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For many original equipment manufacturers (OEMs) after-sales service has become cru-

cial to their overall performance. That is on one hand because good after-sales service in-

creases customer satisfaction and satisfied customers are more likely to purchase further

equipment from an OEM and recommend the OEM’s products to others. Thus, after-sales

service is directly linked to product sales. On the other hand and at least equally impor-

tant after-sales service can be a significant source of revenue and profit itself. A survey

conducted by Deloitte (Koudal (2006)) among 80 OEMs from Europe, North America and

the Asia-Pacific region finds that on average 26% of their total revenues are from services

including spare part sales. In a second survey by Bain & Company (Straehle et al. (2015))

among 45 European OEMs the average contribution of services towards total revenue is

22%. Both studies find that profit margins are higher in the service business than for

original equipment sales.

While after-sales service comprises anything from the initial set-up of an appliance to its

disposal at the end of the product lifetime (see Dombrowski et al. (2020) and Durugbo

(2020)), maintenance certainly is a key aspect from the customer’s point of view. In this

work, the focus is on corrective rather than preventive maintenance for durable goods

such as printers, washing machines, or heating systems. That means customers experi-

ence failures of their appliances and request immediate repairs. As the malfunctioning

appliances are typically too heavy or bulky to be transported to a repair shop, repairs must

be carried out at the customers’ locations. To perform these on-site repair jobs OEMs or

third-party service providers employ traveling repair technicians. The technicians’ job is

to visit the customers in need of help, to identify the sources of their appliances’ malfunc-

tions and to repair them instantaneously. Wherever the malfunction is due to a failure of

one or multiple parts the repair technician has to replace all failed parts with spare parts

to complete the repair job. For this purpose, the repair technician is equipped with a set

of different spare parts that are carried in the technician’s company van. This set is called

the repair kit and the question of how to manage its contents is the repair kit problem.

This work comprises three articles specified in Table 1 that extend the research on the

repair kit problem in two distinct ways. The remainder of this chapter relates the three

papers to the relevant literature and summarizes the main findings. The papers them-

selves are then presented in the following chapters II, III, and IV.
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Table 1: Extensions to the repair kit problem

Rippe (2022) Rippe & Kiesmüller
(2023a)

Rippe & Kiesmüller
(2023b)

Title The Repair Kit Problem
with Fixed Delivery
Costs

The added value of
advance demand
information for the
planning of a repair kit

The repair kit problem
with imperfect advance
demand information

Chapter Chapter II Chapter III Chapter IV

1. Contribution

The articles presented in this work contribute to 3 different streams of literature. That is

first and foremost research on the repair kit problem but also research on the stochastic

joint replenishment problem and on the use of advance demand information (ADI).

As for other spare part management problems the repair kit problem trades off inventory

holding costs for spare parts on stock against either the service level that can be achieved

with them or penalty costs that are incurred when required spare parts are unavailable.

The repair kit problem is similar to system-oriented spare part problems (see e.g. Basten

& van Houtum (2014)) in so far that the service level considered depends on the avail-

ability of spares for all critical parts of an appliance. However, the repair kit problem

differs from these problems in that when an appliance fails, the cause of this failure is

not immediately apparent. Instead, the repair technician must first visit the customer to

diagnose the failure.

The repair kit problem was first studied by Smith et al. (1980) as a single-job problem

meaning that the technician may be restocked after every customer visit. They suggest

using the probability that all parts necessary to complete a repair job are available as a

service criterion which they term the job fill rate. They aim to minimize the sum of in-

ventory holding costs and penalty costs incurred for each failed repair attempt. Contrary

to this unconstrained problem formulation, Graves (1982) and Hausman (1982) study a

repair kit problem with a service constraint. That is they minimize holding costs subject

to a job fill rate service constraint. Mamer & Smith (1982) and March & Scudder (1984)

generalize the previous approaches by allowing for more complex failure scenarios where

2



the demand for different spare parts need not be independent. Further extensions of

the single-job repair kit problem by Mamer & Smith (1985) and Mamer & Shogan (1987)

consider additional spare machines and capacity constraints. Brumelle & Granot (1993)

show that optimal repair kits for different relative weights of holding and penalty costs

form a monotone sequence.

Heeremans & Gelders (1995) are the first to assume that several customers are visited

in a repair tour before the service technician gets a chance to restock the repair kit. For

this multi-job problem, they measure service by the probability that all jobs in the tour

can be completed. Teunter (2006) and Bijvank et al. (2010) study similar multi-job prob-

lems but return to the job fill rate service level that is used for the single-job problems.

Since the chance to complete a repair decreases the more customers the technician has

already seen, they consider an average job fill rate across all customers visited. While

papers up to this point exclusively trade off holding costs for spare parts against service

levels or penalty costs, two recent publications by Saccani et al. (2017) and Prak et al.

(2017) also take costs incurred for the replenishment of the repair kit into account. Prak

et al. (2017) consider fixed material handling costs per spare part that is ordered. They

suggest managing the contents of the repair kit with individual (s,S)-policies for all spare

parts. Saccani et al. (2017) present a problem formulation with both fixed order costs per

ordered part and fixed delivery costs per shipment of multiple parts to the repair tech-

nician. By explicitly considering delivery costs their paper is the first to treat the repair

kit replenishment frequency as a decision variable. However, they determine the repair

kit that would have performed best given the exact spare part demand experienced in the

past. Thus, they examine a deterministic-demand version of the repair kit problem.

As can be seen in the overview in Table 2 the articles presented in this work all contribute

to the research on the more complex multi-job repair kit problem. Rippe (2022) returns to

the wide-scale cost scenario with fixed order and fixed delivery costs studied by Saccani

et al. (2017). However, demand for spare parts is modeled as a random variable, which is

more realistic for real-life problems and thus a standard assumption made for all repair

kit problems except for that by Saccani et al. (2017). Rippe & Kiesmüller (2023a) and

Rippe & Kiesmüller (2023b) extend the repair kit problems of Prak et al. (2017) and Te-

unter (2006) by utilizing information on the condition of the customers’ failed appliances.

3



The repair kit literature so far assumes that the repair technician is entirely unaware of

a customer’s needs for spare parts before the first on-site visit. While this may be true for

older machinery, state-of-the-art appliances are often equipped with sensors that monitor

the condition the appliance is in. In case a failure occurs these sensors generate addi-

tional information and help to detect the cause of the error. This sensor information is

available to the service technician before a first customer visit. It is, therefore, advance

demand information for spare parts. Rippe & Kiesmüller (2023a) and Rippe & Kiesmüller

(2023b) consider different types of ADI for the replenishment of the repair kit, which stem

from different types of sensor systems. While Rippe & Kiesmüller (2023a) assume that

reliable, part-specific ADI is available for only a fraction of an appliance’s critical parts,

Rippe & Kiesmüller (2023b) consider ADI that is uncertain and not specific to individual

parts.

Table 2: Literature on the repair kit problem

Problem Specification Solution
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Smith et al. (1980) X X X X X
Graves (1982) X X X X X
Hausman (1982) X X X X X
Mamer & Smith (1982) X X X X X
March & Scudder (1984) X X X X X
Mamer & Smith, 1985 X X X X X
Mamer & Shogan, 1987 X X X X X
Brumelle & Granot (1993) X X X X X
Heeremans & Gelders (1995) X X X X X
Teunter (2006) X X X X X X
Bijvank et al. (2010) X X X X X X
Saccani et al. (2017) X X X X X X X
Prak et al. (2017) X X X X X X
Rippe (2022) X X X X X X X
Rippe & Kiesmüller
(2023a)

X X X X X X

Rippe & Kiesmüller
(2023b)

X X X X X
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Because the repair kit problem is extended to integrate fixed delivery costs for coordinated

shipments of multiple parts, Rippe (2022) can be seen as a contribution to the research

on the stochastic-demand joint replenishment problem (SJRP). The joint replenishment

problem in general is the problem of managing the inventories of several products that

are sourced from one particular supplier, such that replenishments of different products

can be delivered at once. For each shipment fixed delivery costs are charged and for each

product included in that shipment fixed order costs are incurred that account for product-

specific material handling operations. These two types of costs often termed major and

minor order costs are traded off against inventory holding costs in any case and stock-

outs in case product demand is stochastic. The repair kit problem with fixed delivery

costs stands out in the SJRP-literature for two reasons. First, time is not continuous.

Second, shortage costs or service targets in the SJRP are typically considered per prod-

uct, whereas the technician in the repair kit problem relies on the joint availability of

all parts needed for a repair job. Since the structure of the optimal policy for the SJRP

is unknown, there is a large variety of policies suggested for different versions of the

problem. Multi-product deliveries may be triggered when the inventory level of a single

product falls below a product-specific reorder level (e.g Balintfy (1964), Federgruen et al.

(1984), Kiesmüller (2010)) or when the aggregated inventory across all products under-

cuts a total stock reorder level (e.g. Renberg & Planche (1967), Nielsen & Larsen (2005) ).

Alternatively, deliveries may be dispatched periodically as in Atkins & Iyogun (1988) and

Viswanathan (1997). In Rippe (2022) the repair kit is replenished using independent, pe-

riodic review (s,S)-policies for all parts with common review points for parts sourced from

the same supplier. Viswanathan (1997) has already shown that this type of policy works

well for a standard SJRP. For the repair kit problem, this policy is a good fit because it

allows the explicit calculation of the job fill rate service level, which would not be possi-

ble for more complex policies. More detailed reviews of the extensive literature on the

(stochastic) joint replenishment problem and further extensions can be found in Khouja

& Goyal (2008) and Bastos et al. (2017).

The papers Rippe & Kiesmüller (2023a) and Rippe & Kiesmüller (2023b) that consider

information obtained from different types of sensors also complement the literature on

inventory models with ADI. ADI can arise in all sorts of indications, from explicit orders

5



placed in advance by a customer to click-stream data that may or may not turn into actual

demand. Most contributions to the ADI literature, however, study single product prob-

lems. For a review of these single-item problems, the reader is referred to the overview by

Karaesmen (2013). The contributions closest to Rippe & Kiesmüller (2023a) and Rippe &

Kiesmüller (2023b) are the multi-item ADI-problems studied by Lu et al. (2003), Angelus

& Özer (2016), Thonemann (2002), Bernstein & DeCroix (2015) and Chen et al. (2017). Lu

et al. (2003) and Angelus & Özer (2016) both consider perfect advance orders for products

manufactured in assembly systems. A repair job may be understood as a product assem-

bled from the set of spare parts needed to complete that repair job. The ADI in Lu et al.

(2003) and Angelus & Özer (2016), however, is for final products and thus all components

required for a product are known in advance, whereas in Rippe & Kiesmüller (2023a) ADI

is part-specific and it is only available for a subset of all parts that parts may be needed.

Thonemann (2002),Bernstein & DeCroix (2015) and Chen et al. (2017) consider imperfect

ADI as in Rippe & Kiesmüller (2023b). In Bernstein & DeCroix (2015) ADI comes as

information on either the total demand across several products or the relative market

shares of these products. Thus, in any case, ADI is aggregated across all customers in the

entire planning period. In Chen et al. (2017) and Thonemann (2002) advance information

on future orders is available for individual customers. Contrary to the multi-item demand

observed in the repair kit problem, though, both studies assume that customers request

only one out of several items at once. Still, the replenishment policy that is shown to be

optimal by Chen et al. (2017) in a single-item case is very useful for a heuristic solution

procedure presented in Rippe & Kiesmüller (2023b).

2. Main Results

The main value of the research presented in this thesis is to show how the total costs

incurred by a technician performing on-site repairs can be reduced for three different

real-life scenarios. To this end, the articles in chapters II, III, and IV demonstrate how

costs and service levels can be determined given a repair kit replenishment policy and

how to derive good replenishment policies using novel heuristic solution procedures.

In Rippe (2022), presented in chapter II, the standard multi-job, stochastic-demand repair

6



kit problem is extended to integrate fixed delivery costs for each shipment from a supplier

to the repair kit. While the repair kit may be restocked by different suppliers, each spare

part is only sourced from one supplier. Therefore the inventories of all parts sourced from

the same supplier are reviewed periodically at the same time intervals to allow for coordi-

nated deliveries of multiple items. As mentioned before individual periodic (s,S)-policies

are applied, similar to Viswanathan (1997). For this setting, closed-form expressions are

derived for the expected total costs per repair tour and the job fill rate service level, the

latter depending on the joint availability of all parts sourced from all suppliers. In a

numerical experiment reorder and order-up-to levels are determined for different review

period lengths using the same greedy heuristic adapted from Prak et al. (2017). It can

be shown that longer review periods often decrease delivery costs significantly, whereas

safety stock increases necessary to counteract the increased uncertainty that comes with

longer review periods are modest. Thus, in the absence of any ADI replenishing the repair

technician less frequently can help to reduce costs.

In Rippe & Kiesmüller (2023a), reproduced in chapter III, a repair kit problem is studied

in which the appliances in need of repair are equipped with sensors that monitor some

parts’ conditions individually. A closed-form job fill rate is presented that takes into ac-

count both the monitored parts for which ADI is available and the parts that are not mon-

itored. Further, a new greedy heuristic is proposed that allows for individual increments

of all decision variables until the target job fill rate is reached. Comparing appliances

with different shares of monitored and unmonitored parts, it can be shown that advance

demand information helps to reduce safety stocks of both monitored and unmonitored

parts and thus inventory holding costs. Numerical experiments reveal that monitoring

frequently required parts with high values is most beneficial in general. However, there

is no monotone relation between the parts’ values or their demand frequencies and the

cost savings that can be achieved when they are monitored.

In Rippe & Kiesmüller (2023b), presented in chapter IV, uncertain ADI is used for the

management of the repair kit. This uncertain ADI comes as error codes triggered by sen-

sors that monitor indicators such as heat pressure or vibration which can be affected by

the conditions of several parts. Given this type of ADI, the repair kit problem is formu-

lated as a Markov decision process. Optimal policies, however, can only be derived for

7



small-scale problems, because the state space increases exponentially in the number of

spare parts in the repair kit. To obtain solutions for real-world problems two heuristics

are suggested that decompose the original problem in different ways. Both heuristics are

shown to produce near-optimal results on small instances. Yet, the non-greedy heuris-

tic that optimizes parts’ inventories individually performs slightly better than the greedy

heuristic that considers all parts at once, which is surprising given that most contribu-

tions to the repair kit problem suggest greedy heuristics. Extensive numerical studies

show that using imperfect ADI for the replenishment of the repair kit helps to reduce

costs compared to a situation where this information is not available or not used. The

value of the ADI, though, increases the more precise it gets.
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Abstract. The repair kit problem is the problem of managing the spare
parts inventory of a field service technician. Contrary to most previous
contributions we acknowledge that fixed costs per delivery to the tech-
nician make up an important share of the total field repair costs. Thus,
we treat the replenishment frequency as a decision variable and suggest
to manage the content of the repair kit using individual (R, s, S)-policies
for each spare part with common review periods R for all parts sourced
from the same supplier. We derive a closed-form expression for the job-
fill-rate service level and suggest a heuristic to determine the length of the
review period(s) as well as the reorder and order-up-to-levels for spare
parts carried in the repair kit. Using a numerical experiment we show
that lowering the replenishment frequency can lead to a substantial cost
reduction. That is because delivery cost reductions outweigh the costs
for additional safety stock.

Keywords: Repair kit problem · Inventory management · Stochastic
models

1 Introduction

Manufacturers who offer on-site repair services to their customers must pro-
vide their service technicians with a set of spare parts called a repair kit. The
multiple-job repair kit problem (RKP) is the problem of managing the content of
a repair kit that can only be restocked after several customers have been visited
in a tour. This problem was first studied by [1–3], who trade off holding costs
for spare parts stocked in the repair kit against the service level that can be
achieved or against penalty costs incurred for failed repair attempts. [4] consider
additional part-specific fixed order costs that are associated with material han-
dling activities in a warehouse. Thus they apply individual (s, S)-policies rather
than base stock policies to manage the repair kit. Even though papers on the
RKP agree that repair kits are restocked from only one or very few suppliers
(e.g. a regional and a national warehouse), the opportunity to reduce delivery
costs for shipments from the supplier to the service technicians by means of coor-
dinated replenishment has been largely overlooked. So far the only contribution
that considers fixed costs per delivery is a deterministic-demand RKP studied
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Trautmann and M. Gnägi (Eds.): OR 2021, LNOR, pp. 382–388, 2022.
https://doi.org/10.1007/978-3-031-08623-6_56
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by [5]. In this paper, our contribution is to integrate fixed delivery costs into
the more realistic stochastic-demand RKP studied by [1–4]. Thus, our contribu-
tion is at the intersection of RKP and stochastic joint replenishment problem
(SJRP). What distinguishes our problem from papers on the SJRP is that we
consider a job-fill-rate service level that requires a more complex analysis than
the part-fill-rates used for backorder cost calculations in the SJRP literature
(for a review see [8]). We suggest to apply (R, s, S)-policies as introduced by
[7] for our RKP and derive closed-form expressions for expected costs and the
job-fill-rate service constraint for given policy parameters. Further, we introduce
a heuristic solution procedure for our RKP and present a numerical experiment
that demonstrates the cost savings potential of longer replenishment cycles. Our
work can be seen as an extension to [4], that allows for cycle times different from
one. For this reason, we follow their notation wherever possible.

2 Problem Description

There are N different parts in the repair kit. The number of repair jobs per repair
tour and the number of units of each part i = 1, . . . , N required for a single job
are stochastic. Let pc(l), cmin ≤ l ≤ cmax denote the probability for l customers
in one tour and pi(k), dmin ≤ k ≤ dmax define the probability that k units of
part i are required for a job. Demands for different parts are independent. By
P t
c (l) and P

J|j
i (k) we define the probability for l customers in t tours and the

probability for a demand of k items of part i in j jobs. We obtain

P t
c (l) =

∑

l1,...,lt
l1+···+lt=l

t∏

r=1

pc(lr) (1) P
J|j
i (k) =

∑

k1,...,kj

k1+···+kj=k

j∏

m=1

pi(km). (1)

The repair kit is replenished from G suppliers. Each part i = 1, . . . , N is
sourced from exactly one warehouse with w(i) = g ∈ {1, . . . , G} defining this
warehouse. To manage the content of the repair kit we suggest periodic (s, S)-
policies. That means the inventory positions (IPs) of all parts sourced from one
supplier g are reviewed every Rg tours and if the IP of a part i is at or below a
reorder level si at review time it is raised to an order-up-to level Si. All orders

s1
s2

S1

S2

In
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nt
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y

R R
L L

Part 1
Net inventory level
Inventory position

Part 2
Net inventory level
Inventory position

Time

Fig. 1. Exemplary inventory development of two parts from the same supplier
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from the supplier are delivered together after a lead time of Lg tours. See Fig. 1.
for an example.

We define this policy by (R, s, S) with R = (R1, . . . , RG), s = (s1, . . . , sN )
and S = (S1, . . . , SN ). Let πIP

i (k) define the steady state distribution of part
i’s IP after order placement at review time. For a detailed derivation of πIP

i (k)
we refer to [4]. Let us refer to the point in time Lw(i) tours after review time as
potential delivery time. The net inventory level (IL) at potential delivery time
corresponds to the IP at review time minus demand during the lead time. With
a review period longer than one tour we need to explicitly consider the IL after
each tour within one review period. For a part i with w(i) = g let us denote the
steady state distribution of the IL r = 0, . . . , Rg −1 tours after the last potential
delivery time by π

IL|r
i (k). We obtain

π
IL|r
i (k) =

Si∑

l=max(si+1,k)

πIP
i (l) ×

(Lg+r)cmax∑

j=(Lg+r)·cmin

P
J|j
i (k) PLg+r

c (j). (2)

With hi defining the unit holding costs for part i per tour we can derive the
expected holding costs per tour as

EHC =
N∑

i=1

hi

Rw(i)−1∑
r=0

Si∑
k=1

k π
IL|r
i (k)

Rw(i)
. (3)

We incur fixed order costs fi for every order of part i and fixed delivery costs of
Fg for every shipment from supplier g. Let P o

i and P
o|j
i denote the probability

that an order for part i is placed at review time, regardless of the number of
customers during the last review period and given that j customers have been
visited respectively.

P
o|j
i =

Si∑

l=si+1

πIP
i (l) ×

j dmax∑

k=l−si

P
J|j
i (k) (4)

P o
i =

Rgcmax∑

j=Rgcmin

P
o|j
i ptc(j) (5)

Whenever at least one part sourced from supplier g needs to be replenished
at review time a delivery from that supplier to the service technician is initiated.
The chance PD

g that a delivery from supplier g is triggered at review time is

PD
g =

Rgcmax∑

j=Rgcmin

⎛

⎝1 −
∏

i|w(i)=g

(
1 − P

o|j
i

)
⎞

⎠ PRg
c (j). (6)
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Using (5)–(6) we can determine the expected fixed order costs and the expected
delivery costs per tour as follows

EOC =
N∑

i=1

fiP
o
i

Rw(i)
(7)

EDC =
G∑

g=1

FgP
D
g

Rg
. (8)

We aim to minimize the sum of holding, order, and delivery costs per tour
subject to a job-fill-rate (JFR) constraint. The JFR is defined as the average
probability that a repair job can be completed with the spare parts available in
the repair kit. As shown earlier the availability of different parts varies signifi-
cantly across tours within a review period. Let us again use the potential delivery
time as a reference point. Then the joint availability of multiple parts depends
on the combination of the number of tours that elapsed since the last poten-
tial delivery times for each part. The number of possible combinations is given
by the least common multiple of the different review periods Rg, g = 1, . . . , G.
Thus, we need to consider the average JFR across an observation period of
lcm(R1, . . . , RG) tours to cover all possible cases. Let us assume synchronized
potential deliveries at the start of the observation period. Then the chance that
job j = 1, . . . , cmax in tour T = 0, . . . lcm(R1, . . . , RG) – 1 is completed is

pc,Tj =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

N∏
i=1

[
pi(0) +

Si∑
l=1

π
IL|T mod Rw(i)
i (l)

l∑
k=0

pi(k)
]

, j = 1

N∏
i=1

[
pi(0) +

Si∑
l=1

Si−l∑
n=0

Si∑
m=l+n

pi(l)P
J|j−1
i (n)πIL|T mod Rw(i)

i (m)

]
, j > 1.

