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Abstract 

Mapping the chemical space of compounds to chemical structures remains a challenge in metabolomics. Despite 
the advancements in untargeted liquid chromatography-mass spectrometry (LC–MS) to achieve a high-throughput 
profile of metabolites from complex biological resources, only a small fraction of these metabolites can be annotated 
with confidence. Many novel computational methods and tools have been developed to enable chemical structure 
annotation to known and unknown compounds such as in silico generated spectra and molecular networking. Here, 
we present an automated and reproducible Metabolome Annotation Workflow (MAW) for untargeted metabolomics 
data to further facilitate and automate the complex annotation by combining tandem mass spectrometry (MS2) 
input data pre-processing, spectral and compound database matching with computational classification, and in 
silico annotation. MAW takes the LC-MS2 spectra as input and generates a list of putative candidates from spectral 
and compound databases. The databases are integrated via the R package Spectra and the metabolite annotation 
tool SIRIUS as part of the R segment of the workflow (MAW-R). The final candidate selection is performed using the 
cheminformatics tool RDKit in the Python segment (MAW-Py). Furthermore, each feature is assigned a chemical 
structure and can be imported to a chemical structure similarity network. MAW is following the FAIR (Findable, Acces-
sible, Interoperable, Reusable) principles and has been made available as the docker images, maw-r and maw-py. The 
source code and documentation are available on GitHub (https://​github.​com/​zmahn​oor14/​MAW). The performance 
of MAW is evaluated on two case studies. MAW can improve candidate ranking by integrating spectral databases with 
annotation tools like SIRIUS which contributes to an efficient candidate selection procedure. The results from MAW 
are also reproducible and traceable, compliant with the FAIR guidelines. Taken together, MAW could greatly facilitate 
automated metabolite characterization in diverse fields such as clinical metabolomics and natural product discovery.
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Introduction
Over the last few decades, omics technologies have 
gained importance in the biological domain. One of the 
recent developments in omics science is metabolomics, 
which is a collection of high-throughput analytical meth-
ods to assess the metabolic profiles of biological samples 
[1]. Among metabolomics approaches, liquid chroma-
tography coupled to mass spectrometry (LC–MS) is the 
most often-used technique for the identification of lower 
molecular weight (typically below 1000  Da) molecules. 
LC–MS also provides broad coverage of biologically rel-
evant metabolites [2] or natural products [3]. However, 
as metabolomics data can be complex and convoluted, 
chemical heterogeneity poses a challenge to the number 
of metabolites that can be identified with metabolomics 
[4]. Untargeted metabolomics data, which represents 
global metabolic features in a sample, results in a large 
number of files containing spectral information from 
thousands of metabolite features [5]. Unlike genomics 
where there are only 4 nucleotides and finite possible 
combinations, chemical structures are made up of many 
constituents leading to an almost infinite chemical space. 
In addition, it is also difficult to reproduce the same 
metabolic features between different instruments, which 
makes the structural identification of the metabolic fea-
tures difficult [6].

Typically, an LC–MS metabolomics pipeline involves 
the following steps: (1) conversion of RAW spectral 
data to an open-source machine-readable format such 
as.mzML, (2) peak detection, (3) peak alignment, (4) 
retention time correction, (5) isotope detection, (6) 
adduct annotation, (7) peak annotation, and (8) data 
analysis [7–9]. To acquire more structural informa-
tion about the samples, tandem mass spectrometry is 
performed, where two (MS2) or more (MSn) analyzers 
are combined with a collision chamber which performs 
fragmentation of the peaks picked in MS1 [10]. The frag-
mentation spectra from MS2 are then used to perform 
metabolite annotation. To provide a distinction between 
different levels of confidence for these annotations, the 
Metabolomics Standards Initiative (MSI), in 2007, pro-
posed four levels of identifications [11] which were later 
expanded [12] to five levels. The terms annotation and 
identification are used interchangeably. However, the 
term annotation refers to the putative association of a 
compound to a structure, as compared to the term iden-
tification, where the identity of a compound is confirmed 
with a given metabolic standard. These levels of identifi-
cations are described in Table 1 in the results section.

To support metabolomics identification, different data 
sources such as spectral, compound, and pathway data-
bases have been integrated into metabolomics data pro-
cessing pipelines and routines [13]. To this end, many 

software tools and programmatic approaches such as R 
packages have been developed for metabolite annotation 
that use LC-MS2 as input data. A few of the most popu-
lar examples are SIRIUS [14], and MetFrag [15]. Some 
other relatively new tools are MetaboAnnotatoR [16], 
CFM-ID 4.0 [17], DEREPLICATOR(+) [18], molDiscov-
ery [19], CluMSID [20], and MS2Query [21]. These tools 
are termed annotation tools. They generally annotate 
compounds based on spectral and compound libraries 
and databases. However, many tools currently only partly 
support the FAIR [22] criteria, specifically, the reus-
ability guidelines. Some of these tools have already been 
integrated into computational metabolomics workflows 
such as PhenoMeNal [23], Workflow4Metabolomics 
(W4M) [24], and GNPS (Global Natural Products Social 
Molecular Networking) [25]. These tools utilize workflow 
management systems, such as Galaxy [26], KNIME [27], 
TidyMass [28], or work as independent software such as 
MS-Dial [29], or mzMine [30] which can be integrated 
into any metabolomics pipeline or workflow.

