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ABSTRACT

Ecologists routinely use statistical models to detect and explain interactions among ecological drivers, with a goal to eval-
uate whether an effect of interest changes in sign or magnitude in different contexts. Two fundamental properties of inter-
actions are often overlooked during the process of hypothesising, visualising and interpreting interactions between
drivers: the measurement scale – whether a response is analysed on an additive or multiplicative scale, such as a ratio
or logarithmic scale; and the symmetry – whether dependencies are considered in both directions. Overlooking these
properties can lead to one or more of three inferential errors: misinterpretation of (i) the detection and magnitude
(Type-D error), and (ii) the sign of effect modification (Type-S error); and (iii) misidentification of the underlying processes
(Type-A error). We illustrate each of these errors with a broad range of ecological questions applied to empirical and sim-
ulated data sets. We demonstrate how meta-analysis, a widely used approach that seeks explicitly to characterise context
dependence, is especially prone to all three errors. Based on these insights, we propose guidelines to improve hypothesis
generation, testing, visualisation and interpretation of interactions in ecology.

Key words: antagonistic, effect size, generalised linear models; Hedges’ g, log response ratio, meta-regression, statistical
interaction, synergistic, synthesis, transformation.

CONTENTS

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
II. Context dependence can go undetected (TYPE-D error) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

(1) Statistical interactions are scale dependent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

* Author for correspondence (E-mail: r.spake@reading.ac.uk).

Biological Reviews (2023) 000–000 © 2023 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.

Biol. Rev. (2023), pp. 000–000. 1
doi: 10.1111/brv.12939

https://orcid.org/0000-0003-4671-2225
https://orcid.org/0000-0002-7775-1668
https://orcid.org/0000-0003-0415-2709
https://orcid.org/0000-0001-6310-3670
https://orcid.org/0000-0001-9406-0693
https://orcid.org/0000-0001-6612-9366
https://orcid.org/0000-0002-7765-5182
https://orcid.org/0000-0002-0387-5377
https://orcid.org/0000-0001-5580-4303
mailto:r.spake@reading.ac.uk
http://creativecommons.org/licenses/by/4.0/


(2) The modelling scale can change the meaning of a statistical interaction . . . . . . . . . . . . . . . . . . . . . . . 5
(3) Is the additive or the multiplicative measurement scale more meaningful? . . . . . . . . . . . . . . . . . . . . . 7

(a) Empirical example: spider catch variation with artificial light at night and time of day . . . . . . . . . 8
(b) Empirical example: ant species richness variation with land-use intensity and exotic ground cover 8

III. The direction of effect modification is vulnerable to misinterpretation (Type-S error) . . . . . . . . . . . . . . . . . 9
(1) The sign of effect modification is scale dependent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

(a) Empirical example: moth species richness over time across Finland . . . . . . . . . . . . . . . . . . . . . . . 9
IV. Asymmetric explorations of context dependence are insufficient tests of theories positing interactions (Type-A

error) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
(1) Visualising interaction effects using marginal effect plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

(a) Hypothetical example: biodiversity moderates the influence of environmental stress on ecosystem
functioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

V. Meta-analysis is especially vulnerable to all three inferential errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
((a)) Effect size metrics vary in their measurement scale: implications for Type-D and -S errors . . . . . . . 12

(a) Simulated example: temporal biodiversity trends in actively and passively restored plots following a
disturbance event (Type-D and -S error) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
(b) Empirical example: understorey plant richness differences between managed and unmanaged forests
across two continents (Type-D and -S errors) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
(c) A note on transformation bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

VI. Guidelines to improve inference about context dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
(1) Hypothesis generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
(2) Statistical modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
() Visualisation and interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

VII. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
VIII. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
IX. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
X. Supporting information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

I. INTRODUCTION

Nature’s complexity and multi-causality frequently leads
ecologists to describe ecological relationships as being ‘con-
text dependent’ (e.g. Spake et al., 2022a,b; Bradley
et al., 2020; Catford et al., 2021; Wirsing et al., 2021). The
term ‘context dependence’, derived from the Latin words
con (‘together’), texere (‘to weave’), and pendere (‘to hang’), aptly
describes the central remit of ecology: to characterise rela-
tionships among the causal threads of life’s rich tapestry.
Ecologists might ask, for example, how do landscape attri-
butes modify the impact of organic farming on biodiversity
(Seufert & Ramankutty, 2017; Smith et al., 2020)? How are
biodiversity effects on ecosystem functioning modified by
global-change drivers such as drought (Hong et al., 2022)?
How does the impact of invasive species on native biodiver-
sity depend on the spatial grain at which it was measured
(Powell, Chase & Knight, 2011)? Studying the dependencies
among ecological drivers has both practical and theoretical
motivations. For example, identifying interacting effects can
help target limited conservation resources to contexts where
interventions will be most effective (Spake et al., 2019), while
the absence of interactions might suggest the existence of
general relationships in ecology (Leimu et al., 2006).

In this review, we address a common approach to the
investigation of context dependence, which asks whether a
driver of interest has an effect that ‘depends on’, or gets
‘modified’ in magnitude or sign by, other drivers

(Vanderweele, 2009, 2019). In principle, this line of question-
ing might seem straightforward and amenable to statistical
testing with ecological data, by fitting models containing ‘sta-
tistical interactions’ (see Table 1 for glossary), or by using
meta-analytic methods that explore whether ‘effect sizes’ sys-
tematically vary across putative ecological gradients or fac-
tors (Gurevitch et al., 2018; Spake et al., 2022b). Such
analyses are vulnerable to several potential misinterpreta-
tions, however, which arise when two critical aspects of effect
modification are overlooked: scale (whether a response is ana-
lysed on an additive or multiplicative scale) and symmetry

(whether effect modification is examined in both directions).
The nature of effect modification depends on the measure-

ment scale used in the analysis – that is, whether a response is
analysed on an additive scale or a multiplicative scale, such as
a ratio, logarithmic or logit scale (Vanderweele, 2009;
Greenland, 2015). Ecological data often do not conform to
the assumptions of linear models, requiring the use of trans-
formations (e.g. log-transformation) or non-linear link func-
tions (Bolker et al., 2009). Such transformations, however,
can change the functional form of the relationships between
response and predictor variables, and influence qualitative
and quantitative inferences about effect modification
(Wagenmakers et al., 2012; VanderWeele & Knol, 2014).
This change is often not explicitly considered during inter-
pretation (Griffen et al., 2016), which can lead to erroneous
inferences about the detection and magnitude (henceforth
‘Type-D’ errors, where D denotes detectability issues) and
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sign (‘Type-S’ errors, where S denotes sign issues) of effect
modification (Fig. 1). In ecology, D and S errors are typically
discussed in relation to modelling biases that arise from mea-
surement error and low statistical power (Duncan &
Kefford, 2021; Yang et al., 2022), but they can also stem
from model misinterpretation (Duncan & Kefford, 2021;
Wolkovich et al., 2021). For example, the choice of measure-
ment scale has affected the interpretation of temporal trends
in biodiversity indices (e.g. Leung et al., 2020; Loreau
et al., 2022), and temperature sensitivities of organisms to
warming (Wolkovich et al., 2021). As an illustration, consider
temporal trends in species richness at a location for two tax-
onomic groups. Richness in group A might decline by 30%,
while group B might decline by 50%. If group A is consider-
ably more speciose than B, then its smaller percentage
decline may nevertheless correspond to a greater absolute
loss of species. If the analyst is interested in relating local
extinction rates over time to predictors such as group-level
traits, D and S errors can result from interpreting such losses
as percentages only.