(9)

Dividing the expected number of completed jobs by the expected number of jobs
during the observation period we obtain the JFR.

JFR =

lcm(R1,...,RG)−1∑
T=0

J∑
j=1

pc,Tj

cmax∑
l=max(j,cmin)

pc(l)

lcm(R1, . . . , RG)
cmax∑

l=cmin

l pc(l)
. (10)

3 Heuristic Solution Approach

The multi-job RKP presented in Sect. 2 is an integer optimization problem with
2 ·N +G decision variables. Just like other multi-job problems [1–4] our problem
cannot be solved to optimality for real-life-sized repair kits. Even for a fixed com-
bination of review periods (R1, . . . , RG) optimal reorder and order-up-to-levels
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can only be determined for very small numbers of parts N . For larger problems,
the solution must be determined heuristically. To this end, we propose to adapt
[4]’s job heuristic (JH) to account for delivery costs and review periods differ-
ent from one. Their JH calculates reorder and order-up-to-levels jointly. That
means in a first step the differences Qi := Si − si, i = 1, . . . , N are determined.
Given these fixed differences a greedy algorithm is applied to iteratively increase
stock levels until the target JFR is reached. Differing from [4] we suggest to
determine the quantities Qi in the following way: Let us first assume constant
and continuous demand for each spare part. For a given review period of Rg the
time between to consecutive orders for each part with w(i) = g must be mi ·Rg,
where mi is an integer multiplier. Under these conditions [6] derives the optimal
integer multiplier as

m∗
i =

⌈
1
2

√
1 +

8fi
hiDiR2

g

− 1
2

⌉
, (11)

where Di is the demand for part i per time unit. Because demand is stochastic
in our case we consider E[Di]. We set the quantity Qi equal to the expected
demand during m∗

i · Rg tours, but at least 1 unit.

Qi = max(�m∗
i RgE[Di]�, 1) (12)

With the quantities Qi calculated as described above we apply [4]’s greedy algo-
rithm to determine s and S, obviously using the formulas for the JFR and the
expected holding costs derived in Sect. 2. That way we obtain a heuristic solu-
tion for a given combination of review periods. For small numbers of suppliers,
we can repeat this procedure for all reasonable combinations of review periods,
to identify the best one. For instances with 500 parts and 3 suppliers we were
able to run this procedure in less than 30 min on a Mac Pro 7.1 with an Intel
24-Core Xeon W-processor.

4 Numerical Experiment

The point of this experiment is to compare a situation in which orders are placed
after every tour (as considered by [4]) to situations in which the review period
is longer than just one day. We assume there is only one supplier from which all
spare parts are sourced. Orders are delivered after a lead time of 2 tours. We
consider a repair kit that consists of 500 parts. At most one unit of each part
may be required by one customer. The unit demand probabilities for each part
are drawn from a continuous uniform distribution on [0, 0.01408]. The number of
customers per tour ranges from 1 to 3 with the following probabilities: 1: 25%, 2:
70%, 3: 5%. The value of each part is drawn from a log-normal distribution with a
mean of 55e and a standard deviation of 154e. Both, demand and value scenario
have been designed to resemble the characteristics of the dataset described by
[4]. The fixed order costs are set to 1e for each part and each order. Using the
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algorithm described in Sect. 3, we determine reorder and order-up-to levels for
all review periods from 1 (daily) to 5 (weekly) given different combinations of
fixed delivery cost, holding cost rate, and target job fill rate.

Table 1 shows the review period lengths that yield the least total costs (in
brackets) and the corresponding relative cost decreases compared to situations
with daily reviews. For most combinations, weekly reviews perform best. Only
in case holding cost rates are high and delivery costs are low, it can be beneficial
to review the inventory more frequently. In these cases, longer review periods
would lead to an increase in holding costs that outweighs any further savings on
delivery costs. Across all scenarios, the average possible cost savings are 31.55%,
which shows that considering the review period length can lead to substantial
benefits. These savings can be attributed to lower delivery costs with longer
review periods. This is offset by only a slight increase in holding costs. We find
that it takes surprisingly little additional safety stock to counteract the increased
demand uncertainty caused by an extended review period. The average total
number and the average total value of all units in the repair kit increase by less
than 20%, when reviews are conducted weekly rather than daily in all cases.

Table 1. Relative cost savings in % comparing the best review period length (in
brackets) to the daily review option

Fixed delivery costs

5 10 20

Holding cost rate (in % per year)

5 10 20 5 10 20 5 10 20

JFR = 0.8 33 (5) 26 (5) 16 (5) 47 (5) 40 (5) 29 (5) 59 (5) 53 (5) 44 (5)

JFR = 0.95 26 (5) 17 (5) 9 (4) 40 (5) 31 (5) 20 (5) 54 (5) 45 (5) 34 (5)

JFR = 0.99 22 (5) 12 (4) 5 (3) 36 (5) 24 (5) 14 (4) 50 (5) 40 (5) 27 (5)

5 Conclusions

We presented an extension to the multi-job RKP that integrates fixed costs per
delivery and treats the review period length as a decision variable. With a numer-
ical experiment, we could demonstrate that in many cases weekly replenishments
should be favored over daily replenishments of a service technician. That way
delivery costs can be reduced significantly against only a small increase in safety
stocks. The latter increase is so moderate that most likely a van suitable for a
daily restocked repair kit will also fit the weekly replenished kit.
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Abstract
In this paper the repair kit problem is studied, where technicians have to visit several
customers to repair broken appliances (such as copiers or heating systems) and they
can only take a limited set of parts with them (called the repair kit). In this problem, it
has to be decided which spare parts to include in the repair kit. We consider a version
of this problem in which partial advance demand information is available. That means
we divide the set of parts into two subsets, where the condition of parts in one subset
is monitored by sensors. In case an appliance fails and a repair job is requested by
a customer the service provider is able to access this sensor data before a technician
visits the customer. For this setting, we derive an expression for the job fill rate, which
is used as a constraint in the optimization model, where holding and replenishment
costs are minimized. We use a greedy heuristic to determine near-optimal repair kits.
In a numerical study, we find that integrating advance demand information yields
substantial cost savings. In order to find out for which parts having advance demand
information is most valuable, we examine the effect of parts’ demand probabilities
and their prices. We find that monitoring parts that are expensive and likely to fail
leads to the largest cost savings. In particular, the price of the monitored parts and the
achievable cost savings are strongly correlated.
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1 Introduction

In some industries it is quite common that companies do not only sell their appliances
but also offer after-sales service to support their customers in case of problems with
the bought appliance (Cohen et al. 1997). For small and light appliances the customers
usually bring or send the malfunctioning appliance to a retailer or to a specific repair
shop, where the repair can be performed. However, field service is provided in case
the appliance is too large or heavy to be moved easily, as for example copy machines,
heating systems, production equipment, and medical systems or white goods like
washingmachines or refrigerators. Thismeans customers can call a service hotline and
request a visit by a service engineer, who should repair the malfunctioning appliance.

In order to offer this service, technicians travel in commercial vans to customer
sites where they perform an on-site diagnosis and repair the failed appliance if the
necessary spare parts are available in the technician’s van. Otherwise, the repair cannot
be completed and a technician has to revisit the customer. This is called a broken job
and leads to an unsatisfied customer and extra costs for the service provider because a
second visit to the customer is necessary. A service technician usually visits three to
six customers in one tour (i.e., before the repair van is restocked).

The problem of determining which spare parts to include in the van (or repair kit)
and howmany units of each part, is called the repair kit problem.We consider a version
of this problem where service is measured by the job fill rate, defined as the fraction of
jobs that can be completed in the next tour after customer notification. The objective
of our repair kit problem is to minimize the expected holding costs for spare parts and
handling costs for replenishment orders while satisfying a service level target.

The repair kit problem is studied in the literature under different assumptions.
However, most versions assume that the demand for spare parts is not known until the
technician visits the customer. In case certain parts within the appliance are equipped
with sensors that monitor the condition of these parts, that is no longer true. Whenever
an appliance breaks down this sensor data can be accessed by the service provider via
remote diagnostics.

In this paper, we extend the standard multi-job repair kit problem by integrating
advance demand information (or short ADI) that can be obtained from part-specific
sensors. We formulate a model that considers perfectly reliable ADI for some parts
and no ADI at all for other parts and show how to compute the job fill rate under these
conditions. We compare scenarios in which we include or exclude advance demand
information and determine for which spare parts having advance demand information
is especially valuable. In particular, we are looking at the impact of a part’s demand
probability and its price on the costs savings that can be achieved.

The remainder of the paper is organized as follows. In the next section, we discuss
the relevant literature and in Sect. 3 a detailed problem and model description is
presented. In Sect. 4 we derive a formula for the job-fill rate and provide a heuristic
to determine the repair kit. The results of a detailed numerical study are presented in
Sect. 5 before we highlight our key findings and give directions for future research in
Sect. 6.
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2 Literature

There are two streams of literature that are relevant to our research. We first summa-
rize the studies related to the repair kit problem. Then we discuss the contributions
on advance demand information for inventory planning. In particular, we confine our-
selves to perfect demand information.

Smith et al. (1980), Graves (1982), and Hausman (1982) are the first authors to
study the repair kit problem, where a tour consists of only a single job, part demands
are independent and at most one unit of a part might be needed for the repair. This
problem is extended to dependent demands and multiple units of a part in one job
(Mamer and Smith 1982; March and Scudder 1984), spare machines (Mamer and
Smith 1985) and budget constraints (Mamer and Shogan 1987). Brumelle and Granot
(1993) present a unifying approach for different formulations of the single job repair
kit problem.

The multiple job repair kit problem, where a tour can consist of several customers
to visit before the repair kit is restocked, is first studied by Heeremans and Gelders
(1995). They present a formulation of this more generic form of the repair kit problem
and propose a heuristic to determine a solution for this multiple job problem. The
authors use the probability that none of the jobs on a tour is broken as a service
criterion. Teunter (2006) presents a more general model formulation for the multiple
job problem where he assumes that all required parts that are available in the repair
kit are left with the customers, regardless of whether the job can be completed (i.e.,
regardless of whether all required parts are available in the quantities needed.) A cost
model as well as a service model with a job fill rate constraint are formulated and
a greedy heuristic is developed to solve the problem. Bijvank et al. (2010) discuss
the same problem but show how the job fill rate can be computed when spare parts
are only taken from the repair kit when all parts necessary to perform the repair are
available in the right quantity.

In two recent contributions on the multiple job repair kit problem Saccani et al.
(2016) and Prak et al. (2017) introduce replenishment costs to the cost model. Saccani
et al. (2016) assume fixed replenishment costs per delivery to the service technician
and determine optimal frequencies for these deliveries. Prak et al. (2017) consider
non-zero replenishment lead times and part-specific material handling costs. They
minimize the sum of these material handling costs and holding costs by determining
(s,S)-policies for all parts. All the papers on the repair kit problem discussed so far
assume that the service technician is completely unaware of any customer’s need for
spare parts before the first repair attempt.

Hariharan and Zipkin (1995) consider inventory management in a scenario where
customers place advance orders for goods they wish to receive at some distinct point
in the future called due date. As opposed to the supply lead time which is defined as
the time required to fill a retailer’s replenishment order, Hariharan and Zipkin (1995)
introduce the demand lead time as the interval between the time an advance customer
order is placed with the retailer and the corresponding due date. For a single product
continuous review inventory model, where advance orders are arriving according to a
Poisson process, they show that the retailer’s inventory can be managed using a base
stock policy (or an (s, S)-policy if there are fixed order costs) with replenishments
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being triggered by the advance orders. The authors find that demand lead time and
supply lead time have opposing effects on the system performance. Thus increasing
the demand lead time results in a reduced need for safety stock.

Amore general model for advance demand information is introduced for a periodic
review inventory system by Gallego and Özer (2001). They allow that in period t
customers can place orders to be delivered either immediately or in one of N future
periods t+1 to t+N . For such a situation they show that state-dependent policies with
amodified inventory position are optimal. Similar toHariharan and Zipkin (1995) their
study indicates that longer demand lead times lead to improved system performance.

A serial system is investigated by Gallego and Özer (2003) and a divergent system
by Özer (2003). While Özer (2003) considers a periodic review inventory system
Marklund (2006) studies a divergent systemunder continuous review.Other extensions
include limited production capacities (Özer and Wei 2004), flexible deliveries (Wang
and Toktay 2008) and different demand classes (Koçaǧa and Şen 2007).

The repair kit problem can be considered as a multi-product problem with each set
of spare parts required by a customer defining a product. Multi-product problems that
integrate ADI have been studied by Lu et al. (2003), Bernstein and DeCroix (2015)
and Angelus and Özer (2016). Lu et al. (2003) consider an assembly system under
continuous review where advance orders for assembled products are triggering the
replenishment of component inventories that are managed using basestock policies. A
similar system but with periodic review is studied by Angelus and Özer (2016), who
also combine advance demand information with order expediting. In Bernstein and
DeCroix (2015) advance demand information is available in aggregated form, either
as the total volume of demand across several products or as the demand mix between
these products.

Based on our literature review we can conclude, that most research on the repair
kit problem disregards advance demand information. Since it is shown (see Hariharan
and Zipkin 1995) that advance demand information reduces safety stocks, resulting in
lower inventory costs, we also conjecture a positive impact on the safety stocks in case
of the repair kit problem. However, since cost savings are usually larger for longer
demand lead times, it is unclear how strong the influence is in our setting, where lead
times are short. Therefore, we quantify in this contribution the added value of advance
demand information for the planning of a repair kit.

Since Angelus and Özer (2016) only consider one final product to be assembled,
we have a more complicated situation because repair jobs can be different for different
customers. Similar to the repair kit problem, Lu et al. (2003) also consider several final
end products. However, they assume that ADI is available for all components. If ADI
is revealed by sensor technology, it is usually not beneficially from an economic point
of view to equip all components with sensors. Therefore, the question arises which
parts should be monitored. In this contribution, we will also focus on this question
and investigate which factors are relevant in this context.

The only attempt to date that uses ADI for the repair kit problem stems from an
initial project (Rippe and Kiesmüller 2022) in which we considered unreliable and
non-part-specific ADI when planning the repair kit. In this initial project we focussed
on how to cope with the information obtained from a given imprecise and unreliable
sensor system that is only able to communicate very few error codes. This contribution,

123



The added value of advance demand information… 315

however, focusses on how to design the sensor system. Thatmeanswe examine theway
in which installing reliable part-specific sensors for different parts impacts the costs
incurred by the service technician. For this scenario where some parts are monitored
by individual sensors we are also able to derive a closed form expression for the job
fill rate.

3 Problem andmodel description

The model formulated here is an extension of the multiple-job repair kit problem with
a job fill rate service constraint that has been previously studied by Teunter (2006),
Bijvank et al. (2010), Saccani et al. (2016), and Prak et al. (2017). We first describe the
basic problem following the assumptions made in the aforementioned contributions
before we discuss the modification with advance demand information. We use the
notation summarized in Table 1.

A service technician can hold a number of N different parts in his or her repair
kit. For each of these parts, the service technician can place a replenishment order
before the start of a repair tour. These orders are delivered instantaneously. Next,
the service technician goes on a repair tour and replaces malfunctioning parts in the
customers’ appliances with spares from the repair kit. After the end of the tour holding
and replenishment costs are charged.

The immediate replenishment of spare parts before the start of a repair tour corre-
sponds to an overnight delivery from a central warehouse with ample supply. These
overnight deliveries are in linewith our experiencewith home appliancemanufacturers
who tend to restock their fleet of service technicians using an express parcel service.
Similar problemswith zero lead time have been studied by Teunter (2006) and Bijvank
et al. (2010) for example. In order to determine the order quantities for the different
spare parts, we apply part-specific (si , Si )-policies, as suggested by Prak et al. (2017).
For single-item problems with fixed order costs (s,S)-policies are optimal. They are
also easy to handle and therefore attractive for practitioners.

The demand for spare parts observed by the service technician depends on the
number of customers visited in one tour. We model the number of customers served
in a repair tour as a random variable denoted by J , where the maximum number of
customers that can be visited in any tour is denoted by M . Thus, J can take any value
in {1, . . . , M}. We consider the distribution of the number of customers in one tour to
be independent and identically distributed (i.i.d.) across all tours.

Each customer visited by the service technician has a malfunctioning appliance
due to a failure of one or multiple components. The repair is completed when all
broken components are replaced with spare parts that were brought by the service
technician in the repair kit. When a repair job cannot be completed, we assume the
service technician still leaves all available parts required by the customer on-site for
a second visit. This assumption is in line with Teunter (2006) and Prak et al. (2017).
We denote the aggregated demand for part i in the l1-th to the l2-th customer visit in
the same tour (given that the tour contains at least l2 customer visits) by Di (l1, l2).
Following this notation, the demand for part i during the l-th customer visit in a tour is
described by the random variable Di (l, l) (again given there are at least l customers).
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Table 1 Notations

Notation Description

Di (l1, l2) Aggregated demand of the l1-th to the l2-th
customer for part i (given there are at least j2
customers)

Di Total demand for part i in one tour

dmax
i Maximum number of units of part i required by

one customer

fi Material handling costs incurred per order of
part i

Fi (si , Si ) Average material handling costs per tour for part
i given the policy parameters si and Si

hi Holding costs incurred per unit of part i

Hi (si , Si ) Average holding costs per tour for part i given
the policy parameters si and Si

C(s, S) Expected total costs per tour given
s = (s1, . . . , sN ) and S = (S1, . . . , SN )

I−i Net inventory level of part i before order
placement

I+i Net inventory level of part i after order arrival
before the start of a tour

M Maximum number of customers served in one
tour

N Number of different spare parts

N1 Number of different NPs

Qi Order for part i placed before the start of a tour

J Number of repair jobs in a tour

Jc Number of completed repair jobs in a tour

Jl Binary variable indicating if the number of jobs
in the tour is at least l and the l-th job can be
completed

pl Probability that the l-th job can be completed.

pAPl Probability that sufficient units of all APs are
available for the l-th job

pN P
l Probability that sufficient units of all NPs are

available for the l-th job

πi (k) Probability that the net inventory level of part i
is k (before order arrival for APs, after order
arrival for NPs)

si Reorder level of part i

Si Order-up-to level of part i

γ (s, S) Job fill rate (JFR) given s = (s1, . . . , sN ) and
S = (S1, . . . , SN )

γ ∗ Target job fill rate

R(a) Ratio trading off cost increase and job fill rate
increase if a ∈ {si , Si |i = 1, . . . , N } is raised
by one unit
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We assume that the demand for part i is i.i.d. for all customers. Though customers’
demand distributions may be heterogeneous in real life, this simplification is common
in the repair kit literature (see Teunter 2006; Bijvank et al. 2010; Prak et al. 2017).
The distributions of Di (l, l) are taken to be discrete with the support ranging from 0 to
dmax
i . Finally, we define Di as the total demand for part i in one tour. The distribution
of Di can be computed for all i = 1, 2, . . . , N as:

P (Di = d) =
M∑

j=1

P (Di (1, j) = d) · P (J = j) ; d = 0, . . . , dmax
i · M . (1)

Costs are charged after finishing the tour. In accordance with Prak et al. (2017), we
consider two different part-specific types of costs: holding costs hi are incurred for
each unit of part i, i = 1, . . . , N , still in the repair kit after visiting all customers of
the tour and material handling costs fi for each part type i, i = 1, . . . , N , ordered to
replenish the repair kit for the repair tour regardless of the order quantity. The material
handling costs are charged for the order picking process in a central warehouse from
which the service technician is replenished. There are no fixed replenishment costs for
the actual shipment process to get the parts from the warehouse to the repair kit since
it is reasonable to assume that at least one part type needs to be replenished before a
tour. (i.e. there is always a shipment).

Contrary to previous contributions related to the repair kit problem we assume that
perfectly reliable part-specific advance demand information is available for some of
the spare parts carried in the repair kit. Thus, we divide the set of parts into non-
advance demand information parts (NP) and advance demand information parts (AP).
Without loss of generality, we arrange the parts such that the first N1 (N1 ≤ N ) parts
are NPs and that for the remaining parts (N1 + 1 to N ) advance demand information
is available. In this sense, we speak of partial advance demand information.

Focusing first on NPs we need to introduce a tour index t to describe the inventory
development of a particular part i, i = 1, . . . , N1 over consecutive tours. Let I

−
i,t and

I+
i,t define this part’s net inventory level before order placement and right after order
arrival before the start of tour t . With si and Si being the reorder- and the order-up-to-
level for part i the amount ordered Qi,t for this part before the start of tour t is given
by

Qi,t =
{
Si − I−

i,t if I−
i,t ≤ si

0 if I−
i,t > si .