Customization is a very important aspect of these 
metabolomics workflows due to the variations in the 
experimental designs and samples. Annotation, for 
instance, is also usually a manual process to select the 
best candidate by going through the candidate list pro-
vided by different annotation tools, which takes effort 
and time, specifically in the case of untargeted metabo-
lomics, which is a comprehensive analysis of all meas-
ured compounds in a sample. Untargeted metabolomics 
studies, and phenome centers, where large amounts of 
data are generated repeatedly, result in large-scale data 
where workflows can greatly automate and facilitate the 
analysis [31, 32]. For such large datasets, reproducibility 
[33] can be another issue where the intermediate results 
should be tracked to check the final outcome. In other 
words, the provenance [34] should be recorded. In addi-
tion to reproducibility, best practices defined in the FAIR 
principles [22, 35] should be employed within workflow 
systems to improve the Findability, Accessibility, Interop-
erability, and Reusability of the research objects.

Here, we introduce the reproducible and automated 
Metabolome Annotation Workflow (MAW) for untar-
geted metabolomics data. MAW is a computational 
workflow which can automate execution in e.g., cloud 
environments and can greatly speed up the analysis of 
high-throughput data. MAW performs (1) MS2 data pre-
processing, (2) spectral database dereplication, (3) com-
pound database dereplication, (4) candidate selection, 
and (5) chemical compound classification using various 
tools integrated into the workflow. It provides a list of 
top-scoring candidates as a network and also prioritizes 
a final candidate from the list, for each feature. MAW 
follows the FAIR guiding principles [35]. It uses public 
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databases and open-source software tools. The com-
plete MAW source code is available on GitHub [36]. It is 
developed in the languages R and Python and can be exe-
cuted with all its functionalities and dependencies as two 
docker images for MAW-R and MAW-Py from Docker-
Hub [37, 38].

Methods
Input data prerequisites
The objective of this workflow is metabolome annotation 
from the data acquired from liquid chromatography-tan-
dem mass spectrometry (LC-MS2) with data-dependent 
acquisition (DDA) mode [39]. MAW takes .mzML files 
as input containing both MS1 features and MS2 spectra. 
The LC–MS features should be pre-selected, as MAW 
directly starts with the pre-processing of MS2 spectra for 
annotation. The RAW files after data acquisition can be 
converted to. mzML format [7] using the MS-Convertor 
from the ProteoWizard suite [40] or the mass spectrom-
etry file conversion tool on GNPS. The profile peak data 
should be converted to centroid peak data during the 
conversion.

We used two reference datasets to assess the perfor-
mance of MAW. The first dataset consists of standards 
from a study on hypersalinity in diatoms [41]: betaine, 
pipecolinic acid, cysteinolic acid, methionine sulfoxide, 
N,N-dimethylarginine, O-acetyl-l-carnitine, O-pro-
panoyl-l-carnitine, O-butanoyl-l-carnitine, and isovaler-
ylcarnitine. The second dataset is from a study on nine 
different Bryophyte species [42]. The .mzML files of the 
entire study on Bryophytes are available in MetaboLights 
under the accession MTBLS709. Both datasets were 
obtained using LC-MS2 in DDA mode. The mzML files 
used in this study have been made available on Zenodo 
[43, 44].

To use MS2 spectral databases in MAW, we down-
loaded GNPS, HMDB (Human Metabolome Database) 
[45], and MassBank [46]. These databases were stored 
as an R object using MsBackend, which is a virtual 
class defined in the R package Spectra [47] to store and 
retrieve the mass spectrometry data. The database dumps 
have been made available on Zenodo [48].

Metabolome Annotation Workflow
The Metabolome Annotation Workflow (MAW) is 
executed as a computational workflow which provides 
different executable modules: (1) Spectral database 
dereplication, (2) Compound database dereplication, and 
(3) Candidate selection. MAW is written in R for metab-
olomics data handling and Python for cheminformatics 
analysis. Figure 1 illustrates the overview of the workflow.

MAW‑R segment
The workflow starts with preprocessing MS2 spectra 
using the package Spectra. The function spec_Processing 
in MAW-R, reads the .mzML files and extracts all precur-
sor masses [m/z]. This step is common for both spectral 
and compound database dereplication. Figure 2 describes 
the MAW-R segment in a stepwise manner.

Spectral database dereplication  To start spectral data-
base dereplication, the spec_dereplication_file function 
is used. This module requires GNPS, HMDB (in silico 
and experimental spectra), and MassBank spectra stored 
as R objects. The first function within this module is the 
spec2_Processing function which extracts all spectra with 
a given precursor mass [m/z] value, normalizes the inten-
sity, and removes low-intensity peaks (< 5%). This func-
tion is applied to both query and database candidate spec-
tra so that they are comparable.

GNPS uses different scoring as compared to HMDB 
and MassBank. In order to integrate both types of scor-
ing, we implemented the following approach. For GNPS, 
the fragment peaks of query and candidate spectra are 
defined as matching peaks, if the difference between their 
fragment mass [m/z] values and the difference between 
these adjusted fragment mass [m/z] values is less than 
the given tolerance (15  ppm by default). This scoring 
parameter is set to 0.85 (maximum = 1.0) as the thresh-
old. For HMDB and MassBank, a comparison of the two 
spectra with the dot product is used to determine match-
ing peaks. The default is set to 0.70. The top candidates 
are also given a normalized score of similarity between 
fragment masses [m/z] of individual matching peaks and 
the intensity of these peaks by function peakdf. The ratio 
of matching peaks by the total peaks in query spectra is 
also weighed within these scores.

