
Verteidigt am: 28.03.2023
Eingereicht am: 14.12.2022

iii

1

E h r e n e r k l ä r u n g

Ich versichere hiermit, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und

ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; verwendete

fremde und eigene Quellen sind als solche kenntlich gemacht. Insbesondere habe ich

nicht die Hilfe eines kommerziellen Promotionsberaters in Anspruch genommen. Dritte

haben von mir weder unmittelbar noch mittelbar geldwerte Leistungen für Arbeiten

erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen.

Ich habe insbesondere nicht wissentlich:

- Ergebnisse erfunden oder widersprüchliche Ergebnisse verschwiegen,

- statistische Verfahren absichtlich missbraucht, um Daten in ungerechtfertigter

 Weise zu interpretieren,

- fremde Ergebnisse oder Veröffentlichungen plagiiert,

- fremde Forschungsergebnisse verzerrt wi dergegeben.

Mir ist bekannt, dass Verstöße gegen das Urheberrecht Unterlassungs- und

Schadensersatzansprüche des Urhebers sowie eine strafrechtliche Ahndung durch die

Strafverfolgungsbehörden begründen kann. Die Arbeit wurde bisher weder im Inland

noch im Ausland in gleicher oder ähnlicher Form als Dissertation eingereicht und ist als

Ganzes auch noch nicht veröffentlicht.

Magdeburg, den

11.12.2022

Simon Anderer

v

Abstract
The security of IT systems used by companies or organizations, in which multiple
users share access to common resources, are nowadays exposed to more threats than
ever before. On the one hand, they need to be protected from external attacks, like
malware and phishing. On the other hand, internal threats, like fraud or erroneous
behavior of employees, cause for huge financial damage and must be addressed
accordingly by the application of thorough authorization management and access
control mechanisms. One widely used approach is Role Based Access Control (RBAC).
Instead of assigning a permission, which corresponds to the authorization to per-
form an operation on an data or business object, to users directly, permissions are
grouped into roles which are then assigned to users. The corresponding optimiza-
tion problem, which aims at finding a minimal set of such roles, is called the Role
Mining Problem (RMP). Its decision version was shown to be NP-complete. One area
in which RBAC is frequently used are Enterprise Resource Planning (ERP) systems,
which are multi-user IT systems specifically designed to support the business pro-
cesses of a company or any other organization.

In literature, some solution strategies for the RMP have already been introduced.
However, when aiming to mine roles for industrial-strength ERP systems, a range of
challenging requirements has to be considered: In contrast to the typical role mining
scenarios found in literature, where only one role level is considered, the ERP system
of the market leader SAP supports two role levels, so that established single-level
role mining approaches are not applicable. Typically, the assignments of permis-
sions to users are assumed to be fixed over time. In real-world use cases, however,
employees change positions and departments, join or leave a company, such that
the assignment of permissions to users are subject to changes over time. Further-
more, users of role mining software should be given the possibility to interact with
the role mining software in order to include their expert knowledge. This leads to
additional events, which have to be included into role mining during the runtime of
the optimization process. Another practical requirement is the integration of further
evaluation criteria for role concepts, such as their adherence to compliance rules or
associated license costs. It is therefore necessary to consider the RMP as a multi-
objective optimization problem.

The goal of this thesis is to describe the requirements and challenges of role min-
ing in the context of ERP systems and to presents possible approaches and solution
strategies. For this purpose, in a first step, a formal model of the RMP is established.
Based on that, a conversion procedure is developed to convert data available in ERP
systems into suitable input for role mining. Special focus is placed on the description
of a new evolutionary role mining algorithm to search for good solutions of the RMP,
the addRole-EA, and its adaption to the various practical requirements. Furthermore,
suitable benchmarks are created, in order to evaluate the proposed methods in a
range of experiments.

