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Marshalling yards are nodes in rail networks to sort railcars from incoming trains to outgoing trains. To built
outgoing trains in the correct sequence, railcars are shunted by shunting locomotives. Thereby, green house gas
emissions are emitted as those locomotives are usually diesel powered. As the planning of shunting operations is
a very complex problem, heuristics, so-called sorting strategies, are applied in practice. In this paper the effects of
practically relevant sorting strategies on green house gas emissions are studied in a rolling horizon model. The
rolling horizon model is used in a simulation study to investigate the effects of sorting strategies and input

parameters (like the number and composition of ingoing and outgoing trains) on green house gas emissions. The
results indicate that for different parameter constellations, different emission-optimal sorting strategies exist.
Thus, sorting strategy selection should be done carefully depending on the operational conditions at the shunting

yards.

1. Introduction

Sustainability is a major issue in transportation research, see de Dios
Orttzar (2021). Regarding the rail freight transportation the use of
electric locomotives is typically in railway transportation and more eco-
friendly than most other means of transport, but diesel-powered loco-
motives are still in use which are much less eco-friendly. Particularly in
marshalling yards often diesel-powered shunting locomotives are used
which produce considerable amounts of greenhouse gas (GHG) emis-
sions. Although there are technological alternatives to diesel-powered
shunting locomotives (like battery-electric or fuel-cell powered loco-
motives), conventional shunting locomotives are still the dominating
means of transport in marshalling yards (Bundesnetzagentur, 2021). To
minimize total emissions from rail transportation also GHG emissions in
marshalling yards need to be considered. Next to using “l”’ocomotives,
shunting emissions can also be reduced by considering GHG emissions in
shunting operations planning, i.e., when planning how to sort and
schedule railcars.

Railcar sorting at shunting yards aims at assembling railcars in the
correct order in their dedicated outbound trains. Railcars arrive in in-
bound trains and are assigned to the receiving tracks. A “r’efers to all
railcars assigned to a specific receiving track, see Fig. 1 (Boysen et al.,

2012). Once a cut is complete, all railcars are decoupled and shunted by
locomotives over the hump from where they roll into the classification
tracks (so-called “)”. Usually, on each classification track one outbound
train is built. If after humping the sequence of railcars assigned to a
classification track does not match the corresponding outbound train’s
target configuration, the railcars have to be “(”also called “)”. Le., all
railcars assembled on a classification track are moved back to the
receiving area and humped again. Usually, railcars have to be humped
multiple times before all outbound trains are assembled completely and
correctly as usually the sequences of incoming railcars do not match the
required outbound sequences.

In general marshalling yards consist of receiving, classification and
departure tracks for the arrival of incoming trains, sorting railcars and
building outgoing trains, respectively. In the remainder of this article the
layout refers to one of the most up-to-date marshalling yard in Germany,
the marshalling yard in Halle (Saale), i.e. no departure tracks are
available (DB Netz AG, 2022). If no departure tracks are available, trains
are sorted and built directly on classification tracks. This implies that
completely assembled outbound trains block classification tracks until
their departure. A different treatment of no departure tracks results in
the arrival and departure on the receiving tracks, see Gestrelius (2022),
A different layout comprises two yards in opposite direction, see Otto
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Fig. 1. Schematic layout of a marshalling yard with hump, incoming trains arrive at the receiving area, railcars are sorted in the classification area and outgoing

trains are prepared for departure in the departing area.
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Fig. 2. Example for Sorting by train, (a) Initial situation (7 blocks, dedicated to two trains distinguished by hatching), (b) situation after initial humping, (c) 1st
pullback & rehumping: split dot hatched train, (d) second pullback & rehumping: sequence dot hatched train, (e)/(f) splitting & sequencing zigzag hatched train.
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Fig. 3. Example for Sorting by block, (a) Initial situation (7 blocks, dedicated to k=2 k=2
k=3 k=3

two trains distinguished by hatching), (b) Initial humping: Sorting by block
number, (c) Final result after 4 pullbacks.

and Pesch (2017) or two humps and no departure tracks, see Marton
et al. (2009). The marshalling yard layout can also transfer to other
facilities, see Jaehn et al. (2017). The authors interprete the layout of a
railcar workshop as the layout of a flat yard (marshalling yard without
hump).

Multi-stage sorting strategies are procedures to assign railcars to
classification tracks efficiently such that e.g. rehumping is minimized,
outbound trains are built on time, etc. Usually, railcars with the same
destination and, thus, position in an outbound train are grouped into so-
called “(Gatto et al., 2009)”. Therefore, in the following we refer to the
units to be sequenced in outbound trains as blocks. Another objective is
to minimize the number of used tracks, see Gatto et al. (2009).

Zien and Kirschstein (2021) studies GHG emissions of shunting op-
erations for a set of simple railcar sorting strategies. Those sorting
strategies are rule-based procedures to reassemble groups of railcars
from incoming trains into outbound trains, see Boysen et al. (2012),
Maue (2011) and Jacob et al. (2010). Because those sorting strategies

{1019K8Y7}, _, .
{BHSHAN3N2HL) s {10}OHBKTHEHSHAKBHHL

(d) (e)

Fig. 4. Triangular Sorting: (a) Initial assignment of first 10 blocks, k =1, ..., 4
represents the classification tracks for sorting, track k = 5 is used to build one
outbound train, (b)-(e) Sorting blocks to classification tracks with the final
outbound train in (e) on track k = 5.

neglect the fact of time it is assumed that the whole set of incoming
trains arrive in the marshalling yard before shunting starts, i.e. only one
humping process is considered. In Zien and Kirschstein (2021) analytical
emission functions for each sorting strategy are deduced for calculating
GHG emissions. The analyses show that GHG emissions of the consid-
ered sorting strategies vary quite heavily depending on the structure of
the problem instance regarding incoming and outgoing rail group
composition. In this paper, the model of Zien and Kirschstein (2021) is
extended by embedding the sorting strategies in a rolling horizon
approach as it is common in practice. Therefore, incoming trains arrive
at the marshalling yard at different points in time, i.e. humping of the



M. Zien and T. Kirschstein

incoming trains and shunting of the blocks to outgoing trains rotate.
Depending on the outbound train schedules, the sorting strategies are
applied in regular intervals to sort and reassemble railcars such that
outbound trains are built. Additionally to the sorting strategies studied
in Zien and Kirschstein (2021), parallel pullback sorting is considered
which can deal with a limited number of classification tracks explicitly.
For all considered sorting strategies emission functions are deduced
analytically. The effects of problem instance parameters (like number
and composition of incoming trains/outgoing trains, ...) on a sorting
strategies’ total GHG emissions are analysed by systematically varying
those parameters in a simulation study.