The mz_score is the intersection of the matching peaks 
between two comparing spectra. mzq ∩ mzd expression 
defines the number of matching peaks. nq is the total 
number of peaks in the query spectrum and nd is the total 
number of matching peaks in the database spectrum.

The int_score is the average summation of the dif-
ference between individual matching peaks defined by 
diffqdi. Since the score is normalized to 1, the diffqdi val-
ues are divided by 100 and then subtracted from 1 to 
give more weightage to peaks with a lesser difference in 
intensity.

(1)mz_score =
mzq ∩mzd

nq+nd

(2)int_score =

∑nqd
i=1 1− (diffqdi/100)

nqd
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Compound database dereplication  To utilize the Com-
mand Line Interface (CLI) of SIRIUS (version 4.9.12), a 
parameter file is required as an input for each precursor 
mass [m/z]. The sirius_param function is used to gener-
ate these parameter files in SIRIUS readable.ms format. 
The parameter file contains the id of the feature, precur-
sor mass [m/z], charge, the median of retention time [s], 
isotopic peaks if present, and the MS1 and MS2 peaks. In 
order to extract this information, ms2_peaks and ms1_
peaks functions are required. ms2_peaks extracts and 
combines the fragment peak lists for each precursor mass 
[m/z]. The R package CAMERA is used to extract MS1 
peaks and perform isotope annotation. To run SIRIUS, 
the run_sirius function is applied based on the isotopic 
peak annotation. Here, the user can define the database 
to be used within SIRIUS. For the standards dataset, the 
“all” database was used, which is a combination of many 
databases such as PubChem, HMDB, and COCONUT 
(COlleCtion of Open Natural ProdUcTs). The “all” data-
base is also the default setting. For the bryophytes dataset, 
the “bio” database was used, which is a collection of dif-
ferent chemical databases reserved for biological sources. 
Another database used for annotating the bryophytes 
dataset is the COCONUT database [50]. For compound 
classification, CANOPUS is used [51]. Figure 2 describes 

the step-wise functions in the compound database derep-
lication module, using SIRIUS.

MAW‑Py segment
Post‑processing  To resolve missing SMILES (Simpli-
fied Molecular Input Line Entry Specification) and non-
conventional compound names from GNPS, the func-
tion spec_postproc removes any naming anomalies and 
adds SMILES using PubChemPy [52]. For HMDB, the 
results only contain the HMDB database ID. To obtain 
the names, formulae, and SMILES, the structures.sdf file 
is downloaded from HMDB. Using the same function, any 
spectral match with mz_score, int_score, and the ratio of 
matching peaks below 0.50 are discarded. To post-process 
the results from SIRIUS, the function sirius_postproc 
adds the top-scoring candidates from SIRIUS. If there are 
no structure candidates predicted, then the function adds 
the top-ranking formulae as the candidates.

Candidate selection  The candidate selection is per-
formed by the function CandidateSelection_Similari-
tyandIdentity, which uses RDKit [53] to perform the 
calculations, takes results from spectral and compound 
databases and runs the Tanimoto similarity score (keep-

Fig. 1  Overview of MAW. MAW-R executes dereplication. It starts with the input data files and searches the spectra in spectral and compound 
databases with the R package Spectra and SIRIUS respectively. Once the dereplication is completed and each file and precursor mass [m/z] has 
some candidates from different databases, MAW-Py performs candidate selection from these sources, generates classes, and creates a table for the 
chemical similarity network, which can be visualized in Cytoscape [49]
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ing a threshold of >  = 0.85) to search for common 
structures or substructures among the top predicted 
candidates from all these sources. The results can be vis-
ualized in chemical similarity networks. This provides 
the most probable candidate structure. To select one 
candidate among these top candidates, without manu-
ally visualizing the network or going through the list 
of top candidates, further calculations are performed, 
with a Tanimoto similarity score of >  = 0.99. This cal-
culation selects one candidate that is present among 
the top candidates from all or most of the sources. In 
case of a disagreement among the sources, we provide 
a prioritization scheme with results from GNPS given 
higher priority, as compared to SIRIUS, MassBank, and 
HMDB (see result section  "Comparison of MAW with 
integrated annotation tools using the standards data-
set"). The result is represented by a list of features and 
corresponding candidates with MSI confidence levels of 
identification. Figure 3 explains the step-wise process-
ing of the candidate selection. To visualize the 2D struc-
tures, CDK-Depict [54, 55] can be used, as was used in 
the depiction of structures in Tables 2, 3 and 5.

Compound classification  Annotation for compound 
classes can be achieved by a function called classifica-

tion. CANOPUS is a chemical classification prediction 
tool, integrated in SIRIUS and annotates a chemical class 
using the LC-MS2 spectra. To provide classification to 
annotations that have an annotation source other than 
SIRIUS (such as GNPS, HMDB, or MassBank), Classy-
Fire [56] is also integrated into the workflow which takes 
SMILES as input. Both CANOPUS and ClassyFire are 
based on the ChemOnt ontology [56]. To use ClassyFire 
in Python, the pybatchclassyfire [57] package is used.