(2)

Let Di,t denote the demand for part i, i = 1, . . . , N1 in tour t . This leads to the
following recursive relation

I+
i,t+1 =

{
Si if I+

i,t − Di,t ≤ si
I+
i,t − Di,t if I+

i,t − Di,t > si .
(3)

Turning to APs we assume that for each AP there is a sensor that is monitoring
the condition of this very part. This sensor communicates a binary signal (either up
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or down), which we assume to be 100% reliable. In case a customer’s appliance
experiences a failure the service provider will be able to connect to the appliance
via remote diagnostics. This means that given the customer’s permission the service
provider can read the appliance’s error log from afar. In this error log the status of each
sensor is listed, giving the service provider valuable insights into what has caused the
appliance’s failure. Therefore, if a particular sensor detects the failure of a part type,
this is essentially advance demand information from the service technician’s point
of view. We make the assumption that this advance demand information is available
to the service technician before he or she is placing the initial replenishment order
prior to the start of the repair tour. Thus the order quantity Qi,t of a particular AP
i, i = N1 + 1, . . . , N before the start of a tour t depends not only on the net inventory
level I−

i,t but also on the demand Di,t for the upcoming repair tour that the technician
is already aware of. With si and Si again being the reorder- and the order-up-to-level
we obtain

Qi,t =
{
Si −

(
I−
i,t − Di,t

)
if I−

i,t − Di,t ≤ si
0 if I−

i,t − Di,t > si .
(4)

For the net inventory level before order placement this gives us the following recursive
equation

I−
i,t+1 =

{
Si if I−

i,t − Di,t ≤ si
I−
i,t − Di,t if I−

i,t − Di,t > si .
(5)

Please note, that in contrast to the NPs the order quantity already includes the demand
of the next tour, which also results in earlier order triggering. Further, for an NP the
parameter Si is a target for the net inventory level before the start of a tour, whereas
for an AP it is a target for the net inventory level after all customers have been visited.

Even though the demand for an AP in the next tour is known beforehand and our
replenishment lead time is zero, that does not necessarily mean that the corresponding
repair job can always be finished successfully. First, it may happen, that additional
NP spare parts are needed which are not available. Second, it may be beneficial to
allow planned backorders to reduce holding costs if the fixed replenishment costs are
high. This would require large ordering batches and reorder levels to be below −1.
However, this will only happen, if the service requirement is not too high.

In order to perform a single repair job, a combination of several NPs and APs
might be required. We assume that the failures of different parts are independent of
each other. Otherwise, we could simply model them as one part, monitoring them if
possible with just one common sensor.

Our objective is to minimize the average sum of holding and material handling
costs subject to a service level constraint. To this end our decision variables are the
reorder levels s = (s1, . . . , sN ) and the order-up-to levels S = (S1, . . . , SN ).

We aim to minimize the expected costs per tour across all parts i, i = 1, . . . , N . Let
us define Hi (si , Si ) and Fi (si , Si ) as the holding and the replenishment cost we can
expect to incur for part i, i = 1, . . . , N per tour when the policy parameters (si , Si )
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are implemented. We obtain

Hi (si , Si ) = hi · E
[
max

(
I+
i − Di , 0

)]
and Fi (si , Si ) = fi · P(Qi > 0). (6)

Then the expected total costs per tour can be calculated as

C(s, S) =
N∑

i=1

Hi (si , Si ) + Fi (si , Si ) (7)

The service level we are interested in is the job fill rate γ (s, S) (with s =
(s1, . . . , sN ) and S = (S1, . . . , SN )), which is defined as the fraction of jobs that
can be completed immediately with the spare parts carried in the repair kit. The job
fill rate has previously been used by Teunter (2006), Bijvank et al. (2010), and Prak
et al. (2017) for similar multi-job problems. It reflects the average customer satis-
faction across all customers in a tour, which makes it a good performance indicator
from the service provider’s point of view. We assume, that the service technician only
visits customers when he or she knows that all APs are available. Otherwise, in case
of planned backorders, when it is already clear, that a job cannot be completed suc-
cessfully, the customer is not visited in the next tour and the repair is planned for a
later tour. Such a job still counts as a broken job for the job fill rate, because it can
not be completed within the next day. With γ ∗ being the target service level, we can
formulate the optimization problem as follows

min
s,S

C(s, S)

s.t. γ (s, S) ≥ γ ∗

s ∈ ZN

S ∈ NN
0 (8)

4 Analysis

In this section, we first derive a closed-form expression for the job fill rate and the
expected holding and material handling costs for a given set of (s,S)-policies for
all parts considered. Then we outline a greedy algorithm to determine near-optimal
parameters si and Si , (i ∈ {1, . . . , N }) for the optimization problem.

4.1 Job fill rate

Let us first define Jc as the number of completed jobs out of the total number of J
jobs in a repair tour. In order to derive the job fill rate we can describe Jc as the sum of
a number of binary variables J1, . . . , JM where Jl = 1, (l ∈ {1, . . . , M}) if at least l
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customers are visited in one tour and the l-th job can be completed. With pl being the
probability that the l-th job can be completed (given J ≥ l) we obtain

γ (s, S) = E [Jc]

E [J ]
=

M∑
l=1

E [Jl ]

E [J ]
=

M∑
l=1

P(J ≥ l) · pl
M∑
l=1

P(J ≥ l)

. (9)

The probability pl , (l ∈ {1, . . . , M}) can be split up into the probabilities pN P
l and

pAP
l that sufficient units of all NPs and all APs are available to complete the l-th job

(given J ≥ l) with

pl = pN P
l · pAP

l . (10)

The probability pN P
l has already been derived by Prak et al. (2017). In a first step,

they determine the steady-state distribution of the net inventory level after order arrival
before the start of a tour for all parts (see Appendix I). We denote these steady-
state probabilities by πi (k) (i = 1, . . . , N1, k = si + 1, . . . , Si ). Then pN P

l can be
determined as follows

pN P
l =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N1∏
i=1

[
Si∑
k=0

πi (k) · P (Di (l, l) ≤ k)

]
if l = 1

N1∏
i=1

[
P (Di (l, l) = 0) +

Si∑
m=1

Si−m∑
n=0

Si∑
k=m+n

P (Di (l, l, ) = m) if l ≥ 2

·P (Di (1, l − 1) = n) · πi (k)

]

(11)

This formula reflects that the l-th job can only be completed if sufficient units of all
NPs are available for the l-th customer. This is the case if a part is either not required
at all by the customer or if the stock at the beginning of the tour minus the quantity
requested by the preceding customers still exceeds the demand of customer l.

In order to determine the probability pAP
l weneed to consider the net inventory level

before order placement and the demand during the course of a tour for all differentAPs.
Be aware that in this case, the ordering decision before the start of a tour depends on
the demand of the customers to be served as it is already known due to advance demand
information. Comparing Eqs. (3) and (5) we realize that the recursive equation for an
NP’s net inventory level after order arrival is equivalent to the recursive equation for
an AP’s inventory level before ordering. Thus, the steady-state distribution of an AP’s
inventory level before order placement corresponds to the steady-state distribution of
an NP’s net inventory level after order arrival before the start of the tour. Because of
this propertywe defineπi (k), (i = N1 + 1, . . . , N , k = si + 1, . . . , Si ) as the steady-
state probabilities for the APs’ inventory level before order placement. This means that
for NPs and APs πi (k) defines the steady-state probabilities of the net inventory level
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at different time points, but it is calculated in the exact same way using the formula
derived by Prak et al. (2017).(See Appendix I)

For the derivation of the probability that sufficient units of an AP are available for
the l-th customer, we have to realize that this probability depends on the total number
of customers in the tour J ≥ l. This means that the l-th customer’s chance of being
served does not only depend on the preceding customers 1 to l − 1 but also on the
succeeding customers l + 1 to J , because the replenishment decision before the start
of the tour has been made taking into account all of these customers’ advance demand
information (4). Therefore, the probability that the l-th job can be completed depends
on the tour length J ≥ l in case of advance demand information. We can express this
probability as follows.

pAPl =
M∑

j=l

P(J = j |J ≥ l) ·
N∏

i=N1+1

P
(
Di (l, l) ≤ max

(
I+i − Di (1, l − 1), 0

)
|J = j

)

=
M∑

j=l

P(J = j)

P(J ≥ l)
·

N∏

i=N1+1

P
(
Di (l, l) ≤ max

(
I+i − Di (1, l − 1), 0

)
|J = j

)
. (12)

The term P
(
Di (l, l) ≤ max

(
I+
i − Di (1, l − 1), 0

) |J = j
)
that describes the prob-

ability that sufficient units of AP i are available for the l-th out of j customers can
now be split into two parts again:

P
(
Di (l, l) ≤ max

(
I+
i � Di (1, l � 1), 0

) |J = j
)

= P(I+
i � Di (1, l) < 0, Di (l, l) = 0|J = j)

+ P(I+
i � Di (1, l) ≥ 0|J = j). (13)

The first summand describes the probability that the inventory level of part i is
negative after visiting customer number l, but not due to the demand of this cus-
tomer which was zero. Note that the net inventory level I+

i depends on the total
number of customers j and their demand. Thus, the two events in the first summand
are not independent. The second summand is the probability that the net inventory
level of part i , after the l-th customer has been visited, is non-negative. To deter-
mine both probabilities, summand one and two, we express the inventory level I+

i
after orders as the inventory level before orders I−

i plus the ordered quantity Qi .
For APs the ordered quantity depends on the inventory level before orders I−

i and
the total demand Di (1, j). The total demand in a tour of j customers may take any
value between 0 and j · dmax

i . By conditioning on the values of I−
i and Di (1, j) we

can determine the exact ordered quantity for all relevant demand-inventory scenar-
ios. That way we reformulate both probabilities P(I+

i − Di (1, l) ≥ 0|J = j) and
P(I+

i − Di (1, l) < 0, Di (l, l) = 0|J = j) using only the steady-state prob-
abilities πi (k), ( k = si + 1, . . . , Si ) and the probabilities P(Di (l1, l2) = m),

(1 ≤ l1 ≤ l2 ≤ M, m = 1, . . . , M · dmax
i ) that describe the customer demand.

We obtain the results given in the following Eqs. (14) and (15). A detailed derivation
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is provided in Appendix II. To cover the cases in which we are either considering the
first or the last customer in a tour let us define Di (l1, l2) := 0 for l1 > l2.

P(I+i − Di (1, l) ≥ 0|J = j)

=
j ·dmax

i∑

m=1

min(si+m,Si )∑

k=s+1

[
P(Di (1, j) = m) · πi (k)

]

+
min( j ·dmax

i ,Si−si−1)∑

m=0

Si∑

k=max(si+m+1,0)

min(k,m)∑

n=0

[
P(Di (1, l) = n) · P(Di (l + 1, j) = m − n) · πi (k)

]

(14)

P(I+i − Di (1, l) < 0, Di (l, l) = 0|J = j)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(Di (1, 1) = 0) ·
[
1 −

Si∑

k=max(0,si+1)
πi (k)

]
if l = j = 1

P(Di (l, l) = 0)

·
⎡

⎣1 −
⎛

⎝
( j−1)·dmax

i∑
m=1

min(si+m,Si )∑
k=si+1

[
πi (k) · P(Di (1, l − 1) + Di (l + 1, j) = m)

]

+
min

(
( j−1)·dmax

i ,

Si−si−1

)

∑
m=0

Si∑

k=max(si+m+1,0)

min(k,m)∑
n=0

[
P(Di (l + 1, j) = m − n) else

·P(Di (1, l − 1) = n) · πi (k)
]
)]

(15)

4.2 Cost function

For all parts i ∈ (1, . . . , N ) we derive part-specific holding costs Hi (si , Si ) and
material handling costs Fi (si , Si ). We consider the expected costs per tour. Both costs
are charged at the end of a tour. However, the replenishment costs are determined
based on the replenishment that occurs before the start of a repair tour.

4.2.1 Cost function for NPs

In order to determine the holding cost for an NP i, i = 1, . . . , N1, we need to
determine the distribution of the net inventory level at the end of the repair tour. We
obtain this distribution as the convolution of the steady-state distribution of the net
inventory level after order arrival before the start of the tour and the distribution of the
demand in an arbitrary tour. This gives us the following result

Hi (si , Si ) = hi · E
[
max

(
I+
i − Di , 0

)]

=
Si∑

k=si+1

k∑

m=1

(k − m) · πi (k) · P (Di = m) (16)
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In deriving the material handling cost incurred for a part i, i = 1, . . . , N1, we need
to quantify the probability that an order is placed before the start of a tour. In case
we consider an NP the ordering decision is entirely based on the net inventory level
I−
i . Unfortunately, at this point we only have the steady-state distribution of the net
inventory level after order placement. However, the inventory level before ordering
prior to the start of a tour t corresponds to the net inventory level after demand is
fulfilled at end of the previous tour t − 1. Because of this, we obtain

Fi (si , Si ) = fi [1 − P (Qi = 0)]

= fi
[
1 − P

(
I−
i > si

)]

= fi
[
1 − P

(
I+
i − Di > si

)]

= fi

⎡

⎣1 −
Si∑

k=si+1

k−(si+1)∑

m=0

πi (k)P (Di = m)

⎤

⎦ (17)

4.2.2 Cost function for APs

For the computation of the holding cost incurred for an AP i, i = N1 + 1, . . . , N
again we need to consider the inventory level at the end of the tour after demand
fulfillment. Yet this is equivalent to the net inventory level at the very beginning of
the next tour before order placement. The steady-state distribution of an AP’s net
inventory level before order placement, however, is known as it corresponds to the
steady-state distribution of an NP’s net inventory level after order arrival. This gives
us

Hi (si , Si ) = hi · E
[
max

(
I+
i − Di , 0

)]

= hi · E
[
max

(
I−
i , 0

)]

= hi ·
Si∑

k=si+1

k · πi (k) (18)

For the material handling costs we derive

Fi (si , Si ) = fi [1 − P (Qi = 0)]

= fi
[
1 − P

(
I−
i − Di > si

)]

= fi

⎡

⎣1 −
Si∑

k=si+1

k−(si+1)∑

m=0

πi (k)P (Di = m)

⎤

⎦ (19)

Note that the material handling costs are calculated in the same way for parts with and
without advance demand information. Thus, integrating advance demand information
for a particular part does not have an impact on the material handling costs at least not
if we do not adapt the policy parameters si and Si at the same time.
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4.3 Heuristic solution procedure

Since the number of possible combinations of reorder levels s = (s1, . . . , sN ) and
order-up-to-levels S = (S1, . . . , SN ) is increasing exponentially with the number of
different spare parts to be considered, the computational effort would be too high
to compute an optimal solution for real-life problems. Therefore, we use a greedy
heuristic to determine solutions for optimization problem (8). For repair kit problems
that disregard advanced demand information similar approaches have been suggested
by Teunter (2006), Bijvank et al. (2010), and Prak et al. (2017).

Our greedy algorithm iteratively increases the different parts’ reorder and order-
up-to levels until the target job fill rate is achieved. As in Prak et al. (2017), we build
upon the EOQmodel to obtain an initial solution for the policy parameters. We derive

Qi := Si − si = max

⎛

⎝

⎢⎢⎢⎣
√
2 fi Di

hi

⎤

⎥⎥⎥
, 1

⎞

⎠ , i = 1, 2, . . . , N (20)

where Di is the average demand for part i for one tour and set si = −Qi and Si = 0
for all i ∈ {1, . . . , N }. Starting from this EOQ-based solution we increase either the
reorder or the order-up-to level of a single part in each iteration. In either case, the job
fill rate is non-decreasing. The total costs, however, may decrease upon an increase of
a part’s order-up-to-level. That is due to a decrease in material handling costs. For this
reason, selecting the action with the least cost increase to job fill rate increase ratio
would favor actions with low job fill rate increases over larger job fill rate increases
given the same negative cost increase. To avoid this problem we introduce a new ratio
R. Let�aC(s, S) and�aγ (s, S) denote the cost and job fill rate increase respectively
given a ∈ {si , Si |i = 1, . . . , N } is increased by one unit. Then R is defined by

R(a) = �aC(s, S) · (�aγ (s, S) + ε)−sgn(�aC(s,S)) , (21)

with ε = 10−40. In each iteration, we select the action a with the least R(a) value.
That way we will always choose larger over smaller job fill rate increases given the
same (positive or negative) cost increase.We add the small positive constant ε to avoid
numerical problems in case the job fill rate increase for an action is 0 or close to 0.
Once this greedy procedure reaches a solution that satisfies the service constraint, we
check if we can further reduce costs without falling below the target job fill rate again.
To this end, we try to reduce the reorder levels of all parts in the reverse order in which
they were last increased. We refer to this last step as the reduction step. A detailed
description of the greedy algorithm is provided in Appendix III.

While we use the same initial solution as Prak et al. (2017) for their non-ADI
problem, our algorithm differs from theirs in that we do not increase reorder and order-
up-to levels simultaneously in each step. We tested two versions of our algorithm with
either simultaneous or independent increments of reorder and order-up-to-levels on the
problem instances presented in the following numerical experiment (5.1). Allowing for
independent increments led to slightly better solutions that were up to 2.62% cheaper
than those generated with the simultaneous-increase approach. We also considered
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the impact of different starting solutions. However, we find that the algorithm is rather
insensitive to the starting solution for as long as the initial reorder and order-up-to
levels are low enough not to preclude potentially good solutions. With EOQ-based
initial solutions that does not happen. The reduction step we perform is similar to a
procedure suggested by Bijvank et al. (2010) for a repair kit problemwithout handling
costs and ADI.

5 Numerical study

The aim of our numerical study is twofold. First, we quantify the added value of inte-
grating advance demand information and investigate the causes of the cost savings. In a
second study, we examine for which spare parts having advance demand information is
especially advantageous. In particular, we are looking at the impact of a part’s demand
probability and its price on the benefits of integrating advance demand information for
this part. For both studies, we assume that only one unit of each part can be required
by a single customer (dmax

i = 1, i = 1, . . . , N ). In that sense the demand probability
for a part i refers to the probability P(Di (l, l) = 1) that a single customer l requires
a unit of this part, where this probability is identical for all customers l = 1, . . . , J in
a tour.

5.1 The added value of advance demand information

In this section, we quantify the added value of advance demand information by con-
structing repair kits with the heuristic solution procedure assuming that advance
demand information is either available for some parts or not at all. The difference
in the corresponding costs is then the added value of the advance demand informa-
tion. We measure this added value for examples with 100 different spare parts, which
corresponds to the largest problem sizes considered in the experiments conducted by
Teunter (2006). However, using the heuristic solution procedure we proposed, we can
solve instances with 1000 spare parts in less than 40 minutes (executed in R using a
single core of a 1.6 GHz Intel®CoreTM i5-8520U processor)

We consider 100 instances that differ with respect to the probability that a spare part
is needed for a job and the price of the spare part. The demand probabilities as well
as the prices of the spare parts are randomly selected from uniform distributions on
[0.001; 0.2] and [1e;500e] respectively. The annual holding cost rate is fixed to 20%
of a spare part’s price and the material handling costs related to each replenishment are
fixed to 1e for each part. The number of customers to be visited per tour is assumed to
follow a discrete uniform distribution between one and six. For all numerical results
we have chosen a target job fill rate of 90%, but results are similar for other target
service levels.

We compare the situation where none of the parts has advance demand informa-
tion with several scenarios in which a growing number of the parts can generate
advance information. In all cases, the repair kit is determined with the heuristic solu-
tion approach and the corresponding costs are computed as in 4.2. Let us denote the
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Fig. 1 The relative total cost reduction due to ADI given a target JFR of 90%

reorder and order-up-to-levels obtained when the first x %of the parts provide ADI by
sx and Sx . To determine the benefit of different levels of ADI availability we measure
the relative cost reduction

C
(
s0, S0

)− C (sx , Sx )

C
(
s0, S0

) · 100% (22)

for x ∈ {10, 20, . . . , 90, 100}. The results for our 100 problem instances are depicted
in Fig. 1.

It is not surprising that the total cost reduction is increasing with the number of parts
equipped with technology to deliver advance demand information. With additional
information available we can lower the average amount of stock that is required to
satisfy the service constraint, which leads to reduced holding costs. These holding
cost reductions are opposed by only a small increase in order costs. We find that the
total cost reduction we observe is not just due to the parts equipped with sensors to
provide ADI. In case less than 50% of the parts are equipped with ADI, these APs
only account for 80% to 85% of the cost savings. The other 15% to 20% of the total
cost savings can be attributed to NPs, where the safety stock can be reduced as well
(see Fig. 2).

With advance information obtained for some parts we are able to increase these
parts’ availability while reducing their stock levels at the same time compared to the
baseline scenario in which there is no advance demand information at all. Due to this
increased availability for the APs, we can decrease the availability of some of the
NPs and still reach the predefined target service level. Decreasing an NP’s availability,
however, is achieved by lowering its stocking levelswhich results in decreasing holding
costs. That is why up to 20% of the cost savings can be attributed to the NPs.
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Fig. 2 Share of total cost reduction based on APs

5.2 Identification of suitable parts for advance demand information

In a real-life application fitting sensors to all parts in an appliance is rather unrealistic
as it may not be technically possible. Further, due to the costs for the installation
of sensors, it may also not be feasible from an economic point of view to equip all
parts with this technology. Therefore, we examine in the following, for which parts
having advance demand information is particularly advantageous regarding the total
cost reduction that can be achieved. For this reason, we are looking at the impact that
parts’ demand probabilities and their prices have on the benefit of having advance
demand information for these parts. We would expect the value of advance demand
information to increase with increasing demand frequencies and increasing prices of
the monitored parts.
In order to test the first conjecture concerning the impact of the demand probability, we
conduct a second experiment. For this experiment, we consider 100 problem instances
generated as described in Table 2. Each problem instance consists of 20 parts that differ
in their demand probabilities but not in their prices which are identical for all parts.
Out of the 20 parts, 5 parts are to be monitored by sensors that provide ADI. The
objective is to find out which combinations of APs yield the best results and in how
far these results depend on the APs’ demand probabilities. In this setting, there are in
total

(20
5

) = 15504 possible combinations of APs. Out of this set, we randomly select
500 different combinations for each problem instance. For each AP combination, we
determine the repair kit with the greedy algorithm described in Sect. 4.3. We derive
the corresponding total costs and compare them with the costs of a repair kit that
is constructed with the same algorithm assuming all parts are NPs. For each AP
combination, we determine the potential cost savings as defined in term (22).