The paper is structured as follows. In Section 2 five sorting strategies
are formally described. Additionally, a rolling horizon model is derived
for each sorting strategy. The underlying emission model to calculate
GHG emissions is briefly reviewed in Section 3. The simulation study
and results are presented in Section 4. A summary of the paper and an
outlook are given in Section 5.

2. Shunting operations in a rolling horizon setting

In this section the five sorting strategies sorting by train (SBT), sorting
by block (SBB), triangular sorting (TS), geometric sorting (GS), and parallel
pullback sorting (PPS) are introduced. In Subsection 2.1 shunting per-
formance functions for each sorting strategy are presented. Adapting the
performance functions of all sorting strategies to a rolling horizon
approach is explained in Subsection 2.2.

2.1. Description of sorting strategies

In Gatto et al. (2009) several sorting strategies for sorting blocks in
marshalling yards are proposed. One of them is Sorting by train (SBT).
The main idea of SBT is to sort blocks on classification tracks according

k(k — 1)
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corresponding classification track, all railcars are pulled back and
humped again. Thereby each block is assigned to an empty classification
track. Finally, the blocks are pulled back one more time according to
their order number w. Thus, each block is humped three times when
applying SBT. Fig. 2 illustrates the procedure for an example with two
trains.

Applying Sorting by block (SBB), see Gatto et al. (2009), means to sort
all blocks to the classification tracks based on their order numbers w
irrespective of their outbound train r. I.e., all blocks with the same order
number are shunted to the same classification track. Subsequently, the
blocks are pulled back sequentially starting with blocks w = 1. When
rehumping, each outbound train is assigned to a classification track and
the corresponding blocks are shunted accordingly. Thus, each block is
humped twice. An example is displayed in Fig. 3.

SBT and SBB are simple sorting rules, but require many classification
tracks if the number of blocks or the number of outbound trains is large.
In Gatto et al. (2009) and Daganzo et al. (1983) a more complex method,
called Triangular sorting (TS), can be found which requires less classifi-
cation tracks.

The basic idea of TS is to sort blocks regarding a triangular sorting
plan, see (a) to (d) in Fig. 4. For this purpose the number of blocks for
each track has to be determined. Blocks of outgoing trains r=1,...,m
are numbered from 1 to n, and hence, Wyq = {n,|r = 1, ...,m} denotes
the highest block number over all outgoing trains, while k denotes the

index of the classification tracks and 7;5 denotes the set of blocks
assigned to classification track k, e.g. for Wy, = 10 the initially shunted
blocks to track k = 2 are blocks 2, 6 and 9. In TS, similar to SBB, blocks
are assigned to classification tracks based on their order (irrespective of

~ T8
their outbound train). Blocks are assigned to 7 according to the
following scheme

@

to their corresponding outbound train r. Le., first all blocks of an whereby
outbound train are assigned to the same classification track irrespective
of their order w. Once all blocks of the outbound train are waiting on the
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Fig. 5. Example for TS/GS: (a) Initial humping (7 blocks, dedicated to two trains distinguished by hatching), k = 1,2, 3 represents the classification tracks for sorting,
k = 4,5 are used to build two outbound trains, (b)-(d) Sorting regarding general scheme of TS/GS, see Fig. 4 or Fig. 6, (d) Final result after 3 pullbacks.
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Fig. 6. Geometric Sorting: (a) Initial assignment of first 10 blocks, k = 1,...,4
represents the classification tracks for sorting, track k = 5 is used to build one
outbound train, (b)-(e) Sorting blocks to classification tracks with the final
outbound train in (e) on track k = 5.
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Determining the last block gt which can be shunted on track k for a
given maximum block number Wy, results in calculating index s € R,
such that g& —Wyue = 0 holds. The result s is not applicable in practice
because only integer indices, i.e. integer block numbers, are applicable.

Hence, ]_,fs € N holds and equation | — k + 3 + Y-=8%7+8%nex | g derjved.

Afterwards initial humping according to the aforementioned scheme,
the blocks are pulled back and humped again sequentially starting with
track k = 1. All blocks with w = 1 are sorted to an empty classification
track to start composing the corresponding outbound train. Each block
with w > 1 is sequenced to the classification track which contains block
w—1, i.e. to a classification track on which blocks are pull backed later
or to a classification track on which the outgoing train is built.

Note that this implies that each block is rehumped at most twice.
Fig. 4 illustrates the general assignment for the first 10 blocks and in
Fig. 5 can be found an example with two trains (zigzag and dot hatched).

Geometric Sorting (GS), see Boysen et al. (2012) and Gatto et al.
(2009), is similar to TS and mainly differs in the blocks’ assignment
scheme.

The initial assignment of blocks to classification tracks follows a
geometric distribution as follows

N 2 | g | | [P

(a)

[ | |

(e) (f)
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The maximum number of blocks assigned to track k is
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where Wy denotes the maximum index of all blocks again. The proof of

]_',fs is similar to the proof of (3).

Due to the geometric block assignment, typically less classification
tracks are occupied by GS than by TS, but blocks are pulled back more
frequently. Similar to TS, the blocks are pulled back sequentially starting
with track k = 1. Again, the blocks with w = 1 are shunted to an empty
classification track to start composing an outbound train. Other blocks
are shunted to their corresponding outbound train or to the classification
track which holds its direct predecessor. Fig. 6 illustrates the general
assignment of blocks to classification tracks for GS and in Fig. 5 can be
found an example with two outgoing trains.

Parallel Pullback sorting (PPS) is a sorting strategy which can build
trains with a predetermined number of classification tracks k. If the
sequence of blocks in the incoming trains is taken into consideration PPS
includes “.” The strategy is described in Gatto et al. (2009) and Dahlhaus
et al. (2000) for one incoming and one outgoing train and with or
without presortedness. Because PPS with presortedness is at least equal
or better than PPS without presortedness the following explanations are
referred to PPS with presortedness. Also the procedure is extended for
more than one incoming and one outgoing train. Adapting the procedure
to multiple incoming trains is straightforward. For adapting to multiple
outgoing trains allows multiple options. One option is to number the
blocks of each outgoing train r from 1 to n. which is applied in the rolling
horizon approach in Subsection 2.2.

The blocks of an incoming train are assigned to batches of blocks B}’

in sorting step pss = 1,2, ... for batch b = 1,2, ... and outgoing train r.
This assignment can be found in the procedure below. To apply PPS a
preprocessing step is necessary. The preprocessing step involves creating
batches B, (b = 1,2, ...), where all relatively sequenced blocks in the
incoming train are assigned to the same batch. Afterwards the following
sorting steps pss = 1,2, ... are repeated until the correct block sequences
are reached on the classification tracks:

1. Blocks on the receiving tracks are humped into the classification
tracks depending on their assignment to batches. Batch B} is

assigned to classification track 1 + ((b—1) mod k).

