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1  Introduction

Liverworts (Marchantiophtya) are a group of non-vascular 
plants found in almost every terrestrial ecosystem around 
the world (Söderström et al., 2016). Evolutionarily, bryo-
phytes as a whole comprise a monophylic group that is 
placed between algae and pteridophytes (Asakawa et al., 
2013; Harris et al., 2020). Despite their relatively simple 
physical morphology, liverworts are incredibly chemically 
diverse, largely due to the presence of oil bodies (He et al., 
2013). These organelles are responsible for the sequestra-
tion, storage, and synthesis of the majority of the special-
ized metabolites produced by liverworts (Flegel & Becker, 
2000; Suire et al., 2000; Tanaka et al., 2016). Oil bodies 
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Abstract
Introduction  Liverworts are a group of non-vascular plants that possess unique metabolism not found in other plants. Many 
liverwort metabolites have interesting structural and biochemical characteristics, however the fluctuations of these metabo-
lites in response to stressors is largely unknown.
Objectives  To investigate the metabolic stress-response of the leafy liverwort Radula complanata.
Methods  Five phytohormones were applied exogenously to in vitro cultured R. complanata and an untargeted metabolomic 
analysis was conducted. Compound classification and identification was performed with CANOPUS and SIRIUS while 
statistical analyses including PCA, ANOVA, and variable selection using BORUTA were conducted to identify metabolic 
shifts.
Results  It was found that R. complanata was predominantly composed of carboxylic acids and derivatives, followed by ben-
zene and substituted derivatives, fatty acyls, organooxygen compounds, prenol lipids, and flavonoids. The PCA revealed that 
samples grouped based on the type of hormone applied, and the variable selection using BORUTA (Random Forest) revealed 
71 identified and/or classified features that fluctuated with phytohormone application. The stress-response treatments largely 
reduced the production of the selected primary metabolites while the growth treatments resulted in increased production of 
these compounds. 4-(3-Methyl-2-butenyl)-5-phenethylbenzene-1,3-diol was identified as a biomarker for the growth treat-
ments while GDP-hexose was identified as a biomarker for the stress-response treatments.
Conclusion  Exogenous phytohormone application caused clear metabolic shifts in Radula complanata that deviate from 
the responses of vascular plants. Further identification of the selected metabolite features can reveal metabolic biomarkers 
unique to liverworts and provide more insight into liverwort stress responses.

Keywords  Untargeted metabolomics · Liverworts · Phytohormones · LC-MS · Metabolite identification · Compound 
classification
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are responsible for the high chemodiversity of liverworts, 
which has resulted in them being more chemically studied 
than any other group of bryophyte (Asakawa & Ludwiczuk, 
2018). Metabolites of bryophytic origin have recently gar-
nered increased attention due to their potential cytotoxicity 
against human cancer cell lines (Dey & Mukherjee, 2015), 
herbicidal activity (Zhang et al., 2019a, b) and fungicidal 
activity (Commisso et al., 2021).

In this study, we investigate shifts in the metabolites in 
the leafy liverwort Radula complanata (L.) Dumort. due 
to exogenous phytohormone application to plants grown in 
vitro at the global metabolic level. The following hormones 
were chosen as they are known to induce large metabolic 
changes in vascular plants. Their function in bryophytes 
is yet largely unknown. Two growth inducing hormones 
(NAA and BAP) were chosen to stimulate vegetative plant 
growth while three stress-response phytohormones (MeJA, 
SA, and AA) were applied to induce stress response metab-
olites. NAA, 1-napthaleneacetic acid, is an auxin involved 
in tuning plant growth and development (Singh et al., 2021) 
while BAP, 6-benzylaminopurine, is a cytokinin; an impor-
tant regulatory hormone involved in plant growth (Wu et 
al., 2021). Methyl jasmonate (MeJA), abscisic acid (AA), 
and salicylic acid (SA) are key signaling hormones that 
modulate plant responses to biotic or abiotic stressors. 
While liverworts respond to exogenous AA application, 
they do not produce AA endogenously. Instead, they utilize 
lunularic acid which serves as a bibenzyl growth inhibitor 
(Asakawa et al., 2010; Pryce, 1971a, b). Previous work by 
Kageyama et al. has demonstrated that (bis)bibenzyl pro-
duction was increased through AA application, suggesting 
that stress-response hormones can be applied to stimulate 
specialized metabolite production in liverworts (Kageyama 
et al., 2015). Jasmonic acid is another phytohormone not 
produced endogenously in liverworts, with the precursor 
dn-OPDA instead activating the COI1 receptor in the jas-
monate signaling pathway (Monte et al., 2019).

