alle Reaktionen wurden im Allgemeinen mit getrockneten Lösungsmitteln und unter Stickstoffatmosphäre durchgeführt. Tetrahydrofuran und Diethylether wurden über Natrium, Dichlormethan über Calciumhydrid, absolutiert und vor Gebrauch destilliert. Für die säulenchromatographische Reinigung wurden keine getrockneten Lösungsmittel verwendet. Die verwendeten Glasgeräte sowie hygroskopische Feststoffe wurden vor der Benutzung im Vakuum unter Verwendung eines Heißluftföns getrocknet. Feuchtigkeitsempfindliche Reagenzien wurden mit Spritzen über Septen injiziert. Feststoffe wurden, falls möglich, vor der Zugabe in einem geeigneten Lösungsmittel gelöst. Falls nicht möglich, wurden Feststoffe im Stickstoff-Gegenstrom hinzugegeben. Sonstige handelsübliche Chemikalien wurden ohne weitere Reinigung oder Trocknung verwendet. Die Benennung der Verbindungen erfolgte mit Hilfe der Software ChemDraw Professional 16. Die Nummerierung der Kohlenstoffzentren zur Auswertung der analytischen Daten, entspricht aus Gründen der Übersichtlichkeit, nicht immer der IUPAC-Nummerierung.

Dünnschichtchromatographie Macherey & Nagel, Sil G/UV₂₅₄ mit Fluoreszenzindikator, Detektion mit UV-Licht (254 nm) und/oder Farbreagenzien (Vanillin-Reagenz, KmnO₄-Reagenz).

Säulenchromatographie Kieselgel 60 der Firma Fluka, Korngröße 0.004-0.0063 mm.

NMR-Spektren AVIII Bruker-BioSpin, Messfrequenz ¹H: 400 MHz, ¹³C 100 MHz. AVI-600 Bruker-BioSpin, Messfrequenz ¹H: 600 MHz, ¹³C 150 MHz. Abkürzungen: Singulett = s, Dublett = d, Triplett = t, Quartett = q, Quintett = quint, Sextett = sext, Septett = sept, breites Signal = br.

Massenspektren Sektorfeld-Massenspektrometer MAT 95 (EI-MS), Waters Xevo G2-TOF (ESI).

IR-Spektren Vertex 70/70v FTIR-Spektrometer der Firma Bruker-Optics, ATR-Einheit, 4000 cm⁻¹ – 400 cm⁻¹. Abkürzungen für relative Bandenintensitäten: w = schwach, m = mittel, s = stark, br = breites Signal.

Spezifische Drehwerte Anton Paar – MCP 150.

6.2 Synthesevorschriften für (+)-Neosorangicin A

3-((*tert*-Butyldimethylsilyl)oxy)propanal (39)

Zu einer Suspension aus 4.2 g NaH (1 eq, 60% in Mineralöl, 105 mmol) in 70 ml tr. THF wurde 7.6 ml 1,3-Propandiol 205 (1 eq, 105.2 mmol, gelöst in 20 ml THF) hinzugetropft. Nach 1 h Rühren bei RT wurde 15.85 g TBSCI (1 eq, 105 mmol, gelöst in 40 ml THF) hinzugetropft und für 1 h bei RT gerührt. In Anschluss wurde die Lösung mit ges. NaHCO₃-Lösung versetzt und die wässrige Phase mit Et₂O extrahiert. Die vereinigte org. Phase wurde mit ges. NH4CI-Lösung, dest. Wasser und ges. NaCI-Lösung gewaschen. Nach dem Trocknen über MgSO4 wurde das Lösungsmittel am Rotationsverdampfer entfernt und 18.9 g eines gelblichen Öls erhalten. Dieses wurde ohne weitere Aufarbeitung in 50 ml trockenem DCM gelöst und auf 0 °C gekühlt. 50 ml DIPEA (2.7 eq, 287 mmol) und 40 ml DMSO (5.3 eq, 564 mmol) wurde hinzugegeben, anschließend portionsweise 32 g SO3 Pyridin (1.9 eq, 201 mmol) hinzugegeben und das Gemisch für 2 h bei 0 °C gerührt. Nach beendeter Reaktion wurden 100 ml ges. NH₄CI-Lösung und 100 ml DCM hinzugegeben. Die Phasen wurden getrennt und die org. Phase mit dest. Wasser und ges. NaCl-Lösung gewaschen. Nach dem Trocknen über MgSO₄ und Entfernen des Lösungsmittels am Rotationsverdampfer wurde das Rohprodukt per Säulenchromatographie (Pentan/Diethylether 10:1) aufgereinigt und 16.2 g von 39 (86 mmol, 82% Ausbeute, 2 Stufen) als farbloses, aromatisch riechendes Öl erhalten.

Allgemeine Daten C₉H₂₀O₂Si, M = 188.3 g/mol, farbloses Öl, R_f = 0.3 (Pentan/Diethylether 9:1), UV (-).

¹**H NMR (400 MHz, CDCl**₃) δ [ppm] = 9.77 (t, *J* = 2.0 Hz, 1H), 3.96 (t, *J* = 6.0 Hz, 2H), 2.57 (td, *J* = 6.7, 3.8 Hz, 2H), 0.86 (s, 9H), 0.04 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ [ppm] = 201.9 (CHO), 57.4 (CH₂), 46.5 (CH₂), 25.8 (3CH₃), 18.8 (C), -5.5 (2CH₃).

206

Ein 250 ml Dreihalskolben wurde auf -78 °C gekühlt und 4.3 g cis-2-Buten (2 eq, 77 mmol) einkondensiert. 4.76 g t-BuOK (1.1 eq, 42 mmol) wurden in 50 ml tr. THF gelöst, auf -78 °C gekühlt und schnell in den Kolben überführt. Das Gemisch wurde für 10 min bei -78 °C gerührt und anschließend 17 ml n-BuLi (1.1 eq, 42 mmol, 2.5 M in Hexan) hinzugetropft. Anschließend wurde die Lösung für 20 min auf -40 °C aufgewärmt, dann wieder auf -78 °C gekühlt und anschließend 14,6 g (+)-lpc₂BOMe (1.2 eg, 46 mmol, in 50 ml tr. THF gelöst) hinzugetropft. Direkt im Anschluss wurde 12 ml BF₃ Et₂O (1.3 eq, 0.05 mmol) hinzugetropft und das Gemisch für 15 min bei -78 °C gerührt. Dann wurde 7.24 g des Aldehyds 39 (1 eq, 39 mmol, in 50 ml trockenem THF) hinzugetropft und für 2 h bei -78 °C gerührt. Im Anschluss wurde auf 0 °C aufgewärmt, 10 ml NaOH-Lösung (3 mol/L) und 7.6 ml 35%ige H₂O₂-Lösung hinzugegeben und über Nacht bei RT gerührt. Anschließend wurde mit dest. H₂O verdünnt und die wässrige Phase mit Et₂O extrahiert. Die vereinigte organische Phase wurde mit ges. NaCI-Lösung und über MgSO₄ getrocknet. Nach dem gewaschen Einengen wurde säulenchromatographisch (Pentan/Diethylether 9:1) aufgereinigt, um 7.52 g von Homoallylalkohol 206 (30.8 mmol, 80% Ausbeute) in Form eines farblosen Öls zu erhalten.

Allgemeine Daten $C_{13}H_{28}O_2Si$, M = 244.45 g/mol, farbloses Öl, R_f = 0.5 (Pentan/Diethylether 4:1), Vanillin: violett, UV (-).

¹H NMR (400 MHz, CDCI₃) δ [ppm] = 5.78 (m, 1H), 5.04 (m, 2H), 3.89 (m, 1H), 3.79 (td, J = 9.7, 3.8 Hz, 1H), 3.67 (m, 1H), 3.43 (br, 1H), 2.26 (sext, J = 7.3 Hz, 1H), 1.64 (m, 2H), 1.06 (d, J = 6.8 Hz, 3H), 0.89 (s, 9H), 0.07 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ [ppm] = 141.16(=CH-), 114.73 (=CH₂), 75.37 (CH), 63.03 (CH₂), 43.99 (CH), 35.48 (CH₂), 25.86 (3CH₃), 18.16 (C), 15.21 (CH₃), -5.56 (CH₃), -5.54 (CH₃).

HRMS (ESI) (*m/z*) Berechnet für $[C_{13}H_{28}O_2SiH]^+ = [M+H]^+$: 245.1937, gemessen: 245.1930.

IR \tilde{v} = 3455 (b), 3079 (w), 2955 (m), 2929 (m), 2858 (m), 1640 (w), 1470 (m), 1415 (m), 1388 (m), 1362 (m), 1254 (s), 1080 (s), 1005 (m), 911 (s), 833 (s), 775 (s), 729 (m), 663 (m).

Spezifischer Drehwinkel $[\alpha]_{589}^{24}$ = -6.4° (c = 1.1, Chloroform).

In einen 1 L Dreihalskolben wurden 250 ml THF, 4.7 g Cs₂CO₃ (0.35 eq, 14.5 mmol) und 13 g Bis(pinacolato)diboran (1.25 eq, 51.2 mmol) vorgelegt. Anschließend wurden 10.1 g Homoallylalkohol 206 (1 eq, 41.4 mmol) und 29 ml Methanol (17 eq, 700 mmol) hinzugegeben und das Reaktionsgemisch für 4 h bei 70 °C gerührt. Anschließend wurde das Gemisch auf 0 °C gekühlt und nacheinander 25 ml NaOH-Lösung (3 mol/L) und 20 ml 35%ige H₂O₂-Lösung langsam hinzugetropft. Der Reaktionskolben wurde nun in ein mit Eis gefühltes Dewargefäßes überführt und langsam über Nacht von 0 °C auf RT aufgewärmt. Anschließend wurde das Gemisch mit dest. Wasser verdünnt und die wässrige Phase mit EtOAc extrahiert. Die vereinigte org. Phase wurde mit ges. NaCI-Lösung gewaschen, über Na₂SO₄ getrocknet und das Lösungsmittel am Rotationsverdampfer eingeengt. Das Rohprodukt wurde direkt in der nächsten Stufe weiter Für Analytik wurde Säulenchromatographie umgesetzt. die per (Pentan/Ethylacetat 1:1 \rightarrow Ethylacetat) aufgereinigt und 10.3 g des Triols 211 (37 mmol, 90% Ausbeute) als hochviskose, farblose Flüssigkeit erhalten.

Allgemeine Daten $C_{13}H_{30}O_4Si$, M = 278.26 g/mol, farblose, hochviskose, farblose Flüssigkeit, $R_f = 0.2$ (Pentan/Ethylacetat 1:1), Vanillin: dunkelblau, UV (-).

¹**H NMR (600 MHz, CDCI₃)** δ [ppm] = 4.13 (dt, *J* = 10.2, 1.9 Hz, 1H), 3.95 – 3.87 (m, 1H), 3.87 – 3.77 (m, 2H), 3.72 (dd, *J* = 11.3, 5.3 Hz, 1H), 3.53 (dd, *J* = 11.3, 4.3 Hz,

1H), 1.94 – 1.80 (m, 1H), 1.64 (ddd, *J* = 7.2, 3.5, 2.2 Hz, 1H), 1.46 (dq br, *J* = 14.5, 3.1 Hz, 1H), 0.94 (d, *J* = 7.1 Hz, 3H), 0.89 (s, 9H), 0.08 (s, 6H).

¹³C NMR (150 MHz, CDCl₃) δ [ppm] = 75.23 (CH), 74.51 (CH), 63.61 (CH₂), 63.58 (CH₂), 40.79 (CH), 35.89 (CH₂), 25.82 (3CH₃), 18.10 (C), 7.64 (CH₃), -5.55 (CH₃), -5.59 (CH₃).

HRMS (ESI) (*m/z*) Berechnet für $[C_{13}H_{30}O_4SiH]^+ = [M+H]^+$: 279.1997, gemessen: 279.1989.

IR \tilde{v} = 3372 (b), 2929 (m), 2857 (m), 1463 (s), 1253 (m), 1085 (w), 833 (s), 774 (w).

Spezifischer Drehwinkel $[\alpha]_{589}^{24}$ = +7.2° (c = 1.2, Chloroform).

(3*S*,4*R*)-1-((*tert*-butyldimethylsilyl)oxy)-4-((*S*)-2,2-dimethyl-1,3-dioxolan-4yl)pentan-3-ol (217)

In einen 250 ml Dreihalskolben wurden 2.42 g des Triols **211** (1 eq, 8.7 mmol) und 2 g pulverisiertes Molsieb (3 Å) in 50 ml trockenem DCM vorgelegt. Das Gemisch wurde auf 0 °C gekühlt, 1.6 ml Dimethoxypropan (1.5 eq, 13.1 mmol), 100 mg CSA (0.05 eq, 0.43 mmol) hinzugegeben und für 1 h bei RT gerührt. Das Rühren wurde anschließend eingestellt und die Flüssigkeit vorsichtig abdekantiert. Im Anschluss wurde das Reaktionsgemisch mit ges. NaHCO₃-Lösung gequencht und die Phasen getrennt. Die wässrige Phase wurde mit DCM extrahiert, die vereinigte org. Phase mit ges. NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Nach dem Einengen am Rotationsverdampfer wurde per Flash-Chromatographie (Pentan/Ethylacetat 7:1) aufgereinigt und 2.2 g des Acetonids **217** (6.9 mmol, 79% Ausbeute) als klares Öl erhalten.

Allgemeine Daten $C_{16}H_{34}O_4Si$, M = 318.53 g/mol, farbloses Öl, R_f = 0.5 (Pentan/Ethylacetat:1), Vanillin: blau, UV (-).

¹**H NMR (400 MHz, CDCl**₃) δ [ppm] = 4.17 (dt, *J* = 11.2, 7.5 Hz,1H), 4.06 (dd, *J* = 8.3, 6.3 Hz, 1H), 3.90 – 3.83 (m, 2H), 3.78 (td, *J* = 9.9, 3.8 Hz, 1H), 3.71 (t, *J* = 8.7, 7.9 Hz, 1H), 3.40 – 3.10 (br, 1H), 1.82 – 1.69 (m, 1H), 1.69 – 1.60 (m, 1H), 1.58 – 1.48 (m, 1H), 1.39 (s, 3H), 1.35 (s, 3H), 0.99 (d, *J* = 6.88 Hz, 3H), 0.89 (s, 9H), 0.07 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ [ppm] = 108.47 (C), 78.06 (CH), 73.46 (CH), 67.88 (CH₂), 62.82 (CH₂), 41.10 (CH), 35.87 (CH₂), 26.55 (CH₃), 25.87 (3CH₃), 25.56 (CH₃), 18.14 (C), 9.28 (CH₃), -5.49 (CH₃), -5.51 (CH₃).

HRMS (ESI) (*m/z*) Berechnet für $[C_{16}H_{34}O_4SiH]^+ = [M+H]^+$: 319.2305, gemessen: 319.2301.

IR \tilde{v} = 3446 (b), 2930 (m), 2858 (m), 1463 (w), 1369 (w), 1252 (m), 1215 (m), 1087 (s), 1057 (s), 833 (s), 775 (s), 663 (w), 511 (w).

Spezifischer Drehwinkel $[\alpha]_{589}^{25}$ = +1.74° (c = 1.15, Chloroform).

(S)-7-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)ethyl)-9,9-diisopropyl-2,2,3,3,10pentamethyl-4,8-dioxa-3,9-disilaundecan (226)

In eine 250 ml Glaskolben wurden 8.5 g des Alkohols **217** (1 eq, 26.7 mmol) und 6 ml Pyridin (3 eq, 80 mmol) in 100 ml trockenem DCM gelöst. Die Lösung wurde auf -78 °C gekühlt, dann langsam 14.5 ml TIPSOTf (2 eq, 14.5 ml, 53 mmol) hinzugetropft, und für 1 h bei RT gerührt. Nachdem per DC-Analyse kein Alkohol mehr festzustellen war, wurde die Reaktion mit ges. NaHCO₃-Lösung gequencht. Die Phasen wurden getrennt und die wässrige Phase mit DCM extrahiert. Die vereinigte organische Phase wurde mir ges. NH₄Cl-Lösung, dest. Wasser, ges. NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Rohprodukt wurde nach dem Einengen direkt für die nächste Stufe verwendet. Für die Analytik wurde per Flash-Chromatographie aufgereinigt (Pentan/Diethylether 15:1) und 11.7 g von Verbindung **226** (24.6 mmol, 97% Ausbeute) in Form eines farblosen Öls erhalten.

Allgemeine Daten $C_{25}H_{54}O_4Si_2$, M = 474.87 g/mol, farbloses Öl, R_f = 0.6 (Pentan/Diethylether 15:1), Vanillin: blau, UV (-).

¹H NMR (600 MHz, CDCl₃) δ [ppm] = 4.16 (q, J = 7.1 Hz, 1H), 4.04 (q, J = 6.0 Hz, 1H), 3.94 (td, J = 6.8, 2.5 Hz, 1H), 3.67 – 3.59 (m, 3H), 1.74 (sept, J = 7.1 Hz, 2H), 1.69 (sept, J = 6.9 Hz, 1H), 1.38 (s, 3H), 1.35 (s, 3H), 1.07 (s, 3H), 1.05 (s, 18H), 0.98 (d, J = 7.0 Hz, 3H), 0.87 (s, 9H), 0.03 (s, 6H).

¹³C NMR (150 MHz, CDCl₃) δ [ppm] = 108.22 (C), 77.30 (CH), 71.21 (CH), 68.44 (CH₂), 59.79 (CH₂), 41.31 (CH), 36.90 (CH₂), 26.85 (CH₃), 25.86 (3CH₃), 25.77 (CH₃), 18.28 (3CH₃), 18.26 (3CH₃), 18.17 (C), 12.97 (3CH), 10.73 (CH₃), -5.43 (CH₃), -5.40 (CH₃).

HRMS (ESI) (*m/z*) Berechnet für $[C_{25}H_{54}O_4Si_2H]^+ = [M+H]^+$: 475.3639, gemessen: 475.3630.

IR \tilde{v} = 2931 (m), 2866 (m), 1463 (w), 1368 (w), 1252 (m), 1093 (s), 1045 (s), 940 (w), 832 (s), 774 (s), 676 (s), 510 (w).

Spezifischer Drehwinkel $[\alpha]_{589}^{25}$ = -2.9° (c = 1.05, Chloroform).

(3S,4S)-4-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-3-((triisopropylsilyl)oxy)pentan-1ol (227)

In ein Reaktionsgefäß aus Polypropylen wurden 100 ml THF, 30 ml Pyridin und 11.7 g des Acetonids **226** (1 eq, 24.6 mmol) vorgelegt. Die Lösung wurde auf 0 °C gekühlt und 18 ml HF·Pyridin-Komplex (~70% HF) hinzugetropft. Das Reaktionsgemisch wurde auf RT gebracht und für 4 h gerührt. Nach beendeter Reaktion wurde 200 ml ges. NH₄Cl-Lösung hinzugetropft und für 15 min gerührt. Die Phasen wurden getrennt und die wässrige Phase mit Et₂O extrahiert. Die vereinte organische Phase wurde mit ges. NaHCO₃-Lösung und ges. NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Nach dem Einengen wurde säulenchromatographisch (Pentan/Diethylether 3:2)

aufgereinigt und 8.7 g von Alkohol **227** (24.1 mmol, 97% Ausbeute) als klare Flüssigkeit erhalten.

Allgemeine Daten $C_{19}H_{40}O_4Si$, M = 360.61 g/mol, klare Flüssigkeit, R_f = 0.6 (Pentan/Diethylether 2:1), Vanillin: blau, UV (-).

¹**H NMR (600 MHz, CDCI**₃) 4.24 (dt, *J* = 7.8, 6.0 Hz, 1H), 4.02 (dd, *J* = 8.4, 6.1 Hz, 1H), 3.95 (ddd, *J* = 7.2, 4.7, 2.9 Hz, 1H), 3.72 (dt, *J* = 7.0, 1.3 Hz, 2H), 3.65 (t, *J* = 7.9 Hz, 1H), 1.87 – 1.71 (m, 4H), 1.38 (s, 3H), 1.34 (s, 3H), 1.06 (s, 21H), 0.97 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ [ppm] = 108.49 (C), 76.02 (CH), 72.83 (CH), 68.19 (CH₂), 60.24 (CH₂), 41.48 (CH), 36.16 (CH₂), 26.67 (CH₃), 25.63 (CH₃), 18.22 (6CH₃), 12.96 (3CH), 10.92 (CH₃).

HRMS (ESI) (*m/z*) Berechnet für $[C_{19}H_{40}O_4SiH]^+ = [M+H]^+$: 361.2774, gemessen: 361.2773.

IR \tilde{v} = 3436 (m), 2944 (s), 2868 (s), 2724 (w), 1464 (m), 1380 (s), 1369 (s), 1216 (s), 1061 (s), 883 (s).

Spezifischer Drehwinkel $[\alpha]_{589}^{25}$ = -16.5° (c = 1.0, Chloroform).

(3*S*,4*S*)-4-((*S*)-2,2-dimethyl-1,3-dioxolan-4-yl)-3-((triisopropylsilyl)oxy)pentanal (228)

In einen 250 ml Glaskolben wurden 3.12 g des Alkohols **227** (1 eq, 8.6 mmol), 4 g Molsieb (3 Å) und 2 g NMO-Monohydrat (2 eq, 14.8 mmol) in 80 ml trocknem DCM gelöst und für 20 min bei RT gerührt. Anschließend wurde 150 mg TPAP (0.05 eq, 0.43 mmol) hinzugegeben und die schwarze Lösung für 30 min bei RT gerührt. Nachdem der komplette Alkohol umgesetzt war, wurde über ein kurzes Silicapad filtriert und mit DCM nachgewaschen. Das Lösungsmittel wurde am Rotationsverdampfer entfernt und das Rohprodukt per Säulenchromatographie

(Pentan/Diethylether 7:1) aufgereinigt, um 2.54 g des Aldehyds **228** (7.1 mmol, 82% Ausbeute) als farblose Flüssigkeit zu erhalten.

Allgemeine Daten $C_{19}H_{38}O_4Si$, M = 358.59 g/mol, farblose Flüssigkeit, $R_f = 0.24$ (Pentan/Diethylether 10:1), Vanillin: blau, UV (-).

¹**H NMR (400 MHz, CDCI**₃) δ [ppm] = 9.83 (t, *J* = 2.0 Hz, 1H), 4.36 – 4.30 (m, 2H), 4.01 (dd, *J* = 8.0, 6.1 Hz, 1H), 3.65 (t, *J* = 7.9 Hz, 1H), 2.68 – 2.63 (m, 2H), 1.87 – 1.78 (m, 1H), 1.37 (s, 3H), 1.34 (s, 3H), 1.04 (s, 21H), 0.93 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCI₃) δ [ppm] = 201.88 (CHO), 108.76 (C), 77.69 (CH), 74.54 (CH), 68.00 (CH₂), 47.90 (CH₂), 41.82 (CH), 25.54 (2CH₃), 18.10 (6CH₃), 12.64 (3CH), 12.58 (CH₃).

HRMS (ESI) (*m/z*) Berechnet für $[C_{19}H_{38}O_4SiH]^+ = [M+H]^+$: 373.2774, gemessen: 373.2783.

IR \tilde{v} = 2944 (s), 2868 (s), 2724 (w), 1728 (m), 1659 (w), 1463 (s), 1381 (s), 1248 (m), 1093 (s), 882 (s).

Spezifischer Drehwinkel $[\alpha]_{546}^{20}$ = -9.8° (c = 1.05, Chloroform).

Methyl-(5S,6S,*E*)-6-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-5-((triisopropylsilyl)oxy)hept-2-enoate (229)

In einen 250 ml Glaskolben wurde 246 mg NaH (1.1 eq, 6.1 mmol, 60% in Mineralöl) in 25 ml trockenem THF vorgelegt. Anschließend wurde 0.96 ml Trimethylphosphonoacetat (1.2 eq, 6.7 mmol) hinzugetropft und für 30 min bei RT gerührt. 2 g des Aldehyds **228** (1 eq, 5.6 mmol) wurden in 20 ml trockenem THF gelöst und langsam zum weißen Gemisch hinzugetropft. Das Reaktionsgemisch wurde für 1 h bei RT gerührt und anschließend mit ges. NH₄Cl-Lösung gequencht. Die Phasen wurden getrennt und die wässrige Phase mit Diethylether extrahiert. Die vereinigte organische Phase wurde mit ges. NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet und am Rotationsverdampfer eingeengt. Das Rohprodukt kann direkt in der nächsten Stufe verwendet werden. Für die Analytik wurde das Rohprodukt säulenchromatographisch (Pentan/Diethylether 10:1) aufgereinigt und 2.2 g des Esters **229** (5.3 mmol, 94% Ausbeute) in Form eines klaren Öls erhalten.

Allgemeine Daten $C_{22}H_{42}O_5Si$, M = 414.66 g/mol, klares Öl, R_f = 0.5 (Pentan/Diethylether 10:1), Vanillin: blau/violett, UV (+).

¹**H NMR (600 MHz, CDCI**₃) δ [ppm] = 6.92 (p, *J* = 7.5 Hz, 1H), 5.85 (dt, *J* = 15.6, 1.5 Hz, 1H), 4.18 (q, *J* = 6.4 Hz, 1H), 4.01 (dd, *J* = 8.2, 6.2 Hz, 1H), 3.87 (td, *J* = 6.4, 2.9 Hz, 1H), 3.72 (s, 3H), 3.61 (t, *J* = 7.9 Hz, 1H), 2.54 – 2.37 (m, 2H), 1.71 (dquint, *J* = 6.8, 2.9 Hz, 1H), 1.37 (s, 3H), 1.33 (s, 3H), 1.04 (s, 21H), 0.98 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ [ppm] = 166.71 (C=O), 145.93 (=CH-), 122.97 (=CH-), 108.51 (C), 76.20 (CH), 73.74 (CH), 68.19 (CH₂), 51.47 (CH₃), 41.65 (CH), 37.38 (CH₂), 26.67 (CH₃), 25.60 (CH₃), 18.19 (3CH₃), 18.18 (3CH₃), 12.83 (3CH), 10.47 (CH₃).

HRMS (ESI) (*m/z*) Berechnet für $[C_{22}H_{42}O_5SiH]^+ = [M+H]^+$: 415.2880, gemessen: 415.2878.

IR \tilde{v} = 2944 (s), 2892 (m), 2867 (s), 1726 (s), 1658 (w), 1462 (m), 1436 (w), 1370 (m), 1323 (m), 1211 (m), 1166 (s), 1040 (s), 882 (s), 677 (s), 510 (w).

Spezifischer Drehwinkel $[\alpha]_{589}^{20}$ = -6.0° (c = 0.4, Chloroform).

(5*S*,6*S*,*E*)-6-((*S*)-2,2-dimethyl-1,3-dioxolan-4-yl)-5-((triisopropylsilyl)oxy)hept-2en-1-ol (230)

In einen 250 ml Glaskolben wurde 2.3 g des Esters **229** (1 eq, 5.5 mmol) in 40 ml trockenem DCM gelöst und auf -78 °C gekühlt. 12 ml DIBAL-H (2.2 eq, 12.1 mmol, 1 M in DCM) wurde langsam hinzugetropft und anschließend für 1 h bei -78 °C gerührt.