Ecologists often approach interactions asymmetrically,
to construct hypotheses about a ‘focal’ driver of interest (X)
and its modification by a second, ‘modifying’ variable (Z)
that is often beyond the control of the researcher
(Cox, 1984). This asymmetry of focus often leads the analyst
to generate hypotheses and predictions about effect modifi-
cation in a single direction (Berry, Golder & Milton, 2012).
As an example, one might ask how biodiversity effects on eco-
system functioning are modified by environmental stress.
Statistically, however, effect modification is symmetric: if
Z modifies the effect of X, then X modifies the effect of Z. If
the effect of biodiversity on ecosystem functioning depends
on the level of environmental stress, then the effect of envi-
ronmental stress on functioning depends on the level of

biodiversity. Thus, interpreting and visualising dependencies
in a single direction may be insufficient for testing hypothe-
ses, when it overlooks patterns that are inconsistent with the
underlying conditional theory (henceforth ‘Type-A’ errors,
where A denotes asymmetry issues; Berry et al., 2012;
Fig. 1). Asymmetric approaches to effect modification are
inherent to the method of meta-analysis, which estimates
the magnitude of focal effects across individual studies (effect
sizes), and evaluates their variation with putative ‘effect mod-
ifiers’. Meta-analysis is a widely used approach in ecology
(Gurevitch et al., 2018; Anderson et al., 2021), which often
explicitly sets out to test for and explain context dependence
in ecological effects (e.g. Leal & Peixoto, 2017; Marino,
Romero & Farjalla, 2018; Albertson et al., 2021). The conse-
quences of asymmetric investigation for ecological inference
have yet to be evaluated.

Here, we review the inferential errors that can arise when
the scale and symmetry of effect modification are overlooked
in ecological studies. Several statistical challenges to model-
ling context dependence in ecology have previously been
recognised in relation to confounding variation, collinearity
and statistical power (e.g. Catford et al., 2021; Duncan &
Kefford, 2021). We extend the list of challenges to Type-D,
-S and -A errors, and provide widely applicable principles
and practical guidance for improving the study of interac-
tions across a variety of ecological questions. We begin by
illustrating with empirical data and simulations how D, S
and A errors can result from ignoring the scale and symmetry
of interactions, even when a model is properly specified. We
then demonstrate how meta-analysis is particularly vulnera-
ble to these errors despite its wide use and often explicit goal
to evaluate and understand context dependence. Based on
these insights, we outline key considerations to improve
hypothesis generation and testing, as well as the visualisation
and interpretation of conditional effects in ecology.

Table 1. Glossary.

BACI design Before–After–Control–Intervention. The outcomes of an intervention treatment are compared to those in a
control, with both referenced against pre-treatment responses to account for unmeasured environmental
variation. In these designs, the effect of an intervention is measured not in its main effect (CI), but in its
interaction with time (the BA × CI term).

Conditional plots Predicted values of Y plotted across the range of X and Z, or at substantively meaningful values of these predictors.
Effect sizes (in meta-
analyses)

Effect sizes estimate the magnitude and direction of change in a response variable Y, either as differences between
categorical group means or as the strength of relationships for a continuous focal driver.

Marginal effect Marginal effects summarise the effect of an independent variable on the response in terms of a model’s predictions.
Marginal effect plots display the estimated coefficient of a focal variable and its confidence interval against
values of a modifying variable. They indicate the statistical significance, uncertainty, magnitude, and direction
of an effect across a full hypothetical range of the modifying variable, often a range from 3SD below to 3SD
above the mean. Best practice is to include a frequency histogram of the modifying variable along the x-axis, to
allow the user to judge common support based on the distribution of the modifier.

Scale of measurement The scale on which an effect is estimated, generally either additive or multiplicative.
Statistical interaction A statistical interaction involves the effect of each explanatory variable on the response varying with the magnitude

or sign of other variables. The magnitude and sign of interaction can depend on the scale of measurement
(whether multiplicative or additive). Detection of a statistical interaction does not necessarily imply a biological
interaction, for example if the interaction is enforced by ceiling/floor constraints on the response variable.
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Fig. 1. Three common inferential errors when investigating context dependence in ecology. Consider a test of context dependence in
its most basic form: a 2 × 2 factorial experiment, measuring an ecological response Y, to the crossing of factors X and Z, each with two
levels. The analyst fits a statistical model with an interaction term to the data: Y � X + Z + X × Z, to test for and quantify context
dependence. Three inferential errors are possible when the measurement scale or symmetry of the interaction are overlooked:
detection and magnitude (Type D), sign (Type S) and misidentification of underlying processes (Type A).
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II. CONTEXT DEPENDENCE CAN GO
UNDETECTED (TYPE-D ERROR)

The most common way to test for context dependence is by
introducing a statistical interaction (X× Z) into a model. Sta-
tistical interactions indicate that the relationship between
X and Y varies throughout the range of Z; and likewise,
Z–Y relationships vary across the range of X (Duncan &
Kefford, 2021). For example, if the effect of biodiversity on
ecosystem functioning depends on the level of environmen-
tal stress, than the effect of environmental stress on function-
ing depends on the level of biodiversity. The statistical
support for an interaction is then determined by evaluating
its statistical significance (e.g. P < 0.05), or using model
selection criteria to justify its inclusion in competing models
(e.g. Akaike’s information criterion, AIC). However,
whether or not an interaction term is supported can depend
critically on the measurement scale used to estimate the
effects in a statistical model, i.e. whether the measurement
scale is additive (e.g. absolute units) or multiplicative
(e.g. log-transformed).

(1) Statistical interactions are scale dependent

To demonstrate this type of scale dependence, consider a sta-
tistical interaction in its most basic form: a 2 × 2 factorial
experiment, measuring an ecological response Y, to the cross-
ing of factorsX and Z. An interaction is detected (and the null
hypothesis rejected) when the lines on an interaction plot
(connecting same-level means of one factor across levels of
the other) are not parallel, even after accounting for uncer-
tainties in the sizes of mean values (Fig. 1; Wagenmakers
et al., 2012). In this case, the effects of each factor differ
according to the level of the other factor. However, the
degree of parallelism can depend on the measurement scale
(Figs 1B and 2). Additive scales measure change in equal
increments along the range of a variable (e.g. biomass change
in grams), whereas multiplicative scales measure relative
change (e.g. per cent change in biomass relative to a control
or baseline value). For purely mathematical reasons, if both
X and Z affect Y independently, an absence of effect modifi-
cation of the absolute difference with Z (i.e. parallel lines on
an additive scale) forces relative measures of the effect of
X on Y to vary with Z (i.e. non-parallel on a multiplicative
scale), and vice versa (Vanderweele, 2009; VanderWeele &
Knol, 2014).

Not all statistical interactions are equally vulnerable to
non-detection. To identify situations where important con-
tingencies may go undetected, Loftus (1978) distinguished
between ‘non-removable’ and ‘removable’ interactions
(Fig. 2). A non-removable interaction involves a change in
the sign of an effect, and can never be undone by an arbitrary
smooth monotonic transformation, and is therefore
also known as ‘crossover’ or ‘qualitative’ (Wagenmakers
et al., 2012; VanderWeele & Knol, 2014). As an example of
a non-removable interaction, the effect of canopy cover on

forest susceptibility to bamboo invasion (measured as a
probability) is negative in warm regions of Japan, but posi-
tive in cool areas, where bamboo exhibits photoinhibition
and its establishment is facilitated by denser forest canopies
(Spake et al., 2021b). The change in sign is unaltered by
transformations of forest susceptibility. By contrast, a non-
crossover or ‘removable’ interaction can be undone by a
transformation of the measurement scale (Fig. 2). It is the
removable interactions that are particularly vulnerable to
Type D (and S) errors. This is because ecologists often
ignore the measurement scale when interpreting fitted
models, and exclude statistical interactions if they fail a sig-
nificance test (e.g. P < 0.05), or use model selection criteria
that employs penalties to compensate for the over-fitting of
more complex models (e.g. AIC). We thus focus our review
on, and give examples of, removable interactions in the fol-
lowing sections.