Fig. 7. Parallel Pullbacks with presortedness applied
to two classification tracks for sorting k =1,2 and
one track for departure k = 3, (a) one inbound train
has to be shunted to two outgoing trains; assembling
of initial batches: dot hatched train (= train 1) Bg’yl =
{1}, BY; = {2,3}, B}, = {4}, zigzag hatched train
(= train 2) BY,={1,2}, Bg_2 ={3} , (b) Push
batchelements of each outgoing train into their
designated classification track, (c) Pullback of the
second (k = 2) and afterwards the first (k = 1) clas-
sification track; assembling of batches by combining
each two batches: dot hatched train B%J = {1,2,3},
B}, = {4}, zigzag hatched train B}, = {1,2,3}, (d)
Push batchelements into their designated classifica-
tion track; blocks of the zigzag hatched train to k = 3
for departure, (e) Pullback of the second (k = 2) and
afterwards the first (k = 1) classification track to get
the final composition, (f) humping of the blocks to
k = 3 for departure of the dot hatched train.
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Fig. 8. Example for arriving of four incoming trains (it) and their initial
humping at the beginning of period t, t + 1 and t + 2. After initial humping
sorting of blocks is taken place until period ends.

2. Pull back each classification track in descending order (k,k —1,...,2,
1) into the receiving tracks.

s
: pss __ | bk
3. Determine B;, = J

i:1+(b71)_ﬁpsng, forb =1,2,...

For an example of PPS with presortedness, see Fig. 7. If n is the
number of blocks of the incoming train, the number of needed sorting
steps is [logﬁn] which refers to PPS without presortedness. If d is the
number of batches which are necessary for the presorted blocks, the
number of needed sorting steps is [log;d]. Inequality n>d implies
[loggn] > [logid], i.e. if presortedness is included the number of sorting
steps is less or equal compared to the procedure without presortedness.

period 1 (termination
criterion: track 4 (exclusive))

MEIEAREERI).
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2.2. Rolling horizon approach in a shunting environment

The sorting strategies described in Subsection 2.1 generate a sorting
plan for a given set of outbound trains to be built from a given set of
inbound trains without considering time. In practice, however, sorting is
conducted perpetually in certain time intervals depending on the train
schedules. This implies that the sets of inbound and outbound trains are
incomplete and change dynamically over time. To study the effects of
those sorting strategies in such a rolling horizon environment requires to
deduce generalized forms of performance functions for each sorting
strategy which ables to deal with incomplete train sets already waiting
for completion or humping.

Definitions and the general rolling horizon procedure are described
in Subsubsection 2.2.1. Specific generalized performance functions for
each sorting strategy are deduced in the subsequent subsections.

2.2.1. General procedure and definitions

In the following, a multi-period planning horizon is assumed which
consists of p periods. If all blocks of an outgoing train have arrived in the
marshalling yard in a certain period, the outgoing train is called “.”
Otherwise, the outgoing train is called “.” If R denotes the set of all
outgoing trains .#; € # marks the set of outgoing trains in the
marshalling yard in period t. Let 77 be the set of blocks and v,,, the
number of railcars in block w of train r. At the beginning of a period, all
blocks of all incoming trains are humped to the classification tracks
which is called “.”” At the beginning of period t = 1 there are no blocks on
the classification tracks. In each period a termination criterion de-
termines the transition to a new period, i.e. shunting of blocks is stopped
and a new period starts with initial humping of the newly arrived trains.
This termination criterion g, corresponds to a step for SBT, a track for
SBB, TS and GS and a sorting step for PPS and is to be determined
initially.

Fig. 9. Rolling horizon with 3 periods, 3
trains and the sorting procedure SBB, (a)
incoming blocks of the dot hatched (con-
strutable) and zigzag hatched (not con-
structable) train, (b) shunting blocks w.r.t.

(a) (b)

period 2 (termination
criterion: track 5 (exclusive))

EEIE1 7N

SBB, (c) pulling back track 1 to 3 without
track 4, (d) incoming blocks of the con-
tinously hatched (not constructable) train,
(e) shunting blocks w.r.t. SBB, (f) pulling
back track 1 to 4, i.e. afterwards the dot
hatched train departs, (g) missing blocks
of the continously hatched and zigzag
hatched blocks arrive in the marshalling
yard, (h) shunting blocks w.r.t. SBB, (i)
pulling back track 1 to 3 without track 4, i.
e. afterwards the zigzag hatched train de-
parts and the continously hatched train
| remains in the marshalling yard at the end

(d)

period 3 (termination
criterion: track 4 (exclusive))

EE

of the planning horizon.

4 [3Z][1] = departure

(f)

—

= departure
3700
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Table 1

Best sorting strategies for varying expected numbers of blocks in outgoing trains,
numbers of outgoing trains and numbers of incoming trains, b — Sorting-by-block
(SBB), t — Sorting-by-Train (SBT).

Cleaner Logistics and Supply Chain 6 (2023) 100093

Table 1 (continued)

a)l=>5

ot\it 10 20 30 40 50 60 70 80 90 100
10 b b b b b b b b b b
20 b b b b b b b b b b
30 b b b b b b b b b b
40 b b b t t t t t t t
50 b b t t t t t t t t
60 b t t t t t t t t t
70 b t t t t t t t t t
80 b t t t t t t t t t
90 t t t t t t t t t t
100 t t t t t t t t t t
b) 1 =10

ot\it 10 20 30 40 50 60 70 80 90 100
10 b b b b b b b b b b
20 b b b b b b b b b b
30 b b b b b b b b b b
40 b b b b b b b b b b
50 b b b b b b b b b b
60 b b b b t t t t t t
70 b b t t t t t t t t
80 b b t t t t t t t t
90 b t t t t t t t t t
100 b t t t t t t t t t
c)A=15

ot\it 10 20 30 40 50 60 70 80 90 100
10 b b b b b b b b b b
20 b b b b b b b b b b
30 b b b b b b b b b b
40 b b b b b b b b b b
50 b b b b b b b b b b
60 b b b b b b b b b b
70 b b b b b b b b b b
80 b b b b b b b b b b
90 b b b b b b b b b b
100 b b b b b b t b t b
d)1=20

ot\it 10 20 30 40 50 60 70 80 90 100
10 b b b b b b b b b b
20 b b b b b b b b b b
30 b b b b b b b b b b
40 b b b b b b b b b b
50 b b b b b b b b b b
60 b b b b b b b b b b
70 b b b b b b b b b b
80 b b b b b b b b b b
90 b b b b b b b b b b
100 b b b b b b b b b b
e) =25

ot\it 10 20 30 40 50 60 70 80 90 100
10 b b b b b b b b b b
20 b b b b b b b b b b
30 b b b b b b b b b b
40 b b b b b b b b b b
50 b b b b b b b b b b
60 b b b b b b b b b b
70 b b b b b b b b b b
80 b b b b b b b b b b
90 b b b b b b b b b b
100 b b b b b b b b b b
f) A=30

ot\it 10 20 30 40 50 60 70 80 920 100

10 b b b b b b b b b b
20 b b b b b b b b b b
30 b b b b b b b b b b
40 b b b b b b b b b b
50 b b b b b b b b b b
60 b b b b b b b b b b
70 b b b b b b b b b b
80 b b b b b b b b b b
90 b b b b b b b b b b
100 b b b b b b b b b b

