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Abstract

The phase coherence of charge carriers gives rise to the unigspdraproperties

of mesoscopic systems. This makes them interesting to study from a fundamenta
point of view, but also gives these small systems a possible future in leatroaics
applications.

In the present work, a numerical method is implemented in order to contribute
to the understanding of two-dimensional mesoscopic systems. The method allow
for the calculation of a wide range of transport quantities, incorporatoan@lete
description of both the charge and spin degrees of freedom of theagledts such,
it constitutes a valuable tool in the study of mesoscopic devices. This is illubtrate
by applying the numerics to three distinct problems.

First, the method gives an efficient means of simulating recent scannihg pro
experiments in which the coherent flow of electrons through a two-dimeaision
sample is visualized. This is done by measuring the conductance decfehse o
sample as a function of the position of a perturbing probe. For electrasénga
through a narrow constriction, the obtained flow visualizations show aaEma
of the current into several branches, which is in agreement with expetaheb-
servations. The influence of a magnetic field on these branches is staddethe
formation of cyclotron orbits at the sample edges is visualized, although tiaty a
a new measurement setup is proposed. Furthermore, a wealth of imedeiee-
nomena are present in the flow maps, illustrating the coherent nature ttbakec
in the system.

Second, the numerical scheme also permits a phenomenological modeling of
phase breaking scattering centers in the sample. As an application of thi§ mode
the influence of phase randomizing processes on the transport iehistars of a
four-contact ring is investigated.

Third, transport of electrons through a noncoplanar magnetic textuigied,
and a Hall effect is observed even in the absence of a net Lorectz dod without
invoking any form of spin-orbit coupling. This Hall effect is due to thegghase
picked up by electrons when their spin follows the local magnetization direction
Using numerics in simple magnetic texture models, both the limit where the spin
follows the magnetization adiabatically and its nonadiabatic counterpart G be
dressed, including the effect of disorder. By investigating the transitween
both limits, an ongoing discussion in the literature about the relevant adiabaticity
criterion in the diffusive regime is clarified.
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Chapter 1

Introduction

1.1 General remarks

Mesoscopic physics is most often referred to as the field studying systéms w
dimensions that are intermediate between the microscopic and the macroscopic.
A more quantitative definition of the relevant length scale of a mesoscopic sys
tem is the phase coherence length, i.e., the length over which the carriees in th
system retain their quantum-mechanical phase information. As such, ropgosc
phenomena can be observed in systems within a wide range of sizes gmimg fr
the nanometer regime, to a few micrometers in high mobility semiconductor struc-
tures.

It is obvious then that mesoscopic systems will exhibit a behavior dictated by
qguantum (interference) effects, which makes them interesting alreaulydmpure
physical point of view. One of the landmark experiments in mesoscopidgshys
was the observation of the Aharonov-Bohm effect in the conductahsenall
metallic rings pierced by a magnetic flux through their center [1]. Since then,
the field of mesoscopic transport physics has been growing exponengiatlya
wide range of new physical concepts have been discovered: mesosesistors
in series do not follow simple addition rules [2, 3], the conductance of mary
row constrictions is quantized [4, 5], the conductance of disorderstdsg shows
sample specific reproducible fluctuations with a universal amplitude [@kve
calization [7, 8], and many more. A good understanding of such newepdsibas
to be pursued not only because of fundamental research reasbmadsdwith an
eye to future nanoscale devices. Indeed, the urge for miniaturizationdmaie
device technology will eventually lead to devices which approach mesiasdibp
mensions so that engineers might have to cope with quantum transporturthes f

The sudden rise of mesoscopic physics has been fed by the developiment
high precision microfabrication processes. Molecular beam epitaxy (M&E.,

!Since the phase coherence length is sensitive to temperature, masnexps have to be done at
low temperatures (liquid helium), in order to minimize the effect of phasaking scattering events
by phonons.



allows for fabricating semiconductor heterostructures with nearly singlmiato
layer precision. Electrons at the interface of a GaAs-AlGaAs hetertateigrown
with MBE are effectively confined to move in two dimensions and create a two-
dimensional electron gas (2DEG). In such a 2DEG, a wide variety ofstarsm
tures can be defined using current state-of-the-art lithographic itee® e.g.,
narrow constrictions (quantum point contacts), quantum dots, ringeshstruc-
tures, and electron billiards to mention but a few. Furthermore, the exinaoyd
precision with which this can be done allows for creating all these struciities
sizes smaller than the phase coherence length, and therefore the 2D&Getbe
perfect playground for mesoscopic physicists.

The ultimate limit in nanofabrication has been reached by using a scanning tun-
neling microscope (STM) to move around single atoms on a substrate [9e Mor
commonly, scanning probe methods are used in order to probe local sampie p
erties: scanning tunneling and atomic force microscopes (AFM) allow to oatain
topographic image of the sample surface under study, and this with (riearica
resolution. However, since a 2DEG is buried inside a heterostructue, mogth-
ods had to be developed in order to probe the behavior of electronstirassys-
tem [10-13]. Very promising in this respect is a technique that is able to image
the coherent flow of electrons through a 2DEG [14, 15]. It is basedavturb-
ing the electron flow with an AFM tip, and simultaneously measuring conductance
changes in the sample.

A recent development in hanoscale technology is the exploitation of the spin
degree of freedom. The ultimate goal consists of developing a new kineof e
tronics, termed spintronics, that operates using both the spin and the cidhg
electron. Compared to ordinary charge-based electronics, the spwedeifree-
dom can give extra functionality. Furthermore, because of long spiohéeence
times, such devices could eventually also play a role in quantum computér arch
tectures. Research into spintronics has been initiated in 1988, by the eligaiv
the giant magnetoresistance (GMR) effect [16, 17]. The GMR effexvery large
resistance increase of a ferromagnet/metal/ferromagnet multilayer strudtare
the magnetization of the magnetic layers changes from parallel to antiparailgl. O
ten years after its discovery, this effect already found commercial apiglits in
the form of read heads for harddisks, or magnetic field sensors. \Howte re-
ally speak about spin electronics, one should be abteattsportspins through a
device, i.e., one should find a way to produce spin-polarized curramdsgually
important, to detect such currents. It is clear that in order to pursue thls o
derstanding how to control the spin degrees of freedom is of prime impertan

The most straightforward way to control the electron spin consists of making
use of magnetic (or exchange) fields. For example, one might think of injectin
a spin current from a ferromagnet into a semiconddd@®]. Another example,
from a more fundamental point of view, concerns using the Berry ptiatelec-
trons pick up while moving in an inhomogeneous field, and exploiting the resultan

2This is only efficient with a tunneling barrier between both materials [18, 19]



guantum interference effects in order to create new functionalities ¢sge,the
spin switch in Ref. [21]). A second possibility to control the electron spid, @ne
of great interest at present, is to exploit the coupling of the spin and badeigaees
of freedom of the electron (spin-orbit coupling). In this way, one ltaess to the
spin via the orbital movement of the electron. Since the spin-orbit interaction is
sensitive to electric fields, this would allow to control the electron spin fully-elec
trically, without the need to use any magnetic material. Research in this direction
has lead to a plethora of device proposals: e.g., the spin field effedst@r22],
and several spin interference based devices (see, e.g., Re4[R3A very recent
(nevolution worth mentioning is the discovery of the so-called spin Halcgfia
which a longitudinal unpolarized charge current can induce a trasesyeire spin
current due to spin-orbit interactions [25-27].

Several review papers on mesoscopic physics, nanoelectroniciibis-
ics [28—30]) together with some textbooks [2, 3, 31] have appearedhtarrshort
time span, proving that this is a rapidly developing, exciting and challengewy ar
of physics, and will stay so for many more years.

1.2 Purpose of this thesis

The purpose of this thesis is to study mesoscopic transport phenomenshalge
where we will restrict ourselves to two-dimensional systems like the onagecre
experimentally within a 2DEG. To reach this goal, we have chosen a numerical
approach. Itis based on a real space tight-binding description of gtensyinder
study, so it has the advantage that different system geometries areaeasibgible.
We are also able to take into account explicitly multiple leads that are attached to
the sample: such leads are always present in a real experimental sitaatiahis
known that they can have a major impact on the transport properties in copsos
systems. Furthermore, the full influence of magnetic fields, both on the lorbita
and spin degrees of freedom, are correctly described. On top of fhiatpkbit
interaction effects can also be implemented. All in all, this gives us a general
purpose approach that can be used to attack a wealth of problems tdtetaa
fields of mesoscopic physics, nanoelectronics and spintronics. Althtbegbasic
philosophy behind our numerical approach is well known nowadaysyeve able
to extend the existing techniques allowing us to calculate a wider range dtahys
transport properties, and to do some calculations with far greater effyciexl
this will be made clear in the next three chapters where our numerical method is
discussed in detail.

Subsequently, our method will be applied to three quite independent systems,
which just shows the variety of problems that can be handled with our taghniq
In Chap. 5, we will consider scanning probe experiments that wereresedtly
to image coherent flow of electrons through a narrow constriction [14 |4 par-
ticular, we will show that we are able to simulate such experiments very efficien
within our numerical framework. To aid in the interpretation of these expetisnen

3



we will also compare the experimentally measured quantity (a conductance de-
crease of the sample as a function of the position of the perturbing tip) with the
exact current density in the sample. The influence of a magnetic field will also
be studied, and the cyclotron orbits of the electrons moving through the sample
are clearly observed. Furthermore, several interesting interfeedfesgs will be
discussed.

In Chap. 6, we will show how our numerical method can lead to an efficient
way of modeling phenomenologically the influence of phase coherene&ibge
scatterers. Doing so, the washing out of certain interference effeatfoimr-probe
ring will be investigated.

Finally, in Chap. 7, electrons moving in an inhomogeneous magnetic texture are
considered. The Berry phase that electrons pick up when their spibadidily
follows the local magnetization direction during their movement can give rise to a
Hall effect even when there is no net Lorentz force (nor any sgiit-coupling)
acting on the electrons. This recently discovered effect was termedl|6gipal
Hall effect” in the literature [32], and will be studied in detail in simple models in
this thesis. The advantage of using numerics here lies in the fact that veasiiyn
address the nonadiabatic limit, something which is much harder with analytical
calculations.
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Chapter 2

Landauer-Buttiker formalism

The transport properties of systems scaled down to the mesoscopic regeated
quite a few surprises: e.g., the resistance of a ballistic waveguide wad foun
be nonzero and quantized as a function of its width [4, 5]. Another exarsple
the appearance of discrete steps in the Hall resistance as a functionapiptie!
magnetic field (quantum Hall effégt[33], whereas classically one would expect
this resistance to increase linearly with the field.

Electron reservoir

Figure 2.1: Setup for the LandaueriBtiker formalism.

A widely used approach for understanding the peculiarities of mesostaps:
port is the so-called LandaueiaBiker formalism [34, 35]. In this approach, the
current through a sample is related to the probability for an electron to transmit
through the sample, which is intuitively very appealing. Although the Landaue
Buttiker approach can be used for arbitrary dimensions, we will considigr o
two-dimensional samples, as depicted in Fig. 2.1. A central device is deohec
to semiinfinite leads that feed it with electrons from an electron reservoie Th

Istrictly speaking, one could argue that the quantum Hall effect is notsasuepic effect, since
the effect is destroyed when the size of the system becomes smalleréhratetrant quantum size in
the problem, which in this case is the cyclotron radius of the magnetic field.



Landauer-Bittiker formulas then give a relationship between the currents flowing
through the leads and the chemical potential of the reservoirs:

=5 3 [dET(E) 15,(B) - 1)) @)

wherep, ¢ label the different leads;e is the electronic chargé, (E) is the Fermi-
Dirac distribution for reservoip (assumed to be in thermal equilibrium), aifig,
are the transmission coefficients for electrons to go from éemdeadp.

For small biases between the reservoirs, this relationship can be linetrized
obtain (we will also assume temperatdre= 0 from now on)

e2
I, = N Zqu(EF) (Vp = Va), (2.2)
q

whereV,, = pu,/e is the voltage on reservop and Er is the Fermi energy of
the system. As such, the current-voltage characteristics of the devideedatly
determined by calculating the transmission coefficidptsbetween all leads.

These transmission coefficients can be written as sums of transmission proba
bilities

Tpq = Z | o |2 (2.3)
m,n

whereth, is the electron flux amplitude for an electron leaving the device through
channeln in leadp, when the incoming flux amplitude in channein leadq is set
to 1. In order to define such incoming and outgoing wave amplitudes, one needs
the leads to be translationally invariant in the longitudinal direction. The adann
indexesm, n then refer to both the discrete transverse modes of the leads (resulting
from size quantization in the transverse direction) and the spin. The amglitude
thl, are thus nothing else than the elements of the scattering matrix of our system.
Current conservationz(jp I, = 0) is reflected in the unitarity of the scattering
matrix, and it leads to the following constraint for the transmission coefficients
Thq:

Zqu(E) = Zqu(E)- (2.4)
p p

It is clear that the Landauertitiker approach is only valid for phase coherent
(i.e., mesoscopic) devices, otherwise the description in terms of in- andiogitgo
waves loses its validity. Nevertheless, itis important to note that inelasti¢e#ex
taking place inside the electron reservoirs, because they have to maintguian
librium distribution even in the presence of transport. As such, energipdtion
is taking place in the reservoirs only.

A final point to mention are the following symmetry relations for the transmis-
sion coefficients under time reversal:

Tpg(+B) = Typ(—B). (2.5)

8
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3 4
1 2 W

1 2
Figure 2.2: Two-terminal (a) and four-terminal (b) measurement setapsbtaining
the resistance of a mesoscopic sample.

For a two-probe measurement as in Fig. 2.2(a), they lead [together wil{2 E.

to T12(+B) = T12(—B), giving a sample resistance that is symmetric under time
reversal. On the other hand, when multiple leads are connected to the,dbeice
situation becomes slightly more complicated. Experimentally, e.g., one uses quite
often a four-terminal geometry as in Fig. 2.2(b) where two leads (lakdetet 2)

are used to pass current through the sample and two other leads (lalzeidd)

are used to measure the voltage drop over the sample. In this case, theedeasu
resistance o 34 = ‘/41;1‘/‘ is not symmetric with respect to time reversal. Instead,
based on Egs. (2.2) and (2.5), a symmetry relation can be derived Ipetwee
measurements in which the role of current and voltage leads are rey@é$ed

R1234(+B) = R34,12(—B). (2.6)

It thus becomes clear that the measurement setup itself plays an important role
in mesoscopic transport. One of the strong points of the Landaiittik& for-
malism is that it allows to take the role of the current/voltage probe configuration
explicitly into account so that one is able to closely mimic a real experimental.setup
Therefore, coupled with its intuitive appeal, the formalism has found wigesb
use and some major developments in the mesoscopic transport theorytareaden
around it: e.g., both the quantum Hall effect and the nonzero resisthadmbistic
conductor can be explained with it.
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Chapter 3

Tight-binding model

For the numerical calculation of physical quantities, such as the transmission
efficients in the LandaueriBtiker formulas, it is convenient to have a numerical
representation of the problem that is easy to use and of sufficientlyajenepose.

In this chapter, a tight-binding representation is seen to fulfill such regeinés.

The tight-binding model of a system is obtained by discretizing its Hamiltonian
on a lattice. The smaller one chooses the lattice cell size, the better this represe
tion represents the continuum limit. As such, not every lattice site correspomad
atom as in ab-initio theories; rather a site may represent a region containityg ma
atoms, but this region should be small compared to physically relevant quantitie
such as the Fermi wavelength.

Although this kind of tight-binding approach is widely used nowadays, some
new viewpoints will be presented in this chapter, e.g., considering a gaugef
scribing inhomogeneous fields, and the description of spin-orbit couplirige
application of the tight-binding approach to spin-dependent transplortlaons
will be treated in some detail since this is a more recent development, while spin-
degenerate systems are only briefly discussed because their treatmbatfoand
in textbooks nowadays (see, e.g., Ref. [2]).

3.1 Spin-degenerate system

3.1.1 Generalities

The Hamiltonian for a spinless electron in a two-dimensional system moving in a
magnetic field is given by
1 2
H=_—— (mv . eA) TV, (3.1)
2m*
wherem* and —e are the effective mass and the electronic charge respectively.
The potentiallV comprises both the potential that confines the electrons and the
one due to impurities (disorder) in the system. The vector poteAt@gscribes the
influence of a magnetic fielB = V x A. Since we are considering a 2D system,

11



only fields applied perpendicular to the sample will have an influence on ke or
of the electron.

The general scheme for discretizing this Hamiltonian looks as follows. First,
one constructs a square lattice with lattice parametsr defining pointgn, m) =
(x=mna,y=ma) with n andm integer. By approximating the derivative operators
on this lattice a9, f = 1/a[f(z+a/2)— f(x—a/2)] (and an equivalent expression
for 0, f), one can show that the Hamiltonian (3.1) can be mapped onto a nearest-
neighbor tight-binding Hamiltonian [2]

H = ZZ[tﬁm\n—i—l,mﬂn,m]—i—t%mn,m—i—l)(n,m!—i—H.C. +
+Zzenm‘nam><nam‘v (3.2)

that acts in the discrete space spanned by the states) = |z = na,y = ma).
The on-site energies,,, in this Hamiltonian are

€nm = 4t + Vi, (33)

with V,,,,, = V(na, ma). They have been shifted up by an amodinso that the
energy band for free electrong (= 0) in an infinite lattice,

€= 2t(2 — cos kya — cos kya), (3.4)

has a value of zero at the bottom. Theandk, are wavevectors belonging to the
first Brillouin zone of the square lattice. It can be seen that the tight-binddgl
is a good approximation only whéy.a, kya < 1, i.e., when the lattice spacing
is smaller than the Fermi wavelength, since the dispersion relation then becomes
approximately parabolic like in the continuum case.

The quantitiesZ,,, andt,, in the tight-binding Hamiltonian give the hopping
amplitude in the horizontal, respectively vertical direction. In the absehee o
magnetic field they are given by:

FL2

g 3.5
2m*a? (3-5)

tfbm = t%m =—t=

When the vector potentidl is included, the hopping parameters change to

tﬁ%) — ¢ e—ie/th.dl7 (3.6)

where [A .dlis the integral of the vector potential along the hopping hathis is
called the Peierls substitution [38, 39]. Given a certain magnetic field distrihutio
we still have the freedom to choose the gauge for the vector potentialiteabest

to our needs. One very convenient gauge for representing a hoemgefieldBe,

A lucid discussion on the physics of Eq. (3.6) is given in Ref. [37] ogepal-2.

12



is the Landau gaugeA = —Byey. In this gauge, the hopping parameters found
from Eq. (3.6) are explicitly given by

- ¢ 6127r(m71)'19/61>0’ (373.)

tom
t%m -
where we have definell = Ba? as the magnetic flux per lattice cell, abg = h/e

the magnetic flux quantum. This gauge is particularly interesting for describing
fields in the leads because it conserves translational invariance aloixgatkis.
Choosing in every lead a coordinate system with the local X axis pointing along
the longitudinal directiofy the conservation of translational invariance along this
axis assures that one is still able to speak of in- and outgoing waves in t& lea
which is necessary to define the transmission coefficients in the LanBéttéeer
formalism [see Eg. (2.3) and the discussion thereafter].

3.1.2 Inhomogeneous fields

The Peierls substitution method gives a very convenient way of dealing wigh ma
netic fields in a tight-binding model. However, although the Landau gaugegro
to be very convenient for describing homogeneous fields, it is noyalalaar what
gauge to choose for more exotic field distributions. It is for instance nabab
how the vector potentiaA should look like when one has a completely random
magnetic field in the device.

Nevertheless, we have found a convenient gauge for any possiblelifgri-
bution, as will be explained with the help of Fig. 3.1. Suppose that one has a
perpendicular magnetic field with strengththat is localized on a single lattice
cell. The influence of this local field can be described by changing alldbpihg
parameters’, abovethe flux tube as follows:

x i2ndq /Pg
o — —t 2™/ P,

for m > myq, (3.8)
where®, is the magnetic flux enclosed by the unit cab; = Bja?. An electron
traveling along any closed path around the flux tube will then pick up a phase
2w ®1 /Py, thus giving a correct description of the field. A second localized flux
tube in the same column will contribute another phase chéagbut again only to

the hopping parameteabovethe second flux tube. The total change of the hopping
parameters is then the sum of both contributions (see Fig. 3.1):

¢t ,m<mip < mo

oo ¢ ei?w<b1/¢’0 m < 3.9

nm s <M S My ( ' )
—t2m(214®2) /D0 ) < my < m

2 proof that the gauge for the vector potential can indeed always teeotto be Landau-like in
every lead is given in Ref. [40].

13
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Figure 3.1: An arbitrary magnetic field is composed of flux tubes localipe single
lattice cells. For a single flux tube, all hopping paramesérsve it change their phase
by ¢ [single arrow in (@)]. If a second flux tube is included abdwe first one, hop-
ping parameters located above both cells will change th&ise by, + ¢ [double
arrows in (b)].

This line of reasoning can be easily generalized to a situation where aviery u
cell encompasses a single flux tube. One just changes the hopping tesae

t’l]’im — —t eizwzm/<m @nm//@(), (310)

where®,,,,. is the flux through the lattice cell above the link connectinggiten’)
with site (n + 1,m’). As such, one can describe an arbitrary magnetic field in
the device by choosing the appropriate flux tube distribution through theretif
lattice cells.

From comparison with Eq. (3.6), the description above correspondetsitiy
the following gauge for the vector potential:

Afu—»n%»l m _% Zl<m @,y
A _ 0 , (3.11)
whereAy ., ., ,, is the vector potential at the vertex connecting sftesn) and

(n+1,m). Note that for a homogeneous field where all lattice cells comprise the
same flux®,,, = ® = Ba?, the gauge choice above corresponds to the Landau
gauge.

3.2 Including spin degrees of freedom

When including spin in the problem, the state space will be extended: it is now
spanned by product states, m,o ) = |n,m) ® |o ), where|o ) defines the spin
state of the electron. In a matrix representation of the Hamiltonian, this means that
every element of the “spinless” representation now beconies & spin matrix
itself.

When treating the spin-independent terms in the Hamiltonian, this spin ma-
trix is proportional to the identity matrix. In other words, the Hamiltonfdnn
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Eq. (3.2) can be written to act in the extended space by just pitling H ® 1
with 1 the identity matrix, and no extra work is needed for finding a tight-binding
description for the spin-degenerate Hamiltonian. For operators actingeaspih
degrees of freedom however, we still have to derive a tight-bindingeseptation.

In the next sections, this will be done for both the Zeeman (or exchaptjing

and spin-orbit coupling terms.

3.2.1 Zeeman/exchange splitting

In a preceding section we discussed the influence of a magnetic field orbihe o
of the electron and described it by the Peierls substitution. However, fibet of
the field on the spin of the electron was neglected. In fact, an extra term

Hg = —% g 1B Bett - 0, (3.12)
should be added to the Hamiltonian, whetés the effective Lané factor for the
electron andi s is the Bohr magneton, while is a vector containing the Pauli spin
matrices:o = (¢%, 0¥, 0%). We have written the field as an effective fidds, to
make it clear that it can be due to an externally applied field, an exchande fie
(in a ferromagnet, e.g.), or a combination of both. This Hamiltonian will split the
energy bands: a spin-up state (with respedBtg) will be shifted down in energy
by 1/2 ¢* 15 ||Bet||, while a spin-down state will be shifted up by the same amount.

Since it only acts in spin space, this operator will lead to an on-site term in the
tight-binding Hamiltonian:

1 * ff
with BT = Be(2=na, y=ma). It should be noted that the orbit of the electron
is only influenced by the component of the magnetic field perpendicular tdthe 2
sample, while the spin splitting of course depends on all three components of th

field.

3.2.2 Spin-orbit coupling

When a particle with spin moves in an electric field, its spin and orbital degrees
of freedom will be coupled. This so-called spin-orbit interaction is esagna
relativistic effect, and gives rise to a Hamiltonian of the form

Hso= AP - (VV x o), (3.14)

whereV is the electrostatic potential felt by the electron, dhdhe mechanical
momentum operator. The paramelds a material constant describing the strength
of the coupling.
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Instead of deriving this Hamiltonian explicitly by making an expansion/ia
of the Dirac equation, we will give some physical arguments as to why a Hamilto-
nian of the form above can be expected. Suppose an electron moveelwithyw
in an electric fieldE. Doing a Lorentz transformation to its rest frame, the electron
feels a magnetic field (to first order ir/c)

1
B:—g(vxE). (3.15)

The magnetic moment of the electron can interact with this field, giving rise to a
Zeeman-like term

1 *
Hso:—§g upB-o. (3.16)

Substituting the magnetic field in this expression with Eq. (3.15), and using that
v = P/m*, one obtains finally

eh
4m*2C2
Writing the electric field a = VV/e, with V' the electrostatic potential, this
indeed leads to a spin-orbit Hamiltonian of the form (3.14), with the parameter
given by?