To describe the impact of the parts’ demand probabilities on the benefit of ADI
availability we characterize all AP combinations by the mean demand probability of
the respective APs. When we compare the cost savings that can be achieved with
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Table 2 Parameter settings

Conjecture 1
100 instances generated as

follows:

Conjecture 2
100 instances generated as

follows:
number of parts 20 parts
available ADI 5 APs, 15 NPs, 500 randomly selected AP combinations
holding cost rate 0.05/365 (per day)
number of customers
per tour

discrete uniformly distributed between 1 and 6

target job fill rate continuous uniformly distributed between 90% and 99%
material handling cost
per order

0.2

demand probabilities continuous uniformly
distributed between 5% and

25%

15%

price 50 continuous uniformly
distributed between 1 and 100
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Fig. 3 Impact of the APs’ mean demand probability

various AP combinations we find that using sensors for parts with higher demand
probabilities pays off in general. However, there is no monotone relationship between
the APs’ mean demand probability and the costs savings that can be obtained. Out of
the 100 instances, we considered the AP combination with the largest mean demand
probability led to the largest cost savings in only 19 cases. Yet for 90 instances it
is among the 10% most beneficial AP combinations. We find that the correlation
coefficient between the APs’ mean demand probability and the cost savings ranges
from −0.40 to 0.88 with a mean of 0.69 across all instances. For further analysis let
us consider the instance with the correlation coefficient closest to the average value
of 0.69. Figure 3 illustrates the relation between the APs’ mean demand probabilities
and the corresponding cost savings for all AP combinations of this example instance.

We find that the increasing cost savings we observe for increasing mean demand
probabilities of the APs are primarily due to decreased holding costs in the case where
ADI is available. With the APs’ mean demand probability increasing the total amount
of stock necessary to satisfy the target job fill rate can generally be decreased. That is
why we see a trend for lower holding costs with larger APmean demand probabilities.
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Fig. 4 Impact of the APs’ mean price

However, stock levels are managed by the choice of integer reorder and order-up-to
levels for all parts. Because of this integrality, exchanging one part from the set of APs
with one from the set of NPs that has a slightly higher demand probability may not
enable us to decrease the reorder or the order-up-to level of any of the parts. Where
this happens this exchange can even cause additional holding costs. That is because
with unchanged policy parameters an increased demand probability for a part leads
to an increased replenishment frequency for that part. Whenever an AP is replenished
its inventory level at the end of the next tour is equal to its order-up-to level (see (5)).
Thus, the more often we order an AP i the more often we have Si units on hand at the
end of a tour. This leads to increased stock levels and thus increased holding costs for
this AP. This effect is one reason why the cost savings in Fig. 3 are not monotonically
increasing in the AP’s mean demand probabilities. Another reason is that holding cost
reductions are sometimes opposed by increased material handling costs. This occurs
when the stock reduction is achieved by lowered order-up-to levels against the same
reorder levels.

In the second part of this numerical study, we concentrate on the second conjecture
that expensive parts should be equipped with a sensor because this leads to the largest
cost savings. To gain insights we conduct a third experiment that again comprises 100
problem instances. These instances are constructed as described in Table 2. Again we
consider 20 parts for each instance. This time though the demand probabilities for all
parts are identical while they differ in their prices. As for the second experiment, we
examine 500 randomly selected AP combinations with 5 APs and 15 NPs for each
instance. For each combination,we employ our greedy heuristic to determine the repair
kit. Additionally, we construct a repair kit with the same algorithm for an NP-only
scenario. Comparing the costs incurred with the AP combinations and in the NP-only
scenario, we can calculate the cost savings as described in term (22).We contrast these
cost savings achieved with the various AP combinations with the average prices of the
respective APs. As can be seen from the results of the exemplary instance depicted in
Fig. 4 there is no monotone relation between the average price of the APs and the cost
savings that can be achieved. Yet, there is a very strong positive correlation between
the average prices of the APs and the cost savings. For all 100 instances, we tested the
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correlation coefficient was larger than 0.97. The most valuable combination of APs
also led to the highest cost savings in 93 out of the 100 problem instances and for the
other 7 instances it was amongst the 5 best combinations. Based on this result, we
can assume that given all parts are equally likely to fail, it would be most beneficial
to monitor the five most expensive parts as they would form the AP combination with
the highest mean price.

6 Summary and outlook

Technical innovations can help to improve inventory planning if more information
about future demand can be generated. In the context of spare parts management,
this advance demand information can be generated by sensors, which help a service
technician decide about the required spare parts for a repair. In this paper, we have
extended the repair kit problem to a situation where some parts are equipped with
sensors such that perfect advance demand information is obtained. The presented
model can be used to quantify the added value of this technology for the repair kit
planning problem.We have shown, that with perfect ADI for some parts, safety stocks
can be reduced while maintaining the same service level, which can result in large
cost savings. These cost savings are not just due to the parts which are monitored.
That is because the job fill rate service criterion measures the joint availability of parts
such that the increased availability of parts with ADI, may be offset by the decreased
availability of other parts without ADI. Further, we find that monitoring combinations
of parts with high mean demand probabilities and high mean prices in general leads
to the largest cost savings. There is a very strong correlation between the mean price
of the parts that are monitored and the cost savings potential compared to a non-ADI
scenario. The correlation between the monitored parts’ mean demand probabilities
and the cost savings that can be achieved is still strong on average across all problem
instances that we considered. However, we did observe instances for whichmonitoring
the parts most likely to fail led to sub-optimal cost savings. Summing up, our model
can be used to quantify the cost savings obtained by sensor technology and to support
decision making, when parts have to be selected for redesign and configuration with
sensors.
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Appendix I - Derivation of �i(k) according to Prak et al. (2017)

We follow (Prak et al. 2017) in deriving the steady-state probabilities πi (k), k =
si + 1, . . . , Si of the net inventory level of an NP i before the start of the tour but after
order arrival (if an order has been placed at all). Let us define the time between two
consecutive order arrivals as an order cycle. In a first step the probability that the net
inventory level reaches a certain level k = si+1, . . . , Si at some point within one order
cycle has to be determined. We denote this probability by �i (k), k = si + 1, . . . , Si .
Then we can use this probability to derive the probability that the net inventory level
is in a particular state k at an arbitrary point in time within the order cycle. This latter
probability is our steady-state probability πi (k).

The probabilities �i (k), k = si + 1, . . . , Si can be calculated recursively starting
from k = Si with the following formula

�i (k) =
⎧
⎨

⎩

1 if k = Si
Si∑

l=k+1
�i (l) · P(Di=l−k)

1−P(Di=0) if k < si ,
(23)

At the beginning of each cycle, the net inventory level is always Si . Thus, Si is reached
with probability one. The following levels k = Si − 1, . . . , si + 1 are then reached
if the net inventory level drops to this level from one of the previously reached levels
due to the observed customer demand. The denominator 1− P (Di = 0) accounts for
the possibility that no demand for part i might occur for an arbitrary number of tours.
Using �i (k), we can calculate πi (k) as follows

πi (k) = �i (k)
Si∑

l=si+1
�i (l)

. (24)

Appendix II -DerivationofP
(
Di(l, l)≤ max

(
I+i − Di(1, l − 1), 0

) |J = j
)

We can determine the probability P
(
Di (l, l) ≤ max

(
I+
i − Di (1, l − 1), 0

) |J = j
)

that sufficient units of part i are available for the l-th out of j jobs in total as the
sum of P

(
I+
i − Di (1, l) ≥ 0|J = j

)
and P(I+

i − Di (1, l) < 0, Di (l, l) = 0|J =
j). P

(
I+
i − Di (1, l) ≥ 0|J = j

)
is the probability that the net inventory of part i

after visiting the l-th customer is not negative. In this case, the l-th job must be
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complete. Even if there are already backorders for part i before the l-th customer
is visited, this job can be completed if part i is not required by the l-th customer.
P(I+

i − Di (1, l) < 0, Di (l, l) = 0|J = j) describes the probability of this event.
Let us start by determining the first summand P

(
I+
i − Di (1, l) ≥ 0|J = j

)
. We

can express this probability by considering the net inventory level before ordering I−
i ,

the order quantity Qi and the demand Di . Keep in mind that as explained in Sect. 4.1
for an AP i πi (k), k = si + 1, . . . , Si defines the steady-state probabilities of the net
inventory level before order placement. Using this we obtain

P(I+
i − Di (1, l) ≥ 0 | J = j)

= P(I−
i + Qi − Di (1, l) ≥ 0 | J = j)

=
j ·dmax

i∑

m=0

P(I−
i + Qi − Di (1, l) ≥ 0 | Di (1, j) = m) · P(Di (1, j) = m)

=
j ·dmax

i∑

m=0

Si∑

k=si+1

P(k + Qi − Di (1, l) ≥ 0 | Di (1, j) = m, I−
i = k) · P(Di (1, j) = m) · πi (k)

(25)

Since Qi depends on the values of Di (1, j) and I−
i we can split (25) into two parts.

The first part considers all relevant events in which an order was placed and the second
part considers the relevant events in which no order was placed.

P(I+i − Di (1, l) ≥ 0 | J = j)

=
j ·dmax

i∑

m=1

min(si+m,Si )∑

k=si+1

[
P(Di (1, l) ≤ m + Si | Di (1, j) = m) · P(Di (1, j) = m) · πi (k)

]

+
min

(
( j−1)·dmax

i ,

Si−si−1

)

∑

m=0

Si∑

k=max(si+m+1,0)

[
P(Di (1, l) ≤ k | Di (1, j) = m) · P(Di (1, j) = m) · πi (k)

]

=
j ·dmax

i∑

m=1

min(si+m,Si )∑

k=s+1

[
P(Di (1, j) = m) · πi (k)

]

+
min

(
( j−1)·dmax

i ,

Si−si−1

)

∑

m=0

Si∑

k=max(si+m+1,0)

min(k,m)∑

n=0

[
P(Di (1, l) = n) · P(Di (l + 1, j) = m − n) · πi (k)

]

(26)

Let us now determine the probability P(I+
i − Di (1, l) < 0, Di (l, l) = 0|J = j)

that the net inventory level is negative after performing the l-th job but not because
of the demand of the l-th customer which was zero. For this purpose, we must first
differentiate between the case in which we have only one job in the entire repair tour
and all cases with more than one job in the tour. If we assume the total number of jobs
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J in the tour is one, then l has to be one as well. We obtain the following result

P(I+
i − Di (1, 1) < 0, Di (1, 1) = 0 | J = 1) =P(Di (1, 1) = 0) · P(I+

i < 0)
(27)

Since we only have one customer on the tour who does not require part i it is safe
to say that this part has not been replenished before the start of the tour, as the order
quantity is based on the demand in the upcoming tour that is known beforehand. That
means that the net inventory levels I−

i and I+
i are identical. Thus we get for J = 1.

P(I+
i − Di (1, 1) < 0, Di (1, 1) = 0 | J = 1)

= P(Di (1, 1) = 0) · P(I−
i < 0)

= P(Di (1, 1) = 0) ·
⎡

⎣1 −
Si∑

k=max(0,si+1)

πi (k)

⎤

⎦ (28)

In case we have more than just one customer we get the following result

P(I+
i − Di (1, l) < 0, Di (l, l) = 0 | J = j)

= P(I+
i − Di (1, l − 1) < 0, Di (l, l) = 0 | J = j).

= P(Di (l, l) = 0) · [1 − P(I+
i − Di (1, l − 1) ≥ 0 | Di (l, l) = 0, J = j)

]
(29)

Note that we defined D(l1, l2) := 0 for l1 > l2. Using this definition the above result
holds even when we are considering the first customer in a tour (l=1). At this point,
we can determine P(I+

i − Di (1, l − 1) ≥ 0 | Di (l, l) = 0, J = j) analogously to
P
(
I+
i − Di (1, l) ≥ 0 | J = j

)
(see (2) and (26)). Thus, we get

P(I+i − Di (1, l) < 0, Di (l, l) = 0|J = j)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(Di (1, 1) = 0) ·
[
1 −

Si∑

k=max(0,si+1)
πi (k)

]
if l = j = 1

P(Di (l, l) = 0)

·
⎡

⎣1 −
⎛

⎝
( j−1)·dmax

i∑
m=1

min(si+m,Si )∑
k=si+1

[
πi (k) · P(Di (1, l − 1) + Di (l + 1, j) = m)

]

+
min

(
( j−1)·dmax

i ,

Si−si−1

)

∑
m=0

Si∑

k=max(si+m+1,0)

min(k,m)∑
n=0

[
P(Di (l + 1, j) = m − n) else

·P(Di (1, l − 1) = n) · πi (k)
]
)]

(30)
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Appendix III - Greedy Heuristic

Algorithm 1 Greedy heuristic
Input: unit holding cost hi , ∀i ∈ {1, . . . , N } , material handling cost fi , ∀i ∈ {1, . . . , N }, customer dis-
tribution P(J = j), ∀ j ∈ {1, . . . , N } , Demand distribution P(Di (l, l) = d), ∀d ∈ {0, . . . , dmax

i

}
, i ∈

{1, . . . , N } and P(Di = d), ∀d ∈ {0, . . . , dmax
i · M} , i ∈ {1, . . . , N }, target job fill rate γ ∗

Output: reorder and order-up-to levels s and S

Di ←
M ·dmax

i∑
d=0

d
M∑
j=1

P(Di (1, j) = d) · P(J = j), ∀i ∈ {1, . . . , N }

Qi ← max

(⌊√
2 fi Di
hi

⌉
, 1

)
, ∀i ∈ {1, . . . , N }

s ← −Q, S ← 0N

order ← ∅
while γ (s, S) < γ ∗ do

R(si ) ← �si C(s, S) · (�si γ (s, S) + ε
)−sgn(�si C(s,S))

, ∀i ∈ {1, . . . , N }
R(Si ) ← �Si C(s, S) · (�Si γ (s, S) + ε

)−sgn(�Si
C(s,S))

, ∀i ∈ {1, . . . , N }
if min

i
R(si ) < min

i
R(Si ) then

i∗ ← arg min
i∈{1,...,N }

R(si )

si∗ ← si∗ + 1
order ← (

i∗, order
)

else
i∗ ← arg min

i∈{1,...,N }
R(Si )

Si∗ ← Si∗ + 1
end if

end while
for j = 1 to length(order) do

if order[ j] 	=order[k], ∀k ∈ {1, . . . , j − 1} then
i ← order[ j]
stemp ← s
s
temp
i ← si + 1

if γ (stemp, S) > γ ∗ then
s ← stemp

end if
end if

end for
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a b s t r a c t 

To promote customer loyalty and generate revenue in after-sales service, many companies provide field 

repair services to their customers. Service technicians who perform these repair jobs typically carry a set 

of spare parts called a repair kit in their company van. The repair kit problem aims to determine which 

parts to include in this kit and in what quantity. Currently, many appliances are equipped with sensors 

that monitor their different functionalities. If an appliance breaks down because one of these functional- 

ities is disturbed, then the respective sensor triggers a failure code that describes the appliance’s condi- 

tion. From the service technician’s perspective, this failure code serves as potentially imperfect advance 

demand information for spare parts. In this paper, we present an extension of the repair kit problem 

that uses this information for the replenishment decision. We formulate this repair kit problem with ad- 

vance demand information as a Markov decision process and propose two heuristic solution procedures. 

Our first heuristic is far-sighted and optimizes the inventory of all parts individually, while our second 

heuristic is a myopic greedy algorithm that considers all parts at once. We conduct an extensive numer- 

ical study to evaluate the performance of both heuristics and to identify which heuristic performs best 

under which circumstances. Comparing both heuristics to a state-of-the-art algorithm that disregards any 

available advance demand information, we find that utilizing this information yields substantial cost sav- 

ings. 

© 2022 Elsevier B.V. All rights reserved. 

1. Introduction 

Spare parts provisioning and technical assistance are key fea- 

tures of after-sales service. Since after-sales service accounts 

for 40–50% of all profits of original equipment manufacturers 

( Holmströem, Cheikhrouhou, Farine, & Främling, 2011 ), optimizing 

maintenance operations has a major impact on the overall com- 

pany performance. For heavy and bulky appliances, such as print- 

ers, heating systems, medical systems, or white goods such as 

washing machines or refrigerators, services are typically performed 

on-site. That means that customers with malfunctioning appliances 

are visited by service technicians who attempt to repair the appli- 

ance using a set of spare parts that are carried in a company van. 

This set of spare parts is commonly referred to as the repair kit. 

The repair kit problem is to determine which spare parts to include 

in the repair kit and if so, in which quantity. If the technician visits 

several customers in a repair tour before restocking, which is usual 

∗ Corresponding author. 

E-mail addresses: christoph.rippe@ovgu.de (C. Rippe), 

gudrun.kiesmueller@tum.de (G.P. Kiesmüller) . 

for appliances with reasonable complexity, we speak of a multi-job 

repair kit problem. 

To date, almost all contributions regarding the repair kit prob- 

lem assume that the service technician has no information about 

the condition of a customer’s failed appliance prior to a first visit 

to the customer. This assumption, however, is often unrealistic be- 

cause many modern appliances are fitted with sensors that dis- 

play failure codes if they detect an error. When a customer con- 

tacts the service provider to request a repair job, he/she is likely 

to disclose this information. Thus, the failure code serves as ad- 

vance demand information (ADI) for spare parts from the techni- 

cian’s point of view. In particular, this ADI can be uncertain, be- 

cause the fault discovered by the sensor system (e.g., abnormal 

temperatures, pressure, or vibration) may originate from malfunc- 

tions of different components. 

We study a version of the multi-job repair kit problem that in- 

corporates this uncertain ADI. We assume that the service tech- 

nician adjusts the content of the repair kit on a daily basis to 

match the presumed needs of the customers taking into account 

the failure codes they disclose. Thus, the repair kit problem with 

ADI becomes a dynamic problem. Similar to most previous contri- 

butions, we assume the technician may receive instantaneous re- 

https://doi.org/10.1016/j.ejor.2022.04.019 
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plenishments from a warehouse with ample supply, which in prac- 

tice corresponds to overnight deliveries of goods. Further, we allow 

for the technician to return spare parts to that warehouse at addi- 

tional costs in order to clear excess stock that may have been built 

up due to the uncertain nature of the failure codes. When decid- 

ing about replenishments and returns, the service technician must 

trade-off expected inventory holding costs against penalty costs in- 

curred for unsuccessful repair attempts. 

The contributions of this paper are as follows: First, this is the 

first time that the repair kit problem with imperfect ADI is stud- 

ied. We formulate the problem as a Markov decision process (MDP) 

and show that the state space of this MDP is increasing exponen- 

tially in the number of parts, which makes it impossible to solve 

for reasonably sized problem instances. Second, we decompose the 

multi-part multi-tour problem in two different ways, by part and 

by tour. For the single-part multi-tour problem we can show the 

structure of the optimal policy and for the multi-part single-tour 

problem we demonstrate that the cost function is submodular. Mo- 

tivated by these structural results for the two decompositions we 

develop two different heuristic solution approaches, a part and 

a greedy heuristic, for the original repair kit problem with ADI. 

Third, we conduct an extensive numerical study to compare the 

performance of both heuristics under various circumstances. Ad- 

ditionally, we benchmark both ADI heuristics against the state-of- 

the-art job heuristic suggested by Teunter (2006) that disregards 

ADI. In this way, we demonstrate the potential for cost savings 

that can be achieved if information available about the condition of 

malfunctioning appliances is employed by the service technician. 

Fourth, we show how to adjust our greedy heuristic to determine 

solutions for repair kit problems with an additional capacity con- 

straint. 

The remainder of this paper is structured as follows. In 

Section 2 , we review the relevant literature. In Sections 3 and 4 , we 

present the problem formulation and the heuristic solution meth- 

ods. The numerical study used to test these heuristics is described 

in Section 5 . In Section 6 , we consider the impact of an additional 

capacity constraint. Finally, in Section 7 , we summarize our main 

findings. 

2. Background 

The repair kit problem with ADI is at the interface of two 

streams of literature, namely, the contributions on the repair kit 

problem and the (imperfect) advance demand information litera- 

ture. In this section, we will provide a brief overview of papers 

from both fields and show how our work fits into the context of 

the problems studied before. 

The repair kit problem was first introduced by Smith, Cham- 

bers, & Shlifer (1980) as the problem of determining the cost- 

minimizing set of spare parts to be carried by a service technician 

who performs repair jobs in the field. After every repair job, the 

service technician’s repair kit is restocked making this a so-called 

single-job problem. To derive the optimal repair kit, Smith et al. 

(1980) employ an unconstrained cost model that weighs inventory 

holding costs for parts held in the repair kit against penalty costs 

incurred for failed repair attempts. While several parts might be 

needed to complete a repair job, only one unit per part may be 

needed and demands for different parts are independent. Adopting 

these assumptions, Graves (1982) and Hausman (1982) consider a 

service model with a job fill rate constraint that ensures that the 

chance to complete a repair job is above a given threshold. 

Further extensions to the single-job repair kit problem incorpo- 

rate dependent demands and demands for multiple units by one 

customer ( Mamer & Smith, 1982; March & Scudder, 1984 ), spare 

machines ( Mamer & Smith, 1985 ) and budget constraints ( Mamer 

& Shogan, 1987 ). Brumelle & Granot (1993) derive a monotone se- 

quence of optimal repair kits for different parametrizations of their 

cost model’s objective function. 