vii

Zusammenfassung
Die Sicherheit der IT-Systeme von Unternehmen oder Organisationen, in welchen
mehrere NutzerInnen Zugriff auf gemeinsame Ressourcen haben, ist heute mehr
Bedrohungen ausgesetzt als jemals zuvor. Einerseits müssen sie vor Angriffen von
außen, wie Malware und Phishing, geschützt werden. Andererseits verursachen in-
terne Bedrohungen, wie Betrug oder fehlerhaftes Verhalten von MitarbeiterInnen,
enorme finanzielle Schäden. Diese müssen entsprechend durch ein umfassendes
Berechtigungsmanagement sowie geeignete Maßnamen zur Zugriffskontrolle ad-
dressiert werden. Ein weit verbreiteter Ansatz ist die rollenbasierte Zugriffskon-
trolle (Role Based Access Control (RBAC)). Anstatt den NutzerInnen der IT-Systeme
direkt Berechtigungen zuzuweisen, werden diese in Rollen gruppiert. Die entste-
henden Rollen werden dann den NutzerInnen zugewiesen. Das entsprechende Op-
timierungsproblem, das darauf beruht, eine minimale Menge von Rollen zu finden,
wird als Role Mining Problem (RMP) bezeichnet. Es wurde gezeigt, dass die zuge-
hörige Entscheidungsvariante NP-vollständig ist. Ein Bereich, in dem RBAC häufig
eingesetzt wird, sind Enterprise Resource Planning (ERP) Systeme, welche mehrere
NutzerInnen umfassen und speziell für die Unterstützung der Geschäftsprozesse
eines Unternehmens oder einer anderen Organisation entwickelt wurden.

In der Literatur sind bereits einige Lösungsstrategien für das RMP vorgestellt wor-
den. Bei der Suche nach Rollen für industrielle ERP-Systeme müssen jedoch eine
Reihe anspruchsvoller Anforderungen berücksichtigt werden: Im Gegensatz zu den
in der Literatur beschriebenen Role-Mining-Szenarien, in denen meist nur eine Rol-
lenebene betrachtet wird, unterstützt das ERP-System des Marktführers SAP zwei
Rollenebenen, sodass etablierte einstufige Role-Mining-Ansätze nicht anwendbar
sind. Zudem wird in der Regel davon ausgegangen, dass die Zuweisung von Berech-
tigungen zu NutzerInnen im Laufe der Zeit unverändert bleibt. In der Praxis wech-
seln MitarbeiterInnen jedoch Positionen und Abteilungen, treten in ein Unternehmen
ein oder verlassen dieses, sodass die Zuweisung von Berechtigungen zu NutzerIn-
nen stetig Änderungen unterliegt. Darüber hinaus sollte den NutzerInnen von Role
Mining Software die Möglichkeit gegeben werden, mit der Software zu interagieren,
um ihr Expertenwissen einzubringen. Dies verursacht ein dynamisches Auftreten
von Events, die während der Laufzeit des Optimierungsprozesses in das Role Min-
ing einbezogen werden müssen. Eine weitere Praxisanforderung ist die Integration
zusätzlicher Bewertungskriterien für Rollenkonzepte, wie zum Beispiel die Einhal-
tung von Compliance-Regeln oder deren Lizenzkosten. Es ist daher notwendig, das
RMP als ein multikriterielles Optimierungsproblem zu betrachten.

Ziel dieser Arbeit ist es, die Anforderungen und Herausforderungen des Role Min-
ing im Kontext von ERP-Systemen zu beschreiben und mögliche Ansätze und Lö-
sungsstrategien vorzustellen. Hierzu wird zunächst ein formales Modell des RMP
eingeführt. Darauf aufbauend wird ein Verfahren entwickelt, um in ERP-Systemen
vorhandene Daten in geeigneten Input für das Role Mining umzuwandeln. Beson-
deres Augenmerk gilt der Beschreibung eines neuen evolutionären Role Mining Al-
gorithmus, dem addRole-EA, und dessen Anpassung an die verschiedenen Praxisan-
forderungen. Zusätzlich werden geeignete Benchmarks erstellt, um die vorgeschla-
genen Methoden in einer Reihe von Experimenten zu bewerten.

ix

Contents

Ehrenerklärung iii

Abstract v

Zusammenfassung vii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Description . 2
1.3 Objectives and Contributions . 2
1.4 Structure . 5

2 Enterprise Resource Planning 7
2.1 Definition and Tasks of ERP Systems . 7
2.2 Strengths and Weaknesses of ERP Systems 8
2.3 Evolution of ERP Systems . 8
2.4 Architecture of ERP Systems . 10
2.5 SAP ERP . 11

2.5.1 Structure of SAP ERP . 11
2.5.2 Data Types in SAP ERP . 13

3 Evolutionary Algorithms 15
3.1 Biological Origins . 15
3.2 Algorithm Overview . 15
3.3 Previous Work and Application Areas 16
3.4 Algorithm Steps . 17