Hso = g¢* (PxE)-o. (3.17)

_ _gh

- 4m*262 .
In a strictly 2D system, the electrostatic potenitatlepends only on the coor-

dinates(z, y). In this case, we can write the spin-orbit Hamiltonian (3.14) as

A (3.18)

Hso= Ao” Ki@aw + eAx> oy — (Thay + eAy> axv] , (3.19)

where we use® = p + eA = 2V + eA for the mechanical momentum. For
deriving the tight-binding version of the Hamiltonian (3.19), we need to digere
this operator on a lattice. Since this involves quite a few technical operati@ns,
have shifted such a discussion into Appendix A. The end result is:

2a

n,m

AR
Hso = - Z {[axv]n,mHm—i-l <]n, m><n7 m+ 1’ ® iaz> (3.20)

Pn

O et ¢ 2T S (nm) (Ll @07 ) + H.c.},

3In our naive derivation, we did not treat the Lorentz transformaticwéeen the lab frame and
the electron’s rest frame completely correctly. An electron moving inlactrée field that has a
component perpendicular to the electron’s velocity describes a ctrajedtory. The transformation
between the lab frame and the electron’s rest frame therefore invbixesoncollinear Lorentz
transformations. As a consequence, an observer in the electrsifsarae will find that an additional
rotation is necessary to align his axes with the axes obtained by just boostilaipframe using the
instantaneous velocity of the electron. This results in an extra precedstmm electron spin, called
Thomas precession. The effect changes the magnitude of the intaractieg. (3.16), and will
introduce a factor of 1/2 in the expression far We will assume this factor to be absorbed in the
definition of g*. For a more thorough discussion, see, e.g., Ref. [41].
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with the derivatives of the potential on the vertices defined as

Oy V] it m = 2—1(1 [% (Vn,m+1 + Vn+1,m+1) - %(Vn,mfl + Vn+1,m1)]

1 |1 1
[8$V}n,m<—>m+1 ~ % [5 (Vn+1,m + Vn+1,m+1) 5 (Vn—l,m + Vn—l,m+1):| .

This Hamiltonian describes a spin-dependent hopping to nearest negijtaso
clearly illustrating the coupling between spin and orbital degrees of freetdpon
hopping in the X direction to a neighboring site, the electron will pick up the same
phase factor that was due to the presence of a magnetic field (see S&c. 3.1

3.2.3 Rashba spin-orbit coupling

Experimentally, a two-dimensional electron gas is often created at the teafa
a semiconductor heterostructure. Electrons are then confined by eoxiapately
triangular potential well/(z) in the growth direction (see Fig. 3.2). If this well is
narrow enough electrons will only occupy the lowest eigenstate and themamt
along the Z direction is effectively frozen out so that electrons are oag/tb move
in a two-dimensional plane.

Wide bandgap Narrow bandgap

material matetial

V(z)
Fermi energy

bound states

z

*—»

Figure 3.2: Conduction band at the interface of a semiconductor heteiciare.
Band bending creates a potential wEl(z) confining the electrons to thEY plane.
The asymmetry of this well leads to Rashba spin-orbit cowgpli

However, the influence of the triangular potential well goes further tbafirc
ing the electrons in a plane: it can give rise to the so-called the Rashbargitin-
interaction [42, 43]. Indeed, the potential wél(z) has a nonzero gradient and it
will give rise to a spin-orbit coupling according to Eq. (3.14):

d
HRSO: Ad—‘Z/P . (ez X 0'). (3.21)

When the well is not exactly triangular, the gradi%ijtis not constant and one has
to calculate an average, using the density distribution for electrons in theidin
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as a weight function. Writing out the cross-product in Eq. (3.21), ditains an
expression for the Rashba term of the form

(67

T (P = o), (3.22)

Hgrso=
wherea = Ak (dV/dz) is a material parameter that contains the details of the aver-
aging procedure described above. It is clear thaifill only be different from zero
when the confining potential is not symmetric. In real heterostructurean take
on typical values in the range oto 10 x 10~'° eVem for a large variety of systems
(mostly used are GaAs/AlGaAs and InAs/INAIAs heterostructures),raépg on
the exact shape of the confining potential well. It should be noted thahtyes
of the confining well, and thus the coupling strengtftan be varied by apply-
ing a voltage on an electrostatic gate mounted on top of the electron gas [44, 45
This gives some control on the strength of the spin-orbit interaction aras itdad
to proposals for a variety of devices based upon controlling the spireeggf
freedom electrically (rather than with magnetic fields) via the Rashba spih-or
coupling. Most famous among these is the spin field effect transistor [22].

The tight-binding representation for the Rashba Hamiltonian in Eq. (3.22) is
derived in full detail in Appendix A. We only state the end result here:

Hrso = —tsoz {e_i%zkm /o <\n, m)(n+1,m|® iay>

n,m

—(In,m><n,m+1|®iam> + H.c.}, (3.23)

where we have definetdo = «/2a. The Rashba Hamiltonian thus describes a
hopping between neighboring sites paired with a spin flip. Again, a phete fa
picked up when hopping in the X direction in the presence of a magnetic flux.
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Chapter 4

Green’s function formalism

Having a numerical representation of the system in terms of a tight-bindinglmode
one still needs a mathematical framework within which different physicalgro
ties can be calculated. Green'’s functions can be a valuable tool in thecte§me

of their advantages is the relative ease with which they can be calculategdaoed

to a direct numerical solution of the Séldinger equation. In particular, a very ef-
ficient recursive method is available for obtaining the Green'’s functiecsssary
for the evaluation of the transmission coefficients in the Landauigtiker formal-

ism [2, 31]. This method will be discussed in some detail in the current ahapte
where parts of the discussion will follow Refs. [2, 31]. We will also shawho
extend this standard recursive technique, allowing for an extra seteeinG func-
tions to be calculated with the same high efficiency. With this larger set of Green
functions, a wider range of physical properties comes in our reatlit, will also
allow us to do certain calculations in the next chapters more efficiently.

4.1 Green’s functions: The basics

In quantum physics, the single-particle Green’s function opel@{dt) of a sys-
tem described by a Hamiltonia can be defined as the solution to the operator
equation [2, 31, 46]

[E—-H]G(E) =1, (4.1)

A formal solution to this equation would be given BYE) = (E — H)~'. How-

ever, such a solution is not well defined for valuediaforresponding to the eigen-
values of the Hamiltonian. This subtlety can be appreciated more when going to
the position-spin representation of Eq. (4.1):

[E-H(x)|] G(x,x,E) =6(x—x'). (4.2)

The vectorx contains both the position and spin variables= (r, o), and the
function
G(x,x, E) = (x|G(E)[x) (4.3)
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is called the Green’s function of the system. From Eq. (4.2), it can betbagn
the Green'’s function can be considered as a wavefunctipmesulting from a unit
excitation atr’. But on the other handy can also be considered as the source for
such an excitation. Both solutions satisfy Eq. (4.2), but they corresjoatitferent
boundary conditions: iff would be the Hamiltonian for a particle moving in a
constant potential, then the first solution would correspond to an outgaing w
from the pointr’, while the second solution would be an incoming wave. In order
to incorporate such boundary conditions into a unique definition for therGre
function, one adds an infinitesimal imaginary variable into the energy, whidisle
to the following definitions:

G*(x,x,E) = lim+ G(x,x', E +in), (4.4)
n—0

where the function&'* satisfy
[E+in— H(x)] GF(x,x,E) = §(x — x). (4.5)

The functionsG™ andG~ are called respectively the retarded and advanced Green'’s
function. In the example given above, the retarded Green'’s functiatdwmrre-
spond to the outgoing wave and the advanced Green’s function to the irgomin
wave. More generally, when Fourier transforming the functiGisto the time
domain using a closed contour integration in the complex plane, they woulel corr
spond to causal and anticausal solutions [47].

In the operator language, the retarded and advanced Green’s fuapgoators
are defined uniquely for all real values Bfby the relation

G*(E) = lim _ (4.6)
n—0t F+in— H
and they can thus essentially be calculated by inverting the Hamiltonian.

In the next sections, we will stop writing the hat ¢4 to denote an opera-
tor. It will be clear from the context wheth&r stands for a function (or a ma-
trix in a discrete system) or an operator. We will also drop the substrifar
distinguishing between the retarded or advanced Green’s funatonill always
stand for a retarded Green’s function. From Eq. (4.6), it is clear tleaddvanced
Green's function corresponds to the hermitian conjugate of the retarded.e.,

G~ = (GNH =G,

4.2 Transmission coefficients and the Green’s function

In the Landauer-Bttiker formalism presented in Chap. 2, a central device is con-
nected to perfect leads, and its current-voltage characteristics caqpiassed in
terms of transmission coefficients between those leads. These transmassfion ¢
cients can be related to the Green’s function of the central device, thieislifying

the effort we will make in the next sections to find this Green’s function. \We w
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suffice with merely stating this relation here, since it is standard nowadagls, a
since a thorough derivation would take us too'fam a tight-binding represen-
tation of the system, the transmission coefficient between lgasl ¢ is given
by [2, 49]:

Ty = T1[TyGpaTyGly | (4.7)

The Green’s functiordr,, in this expression is a submatrix of the Green'’s function
G of the whole system: it contains only the elementgsobetween sites in the
central device that connect to legadgindgq: in particular, if P, is a projection
operator onto the sites of the central device to which je&g is connected, then

Gpg = PpGPy. (4.8)

The matrixI', in Eq. (4.7) is the so-called broadening function of Igadt is
given in terms of what is known as the self-enekgyof the lead:

I, =i(3, - ). (4.9)

This self-energy is related to elements of the Green'’s function betweerasites
surface of the lead. The exact definition, and a more detailed discudsibese
self-energies will be given in the next section [see Eq. (4.13].

4.3 Lattice Green'’s function method

One could have the impression that all has been said already about the'sGre
function technique: one just derives the tight-binding Hamiltonian of the syste
writes it out in matrix form, and calculates the Green’s function by inverting the
matrix £ + in — H. Physical quantities, like the transmission coefficients of the
Landauer-Bittiker formalism, can then be calculated by expressing them in terms
of this Green'’s function.

However, since we are concerned with an open system (there are seitaiinfi
leads connected to the sample), the tight-binding Hamiltonian matrix describing the
complete system has infinite dimension and cannot be inverted numericalty. Fur
thermore, even if one is able to truncate the Hamiltonian matrix, its direct inversion
turns out to be numerically very expensive. These issues will be addtés the
current section. During the discussion, we will use quite often the notétjgnto
denote a submatrix of the total Green’s function maf¥ixG,,,, “connects” sites
of columnsn andr’, i.e.,

(m,o|Gpw (E)m, 0" ) = Gumonmio (E) = (nmo|G(E)n'm'c"),  (4.10)

where(m, n) label the sites in the tight-binding lattice, ands’ are the spin in-
dices.

1The interested reader can find such a derivation in Ref. [48].
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Figure 4.1: The influence of a lead can be described by adding its selfygrie the
Hamiltonian of the device.

4.3.1 Semiinfinite leads: Self-energy description

Within the Landauer-Bttiker formalism, the system is composed of a central de-
vice connected to leads (see Fig. 2.1), and its Hamiltonian can therefoubdie s
vided as:
H=Heq+ Y (H +Vi+ Vi) (4.11)
7

H,., is the Hamiltonian for the central device, arﬁq' the Hamiltonian for lead
7. The coupling between lead and device is describedflgy(and its hermitian

conjugateV;). A direct inversion[E + in — H]| ~! to obtain the Green’s function
is numerically impossible, since eveH} has infinite dimension.

The standard way to resolve this problem consists of describing the lead in-
fluence by a self-energy term: it can be shown (see, e.g., Refs. [Rth3t the
central device, including the influence of the leads on it, is describedfinyte:
dimensionaHamiltonian

Heg = Heg + > _ X, (4.12)

whereX’ is called the (retarded) self-enefgyf lead::
X' = Vi g Vi (4.13)

The quantitwf in this expression is the Green’s function of the isolated semiinfinite
lead:g! = [E + in — Hj]~1. Atfirst sight it seems that the problem is just shifted,
since now the calculation gf will involve the inversion of the infinite-dimensional
Hamiltonian H;. However, since a nearest-neighbor tight-binding model is used,
the matrices/;, andV}; have nonzero elements only between sites on the surface
of the lead and their neighboring sites in the device. This means that only the
surface Green’s functiongl"()n is needed in Eg. (4.13) (see also Fig. 4.1), and

2In many-body physics, self-energy terms are sometimes introduagestibe coupling of the
system to phonons or to describe many-body interactions [47]. In tasss, the self-energies are
usually only calculated up to some order in perturbation theory, so thatiméltdnian one obtains is
only an approximation. However, in our case the truncation of the deaceilkbnian by describing
the influence of the leads by their self-energies is exact: no approxirmatioatsoever are made.
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Figure 4.2: Attaching two isolated sections with Dyson’s equation ttedbGreen’s
functions for the connected system.

the point is that several methods are at our disposal for calculating tesnGr
function: in the absence of a magnetic field it is known analytically [2], while
in the case of a magnetic field one can resort to several numerical metem]s (
e.g., Refs. [50, 51]). The particular method we have used will be explame
Appendix B, in order not to drown the reader into a too dense technicalstison
at this point.

Now, if the central device compris&s lattice sites, the Hamiltoniaf. in
Eq. (4.12) can be represented bg@ x 2C matrix (the factor 2 arises from spin)
and the corresponding Green'’s function can in principle be obtained fro

Gea = [E +in— Hea) (4.14)

Nevertheless, the number of floating point operations necessary to a®ey x

2C matrix scales a$2C)3, and therefore the inversion in Eq. (4.14) puts heavy
constraints on the numerically reachable system size. Fortunately, maiergffi
recursive methods exist for obtainirdg.;, and these will form the subject of the
next sections.

4.3.2 Recursive technique: Standard method

Recursive methods for the evaluation of Green’s functions are bgsedthe di-
vision of the device in smaller sections of which the Green’s functions caalbe
culated easily. These sections are then “glued together” by using thalled-c
Dyson’s equation [47],

G=g+gVQG, (4.15)

which allows to relate the Green’s functignof two disconnected subsystems to
the Green'’s functiorty of the connected system, where V describes the hopping
between the subsystems.

Before embarking upon a detailed discussion of the recursive Griegirson
technique, we will illustrate the use of Dyson’s equation with an example, téebic
in Fig. 4.2. Consider a system consisting of two parts, and suppose tHawee
access to the Green’s functigrlescribing thésolatedparts. Now we would like to
obtainGy1, i.e., elements of the Green'’s function between the first and last column
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of thecoupleddevice. This can be done by projecting Eq. (4.15) between columns
N and1:

Gn1 = (N|G|1) (4.16a)

= (Nlglt)+ Y (Nlgla)(a|V|B)(BIG|L)  (4.16b)
[e),18)

= (Nlgln)(n|Vin+1)(n+1|G|1) (4.16c¢)

= JNn Vn,n+1 Gn+1,1~ (416d)

Equation (4.16c¢) is obtained by noting that the hopping matrixetween the dis-
connected systems has only nonzero elements between coluamas: + 1 in our
nearest neighbor tight-binding model. Furthermore, we lgame= 0 sinceg is for
the disconnected system only. We can proceed now to find the unk@wn; in
Eqg. (4.16d) by taking again the appropriate matrix elements of Dyson’diequa
This procedure can be continued until we have found a closed setafiens. We
immediately write down the resulting equations:

Grnt11 = ntin+1 Varin Gni,  With (4.17a)
Gnl = gnl t Gnn Vn,nJrl Gn+1,1- (4l7b)

From these equations, we obtain:

-1
Gn+1,1 =|1- In+1,n+1 Vn+1,n dnn Vn,n+1 In+1,n+1 Vn—i—l,n gnl- (418)

Substituting this in Eqg. (4.16d), we will get an expression &y in terms of
Green’s functions for the isolated sections, which was our initial goal.

We now have enough technical luggage to proceed to the recursien'&re
function technique [31, 52]. In the following, we will consider a centealide dis-
cretized on a rectangular tight-binding lattice consisting/ofows andV columns
(Fig. 4.3). The influence of the leads that are attached to this centrakdeilibe
described by their self-energy, giving rise to a finite-dimensional HamiltoHig
for the device, as discussed in the preceding section. It will be assuraedlth
leads are attached at the left and right edges of the central device sodinaself-
energies only influence sites of the first and last column of the devicec{ddp
gray in the figures). If this would not be the case, self-energy terms auwoduce
an effective hopping between lattice columns that are not nearest oesglaind in
this case the recursive technique cannot be applied: in the example &baveild
have nonzero contributions between columns different froamdn + 1, leading
to much more complicated expressions in Eq. (4.16c).

A wide range of physical quantities of such a system can be written in terms of
the small subset of Green’s function matrices that is depicted in Fig. 4. hdecos
elements of the Green'’s function between the first/last column of the devdangn
intermediate column. The first step towards calculating these consists cdisega
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Figure 4.3: Subset of device Green'’s functions needed for calculatiegphysical
guantities of interest. Leads attached to the central deasie depicted in gray.

the device in isolated columns, and calculating the Green'’s funcifithfor every
isolated column = 1,2, ..., N by doing a direct inversion:

G = | E +in — (i|Heali)| (4.19)

where(i|H.q|i ) is the tight-binding Hamiltonian of columin This step is depicted
in Fig. 4.4(a).

The next step consists of assembling the complete device by gluing together
the columns one by one, as shown in Fig. 4.4(b). Suppose we alreadytheav
Green's functionsz%,, G¥, G of a strip ofn columns connected together. The
superscriptL is added to denote the fact that they only represent a part of the de-
vice (namely a strip of: columns), not the whole device. The Green’s functions
Gly11, Gl andGh,  for asection o + 1 columns can then be derived
by projecting Dyson’s equation [Eqg. (4.15)] between the appropridtevts, in a
similar way to what has been done in the simple example discussed above. We will
only state the end result here:

. 1

GEtnn = [1-G  Vai1n G Vi | G941, (4.20a)
G7LL+1,1 = G7LL+1,n+1 Vitin Gﬁ,p (4.20b)
an—i—l = an Vn,n+1 G7Ll+1,n+1~ (4.20C)

Starting from the leftmost columim = 1 with Gfl = Gifg', one can proceed in this
way through the whole sample and calculate®g, G¥, andGL, for all n. After
connecting the last column, one obtains the Green’s function submatges=
Gn1 andGlLN = (1 connecting the first and last column of the complete device.
These steps complete tisgandardrecursive Green’s function method [31, 52],
and they suffice for describing transport quantities within the LandBu#iker
formalism. Indeed, all leads are connected to the left or right edge ofyttens,
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Figure 4.4: Standard recursive technique. The device is divided irgsdparate
columns (a), and Dyson’s equation is used to glue them tegetid to find the rele-
vant Green'’s functions (b).

and the relation in Eq. (4.7) thus expresses the transmission coefficientsigndae
the Green'’s function&' 1 or G-

Looking back at the Egs. (4.19)-(4.20), one can see that the compaation
erations necessary for obtaining the final Green’s functions are gitbducts or
inversions o2M x 2M matrices, and the total amount of such operations is pro-
portional the lengthV of our system. Since the computational effort for a matrix
product or inversion scales &)/ )3 in the number of floating point operations, the
total numerical effort for the recursive technique scaled/dsV for large systems
(N > 1). In this way, we gain a factor a¥? in efficiency compared to the direct
inversion of the complet@M N) x (2M N) matrix E + in — H.q, which scaled
asM3N3. The price one has to pay for the increased efficiency is that one can
only calculate a smaller subset of Green’s functions (direct inversiamdagive us
Gy forall n,n').

4.3.3 Recursive technique: An extension

We have extended the standard recursive technique in order to obtaitditienal
Green's function& y,, Gnn, Gn1, G1n andG,,, depicted in Fig. 4.3. Having such
functions available will prove to be convenient in the next chapters.

We proceed as follows. After having completed the standard techniqstame
over from the Green'’s functions of the isolated columns, and glue therthtges
we did previously on the basis of Dyson’s equation, but now beginnimy the
right column. This is depicted in Fig. 4.5(a). The Green’s functions weutztke
with every step ar&® | Gt andGZ,. They can be given in terms of tiie

,n+1
Glp1ngr @NAGY,  as:
R isol R 1 Lisol
Gnn = 1-— Gnn Vn,n—i—l Gn+1,n+l Vn+1,n Gnn? (4218.)
GEy = GE Vonn GEy. (4.21¢)

Starting fromG%, = G¥°, one can obtailGE , GF, andGE, for all n =
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Figure 4.5: Extension of the standard recursive technique. The igbledimns are
glued together, but now starting from the righthand sideTag final step consists of
adding these strips of columns to the ones calculated idHg(b).

N —1,N —2,...,1. Again, the superscrip® has been added to denote that these
are Green'’s functions for a subsection of the complete device.

The final step consists of attaching the previously calculated Greercsdnr
G' and G% in pairs, as illustrated in Fig. 4.5(b). One attaches a strip of con-
nected columng to n (with known Green’s functiongZ; andGL,) to the strip
of columnsn + 1 to N (with Green's functionsz ¥ |, andG%,, ), and this
is done for alln = 1,..., N. Again, projection of Dyson’s equation leads to the
relevant mathematical expressions:

-1
Gnl = |:1 - Gﬁn Vn7n+1 G§+1,n+l Vn—&-l,n} Gﬁl? (422&)
Gin = an + G%n Vn,n+1 GnR+1,n+1 Vn—l—l,n Gnns (422b)
-1
Gon = [1 — GE V1 G VM,”} GL (4.22¢)
Gnn = G¥ i1 Vot Gon, (4.22d)
Gon = GunVans1GEL N (4.22¢)

Both these additional steps consist of doing a number of matrix multiplications
and inversions that scales linear M. The numerical computation of the extra
Green’s functions with our extended recursive method thus has the $iigreney
as the standard technique.

Having access to these extra Green’s functions will prove to be veryeeon
nient in the following chapters: it will allow us to obtain quantities like the current
density distribution, and furthermore, certain calculations can be done weigtey
efficiency than with the standard Green’s functigfg; andGy alone.
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Chapter 5

Imaging coherent electron flow
through a quantum point contact

5.1 Introduction

Most people studying electronic transport in mesoscopic systems hanecbee
centrating on global transport properties that can be obtained by gassimrrent
through the sample and measuring the voltage drop between the leadstednnec
to it. Proceeding this way, the mesoscopic systems already had a few isigrpris
phenomena in store: think, e.g., about the universal conductanceatiocis [6],

or the quantized conductance in quantum point contacts [4, 5].

Although most of these transport phenomena are well understood agsjad
even without explicitly referring to (current) density distributions in the deyit
can be interesting to obtain more local information on the flow of electronsghrou
the system. For example, electron states localized at the edges of the sample pla
a prominent role in the explanation of the quantum Hall effect. Neverthedash
local properties of the system remained experimentally unreachableiferadang
time. Only recently have experimentalists succeeded in probing the electnon flo
in a two-dimensional electron gas (2DEG) locally with a scanning probe micro-
scope [14, 15]. In these experiments, the scanning probe tip functioadaeal
scatterer for electrons and a spatial map of electron flow is obtained byirmeas
the conductance decrease of the sample as a function of the tip position.

This technique was originally applied for studying electron flow through a
narrow constriction (point contact) in a high-mobility 2DEG at the interface of
a semiconductor heterostructure, and some interesting (coherere3 @fere ob-
served [14, 15, 53]. From a theoretical point of view, most of the veskeffects
were interpreted using either electron density or semiclassical curresityleal-
culations. However, the relation between these quantities and the meaksesd-o
able, i.e., a conductance decrease, is not clear a priori. Thereftirecanumerical
simulation of the experiment can be very interesting and will be the main topic of
the current chapter. It will result in a deeper understanding of theraed effects,
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and at the same time it will also allow for a convenient way of predicting new
effects, and for giving clear guidelines in studying them experimentally.

Some progress in simulating the scanning probe experiments was already made
in Refs. [54, 55], but the use of rather inefficient numerical techriques rather
stringent limits on the practical applicability to larger systems. In this chapter we
will show that, making full use of our extended recursive technique, neeahble
not only to simulate the experimental results in a very efficient way, but on top
of that a fully quantum mechanical current density distribution in the sample ca
be obtained simultaneously without much extra effort. Doing so, we are able to
reproduce numerically all features of electron flow through a quantunt pontact
that were observed experimentally. Furthermore, a one-to-one compaviih the
calculated current density will make it clear that the scanning probe taghreglly
visualizes current flow through the sample.

Numerical simulations in a high magnetic field will reveal the inadequateness
of the original scanning probe method in visualizing electron flow in this regime.
order to be able to obtain an image of electron flow in a magnetic field, a measure-
ment technique will be proposed in which the probe tip is used to locally measure
the chemical potential. This imaging method can give relevant information about
the current flow through a two-dimensional sample, both in the presemkcalan
sence of a magnetic field.

The chapter will be subdivided as follows. In the next section, the @xpetal
setup and measuring procedure is described in full detail. After this, veestis
the different imaging quantities that we can obtain numerically, and show reyw th
can be calculated efficiently within our numerical framework. Subsequaisttyall
discussion will follow on the experimental parameters of the 2DEG, and an ho
they translate into tight-binding parameters for our model. The main results of
the chapter are found in Sec. 5.5, where visualizations of electron flaughra
quantum point contact are presented.