Nach beendeter Reaktion wurde 20 ml MeOH hinzugetropft und auf RT aufgewärmt. Im Anschluss wurde 100 ml ges. Seignettesalz-Lösung und 100 ml DCM hinzugegeben und das gelartige Gemisch gerührt bis sich die Phasen gut trennen ließen. Die Phasen wurden getrennt und die wässrige Phase mit DCM extrahiert. Die vereinigte organische Phase wurde mit ges. NaCI-Lösung gewaschen und über Na₂SO₄ getrocknet. Das Rohprodukt wurde per Säulenchromatographie (Pentan/Diethylether 2:1) aufgereinigt und 2.2 g des Allylalkohols **230** (5.7 mmol, 93% Ausbeute) als klares Öl erhalten.

Allgemeine Daten C₂₁H₄₂O₄Si, M = 386.65 g/mol, klares Öl, R_f = 0.17 (Pentan/Diethylether 3:1), Vanillin: dunkelblau, UV (-).

¹H NMR (600 MHz, CDCI₃) δ [ppm] = 5.74 – 5.57 (m, 2H), 4.15 (td, *J* = 7.8, 6.1 Hz, 1H), 4.09 (dd, *J* = 5.6, 0.8 Hz, 2H), 4.03 (dd, *J* = 8.2, 6.0 Hz, 1H), 3.78 – 3.74 (m, 1H), 3.61 (t, *J* = 7.8 Hz, 1H), 2.40 – 2.23 (m, 2H), 1.71 (quintd, *J* = 7.2, 2.5 Hz, 2H), 1.38 (s, 3H), 1.34 (s, 3H), 1.08 (s, 3H), 1.05 (s, 18H), 0.99 (d, *J* = 6.7 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ [ppm] = 131.5 (-CH=), 128.8 (-CH=), 108.26 (C), 77.3 (CH), 73.9 (CH), 68.3 (CH₂), 63.5 (CH₂), 41.3 (CH), 37.5 (CH₂), 26.8 (CH₃), 25.6 (CH₃), 16.2 (6CH₃), 12.8 (3CH), 10.4 (CH₃).

HRMS (ESI) (*m/z*) Berechnet für [C₂₁H₄₂O₄SiH]⁺ = [M+H]⁺: 387.2931, gemessen: 387.2949.

IR \tilde{v} = 3404 (br), 2941 (s), 2892 (m), 2866 (s), 1744 (w), 1462 (m), 1379 (m), 1248 (m), 1215 (m), 1159 (m), 1111 (s), 1039 (s), 1011 (s), 971 (s), 918 (w), 882 (s), 735 (w), 676 (s), 508 (w).

Spezifischer Drehwinkel $[\alpha]_{589}^{20}$ = +3.0° (c = 0.28, Chloroform).

((2*S*,3*S*)-3-((2*S*,3*S*)-3-((*S*)-2,2-dimethyl-1,3-dioxolan-4-yl)-2-((triisopropylsilyl)oxy)butyl)oxiran-2-yl)methanol (231)

120

In einen 250 ml Glaskolben wurden 4 g pulverisiertes, aktiviertes Molsieb (3 Å), 2.6 ml Titanisopropoxid (1.1 eq, 9.39 mmol) und 2.8 ml (+)-Diisopropyltartrat (1.55 eq, 13.65 mmol) in 70 ml trockenem DCM vorgelegt und auf -78 °C gekühlt. Das Gemisch wurde für 30 min bei -78 °C gerührt und anschließend 3.3 g des Allylalkohols **230** (1 eq, 8.53 mmol, in 20 ml DCM gelöst) langsam zum Gemisch hinzugetropft. Nach weiteren 20 min Rühren, wurde 2.6 ml *t*-Butylhydroperoxid-Lösung (2.5 eq, 21.3 mmol, 5.5 M in Decan) langsam hinzugetropft. Das Reaktionsgemisch wurde auf -25 °C aufgewärmt und für 20 h gerührt. Nach beendeter Reaktion wurde das Molsieb abfiltriert, das Filtrat mit 100 ml mit Ethylacetat verdünnt und 2 ml dest. Wasser hinzugegeben. Das heterogene Gemisch wurde für 30 min heftig gerührt, anschließend über ein kurzes Celitepad filtriert und das Lösungsmittel am Rotationsverdampfer eingeengt. Das Rohprodukt kann direkt in der nächsten Stufe verwendet werden. Für die Analytik wurde per Säulenchromatographie (Pentan/Diethylether 1:1) aufgereinigt, um 3.1 g des Epoxids **231** (7.7 mmol, 90% Ausbeute) als farbloses Öl zu erhalten.

Allgemeine Daten $C_{21}H_{42}O_5Si$, M = 402.65 g/mol, farbloses Öl, R_f = 0.48 (Pentan/Diethylether1:1), Vanillin: violett, UV (-).

¹**H NMR (600 MHz, CDCI₃)** δ [ppm] = 4.24 (dt, *J* = 7.8, 5.8 Hz, 1H), 4.02 (dd, *J* = 8.1, 6.1 Hz, 1H), 3.97 (ddd, *J* = 7.8, 5.1, 2.8 Hz, 1H), 3.89 (dq, *J* = 12.5, 2.5 Hz, 1H), 3.63 (t, *J* = 8.0 Hz, 1H), 3.61 (m, 1H), 3.08 – 3.04 (m, 1H), 2.96 (quint, *J* = 2.5 Hz, 1H), 1.90 – 1.80 (m, 3H), 1.59 (ddd, *J* = 14.6, 7.7, 4.9 Hz, 1H), 1.36 (s, 3H), 1.33 (s, 3H), 1.06 (s, 21H), 0.94 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ [ppm] = 108.5 (C), 75.6 (CH), 73.1 (CH), 68.2 (CH₂), 61.6 (CH₂), 58.8 (CH), 53.4 (CH), 41.8 (CH), 36.1 (CH₂), 26.6 (CH₃), 25.6 (CH₃), 18.2 (6CH₃), 12.8 (3CH), 10.7 (CH₃).

HRMS (ESI) (*m/z*) Berechnet für $[C_{21}H_{42}O_5SiH]^+ = [M+H]^+$: 403.2880, gemessen: 403.2876.

IR \tilde{v} = 3468 (br), 2980 (m), 2942 (m), 2867 (m), 1743 (s), 1463 (m), 1370 (m), 1249 (s), 1216 (s), 1129 (s), 1091 (s), 1054 (s), 1016 (s), 882 (m), 864 (m), 677 (m), 607 (w), 508 (w).

Spezifischer Drehwinkel $[\alpha]_{589}^{21}$ = -15.0° (c = 0.26, Chloroform).

```
(S)-1-((2R,4R,5R,6S)-6-(hydroxymethyl)-5-methyl-4-
((triisopropylsilyl)oxy)tetrahydro-2H-pyran-2-yl)ethane-1,2-diol (233)
```


In einem 250 ml Glaskolben wurde 3.1 g des Epoxids **231** (1 eq, 8.55 mmol) in 70 ml DCM gelöst, 4 ml dest. Wasser hinzugegeben und das Gemisch auf 0 °C gekühlt. Anschließend wurde 4 ml TFA hinzugegeben und für 2 h bei 0 °C heftig gerührt. Nach beendeter Reaktion wurde mit ges. NaHCO₃-Lösung gequencht, die Phasen wurden getrennt und die wässrige Phase mit DCM extrahiert. Die vereinigte organische Phase wurde über Na₂SO₄ getrocknet und am Rotationsverdampfer eingeengt. Das Rohprodukt kann ohne weitere Aufarbeitung in der nächsten Stufe umgesetzt werden. Für die Analytik wurde säulenchromatographisch (Ethylacetat) aufgereinigt und 2.3 g des Triols **233** (6.3 mmol, 82% Ausbeute) als farblose, hochviskose Flüssigkeit erhalten.

Allgemeine Daten C₁₈H₃₈O₅Si, M = 362.58 g/mol, hochviskose, farblose Flüssigkeit, $R_f = 0.34$ (Ethylacetat), Vanillin: braun/violett, UV (-).

¹**H NMR (600 MHz, CDCl**₃) δ [ppm] = 4.04 (dt, *J* = 9.0, 2.2 Hz, 1H), 3.97 (dq, *J* = 11.7, 2.3 Hz, 1H), 3.91 (q, *J* = 2.6 Hz, 1H), 3.87 (s br, 3H), 3.75 (dd, *J* = 11.6, 6.5 Hz, 1H), 3.67 – 3.58 (m, 3H), 3.41 (dd, *J* = 11.7, 2.3 Hz, 1H), 1.69 (td, *J* = 14.2, 2.3 Hz, 1H), 1.65 – 1.58 (m, 1H), 1.59 (d br, *J* = 13.7 Hz, 1H), 1.05 – 0.99 (m, 21H), 0.80 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ [ppm] = 75.7 (CH), 74.1 (CH), 73.9 (CH), 70.6 (CH), 64.5 (CH₂), 62.9 (CH₂), 37.2 (CH), 30.1 (CH₂), 18.0 (6CH₃), 12.1 (3CH), 11.3 (CH₃).

HRMS (ESI) (*m/z*) Berechnet für $[C_{18}H_{38}O_5SiH]^+ = [M+H]^+$: 363.2567, gemessen: 363.2564.

IR \tilde{v} = 3337 (br), 2941 (s), 2890 (m), 2866 (s), 1677 (m), 1462 (m), 1384 (m), 1342 (w), 1247 (w), 1202 (m), 1092 (s), 1050 (s), 997 (s), 950 (m), 881 (s), 817 (m), 800 (m), 722 (m), 678 (s), 658 (s), 502 (w), 462 (w).

Spezifischer Drehwinkel $[\alpha]_{589}^{21}$ = +12.2° (c = 0.22, Chloroform).

((2*S*,3*R*,4*R*,6*R*)-6-((*S*)-2,2-dimethyl-1,3-dioxolan-4-yl)-3-methyl-4-((triisopropylsilyl)oxy)tetrahydro-2H-pyran-2-yl)methanol (234)

In einem 250 ml Glaskolben wurde 3.1 g des Triols **233** (1 eq, 8.56 mmol) in 75 ml trockenem Aceton gelöst, 2.8 g trockenes, pulverisiertes Kupfersulfat (2.8 g, 17.5 mmol) hinzugegeben und das Gemisch auf 0 °C gekühlt. Dann wurde 325 mg *p*-TsOH·H₂O (0.2 eq, 1.71 mmol) hinzugegeben und für 1 h bei 0 °C gerührt. Nach beendeter Reaktion wurde das Rühren eingestellt und die Flüssigkeit vorsichtig abdekantiert. Anschließend wurde mit Diethylether verdünnt und die org. Phase mit ges. NaHCO₃-Lösung, dest. Wasser und ges. NaCl-Lösung gewaschen. Nach dem Trocknen über MgSO₄ wurde das Lösungsmittel am Rotationsverdampfer eingeengt. Das Rohprodukt wurde säulenchromatographisch (Pentan/Diethylether 3:2) aufgereinigt und 3 g des Alkohols **234** (7.45 mmol, 87% Ausbeute) in Form einer klaren Flüssigkeit erhalten.

Allgemeine Daten $C_{21}H_{42}O_5Si$, M = 402.65 g/mol, klare Flüssigkeit, R_f = 0.54 (Pentan/Diethylether 1:1), Vanillin: braun, UV (-).

¹**H NMR (600 MHz, CDCI₃)** δ [ppm] = 4.06 – 4.01 (m, 2H), 3.97 (td, *J* = 6.3, 5.1 Hz, 1H), 3.92 – 3.88 (m, 2H), 3.76 (ddd, *J* = 11.7, 6.8, 2.2 Hz, 1H), 3.63 (dd, *J* = 11.5, 9.1 Hz, 1H), 3.4 (dd, *J* = 11.5, 3.6 Hz, 1H), 2.16 (br, 1H), 1.69 – 1.61 (m, 2H), 1.60 – 1.54 (m, 1H), 1.36 (s, 3H), 1.32 (s, 3H), 1.05 – 0.99 (m, 21H), 0.82 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ [ppm] = 109.30 (C), 77.96 (CH), 75.16 (CH), 73.2 (CH), 70.52 (CH), 66.61 (CH₂), 64.26 (CH₂), 37.07 (CH), 30.85 (CH₂), 26.45 (CH₃), 25.17 (CH₃), 18.05 (6CH₃), 12.11 (3CH₃), 11.31 (CH₃).

HRMS (ESI) (*m/z*) Berechnet für $[C_{21}H_{42}O_5SiH]^+ = [M+H]^+$: 403.2880, gemessen: 403.2873.

IR \tilde{v} = 3453 (b), 2941 (m), 2867 (m), 1463 (m), 1370 (m), 1252 (m), 1216 (m), 1146 (m), 1091 (s), 1064 (s), 995 (m), 946 (m), 919 (w), 881 (s), 845 (s), 819 (m), 756 (m), 711 (m), 678 (s), 505 (m).

Spezifischer Drehwinkel $[\alpha]_{589}^{21}$ = +17.2° (c = 0.23, Chloroform).

((2*S*,3*S*,4*S*,6*R*)-6-((*S*)-2,2-dimethyl-1,3-dioxolan-4-yl)-3-methyl-4-((triisopropylsilyl)oxy)tetrahydro-2H-pyran-2-yl)methyltrifluoromethanesulfonate (237)

In einen 100 ml Glaskolben wurden 270 mg des Alkohols **234** (1 eq, 1.66 mmol) und 0.4 ml Pyridin (3 eq, 5 mmol) in 7.5 ml trockenem DCM gelöst und auf -78 °C gekühlt. Dann wurde 0.42 ml Tf₂O (1.5 eq, 2.5 mmol) langsam hinzugetropft und für 30 min bei -78 °C gerührt. Anschließend wurde die Reaktionslösung langsam auf -10 °C aufgewärmt und vorsichtig über ein kurzes Silicapad filtriert. Das Silicapad wurde mit einem Pentan/Ether-Lösungsmittelgemisch (10:1) nachgewaschen, bis kein Produkt mehr auf dem Silicapad mehr festzustellen war. Das Lösungsmittel wurde am Rotationsverdampfer entfernt und das erhaltene Rohprodukt ohne weitere Aufarbeitung für die nächste Stufe verwendet. Für die Analytik wurde per Säulenchromatographie (Pentan/Diethylether 10:1) aufgereinigt und 320 mg des Triflats **237** (0.6 mmol, 90% Ausbeute) als klares Öl erhalten.

Allgemeine Daten $C_{22}H_{41}F_{3}O_{7}SSi$, M = 534.7 g/mol, klares Öl, R_f = 0.38 (Pentan/Diethylether 15:1), Vanillin: violett, UV (-).

¹**H NMR (600 MHz, CDCl₃)** δ [ppm] = 4.48 (dd, *J* = 10.7, 8.8 Hz, 1H), 4.35 (dd, *J* = 10.5, 3.3 Hz, 1H), 4.29 (dt, *J* = 8.6, 2.7 Hz, 1H), 4.08 – 4.03 (m, 1H), 4.00 – 3.91 (m, 3H), 3.75 (ddd, *J* = 11.6, 7.1, 2.2 Hz, 1H), 1.77 (d br, *J* = 13.7 Hz, 1H), 17.4 – 1.68 (m, 1H), 1.59 (ddd, *J* = 13.7, 11.7, 2.6 Hz, 1H), 1.38 (s, 3H), 1.34 (s, 3H), 1.06 – 1.03 (m, 21H), 0.88 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ [ppm] = 118.59 (CF₃), 109.37 (C), 77.79 (CH), 77.49 (CH₂), 73.66 (CH), 71.62 (CH), 70.13 (CH), 66.88 (CH₂), 36.95 (CH), 30.86 (CH₂), 26.58 (CH₃), 25.24 (CH₃), 18.05 (6CH₃), 12.16 (3CH), 10.84 (CH₃).

HRMS (ESI) (*m/z*) Die exakte Masse konnte trotz verschiedener lonisierungsmethoden nicht detektiert werden.

IR $\tilde{v} = 2943$ (m), 2891 (m), 2868 (m), 1463 (w), 1414 (s), 1382 (m), 1246 (s), 1203 (s), 1145 (s), 1110 (m), 1068 (s), 1046 (s), 997 (m), 945 (s), 881 (s), 845 (m), 818 (m), 797 (m), 761 (w), 710 (w), 680 (s), 657 (m), 613 (s), 501 (m), 463 (w).

Spezifischer Drehwinkel $[\alpha]_{589}^{21}$ = +7.0° (c = 5.4, Chloroform).

2-((2*R*,3*S*,4*S*,6*R*)-6-((*S*)-2,2-dimethyl-1,3-dioxolan-4-yl)-3-methyl-4-((triisopropylsilyl)oxy)tetrahydro-2H-pyran-2-yl)acetonitrile (245)

In einen 100 ml Glaskolben wurde 78 mg NaCN (3 eq, 1.8 mmol) in 20 ml DMSO gelöst. Dann wurden 320 mg des Triflats **237** (1 eq, 0.6 mmol) in 3 ml DCM gelöst und zur NaCN/DMSO-Lösung hinzugetropft. Das Reaktionsgemisch wurde für 1 h bei RT gerührt und anschließend mit 100 ml Diethylether verdünnt. Die organische Phase wurde zweimal mit dest. Wasser und einmal mit ges. NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet und am Rotationsverdampfer eingeengt. Das Rohprodukt wurde

per Säulenchromatographie (Pentan/Diethylether 5:1) aufgereinigt und 234 mg des Nitrils **245** (0.57 mmol, 95% Ausbeute) als klare Flüssigkeit, welche zur spontanen Kristallisation neigt, erhalten.

Allgemeine Daten C₂₂H₄₁NO₄Si, M = 411.66 g/mol, farblose Flüssigkeit, $R_f = 0.42$ (Pentan/Diethylether 5:1), Vanillin: grau, UV (-).

¹**H NMR (600 MHz, CDCl**₃) δ [ppm] = 4.27 (ddd, *J* = 8.5, 6.4, 2.4 Hz, 1H), 4.05 (td, *J* = 7.7, 2.3 Hz, 1H), 4.01 (q, *J* = 2.9 Hz, 1H), 3.98 – 3.92 (m, 2H), 3.79 (ddd, *J* = 10.6, 6.8, 2.3 Hz, 1H), 2.54 (dd, *J* = 17.1, 8.3 Hz, 1H), 2.34 (dd, *J* = 17.1, 6.6 Hz, 1H), 1.79 – 174 (m, 1H), 1.72 (d br, *J* = 13.9 Hz, 1H), 3.79 (ddd, *J* = 14.0, 11.6, 2.4 Hz, 1H), 1.38 (s, 3H), 1.34 (s, 3H), 1.06 – 1.02 (m, 21H), 0.89 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ [ppm] = 117.47 (CN), 109.42 (C), 77.78 (CH), 73.93 (CH), 70.25 (CH), 70.19 (CH), 66.68 (CH₂), 38.33 (CH), 30.41 (CH₂), 26.54 (CH₃), 25.22 (CH₃), 21.48 (CH₂), 18.08 (3CH₃), 18.07 (3CH₃), 12.17 (3CH), 10.33 (CH₃).

HRMS (ESI) (*m/z***)** Berechnet für [C₂₂H₄₁NO₄SiH]⁺ = [M+H]⁺: 412.2883, gemessen: 412.2882.

IR \tilde{v} = 3407 (br), 2942 (m), 2891 (m), 2866 (m), 1712 (w), 1463 (m), 1416 (w), 1384 (w), 1242 (m), 1209 (s), 1146 (m), 1067 (s), 1030 (s), 953 (m), 881 (s), 819 (m), 678 (s), 640 (s), 614 (m), 500 (w), 461 (w).

Spezifischer Drehwinkel $[\alpha]_{589}^{21}$ = +17.0° (c = 0.35, Chloroform).

2-((2R,3S,4S,6R)-6-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-3-methyl-4-((triisopropylsilyl)oxy)tetrahydro-2H-pyran-2-yl)acetaldehyde (246)

In einen 100 ml Glaskolben wurden 295 mg des Nitrils **245** (1 eq, 0.716 mmol) in 10 ml trockenem Toluol gelöst und auf -78 °C gekühlt. 0.93 ml DIBAL-H (1.3 eq, 0.93

mmol, 1 M in DCM) wurde langsam hinzugetropft und für 1 h bei -78 °C gerührt. Nach beendeter Reaktion wurde 2 ml trockenes Methanol hinzugetropft und auf RT aufgewärmt. Dann wurde 50 ml ges. Seignettesalz-Lösung und 50 ml DCM hinzugegeben. Das gelartige Gemisch wurde für 1 h heftig gerührt, bis sich die Phasen trennen ließen. Die beiden Phasen wurden getrennt und die wässrige Phase mit DCM extrahiert. Die vereinigte organische Phase wurde mit ges. NaCI-Lösung gewaschen und über Na₂SO₄ getrocknet. Das Lösungsmittel wurde Rotationsverdampfer entfernt und das Rohprodukt per Säulenchromatographie (Pentan/Diethylether 4:1) aufgereinigt, um 290 mg des Nitrils **246** (0.7 mmol, 95% Ausbeute) als klare Flüssigkeit zu erhalten.

Allgemeine Daten $C_{22}H_{42}O_5Si$, M = 414.66 g/mol, klare Flüssigkeit, R_f = 0.38 (Pentan/Diethylether 4:1), Vanillin: grau, UV (-).

¹**H NMR (600 MHz, CDCI₃)** δ [ppm] = 9.76 (s, 1H), 4.52 (dt, *J* = 10.0, 2.6 Hz, 1H), 4.03 – 3.98 (m, 2H), 3.94 – 3.87 (m, 2H), 3.78 (ddd, *J* = 11.3, 7.1, 1.5 Hz, 1H), 2.58 (ddd, *J* = 16.0, 10.2, 2.6 Hz, 1H), 2.24 (dt, *J* = 16.4, 2.6 Hz, 1H), 1.72 (d br, *J* = 13.5 Hz, 1H), 1.67 – 1.60 (m, 1H), 1.60 – 1.54 (m, 1H), 1.37 (s, 3H), 1.33 (s, 3H), 1.11 – 1.03 (m, 21H), 0.89 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ [ppm] = 201.67 (CHO), 109.35 (C), 77.94 (CH), 73.68 (CH), 70.44 (CH), 69.58 (CH), 66.76 (CH₂), 46.64 (CH₂), 30.07 (CH), 30.72 (CH₂), 26.58 (CH₃), 25.25 (CH₃), 18.01 (6CH₃), 12.20 (3CH), 11.12 (CH₃).

HRMS (ESI) (*m/z*) Berechnet für $[C_{22}H_{42}O_5SiH]^+ = [M+H]^+$: 415.2880, gemessen: 415.2879.

IR $\tilde{v} = 2961$ (m), 2941 (m), 2890 (m), 2867 (m), 1462 (m), 1380 (m), 1253 (m), 1216 (m), 1147 (m), 1066 (s), 1013 (m), 996 (m), 945 (w), 881 (s), 847 (m), 818 (w), 734 (w), 717 (w), 679 (s), 657 (m), 506 (w).

Spezifischer Drehwinkel $[\alpha]_{589}^{21}$ = +14.0° (c = 0.41, Chloroform).

(((2*R*,3*S*,4*S*,6*R*)-2-allyl-6-((*S*)-2,2-dimethyl-1,3-dioxolan-4-yl)-3-methyltetrahydro-2H-pyran-4-yl)oxy)triisopropylsilane (239)

In einen 100 ml Glaskolben wurde 725 mg Methyltriphenylphosphoniumbromid (3.1 eq, 2.03 mmol) in 20 ml trockenem THF vorgelegt und 213 mg *t*-BuOK (2.9 eq, 1.9 mmol) portionsweise hinzugegeben. Anschließend wurde das gelbe Gemisch für 2 h bei RT gerührt. Dann wurden 279 mg des Aldehyds **246** (1 eq, 0.674 mmol) in 5 ml trockenem THF gelöst und langsam zur gelben Lösung hinzugetropft. Das Reaktionsgemisch wurde weitere 30 min bei RT gerührt und anschließend mit ges. NH4Cl-Lösung gequencht. Die Phasen wurden getrennt und die wässrige Phase mit Diethylether extrahiert. Die vereinigte organische Phase wurde mit ges. NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet und am Rotationsverdampfer eingeengt. Das Rohprodukt wurde per Säulenchromatographie aufgereinigt (Pentan/Diethylether 15:1) und 205 mg des Aldehyds **239** als klare Flüssigkeit (0.5 mmol, 81% Ausbeute) erhalten.

Allgemeine Daten $C_{23}H_{44}O_4Si$, M = 412.69 g/mol, klare Flüssigkeit, R_f = 0.66 (Pentan/Diethylether 9:1), Vanillin: blau, UV (-).

¹H NMR (600 MHz, CDCI₃) δ [ppm] = 5.81 – 5.72 (m, 1H), 5.10 – 4.99 (m, 2H), 4.03 (dd, J = 8.6, 6.4 Hz, 1H), 3.99 – 3.90 (m, 4H), 3.71 (ddd, J = 11.6, 7.4, 2.1 Hz, 1H), 2.32 – 2.25 (m, 1H), 2.08 – 2.01 (m, 1H), 1.70 (d br, J = 13.6 Hz, 1H), 1.65 – 1.58 (m, 1H), (ddd, J = 14.1, 11.6, 2.6 Hz, 1H), 1.38 (s, 3H), 1.33 (s, 3H), 1.03 (s, 21H), 0.86 (d, J = 7.1 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ [ppm] = 135.14 (=CH-), 116.32 (=CH₂), 109.22 (C), 78.22 (CH), 73.76 (CH), 73.59 (CH), 70.78 (CH), 66.90 (CH₂), 38.40 (CH), 37.00 (CH₂), 31.23 (CH₂), 26.65 (CH₃), 25.32 (CH₃), 18.11 (6CH₃), 12.21 (3CH), 10.75 (CH₃).

HRMS (ESI) (*m/z*) Berechnet für $[C_{23}H_{44}O_4SiH]^+ = [M+H]^+$: 413.3087, gemessen: 413.3086.

IR \tilde{v} = 2924 (m), 2866 (m), 1463 (w), 1433 (w), 1380 (w), 1369 (w), 1254 (w), 1216 (w), 1068 (s), 995 (m), 914 (w), 882 (m), 846 (m), 819 (w), 742 (m), 679 (s), 501 (m).

Spezifischer Drehwinkel $[\alpha]_{589}^{21}$ = +14.0° (c = 0.5, Chloroform).