To examine the full range of specialized metabolites 
in liverworts, untargeted metabolomics can be utilized to 
monitor the changes of thousands of metabolites without 
the necessity of isolating them (Peters et al., 2021). This 
approach could also provide insight into the biosynthetic 
pathways by monitoring potential intermediates of com-
pounds of interest (Fiehn, 2002; Jones et al., 2013). Recent 
work has demonstrated that untargeted metabolomics is an 
extremely effective tool for the analysis of the chemodiver-
sity in bryophytes, however there are very few studies to 
date that utilize this methodology (Lu et al., 2021; Peters et 
al., 2019; Peters, Worrich, Peters et al. 2018a, b). In addi-
tion, we performed chemodiversity analyses to characterize 
the large number of metabolite features impacted by the dif-
ferent hormone treatments at a global level. Chemodiversity 

analysis can reveal the richness, relative abundance, and the 
structural dissimilarity of metabolite features produced by 
R. complanata in the different hormone treatments (Peters et 
al., 2022; Petrén et al., 2022). To complement the untargeted 
approach, targeted metabolomics can also be applied post-
hoc to quantitatively analyze specific metabolites, however 
a standard of the compound is usually necessary (Commisso 
et al., 2021). Due to the necessity of authentic standard sam-
ples, this analysis can be difficult for metabolites that are not 
commercially available.

In this study, the impact of various hormone treatments 
on the metabolome of Radula complanata was investigated 
at the global metabolic level using ultra-performance liq-
uid chromatography coupled to electrospray ionization 
quadrupole time-of-flight mass spectrometry (UPLC/ESI-
QTOF-MS) with data-dependent acquisition (DDA-MS). 
The overall chemodiversity of in vitro cultivated Radula 
complanata was examined and the hormone response was 
tracked through the selection of features that varied across 
different phytohormone treatments. The selected features 
were tentatively classified to observe how the different 
chemical classes fluctuated in response to exogenous phyto-
hormone application.

2  Methods

The sample material for this work was utilized in a separate 
study conducted by our group that focused on identifying 
variations in bibenzyl metabolites specifically (Blatt-Jan-
maat et al., 2022). The methodology pertaining to plant 
material preparation, metabolite extraction, and LC analysis 
(Sect. 2.1 through 2.6) are reported in that study and briefly 
summarized here.

2.1  Plant preparation and hormone treatments

Sterile Radula complanata protonema were germinated 
from spores on 20-20-20 agar plates and cultivated to obtain 
mature gametophytes. Voucher specimens of environmen-
tal samples used for spore collection have been deposited 
at the Connell Memorial Herbarium at the University of 
New Brunswick, Fredericton under the accession numbers 
69,083 and 69,084.

2.2  Hormone treatments

Mature gametophytes were placed on 20-20-20 agar plates 
supplemented with hormones and grown under full spectrum 
growth lights. Stress-response hormones included methyl 
jasmonate (MeJA, Sigma), abscisic acid (AA, Sigma), and 
salicylic acid (SA, Sigma) while growth hormones included 
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1-napthaleneaceticacid (NAA, Sigma), and 6-benzylamino-
purine (BAP, Sigma). Control samples (no methanol, no 
hormones) were prepared for both the stress-response and 
growth groups. The stress-response hormones were grown 
for 4 months while the growth hormone treatments were 
grown for 3 months. Plants were weighed and stored at 
-80 °C until further processing. Harvesting yielded the fol-
lowing samples: AA1, AA10, AA100, MeJA1, MeJA10, 
MeJA100, SA1, SA10, SA100, Stress Control, BAP1, 
BAP10, BAP100, NAA1, NAA10, NAA100, Growth Con-
trol. Statistical analyses were conducted in R and signifi-
cant changes were determined by a one-way ANOVA and 
a Tukey HSD post-hoc test. Treatment fresh weights were 
normalized with Eq. (1) for data visualization.

Normalizedvalue =
(Sample − Control)

Control
� (1)

2.3  Metabolite extractions

We followed extraction procedures for LC-MS originally 
established by Böttcher et al. (Böttcher et al., 2009) for vas-
cular plants and modified slightly by Peters et al. for bryo-
phytes (Peters, Gorzolka, et al., 2018). This method was 
observed to give robust results regarding our targeted com-
pound classes (Lu et al., 2021). Frozen plants were homog-
enized and extracted with 1 mL of cold 80:20 MeOH:H2O 
supplemented with 5 µM Kinetin (Sigma), 5 µM Bio-
chanin A (Sigma), and 5 µM N-(3-Indolylacetyl)-L-alanine 
(Sigma). For LC-MS analysis, samples were reconstituted 
to 10 mg fresh weight/100 µL with 80:20 MeOH:H2O.

2.4  Chromatographic separation and untargeted 
mass-spectrometry

Samples were separated and analyzed with a Bruker Elite 
HPLC equipped with a Nucleodur X18 Gravity-SB column 
(1.8 μm 100 × 2 Macherey Nagel, Dueren, Germany) cou-
pled to a Bruker TIMS-TOF (timsTOF Pro, Bruker, Bre-
men, Germany). 0.1% aqueous formic acid and acetonitrile 
were utilized as the mobile phase with a flow rate of 0.5 mL/
min. 2 µL was injected per sample and the injection chamber 
was maintained at 4 °C. Separate injections were performed 
for analysis in positive and negative mode and ionized with 
electrospray ionization (ESI). Data was collected in data-
dependent acquisition (DDA-MS) mode (also called auto-
MS/MS by the vendor) with the instrument settings reported 
in Blatt-Janmaat et al. (Blatt-Janmaat et al., 2022). Calibra-
tion for both modes was completed with Na-Formate.