Heeremans & Gelders (1995) are the first ones to study a 

multiple-job repair kit problem, where the service technician per- 

forms several repair jobs before restocking. In contrast to the 

single-job papers, however, they consider a tour fill rate instead 

of a job fill rate meaning that they regard the probability that all 

jobs in a tour can be completed rather than the chance that an ar- 

bitrary job is completed. Teunter (2006) is the first one to derive 

a job fill rate formula for the multiple-job repair kit problem. He 

develops a very general formulation for both, a cost and a service 

model. Nevertheless, for the calculation of the job fill rate, he re- 

quires independent demands for different parts and at most one 

unit of each part may be needed for each job. He also assumes 

that parts are left with the first customer who needs them regard- 

less of whether this customer’s job can be completed. To determine 

the repair kit, two greedy heuristics are proposed, a job heuristic 

that makes use of the job fill rate and a simpler part heuristic that 

is based on a part fill rate. Following Teunter (2006) , three further 

extensions to the multiple-job repair kit problem have been pre- 

sented by Bijvank, Koole, & Vis (2010) , Saccani, Visintin, Mansini, 

& Colombo (2017) , and Prak, Saccani, Syntetos, Teunter, & Visintin 

(2017) . Bijvank et al. (2010) assume a repair process in which avail- 

able spare parts are not left with customers for a second visit 

if their repair jobs cannot be completed at the first try. Saccani 

et al. (2017) solve an integer linear model to determine the re- 

pair kit that would have performed best given past demand data 

and assess its future performance based on simulation. Prak et al. 

(2017) consider a non-zero replenishment lead time for spare parts 

and manage the contents of the repair kit using individual (s,S)- 

policies for the different spare parts. 

All repair kit papers discussed up to this point assume that the 

condition of the malfunctioning appliance in need of a repair is 

unknown to the service technician before his/her first visit to the 

customer. All customers are taken to be homogeneous and histori- 

cal demand data aggregated across all past customers are used to 

decide which parts to put into the repair kit. In contrast to this, we 

include information about the source of the failure in our model, 

which is obtained through sensors and translated into a failure 

code. That means, that not only historical data are used to estimate 

spare part requirements, but also real-time information about the 

condition of the failed system. As a consequence, the customers’ 

spare part demand in the model cannot be assumed to be iden- 

tically distributed, and the inventory levels in the repair kit have 

to be adapted dynamically. The only contribution so far that con- 

siders ADI for the repair kit problem is Rippe & Kiesmüller (2020) , 

who assume part-specific and perfectly reliable sensors. This pa- 

per, however, assumes that sensors monitor functionalities rather 

than individual parts, which implies that ADI obtained from these 

sensors is imperfect. We extend the model described in the sem- 

inal multi-job, repair kit paper by Teunter (2006) , adopting most 

of his assumptions and adjusting it to incorporate imperfect ADI. 

As a consequence, the inventory policy also has to be adapted and 

therefore, we allow spare parts to be returned to the warehouse, 

which is a completely new aspect of the repair kit problem. Since 

the companies we have spoken with only apply overnight deliver- 

ies, we have decided to assume a lead time of zero because this 

reflects the situation of the companies. Table 1 illustrates that our 

study is the first to integrate uncertain real-time information (ADI) 

and returns in a repair kit model. 

As mentioned above, our research is also related to the stream 

of literature discussing inventory models with advance demand in- 

formation. In this stream of literature, information on the customer 

demand is revealed to a decision-maker before the actual demand 

is due, which is called advance demand information. One possi- 

bility to model the advance demand information is the so-called 
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Table 1 

Literature overview part 1: repair kit problem. 

single 

item 

multiple 

item 

single 

job 

multiple 

jobs 

zero lead 

time 

positive 

lead time 

with 

returns 

without 

returns 

imperfect 

ADI 

perfect 

ADI 

no ADI 

Smith et al. (1980) � � � � � 

Graves (1982) � � � � � 

Hausman (1982) � � � � � 

Mamer & Smith (1982) � � � � � 

March & Scudder (1984) � � � � � 

Mamer & Smith (1985) � � � � � 

Mamer & Shogan (1987) � � � � � 

Brumelle & Granot (1993) � � � � � 
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”demand lead time” introduced by Hariharan & Zipkin (1995) and 

defined as the time span between information disclosure and the 

demand due date. For a continuous review inventory model where 

customers place firm orders to be delivered at a given due date, 

they demonstrate that demand lead time and supply lead time 

have opposing effects on the system performance. Gallego & Özer 

(2001) consider a similar problem with firm advance orders in 

discrete-time and find that the optimal replenishment policies are 

state-dependent where the state reflects the currently known or- 

ders for future time periods. 

While the two seminal papers mentioned above study stochas- 

tic inventory models with perfect advance demand information, 

there also exists another stream of literature where information 

about demand is imperfect. Since the ADI available in our case is 

imperfect we limit the further discussion of ADI literature to pub- 

lications on imperfect ADI. For further research on models incor- 

porating perfect advance demand information, we refer to the de- 

tailed review of Karaesmen (2013) . 

In several contributions, the added value of imperfect advance 

demand information in production/inventory systems is consid- 

ered. Inventory replenishment orders are placed at a production fa- 

cility with limited capacity, and it has to be decided when to place 

an order and how many units to keep as safety stock. For contin- 

uous review production/inventory systems, Liberopoulos, Chronis, 

& Koukoumialos (2003) , Liberopoulos & Koukoumialos (2008) and 

Claudio & Krishnamurthy (2009) assume that customers place 

advance orders that may be canceled at a later point in time. 

Gayon, Benjaafar, & de Véricourt (2009) consider a joint production 

and inventory allocation problem with different customer classes, 

where some classes order in advance. However, the demand due 

dates are subject to changes, and again, orders might be can- 

celed altogether. Similar problems are studied by Benjaafar, Cooper, 

& Mardan (2011) and Kim, Ahn, & Righter (2009) , who assume 

that a supplier obtains status updates on a customer’s product in 

a stochastic multi-stage production process in order to deliver a 

particular component exactly when it is needed. In a simulation 

study, Fischer, Benzaman, Diegel, Gimenez, & Claudio (2020) com- 

pare the impact of different types of uncertainties (cancelations, 

changing due dates, and order quantities) for a three-stage produc- 

tion system with exponential processing times. Benbitour & Sahin 

(2015) conduct a similar study for a single-stage production sys- 

tem with limited manufacturing capacities in discrete time. An- 

other contribution on a periodic review problem with capacitated 

resources is examined by Gao, Xu, & Ball (2012) who model both 

demand quantity and due date with Markov chains. All these stud- 

ies have in common that they only consider a single item. Addi- 

tionally, the replenishment lead time is load dependent due to the 

fixed production capacity. 

In our model, we assume that replenishment orders are placed 

at a warehouse that has ample supply of parts, and therefore, 

the replenishment lead time can be assumed to be constant. In 

the following contributions, a similar assumption is made such 

that they are more closely related to our problem. DeCroix & 

Mookerjee (1997) and Zhu & Thonemann (2004) study prob- 

lems where retailers may purchase potentially imperfect ADI in 

the form of customer demand forecasts before making their re- 

plenishment decision. van Donselaar, Rock Kopczak, & Wouters 

(2001) and Thonemann (2002) consider project environments in 

the construction industry where manufacturers receive tentative 

orders from installers bidding for different projects that are con- 

firmed and specified if a bid is accepted. Tan, Güllü, & Erkip 

(2007) and Huang & Van Mieghem (2014) both examine situa- 

tions in which prospective customers identified by sales repre- 

sentatives or clickstream data, respectively, are tracked until they 

either place an order or leave the system. A two-period model 

that uses imperfect ADI for replenishment and rationing deci- 

sions with different priority customer classes is developed by 

Tan, Güllü, & Erkip (2009) . 

The papers closest to ours are those that either use imper- 

fect ADI for the inventory management of spare parts ( Topan, Tan, 

van Houtum, & Dekker, 2018; Zhu, Jaarsveld, & Dekker, 2020 ) or 

consider multi-product systems ( Bernstein & DeCroix, 2015; Chen, 

Ş afak Yücel, & Zhu, 2017; Thonemann, 2002 ). In Topan et al. (2018) , 

ADI comes as a warning signal for the imminent failure of a partic- 

ular component that may or may not occur in the following peri- 

ods. In the event that expected failures do not happen, Topan et al. 

(2018) allow for returns of excess stock to an upstream supplier. 

In Zhu et al. (2020) , the maintenance plan serves as ADI for spare 

parts, in so far that the number of inspections of the system con- 

taining a certain part is known in advance. Whether that part actu- 

ally needs to be replaced is only revealed upon inspection, but the 

probability for a spare part demand can be derived from historic 

data. While Topan et al. (2018) and Zhu et al. (2020) consider, sim- 

ilar as in our problem setting, an inventory model in the context of 

maintenance planning, Chen et al. (2017) study a video rental sys- 

tem, and Bernstein & DeCroix (2015) a production planning prob- 

lem. The latter two contributions have in common that they also 

allow multiple items. However, Bernstein & DeCroix (2015) exam- 

ine a single period model and decide about production capacities. 

In Chen et al. (2017) an item-specific ADI is modeled and cus- 
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Table 2 

Literature overview part 2: imperfect advance demand information. 

single 

item 
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simple 

jobs 
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lead time 
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lead time 

continuous 

review 
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review 

with 
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without 

returns 
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tomers keep online queues that indicate the items they intend to 

rent in the future. 

Our contribution belongs to the class of multi-item inventory 

models under periodic review with imperfect ADI and with con- 

stant lead time. As illustrated in Table 2 , there are only a few 

studies where inventory models with multiple items are investi- 

gated. However, our multi-item inventory model differs substan- 

tially from these contributions, because of the demand process and 

how we model ADI. Since in Thonemann (2002) and Chen et al. 

(2017) the customer is only allowed to select one of the multiple 

items, we call this a simple job, while we consider complex jobs 

where several items may be demanded by one customer. This de- 

mand model is induced by the characteristics of the repair jobs, 

because for one repair job several items may be needed. Thus, to 

measure service, we use the job fill rate and not an item-specific 

service level as in Thonemann (2002) . A pure cost model is consid- 

ered in Bernstein & DeCroix (2015) , who also use a different model 

for the advance demand information. They only allow one demand 

signal, either for the total demand volume across products or for 

the demand mix between products. In our model, each customer 

observes a different failure code and thus communicates an in- 

dividual demand signal. Additionally, we consider a multi-period 

model while Bernstein & DeCroix (2015) study a single-period 

model. Then, due to the longer time horizon and the low demand 

rates, it can also be economically beneficial to return items to the 

warehouse. 

To summarize, we combine the overviews in Tables 1 and 2 and 

conclude, that our study is the first contribution where the repair 

kit problem is extended to allow for imperfect ADI. Additionally, 

we extend the literature on stochastic periodic inventory models 

with imperfect ADI by simultaneously considering several cus- 

tomers’ demand signals for complex repair jobs that may require 

multiple spare parts. All these different problem aspects require a 

new model and novel solution approaches, which are presented in 

the following. 

3. Problem description 

For each repair tour, we consider the following sequence of 

events. First, customers are allocated to tours based on geograph- 

ical locations. The information available on the customers’ failure 

codes is passed on to the technician who adjusts the repair kit to 

the customers’ presumed needs. Next, the technician visits his/her 

customers one by one, attempting to repair their appliances with 

spare parts carried in the repair kit. Costs attributed to the repair 

tour are charged after the last visit to a customer. 

The number of customers in a repair tour is modeled with a 

random variable C. We denote the minimum and the maximum 

number of customers in a tour by C min and C max . The probability 

that c ∈ { C min , . . . , C max } customers need to be visited in one repair 

tour is given by P (C = c) . Usually, 4 to 6 customers can be visited 

in one tour. 

Each of the C customers’ broken appliances may display one out 

of M different failure codes that signal different types of errors. If 

communicated to the service technician before the first repair at- 

tempt, these failure codes are essentially ADI for spare parts. How- 

ever, not every error can be detected by a sensor and not every 

customer is aware of the failure code that is displayed. In these 

cases, a dummy failure code is assigned to the customer in ques- 

tion. In this way, the total number of failure codes is increased to 

M + 1 . Let F = ( F 1 , . . . , F C ) denote the vector of failure codes ob- 

served by the C customers in the tour. The probability to observe a 

specific failure code P (F j = f j ) 
(

f j = 1 , . . . , M + 1 
)

at customer j is 

identical and independent for all customers j = 1 , . . . , C. 

The service technician can carry N different spare parts on 

his van, which might be required to perform a repair job. For 

ease of calculations, we make the slightly simplifying assumption 

that only one unit of each part may be required by each cus- 

tomer. Let D j,n ∈ { 0 , 1 } ( j = 1 , . . . , C, n = 1 , . . . , N ) denote the jth 

customer’s demand for part n . The conditional demand proba- 

bilities P (D j,n = 1 | F j = f j ) 
(

f j = 1 , . . . , M + 1 , j = 1 , . . . , C 
)

for each 
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part n = 1 , . . . , N given the jth customer’s failure code f j are 

known to the service technician. In practice, these conditional de- 

mand probabilities can be determined on the basis of previous ex- 

perience with the different failure codes. For that purpose, the ser- 

vice technician may either use his own experience or the results 

obtained from a durability test conducted by the original equip- 

ment manufacturer. The conditional demand probability for any 

part n is the same for all customers, and the demands of different 

customers for the same part as well as the requirements of one 

customer for different parts are independent. Under these condi- 

tions and given the failure code vector f , the aggregated demand 

D n = 

∑ C 
j=1 D j,n for a part n = 1 , . . . , N follows a Poisson binomial 

distribution, which is a generalization of the standard binomial 

distribution to situations with different probabilities of success in 

each trial. In our case, a repair job corresponds to a trial and a suc- 

cess to a demand for part n . The different probabilities of success 

are the conditional demand probabilities P (D j,n = 1 | F j = f j ) . Let 

D = (D 1 , . . . , D N ) denote the total demand vector across all parts. 

Given the number of customers in the upcoming tour and their 

failure codes, the service technician modifies the content of the re- 

pair kit to meet the presumed needs of the customers. All modi- 

fications come into effect immediately. We denote the content of 

the repair kit before ordering with X = (X 1 , . . . , X N ) , and after the 

arrival of orders and the return of units but before the start of 

the tour by Y = (Y 1 , . . . , Y N ) . For each part n the technician can up- 

date the inventory level to any value Y n ≥ 0 , where Y n > X n corre- 

sponds to a replenishment and Y n < X n to a return. In this way, the 

technician can react to both, anticipated stockouts and redundant 

stock. In case Y n = X n , the inventory level of part n is not altered 

at all. 

Next, the service technician visits the customers one by one to 

perform on-site repairs. To fix the malfunctioning appliances, the 

technician identifies broken components and replaces them with 

spare parts from the repair kit. If all required spare parts are avail- 

able, we call the repair job complete and broken otherwise. Fol- 

lowing Teunter (2006) , we assume that all spare parts are left with 

the first customer who needs them regardless of whether that cus- 

tomer’s repair job can be completed. 

Once the service technician returns from the repair tour, costs 

incurred in or attributed to that tour are determined. We consider 

three different types of costs. First, part-specific return costs r n 
are incurred for each unit of any part n = 1 , . . . , N returned from 

the repair kit to the supplier. These return costs arise for essen- 

tially wasteful material handling operations, such as testing, label- 

ing, and storing the returned part, that do not contribute to the 

fulfillment of customer requests. Unlike other handling operations, 

these actions could have been avoided if the service technician 

had not built up excess stock. Second, the service technician in- 

curs part-specific holding costs h n for each unit of part n held in 

the repair kit after the last customer has been visited for all parts 

n ∈ { 1 , . . . , N } . Third and last, the service technician incurs penalty 

costs P for each broken job. These penalty costs include the actual 

costs for a second visit to the repair site and a penalty for the loss 

of customer goodwill. 

The repair kit problem with ADI as formulated above can be 

modeled as a Markov decision process (MDP) with states (X, C, F ) 

defined by the repair kit X before orders and returns, the number 

of customers C to be served in the upcoming tour and their error 

codes F . If we have a maximum of C max customers, it makes sense 

to assume that the inventory level X n of any part n = 1 , . . . , N lies 

between −C max , which means that all customers required the part 

that was not available at all, and C max , which means that we ex- 

pected every customer to require the part but none of them ac- 

tually did. That means that X ∈ { −C max , . . . , C max } N . As defined be- 

fore, the number of customers to be served ranges from C min to 

C max and each customer may communicate one out of M + 1 fail- 

ure codes. Thus, for a given number of customers C, we obtain 

F ∈ { 1 , . . . , M + 1 } C . 
Our overall objective is to find a stationary policy π ∗ that min- 

imizes the long-run average cost per tour over an infinite time 

horizon. The existence of such an optimal stationary policy is guar- 

anteed for average-cost MDPs with finite state and action spaces, 

which holds in our case. 

To derive the long-run average costs, let us first consider a sin- 

gle tour. Given a state (x, c, f ) and new inventory levels y , the 

calculation of return and expected holding costs for the upcom- 

ing tour is straightforward. To compute the expected penalty costs, 

we need to determine the probability that a randomly selected 

job can be completed, which is determined by the job fill rate 

(JFR) introduced by Teunter (2006) . However, since ADI and re- 

pair kits differ from tour to tour in our model, we do not derive 

a JFR across all tours but only for the next tour ahead. This next- 

tour-JFR incorporates the available ADI and can be calculated as 

follows 

JF R ( c, f, y ) = 

1 

c 

c ∑ 

j=1 

( 

N ∏ 

n =0 

(
1 − P 

(
D j,n = 1 

∣∣∣F j = f j 

))

+ P 

(
D j,n = 1 

∣∣∣F j = f j 

)
· P 

( 

j−1 ∑ 

l=1 

D l,n < y n 

∣∣∣F = f 

) ) 

. (1) 

For any combination of customer j = 1 , . . . , C and part n = 1 , . . . , N, 

the first summand describes the probability that no unit of part n 

is required, while the second summand describes the probability 

that part n is required and still available for the jth customer’s 

repair job. Let V 1 (x, c, f, y ) denote the expected single-tour costs 

given a state (x, c, f ) and post-modification inventory levels y . Us- 

ing the JFR-formula we obtain 

V 1 (x, c, f, y ) = 

N ∑ 

n =1 

[
r n · (x n − y n ) 

+ + h n E 

[
( y n − D n ) 

+ | F = f 
]]

+ P · c · [ 1 − JF R (c, f, y ) ] . (2) 

Let π be a stationary policy that maps each state (x, c, f ) to a 

new repair kit y . Then, V 1 (x, c, f, π) denotes the expected single- 

tour costs if the action in state (x, c, f ) is determined by pol- 

icy π . In a similar way, we define V t (x, c, f, π) as the total ex- 

pected cost in t consecutive tours when the initial state is (x, c, f ) 

and the action at the beginning of each tour is determined by 

policy π . For any t > 1 , we can calculate the expected costs in 

t tours recursively. Let D ( f ) = { d| P (D = d| F = f ) > 0 } define the 

set of possible demand events given ADI-vector f and F (c) = 

{ f = ( f 1 , . . . , f c ) | f i ∈ { 1 , . . . , M + 1 } , i ∈ { 1 , . . . c } } describe the set of 

all possible ADI-vectors for c customers; then, V t (x, c, f, π) can be 

derived as follows 

V t (x, c, f, π) = V 1 (x, c, f, π) 

+ 

∑ 

d∈ D ( f ) 

C max ∑ 

c ′ = C min 

∑ 

f ′ ∈ F (c ′ ) 

(
V t−1 

(
x + π(x, c, f ) − d, c ′ , f ′ , π

)
·P 

(
F ′ = f ′ | C ′ = c ′ 

)
· P 

(
C ′ = c ′ 

)
· P ( D = d| F = f ) 

)
. ∀ t > 1 (3) 

The long-run average cost per tour when the system is controlled 

by policy π and the initial state is (x, c, f ) is then given by the 

limit 

lim 

t→∞ 

V t ( x, c, f, π) 

t 
. (4) 

Since the Markov chain that describes the content of the repair kit 

and the available ADI at the beginning of a tour for any given pol- 

icy π is unichain (all states can be reached from each other), the 

long-run average cost does not depend on the initial state. Thus, 
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we can express the optimization problem as 

min 

π
lim 

t→∞ 

V t ( π) 

t 
. Table 3 (5) 

Table 3 

Notations. 

Input parameters 

C min Minimum number of jobs in a tour 

C max Maximum number of jobs in a tour 

M Number of different genuine failure codes 

N Number of different spare parts 

P Penalty cost per broken job 

h n Unit holding cost for spare part n 

r n Unit return cost for spare part n 

P(C = c) Probability that the number of jobs in a tour is c

P(F j = f j ) Probability that costumer j communicates failure 

code f j 
P(D j,n = 1 | F j = f j ) Conditional demand probability for part n given 

failure code f j 

Stochastic variables 

C Number of jobs in a tour 

F = (F 1 , . . . , F C ) Failure codes communicated by the customers to be 

served 

D j,n Demand of customer j for spare part n 

D n Total Demand for part n in a tour 

D = (D 1 , . . . , D N ) Total demand vector 

X = (X 1 , . . . X N ) Net inventory level of the spare parts in the repair kit 

before orders or returns 

Other notations 

Y = (Y 1 , . . . , Y N ) Adjusted content of the repair kit after orders and 

returns before the start of 

the tour 

JF R (c, f, y ) Job fill rate for the next tour given the information 

c, f and the inventory y 

V t (i, c, f, π) Total expected cost in t tours starting in state (i, c, f ) 

and applying policy π

4. Heuristic solution methods 

To demonstrate the need for heuristic solution methods to the 

MDP described above, let us first determine the size of its state 

space. As discussed in the previous section, each part’s inven- 

tory level before orders or returns can take any value between 

−C max and C max . With N different parts, there are ( 2 C max + 1 ) N 

states that the repair kit can be in before orders and returns. 