5.2 Experiment

5.2.1 Setup and measurement procedure

The experimental setup used in Refs. [14, 15] is depicted in Fig. 5.1(a)voA
dimensional electron gas (2DEG), formed at the interface of a GaAs/AdGa
erostructure, is electrically connected to two Ohmic contacts which can ddase
pas a current through the electron gas. Two metallic split gates are at@cheol
of the structure. Applying a negative voltage on these gates results inetidep
of the electron gas underneath them, due to Coulomb repulsion. As suatrtpavn
constriction (quantum point contact) can be formed in the 2DEG for the eteto
flow through, and the width of this constriction can be tuned by varying thag®
on the split gates.

Now suppose the tip of a scanning tunneling microscope (STM) is put &t a ce
tain position above the electron gas. The electrostatic potential resultingafrom

32



(a) AFM cantilever (b)

Ohmic
contacts

Point contact gates

2DEG 6

-1.2 -1.0 -0.8
Vg (Volts)

Figure 5.1: Measurement setup for imaging electron flow through a quargaint
contact (a). The conductance of a point contact quantizedr{tage from Ref. [14].

negative voltage on the tip can deplete a small spot of the 2DEG at the tip ppsition
which can act as a local scatterer for electrons. As a result, the damdecof the
sample will decrease compared to the situation with no tip present. This conduc-
tance decrease will be large when the tip is positioned over a region wiarefa
electrons are flowing since then a lot of electrons can be backscatkdmialit will
be small if there are less electrons flowing underneath the tip. As such,\dggno
the tip across the whole sample and by measuring the conductance ddorease
every single tip position, one can obtain an image of where electrons aredlow
through the sample.

It is obvious that this imaging method is sufficiently general so that it can be
used for a wide range of two-dimensional geometries. Nevertheless, miciment
of this writing, it has only been applied to the quantum point contact (QP@nhge
etry [14, 15, 53]: the experimental results for this system will be predentthe
next section.

5.2.2 Experimental results

When measuring the conductance of the quantum point contact (in thecabsie
the STM tip), it is found to be quantized in stepsXf/h as a function of the
voltage on the split gates, as depicted in Fig. 5.1(b). Conductance qumtira
point contacts is not new: it was already observed almost two decaddd,dsj
and can be fully understood within the Landauéitiixer formalism, as will be
explained next.
The conductance of the sample can be expressed in terms of the transmission
coefficientT” between the sample edges (see Chap. 2):
2e? 2e?

G="T= T;Tn. (5.1)
The point contact creates a quasi-1D channel in the 2DEG, so thatdifidgiscrete
transverse modes with energiest,, can be defined. In Eq. (5.1); has been
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subdivided in transmission probabiliti#s for these individual modes. When the
motion of the electrons is ballistic (i.e., there is no impurity scattering) and the
width of the constriction varies smoothly along the propagating direction, there
will be no scattering between different modes and the coefficiEntsan take only
values of eithed or 1 [56, 57]: T,, = 1 if the Fermi energyEr > FE,, and zero
otherwisé. In this case, the conductance of the point contact is thus proportional
to the number of modes transmitting through it. A larger number of modes can
transmit when the QPC is made wider (since )] will shift to lower values),
which is done by adjusting the voltage on the split gates to less negative .values
Every additional transmitting mode increases the conductanee?gy, according

to Eq. (5.1) and gives rise to a discrete step in the conductance. Sushasgep
clearly visible in Fig. 5.1(b), although they are not as sharp as expectedthe
theory above. This is because the motion of the electrons is never fully bahistic
an experimental situation and because the width of a quantum point coartecitc
change in a perfectly adiabatic manner.

Electron flow images in a QPC obtained with the scanning probe technique
described in the preceding section are shown in Fig. 5.2. In the first pidfue
voltage on the split gates is tuned so that the conductance of the pointtdedac
on the first plateau@ = 2¢2/h). In this case the region of large conductance
decrease, and thus large electron flow, is concentrated in one lobesponding
to electrons in the first mode of the QPC flowing through the constriction. With
two channels transmitting through the QPC [Fig. 5.2(b)], one can see tws tdbe
electron flow. In general, mode will contribute n lobes to the spatial pattern of
electron flow. As such, electron flow shows a modal pattern reflectingffieessht
channels transmitting through the QPC.

AG:0e?/hmmr -1 .7e2/h

Figure 5.2: Electron flow maps obtained with the scanning probe tectmiglhe
amount of channels transmitting through the QPC can bedragiechanging the split
gate voltage. Results are shown for a single channel (a)chaanels (b), and three
channels (c) open for transmission. The QPC contour is texpia gray. The black
strip on both sides of the QPC corresponds to a region wheratwis available:
placing the tip in such a region would pinch off the QPC, mgka conductance
measurement useless. Image from Ref. [53].

The quantum mechanical possibility of tunneling will be neglected here.
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Another striking feature of the flow maps are fringes spaced at half thmiFe
wavelength. These are an interference effect resulting from badKeath scat-
tering between the scanning probe tip and the quantum point contact. As suc
they are remnants of the experimental technique, but nevertheless ehayear
esting features to study: for instance, the fringe spacing is directly retattad
Fermi wavelength and thus to the electron density, so that spatial variafitrs o
spacing can be used to measure the local electron density [58].

At larger distances from the point contact, the flow maps show a quiteisurpr
ing branching behavior, as shown in Fig. 5.3. The branches in this piataraot
just continuations of the different lobes seen in Fig. 5.2. For example, irbR3g
there are multiple branches although it is taken on the first conductancauptste
the QPC with only a single channel open [and thus a single lobe in Fig. 5.2(a)]
Furthermore, existent branches fork into new branches in an irregralaso that
the number of branches increases as one moves further from the goiatt[59].

The source of this branching behavior is disorder in the system: the Coydomb

i o il
I it -“hlil“l‘m“wf

1 um

AG 0.00e%n IS R - (.25

Figure 5.3: Scanning probe map showing branching electron flow at ladpances

from the QPC. Interference fringes are present throughmusample. Only the part
on the left of the QPC is shown in (a), while in (b), the branghibehavior is shown
on both sides of differentQPC. Picture from Ref. [15].
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tential of the donor atoms used to inject carriers in the 2DEG creates a pbtentia
landscape that consists of small dips and bumps. The branches aesulting

from electrons flowing in the valleys of this impurity potential, since the Fermi en-
ergy of the electrons in the experiment was large compared to the heiglasef th
structures. Rather it was proven that they result from multiple small-angteesc

ing events off the bumps and dips in the potential [59-61]. Every bump aradip

be understood to act as a small lens for the electron flow, and a large nofmbe
such lenses can then contribute to the “collimation” of electron flow in bramche
Please note also that all branches remain decorated with the interferamyees f
spaced at half the Fermi wavelength.

5.3 Numerical simulation: Imaging modes

From Figs. 5.2 and 5.3, it is clear that the scanning probe technique feamiafe
visualizations of electrons flowing through the sample. A numerical simulation of
such experiments can therefore be interesting since on one hand it darmdidt-

ter understanding of the physics behind the experimental results, forpéxdy
comparing the measured quantity (a conductance decrease) with difflxesical
observables (e.g., the current density). On the other hand, a rangevafystems
can be simulated which can result in proposals for new effects to be neelasxy
perimentally. In the next sections, a detailed account will be given on thesiom
possibilities that are available within the numerical framework we have pexsen
in the previous three chapters.

5.3.1 Scanning probe used as a local scatterer

Let’s first look at how we can simulate the scanning probe experiment.rinwu
merical calculations, we will consider a device that is discretized onto anigagta
tight-binding lattice ofV columns andV/ rows, as in Fig. 5.4. Two leads (depicted
gray in the figure) are attached to the device at the left and right sideseTeads
have a width ofA/ rows, spanning the whole width of the sample edges. Only
spin-independent processes will be taken into account, so Greewtdius be-
tween columns (lik&7 1) can be represented By x M matrices.

For numerical convenience, the electrostatic influence of the scanrihg pp
on this device will be modeled by a delta-function potentidP at the lattice site
over which the tip is positioned. An image of electron flow is then obtained by
evaluating the conductance decrease of the sample for all possible lagitenm
of the tip. We will refer to this imaging method as the local scatterer method, for
obvious reasons.

Using the Landauer-&tiker formalism, the conductance decrease of the device
under influence of the tip can be written as

2
AG(n,m) = 2% [To — T(n,m)], (5.2)
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Figure 5.4: Tight-binding setup for the local scatterer measuremettrtieue. The

on-site energy of the lattice site under the scanning pripkie increased, resulting in
a local scattering potential. The conductance of the samplbtained by calculating
the current/ through the leads when a bias voltdge — V7, is applied.

whereTy is the transmission coefficient between the leads in the absence of the tip,
andT’(n, m) is the same quantity with the tip positioned over éitem). The trans-
mission coefficients can be expressed in terms of Green’s functionS¢sed.2):

T(n,m) =Tr [CrGni1 T GY,], (5.3)

wherel';,(R) is the broadening function of the left (right) lead [Eq. (4.9)].

For calculating the Green’s functidry, between the leads one could in prin-
ciple proceed as follows. For a certain tip position, one first adds thdsiegu
potentiall’iP to the Hamiltonian of the system and consequently uses the standard
recursive Green’s function method (Sec. 4.3.2) for calculating for this partic-
ular tip location. This would mean that the recursive technique has to bedstarte
over and over again for every single tip position. The numerical eftorsfich a
procedure is quite big: a single recursive step takes a numerical sffalihg as
M?3N (see Sec. 4.3.2), so the complete flow map contaifify sites requires an
effort of M*N2. Nevertheless, this technique has been used in Ref. [54] to study
the modal pattern of electron flow close to the point contact, but the low eitigie
puts severe constraints on the possible lattice size and therefore thewesaltsot
completely satisfactory.

We have found a more efficient way of arranging things. First, all the@se
functions depicted in Fig. 4.3 of Chap. 4 are calculated for the systiémout the
scanning probe tip. These will be depicted with a supers@riggm now on. Next,
for every single tip positiorin, m), the Green'’s functioi x1, taking into account
the tip influence, can be calculated by projecting Dyson’s equation,

G=G"+G°v"g, (5.4)
between columng and1. This leads to
GNl = G?Vl + G?Vn Vrtlfl) (1 - G%n VrtLITFLJ)_l Ggla (55)
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giving G 1 in terms of Green'’s functions for the system without the tip. The point
now is that the calculation of the necessary Green’s functighsvithout the tip
only takes an effort scaling a&/>N with the extended recursive technique pre-
sented in Chap. 4. Furthermore, the evaluation of the conductanceasedre
Eq. (5.2) for all possible tip locations also requires an effort scaling asly/? N
when using Egs. (5.5) and (5.3), as will be commented further upon inmglp&.

As such, one gains a factor 8 N in efficiency compared to the standard method
used in Ref. [54], allowing for larger systems to be studied.

One final note can be made concerning the symmetry of the obtained electron
flow map in the presence of a magnetic field. Since the flow map is essentially
obtained by making two-terminal measurements of current and voltage, itevill b
symmetric with respect to reversal of the magnetic field direction (see Fignd.2 a
the discussion underneath it in Chap. 2).

5.3.2 Scanning probe used as a local voltage probe

The experimental results discussed in Sec. 5.2 already have proveheHatal
scatterer method can give very interesting visualizations of electron flamdghr

a two-dimensional sample. Unfortunately, this imaging technique will not away
yield the expected results when magnetic fields are present, as will be elain
now.

Electrons in a magnetic field describe cyclotron orbits. Upon introducingdbou
aries to the sample, these orbits will lead to a cycloidal motion of the electrons
along the edges of the sample as depicted in Fig. 5.5, at least if the magneiig field
strong enough. Electrons traveling in opposite directions will be locategpo-o
site sample edges, so the overlap of their wavefunctions will be small artdoelec
backscattering will be suppressed as a consequence. Since lisrksgdy the
scanning probe tip (and the resultant conductance decrease) wasithgaridng
principle behind the local scatterer method, it can therefore not giveehbieed
results in a high field regime.

However, it is clear from this picture of edge state transport (Fig. 5.8}, th
every single electron emanating from the left lead enters the edge statgagar

P

Tip

NN

Figure 5.5: Cycloidal motion of electrons along the edges of a 2D sampéestrong
magnetic field. Electrons cannot be backscattered by a smapnobe tip because
paths with opposite propagation direction are well separat
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current to the right and ends up in the right contact, while all electrons gpoin

of the right contact enter the edge states on the opposite side of the sample an
empty in the left contact, precisely because there is no possibility for batté&sc

ing. Therefore, edge states carrying current to the right (left) areunlilerium

with the left (right) contact and one should clearly see different chemuaintials

at opposite edges. As such, a picture of edge-state transport in a tindgid

could be obtained when one is able to locally measure the chemical potential in the
sample.

Measuring the local chemical potential can be done using a scanning {ipob
as a voltage probe: in this case, tunneling of electrons between sample @&d tip
made possible, and a voltage meter is connected to the tip, as in Fig. 5.6. Since this
voltage meter ideally draws no current, every electron tunneling into the tiphas
come out at a later instant and the voltage on the tip will therefore equilibralfe itse
to the local chemical potential in the sample.

Figure 5.6: Tight-binding setup for the voltage probe measurementnigcie. The
voltage on the scanning probe fify, is measured as a function of its position when
tunneling between the tip and the lattice site underneadhide/ed.

The principle behind this technique is not new as it has already beenxzed e
imentally to probe the potential distribution at metal-insulator-metal interfacés [62
or at grain boundaries [63]. Nevertheless, this technique has nbeget applied
experimentally to the study of mesoscopic systems, although some theoretical co
siderations have been put forward in Refs. [64, 65]. Our numetiicailations will
prove it to be an interesting imaging technique even in the mesoscopic regime.

Within our numerical framework, the scanning probe tip in the voltage probe
configuration will be modeled by an extra one-dimensional semiinfite lead attach
to a site of our tight-binding model of our sample. This lead can be thought to
extend in a direction perpendicular to the sample. Now one has three leadisft th
and right lead through which a current is passed, and the STM tip thaunesaes
voltage. For such a multi-lead structure, the currents and voltages thiteeitgads
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are given within the Landaueriiiker formalism (see Chap. 2):
2e?
I, = h Zqu (V}) - ‘/;1)7 (5.6)
q

wherep andq label the leads, and),, are transmission coefficients between the
leads. Using current conservation, combined with the fact that the STMaipsd
no current, one can solve Eq. (5.6) for the voltage measured on the STM tip

Ttip,L
Tiip, 1. + Ttip,r
Our numerical method thus should be able to calculate the transmission caédficie
Tiip,1.(r) from the left and right contact to the STM tip, and this as a function of the
tip position. These coefficients can be expressed as (with the tip &nsite)):

Tipr = Tr[CipGm TGy, (5.82)
Tipr = Tr[DipGunTrRGI ] (5.8b)

Vip— VL = (Ve —V1). (5.7)

I'ip is related to the self-energy of the tip Bg, = i(Xp — E:fip). For a one-
dimensional lead, this self enerdy, is known analytically [2]:

<nm|2tip|nm> - ¢ ei arccos[l—EF/(Qt)] ’ (59)

wheret is the hopping parameter of the tight-binding model, dhdthe Fermi
energy of the electrons.

To obtain the most efficient numerical procedure for evaluating the B@®), (
we calculate first the Green'’s functions without the influence of the tipirfadg
noted by a superscrift in the following), and only then calculate the Green’s
functionsG,,; andG,,n that include the tip influence by using Dyson’s equation
[EqQ. (5.4)]. The potentidl” in Dyson’s equation now corresponds to the self-energy
of the tip: V = V% = Sy, [nm )(nm|. Projection of Dyson’s equation between
the relevant columns eventually gives

G = (1-GY,ViH=1gl,, (5.10a)
Gov = (1-Go, Vi) 1 GOy (5.10b)

The matrix inversion in this expression will boil down to the inversion of a
scalar, becausia@i'ﬁ has only one nonzero element (due to the one-dimensional
model of the tip). Furthermore, calculation of the traces in Egs. (5.8) is also
not computationally expensive sintg, has also only a single nonzero element.
Therefore, the major computational effort for obtaining the chemical tiatenap
comes from the calculation of the Green’s functions without the influendbeof
tip. Scaling asM3 N, the computational procedure is thus as efficient as for the
local scatterer method.

Since this imaging mode corresponds to making a three-terminal measurement,
the map of the local chemical potential will not be invariant under magneticréeld
versal. It is therefore clear that this imaging technique should contribdezetitly
to our understanding of electron flow, compared to the local scatterer chetho

40



5.3.3 Current density in the absence of a tip

Intuitively one expects the local scatterer measurement method to givenation
about the current density in the sample. From a strictly theoretical poirieaf v
however, the correspondence between the measured quantity, i.e ductzote
decrease, and the current density is not a priori clear. Therdfoveuld be useful
to compare the numerical flow map obtained with the local scatterer technique with
a calculation of the current density in one and the same sample, and to sde if an
how they correspond.

Within our numerical framework, we are indeed able to calculate the current
density in the sample, based on expressions that were first presentreédiiet
al. in Refs. [66, 67]. These expressions can be written in terms of the Green
functions that are available with our extended recursive techniquereBlés will
be shortly stated here, while a full derivation can be found in Appendix C.

Equilibrium Current

Without an applied bias, no net current is flowing through the leads. Tdes d
not mean however that the current density distribution is necessarily gersis-
tent currents can be flowing through the device when a magnetic field isntres
In recent papers, an expression for this equilibrium current wasedkef66, 67].
Adapted to our notation, the expression for the charge current flowarg bne
node to a neighboring node reaas kabels the rows of the lattice, the columns):

2¢ (dE
2e [dE

with the matrix elements

A = 2Re<m‘ GunZL — 3L G

m> : (5.12a)

c = 2Re<m+1

(t%l,n)* (Gnn - G;r“m)

m> . (5.12b)

Here, f(F) is the Fermi-Dirac distribution function of the sample, and is
the electronic charge. We have also introduced:

Eln = Vn,n—l Grlljfl,nfl Vn—l,ny (513)

where the matriceé?ﬁfmf1 were defined in Fig. 4.4(b) of Chap. 4. All Green’s
functions in these expressions can be calculated with our extendediveciach-
nique.

The physical validity of these equations can be checked as follows. When
ming the longitudinal vertex currents over the row indiees the total current

through a single column is found to be zef®;, . I(,_1m)—(n,m) = 0 (because
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Tr[Gnn B4 ] = Tr[EL G ] ). As expected there will be no net current through the
leads in an equilibrium situation. Furthermore, when no magnetic field is gresen
all Green’s functions are symmetri€(r,1’, E) = G(r/,r, E'). This will lead to a
vanishing equilibrium current density: in the absence of a magnetic field #ver

no persistent currents.

Nonequilibrium Current

In the nonequilibrium situation, we apply a bias voltage so that the chemical po-
tential of one of the leads is higher than that of the other lead. The cuteasity
distribution in this situation is written as (see Appendix C):

2¢ (dE

I(n—l,m)—>(n,m) = %6 E [fLA — (fL — fR)B}, (5143.)
2e (dE

Itnmy—mm+1) = %e o [fLC - (fL — fR)D}, (5.14b)

with the matrix elementsl andC given in Egs. (5.12), whild3 and D are given
by

B = 2Im <m)Gnnr; G, (sh)f )m> (5.15a)
D = 2Im <m+1 (#,)" Gun T Gl m> (5.15b)
In these expressions, we have defined
0= Va1 GE i Vi, (5.16a)
o= i[z; - (2;)*] (5.16b)

In Egs. (5.14), both the longitudinal and the transverse vertex cuaentsrit-
ten as a sum of two terms. The first one depends only on the Fermi-Dirac dis-
tribution f7, in the left lead, while the second one is dependent on the difference
fr— fr- This has lead the authors of Refs. [66, 67] to name the first term thispers
tent (or equilibrium) current contribution, and the second term the transpoent
(or nonequilibrium) contribution. However, this subdivision cannot bgsptally
relevant: e.g., Eq. (5.14a) can equivalently be written as:

Tty = 5 | 5 [fad = (= f0)(B-4)]. 617

Itis clear that, based on this equation, the division in a transport anidieetscur-

rent density contribution will be different from the one obtained from Gdl4a),

although the total current density remains the same in both cases. Tketéafsr
kind of separation of the current density in a persistent and transaidrtgnnot be
assigned a clear physical meaning as it is not unique.

42



Nevertheless, since persistent currents are antisymmetric with respeogto ma
netic field reversal, one could define a pure “transport” currentijeas the sym-
metric part of the total current density. Since the matrix eleménsnd C' can
be shown to be antisymmetric upon field reversal, this symmetrization procedure
would lead to a unique definition of the transport current [Egs. (5.14a&)%.17)
would give the same result]. Please note that this is different from attribtitang
persistent contribution to the matrix elementsandC' as done in Refs. [66, 67]:
the matrix element® and.D are not purely symmetric upon field reversal and they
can therefore also contain part of the persistent current density. A deiailed
account on issues related to defining transport and persistent cdemsities can
be found in Appendix D.

In the future, when referring to theansportcurrent density, we will always
mean that part of the total current density in Egs. (5.14) that is symmetric vith r
spect to time reversal. Since the flow map obtained from the local scatteresdneth
has the same symmetry, it is this transport current that should be relevant. F
calculating this symmetric part, we only need to consider the energy integrals in
Egs. (5.14) that have the differen¢g — fr in their argument, since the matrix
elementsA andC are asymmetric with respect to time reversal. These integrals
can be linearized for small biases:

/dE (fr — fr) a(E) = —eV a(EFp), (5.18)

with the quantitya in the integrand evaluated at the Fermi energy of the device,
andV = Vi — Vj the voltage difference over the leads. This has the advantage that
one does not need to do a costly numerical integration for obtaining thetans
current density in the linear response regime.

It should be noted that although some semiclassical calculations of thetcurre
density already showed the branching behavior at large distancetifed@PC [15,
61], our fully quantum mechanical calculation will reveal some new (interfee)
features, as we will see in the next sections. Furthermore, the efficanoyr
complete technique will allow for a better comparison between the scannibg pro
maps and the current density.

5.4 Numerical simulation: Device modeling

One of the goals in the current chapter is a comparison of a numerical simulatio
of electron flow through a QPC with the experimental results described irbSec

In order to do so, we have to choose our model parameters as closss#sigto

the relevant experimental parameters. In the next three sections, thisewidrie

for the two-dimensional electron gas (2DEG), the disorder in the systairthan
QPC model.
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5.4.1 Tight-binding parameters for the 2DEG

In Refs. [14, 15], one used a 2DEG at the interface of a GaAs/AlGaferbistruc-
ture with an electron density = 4.5 x 10! cm~2. This density corresponds to a
Fermi energy ofFr = 16 meV and a Fermi wavelength of= = 37 nm. A high
mobility of 1 = 1.0 x 10%cm?V ~!s~! could be reached for the 2DEG by using
a 6-doping technique: carriers are introduced in the 2DEG by putting thentlopa
atoms in a separate layer above the 2DEG. This has the advantage thatatesgp
the donor impurities from the conduction electrons in the gas and thus leads to a
very high mobility: the elastic mean free path corresponding to the mobility above
is l,, = 11 um, which is larger than the region of a few micrometers over which
the probe was scanned. Furthermore, since interference fringeob®erved over
the whole scanning region, the phase coherence length must have tgsgriHan
the system size.

In our calculations, such a system will be discretized on a tight-binding lat-
tice with a lattice constant af = 6.2 nm, corresponding to a hopping parameter
t = h?/(2m*a?) = 14.5meV (the effective mass of GaAsis* = 0.068 m). The
Fermi energy i = 1.1¢, giving a wavelength oAr = 6a, which corresponds
exactly to the experimental parameters above. The lattice consigfs-ef1001
columns andV/ = 351 rows, corresponding to a length @2 xm, and a width of
approximately2.2 yum. In our model, this region is bounded by hard-wall bound-
aries on the top and bottom, while perfect semiinfinite leads are connected to the
left and right edges of the sample. The leads have the same width as the,sample
namelyM = 351 lattice sites.

5.4.2 Introducing disorder

Disorder plays a fundamental role in creating the branching behavideciren
flow and should therefore be considered in our model. In a tight-bindingiHa
tonian, disorder is most often introduced using the Anderson model \\@8th
comes down to distributing the on-site energies randomly in an interV&l +W].
However, electron flow branches could not be observed clearly withdibisder
model because the on-site energies vary on too short a length scale smtizdh
bumps and dips in the potential landscape, which are the driving foréadtite
branching, are not present.