4 Role Based Access Control 23
4.1 Introduction to Access Control . 23

4.1.1 Access Control Models . 25
4.1.2 Role Based Access Control . 26

4.2 The Role Mining Problem . 27
4.3 Access Control in SAP ERP . 32

4.3.1 Users . 32
4.3.2 Roles . 33
4.3.3 Permissions . 33
4.3.4 Transactions . 35
4.3.5 Authority Checks and Traces . 36
4.3.6 SoD-Conflicts . 38
4.3.7 Licenses . 38

4.4 Requirements for Role Mining in SAP ERP 39

x

5 Data Management and Pre-Processing 41
5.1 Creation of UPA Matrices from Trace Data 41

5.1.1 Analysis of Use Case Data . 43
5.1.2 Trace Conversion Procedures . 47
5.1.3 Evaluation of Trace Conversion Procedures 50

5.2 Pre-Processing of UPA Matrices . 54
5.2.1 Reduction of UPA Matrices . 54
5.2.2 Clustering of UPA Matrices . 60

6 Single-level Role Mining 63
6.1 Solution Strategies for the RMP . 63

6.1.1 General Solution Strategies for the RMP 63
6.1.2 Evolutionary Algorithms in Role Mining 64

6.2 Benchmarking for Single-level Role Mining 67
6.2.1 Analysis of HP-Labs Benchmark Instances 68
6.2.2 RMPlib - New Benchmarks for the RMP 69

6.3 The addRole-EA . 75
6.3.1 Components and Methods of the addRole-EA 75
6.3.2 Performance Evaluation and Comparison 91

6.4 Evaluation, Analysis and Improvements 94
6.4.1 An alternative Variant for Initialization 94
6.4.2 Analysis of Crossover and Mutation 95
6.4.3 Analysis of Role-Creation . 97
6.4.4 Analysis of Role Selection . 105

7 Two-level Role Mining 107
7.1 Two-level Role Mining Problems . 107
7.2 Benchmarking for Two-level Role Mining 110
7.3 Solution Strategies for Two-level Role Mining 112

7.3.1 Consecutive Optimization of Single and Composite Roles . . . 113
7.3.2 Alternating Optimization of Single and Composite Roles . . . 116
7.3.3 Simultaneous Optimization of Single and Composite Roles . . 118

7.4 Comparison of Two-level Role Mining Approaches 133

8 Role Mining in Dynamic Environments 137
8.1 The Dynamic Role Mininig Problem . 137
8.2 Dynamic Events in Role Mininig . 140

8.2.1 Events emerging from Structural Change 140
8.2.2 Events emerging from User Interaction 141
8.2.3 Inclusion of Events into addRole-EA 143

8.3 Handling of Structural Events . 144
8.3.1 Simulation of Events and Preparation of Benchmarks 145
8.3.2 User joins Company (S01) . 145
8.3.3 User leaves Company (S02) . 149
8.3.4 Change of Job Position (S03) . 151
8.3.5 Permission Request (S04) . 152
8.3.6 Role Assignment . 153
8.3.7 Comparison of Dynamic and Static Role Mining 157

8.4 Handling of Interaction Events . 164
8.4.1 Simulation of Events and Preparation of Benchmarks 164
8.4.2 Addition of good Roles (I01) . 165

xi

8.4.3 Deletion of bad Roles (I02) . 168
8.4.4 Survival Strategies . 172

9 Role Mining as Multi-objective Optimization Problem 187
9.1 Multi-objective Role Mining Problems 188
9.2 Objectives relevant for Role Mining in ERP Systems 190

9.2.1 Deviations . 190
9.2.2 Compliance Score . 192
9.2.3 License Costs . 195
9.2.4 Further Optimization Objectives 197

9.3 Adaption of addRole-EA and Evaluation 197
9.3.1 Adaption of addRole-EA to Multi-objective Role Mining 197
9.3.2 Experiments and Evaluation . 199

10 Role Mining in Real-world Use Cases 207
10.1 AutoBer - A Research Project in Role Mining 207
10.2 Authorization Robot - Integration into SIVIS Suite 210

10.2.1 Potential User Groups of Authorization Robot 210
10.2.2 Features of Authorization Robot in the Context of this Work . . . 211