To ensure consistency throughout the campaign, a qual-
ity control (QC) sample was injected every 8 samples to 

check retention time drift and to detect potential carry-
over in the column. The QC sample was composed of the 
three internal standard compounds (Biochanin A, Kinetin, 
and N-(3-Indolylacetyl)-L-alanine) as well as six biben-
zyl metabolites (Radulanin A, Radulanin H, Radulanin L, 
4-prenyldihydropinosylvin, 3,5-dihydroxy-6-carbometh-
oxy-2-(3-methyl-2-butenyl)bibenzyl, and 2-(3,7-Dimethy-
locta-2,6-dienyl)-5-(2-phenylethyl)benzene-1,3-diol) that 
were previously isolated from Radula complanata.

2.5  Raw data acquisition

Raw LC-MS files (Bruker Daltonics .d format) were con-
verted to .mzML with MSConvertGUI version 3 from the 
ProteoWizard software suite (available here: https://prote-
owizard.sourceforge.io/download.html) (Chambers et al., 
2012). Raw data has been uploaded to MetaboLights as 
MTBLS3563 (www.ebi.ac.uk/metabolights/MTBLS3563) 
(Haug et al., 2020).

2.6  Chromatographic peak detection in untargeted 
LC-MS

Chromatographic peak detection was performed in R 4.1.1 
(available from https://cran.r-project.org/) with the XCMS 
3.14.1 package (Smith et al., 2006). Parameter optimization 
with IPO (Libiseller et al., 2015) was conducted and addi-
tional manual adjustments were made based on instrument 
knowledge. Data was restricted to 0 to 1020 s and the cent-
Wave algorithm was applied for peak detection (Tautenhahn 
et al., 2008). Peaks were grouped and retention time cor-
rected using the adjustRtime function in XCMS. After reten-
tion time correction, samples were regrouped and peaks 
were filled with the fillChromPeaks function in XCMS. All 
parameters can be found in Blatt-Janmaat et al. (Blatt-Jan-
maat et al., 2022).

2.7  Data treatment

To assess the quality of the obtained spectral data, EICs for 
the three internal standards and six previously identified 
bibenzyls were extracted and manually analyzed for peak 
shape and retention time shifts. After an initial quality check 
of the data, positive and negative data sets were processed 
independently and merged into one feature table once fea-
tures were detected and annotated. Several tables were 
constructed from the original feature table based on vari-
ous constraints. A presence/absence table was constructed 
to determine if a peak was present in the MS1 data and a 
cut-off at 0.01% of the max peak intensity was applied. 
A table containing features that were only present in each 
treatment and a compound table containing only features for 
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than the R package caret. Then, metrics were calculated 
on the dummy object using the function postResample and 
multiClassSummary from the caret package. For the final 
BORUTA, the compound table was normalized with respect 
to the control with Eq. (1).

To visualize the selected variables, heatmaps were imple-
mented using the function heatmap.2 in R. Columns and 
rows were clustered using a Euclidean distance measure. 
For the samples, a complete method was used to agglomer-
ate the distances and the Ward.D method was used for the 
features. To test the selected variables for relation to path-
ways, a molecular network was calculated and visualized 
using the functions molNet and molNetPlot from the che-
modiv package.

2.9  Compound classification

Peaks were classified and tentatively annotated with SIR-
IUS (Dührkop et al., 2019), ZODIAC (Ludwig et al., 2020), 
CSI:FingerID (Dührkop et al., 2015; Hoffmann et al., 2021), 
and CANOPUS (Djoumbou Feunang et al., 2016; Dührkop 
et al., 2021) using ClassyFire and NPClassifier (Djoumbou 
Feunang et al., 2016; Kim et al., 2021) based on MS2 frag-
mentation patterns using SIRIUS software version 5.6.2. 
Default settings were used for SIRIUS, ZODIAC, and 
CSI:FingerID, however only formulas from natural-prod-
uct based databases were considered (Bio Datadase, Bio-
cyc, CHEBI, COCONUT, EcoCyc Mine, CNPS, HMDB, 
KEGG, KEGG Mine, KNApSAcK, Natural Products and 
Plantcyc) for CANOPUS in the SIRIUS software suite. To 
tentatively identify a compound, a combination of COSMIC 
and ZODIAC scores were considered. Manual analysis of 
the matching substructures was conducted before structural 
assignment was made. If the fragmentation pattern did not 
match the structures proposed by CSI:FingerID, match-
ing fragments from the proposed structures were consid-
ered when the class was assigned using CANOPUS. If the 
ZODIAC score was < 50%, no tentative identification was 
made. If the SIRIUS score was < 50% with no accompa-
nying ZODIAC score, no identification was made. For an 
overview of the detected compound classes, a sunburst plot 
of all classified features was constructed.

2.10  Results

2.11  Vegetative growth

First, we determined vegetative growth with regard to the 
different hormone treatments (Fig.  1). It was observed 
that the 100 µM treatments of all hormones significantly 
reduced the growth of the plants with the exception of SA 

which there were MS2 spectra available was constructed. 
Data tables are available in MetaboLights as MTBLS3563. 
In preparation for statistical analysis, missing MS1 data was 
replaced with the median intensity value and the matrix was 
log transformed. After transformation, useable MS2 spectra 
were extracted from MS1 spectra, imported to SIRIUS 4.9.6 
and the molecular formula was determined.