Considering that each of the customers in the following tour ob- 

serves one out M + 1 failure codes, we obtain a state space of size 

(2 · C max + 1) N ·
C max ∑ 

c= C min 

(M + 1) c . Even for a moderate size example 

with a fixed number of 6 customers, 20 parts, and 10 error codes, 

the size of the state space is 1 . 9 · 10 28 . Because of this enormous 

number of possible states, the repair kit problem with advance de- 

mand information can only be solved to optimality for very small 

problem instances. The methods that can be employed to deter- 

mine the optimal policy for an MDP, such as value or policy iter- 

ation, require the iterative update of value function estimates for 

all states. Even a single update, however, can be computationally 

intractable for a large state space. To overcome this difficulty, we 

develop two different heuristics that determine solutions to the re- 

pair kit problem with ADI by decomposing it into either single-part 

or single-tour problems. 

4.1. Part heuristic 

One of the main reasons why the repair kit problem with ADI 

cannot simply be solved using value iteration is that we have to 

optimize the replenishments of all spare parts simultaneously. That 

is why the size of the state space increases exponentially in the 

number of spare parts. The first heuristic we propose is a part 

heuristic that addresses this issue by decomposing the repair kit 

problem with ADI into several smaller problems for each of the 

spare parts considered. These individual replenishment problems 

have much smaller state spaces than the joint optimization prob- 

lem. 

With regard to holding and return costs, the decomposition of 

the repair kit problem into single-part problems is straightforward 

as these types of costs are part-specific in the original problem 

anyway. Instead of penalty cost incurred for an incomplete job, 

however, we need to consider part-specific penalty costs incurred 

for every stock-out. Naturally, the penalty costs for an incomplete 

repair job should be attributed to the spare parts whose stockouts 

have caused the broken job. Thus, with only one part missing, the 

penalty cost P incurred for the broken job should be attributed en- 

tirely to that missing part. While several parts might be required 

to perform a repair job with a well-equipped repair kit, it is very 

likely that only one of them is missing if the job cannot be com- 

pleted. Due to this property, we assume that the penalty costs per 

missing part required in the individual optimization problems are 

equal to the penalty costs per broken job considered in the orig- 

inal joint optimization problem. In this way, we can decompose 

the original MDP considering N parts simultaneously into N MDPs 

where only one part each is optimized. 

For the N individual MDPs, the state spaces that need to be con- 

sidered are significantly smaller than the state space of the joint 

optimization MDP due to two reasons. First and most obviously, a 

state no longer has to reflect the inventory position of all spare 

parts at the same time. A second aspect that helps us to reduce 

the state space even further is that we do not need to consider 

the individual customers’ demands D j,n , j = 1 , . . . , C for a part n 

anymore but only the aggregate demand D n across all customers 

in the tour. That is because the single-part MDPs do not require 

the calculation of a job fill rate that explicitly considers individ- 

ual customers’ demands (see equation (1)). As a consequence, it is 

possible to prove the optimal policy structure for a single part as 

we will show below. 

Instead of using the vector F to describe the available ADI, it is 

sufficient to keep track of the numbers of customers that have dis- 

closed the different types of failure codes. Let us denote the dis- 

tribution of failure codes among customers by B = (B 1 , . . . , B M+1 ) 

with 

B l = 

∣∣∣{ j ∈ { 1 , . . . , C } ∣∣F j = l 
}∣∣∣ l = 1 , . . . , M + 1 . (6) 

Given the number of customers C in the upcoming tour, the new 

information vector B follows a multinomial distribution with C tri- 

als and the set of different failure codes { 1 , . . . , M + 1 } describing 

the possible outcomes in each trial. Thus, we obtain 

P (B = b| C = c) = 

{ 

c! 
b 1 ! ·····b M+1 ! 

·
M+1 ∏ 

l=1 

P (F j = l) b l if 
M+1 ∑ 

l=1 

b l = c 

0 otherwise , 

(7) 

for any j ∈ { 1 , . . . , c } since the probability to observe a particular 

failure code is identical for all customers. The conditional distri- 

bution of the aggregated demand D n given the information vector 

B still follows a Poisson binomial distribution. However, instead of 

listing the different success probabilities for a sequence of trials, 

we count the number of trials that are conducted with the differ- 

ent probabilities. Using the new information vector B , the state of 

the MDP specific to part n can be described by (X n , C, B ) . 

For each part n , the part-specific long-run average costs per 

tour can be derived similarly to the joint approach considering all 

parts at once. Given a particular state (x n , c, b) and a part-specific 

policy πn , we define the single-tour expected costs V n, 1 attributed 
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to part n by 

V n, 1 ( x n , c, b, πn ) = r n · ( x n − πn ( x n , c, b ) ) 
+ 

+ h n · E 

[
( πn ( x n , c, b ) − D n ) 

+ | B = b 
]

+ P · E 

[
( D n − πn ( x n , c, b ) ) 

+ | B = b 
]
. (8) 

Let D n (b) = { d n | P (D n = d n | B = b) > 0 } define the set of all demand 

events with positive probabilities for part n given the informa- 

tion vector b. Further, let B (c) = 

{
b ∈ { 1 , . . . , c } M+1 

∣∣∑ M+1 
l=1 

b l = c 
}

describe the set of all condensed information vectors for exactly c

customers. Then, again given an initial state (x n , c, b) and a policy 

πn , the total expected cost over t tours V n,t attributable to part n 

can be defined recursively by 

V n,t (x n , c, b, πn ) = V n, 1 (x n , c, b, πn ) 

+ 

∑ 

d∈ D n (b) 

C max ∑ 

c ′ = C min 

∑ 

b ′ ∈ B (c ′ ) 

(
V n,t−1 

(
πn (x n , c, b) − d n , c 

′ , b ′ , πn 

)
·P 

(
B 

′ = b ′ | C ′ = c ′ 
)

· P 
(
C ′ = c ′ 

)
· P ( D n = d n | B = b ) 

)
. (9) 

The part-specific average costs per tour can then be expressed as 

lim 

t→∞ 

V n,t (πn ) 

t 
, (10) 

where we can disregard the initial state as it does not impact the 

system in the long run. For the single-part average cost minimiza- 

tion problem we can characterize the optimal policy π ∗
n as follows. 

Theorem 1. The optimal replenishment policy π ∗
n that minimizes the 

average costs per tour for part n is a state-dependent (L, U) -policy. 

That means for any combination (c, b) of customers c to be visited 

and condensed information vectors b, there are two thresholds L n (c, b) 

and U n (c, b) such that 

π ∗
n (x n , c, b) = 

{ 

L n (c, b) if x n < L n (c, b) 
x n if L n (c, b) ≤ x n ≤ U n (c, b) 
U n (c, b) if U n (c, b) < x n . 

(11) 

Chen et al. (2017) derived a similar policy structure for a finite- 

time horizon total cost minimization problem in the context of a 

closed-loop rental system. Although our problem is slightly dif- 

ferent, the same line of arguments can be followed to prove 

Theorem 1 (see Appendix). Even though we know the structure of 

the optimal policy, we cannot derive the state-dependent thresh- 

olds analytically. However, since the state space of the part-specific 

MDP is much smaller than that of the joint optimization prob- 

lem we can employ value iteration to determine these thresholds. 

This way we obtain individually optimal policies π ∗
n for each part 

n ∈ { 1 , . . . , N } . If we combine these policies π ∗
n , we get a (poten- 

tially sub-optimal) policy π = 

(
π ∗

1 , . . . , π
∗
N 

)
for the original joint 

optimization problem (5). 

4.2. 2-Step greedy algorithm 

As a second alternative solution method, we propose a 2-step 

greedy algorithm that is a combination of two different greedy al- 

gorithms. The 2-step greedy algorithm is in several ways the exact 

opposite of the part heuristic explained in Section 4.1 . While the 

part heuristic optimizes the inventory levels for all spare parts in- 

dividually, the 2-step greedy algorithm attempts to put together all 

parts’ inventory levels simultaneously. However, the 2-step greedy 

algorithm is myopic, in so far that we are not looking beyond 

the current tour, whereas the part heuristic is considering the fu- 

ture implications of today’s stocking decisions. Finally, using the 

part heuristic, we pre-compute actions to be chosen for all pos- 

sible states before we start the very first repair tour. In contrast 

to this, the 2-step greedy heuristic uses decision time planning, 

Table 4 

Conditional demand probabilities. 

failure code 1 failure code 2 

part 1 0.75 0.75 

part 2 1 0 

Fig. 1. Expected number of failed repair attempts. 

which means that actions are only determined once a particular 

state is actually encountered. 

Immediately before the start of each tour, we optimize the con- 

tent of the repair kit regarding only the immediate return costs as 

well as the expected penalty and holding cost incurred for the up- 

coming tour. Thus, we are solely considering the single-tour cost 

function V 1 (x, c, f, y ) . 

Even for this single-tour problem, the optimal solution can only 

be found for small-scale problem instances. That is because we still 

need to determine the JFR which depends on the inventory levels 

of all parts at the same time. For that reason, we cannot optimize 

the inventory levels y n of the different parts n ∈ { 1 , . . . , N } individ- 

ually. To derive near-optimal solutions we propose a greedy heuris- 

tic, which is a common approach in the repair kit literature (see, 

e.g., Bijvank et al., 2010; Teunter, 2006 , and Prak et al., 2017 ). This 

greedy heuristic iteratively adds units of different parts to the re- 

pair kit or removes them from it. This increase or decrease of one 

part’s inventory level has an impact on the further change in costs 

that is realized with additional changes to the repair kit. In par- 

ticular let us consider the way in which an increase of one part’s 

inventory level y n affects the marginal change of costs we induce 

by adding yet another unit of either the exact same part n or one 

of the other parts m ∈ { 1 , . . . , N } \ { n } . 
Surprisingly, we find that when we successively add two units 

of one particular part, the marginal cost reduction achieved with 

the first unit can be smaller than that obtained with the sec- 

ond. That means the cost function does not need to be convex in 

the post-modification inventory level y n of any part n ∈ { 1 , . . . , N } . 
Consider the following minimal counterexample: We examine a 

single-period problem with 2 parts, 2 jobs, and 2 failure codes. 

The conditional demand probabilities are defined in Table 4 and 

the customers’ failure codes are given by f = (1 , 2) . We increase 

y 1 while the remaining repair kit is defined by x 1 = x 2 = y 2 = 0 . 

Figure 1 shows that the expected number of failed repair attempts 

is not convex in y 1 . The marginal penalty cost reduction of the 

first unit added is less than that of the second unit because the 

first unit is likely to be used for a job that cannot be completed 

whereas adding a second unit guarantees the completion of the 

second job. Thus the penalty costs are not convex y 1 , which means 

that the total costs need not be convex in y 1 . This property is 

unique to repair kit problems with customers that are heteroge- 

neous with respect to their demand probabilities. It shows that 
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even for given inventory levels of all other parts optimizing a sin- 

gle part’s inventory level y n is not straightforward. 

To characterize how the increase of one part’s inventory level 

affects the marginal cost reductions that can be achieved with an 

additional increase of another parts’ inventory level we build upon 

the concept of submodularity, which is defined as follows: 

Definition 1. Let S define a partially ordered set of vectors. For 

s, t ∈ S let s ∧ t and s ∨ t define the component-wise minimum and 

maximum respectively. A partially ordered set S that contains s ∧ t

and s ∨ t, ∀ s, t ∈ S is called a lattice. A function f : S → R defined 

on a lattice S is called submodular if 

f (s ) + f (t) ≥ f (s ∧ t) + f (s ∨ t) , ∀ s, t ∈ S. (12) 

From Corollary 2.6.1 of Topkis (1998) we can derive that a func- 

tion f defined on a sublattice of Z 

N is submodular if and only if it 

has decreasing differences that is if 

�s k �s l f := f (s + e k + e l ) − f (s + e l ) − f (s + e k ) + f (s ) ≤ 0 

∀ s ∈ S, ∀ k � = l ∈ { 1 , . . . , N } , (13) 

where e j is the jth standard unit vector. Using this more intuitive 

characterization we can prove that the cost function is submodu- 

lar in the inventory levels. In fact, we can show by induction that 

not only the single-period cost function is submodular but also the 

t-tour cost function. We obtain the following stronger result. (A 

proof is provided in the Appendix.) 

Theorem 2. Let V ∗t (x, c, f, y ) define the t-tour cost function that gives 

the expected costs if y is implemented in state (x, c, f ) and an opti- 

mal policy is followed thereafter for t − 1 tours. Thus, V ∗
1 
(x, c, f, y ) = 

V 1 (x, c, f, y ) and for t ≥ 2 the cost function is defined recursively by 

V 

∗
t (x, c, f, y ) = V 1 (x, c, f, y ) 

+ 

∑ 

d∈ D ( f ) 

C max ∑ 

c ′ = C min 

∑ 

f ′ ∈ F (c ′ ) 

(
min 

y ′ 
V 

∗
t−1 

(
y − d, c ′ , f ′ , y ′ 

)

·P 
(
F ′ = f ′ | C ′ = c ′ 

)
· P 

(
C ′ = c ′ 

)
· P ( D = d| F = f ) 

)
(14) 

Let X := { −C max , . . . , C max } N and Y := { 0 , . . . , C max } N denote the sets 

of all possible inventory level combinations before and after orders. 

Then V ∗t (x, c, f, y ) is submodular in x and y on X × Y for any c ∈ 

{ C min , . . . , C max } and f ∈ F (c) . 

The submodularity of the cost function essentially means that 

increasing one part’s inventory level by one unit makes an increase 

of the other parts’ inventory levels more favorable (or at least less 

unfavorable.) The same is true for the impact of the reduction of a 

parts’ inventory level on the marginal effect of the reduction of 

other part’s inventory levels. Because of this property, it makes 

sense to consider the reduction and the increase of several parts’ 

inventory levels consecutively. For that reason, our greedy heuris- 

tic consists of two distinct steps. First, a reduction heuristic is used 

to strip the current repair kit of any units unlikely to contribute to 

a fulfilled repair request in the upcoming tour. Then, we continue 

with a re-equipment algorithm that raises the inventory levels of 

the parts likely to be needed. 

The reduction heuristic ( Algorithm 1 ) successively identifies 

spare parts for which the isolated removal of a unit currently held 

in the repair kit results in a reduction of the expected costs. In 

each iteration, the unit that yields the largest expected cost reduc- 

tion is returned from the repair kit to the supplier until no further 

cost reduction can be achieved. 

Once we have run the reduction heuristic, we take the result- 

ing repair kit as an initial solution for the second greedy algorithm 

( Algorithm 2 ) that identifies the spare parts that should be re- 

ordered as well as the respective reorder quantities. In each step 

Algorithm 1 Reduction heuristic. 

Input: current repair kit x , number of customers c, error 

codes f , conditional demand probabilities P (D j,n = 1 | F j = 

f j ) ∀ n ∈ { 1 , . . . , N } , f j ∈ { 1 , . . . , M + 1 } , unit holding costs 

h n ∀ n ∈ { 1 , . . . , N } , unit return cost r n ∀ n ∈ { 1 , . . . , N } , penalty 

costs P 

Output: new inventory levels y 

y ← x 

stop ← 0 

while stop = 0 do 

for n ∈ { 1 , . . . , N } with y n > 0 do 

y temp ← y 

y 
temp 
n ← y 

temp 
n − 1 

�n ← V 1 ( x, c, f, y ) − V 1 
(
x, c, f, y temp 

)
end for 

n ∗ ← arg max 
n : y n > 0 

�n 

if �n ∗ > 0 then 

y n ← y n − 1 

else 

stop ← 1 

end if 

if { n | y n > 0 } = ∅ then 

stop ← 1 

end if 

end while 

Algorithm 2 Re-equipment heuristic. 

Input: old repair kit x , current repair kit y as determined by reduc- 

tion heuristic, number of customers c, error codes f , conditional 

demand probabilities P (D j,n = 1 | F j = f j ) ∀ n ∈ { 1 , . . . , N } , f j ∈ 

{ 1 , . . . , M + 1 } , unit holding costs h n ∀ n ∈ { 1 , . . . , N } , unit return 

cost r n ∀ n ∈ { 1 , . . . , N } , penalty costs P 

Output: new inventory levels y opt 

y opt ← y 

stop ← 0 

while stop = 0 do 

for n ∈ { 1 , . . . , N } with y n < c do 

y temp ← y 

y 
temp 
n ← y n + 1 

�n ← 

J F R (c, f,y temp ) −J F R (c, f,y ) 

h n 

(
E 

[(
y 

temp 
n −D n 

)+ 
∣∣∣F = f 

]
−E 

[
( y n −D n ) 

+ 
∣∣∣F = f 

])
−r n ·1 { y n <x n } 

end for 

n ∗ ← arg max 
n : y n <c 

�n 

y n ∗ ← y n ∗ + 1 

if V 1 (x, c, f, y ) < V 1 (x, c, f, y opt ) then 

y opt ← y 

end if 

if y n = c ∀ n ∈ { 1 , . . . , N } then 

stop ← 1 

end if 

end while 

of this re-equipment algorithm, we raise the inventory level of ex- 

actly one part by one unit. The part selected is the part with the 

highest job fill rate increase to holding cost increase ratio. Though 

this might seem counter-intuitive, we also consider those parts for 

which the reduction algorithm suggests that we reduce the inven- 

tory level. This is because the first algorithm might suggest return- 

ing units of a part that are likely to be needed for jobs in the next 

tour if due to the lack of some other parts in the repair kit, the 
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chance that these jobs can be completed is very small. In this case, 

the reduction algorithm trades a small increase in penalty costs 

for a larger decrease in holding costs. While this reduction makes 

sense when the inventory levels of all parts cannot be increased 

(which is the situation the reduction algorithm is based on), we 

are likely to obtain a more favorable repair kit if we raise the in- 

ventory levels of all parts towards the expected demands. That is 

why we allow the re-equipment algorithm to consider all parts. If 

we increase a part’s inventory level with the re-equipment algo- 

rithm after we have first reduced it with the reduction algorithm, 

we have to bear in mind that this is reducing the return costs we 

incur. To take this effect into account, we subtract any potential 

return cost reductions from the holding cost increase considered 

when deciding upon the spare part to be selected in each itera- 

tion. 

5. Numerical study 

In this section, we examine the performance of our heuristic 

solution procedures using a small and a large-scale numerical ex- 

periment. For both experiments, the problem instances we exam- 

ine are designed such that the heuristic solutions achieve realistic 

JFR service levels above 70%. First, we evaluate the solutions found 

with part and greedy heuristic for small problem instances. For 

these instances, it is possible to determine the exact expected costs 

per tour for any given solution as well as the optimal solution. 

We benchmark the solutions found with part and greedy algorithm 

against the optimal solution on the one hand and against a solu- 

tion determined with the job heuristic by Teunter (2006) that dis- 

regards advance demand information. 

Second, we study the performance of the heuristic solution 

procedures for real-life-sized repair kits in a simulation study. 

That means we compare the solutions obtained with the differ- 

ent heuristics in various settings that involve a larger number of 

failure codes and parts considered for the repair kit. As the state 

space grows exponentially in the number of parts in the repair 

kit we cannot calculate the exact costs incurred for a given pol- 

icy or even determine the optimal solution for large-scale problem 

instances. For this reason, we compare the solutions provided by 

the ADI heuristics to each other and to the non-ADI benchmark. In 

particular, we look in detail at the composition of the total costs 

incurred with the different heuristics and characterize their me- 

chanics. 

5.1. Small-scale experiment 

For this experiment, we examine problem instances with 6 dif- 

ferent parts, 3 different failure codes, and at most 3 customers 

per tour, because this enables us to determine the optimal solu- 

tion. That way we can determine the optimality gap of the so- 

lutions obtained with our novel solution procedures. Additionally, 

we aim to quantify the value of considering advance demand in- 

formation for inventory management. To this end, we compare the 

performance of ADI-sensitive repair kits updated on a daily basis 

to the performance of a one-fits-all repair kit that does not take 

ADI into account. This one-fits-all repair kit is determined with 

the state-of-the-art job heuristic suggested by Teunter (2006) for 

repair kit problems where advance demand information is either 

not available or not used. In particular, our problem differs from 

that studied by Teunter in three aspects: The availability of ad- 

vance demand information, the stochasticity of customer numbers, 

and the time at which holding costs are incurred. Since we want 

to study the impact of the availability of advance demand informa- 

tion exclusively, we have to adjust Teunter’s problem and thus his 

solution procedure with respect to the latter two characteristics. 

To this end, we first extend Teunter’s job fill rate formula to allow 

for stochastic numbers of customers. That means we are using the 

following average JFR formula 

JFR = 

∑ C max 

c= C min 
c · P (C = c) · JFR (c) ∑ C max 

c= C min 
c · P (C = c) 

, (15) 

where JFR (c) is Teunter’s JFR formula for a fixed number of c cus- 

tomers. Second, when we apply Teunter’s job heuristic we charge 

holding costs only for units left in the repair kit at the end of 

the tour. With these changes in place the difference between our 

heuristics and the benchmark heuristic is solely due to the use 

of available ADI. While our ADI heuristics consider conditional 

demand probabilities for each part given each failure code, the 

benchmark heuristic uses average demand probabilities across all 

failure codes. Let us denote the average demand probabilities by 

p n n ∈ { 1 , . . . , N } . Using the law of total probability, we obtain 

p n = 

M+1 ∑ 

l=1 

P 
(
D j,n = 1 | F j = l 

)
· P 

(
F j = l 

)
for any customer j. (16) 

Based on these average demand probabilities the slightly adjusted 

job heuristic computes expected penalty and holding costs and 

weights them against each other to determine ADI-independent 

order-up-to levels for each spare part. The combination of these 

order-up-to levels characterizes the one-fits-all repair kit, that we 

compare to ADI-sensitive repair kits. Note that returns and thus re- 

turn costs need not be considered for a one-fits-all repair kit that 

does not change from tour to tour. 