(2) The modelling scale can change the meaning of a
statistical interaction

Ecologists often ignore the measurement scale when inter-
preting interactions, describing effects as ‘stronger’ or
‘weaker’ in different contexts. The modelling scale is often
chosen to satisfy modelling assumptions or to improve model
fit, yet it fundamentally changes the underlying form of the
model fitted (Spake et al., 2022a), as well as the meaning of
the statistical interaction tested (Rothman, 2002). Interaction
on an additive scale (i.e. absolute units) means that the com-
bined effect of two predictors is larger (or smaller) than the
sum of the individual effects of the two predictors, whereas
interaction on a multiplicative scale (e.g. log-transformed)
means that the combined effect is larger (or smaller) than
the product of the individual effects. As a result, the meaning
of statistical interaction terms varies between linear and gen-
eralised linear models (and among different link functions),
which are frequently used in ecology.

Linear models with interaction terms take the follow-
ing form:

Y =β0+β1X +β2Z +β3 X ×Zð Þ ð1Þ

The X × Z term allows both the intercept and the effect
(slope) of X on E[YjX] to vary with different levels of Z. β
terms refer to parameters to be estimated. Its statistical signif-
icance indicates that the combined effect of X and Z is larger
(or smaller) than the sum of their individual effects.

Ecological variables typically respond non-linearly to envi-
ronmental gradients and can be subject to ceiling and floor
effects for those that are naturally bounded (e.g. survival rates
bounded between 0 and 100%, or abundances bounded to
be positive). Because of this bounding, ecologists often use a
multiplicative scale for statistical analysis, for example by
transformation of the response variable, or fitting generalised
linear models with non-linear link functions.
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In a generalised linear model (GLM) with a general func-
tional form f(.), the conditional expected value of Y (i.e. Y,
given some value of Z and X) takes the following form:

E Y jZ ,X½ �= f β0+β1X +β2Z +β3 X ×Zð Þð Þ ð2Þ

where f could be any non-linear function, such as inverse-
logit or inverse-logarithmic (exponential). In contrast to a lin-
ear model, the marginal effect of a predictor variable in a
GLM is not constant over its range, or the range of other cov-
ariates (Karaca-Mandic, Norton & Dowd, 2012;
Mize, 2019). Consider a binary logistic model with a

response variable Y representing the conditional probability
that a given binary outcome Y is equal to 1, Pr(Y = 1)
(e.g. species presence), as a function of a continuous predictor
X (e.g. an environmental gradient), and a categorical predic-
tor Z (e.g. functional group), containing no interaction terms:

Pr Y jZ ,X½ �= f β0+β1X +β2Zð Þ ð3Þ

The functional relationship [f(.)] between X and Pr(Y = 1)
is S-shaped for both levels of Z (Fig. 3). This means that for
both levels of Z, an additional unit of X (i.e. the marginal
effect of X) has little effect on Pr(Y = 1) for extremely high

Fig. 2. Examples of ‘removable’ and ‘non-removable’ statistical interactions. These interaction plots display covariation of Y for two
factor levels of X (distinguished by purple and yellow lines), and covariation in Y for six levels of Z (distinguished by multiple coloured
lines). Each row corresponds to a separate example. On the left, Y is plotted on an additive scale, while the right panels display Y on a
multiplicative, log scale. Non-removable interactions (A) cannot be undone by a transformation of the measurement scale, while
removable interactions can (B).
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and low values of X, while the marginal effect of X is larger
for intermediate values. The marginal effect of X is shown
by the slope of the tangent to the S-shaped curve at a given
value of X (e.g. at the vertical dashed line in Fig. 3). Despite
there being no interaction term specified in the model, the
marginal effect of X depends on the level of Z.

The existence of the non-linear link function in GLMs
means that the effect of any predictor on the conditional
expected value of Y depends on the values of every other
explanatory variable (Berry et al., 2012). In other words,
GLMs with non-linear link functions, which include the
canonical choices for Poisson (log link) and binomial (logit
link) distributions, are inherently interactive in all of the
predictors, even without interaction terms (Karaca-
Mandic et al., 2012). This changes the meaning of the inter-
action term: interaction on a multiplicative scale means
that the combined effect is larger (or smaller) than the prod-
uct of the individual effects (Rothman, Greenland &
Walker, 1980; Knol et al., 2007). It follows that hypotheses
about contingent effects in non-linear systems, where
GLMs are used, should specify expected marginal effects
at particular values or distributions of all predictor vari-
ables (McCabe et al., 2022).

Epidemiologists have long discussed the importance of
scale for detecting and interpreting interactions (Rothman
et al., 1980; VanderWeele & Knol, 2014). The detection of
interactions between binary risk factors (e.g. smoking status
and asbestos exposure) for a binary outcome such as a mor-
tality can depend on whether multiplicative, ratio measures
(relative risks, risk ratios, and rate ratios), or additive differ-
ence measures (risk and rate differences) are used
(Spiegelman & VanderWeele, 2017). Binomial models (with
the logit link function), most often used for binary outcomes,
implicitly measure interaction on the multiplicative scale
(Fig. 3), yet additive scales that estimate the risk or rate differ-
ences (e.g. in years of life lost), are considered more policy rel-
evant. Epidemiological guidelines consequently recommend
presenting interaction analyses in a way that allows readers
to assess interactionmeasures onmultiple scales, and to assess
additive interaction from multiplicative models (Knol
et al., 2011; Knol & VanderWeele, 2012).

(3) Is the additive or the multiplicative
measurement scale more meaningful?

The inherent scale dependence of effect modification raises
the question: on which scale should we interpret context
dependence? The importance of distinguishing between the
scale of interest and scale of measurement is both well recog-
nised and much debated in epidemiology (Knol et al., 2011).
Many advocate the additive scale as the most policy-relevant
(Hallqvist, Ahlbom & Reuterwall, 1996; VanderWeele &
Robins, 2007), for targeting subgroups to maximise public
health impact when resources are constrained (Knol
et al., 2011; Vanderweele, 2019). For example, if a public
health study sets out to quantify how many lives might be
saved by a policy intervention in different contexts, the abso-
lute change in deaths on the additive scale will be of interest.
The view of many epidemiologists is that it is almost always
best to present both additive and multiplicative measures of
interaction (Knol & VanderWeele, 2012). Similarly, for eco-
logical questions, both scales are also likely to be informative
for interpretation. For example, for biodiversity variables
such as species richness and abundance, additive scales
inform on changes in the absolute numbers of species or indi-
viduals, which may be of most interest when deciding
between alternative local conservation actions, whilst multi-
plicative scales tell us about processes such as rates of popula-
tion growth, which might be of most interest when examining
drivers of population dynamics. Statistical significance testing
requires meeting model assumptions, which may impose a
measurement scale different to the interpretation scale. Hav-
ing detected an effect, its biological meaning might be inter-
preted on only one or both scales, depending on the question.
Ultimately, we must not conclude anything about scientific
or practical (in)significance based on statistical (in)signifi-
cance alone (Wasserstein, Schirm & Lazar, 2019;
Abadie, 2020), and should aim to avoid overinterpretation
(Mayo & Hand, 2022).