2.8  Statistical analyses

All statistical tests were conducted in R. To assess the vari-
ance of different explanatory factors such as experimental 
design, a variation partitioning was conducted using the 
varpart function from the vegan package. Principal Com-
ponent Analysis (PCA) using the prcomp function was per-
formed to visualize sample separation. To test which PC 
axes explain more variance than would be expected by ran-
domly dividing the variance into parts, the broken stick test 
was performed using the function screeplot and bstick from 
the R package vegan. The following chemodiversity mea-
sures were calculated: the overall feature richness by sum-
ming the counts of detected features per profile, the Shannon 
diversity index (H’), the Pielou’s evenness index (J) (Peters 
et al., 2022), and the functional Hill diversity which also 
takes the dissimilarity of features into account (Petrén et al., 
2022). Boxplots were drawn using the boxplot function in R 
and a one-way ANOVA followed by a Tukey Honestly Sig-
nificant Difference (HSD) post-hoc test using the multcomp 
package to identify significant differences. Chemodiversity 
boxplots were produced using the built-in function boxplot 
in R. To determine whether any factor varied across the dif-
ferent treatments, a one-way ANOVA followed by a Tukey 
HSD post-hoc test was conducted using the functions glht 
and cld from the multcomp R package.

Selection of variables that contribute significantly to 
the examined effects was accomplished with applying the 
BORUTA algorithm on Random Forest prediction mod-
els. BORUTA is an algorithm that eliminates variables 
that do not contribute to the examined factor by perform-
ing permutation tests on the variable importance of differ-
ent Random Forest models (Kursa & Rudnicki, 2010). The 
following arguments were used for the function BORUTA: 
x = feature_matrix, y = compound_matrix, mcAdj = TRUE, 
maxRuns = 10,000, doTrace = 0, holdHistory = TRUE, get-
Imp = getImpRfZ. BORUTA already provides out-of-bag 
(OOB) errors internally and validates selected variables 
according to paired t-tests (Kursa & Rudnicki, 2010). To 
provide comparable classification metrics, a regression tree 
was built post-hoc using the function rtree. Common per-
formance metrics used in bioinformatics such as R-squared 
(R2) and Root Mean Square Error (RMSE) were calculated 
by creating a dummy object with similar data structure 
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2.12  Feature grouping and chemodiversity

To assess general statistical importance of hormone treat-
ments in the metabolite profiles, a Principal Component 
Analysis (PCA) was performed on the normalized data 
(Fig. 2). The hormone type appeared to be responsible for 
the variation observed in PC1 (which explained 17.7%) 
while variation between the specific phytohormones and 

(AA: p = 0.071479, BAP: p = 0.040255, MeJA: p = 0.07149, 
NAA: p = 0.019643, SA: p = 0.1269). A significant 
increase in vegetative growth was observed with NAA at 
1 µM (p = 0.000159) and only a slight increase at 10 µM 
(p = 0.085448) concentrations but no significant increase 
was observed for any other treatments. Due to the signifi-
cant reduction of growth in the 100 µM treatments, there 
was not enough plant material for further analysis.

Fig. 2  PCA of the normalized feature table. Circles were added manu-
ally with growth treatments (coloured pink-purple) circled in pink and 
stress-response treatments (coloured blue-green) circled in blue. As 
the broken stick test revealed that the PC1 and PC3 axes explained 

more variance than would be expected by randomly dividing the vari-
ance into parts, PC1 and PC3 were chosen for the plot. Results of the 
broken stick test are available in the Supplement and Zenodo

 

Fig. 1  Normalized fresh weights 
of hormone treatments. Signifi-
cance values were determined 
with comparison to the respec-
tive control. P-values between 
concentrations were determined 
by t-test while significance with 
respect to the control was deter-
mined by a one-way ANOVA/
Tukey HSD post-hoc test. Signifi-
cance codes: 0 ‘***’ 0.001 ‘**’ 
0.01 ‘*’ 0.05 ‘.’ 0.1
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2.13  Compound classification

A total of 211 compound classes were identified in the posi-
tive and negative ion modes. To visualize the compound 
class diversity, a sunburst plot was conducted (Fig. 4). The 
most prominently detected classes overall were carboxylic 
acids and derivatives (mainly due to amino acids, pep-
tides, and analogues), followed by benzene and substituted 
derivatives, fatty acyls (largely fatty amides), organooxygen 
compounds (mostly carbohydrates and carbohydrate conju-
gates), prenol lipids (mostly diterpenoids, retinoids, and ses-
quiterpenoids), and flavonoids (mostly flavonoid glycosides 
and hydroxyflavonoids). A large number of features were 
also classified as stilbenes, the chemical class represented 
in the ClassyFire chemical ontology that encompasses the 
characteristic bibenzyls found in Radula spp. Known com-
pounds from liverworts were tentatively annotated and are 
listed in Table 1.

the treatment concentrations appeared to be responsible for 
PC2 (9.18% explained variance). Overall, a clear separa-
tion between growth hormones (pink-purple) and stress-
response hormones (blue-green) was observed. A PCA of 
the full feature table was also conducted and a similar sepa-
ration was observed (Supplementary Information).