The general procedure of the five sorting strategies regarding the
rolling horizon is as follows. First, initial humping is conducted, i.e. each
incoming train is humped on the classification tracks based on the
chosen sorting strategy, see subsubsection 2.1. Afterwards, the chosen
sorting strategy is applied iteratively but adapted to deal with the blocks
left over from the previous period. I.e. a sorting strategy with a rolling
horizon adaption is applied to the blocks in the classification tracks. An
example which visualizes the course of time can be found in Fig. 8. While
shunting, blocks left over from previous periods and initially humped
blocks newly arrived are taken into account at the same time. If track k
which includes blocks of not constructable trains is pulled back, the
blocks of not constructable trains are shunted to track k again. Later,
emissions are calculated for each applied sorting strategy. Therefore, it
is necessary to investigate the number of railcars for each pullback. For
this purpose the so-called “f’or each of the five sorting strategies is
derived, i.e. a set of numbers (= amount of railcars) per pullback is
determined in period t. An example of shunting blocks in three subse-
quent periods can be found in Fig. 9.

2.2.2. Rolling horizon approach for Sorting-by-train

SBT is insensitive to the rolling horizon approach in the following
way. The SBT sorting strategy is only applied to constructable trains.
Blocks of not constructable trains remain on their assigned classification
tracks and, therefore, do not influence shunting operations of con-
structable trains. Each constructable train r is processed by the following
steps:

e 5.0: Pull back and roll in all blocks of constructable train r
e s.1: Pull back and roll in railcars of blocks 1

e 5.5t Pull back and roll in railcars of blocks n,.

where n, denotes the number of blocks of train r.

Outgoing trains can be built in arbitrary sequences until period ¢t
ends, i.e. if r(1),7(2), ... marks the construction sequence of the outgoing
trains, a list of shunting steps can be defined as follows

L= (Srm.m Sr(l).h .“7S"“)‘"'(l) ) Sr(z).Ovsr(:].h L) srm,n,(z) ’ ) (6)

When period t ends while step s € L is conducted, the building of the
corresponding train r' can be continued in period t+1 in step s +1(=g,)
where g, marks the (excluded) termination criterion of SBT in period t.
Shunting of train ¥ € % can be continued in period t+1 without
consideration of incoming blocks because classification tracks with
blocks of constructable trains receive no more blocks in further periods
and hence, do not change over time.

Therefore, sorting performance of SBT can be derived without
consideration of period t by

Vel ( v, %) =U { S i v} @)

rez | w=1

2.2.3. Rolling horizon approach for sorting-by-block
Applying SBB in a rolling horizon approach requires additional as-
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Fig. 10. Average deviation (in %) from the best sorting strategy.

Table 2

Best sorting strategies w.r.t. minimal emissions for varying expected numbers of
blocks in outgoing trains, numbers of outgoing trains and numbers of incoming
trains, interval of periods of blocks comprises only two sequential periods, b —
Sorting-by-Block (SBB), x — Parallel Pullbacks sorting (PPS).
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sumptions. In each period the sorting process starts (after initial
humping) with the first classification track, i.e. the track where blocks
with number w =1 are collected. If one or more classification tracks
contain only blocks which can not be shunted to their designated
departing tracks, all blocks of the considered classification tracks are not
shunted.

To express the sorting performance of SBB in a rolling horizon
SB
t.

approach sets of blocks are defined and combined. 7 VOB" defines the set

of blocks of the outgoing train r which arrive in the marshalling yard in
period t —1. Therefore, they are available for initial humping in period t.
Blocks waiting on the classification tracks in period t are summarized in
7$BBT 97$BBrex denotes the set of blocks of train r on the corre-
sponding departing track at the beginning of period t.

Thus, the set of blocks of train r humped into the classification tracks
in period t is defined by 7 $EBrin — 7//ng" U 75857, The set of blocks
of train r shunted from classification to departing tracks in period t is
denoted by 7SEBrout and is constructed as follows

7//-}?881‘014)‘ — {W}Wv c 7////-;YBB.r,ex U ( 7/«/;988.] U %rng.r)\{gl’ gz + 17 }
VWV — 0’ 1’ ,W}\ %/;YBB.r,ex
(8

Thereby, block w is shunted to the departing tracks, if all predecessor
blocks w” are already on the departing tracks (7 5*2"*) or they are
shunted from the classification tracks to the departing tracks in period t.
Le. predecessor block w" is already on the classification tracks at the
beginning of period t ( 77¥*®") or is initially humped in period t ( 77 52°").
In the latter case, blocks are not shunted if the termination criterion is
exceeded. Le. all blocks which are equal or exceed g, are not shunted in
period ¢, but wait for further processing in subsequent periods.

At the beginning of period t blocks on the classification tracks
(WSBBT) can be expressed by blocks on the classification tracks (WEE™M)

without outgoing blocks (WBB"U0) of the previous period t —1 through

%} for r =1
WSBBr _ ) ) 9
t Wfle,r.!)L\Wf??r.out fort> 1 ( )

Blocks of train r € .% on the departing tracks at the beginning of
period t can be formulated by

psnres _ { %] forr=1

i 10
W;S'ff’,r.ex U Wff’f.r.oul fort>1 ( )

i.e. blocks on the departure tracks in period t —1 (W;"5"#

) and outgoing
blocks in period t—1 (WSP2"%")  Finally, the sorting performance for