For the small-scale experiment, we consider 10 different de- 

mand and holding cost scenarios that are combined with three 

different values for both return and holding cost parameters. Al- 

together that gives us 90 different instances. For each scenario, 

the repair kit can be equipped with 6 different parts. The number 

of customers C follows a discrete uniform distribution on { 1 , 2 , 3 } . 
Each customer communicates one out of three failure codes where 

one of them is a dummy failure code. The probability that no fail- 

ure code is communicated is assumed to be 30% for all scenar- 

ios. The remaining 70% are divided randomly among the two gen- 

uine failure codes. That is the chance to observe the first genuine 

failure code is drawn from a continuous uniform distribution on 

[0,0.7]. The conditional demand probabilities for the different fail- 

ure codes are again drawn from continuous uniform distributions. 

For the genuine failure codes that is the continuous uniform dis- 

tribution on [0.1,0.5] and for the dummy failure code the support 

is [0 . 2 , 0 . 3] . Finally different unit holding costs for each part and 

each scenario are drawn from a continuous uniform distribution on 

[0,1]. Each of these 10 different demand and holding cost scenarios 

are combined with unit return costs r = r n for all n ∈ { 1 , . . . , N } of 

0 . 5 , 1 and 2 and penalty cost rates of 5 , 10 and 15, to give us in 

total 90 different problem instances. 

For each of the problem instances, we derive the optimal solu- 

tion and compare it to the solutions found with the ADI heuristics 

and the non-ADI benchmark. Table 5 shows the relative cost dif- 

ferences between the heuristic solutions and the optimal solution. 

The given figures are averages across all 10 different demand and 

holding cost scenarios. We find that the solutions obtained with 

the part heuristic are very close to the optimal solutions with an 

optimality gap of just 0 . 27% on average and at most 1 . 68% across 

all instances. In particular, for instances with larger penalty costs of 

10 and 15 this gap is always below 0 . 5% . In all but two instances, 

the part-heuristic outperforms the greedy heuristic. Nonetheless, 

the solutions found with the greedy heuristic are still close to the 

optimal solutions. The optimality gap is just 1 . 73% on average and 

at most 6 . 13% across all instances. 

Both ADI heuristics provide better solutions than the non-ADI 

benchmark in 85 out of the 90 instances. Across these 85 in- 

stances the average relative difference between costs incurred with 
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Table 5 

Relative cost difference with the optimal solution on average across all scenarios (in %). 

r= 0 . 5 r= 1 r= 2 

P= 5 P= 10 P= 15 P= 5 P= 10 P= 15 P= 5 P= 10 P= 15 

part heuristic 0.65 0.09 0.08 0.58 0.14 0.07 0.62 0.11 0.08 

greedy heuristic 1.40 0.99 1.10 2.36 2.11 2.31 2.12 1.52 1.70 

non-ADI heuristic 10.59 20.36 21.76 9.34 17.63 18.40 9.09 16.96 17.70 

Table 6 

Run times on average across all scenarios (in s). 

r= 0 . 5 r= 1 r= 2 

P= 5 P= 10 P= 15 P= 5 P= 10 P= 15 P= 5 P= 10 P= 15 

optimal solution 694.29 669.05 634.69 833.25 782.40 777.09 1089.49 993.71 971.76 

part heuristic 34.79 35.29 34.81 35.00 35.29 35.40 35.70 35.43 35.43 

greedy heuristic 96.33 98.53 95.05 92.57 95.91 100.07 95.98 95.53 95.98 

non-ADI heuristic 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.06 

the ADI-sensitive repair kit and the ADI-insensitive one-fits-all re- 

pair kit is 13 . 90% and 12 . 64% for part and greedy heuristic respec- 

tively. This difference is the cost savings potential that can be real- 

ized with ADI heuristics in case that advance demand information 

is available. The potential cost savings are smallest for instances 

with low penalty costs that induce low service levels. That is be- 

cause in case service levels may be low, the ability to react to cus- 

tomers’ failure codes becomes less valuable. Not surprisingly the 5 

instances for which the one-fits-all repair kit found with the ad- 

justed job heuristic performs better than at least one of the ADI 

heuristics’ solutions are all characterized by low penalty costs. In 

these cases, the ADI heuristics increase the service levels above the 

optimal levels at the price of additional holding and return costs 

which does not happen with the non-ADI benchmark. Neverthe- 

less, the costs incurred with the ADI solutions are within 5% of the 

costs of the non-ADI repair kit in all of these 5 atypical instances. 

Table 6 shows the average run times of the different solu- 

tion procedures on a Mac Pro-7.1 with an Intel 24-Core Xeon W- 

processor. To evaluate the performance of a policy we must explic- 

itly derive decisions for all states and under these circumstances 

the part heuristic appears to be quicker than the greedy algorithm. 

Note however that with the greedy algorithm we can determine 

the decision for one state independent of the decisions for all other 

states. Thus, with the greedy algorithm we can determine the de- 

cision to be taken in a single state (e.g. the state currently encoun- 

tered) in no time, while the part heuristic requires the solution of 

an MDP for each part up front. 

5.2. Large-scale experiment 

In this section, we examine the performance of our ADI heuris- 

tics for real-life-sized problem instances with up to 50 parts, 10 

failure codes, and up to 6 customers per tour. The numerical exper- 

iment can be divided into a basic experiment and three subsequent 

experiments that examine the sensitivity of the initial results to 

different factors of influence. Namely, these factors are the stochas- 

ticity of customer numbers, the share of customers that provide 

ADI and the precision of the ADI available. Because of the size of 

the state space, we cannot evaluate the average costs per tour for a 

given policy let alone minimize them for large problem instances. 

However, we can still compare the performance of the ADI heuris- 

tics and benchmark them against the ADI-independent repair kit 

found with Teunter’s job heuristic on the basis of estimates of the 

average costs per tour. To obtain these estimates we apply a se- 

quential sampling procedure following Law & Kelton (20 0 0) . Each 

sample corresponds to a simulation run that comprises 110 repair 

tours. The initial repair kit before the very first replenishment deci- 

sion at the start of tour 1 is empty. We treat the first 10 tours as a 

warm-up period. Thus, the average costs across the remaining 100 

tours are an unbiased estimation of the actual average costs per 

tour. Our overall estimation of the actual costs per tour is given by 

S(L ) = 

1 
L 

∑ L 
l=1 S l with S l denoting the estimate from the lth simu- 

lation run. For each problem instance, we iteratively increase the 

number of simulation runs L until the half-width of the 95% con- 

fidence interval of the average costs per tour is within 2% of the 

actual value for each heuristic. At least 10 simulation runs are per- 

formed in any case. 

5.2.1. Basic experiment 

For the basic experiment, we run the heuristic solution proce- 

dures on 900 different problem instances. To create these problem 

instances, we combine 100 randomly generated demand and hold- 

ing cost scenarios with 3 different return and penalty cost rates 

each. For each scenario, we consider 50 different spare parts and a 

fixed number of 6 customers in each repair tour. The impact of 

stochastic numbers of customers will be discussed separately in 

a subsequent experiment. The holding costs h n for the different 

parts n = 1 , . . . N are drawn from a uniform distribution on [0,1]. 

This choice of model parameters is inspired by the set of problem 

instances generated by Teunter (2006) for his second numerical ex- 

periment. Additionally, our demand scenarios, which are explained 

in the following, are designed to match the mean demand proba- 

bilities generated by Teunter on average across all parts. 

To define a demand scenario, we must specify the number of 

different failure codes M, their respective probabilities, and the 

conditional demand probabilities for each part given each failure 

code. For each scenario, we distinguish between 9 distinct failure 

codes and 1 dummy failure code that indicates that no ADI was 

communicated by the customer. We assume the chance that an ar- 

bitrary customer does not provide ADI is 30% . To divide the re- 

maining 70% among the 9 genuine failure codes, we draw 9 ran- 

dom numbers R 1 , . . . , R 9 from a uniform distribution on [0,1]. The 

probability that an arbitrary customer j communicates the genuine 

failure code i is then generated as 

P (F j = i ) = 0 . 7 · R i ∑ 9 
i =1 R i 

. (17) 

The different parts’ conditional demand probabilities given the 

dummy failure code are drawn from a uniform distribution on 

[0.01,0.3]. For the genuine failure codes, the conditional demand 

probabilities have to reflect the additional information that is avail- 

able. To represent the impact of this additional information, we di- 

vide the parts into three different sets for each failure code. Parts 

in the first set are deemed likely to have triggered the given failure 
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Fig. 2. Costs per tour on average across all 100 scenarios. 

Table 7 

Demand characteristics for genuine failure codes. 

number of parts conditional demand probabilities 

Set 1 3 drawn from uniform distribution on [0.5,0.9] 

Set 2 15 drawn from uniform distribution on [0,0.2] 

Set 3 32 0 

code. The second set comprises parts that either may have caused 

the failure in an unlikely event or that could have been damaged 

by whatever set off the failure code (e.g., electronics damaged by 

leakage). Parts in the third set are assumed to have no connection 

to the given failure code at all. A fixed number of spare parts is 

randomly assigned to each set. The number of parts in each set 

and the construction of their respective conditional demand prob- 

abilities are described in Table 7 . 

The values considered for the return cost rate r = r n for all 

n ∈ { 1 , . . . , N } are 0 . 5 , 1 , and 2. For the penalty costs, we consider 

values of 10 , 30 , and 50. 

Applying the simulation-based evaluation procedure described 

above, we obtain the expected costs per tour for each heuristic and 

each problem instance. Average values across all 100 demand and 

holding cost scenarios are displayed in Fig. 2 for each combination 

of return and penalty cost rate. 

Even though the two ADI heuristics manage the content of the 

repair kit in completely different ways, the resulting replenishment 

or return decisions and thus the average costs per tour are surpris- 

ingly similar. The costs obtained with the part heuristic are within 

−5% to 5% of the respective values determined with the greedy 

heuristic for all instances. Table 8 shows the number of scenar- 

ios for which we observe the least costs per tour with the part 

and greedy heuristic. The figures in brackets denote the number of 

cases for which the differences between both heuristics are signif- 

icant to an approximate confidence level of 95% . As in the small 

experiment, the part heuristic outperforms the greedy heuristic in 

the majority of cases. However, the greedy heuristic provides the 

more favorable solution for one of 6 instances in this experiment 

compared to one out of 45 in the small-scale experiment. This 

suggests that the greedy heuristic which considers all parts simul- 

taneously becomes more competitive when the number of differ- 

ent parts is increased. We find that the greedy-heuristic performs 

best for instances with small penalty cost rates whereas the part 

heuristic yields better solutions for instances with large penalty 

cost rates. The superiority of the part heuristic for instances with 

large penalty cost rates can be explained by the myopic nature of 

the greedy heuristic. For large penalty cost rates, the total amount 

of stock held to avoid broken jobs is increased, which in turn in- 

creases the chance that a unit remains in the repair kit over several 

tours before it is sold. In all of these tours, we incur holding costs 

for the unsold units. The part heuristic considers this effect but the 

greedy heuristic does not as it does not look beyond the next tour. 

Unlike in the small-scale experiment, the ADI heuristics outper- 

form the non-ADI benchmark in all instances of the large-scale ex- 

periment. The reduction of the average cost incurred per tour that 

can be realized in comparison to this benchmark ranges from 8% 

to 22% for both ADI heuristics with means of 15 . 50% and 14 . 36% 
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Table 8 

Number of scenarios in which the respective heuristic performs best. 

r= 0 . 5 r= 1 r= 2 

P= 10 P= 30 P= 50 P= 10 P= 30 P= 50 P= 10 P= 30 P= 50 

part heuristic 20 (2) 100 (68) 100 (66) 73 (34) 100 (96) 100 (100) 57 (21) 100 (85) 100 (86) 

greedy heuristic 80 (43) 0 (0) 0 (0) 27 (9) 0 (0) 0 (0) 43 (10) 0 (0) 0 (0) 

Table 9 

MAD between successive start-of-tour stock levels on average across all parts and all scenarios. 

r= 0 . 5 r= 1 r= 2 

P= 10 P= 30 P= 50 P= 10 P= 30 P= 50 P= 10 P= 30 P= 50 

part heuristic 0.43 0.50 0.53 0.37 0.42 0.44 0.36 0.39 0.40 

greedy heuristic 0.42 0.50 0.53 0.38 0.42 0.43 0.38 0.42 0.43 

for part and greedy heuristic, respectively. As can be seen in Fig. 2 , 

these cost reductions are due to savings on holding and penalty 

costs, whereas additional return costs that are not incurred with 

the benchmark heuristic counteract these savings. 

For both ADI heuristics, the composition of the cost reductions 

depends on the penalty cost rate. For the smallest rate of P = 10 , 

more than 85% of the mean cost reduction can be attributed to 

penalty cost savings. For a penalty cost rate of P = 50 , on the other 

hand, savings on holdings costs account for more than 50% of the 

total cost reduction. In the first case, the ADI heuristics increase 

the average JFR and thus decrease penalty costs at comparable 

holding costs. In the second case, the high penalty cost rate in- 

duces the benchmark heuristic to aim for JFRs that are already very 

high. Thus, there is little room for a reduction of penalty costs. In- 

stead, the ADI heuristics decrease the total cost per tour primarily 

by reducing the holding costs against a similar JFR. 

The additional return costs that are incurred with the ADI 

heuristics have only a minor impact on the total costs per tour. 

For both the part and greedy heuristic, the return costs account 

for less than 5% of the total costs in each of the 900 problem in- 

stances. This shows that the return option is not used excessively 

in any case. Even for the smallest rate considered of r= 0 . 5 , the av- 

erage number of units returned per tour is just 2.77 and 2.14 for 

the part and greedy heuristic, respectively. 

Looking at the composition of the repair kits over time, we find 

that the main advantage of the ADI heuristics is the opportunity to 

start each tour with a different stock level for each part. To quan- 

tify the changing of the start-of-tour stock levels, we derived the 

mean absolute difference (MAD) between the stock levels of a part 

at the beginning of successive tours (see Table 9 ). An MAD of 0.5, 

for example, means that the stock level of a part is changed by 

one unit on average every second tour. The stock level may be 

increased or decreased. A decrease does not necessarily coincide 

with the return of a unit. It might also correspond to the decision 

not to replenish a unit that was taken out of the kit in the previ- 

ous tour. Comparing the values from Table 9 to the corresponding 

value of 0 for the non-ADI benchmark heuristic, it is easy to see 

how the flexibility to adjust the repair kit on a tour-to-tour basis 

results in lower holding and penalty costs. 

5.2.2. Stochastic number of customers 

In the basic experiment, we have a fixed number of customers 

who communicate rather precise ADI for the majority of fail- 

ures ( 70% ). To examine the sensitivity of the results obtained for 

this setting with respect to stochastic customer numbers, differ- 

ent shares of customers providing ADI, and less precise conditional 

demand probabilities given a failure code, we conduct three sub- 

sequent experiments. For each of these experiments, we adopt the 

cost settings from the initial experiment. Only the demand settings 

Table 10 

Number of scenarios in which the respective heuristic performs best. 

part heuristic greedy heuristic 

fixed number of customers 779 121 

stochastic number of customers 804 96 

are adjusted in a different way for each of the subsequent experi- 

ments. 

For the first additional experiment, we compare a setting with 

a fixed number of customers per tour (setting 1) to an equivalent 

setting with stochastic numbers of customers (setting 2). The fixed 

number of customers for the first setting is 5, while the number 

of customers to be served in the second setting is drawn from a 

discrete uniform distribution on { 4 , 5 , 6 } . Thus, the average num- 

ber of customers to be served is the same in either case. For both 

settings, we rerun the ADI heuristics as well as the non-ADI bench- 

mark heuristic on all 900 problem instances generated for the ba- 

sic experiment. 

We find that whether a fixed or a stochastic number of cus- 

tomers is considered does not have an impact on which of the ADI 

heuristics performs best. Table 10 shows the number of instances 

(out of 900) for which we obtain the least costs with the part and 

greedy heuristic. For both settings, the part heuristic equally seems 

to outperform the greedy heuristic for most instances. However, 

on average across all instances, the costs obtained with the greedy 

heuristic are just 1 . 64% (1 . 84%) above the costs obtained with the 

part heuristic for setting 1(2). 

If we compare the costs obtained with the ADI heuristics to 

those obtained with the benchmark heuristic, we see that the ben- 

efit of using ADI for the replenishment decision is larger when the 

number of customers is stochastic. Figure 3 shows boxplots of the 

relative cost reduction that can be obtained with the ADI heuris- 

tics in comparison to the non-ADI benchmark for both settings. 

For both ADI heuristics, the potential for costs savings is approxi- 

mately 7% higher for stochastic numbers of customers than it is for 

a fixed number. That is because the varying number of customers 

is known before the start of a repair tour and therefore serves as 

additional ADI for the part and greedy heuristic. 

5.2.3. Share of customers providing ADI 

So far we have assumed that the share of customers who com- 

municate ADI to the service technician is 70% . This ADI-share de- 

pends on the number of potential error causes that can be de- 

tected by the sensors that monitor an appliance’s condition. In 

some cases, monitoring 70% of the system can be technically infea- 

sible, while in other cases, it may only be achieved with expensive 

investments in additional sensors. For that reason, we conduct a 
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Fig. 3. relative cost reduction compared to the benchmark heuristic in % . 

Table 11 

Number of scenarios in which the respective heuristic per- 

forms best. 

part heuristic greedy heuristic 

ADI share of 30% 594 306 

ADI share of 50% 676 224 

ADI share of 70% 750 150 

second subsequent study to determine the impact of the ADI share 

on the performance of the ADI heuristics. 

We compare three different settings with ADI shares of 

30% , 50% , and 70% . In any case, the respective ADI share α is di- 

vided amongst 9 genuine failure codes following the procedure de- 

scribed for the basic experiment. For each setting, we use the same 

random numbers such that the relative importance of the genuine 

failure codes remains the same across all settings. 

To exclusively study the effect of the ADI share, we must en- 

sure that the mean demand probability for each part across all 

failure codes (including the dummy failure code) is the same for 

each setting. Otherwise, we would be measuring the effect of dif- 

ferent mean demand probabilities. Since the different ADI shares 

have an impact on a part’s mean demand probability, we must off- 

set this impact by altering the conditional demand probabilities ac- 

cordingly. To be precise, it is enough to alter only the conditional 

demand probability given the dummy failure code. For the genuine 

failure codes, we use the same conditional demand probabilities 

for all settings. To create 100 different demand scenarios, we sim- 

ply adopt the conditional demand probabilities generated for the 

first experiment, changing only the values for the dummy failure 

codes to achieve identical mean demand probabilities for each set- 

ting. We return to a fixed number of customers per tour of 6 and 

combine each demand scenario with 3 different return and penalty 

costs rates each (0.5, 1, 2 and 10, 30, 50). Thus, we again obtain 

900 test instances. 

As can be seen in Table 11 , the number of instances for which 

the greedy heuristic outperforms the part heuristic is increasing 

with a decreasing ADI share. That is because the part heuristic’s 

key advantage is that it implicitly anticipates the spare part de- 

mand of future customers. If, however, the share of future cus- 

tomers who communicate ADI is decreasing, this property becomes 

less important. Especially when a low penalty cost rate ( P = 10) 

leads to a relatively small amount of spare parts stocked in the 

repair kit, the ADI share has an effect on which heuristic performs 

best. For an ADI share of just 30% , the greedy algorithm performs 

better in over 90% of the instances with a penalty cost rate P = 10 , 

whereas for an ADI share of 70% , however, that is true in only 50% 

of those instances. 

When we compare the ADI heuristics to the non-ADI bench- 

mark, we find that the gap between them widens with an 

increasing ADI share. That is not surprising considering that 

the benchmark does not use ADI. However, as can be seen in 

Fig. 4 , the relative cost reduction that is achievable by using ADI 

heuristics increases more than just linearly in the ADI share. It 

can also be seen that even if only a small number of customers 

transfers information about failure codes, there is still a relative 

cost reduction of approximately 4% per tour on average across all 

instances. Thus, over a whole year and across all technicians, large 

savings can be gathered. 

5.2.4. Precision of the ADI 

The precision of advance demand information depends on the 

number of sensors in an appliance, the number of different parts 

potentially needed when a sensor triggers a failure code, and the 

conditional demand probabilities for these parts. In this section, we 

determine the ADI heuristics’ solutions for different ADI precision 

levels. We benchmark their performances against that of the ADI- 

insensitive one-fits-all repair kit. First, we consider different appli- 

ances with an identical number of sensors, but different accuracy 

levels given each failure code. Second, we compare different mon- 

itoring systems for one particular appliance that involve different 

numbers of sensors. 

For the first part of this experiment, again, let us consider ap- 

pliances with 9 sensors, such that each customer communicates ei- 

ther one out of 9 genuine failure codes or a dummy failure code. To 

represent the impact of a failure code, we have divided the spare 

parts into three sets for parts likely, unlikely, and impossible to be 

needed given that failure code. The precision of the ADI essentially 

depends on the number of parts in each of these sets and their 

respective conditional demand probabilities. To characterize differ- 
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Fig. 4. Relative cost reduction compared to the benchmark heuristic in %. 

Table 12 

Demand characteristics for genuine failure codes. 

setting set number of parts conditional demand probabilities 

high precision ADI Set 1 3 drawn from a uniform distribution on [0.5,0.9] 

Set 2 15 drawn from a uniform distribution on [0,0.2] 

Set 3 32 0 

medium precision 

ADI 

Set 1 6 drawn from a uniform distribution on [0.2,0.5] 

Set 2 15 drawn from a uniform distribution on [0,0.2] 

Set 3 29 0 

low precision ADI Set 1 9 drawn from a uniform distribution on [0.1667,0.3] 

Set 2 15 drawn from a uniform distribution on [0,0.2] 

Set 3 26 0 

Table 13 

Number of scenarios in which the respective heuristic performs 

best. 

part heuristic greedy heuristic 

high precision ADI 750 150 

medium precision ADI 788 112 

low precision ADI 739 161 

ent appliances, we vary the level of ADI precision by altering the 

number of spare parts in each of these sets as well as the con- 

ditional demand probabilities. We consider three different settings 

where the information given any genuine failure code is generated 

as described in Table 12 . The settings are designed such that the 

expected demand probability for any spare part given a genuine 

failure code is the same for each setting. 