(*S*)-1-((2*R*,4*S*,5*S*,6*R*)-6-allyl-5-methyl-4-((triisopropylsilyl)oxy)tetrahydro-2Hpyran-2-yl)ethane-1,2-diol (247)

In einen 100 ml Glaskolben wurde 500 mg des Alkens **239** (1 eq, 1.21 mmol) in 20 ml DCM gelöst, 0.85 ml Wasser hinzugegeben und das Gemisch auf 0 °C gekühlt. Dann wurde 0.85 ml TFA hinzugegeben und das Gemisch für 1 h heftig gerührt. Nach beendeter Reaktion wurden 20 ml einer ges. NaHCO₃-Lösung hinzugetropft und auf RT aufgewärmt. Die Phasen wurden getrennt und die wässrige Phase mit DCM extrahiert. Die vereinigte org. Phase wurde mit ges. NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet und das Lösungsmittel am Rotationsverdampfer entfernt. Das Rohprodukt kann ohne weitere Aufreinigung für die nächste Stufe verwendet werden. Für die Analytik wurde per Säulenchromatographie (Pentan/Diethylether 1:1) aufgereinigt und 430 mg des Diols **247** (1.15 mmol, 96% Ausbeute) als farblose, hochviskose Flüssigkeit erhalten.

Allgemeine Daten C₂₀H₄₀O₄Si, M = 372.62 g/mol, farblose, hochviskosen Flüssigkeit, $R_f = 0.2$ (Pentan/Diethylether 1:1), Vanillin: blau, UV (-).

¹H NMR (600 MHz, CDCl₃) δ [ppm] = 5.80 – 5.70 (m, 1H), 5.10 – 5.00 (m, 2H), 4.00 – 3.90 (m, 3H), 3.75 (dd, J = 11.2, 5.1 Hz, 1H), 3.66 (dd, J = 11.5, 4.1 Hz, 1H), 3.57 (q, J = 4.5 Hz, 1H), 2.31 – 2.24 (m, 1H), 2.09 – 2.03 (m, 1H), 1.68 (ddd, J = 16.0, 13.0, 2.6 Hz, 1H), 1.65 – 1.60 (m, 1H), 1.48 (d br, J = 13.7 Hz, 1H), 1.06 – 1.01 (m, 21H), 0.86 (d, J = 6.9 Hz, 3H).

¹³C NMR (150 MHz, CDCI₃) δ [ppm] = 134.8 (-CH=), 116.7 (=CH₂), 75.2 (CH), 73.8 (CH), 73.3 (CH), 70.6 (CH), 63.7 (CH₂), 38.3 (CH), 37.0 (CH₂), 30.3 (CH₂), 18.0 (6CH₃), 12.2 (3CH), 10.7 (CH₃).

HRMS (ESI) (*m/z*) Berechnet für $[C_{20}H_{40}O_4SiH]^+ = [M+H]^+$: 373.2774, gemessen: 373.2783.

IR \tilde{v} = 3420 (br), 2941 (m), 2866 (m), 1642 (w), 1463 (m), 1382 (w), 1247 (w), 1090 (s), 1054 (s), 994 (m), 913 (m), 881 (s), 819 (w), 726 (m), 678 (s), 654 (s), 502 (w).

Spezifischer Drehwinkel $[\alpha]_{589}^{25}$ = +20.0° (c = 0.8, Chloroform).

(*S*)-5-((2*R*,4*S*,5*S*,6*R*)-6-allyl-5-methyl-4-((triisopropylsilyl)oxy)tetrahydro-2Hpyran-2-yl)-3,3,8,8-tetraethyl-4,7-dioxa-3,8-disiladecan (184)

In einen 100 ml Glaskolebn wurde 430 mg des Diols **247** (1 eq, 1.15 mmol) in 20 ml trocknem DCM gelöst, 8 mg DMAP (0.05 eq, 0.057 mmol), 290 mg Imidazol (4 eq, 4.6 mmol) und 0.53 ml TESCI (2.2 eq, 2.53 mmol) hinzugegeben und für 16 h bei RT gerührt. Anschließend wurde mit ges. NH₄Cl-Lösung verdünnt und die Phasen getrennt. Die wässrige Phase wurde mit DCM extrahiert, die vereinigte org. Phase wurde über Na₂SO₄ getrocknet und das Lösungsmittel am Rotationsverdampfer entfernt. Das Rohprodukt wurde säulenchromatographisch (Pentan/Diethylether 50:1) aufgereinigt und 650 mg des THP-Fragments **184** (1.08 mmol, 94% Ausbeute) als klares Öl erhalten.

Allgemeine Daten $C_{32}H_{68}O_4Si_3$, M = 601.15 g/mol, klares Öl, R_f = 0.25 (Pentan/Diethylether 50:1), Vanillin: dunkelblau, UV (-).

¹H NMR (400 MHz, CDCl₃) δ [ppm] = 5.85 – 5.72 (m, 1H), 5.11 – 4.96 (m, 2H), 3.97 (q, J = 2.7, 3.3 Hz, 1H), 3.92 (td, J = 7.2, 2.3 Hz, 1H), 3.82 – 3.76 (m, 1H), 3.69 (q, J =

6.0 Hz, 1H), 3.61 (dd, *J* = 9.8, 5.1 Hz, 1H), 3.47 (dd, *J* = 10.3, 6.0 Hz, 1H), 2.34 – 2.22 (m, 1H), 2.09 – 1.98 (m, 1H), 1.73 – 1.64 (m, 1H), 1.57 (s, 1H), 1.51 (d, *J* = 13.6 Hz, 1H), 1.04 (s, 21H), 0.98 – 0.9 (m, 18H), 0.86 (d, *J* = 7.2 Hz, 3H), 0.65 – 0.48 (m, 12H).

¹³C NMR (100 MHz, CDCl₃) δ [ppm] = 135.68 (=CH-), 115.95 (=CH₂), 76.08 (CH), 73.49 (CH), 72.77 (CH), 71.29 (CH), 64.64 (CH₂), 38.41 (CH), 37.29 (CH₂), 29.02 (CH₂), 18.11 (6CH₃), 12.27 (3CH), 10.78 (CH₃), 6.95 (2CH₃), 6.80 (4CH₃), 6.43 (2CH₂), 5.08 (2CH₂), 4.37 (2CH₂).

HRMS (ESI) (*m/z*) Berechnet für $[C_{32}H_{68}O_4Si_3H]^+ = [M+H]^+$: 601.4504, gemessen: 601.4509.

IR $\tilde{v} = 2954$ (m), 2912 (m), 2875 (m), 1461 (w), 1414 (w), 1380 (w), 1238 (w), 1143 (m), 1073 (s), 1004 (s), 912 (w), 882 (m), 835 (w), 803 (m), 726 (s), 678 (s).

Spezifischer Drehwinkel $[\alpha]_{589}^{20}$ = +15.1° (c = 0.86, Chloroform).

(2*R*)-2-hydroxy-2-((2*S*,4*S*,5*S*,6*R*)-6-((*E*)-3-((3*S*,4*S*,7*S*)-7-(((2methoxyethoxy)methoxy)methyl)-4-methyl-2,6-dioxabicyclo[3.2.1]octan-3yl)allyl)-5-methyl-4-((triisopropylsilyl)oxy)tetrahydro-2H-pyran-2yl)acetaldehyde (181)

In einen 50 ml Dreihalskolben wurde 0.47 ml Oxalylchlorid (5 eq, 4.73 mmol) in 4 ml trockenem DCM gelöst und auf -78 °C gekühlt. 0.8 ml DMSO (10 eq, 10.08 mmol) wurden in 4 ml trockenem DCM gelöst, langsam hinzugetropft und das Gemisch anschließend für 15 min bei -78 °C gerührt.Dann wurden 900 mg des Kreuzprodukts **182** (1 eq, 0.94 mmol) in 4.5 ml trockenem DCM gelöst und langsam zum

Reaktionsgemisch hinzugetropft. Anschließend wurde zuerst für 15 min bei -78 °C gerührt, dann für 1 h bei -45 °C. Nachdem kein Edukt mehr beobachtet werden konnte, wurde wieder auf -78 °C gekühlt und 3 ml Triethylamin (18 eq, 17 mmol) langsam hinzugetropft. Nach dem Zutropfen wurde langsam auf RT aufgewärmt und vorsichtig mit ges. NaHCO₃-Lösung gequencht. Die Phasen wurde getrennt und die wässrige Phase mit DCM extrahiert. Die vereinigte org. Phase wurde mit ges. NaCl-Lösung gewaschen, über MgSO₄ getrocknet und am Rotationsverdampfer eingeengt. Das Rohprodukt wurde per Säulenchromatographie (Pentan/Diethylether 2:3) aufgereinigt und 600 mg des Aldehyds **181** (0.82 mmol, 88% Ausbeute, 2 Stufen) als klares Öl isoliert.

Allgemeine Daten $C_{38}H_{72}O_9Si_2$, M = 729.15 g/mol, klares Öl, $R_f = 0.67$ (Diethylether), Vanillin: blau, UV (-).

¹H NMR (400 MHz, CDCl₃) δ [ppm] = 9.62 (d, *J* = 9.6 Hz, 1H), 5.59 (ddd, *J* = 15.3, 8.6, 5.3 Hz, 1H), 5.41 (dd, *J* = 15.3, 7.7 Hz, 1H), 4.78 (s, 2H), 4.35 (s br, 1H), 4.24 (d, *J* = 6.6 Hz, 1H), 4.09 – 4.03 (m, 2H), 4.00 – 3.93 (m, 3H), 3.89 (t, *J* = 6.6 Hz, 2H), 3.80 (t, *J* = 8.5 Hz, 1H), 3.74 – 3.70 (m, 2H), 3.58 – 3.54 (dd, *J* = 5.8, 4.8 Hz, 2H), 3.38 (s, 3H), 2.33 – 2.25 (m, 1H), 2.06 – 1.97 (m, 2H), 1.85 (d, *J* = 11.8 Hz, 1H), 1.81 – 1.75 (m, 1H), 1.65 – 1.54 (m, 1H), 1.45 – 1.33 (m, 2H), 1.07 – 0.98 (m, 21H), 0.94 (t, *J* = 8.1 Hz, 9H), 0.83 (dd, *J* = 7.0, 1.4 Hz, 6H), 0.61 (q, *J* = 7.8 Hz, 6H).

¹³C NMR (100 MHz, CDCI₃) δ [ppm] = 202.98 (CHO), 131.73 (CH), 130.30 (CH), 95.58 (CH₂), 81.38 (CH), 80.01 (CH), 79.58 (CH), 78.99 (CH), 74.64 (CH), 73.95 (CH), 73.75 (CH), 71.77 (CH), 70.74 (CH), 66.74 (CH₂), 65.66 (CH₂), 59.02 (CH₃), 41.56 (CH), 38.73 (CH₂), 38.13 (CH), 35.44 (CH₂), 29.92 (CH₂), 18.05 (6CH₃), 15.13 (CH₃), 12.17 (3CH), 10.51 (CH), 6.67 (3CH₃), 4.76 (3CH₂).

HRMS (ESI) (*m/z*) Berechnet für [C₃₈H₇₂O₉Si₂NH₄]⁺ = [M+NH₄]⁺: 746.5059, gemessen: 746.5057.

IR 2942 (m), 2872 (m), 1737 (m), 1461 (m), 1242 (w), 1101 (m), 1051 (s), 1008 (m), 971 (m), 881 (m), 825 (w), 739 (m), 680 (m), 607 (w).

Spezifischer Drehwinkel $[\alpha]_{589}^{20}$ = -6.7° (c = 1.75, Chloroform).

(1*S*,2*S*,*E*)-1-((2*S*,4*S*,5*S*,6*R*)-6-((*E*)-3-((3*S*,4*S*,7*S*)-7-(((2methoxyethoxy)methoxy)methyl)-4-methyl-2,6-dioxabicyclo[3.2.1]octan-3yl)allyl)-5-methyl-4-((triisopropylsilyl)oxy)tetrahydro-2H-pyran-2-yl)-1-((triethylsilyl)oxy)octa-3,7-dien-2-ol (317a/b)

In einen 100 ml Dreihalskolben wurde 740 mg des Vinyliodids **315** (3 eg, 3.54 mmol) in 20 ml trockenem THF gelöst und auf -78 °C gekühlt. Anschließend wurde 4.4 ml t-BuLi (6 eq, 7.08 mmol, 1.6 M in Pentan) wurde langsam hinzugetropft und für 1 h bei -78 °C gerührt. Dann wurde 4.7 ml Dimethylzink-Lösung (4 eg, 4.72 mmol, 1 M in Heptan) hinzugetropft und für weitere 30 min bei -78 °C gerührt. Das weiße Reaktionsgemisch wurde auf -90 °C gekühlt und 860 mg des Aldehyds 181 (1 eg, 1.18 mmol, in 6 ml trockenem THF) langsam hinzugetropft. Das Gemisch wurde für 1 h bei -90 °C gerührt und anschließend langsam auf -20 °C aufgewärmt. Die Reaktion wurde bei -20 °C vorsichtig mit ges. NaHCO₃-Lösung geguencht und auf RT aufgewärmt. Es wurde mit weiteren 50 ml ges. NaHCO₃-Lösung verdünnt und die wässrige Phase mit Diethylether extrahiert. Die vereinigte org. Phase wurde mit ges. NaCI-Lösung gewaschen, über MgSO₄ getrocknet und am Rotationsverdampfer eingeengt. Das Rohprodukt kann ohne weitere Aufarbeitung für die nächste Stufe verwendet werden. Für die Analytik wurde säulenchromatographisch (Pentan/Diethylether 1:1) aufgereinigt und 717 mg des Isomerengemisches 317a/b (0.88 mmol, 75% Ausbeute, dr = 10:1) als klares, dickflüssiges Öl erhalten.

Allgemeine Daten C₄₄H₈₂O₉Si₂, M = 811.30 g/mol, klares, dickflüssiges Öl, $R_f = 0.67$ (Diethylether), Vanillin: schwarz, UV (-).

¹H NMR (400 MHz, CDCI₃) δ [ppm] = 5.89 – 5.65 (m, 2H), 5.65 – 5.49 (m, 2H), 5.44 (dd, J = 15.8, 7.3 Hz, 1H), 5.07 – 4.93 (m, 2H), 4.78 (s, 2H), 4.35 (s, 1H), 4.24 (d, J =

6.5 Hz, 1H), 4.14 (dd, *J* = 7.4, 4.9 Hz, 1H), 4.06 (td, *J* = 6.0, 2.1 Hz, 1H), 3.98 - 3.92 (m, 2H), 3.89 (t, *J* = 6.5 Hz, 2H), 3.85 - 3.76 (m, 2H), 3.75 - 3.69 (m, 2H), 3.61 - 3.53 (m, 3H), 3.39 (s, 3H), 2.36 - 2.22 (m, 1H), 2.18 - 2.10 (m, 3H), 2.10 - 2.04 (m, 1H), 2.04 - 1.95 (m, 1H), 1.85 (dd, *J* = 11.5, 1.2 Hz, 1H), 1.70 - 1.50 (m, 4H), 1.42 - 1.33 (m, 1H), 1.06 - 1.00 (m, 21H), 0.95 (t, *J* = 7.7 Hz, 9H), 0.85 (s, 3H), 0.83 (s, 3H), 0.62 (quart, *J* = 7.9 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ [ppm] = 138.26 (=CH-), 132.45 (=CH-), 131.81 (=CH-), 130.16 (=CH-), 129.49 (=CH-), 114.67 (=CH₂), 95.58 (CH₂), 81.39 (CH), 79.45 (CH), 79.02 (CH), 77.59 (CH), 75.19 (CH), 74.63 (CH), 74.48 (CH), 73.60 (CH), 71.77 (CH₂), 71.03 (CH), 66.74 (CH₂), 65.65 (CH₂), 59.03 (CH₃), 41.56 (CH), 38.71 (CH₂), 38.18 (CH), 35.71 (CH₂), 33.31 (CH₂), 31.83 (CH₂), 30.70 (CH₂), 18.11 (6CH₃), 15.19 (CH₃), 12.22 (3CH), 10.60 (CH₃), 6.98 (3CH₃), 5.24 (3CH₂).

HRMS (ESI) (*m/z*) Berechnet für $[C_{44}H_{82}O_9Si_2H]^+ = [M+H]^+$: 811.5576, gemessen: 811.5575.

IR 2939 (s), 2869 (s), 1460 (m), 1380 (w), 1240 (w), 1095 (s), 1048 (s), 1006 (s), 969 (s), 916 (m), 881 (m), 824 (m), 738 (s), 725 (s), 679 (s), 543 (w), 501 (w).

Spezifischer Drehwinkel $[\alpha]_{589}^{27}$ = -9.8° (c = 0.48, Chloroform).

(E)-1-iodohexa-1,5-diene (315)

In einen 500 ml Glaskolben wurde 25 g CrCl₃ (6 eq, 0.158 mol) in 200 ml trockenem THF suspendiert und auf 0 °C gekühlt. 3 g LiAlH₄ (3 eq, 0.079 mol) wurde portionsweise über 30 min hinzugegeben. Anschließend wurde die schwarze Suspension für 1 h bei 0 °C gerührt. Dann wurden 2.2 ml Pentenal (1 eq, 0.026 mol) und 21 g lodoform (2 eq, 0.053 mol) in 100 ml trockenem 1,4-Dioxan gelöst und langsam zum schwarzen Gemisch hinzugetropft. Das Reaktionsgemisch wurde zuerst 4 h bei 0 °C und dann für 14 h bei RT gerührt. Nach beendeter Reaktion wurde im 200 ml Pentan verdünnt, der entstandene rote Feststoff wurde mit Hilfe eines kurzes Silicapad abfiltriert und das Silicapad mit etwas Pentan nachgewaschen. Die org.

Phase wurde mit ges. Na₂S₂O₃-Lösung, dest. Wasser und ges. NaCl-Lösung gewaschen und über Na₂SO₄ getrocknet. Das Lösungsmittel wurde vorsichtig am Rotationsverdampfer entfernt und das Rohprodukt säulenchromatographisch (Pentan) aufgereinigt, um 2.85 g des Vinyliodids **315** (13.7 mmol, 53% Ausbeute, 5:1 (E/Z)) als rötliche, klare Flüssigkeit zu erhalten.

Allgemeine Daten C_6H_9I , M = 208.04 g/mol, rötliche, klare Flüssigkeit, $R_f = 0.8$ (Pentan), KMnO₄ (+), UV (+).

¹H NMR (400 MHz, CDCI₃) δ [ppm] = 6.59 – 6.49 (m, 1H), 6.05 (d, *J* = 14.2 Hz, 1H), 5.86 – 5.73 (m, 1H), 5.09 – 4.98 (m, 2H), 2.20 – 2.15 (m, 4H).

¹³**C NMR (100 MHz, CDCI**₃) δ [ppm] = 145.69 (-CH=), 137.14 (-CH=), 115.46 (=CH₂), 74.97 (-CH=), 35.33 (-CH₂-), 32.42 (-CH₂-).

HRMS (ESI) (*m/z*) Berechnet für [C₆H₉IH]⁺ = [M+H]⁺:208.9827, gemessen: 208.9837.

IR 2980 (w), 2923 (w), 1640 (w), 1605 (w), 1438 (w), 1237 (w), 1216 (w), 1178 (w), 991 (m), 938 (m), 912 (s), 692 (w), 663 (w), 628 (w), 419 (w).

(((2R,3S,4S,6S)-6-((2R,3R)-3-((E)-hexa-1,5-dien-1-yl)-1,4-dioxaspiro[4.5]decan-2-yl)-2-((E)-3-((3S,4S,7S)-7-(((2-methoxyethoxy)methoxy)methyl)-4-methyl-2,6-dioxabicyclo[3.2.1]octan-3-yl)allyl)-3-methyltetrahydro-2H-pyran-4-yl)oxy)triisopropylsilane (324)

In einen 100 ml Kolben wurde 717 mg des Alkoholgemisches 317a/b (1 eq, 0.88 mmol) in 50 ml eines MeOH/THF-Lösungsmittelgemisches (4:1) gelöst. Dann wurde 200 mg PPTS (0.95 eq, 0.8 mmol) hinzugegeben und für 3 h bei RT gerührt. Nach beendeter Reaktion wurde dest. Wasser hinzugegeben, die Phasen getrennt und die wässrige Phase mit DCM extrahiert. Die vereinigte org. Phase wurde mit ges. NaCI-Lösung gewaschen und über MaSO₄ aetrocknet. Das Lösungsmittel wurde am Rotationsverdampfer entfernt und das Rohprodukt (800 mg) in 40 ml trockenem DCM gelöst. 500 µl Cyclohexanon, 1 g CuSO4 und 200 mg TsOH H₂O wurde hinzugegeben und das Gemisch für 1 h bei RT gerührt. Nach beendeter Reaktion wurde dest. Wasser hinzugegeben, die Phasen getrennt und die wässrige Phase mit DCM extrahiert. Die vereinigte org. Phase wurde mit ges. NaCl-Lösung gewaschen und über MgSO4 getrocknet. Das Lösungsmittel wurde am Rotationsverdampfer entfernt, das Rohprodukt säulenchromatographisch (Pentan/Diethylether 2:3) aufgereinigt und 540 mg der Verbindung 324 (0.69 mmol, 70% Ausbeute, 2 Stufen) in Form eines farblosen, dickflüssigen Öls erhalten.

Allgemeine Daten C₄₄H₇₆O₉Si, M = 777.17 g/mol, farbloses, dickflüssiges Öl, $R_f = 0.21$ (Pentan/Diethylether 1:1), Vanillin: blau, UV (-).

¹H NMR (600 MHz, CDCl₃) δ [ppm] = 5.86 – 5.74 (m, 2H), 5.59 – 5.49 (m, 2H), 5.42 (dd, *J* = 15.4, 7.7 Hz, 1H), 5.01 (dt, *J* = 17.2, 1.8 Hz, 1H), 4.97 – 4.93 (m, 1H), 4.79 – 4.74 (m, 2H), 4.63 – 4.58 (m, 1H), 4.36 – 4.32 (m, 1H), 4.23 (dd, *J* = 6.7, 3.1 Hz, 1H), 4.05 (ddd, *J* = 7.0, 5.4, 2.2 Hz, 1H), 3.97 – 3.93 (m, 1H), 3.92 – 3.77 (m, 6H), 3.73 – 3.68 (m, 2H), 3.57 – 3.52 (m, 2H), 3.38 (s, 3H), 2.28 – 2.22 (m, 1H), 2.19 – 2.07 (m, 4H), 1.99 (ddd, *J* = 11.8, 6.7, 2.5 Hz, 1H), 1.86 – 1.80 (m, 1H), 1.74 – 1.67 (m, 1H), 1.65 – 1.48 (m, 10H), 1.41 – 1.30 (m, 3H), 1.27 – 1.22 (m, 1H), 1.09 – 0.97 (m, 21H), 0.85 – 0.80 (m, 6H).

¹³C NMR (150 MHz, CDCl₃) δ [ppm] = 138.13 (=CH-), 133.25 (=CH-), 132.09 (=CH-), 129.78 (=CH-), 126.12 (=CH-), 114.74 (=CH₂), 108.69 (C), 95.56 (CH₂), 81.37 (CH), 79.32 (CH), 79.32 (CH), 78.92 (CH), 78.48 (CH), 74.61 (CH), 72.96 (CH), 71.75 (CH₂), 71.19 (CH), 70.87 (CH), 66.73 (CH₂), 65.61 (CH₂), 59.00 (CH₃), 41.57 (CH), 38.69 (CH₂), 37.80 (CH), 37.62 (CH₂), 35.74 (CH₂), 35.08 (CH₂), 33.40 (CH₂), 31.86 (CH₂), 31.50 (CH₂), 25.18 (CH₂), 24.03 (CH₂), 23.75 (CH₂), 18.08 (6CH₃), 15.17 (CH₃), 12.22 (3CH), 10.46 (CH₃).

HRMS (ESI) (*m/z***)** Berechnet für [C₄₄H₇₆O₉SiNH₄]⁺ = [M+NH₄]⁺: 794.5602, gemessen: 794.5594.

IR 2933 (s), 2865 (s), 1461 (m), 1366 (m), 1284 (w), 1096 (s), 1046 (s), 970 (s), 907 (m), 881 (m), 679 (m), 657 (m), 541 (w), 501 (w).

Spezifischer Drehwinkel $[\alpha]_{589}^{20}$ = -0.1° (c = 2.0, Chloroform).

((3S,4S,7S)-3-((E)-3-((2R,3S,4S,6S)-6-((2R,3R)-3-((E)-hexa-1,5-dien-1-yl)-1,4-dioxaspiro[4.5]decan-2-yl)-3-methyl-4-((triisopropylsilyl)oxy)tetrahydro-2H-pyran-2-yl)prop-1-en-1-yl)-4-methyl-2,6-dioxabicyclo[3.2.1]octan-7-yl)methanol (367)

In einen 25 ml Glaskolben wurde 130 mg des MEM-Esters 324 (1 eg, 0.167 mmol) in 5 ml trocknem THF gelöst und auf 0 °C gekühlt. 0.2 ml HBr (33% in AcOH) wurde langsam hinzugegeben und die Lösung anschließend für 3 h bei 0 °C gerührt. Nach beendeter Reaktion wurde mit ges. NaHCO3-Lösung gequencht und die wässrige Phase mit Diethylether extrahiert. Die vereinigte org. Phase wurde mit ges. NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wurde am Rotationsverdampfer entfernt und das erhaltene Rohprodukt direkt in der nächsten Stufe umgesetzt. Für die Analytik wurde per Säulenchromatographie (Pentan/Diethylether 1:2) aufgereinigt und 80 mg des Alkohols 367 (0.116 mmol, 64% Ausbeute) als klares Öl erhalten.
Allgemeine Daten C₄₀H₆₈O₇Si, M = 689.06 g/mol, klares Öl, R_f = 0.3 (Diethylether), Vanillin: violett, UV (-).

¹H NMR (600 MHz, CDCI₃) δ [ppm] = 5.85 – 5.72 (m, 2H), 5.57 – 5.48 (m, 2H), 5.41 (dd, J = 15.4, 7.5 Hz, 1H), 5.01 (dt, J = 17.1, 1.7 Hz, 1H), 4.96 – 4.92 (m, 1H), 4.59 (t, J = 6.6 Hz, 2H), 4.35 – 4.32 (m, 1H), 4.23 (d, J = 6.7, 1H), 4.01 – 3.92 (m, 3H), 3.88 – 3.78 (m, 4H), 2.33 – 2.19 (m, 3H), 2.17 – 2.11 (m, 3H), 2.10 – 2.03 (m, 1H), 2.01 (ddd, J = 11.7, 6.7, 2.8 Hz, 1H), 1.82 (dd, J = 11.5, 1.4 Hz, 1H), 1.72 – 1.67 (m, 1H), 1.64 – 1.46 (m, 10H), 1.39 – 1.31 (m, 3H), 1.27 (q, J = 7.6 Hz, 1H), 1.04 – 0.98 (m, 21H), 0.82 (d, J = 1.7 Hz, 3H), 0.81 (d, J = 1.2 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ [ppm] = 138.09 (=CH-), 133.11 (=CH-), 131.92 (=CH-), 130.07 (=CH-), 126.11 (=CH-), 114.69 (=CH₂), 108.64 (C), 82.99 (CH), 79.56 (CH), 79.25 (CH), 78.85 (CH), 78.40 (CH), 74.23 (CH), 72.99 (CH), 71.12 (CH), 70.81 (CH), 60.75 (CH₂), 41.90 (CH), 38.72 (CH₂), 37.89 (CH), 37.58 (CH₃), 35.69 (CH₂), 35.03 (CH₂), 33.38 (CH₂), 31.83 (CH₂), 31.45 (CH₂), 25.12 (CH₂), 23.98 (CH₂), 23.69 (CH₂), 18.01 (6CH₃), 15.14 (CH₃), 12.17 (3CH), 10.44 (CH₃).