Towards a FAIR and reproducible MAW
Computational workflows like MAW can be described 
as digital research objects in their own right [58]. As 
a result, the FAIR (Findable, Accessible, Interoper-
able, and Reusable) principles can be applied to these 
workflows. For good scientific practice, in MAW, we 
implemented the recommended FAIR principles. To 
enable Findability and Accessibility, the source code of 
MAW has been made available in the GitHub reposi-
tory zmahnoor14/MAW. In addition, MAW has been 
versioned through Zenodo-DOIs generated from the 
GitHub repository. To enable Interoperability and 
Reusability, separate Docker images are available on 
DockerHub for MAW-R and MAW-Py. In Future 
Developments in the discussion subsection, we detail 

Fig. 2  Overview of spectral and compound database dereplication performed in MAW-R. Spectral database dereplication utilizes HMDB, MassBank, 
and GNPS for each precursor mass [m/z]. The spectral databases are stored as Rdata objects, available on Zenodo. The spectra from input queries 
and databases with precursor mass [m/z] of interest are extracted. These spectra are compared with cosine similarity scores between the query and 
database spectra. Individual peaks are also compared to remove any false positive candidates with high overall similarity but lower individual peak 
similarity. The second part of MAW-R is the compound database dereplication with SIRIUS CLI. To prepare the input files for SIRIUS, MS2 peaks and 
isotopic peaks are extracted. This information is written into SIRIUS input files (.ms), which are used to run SIRIUS
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Fig. 3  Overview of the candidate selection performed within MAW-Py. The workflow takes the results of top-scoring candidates from all sources 
and merges the list of top-scoring SMILES from these sources in a single CSV file. These SMILES are then searched for structural similarity. For the 
pairwise “Candidate Similarity” calculation part, the SMILES of candidate compounds with Tanimoto similarity scores of < 0.85 when compared with 
other SMILES in the list of top scoring candidates, are discarded. For the rest of the SMILES, a Maximum Common Substructure (MCSS) is calculated 
for each pair of SMILES in the list. Based on this MCSS calculation, a TSV file is generated which can be used in Cytoscape to visualize the chemical 
similarity among the candidates. Candidates that belong to a cluster with the most number of candidates from top ranks should be considered as 
the most probable structures and substructures for the particular feature. For the “Candidate Identity” part, the threshold is >  = 0.99. The candidate 
identity among SMILES leads to a single structure as the top-ranking candidate for each feature. If there is no identity, or the sources provide 
different top-ranking structures, a prioritization is performed. In total, there are four sources (SIRIUS, GNPS, HMDB, and MassBank). The scheme 
is—three sources with the same candidate > two sources with the same candidate > single source (GNPS) > single source (SIRIUS) > single source 
(MassBank or HMDB). The scheme is defined from the results obtained with known compounds from the standards dataset from diatoms
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additional practices that will be implemented to further 
support reproducibility and the FAIR principles.

Results
Annotations from tandem mass spectrometry data
To evaluate the performance of MAW, we utilized two 
datasets, a list of standard molecules from the diatoms 
(further called the standards dataset), and untargeted 
LC-MS2 spectra from the bryophytes dataset (further 
called the bryophytes dataset). Each high-scoring can-
didate is given MSI-level of confidence [12]. A detailed 
overview of these MSI-levels is presented in Table 1.

The MSI-levels 1 and 2 represent known compounds 
that are present in spectral databases (see Table  1). In 
the case of MSI-level 1, an analytical standard is utilized 
to confirm their identification. Hence, results from the 
standards dataset are used to validate the results from 
MAW. Out of 9 standard metabolites, 6 were correctly 
identified as the top first candidates with MAW as shown 
in Table  2. Three particular cases with second or third 
ranks are: (a) the reduced form of betaine was annotated 
as the top candidate (trimethylglycine). (b) Cysteinolic 
acid wasn’t detected in spectral databases, rather 1-chlo-
robenzotriazole was annotated by both GNPS and Mass-
Bank. Only SIRIUS identified cysteinolic acid as the top 
candidate. According to our current annotation source 
prioritization scheme (described in Fig. 3), 1-chloroben-
zotriazole from GNPS and MassBank is at the top two 
ranks, and cysteinolic acid from SIRIUS received an 
overall rank of 3 in MAW. (c) Valeryl l-carnitine was 
detected as the top candidate by GNPS and MassBank. 
In contrast, the correct compound isoveleryl-l-carnitine 
was detected as the top candidate from SIRIUS and the 
second top candidate from GNPS. Some correct matches 
might have been discarded due to the scoring threshold. 
For example, butanoyl carnitine search in MassBank had 
no results because the threshold set for MassBank score 
is 0.70. The correct annotation for this compound within 
MassBank had a score of 0.44, which is lower than the set 
threshold.

In the bryophyte dataset, 48 features were originally 
annotated with chemical structures, and 604 features 
were originally assigned with chemical classes using the 
MetFamily classifier [59]. Using MAW, when choos-
ing the “bio” and COCONUT databases for structural 
annotation in SIRIUS, we confirmed a total of 8 com-
pounds similar to the original study (see Table 3). Using 
the COCONUT database in SIRIUS, gave slightly bet-
ter ranks than the “bio” database. In total, using MAW, 
881 out of 933 features were annotated with chemical 
structures when compared to 48 structurally annotated 
features of the original study. For 92 features, MAW pro-
vided only a compound class and a formula, and for 18 
features only a formula. These results are observed with 
default settings in MAW.

To classify MS2 spectra into compound classes, MAW 
used CANOPUS and ClassyFire (ChemONT ver 2.1). 
We found the most prevalent superclasses to be Lipids 
and lipid-like molecules, Organic acids and derivatives, 
Benzenoids, and Phenylpropanoids and polyketides. The 
original study found the superclasses Lipids and lipid-like 
molecules, Phenylpropanoids and polyketides, Lignans, 
neolignans and related compounds, and Organic oxygen 
compounds to be the most diverse but the authors used 
a different classifier. Figure 4 shows a sunburst plot pro-
viding an overview of the annotated superclasses, classes, 
and subclasses identified in MAW.