SBB can be expressed by

se\ 7o | =UL Y v an

rest |wew gt uwPhr

i.e. the set of initially humped railcars (Wif,s") and already existing
railcars on the classification tracks (W**2") up to the excluded termi-
nation criterion g, is determined for (not) constructable trains r € .%, in
period t.
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Table 3 Table 3 (continued)
Best sorting strategies w.r.t average number of pulled back railcars for varying ot\it 10 20 30 40 50 60 70 80 %0 100
expected numbers of blocks in outgoing trains, numbers of outgoing trains and 10 b b b b b b b b b b
numbers of incoming trains, b — Sorting-by-block (SBB), t — Sorting-by-Train 20 b b b b b b b b b b
(SBT). 30 b b b b b b b b b b
D=5 40 b b b b t t b t t t
50 b b b t t t t t t t
ot\it 10 20 30 40 50 60 70 80 90 100 60 b b b t t t t t t t
10 b b b b b b b b b b 70 b b t t t t t t t t
20 b b b b b b b b b b 80 b b t t t t t t t t
30 b b t t t t t t t t 90 b b t t t t t t t t
40 b t t t t t t t t t 100 b b t t t t t t t t
50 b t t t t t t t t t
60 b t t t t t t t t t
70 b t t t t t t t t t
80 b t t t t t t t t t Table 4
90 b t t t t t t t t t Best sorting strategies w.r.t average number of pulled back railcarss for varying
100 b t t t t t t t t t expected numbers of blocks in outgoing trains, numbers of outgoing trains and
numbers of incoming trains, interval of periods of blocks comprises only two
b) A =10 sequential periods, b — Sorting-by-Block (SBB)
ot\it 10 20 30 40 50 60 70 80 90 100 g)i=10
;g ]; E ]b) b E b b b b b ot\it 10 20 30 40 50 60 70 80 90 100
40 b ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ 20 b b b b b b b b b b
50 b ¢ t ¢ t ¢ t ¢ t ¢ 30 b b b b b b b b b b
60 b ¢ ¢ ¢ ¢ ¢ ¢ ¢ t ¢ 40 b b b b b b b b b b
70 b ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ 50 b b b b b b b b b b
80 b ¢ t ¢ t ¢ ¢ ¢ ¢ ¢ 60 b b b b b b b b b b
90 b t ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ 70 b b b b b b b b b b
100 b t t t t t t t t t 80 b b b b b b b b b b
920 b b b b b b b b b b
100 b b b b b b b b b b
c)A=15
ot\it 10 20 30 40 50 60 70 80 90 100 h)1=20
10 b b b b b b b b b b ot\it 10 20 30 40 50 60 70 80 90 100
20 b b b b b t b b t t
30 b b ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ 10 b b b b b b b b b b
40 b ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ 20 b b b b b b b b b b
50 b ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ 30 b b b b b b b b b b
60 b ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ 40 b b b b b b b b b b
70 b ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ 50 b b b b b b b b b b
80 b t ¢ ¢ ¢ ¢ t ¢ t ¢ 60 b b b b b b b b b b
90 b ¢ ¢ ¢ ¢ ¢ ¢ ¢ t ¢ 70 b b b b b b b b b b
100 b t t t t t t t t t 80 b b b b b b b b b b
920 b b b b b b b b b b
100 b b b b b b b b b b
d)i1=20
ot\it 10 20 30 40 50 60 70 80 90 100 i)41=30
10 b b b b b b b b b b ot\it 10 20 30 40 50 60 70 80 90 100
20 b b b b b b b b b b
30 b b b ¢ ¢ b b ¢ ¢ ¢ 10 b b b b b b b b b b
40 b b ¢ ¢ ¢ ¢ ¢ ¢ t ¢ 20 b b b b b b b b b b
50 b b ¢ t ¢ ¢ t ¢ ¢ ¢ 30 b b b b b b b b b b
60 b b ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ 40 b b b b b b b b b b
70 b ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ 50 b b b b b b b b b b
80 b ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ 60 b b b b b b b b b b
90 b ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ 70 b b b b b b b b b b
100 b t t t t t t t t t 80 b b b b b b b b b b
920 b b b b b b b b b b
100 b b b b b b b b b b
e)1=25
ig\lt ]1)0 EO ]3)0 30 io EO Zo io Eo 11)00 2.2.4. Rolling horizon approach for Triangular sorting/Geometric sorting
20 b b b b b b b b b b The sorting performances for TS and GS can be derived simulta-
30 b b b b b t b b t t neously because they only differ in several input factors. The derived
40 b b b b t t t t t t formulas are more complex compared to SBB and need more assump-
50 b b b t t t t t t t tions. Shunting starts with the first classification track in each period. If
60 b b t t t t t t t t e .
70 b b ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ a classification track has no blocks or only blocks which can not be
80 b b t t t t t t t t shunted, the blocks are not pulled back. Each outgoing train r € .2
90 b b t t t t t t t t contains blocks numbered from 1 to n,. After initial humping, blocks can
100 b b t t t t t t t t be shunted to their designated departure track without detours on other

classification tracks. Blocks remain on the classification tracks if pre-
)4 =30 decessor blocks are not on the classification or departing tracks.
The termination criterion g, corresponds to a classification track
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Table 5
Average technical parameters of DB railcar types.

railcar type Average tare Average load

weight limit
E (Open railcars) 23.6 63.0
F (Open hopper railcars) 31.3 68.7
H (High-capacity sliding-wall covered 28.1 42.8
railcars)
K (Flat railcars with 2 axles) 25.8 41.3
L (Car transporter units) 36.5 35.5
R (Bogie flat railcars) 26.6 63.3
S (Six-axle bogie flat railcars) 29.5 75.6
S (Bogie coil railcars) 26.8 68.9
S (Bogie flat railcars with cargo ratchet 25.0 63.0
straps)
T (Covered bulk railcars) 22.9 60.0
T (Railcar with opening roof) 23.3 66.5

(excluded) where shunting in period t ends. The total amount of
. . L =TS,
necessary tracks to shunt outgoing train r is given by k "=

| 2-n,—%+%] for TS, see Daganzo et al. (1983) and EGsr_

Llogzn,J +1 for GS, see Gatto et al. (2009). Thus, the maximum number

TS/GS
of classification tracks can be derived as k (SS80 maxrcrk . For

each classification track, sets of sequenced blocks can be determined, e.
g. blocks {2,3} or {6,7} on classification track 2. These sets consist of
blocks which are shunted throughout initial humping, e.g. 2 or 6 and
successor blocks of predecessor classification tracks, e.g. 3 or 7. Shunted
blocks throughout initial humping can be expressed by

{@+ 1} for j =1
W= 12)

! {@HHHW} for j > 1

for TS and Z/k = {2k1 4+ 2k.(j— 1)} with k,j € N for GS, where k
denotes the considered classification track and j the sequenced blocks

—TS/GSr

set. Successor blocks can be derived as 7{5 ={w| W1 <w < W,
Wi = &) 1) for TSand 75 = {25 —i]i=1,..,251 — 1} withk,
j € N5 for GS. Combining initially humped blocks sets (Wg/Gs) and

—_TS/GS .
successor blocks sets ( 7 / ) results in

(%] for k=0
W:j _lw. for k>0, > 1 13)
‘TVSUWZS fork > 0,j=1
for TS and
—~GS (%] for k=0
W ={ —6s s 14
ST T fork>0(>0) 1)

for GS. The set of blocks of train r € .7 on the departing tracks at the end
of period t can be expressed by

Cleaner Logistics and Supply Chain 6 (2023) 100093

(%] forr=0

TS/GSru 'TS/GS.r
{uhoe {wriev o, wie ) - as)
Aw=1,2 ...