HRMS (ESI) (*m***/***z***)** Berechnet für [C₄₀H₆₈O₇SiNH₄]⁺ = [M+NH₄]⁺: 706.5078, gemessen: 706.5085.

IR 3442 (br), 2935 (s), 2865 (s), 1740 (m), 1461 (m), 1367 (m), 1281 (w), 1239 (m), 1143 (m), 1095 (s), 1046 (s), 970 (s), 907 (m), 881 (s), 819 (m), 712 (w), 679 (m), 544 (w), 499 (w).

Spezifischer Drehwinkel $[\alpha]_{589}^{20}$ = +0.3° (c = 0.375, Chloroform).

(((2R,3S,4S,6S)-2-((E)-3-((3S,4S,7S)-7-ethynyl-4-methyl-2,6-dioxabicyclo[3.2.1]octan-3-yl)allyl)-6-((2R,3R)-3-((E)-hexa-1,5-dien-1-yl)-1,4-dioxaspiro[4.5]decan-2-yl)-3-methyltetrahydro-2H-pyran-4-yl)oxy)triisopropylsilane (326)

In eine 10 ml Glaskolben wurde 30 mg Alkohol 367 (1 eq, 0.043 mmol) in 1 ml trockenem DCM gelöst und auf 0 °C gekühlt. Dann wurden 20 mg SO₃·Pyridin (4 eg, 0.174 mmol), 10 µl DMSO (4 eq, 0.174 mmol) and 33 µl Hünig-Base (6 eq, 0.26 mmol) hinzugegeben und für 2 h bei 0 °C gerührt. Nach beendeter Reaktion wurde mit DCM verdünnt, die org. Phase wurde mit dest. Wasser, 5%iger KHSO₄-Lösung und ges. NaCI-Lösung gewaschen und über Na₂SO₄ getrocknet. Das Lösungsmittel wurde am Rotationsverdampfer entfernt und die gelbliche Flüssigkeit über eine kurzes Silicapad (Pentan/Diethylether 1:1) filtriert. In einem weiteren Kolben wurde 32 µl TMSCHN₂ (3 eq, 0.13 mmol) in 1 ml trockenem THF gelöst und auf -78 °C gekühlt. 20 µl n-BuLi (2 eq, 0.086 mmol, 2.5 M in Hexan) wurde hinzugetropft und für 30 min bei -78 °C gerührt. Der Aldehyd 325 (23 mg) wurde in 0.5 ml trockenem THF gelöst und langsam hinzugetropft. Die Reaktion wurde für 30 min bei -78 °C gerührt, dann langsam auf 0 °C aufgewärmt und vorsichtig mit ges. NH₄CI-Lösung gequencht. Die wässrige Phase wurde mit Diethylether extrahiert, die vereinigte org. Phase mit ges. NaCI-Lösung gewaschen und über Na₂SO₄ getrocknet. Das Rohprodukt wurde abschließend per Säulenchromatographie (Pentan/Diethylether 2:1) aufgereinigt und 13 mg des Alkins 326 (0.019 mmol, 44% Ausbeute, 2 Stufen) als klares Öl isoliert.

Allgemeine Daten C₄₁H₆₆O₆Si, M = 683.06 g/mol, farbloses Öl, R_f = 0.58 (Pentan/Diethylether 1:1), Vanillin: grau, UV (-).

¹H NMR (600 MHz, CDCl₃) δ [ppm] = 5.87 – 5.74 (m, 2H), 5.66 – 5.58 (m, 1H), 5.55 (dd, *J* = 15.2, 7.5 Hz, 1H), 5.46 (dd, *J* = 15.2, 7.9 Hz, 1H), 5.01 (dt, *J* = 17.0, 1.8 Hz, 1H), 4.98 – 4.92 (m, 1H), 4.64 – 4.57 (m, 2H), 4.41 (q, *J* = 1.9 Hz, 1H), 4.35 (q, *J* = 7.8, 1H), 4.25 (d, *J* = 5.3 Hz, 1H), 4.96 (q, *J* = 2.7 Hz, 1H), 3.91 – 3.79 (m, 3H), 2.59 (d, *J* = 2.3 Hz, 1H), 2.31 – 2.23 (m, 1H), 2.23 – 2.08 (m, 5H), 1.96 – 1.88 (m, 2H), 1.75 – 1.68 (m, 1H), 1.66 – 1.49 (m, 10H), 1.44 – 1.30 (m, 3H), 1.08 – 0.98 (m, 21H), 0.85 (d, *J* = 3.8 Hz, 3H), 0.84 (d, *J* = 4.3 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ [ppm] = 138.19 (=CH-), 133.29 (=CH-), 131.30 (=CH-), 130.58 (=CH-), 126.14 (=CH-), 114.70 (=CH₂), 108.71 (C), 80.14 (CH), 79.31 (CH), 78.72 (C), 78.66 (CH), 78.51 (CH), 76.40 (CH), 75.97 (CH), 73.01 (CH), 71.17 (CH), 71.01 (CH), 70.88 (CH), 41.00 (CH), 38.49 (CH₂), 37.87 (CH), 37.65 (CH₂), 35.78 (CH₂), 35.10 (CH₂), 33.42 (CH₂), 31.87 (CH₂), 31.52 (CH₂), 25.18 (CH₂), 24.04 (CH₂), 23.76 (CH₂), 18.07 (6CH₃), 14.94 (CH₃), 12.23 (3CH), 10.49 (CH₃).

HRMS (ESI) (*m/z*) Berechnet für $[C_{41}H_{66}O_6SiH]^+ = [M+H]^+$: 683.4707, gemessen: 683.4718.

IR 2933 (s), 2865 (s), 1461 (m), 1366 (m), 1282 (w), 1250 (w), 1143 (m), 1095 (s), 1067 (s), 1051 (s), 970 (s), 908 (s), 880 (s), 818 (m), 732 (m), 678 (s), 659 (s), 500 (w).

Spezifischer Drehwinkel $[\alpha]_{589}^{20}$ = -9.0° (c = 0.7, Chloroform).

(((2*R*,3*S*,4*S*,6*S*)-2-((*E*)-3-((3*S*,4*S*,7*S*)-7-((*E*)-2-iodovinyl)-4-methyl-2,6dioxabicyclo[3.2.1]octan-3-yl)allyl)-3-methyl-6-((2*R*,3*R*)-3-((*E*)-pent-1-en-1-yl)-1,4-dioxaspiro[4.5]decan-2-yl)tetrahydro-2H-pyran-4-yl)oxy)triisopropylsilane (178)

In einen 10 ml Glaskolben wurde 40 mg des Alkins **326** (1 eq, 0.058 mmol) in 1 ml trockenem THF gelöst und auf 0 °C gekühlt, 58 µl 1 M Superhydrid-Lösung (1 eq, 0.058 mmol) hinzugegeben und für 1 h bei 0 °C gerührt. In einem zweiten Kolben wurde 20 mg Cp₂ZrCl₂ (2 eq, 0.116 mmol) in 0.5 ml trockenem THF suspendiert, 116 µl Superhydrid-Lösung (2 eq, 0.067 mmol, 1 mol/L) hinzugegeben und für 1 h unter Lichtausschluss gerührt. Nach einer Stunde wurde die Alkin-Lösung zum *in situ* hergestelltem Schwarz-Reagenz hinzugeben und für eine weitere Stunde bei 0 °C gerührt. Anschließend wurde 33 mg NIS (2.5 eq, 0.145 mmol) hinzugeben und für weitere 30 min bei RT gerührt. Nach beendeter Reaktion wurde mit ges. NaHCO₃-Lösung gequencht und die wässrige Phase mit Diethylether extrahiert. Die vereinigte org. Phase wurde mit ges. Na₂SO₄-Lösung, ges. NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wurde am Rotationsverdampfer entfernt und das Rohprodukt per Säulenchromatographie (Pentan/Diethylether 3:1) aufgereinigt, um 25 mg des Vinyliodids **178** (0.031 mmol, 53% Ausbeute, 2 Stufen) als klares Öl zu erhalten.

Allgemeine Daten $C_{41}H_{67}IO_6Si$, M = 810.97 g/mol, klares Öl, 0.58 (Pentan/Diethylether 1:1), Vanillin: blau, UV (-).

¹H NMR (400 MHz, CDCI₃) δ [ppm] = δ [ppm] = 6.82 (dd, *J* = 9.2, 3.3 Hz, 1H), 6.56 (dd, *J* = 9.7, 1.1 Hz, 1H), 5.87 – 5.76 (m, 2H), 5.58 – 5.52 (m, 2H), 5.41 (dd, *J* = 10.2, 5.2 Hz, 1H), 5.02 (dd, *J* = 11.4, 1.1 Hz, 1H), 4.98 – 4.93 (m, 1H), 4.64 – 4.59 (m, 1H), 4.36 – 4.34 (m, 1H), 4.31 (quint, *J* = 1.8 Hz, 1H), 4.27 – 4.24 (m, 1H), 3.96 (q, *J* = 1.7 Hz, 1H), 3.90 – 3.85 (m, 4H), 2.30 – 2.23 (m, 1H), 2.19 – 2.14 (m, 4H), 2.12 – 2.07 (m, 1H), 1.88 – 1.84 (m, 1H), 1.75 – 1.69 (m, 1H), 1.65 – 1.49 (m, 10H), 1.40 – 1.33 (m, 4H), 1.06 – 1.01 (m, 21H), 0.84 (d, *J* = 2.9 Hz, 3H), 0.83 (d, *J* = 2.7 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ [ppm] = 140.96 (=CH-), 138.16 (=CH-), 133.34 (=CH-), 131.56 (=CH-), 130.49 (=CH-), 126.13 (=CH-), 114.79 (=CH₂), 108.71 (C), 83.51 (=CHI), 79.51 (CH), 79.34 (CH), 79.32 (C), 78.77 (CH), 78.53 (CH), 75.61 (CH), 73.02 (CH), 71.21 (CH), 70.87 (CH), 41.27 (CH), 38.64 (CH₂), 37.80 (CH), 37.66 (CH₂), 35.71 (CH₂), 35.12 (CH₂), 34.17 (CH₂), 33.43 (CH₂), 31.89 (CH₂), 25.20 (CH₂), 24.05 (CH₂), 23.78 (CH₂), 18.12 (6CH₃), 15.02 (CH₃), 12.26 (3CH), 10.46 (CH₃).

HRMS (ESI) (*m/z***)** Berechnet für [C₄₁H₆₇IO₆SiNH₄]⁺ = [M+ NH₄]⁺: 828.4095, gemessen: 828.4038.

IR 2961 (s), 2934 (s), 2864 (s), 2329 (w), 1460 (m), 1366 (m), 1279 (w), 1165 (m), 1142 (m), 1094 (s), 1066 (s), 967 (s), 939 (s), 881 (m), 710 (w), 678 (m), 658 (m), 410 (w).

Spezifischer Drehwinkel $[\alpha]_{589}^{20}$ = -9.2° (c = 1.5, Chloroform).

(2*S*,3*S*,6*S*)-6-allyl-2-(((triisopropylsilyl)oxy)methyl)-3,6-dihydro-2H-pyran-3-ol (364)

In einen 250 ml Rundkolben wurden 3.63 g des Diols **260** (1 eq, 21.4 mmol), 2.18 g Imidazol (1.5 eq, 32 mmol) und 7 ml TIPSCI (1.5 eq, 32 mmol) in 110 ml trockenem DCM gelöst und für 4 h bei RT gerührt. Nach beendeter Reaktion wurde mit ges. NaHCO₃-Lösung gequencht, die wässrige Phase mit DCM extrahiert, die vereinigte org. Phase mit ges. Kochsalz-Lösung gewaschen und über Natriumsulfat getrocknet. Das Rohprodukt wurde per Säulenchromatographie (Pentan/Diethylether 2:1) aufgereinigt und 6.22 g der Verbindung **364** (19 mmol, 89% Ausbeute) als klares Öl erhalten.

Allgemeine Daten $C_{18}H_{34}O_3Si$, M = 326.55 g/mol, klares Öl, R_f = 0.8 (Diethylether), Vanillin: dunkelblau, UV (-).

¹H NMR (600 MHz, CDCl₃) δ [ppm] = 6.06 (ddd, J = 10.2, 5.4, 2.0 Hz, 1H), 5.91 (dd, J = 10.2, 3.1 Hz, 1H), 5.88 – 5.82 (m, 1H), 5.12 – 5.07 (m, 2H), 4.28 – 4.25 (m, 1H), 3.99 (dd, J = 5.4, 1.5 Hz, 1H), 3.94 (dd, J = 9.2, 6.4 Hz, 1H), 3.86 – 3.82 (m, 2H), 2.46 – 2.41 (m, 1H), 2.29 – 2.24 (m, 1H), 1.98 (s br, 1H), 1.16 – 1.04 (m, 21H).

¹³C NMR (150 MHz, CDCl₃) 134.5 (=CH-), 132.6 (=CH-), 126.5 (=CH-), 117.3 (=CH₂), 72.8 (CH), 71.9 (CH), 63.1 (CH₂), 62.3 (CH), 37.0 (CH₂), 18.0 (6CH₃), 11.9 (3CH).

HRMS (ESI) (*m/z*) Berechnet für $[C_{18}H_{34}O_3Si]^+ = [M+H]^+$: 327.2355, gemessen: 327.2358.

IR \tilde{v} = 3436 (br), 2953 (m), 2929 (m), 2885 (m), 2856 (m), 1642 (w), 1470 (m), 1362 (m), 1253 (m), 1186 (w), 1089 (s), 1047 (s), 996 (m), 914 (m), 866 (m), 833 (s), 776 (s), 743 (m), 665 (w).

Spezifischer Drehwinkel $[\alpha]_{589}^{20}$ = +141.0° (c = 0.77, Chloroform).

(((2*S*,3*S*,6*S*)-6-allyl-3-(methoxymethoxy)-3,6-dihydro-2H-pyran-2yl)methoxy)triisopropylsilan (261)

In einen 250 ml Glasrundkolben wurden 4.69 g des Alkohols **361** (1 eq, 14.4 mmol), 88 mg DMAP (0.05 eq, 0.72 mmol) und 3.76 ml DIPEA (1.5 eq, 21.6 mmol) in 100 ml trockenem DCM gelöst. 1.62 ml MOMCI (1.5 eq, 21.6 mmol) wurden hinzugegeben und das Gemisch über Nacht bei RT gerührt. Nach beendeter Reaktion wurde mit ges. NaHCO₃-Lösung gequencht, die wässrige Phase mit DCM extrahiert, die vereinigte org. Phase mit ges. Kochsalz-Lösung gewaschen und über Natriumsulfat getrocknet. Das Rohprodukt wurde per Säulenchromatographie (Pentan/Diethylether 5:1) aufgereinigt und 5.01 g von **261** (13.5 mmol, 94% Ausbeute) als klares Öl erhalten.

Allgemeine Daten $C_{20}H_{38}O_4Si$, M = 370.60 g/mol, klares Öl, R_f = 0.75 (Pentan/Diethylether 5:1), Vanillin: dunkelblau, UV (-).

¹H NMR (600 MHz, CDCl₃) δ [ppm] = 6.05 (ddd, J = 10.2, 5.4, 2.1 Hz, 1H), 5.95 (dd, J = 10.2, 3.0 Hz, 1H), 5.89 – 5.82 (m, 1H), 5.12 – 5.06 (m, 2H), 4.77 (d, J = 6.7 Hz, 1H), 4.72 (d, J = 6.7 Hz, 1H), 4.31 (ddd, J = 10.7, 5.6, 2.5 Hz, 1H), 3.94 (dd, J = 5.3, 2.2 Hz, 1H), 3.90 (dd, J = 9.1, 7.6 Hz, 1H), 3.86 – 3.83 (m, 1H), 3.78 (dd, J = 9.2, 5.4 Hz, 1H), 3.38 (s, 3H), 2.46 – 2.41 (m, 1H), 2.30 – 2.25 (m, 1H), 1.13 – 1.05 (m, 21H).

¹³C NMR (150 MHz, CDCl₃) δ [ppm] = 134.5 (=CH-), 133.1 (=CH-), 124.9 (=CH-), 117.2 (=CH₂), 96.3 (CH₂), 72.5 (CH), 71.9 (CH), 66.9 (CH), 62.1 (CH₂), 55.4 (CH₃), 37.2 (CH₂), 18.0 (6CH₃), 11.9 (3CH).

HRMS (ESI) (*m/z*) Berechnet für $[C_{18}H_{35}O_3Si]^+ = [M+H]^+$: 371.2618, gemessen: 371.2612.

IR \tilde{v} = 2952 (w), 2929 (m), 2895 (w), 2857 (w), 1470 (w), 1253 (m), 1149 (m), 1086 (s), 1037 (s), 915 (w), 833 (s), 774 (s), 740 (m), 665 (w).

Spezifischer Drehwinkel $[\alpha]_{589}^{20}$ = +111.0° (c = 0.96, Chloroform).

((2*S*,3*S*,6*S*)-6-allyl-3-(methoxymethoxy)-3,6-dihydro-2H-pyran-2-yl)methanol (262)

In einem 100 ml Glasrundkolben wurde 4.89 g der Verbindung **261** (1 eq, 13.2 mmol) in 30 ml trockenem THF gelöst und die Lösung auf 0 °C gekühlt. 26.4 ml TBAF (2 eq, 26.4 mmol, 1 M in THF) wurde langsam hinzugetropft und anschließend für 3 h bei 0 °C gerührt. Nach beendeter Reaktion wurde mit ges. NH₄Cl-Lösung gequencht und die wässrige Phase mit Diethylether extrahiert. Die vereinigte organische Phase wurde mit ges. NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und am

Rotationsverdampfer eingeengt. Das Rohprodukt wurde per Säulenchromatographie (Pentan/Diethylether 1:2) aufgereinigt und 2.63 g des Alkohols **262** (12.3 mmol, 93% Ausbeute) als klares Öl erhalten.

Allgemeine Daten $C_{11}H_{18}O_4$, M = 214.26 g/mol, klares Öl, $R_f = 0.5$ (Diethylether), Vanillin: dunkelblau, UV (-).

¹H NMR (600 MHz, CDCI₃) δ [ppm] = 6.05 – 5.92 (m, 2H), 5.88 – 5.76 (m, 1H), 5.15 – 5.05 (m, 2H), 4.74 (d, J = 6.7 Hz, 1H), 4.63 (d, J = 6.7 Hz, 1H), 4.36 – 4.29 (m, 1H), 3.96 – 3.87 (m, 2H), 3.87 – 3.79 (m, 1H), 3.72 (dd, J = 11.2, 4.5 Hz, 1H), 3.37 (s, 3H), 2.47 – 2.36 (m, 1H), 2.34 – 2.19 (m, 2H).

¹³C NMR (150 MHz, CDCl₃) δ [ppm] = 134.3 (=CH-), 133.3 (=CH-), 123.8 (=CH-), 117.5 (=CH₂), 95.8 (CH₂), 71.9 (CH), 71.5 (CH), 67.7 (CH), 62.1 (CH₂), 55.7 (CH₃), 37.0 (CH₂).

HRMS (ESI) (*m/z*) Berechnet für $[C_{11}H_{18}O_4Na]^+ = [M+Na]^+$: 237.1103, gemessen: 237.1105.

IR \tilde{v} = 3444 (br), 2931 (m), 2888 (m), 1641 (w), 1439 (w), 1397 (w), 1213 (w), 1148 (m), 1079 (s), 985 (s), 913 (s), 742 (m), 689 (w).

Spezifischer Drehwinkel $[\alpha]_{589}^{20}$ = +298.0° (c = 1.55, Chloroform).

(2*R*,3*S*,6*S*)-6-allyl-3-(methoxymethoxy)-3,6-dihydro-2H-pyran-2-carbaldehyde (263)

In einen 100 ml Rundkolben wurde 2.1 ml Oxalylchlorid (2 eq, 24.6 mmol) in 30 ml trockenem DCM vorgelegt und auf -78 °C gekühlt. 2.6 ml DMSO (3 eq, 36.9 mmol) wurde in 10 ml trocknem DCM gelöst, langsam bei -78 °C hinzugetropft und anschließend für 30 min gerührt. Danach wurde 2.63 g des Alkohols **262** (1 eq, 12.3 mmol) in 10 ml trockenem DCM gelöst und langsam hinzugetropft. Nach dem Zutropfen wurde für 1 h bei -78 °C gerührt, dann 10 ml Triethylamin (6 eq, 74 mmol)

langsam hinzugetropft. Es wurde auf RT aufgewärmt und für 30 min gerührt. Anschließend wurde dest. Wasser hinzugegeben und die Phasen getrennt. Die wässrige Phase wurde mit DCM extrahiert, die vereinigte organische Phase mit ges. Kochsalz-Lösung gewaschen, über Natriumsulfat getrocknet und am Rotationsverdampfer eingeengt. Das Rohprodukt wurde per Säulenchromatographie (Pentan/Diethylether 3:1) aufgereinigt und 1.9 g des Aldehyds **263** (8.95 mmol, 73% Ausbeute) als farbloses Öl erhalten.

Allgemeine Daten C₁₁H₁₆O₄, M = 212.24 g/mol, farbloses Öl, R_f = 0.25 (Pentan/Diethylether 1:1), Vanillin: dunkelblau, UV (-).

¹H NMR (600 MHz, CDCI₃) δ [ppm] = 9.69 (s, 1H), 6.04 (ddd, J = 10.4, 4.4, 2.2 Hz, 1H), 5.96 (dd, J = 10.3, 2.8 Hz, 1H), 5.87 – 5.78 (m, 1H), 5.15 – 5.05 (m, 2H), 4.69 (d, J = 6.8 Hz, 1H), 4.62 (d, J = 6.8 Hz, 1H), 4.54 – 4.49 (m, 1H), 4.28 – 4.22 (m, 2H), 3.32 (s, 3H), 2.44 – 2.36 (m, 1H), 2.34 – 2.28 (m, 1H).

¹³C NMR (150 MHz, CDCI₃) δ [ppm] = 201.38 (CHO), 133.61 (=CH-), 133.08 (=CH-), 123.74 (=CH-), 117.84 (=CH₂), 95.74 (CH), 76.32 (CH), 72.35 (CH), 67.62 (CH), 55.69 (CH₃), 37.45 (CH₂).

HRMS (ESI) (*m/z***)** Berechnet für [C₁₁H₁₆O₄Na]⁺ = [M+Na]⁺: 235.0946, gemessen: 235.0949.

IR \tilde{v} = 2932 (w), 2892 (m), 2825 (w), 2328 (w), 1736 (s), 1641 (w), 1440 (m), 1354 (m), 1149 (s), 1089 (s), 1032 (s), 916 (s), 742 (m), 636 (w), 555 (w).

Spezifischer Drehwinkel $[\alpha]_{589}^{20}$ = +262.0° (c = 0.475, Chloroform).

1-((2*R*,3*S*,6*S*)-6-allyl-3-(methoxymethoxy)-3,6-dihydro-2H-pyran-2-yl)ethan-1one (189)

In einen 250 ml Glaskolben wurde 1.9 g des Aldehyds **263** (1 eq, 9.0 mmol) in 75 ml trockenem Diethylether gelöst und auf -78 °C gekühlt. Anschließend wurde 9 ml

Methylmagnesiumbromid-Lösung (3 eq, 27 mmol, 3 mol/L in Diethylether) langsam hinzugetropft und für 1 h bei -78 °C gerührt. Anschließend wurde die Reaktionslösung auf RT aufgewärmt und mit ges. NaHCO₃-Lösung geguencht. Die wässrige Phase wurde mit Diethylether extrahiert. Die vereinigte org. Phase wurde mit dest. Wasser, ges. NaCI-Lösung gewaschen und über Natriumsulfat getrocknet. Das Lösungsmittel wurde am Rotationsverdampfer entfernt und das Rohprodukt (1.94 g) in 80 ml mit Wasser gesättigtem DCM gelöst. Anschließend wurde eine Mischung aus 7.23 g Dess-Martin-Periodinan (1.9 eq, 17.1 mmol) und 3.58 g NaHCO₃ (4 eq, 42.6 mmol) portionsweise hinzugegeben. Das weiße Gemisch wurde für 2 h bei RT gerührt und anschließend mit ges. Na₂S₂O₃-Lösung gequencht. Der entstandene Feststoff wurde mit zusätzlicher Zugabe von dest. Wasser gelöst und die Phasen getrennt. Die wässrige Phase wurde mit DCM extrahiert, die vereinigte org. Phase mit ges. NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wurde am Rotationsverdampfer entfernt und das Rohprodukt per Säulenchromatographie (Diethylether/Pentan 3:1) aufgereinigt, um 1.65 g des Methylketons 189 (7.3 mmol, 81% Ausbeute, 2 Stufen) in Form eines farblosen Öls zu erhalten.

Allgemeine Daten $C_{12}H_{18}O_4$, M = 226.27 g/mol, farbloses Öl, R_f = 0.65 (Pentan/Diethylether 1:1), Vanillin: dunkelblau, UV (-).

¹H NMR (600 MHz, CDCl₃) δ [ppm] = 6.05 (ddd, J = 10.3, 4.9, 2.0 Hz, 1H), 5.99 (dd, J = 10.3, 3.1 Hz, 1H), 5.83 (ddt, J = 17.1, 10.2, 7.0 Hz, 1H), 5.13 – 5.06 (m, 2H), 4.63 (d, J = 6.8 Hz, 1H), 4.56 (d, J = 6.8 Hz, 1H), 4.49 – 4.45 (m, 1H), 4.17 – 4.13 (m, 2H), 3.29 (s, 3H), 2.44 – 2.36 (m, 1H), 2.30 – 2.23 (m, 1H), 2.25 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ [ppm] = 208.81 (C=O), 134.06 (=CH-), 133.54 (=CH-), 123.74 (=CH-), 117.57 (=CH₂), 95.77 (CH₂), 76.80 (CH), 73.08 (CH), 67.40 (CH), 55.58 (CH₃), 36.58 (CH₂), 27.58 (CH₃).

HRMS (ESI) (*m/z***)** Berechnet für [C₁₂H₁₈O₄Na]⁺ = [M+Na]⁺: 249.1103, gemessen: 249.1107.

IR \tilde{v} = 2929 (w), 2892 (w), 2328 (w), 1715 (s), 1644 (w), 1417 (w), 1352 (m), 1322 (w), 1273 (w), 1211 (w), 1187 (w), 1150 (m), 1090 (s), 1031 (s), 954 (m), 916 (s), 734 (s), 645 (w), 546 (m).