11 Conclusion and Future Work 217

Bibliography 221

A Evaluation of Data Management 231

B Evaluation of Single-level Role Mining 233

C Evaluation of Two-level Role Mining 243

D Evaluation of Dynamic Role Mining 251

E Evaluation of Multi-objective Role Mining 281

xiii

List of Figures

2.1 Extended ERP. 9
2.2 Evolution of ERP systems. 9
2.3 Three-tier architecture. 10
2.4 Market share of ERP Systems. 11

3.1 Top-level description of an evolutionary algorithm. 16
3.2 Exemplary genotype and phenotype for the Knapsack Problem. 18
3.3 Example of one-point crossover for the Knapsack Problem. 21
3.4 Example of bit-flip mutation for the Knapsack Problem. 21

4.1 Elements of Core RBAC according to NIST standard. 26
4.2 Graph representation of ~GUP. 28
4.3 Graph representation of ~GURP. 28
4.5 Matrix representation of Basic RMP. 31
4.6 Exemplary two-level role concept in graph representation. 33
4.7 Specification of permissions in SAP ERP. 33
4.8 Example of a permission based on F_BKPF_BUK. 34
4.9 Example of transformation of range into discrete values. 35
4.10 Permission, object and dimension. 35
4.11 Permission associated with a transaction (Example). 35
4.12 Example of a successful authority check. 36
4.13 Standard and duplicate-free trace documentation. 37

5.1 Permissions assigned, needed and used. 41
5.2 Creation of UPAT+ from trace data. 43
5.3 Successful authority checks over time for company A. 44
5.4 Successful authority checks over time for company B. 44
5.5 Successful authority checks disregarding field values. 45
5.6 Trace conversion procedure. 47
5.7 Distribution of user activities among SAP components. 49
5.8 Creation of matrices for evaluation. 51
5.9 Example of pre-processing step (PP1). 56
5.10 Example of pre-processing step (PP2). 57
5.11 Example of pre-processing step (PP3). 58
5.12 Example of pre-processing step (PP4). 59
5.13 Clustering on user level vs. biclustering. 61
5.14 Exemplary UPA matrix before clustering. 61
5.15 Exemplary UPA matrix after clustering. 62

6.1 Representation of the individuals in [91]. 65
6.2 One-point-crossover and representation of individuals in [90]. 65
6.3 Representation of the individuals in [89]. 66
6.4 Format of .rmp files (example). 75

xiv

6.5 Top-level description of addRole-EA. 76
6.6 Creation of initial individuals. 78
6.7 Example 6.1: Starting point. 81
6.8 Example 6.1: Assignment of new role to users. 81
6.9 Example 6.1: Withdrawal of roles from users. 82
6.10 Example 6.1: Removal of obsolete roles. 82
6.11 Role-creation method (RC1). 86
6.12 Role-creation method (RC2). 87
6.13 Role-creation method (RC3). 87
6.14 Role-creation method (RC4). 88
6.15 Role-creation method (RC5). 89
6.16 Number of roles and computation time on America small. 92
6.17 Analysis of role creation resp. role selection on HP-Labs. 96
6.18 Analysis of role creation resp. role selection on PLAIN_small_x. 96
6.19 Comparison of the different variants of (RC1). 99
6.20 Comparison of the different variants of (RC2). 101
6.21 Comparison of (RC3) being activated/deactivated. 102
6.22 Comparison of (RC4) being activated/deactivated. 102
6.23 Comparison of the different variants of (RC5). 103
6.24 Comparison of advanced and original addRole-EA. 104