Therefore we have chosen to use a more realistic disorder model. In a two-
dimensional electron gas, there are two main contributions to the disordetipbte
One is due to the Coulomb potential of the donor atoms in the two-dimensional
J-layer above the 2DEG, while the other comes from general impurities in the
crystal structure of the semiconductor materials used for creating the 200Eén
comparing experimental values of the sheet density of the donor atomsy x
102 cm~2) with the bulk density of the impuritiesp(= 1.25 x 10 cm™3), and
taking into account that the donor atoms are positioned quite close to the 2DEG
while the impurities are distributed randomly throughout the whole material, one
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comes to the conclusion that the most significant contribution should come from
the donor atoms. For this reason, only these will be considered in outataas.

The donor atoms will be modeled by point-like positive charges distributed
randomly in a two-dimensional lattice above the 2DEG. The distance between the
electron gas and this impurity lattice was chosen telbe 6a, while only 1% of
the lattice sites was taken to be occupied by a donor atom. Taking into acceunt th
effect of screening, the long-range Coulomb potential felt by the elestiothe
gas was taken to fall off as/r3 (r is the distance from the impurity) [69]. The
parameter: describes the strength of the potential: in our calculations, a value of
a = 9a3t was chosen. The values for the concentration of donors, the distance
d, and the strengtlhx were chosen to give a sufficiently smooth potential with a
mobility of the same order of magnitude as the experimental one: for our disord
configuration we found an elastic mean free path,pf~ 4 x 103a (within the
Born approximation), corresponding to a mobility,ofs 2 x 106 cm?V —1s71).

5.4.3 Quantum point contact model

In principle, one could consider the exact geometry of the split gatesexgeti-
mentally, and solve the Poisson equation self-consistently to calculate théigoten
that electrons in the 2DEG experience [70-72]. However, the expetathenb-
served features are not critically dependent on the exact shapegqfahtum point
contact and therefore such a thorough (and demanding) approacionllé taken
in this thesis. Rather, a simple model approach is found to be sufficient.

A lot of different quantum point contact models have already beenogexpin
the literature (see, e.g., Refs. [73, 74]), some allowing a better fine-taditige
potential shape than others. We propose to use a potential of the form

Vape = W, e@=30/€ (y — y)2, (5.19)

This potential has a parabolic shape in the transverse direction and its width in
creases exponentially along the propagating direction. For védueszy| > &,

the potential will take a value very close to zero and as such it connectdtdynoo

to the flat potential in the semiinfinite leads. The width of the QPC can be tuned
with the parametelV,,, while a larger¢ leads to a smoother (i.e., more adiabatic)
variation of the width along the longitudinal direction. A contour plot of the QPC
potential is shown in Fig. 5.7(a).

In Fig. 5.7(b), we have calculated the conductance of the quantum pint ¢
tact as a function of its width. A fixed value ¢f= 10a is taken and only¥V, is
varied in order to obtain a simple two-dimensional plot, although experimentally
a bigger voltage on the split gates would correspond to increase/Bptmd¢ in
our model. Nevertheless, the quantized steps in the conductance akleatshie,
which means that the chosen values a$ sufficiently large to assure that the width
of the QPC varies smooth enough even for the largest valués,ofThe conduc-
tance steps are not as equally spaced as in the experiment, due to thaiparab
model we are using. At = xq, the parabolic potential has its eigenenergies at
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Figure 5.7: Contour plot of the potential used to model the quantum pocamtact
[€ = 10a and W, = 0.56t] (a). Contours are plotted for energy valuesof=

1,10, 20, 30, . .., 70t, and lengths on the axes are in units of the lattice conatafie
conductance through the QPC is quantized in ste@ebfh [¢ = 10a], as depicted
in (b).

E, = hw(n + 1/2), with w = (2W,/m*)'/2. Then mode becomes available
for transmission whelr > F,,: in terms of our tight-binding parameters, the first
step is therefore expectedlat, ~ 1.1¢, the second altV,, ~ 0.14¢, and the third
one atlV, = 0.05t. Although this model is very simple, we find good agreement
with the position of the steps in Fig. 5.7(b) [the step fr6m= 0to G = 2¢2/h at

W, =~ 1.1t is not shown in the figure].

5.5 Simulation results

5.5.1 Modal pattern close to the QPC

As a first step, we calculated electron flow images at a relatively small déstanc

(=~ 0.5 um) from the quantum point contact. The results are summarized in Fig. 5.8

and should be compared to the experimental ones in Fig. 5.2. The modah ditter

electron flow in this regime is obvious: every time a new mode becomes available

for transmission, an extra lobe of flow appears. Furthermore, this patprasent

both with the local scatterer technique as well as with the voltage probe method.
For the local scatterer method, the interference fringes spaced atén&étmi

wavelength resulting from back-and-forth scattering between the szpprobe

tip and the QPC are also reproduced in the simulation. On the local chemical po-

tential image, a similar interference effect can be seen. This is due to reterée

between paths that emerge from the leads and directly enter the voltags anadb

paths that first pass the probe and only enter it after being backsdatt#érine

point contact. This interference leads to small fringes (with wavelehgif2) in

the image obtained with the voltage probe technique. In the current dengity dis

bution, such interference fringes are of course absent becaysaréhan “artefact”
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Figure 5.8: Maps of electron flow close to the QPC. In (a), a single modenef t
QPC is open for transmissiofi{, = 0.03t), while (b) and (c) show two and three
modes open respectivelyif, = 0.075¢ andW, = 0.56t). Every new mode creates
an extra flow lobe. From top to bottom we show: the local soatteap, the current

density, and the voltage probe map. The Fermi energy coigalepicted as a dotted
white line. The color scale has units 242/ for the local scatterer method, while
the current density is measured in unitRef(Vz — V1) /(ha). For the voltage probe

method, the voltage on the left lead was plit = 0, and voltage was measured in
units of V.

of the scanning probe techniques. Apart from this, there is a cleaioeore corre-
spondence between the scanning probe images and the current diestisiyitibn,

which proves that both probe techniques are able to visualize locahtsiirethe
sample.

When comparing the simulation results for the local scatterer technique with the
experimentally measured flow maps in Fig. 5.2, the agreement is very conyincin
although the magnitude of the conductance decrease in our simulations is smaller
than what is observed experimentally. This discrepancy results fromlmgdiee
tip as a delta function potential whereas it has a finite width in the experiment.

5.5.2 Branching at larger distances from the QPC

At large distances from the point contact, the experiments showed a strileingh-
ing behavior (Fig. 5.3). This feature can also be reproduced with outaiion, as
will be shown next. Please note that all images shown in the subsequéahsec
are taken with a single mode transmitting through the QR £ 0.56¢).
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In Fig 5.9(a), the calculated current density is shown. The electron fkavlg
evolves from a single lobe close to the point contact into multiple branchegat la
distances. The number of branches increases as one moves awahéroaint
contact. Branches are reflected upon hitting the top and bottom sampledjorde
which is a clear indicator for the (quasi)ballistic regime.

Looking closely in the region around such reflection points, an interedfiect e
is taking place: interference fringes directed perpendicular to the bareeisible.
This fringe pattern is due to a crossing of two or more coherent electaemden

o 0.005 0.01 0.015 0.02 >0.025

0 0.004 0.008 0012 0.016 0.984 0988 0992  0.996 1

Figure 5.9: Maps of electron flow through a quantum point contact. Curdemsity
distribution (a), scanning probe conductance map (b), @adréng probe voltage
map (c). Units on the color scales are the same as in Fig. Sh@ FErmi energy
contour is depicted as a dotted white line.
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Figure 5.10: Interference between two crossing Gaussian beams. Thdemgtie of
the interference pattern depends on the angle between #mesbd-ringes are more
closely spaced for an angle of2 (a) than for an angle /4 (b).

Fig. 5.9(a), the interference effect is not limited to the boundaries of timplsa
but indeed seems to occur at every crossing between brancheg. morgensight
in this effect, the current density for a model of two crossing Gaussiambsvith
wavevectork; andks is shown in Fig. 5.10. Interference fringes directed along

k1 — ko can clearly be observed, similar to what is observed in Fig. 5.9(a). Com-

paring Figs. 5.10(a) and 5.10(b), the fringe spacing is seen to depetihe angle

f between the crossing beams: using a simple plane wave model, the wavelength

A of the interference pattern can be shown to depend on this angle as

AR

where|ky || = ||ksa| = 27/ \p.

It should be stressed that in the experiments in Refs. [14, 15], this kiimd of
terference behavior was not studied. The small interference frifgesed in the
experiments resulted from back-and-forth scattering between theisgamobe
tip and the quantum point contact: as such they are an “artefact” of thegisen-
tal technique, and do not show up in a current density calculation. Aleg,itad
a fixed wavelength correspondingXe /2. Although semiclassical calculations of
the current density were able to show the branches of electron flovs115they
were of course unable to visualize interference effects between thehas As
such, the interference pattern between crossing branches in Fig. Sodite aew
observation.

With the scanning probe used as a local scatterer [Fig. 5.9(b)], theH®an
of electron flow can be visualized, as well as their reflections upon sardgése
Even the interference between crossing beams can be observed witkhis|te,
so that in principle this effect could be studied experimentally. There is a@hea
to-one correspondence between the current density in Fig. 5.9(éhefldw map
in Fig. 5.9(b). This proves again that the experimental scanning probeitee is
really able to image the current density in the sample. Furthermore, in Fig),5.9(b
the smaller interference fringes spaced at half the Fermi wavelengtlsandsible
throughout the whole plot [see inset of Fig. 5.9(b)]. As such, all erpmtal fea-
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tures are reproduced with our simulation (we even predicted a new dte)igh
the magnitude of the conductance decrease in our calculations is again $haatdler
what is observed experimentally due to the delta function model for the tip.

The voltage probe technique [Fig. 5.9(c)] gives similar information as the pr
vious plots. In our calculations, the voltage on the left [&ads put equal to zero,
and the right lead is at a positive voltage so that electrons are flowingl&fbno
right. On the left side of the QPC branches appear as regions with iedrealsage
compared to the voltage on the left lead. This corresponds to a decesaital
potential (+ = —eV'!) due to a deficit of electrons resulting from the nonequilib-
rium transport process. On the right, the current flow appears &neegith a
decreased voltage compared to the voltage on the right lead, corrésgpomén
increased chemical potential as there is an excess of electrons due ot
process in this regidn Not only the branching behavior can be visualized with the
voltage probe method, but also the interference pattern between crbsaines
is visible, as well as the smaller interference fringes resulting from badkiarth
scattering between QPC and tip [see inset in Fig. 5.9(c)].

The different interference periodicities in the flow maps can be made more
visible by making a Fourier transformation. Fig. 5.11 shows the results df suc
transformation on columnbkto 400 of the three flow maps. In both maps that are
produced by the scanning probe techniques, a circle centergd,oky,) = (0, 0)
can be seen. It has a radius of approxima%ly: 0.34nm~!, corresponding to a
wavelength\r /2 (remember thahr = 6a = 37 nm in our model). Therefore it
corresponds to the interference fringes that decorate the brametiesesult from
scattering between tip and QPC. Since the branches extend roughly iratiatis,
the circle shape would indeed be expected. This circle is of coursetahdte
Fourier transform of the current density.

On the other hand, in all Fourier transformations, including the one of the cu
rent density, two smaller circles are present. These result from theerdade
between crossing branches. They are centered on the X axis bebaysesult
from a main beam propagating in the X direction, and other beams at differen
angles interfering with it. From Fig. 5.9, it is clear that there is indeed a main
beam of several branches along the X axis, while other branchesas®ng it
after they reflect from the borders. Mathematically speaking,if= +ex and
ko = cos(f)ex +sin(f)ey, then the interference fringes are directed alkipg- ko
and thus make an angle

(5.21)

¢ = arctan [— sinf ]

+1 — cosf

with the X axis. The small circles on the Fourier transform in Fig. 5.11 thereeor
spond in principle to nothing more than a plot2f/(Ael?) in the complex plane,

2In principle, one could compare such picture with water streaming thrauggnstriction at a
waterfall from a high plateau to a lower one: the water level will be deexkasthe higher plateau at
places where water streams, while it will be increased at such placeslowthieplateau since water
is added there.
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Figure 5.11: Fourier transforms of the flow maps without a magnetic fielocal
scatterer method (a), voltage probe method (b), and cudemgity distribution (c).
Wavevectors are in units af/a = 0.16 nm~1, the color scale has arbitrary units.

for all possible values of and with the wavelengtiA of the fringes given in
Eqg. (5.20). Such a plot would indeed reproduce two circles centeratieoiX
axis.

5.5.3 Magnetic field influence

Studying the influence of a magnetic field on the electron flow branches \eeuld
the next natural thing to do. However, the effect of a magnetic field isstigtiag

for the local scatterer technique since backscattering will be stronglyresged,

as explained in Sec. 5.3.2. Therefore, no experimental maps of elecivomfl

the presence of a field are available. Nevertheless, using the scamobegs a
voltage meter, one could in principle obtain flow visualizations in this regime, as
we will see next.

In Fig. 5.12, a moderate field is applied to the sample. The magnitude of the
field is characterized by a cyclotron radfug: = 835a = 5.2 um, which is of the
same order of magnitude as the sample size. The current density plottblabive
branches of electron flow are bending under influence of the field.cihature
radius roughly corresponds 1@, SO we are seeing here the onset of the cycloidal
movement of electrons that was depicted a few pages ago in Fig. 5.5. Astedp
the flow map obtained with the local scatterer method [Fig. 5.12(b)] is quiteamcle
But still, the tendency of the branches to curve is apparent. The voltadpe pr
method, originally proposed to visualize electron flow in magnetic fields, gives
more satisfactory results indeed: the branch bending can be clearlwetisa
Fig. 5.12(c). When comparing this plot with the current density howevey th
do not seem to correspond at first sight. This is due to the different symafe
both plots: the transport current density shown in Fig. 5.12(a) waseatkfmbe
symmetric under reversal of the magnetic field. The voltage probe map dbes n

3The cyclotron radius is the radius of the circular orbit described byeadtectron with velocity
v in a magnetic field3: rc = m*v/(eB).
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Figure 5.12: Maps of electron flow through a quantum point contact when deraie
magnetic field is applied. Transport current density distibn (a), scanning probe
conductance map (b) and scanning probe voltage map (c)s Onithe color scales
are the same as in Fig. 5.8.

have this symmetry, and therefore the results are different a priori. rieless,
when comparing the branches that are present on both plots, they segre¢o
very well. The “asymmetry” of the chemical potential map will be discussed in
some more detail further down.

When the cyclotron radius becomes smaller than the sample size, one enters
the so-called quantum Hall regime, where electrons describe a cycloidamnmo
along the sample edges. In Fig. 5.13, a magnetic field with a cyclotron radius of
roc = 24a = 150nm is applied to the sample, and the skipping orbits are clearly
visible, at least in a plot of the current density. In this regime, the locdtesea
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method completely fails: the flow map in Fig. 5.13(b) shows no structure at all.
Only in the middle of the quantum point contact there is some conductan@adecr
because itis the only region in which electron waves traveling in oppositetiding

are overlapping: only here backscattering by a scanning probe tipsgpms

On the other hand, the results in Fig. 5.13(c) very convincingly show that ¢
clotron orbits can be made visible by using the scanning probe as a volt@ye pr
Again, the asymmetry of this plot looks strange at first sight, but it hasyackear
physical interpretation as will be explained now. Since the magnetic field in our
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Figure 5.13: Maps of electron flow through a quantum point contact wheng hi
magnetic field is applied. Transport current density distion (a), scanning probe
conductance map (b) and scanning probe voltage map (c)s Onithe color scales
are the same as in Fig. 5.8.

53



Ig\/w > >y
- @B
P<pl, + /\/\/\fﬂ_l

Figure 5.14: Electrons describing skipping orbits while moving fromtl&d right
through a constriction. Only in regions where the chemicééptial differs from that
of the leads will such orbits show up in a voltage probe flow map

calculations points out of the plane of the paper, and sifice: Vi, electrons are
flowing as depicted schematically in Fig. 5.14. All electrons flowing at the uppe
left edge emerge from the left reservoir, meaning that this edge shouédtha
same chemical potential;, as the left lead. This means that the voltage measured
on the tip is always equal tb7, at the upper left edge, and we cannot observe
skipping orbit structures here (they are depicted gray in Fig. 5.14) nWheelec-
tron stream reaches the point contact, some electrons are transmittechtit o
continue their way at the upper right edge, while others are reflectedariohue
their path along the lower left edge. The electrons that are transmittedig@ve r
to a chemical potential on the upper right edge that is higher than the one of th
right lead (there are an excess of electrons flowing towards the right leideast
locally in regions where electrons flow. This is picked up by the voltageeaiol
therefore skipping orbits are visible on this edge. Since part of the etestiream
was transmitted towards the right, there are less electrons flowing back tdtthe le
lead (along the lower left edge) than originally emerged from it. This means tha
the chemical potential on the lower left edge will be lower than that of the ledt, le
and so skipping orbits can also be visualized on this edge. This reasopilains
why skipping orbits can be observed at only two of the four edges withdhage
probe technique.

In conclusion, the voltage probe method is able to visualize local electrai tran
port in the high field regime, whereas the original local scatterer method.is no

5.5.4 Double QPC setup

If one looks at the plot of the transport current with a moderate magnelit fie
[Fig. 5.12(a)], one can see that some branches bend upwards, \ilile kend
downwards under influence of the magnetic field. This can be interpretéml-a
lows. In the device, the chemical potential will be somewhere between thia¢ of
left and the right lead. If one assumes that the chemical potential on theddfis
larger than that on the right, theansportcurrent density will have two contribu-
tions: one comes from electrons filling scattering states flowing from left td,rig
the other comes from a deficit of electrons in scattering states going fréntoig
left. This is explained in detail in Appendix D, in Fig. D.2(c). Now, since scaite
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states going in opposite directions bend in opposite ways under influeaceax-
netic field (the direction of the Lorentz force depends on the velocity dimggtio
both up- and downward bending branches are observed.

But this also means that branches curving upwards are emerging freim a d
ferent lead (reservoir) than the ones bending downwards, so thathes with
different chirality should be incoherent. Therefore, an interfergrattern at the
crossing of two branches as discussed in Sec. 5.5.2 (Fig. 5.10), tdanmobe-
tween branches with opposite chirality.

In order to prove this statement, a system of two QPCs placed above each oth
can be considered. Results are shown in Fig. 5.15 for a moderate maggletic fi
(rc = 835a). One can see the interference between beams with the same chirality,
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Figure 5.15: Maps of electron flow through a double quantum point contatt e
moderate magnetic field. Transport current density digtidln (a), scanning probe
conductance map (b) and scanning probe voltage map (c)s Onithe color scales
are the same as in Fig. 5.8.
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but there is no interference at the crossing of two beams with oppositéditghaa

we expected. This distinction becomes clear when comparing the crosaitigs e
cled in Fig. 5.15. To make things more visible, we have smoothed out the interfer
ence fringes in Fig. 5.15(b) resulting from scattering between tip and QRchw
had a wavelength of/2. In Fig. 5.15(c), we symmetrized the voltage probe plot
with respect to the direction of the magnetic field in order to be able to compare it to
the current density. In all plots, the behavior for coherent beamsiogss differ-

ent from that for incoherent branches proving that the differenckdcbe studied
experimentally.

5.6 Conclusions

In recent experiments, a scanning probe technique was used to obtimfoc-
mation about electron flow in a two-dimensional electron gas. The obtainegégmag
are interesting both from an experimental and theoretical point of view.

In this chapter, it was shown that our extended Green’s function tewdrsily
lows for a very efficient numerical simulation of the scanning probe expsats.
One of the aims of such simulations consisted in facilitating the interpretation of the
experiments. In particular, calculations on electron flow through a quaptuint
contact reproduced all features observed experimentally. On top ofabisvere
able to calculate the current density distribution in the sample in a fully quantum
mechanical way. The one-to-one correspondence between the latditgand
a simulation of the experiment proved that the scanning probe techniqualis re
able to image current flow through a two-dimensional sample.

It was further argued that the original scanning probe method camvetle
desired results when a magnetic field is present. To resolve this, anatbertpch-
nique was proposed that allows for a measurement of the local chemteatipb
in the sample. Cyclotron orbits of electrons along the borders of the samytk co
be successfully visualized in the high field regime, which proved the usesfsilof
the technique.

Another new result concerns an interference phenomenon resultingtfre
crossing of coherent beams of electron flow. This effect could bealimd with
both probe techniques, so that in principle an experimental investigatioreof th
effect should be possible in the future. At crossings of incoherearhbethe inter-
ference effect does not take place, and a setup with two point contasisraposed
for distinguishing between crossings of coherent and incoheremseaone and
the same sample.

Our simulation method is sufficiently general, and the information obtained by
the different imaging tools very broad so that it can be used to study etdtbm
in a wide variety of two-dimensional systems, ranging from, e.g., the quanalim H
effect [33] to quantum chaos in electron billiards [75]. Moreover, idtig the
spin degrees of freedom is straightforward: in principle all Greemigtions ex-
pressions shown in this chapter are still valid when spin is included. Thexeliite
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would be that matrix elements of the Green’s function operators beome
spinors themselves (as explained in Chap. 3), leading only to a longer tampu
time. Including spin allows for an even broader range of phenomena toithed:

e.g., we may hope to shed some light on transport in the spin Hall regime [R5-27
which is a heavily debated topic at the moment in which lots of questions remain
to be answered.
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Chapter 6

Noncoherent effects in transport
through a four-contact ring

6.1 Introduction

Quantum coherence in a mesoscopic system can lead to very interesting$ea
its transport properties. This was already beautifully demonstrated in ¢h@ps
chapter, where a wealth of interference effects left their signature icetlcalated
electron flow maps. If one uses the LandauéttiBer formalism to explain such
features, the phase coherence length of the sample is intrinsically assutmed to
infinite. In practice however inelastic scattering events, e.g., phonon crale
electron scattering, are always present and the coherence length sdrtiple is
finite. As a result, all interference effects will be smeared out to sometexten

A modeling of such phase randomizing processes proves to be difficult be
cause it is in general a many-body problem. In principle, the KeldyshrZree
function formalism [76—79] is able to incorporate phase-breaking inierecon
the microscopic level into the transport equations of a device, but the lisrmis
quite tedious and the obtained equations are in general quite sophisticdted so
one looses the overview in the problem pretty fast. However, it wask®r who
proposed that phase-breaking processes can be modeled even vethimttauer-
Buttiker formalism: in his proposal, an extra voltage probe attached to the sample
can act as an inelastic scattering center [80]. Although the model is punely p
nomenological, it can give some insight into the influence of inelastic effdute w
simultaneously keeping hold of the intuitive clearness of the LandautikBr
formalism. Nevertheless, only few papers [81-83] have implemented thegab
and this because of numerical reasons: standard recursive &fanation tech-
nigues are unable to calculate all necessary transmission coefficientsebetive
extra attached voltage probes, so that one has to resort to inefficiecttidirersion
methods for solving the problem.

In this chapter, it will be shown how to treat the regime of weak inelastic scat-
tering very efficiently with a perturbation approach ditBker’s proposal. Within
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this approach all necessary transmission coefficients can be obtainmar lex-
tended recursive technique, resulting in a highly efficient method. Althoug
will only be able to treat phase coherence lengths that are larger thaystieens
size, this is in principle exactly the interesting regime for mesoscopic systems.

Our method will be applied to the study of transport in a ring connected to four
leads. When a magnetic flux pierces through the center of such a ringj, effidet
can be observed that does not rely on the Lorentz force. Insteadinigletely due
to interference between clockwise and counterclockwise propagatihg @a@und
the ring [84, 85]. Therefore, this Hall effect is expected to be washgdlowly
when decreasing the phase coherence length, something we will conttrowr
numerical simulations.

6.2 Modeling inelastic effects

6.2.1 Bittiker’s proposal

As explained in Chap. 2, the LandaueiiBker (LB) formalism is concerned with
systems consisting of a central device connected to leads which are usedto
sure current-voltage relationships, and the formalism can in principle @ngpb
plied when transport in the central device is coherent. Neverthelesigaitie are
connected to large reservoirs with a chemical potential that is assumed tellbe w
defined even in the presence of electronic transport through the déwicesuch
an assumption to be reasonabile it is clear that phase breaking (equilipratien
cesses must be taking place inside the reservoirs because otherwismaniney
have a well-defined equilibrium distribution.

It is this insight that was exploited byiiiker to arrive at the idea that the at-
tachment of an extra lead/reservoir can simulate a phase randomizingpince
the central device [80]. The reasoning behind this goes as followse Eitra lead
does not draw current (we will call this a voltage probe), then foryeeszctron
entering the lead from the sample, another one has to come out. But sirice equ
libration is taking place in the reservoir connected to the extra lead, the electro
injected back into the sample is not coherent with the one that originally left it. So
when an electron is absorbed (and later reemitted) from a voltage probeséis
its phase memory and in this way it is possible to model a single phase breaking
event with a voltage probe.