Spezifischer Drehwinkel $[\alpha]_{589}^{20}$ = +302.0° (c = 0.72, Chloroform).

(2R,3R)-3-methylpent-4-en-2-ole (265)

In einen 250 ml Dreihalskolben wurde 5.2 g cis-2-Buten (2 eq, 93 mmol) einkondensiert. 5.3 g t-BuOK (1 eq, 47 mmol) wurden in 50 ml trockenem THF gelöst, auf -78 °C gekühlt und in den Dreihalskolben überführt. Anschließend wurde 19 ml n-BuLi (1 eg, 47 mmol, 2.5 M in Hexan) bei -78 °C langsam hinzugetropft. Nach dem Zutropfen wurde das tiefgelbe Gemisch für 20 min bei -40 °C gerührt. Anschließend wurde wieder auf -78 °C gekühlt und 18 g 1.2 eq (-)-lpc2BOMe (1.2 eq, 57 mmol, gelöst in 50 ml THF) hinzugetropft. Direkt im Anschluss wurde 8 ml BF₃·Et₂O (1.35 eq, 63.7 mmol) hinzugetropft und für 15 min gerührt. Dann wurde 5.3 ml Acetaldehyd (2 eq, 94 mmol) langsam hinzugetropft und für 2 h bei -78 °C gerührt. Nach beendeter Reaktion wurden auf 0 °C aufgewärmt, 40 ml NaOH-Lösung (3 mol/L), 30 ml 35%ige H₂O₂-Lösung nacheinander hinzugegeben und für eine Stunde auf 70 °C erhitzt. Nach dem Abkühlen auf RT wurde mit 200 ml Diethylether verdünnt und die organische Phase von der wässrigen getrennt. Die organische Phase wurde mit dest. Wasser, ges. Kochsalz-Lösung gewaschen und über Natriumsulfat getrocknet. Das vorgereinigte Rohproduktvereinigte wurde, mit vorgeschalteter Vigreuxkolonne, vorsichtig destilliert (60 °C - 100 °C (Lösungsmittel, Acetaldehyd), 100 °C + 500 mbar (Lösungsmittel, Nebenprodukte), 120 °C + 250 mbar - 60 mbar (Produkt)). Das Destillat kann für die nächste Stufe ohne weitere Aufarbeitung verwendet werden. Für die Analytik wurde säulenchromatographisch (Pentan/Diethylether 3:1) aufgereinigt und 3.1 g des Homoallylalkohols 265 (30.9 mmol, 66% Ausbeute) als farblose Flüssigkeit erhalten.

Allgemeine Daten C₆H₁₂O, M = 100.16 g/mol, klare Flüssigkeit, $R_f = 0.55$ (Pentan/Ethylacetat 4:1), Vanillin: blau/violett, UV (-).

¹H NMR (400 MHz, CDCI₃) δ [ppm] = 5.83 – 5.72 (m, 1H), 5.12 – 5.04 (m, 2H), 3.68 (p, *J* = 6.0 Hz, 1H), 2.28 – 2.18 (m, 1H), 1.58 (br, 1H), 1.34 (d, *J* = 6.4 Hz, 3H), 1.02 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCI₃) δ [ppm] = 140.44 (=CH-), 115.35 (=CH₂), 70.75 (CH), 44.75 (CH), 19.87 (CH₃), 14.71 (CH₃).

HRMS (ESI) (*m/z*) Die exakte Masse konnte trotz vers. Ionisierungsmethoden (ESI/EI) nicht detektiert werden.

IR \tilde{v} = 3361 (br), 3079 (w), 2970 (s), 2930 (m), 2876 (m), 1640 (w), 1454 (m), 1374 (m), 1088 (s), 1041 (m), 997 (s), 914 (s), 672 (m).

Spezifischer Drehwinkel $[\alpha]_{589}^{20}$ = +21.0° (c = 2, Chloroform).

t-ButyIdimethyI(((2*R*,3*R*)-3-methyIpent-4-en-2-yI)oxy)silane (266)

In einen 250 ml Glasrundkolben wurden 2.72 g des Homoallylalkohols **265** (1 eq, 11 mmol, 1.1 g) und 3.5 ml Pyridin (4 eq, 44 mmol) in 40 ml trockenem THF gelöst und auf 0 °C gekühlt. 3 ml TBSOTf (1.2 eq, 13.2 mmol) wurde langsam hinzugetropft und anschließend für 1 h bei 0 °C gerührt. Nach beendeter Reaktion wurde mit ges. NH₄Cl-Lösung gequencht und mit Diethylether verdünnt. Die Phasen wurden getrennt, die organische Phase mit dest. Wasser und ges. NaCl-Lösung gewaschen. Nach dem Trockenen über Natriumsulfat wurde das Lösungsmittel am Rotationsverdampfer entfernt und das Rohprodukt säulenchromatographisch (Pentan) aufgereinigt, um 2.1 g von Verbindung **266** (9.8 mmol, 89% Ausbeute) als farblose Flüssigkeit zu erhalten.

Allgemeine Daten $C_{12}H_{26}OSi$, M = 214.42 g/mol, farblose Flüssigkeit, $R_f = 0.35$ (Pentan), Vanillin: blau/violett, UV (-).

¹H NMR (400 MHz, CDCI₃) δ [ppm] = 5.80 (ddd, J = 7.4, 10.5, 17.2 Hz, 1H), 5.04 – 4.95 (m, 2H), 3.64 (quint, J = 6.2 Hz, 1H), 2.22 – 2.11 (m, 1H), 1.07 (d, J = 6.1 Hz, 3H), 0.98 (d, J = 6.8 Hz, 3H), 0.89 (s, 9H), 0.05 (d, J = 1.8 Hz, 6H).

¹³C NMR (100 MHz, CDCI₃) δ [ppm] = 141.59 (=CH-), 114.01 (=CH₂), 71.95 (CH), 45.60 (CH), 25.89 (3CH₃), 21.00 (CH₃), 18.13 (C), 15.47 (CH₃), -4.31 (CH₃), -4.77 (CH₃).

HRMS (ESI) (*m/z*) Die exakte Masse konnte trotz vers. Ionisierungsmethoden (ESI/EI) nicht detektiert werden.

IR \tilde{v} = 3652 (w), 2980 (s), 2927 (s), 2328 (w), 1461 (w), 1383 (m), 1260 (s), 1153 (m), 1072 (s), 1021 (m), 955 (m), 801 (s).

Spezifischer Drehwinkel $[\alpha]_{589}^{24}$ = +3.8° (c = 0.44, Chloroform).

In einen 250 ml Glaskolben wurde 2.1 g des Alkens 266 (1 eg, 9.8 mmol) in 66 ml eines trocknen DCM/MeOH-Lösungsmittelgemisches (10:1) gelöst und auf -78 °C gekühlt. Die Lösung wurde, bis sie eine blaue Farbe annahm, mit Ozon begast. Anschließend wurde für weitere 15 min bei -78 °C gerührt und dann 1.1 g NaBH4 (3 eq, 29.4 mmol) hinzugegeben. Nach weiteren 30 min bei -78 °C wurde das Gemisch langsam auf 0 °C aufgewärmt und mit 30 ml ges. NH4CI-Lösung versetzt. Anschließend wurde mit dest. Wasser verdünnt und die wässrige Phase mit DCM extrahiert. Die vereinigte org. Phase wurde mit ges. NaCI-Lösung gewaschen, über Rotationsverdampfer Na₂SO₄ getrocknet und am eingeengt. Nach der säulenchromatographischen Aufreinigung (Pentan/Diethylether 3:1) wurde 1.8 g des Alkohols 267 (8.2 mmol, 84% Ausbeute, 2 Stufen) als klare Flüssigkeit erhalten.

Allgemeine Daten $C_{11}H_{26}O_2Si$, M = 218.41 g/mol, klare Flüssigkeit, R_f = 0.5 (Pentan/Diethylether 3:1), Vanillin: blau/grau, UV (-).

¹H NMR (400 MHz, CDCl₃) δ [ppm] = 3.89 (quintd, J = 6.3, 3.5 Hz, 1H), 3.29 (dd, J = 9.6, 6.5 Hz, 1H), 3.05 (dd, J = 9.5, 6.9 Hz, 1H), 1.66 (heptd, J = 6.8, 3.5 Hz, 1H), 1.02 (d, J = 6.3 Hz, 3H), 0.91 (d, J = 6.8 Hz, 3H), 0.81 (s, J = 9H), 0.06 (d, J = 4.7 Hz, 6H).

¹³C NMR (100 MHz, CDCI₃) δ [ppm] = 70.07 (CH), 43.29 (CH), 25.83 (3CH₃), 20.92 (CH₃), 18.03 (C), 14.79 (CH₃), 13.05 (CH₂), -4.19 (CH₃), -4.77 (CH₃).

HRMS (ESI) (*m/z*) Berechnet für $[C_{11}H_{26}O_2SiH]^+ = [M+H]^+$: 219.1780, gemessen: 219.1779.

IR \tilde{v} = 3343 (br), 2957 (m), 2930 (m), 2885 (m), 2858 (m), 1463 (m), 1379 (w), 1253 (m), 1092 (m), 1031 (s), 833 (s), 773 (s), 666 (m).

Spezifischer Drehwinkel $[\alpha]_{589}^{20}$ = -8.5° (c = 0.35, Chloroform).

t-Butyl(((2*R*,3*S*)-4-iodo-3-methylbutan-2-yl)oxy)dimethylsilane (188)

In einem 100 ml Glaskolben wurden 1 g des Alkohols **267** (1 eq, 4.59 mmol), 1.05 g TsCl (1.2 eq, 5.5 mmol), 1.3 ml Triethylamin (2 eq, 9.2 mmol) und 50 mg DMAP (0.1 eq, 0.46 mmol) in 60 ml trockenem DCM gelöst und für 20 h bei RT gerührt. Nach beendeter Reaktion wurde mit ges. NH₄Cl-Lösung gequencht und mit DCM verdünnt. Die Phasen wurden getrennt, die organische Phase mit dest. Wasser und ges. Kochsalz-Lösung gewaschen. Nach dem Trocknen über Na₂SO₄ wurde das Lösungsmittel am Rotationsverdampfer eingeengt. Das Rohprodukt und 3.44 g Nal (5 eq, 23 mmol) wurden in 20 ml Aceton gelöst und für 4 h bei 80 °C gerührt. Nach beendeter Reaktion wurde mit Ethylacetat verdünnt, die org. Phase mit ges. Natriumthiosulfat-Lösung, dest. Wasser und ges. NaCl-Lösung gewaschen. Nach dem Trockenen über Na₂SO₄ wurde das Lösungsmittel am Rotationsverdampfer eingengt. Das Rohprodukt und 3.44 g Nal (5 eq, 23 mmol) wurden in 20 ml Aceton gelöst und für 4 h bei 80 °C gerührt. Nach beendeter Reaktion wurde mit Ethylacetat verdünnt, die org. Phase mit ges. Natriumthiosulfat-Lösung, dest. Wasser und ges. NaCl-Lösung gewaschen. Nach dem Trockenen über Na₂SO₄ wurde das Lösungsmittel am Rotationsverdampfer entfernt und das Rohprodukt säulenchromatographisch (Pentan) aufgereinigt, um 1.1 g des lodids **188** (3.35 mmol, 75% Ausbeute, 2 Stufen) in Form einer klaren Flüssigkeit zu erhalten.

Allgemeine Daten $C_{11}H_{25}IOSi$, M = 328.31 g/mol, klare Flüssigkeit, $R_f = 0.35$ (Pentan), Vanillin: hellblau, UV (+).

¹H NMR (400 MHz, CDCl₃) δ [ppm] = 3.89 (dquint, J = 6.4, 3.5 Hz, 1H), 3.30 (dd, J = 9.4, 6.2 Hz, 1H), 3.05 (dd, J = 9.4, 6.9 Hz, 1H), 1.67 (heptd, J = 6.7, 3.5 Hz, 1H), 1.02 (d, J = 6.3 Hz, 3H), 0.91 (d, J = 6.8 Hz, 3H), 0.81 (s, 9H), 0.07 (s, 3H), 0.06 (s, 3H).

151

¹³C NMR (100 MHz, CDCl₃) δ [ppm] = 70.10 (CH), 43.32 (CH), 25.84 (3CH₃), 20.91 (CH₃), 18.03 (C), 14.80 (CH₃), 13.00 (CH₂), -4.19 (Si-CH₃), -4.72 (Si-CH₃).

HRMS (ESI) (*m/z*) Die exakte Masse konnte trotz verschiedener lonisierungsmethoden (ESI/EI) nicht detektiert werden.

IR \tilde{v} = 2956 (s), 2930 (s), 2886 (m), 2857 (m), 1463 (m), 1376 (m), 1253 (s), 1199 (m), 1144 (m), 1068 (s), 1016 (m), 956 (m), 835 (s), 811 (m), 774 (s), 667 (w).

Spezifischer Drehwinkel $[\alpha]_{589}^{22}$ = -18.0° (c = 3, Chloroform).

(((2*R*,3*R*,*E*)-5-((2*S*,3*S*,6*S*)-6-allyl-3-(methoxymethoxy)-3,6-dihydro-2H-pyran-2yl)-3-methylhex-4-en-2-yl)oxy)(*tert*-butyl)dimethylsilane (187)

In einen 250 ml Rundkolben wurden 1 g des Methylketons 189 (1 eg, 4.4 mmol) und 1.75 g des lodids **188** (1.2 eg, 5.3 mmol) in 50 ml trockenem THF vorgelegt und auf -78 °C gekühlt. 6.65 ml t-BuLi (2.4 eq, 10.6 mmol, 1.6 M in Pentan) wurde langsam hinzugetropft und im Anschluss für 1 h gerührt. Nach beendeter Reaktion wurde 5 ml ges. NH₄Cl-Lösung hinzugetropft und auf RT aufgewärmt. Anschließend wurde dest. Wasser und ges. NH₄Cl-Lösung hinzugegeben und die wässrige Phase mit Diethylether extrahiert. Die vereinte organische Phase wurde mit ges. NaCI-Lösung gewaschen, über Na₂SO₄ getrocknet und am Rotationsverdampfer eingeengt. Der Rückstand (2 g, orangenes Öl) wurde in 40 ml trockenem Toluol gelöst und 1.57 g Burgess-Reagenz (1.5 eq, 6.6 mmol) hinzugegeben. Nach 3 h bei 35 °C war die Reaktion beendet. 50 ml dest. Wasser und 50 ml ges. NaCl-Lösung wurde hinzugegeben, die Phasen getrennt und die wässrige Phase mit Diethylether extrahiert. Die vereinte org. Phase wurde mit ges. NaCl-Lösung gewaschen, über MgSO₄ getrocknet und das Lösungsmittel am Rotationsverdampfer entfernt. Nach säulenchromatographischer Aufreinigung (Pentan/Diethylether 12:1) wurde 450 mg der Verbindung **187** (1.1 mmol, 25% Ausbeute, 2 Stufen) in Form eines gelblichen Öls erhalten.

Allgemeine Daten C₂₃H₄₂O₄Si, M = 410.67 g/mol, gelbliches Öl, R_f = 0.75 (Pentan/Diethylether 3:1), Vanillin: violett, UV (-).

¹H NMR (600 MHz, CDCl₃) δ [ppm] = 5.80 (ddd, *J* = 6.6, 3.6, 1.4 Hz, 1H), 5.97 (dd, *J* = 6.9, 2.1 Hz, 1H), 5.88 – 5.80 (m, 1H), 5.38 (dq, *J* = 6.7, 1.1 Hz, 1H), 5.12 – 5.03 (m, 2H), 4.69 (d, *J* = 4.4 Hz, 1H), 4.58 (d, *J* = 4.6 Hz, 1H), 4.39 – 4.34 (m, 1H), 4.10 (s, 1H), 3.93 (dd, *J* = 3.6, 1.6 Hz, 1H), 3.57 – 3.51 (m, 1H), 3.33 (s, 3H), 2.47 – 2.36 (m, 2H), 2.30 – 2.23 (m, 1H), 1.70 (s, 3H), 1.10 (d, *J* = 3.9 Hz, 3H), 0.96 (d, *J* = 4.4 Hz, 3H), 0.89 (s, 9H), 0.04 (d, *J* = 1.4 Hz, 6H).

¹³C NMR (150 MHz, CDCl₃) δ [ppm] = 134.58 (=CH-), 133.28 (=CH-), 131.17 (C), 129.44 (=CH-), 124.80 (=CH-), 117.08 (=CH₂), 95.67 (CH₂), 74.43 (CH), 73.04 (CH), 72.99 (CH), 68.29 (CH), 55.50 (CH₃), 40.67 (CH), 36.92 (CH₂), 25.93 (3CH₃), 22.19 (CH₃), 18.15 (C), 17.42 (CH₃), 14.26 (CH₃), -4.27 (CH₃), -4.74 (CH₃).

HRMS (ESI) (*m/z*) Berechnet für [C₂₃H₄₂O₄SiNa]⁺ = [M+Na]⁺: 433.2756, gemessen: 433.2760.

IR \tilde{v} = 2955 (m), 2929 (m), 2886 (m), 2857 (m), 1641 (w), 1463 (w), 1368 (w), 1253 (m), 1149 (m), 1091 (s), 1037 (s), 981 (m), 958 (m), 916 (m), 835 (s), 808 (m), 773 (s), 743 (m), 664 (w).

Spezifischer Drehwinkel $[\alpha]_{589}^{20}$ = +171.0° (c = 0.54, Chloroform).

((((2*R*,3*R*,*E*)-5-((2*S*,3*S*,6*S*)-6-allyl-3-(methoxymethoxy)-3,6-dihydro-2H-pyran-2yl)-3-methylhex-4-en-2-yl)oxy)triisopropylsilane (286)

In einem 100 ml Glasrundkolben wurden 240 mg von Verbindung **187** (1 eq, 0.585 mmol) und 294 mg PPTS (2 eq, 1.17 mmol) in 15 ml MeOH gelöst und für 24 h bei RT gerührt. Nach beendeter Reaktion wurde mit EtOAc verdünnt. Die org. Phase wurde mit dest. Wasser, ges. NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wurde entfernt, das Rohprodukt in 10 ml trockenem DCM gelöst und auf

0 °C gekühlt. 142 μl Pyridin (3 eq, 1.75 mmol) und 314 μl TIPSOTf wurden hinzugegeben und für 1 h bei 0 °C gerührt. Nach beendeter Reaktion wurde mit DCM verdünnt und die org. Phase mit ges. NH₄Cl-Lösung, dest. Wasser, ges. NaCl-Lösung gewaschen. Nach dem Trocknen über MgSO₄ wurde das Lösungsmittel am Rotationsverdampfer entfernt und das Rohprodukt per Säulenchromatographie (Pentan/Diethylether 10:1) aufgereinigt um 242 mg von Verbindung **286** (0.53 mmol, 91%, 2 Stufen) in Form eines klaren Öls zu erhalten.

Allgemeine Daten C₂₆H₄₈O₄Si, M = 452.75 g/mol, klares Öl, R_f = 0.85 (Pentan/Diethylether 1:1), Vanillin: dunkelblau, UV (-).

¹H NMR (400 MHz, CDCl₃) δ [ppm] = 6.04 (ddd, *J* = 10.2, 5.2, 2.0 Hz, 1H), 5.96 (dd, *J* = 10.3, 2.9 Hz, 1H), 5.90 – 5.77 (m, 1H), 5.42 (dt, *J* = 10.1, 1.3 Hz, 1H), 5.14 – 5.00 (m, 2H), 4.68 (d, *J* = 6.8 Hz, 1H), 4.58 (d, *J* = 6.8 Hz, 1H), 4.41 – 4.32 (m, 1H), 4.11 (s br, 1H), 3.92 (dd, *J* = 5.1, 2.4, 1H), 3.75 (q, *J* = 6.1 Hz, 1H), 3.33 (s, 3H), 2.50 – 2.37 (m, 2H), 2.32 – 2.20 (m, 1H), 1.71 (d, *J* = 1.3 Hz, 2H), 1.47 (br, 1H), 1.14 (d, *J* = 6.1 Hz, 3H), 1.06 (s, 18H), 1.05 (s, 3H), 0.99 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ [ppm] = 134.60 (=CH-), 133.26 (=CH-), 131.27 (C), 129.55 (=CH-), 124.87 (=CH-), 117.07 (=CH₂), 95.73 (CH₂), 74.60 (CH), 73.09 (CH), 73.05 (CH), 68.59 (CH), 55.49 (CH₃), 40.90 (CH), 36.94 (CH₂), 22.06 (CH₃), 18.29 (3CH₃), 18.23 (3CH₃), 17.22 (CH₃), 14.18 (CH₃), 12.78 (3CH).

HRMS (ESI) (*m/z*) Berechnet für $[C_{26}H_{48}O_4SiH]^+ = [M+H]^+$: 453.3400, gemessen: 453.3396.

IR \tilde{v} = 2942 (s), 2891 (m), 2866 (s), 2328 (w), 1641 (w), 1463 (m), 1371 (m), 1149 (m), 1103 (s), 1038 (s), 996 (m), 956 (w), 916 (m), 882 (s), 837 (w), 739 (m), 675 (s).

Spezifischer Drehwinkel $[\alpha]_{589}^{20}$ = +140.0° (c = 0.4, Chloroform).

(2*S*,3*S*,6*S*)-6-allyl-2-((4*R*,5*R*,*E*)-4-methyl-5-((triisopropylsilyl)oxy)hex-2-en-2-yl)-3,6-dihydro-2H-pyran-3-ole (186)

In einem 10 ml Glaskolben wurde 130 mg von Verbindung 286 (1 eq, 0.287 mmol) in 5 ml tr. DCM gelöst und auf -95 °C gekühlt. 114 mg Bromocatecholboran (2 eg, 0.574 mmol) wurde hinzugegeben und für 30 min bei -95 °C gerührt. Die Reaktion wurde anschließend bei langsam aufgewärmt und bei -20 °C mit eiskaltem Wasser gequencht. Die wässrige Phase mit DCM extrahiert, die vereinigte org. Phase wurde NaCI-Lösung gewaschen, über MgSO₄ mit ges. getrocknet und am Rotationsverdampfer eingeengt. Das Rohprodukt wurde säulenchromatographisch (Pentan/Diethylether 4:1) aufgereinigt und 64 mg des Alkohols 186 (0.156 mmol, 55% Ausbeute) als klare Flüssigkeit erhalten.

Allgemeine Daten $C_{24}H_{44}O_3Si$, M = 408.70 g/mol, klare Flüssigkeit, R_f = 0.5 (Pentan/Diethylether 2:1), Vanillin: dunkel/violett, UV (-).

¹H NMR (400 MHz, CDCl₃) δ [ppm] = 6.09 (ddd, J = 10.1, 5.6. 2.0 Hz, 1H), 5.94 (dd, J = 10.1, 3.2 Hz, 1H), 5.91 – 5.78 (m, 1H), 5.53 (dquint, J = 10.2, 1.5 Hz, 1H), 5.15 – 5.03 (m, 2H), 4.39 – 4.30 (m, 1H), 4.09 (s br, 1H), 3.87 (dd, J = 5.6, 2.0 Hz, 1H), 3.81 (quint, J = 6.1 Hz, 1H), 2.62 – 2.51 (m, 1H), 2.50 – 2.39 (m, 1H), 2.33 – 2.22 (m, 1H), 1.73 (s br, 1H), 1.69 (s, 3H), 1.14 (d, J = 6.2 Hz, 3H), 1.06 (s, 18H), 1.05 (s, 3H), 0.99 (d, J = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ [ppm] = 134.55 (=CH-), 132.60 (=CH-), 130.88 (C), 129.21 (=CH-), 126.37 (=CH-), 117.18 (=CH₂), 74.38 (CH), 73.47 (CH), 72.97 (CH), 62.03 (CH), 40.26 (CH), 36.96 (CH₂), 20.89 (CH₃), 18.27 (3CH₃), 18.20 (3CH₃), 17.13 (CH₃), 14.71 (CH₃), 12.71 (3CH).

HRMS (ESI) (*m/z*) Berechnet für $[C_{24}H_{44}O_3SiH]^+ = [M+H]^+$: 409.3138, gemessen: 409.3130.

IR \tilde{v} = 3455 (br), 2942 (s), 2866 (s), 2328 (w), 1641 (w), 1462 (m), 1372 (m), 1250 (w), 1183 (w), 1136 (m), 1082 (s), 1051 (s), 1026 (s), 953 (m), 915 (m), 882 (s), 779 (w), 742 (s), 676 (s), 460 (w).

Spezifischer Drehwinkel $[\alpha]_{589}^{20}$ = +147.0° (c = 1.15, Chloroform).

(Z)-3-(tributylstannyl)prop-2-en-1-ole (311)

In einen 250 ml Rundkolben wurde 1.51 ml Propagylalkohol **310** (3.5 eq, 25.9 mmol) in 30 ml tr. THF gelöst und auf 0 °C gekühlt. 500 mg LiAlH₄ (1.75 eq, 12.9 mmol) wurde portionsweise (über 30 min) hinzugegeben und das Gemisch über Nacht bei RT gerührt. Anschließend wurde auf -78 °C gekühlt und 2 ml Bu₃SnCl (1 eq, 7.4 mmol) langsam hinzugetropft. Das Gemisch wurde langsam auf RT aufgewärmt und über Nacht gerührt. Nach beendeter Reaktion wurde mit 10 ml MeOH gequencht und mit 1 M NaOH verdünnt. Die wässrige Phase wurde mit Diethylether extrahiert, die vereinigte org. Phase mit ges. NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wurde am Rotationsverdampfer entfernt und das Rohprodukt per Säulenchromatographie (Pentan/Diethylether 12:1) aufgereinigt und 1.1 g von Verbindung **311** (3.17 mmol, 43% Ausbeute, 2 Stufen) als klares Öl erhalten.

Allgemeine Daten C₁₅H₃₂OSn, M = 347.13 g/mol, klares Öl, R_f = 0.53 (Pentan/Diethylether 3:1), UV (-), KMnO₄ (+).

¹**H NMR (400 MHz, CDCl₃)** δ [ppm] = 6.69 (dt, *J* = 12.9, 5.8 Hz, 1H), 6.08 (dt, *J* = 12.8, 1.1 Hz, 1H), 4.11 (dt, *J* = 5.8, 1.1 Hz, 2H), 1.58 – 1.43 (m, 6H), 1.37 – 1.22 (m, 6H), 0.95 - 0.84 (m, 15H).

¹³C NMR (100 MHz, CDCI₃) δ [ppm] = 146.22 (=CH-), 131.81 (=CH-), 66.14 (HO-CH₂-), 29.16 (3CH₂), 27.16 (3CH₂), 29.16 (3CH₃), 29.16 (3CH₂).

HRMS (ESI) (*m/z*) Berechnet für $[C_{15}H_{32}OSnH]^+ = [M+H]^+$: 341.1580, gemessen: 341.1587.

IR 3331 (br), 2956 (s), 2920 (s), 2871 (m), 2852 (m), 1463 (m), 1418 (w), 1377 (m), 1292 (w), 1181 (w), 1073 (w), 1032 (s), 956 (s), 875 (m), 694 (s), 667 (s), 600 (s), 511 (m).