Assumptions regarding costs and the number of customers in a 

tour are adopted from the basic experiment. The same is true for 

the failure code distribution and the conditional demand probabil- 

ities for all parts given the dummy failure code. For each precision 

setting, we run both ADI heuristics and the benchmark heuristic 

on 900 test instances. 

As can be seen in Table 13 , the precision of the ADI does 

not have a substantial effect on which of the ADI heuristics per- 

forms best. For all three settings, the part heuristic outperforms 

the greedy heuristic in approximately 5 out of 6 instances. Com- 

paring the results obtained with the ADI heuristics on the one 

hand and the non-ADI benchmark heuristic on the other hand, 

we find that the differences increase the more precise the ADI is 

(see Fig. 5 ). Both the part and greedy heuristic attempt to identify 

the parts that are required for the upcoming repair tour based on 

the available failure codes, which is, however, particularly difficult 

when a single failure code can be triggered by the malfunction of 

a number of different parts. Even if the largest cost reduction can 

be observed in the case of the most precise information, there is 

still considerable benefit if the information is less precise. 

Let us now consider the impact of different monitoring systems 

for one particular appliance. This appliance is built in a modular 

design and consists of 8 components that work independently of 

each other. That is malfunctions of one component do not affect 

the other components. For this appliance, we consider three dif- 

ferent monitoring systems displayed in Fig. 6 . The most precise 

system monitors all 8 components individually. The second best 

system monitors 4 sub-assemblies that are built from two compo- 

nents each. In technical terms, this could mean that we are mea- 

suring current flow through two electrical circuits connected in se- 

ries. In case a failure code is triggered we know that one of the 

components is malfunctioning but not which one. The least precise 

system monitors two assemblies that comprise 2 sub-assemblies 

or 4 components each. Depending on the type of monitoring sys- 

tem one out of 8, 4, or just 2 different failure codes describe the 

state of a malfunctioning appliance. For each monitoring system, 

the service technician is aware of the probabilities with which the 

different failure codes are triggered and the respective conditional 

demand probabilities for each part in each component. In par- 

ticular, we assume that the technician has no information about 

the correlation of demands for different parts given any failure 

code. 
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Fig. 5. Relative cost reduction compared to the benchmark heuristic in %. 

Fig. 6. Design of different monitoring systems. 

We compare the performance of the ADI heuristics when us- 

ing information of different accuracy from each of the three mon- 

itoring systems. To this end again we consider 900 problem in- 

stances that are comprised of 100 demand and holding cost sce- 

narios combined with three different values each for return and 

penalty cost rate. The demand scenarios are constructed in the fol- 

lowing way. We assume that all 8 components in the appliance 

are monitored and that all customers communicate the available 

information. Thus, ADI is available for each repair job and there is 

no need for a dummy failure code. Only one component fails at a 

time. To generate failure probabilities for the different components 

we draw 8 random numbers R 1 , . . . , R 8 from a uniform distribution 

on [0,1] and normalize their sum. That way the chance that com- 

ponent i in the jth customer’s appliance has failed is given by 

P (F CO 
j = i ) = 

R i ∑ 8 
i =1 R i 

i ∈ { 1 , . . . , 8 } (18) 

All components are built from parts that are specific to them. For 

each component, there are 6 critical parts, 2 parts that are likely 

to be needed given a failure of that component and four parts that 

are less likely to be needed. The conditional demand probabilities 

for these parts given a component failure are drawn from uniform 

distributions on [0.5,0.9] and [0,0.2], respectively. Thus we need 

to consider 48 parts in total for the repair kit. Depending on the 

type of monitoring system, the information available to the tech- 

nician is either on a component, a sub-assembly, or an assembly 

level. The failure probabilities for sub-assemblies and assemblies 

can be derived by adding up the failure probabilities of all the 

components they contain. The conditional demand probability for 

any part given the failure of an assembly or sub-assembly is sim- 

ply the weighted mean of the conditional demand probabilities for 

this part across all of the components in that assembly or sub- 

assembly. Similar to the basic experiment the holding cost rates 
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Fig. 7. Relative cost reduction compared to the benchmark heuristic in %. 

for all 48 parts are drawn from a uniform distribution on [0,1]. 

Each demand and holding cost scenario is combined with return 

and penalty cost rates of 0 . 5 , 1 and 3 and 10 , 30 and 50, respec- 

tively. Again, we assume a fixed number of 6 customers in every 

repair tour. 

We find that the part heuristic outperforms the greedy heuris- 

tic for all three monitoring systems on each of the 900 problem 

instances. The gap between solutions of both ADI heuristics can be 

explained with the modular design of the appliance. Contrary to 

previous experiments each part affects only one component. That 

means each part can only be needed upon the failure of one par- 

ticular component. If, however, no failure of this component is sig- 

naled in the upcoming tour it makes sense to return spare parts 

for this component from the repair kit. The part heuristic is more 

likely to do that as it anticipates holding costs incurred in future 

tours. 

Figure 7 shows the relative cost differences between costs in- 

curred with the ADI heuristics assuming different monitoring sys- 

tems and the non-ADI benchmark solution. For the part heuristic, 

we find that for each instance the usefulness of information is in- 

creasing the more precise it gets. Using the information from sys- 

tem 3 results in solutions that are on average 5 . 92% cheaper than 

the one-fits-all repair kits. Using information on a sub-assembly 

level (system 2) rather than on an assembly level (system 3) re- 

duces the costs by another 17 . 72% . Finally, we can save an av- 

erage of 33 . 77% of the total costs if we apply the part heuristic 

to information on a component level (system 1) rather than on a 

sub-assembly level (system 2). Not only do we save costs with in- 

creasing precision of the ADI, the percentage of cost savings actu- 

ally increases from step to step. For the greedy heuristic, the pic- 

ture is less clear. That is because there are instances for which the 

solutions derived using less precise information actually perform 

better. As already seen in the small-scale experiment the non-ADI 

benchmark outperforms the greedy heuristic in a number of cases. 

This happens when the greedy heuristic reacts to the available ADI 

by stocking up on parts that are then neither used nor returned. 

Thus, compared to the benchmark solution the increase in holding 

costs is larger than the reduction of penalty costs. In the major- 

ity of instances, however, the greedy heuristic provides a cheaper 

solution than the non-ADI benchmark and the potential for cost 

savings increases significantly with the precision of the available 

ADI. 

6. Extension to problems with a capacity constraint 

The literature on stochastic-demand multi-job repair kit prob- 

lems so far only provides heuristic solution procedures for prob- 

lems that disregard weight or volume limitations of the repair kit. 

In practice though, these limitations might restrict the applicability 

of the solution. For our repair kit problem with ADI, we find that a 

constraint on the total weight or volume of the units in the repair 

kit would rule out the use of the part heuristic. That is because 

the total capacity limit cannot easily be decomposed into capacity 

limits for each part. The greedy heuristic, however, can quickly be 

adjusted to handle a capacity constraint. To that end, we suggest 

running the re-equipment heuristic as described in Section 4 un- 

til the capacity constraint is violated. Once that happens, we suc- 

cessively reduce units of parts with the least JFR-contribution per 

unit of weight or volume until the constraint is satisfied again and 

resume the re-equipment procedure. To avoid infinite inclusion- 

removal loops, however, we exclude all parts once removed in 

the additional reduction step from further inclusion in the contin- 

ued re-equipment procedure. A detailed description of the adjusted 

greedy heuristic is provided in the Appendix. 

To demonstrate the impact of a capacity constraint and to test 

the performance of the adjusted greedy heuristic we return to the 

instances generated for the small-scale experiment. We add unit 

weights w n for each part n = 1 , . . . , N representing either phys- 

ical weights or volumes and consider different capacity limits. 

The 6 different parts in each instance are assigned weights of 

0 . 1 (3) , 0 . 5 (2) , and 2 (1) . That is we consider 3 small or light 

parts, 2 mid-sized parts, and 1 heavy or bulky part. The capac- 

ity constraints examined are expressed as multiples of the average 

weighted demand per tour (AWD) calculated as 

AW D = 

N ∑ 

n =1 

w n p n ·
C max ∑ 

c= C min 

c · P (C = c) , (19) 

where p n is the mean demand probability as derived in Equa- 

tion 16. For each instance, we determine the optimal and the 

heuristic solution for capacity limits of 2 to 5 times the respec- 

tive AWD. Figure 8 a shows the mean total costs across all in- 

stances given the different capacity limits. We find that the ad- 

justed greedy heuristic generates close-to-optimal solutions on the 

constrained problem instances. The average optimality gap across 
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Fig. 8. Impact of capacity constraints. 

all 90 instances and all capacity limits is just 1 . 85% , with a max- 

imum deviation of 15 . 18% from the optimal solution. The opti- 

mal solutions with low capacity limits, however, differ significantly 

from the optimal solutions for the unconstrained problem. With 

tighter capacity limits both, the total number of units and their 

mean weight per unit, are decreasing on average across the 90 

problem instances as shown in Figs. 8 b and c. That means that a 

number of particularly large or heavy parts are excluded from the 

repair kit due to the capacity constraint. This effect causes lower 

JFR-levels and thus increases penalty costs with decreasing capac- 

ity limits. 

7. Conclusion 

Today, many appliances from printers to washing machines are 

equipped with sensors that trigger failure codes in the event of 

faults. Wherever these sensors are monitoring indicators that are 

influenced by the condition of several different parts, the failure 

codes displayed by the appliance in case of an error is essentially 

imperfect ADI. In this paper, we extended previously studied prob- 

lem formulations to account for the uncertain information on an 

appliance’s condition that is communicated by customers to the 

service technician before a first repair attempt. The resulting repair 

kit problem with imperfect ADI is a sequential multi-part decision 

problem that can be modeled as a Markov decision process. We 

presented two heuristics to solve this problem, a part heuristic that 

splits the original MDP into substantially smaller MDPs for each 

part and a myopic greedy heuristic that decomposes the original 

problem into single-tour problems. For small-scale problems, we 

found that both heuristics provide solutions that are very close to 

the optimal solutions. Surprisingly though for most of the problem 

instances we examined, small-scale as well as large-scale, the part 

heuristic outperformed the greedy heuristic. The only exceptions 

to this rule seem to be instances in which the penalty cost rates 

are low compared to the inventory holding costs. That is a remark- 

able result since the solution procedures suggested in the literature 

on repair kit problems without ADI have always been greedy algo- 

rithms that handle multiple parts at the same time. Furthermore, 

we compared both ADI heuristics to a benchmark heuristic that de- 

termines a one-fits-all repair kit considering only average demand 

probabilities. We found that using advance demand information to 

modify the contents of a repair kit on a daily basis yields substan- 

tial advantages over a replenishment process that is defined by a 

single one-fits-all repair kit for most of the examined instances. 

Just how much can be saved depends on the share of customers 

that provide ADI, and the precision of the ADI. 

For appliances already in the field, we recommend that all in- 

formation available on failure codes is used for the replenishment 

decision. On the one hand, that means that failure codes must be 

communicated to the service technician before the first repair at- 

tempt. On the other hand, it means that we require statistics on 

how often a failure code occurs and which parts are likely to be 

needed in that case. Given this information, the service technician 

can use the ADI heuristics to reduce the average costs per tour. 

For new appliances to be developed with service operations in 

mind, we recommend installing sensor systems that can detect as 

many potential malfunctions as precisely as possible. Our rationale 

is that the average costs incurred per repair tour are decreasing 

the more that customers are communicating failure codes, and the 

easier it is to deduce the actual cause of a malfunction from the 

failure code. The marginal cost reduction achieved with a small in- 

crease in the share of customers who communicate ADI is even 

increasing with the share of customers that already provide ADI. 

In particular, it pays off to design an appliance in such a way that 

it can be built from independent components. If this is possible 

monitoring these components individually rather than assemblies 

or sub-assemblies comprised of several components helps a lot to 

increase the ADI precision and thus reduce costs. 

Finally, we could show that a slightly adjusted greedy heuris- 

tic provides excellent solutions when a capacity constraint is in- 

troduced to the repair kit problem with ADI. However, as the ca- 

pacity constraint gets tighter the average costs per tour increase 

significantly. 

While we determined heuristic solutions to the repair kit prob- 

lem with ADI by decomposing it by part or by tour, one possible 

direction for further research could be to tackle this problem with 

the methods of approximate stochastic programming. By using a 

clever value function approximation, it could be possible to cir- 

cumvent the need to evaluate each individual state in each step 

of a value iteration, a computationally intractable task. 
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Appendix A 

Proof of Theorem 1. For the proof of Theorem 1 we first con- 

sider the following finite-time total cost version of our optimiza- 

tion problem for part n ∈ { 1 . . . , N } : 
V n,t (x n,t , c t , b t ) = { 

min 
0 ≤y n,t ≤C max 

V n, 1 

(
x n,t , c t , b t , y n,t 

)
+ E 

[
V n,t−1 (y n,t − D n,t , C t−1 , B t−1 ) 

]
, 1 ≤ t ≤ T 

0 , t = 0 
(A.1) 

This problem is similar to the problem studied by Chen et al. 

(2017) with additional order costs and different style ADI being the 

only differences. Following the line of argumentation in Chen et al. 

(2017) we show by induction over t that V n,t is convex in x n,t and 

that the optimal policy is a state and time-dependent (L,U)-policy. 
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For the initial step we can easily see that the claim is true for t = 0. 

Let us now assume that it holds for any t − 1 ≥ 0 . To show that the 

statement must be true for t we reformulate V n,t as 

V n,t (x n,t , c t , b t ) = 

min 

0 ≤y n,t ≤C max 

{ 

min 

y n,t ≥x n,t 

f 1 (c t , b t , y n,t ) , min 

y n,t ≤x n,t 

f 2 (x n,t , c t , b t , y n,t ) 
} 

, with 

(A.2) 

f 1 (c t , b t , y n,t ) = h n · E [(y n,t − D n,t ) 
+ ] + P · E [(D n,t − y n,t ) 

+ ] 

+ E 

[
V n,t−1 (y n,t − D n,t , C t−1 , B t−1 ) 

]
, and (A.3) 

f 2 (x n,t , c t , b t , y n,t ) = r n · (x n,t − y n,t ) + f 1 (c t , b t , y n,t ) . (A.4) 

We see that f 1 (c t , b t , y n,t ) ≤ (≥) f 2 (x n,t , c t , b t , y n,t ) for y n,t < (> ) x n,t 

and f 1 (c t , b t , y n,t ) = f 2 (x n,t , c t , b t , y n,t ) for y n,t = x n,t . Following the 

induction hypothesis we also know that f 1 and f 2 are convex 

in y n,t . Next, we define the state and time dependent thresholds 

L n,t (c t , b t ) and U n,t (c t , b t ) by 

L n,t (c t , b t ) = arg min 

0 ≤y n,t ≤C max 

f 1 (c t , b t , y n,t ) (A.5) 

U n,t (c t , b t ) = arg min 

0 ≤y n,t ≤C max 

f 2 (x n,t , c t , b t , y n,t ) for any x n,t (A.6) 

Note that, while f 2 depends on x t , U n,t does not. By the con- 

struction of the objective functions f 1 and f 2 we get L n,t (c t , b t ) ≤
U n,t (c t , b t ) . Because of the relative positions of f 1 and f 2 and their 

convexity in y n,t , the minimal costs in t tours is given by 

V n,t (x n,t , c t , b t ) = ⎧ ⎨ 

⎩ 

V n, 1 ( x n,t , c t , b t , L n,t (c t , b t ) ) + E 
[
V n,t−1 (L n,t (c t , b t ) − D n,t , C t−1 , B t−1 ) 

]
, x n,t ≤ L n,t (c t , b t ) 

V n, 1 ( x n,t , c t , b t , x n,t ) + E 
[
V n,t−1 (x n,t − D n,t , C t−1 , B t−1 ) 

]
, L n,t (c t , b t ) < x n,t < U n,t (c t , b t ) 

V n, 1 ( x n,t , c t , b t , U n,t (c t , b t ) ) + E 
[
V n,t−1 (U n,t (c t , b t ) − D n,t , C t−1 , B t−1 ) 

]
, x n,t ≥ U n,t (c t , b t ) , 

(A.7) 

which means that we have a time and state dependent (L,U)- 

policy. Using the expression in Equation (A.7) we see that the 

difference V n,t (x n,t + 1 , c t , b t ) − V n,t (x n,t , c t , b t ) is non-decreasing in 

x n,t . Thus V n,t (x n,t , c t , b t ) is convex in x n,t , which completes the 

proof for the finite-time total cost optimization problem. Since 

the (L,U)-policy minimizes the t-period total cost function it must 

also minimize the t-period average costs. This does not change 

for t → ∞ . However, for an infinite-time average cost MDP with 

a finite state and action space, there must be a stationary solu- 

tion. This shows that for t → ∞ L n,t (c t , b t ) and U n,t (c t , b t ) converge 

against state dependent but time independent thresholds L n (c t , b t ) 

and U n (c t , b t ) which completes the proof of Theorem 1 . �

Proof of Theorem 2. We prove Theorem 2 by induction. For t = 1 

we obtain the following differences. 

�x k �x l V 

∗
1 = 0 ∀ k � = l ∈ { 1 , . . . , N } (A.8) 

�y k �y l V 

∗
1 = −P 

c ∑ 

j=1 

[ ∏ 

n ∈ { 1 , ... ,N } \ { k,l } 

((
1 − P 

(
D j,n = 1 

∣∣∣F j = f j 

))

+ P 

(
D j,n = 1 

∣∣∣F j = f j 

)
· P 

( 

j−1 ∑ 

m =1 

D m,n < y n 

∣∣∣F = f 

) ) 

·
∏ 

n ∈ { k,l } 
P 

(
D j,n = 1 

∣∣∣F j = f j 

)
· P 

( 

j−1 ∑ 

m =1 

D m,n = y n 

∣∣∣F = f 

) ] 

≤ 0 ∀ k � = l ∈ { 1 , . . . , N } (A.9) 

Algorithm 3 Adjusted re-equipment heuristic. 

Require: old repair kit x , current repair kit y as deter- 

mined by reduction heuristic, number of customers c, error 

codes f , conditional demand probabilities P (D j,n = 1 | F j = 

f j ) ∀ n ∈ { 1 , . . . , N } , f j ∈ { 1 , . . . , M + 1 } , unit holding costs 

h n ∀ n ∈ { 1 , . . . , N } , unit return cost r n ∀ n ∈ { 1 , . . . , N } , penalty 

costs P , capacity limit (cap) 

Ensure: new inventory levels y opt 

y opt ← y 

stop ← 0 

α ← 0 N 

while stop = 0 do 

for n ∈ { 1 , . . . , N } with y n < c ∧ αn � = 1 do 

y temp ← y 

y 
temp 
n ← y n + 1 

�n ← 

J F R (c, f,y temp ) −J F R (c, f,y ) 

h n 

(
E 

[(
y 

temp 
n −D n 

)+ 
∣∣∣F = f 

]
−E 

[
( y n −D n ) 

+ 
∣∣∣F = f 

])
−r n ·1 { y n <x n } 

end for 

n ∗ ← arg max 
n : y n <c 

�n 

y n ∗ ← y n ∗ + 1 

while 
N ∑ 

n =1 

w n · y n > cap do 

for n ∈ { 1 , . . . , N } with y n ≥ 1 do 

y temp ← y 

y 
temp 
n ← y n − 1 

�n ← 

J F R (c, f,y ) −J F R (c, f,y temp ) 
w n 

end for 

n ∗ ← arg min 

n : y n ≥1 

�n 

y n ∗ ← y n ∗ − 1 

αn ∗ ← 1 

end while 

if V 1 (x, c, f, y ) < V 1 (x, c, f, y opt ) then 

y opt ← y 

end if 

if y n = c ∨ αn = 1 ∀ n ∈ { 1 , . . . , N } then 

stop ← 1 

end if 

end while 

�x k �y l V 

∗
1 = 0 ∀ k � = l ∈ { 1 , . . . , N } (A.10) 

�x k �y k V 

∗
1 = −r k 1 { x k = y k } ≤ 0 ∀ k ∈ { 1 , . . . , N } (A.11) 

Since all differences are non-increasing by Corollary 2.6.1 of Topkis 

(1998) the single period cost function V ∗
1 

is submodular in x and y 

on X × Y . Because the inventory x before orders does not directly 

impact the stocking decision in the following tour we obtain the 

following results for t > 1 . 

�x k �x l V 

∗
t = �x k �x l V 

∗
1 = 0 ∀ k � = l ∈ { 1 , . . . , N } (A.12) 

�x k �y l V 

∗
t = �x k �y l V 

∗
1 = 0 ∀ k � = l ∈ { 1 , . . . , N } (A.13) 

�x k �y k V 

∗
t = �x k �y k V 

∗
1 = −r k 1 { x k = y k } ≤ 0 ∀ k ∈ { 1 , . . . , N } (A.14) 

According to the induction hypothesis V ∗t−1 is submodular on 

X × Y . Then by Theorem 2.7.6 of Topkis (1998) min 

y 
V ∗

t−1 ( x, c, f, y ) 

is submodular in x on X . Thus, min 

y ′ 
V ∗

t−1 

(
y − d, c ′ , f ′ , y ′ 

)
is submod- 

ular in y on Y for any d, c ′ and f ′ . Because we know already that 
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V ∗1 is submodular on Y and the expected future costs are just a 

conical combination of functions shown to be submodular on Y 

we can conclude that V ∗t is submodular in y on Y . �
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