In practice, phase randomizing processes are distributed througleowhtie
system, and a realistic modeling will therefore involve the attachment of a large
number of extra voltage probes. In Fig. 6.1, a possible model setup is. give
central device is connected to real physical leads that are used torneastent-
voltage characteristics of the sample. They would thus also be presengext an
perimental setup and will be referred toa@mtactsfrom now on (labeled by Latin
lettersm, n, ...). On the other hand, every phase randomizing process can be mod-
eled by the attachment of a singleltage probe as explained previously. The
voltage probes can be thought to extend in a direction perpendicular to the tw
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Figure 6.1: Modeling inelastic processes. Every voltage probe (blbesuabeled
a, A3, ...) models a single inelastic scatterer: after absorptiod (amjection) by one
of them, an electron looses coherence. Transmission frattacty to p goes either
coherently without any scattering (path, or after scattering inelastically a single
(path2) or multiple times (e.g., path).

dimensional sample (see Fig. 6.1) and are labeled by Greek letters. Ehpstar
there for model purposes, and would not be present in a real-lifeiexget.

To describe the outcome of an electrical measurement on this system, an ex-
pression for the currents and voltages through the contacts is neekied, itdo
account effectively the influence of the phase breaking voltage prétme obtain-
ing this relationship, one proceeds as follows. Within the LB formalism, theourr
at voltage prober can be written in terms of transmission coefficients between the
leads [Eq. (2.2)]:

ZTam (Va = Vin) L2 T D Tap(Va — V). (6.1)
e

Since leadv is a voltage probe, one has = 0, so that from the previous equation
one can derive an expression for the voltage

Zm TomVim + Zﬁ;éa Taﬁvﬁ

Vo = A (6.2)
where we have defined
So = ZTM + > Ta (6.3)
y#a
On the other hand, the current through congacan be written as
I,=> Ty (V, - Vy) +ZTpa (V= V). (6.4)

q#p

Inserting Eq. (6.2) forll/,, into this expression, one obtains after some algebraic
manipulation

I, = ZTeff (Vo = Vo) (6.5)
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with

T = T, + Z TPQT‘”" +>° Z < gTﬁq o (6.6)

a Ba B

This is exactly the expression we are looking for. It has the same formedsBth
formula for a system connected to the contacts only. Nevertheless the déthds
voltage probe influence are taken into account by means of the efférethvamis-
sion probabilities. The expression furthermore has a clear physicgbiiatation.
The first term in Eq. (6.6) describes direct transmission from contézicontact
p without entering any voltage probe: it describes the coherent contrbufibe
next term incorporates absorption and reemission from a single voltage pr
and thus describes a single inelastic scattering process. The followingdeerm
scribes two subsequent scattering processes during the transmission to p,
and so on (see also Fig. 6.1).

Now that it has become clear how voltage probes attached to the centic dev
can be used to describe phase randomizing processes in a phenoricahalag,
let's see how this idea can be implemented in a tight-binding description of the
system.

6.2.2 Tight-binding implementation

In our tight-binding calculations, the voltage probes used to simulate inelastic ef
fects will be modeled by a one-dimensional (1D) lead. Every single lattice fite o
the central device is connected to such a 1D voltage probe, so as tolgivecse-
neous distribution of inelastic scattering centers throughout the sampléods s

in Chap. 4, the influence of a lead on the central device can be desbyitzattiing

its self-energy to the on-site energy of the site it is attached to. For a 1Dthesd,
self-energy is known analytically [2]:

Evp _ _tvp 6iarccos[lf(EFfU)/(2t)] ) (67)

In this expressionEr is the Fermi energy of the electrons, anid the hopping
matrix element between sites in the lead, whilgdescribes the hopping element to
the site in the device to which the lead is connected. The paradiaterresponds
to the value of a fixed potential in the lead and can thus be used to shift thenbotto
of its energy band. We will choos€ = Er — 2t, so that the self-energy,,
reduces to

Yop = —ityp. (6.8)
The influence of the leads then would be to add a constant imaginary potential

every site in the device. Such an imaginary potential introduces a finite lifetime in

the device, given by
h

Ty = ,
2typ
which corresponds to the phase relaxation time introduced by the 1D volaigesp
We have control over this lifetime by tuning the hopping elentgnt

(6.9)
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But the approach goes further than just adding an imaginary potential: one
has to solve the complete set of LandauéitiBer equations taking into account
that the current through every voltage probe is zero. This will assatecthirent
conservation is satisfied in the device: no current is lost via the extrad¢izdted
to the sample. Solution of the equations results in expressions for the tsuareh
voltages on the contacts in terms of effective transmission coeffidﬁftsas was
already shown in the preceding section [see Egs. (6.5) and (6.6)]:

T,.T. ToolosT,

ff patag pataBtpBq

Tpeq—qu—i— E g + E E ~gg. + ..., (6.10)
o « o [B#a arf

To complete our discussion on the implementation oftRer’s proposal, the
only thing still missing is a numerical method for calculating the transmission co-
efficients in Eq. (6.10). They can be subdivided in three categories:

(1) transmission coefficient§,, between mutual contacts
(2) transmission coefficients,, (or 7,,) between a contact and a voltage probe
(3) transmission coefficientg, 3 between mutual voltage probes.

Geometrically, we can always arrange our setup so that all contactdarbet at
sites of the first and last column of the tight-binding lattice [compare, e.g., the rin
setups in Figs. 6.2(a) and 6.2(b)]. As such, using Eqg. (4.7) in Chamngmission
coefficients of the first two types can be expressed in terms of Gragm$idns
between the first and last column of the device (type 1), or between th&afits
column and any other site in the device (type 2). This subset of Greaerctidns
is available with the extended recursive technique explained in Chap.weudo
for the calculation of transmittances of the third category, one needssattctse
Green'’s function between every two sites in the tight-binding lattice. Unfattiy
there is no very efficient numerical technique for obtaining these: iniptaone
should resort to a direct inversion of the complete Hamiltonian, which is \a=styyc
for bigger systems. This inefficiency is the reason thitiBer's proposal has not
been implemented numerically very often in the literature: only a one-dimensional
chain [81] and a small two-dimensional Hall cross [82, 83] were studied.

Our idea now is to neglect all terms in Eq. (6.10) involving two or more subse-
quent scattering events by putting the transmission coefficiépisequal to zero
by hand. Such an approximation, in which only the coherent and the siraesin
tic scattering contribution are kept, would be valid only when the phase eater
length is larger than the system size. This is not a big problem since in principle
this is exactly the regime one is interested in when studying mesoscopic systems.
Nevertheless, the “perturbation” approach has one small disadvaotagent con-
servation will be violated since higher order terms in the effective transmissio
efficients are simply truncated. In principle, small currents will be flowingulgh
the voltage probes and are “lost” from the central device. However,ragiane
where only weak inelastic scattering is considered, this error will be nelfgligib
since the hopping element from the sample to the voltage probes will be sneall [se
Eq. (6.9)].
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Figure 6.2: Two setups for a four-contact ring. Interference betwedhgpbetween
lead1 and3 (blue) and those between leadnd4 (red) can give rise to a Hall voltage
differenceVs; — V, when a magnetic flux pierces through the ring. In (a), thedead
are contacted symmetrically so that red and blue paths aiieadgnt in the absence
of magnetic flux and’s — V; = 0 (supposed no disorder is present). For numerical
reasons however, we are forced to use a setup as in (b), witkedls attached at the
left and right edges. In this case, blue and red paths arequdtadent and a voltage
difference between contacisand4 develops even in the absence of a magnetic flux,
so another observable is needed to quantify the Hall effect.

6.3 Transport in a four-contact ring

6.3.1 Hall effect without Lorentz force

In order to apply our phase breaking model, we will consider a foutambming
setup as shown in Fig. 6.2. A magnetic flux is piercing through the center of the
ring, while there is no field through the ring arms. Although there is no Lorentz
force acting on the electrons moving in the arms of such a ring, a speciabkind
Hall effect can still be observed that is completely due to quantum intedere
Indeed, suppose an electron enters the ring throughlledtdcan reach lead
3 by different paths: there is a direct path between lead 1 and lead 8)dyatis
also a trajectory going as — 4 — 2 — 3. These two trajectories will interfere
with each other, and fix the voltage on lead 3 (neglecting paths encirclingntipe r
more than once). The same can be applied to lead 4: again a direct andractind
path are interfering and set the voltage on lead 4. The voltages on lead 3 an
lead 4 are equal when no flux pierces through the ring [at least wheledks
are positioned symmetrically as in Fig. 6.2(a)]. However, when a magneticsflux
applied through the ring center, the time reversal symmetry is broken antdke p
difference between both paths going from 1 to 3 is different from thahi® paths
going from 1 to 4, so that a voltage differenge— 1, can develop. This Hall effect
is closely related to the original Aharonov-Bohm effect [86]: althougtLarentz
force acts on the electrons, they can feel the vector potential creatte blux
tube which changes their phase in a way that is dependent upon their mtveme
direction around the ring.
For a one-dimensional ring, this Hall effect was already describednive sie-
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tail in Ref. [84], while numerical calculations for a simple model were shown in
Ref. [85]. In a subsequent section, we will show numerical resulta foore real-
istic and experimentally realizable four-contact ring, which will indeed aktle
existence of the Hall effect. Furthermore, since the effect is purelyalggantum
interference, one expects it to be washed out when inelastic scattezardra-
duced in the sample. As such, the four-contact ring can serve as ate&irtour
implementation of Bttiker’s proposal.

6.3.2 An expression for the Hall resistance

It should be noted that a nonzero transverse resist&igg; = 2"+ does not
necessarily point to the Hall effect we are interested in. For instance lelads3
and4 are placed asymmetrically, as in Fig. 6.2(b), the path length fraea3 (or

1 — 4 — 2 — 3) is different from the one going fromto4 (or1 — 3 — 2 — 4),

so that a voltage differendg — V, will develop even in the absence of a magnetic
flux. In principle, this is due to the fact that a part of the longitudinal rescsa
is picked up when measurinB;2 34 in a setup as in Fig. 6.2(b). To resolve this
problem, one defines the Hall resistance as

1

Ry = 5(312,34 — R3y12), (6.11)

where we use the common notation

for a measurement where current is supplied through contaetsd /, and the
voltage differencé/,,, — V,, is measured, fixind,, = I, = 0. It was shown
by Bittiker that the Hall resistancRy in Eq. (6.11) is that part of the transverse
resistance that is antisymmetric with respect to time reversal, and is thus zemo wh
there is no magnetic field [36]. As such, this quantity is exactly what we need
to quantify the Hall effect. In principle, this definition is equivalent to definin
the Hall resistivitypy in a macroscopic system as the antisymmetric part of the
resistivity tensorpy = 1/2 (pzy — pyz)-

The four-contact resistancés,; ,,,, defined in Eq. (6.12) can be expressed in
terms of transmission coefficients between the contacts by solving the Lexndau
Buttiker equations of Eg. (6.5). One obtains [36]:

h Tok e — Tek T
2¢2 D ’
whereD is an arbitrary3 x 3 subdeterminant of the matriA relating the currents
through the four contacts to their voltagds Zq ApgVy, c.f. Eq. (6.5)].

It is very important to understand that the Hall resistaRgein a mesoscopic
system will depend both on the geometry of the sample and on the exactuzonfig
ration of impurities, because it is sensitive to interference effects. thdlee posi-
tions of impurities, the lengths of the sections between the contacts and the shap

Rkl,mn = (613)
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of the ring will set the lengths of different interfering paths. As such,rédsailts
will be quantitatively different for different samples, even different imfy con-

figurations suffice. This however, is an integral part of the physicaegoscopic
systems.

6.3.3 Results

In this section, both the Hall resistané&®g; and the longitudinal resistande;, 12

will be calculated for a four-contact ring as depicted in Fig. 6.2(b), ardrtfiu-

ence of inelastic scattering on these quantities will be made clear. The setup of
Fig. 6.2(b) was chosen for numerical reasons: it has the leads attaxcteslleft

and right edge of the sample, so that recursive techniques can bedajgptal-
culate the transmission coefficients. The ring parameters were chosen to mimic
rings that can nowadays be fabricated easily in a two-dimensional elagasoat

the interface of an GaAs-AlGaAs heterostructure. The density of thevgagho-

sen to ben, = 4 x 10" cm2, corresponding to a Fermi wavelength 4sfnm.

The ring has a mean radius @b m, and the width of the arms )0 nm, so that

10 transverse channels are available for conduction. The mobility of theaie

gas is chosen to be = 5 x 10° cm? V—!s7!, giving a mean free path &2 ym
(quasiballistic regime).

In our tight-binding calculations, the lattice constant was chosen to be
6.7 nm, giving a hopping parametee= 72/(2m*a?) = 12.4meV. The parameters
of the electron gas above then correspond to a wavelexgta 6a and a Fermi
energyE; = 1.1t. For the ring, the mean radius correspondsda, while the
ring width is 29a. Elastic scattering was modeled with the Anderson model, in
which the on-site energies in the ring arms are distributed randomly in the interva
[—0.127¢,0.127¢]. Within the Born approximation, this gives a mean free path of
Iy = 780a.

Inelastic scattering processes are modeled by the attachment of extravoltag
probes to every site of the lattice, as explained in the preceding sectioas.oi-h
responding phase coherence length of the sample is givén, by |/ Dty, where
D = 1/2vpl,, is the diffusion constant is the fermi velocity of the electrons)
and the phase relaxation timg was defined in Eq. (6.9): it can be controlled by
tuning the hopping element between the voltage probes and the samples. Doing
so, we have varied the phase coherence length betWgen 6 um andLy = oo,
thereby staying within the range of validity of our perturbative approachis
clearly larger than the system size.

In Fig. 6.3(a), the Hall resistand®y; in such a ring is calculated. The resis-
tance varies periodically with the magnetic flux through its center, and thedperio
corresponds to one fundamental flux quanti;m= h/e. We have sufficed with
showing only one period in the figure. A finite value Bf; is observed for almost
all flux values, showing clearly the existence of a Hall effect. Pleasemdraethat
there is no Lorentz force acting on the electrons since no magnetic fieldsisnpre
in the ring arms. Rather, as explained previously, the effect is due tdugaan-
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Figure 6.3: The Hall resistance (a) and longitudinal resistance (bhéfour-contact
ring for different values of the phase coherence length.

terference. This explanation is supported by the fact that the effecdshed out
slowly as we decrease the phase coherence length of the sample (ctimepsokd
curve with the dotted/dashed ones in the figure).

At zero flux, Ry is equal to zero as it was defined to be antisymmetric with
respect to the magnetic field direction. Because of the periodicity of the resis
tance, this zero value of course repeats whenév@p is integer. The combi-
nation of asymmetry/periodicity furthermore explains wRy should be zero for
half-integer ratios oft/®(: on one hand we havBy (—®¢/2) = Ry (Po/2) be-
cause of periodicity, while antisymmetry leadsRg (—®¢/2) = —Rpu(Po/2), SO
that indeedR (®(/2) = 0.

Turning our attention to the longitudinal resistange; 12 in Fig. 6.3(b), the
well-known Aharonov-Bohm (AB) oscillations can be observed. Thggirmhave a
period of®, since they result from interference between the two paths3 — 2
and1l — 4 — 2 that enclose the ring once. The small bum@d, = 1/2is a
signature of the second harmonic of the AB oscillations, which results frégn-in
ference between two paths that separately encircle the complete ring efloce b
interfering. The influence of inelastic scattering on the longitudinal resistan
twofold. First, the mean value of the resistance will increase becausesvirgtar-
ducing extra scatterers: the resistance curves are shifted upwaedsdebreasing
L. Second, the amplitude of the AB oscillations decreases with decreasieg coh
ence length, because they are the result of interference effects.

Comparing the magnitude of the Hall resistance in Fig. 6.3(a) with that of the
longitudinal resistance fluctuations shown in Fig. 6.3(b), we see that thtbyale
of the same order. Since the experimental study of Aharonov-Bohm disria
is technically well-established nowadays, it should also be feasible to negthsur
Hall resistance in the four-contact ring. The only problem in an expetiaheatup
is the confinement of the magnetic flux to a region inside the ring without any stra
field penetrating the ring arms. In most experiments the magnetic field is treerefor
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Figure 6.4: Hall resistance (a) and longitudinal resistance (b) of the-tontact ring
when a magnetic field is applied across the whole samplés now defined as the
flux through the mean radius of the ring. The effect of inétastattering is shown in
the inset for the two first oscillation periodt; = oo (solid curve) and., = 7.8 um
(dashed curve).

applied across the whole sample. By using rings with narrow arms compatea to
ring diameter, one tries to minimize the effect of the field through the arms.

In Fig. 6.4, we show calculation results for such a case where the magnetic
flux is applied in the whole sample, in order to compare with a realistic experi-
mental setup. The resistances are not anymore strictly periodic with téspghe
flux. Nevertheless quasiperiodic oscillations are visible resulting fronmtgua
interference. Their amplitude will decrease when introducing inelastic soagfte
as shown on the insets of Fig. 6.4. Another effect of the field throughrie a
is the beating pattern that can be observed in the oscillations of both the longitu-
dinal and Hall resistances. It can be explained as follows. Becausatharms
are quite wide, electrons can propagate in different transverse elsahrough the
ring. Their corresponding “classical” trajectories surround slightlyedéht areas,
and thus different fluxes since a magnetic field is present in the ring itsbé. T
periodicity of the oscillations thus varies slightly for every channel, whiculte
in a beating pattern when the contributions from all channels are summed up.

6.4 Conclusions

Incorporating the effect of phase randomizing processes in a phedogeal

way can be done with the attachment of extra voltage probes to sample, an idea
originally proposed by Bttiker [80]. In this chapter, we have described a pertur-
bation approach to this idea that allows for calculating all necessary trasismis
coefficients with our extended recursive technigue. Doing so, ondestalreat
inelastic effects in a numerically very efficient way, which was not possifilan

the original proposal. The approach however consists of neglecting fauitip
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elastic scattering and is therefore only valid in a regime where the phasenobe
length is larger than the system size.

The method was applied to an experimentally realizable ring with four attached
contacts, and a Hall effect was observed which is due to quantum ireleckerather
than an implicit Lorentz force acting on the electrons. For this reason, Sex\ed
Hall effect disappeared when decreasing the phase coherente leng
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Chapter 7

Topological Hall effect

7.1 Introduction

During the last decades, a wide range of Hall effects has appeared litetta-
ture [25, 27, 33]. In the classical Hall effect, discovered more thaenéucy ago,
the Lorentz force resulting from a magnetic fiddd applied perpendicular to a two-
dimensional sample gives rise to an electric fiélg perpendicular to the applied
currentl, through the sample. As a result, a transverse resistivity= E,/j.

can be definedj(. is the current density). The Drude model [87] shows that this
resistivity is linear in the magnetic fielldpxy = RyB., with the Hall coefficient
Ry = %,q (¢ is the charge of the current carriers, the carrier density).

In ferromagnetic systems, an extra contribution to the off-diagonal nggisti
was found: p,, = RoB. + R,M. This anomalous contribution is proportional
to the magnetizatior/, and gives rise to a Hall effect even in the absence of
an externally applied magnetic field. A lot of experimental work was devoted to
this so-called anomalous Hall effect, and resulted in some empirical lawsedor th
coefficientR;. Nevertheless, it took more than sixty years to clear up the origin of
the effect theoretically. Finally, it was agreed upon that the effect isalsjgin-orbit
coupling, which gives rise to two scattering mechanisms, skew scatterir§(B8
and side jump [91, 92], that introduce different preferential scattatiregtions for
spin-up and spin-down particles. As a result, the incoming spin-up parnticlelsl
be scattered towards one edge of the sample, and spin downs to the opdgsite
In a ferromagnet, the spin subbands are unequally populated and thésafigring
imbalance leads to a charge accumulation at opposite edges, creatingvarsans
electrical field and thus explaining the anomalous contribution to the off-dago
resistivity’.

!In high magnetic fields, the linear relation betwegp and B, breaks down: insteagl,,, shows
flat plateaus with quantized resistance values.gt= h/(n2e?) with n integer. This is called the
quantum Hall effect, and was discovered experimentally in the beginiitihg @ighties [33].

2In a normal semiconductor, the same spin-orbit scattering mechaarsmpsesent, and although
in this case there is no net charge accumulation, there will be a spin alstionat opposite edges,
giving rise to the so-called spin Hall effect [25].
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Very recently however, the behavior of the anomalous coeffidignn certain
types of frustrated ferromagnetic systems with noncoplanar magnetic moments,
like some pyrochlore-type compounds [93] or spin glasses [94], wasdfto be in
contradiction with the expectations from the spin-orbit scattering theorgrdar
to explain the anomalous Hall effect in these systems, a mechanism wasguopo
based on the Berry phase [95] an electron acquires when its spin fahewspa-
tially varying magnetization that is present in such materials [96]. Since theteff
can be attributed to the topology of the magnetization texture, the term topological
Hall effect was coined [32].

However, a quantitative comparison between the proposed theory aed-the
periments on, e.g., the pyrochlore compounds proves to be difficult: imiexgas,
both the spin-orbit scattering and the Berry phase mechanism are simulsneo
present, and it is therefore difficult to distinguish between them. Making auc
distinction is further complicated by the fact that quantitative experimental-info
mation on the magnetization texture is not easily available as the magnetization
varies on the microscopic scale in the considered compounds. In REfit[@2s
therefore proposed to study the topological Hall effect in a two-dimeakelec-
tron gas (2DEG). In such a system an artificial magnetization texture cimrbe
duced by the stray field of a lattice of ferromagnetic hanocylinders pldomddahe
2DEG. The advantage of such a setup is that all relevant parameteestekthre
can be controlled to some extent by changing the nanocylinder lattice gepmetry
and that one can concentrate purely on the topological effect sincedptrscat-
tering effects can be made small by choosing a semiconductor material withla sma
spin-orbit coupling constant for creating the 2DEG.

Theoretical studies of the topological Hall effect have mainly concemtrate
the adiabatic regime, where the electron spin aligns perfectly with the localenagn
tization during its movement [32, 96, 97]. On the other hand, only very fepefs
have dealt with the nonadiabatic limit [98, 99], and even less is known d@bheut
transition between the two regimes. In this chapter therefore, we will study the
topological Hall effect in the 2DEG systems mentioned above and we will try to
improve our understanding of the effect in different regimes by meansrogrical
investigations.

The chapter is subdivided as follows. A short introduction to the Beraseh
will be given first. This will aid in understanding the mechanism behind the-topo
logical Hall effect. Next, the topological Hall effect will be studied numalticin
the adiabatic regime, making use of some simple models for the magnetization tex-
ture. Subsequently, a short discussion about adiabaticity criteria foliowsich a
long-standing question about the relevant criterion in the diffusive pramhsegime
is pointed out. An answer to this question will be formulated on the basis of Aumer
ical results dealing with the transition point between the nonadiabatic andcagéidiab
regime for different values of the mean free path in the sample.
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7.2 Berry phase

7.2.1 Generalities

Although geometric phases in quantum physics are quite a young topic,texew
books have already appeared in which the origin and the mathematicaipdescr
tion of such phases, together with their applications, have been discinsdeed

tail [100, 101]. This proves the current high interest in the subject. ignsiction,
only a brief account will be given on the Berry phase, discussing the prain
ciples that are relevant for understanding the topological Hall effedtennext
section. Parts of the discussion will proceed along the lines of what céosuhd

in Refs. [95, 102—-104].

We will start from a general “vector object” that is transported along aetdo
path on a curved surface, as depicted in Fig. 7.1. Even if the vector &loaed
to rotate around the normal to the surface at each point it passes (paaakport),
it will have been rotated over an andlewhen returning to the starting position.
The vector thus does not return to its initial state. This effect is of a puesdy g
metrical/topological origin and is related to the intrinsic curvature of the sairfac
on which the vector is transported. When moving the vector in a plane, oreon th
surface of a cylinder, no such phenomenon will occur.

In principle, quantum states are also described by vectors in a morecibstra
state space. Therefore they can “rotate” in a similar way when they asptraad.
The transport we have in mind now is not necessarily related to a physit@immo
Rather, we are interested in how a particular eigenstgie] ) evolves under influ-
ence of a Hamiltonia#/ [R] when some external paramet®s= (R, Ra,...) on
which the Hamiltonian depends change in tinke:= R(t). In particular, we will
ask how the final state:[R(7")] ) differs from the initial statén[R(0)] ) when the
parameters in the Hamiltonian are carried adiabatically around some closed path
C={R()|t=0—T,R(T) = R(0)} in parameter space. To answer this ques-
tion, one can proceed as follows.