(Z)-3-(tributylstannyl)acrylaldehyde (312)

In einem 100 ml Rundkolben wurde 540 mg (*Z*)-3-(tributylstannyl)prop-2-en-1-ol **311** (1 eq, 1.55 mmol) in 15 ml DCM (mit H₂O gesättigt) gelöst und auf 0 °C gekühlt. Eine Mischung aus 1 g Dess-Martin-Periodinan (1.5 eq, 2.36 mmol) und 430 mg NaHCO₃ (3.3 eq, 5.12 mmol) wurde langsam hinzugegeben und für 2 h bei 0 °C gerührt. Nach beendeter Reaktion wurde mit Wasser verdünnt, die wässrige Phase wurde mit DCM extrahiert, die vereinigte org. Phase mit ges. NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wurde am Rotationsverdampfer entfernt und das Rohprodukt per Säulenchromatographie (Pentan/Diethylether 30:1) aufgereinigt und 300 mg des Aldehyds **312** (0.87 mmol, 56% Ausbeute) in Form einer klaren Flüssigkeit erhalten.

Allgemeine Daten $C_{15}H_{30}OSn$, M = 345.11 g/mol, klare Flüssigkeit, $R_f = 0.75$ (Pentan/Diethylether 25:1), UV (+), KMnO₄ (+).

¹H NMR (400 MHz, CDCI₃) 9.50 (dt, J = 6.9, 1.8 Hz, 1H), 7.69 (d, J = 12.9 Hz, 1H), 6.98 (dd, J = 12.9, 6.9 Hz, 1H), 1.59 – 1.42 (m, 6H), 1.36 – 1.23 (m, 6H), 1.06 – 0.97 (m, 6H), 0.92 – 0.82 (m, 9H).

¹³C NMR (100 MHz, CDCl₃) 194.67 (CHO), 162.89 (-C=), 145.55 (-C=), 28.96 (3CH₂), 27.18 (3CH₂), 13.60 (3CH₃), 11.33 (3CH₂).

HRMS (ESI) (*m/z*) Berechnet für $[C_{15}H_{30}OSnH]^+ = [M+H]^+$: 339.1423., gemessen: 339.1431.

IR 2956 (s), 2921 (s), 2871 (m), 2852 (m), 1687 (s), 1463 (m), 1377 (w), 1173 (m), 909 (m), 875 (w), 792 (w), 733 (s), 698 (s), 667 (m), 598 (m), 529 (m), 500 (m).

In einen 50 ml Kolben wurde 200 mg NaH (1.15 eq, 5 mmol) in 10 ml tr. THF suspendiert und auf 0 °C gekühlt. 0.82 ml Diphenylphosphit (1 eq, 4.3 mmol) wurde langsam hinzugetropft und für 30 min gerührt. Anschließend wurde 0.52 ml Iodomethan (1.95 eq, 0.83 mmol) hinzugetropft und über Nacht bei RT gerührt. Nach beendeter Reaktion wurde mit ges. NH₄CI-Lösung geguencht und die wässrige Phase mit Diethylether extrahiert. Die vereinigte org. Phase wurde mit ges. NaCI-Lösung gewaschen, über MgSO₄ getrocknet und am Rotationsverdampfer eingeengt. Das Rohprodukt und 0.92 ml Benzylchlorformiat (1.5 eq, 6.45 mmol) wurde in 15 ml tr. THF gelöst und auf -78 °C gekühlt. 8.6 ml LiHMDS (2 eq, 8.6 mmol, 1 M in THF) wurde langsam hinzugetropft, dann langsam auf RT aufgewärmt und über Nacht gerührt. Nach beendeter Reaktion wurde mit ges. NaHCO3-Lösung gequencht und die wässrige Phase mit Diethylether extrahiert. Die vereinigte org. Phase wurde mit ges. NaCI-Lösung gewaschen, über MgSO4 getrocknet und am Rotationsverdampfer eingeengt. Das Rohprodukt wurde per Säulenchromatographie (Pentan/Diethylether 1:1) aufgereinigt und 980 mg von Verbindung 308 (2.56 mmol, 60% Ausbeute, 2 Stufen) als klares Öl erhalten.

Allgemeine Daten $C_{21}H_{19}O_5P$, M = 382.35 g/mol, klares Öl, $R_f = 0.24$ (Pentan/Diethylether 1:1), UV (+), KMnO₄ (+).

¹H NMR (400 MHz, CDCl₃) δ [ppm] = 7.33 – 7.16 (m, 10 H), 7.13 – 7.03 (m, 5H), 5.13 (s, 2H), 3.23 (d, *J* = 21.5 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ [ppm] = 164.67 + 164.61 (d, C=O), 149.94 (Ph-O), 149.85 (Ph-O), 135.02 (Ph-), 129.79 (4Ph-H), 128.60 (2Ph-H), 128.50 (Ph-H), 128.49 (2Ph-H), 125.51 (Ph-H), 125.50 (Ph-H), 120.64 (2Ph-H), 120.59 (2Ph-H), 167.67 (CH₂), 34.70 (O=P-CH₂), 33.34 (O=P-CH₂).

HRMS (ESI) (*m/z*) Berechnet für $[C_{21}H_{19}O_5PH]^+ = [M+H]^+$: 383.1048, gemessen: 383.1081.

IR 1735 (s), 1590 (m), 1488 (s), 1455 (w), 1396 (w), 1282 (s), 1209 (s), 1185 (s), 1161 (s), 1110 (s), 1025 (m), 933 (s), 826 (w), 762 (s), 690 (s), 616 (w), 585 (w), 494 (m).

2-(diphenoxyphosphoryl)aceticacid (309)

In einen 25 ml Rundkolben wurden 390 mg des Phosphonats **308** (1 eq, 1.02 mmol) und 108 mg Pd/C (0.1 eq, 0.102 mmol) in 5 ml EtOAc suspendiert und unter Wasserstoffatmosphäre für 2 h gerührt. Nach beendeter Reaktion wurde über ein Silicapad filtriert und mit EtOAc nachgewaschen. Das Lösungsmittel wurde am Rotationsverdampfer entfernt. Das Rohprodukt wurde aus EtOAc/MeOH (3:1) kristallisiert und 235 mg des Carbonsäurephosphonats **309** (0.8 mmol, 78% Ausbeute) in Form von klaren Kristallen erhalten.

Allgemeine Daten $C_{14}H_{13}O_5P$, M = 292.23 g/mol, klare Kristalle, $R_f = 0.5$ (Diethylether), UV (+), KMnO₄ (+).

¹H NMR (400 MHz, MeOD₄) δ [ppm] = 7.42 – 7.32 (m, 5H), 7.26 – 7.18 (m, 5H), 3.41 (d, *J* = 21.7 Hz, 2H).

¹³C NMR (100 MHz, MeOD₄) δ [ppm] = 167.87 + 167.81 (d, C=O), 151.41 (Ph-O), 151.32 (Ph-O), 131.00 (4Ph-H), 126.86 (Ph-H), 126.85 (Ph-H), 121.85 (2Ph-H), 121.81 (2Ph-H), 35.24 (-CH₂), 33.85 (-CH₂).

HRMS (ESI) (*m/z*) Berechnet für $[C_{14}H_{13}O_5PH]^+ = [M+H]^+$: 293.0579, gemessen: 293.0534.

IR 1724 (s), 1587 (m), 1485 (s), 1421 (w), 1365 (w), 1304 (m), 1235 (s), 1189 (s), 1177 (s), 1148 (s), 1070 (w), 1023 (w), 1007 (w), 937 (s), 904 (s), 820 (w), 766 (s), 691 (s), 596 (s), 572 (m), 493 (s), 460 (m), 417 (w).

(2*S*,3*S*,6*S*)-6-allyl-2-((4*R*,5*R*,*E*)-4-methyl-5-((triisopropylsilyl)oxy)hex-2-en-2-yl)-3,6-dihydro-2H-pyran-3-yl 2-(diphenoxyphosphoryl)acetate (185)

In einen 10 ml Rundkolben wurden 63 mg des Alkohols **186** (1 eq, 0.154 mmol), 67 mg 2-(Diphenoxyphosphoryl)säure **309** (1.5 eq, 0.231 mmol), 47 mg DCC (1.5 eq, 0.231 mmol) und 2 mg DMAP (0.3 eq, 0.015 mmol) in 3 ml trockenem THF gelöst und für 2 h bei RT gerührt. Nach beendeter Reaktion wurde mit Wasser gequencht und die wässrige Phase mit Diethylether extrahiert. Die vereinigte org. Phase wurde mit ges. NaCl-Lösung gewaschen, über MgSO₄ getrocknet und am Rotationsverdampfer eingeengt. Das Rohprodukt wurde säulenchromatographisch (Pentan/Diethylether 3:2) aufgereinigt und 90 mg von Verbindung **185** (0.13 mmol, 87% Ausbeute) als klebriger Feststoff erhalten.

Allgemeine Daten C₃₈H₅₅O₇PSi, M = 682.91 g/mol, klebriger Feststoff, $R_f = 0.32$ (Pentan/Diethylether 3:2), Vanillin: blau, UV (+).

¹H NMR (400 MHz, CDCl₃) δ [ppm] = 7.36 – 7.13 (m, 10H), 6.08 – 6.01 (m, 2H), 5.91 – 5.77 (m, 1H), 5.44 (dt, J = 10.1, 1.2 Hz, 1H), 5.25 – 5.20 (m, 1H), 5.15 – 5.04 (m, 2H), 4.39 (t, J = 7.2 Hz, 1H), 4.24 (s, 1H), 3.70 (p, J = 6.3 Hz, 1H), 3.30 – 3.09 (m, 2H), 2.52 – 2.34 (m, 2H), 2.29 (sext, J = 6.9 Hz, 1H), 1.65 (s, 3H), 1.10 (d, J = 7.5 Hz, 3H), 1.08 – 1.01 (m, 21H), 0.98 (d, J = 6.7 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ [ppm] = 164.57 + 164.50 (d, C=O), 149.86 (Ph-O), 149.77 (Ph-O), 135.42 (=CH-), 134.16 (=CH-), 129.94 (=C-), 129.88 (CH₂), 129.83 (2Ph-H), 129.77 (2Ph-H), 125.65 – 125.39 (m, 2Ph-H), 121.88 (=CH-), 120.94 – 120.56 (m, 4Ph-H), 121.88 (=CH-), 117.45 (=CH₂), 73.14 (CH), 72.90 (CH), 72.82 (CH), 66.87 (CH), 40.86 (CH), 36.60 (CH₂), 34.31 + 32.94 (POCH₂COO-), 21.98 (CH₃), 18.27 (3CH₃), 18.20 (3CH₃), 17.21 (CH₃), 13.96 (CH₃), 12.71 (3CH).

HRMS (ESI) (*m/z*) Berechnet für $[C_{38}H_{55}O_7PSiNH_4]^+ = [M+NH_4]^+$: 700.3798, gemessen: 700.3791.

IR $\tilde{v} = 2941$ (m), 2865 (m), 1733 (s), 1591 (m), 1489 (s), 1461 (m), 1386 (w), 1282 (s), 1185 (s), 1161 (s), 1109 (s), 1025 (m), 940 (s), 883 (m), 826 (w), 762 (s), 732 (s), 687 (s), 649 (m), 570 (w), 494 (m).

Spezifischer Drehwinkel $[\alpha]_{589}^{20}$ = +121.0° (c = 0.53, Chloroform).

(2*S*,3*S*,6*S*)-6-allyl-2-((4*R*,5*R*,*E*)-4-methyl-5-((triisopropylsilyl)oxy)hex-2-en-2-yl)-3,6-dihydro-2H-pyran-3-yl (2*Z*,4*Z*)-5-(tributylstannyl)penta-2,4-dienoate (179)

31 mg des Esters **185** (1 eq, 0.0454 mmol) wurde in 1 ml trockenem THF gelöst und auf 0 °C gekühlt. 1.8 mg NaH (1 eq, 0.0454 mmol) wurde hinzugegeben und für 15 min bei 0 °C gerührt. Anschließend wurde auf -78 °C gekühlt und 15 mg Aldehyd **312** (1 eq, 0.0454 mmol) in 0.3 ml trocknem THF langsam hinzugetropft. Die Lösung wurde für 30 min bei -78 C gerührt, dann auf 0 °C aufgewärmt und nochmals 30 min gerührt. Die Reaktion wurde mit NH₄Cl-Lösung gequencht und die wässrige Phase mit Diethylether extrahiert. Die vereinigte org. Phase wurde mit ges. NaCl-Lösung gewaschen, über MgSO₄ getrocknet und am Rotationsverdampfer eingeengt. Das Rohprodukt wurde säulenchromatographisch (Pentan/Diethylether 50:1) aufgereinigt und 14 mg von Verbindung **179** (0.018 mmol, 40% Ausbeute) als klares Öl erhalten.

Allgemeine Daten C₄₁H₇₄O₄SiSn, M = 777.83 g/mol, klares Öl, R_f = 0.5 (Pentan/Diethylether 30:1), Vanillin: blau, UV (+).

¹**H NMR (400 MHz, CDCI₃)** δ [ppm] = 8.17 (t, *J* = 12.4, 1H), 6.72 (d, *J* = 12.6, 1H), 6.39 (t, *J* = 11.2 Hz, 1H), 6.05 (s, 2H), 5.92 - 5.78 (m, 1H), 5.69 (d, *J* = 11.4 Hz, 1H), 5.44

-5.37 (m, 1H), 5.24 - 5.19 (m, 1H), 5.15 - 5.05 (m, 2H), 4.41 (t, J = 7.5 Hz, 1H), 4.24 (s, 1H), 3.72 (quint, J = 6.7 Hz, 1H), 2.53 - 2.35 (m, 2H), 2.30 (sext, J = 7.0 Hz, 1H), 1.65 (s, 3H), 1.56 - 1.43 (m, 6H), 1.35 - 1.23 (m, 6H), 1.09 (d, J = 6.0 Hz, 3H), 1.06 (s, 21H), 0.99 - 0.92 (m, 9H), 0.91 - 0.84 (m, 9H).

¹³C NMR (100 MHz, CDCl₃) δ [ppm] = 165.59 (C=O), 148.18 (-CH=), 146.97 (-CH=), 142.48 (-CH=), 134.71 (-CH=), 134.38 (-CH=), 130.20 (C), 129.76 (-CH=), 122.91 (-CH=), 117.90 (-CH=), 117.26 (=CH₂), 73.25 (CH), 73.13 (CH), 73.07 (CH), 64.75 (CH), 41.02 (CH), 36.73 (CH₂), 29.06 (3CH₂), 27.21 (3CH₂), 22.21 (CH₃), 18.29 (3CH₃), 18.23 (3CH₃), 17.30 (CH₃), 14.04 (CH₃), 13.64 (3CH₃), 12.80 (3CH), 10.57 (3CH₂).

HRMS (ESI) (*m/z***)** Die exakte Masse konnte trotz verschiedener Ionisierungsmethoden (ESI/EI) nicht detektiert werden.

Geschütztes, offenes (+)-Neosorangicin A (177)

Zinnester **179**, Vinyliodid **178** und Ph₂PO₂Nbu₄ (6 eq) wurden in 1 ml entgastem DMF gelöst. Anschließend wurde PdCl₂(PhCN)₂ (0.1 eq) hinzugegeben und für 4 h unter Lichtausschuss in der Glovebox unter Argon Atmosphäre gerührt. Das Gemisch wurde anschließend mit 2 ml Et₂O/Hexan (1 zu 1) verdünnt und über ein kurzes Silicapad in eine ges. NaCl-Lösung filtriert. Das Silicapad wurde mit etwas Et₂O/Hexan (1 zu 1) nachgewaschen und die Phasen getrennt. Die wässrige Phase wurde mit Et₂O/Hexan extrahiert und die vereinigte org. Phase mit ges. NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet und am Rotationsverdampfer eingeengt. Das Rohprodukt wurde

säulenchromatographisch (15% Ethylacetat/Hexan) aufgereinigt und Verbindung **177** erhalten.

Allgemeine Daten $C_{70}H_{114}O_{10}Si_2$, M = 1171.84 g/mol, farbloses Öl, R_f = 0.3 (Hexan/Ethylacetat 9:1), Vanillin: dunkelblau, UV (-).

HRMS (ESI) (*m/z*) Berechnet für $[C_{70}H_{114}O_{10}Si_2NH_4]^+ = [M+NH_4]^+$: 1193.785, gemessen: 1193.796.

7 mg Verbindung **177** (1 eq, 0.006 mmol) wurde in 10 ml trockenem, entgastem DCM gelöst. 1 mg Grubbs 2nd Gen. Kat. (0.2 eq, 0.0012 mmol) wurde in 3 ml trocknem, entgastem DCM gelöst und über 8 h langsam zur Reaktionslösung hinzugetropft. Anschließend wurde die Reaktion über Nacht bei RT gerührt. Nach beendeter Reaktion wurde der Reaktionskolben unter einem Druckluftstrom eingeengt und das Rohprodukt per Säulenchromatographie (Pentan/Ethylacetat 1:1) aufgereinigt. Es konnte nicht genug Material isoliert werden um eine vollständige analytische Bestimmung durchzuführen, allerdings wurde die exakte Masse per LCMS bestimmt.

Allgemeine Daten C₆₈H₁₁₀O₁₀Si₂, M = 1143.79 g/mol, R_f = 0.28 (Hexan/Ethylacetat), Vanillin: hellblau, UV (-).

HRMS (ESI) (*m/z*) Berechnet für $[C_{68}H_{110}O_{10}Si_2NH_4]^+ = [M+NH_4]^+$: 1160.7981, gemessen: 1160.7958.

Experimenteller Teil

(+)-Neosorangicin A 6

0.5 mg von Verbindung **176** (synthetisiert aus einer Probe natürlichem (+)-Neosorangicin A **6** wurde in 0.2 ml trocknem THF gelöst und 50 µl HF·Pyridin-Komplex wurde hinzugegeben. Die Reaktionslösung wurde anschließend für 2 Tage bei RT gerührt. Die Reaktion wurde mit natürlichem (+)-Neosorangicin A **6** co-spottet und nach beendeter Reaktion konnte die exakte Masse per LCMS klar bestimmt werden.

Allgemeine Daten C₄₄H₆₂O₁₀, M = 750.97 g/mol, farbloses Öl, $R_f = 0.15$ (Ethylacetat), Vanillin: schwarz, UV (+).

HRMS (ESI) (*m/z*) Berechnet für $[C_{44}H_{62}O_{10}H]^+ = [M+H]^+$: 751.4421, gemessen: 751.4421.

6.3 Zusätzliche Synthesevorschriften

(2*S*,3*R*,4*S*)-1-((*tert*-butyldimethylsilyl)oxy)-3-methyl-6-((2,3,3-trimethylbutan-2yl)oxy)hexan-2,4-diole (365)

In einen 10 ml Rundkolben wurden 96 mg Triol **211** (1 eq, 0.35 mmol) und 32 mg Imidazol (1.36 eq, 0.47 mmol) in 5 ml DCM auf 0 °C gekühlt. 64 mg TBSCI (1.23 eq, 0.42 mmol, in 2 ml DCM) wurden langsam zum Reaktionsgemisch hinzugetropft und für 3 h bei RT gerührt. Nach beendeter Reaktion wurde 5 ml ges. NaHCO₃-Lösung hinzugegeben und nach Phasentrennung die wässrige Phase mit DCM extrahiert. Die vereinigte org. Phase wurde mit dest. H₂O und ges. NaCl-Lösung gewaschen, über MgSO₄ getrocknet und eingeengt. Das Rohprodukt wurde mit Pentan/Diethylether (2:1) per Flash-Chromatographie aufgereinigt. Es wurden 67 mg von **365** (50% Ausbeute) in Form eines farblosen Öls erhalten.

Allgemeine Daten $C_{19}H_{44}O_4Si_2$, M = 392.73 g/mol, farbloses Öl, R_f = 0.7 (Pentan/Diethylether 1:1), Vanillin: blau, UV (-).

¹**H NMR (400 MHz, CDCI**₃) δ [ppm] = 4.11 (q, *J* = 10.7 Hz, 1H), 4.03 (dt, *J* = 9.5, 3.4 Hz, 1H), 3.92 – 3.75 (m, 2H), 3.59 (dd, *J* = 6.3, 2.5 Hz, 1H), 3.47 (q, *J* = 7.0 Hz, 1H), 1.89 – 1.76 (m, 1H), 1.68 – 1.58 (m, 1H), 1.58 – 1.48 (m, 1H), 0.93 (d, *J* = 7.3 Hz, 3H), 0.89 (m, 18H), 0.89 (m, 12H).

tert-butyldimethyl(((4*S*,5*R*,6*S*)-2,2,5-trimethyl-6-(2-((2,3,3-trimetyhlbutan-2-yl)oxy)ethyl)-1,3-dioxan-4-yl)methoxy)silane (215)

In einen 10 ml Rundkolben wurden 67 mg Diol **362** (1 eq, 0.17 mmol) und 320 μ l DMP (15 eq, 2.57 mmol) in 5 ml DCM und auf 0 °C gekühlt. 4.3 mg TsOH·H₂O (0.1 eq, 0.017 mmol) wurde hinzugegeben und für 16 h bei RT gerührt. Anschließend wurde die Reaktion mit 100 μ l Et₃N gequencht und ohne zusätzliche Aufarbeitung säulenchromatographisch (Pentan/Diethylether 30:1) aufgereinigt. Es wurden 54 mg von **215** (73% Ausbeute) als farbloses Öl erhalten.

Allgemeine Daten $C_{22}H_{48}O_4Si_2$, M = 432.79 g/mol, farbloses Öl, $R_f = 0.4$ (Pentan/Diethylether 30:1), Vanillin: blau, UV (-).

¹H NMR (600 MHz, CDCl₃) δ [ppm] = 4.05 (ddd, *J* = 8.8, 4.2, 2.1 Hz, 1H), 3.95 (td, *J* = 6.8, 2.5 Hz, 1H), 3.65 – 3.57 (m, 2H), 3.55 (dd, *J* = 9.6, 6.3 Hz, 1H), 3.47 (dd, *J* = 9.6,

6.3 Hz, 1H), 1.69 – 1.62 (m, 1H), 1.54 – 1.45 (m, 1H), 1.37 (s, 3H), 1.31 (s, 3H), 1.17 (m, 1H), 0.83 (s, 9H), 0.82 (s, 9H), 0.78 (d, *J* = 6.7 Hz, 3H), 0.00 (s, 6H), -0.01 (s, 6H).

(3S,4R)-1-((*tert*-butyldimethylsilyl)oxy)-4-((*S*)-2,2-dimethyl-1,3-dioxolan-4yl)pentan-3-yl (*R*)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoate (224)

Es wurden 10 mg (1.5 eq, 0.0825 mmol) DMAP, 38 μ l (5 eq, 0.275 mmol) Triethylamin und 17.5 mg Alkohol **217** (1 eq, 0.055 mmol) in 3 ml Dichlormethan gelöst. Anschließend wurden 10 μ l (1 eq, 0.055 mmol) (*S*)-(-)-Methoxy-(trifluormethyl)phenylessigsäurechlorid hinzugegeben und für 1 h bei RT gerührt. Das Reaktionsgemisch wurde am Rotationsverdampfer eingeengt und direkt säulenchromatographisch aufgereinigt (Pentan/Diethylether 15:1). Es wurden 23 mg (78% Ausbeute) des (*R*)-Mosher-Esters **224** als klares Öl isoliert.

Allgemeine Daten C₂₆H₄₁F₃O₆Si, M = 534.69 g/mol, farbloses Öl, R_f = 0.6 (Pentan/Diethylether 10:1), Vanillin: blau, UV (+).

¹H NMR (400 MHz, CDCl₃) δ [ppm] = 7.57 – 7.52 (m, 2H), 7.42 – 7.38 (m, 3H), 3.65 – 3.57 (m, 2H), 5.23 (ddd, J = 8.2, 4.9, 2.6 Hz, 1H), 3.93 (dd, J = 8.3, 5.9 Hz, 1H), 3.78 (q, J = 6.8 Hz, 1H), 3.65 – 3.60 (m, 1H), 3.59 – 3.55 (m, 1H), 3.54 (s, 3H), 1.31 (s, 3H), 3.48 (t, J = 7.8 Hz, 1H), 1.92 – 1.79 (m, 3H), 1.32 (s, 3H), 1.26 (s, 3H), 0.99 (d, J = 6.8 Hz, 3H), 0.88 (s, 9H), 0.029 (s, 3H), 0.026 (s, 3H).

(3*S*,4*R*)-1-((*tert*-butyldimethylsilyl)oxy)-4-((*S*)-2,2-dimethyl-1,3-dioxolan-4yl)pentan-3-yl (*S*)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoate (225)

Es wurden 12 mg (1.5 eq, 0.1 mmol) DMAP, 45 μ l (5 eq, 0.33 mmol) Triethylamin und 21 mg Alkohol **217** (1 eq, 0.066 mmol) in 3 ml Dichlormethan gelöst. Anschließend wurden 12 μ l (1 eq, 0.066 mmol) (-)-Methoxy(trifluormethyl)phenylessigsäurechlorid hinzugegeben und für 1 h bei RT gerührt. Das Reaktionsgemisch wurde am Rotationsverdampfer eingeengt und direkt säulenchromatographisch aufgereinigt (Pentan/Diethylether 15:1). Es wurden 26 mg (74% Ausbeute) des (*S*)-Mosher-Esters **225** als klares Öl isoliert.

Allgemeine Daten $C_{26}H_{41}F_3O_6Si$, M = 534.69 g/mol, farbloses Öl, R_f = 0.6 (Pentan/Diethylether 10:1), Vanillin: blau, UV (+).

¹H NMR (400 MHz, CDCl₃) δ [ppm] = 7.56 – 7.51 (m, 2H), 7.42 – 7.38 (m, 3H), 3.65 – 3.57 (m, 2H), 5.23 (ddd, *J* = 8.5, 4.4, 2.7 Hz, 1H), 3.99 (dd, *J* = 8.2, 6.2 Hz, 1H), 3.91 (q, *J* = 6.8 Hz, 1H), 3.58 – 3.53 (m, 2H), 3.52 (s, 3H), 3.49 – 3.42 (m, 1H), 1.88 – 1.79 (m, 2H), 1.79 – 1.73 (m, 1H), 1.36 (s, 3H), 1.29 (s, 3H), 1.01 (d, *J* = 7.1 Hz, 3H), 0.87 (s, 9H), 0.016 (s, 3H), 0.006 (s, 3H).