Comparison of MAW with integrated annotation tools 
using the standards dataset
We evaluated MAW’s performance with regard to the 
integrated annotation tools SIRIUS, and Spectra (GNPS, 
Massbank, and HMDB) using the standards dataset. 
MAW identified 8 out of 9 compounds correctly except 
for Betaine (where the annotated compound is the 
reduced form of Betaine). Isovaleryl carnitine ranked 
second and cysteinolic acid ranked third, as shown in 
Table  2. In the case of using SIRIUS without spectral 
databases, fatty acyls (except for Butanoyl Carnitine) 
were annotated as isomers or similar structures instead 
of the actual compounds. SIRIUS correctly annotated 
methionine sulphoxide, N,N-dimethylarginine, and car-
boxylic acid and its derivatives. GNPS correctly anno-
tated all compounds except for betaine and cysteinolic 
acid. MassBank and HMDB showed the lowest perfor-
mances. MassBank only annotated N,N-dimethyl argi-
nine, and acetylcarnitine with a score threshold of 0.70, 
and HMDB failed to annotate any correct compound 
with the same score threshold. We also performed anno-
tations for standards with MetFrag CLI version 2.5.0 and 
PubChem [60] as the search database. Table  4 gives an 
overview of the annotations obtained by MAW, Spectra, 
SIRIUS, and MetFrag.

Table 1  MAW operates on MSI-levels [12] and categorizes 
annotations based on the levels

Annotation level MSI-level

Standard is given (information provided by the user) 1

Candidate present in either spectral databases or in more 
than one annotation source

2

Candidate only suggested by SIRIUS, and/or has a chemical 
class prediction

3

Molecular formula predicted 4

Only features measured with MS2 5
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Case study with the bryophytes dataset
Marchantin compounds with the COCONUT database
MAW was used to annotate chemical structures from 
the spectra obtained from nine different species of the 
bryophyte dataset. As the species Marchantia polymor‑
pha (group Marchantiophyta) is known to produce very 
specific cyclic bis-bibenzyls such as Marchantins and 
semi-cyclic Perrottetins which provide a challenge for 

computational annotation tools due to their cyclic struc-
tures, these compounds were chosen to evaluate the per-
formance of MAW. In the ChemONT ontology, these 
compounds are represented by the compound super-
classes Lignans, neolignans and related compounds or 
Stilbenes [61]. In the original study, three compounds 
were annotated as Marchantin compounds (Marchantin 
G, K, D). MAW annotated 4 Marchantin compounds and 

Table 2  List of molecules from the standards dataset and top candidates from MAW

The precursor mass [m/z] and retention time [s] represent the mass of the precursor ions given in mass-to-charge ratio and the median retention time of the precursor 
ion given in seconds, respectively. The given ranks are from MAW

Precursor 
mass 
[m/z]

Retention time [s] Molecular formula Molecular structure Chemical class Name of the compound Rank

204.123 148.99 C9H17NO4

 

Fatty acyls Acetyl-l-Carnitine 1

232.154 102.83 C11H21NO4

 

Fatty acyls Butanoyl-l-Carnitine 1

166.053 203.69 C5H11NO3S

 

Carboxylic acids and deriva-
tives

Methionine Sulfoxide 1

130.086 131.48 C6H11NO2

 

Carboxylic acids and deriva-
tives

Pipecolic Acid 1

246.170 87.76 C12H23NO4

 

Fatty acyls Isovaleryl-l-Carnitine 2

218.138 123.34 C10H20NO4 + 

 

Fatty acyls Propanoyl-l-Carnitine 1

118.085 145.57 C5H11NO2

 

Carboxylic acids and deriva-
tives

Betaine (annotated: Trimeth-
ylglycine)

1

154.018 155.28 C3H9NO4S

 

Organic sulfonic acids and 
derivatives

Cysteinolic acid 3

203.150 348.67 C8H18N4O2

 

Carboxylic acids and deriva-
tives

N,N-dimethyl arginine 1
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1 Perrottetin compound within the top 25 candidates. 
Table  5 gives an overview of the annotated cyclic bis-
bibenzyls in the Marchantia polymorpha samples.

Flavonoid “Nicotiflorin” as a highly probable annotation 
with spectral databases
Here, we describe the annotation and evaluation of the 
flavonoid Nicotiflorin using MAW. This compound was 
annotated by MAW in all of the bryophyte samples. The 
feature ID is file_1M287R318ID319 where File_1 is the 
file ID, M287 represents the precursor mass [m/z] and 
R318 represents the median retention time [s]. ID is an 
individual number assigned to the features in File_1. For 
ease of understanding, we will refer to this feature as 
M287R318. The detailed features are provided in Table 6.

MAW provides annotation results in two ways: (1) to 
generate a chemical similarity network between all top-
scoring candidates, and (2) to select only one highly 
probable candidate for each feature.