Figure 7.1: Parallel transport of a vector along a closed path on a sphéhen the
vector arrives back at its starting position, it has undeegarotation over an angf&
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For every selR of parameters, we can find the eigenstatg®|) and their
corresponding eigenvalué$,[R| from the time-independent Sdédinger equation

H[R][n[R]) = En[R][n[R]). (7.1)

Afirstimportant point to note here is that this equation only defines the eagtong
In[R]) up to a phase factor. We will assume that a particular choice of this phase
has been made, only requiring that the kefR]) changes smoothly within the
parameter range of interest, and that it is single valued for eRery

Now suppose that the system initially starts in an eigenstate = 0)) =
In[R(t = 0)] ). When the external parametdgt¢) change sufficiently slow com-
pared to typical orbital frequenciesF,, (t), the adiabatic theorem [105] states that
the system will remain in the eigenstdtgR(¢)] ), picking up at most a time-
dependent phase factoAs such, we can write

() = ¢ n[R(D)])
— el dEn(t) Siva(t) In[R(2)]), (7.2)

where in the second equation we have splitted off the usual dynamica facsr
which is a generalization of the phase picked up during the time evolution of an
eigenstate evolving under a time-independent Hamiltonian. Inserting this in the
Schibdinger equation (7.1), one finds for the phagé):

%(” = i(n[R(H)][dn[R(t)]/dt) (7.3a)

= Yn[R@®)]|Vrn[R(@?)]) - ——(1). (7.30)

All this, namely that the dynamical phase is accompanied by a phase
that satisfies Eq. (7.3) was already known since the development of iieatid
theorem, and there is thus nothing new about it. However, it was alwaysnasl
that a gauge transformation can be undertaken so as to redefine tiegblias
basis vector&:[R] ) (remember that this phase was not uniquely defined) in such a
way that the phase factey, (¢) would be eliminated. If this would be possible, this
phase does not have any physical meaning as it would be gauge dapend

It was Berry who realized that such a gauge transformation cannaefireed
globally becausey, (t) will depend on the geometry of the path taken in param-
eter space, and,(t) at a certain time will therefore be different for different
paths [95]. Thusy,, cannot be written as a function 8 alone, and a gauge trans-
formation of the formin[R] ) — " ®)|n[R]) cannot be defined uniquely. In par-
ticular~,(¢) is not single valued under continuation around a circuiR ivolves
along a closed path so thRt(7") = R(0), then~, (T) is not equal toy, (0) and
the difference will depend on the geometrical details of the path taken. fdmsep

3At least when{n[R] ) is nondegenerate for dit, which we will assume here.
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(T could thus in principle easily be observed by setting up an interference ex-
periment between the stategR(t = 0)] ) and|n[R(t = T)]).

A possible “gedanken experiment” illustrating the statements above is the fol-
lowing [95]. A mono-energetic beam of electrons polarized along a madimedtic
B is split at some point in two separate beams. One beam moves along a path
where the magnetic field is kept constant, while the other beam will experéence
field B(t) that slowly rotates around a cone. When the rotating field has returned
to its original direction, the two beams are recombined to interfere. If the spin
follows adiabatically the field direction, then according to the theory aboee, th
second beam will pick up an extra phaggcompared to the first one. This phase
differencey,, can be modified by altering the geometry of the path that is followed
by the magnetic field: in this example this could be realized by changing the angle
6 of the cone. Doing so, the interference between both beams can be mddulate
between constructive and destructive, and the geometrical phaseircquidciple
be visualized.

So it is the phase that is picked up when the external parameters describe a
closed path that can be attributed a clear physical meaning and is calledrtlie Be
phase. This phase can be written as

D) =0 =0 = [ (7.4

_ / dt% (n[R(1)] | VRn[R(®)]) (7.4b)

— i aR - (lRE) | TrnlRO))  (7.40)

where the last integration is along the closed loop in parameter space. yidieghh
significance of this phase can be made more clear by writitg) as

m(C) = iy{dR-An(R) (7.5)

= //SdS VxAn( (7.6)

An(R) = i(n[R][Vrn[R]). (7.7)

with the “vector potential”

In Eq. (7.6), Stokes theoréhhas been used to write the path integral in terms
of an integral over the surfac&: bounded by the patfi. Although the vector
potentialA,, (R) is not gauge invariant and therefore not an observable quantity, the
Berry phase is. Indeed, consider a general gauge transfornatios e®)|n)

“4Stokes theorem should be suitably generalized when the vBa®not three-dimensional. This
is possible using the language of differential geometry [101].
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changing the phases of the basis vectors. This will chavge— A, 4+ iV¢, but
sinceVV¢ = 0, the Berry phase,, (C) stays invariant under such a transformation.

Looking back at Egs. (7.4), the Berry phase depends only on the ggoafe
the closed patt that is traversed bR (¢) in parameter space. It is therefore called
a geometrical phase. On the other hand, the dynamical phase [see BYig(7
dependent upon the rate at which the path in parameter space is compidtddisa
gives us information about the time evolution of the system. Roughly spedking,
dynamical phase results from a local rotation of the state vector, while titg Be
phase is analogous to a rotation due to parallel transport.

Several restrictions on the state§R | ) were made in deriving the Berry phase.
Since the original paper by Berry, most of them have been looseneddeggn-
erate basis states were treated in Ref. [106], while in Ref. [107] it wasrskhat
even during a nonadiabatic evolution a geometrical phase will be picked up.

7.2.2 A simple example

The classic example illustrating Berry’s phase is that of an electron at itje or
subjected to a magnetic fieB(¢) of constant magnitude but changing direction,
as depicted in Fig. 7.2.

Figure 7.2: Electron in a time-dependent magnetic field. When the fieldrnitess a
closed trajectory along the surface of a sphere, the eleetilbpick up a Berry phase.
The Hamiltonian for this problem is given by
H=—-¢gB(t) o, (7.8)

with o the vector of Pauli spin matrices, agda coupling constant. In this case,
the external parameteR(¢) on which the Hamiltonian depends are the spherical
angles describing the direction of the time-dependent fRI@) = [6(t), #(t)].

The electron spin will follow the field direction adiabatically whenever

ws/w > 1, (7.9)

wherews = eB/m™* is the spin precession frequency, ands the rotation fre-
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quency of the magnetic fielB(¢)°. The state of the electron is then given by the
spin-up spinor with respect B(¢):

0 —i¢
cosz € ) (7.10)

-0
Sln§

nslo.0]) — (
To calculate the Berry phase picked up when the magnetic field follows alclose
path, we need the quantiy x (n,|Vn, ). Expressing the gradient operator in
spherical coordinates, we find

. 1

= Werv
wherer is the radial component of the magnetic field, @nds a unit vector in this
direction. Using Eq. (7.4c), one finds for the Berry phase

1 /1
The integral is over the area on the sphere swept o8 oythe course of its closed
path, sadS = r2dQ e,, and hence

o) = -1 /dQ _ Lo (7.13)
2 2

So the net geometric phase picked up by the electron will be half of the sajid an

) subtended by the path the magnetic field followed on the sphere. In tha-deriv

tion, it was implicitly assumed that the magnetic field rotates clockwise. For a

counterclockwise rotation, the Berry phase will just change its sign. breared

result is very simple, but the physics behind it will in principle suffice fodem

standing the physical origin of the topological Hall effect.

7.3 Topological Hall effect
7.3.1 Theory

When an electron moves in a two-dimensional electron gas which is subjected to
spatially varying magnetization, it will follow the local magnetization direction adi-
abatically when the magnetization is strong enough. In its rest frame, theoalectr
will thus see a time-dependent magnetic field and, as explained in the simple ex-
ample above, will pick up a Berry phase that depends on the solid andknsigiol

by the magnetization direction as the electron follows its path. As we will see next,
the effect of this Berry phase can be mapped onto that of an effectigretia flux
applied perpendicular to the sample. By means of this mapping, it is clear then tha
the spatially varying magnetization and its related Berry phase can induck a Ha

SA derivation of this expression can be found in any textbook of quantwohamics, e.g., in
Ref. [105].
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effect, which was termed topological Hall effect [32] as it dependssale the
topology of the magnetization texture in the sample and does not rely explicitly on
spin-orbit coupling nor on any real magnetic flux piercing through the &mp

We will consider the following Hamiltonian:

h2

2m*
The first term describes the kinetic energy of the electron in the 2DEGH its
effective mass), while the second is the exchange splitting induced bytiallspa
varying magnetizatio?I(r). We will assume the magnitude of the magneti-
zation to be constant, while its direction is position depend®fifr) = Mn(r),
with n(r) a unit vector in the magnetization direction. For our numerical purposes,
we need the tight-binding equivalent of this Hamiltonian (see Chap. 3):

H=—tY > lia)(jo| —gM > Y lia)oas 0 {if, (7.15)
a,B

(i) @ g

H=—-—V?—gM()-o. (7.14)

wherei, j label the lattice sitesy, 3 are spin indices; is the hopping amplitude
between neighboring sites, amg = n(r;). We can define a basis sgf, +)}

of states at sité with their spin parallel (+) or antiparallel (-) with respect to the
magnetization direction at that site:

0i ,—ig; _ainbi
|¢,+>=<C°S2‘Zi >; |z',—>=( Py’ ) (7.16)

in i 0 ig;
Sln2 COS26 ?

where (6;, ¢;) are the spherical angles of the local magnetization direatipn
Defining the operators

Py = Z]z‘,i)(i,i\, (7.17)

which project on the subspace spanned by the spin-up (-down) saasising
Py + P_ =1, one can write

H = (m + 73,) M (m + 73,) (7.18)
— PHP4 + P_HP, + Py HP_ + P_HP_. (7.19)

When the exchange splittiny = 2¢g M is large enough, the spin-up state with
respect to the local magnetization direction will be energetically so favothate
spin-flip transitions will be absent. In this adiabatic regime, the electron spin will
thus follow exactly the local magnetization direction as the electron moves throug
the 2DEG, so that we can confine ourselves to the subspace spanspthiup
states and neglect all other terms in Eq. (7.19). Doing so, one finds ectidf
Hamiltonian governing the dynamics in the perfectly adiabatic regime [96, 108]
(see Appendix F for a detailed derivation):

HM = PLHPL == i, +) (4, +] — gM, (7.20)
(4.4)
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Figure 7.3: Mapping of an electron moving in a magnetic texture to a ggmklectron
moving around a flux tube distribution. The gray color of tlegtices on the right
picture stand for a change in hopping amplitude, while theves denote a change in
hopping phase at the respective vertices.

with

0. .
tfjﬁ = tcos% e, (7.22)

As such, we have mapped the original problem to a free electron like tighirgin
Hamiltonian, with renormalized hopping parameters between nearest nesghbo
The magnitude of the hopping parameter is decreased depending on ké;ang
between the magnetization direction at sitasd;. But more importantly for us, a
phase factoe is picked up, which describes the effect of the Berry phase. Let’s
see how this can be understood.

Suppose an electron makes a closed trajectory around a lattice cell adepic
in Fig. 7.3. Since its spin follows adiabatically the local magnetization direction,
the electron will pick up a Berry phase that is equal to half the solid anglab-
tended by the magnetization directions at the four corners of the cell. Ortitbe o
hand, when a magnetic fluk = Ba? would pierce through the same lattice cell,
an electron moving around it would acquire a phas@/®, (Py = h/e is the
magnetic flux quantum). So in principle, the effect of the Berry phase gioke
around a lattice cell is equivalent to that of a magnetic #x, = /4 piercing
through this cell.

This analogy becomes more clear when looking back at the Peierls method we
used for describing such a flux tube: the hopping parameters in the coltaplie
were changed as

ti; — temie/RfAAL (7.22)

in which A describes the vector potential generated by the flux tube. Comparing
with Eq. (7.21), we see that thg; can be generated by the same vector poteatial
describing flux tubes with values &f/®, = Q/(4x) piercing through the lattice
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cells:
J
Yij = —e/h/A-dl. (7.23)

So for expressing the ;, one can proceed as follows. One calculates the solid angle
subtended by the magnetization directions at the corners of every single tatic

and translates this into a flux tube distribution with fluge&b, = 2/(47). Subse-
quently, one describes this flux tube arrangement in terms of a vectottipbt&n

and calculates the phasgg with Eq. (7.23). As such, the;; are uniquely defined
once we have made a choice of gauge for the vector poteftildscribing the flux
tubes. For example, for describing the effect of a single flux tube, oulel cnake a
choice of gauge foA such that the hopping phase on all the vertices above the flux
tube change as — texp (i27®/®g) = texp (i2/2) (see Fig. 7.3). This would
correspond to the same gauge we used in Sec. 3.1.2 for describing indloe0og
magnetic fields.

In summary, the Hamiltonian for an electron moving in a magnetization texture
can be mapped onto a Hamiltonian of spinless electrons moving in an inhomoge-
neous magnetic flux distribution. The former will be referred to as the magnetiz
tion model, while the latter will be called the flux model. In the flux model, the
value of the effective magnetic flux through a lattice cell is givenbhyp, = %,
where ) is the solid angle subtended by the magnetization directions at the four
corners of the lattice cell. Also, the magnitude of the hopping parameteradiepe
on the angle between the magnetization directions. By means of this mapping it
should be clear now that the magnetization texture can indeed give rise tib a Ha
effect. Since the effective flux is given by a solid angle, it is obviousttatopo-
logical Hall effect can be nonzero only for noncoplanar textures.

7.3.2 Afirst example

The existence of the topological Hall effect will now be illustrated with a fevdeio
calculations in a four-terminal geometry as depicted in Fig. 7.4. The quantigrun

30 020082008 02
1e|ele o]
—Q+— 0@ 00—
lele|e]e|
P—0 0—0—a

l1© te|efe|e] ©4

D 20— 00

Figure 7.4: Four-terminal setup for calculating the Hall resistadtige. A magneti-
zation texture is fitted in the central device, while in thads, the magnetization is
pointing out of the plane of the paper.
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Figure 7.5: Basic unit cells for the magnetization texture used in theexical cal-
culations. The magnetization direction at every site isdakd by an arrow. Mag-
netization is projected onto the plane of the paper: a loagew stands for a longer
projection. The textures in (a,c) have a nonzero net chyrald give therefore rise
to a topological Hall effect. The textures in (b,d) only diffslightly from (a,c), but
they have a zero net chirality and give no topological Hd8efat all. The larger unit
cells (c,d) are obtained by scaling up the smaller ones.

consideration is the Hall resistanég; as it was defined in the preceding chapter
[see the discussion around Eq. (6.11); = 1/2 (R12,314 — R34,12). To stress the
importance of topology in the observed Hall effect, results will be showrtvio
magnetization textures that are at first sight similarly looking, but which wik gi
completely different results. Some details about these magnetization texiillres w
now be given first.

We start from the magnetization textures shown in Figs. 7.5(a)/(b). Theanagn
tization has constant magnitude, but changes its direction according tatesar
drawn on every lattice site. In Fig. 7.5(a), the solid angle subtended by the ma
netization directions is equal t@ = +x for every single lattice cell, while in
Fig. 7.5(b) it is©2 = 4+ for one half of the lattice cells and = — for the other
half [the sign of the solid angle depends on the rotation direction of the field: it
is positive (negative) for a counterclockwise (clockwise) rotationdnsiating this
into the flux model, we would have corresponding fluxe® p®, = +1/4 through
single lattice cells. In Fig. 7.5(a), all fluxes have the same sign and would@mdd
to a net total flux oft®, through the complete magnetization texture. On the other
hand, the opposite fluxes in Fig. 7.5(b) would cancel each other exactlgige a
net flux of zero. One says that the structure of Fig. 7.5(a) has a roobhgality,
while in Fig. 7.5(b) the chirality is zero. In the first case, one would expeutt
Hall effect, while the second one gives no Hall effect at all. By this simgdeson-
ing, itis clear that the topology of the magnetization texture is of prime importance.
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We can scale up the magnetization textures of Figs. 7.5(a)/(b) by introducing
extra lattice sites in between the original sites, and by interpolating the direction
of the magnetization at these new sites between those of the original ones. Fo
example, scaling up the magnetization textures in Figs. 7.5(a)/(b) once nhoise fi
the textures depicted in Figs. 7.5(c)/(d). Since the magnetization now varres mo
slowly from site to site, the solid angle subtended by a single cell of the lattide, an
thus the corresponding effective flux piercing through, is smaller. Tsealing
procedure can be repeated a number of times: every time we scale up the cell,
will comprise four times the original number of sites, so that the average dux p
lattice cell will be decreased by a factor of four. It should be noted thiabagh
the effective flux per lattice cell for the original magnetization texture is hanog
neously distributed (exacthy, /4 per lattice cell), this is not longer the case for the
textures found by scaling up the first one.

The calculations in this section will be done withlé x 16 cell found by
scaling up the magnetic textures in Figs. 7.5(a)/(b) two times. We will consider
a square geometry as in Fig. 7.4 consistingg®fx 65 sites, in which 16 such
magnetization cells are fitted. The four attached leads have a width of 3(ssitkes,
the magnetic field in these leads is completely fixed, pointing out of the plane of
the paper. Results for the Hall resistari¢g as a function of the energy above the
bottom of the spin-up subband are shown in Fig. 7.6. The exchange spliting
chosento bé\ = 2gM = 100t in order to make sure we are in the adiabatic regime
(see also next section). When the magnetization cell with nonzero chiradity¢dl
from Fig. 7.5(a)] is used, a nonzefRy; is clearly observed in Fig. 7.6. In fact, one
can clearly see the integer quantum Hall effect with its well-defined platataus
Ry = h/(e?*n) for integern [33]. This regime could be expected: mapping the

T T T T T T T T T T
1.0 —e— chiral texture .
—e— nonchiral texture

0.0

00 02 04 06 08 10 12 14 16 18 20
Energy (t)

Figure 7.6: Hall resistance as a function of energy above the bottomesgin-up
subband. Only the chiral magnetization texture gives a eaniall effect.
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magnetization texture onto flux tubes would give an average flux/éf, = 1/64

per lattice cell, leading to a cyclotron radiug = 10a (for Er = t) which is
smaller than the system size. On the other hand, for the magnetization distribution
derived from Fig. 7.5(b), no Hall effect is observed in Fig. 7.6 asetqd.

When we did the mapping onto the flux model, we found perfect overlapping
with the magnetization model results presented in Fig. 7.6. It can be claimed that
this perfect overlap does not come as a surprise because in the qudaltuegime
the Hall resistance is quantized into exact plateaus. However, by usinetizy
tion textures that are scaled up more than two times one can reduce theveffecti
magnetic fluxes to values outside the quantum Hall regime. Even in such ealcula
tions, the overlap between the magnetization and the flux model was found to be
always exact within our numerical accuracy. Nevertheless, the maihipdirat a
Hall effect can be observed that is due to the electron adiabatically folipavaer-
tain magnetization structure, and which does not invoke any real magnetiwoiiu
any form of spin-orbit coupling. This point is clearly demonstrated by #seilts
in Fig. 7.6.

7.4 Transition between nonadiabatic and adiabatic regime

7.4.1 Adiabaticity criteria

For the topological Hall effect to appeatr, the electron spin should foliateti-
cally the local magnetization direction. Itis intuitively clear that this happerewh
the exchange splitting is large enough, in which case spin-flip transitiorenare
getically unfavorable. In this section, we will quantify what is meant with ‘¢arg
enough”.

For an electron placed at rest in a time dependent magnetic field, as in&a¢. 7
the adiabaticity criterion yields, /w > 1, with ws the spin precession frequency
andw the rotation frequency of the magnetic field. For the topological Hall effect,
it is the electron that moves through a spatially varying magnetic structureeso th
rotation frequencw should be replaced by the inverse of a time sealeat quan-
tifies how fast the electron “sees” the magnetization change upon its movement
through the structure. When no disorder is present in the system, it istbbgar
this time scaler is given byr = £/vp, with vy the Fermi velocity of the electron,
and¢ a characteristic distance over which the magnetization changes its direction
substantially (e.g., by an angi§. The adiabaticity criterion in the ballistic regime

thus yields

~ wsé

Q= o
When introducing disorder in the system, it is clear that this criterion is still

valid as long as the mean free pdthis larger thart. However, when going to

the strongly diffusive regimé,, < &, two different time scales appear in the

literature and there is still a discussion going on about the relevant oe114].

Intuitively, one might expect that the relevant time scale would now be the time the

> 1. (7.24)
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electron needs to diffuse over a distagicee., the Thouless tim&n = (£/1,,)? 7.
This was put forward by Loss and coworkers [109, 110], and leatise criterion

o m (7.25)
3
Sincel,,/¢ < 1 in the diffusive regime, this criterion tells us that adiabaticity is
reached faster in a strongly disordered system compared to the ballistiarahig
is therefore referred to as the “optimistic criterion” in the literature. On therothe
hand, analytical calculations by Stern [111] have found that the relévaa scale
is the elastic scattering time= 7,,,, leading to a more pessimistic criterion

0> (7.26)

Im

These criteria were derived while studying Berry phase interfereffieet®in
(ring) structures that are subjected to a spatially varying magnetic field p@$e
simistic criterion predicts the need for experimentally unrealizable large magnetic
fields to observe such effects, while the optimistic criterion would allow fohsuc
an experiment given a sufficiently disordered system. Unfortunatelypapar of
van Langeret al. the pessimistic criterion was confirmed by a semiclassical anal-
ysis [112], and later numerically by Pogp al.[113]. In subsequent sections, we
will have a closer look at the transition point between the adiabatic and rmenad
batic regimes for our problem of the topological Hall effect, and try to Swde
more light on the discussion.

7.4.2 Calculation of the Hall resistivity

To resolve the issue of finding the correct adiabaticity criterion in the difus
regime, one could think of calculating the Hall resistaritg as a function of
the adiabaticity parameté) and compare the rate at which the adiabatic regime
is reached for samples with different mean free paths. However, thdéalan
Buttiker formalism we use for calculating describes a phase coherent (meso-
scopic) system, and all properties of such system are heavily depanuanthe
exact placement of impurities throughout the system. This means that thesHall r
sistanceR; will be different for different disorder configurations, even wheeyth
are characterized by the same mean free path. Although such resistarioa-fl
tions are an integral part of the physics of mesoscopic systems [6], thiey ana
guantitative comparison aky between samples with different mean free paths
useless: the results will depend on the particular choice of disordegooation
in every sample.

We would like to compare properties of a macroscopic system, i.e., a system
with a finite phase coherence length in which such fluctuations are absemnto+
ing so, one can introduce some kind of (phase) averaging over diffdisorder
configurations to find a description of the transport properties in termsnafco-
scopic material constant, like the Hall resistivity. Some care should be taken in
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defining such an averaging procedure: e.g., just calculating the mathdraséca
ageRy = + S| Ry, of the Hall resistanceR}, found for N different impurity
configurations does not give a quantity that is directly related to the Hadlingty

pu Of a macroscopic system. We have developed an averaging procechac dn
the idea that a macroscopic systein>$ L) can be thought to consist of smaller
phase coherent sections of sizex L,. For every smaller section, we can use the
Landauer-Bittiker formalism to derive its transport properties, and the properties of
a macroscopic system can then be found by attaching such sections ioheremat
way. Since a more detailed discussion on our particular averaging precadd
the corresponding Hall resistivily; is rather technical, it is given in Appendix G
at the end of this thesis.

7.4.3 Results

In this section, plots for the Hall resistivifyy will be shown as a function of the
adiabaticity parametep = w;¢ /v for different values of the mean free paify:
can be changed by tuning the exchange splittingincefiws = A. This will allow
us to determine whether the adiabatic regime is reached faster or slowensesthe
free path is decreased, and thus whether the optimistic [Eq. (7.26)ftesbethe
pessimistic criterion [Eq. (7.25)] is the correct one.

The starting point for obtainingy; with the procedure described in Appendix G
is the structure that was shown in Fig. 7.4: a square regiodbof 65 sites is
connected to leads with a width of 30 sites. The magnetization texture in thesquar
region is now obtained by scaling up the unit cell in Fig. 7.5(a) three timemgyiv
us a magnetization structure®f x 64 sites. For this particular texture, the shortest
distance over which the magnetization rotates by an angge ~ 22 sites. The
magnetization now varies slowly enough so that the effective magnetic flux the
electrons see when hopping through the lattice lies far outside the quantim Ha
regime. In the leads, the magnetization is chosen to be perpendicular to tke plan
of the leads (pointing out of the plane of the paper), and is kept coribtanighout.

For a given mean free path, 500 different impurity configurations aredgka-
erated. Subsequently, 4900 structures as in Fig. 7.4, with impurity coafigos
chosen randomly from these 500, are wired togetherif a 70 array using the
wiring scheme in Fig. G.2 of Appendix G, and the Hall resistivity is calculated
with the averaging procedure described there. It was made sure tlcatithéated
value ofpy; converged in the sense that it does not change by either choosing more
than 500 impurity configurations, nor by attaching more than 4900 sections.

Results for the quasiballistic regindg > £ are shown in Fig. 7.7. For both
mean free pathg, = 64a andl,,, = 32a the adiabatic limit is reached simultane-
ously for a value ofY = 20: from this point on, the resistivity stays constant upon
increasing? further. This is in good agreement with the criteri@ns- 1 expected
in this regime of parameters [Eq. (7.24)]. It can further be seen thatdibéatic
value ofpy =~ 5 x 1073h/e? is practically independent of the mean free path. We
furthermore checked numerically that this value is the same as the one tHdt wou
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Figure 7.7: Hall resistivity as a function of the adiabaticity paramepefor mean free
path valueg,,, > £. The adiabatic limit is reached whén>> 1.

be obtained by mapping the magnetization model to the effective magnetic flux
model (defined in Sec. 7.3.1).