Transformations of the measurement scale can have
important practical implications. For applied ecological
questions, the consequences of failing to detect effect
modification(s) could be more harmful than falsely detecting
them, due to the ecological and economical costs of failing to
take action or to better target them. For example, concluding
that the effect of conservation intervention X on the establish-
ment probability Y of a rare species is consistent across land-
use intensity gradient Z (by way of a non-significant statistical
interaction) could lead to missed opportunities to target con-
servation resources to sites with the greatest potential for con-
servation to enhance the likelihood of establishment.
Similarly, when analysing data obtained from Before–
After–Control–Impact (BACI) designs that are commonly
employed in conservation research (reviewed by Wauchope
et al., 2021), the statistical significance of the interaction term
is used to evaluate the effect of a conservation action. In these
designs, the effect of an intervention is measured not in its
main effect (C–I), but in its interaction with time (the
BA × CI interaction term; Smokorowski & Randall, 2017).

Fig. 3. Predicted probabilities of Y (Pr(Y = 1)) obtained from a
logistic regression model with continuous X and Z predictors
and no statistical interaction. The marginal effect of X is
shown at the vertical dashed line by the slope of the tangent to
the S-shaped curve.
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Concluding that there was no effect of an intervention based
on a statistical model employing a multiplicative scale might
lead to missed opportunities to enhance absolute numbers of
individuals or species, if such an effect was present, yet
missed, on the additive scale.

Here, we advocate that under many circumstances, it is
worthwhile to consider both additive and multiplicative
scales. The following two examples illustrate why both mea-
surement scales can be informative for assessing context
dependence in ecology.

(a) Empirical example: spider catch variation with artificial light at
night and time of day

In a factorial study that measured invertebrate abundance
responses to time of day and to artificial-light exposure at
night (Manfrin et al., 2017), the abundance of a night-active
ground-dwelling spider (Pachygnatha clercki) increased with
the night-time artificial-light treatment (Fig. 4A). On the
additive scale, in terms of the absolute number of spiders
per unit effort, the same increase was observed in samples
collected during both day and night. By contrast, on the mul-
tiplicative scale, the relative increase was greater between
samples collected during the day, when catches were gener-
ally lower for this night-active species. Absolute and relative
effects were different because of differences in mean spider
abundances for each factor level. We might expect to see
density changes on a multiplicative scale if the changes are
brought about by population growth or spider activity, but

on the additive scale if changes result from external immigra-
tion of individuals. Thus, if measuring long-term effects of
artificial light at night on a closed population, we might want
to interpret the multiplicative scale that accounts for the
bounded and non-linear nature of population growth; even
if focused on short-term effects, we might hypothesise that
light affects the activity patterns of individuals on a per capita
basis, and therefore still use a multiplicative scale (Fig. 4A).
However, if abundance is considered a proxy for how indi-
viduals redistribute themselves in response to light, then we
would want to interpret the additive scale.

(b) Empirical example: ant species richness variation with land-use
intensity and exotic ground cover

In a study sampling ant communities across gradients of land-
use intensity and exotic ground cover, a generalised linear
model fitted with a logarithmic link function detected no inter-
action between exotic cover and land-use intensity in their
effects on ant species richness (Oliver et al., 2016). Indeed, in
a conditional effect plot that displays the predicted species
richness against exotic cover at high and low levels of land-
use intensity, the lines are parallel on the multiplicative (loga-
rithmic) scale (Fig. 4B). This means, however, that the lines
must diverge on the additive scale, where the absolute increase
in species richness is greater in non-intensive land uses, even as
the relative change is roughly constant. In this case, given that
the treatments have similar species richness, the difference
between the predictions on each scale do not greatly differ.

Fig. 4. The detection of interactions can depend on the measurement scale. Contingency is detected when the lines representing
different treatment levels (purple versus yellow) are not parallel (i.e. statistically different slopes). (A) Spider catch per unit effort at
day and night, shown for a site exposed to artificial light at night (yellow) and a dark control site (purple). Data from Manfrin et al.
(2017). (B) Ant richness variation with exotic ground cover shown for high and low land-use intensity. Data from Oliver et al.
(2016). See Section III for interpretation.
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Nonetheless, interpretation on the additive scale might be
more informative if a conservationist aims to target interven-
tions to land uses that yield the greatest species richness
increase, in which case reductions in exotic ground cover will
yield the greatest absolute increase in low-intensity land uses.

III. THE DIRECTION OF EFFECT
MODIFICATION IS VULNERABLE TO
MISINTERPRETATION (TYPE-S ERROR)

(1) The sign of effect modification is scale dependent

In addition to the detection and magnitude of effect modifica-
tion, its sign can also depend on the measurement scale. In
other words, whether we conclude that the effect ofX gets smal-
ler or larger with Z can depend on whether we use an additive
or multiplicative scale. This change in sign tends to occur when
ecological response variables span orders of magnitude.

(a) Empirical example: moth species richness over time across Finland

We re-analysed the species richness data of moths published
in Leinonen et al. (2016) and Antão et al. (2020), spanning
17 years across a latitudinal gradient in Finland. Following
typical practice, we fitted a generalised linear multilevel
model with a logarithmic link function to the Poisson-
distributed counts of species, specifying an interaction
between latitude and sampling year, and specifying that each
trap has a varying (random) intercept and slope for the year
effect. The model output shows the interaction term as signif-
icant. We used the model to predict species richness across
years for two latitudinal bands (high and low), and visualised
the predictions on the two scales: (i) the scale of the response
variable, as counts of species (additive), and (ii) the scale of the
linear predictor used to fit the statistical model (logarithmic,
i.e. multiplicative) (Fig. 5).

On both scales, there is a positive trend in site-level species
richness over time. On the additive scale, the increase is
strongest at low latitudes (as seen by the steeper slope of the
purple line in Fig. 5A), indicating that the positive change
over time declines with increasing latitude. On the logarith-
mic scale, by contrast, the increase is stronger for sites at
higher latitudes (the yellow line is steeper in Fig. 5B), indicat-
ing that the rate of species richness change over time
increases with latitude. The direction of the effect modifica-
tion has reversed across the two scales of measurement. On
the logarithmic scale, species richness changes are approxi-
mately represented as proportionate changes over time; the
low species richness at the beginning of the time series at high
latitudes leads to larger proportionate differences over time.
Both scales of measurement and analysis can provide impor-
tant information. Conclusions about variation in the num-
bers of species redistributions across latitudes would require
comparison on the additive scale. In other words, absolute
changes in the number of species over time could indicate
species shifting their range limits: more species in absolute

numbers have shifted their range at lower latitudes. On the
other hand, changes on the multiplicative scale could indi-
cate a multiplicative process, for example, the gain of key-
stone species, which have disproportionate effects on the
persistence of other species in an ecosystem.

IV. ASYMMETRIC EXPLORATIONS OF
CONTEXT DEPENDENCE ARE INSUFFICIENT
TESTS OF THEORIES POSITING INTERACTIONS
(TYPE-A ERROR)

Ecological studies often focus on asymmetric hypotheses
about context dependence, distinguishing between a focal
effect of interest X and a modifier variable Z, and testing
for detectable modification of the effect of X by Z. For exam-
ple, we might ask: how do temporal biodiversity trends vary
with biome? Are relationships between biodiversity and eco-
system functioning modified by environmental drivers? Do
farming impacts on biodiversity depend on landscape struc-
ture? This dichotomy is often justifiable on practical grounds,
e.g. because X is a variable that we humans can manipulate
(e.g. a conservation intervention), or it represents a given
change at a locality, or because a study’s sampling strategy
(e.g. blocking or randomisation) has been designed for a
‘treatment’ variable X (Cox, 1984), while Z is a contextual
variable that we cannot change, or is outside of the investiga-
tor’s control (Cox, 1984), such as biome, latitude, taxon, age,
rainfall, etc., or an intrinsic variable such as sex. As a result,
ecologists tend to visualise, interpret and interrogate statisti-
cal interactions asymmetrically.