Analysis of the chemodiversity showed unique pat-
terns with respect to the features detected in each treatment 
(Fig.  3). The number of features detected was consistent 
between all the treatments except for NAA10 which had sig-
nificantly fewer features (Fig. 3a). The Pielou’s evenness (J) 
for all treatments was consistent, with the exception of SA1 
and NAA10 which had significantly higher and lower J val-
ues, respectively (Fig. 3b). No significant differences were 
observed in the Shannon diversity (H’) (Fig. 3c). Determin-
ing the Functional Hill diversity, which also does take the 
dissimilarity of features into account (Petrén et al., 2022), 
showed that the significantly lower diversity in NAA10 was 
explained by structurally similar features with less abun-
dance than the other treatments and a slightly higher dis-
similarity of features in BAP10, G, and S (Fig. 3d).

Fig. 3  Diversity indices of the 
features detected in the MS1 
data. A: number of features, 
B: Pielou’s evenness (J), C: 
Shannon diversity Index (H’). 
D: Functional Hill diversity. 
S: stress-response control, G: 
growth control
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compounds related to the hormone treatments were largely 
involving biochemical pathways of alkaloids, amino acids 
and peptides, carbohydrates, fatty acids, polyketides, shiki-
mates and phenylpropanoids, and terpenoids (Fig. 6).

3  Discussion

Exogenous phytohormone application resulted in distinct 
metabolic shifts and changes in the vegetative growth in 
Radula complanata. An analysis of the shifts in classified 
features based on the applied phytohormone is detailed 
below.

3.1  Chemical characterization

Amino acids, peptides, and analogues, fatty amides, and 
carbohydrates and carbohydrate conjugates were found to 
be the most prominent superclasses identified by our analy-
sis. Of the carbohydrate conjugates, peptides were the most 
commonly detected class, followed closely by amino acids 
and derivatives. N-acyl amines comprised the largest group 
of fatty amides identified. Overall, comprehensive pro-
teomic studies of liverworts are lacking, potentially due to 
the interference of liverwort secondary metabolites that have 
been found to interfere with protein isolation (Yadav et al., 
2020). Glycosylated compounds were the most prominent 
carbohydrate conjugate, as well as monosaccharides and 
aminosaccharides. Previous work with Plagiochila aspleni-
oides (L.) Dumort has identified volemitol (a sugar alcohol), 
sucrose (a glycosyl compound), and starch (an oligosaccha-
ride) as major photosynthetic products (Suleiman & Lewis, 
1980). Xyloglucan (an oligosaccharide), uronic acids (sugar 
acids and derivatives), mannose (a monosaccharide), and 
mixed-linkage glucans (an oligosaccharide) were all found 
in bryophyte cell walls (Popper & Fry, 2003) while deposi-
tion of callose (a monosaccharides) was reported to occur 
with pathogen infection in Physcomitrium patens (Hedw.) 
Mitt (Oliver et al., 2009).

The greater part of the variation related to chemodiver-
sity was explained by specialized metabolites (Supplemen-
tary Information). We found significantly fewer metabolic 
features with less structural dissimilarity in NAA10 and 
slightly more features with higher dissimilarity in BAP10, 
and the controls G and S. Thus, hormone treatments only 
slightly affected the metabolism of R. complanata at a 
global level, and homeostasis is only slightly affected 
(except in NAA10). This can be attributed to our analyti-
cal platform which is effective at detecting small molecules, 
which are highly abundant in liverworts due to their oil bod-
ies. Oil bodies serve as the site of synthesis and storage for 
the majority of these compounds and are suspected to be 

2.14  Feature selection and variation between 
hormone treatments

Out of the 91 selected features, 71 were successfully clas-
sified (Fig. 5). 45 classes were assigned with 20 belonging 
to primary metabolism (representing 30 features) and 16 
belonging to specialized metabolism (representing 27 fea-
tures). The remaining eight classes were too broad to be 
constrained to a specific type of metabolism (representing 
14 features). The most detected primary metabolic classes 
were peptides, amino acids, fatty acids, carboxylic acid 
derivatives and carbohydrates/carbohydrate conjugates. At 
the superclass level (Djoumbou Feunang et al., 2016), the 
largest groups were the glycosylated compounds, organoni-
trogen compounds, and the amines. A detailed explanation 
of the significant feature fluctuations can be found in the 
Supplementary Information. The functional relations of 
the selected compounds were determined by calculating a 
molecular network. The network revealed that the selected 

Fig. 4  Sunburst plot showing an overview on the richness of classi-
fied metabolite compounds. Broad compound classes are represented 
in the center while specific classifications are represented on the exte-
rior. Colours correspond to the assigned classes. Due to readability 
the names of some classes were removed from the plot. An interac-
tive zoomable plot is available in the supplementary vignettes and on 
Zenodo
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Table 1  Tentatively annotated liverwort specialized metabolites. Full details are found in the Supplementary Information
Compound Formula Molar 