In the nonadiabatic limit, the Hall resistivity does not increase smoothly with
increasing the exchange splitting. Rathey, stays almost zero for smajl and an
abrupt transition takes place arou@d~ 20 which corresponds to the exchange
splitting A equaling the Fermi energyez = 1t above the bottom of the spin-up
subband in our calculations). So the adiabatic limit is reached on a shtetasca
soon as the spin-down subband lies above the Fermi energy.

The diffusive regimel(, < &) is studied in Fig. 7.8(a). Generally speaking,
the same behavior as before can be observed: an abrupt transitisnplake
around@ = 20 after which the Hall resistivity takes again the same valuerpf:

5 x 1073h/e? independent of the mean free path. However, looking closer at the
transition point, one can clearly see that the adiabatic limit is reached more slowly
for the mean free path, = 9a: py first overshoots its adiabatic value, and then
slowly converges to it. This difference is made clear in Fig. 7.8(b), wherelot-

ted the difference between the Hall resistivity and the adiabatic value it reaches
(so that all curves converge @, for mean free pathls, = 9a, 12a, andl6a. In this
figure, there is a clear tendency of slower convergence upon daugehe mean
free path. This speaks in favor of the pessimistic adiabaticity criterion. Adthou
for our limited range of parameters the two adiabaticity criteria do not diffgr ve
much quantitatively, namel§) > 0.45 versus@ > 2 for [,,, = 9a, the optimistic
criterion would predict the opposite behavior.
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Figure 7.8: Hall resistivity as a function of the adiabaticity paramefefor values
of the mean free path in the diffusive regime. In (b) the radi6 < @ < 250 is
zoomed in upon. The curves in this plot are shifted so thegatverge to zero:

Apr(Q) = pu(Q) — pu(Q — 00).

7.5 Conclusions

In this chapter, we have shown numerical calculations confirming the eséstdn

a fully topological Hall effect, that is due to the Berry phase an electrokspip
when moving adiabatically in a noncoplanar magnetization texture. In the adia-
batic regime, the governing Hamiltonian can be mapped onto a model of spinless
electrons moving in a magnetic flux. Both models indeed give the same numeri-
cal results for the Hall resistance/resistivity. A closer look at the transjtant
between the nonadiabatic and adiabatic regime revealed a rather abngjitana
upon increasing the exchange splitting. The transition takes place araupdith
where the spin-down subband becomes depopulated. Furthermoreraale to

find confirmation for the pessimistic adiabaticity criterion in Ref. [111] by logkin

at the transition point for different mean free paths in the strongly difeussgime.

In this regime, a special method for phase averaging was introducedttorgyrid

of conductance fluctuations, which enabled us to describe the tramsppdrties

of a large systeml( > L) in terms of a Hall resistivity.
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Chapter 8

Conclusions

The study of mesoscopic systems, although it is still a relatively young toggc, h
already evolved into a major branch of condensed matter physics. It isthmth
sheer interest in the amazing quantum properties of such systems, amdgpeqb

of future technological applications, that has nucleated a large amotimarfet-
ical and experimental research. In this thesis, we have tried to contribtitésto
fast growing field by developing and implementing a numerical approactder or
to model transport in two-dimensional mesoscopic devices in general. Within o
numerical framework, we are able to describe different system geométritude
multiple leads connected to the sample, and take into account the influence-of mag
netic fields. Moreover, we can include the electronic spin degreeseifdrms, i.e.,
we can describe correctly the influence of exchange fields and dpinitterac-
tions. Furthermore, by extending existing numerical techniques, we vidzd@
obtain a very efficient method that gives access to a wealth of physicaipiwet
guantities. As such, we have a general purpose tool at our handathaeaised to
attack a wide variety of mesoscopic transport questions.

As a first application, the numerical code has shown its capabilities by aiding
in the interpretation of a recent series of scanning probe experimentkjdh the
conductance decrease of a sample as a function of the position of theojyertiip
can give local information about the coherent flow of electrons thrahglsam-
ple. We have been able to simulate such experiments in a very efficient mey, a
obtained a striking agreement with the experimental flow maps. In particuar, th
division of the flow in several branches after leaving a narrow cotisini¢essen-
tially a disorder effect) could be reproduced, as well as an interferefiect due
to scattering between tip and constriction. By comparing the obtained simulation
images with a plot of the calculated current density in the sample, we have been
able to show that the experiment indeed probes the current flow throagly$h
tem. In order to image electron flow in the presence of high magnetic fields, a
different scanning probe setup had to be proposed, which allowéaticyt orbits
of the electrons to be visualized clearly. The new flow maps gave a diffeiem
on electron transport through the sample, as evidenced by the asymmétey of
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images with respect to magnetic field reversal, contrary to the symmetric picture
obtained with the original method. At the end of the chapter, quantum cuteere

of the electron flow through a 2DEG has been beautifully illustrated by thereds

tion of interference fringes at crossings between coherent eleatand) an effect

that has not yet been observed experimentally.

In a subsequent chapter, we have seen how our numerical method fdlows
modeling inelastic scattering events in a mesoscopic sample. This was done by
attaching extra artificial leads to the sample, where each lead effectivelglsnad
single inelastic scattering center. Although this phenomenological modellwas a
ready known for some time, it was not very satisfying from a practicaltpaiin
view. However, we have shown that a perturbation approach to the alrigio-
posal allows for an efficient implementation within our numerical framewohks T
implementation was tested on a ring system, in which a special interferenak base
Hall effect was seen to disappear with increasing the inelastic scatteramgytr

In the last chapter, we have studied the motion of electrons in a noncoplanar
magnetic texture. When the electron spin follows adiabatically the local magneti-
zation direction while moving through the sample, the Berry phase picked up by
the electron leads to a Hall effect, even in the absence of a net magnetic #ay
form of spin-orbit coupling. We have investigated this so-called topolbéied
effect in a few simple magnetization textures. In the adiabatic regime, thergover
ing Hamiltonian can be mapped onto a model of spinless electrons moving in a
magnetic flux. Numerical evaluation of both models indeed gave the same numer-
ical results for the Hall resistance/resistivity. Furthermore, a detaileg stithe
transition point between the nonadiabatic and adiabatic regimes made it clear tha
the criterion to reach adiabaticity is more stringent as the disorder in the system
increases.

As one can see, we were able to tackle quite distinct problems. This gen-
eral applicability of our method opens up the way for several new projacts
the future. For example, we did not yet make use of the possibility to introduce
spin-orbit coupling in our calculations. One interesting topic in this respebeis
spin Hall effect [25—-27], which states that a longitudinal unpolarizedeci can
give rise to a transverse pure spin current in the presence of dgincoupling.

This topic is quite controversial nowadays, and several questions réma@an-
swered [114]. For example, since spin is not a conserved quantity syierorbit
coupling is present, a spin current cannot be defined on the basisoofmalincon-
tinuity equation, and the definition of spin current itself is therefore undaxy
debate [115, 116]. We could think of doing a scanning probe imagingiexest,
measuring the change of Hall resistance when a magnetic tip is scanneth@ver
surface. This conductance change is well defined, and the obtaimechfip might
lead to some insight into the understanding of spin currents.

On the other hand, the topological Hall effect should be studied in more de-
tail in the nonadiabatic regime, in order to check that the Hall resistanceasese
proportional to the third power of the spin splitting, something that was obtained
within perturbation theory recently [98]. Similarly, one might check what tfig-in
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ence of inelastic scattering is on the adiabaticity criterion. Maybe this can lead to
more optimistic criterion, so that the fully adiabatic regime might be easier to reach
in an experiment than believed up to now. In every case, the amount afiation

that can be obtained from calculations with our numerical method, and tletywar

of systems that can be studied with it look promising for the future.
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Zusammenfassung

Die Phasenkdirenz der Ladungsiger ist verantwortlichifr einzigartige Trans-
porteigenschaften in mesoskopischen Systemen. Dies macht mesos&dpysch
steme interessaniif die Grundlagenforschung und gibt ihnenigaerhinaus eine
mogliche Zukunft in nanoelektronischen Anwendungen.

In der vorliegenden Arbeit wird eine numerische Methode implementiert um
die Eigenschaften zweidimensionaler mesoskopischer Systeme zu uhérddie-
se Methode erlaubt die Berechnung \édtiger Transporteigenschaften, einschlief3-
lich einer kompletten Beschreibung der Ladungs- und Spin-Freiheitsgsagl er-
weist sich deshalb als wertvollf die Untersuchungen in der mesoskopischen Phy-
sik. Dies wird anhand von drei unterschiedlichen Problemen verankciia auf
die diese numerische Methode angewandt wird.

Erstens erriaglicht die Methode eine effiziente Simulation neuer Rastertun-
nelmikroskopieexperimente, in denen der &mnte Elektronenfluss durch eine
zweidimensionale Probe sichtbar gemacht wird. Bei diesen Experimenteieir
Erhdhung des Probenwiderstandes in Ahbigkeit von der Spitzenposition ge-
messen. Passieren Elektronen eine schmale Engstelle, spaltet sich ddtuSgo
in verschieder\ste auf - was auch eperimentell nachgewiesen wurde. Es wird der
Einfluss eines Magnetfeldes auf digsste untersucht und die Formierung von Zy-
klotronumlaufbahnen an den Probenkanten visualisiert, jedoch nudewxckin
neuer Messaufbau vorgeschlagen wurdeiibarhinaus &nnen vieléltige Interfe-
renzplanomene beobachtet werden, die diedeinte Natur der Elektronen veran-
schaulichen.

Zweitens erlaubt das numerische Verfahren eir@mpmenologische Modellie-
rung phasenbrechender Streuzentren im System. Beispielhaft wed Banfluss
auf die Transporteigenschaften eines Vierkontaktringdgnuntersucht.

Drittens verursacht der Transport von Elektronen durch eine nmblakare
magnetische Textur einen Hall-Effekt, und dies sogar in Abwesenheit Mateo-
Lorentz-Kraft und ohne Béicksichtigung der Spin-Bahnkopplung. Dieser Hall-
Effekt kann auf die Berry-Phase figkgefihrt werden, die von den Elektronen auf-
genommen wird wenn ihre Spins der lokalen Magnetisierungsrichtung foligen
dieser Arbeit wird mittels eines einfachen Modells der magnetischen Textohso
der adiabatische Grenzfall als auch sein nicht-adiabatisches Gégehshandelt,
einschlieRlich des Effektes der Unordnung. Mit der UntersuchundJtdéesgangs
zwischen beiden Regimen wird zu einer fortlaufenden Diskussioiidheh des
relevanten Adiabatizitskriteriums im diffusiven Grenzfall Stellung genommen.
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Appendix A

Tight-binding model for the
spin-orbit coupling Hamiltonian

In this Appendix, technical details can be found concerning the denivafia tight-
binding Hamiltonian describing spin-orbit coupling. We will discuss the spiito
Hamiltonian for an ideal two-dimensional system, as well as the Rashbaipin-o
Hamiltonian for electrons in a quantum well that are only effectively codfioe
move in a plane.

A.1 Strictly two-dimensional system

In a perfect 2D system, the electrostatic potentiabn electron feels depends
only on the coordinateér, y) and the spin-orbit Hamiltonian was given by [c.f.
Eq. (3.19)]

Hso= Ao” [Gaz + eA“”) Oy — (?ay + eAy> axv} . (A1)

For deriving the tight-binding model, we will calculate the action of this Hamil-
tonian on a spinor wavefunction = (¢,v,) in a point(na, ma) of the tight-
binding lattice. Sinced?Y = 0 in the gauge we defined in Sec. 3.1.2, we have
only three terms to be considered in Eq. (A.1). In order to obtain the tightdgnd
model, the following approximations are madg,{, = v¢(na, ma)):

0 1 1
[% (@;V ¢)_ . ~ % ([ayv]m—»n+l,m Ynt1m — [8yV]an71,m ¢n1,m>
0 | 1
[8_3/ (&rv @Z})— - ~ % ([81V]n,m<—>m+1 Qpn,mﬂ - [amv]n,mHmfl ¢n,m1>
] 1
[Ax 6ZIV w_ nm ~ 5 <Aﬁ<—>n+1,m[8yv]”‘—>"+1,m wn—&—l,m +

+ Afu—m—lym [ayv}m—mfl,m d}nl,m> . (A2)
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These equations need to be commented upon: in general, there arentliffays of
discretizing an operator, but one should make sure that the result indhe jgimys-
ically reasonable. This means, e.g., that the obtained tight-binding Hamiltonian
should be hermitian and should have the same symmetry properties as the origina
Hamiltonian. The equations above, although looking a bit arbitrary in the begin
ning, are chosen so as to satisfy such conditions. For example, to retaiiticiey
it is necessary to evaluate the derivatives of the potehtiah the vertices instead
of the nodes in the first two equations [the vertex betweem:) and(n + 1, m) is
written as(n < n + 1, m)]. On the other hand, in Eq. (3.11) of Sec. 3.1.2 we have
defined the vector potential® only on the vertices, so that the approximation in
the last equation of Egs. (A.2) is also necessary.

With these approximations, and using the gauge defined in Eq. (3.11) pf &ha
one finds for the action of the Hamiltonidihsp in Eq. (A.1):

(n,m|Hsolv) = [Hso¥],, m
iR .
*I—Uz {[ayv]aniLm (1 F 27 Z (I)nyl/q)O) Unt1m —
+

2a
I<m

Q

— [0V nmeomE1 Ynmt1 } (A.3)

When the fluxes through the different lattice cells are small, we can further a
proximate

(1 +i2r Z @n,l/é()) ~ exp [i 27 Z @n,l/%} . (A.4)

l<m I<m

Combining the equations (A.3) and (A.4), one can read off immediately the matrix
elements of the tight-binding spin-orbit Hamiltonian by looking at the coefficients
in front of the termsy),,/,,,». One finds the following tight-binding representation:

2a

n,m

HSO = 5 Z {[8xv]n,m<—>m+l (na m><nv m + 1’ ® ioz) (A'5)

Py
— [0V nent1,m exp [— i2m Z F(;l] (n, m)(n+1,m|® igz> + H.C.}.

l<m

The derivatives of the potential on the vertices in this expression caeflied as

1|1 1
[ayv]m_erl,m ~ % |:§ <Vn,m+1 + Vn+1,m+1> - 5 (Vn,m—l + Vn—i—l,m—l):l

1 |1
[awv]n7m<—>m+1 ~ |:_ (VnJrl,m + Vn+1,m+1) -

1
% |2 (anl,m + an,m+1):|

2
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It should be noted that by making the particular choice (A.2) it is made sure
that if a vector potential is present, the phase an electron picks up wipgmigo
is the same as the one obtained in Sec. 3.1.2, reassuring us that the EparéA.2
physically reasonable and consistent.

A.2 Rashba spin-orbit coupling

The Rashba Hamiltonian is given by [c.f. Eg. (3.22)]
Hrso= % (Pyo® — Pyo¥), (A.6)

The tight-binding representation for this Hamiltonian is obtained by making the
approximations

[axw]mm _ wn—i—l,mz_ wn—l,m (A7a)
a
o Q;Z)n,erl B @bn,mfl

[0y, = 5a : (A.7h)
We then find

es z
<nam|HRSO‘¢> = _1% [O- <wn,m+1 - 77Z)n,mfl) —ad¥ (T;Z)n+1,m - wnfl,m)]

_% A oY (A.8)

In this expression, we used tha¥ = 0 in our gauge (defined in Sec. 3.1.2). The
problem now arising again is that the vector potenti@lis defined on the vertices
between the sites, and not on the nodes. We solve this by approximating

x 1 T x
Anmwn,m ~ 5 |:An<—>n+1,m 1/’n+17m + An71<—>n,m wn—l,m] . (Ag)

By now using Eq. (3.11) for the vectorpotential, and Eqg. (A.4) , one obtain
finally the tight-binding representation for the Rashba Hamiltonian:

Hrso = _tSOZ { exp I:— 127 Z (I)n,l/(I)0:| (!n,m)(n -+ l,m] ® iay>

l<m

—(|n,m><n,m+1|®iom> + H.c} (A.10)

where we definedso = a/2a. By proceeding as in Eq. (A.9), it is made sure
the phase an electron picks up when hopping is the same as the one obtained in
Sec. 3.1.2, giving again a consistent result.
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Appendix B

Surface Green'’s function of a
semiinfinite lead

For the calculation of the self-energies of the semiinfinite leads, it is negdssa
evaluate the surface Green’s function of the isolated lead, i.e., the Gfaantion
between points in the first column of the lead that attaches to the central device
The technigue we are using for obtaining this Green’s function was @rstetl in
Ref. [51]. We will briefly explain this method now, following closely the dissios
in Ref. [117].

Formally, the total retarded Green’s function matgixof an isolated lead is
given by the inverse of the matrix:

g=[E+in—H] ", (B.1)

where H; is the Hamiltonian matrix of the lead. Since the leads connected to the
sample in the Landaueri®iker formalism are considered to be perfect conductors,
i.e., they are translationally invariant, the matrix representatidi ¢fin — H; can

be written in the following block tridiagonal form:

d -A 0 0
-B D —-A 0

Et+ip—m=| 0 B D -4 | (B.2)

0 -B D

whered, D, A andB are all2M x 2M matrices {/ is the width of the lead, while
the factor2 comes from spin). The matrik represents a single isolated column
of sites in the lead, while the matrices and B describe the hopping between
neighboring columns. The matrikis equal toD, but it represents the column at
the surface of the lead and is therefore given a separate notation.

By partitioning the total Green’s function matrixin a similar manner i2 M x
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2M submatrices, one can write Eqg. (B.1) as follows:

d -A 0 0 - gu g12 913 -
-B D -A 0 - 921 922 923 924
0O -B D -A -- S| 93t 932 93 g | g (B.3)

0 -B D . Qa2 Qa3 Gua

The subdivision corresponds to the division of the lead in columps:is the
Green's function matrix between lattice sites of the first column of the lead,
connects lattice sites from the second to the first column, and so on (seelFig.
Chap. 4). The surface Green’s function that we are interested in igtheis by

g11-
By calculating the first column of the matrix product in Eq. (B.3), one obtains

the following (infinite) set of equations faf 1 :

dginn =1+ Ago, (B.4a)
Dgy = Bgp-11+Agpt11, Yp=2. (B.4b)
So, in order to calculate the surface Green’s functign one would need to know
all matricesg,; with p > 2. Now, by using Eq. (B.4b), one can express the Green’s

functionsg,; with even indicep = 2r (r = 1,2,...), as a function of Green’s
functions with odd indices:

gor1 =D 'Bgs, 11+ D 'Agai11 (B.5)

Inserting this into Egs. (B.4), one can obtgin as a function of only the,; with
p odd:

(d — AD_lB) gil1 = 1+ (AD_lA) 931,
(D—AD'B—BD 'A) gor41,1 = (BD'B) gar—11 + (AD ' 4) gori31
Comparing these equations with Eqgs. (B.4), one can see that they hatly &xa
same form if we define the renormalized matrices:
d =d— AD™'B,
D'=D—-AD'B—-BD 4,
A= AD7'A,
B' = BD'B,
Goy = gor—11, T=2,3,....

As such, we can iterate the previous procedure on the renormalizeticeguaver
and over again.
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The physical meaning of this procedure is the following: originally, onedook
at the lead as a stacking of layers, where each layer is originally compbsed
single column. After the first iteration, the lead is seen as a stacking of layers
composed of two columns, with renormalized interaction matri¢eand B’ be-
tween neighboring layers. With each iteration, the number of columns fraghwh
a layer is composed of is doubled. After iterationone will find an equation of
the following form for the surface Green'’s function:

dngii =1+ Ang2n411. (B.8)

After a sufficiently large numben of iterations, the effective interactioa,, be-
tween the layers will become considerably small and the surface Gregwesdn
can be approximated by:

g ~d, " (B.9)

As such, one has an iterative procedure for calculating the surfasnGifunc-
tions of the leads. Their self-energies can then be calculated with Eq) @.13
Chap. 4.
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Appendix C

Derivation of the current density
expressions

In this Appendix, expressions for the vertex currents of a tight-bindittgcdain
terms of Green’s functions will be derived in detail. Such expressions Vst
given in Ref. [118] for a simple one-dimensional model. In Refs. [66, BWs
approach was generalized to two dimensions. Parts of the following terwaill
therefore follow closely the discussions found in these referencely. t:spin-
degenerate case will be treated.

At certain stages, we will need to use some notions from the Keldysh formalism
for nonequilibrium processes [76, 119]. Since a thorough introdutticghis for-
malism would be out of the scope of this thesis, we will suffice by just “impotting
the necessary equations and making them plausible with a small discusslbn. Fu
details of the Keldysh method can be found in some review papers, like[Réfs.

79] and in the book by Kadanoff and Baym [76].

C.1 Current operator

Consider a sitdm,n) of the tight-binding lattice, as depicted in Fig. C.1. Since
particle currents result from a difference in electrons flowing in oppaodigetions
through the vertex, one expects the current operators to have thédeerfrig. C.1)

Jg o~ E Apg c;mcqm — E Apg c;,mcqm, (C.1a)
p=n psn—1
gsn—1 qzn
Jg o~ g By c;rgmcqm - E By, c;gmcqn” (C.1b)
pzn+l psn
qsn gzn+l
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Figure C.1: Patrticle currents through the vertices of a tight-bindiattjde.

t t

Jv o~ Y Cpgclytng — Ciq ChpCngs (C.2a)
pzm+1 psm
gsm gzm+1

Jyr o~ g D,q c;rlpcnq— E Dy, chcnq, (C.2b)
p=2m p<m—1
g<m—1 gzm

where thech andc,,, are creation and annihilation operators for an electron at
site (m, n). Expressions for the coefficients,q, By, ... can be found through the
continuity equation

0 Cizmcnm

ot

with chcnm the operator counting the number of particles at(iten). Evaluating
the time derivative by using the Liouville equation

Jo — Jg + Jyr — Jy = (C.3)

A chme 1
Zommtnm [T
9 o [Cnmcnm, H] , (C.49)
whereH is the tight-binding Hamiltonian of the system [Eq. (3.2) of Chap. 3], one
obtains

T
aCnmcnm - 1 T t o *
= 7\ %n—1m CnmCn—1m — ( n—lm) Cp—1mCnm

ot ih
+ (tfzm)* CImen—i-lm - tim CIL+1mcnm

) :
=+ (t%m) CjzmcnmﬂLl - t%m Cnm+1Cnm

+ t%m—l Cjzmcnmfl - (tvgim—l)* CILm—lcnm}‘ (C5)
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Comparing with the Egs. (C.1) and (C.2) one finds the following expres$iwns
the particle current operators:

1 L

Jit = ot hanntm = (1) €1 Com | (C.6a)
1 *

v = o chonirom = ()" chinom1 | (C.6b)

and similar equations fafy andJy.

C.2 Green’s function expression for the currents

The vertex currents can now be calculated by evaluating the operatagageover
the available states:

I(nfl,m)ﬂ(n,m) = _26<JH>7 (C7)
I(n,m)—»(n,m—i—l) = _26<JV>- (C8)

In these expressions we have multiplied with the electronic charg® obtain a
charge current (instead of the particle current). The feztakes into account the
spin degeneracy: we will only consider spin-degenerate systems fsanom.

The connection with the Green’s function formalism now arises becagse av
ages of the form{clmcn/m/) are related to the so-called “less-than” Green’s func-
tion G<(t, t):

G<

n'm’ nm (t/7 t) = %<c;rlm (t)Cn/m/ (t/)>' (C9)

This is a nonequilibrium Green'’s function, different from the retardediadvanced
Green'’s functions defined in Chap. 4. More details about it can bealfouane of
the references on the Keldysh formalism given above. We will suffice \with the
definition given in Eq. (C.9). In steady stat&;~ only depends on the difference
T =t —t', and one can Fourier transfoi@t into the energy domain. This gives a
relation of the form

i 1 —iET
G i (T) = £ () enras (0)) = o — /dE G (E) € /R (C.10)

Since the creation and annihilation operators in Egs. (C.6) act at the satiauet ins
in time (i.e.,7 = 0), one finds for the vertex currents

2e (dFE *
I(n—l,m)—>(n,m) = E % [ti—lm szflm,nm - ( fz—lm) Grfm,nflm}v
2e (dFE "
I(n,m)—>(n,m+1) = E E [tryzm Grfm,nm—&—l - (t%m) szm—&-l,nm]?
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with all Green’s functions in this expression in the energy domain. Fromdfie d
nition (C.9), itis clear thatG > ) =-G5 so that one can write

—2e (dE . .

In—1m)—(nm) = —— §2Re[( n—1m) Gim,nqm}v (C.11)
—2e (dE .

Inm)—(nmt1) = - §2Re[(f%m) GT<Lm+1,nm:|' (C.12)

In the following, we will see how these equations can be expressed in tétms o
retarded and advanced Green'’s functions calculated in Chap. 4.