For (1), MAW generates a TSV file, for each feature, 
that contains the nodes as candidates and Tanimoto 
similarity scores as edges. Figure  5 shows the chemical 
similarity network of candidates for M287R318 created 
with Cytoscape, importing the TSV file as a network in 
Cytoscape. The TSV file defines the start and end nodes 
(candidates) and their structural similarity represented 
by the Tanimoto similarity score. This visual representa-
tion helps in candidate selection by choosing the cluster 
with the highest number of annotation sources (GNPS, 

Table 3  Features that were confirmed using MAW and the original study on the bryophytes data

The precursor mass [m/z] and retention time [s] represent the mass of the precursor ions given in mass-to-charge ratio and the median retention time of the precursor 
ion given in seconds, respectively. The molecular formula and name of the compound are extracted using PubChemPy or SIRIUS, depending on the annotation 
source. The chemical classes of the compounds are either extracted from ClassyFire or CANOPUS. All the molecular structures are generated via CDK-Depict. The MSI-
levels are in accordance with the rules described in Table 1. The given ranks are from MAW, using the database COCONUT in the compound dereplication module

Precursor 
mass 
[m/z]

Retention time [s] Molecular formula Molecular structure Chemical class Name of the 
compound

MSI-level Rank

425.176 607.49 C28H26O4

 

Lignans, neolignans and 
related compounds

Perrottetin E 3 10

182.081 47.16 C9H11NO3

 

Carboxylic acids and 
derivatives

Tyrosine 2 2

455.155 220.91 C28H24O6

 

Lignans, neolignans and 
related compounds

Marchantin D 3 23

287.056 318.26 C15H10O6

 

Flavonoids Kaempferol 2 8

165.055 484.08 C9H8O3

 

Cinnamic acids and 
derivatives

4-Hydroxycinnamic acid 2 6

291.231 773.87 C18H32O2

 

Fatty acyls Linoleate 3 6

379.283 702.51 C21H38O4

 

Fatty acyls Glyceryl monolinoleate 3 4

255.231 859.92 C16H32O2  Fatty acyls Palmitate 3 1
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Fig. 4  The sunburst plot showing the chemical diversity of the classified top-ranking annotations. Each shown compound class is represented by 
the counts of classified compounds belonging to the respective class. In the center, the most general superclasses are shown. The further to the 
outside, the more specific compound classes are shown. MAW uses CANOPUS and ClassyFire to annotate chemical classes to features. MAW found 
the subclasses Lipids (33.92%), Organic acids (17.02%), Benzenoids (13.94%), and Phenylpropanoid and polyketides (11.34%) to be most abundant

Table 4  Overview on the annotated features in MAW, SIRIUS, Spectra, and MetFrag, using the standards dataset, which had in total 37 
features (and 9 standards)

Total structural annotations refer to the percentage of annotated compounds that are the same in MAW, Spectra, and SIRIUS. Thus, 75.7% of the annotation in MAW 
were observed in Spectra and 70.2% of the annotations were observed in SIRIUS while some of the features had annotation sources from both Spectra and SIRIUS. 
We additionally ran MetFrag and among the top 100 candidates from each feature, 12 features had the same correct annotation. For the chemical classification, MAW 
annotated 97.3% of the features with a chemical class and all features had a molecular formula prediction. SIRIUS identified the chemical class (with CANOPUS) and 
molecular formula for all features, while Spectra and MetFrag did not provide these functionalities

Annotation level MAW Spectra (GNPS, HMDB, 
MassBank)

SIRIUS MetFrag
(PubChem)

Total structural annotations 100% (37) 75.7% (28)
(within MAW)

70.2% (26) (within MAW) 32.4%(12)

Chemical class prediction 97.3% (36) – 100% (37) –

Formula prediction 100% (37) – 100% (37) –
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MassBank, HMDB, SIRIUS) and the highest-ranking can-
didate from these sources.

For (2), the chemical similarity network selects the 
most probable cluster which in this case is presented in 
Fig. 5. The cluster represents three sources (spectral data-
bases). This gives a higher probability to the structure in 
that cluster and can be assigned as the final candidate, in 
this case, Nicotiflorin. Using the package Spectra, a mir-
ror image of MS2 spectra, both from the query and the 
top candidate from either of the spectral databases, can 
be created.

Discussion
Our Metabolite Annotation Workflow (MAW) facili-
tates and automates the complex and often cumbersome 
annotation of untargeted tandem mass spectrometry 
data in large metabolomics studies. To this end, MAW 
also improves candidate selection by integrating spectral 
and compound libraries and databases with computa-
tional annotation tools such as SIRIUS. It is also among 
the first tools that provide whole metabolome annota-
tion and assess the chemical diversity of the biological 
samples.

Table 5  List of annotated cyclic bis-bibenzyls using MAW

The precursor mass [m/z] and retention time [s] represent the mass of the precursor ions given in mass-to-charge ratio and the median retention time of the precursor 
ion given in seconds, respectively. The molecular formula and name of the compound are extracted using SIRIUS. The chemical classes of the compounds are 
extracted from CANOPUS. All the molecular structures are generated via CDK-Depict. The given ranks are from MAW, using the database COCONUT in the compound 
dereplication module

Precursor mass 
[m/z]

Retention time [s] Molecular formula Molecular structure Name of the compound Rank

425.176 607.49 C28H26O4

 

Perrottetin E 10

439.155 585.88 C28H24O5

 

Marchantin H 10

453.167 595.92 C29H26O5

 

Marchantin M 2

455.155 220.91 C28H24O6

 

Marchantin D 23

471.150 233.23 C28H24O7

 

Marchantin F 8
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Evaluation of MAW
Many software suites and R packages have been devel-
oped in the last years to solve the metabolomics anno-
tation challenge, but it still remains the “bottleneck” in 
metabolomics due to an “infinite chemical dark space” 
[62]. The Metabolome Annotation Workflow (MAW) is 
specifically developed to aid the annotation process by 
automation of candidate selection within this space.