Mass
Ionization Tentative Feature

Bisabola-1,3,5,7(14),10- pentaene C15H20 200.32 Positive FT0671, FT0672
Ar-tenuifolene C15H20 200.32 Positive FT0671, FT0672
Eudesma-1,4(15)-11- triene C15H22 202.23 Positive FT0692
Myli-4(15)-ene C15H22 202.33 Positive FT0692
Cis-calamenene C15H22 202.33 Positive FT0692
Cuparene C15H22 202.33 Positive FT0692
Xanthorrizol C15H22O 218.33 Positive FT0828 - FT0832
2-cuparenol C15H22O 218.33 Positive FT0828 - FT0832
Cyclocolorenone C15H22O 218.33 Positive FT0828 - FT0832
β-herbertenol C15H22O 218.33 Positive FT0828 - FT0832
Trans-Nerolidol C15H26O 222.37 Positive FT0861
(E)-farnesol C15H26O 222.37 Positive FT0861
3-[2-(3-Methoxyphenyl)ethyl]phenol C15H16O2 228.29 Positive FT0923, FT0925
3,4′-Dimethoxybibenzyl C16H18O2 242.31 Positive FT1057, FT1059
1,2-Bis(3-methoxyphenyl)ethane C16H18O2 242.32 Positive FT1057, FT1059
Lunularic acid C15H14O4 258.1 Negative FT0814-FT0820
Radulanin A C19H20O2 280.37 Positive FT1451, FT1454, 

FT1458
2,2-Dimethyl-5-hydroxy- 7-(2-phenylethyl)- chromene* C19H20O2 280.4 Positive FT1454, FT1458
4-(3-Methyl-2-butenyl)-5-phenethylbenzene-1,3-diol C19H22O2 282.38 Positive FT1480, FT1483, 

FT1484, FT1487
Negative FT1001, FT1008, 

FT1009, FT1011
4-Prenyldihydropinosylvin C19H22O2 282.38 Positive FT1480, FT1483, 

FT1484, FT1487
Negative FT1001, FT1008, 

FT1009, FT1011
Radulanin A methyl ether C20H22O2 294.39 Positive FT1623, FT1624, 

FT1625, FT1626, 
FT1627

Negative FT1111, FT1112
8-[2-(4-Hydroxyphenyl)ethyl]-3-methyl-2,5-dihydro-1-benzoxepin-6-ol C19H20O3 296.37 Negative FT1132, FT1133, 

FT1135, FT1136, 
FT1139, FT1140, 
FT1141, FT1142, 
FT1143, FT1144, FT1147

5-Methoxy-2-(3-methylbut-2-en-1-yl)-3-(2-phenylethyl)phenol C20H24O2 296.41 Positive FT1658, FT1660
Negative FT1146, FT1148

4-(3-Methyl-2-Butenyl)-5-(2-Phenylethyl)-3-Methoxyphenol C20H24O2 296.41 Positive FT1658, FT1660
Negative FT1146, FT1148

2-[(3,3-Dimethyloxiran-2-yl)methyl]-5-(2-phenylethyl)benzene-1,3-diol C20H24O2 296.41 Positive FT1658, FT1660
Negative FT1146, FT1148

3-Methoxy-5-(2-phenylethyl)-2-prenylphenol C20H24O2 296.41 Positive FT1658, FT1660
Negative FT1146, FT1148

2-[(3,3-Dimethyloxiran-2-yl)methyl]-5-(2-phenylethyl)benzene-1,3-diol C19H22O3 298.38 Negative FT1167, FT1168
Kaempferol 3-methyl-ether C16H12O6 300.26 Negative FT1200, FT1201
2,2-Dimethyl-5-hydroxy-7-(2-phenylethyl)-2 H-1-benzopyran-6-carboxylic 
acid

C20H20O4 324.38 Negative FT1483, FT1484, 
FT1485, FT1486, 
FT1489, FT1491, 
FT1494, FT1496

Radulanin E C20H20O4 324.38 Negative FT1483, FT1484, 
FT1485, FT1486, 
FT1489, FT1491, 
FT1494, FT1496

Radulanin H C20H20O4 324.4 Positive FT2017 - FT2020
Negative FT1484-1486, FT1489-

1494, FT1496
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complanata cultivation in this study could have contributed 
to the increase in diterpenoid production compared to envi-
ronmental samples. In Radula complanata, unclassed fla-
vonoids, flavonoid glycosides, and hydroxyflavonoids were 
the most commonly detected flavonoids. Despite the fact 
that bryophytes possess an ancestral version of the flavo-
noid biosynthetic pathway (with fewer transcription factors 
and less gene duplication), they are still prolific producers 
of these metabolites (Davies et al., 2020). Interestingly, 

critical for plant defense against herbivory (He et al., 2013; 
Kanazawa et al., 2020a; Suire et al., 2000; Tanaka et al., 
2016). In this analysis, diterpenoids were the most com-
monly detected class of prenol lipids, followed by retinoids 
and sesquiterpenoids. This is of note as typically, sesquiter-
penoids are reported as one of the most prominent terpenoid 
classes in liverworts (Chen et al., 2018; Cuvertino-Santoni 
et al., 2017; Ghani et al., 2016; Ludwiczuk & Asakawa, 
2019). It is possible that the in vitro conditions used for R. 