C.2.1 Longitudinal current

Consider a system as shown in Fig. C.2. We will use the same notation as in
Chap. 4: O,,, is a submatrix of the operat@?, with elements{m|O,,,/|m’) =
(n,m|O|n',m”). For example, the hopping matri%, ,,_; describes hopping from
columnn — 1 to columnn, and has elementsn|V,, ,—1|m’) = t=_,, dpmm in OUr

n—1lm

tight-binding description [see Eq. (3.2) in Chap. 3]. Singe 1, = Vntn_l, one
can write from Eqg. (C.11)
—2e [dFE <
In 1 my—(nm) = — / = Re<m‘ G Vi m> : (C.13)

Now, for obtaining an equation expressiag: in retarded and advanced Green'’s
functions, one proceeds as follows. The device is split into three utenbpparts,
as shown in Fig. C.2: a single columnis uncoupled from the parts to its left and
right. The relation between Green’s function operators of the uncolgylsgm
and those of the coupled system is given in terms of a Dyson’s equatiorthé-o
lesser-than Green'’s function, this equation looks like [76]

G< =g+ GVg< + GV, (C.14)

whereV describes the hopping between the three subsystems. Green’s function
operators denoted by a capital are for the coupled system, while thosteedday

a small letter are for the uncoupled systethandg are retarded Green’s function
operators, as defined in Chap. 4. Projecting this Dyson’s equation éet@imns

n andn — 1, and multiplying withV;,_; ,, one finds

< _ < < T
Gn,n_lvn—l,n - Gnnvn,n—lgn_lm_lvn—l,n + GnnVTLW—lgn—l,n—an—lyn'

(C.15)
We will define
St = Vine10n 1 -1 Va1, (C.16)
25” = Vn,n+19:+1,n+1vn+1,n7 (C.17)
Y = Vin-19n-10-1Vo-1m, (C.18)
Yn = Vant19nt1m+1Vatin: (C.19)
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Figure C.2: Green’s functions for the evaluation of the vertex currents

These expressions can be interpreted as being self-energies iestrdanfluence
of the part of the device to the left (supersciipor right (superscript) of column
n. With these definitions, Eq. (C.15) becomes

Crnt Vi = Gun 5t + Gy (24)] (C.20)

n,n—1

Now, we need to resort to three equations that can only be fully unddrstoo
within the Keldysh formalism.
The first one
S = ify gy TU, (C.21)

with
i) = 1{251(7") _ (ggy))q (C.22)

describes that the left (right) part of the device, decoupled from colwmvill be
in thermodynamic equilibrium with the left (right) reservojfz[ R) is the Fermi-
Dirac distribution in the left (right) reservoir].

The second one is a kinetic equation describing the injection and extraction of
carriers from the leads

Gin = G’nn [E7<L7l + ZE’T] Gim
= if,Gunl Gl +ifRGun "G
= ifr,Gnn [Th + T0]GY, —i(fr — fR) GunlL G, (C.23)

The third equation is a generally valid relation
Gun — Gl = —1Gpp [T + 0] G, (C.24)
that can be used to write Eq. (C.23) as
Grn = —fL[Gun = Gl] —i(f1 = fr) GunT .Gl (C.25)
Finally, substituting Egs. (C.21) and (C.25) in Eq. (C.20) gives

Gin,lvn,l,n = _fL [Gnnzln - GIm(Eﬁl)w - i(fL - fR) [GnnF;GILn (E%)T]
(C.26)
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Putting this in Eqg. (C.13), and using the fact that Rex) = Im(z), one obtains
the final expression for the longitudinal current:

Tosm-oom = o [ 5 (A= (= f)B].  (c2)

with the matrix elements
A = 2 Re<m‘ G 2L — 2L G m> , (C.28a)
B = 2Im <m‘ Gon T7, G (5] (m> . (C.28b)

C.2.2 Transverse current

The transverse current now needs less work. From Eq. (C.12),stverjite

—2e [dFE N
I(n,m)—>(n,m+1) = T / %2 Re<m + 1‘ (t%m) Gr<m

m> (C.29)

Substituting Eq. (C.25) fof';,,, one immediately finds the expression for the trans-

nn?

verse current in terms of Green'’s functions calculated in Chap. 4:

T m)y—(nm+1) = 2—;/3—5 [fLC —(fr - fR)D}, (C.30)
with the matrix elements

C = 2Re(m+ 1\ ()" (Gun = Gha) | m). (C.31a)

D = 2im(m+ 1] ()" G T Gy |0 (C.31b)
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Appendix D

Persistent and transport
contributions to the current
density

In Sec. 5.3.3, the total current density in a nonequilibrium situation was weten
sum of two parts. It was argued that an interpretation of these two partsris td
a persistent and a transport contribution, as put forward in Refs6[@6cannot be
physically relevant because such an interpretation is not unique. In pipierAlix,
we will look at this issue again in some more detail.

In a nonequilibrium situation, a bias voltage is applied so that the chemical
potential of one of the leads is higher than that of the other lead. In therires
discussion, we will assume that, > ugr. Since the reservoirs connected to the
leads are assumed to be in thermal equilibrium, the chemical potemti@sd iz
are well-defined. In the central device however, the Fermi I&els not known
a priori, and it should in principle be calculated self-consistently. Neviedhein
most calculations (ours also), the redistribution of charges in the sampiessla
of the current flowing is not taken into account, and one then puts the Easrgy
in the device at a more or less arbitrary level betweerandp .

In Refs. [66, 67], the total current density in nonequilibrium is divided/rat
is called an “equilibrium” (or persistent) and a “nonequilibrium” (or trangpart:

Jtot = Jpers+ jwransp The persistent part is defined as the current arising from
states below the Fermi energy in the device, whichaasaimed to be all occupied
(at temperaturd” = 0). The transport part is defined as the remaining current
resulting from the states with energies betwegnand ur. Since the position

of the Fermi level in the device is completely arbitrary (without a self-condiste
calculation), this subdivision cannot be a physically relevant one, arahitead to
some confusion as to how the transport current density distribution loaksTis

will be made clearer with the help of Figs. D.1 and D.2.

Take as an example a quantum wire with a constriction in the middle, and let’s
have a look at the scattering states in this system. In presence of a hightimagne
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Figure D.1: Scattering states emerging from the left (a) and right @ )éor opposite
directions of the magnetic field. The persistent currensidgric) will look like the
sum of (a) and (b).

field, electrons will move along the edges of the system. An electron with a cer-
tain energy has a probabilifi/ for being transmitted through the structure, and a
probability 1 — 7" of being reflected. Scattering states emerging from the left are
schematically drawn in Fig. D.1(a), while those emerging from the right lead ar
shown in Fig D.1(b).

The persistent part of the currgpt,sresults from all states belowr. Accord-
ing to the definition above, both the states emerging from the left and the raght le
are assumed to be occupied up to the Fermi level when calculating the pdrsiste
current, and therefore the persistent current density always IsolksFg. D.1(c),
namely a sum of the currents in Figs. D.1(a) and (b).

Now we turn our attention to the transport p@rins Suppose that we have
put the Fermi energy in the devider equal tou g, as in Fig. D.2(a). The transport
part of the current distribution was defined as that part resulting ftatasbetween
pur andpg. Since all states betweeri and iy, that are occupied with electrons
are emerging from the left lead, the transport density distribution will loothas
middle panel of Fig. D.2(a), it is the same as Fig. D.1(a).

Had we put the Fermi energy equalig as in Fig. D.2(b), then the persistent
part of the current would contain a too large contribution: remember thstzdds
below Er = uj, are assumed to be occupied in the persistent part, so also those
emerging from the right lead with energies betwegnand ;. Since these are
not occupied in real life, the transport part should even things outsaodtained
by subtracting the contribution from these states in order to obtain the ttotalc
current density. The transport current density for this situation is tepia the
middle panel of Fig D.2(b); it is the same as that of Fig. D.1(b), but with the sign
reversed because we have to subtract this contribution.

Yet another picture emerges when one puts the Fermi energy in the middle
betweenu; and ur [as in Fig. D.2(c)]. In this case, for the persistent current,
we have taken a too large contribution of currents emerging from the righf le
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Figure D.2: The transport current distributiofians depends upon the choice of
the Fermi level in the device. From left to right, the distitibons that result for
Ep = pr @), Er = pg (b), andEp = ELEEE () are shown, and this for dif-
ferent directions of the magnetic field. Symmetrizing thetritbutions with respect to
the magnetic field direction gives a unique picture for aligible choices of the Fermi
level (lowest three pictures).

and a too small contribution of currents emerging from the left lead. Byiegen
things out in the transport part in order to obtain the correct total cudemsity,
the transport current for this part now will look as the middle panel of Big(c).

It is clear that, depending on where the Fermi level is put in the device, the
transport current densitiansl00ks completely different. In one picture, it seems
that electrons are flowing on the upper edge of the sample, in the otheregictur
they flow on the lower edge or even on both edges. Therefore, splittinguthe
rent density distribution in a persistent and transport part in the way itrie do
Refs. [66, 67] cannot be physically relevant, and only the sum of moitributions
can be attributed a physical meaning.

Nevertheless, we have found a unique way of defining persistent amspwrt
contributions of the current density by looking at its symmetric and antisymmetric
parts. This was already mentioned in Sec. 5.3.3: persistent currentatsiara
metric in the magnetic field, and a transport contribution to the current density
could thus be defined as the symmetric part of the total current densitynoss
in the lower panel of Fig. D.2, doing this symmetrization gives us a definition of
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the transport current density distribution that is unique, whatever chaomake
for the value ofEr in the device. It gives us only that part of the current that is
really flowing from one lead into the other, describing a real transporéot
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Appendix E

Efficient evaluation of the
conductance decrease flow map

For the local scatterer method in Chap. 5, it is necessary to calculate theeddé
AG between the conductances in the absence and presence of the sgainbang
tip [see Eq. (5.2]. When the tip influence on Hjte, n) is introduced via Dyson’s
equation, this can be done with a numerical effort scaling/&sV, as will be
shown next.

One can write from Eq. (5.5):

Gn1 = Gy + A, (E.1)
with the M x M matrix:
A=G, VP (1-G), Vi) Gy (E.2)

SinceVﬁ'ﬁ has only one nonzero element, namely on positiann ), one can write
A as a product of a column matrix and a row matrix:

A= [G?Vn]m‘hcolumnT [Ggl]m‘hrOW7 (E3)

with the scalar- given by w is the magnitude of the repulsive tip potential):

w
T = .
1= w {m|Gyy,lm)

(E.4)

By substituting Eq. (E.1) into Eqg. (5.3), one obtains:
T(m,n) = TrLr(Gl +ATL(GY + A)
= Tr[CRGRTL(GR)T] + Tr[CRGRTL(A)T + TRATL(GR)]
+TrCRAT L AT
= Ty +2Re Tr[TRrATL(G%,)T] + Tr[T AT L AT).

In order to evaluate the conductance differedag = 2¢2/h(Ty — T(m,n)), we
need to evaluate only the last two terms. The last term only involves produbts o
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M x M matriced gy With row or column matrices because of the special form of
A. The computational effort for such terms scales\&% which corresponds to a
total effort of /3 N for all tip locations. Furthermore, since the prodlig(G%;,)!

in the other term is independent of the tip position, it has to be calculated ocdy on
(with an effort A73). When this matrix is known, the trace contains only products
of an M x M matrix with a row or column matrix, so the total effort for this term
also scales a&/> N in the limit of largeN.
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Appendix F

Effective Hamiltonian for an
electron in a discretized magnetic
texture

The effective Hamiltoniaft{es that was given in Eq. (7.20) of Chap. 7 for electrons
moving in a magnetic texture will be derived in more detail in this Appendix, and
an analytical criterion for its validity will be obtained. Our starting point is the
Hamiltonian Eqg. (7.15). Calculating the matrix representation of this Hamiltonian
in the basis of statel, +) with their spins aligned parallel or antiparallel with
respect to the local magnetization direction at sisecording to Eq. (7.16), one
finds (we will consider only two sites here for the ease of writing):

H—[ﬁ.ﬁ}, (F.1)

where A describes the on-site terms, and is given by the diagonal matrix

A:A{_gzl%], (F.2)

while the matrixI” describes hopping between the sites, and is given by

T— 4 sm%—1 sm— + cos 921 008022 i($1=¢2) sm% cos%2 i¢2 _ cosL 5111022 i1
cose—1 sinZ2 92 e~ib1 _ sme—1 cos2 92 e~ib2 smg—1 sinZ 02 + cos L cosF emi(d1=¢2)
(F.3)

Calculating the module of the elementsigfone can write

Cos.e%e”12 sin 952 1012

T=—t (F.4)

_Sin%e—lfsm co 9% —iy12 |

wheref, is the angle between the magnetization directions atlséad2. An
expression for the phasgs will be derived further down.
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If the exchange splitting would be infinite, we could neglect the mattiand
obtain two energy levels that are twofold degenerate, correspondimgetieetron
sitting in site 1 or 2, with spin up or down with respect to the local magnetiza-
tion direction. For finite splitting), the matrix7" will give two different hopping
contributions: the diagonal elements’Bfdescribe hopping within the same spin
subband, keeping the spin aligned to the local magnetization direction upen ho
ping. In perturbation theory, these terms will give rise to corrections obtter
of t. The off-diagonal elements & will couple both spin subbands, and give
only second order contributions in perturbation theory. These will be ghitizde
(t?/A) sin(612). As such, these second order contributions can be neglected when
the condition

t? t2
(Z) sin(f12) ~ x Ao Kt (F.5)

is fulfilled, which is the tight-binding version of the adiabaticity criterion we de-
fined in Eq. (7.24) in Chap. 7. In this limit, the spin-up and spin-down sutbbaa
decoupled and can be treated independently. For the spin-up sulatigin find
(generalized to an arbitrary number of sites):

HEM = = "t Mi, +) (4, +] — A/2, (F.6)
()

with ¢& found from Eq. (F.4):
ff Oij i,
tij :tcos—2 e'vii, (F.7)

Let's see now how one can evaluate the phagesWe will use from now on
the shorthand notatiom; ) = |i,+ ) for a spin-up state with respect to the local
magnetization direction; at sitei. Looking back at Eq. (F.3), it should be clear that
t%ﬁ = t(ny|n; ), so the phase;; can be found by evaluating the argument of this
scalar product. As such, it is clear thg} is not gauge invariant since multiplying
the basis states with a phase factor will give different results. In pantjcuppose
we fix the phase of the stata; ), and do parallel transport (see Sec. 7.2.1) of this
state to obtain the stata; ). On the sphere geometry, parallel transport just means
that we rotatén; ) around an axis» ~ n; x n; to obtain|n; ). It is not so difficult
to show that with this gauge choice, one finds that the scalar prddyfb; ) is
real, so that the quantity;; is zero.

Naively, one might argue now that one can always make a similar constructio
so that they;; will be zero for everyi and;. However, this is not true, as the gauge
defined by the “parallel transport construction” cannot be defindubdjip Indeed,
consider three sites with magnetization directiensns, n3 and now we make a
closed loopl — 2 — 3 — 1. The phase picked up by the electron along this path
is then given by

arg ((ny|ny ) (n2|ng ) (ngln; )) = arg(n;|ny ) + arg(nz|ng) + arg(ns/n; ),
(F.8)
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Figure F.1: Parallel transport of a local X axis along a closed loop on uhé#
sphere (a), and a visualization of how to calculate the abgteeen the original and
the transported axis (b).

and corresponds to the Berry phase. This phase is gauge invariamt bs seen
since every state appears both as a bra and as a ket. We choose thiadajjauge
to evaluate this Berry phase: we first obtain ) from parallel transport ofn; ),
and in the same way we ggis ) from |ny ). We then know that by construction
the first two arguments on the right hand side of Eq. (F.8) are zero. Edhitd
argument however, we cannot make such a construction anymoresbquanallel
transport ofjng ) will give a state|n} ) that differs from the statén; ) we have
started from: o

ny) = el n}), (F.9)

and the Berry phase will thus be equal to the pHage. Let's see now why this
phase factor appears, and what its meaning is.

First, note that with every stafa; ), or equivalently with every point on the unit
sphere, a locak;Y; Z;-frame can be associated, with tHeaxis pointing along the
vectorn; as depicted in Fig. F.1(a). When this frame is rotated around’jlais,
the statgn; ) will pick up a phase factor, because

R, (Q) [0;) = €270 |n; ) = €13 |n; ), (F.10)

whereRy, (2) is the operator for rotation over an angle As such, one can state
that fixing the phase dh; ) corresponds to defining the orientation of a lo&al

axis associated with this state. Now, when doing parallel transport of thes sta
the X axis associated with it will simultaneously also be parallel transported, as
shownin Fig. F.1(a). As we already pointed outin Sec. 7.2.1, after piaratsport
along the closed path — 2 — 3 — 1, the X axis will have rotated compared to
the orientation it started from. The rotation angle can be found with the help of
Fig. F.1(b), in which we give a more detailed view of the triangle on the uniisph
defined by the vectons, n,, n3. The angle the{ axes make with successive sides

119



of the triangle jumps at each vertex, byminus the angley; at the vertex. This
gives a total angle of
3 — Z o =21 — (), (F.112)

between the transported axis (X;- in the figure) and the originak’ axis (X1).
The angle2 = ) a; — 7 is known to be the solid angle subtended on the unit
sphere by the three vectatis, no, ng [120]. For the rotation of a geometric vector,
the factor2z is unimportant since it is equal to the identity operation. However,
for a spin-1/2 state, a rotation aroud introduces a factor of-1 [see Eq. (F.10)].
Therefore, it is important to really measure the correct angle going ‘ttifece.,
without winding an extra time around thig axis, from theX; axis to theX, axis:

this angle is given bym minus the rotation angle in Eq. (F.11) [see Fig. F.1(b)],
so that finally we obtain the angle). From Eg. (F.10), it is clear then that this
rotation of the localX axis after parallel transport around the loop corresponds to
a Berry phase of?/2 that the electronic state picks up along the same loop.

In conclusion, we can say that the phasgsof the effective hopping elements
are not gauge invariant. Only the total phase picked up along a closedi.path
the Berry phase, is gauge invariant. This means that we can choosg there
or less freely, as long as we make sure that the phase picked up aloctpseg
loop equals half of the solid angle subtended by the magnetization vectors alon
that loop. The gauge choice we have made in Chap. 7, defined in Fig. @rB/cle
fulfills such condition.

One final note. When considering the effective Hamiltonian for the spimdo
subband, one can make exactly the same construction to obtain the Beseygiha
the spin-down electron. However, sineg, |n;, —) = —|n;, — ), the phase picked
up by this state will be-$2/2, as is clear from Eq. (F.10) and the discussion above.
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Appendix G

Calculation of the Hall resistivity

In Chap. 7, there was need for a phase averaging procedure inofie the Hall
resistivity of a macroscopic system based on calculations on smaller pitese ot
sections with the Landauertiker formalism. In order to discuss the subtleties
related to such an averaging procedure, we will first look at how weeigve
Ohm’s law for the longitudinal resistivity of a wire based on resistance tzlons
within the Landauer-Bttiker formalism. Although this can be found in textbooks
nowadays (see, e.g., Ref. [2]), it will pave the way for the slightly morelired
procedure we need for defining the Hall resistivity.

The main idea is that a macroscopic system can be build up from small phase
coherent subsections that are attached in an incoherent way. Foplexa macro-
scopic wire can be subdivided in small sections of lengtlk L. The resistance
R; = @ between two leads attached to such a section [depicted in Fig. G.1(a)]
can be calculated within the LandaueitBker formula: R; = % with 7} the
transmission coefficient between the two terminalg. will of course be depen-
dent upon the impurity configuration in the section. Now one could combine a
number of small sections in series to form a macroscopic wire as in Fig. G.1(c)
Each section will be treated as a classical resistor with a current-voltEg®mne
ship/ = R;V, and as such we introduce an effective phase breaking event at the
connection between every two resistors: only current and voltageniaton is
kept, and any phase information of electrons flowing out of the sectiontisTibe
total resistance of this wire is then just the siim= ), R;. When enough sec-
tions (with different impurity configurations) are attached, it is clear fhatill be
independent of the choice of impurity configurations in the separate cidrse
Therefore, one can find the resistivity of the systerpas RW/L, whereW is
the width of the sections, and is the length of the complete wire. In this way,
one obtains Ohm’s law with an essentially mesoscopic approach in which phase
breaking is introduced phenomenologically by applying classical circubtryhie

connect smaller phase coherent sections.

However, there is a subtle point that we have glossed over in the calcubdition
the individual resistanceB;. For calculatingR;, we attach two leads (connected
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Figure G.1: Phase averaging procedure for obtaining resistivity ptogeeof a wire.
A four-terminal measurement procedure is necessary faimbg the resistance’;
of the separate sections in order to remove contact reseseffects.

to large electron reservoirs) at the sample edges. But it is known thaest e
reservoir-lead interface, a so-called contact resistance is build epgsg, p.94 in
Ref. [3] and references cited there). Essentially such contact resestasults be-
cause on one side (the reservoir) current is carried by an infinite mwhbsodes,
while on the other side (the mesoscopic lead) there are only a finite humber of
modes transporting current. So when calculatRygas the voltage drop between
the reservoirs divided by the current flowing through the sanipl&yill also incor-
porate two such contact resistances, and does not correspond todmvegistance
of the sample itself. This is made clear in Fig. G.1(b). It means Bawill be
nonzero even when sectiomvould not contain any scatterers at all! The resistivity
p obtained from the procedure described above will thus depend stronglych
contact resistances, which is clearly unwanted.

The standard way of getting rid of this contact resistance is to calc@late
with a four-terminal setup as in Fig. G.1(d). Current is passed througsetimngle
by two leads, while two extra leads are used to measure the voltage droghever
sample. Since these extra voltage probes do not draw any currentwiificoe
no voltage drop over their contact resistances, and they will measurelthger at
the point where they are attached. Placing them as in Fig. G.1(d), one itable
measure the voltage drop over the sample, excluding the voltage drop ewenth
tact resistances of the current-carrying leads [Fig. G.1(e)]. As thehesistance
R; = % is the pure resistance of the sample only and it is these resistances
that should be added in series to find the longitudinal resistivity

Now we come to the point of calculating the Hall resistivigy;, which is
slightly more complicated although it follows the same philosophy. This time,
the smaller sections we want to start from in order to build up a macroscogic sy
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Figure G.2: Averaging procedure for defining the Hall resistivity. Amglei-terminal
measurement gets rid of contact resistances (a). Sinceithentthrough the voltage
probes is zero, effective four-terminal current-voltagiations can be derived (b).
These four-terminal sections are wired together usingsiakcircuit theory (c).

tem already have four terminals, and were depicted in Fig. 7.4. In ordettadg
of contact resistance effects, we will make an eight-terminal structurefauby
attaching four extra voltage probes as in Fig. G.2(a). The Landailitii& for-
malism can then be used to derive a set of linear equations relating thetsuang
voltages at the eight leads:

I A B A%
Lo sllw ] 1
wherel = (11, ..., I4) is a vector containing the currents through the original four
terminals, and, = ({p1,. .., I,4) are the currents through the voltage probes; the

same notation convention is used for the voltages on the leadst Xhematrices
A, B,C andD consist of transmission coefficients between all eight leads, and are
found directly from the LandaueriBtiker equations [c.f. Eq. (2.2) in Chap. 2].

Since the voltage probes do not draw current, we find

I, =0=CV + DV, (G.2)

which can be used to express the currents through the four curnepitrgaleads
as a function of the voltage on the attached voltage probes:

I=[B—AC™'D|V,. (G.3)

Doing so, we have found current-voltage relations for the origioaf-terminal
structure in which spurious contact resistances have been got ritNeft, such
structures [depicted in Fig. G.2(b)] with different impurity configurationl e
wired up together as in Fig. G.2(c) treating every structure as a classicait c
obeying Eq. (G.3) and taking care of current conservation laws atdaheecting
points. Since classical laws are used in wiring up the system, all phasmatfon
is lost at the connection points, and an effective phase coherendé srigtro-
duced which corresponds to the size of a single section.
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In the end, one obtains current-voltage relations between the uncoa hesnds
at the four corners of the structure [labeled. ., 4 in Fig. G.2(c)], and these can be
used to find the resistancéq s 34, 34,12, R14,23 and Ry2 31 between the corners
of the large structure. The properties of the complete system can thepressxd
in terms of resistivities by making use of the van der Pauw technique [121¢hw
gives the Hall resistivity as [121, 122]

1

pH =Ry = 3 (Ri2,34 — R3a,12) (G.4)

while the longitudinal resistivity;, can be found from solving the equation [121]

exp (—7TR14,23//)L) + exp (—7TR42,31/pL) =1. (G.5)

When enough sections are wired up together, these transport corffividl be
independent of the impurity configurations in the separate sections.

A small comment should be made here. Because of the attachment proce-
dure described above, one cannot expect the resistivities calculabssifG.4)
and (G.5) to correspond exactly to the real resistivities of a “bulk” systimthe
same mean free path. In particular, the resistivities as calculated abcxeddep
the width of the leads attached to the smaller sections, and also on the scheme of
wiring the sections together. In theory one could take into account thésssef
(see, e.g., Ref. [121]), and one would find that the real "bulk’rasigtand the
resistivity calculated above are equal up to a factor that is purely geoaiettial-
culating this factor explicitly however is practically quite difficult. Since the facto
is of a purely geometric origin and does not have any physical implicaticagjdv
not proceed in this direction.
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