Computational tools such as MetFrag, SIRIUS 
(CSI:FingerID), and CFM-ID (Competitive Fragmenta-
tion Modeling for Metabolite Identification), generate in 
silico spectra of chemical structures from different com-
pound databases based on their specified algorithms. 
This in silico spectral matching provides an annotation of 
up to MSI-level 3 [12], which refers to a tentative struc-
ture, not yet confirmed with a spectral library match or a 
standard (see Table 1). To provide more confidence in the 
annotation, the input spectra should be screened against 
actual experimental spectra. For this purpose, some tools 
and R packages have been developed such as Spectra, 
matchms [63], MS2Query (specifically for Analogues), 
or GNPS MASST, which use modified cosine similar-
ity score or deep learning-based scores to match the 
MS2 query spectra against spectral databases. However, 
in general, there is a huge mismatch between submitted 
experimental spectra to spectral databases and chemical 
structures present in compound databases. This leads to 
a low number of annotated features. As MAW combines 
both in silico generated spectral matching and experi-
mental spectral matching to increase the number of 
confident annotated metabolites, the percentage of anno-
tated metabolites with MAW is higher than with using 
spectral or compound databases alone (see Table 4).

Another advantage of MAW is the automated can-
didate selection which allows one to choose the most 
optimal results. Generally, annotation tools provide a 
list of ranked molecules based on the associated scoring 
schemes and the user has to manually go through these 
candidates or just take the first candidate. This requires 
a lot of time and effort with big datasets. MAW not only 
provides these ranked lists but also provides a concise list 
of highly probable candidates from different databases 
automatically. The structural similarity between these 
candidates can be visualized in a chemical similarity net-
work. A function to get only one candidate per feature 
is also provided. All the intermediate results are kept in 
an efficiently designed directory system, so the user can 
always refer back to the origin of the candidate. This way 
provenance records are stored for a given dataset, as the 
workflow is executed.

A major component behind the candidate selection 
is the scoring scheme followed throughout the work-
flow. We used the scoring schemes provided by Spectra 
and SIRIUS (CSI:FingerID), and the Tanimoto similar-
ity score for the structural matching. Spectra uses the 
most common spectral matching metric which is the 
cosine similarity score that calculates how much over-
lap is observed between two spectra [64]. For HMDB 
and MassBank, this metric is used unaltered. Some 
good candidates are missed due to lower scores with 
high spectral matching as in the case of butanoyl car-
nitine and MassBank. For GNPS, this similarity score 
is altered as described in the method section and the 
spectral matching with GNPS gives better results as 
compared to the other two spectral databases. We con-
clude that spectral matching needs better metrics. The 

Table 6  Features and annotations for feature ID M287R318 with MSI-levels

The measured precursor ion for Nicotiflorin has a mass [m/z] of 287.056. The retention time is given in seconds. This precursor ion was measured in negative mode 
during LC–MS. The molecular formula is extracted from PubChemPy and the class is annotated using ClassyFire. SMILES represent the structure of Nicotiflorin which 
was the same structure annotated with GNPS, HMDB, and MassBank

Feature Annotation MSI-level

Precursor mass [m/z] 287.06 5

Retention time [s] 318.26 5

Polarity negative 5

Molecular formula C27H30O15 4

Chemical class Flavonoids (CHEMONTID:0,000,334) 3

Candidate SMILES c(c5)(O)cc(c(c51)C(C(O[C@H](O3)[C@@H]([C@H]([C@@H]([C@H]3CO[C@@H]([C@@H]4O)
O[C@H]([C@@H]([C@H]4O)O)C)O)O)O) = C(c(c2)ccc(O)c2)O1) = O)O

2

Sources GNPS, HMDB, MassBank 2
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possible cases where cosine similarity metrics fail could 
be due to different fragmentation patterns under dif-
ferent experimental setups, or if there is a shift in the 
fragmentation peaks, the overlap between matching 
spectra would also be shifted [65]. To deal with this 
problem in a better way, we also consider the indi-
vidual fragment mass [m/z] and intensity overlap, also 
counting in the number of matching peaks. All of these 
MAW-defined metrics should at least have a 0.5 match-
ing score in addition to a high cosine similarity score. 
In this way, we could lower the possibility of getting 
any false positives but could end up missing candidates 
with low cosine similarity scores as false negative can-
didates. This could be solved by integrating Spec2Vec 
into MAW. Spec2Vec is a deep learning-based spectral 
matching score and has shown better spectral matching 
results as compared to simple or modified cosine simi-
larity scores [65]. In addition, the public spectral data-
bases are not completely standardized and hence can 

only annotate spectra present in the databases such as 
in the case of betaine, where reduced state trimethylg-
lycine is annotated.