(1) Visualising interaction effects using marginal
effect plots

A common practice to visualise interaction effects is to con-
struct a marginal effect plot that displays how the marginal
effect of X on Y (the response coefficient) changes over the
range of moderator Z, with all other covariates held constant.
Although it is possible to produce two marginal effect plots
for an interaction, with Z as moderator of X and vice versa, this
is rarely done (Berry et al., 2012). The focus on one marginal
effect plot, examining effect modification in a single direction
can mislead interpretation because any observed relationship
between Z and the marginal effect of X could be consistent
with multiple underlying conditional relationships. That is,
any observed relationship between Z and the marginal effect
of X is always consistent with multiple ways in which the mar-
ginal effect of Z varies with X, some of which may be incon-
sistent with the underlying conditional theory being tested
(Berry et al., 2012).

(a) Hypothetical example: biodiversity moderates the influence of
environmental stress on ecosystem functioning

We demonstrate the Type-A error using a hypothetical
example of the relationship between biodiversity and
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ecosystem functioning. Decades of research have demon-
strated that biodiversity promotes the functioning of ecosys-
tems (e.g. Hooper et al., 2005; Tilman, Isbell &
Cowles, 2014). Studies have sought to identify whether biodi-
versity can moderate the effect of environmental stress on
ecosystem functioning (Tilman et al., 2001), and whether
richer communities are more resistant to stress (e.g. Steudel
et al., 2012; Baert et al., 2018; Benkwitt, Wilson &
Graham, 2020; Hong et al., 2022). In such studies, rather
than generating predictions according to a hypothesised

causal model, it is common to develop hypotheses that desig-
nate biodiversity or ecosystem functioning as a focal variable,
and the other as a ‘moderator’. Then, the typical approach is
to examine asymmetrically how the slopes of the focal driver
vary with the moderator variable, to ask whether effects are
weakened or strengthened in magnitude across its range.
Consider the following hypothesis of a weakening effect:

environmental stress reduces ecosystem functioning, but bio-
diversity can buffer against this impact. In other words, we
expect to see weaker effects of stress on functioning in richer

Fig. 5. Top: predicted changes in site-level species richness of moths over time at low (61�, purple) and high (68�, yellow) latitudes in
Finland, plotted on (A) additive and (B) multiplicative scales. On the additive scale, the rate of species-richness change over time – the
slope of the lines – is stronger at low latitudes (purple line), where sites experienced higher gains in the absolute numbers of species
during the monitoring period. By contrast, the rate of richness increases is greatest at high latitudes when presented on the
logarithmic scale (yellow line), corresponding to the scale of measurement of a generalised linear mixed model applied to species
counts. Bottom: Predicted changes in site-level species richness across latitude shown for 2 years. Data from Antão et al. (2020).
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communities. To test this hypothesis, we identify environ-
mental stress as the focal variable X, and biodiversity as the
moderator Z, which weakens the effect of stress on ecosystem
functioning Y. We fit a linear model to data (e.g. from a dis-
tributed experiment), and specify an interaction term (stress
× biodiversity) to represent this hypothesis. After detecting
a statistical interaction, we construct a marginal effect plot
displaying the estimated effect of stress (the slope), and its
change with biodiversity (Fig. 6C).

Fig. 6 shows how an apparent marginal effect trend is con-
sistent with two different scenarios corresponding to different
underlying processes. In both scenarios, consistent with our
general hypothesis, we observe a weakening trend in the mar-
ginal effect of stress with biodiversity – the effect of stress on
ecosystem functioning is more weakly negative at higher biodi-
versity (Fig. 6C).We conclude that highly diverse communities
are more resistant to environmental change, and promote
management interventions that enhance biodiversity in all
contexts (e.g. planting mixtures rather than monocultures).
However, amuch richer interpretation is gained when we look
at the interaction symmetrically, and produce a second mar-
ginal effect plot displaying the conditional effects of biodiver-
sity with increasing stress (Fig. 6D), as well as conditional
plots displaying predicted levels of ecosystem functioning at
high and low stress and biodiversity levels (Fig. 6A, B). Doing
so reveals that at low stress, while functioning is relatively high

overall, functioning declines with biodiversity in one of the sce-
narios (bottom of Fig. 6A). In this scenario, functioning would
be higher in monocultures in low-stress environments.

The key point here is that marginal effect plots for
X (Fig. 6C) do not convey any information about the magni-
tude or sign of the marginal effect of Z at any value of X. This
is critical, because different values for this intercept (in the
marginal effect plot) imply very different ways in which the
marginal effect of Z is conditional on X, and only some of
these ways may be consistent with our theories and hypothe-
ses (Berry et al., 2012). The same patterns can arise from
alternative pathways by which X and Z together affect Y.
Hence, if we only examine the marginal effect in one direc-
tion, we build an incomplete picture of the underlying pro-
cesses and risk seriously misunderstanding the management
implications of the evidence.

V. META-ANALYSIS IS ESPECIALLY
VULNERABLE TO ALL THREE INFERENTIAL
ERRORS

The systematic collation of studies addressing similar ques-
tions, and the subsequent analysis of their summary statistics
using meta-analysis, is an increasingly popular approach to

Fig. 6. Two alternative scenarios (rows) of conditional relationships among ecosystem functioning, environmental stress and
biodiversity. Marginal effect plots in (C) depict the same weakening effect of stress on ecosystem functioning in more diverse
communities. A richer interpretation is gained when we examine the interaction symmetrically, by producing a second marginal
effect plot displaying the conditional effect of biodiversity with stress (D), and conditional plots (A, B) that display predicted values
of ecosystem functioning at specified values of biodiversity and stress. If we do not examine the relationship symmetrically, we
cannot test alternative theories about the interaction.
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seeking general patterns in ecology (Anderson et al., 2021).
Whilst meta-analysis is often used to ask questions about
mean effects, it is also widely promoted as a means of under-
standing the context dependence of ecological effects
amongst studies (called ‘heterogeneity’ in meta-analysis;
e.g. Gurevitch et al., 2018). The classical approach to meta-
analysis generally involves three steps (Spake et al., 2022b):
(i) estimation of study-level and overall mean effect sizes; (ii)
estimation of heterogeneity statistics (such as I2 or Q-statistics)
that quantify variability in study-level effects; and (iii)
attribution of effect size heterogeneity to predictors (called
‘effect modifiers’ or ‘moderator variables’; Mengersen
et al., 2013). The effect size is predominantly estimated with
respect to one focal explanatory variable (e.g. the effect of
land use on biodiversity, or biodiversity change over time),
rendering the meta-analysis asymmetric, and only permitting
the assessment of effect modification in a single direction. For
instance, if a meta-analysis explores how the effect of X on
Y gets modified by Z, the first step is to calculate the effect size
(representing the effect of X on Y), which immediately loses
sight of the actual values of X and Y. This loss of information
during effect size estimation means that it is not possible to
examine how the effect of Z on Y gets modified by X. This
makes meta-analysis particularly vulnerable to Type-A
errors. Moreover, this loss of information removes effect sizes
from their baseline values – the mean values, or intercepts, of
individual study reference groups – rendering meta-analysis
also vulnerable to D and S inferential errors when baselines
vary across studies, and the measurement scale is overlooked.