Fig. 5  Heatmap showing the 91 partly annotated variables selected 
by the normalized BORUTA. The y-axis displays the clustering of 
samples and the x-axis displays the clustering of selected features. 
R2 = 0.75, RMSE = 1.095445, MAE = 0.8. Black boxes were drawn to 

better differentiate the shifts in the samples. Blue indicates that a fea-
ture was produced less than the control and red indicates that a feature 
was produced more than the control
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were both downregulated in growth treatments while 
FT1001 (4-(3-Methyl-2-butenyl)-5-phenethylbenzene-
1,3-diol), FT1439 (a fatty acid ester), and FT1431 (unclassi-
fied) were upregulated in growth treatments. Fatty acids are 
key metabolites involved in plant growth, membrane func-
tion, and plant performance (Li et al., 2016) while bibenzyls 
may be involved in liverwort growth regulation. FT4783 (a 
flavonoid glycoside) and FT5342 (GDPhexose) were both 
upregulated in all stress-response treatments while FT2110 
(an aralkylamine) was downregulated. An increase in flavo-
noids has been reported Marchantia polymorpha subjected 
to wounding stress (Yoshikawa et al., 2018) while GDP-
hexoses are important precursors for several pathways, such 
as the production of ascorbic acid and cell wall production, 
both of which are involved in plant responses to abiotic 
stress (Tao et al., 2018). The remaining selected features 
shifted in response to each applied phytohormone and are 
discussed in detail below.

3.2.1  Stress response hormones

In the AA1 treatments, the significant downregulation of a 
peptide, a fatty acid, and a carbohydrate was observed. This 
suggests that liverwort primary metabolism is impacted by 
AA application. In the moss Physcomitrella patens, soluble 
sugars and carbohydrates increased in with AA treatment to 
prevent freezing damage (Takezawa et al., 2011). No sig-
nificant changes in stilbenes were observed, which directly 
contrasts the increase in bibenzyl production that was 
observed with AA treatments in Marchantia polymorpha 

epiphytic bryophytes were found to have a higher flavonoid 
content than terrestrial bryophytes, which could contribute 
to the flavonoid diversity detected in R. complanata (Wang 
et al., 2017). Flavonoids are also involved in liverwort stress 
responses, which could have increased the number detected 
in this study (Yoshikawa et al., 2018). Bibenzyls and (bis)
bibenzyls are a class of metabolites that are enriched in liv-
erworts, specifically in Radula spp. (Asakawa et al., 2020; 
Ghani et al., 2016; Kageyama et al., 2015; Yoshikawa et al., 
2018). While bibenzyl and (bis)bibenzyl do not belong to a 
single compound class in ClassyFire, the majority of these 
metabolites are classified as stilbenes which were repeat-
edly detected in this analysis. The full chemical ontology 
for bibenzyls can be found in the supplementary informa-
tion (Table S2). (Bis)bibenzyl content has been reported to 
increase under several different stress conditions, suggest-
ing that these metabolites may serve a role in plant defense 
(Kageyama et al., 2015; Yoshikawa et al., 2018). Previous 
work has also demonstrated that bibenzyl production varies 
with response to phytohormone application (Blatt-Janmaat 
et al., 2022).

3.2  Metabolomic response to phytohormones

The consistent sample clustering in Fig. 5 demonstrated that 
there were clear patterns in the 91 features selected by the 
BORUTA analysis. Some features showed clear distinction 
between stress-response and growth treatments, while oth-
ers were dependent on the specific phytohormone applied. 
FT1934 (a 1,2-amino alcohol) and FT4917 (unclassified) 

Fig. 6  Molecular network showing the relationships of the selected compounds to pathways and compound classes. More information regarding 
the selected compounds is available in the Supplementary Material
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of bryophytes occurs with auxin and cytokinin applica-
tion, however the metabolic impacts were not examined 
(Sabovljević et al., 2014). In the BAP treatments, fewer sig-
nificant changes were observed than with other hormones. 
In R. complanata, fatty acids were increased while a hexose, 
a triterpenoid, and a benzenoid were all downregulated. In 
the NAA treatments a mix of responses was observed for a 
variety of metabolites. In the primary metabolism, a mixed 
response was observed for peptides while an increase in 
fatty acids and amino acids was observed. Increase in an 
O-glycosylated compound that was observed in our work. 
In Radula complanata the three glycosylated flavonoids that 
were detected did not demonstrate any significant increases 
with NAA treatment.

3.3  Biochemistry

The molecular network presented in Fig.  6 identified that 
the hormone treatments were influencing the alkaloid, 
amino acid/ peptide, carbohydrate, fatty acid, polyketide, 
shikimates and phenylpropanoid, and terpenoid pathways. 
The majority of these specialized metabolite pathways are 
involved in the production of defense compounds and are 
stimulated by the stress hormone pathways. In liverworts, 
many of these metabolites can be found in the oil bodies 
which are crucial for herbivory defense (Kanazawa et al., 
2020b; Labandeira et al., 2014). Many of these metabolites 
have also been identified as having anti-fungal activity and 
are produced via the MeJA and SA pathways which activate 
during fungal infection (Commisso et al., 2021; Matsui et 
al., 2019). Shifts in amino acids, peptides, and carbohydrates 
have also been observed as a response to physical damage in 
bryophytes (Y. Da Chen et al., 2021). Taken together, these 
results are consistent with the stress results obtained from 
other bryophyte species, demonstrating that this methodol-
ogy is effective as identifying bryophyte stress responses.