To further reduce the false negative results from spec-
tral database screening is to use compound databases to 
compensate for all the known compounds which were 
not assigned a candidate from spectral databases. Here, 
MetFrag would be a good option when using a more 
concise library of molecules. Larger databases such as 
PubChem can lead to a larger list of candidates with the 
actual structure being at a lower rank (e.g.: top 100th 
candidate), such as seen with candidates from the stand-
ards dataset, explained in Table 4. For the first version of 
MAW, we have only integrated SIRIUS (CSI:FingerID) 
for compound databases, a state-of-the-art annota-
tion tool [66] into MAW. For features with no structural 
annotations, SIRIUS and CANOPUS provide a molecu-
lar formula and a chemical class. Thresholds for rank-
ing SIRIUS candidates were considered, but SIRIUS CLI 

Fig. 5  Chemical similarity network depicting the structural similarities among the top candidates from GNPS, MassBank, and HMDB (no 
annotations from SIRIUS are recorded for this feature). The nodes represent a chemical structure (as candidates). The edges represent the Tanimoto 
similarity score (tn) between the two nodes. The asterisk (*) shows the top-ranking candidate from each source that is present in the network. The 
network with the most nodes is zoomed in to visualize that G_15 (15th rank candidate from GNPS), H_12 (12th rank candidate from HMDB), M_2, 
and M_13 (2nd and 13th rank candidates from MassBank) have a structure with a Tanimoto similarity score equal to 1 and hence it is most probable 
to consider this structure to be annotated to the feature M287R318
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doesn’t provide a deterministic probability score, as a 
result, providing a threshold would differ from case to 
case, and hence the idea was discarded. In addition, the 
annotation of lipid classes using SIRIUS can lead to false 
positives due to the complex nature of lipids, and many 
lipid isomers co-elute in mass spectrometry, making it a 
challenge to annotate lipids using in silico libraries [67].

The annotation result evaluation for MAW has been 
accomplished via the standards dataset and the LC-MS2 
data from the bryophytes datasets. MAW performed 
better for the standards dataset, keeping the actual com-
pounds within the top three candidates. These standards 
are usually acquired with the LC-MS2 technique and have 
been submitted to the spectral databases. As a result, the 
experimental spectral matching led to the true positive as 
the top first annotation in most cases. For the annotation 
results from the bryophytes dataset, we could only anno-
tate 8 compounds that were the same as in the original 
study. All the annotations from the original study were 
performed manually and most of the annotations were 
not within the top-ranked candidates. The main objective 
of the study was to identify the chemical classes and the 
annotation of natural products from different bryophytes 
species. Despite the fact that bryophytic organisms 
received much attention regarding their unique diversity 
of natural products, many features remain without an 
annotated chemical structure. Additionally, some classes 
of natural products from these organisms are experimen-
tally challenging to acquire with tandem mass spectrom-
etry [68]. Using databases specifically focusing on natural 
products like COCONUT and GNPS can increase the 
probability of finding the compound of interest within 
the top-ranked candidates. We observed that using the 
“bio” database from SIRIUS, the actual compounds were 
ranked lower as compared to using the COCONUT 
database. Hence, it is important to have an objective for 
any annotation experiment, whether it is to perform tar-
geted LC–MS to confirm the presence of known com-
pounds, or it is to annotate novel natural products. The 
usage of different databases can lead to different results 
for less-studied species and compounds. As seen during 
the annotation for the chemical compounds from the 
Marchantin group, these compounds were ranked low 
due to their macrocyclic structures; the spectra for such 
structures are already challenging to obtain due to com-
plex fragmentation patterns [69]. In such cases, it helps 
to have a pre-defined suspect list even in the case of an 
untargeted study.

The implemented functionalities enable MAW to pro-
vide an overview of the chemical diversity present in 
any dataset. MAW also can generate graphs to visualize 
the chemical similarities in a network or the chemical 

classification. All the steps in MAW are customized 
specifically for the annotation step of the metabolomics 
workflow. MAW also complies with the FAIR guidelines, 
making it Findable and Accessible on GitHub as an open-
source code repository, and access to all the datasets, and 
libraries used for the development of MAW is provided 
via Zenodo. MAW is made interoperable as it is executed 
inside docker containers on any system. It also follows 
the Reusability principle by tracking all the intermedi-
ate results and collecting the provenance of the workflow 
execution.

Future developments
To enhance spectral database matching, we recommend 
MAW to be integrated with Spec2Vec and matchms, 
along with MS2Query for providing structurally similar 
analogs. To avoid wrong predictions with candidates that 
don’t have a natural product like structure, a functional-
ity that removes any rare natural product elements can 
be added. To enhance the automated candidate selection, 
we are also aiming to add MetFrag with PubChemLite 
and COCONUT. We are also planning for the support 
of a wider database selection using SIRIUS version 5. The 
spectral similarity-based classical molecular network 
(MN) is another important aspect for the annotation of 
metabolites, among single-condition datasets or between 
two conditions, and linking these MNs to pathway anno-
tations. To further support the FAIR principles, our idea 
is to extend the specification of the workflow in the Com-
mon Workflow Language (CWL) [70], gathering detailed 
provenance of workflow executions, and adding rich 
metadata about the workflow, its components, and the 
data used and produced by it.

Conclusion
Structural annotation remains a complicated and time-
consuming process. MAW is an automated metabolite 
annotation workflow. Using both spectral and compound 
databases, MAW helps to annotate the query spectral 
data to a corresponding experimental tandem mass spec-
tra or to an in silico generated corresponding spectra in 
case there are no associated spectra present in spectral 
databases. Results of annotated metabolites from MAW 
can be further functionally mapped to metabolic path-
ways to aid in the structure prediction of compounds and 
can be integrated with other omics data to understand 
the biological and ecological significance of these metab-
olites. This could support the chemical characterization 
in diverse fields such as biomarker discovery in clinical 
metabolomics, and defining the chemical diversity of 
ecosystems, leading to the identification of novel natural 
products.
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