Effect size metrics vary in their measurement scale:
implications for Type-D and -S errors

Effect size metrics measure the magnitude and direction of
change in Y either as differences between categorical group
means, or as the strength of relationships for a focal driver
measured on a continuous scale. Effect sizes are considered
useful because they allow the collation of data from primary
studies that may use different units of measurement
(Rohrer & Arslan, 2021). For example, abundance might
be measured in counts of individuals, or in biomass units
across studies. There are different possible effect size families
to choose from; for instance, the d family (metrics such as
standardised mean difference or Hedges’ g), or the ratio fam-
ily (metrics such as the odds ratio or log ratio). From these
families, the two most commonly used effect size metrics in
ecological meta-analyses are Hedges’ g = [YX2 − YX1]/
SDpooled, and the log ratio = log[YX2] − log[YX2], where
YX1 and YX2 are mean outcome values for two levels of X,
and SDpooled is the pooled standard deviation of the two
groups. There have been several demonstrations of how
these metrics vary in their susceptibility to bias under differ-
ent sampling parameters such as sample size and aerial
extent (e.g. Lajeunesse, 2015; Hamman et al., 2018; Spake
et al., 2021a). Here we examine how these metrics vary in
their measurement scale, and discuss the implications for
Type-D and -S errors.

These alternative effect size metrics use inherently different
scales of measurement, and can thus lead to D and S errors if
this is overlooked. In published meta-analyses, the choice of
metric is typically justified by the nature and availability of
data, rather than the meaningfulness of ecological interpreta-
tion (Spake & Doncaster, 2017). For example, Hedges’
gmight be chosen because the presence of zero values renders
multiplicative scales uninterpretable and precludes the esti-
mation of log ratios, while the log ratio might be chosen
because of unreported SD values that are required for calcu-
latingHedges’ g. However, the choice of metric has important
implications for interpretation. For a normally distributed
variable, Hedges’ g quantifies change on the additive scale
(in units of SDs), while the log ratio quantifies multiplicative
change and approximates percentage change when effects
are small. Regardless of which metric is used, the analyst usu-
ally interprets the existence and sign of effect modification
without reference to the measurement scale, making such
inferences vulnerable to the D and S errors discussed above.

(a) Simulated example: temporal biodiversity trends in actively and
passively restored plots following a disturbance event (Type-D and -S
error)

We simulated three data sets to demonstrate the dependence
of meta-analytic inference on the choice of effect size metric
using R (v4.1.1, R Core Team, 2021), package AHMbook

(Kéry, Royle &Meredith, 2021); see online Supporting Infor-
mation, Appendix S1, for details. Each data set represented
an independent meta-analysis for a particular taxonomic
group, comprising data that had been collated from numer-
ous individual ‘studies’. For each data set, we assumed a sce-
nario where species abundances were tracked inmultiple plots
following a major disturbance event, and each study repre-
sented a different point in time since restoration. Replicates
of plots were either subjected to active restoration treatment,
or left as unrestored control plots (Fig. 7, column A). The tax-
onomic groups differed in their responses to restoration. For
each taxon, we used mean abundance values in restored and
control plots to calculate effect sizes that represented the effect
of active restoration on abundance for each study, with the
metrics: mean difference (the absolute difference between
group means), Hedges’ g, and log ratio (Fig. 7, columns B–D).
All three taxa increased in numbers of individuals through

time in both restored and control plots (Fig. 7A), and the rate
of increase was faster for actively restored compared to con-
trol plots (positive trends in mean difference in Fig. 7B). How-
ever, the magnitude and sign of the difference between
control and restored plots depends on the effect size metric.
For taxa 2 and 3, log ratios show the opposite trend to mean
differences, with the positive effect declining with time since
disturbance (Fig. 7D). The negative log ratio trend with time
might lead the analyst to infer that passively restored sites
catch up with actively restored sites given enough time,
despite the mean difference increasing over time. For taxon
3, Hedges’ g remains relatively constant with time since dis-
turbance (Fig. 7C, bottom), because the increasing variability
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in abundance associated with the increasing mean abun-
dance (as shown by error bars in Fig. 7A), balances out the
weaker effect of the increasing abundance difference. This
clearly demonstrates the issue that Hedges’ g is not suited to
expressing differences between variables that trend in their
mean–variance relationships (Sun & Cheung, 2020).

(b) Empirical example: understorey plant richness differences between
managed and unmanaged forests across two continents (Type-D and -S
errors)

Here we demonstrate the influence of effect size metric on
inference, with a meta-analysis of data collated by Chaudh-
ary et al. (2016) on studies that measured the impacts of forest
management on species richness across management types
and biomes. We used mean species richness values from

unlogged and logged forest plots to calculate four metrics of
effect sizes that represent the effect of forest logging on
understorey plant species richness: mean difference, Hedges’
g, log ratio and percentage difference. For each effect size
metric, we calculated effect sizes for each primary study,
and pooled effect sizes for Europe and North America. This
reflects common practice in ecological meta-analysis to esti-
mate overall mean effect sizes across heterogeneous group-
ings of studies (Senior et al., 2016).

We find that the magnitude of logging effects on under-
storey richness, and the relative ranking of mean effects by
continent (i.e. the sign/direction of effect modification;
Fig. 8, right column), vary with the effect size metric (Fig. 8
rows). For the mean difference, the effect of logging is more
strongly negative in North America than Europe (Fig. 8C);
this was driven by large effect sizes in studies with higher

Fig. 7. The magnitude and sign of effect size trends can depend on the effect size metric. We estimated effect sizes and their standard
errors from three simulated meta-analytic data sets (see Section V.1.a), corresponding to three different taxa (rows). Study-level
differences in abundance are shown between actively restored (purple) and control sites (yellow), across time since a major
disturbance event (column A). For each meta-analytic data set, we calculated three effect size metrics to represent study-wise
differences between actively restored and control sites: mean difference (MD, column B), Hedges’ g (C), and log ratios (LR; D). For
all taxa, the analyst might conclude that the ‘effect of restoration gets larger with time since disturbance’ for mean difference (B).
The positive mean–variance relationship (shown by increasing error bars with mean abundance in column A) can weaken the
trend for Hedges’ g compared to mean difference (e.g. taxon 3 shows a positive effect in B, but C shows no trend). The trend can
also reverse in sign with effect size metric, with log ratios measuring proportionate differences (as for taxon 2).
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mean richness that were more common in North America.
By contrast, the effect is more strongly negative for Europe
using all the other metrics (Fig. 8F, I, L). The difference is
not significantly different from zero for North America for
the log ratio (I) or percentage difference (L), due to some
strongly positive effect sizes on these relative scales from stud-
ies with lowmean richness (dark blue in Fig. 8G, H, J, K) that
balance out negative effects. Our inference therefore
depends on the choice of effect size metric.

Why do these differences arise in the magnitude and sign
of effect modification? The ‘baseline’ biodiversity values of
the unlogged forest stands (controls) vary widely. The differ-
ence in effect size trends between mean differences and per-
centage change occurs for purely numerical reasons:
absolute differences will diverge from ratio differences when
baselines vary. The difference in trend between log ratios and
percentage change arises because log ratios approximate

percentage change only when percentage change is relatively
small (as shown by near-zero effects following the 1:1 lines in
Fig. 9). Therefore, the log ratio cannot meaningfully repre-
sent proportional differences when percentage differences
are large, where estimates may exert undue influence on
mean effect sizes that are estimated across highly heteroge-
neous study pools. Large proportionate changes are observed
when group mean values are near zero, where any absolute
increase in Y becomes large in proportionate terms, and
small differences in baseline level lead to drastically different
effect size magnitudes (Pustejovsky, 2018). For example, it
makes little sense to equate a change from two individuals
to four individuals with a change from 102 individuals to
either 104 (i.e. +2) or 204 (i.e. ×2) individuals.
Epidemiologists also face the challenge of varying baselines

for inferring effect modification from meta-analyses
(Chaimani, 2015; Shrier et al., 2016; Yates & Cochran, 1938).