Ethyl-(E)-6-((2S,5S,6S)-6-((4R,5R,E)-5-((*tert*-butyldimethylsilyl)oxy)-4-methylhex-2-en-2-yl)-5-(methoxymethoxy)-5,6-dihydro-2H-pyran-2-yl)hex-4-enoate (352)

DHP-Fragment **187** (1 eq, 90 mg, 0.22 mmol) und 150 µl Ethylpentenoat (4.8 eq, 1.05 mmol) wurden in 3 ml trockenem, entgastem Toluol gelöst. Dann wurde 30 mg Grubbs-

Hoyveda 2nd Gen. Kat. (0.2 eq, 0.048 mml) hinzugegeben und die schwarze Lösung für 16 h bei RT gerührt. Nach beendeter Reaktion wurde in etwa 80% des Lösungsmittels am Rotationsverdampfer entfernt, das übrige Rohprodukt direkt mittels Säulenchromatographie aufgereinigt und 80 mg von **352** (71% Ausbeute) als gelbliches, klares Öl isoliert.

Allgemeine Daten $C_{28}H_{50}O_6Si$, M = 510.79 g/mol, gelbliches, klares Öl, R_f = 0.24 (Pentan/Diethylether 5:1), Vanillin: dunkel/violett, UV (-).

¹H NMR (600 MHz, CDCl₃) δ [ppm] = 5.98 (ddd, J = 10.6, 5.3, 2.1 Hz, 1H), 5.90 (dd, J = 10.3, 2.9 Hz, 1H), 5.47 – 5.40 (m, 2H), 5.36 – 5.29 (m, 1H), 4.64 (d, J = 6.8 Hz, 1H), 4.56 (d, J = 6.8 Hz, 1H), 4.32 – 4.22 (m, 1H), 4.11 – 4.04 (m, 4H), 3.87 (dd, J = 5.1, 2.3 Hz, 1H), 3.53 – 3.46 (m, 1H), 3.28 (s, 3H), 2.35 – 2.21 (m, 7H), 1.65 (s, 3H), 1.20 (t, J = 6.9 Hz, 3H), 1.05 (d, J = 6.0 Hz, 3H), 0.91 (d, J = 6.7 Hz, 3H), 0.84 (s, 9H), 0.00 (s, 3H), -0.003 (s, 3H).

(*E*)-6-((2*S*,5*S*,6*S*)-6-((4*R*,5*R*,*E*)-5-((*tert*-butyldimethylsilyl)oxy)-4-methylhex-2-en-2-yl)-5-(methoxymethoxy)-5,6-dihydro-2H-pyran-2-yl)hex-4-enal (351)

Ester **352** (1 eq, 80 mg, 0.159 mmol) wurde in 2 ml trockenem DCM gelöst und auf -78 °C gekühlt. Dann wurde 224 µl DIBAL-H (1.4 eq, 0.224 mmol, 1M in DCM) langsam hinzugetropft und für 3 h bei -78 °C gerührt. Nach beendeter Reaktion wurde 2 ml Methanol hinzugetropft und die Lösung auf RT aufgewärmt. Anschließend wurden 5 ml ges. Seignettesalz-Lösung und 5 ml DCM hinzugegeben und das Gemisch für 1 h kräftig gerührt. Die Phasen wurden getrennt und die wässrige Phase mit DCM extrahiert. Die vereinigte org. Phase wurde mit ges. NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet und das Lösungsmittel am Rotationsverdampfer entfernt. Das Rohprodukt wurde per Säulenchromatographie aufgereinigt und 38 mg von **351** (51% Ausbeute) in Form eines klaren Öls erhalten. **Allgemeine Daten** $C_{26}H_{46}O_5Si$, M = 466.73 g/mol, klares Öl, R_f = 0.4 (Pentan/Diethylether 2:1), Vanillin: dunkel/blau, UV (-).

¹H NMR (600 MHz, CDCl₃) δ [ppm] = 9.75 (t, *J* = 1.7 Hz, 1H), 7.27 – 7.12 (m, 1H), 6.02 (ddd, *J* = 10.4, 5.4, 2.1 Hz, 1H), 5.92 (dd, *J* = 10.1, 2.9 Hz, 1H), 5.50 – 5.47 (m, 1H), 5.36 (dt, *J* = 10.0, 1.1, 1H), 4.67 (d, *J* = 6.8 Hz, 1H), 4.56 (d, *J* = 6.8 Hz, 1H), 4.35 – 4.27 (m, 1H), 4.11 – 4.05 (m, 1H), 3.91 (dd, *J* = 5.3, 2.2 Hz, 1H), 3.56 – 3.50 (m, 1H), 3.32 (s, 3H), 2.52 – 2.46 (m, 2H), 2.42 – 2.31 (m, 4H), 2.22 – 2.15 (m, 1H), 1.69 (s, 3H), 1.09 (d, *J* = 6.1 Hz, 3H), 0.95 (d, *J* = 6.8 Hz, 3H), 0.88 (s, 9H), 0.039 (s, 3H), 0.036 (s, 3H).

t-butyl(((2*R*,3*R*,*E*)-5-((2*S*,3*S*,6*S*)-6-((2*E*,6*E*)-7-iodohepta-2,6-dien-1-yl)-3-(methoxymethoxy)-3,6-dihydro-2*H*-pyran-2-yl)-3-methylhex-4-en-2yl)oxy)dimethylsilane (350)

In 1 ml trockenem THF wurde 70 mg CrCl₂ (7 eq, 0.57 mmol) suspendiert und die Suspension auf 0 °C gekühlt. Dann wurden 38 mg Aldehyd **351** (1 eq, 0.081 mmol) und 130 mg lodoform (4eq, 0.33 mmol) in 2 ml trockenem THF gelöst und langsam zur Suspension hinzugetropft. Das Gemisch wurde für 2 h bei 0 °C gerührt und anschließend mit ges. Natriumthiosulfat-Lösung und Diethylether versetzt. Die Phasen wurden getrennt und die wässrige Phase mit Diethylether extrahiert. Die vereinigte org. Phase wurde mit ges. NaCl-Lösung gewaschen, über MgSO₄ getrocknet und das Lösungsmittel am Rotationsverdampfer entfernt. Das Rohprodukt wurde anschließend mittels Säulenchromatographie aufgereinigt und 25 mg des Vinyliodids **350** (52% Ausbeute) als gelbliches, klares Öl erhalten.

Allgemeine Daten C₂₇H₄₇IO₄Si, M = 590.66 g/mol, gelbliches, klares Öl, $R_f = 0.9$ (Pentan/Diethylether 1:1), Vanillin: schwarz, UV (-).

¹H NMR (600 MHz, CDCl₃) δ [ppm] = 6.52 – 6.44 (m, 1H), 6.02 (ddd, *J* = 10.0, 5.4, 2.1 Hz, 1H), 6.00 – 5.92 (m, 2H), 5.46 – 5.42 (m, 2H), 5.37 (dt, *J* = 10.0, 1.4 Hz, 1H), 4.68

(d, *J* = 6.6 Hz, 1H), 4.56 (d, *J* = 6.8 Hz, 1H), 4.36 – 4.26 (m, 1H), 4.11 – 4.05 (m, 1H), 3.91 (dd, *J* = 5.1, 2.4 Hz, 1H), 3.56 – 3.50 (m, 1H), 3.32 (s, 3H), 2.43 – 2.32 (m, 2H), 2.24 – 2.16 (m, 1H), 2.14 – 2.05 (m, 4H), 1.69 (s, 3H), 1.09 (d, *J* = 6.0 Hz, 3H), 0.96 (d, *J* = 6.7 Hz, 3H), 0.88 (s, 9H), 0.041 (s, 3H), 0.037 (s, 3H).

(((2R,3S,4S,6S)-6-((4R,5S)-5-((E)-hexa-1,5-dien-1-yl)-2,2-dimethyl-1,3-dioxolan-4-yl)-2-((E)-3-((3S,4S,7S)-7-(((2-methoxyethoxy)methoxy)methyl)-4-methyl-2,6-dioxabicyclo[3.2.1]octan-3-yl)allyl)-3-methyltetrahydro-2H-pyran-4-yl)oxy)triisopropylsilane (318)

Alkohol 317a/b (1 eq, 15mg, 0.018 mmol) wurde in 1 ml eines MeOH/THF-Lösungsmittelgemisches (4:1) gelöst. Anschließend wurde 3 mg PPTS (0.66 eg, 0.012 mmol) hinzugegeben und für 3 h bei RT gerührt. Nach beendeter Reaktion wurde dest. Wasser hinzugegeben, die Phasen getrennt und die wässrige Phase mit DCM extrahiert. Die vereinigte org. Phase wurde mit ges. NaCI-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wurde am Rotationsverdampfer entfernt und das Rohprodukt in 1 ml trockenem DCM gelöst. Dann wurden 0.1 ml Aceton, 0.1 g CuSO₄ und 3 mg TsOH H₂O hinzugegeben. Nach 2 h bei RT war die Reaktion beendet und dest. Wasser wurde hinzugegeben. Die Phasen wurden getrennt und die wässrige Phase mit DCM extrahiert. Die vereinigte org. Phase wurde mit ges. NaCI-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wurde am Rotationsverdampfer entfernt, das Rohprodukt säulenchromatographisch (Pentan/Diethylether 1:1) aufgereinigt und 5 mg 318 (38% Ausbeute, 2 Stufen) als farblose Flüssigkeit erhalten.

Allgemeine Daten C₄₁H₇₂O₉Si, M = 737.10 g/mol, farblose Flüssigkeit, $R_f = 0.6$ (Diethylether), Vanillin: blau, UV (-).

THP/BCO/DHP-Kreuzprodukt (349)

Verbindung **317** (1 eq, 26 mg, 0.032 mmol) und DHP-Fragment **187** (3 eq, 35 mg, 0.096 mmol) wurden in 1 ml trockenem, entgastem Toluol gelöst, 2 mg Grubbs-Hoyveda 2nd Gen. Kat. (0.1 eq, 0.0032 mmol) hinzugegeben und für 16 h bei RT gerührt. Anschließend wurden weitere 2 mg Grubbs-Hoyveda 2nd Gen. Kat. hinzugegeben und die schwarze Lösung für 2 h bei 35 °C gerührt. Nach beendeter Reaktion wurde in etwa 80% des Toluols am Rotationsverdampfer entfernt und der Rückstand direkt per Säulenchromatographie (Pentan/Diethylether 7:1 - 5:1 - 3:1 - 1:1) aufgereinigt, um 8 mg des Kreuzprodukts **349** (21%) als klares Öl zu erhalten.

Allgemeine Daten C₅₉H₁₀₅O₁₂Si₂, M = 1062.65 g/mol, farbloses Öl, R_f = 0.4 (Pentan/Diethylether), Vanillin: schwarz, UV (-).

¹H NMR (600 MHz, CDCl₃) δ [ppm] = 6.01 – 5.91 (m, 2H), 5.63 – 5.55 (m, 1H), 5.52 – 5.31 (m, 4H), 4.76 – 4.70 (m, 2H), 4.65 (d, *J* = 6.8 Hz, 1H), 4.53 (d, *J* = 6.9 Hz, 1H), 4.33 – 4.25 (m, 2H), 4.20 (d, *J* = 6.6 Hz, 1H), 4.15 (dd, *J* = 7.6, 2.7 Hz, 1H), 4.07 – 3.99 (m, 2H), 3.09 – 3.82 (m, 4H), 3.80 – 3.73 (m, 2H), 3.70 – 3.65 (m, 2H), 3.61 – 3.56 (m, 1H), 3.54 – 3.49 (m, 3H), 3.34 (s, 3H), 3.29 (s, 3H), 2.40 – 2.28 (m, 2H), 2.25 – 2.14 (m, 2H), 2.06 – 1.92 (m, 4H), 1.80 (d, *J* = 11.6 Hz, 1H), 1.65 (s, 2H), 1.54 (s, 4H), 1.51 – 1.45 (m, 2H), 1.38 (s, 1H), 1.37 – 1.31 (m, 1H), 1.21 (s, 1H), 1.06 (d, *J* = 5.9 Hz, 3H), 0.98 (s, 18H), 0.93 – 0.86 (m, 12H), 0.85 (s, 9H), 0.79 (dd, *J* = 11.5, 6.9 Hz, 6H), 0.60 – 0.47 (m, 6H), 0.00 (s, 6H).

(3*R*,4*S*,5*R*,6*R*)-6-(((*tert*-butyldiphenylsilyl)oxy)methyl)tetrahydro-2H-pyran-2,3,4,5-tetraol (345)

In einem 2 L Rundkolben wurden 20 g *L*-Galaktose **248** (1 eq, 0.11 mol), 1,4 g DMAP (0.1 eq, 0.011 mol) und 25 ml Triethylamin wurden in 800 ml trockenem DMF gelöst. 25.7 ml TBDPSCI (0.9 eq, 0.099 mol) wurden hinzugegeben und die Reaktionslösung für zwei Tage bei RT gerührt. Das Gemisch wurde anschließend mit 1 l Ethylacetat und 1 l dest. Wasser verdünnt und die Phasen getrennt. Die wässrige Phase wurde mit Ethylacetat extrahiert, die vereinigte org. Phase mit ges. NaCl-Lösung gewaschen und über Na₂SO₄ gewaschen. Das Rohprodukt kann ohne weitere Aufarbeitung in der nächsten Stufe verwendet werden. Für die Analytik wurde per Säulenchromatographie (Ethylacetat/Pentan 3:1 \rightarrow Ethylacetat) aufgereinigt und 38 g von **345** als klare, hochviskose Masse erhalten.

Allgemeine Daten $C_{22}H_{30}O_6Si$, M = 418.56 g/mol, hochviskose Masse, $R_f = 0.35$ (Ethylacetat), Vanillin: schwarz, UV (+).

¹H NMR (600 MHz, CDCl₃) δ [ppm] = 7.7 – 7.6 (m, 4H), 7.4 – 7.3 (m, 6H), 4.36 (d, *J* = 7.8 Hz, 1H), 4.05 (d, *J* = 2.6 Hz, 1H), 3.98 (t, *J* = 5.9 Hz, 1H), 3.94 (d, *J* = 2.7 Hz, 1H), 3.89 – 3.67 (m, 4H), 3.63 (t, *J* = 9.2 Hz, 1H), 3.46 (dd, *J* = 9.6, 3.0 Hz, 1H), 3.40 (t, *J* = 6.2 Hz, 1H), 0.99 (s, 3H), 0.98 (s, 6H).

(2R,3S,4R,5R)-6-((tert-butyldiphenylsilyl)oxy)hexane-1,2,3,4,5-pentaol (346)

3.8 g Edukt **345** (1 eq, 9.1 mmol) wurde in 80 ml trockenem MeOH gelöst und auf 0 °C gekühlt. 520 mg NaBH₄ (1.5 eq, 13.6 mmol) wurde in mehreren Portionen

hinzugegeben und auf RT aufgewärmt. Das Reaktionsgemisch wurde für 4 h bei RT gerührt und anschließend mit EtOAc und ges. NaHCO₃-Lösung verdünnt. Der entstandene Feststoff wurde abfiltriert. Das Filtrat wurde mit ges. NaCI-Lösung verdünnt und die wässrige Phase mit Ethylacetat extrahiert. Die vereinigte org. Phase wurde über MgSO₄ getrocknet und am Rotationsverdampfer eingedampft. Der Feststoff wurde anschließend in MeOH gelöst und das Lösungsmittel am Rotationsverdampfer entfernt. Diese Prozedur wurde dreimal wiederholt. Das Produkt wurde abschließend für mehrere Stunden am Hochvakuum weitergetrocknet und 3.68 g von **346** (96% Ausbeute) in Form eines weißen Schaums erhalten. Dieses wurde ohne weitere Aufarbeitung direkt in der nächsten Stufe verwendet wurde.

Allgemeine Daten $C_{22}H_{32}O_6Si$, M = 420.58 g/mol, hochviskose Masse, $R_f = 0.1$ (Ethylacetat), Vanillin: grau, UV (+).

(2*R*,3*S*,4*R*,5*R*)-6-((*tert*-butyldiphenylsilyl)oxy)hexane-1,2,3,4,5-pentayl pentaacetate (347)

5 g Edukt **346** (1 eq, 11.9 mmol) wurde in 70 ml Pyridin gelöst und auf 0 °C gekühlt. 45 ml Essigsäureanhydrid wurde langsam hinzugetropft und anschließend für 20 h bei RT gerührt. Nach beendeter Reaktion wurde das Reaktionsgemisch mit Ethylacetat verdünnt und dreimal mit 0.2 M HCI-Lösung, einmal mit ges. NaHCO₃-Lösung ein abschließend mit ges. NaCI-Lösung gewaschen. Nach dem Trocknen über Na₂SO₄ wurde das Lösungsmittel entfernt und 6.1 g einer gelblichen, hochviskosen Flüssigkeit erhalten. Das Rohprodukt wurde per Säulenchromatographie (Ethylacetat/Pentan 2:1) aufgereinigt und 5.5 g **347** (73% Ausbeute) als hochviskosen Flüssigkeit, welche zur spontanen Kristallisation neigt, erhalten.

Allgemeine Daten C₃₂H₄₂O₁₁Si, M = 630.76 g/mol, hochviskose Flüssigkeit, $R_f = 0.79$ (Ethylacetat/Pentan 1:1), Vanillin: braun, UV (+).
¹**H NMR (600 MHz, CDCl₃)** δ [ppm] = 7.55 (tt, *J* = 8.1, 1.5 Hz, 4H), 7.4 – 7.3 (m, 6H), 5.37 (dd, *J* = 9.9, 1.8 Hz, 1H), 5.24 (dd, *J* = 10.1, 2.0 Hz, 1H), 5.17 – 5.12 (m, 2H), 4.20 (dd, *J* = 11.7, 5.0 Hz, 1H), 3.77 (dd, *J* = 12.4, 7.3 Hz, 1H), 3.50 (dd, *J* = 6.7, 1.6 Hz, 2H), 2.03 (s, 3H), 2.01 (s, 3H), 2.00 (s, 3H), 1.95 (s, 3H), 1.94 (s, 3H), 1.81 (t, *J* = 7.2 Hz, 1H), 0.96 (s, 9H).

(2R,3S,4R,5R)-6-hydroxyhexane-1,2,3,4,5-pentayl pentaacetate (348)

In einem 10 ml Glaskolben wurde 150 mg Edukt **347** (1 eq, 0.24 mmol) in 5 ml THF gelöst und auf -15 °C gekühlt. 70 µl AcOH wurde hinzugegeben und für 5 min gerührt. Anschließend wurde 0.385 ml einer 1 M TBAF-Lösung (1.6 eq, 0.385 mmol) hinzugetropft und für 3 h bei RT gerührt. Nach beendeter Reaktion wurde mit etwas Ethylacetat und dest. Wasser verdünnt und die Phasen getrennt. Die wässrige Phase wurde mit Ethylacetat extrahiert und die vereinigte org. Phase mit ges. NaCI-Lösung gewaschen. Nach dem Trocknen über MgSO₄ und entfernen des Lösungsmittels am Rotationsverdampfer, wurde per Säulenchromatographie (Pentan/Ethylacetat 1:2) aufgereinigt und 55 mg von **348** (60% Ausbeute) in Form eines weißen Feststoffs erhalten.

Allgemeine Daten $C_{16}H_{24}O_{11}$, M = 392.36 g/mol, weißer Feststoff, $R_f = 0.45$ (Pentan/Ethylacetat 3:1), Vanillin: grau, UV (+).

¹H NMR (400 MHz, CDCl₃) δ [ppm] = 5.44 (ddd, *J* = 7.7, 4.3, 1.7 Hz, 1H), 5.15 (ddd, *J* = 7.7, 4.6, 1.8 Hz, 1H), 5.09 (dd, *J* = 9.8, 1.7 Hz, 1H), 4.39 (dd, *J* = 11.6, 4.6 Hz, 1H), 4.21 (dd, *J* = 12.0, 4.4 Hz, 1H), 4.12 (dd, *J* = 11.2, 7.7 Hz, 1H), 4.00 (dd, *J* = 11.4, 7.8 Hz, 1H), 3.71 (dd, *J* = 10.1, 1.2 Hz, 1H), 3.38 (br, OH), 2.17 (s, 3H), 2.06 (s, 3H), 2.05 (s, 3H), 2.02 (s, 6H).

(2*S*,3*R*,4*S*)-2,4,6-tris((*tert*-butyldimethylsilyl)oxy)-3-methylhexyl-4methylbenzenesulfonate (331)

In einen 50 ml Glaskolben wurden 770 mg Triol **211** (1 eq, 2.77 mmol), 104 mg Dibutylzinnoxid (0.15 eq, 0.42 mmol) und 1.9 ml Triethylamin (5 eq, 13.7 mmol) in 20 ml trockenem DCM gelöst und auf -45 °C gekühlt. Anschließend wurde 1.35 g p-Ts₂O (1.5 eq, 4.15 mmol) hinzugegeben und das Gemisch für 3 h bei -45 °C gerührt. Nach beendeter Tosylierung wurde weitere 1.9 ml Triethylamin hinzugegeben und dann 2.8 ml TBSOTf (4.5 eq, 12.46 mmol) langsam hinzugetropft. Nach weiteren 3 h bei RT war die Reaktion beendet und wurde mit ges. NH₄Cl-Lösung gequencht. Die wässrige Phase wurde mit DCM extrahiert. Die vereinigte org. Phase mit dest Wasser, ges. NaCl-Lösung gewaschen und über Na₂SO₄ getrocknet. Das Lösungsmittel wurde am Rotationsverdampfer entfernt, das Rohprodukt per Säulenchromatographie (Pentan/Diethylether 20:1) aufgereinigt und 1.4 g **331** als eine klare Flüssigkeit (76% Ausbeute, 2 Stufen) erhalten.

Allgemeine Daten $C_{32}H_{64}O_6SSi_3$, M = 661.17 g/mol, klare Flüssigkeit, R_f = 0.75 (Pentan/Ethylacetat 9:1), UV (+), Vanillin (blau).

¹H NMR (600 MHz, CDCl₃) 7.76 (d, J = 8.2 Hz, 2H), 7.32 (d, J = 7.9 Hz, 2H), 4.14 (dd, J = 10.0, 3.06 Hz, 2H), 3.92 - 3.87 (m, 1H), 3.82 (dd, J = 10.7, 7.2 Hz, 2H), 3.61 - 3.50 (m, 2H), 2.43 (s, 3H), 1.70 - 1.62 (m, 2H), 1.60 - 1.53 (quint, J = 6.4 Hz, 1H), 1.29 (sext, J = 7.3 Hz, 2H), 0.90 - 0.80 (m, 27H), 0.07 - 0.004 (m, 18H).

(3*R*,4*R*)-1-((2*R*,3*S*,6*S*)-6-allyl-3-(methoxymethoxy)-3,6-dihydro-2H-pyran-2-yl)-4-((tert-butyldimethylsilyl)oxy)-3-methylpentan-1-on (358)

In einen 10 ml Rundkolben wurden 170 mg lodid 188 (1.1 eg, 0.52 mmol) und 100 mg DHP-Aldehyd 263 (1 eq, 0.47 mmol) in 5 ml trockenem THF gelöst und auf -78 °C gekühlt. Anschließend wurde 0.6 ml t-BuLi-Lösung (2.2 eg, 2.5 mmol, 1.7 M in Pentan) langsam hinzugetropft und das Gemisch anschließend für 1 h bei -78 °C gerührt. Nach beendeter Reaktion wurde auf RT aufgewärmt und mit ges. NH₄CI-Lösung geguencht. Die wässrige Phase wurde mit Diethylether extrahiert und die vereinigte org. Phase NaCI-Lösung gewaschen, über Na_2SO_4 mit ges. getrocknet und am Rotationsverdampfer eingeengt. Das Rohprodukt (165 mg) wurde in 10 ml mit Wasser gesättigtem DCM gelöst und eine Mischung aus 340 mg Dess-Martin-Periodinan (2 eq, 0.8 mmol) und 170 mg NaHCO₃ (5 eq, 2 mmol) portionsweise hinzugegeben. Das Gemisch wurde für 3 h bei RT gerührt und anschließend mit DCM und ges. Na₂S₂O₃-Lösung verdünnt. Die Phasen wurden getrennt und die wässrige Phase mit DCM extrahiert. Die vereinigte org. Phase wurde mit ges. NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet und am Rotationsverdampfer eingeengt. Das Rohprodukt wurde per Säulenchromatographie aufgereinigt (Pentan/Diethylether 5:1 - 3:1) und 55 mg 358 als klares Öl isoliert (33% Ausbeute, 2 Stufen).

Allgemeine Daten $C_{22}H_{40}O_5Si$, M = 412.64 g/mol, klares Öl, R_f = 0.75 (Pentan/Diethylether 3:1), UV (-), Vanillin (blau).