In Sect. 3.2, a detailed breakdown of the selected metab-
olite fluctuations in response the applied phytohormones 
was presented. While it is beyond the scope of this paper, it 
needs to be acknowledged that these pathways do not exist 
in isolation and there is a constant interplay between them. 
In Marchantia polymorpha, the SA and MeJA pathway 
exhibited cross-talk during fungal infections, with MeJA 
being preferred and suppressing the activity of SA (Matsui 
et al., 2019). Physical changes in plant growth also result 
from exogenous phytohormone application, which will 
require metabolic changes (Sabovljević et al., 2014). Future 
work examining the metabolite fluctuations and changes in 
plant growth form could be done to further elucidate the 
total impact of these applied hormones.

(Kageyama et al., 2015). A mixed response was observed 
from two glycosylated compounds with one being upregu-
lated while the other was downregulated. In Poliha nutans, 
AA treatment upregulated some flavonoid genes and down-
regulated others (Liu et al., 2014; Zhang et al. 2019a, b). 
The downregulation of primary metabolites as a result of 
pathogen infection stress has been documented previously 
in the moss P. patens and is consistent with the observations 
in this study (Otero-Blanca et al., 2021). Interestingly, these 
changes did not occur in the AA10 treatment.

Liverworts are not typically reported to produce endog-
enous methyl jasmonate or MeJA-Ile due to the lack of 
biosynthetic enzymes (Han, 2017), and instead utilize dn-
OPDA to activate the COI1 jasmonate receptor (Monte 
et al., 2019). In the MeJA10 treatments, an increase in a 
hexose and decreases in a peptide and a carbohydrate were 
observed. In Radula complanata, no significant changes in 
amino acids were observed with MeJA treatment. Primary 
metabolites were increased in Physcomitrella patens through 
the reinforcement of the cell wall (Oliver et al., 2009). Gly-
cosylated compounds had a mixed response, with FT2016 
showing an increase in MeJA1 and MeJA10 while FT4352 
was decreased in MeJA10. For the secondary metabolites, 
a triterpenoid (FT5587) was downregulated at MeJA1 and 
an anisole was downregulated at MeJA10. Interestingly no 
changes in flavonoids, phenolics, or stilbenes were detected 
in the 91 selected features. In P. patens, MeJA induced the 
expression of PAL and CHS which are involved in flavonoid 
biosynthesis (Oliver et al., 2009). This was also observed 
in Plagiochasma appendiculatum and Poliha nutans, where 
transcription of genes in the flavonoid pathway was induced 
with MeJA treatment (Gao et al., 2015; Liu et al., 2014; W. 
Zhang et al. 2019a, b).

In the SA treatments, the majority of changes observed 
were downregulations and largely occurred at both con-
centrations. In the moss Syntrichia ruralis, protein content 
was found to decrease with SA treatment (Ruchika & Péli, 
2020), which was also observed in this study. In Physcomi-
trella patens, only one SA receptive gene was identified 
and the pathway was found to activate following pathogen 
infection (Peng et al., 2017). Interestingly, transcription of 
a 4-coumarate CoA ligase (phenylpropanoid pathway) from 
Plagiochasma appendiculatum was found to be induced 
with SA treatment, suggesting that this pathway is upregu-
lated as a response to SA (Gao et al., 2015).

3.2.2  Growth hormones

Unfortunately, there is little research present regarding the 
metabolomic changes as a result of applying growth pro-
moting phytohormones to bryophytes. Previous work has 
identified that physical changes in the growth and maturity 
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4  Conclusion

In conclusion, exogenous phytohormone application 
resulted in metabolic shifts in Radula complanata. Pri-
mary and specialized metabolisms appeared to be equally 
impacted by phytohormone treatments, with 20 classes 
belonging to primary metabolism (representing 30 features) 
and 16 classes belonging to specialized metabolism (repre-
senting 27 features) tentatively identified. Stress-response 
hormones largely downregulated primary metabolites and 
increased or varied the production of specialized metabo-
lites. By contrast, growth hormones largely upregulated or 
varied the production of primary metabolites and varied or 
downregulated stress-response metabolites. 4-(3-Methyl-
2-butenyl)-5-phenethylbenzene-1,3-diol was identified as a 
biomarker for the growth treatments while GDP-hexose was 
identified as a biomarker for the stress-response treatments. 
The majority of these observations deviated from results 
obtained for vascular plants, highlighting the unique meta-
bolic processes of liverworts. Future work identifying key 
biomarkers that are unique to liverwort metabolism could 
be conducted to provide more insight into liverwort phyto-
chemistry. Our chosen approach using untargeted LC/MS 
revealed results that can be useful in subsequent studies and 
for hypothesis generation. To identify the mechanistic com-
ponents of metabolic stress in the liverwort R. complanata, 
more elaborate analytical analyses are necessary to identify 
compounds and to determine the relationships within path-
ways and metabolic networks (Nothias et al., 2020), i.e., 
targeted LC/MS, or NMR.
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