Fig. 8. Interpretation of trends in forest-management impacts depends on effect size metric. Each row corresponds to a different
effect size metric and scale of measurement: mean difference (MD), Hedges’ g, log ratio (LR) and percentage difference. In the left
column (A, D, G, J), mean plant richness is shown for studies that compared logged and unlogged forest types across two
continents (the same data are plotted but on different scales or coloured by different effect size metrics; each line corresponds to a
single study). The middle column of forest plots (B, E, H, K) display effect sizes for individual studies, ordered by study ID and
coloured by their values. The right column shows the meta-analysis estimated mean effects of logging by continent, estimated
using an unweighted meta-analysis (C, F, I, L). Data compiled by Chaudhary et al. (2016).
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For example, in meta-analyses of drug effects on disease risk,
differences in ‘underlying risk’ are important in determining
the degree of effect modification by risk factors, as inferred
from meta-regression or subgroup analysis. For example, if
synthesising studies to compare the effect of an anti-cancer
drug on morbidity across different subgroups that vary in
average age, the ‘baseline’ outcome (i.e. morbidity) here cov-
aries with the effect modifier of interest (age). Proposed solu-
tions include using underlying risk as an effect modifier, or
measuring change in meaningful, additive units from the
baseline (Shrier et al., 2016).

It is worth noting that some meta-analyses comparing multi-
ple effect sizemetrics have reported similar relationships of effect
size moderators, even though these metrics differ as to whether
they are additive (Hedges’ g) or multiplicative (the log ratio). For
example, Powell et al. (2011) studied the effects of invasive plants
on species richness, finding that Hedges’ g and the log ratio gave
similar trends in effect size modification by study spatial extent.
We might expect to observe similar trends when the response
variable of interest is Poisson-distributed, with a variance that
increases with the mean. Hedges’ g uses the pooled standard
deviation to standardise the metric, which increases with the
mean, and can cause the metric to have similar behaviour to
the log ratio. This similarity only demonstrates that Hedges’
g is not fit for its purpose of representing additive change for a
variable with a significant mean–variance relationship.

(c) A note on transformation bias

To improve interpretability, mean log ratio (LR) values are
often transformed to percentage change: 100 × [exp

(LR) − 1], as a familiar and readily interpretable conceptua-
lisation, which is consistent with how biodiversity scientists
and policymakers might discuss biodiversity change. This
repurposing of the effect size risks transformation-induced
bias, which occurs because a non-linear transformation of
a mean value is generally not equal to the mean of
transformed values. This is an expression of Jensen’s
inequality: f[E(Y)]≠E[f(Y)] for an arbitrary random variable
Y and non-linear function f (e.g. Nakagawa, Johnson &
Schielzeth, 2017). Accordingly, back-transforming the mean
value of a log ratio calculated across study-level log ratios
introduces a bias into the estimate of the mean percentage
difference, due to the convexity of the log transformation.
The magnitude of the bias increases with the variance of
the weighted mean, which is small only when the number
of studies and their precision is high (Hedges, Gurevitch &
Curtis, 1999). In ecology, this variance is typically large
(Senior et al., 2016), and can vary widely across subgroupings
of studies. A potential solution to this problem for approxi-
mately normally distributed data is to use a correction factor:
100 × [exp (LR + 0.5 × Vtotal) − 1], where Vtotal is the vari-
ance of all log ratio values (Nakagawa et al., 2017).

VI. GUIDELINES TO IMPROVE INFERENCE
ABOUT CONTEXT DEPENDENCE

Given that quantifying context dependence will remain a
major focus across theoretical and applied ecology despite
the potential for D, S and A errors described above, we pro-
vide guidance below in the form of numbered points to

Fig. 9. Correspondence between percentage differences in species richness (x axes) and log ratios (LR) multiplied by 100. Effect sizes
representing species richness differences are shown for (A) simulated communities with ‘control’ richness values of 50 and ‘treatment’
values ranging from 1 to 100; (B) moth communities at the beginning and end of a time series (data from Antão et al., 2020); and
(C) understorey plant communities in logged and unlogged forests (data compiled by Chaudhary et al., 2016). Grey lines
correspond to a 1:1 match between percentage differences and 100 × LR. Correspondence is greatest when absolute percentage
difference is relatively small, at less than �±50%. Large positive percentage changes are relatively less strongly expressed as log
ratios, while large negative percentage changes are relatively more strongly expressed as log ratios.
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improve inference, focusing on hypothesis generation,
modelling considerations, and visualising and interpreting
context dependence.

(1) Hypothesis generation

(1) Hypotheses and predicted patterns should be aligned
clearly to causal models. Epidemiologists often distinguish
between ‘effect measure modification’ (Rothman, 2002),
where magnitude or sign of the effect of X on Y (on a partic-
ular measurement scale) varies with the level of a third vari-
able Z, where the effect of Z may or may not be causal, and
‘biological interaction’, denoting the interdependent, recip-
rocal, or mutual operation, actions, or effects of X and Z on
Y, where relationships with X and Z are both causal
(Vanderweele, 2009; Bours, 2021). We do not wish to dictate
terminology, but instead emphasise the importance of a priori
causal reasoning.

(2) Hypotheses and predicted patterns should be aligned
clearly to additive and/or multiplicative processes, where
possible. If the scale of relevance is unclear, hypotheses could
be made on both scales. Table 2 includes examples of scales
of interest for both theoretical and applied questions, and
whether they correspond to the scale of modelling (see point
11). The most important consideration is to distinguish effect
modification that arises only from ceiling and floor effects of
biological phenomena from effect modification that arises
from other biological mechanisms that would still be interac-
tions on additive scales. For example, either cold or starva-
tion can kill an animal. Thus, temperature and resource
availability must modify each other’s effects on survival on
the multiplicative scale, even if they do not on the additive
scale. But they might also modify each other on the additive
scale if, for example, it is easier to starve when conditions are
cold. Essentially, an animal can only die once, forcing a log-
linear scale, and statistical interactions therefore do not nec-
essarily imply a biological interaction.

Table 2. Examples of theoretical and applied reasons for selecting additive or multiplicative scales for common ecological response
variables.

Response
variable

Type of modelling
Scale of interest for hypothesis generation, visualisation and interpretation

Theoretical context Applied context

Species richness
(counts)

Poisson or negative binomial
with logarithmic link
function; or log
transformation prior to
linear modelling

Additive: forecasting net gains and losses
over time due to (local) extinctions or
to species’ redistributions brought
about by range shifts, e.g. due to
colonisations from an external species
pool

Multiplicative: species interactions or
trophic cascades, where species have
disproportionate influences on
ecosystem structure; for example,
diversity begetting diversity

Additive: interventions aiming to
maximise absolute numbers of species,
regardless of baseline species richness;
interventions targeted to areas that
will generate the largest absolute effect
on richness.