6.4 Analytische Daten von (+)-Neosorangicin A

Natürliches (+)-Neosorangicin A **6** $C_{44}H_{62}O_{10}$, M = 750.96, $[\alpha]_D^{20}$ = +137.8° (c = 1.15, MeOH), R_f = 0.34 (DCM/MeOH 9:1), HRESIMS: *m/z* 751.4612 [M+H]⁺ berechnet: 751.4416.^[14]

Δc, multiplett (176.1 MHz)	δ _н , multiplett (<i>J</i> in Hz) (700.4 MHz)
19.3, CH₃	1.01, d (6.5)
71.8, CH	3.56, qd (6.3, 4.5)
40.3, CH	2.53, ddq (4.4, 9.8, 6.8)
130.1, CH	5.39, dquin (9.8, 1.3)
133.4, C	
74.3, CH	4.25, s br
66.9, CH	5.32, dd (5.8, 1.7)
123.9, CH	6.03, ddd (9.9, 5.8, 2.2)
137.1, CH	6.14, dd (10.0, 3.1)
75.3, CH	4.41, m
35.5, CH ₂	2.39, ddd (14.0, 10.7, 6.8)
	2.15, m
134.0, CH	5.53, m
128.5, CH	5.53, m
33.9, CH ₂	2.15, m
	2.08, m
34.7, CH ₂	2.16, m

$\Delta_{\rm C}$, multiplett (176.1 MHz)	δ_{H} , multiplett (<i>J</i> in Hz) (700.4 MHz)	
	2.08, m	
134.7, CH	5.72 ddd (15.0, 8.0, 5.6)	
129.9, CH	5.58, dd (15.5, 8.00)	
74.5, CH	4.16, dd (7.5, 4.3)	
77.7, CH	3.47, dd (7.7, 4.3)	
75.1, CH	3.64, ddd (11.6, 7.7, 2.4)	
31.1, CH ₂	1.73, m	
	1.64, ddd (14.6, 11.6, 3.0)	
71.2, CH	3.85, m	
38.3, CH	1.55, m	
74.8, CH	3.83, m	
37.2, CH ₂	2.25, dddd (13.9, 5.6, 4.3, 1.7)	
	2.16, m	
133.0, CH	5.44, ddd (15.0, 10.1, 4.1)	
133.0, CH	5.37, ddd (15.2, 8.5, 1.8)	
81.3, CH	3.85, m	
42.2, CH	1.43, dq (9.4, 6.8)	
81.3, CH	4.30, d (6.5)	
39.9, CH ₂	2.05, ddd (11.6, 6.6, 2.7)	
	1.92, dd (11.6, 1.3)	
77.7, CH	4.40, m	
82.2, CH	4.59, m br	
135.6, CH	6.24, dd (15.3, 3.9)	
127.5, CH	7.03, ddd (15.2, 11.5, 1.5)	
138.1, CH	6.46, dd br (10.8, 9.7)	
126.6, CH	7.17, m	
139.2, CH	7.16, m	
119.7, CH	5.61, d br (9.7)	
167.8, C		
15.7, CH₃	0.91, d (6.8)	
14.4, CH ₃	1.67, d (0.9)	
10.9, CH ₃	0.87, d (7.1)	
15.6, CH₃	0.83, d (6.9)	

Quellenverzeichnis

- 1 Antimicrobial resistance: global report on surveillance, *World Health Organization*, **2014**.
- 2 Bad Bugs, No Drugs, *IDSA*, **2004**.
- 3 R. Jansen, V. Wray, H. Irschik, H. Reichenbach, G. Höfle, *Tetrahedron Letters*, **1985**, 26 (49), 6031-6034.
- 4 H. Irschik, R. Jansen, K. Gerth, G. Höfle, H. Reichenbach, *Journal of Antibiotics*, **1987**, 7 (40).
- 5 H. Reichenbach, K. Gerth, H. Irschik, B. Kunze, G. Höfle, *Trends in Biotechnology*, **1988**, (6), 115-121.
- 6 R. Jansen, D. Schummer, H. Irschik, G. Höfle, *Liebigs Ann. Chem.*, **1990**, 975.
- 7 R. Jansen, H. Irschik, H. Reichenbach, D. Schomburg, V. Wray, G. Höfle, *Liebigs Ann. Chem.*, **1989**, 111.
- 8 P. R. Galle, L. Theillmann, *Arzneimittel-Forschung*, **1990**, 40 (12), 1380.
- 9 Datenblatt: *Rifampicin*, bei Sigma-Aldrich abgerufen am 22.03.2022.
- 10 E. A. Campbell, O. Pavlova, N. Zenkin, F. Leon, H. Irschik, R. Jansen, K. Severinov, S. Darst, *S. A. EMBO J.*, **2005**, (24), 674.
- 11 R. Jansen, V. Wray, H. Irschik, H. Reichenbach, G. Höfle, *Tetrahedron Letters*, **1985**, (26), 6031.
- 12 Schummer, D., Irschik, H., Höfle, G. *Liebigs Ann. Chem.* **1993**, 293.
- 13 M. Stadler, D. Schinzer, EP 16 002 083.0, 27.09.16.
- A. B. Smith III, S. Dong, J. B. Brenneman, R. Fox, *J. Am. Chem. Soc.*, 2009, (131), 12109.
- A. B. Smith, S. Dong, R. J. Fox, J. B. Brenneman, J. A. Vanecko, T. Maegawa, *Tetrahedron*, **2011**, 67 (51), 9809-9828.
- M. T. Crimmins, M. W. Haley, E. A. O'Bryan, Organic Letters, 2011, 13 (17), 4712-4715.
- 17 S. Raghavan, S. Nyalata, *The Journal of Organic Chemistry*, **2016**, 81 (22), 10698-10706.
- 18 S. Raghavan, S. Nyalata, *Tetrahedron*, **2018**, 74 (10), 1071-1077.
- 19 S. Nyalata, S. Raghavan, Organic Letters, **2019**, 21 (19), 7778-7781.

- 20 L. Michaelis, Synthese des Dioxabicyclooactanfragmentes der Sorangicine und Studien zur Konstruktion des E,Z,Z-Triensystems, *Dissertation an der OvGU Magdeburg*, **2011**.
- 21 L. Michaelis, D. Schinzer, *Synlett*, **2014**, 25 (07), 951-954.
- 22 H. C. Brown, K. S. Bhat, *J. Am. Chem. Soc*, **1986**, 108 (19), 5919-5923.
- 23 H. C. Brown, R. S. Randad, *Tetrahedron*, **1990**, (46), 4457-4462.
- 24 H. E. Zimmerman, M. D. Traxler, *J. Am. Chem. Soc.*, **1957**, (79), 1920-1923.
- 25 Robert E. Gawley, *Tetrahedron Organic Chemistry*, **2004**, 14, Pergamon.
- 26 C. Schulz, Synthese der C23-C28- und C30-C37-Fragmente der Sorangicine A und B, *Dissertation an der OvGU Magdeburg*, **2000**.
- T. P. Blaisdell, T. C. Caya, L. Zhang, A. Sanz-Marco, J. P. Morken, J. Am.
 Chem. Soc., 2014, 136 (26), 9264-9267.
- a) A. Bonet, C. Pubill-Ulldemolins, C. Bo, H. Gulyas, E. Fernandez, Angew. Chem. Int. Ed., 2011, 50, 7158. B) A. Bonet, C. Sole, H. Gulyas, E. Fernandez, Org. Biomol. Chem., 2012, 10, 6621.
- 29 P. G. M. Wuts, T. W. Greene, Greene's Protective Groups in Organic Synthesis, Fourth Edition, **2007**, *John Wiley & Sons*, Inc..
- N. R. Swamy, Y. Venkateswarlu, *Tetrahedron Letters*, **2002**, 43 (42), 7549 7552.
- a) J. A. Dale, H. S. Mosher, *J. Am. Chem. Soc.*, **1973**, (95), 512-519 b) T.
 Hoye, C. Jeffrey, F. Shao, *Nat. Protoc.*, **2007**, (2), 2451-2458.
- S. Bäurle, S. Hoppen, U. Koert, *Angewandte Chemie*, **1999**, 111 (9), 13411344.
- 33 J. E. Baldwin, J. Chem. Soc., Chem. Commun., **1976**, (18), 734-736.
- 34 R. Stoykova, Studies Toward the Synthesis of the Dihydropyran Fragment of Neosorangicin A, *Dissertation an der OvGU Magdeburg*, **2021**.
- 35 R. Orii, M. Izumi, Y. Kajihara, R. Okamoto, *Journal of Carbohydrate Chemistry*, **2015**, 34 (9), 560-566.
- 36 B. Bollbuck, W. Tochtermann, *Tetrahedron*, **1999**, 55 (23), 7191-7208.
- H. Albright, P. S. Riehl, C. C. McAtee, J. P. Reid, J. R. Ludwig, L. A. Karp,
 P. M. Zimmerman, M. S. Sigman, C. S. Schindler, *J. Am. Chem. Soc*, 2019, 141 (4), 1690-1700.
- B. Chatterjee, S. Bera, D. Mondal, *Tetrahedron: Asymmetry*, **2014**, 25 (1), 1-55.

- 39 M. J. Eichberg, R. L. Dorta, K. Lamottke, K. Peter C. Vollhardt, Organic Letters, 2000, 2 (16), 2479-2481.
- 40 K. Ando, *Tetrahedron Letter*, **1995**, 36, 4105-4108.
- 41 X. Franci, S. L.X. Martina, J. E. McGrady, M. R. Webb, C. Donald, R. J. K. Taylor, *Tetrahedron Letters*, **2003**, 44 (42), 7735-7740.
- 42 G. R. Stanton, C. N. Johnson, P. J. Walsh, *J. Am. Chem. Soc*, **2010**, 132 (12), 4399-4408.
- M. J. Martinelli, R. Vaidyanathan, J. M. Pawlak, N. K. Nayyar, U. P. Dhokte,
 C. W. Doecke, L. M. H. Zollars, E. D. Moher, V. Van Khau, B. Košmrlj, *J. Am. Chem. Soc*, **2002**, 124 (14), 3578-3585.
- 44 D. S. Ziegler, B. Wei, P. Knochel, *Chem. Eur. J.*, **2019**, 25, 2695.
- 45 K. Takai, M. Tagashira, T. Kuroda, K. Oshima, K. Utimoto, H. Nozaki, JACS, **1986**, 108 (19), 6048-6050.
- 46 A. K. Chatterjee, T. L. Choi, D. P. Sanders, R. H. Grubbs, *J. Am. Chem. Soc*,
 2003, 125 (37), 11360-11370.
- 47 R. H. Shapiro, M. F. Lipton, K. J. Kolonko, R. L. Buswell, L. A. Capuano, *Tetrahedron Letters*, **1975**, 16 (22-23), 1811-1814.

Abbildungsverzeichnis

Abbildung 1: Struktur von Sorangicin A 1 und Sorangicin B 24
Abbildung 2: Epothilon A 3 , Soraphen A 4 und Rifampicin 5 5
 Abbildung 3: Interaktion von Rifampicin 5 (A) und Sorangicin A 1 (B) mit der RNAP-β-Untereinheit. Simulation der Flexibilität von Rifampicin 5 (C) und Sorangicin A 1 (D) (10 Interrationen mit Molecular Dynamics simuliert) ^[10]6
Abbildung 4: Sorangicin A 1 in der Bindungstasche des Targets, Grafik erstellt mit PyMOL
Abbildung 5: Struktur von (+)-Neosorangicin A 69
Abbildung 6: Retrosynthese von Sorangicin A 1 nach Amos B. Smith III et al 11
Abbildung 7: BCO-Fragment Synthese nach A. B. Smith III et al
Abbildung 8: THP-Fragment Synthese nach A. B. Smith III et al. (Teil 1) 14
Abbildung 9: THP-Fragment Synthese nach A. B. Smith III et al. (Teil 2) 15
Abbildung 10: DHP-Fragment Synthese nach A. B. Smith III et al
Abbildung 11: Kupplungen der Schlüsselfragmente nach A. B. Smith III et al. 19
Abbildung 12: Einführung des (E,Z,Z)-Trienesters und "End Game" der Sorangicin A 1 Synthese nach A. B. Smith III et al
Abbildung 13: Retrosynthese von Sorangicin A 1 nach M. T. Crimmins et al21
Abbildung 14: BCO-Fragment Synthese nach M. T. Crimmins et al
Abbildung 15: Kreuzmetathese zwischen dem THP- und BCO-Fragment nach M. T. Crimmins et al
Abbildung 16: DHP-Fragment Synthese und Kreuzmetathese zwischen dem DHP- und dem BCO/THP-Fragment nach M. T. Crimmins et al
Abbildung 17: Alternative Kupplungsstrategie zwischen dem THP/BCO-Fragment und dem DHP-Fragment nach Crimmins et al. (Teil 1)
Abbildung 18: Alternative Kupplungsstrategie zwischen THP/BCO-Fragment und DHP-Fragment nach Crimmins et al. (Teil 2)
Abbildung 19: Retrosynthese von Sorangicin A nach S. Nayalata und S. Raghavan

Abbildung 20: Erste Synthese des BCO-Fragments nach S. Nayalata und S. Raghavan
Abbildung 21: Seitenketten-Synthese des DHP-Fragments nach S. Nayalata und S. Raghavan
Abbildung 22: DHP-Fragment 157 Synthese nach S. Nayalata und S. Raghavan (Teil 1)
Abbildung 23: DHP-Fragment Synthese nach S. Nayalata und S. Raghavan (Teil 2)
Abbildung 24: Synthese des THP-Fragments 168 nach S. Nayalata und S. Raghavan
Abbildung 25: Finale Kupplungs-Reaktionen nach S. Nayalata und S. Raghavan
Abbildung 26: Retrosynthese von (+)-Neosorangicin A 6 (Teil 1)
Abbildung 27: Retrosynthese von (+)-Neosorangicin A 6 (Teil 2)
Abbildung 28. Retrosynthese von (+)-Neosorangicin A 6 (Teil 3)40
Abbildung 29: Synthese des BCO-Fragments 183 nach L. Michaelis und L. Chang (Teil 1), rot = aus anderen Arbeiten übernommen, die Dissertation von L. Chang folgt in Kürze
 Abbildung 30: Synthese des BCO-Fragments 183 nach L. Michaelis und L. Chang (Teil 2), rot = aus anderen Arbeiten übernommen, die Dissertation von L. Chang folgt in Kürze
Abbildung 31: Synthese des Homoallylalkohol 206 nach M. Munt
Abbildung 32: Herstellung des Crotylierungs-Reagenz 210
Abbildung 33: Triol 211 Synthese nach M. Munt und vorgeschlagener Reaktionsmechanismus
Abbildung 34: Ermittlung der relativen Stereochemie von Triol 205
Abbildung 35: Selektive Acetonid-Bildung in 1,2-Position und die Bestimmung der Regioisomere
Abbildung 36: Diasteromere Mosher-Ester und Ausrichtung dieser im Raum 49
Abbildung 37: Fortsetzung der THP-Fragment Synthese nach M. Munt52
Abbildung 38: Fortsetzung der THP-Synthese nach M. Munt und Kristallstruktur von Alkohol 234

Abbildung 39: Syntheseversuch des THP-Olefin 239 nach M. Munt
Abbildung 40: Abschluss der THP-Fragment 184 Synthese
Abbildung 41: Zusammenfassung der THP-Synthese 184 nach M. Munt 59
Abbildung 42: Synthese des DHP-Fragment 189 nach R. Stoykova (Teil 1), rot = aus anderen Arbeiten übernommen ^[35]
Abbildung 43: Synthese des DHP-Fragment 189 nach R. Stoykova und M. Munt (Teil 2)61
Abbildung 44: Synthese des Iodids 188 nach M. Munt62
Abbildung 45: Verschiedene Versuche zur Synthese von DHP-Fragment 187 65
Abbildung 46: Julia-Kocienski-Olefinierungs Versuche zur Synthese von DHP- Fragment 187
Abbildung 47: Metallorganische Addition von Iodid 188 an Methylketon 189 68
Abbildung 48: Verwendete Dehydratisierungs-Reagenzien
Abbildung 49: Metallorganische Addition und Eliminierung zur Synthese von 187
Abbildung 50: Vorgeschlagener Reaktionsmechanismus für die Dehydratisierung von Alkohol 274a/b mit Burgess-Reagenz 280
Abbildung 51: Selektive Entfernung der MOM-Gruppe des DHP-Fragments 187 73
Abbildung 52: Retrosynthetische Überlegungen um die empfindliche Trienester- Funktion einzuführen
Abbildung 53: Synthese des Säurechlorids 29576
Abbildung 54: Veresterungs-Versuche mit verschiedenen Reagenzien und deren Herstellung
Abbildung 55: Synthese von 289 über eine Still-Gennari-Reaktion
Abbildung 56: Synthese von 179 über die Ando-Variante einer HWE-Reaktion80
Abbildung 57: Kreuzmetathese des BCO-Fragments 183 mit THP-Fragment 184 , rot = aus anderen Arbeiten übernommen
Abbildung 58: "Cram-chelation-controlled" Addition von Vinyliodid 315 an Aldehyd 181
Abbildung 59: Ermittlung der relativen Stereochemie von Verbindungen 3172 und

Abbildung 60: Schützung der Diol-Funktion mit verschiedene Schutzgruppen und beispielhafter Entschützungs-Versuch der MEM-Gruppe
Abbildung 61 Finale Schutzgruppenaustausch und selektive Entfernung der MEM- Gruppe
Abbildung 62: Finale Syntheseschritte für das Vinyliodid 178
Abbildung 63: "End Game" der (+)-Neosorangicin A 6 Synthese
Abbildung 64: Ergebnisse der Studien zur Totalsynthese von (+)-Neosorangicin A 6, türkis = diese Arbeit, rot = aus anderen Arbeiten übernommen
Abbildung 65: Alternative Syntheseroute für das THP-Fragment, Einführung einer Abgangsgruppe und zwei Schutzgruppen an Triol 211
Abbildung 66: Alternative Syntheseroute für den THP-Fragment 184
Abbildung 67: Nebenprodukte der Substitutionsversuche
Abbildung 68: Der weitere hypothetischer Verlauf der 2 nd Generation THP-Fragment Synthese
Abbildung 69: Alternative Syntheseroute für die Konvertierung von D-Galactose zu L- Galactose
Abbildung 70: Retrosynthetische Überlegungen zur Kupplung aller drei Schlüsselfragmente über eine metallorganische Addition102
Abbildung 71: Synthesen von DHP-Vinyliodid 350103
Abbildung 72: Finale Synthesen von DHP-Vinyliodid 350
Abbildung 73: Metallorganische Kupplungsversuche zwischen Aldehyd 181 und DHP- Vinyliodid 350 104
Abbildung 74: Retrosynthetische Überlegungen zur Kupplung aller drei Schlüsselfragmente über eine Kreuzmetathese zwischen Fragment 317 und 187
Abbildung 75: Kreuzmetathese zwischen DHP-Fragment 187 und Alkohol 317 107

Abbildung 76: Alternative Syntheserouten für das DHP-Fragment 187...... 109

Tabellenverzeichnis

Tabelle 1: Eingeführte Antibiotika-Klassen von 1930 bis 2000 und einige nachgewiesene Resistenzen
Tabelle 2: Minimale Hemm-Konzentration (MIC, μg/ml) von (+)-Neosorangicin A 6 , Sorangicin A 1 und Rifampicin 5 gegenüber verschiedenen Gram-negativen und Gram-positiven Bakterien ^[13] 10
Tabelle 3: Rektionsbedingungen für die Julia-Kocienski-Olefinierung zwischen BCO- Fragment 7 und THP-Fragment 10
Tabelle 4: Versuche zur selektiven Acetonid-Bildung
Tabelle 5: Versuche zur Rückgewinnung des Nebenprodukts 217
Tabelle 6: Gemessene chemische Verschiebungen der Mosher-Ester-Analyse, grau =nicht sicher zuordbare Signale
Tabelle 7: Versuche zur Synthese des THP-Triols 233 54
Tabelle 8: Versuche mit Iodid 238 zur Synthese von Olefin 23956
Tabelle 9: Reaktionsbedingungen mit Triflat 237 zur Synthese des Olefins 23957
Tabelle 10: Silylierungsversuche des Homoallylalkohols 26563
Tabelle 11: Ozonolyse/Reduktions-Sequenz zur Synthese von Alkohol 267 64
Tabelle 12: Versuche zur Synthese des Iodids 188
Tabelle 13: Reaktionsbedingungen zur Julia-Kocienski-Olefinierung mit Sulfon 271
Tabelle 14: Reaktionsbedingungen zur Julia-Kociensky-Olefinierung mit Tetrazol- Sulfon 272 67
Tabelle 15: Reaktionsbedingungen der metallorganischen Addition von Iodid 188 an Methylketon 189
Tabelle 16: Dehydratisierungs-Versuche der Alkohole 274a/b70
Tabelle 17: Optimierungs-Versuche zur Dehydrierung von Alkohol 274 mit Burgess- Reagenz 71
Tabelle 18: Entschützungsversuche der MOM-Gruppe74
Tabelle 19: Veresterungsbedingungen für die Synthese von 289
Tabelle 20: Reaktionsbedingungen für die Schützung der Diol-Funktion 85

Tabelle 21: Reaktionsversuche zur Synthese von Verbindung 331	95
Tabelle 22: Reaktionsbedingungen für Reaktionspfad B	97
Tabelle 23: Reaktionsbedingungen für Reaktionspfad C	98
Tabelle 24: Reaktionsbedingungen für Reaktionspfad A	99
Tabelle 25: Reaktionsbedingungen zur Synthese von Verbindung 3421	01
Tabelle 26: Reaktionsbedingungen der metallorganischen Addition von Vinyliodid 350 an Aldehyd 1811	n DHP- 05

Abkürzungsverzeichnis

(+)-DET	(+)-Diethyltartrat	
°C	Grad Celsius	
μW	Mikrowelle	
Ac	Acetyl	José Alexandre and Alexandre a
AD-Mix-α	K ₂ OsO ₂ (OH) ₄ , K ₃ Fe(CN) ₆ , K ₂ CO ₃ ,	
	(DHQ)2PHAL	
AD-Mix-β	K ₂ OsO ₂ (OH) ₄ , K ₃ Fe(CN) ₆ , K ₂ CO ₃ ,	
	(DHQD)₂PHAL	
AIBN	Azobis(isobutyronitril)	
b.i.d.	Lat. Bis in die, Bedeutung: zweimal	
	tägliche Gabe eines Wirkstoffs	
B ₂ (pin) ₂	Bis(pinacolato)diboran	+ 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +
Bestmann-	Dimethyl-(1-diazo-2-oxopropyl)-	
Reagenz	phosphonat	
BIPS-	Trifluormethansulfonsäure-di-iso-	OTf
Ditriflat	propylsilylenester	

Bn	Benzyl	
BT	Benzothiazol	
BTBS-	Trifluormethansulfonsäure-di-tert-	OTF
Ditriflat	butylsilylenester	SIOTF
BTEAC	Benzyltriethylammoniumchlorid	
Commins-		
Reagenz		
CSA	Camphersulfonsäure	SO ₃ H
DAST	Diethylaminoschwefeltrifluorid	F-S-N
DBTO	Dibutylzinnoxid	, ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂
DBU	Diazabicycloundecen	
DC	Dünnschichtchromatographie	

DCC	Dicyclohexylcarbodiimid	N=C=N
DCE	Dichlorethan	CI
DCM	Dichlormethan	CH ₂ Cl ₂
DDQ	2,3-Dichlor-5,6-dicyano-1,4-	0
	benzochinon	
de	Diastereomerenüberschuss	$de = \frac{m_1 - m_2}{m_1 + m_2} \times 100\%$
		m ₁ : Masse des Diastereomers im Überschuss. M ₂ : Masse des Diastereomers im Unterschuss
DEAD	Azodicarbonsäurediethylester	
Dess-	1,1,1-Triacetoxy-1,1-dihydro-1,2-	° R
Martin-	benziodoxol-3-on	J of the second se
Periodinan		
DIAD	Azodicarbonsäurediisopropylester	
DIBAL-H	Diisobutylaluminiumhydrid	

DIPEA	Diisopropylethylamin	
DMAP	4-(Dimethylamino)pyridin	
DME	Ethylenglycoldimethylether	
DMF	Dimethylformamid	
DMP	Dimethoxypropan	<i>▶ ▶ ▶</i>
DMPU	Dimethylpropylenharnstoff	
DMSO	Dimethylsulfoxid	
DNS	Desoxyribonukleinsäure	
dr	Mengenverhältnis	
	[Diastereomer 1]:[Diastereomer 2]	
E	Diethylether	
ee	Enantiomerenüberschuss	$ee = \frac{m_1 - m_2}{m_1 + m_2} \times 100\%$
		m1: Masse des Enantiomers im
		Überschuss. M ₂ : Masse des
		Enantiomers im Unterschuss
EI	Elektronenstoß-Ionisation	
eq	Äquivalent	

er	Mengenverhältnis	
	[Enantiomer 1]:[Enantiomer 2]	
ESI	Elektrospray-Ionisation	
et al.	und andere	
EtOAc	Ethylacetat	
ges.	gesättigt	
Grubbs 2 nd	Benzyliden[1,3-bis(2,4,6-	
Gen. Kat.	trimethylphenyl)-2-	
	imidazolidinyliden]dichloro-	
	(tricyclohexylphosphin)ruthenium	PCy ₃
Grubbs-	1.3-Bis(2.4.6-trimethylphenyl)-2-	
Hovveda	imidazolidinyliden)dichloro-(o-	
2 nd Gen. Kat	isopropoxyphenylmethylen)ruthenium	
		~
h	Stunden	
HMPA	Hexamethylphosphorsäuretriamid	
HRMS	High resolution mass spectroscopy	
Hünig-	Diisopropylethylamin	
Base		

HWE-	Horner-Wadsworth-Emmons Reaktion	
Reaktion		
IC ₅₀	mittlere inhibitorische Konzentration	
Ірс	Isopinocamphenyl	LIL SERIES
IR	Infrarot	
J	Kopplungskonstante (Einheit = Hertz)	
kat.	Katalytisch	
KHMDS		
LiDBB	4,4-di- <i>tert</i> -butyl-biphenyl-lithium	Li
Lindlar	5% Pd-CaCO ₃ , Pd(OCOCH ₃) ₂ ,	
	Chinolin	
М	molar	
M+	Molekülion	
Martin´s- Sulfuran		F_3C C_6H_5 F_3C F_3C CF_3 CF_3 CF_3 CF_3

mCPBA	meta-Chlorperbenzoesäure	СІ
MEM	(2-Methoxyethoxy)methyl	220~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
MHz	Megahertz	
min	Minuten	
MOM	Methoxymethyl	× ~ ~ ~
MS	Molsieb	
Ms	Mesylat	n de la companya de
MS	Massenspektrum	
MTPA	3,3,3-trifluoro-2-methoxy-2-	F ₃ C_OCH ₃
	phenylpropanoicsäure	ОН
NaHMDS	Natrium-bis(trimethylsilyl)amid	
NCS	N-Chlorsuccinimid	
NIS	<i>N</i> -lodsuccinimid	
NMO	N-Methylmorpholin-N-oxid	0 ⊕ H ₃ C [•] , ¹ , ¹ , ⁰ Θ

NMR	Kernspinresonanzspektroskopie	
NOE bzw.	Kern-Overhauser-Effekt (engl. Nuclear	
NOSEY	Overhauser effect)	
ON	over night	
OTf	Triflat	F3C Store
PCC	Pyridinium-Chlorochromat	
Pd(dba)₃	Tris(dibenzylideneacetone)dipalladium	
Pd(dppf)Cl	[1,1'-Bis(diphenylphosphino)ferrocene]	
2	-palladium(II) dichloride	
PG	Schutzgruppe	
Ph	Phenyl	
Piv	Pivaloyl	
РМВ	<i>p</i> -Methoxybenzyl	Je O
PPTS	Pyridinium- <i>p</i> -toluenesulfonat	B B H H
PT	Phenyltetrazol	

PTSA	para-Toluolsulfonsäure	SO3H
RCM	Ringschlussmetathese, (englisch. ring	
	closing metathesis)	
R _f	Retentionsfaktor	$R_f = \frac{S}{L}$
		S: Laufstrecke der Substanz,
		L: Laufstrecke des
		Lösungsmittels
RNS	Ribonukleinsäure	
RT	Raumtemperatur in °C	
SAR	Die Struktur-/Wirkungsbeziehung	
	(englisch. Structure/activity	
	relationship)	
TBAF	Tetrabutylammoniumfluorid	K⊕ F⊖
TBAI	Tetrabutylammoniumiodid	
TBDPS	tert-Butyldiphenylsilyl	
TBHP	<i>tert</i> -Butylhydroperoxid	оон

TBS	<i>tert</i> -Butyldimethylsilyl	x [€] si
<i>t</i> -Bu	<i>tert</i> -Butyl	re the second se
TEA	Triethylamin	
TES	<i>tert</i> -Butyltriethylsilyl	Jos Si Jo
TFA	Trifluoressigsäure	F ₃ C OH
TFAA	Trifluoressigsäureanhydrid	F ₃ C OH
THF	Tetrahydrofuran	\bigcup°
TIPS	Triisopropylsilyl	Jet Si
TMEDA	Tetramethylethylendiamin	
TMS	Trimetylsilyl	je si
TPAP	Tetrapropylammoniumperruthenat	

tr.	trocken	
Tris		C C C C C C C C C C C C C C C C C C C
Ts	Tosylat	S solution
TTIP	Tetraisopropylorthotitanat	
UV	Ultraviolettstrahlung	
UV/vis	Ultraviolett-Visible-Spektroskopie	
V	Wellenzahl (Einheit = cm ⁻¹)	