WfTS/GS,r.ex —
consecutivelynumbered} for t > 0

i.e. the union of blocks on the departing track of the previous period t —1

w2 15/ Gsrex) and blocks pulled back in period t (| <3 tTks/ 16 57y, The set
of shunted blocks in period t can be derived as
2, for k>g,
TS/GS,r.out __ , ,
Wi = (U Wﬁ/as,r U W[TS/GS.REX) A W]iS/GS.r fork <g,° (16)

K >k

For classification tracks k < g,, all blocks of outgoing train r which

TS/GS, . .
/GSrout This set consists of

/TS/GS, )

leave track k in period t are summarized in W,
blocks which are not yet shunted on classification tracks (U .« W,

and blocks on the departing tracks (W) However, these blocks
are only considered if these blocks are in the set of pulled back blocks on
classification track k (WTS/ osny,

To formulate the sorting performance of TS and GS, an additional set
of blocks of train r at the end of period t on classification track k is

necessary. This set can be described by

W, for k=0
wiiase_ ) g fork>0,t=0, 17)
W:i’{S/GS,r\WZf/GS,r.ﬂA4[ for k > 0y t>0

i.e. classification track k = 0 corresponds to the receiving track and
equals the set of incoming blocks in period t. At the beginning of period
t =1 (i.e. at the end of period t = 0) there are no blocks on the classi-
fication tracks. Other combinations of k > 0 and t > 0 results in the set
of pulled back blocks (ng/ 91y without blocks which are on further

TS/GS.r.out
Wik ),

classification tracks or on the departing tracks ( i.e. blocks on

classification track k at the end of period t. Describing the consecutively

numbered blocks in WtTkSJ/ ' parameter aks/ % defines the first blocks of
the sequenced block set j on track k as follows
k-(k—1
k(k—1) 5 ) +1 forj=1
A P G-1G-2) e
#*‘rl“rk'j“rf forj > 1

for TS and af§ = 2¢-1 +2%(j 1) for GS. E.g., regarding again the sets of
/G _

sequenced blocks {2,3} and {6,7} the first blocks are a,} "~ =2 and
af‘z/‘;s = 6. Parameter aTS/ 9 js used to express the set of shunted blocks

of the sequenced blocks set j on track k as

—TS/GS.r

%] for k > k

~TS/GS .
wweWw, N UWTW',“
'TS/GS,r 2 -1k
Wk = K <k . (19)
Aw=ap) % a1,

—TS/GS,r

consecutivelynumbered } for k<k

Le. considering the intersection of theoretically blocks on track k in

sequenced block set j (/M\/,fj/Gs) and the actually shunted blocks of all

Table 6

Technical parameters for shunting locomotive and railcars used in the emission model of Kirschstein and Meisel (2015).
€ Kk p % e cat e cle g A P
0.4 3.15 0.1004 0.003 0.0006 0.0005 0.0006 0.8 0.218 9 4
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previous shunted tracks k'<k in period t results in the set of blocks w of
the sequenced blocks set j which are actually shunted on track k.

If blocks of each shunted and sequenced blocks set are combined, the
result is the set of blocks of train r € . which are shunted from classi-
fication track k to other tracks in period t and can be expressed by
1S/GS.r ,

WtiS/Gs,r | i y/TS/Gsr

o ky Finally, the sorting performance for TS and

GS is derived as

SPBIS | 7, R, (20)

E Vi r

!TS/GS,
wew,

In each period t sorting performances are determined for each track
k<g, —1 by summing up railcars of pulled back blocks w W/tf/ 7 for

each train r € .%,. These sorting performances correspond to the total
number of shunted railcars on each track k.

2.2.5. Rolling horizon approach for parallel pullbacks

To derive the sorting performance for PPS in a rolling horizon
setting, basic assumptions have to be made. If blocks of not con-
structable trains are in the classification tracks these blocks are
rehumped to the same classification track. If there are no constructable
trains in the marshalling yard, no sorting step is carried out. Let k be the
number of available classification tracks for PPS. Each outgoing trainr
% is numbered from 1 to n,, where n, denotes its number of blocks. d,
marks the number of sets for train r € .%. s% = [logﬁd,} denotes the

number of sorting steps to construct train r € .% with k available clas-
sification tracks. Let B"[j] (j = 1,...,d;) be the initial assignment of blocks

of train r € .% to batches. The set of batches of train r € .% in sorting step
pss on track k can be expressed by

BU" (pss, k, d,.) =
lim, (pss, k, d,)
—pss—1

lim, (pss, k,i,d,) = min (K

limy (pss.k.d,) limy(pss.k,idy) R B
B’ [j + (k - 1) [ i] (21)

i=0 j=1

d,— (k=)™

[ (22)

oy — (k=)™ =R (23)

The main idea is to derive sets of blocks by initial sets B'[j]. For each
sorting step pss and on each classification track k different initial sets
have to be chosen. Therefore, consider the three terms of the square

brackets: ‘j’ is the amount of consecutively chosen initial sets, i.e. either

pss—1 , ., . e els .
k initial sets are chosen or if no initial sets are available, less clas-
—pss—1

sification tracks are chosen, see lim,(pss,k,i,d,). Term (k —1)k shifts
the initial set chosen first for each classification track, e.g. on classifi-
cation track k = 1 the initial set chosen first is B'[1], on classification
track k = 2 the second chosen set is B'[2], and so on. Term ki shifts the
initial sets on a classification track up to lim;(pss, k, d;), e.g. in a
marshalling yard with k = 3 classificiaton tracks in total, the selected
initial sets are B'[1], B'[4], B"[7], ... on classification track k = 1 in sorting
step pss = 1.

Let &, be the period when all blocks of train r € . arrived in the
marshalling yard, i.e. train r € .%# is constructable. If g, describes the
termination criterion of PPS in period t the number of conducted sorting
steps before period t can be expressed by y; = Zi? :12;0 (8 —1). Set Wﬁgs”

'PPS.r
Wt,k,pss be

the set of shunted blocks of train r € .%; in period t on track k for sorting
step pss which can be expressed by

describes incoming blocks of train r € %, in period t —1. Let
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1
BU’(I,k, d,) nYwir foriy, >
/=1

'PPS,;r __
Wl‘k,p.\.\ -

24
BU" (y; + pss, k, d,)

%]

for 7, <t AJ; + pss<sy
for 7,,<t AJ; + pss > st

If train r € %, is not constructable in period ¢, i.e. t;, > t, blocks of
train r € .%, remain or can be rehumped on the track after initial
humping. BU'(1, k, d.) denotes the set of blocks which are theoretical on
track k after sorting step pss = 1. UE/ZIW‘?'g" reveals the blocks in the
marshalling yard of train r up to period t. The intersection of both sets
denotes the actual set of blocks of train r on track k. If <t holds, two
cases may arise: If y + pssssp, i.e. the number of previous conducted
sorting steps plus the actual sorting step of period t is less or equal to the
number of necessary sorting steps of train r € .%,, blocks of train r € .%,
have to be shunted. Otherwise no more sorting steps of train r are
necessary and the set of shunted blocks is empty. Finally, the sorting
performance of PPS can be expressed by

a1 X
serl = U U > vur (25)
pss=1 k=1 | re; ! PPS.r

WEW 4o

Sorting performance values are determined for each sorting step pss
and each classification track k in period t. Each value consists of railcars

of shunted blocks WS’

. p
ikpes Of train r € Z,.