Multiplicative: identifying where effects
are proportionately greatest, for
similar baselines and constrained
range of effects (e.g. 20–60%
differences)

Abundance
(counts)

Poisson or negative binomial
with logarithmic link
function; or log
transformation prior to
linear modelling

Additive: predicting net gains and losses
over time due to redistributions or
changes to activity patterns

Multiplicative: identifying multiplicative
processes such as population growth,
and per capita effects on activity

Additive: contributions that change
linearly with abundance (e.g.
provisioning ecosystem service;
invasive species)

Multiplicative: drivers of species’ long-
term population trends

Occurrence
(binary)

Binomial family with logit link
function

Additive: rare in practice
Multiplicative: predicting species
distributions based on environmental
covariates, for prediction probabilities
bounded between 0 and 1

Additive: change in probability, or ‘risk
difference’, for rare species of
conservation concern, or invasive
species targeted for eradication

Multiplicative: as above, but change in the
relative risk might be informative for
species that are not rare, for which
probability does not approach zero

Proportion of
infected
individuals
(proportion)

Binomial family with logit link
function

Additive: thresholds of herd immunity
Multiplicative: forecasting proportions
under different scenarios

Additive: thresholds of herd immunity
Multiplicative: ceiling effects if total
eradication is of interest

Proportion of
individuals
surviving a
stage or time
interval

Binomial family with logit link
function

Multiplicative: assessment of multiple-
predator effects on prey survival

Additive: changes to number of surviving
adults of rare species per unit effort in
response to multiple stressors such as
pollution and temperature
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(3) Make symmetric predictions about effect modification
not only on the modification of X effects by Z, but also the
modification of Z effects by X. Be aware that testing a statis-
tical interaction involves multiple hypotheses that can be
unpacked to increase the strength of inferences drawn
from the study [see Berry et al. (2012) for detailed guidance].
The crucial issue is that any contingent association between
two variables can arise from multiple causal mechanisms.
These multiple mechanisms matter when extrapolating or
trying to transport effects across studies (Spake
et al., 2022b). Tests of conditional theories should be
informed by a priori causal theory where possible.
(4) To avoid asymmetry and encourage more nuance when
testing theories, analysts could construct hypothetical condi-
tional plots: graphical displays of the predicted values of
Y at minimum, maximum and/or substantively meaningful
values of both X and Z (Berry et al., 2012).

(2) Statistical modelling

(5) Use an error structure that matches the biological process
being modelled (e.g. Kerkhoff & Enquist, 2009; Cawley &
Janacek, 2010), or appropriately transform model predic-
tions to the scale of interest if alternative error structures
are required as ascertained by statistical analysis (Xiao
et al., 2011). The appropriate functional form might be eval-
uated by exploratory scatterplots or inspections of residuals
from preliminary models. The choice of scale might be influ-
enced by the range over which the response values vary. For
example, when modelling a proportions data set that are
largely in a middle range (0.3–0.7), a linear scale might be
better than a logit scale. See Table 2 for examples of scales
of measurement and scales of interest for common response
variables in theoretical and applied ecology.
(6) Synthetic studies that analyse raw study-level data are pre-
ferred tometa-analyses of study-level summary data, when pos-
sible. Analyses of raw data can allow a more complete test of
interactions, because meta-analyses of effect sizes inherently
impose an asymmetry and divorce the analyst from baselines.
(7) For meta-analyses, be aware that the magnitude and sign
of an effect size trend depends on the effect size metric used,
due to influences of data distribution (non-normality) and/or
heterogeneity of variances, and differences in baseline values.
Do not use Hedges’ g with Poisson-distributed variables due
to its standardisation by SDpooled, which can covary with the
mean. Log ratios as a proportionate measure of change can-
not meaningfully represent effect sizes when comparing
groups with near-zero means or with large differences in
baseline (e.g. control group) values between studies.
(8) Be aware of potential transformation biases when transform-
ing averagedmodel predictions and use appropriate corrections.

Visualisation and interpretation

(9) Any statement about context dependence being ‘stron-
ger’ or ‘weaker’ in different contexts, must be scale specific

(i.e. whether the relative magnitude or existence of context
dependency exists on a multiplicative or additive scale). Be
aware that statistical interaction indicates departure from
the underlying form of a fitted statistical model
(Rothman, 2002), such that the effect of each explanatory
variable on the response varies with the magnitude or sign
of other influential variables. Detection of a statistical inter-
action therefore does not necessarily imply a biological inter-
action, for example if the interaction is enforced by ceiling/
floor constraints on the response variable.
(10) Graphical displays are essential to the interpretation
and communication of context dependence. If uncertain
about the relative importance of additive and multiplicative
processes, visualise and interpret model predictions on both
measurement scales (i.e. scale of model and transformed
predictions).
(11) Marginal-effect plots that display predicted coefficients
of X as conditional on values of Z are asymmetric and omit
information about the observed data underlying an interac-
tion (i.e. baselines). Where possible, analysts should instead
or additionally use conditional plots that display predicted
values of Y across substantively meaningful values of both
X and Z (e.g. using faceting or three-dimensional plots).
These graphs can then be compared with the predicted rela-
tionships to evaluate whether intercepts and slopes are con-
sistent with hypothesised relationships. The scale at which
results are presented and communicated might be different
to the scale used for modelling, and this should be made clear
when describing the analysis and findings.
(12) Display conditional plots for generalised linear models
with non-linear link functions, even without interaction
terms, because they are inherently multiplicative and there-
fore interactive. Graphically assess effect modification from
generalised linear models even if the interaction term is
non-significant (Rönkkö et al., 2022).
(13) When interpreting published research, be aware of the
types of interactions that are particularly vulnerable to infer-
ential errors. Appendix S2 provides examples of statistical
interactions and their vulnerabilities to Types D, S and A
errors.
(14) Seek to move beyond static two-dimensional graphical
displays for communicating context dependence. Many dis-
ciplines increasingly use interactive web applications that
enable the generation of predictions for user-specified inputs
(McCabe, Kim & King, 2018; Perkel, 2018; Weissgerber
et al., 2019; in ecology: Spake et al., 2020). Such applications
enrich understanding of the scale and symmetry of interac-
tions by allowing users to interact directly with underlying
data, and choose which variables and on which measurement
scale to plot predictions.

VII. CONCLUSIONS

(1) Ecologists routinely use statistical models to detect and
explain interactions amongst ecological drivers, with a goal
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to evaluate whether an effect of interest changes in sign or
magnitude in different contexts. Three common inferential
errors arise when ecologists interpret statistical interactions
without paying attention to their fundamental property of
symmetry, or to the measurement scale, whether additive
or multiplicative. These errors take three principal forms:
failing to detect (‘D’ errors), and mistaking the sign (‘S’
errors) of the dependency, and misidentifying the underlying
causal model (‘A’ errors).
(2) Meta-analysis, which has become a widely used tool for
characterising context dependence in ecology, is especially
prone to all three errors. The magnitude and sign of an effect
size trend depends on the effect size metric used, due to dif-
ferences in their scale of measurement (whether additive or
multiplicative), influences of data distribution, and differ-
ences in baseline values. Future syntheses should prioritise
full analysis of raw data over meta-analysis of summary statis-
tics. If only meta-analysis is possible, researchers must justify
their choice of effect size metric with respect to ecological
interpretation.
(3) Symmetry and the interaction scale must be considered
explicitly during hypothesis generation, testing, visualisation
and interpretation of context dependence in ecology.
(4) While our review has focused on issues most pertinent to
common types of ecological data, our article serves as a start-
ing point for improving present practices in hypothesis gener-
ation, modelling and visual display of interactions in ecology.
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X. SUPPORTING INFORMATION

Additional supporting information may be found online in
the Supporting Information section at the end of the article.

Appendix S1.Details of meta-analysis of simulated primary
studies measuring biodiversity in actively restored and con-
trol forest plots following major disturbance events.
Appendix S2. Examples of statistical interactions and their
vulnerabilities to Types D, S and A errors.
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