3. Emission model for shunting operations

The chosen emission model for the simulation in Section 4 is pre-
sented in this section. Because there is no emission model for marshal-
ling yards, a model of the related field rail transportation is applied. An
overview of models in rail transportation (microscopic/macroscopic/
mesoscopic) can be found in Heinold (2020). In this paper the meso-
scopic emission model of Kirschstein and Meisel (2015) is applied. The
main idea of the paper is to overcome the four resistances rolling P!, air
drag P?", ascent P& and acceleration P™, The approximation of a
train’s total energy demand is calculated as

E(d, m, I._/7 ;y naz‘c) —_ g (Prall (57 m) + Pair (E)

+ P (5,0, m)) + n E e <1/, m> . (26)

where the three resistances rolling P!, air drag P%" and ascent P€%% can
be calculated with the average speed of the train v and the mass m of the
train. However, the energy to overcome acceleration resistance must be

approximated by E™" with speed v and mass m while parameter n®c
represents the average number of acceleration processes per kilometer
by the train.

If € denotes the energy transformation efficiency of the locomotive, p
the fuel energy coefficient of Diesel and k the GHG emission coefficient
of Diesel, the GHG emissions of a diesel train can be calculated with (26)
by

E(d,m,7,i,n%)
€

GHG <d, m,v,i, n“”) = -p-k 27)

Generalized marshalling operations consist of ‘inbound train pro-
cessing’, ‘shunting operations’ and ‘outbound train processing’. When-
ever an incoming train arrives in the yard railcars are decoupled and the
locomotive is detached. Afterwards, shunting operations are run
through a shunting locomotive which is followed by the coupling of
railcars and the locomotive. Because incoming and outgoing full trains
are only moved over small distances these operations are neglected.
Therefore, the main focus is on the shunting operations.
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Shunting operations can be distinguished into three suboperations, i.
e. humping of the railcars, repositioning of the shunting locomotive and
pulling back of railcars. First, the shunting locomotive pushes the rail-
cars from the receiving tracks over the hump into the receiving area.
Another shunting operation is the moving of the shunting locomotive
from the receiving tracks to the classification tracks. After the arrival at
the classification tracks, the shunting locomotive pulls back the railcars
from the classification tracks into the receiving tracks. The layout of the
marshalling yard determines the distances covered by the railcars and
locomotives in each step of the shunting process. Reposition distance of
the shunting locomotive from the receiving tracks into the classification
tracks is denoted by d? and from the classification tracks into the
receiving tracks by dPP.

Beyond travelling distances, some further parameters have to be
determined to apply (27). It is assumed that each railcar has a fixed gross
weight mR¢ and a fixed length IRC. Because total mass includes also the
mass of the shunting locomotive, the locomotives weight is denoted as
mb°. In (27) height i is included for detailed calculation. In marshalling
yards i represents the height of the hump for the humping process and is
set to i = O for the remaining shunting operations. Also the speed 7 is
assumed to be fixed and n*‘ = 1. Depending on the selected sorting

strategy the number of pullbacks nfb in period t and the number of
incoming trains n in period t influence the GHG emissions. If si* denotes

the number of railcars in the incoming train i and sfb the number of

pulled back railcars in step j the GHG emissions in period t can be
calculated by

GHG,(s",s") = n’”-GHG(d"”,m"*,7,0,1)+

b
n A

> GHG(d,m' + o"-m*,,0,1)+

J=1

(28)

it
ny

. _ h
ZGHG<S:-"IRC,m[”L 4 S;t'mRC,T/, W’ 1)

i=1
4. Simulation experiments

The rolling horizon model is evaluated in a simulation study. For this
purpose, an exemplary marshalling yard is assumed inspired by a real-
world example. The corresponding technical parameters for layout,
railcars and locomotives are described in Subsection 4.1. For the
remaining parameters (like number of periods or number of outgoing
trains) preliminary investigations are conducted to determine reason-
able intervals affecting greenhouse gas emissions. The results show that
three of five sorting strategies are preferred w.r.t. minimal total emis-
sions, see Subsection 4.2.

4.1. Experimental design

The technical parameters required for the simulation study concern
shunting locomotives, railcars and the layout of the yard. In the
following, the layout of the marshalling yard in Halle(Saale) is used. to
determine distance parameters d? and dP?. The reposition distance, i.e.
the distance from receiving tracks to classification tracks, is set tod? =1
km. Whenever a shunting locomotive pulls back railcars, the pull back
distance is d®® = 1.5 km. The length of the classification tracks is 1 km.
In contrast to reality, the number of classification tracks is unlimited
because the above mentioned sorting strategies (except PPS) cannot be
applied when the number of classification tracks is limited (the case of a
limited number of classification tracks should be studied in further in-
vestigations). The average speed of the shunting locomotive is assumed
to be 8 km/h. That is lower than the maximum speed of 25 km/h, but
shunting locomotives usually drive slower during shunting due to safety
and operational reasons. In the following experiments, the termination
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criterion g, for each period is the time when all constructable trains of a
period are left in the marshalling yard.

The data generation for the simulation comprises a variety of sto-
chastic variables. For each outgoing train, the number of blocks n, is
modeled by a Poisson distribution n,. ~ Poi(1) where A describes the
expected value of blocks in an outgoing train. The number of railcars of
each block is also Poisson distributed with v,,, ~ Poi(30/4), i.e. the ex-
pected number of railcars in an outgoing train is 30. Blocks of outgoing
trains are randomly assigned to incoming trains which arrive in the yard
in a random period. Regarding PPS, the humping sequence of incoming
trains is important to know. For this aim, the humping sequence of
incoming trains is coincidental in each period.

The railcar weights are based on the railcar types used by Deutsche
Bahn (2021). For each railcar type average tare weight and average load
limits are calculated based on the available sub-categories. Railway lines
are devided into different distance classes depending on the permitted
maximum axle load and maximum linear load of a train. Because 86 % of
the rail network of DB Netze are assigned to distance class D4 (maximum
axle load: 22.5 tons, linear load: 8 tons/meter) (Deutsche Bahn AG,
2019), sub-categories with specification to the considered distance class
D4 are involved. If there are no specifications to distance class D4, the
considered sub-category is rejected. Average tare weight and average
load limits for each railcar type can be found in Appendix A. Because
distributions of railcar types in use are hard to find, the weights are
chosen as tare weights (10 %, equals empty railcars) or a random
number between tare weight plus 50 % of load limit and tare weight plus
100 % of load limit (90 %). Additional parameters of the emission model
assumed in the simulation experiments are summarized in Appendix A.

In order to limit the complexity of the simulation experiments, pre-
liminary simulation runs were conducted to screen for the most relevant
problem instance parameters. It was suspected that some of the pa-
rameters have less impacts on emissions compared to other parameters.
Preliminary tests revealed that the number of periods and the number of
replications have only small effects on total emissions and are, thus,
fixed to 20 periods and 100 runs. The number of classification tracks to
be used in PPS is also to be set. As a result of preliminary tests, the
number of classification tracks for PPS is reasonably set to the expected
value of blocks to be shunted.

Based on the preliminary test, most relevant parameters affecting
GHG emissions during shunting are the numbers of incoming and out-
going trains as well as the expected number of blocks. The number of
incoming and outgoing trains is varied from 10 to 100 in steps of 10. The
expected number of blocks ranges from 5 to 30 in steps of 5. For each
simulation setting total GHG emissions for the above-mentioned sorting
strategies SBT, SBB, TS, GS and PPS are calculated. The simulation ex-
periments are coded in Java and run on a AMD Ryzen 7 4800H with 8 GB
memory.

4.2. Results

For each combination of number of incoming trains, number of
outgoing trains and expected number of blocks (1) the simulation shows
that either SBB or SBT works best w.r.t. total GHG emissions. The results
can be found in Table 1 and are subdivided for the three varied pa-
rameters. For reasons of clarity the tables show only single letters to
identify the best sorting strategy. The corresponding emission values can
be found in Appendix B.

To get an overview, the five sorting strategies of Table 1 are first
assessed by their average relative deviation to the best sorting strategy
in terms of total GHG emissions, see Fig. 10. Le. over all simulation
settings, the average deviation to the corresponding best sorting pro-
cedure is calculated. The average deviations for all sorting porcedures
are depicted in Fig. 10. The total average deviation of SBB is close to 0 as
it is the best scenario in most cases. SBT, TS and GS produce higher GHG
emissions on average than SBB with a surplus of 40-130% on average.
PPS performs worst with an average relative performance of 300%
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indicating that considering limited numbers of tracks might have a
substantial effect on shunting operations.

The average results indicate that SBT and SBB work best. A detailed
look at the results reveals, that if the expected number of blocks is small
(5 or 10) and the number of outgoing trains is high, SBT is the optimal
sorting strategy. For all other combinations, SBB is the best choice to
minimize GHG emissions.

Further investigations show that PPS is the best sorting strategy in a
specific scenario. In the results above blocks of outgoing trains are
distributed on incoming trains over the whole 20 periods. If the interval
of periods in which blocks of an outgoing train arrive at the yard com-
prises only two sequential periods and the number of outgoing trains are
low, PPS is the best sorting strategy. This result can be found in Table 2
and the emission values can be found in Table C. For the remaining
parameter combinations in this setting SBB is again the best sorting
strategy.

To assess the simulation results from another perspective, an addi-
tional KPI is introduced. As time is another crucial parameter in
shunting operations, the average number of pulled back railcars is a
good indicator to evaluate the speed of shunting, i.e. the less railcars are
pulled back the less time is needed for shunting. The best sorting strategy
w.r.t. minimal average number of pulled back railcars in the same
experimental design as above can be found in Table 3. Again, for reasons
of clarity the sorting strategies are represented by a single letter and the
average number of pulled back railcars for the best sorting strategy can
be found in Appendix D. At first sight the results are similar to the results
in Table 1, i.e. SBT and SBB are again the best sorting strategies w.r.t.
minimal average pulled back railcars. At second glance the behaviour of
the best sorting strategy by increasing expected number of blocks per
train changes. If the expected number of blocks increases, SBT remains
the best sorting strategy in half of all cases. Other strategies (TS, GS,
PPS) are still never the best strategy w.r.t average pulled back railcars.
To sum up, SBT is not the best sorting strategy w.r.t. to minimal emis-
sions for an increasing expected number of blocks per outgoing train but
shunting time is presumably shorter compared to SBB.

Likewise the results of the experiment with two sequential periods of
incoming blocks show a different behaviour. Comparing these results,
see Table 4, with previous results, see Table 2, leads to the conclusion
that PPS is never the best sorting strategy w.r.t. minimal average pulled
back railcars. The numbers of average pulled back railcars for the best
sorting strategies can be found in Table E. Hence, PPS is the best sorting
strategy w.r.t. minimal emissions for a small number of outgoing trains
but shunting needs presumably more time compared to SBB.

5. Outlook

The aim of this article is to find the emission-optimal sorting strategy
in shunting yards. For this purpose, sorting strategies well known in
literature are embedded in a rolling horizon approach. To assess the
sorting strategies’ total GHG emissions, performance functions are
derived analytically. Experiments with the rolling horizon model results
in a simulation study which is conducted for different parameter settings
(varying number of incoming/outgoing train,...). The simulation shows
that depending on the parameter constellation SBT, SBB, or PPS are the
best sorting strategies w.r.t. total emissions. The behaviour of the best
sorting strategy varies if the emissions results are compared with the
‘average number of pulled back railcars’ results. This indicates that
shunting operations management has a simple instrument at hand to
reduce GHG emissions from shunting operations by selecting a proper
sorting strategy.

As studying environmental performance of shunting operations in a
rolling horizon approach is new to literature, some further research
questions are open. A general assumption to apply SBT, SBB, TS or GS is
the unlimited number of classification tracks. In the future, the model
can be expanded by incorporating a limited numbers of classification
tracks. Some parameters of the emission model are derived by the
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marshalling yard in Halle (Saale). Studying other marshalling yard
layouts, particularly regarding distances and availability of departure
tracks, may lead to further insights in environmental shunting perfor-
mance. In the above obtained results TS and GS are never the best
sorting strategies w.r.t. minimal emissions. In a setting with limited
numbers of classification tracks, this may change. Particularly, changing
the sorting strategy dynamically depending on the number of ingoing
and outgoing trains as well as available classification tracks may lead to
further potentials for GHG minimization.
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Appendix A. Railcar types and technical parameters
Tables 5 and 6.
Appendix B. Tables of emission values

Emission values of the best sorting strategy for expected railcar
numbers 5 to 30 can be found in Tables 7-12.

Appendix C. Tables of emission values for two sequential
periods

See Tables 13-15.
Appendix D. Tables of average pulled back railcar values

Average pulled back railcar values of the best sorting strategy for
expected railcar numbers 5 to 30 can be found in Tables 16-21.

Appendix E. Tables of average pulled back railcar values for two
sequential periods

See Tables 22-24.
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