7.1 Exemplary two-level role concept ϕ1 in matrix representation. 108
7.2 Consecutive two-level role mining (Single Roles First). 113
7.3 Consecutive two-level role mining (Composite Roles First). 114
7.4 Comparing solution qualities of CRF and SRF on 2LEVEL_05. 114
7.5 Comparing solution qualities of CRF and SRF on PS_02. 115
7.6 Alternating two-level role mining. 116
7.7 Alternating role mining on 2LEVEL_x instances. 117
7.8 Alternating role mining on PLAIN_small_x instances. 117
7.9 Memory-based initialization compared to original version. 118
7.10 Top-level description of two-level-addRole-EA. 119
7.11 Example 7.1: Starting point. 124
7.12 Example 7.1: Assignment of new single role to composite roles. 124
7.13 Example 7.1: Withdrawal of single roles from composite roles. 124
7.14 Example 7.1: Removal of obsolete single roles. 125
7.15 Example 7.2: Starting point. 125
7.16 Example 7.2: Creation of new composite role. 126
7.17 Example 7.2: Assignment of new composite role to users. 126
7.18 Example 7.2: Withdrawal of composite roles from users. 126
7.19 Example 7.2: Removal of obsolete composite roles. 127
7.20 Example 7.2: Removal of obsolete single roles. 127
7.21 Example 7.3: Starting point. 129
7.22 Example 7.3: Assignment of single roles to new composite role. 129
7.23 Example 7.3: Assignment of new composite role to users. 130
7.24 Example 7.3: Withdrawal and removal of roles. 130
7.25 Example 7.4: Starting point. 131
7.26 Example 7.4: Assignment of single roles to new composite role. 131
7.27 Example 7.4: Creation of new single role. 131
7.28 Example 7.4: Withdrawal and removal of roles. 132
7.29 Comparison of two-level approaches on 2LEVEL_x instances. 134
7.30 Comparison of two-level approaches on PLAIN_small_x instances. . . . 135

xv

8.1 Integration of event-handling into addRole-EA. 144
8.2 Starting point for the handling of structural events. 145
8.3 Sequential handling of S01. 146
8.4 Exemplary handling of S01a Case 1. 147
8.5 Exemplary handling of S01a Case 2.1. 148
8.6 Exemplary handling of S01a Case 2.2. 148
8.7 Sequential handling of S02. 149
8.8 Exemplary handling of S02a Case 1. 150
8.9 Exemplary handling of S02a Case 2. 151
8.10 Sequential handling of S03. 151
8.11 Sequential handling of S04. 153
8.12 Roles over iterations for S01 on PS_02. 158
8.13 Roles over iterations for S02 on PS_02. 160
8.14 Roles over iterations for S03 on PS_02. 161
8.15 Roles over iterations for S04 on PS_02. 163
8.16 Roles over iterations considering event I01. 165
8.17 Roles over iterations considering event I02. 170
8.18 Roles over iterations for Incubator Protection on PS_02. 174
8.19 Progression of mod(I) using Incubator Protection on PS_02. 177
8.20 Roles over iterations for Population Split Protection on PS_02. 179
8.21 Progression of mod(I) using Population Split Protection on PS_02. 181
8.22 Roles over iterations for FitnessProtection on PS_02. 182
8.23 Progression of mod(I) using Fitness Protection on PS_02. 184

9.1 Exemplary Pareto front for PLAIN_small_02. 189
9.2 Individual I1 (0-consistent). 191
9.3 Individual I1 after removal of r3 (not 0-consistent). 191
9.4 Individual I1 after addition of rnew (not 0-consistent). 192
9.5 Distribution of SoD-conflict sizes in library of SIVIS GmbH. 194
9.6 Format of .cmpl files (example). 195
9.7 Format of .lic files (example) . 196
9.8 Non-dominant individuals for different values of d+max on PS_02. 200
9.9 Average number of roles and deviations on PS_02. 201
9.10 Delayed admittance of deviations on PS_02. 201
9.11 Roles and deviations for delayed admittance of deviations on PS_02. . 202
9.12 Delayed admittance of deviations on PS_02 (4D-pproach). 202
9.13 Delayed admittance of deviations on PS_05 (4D-pproach). 203
9.14 Comparison of (4D) and (3D) approach on PS_02 and PS_05. 204

10.1 System architecture of the AutoBer software system. 208
10.2 Customer UPA obtained from trace conversion and clustering. 212
10.3 Comparison of role concepts. 212
10.4 Graph representation of role concept. 213
10.5 Composite role JRole6835 in graph representation. 214
10.6 Tabular overview of composite roles. 215
10.7 Interface for parameter specification. 215
10.8 Optimization cockpit. 216

xvii

List of Tables

2.1 Components of logistics. 12
2.2 Components of accounting. 12
2.3 Components of human resources. 12

4.1 Variants of the RMP. 31
4.2 Different variants to define field values. 34
4.3 Return codes and interpretations. 37

5.1 Key figures of trace data sets. 43
5.2 Most frequent objects in trace data of company B. 45
5.3 Key figures of role concepts. 45
5.4 Key figures of data after intersection. 46
5.5 Number of clusters for (C1). 51
5.6 Number of clusters for (C2). 51
5.7 Evaluation of trace conversion procedures. 52
5.8 Reference values CR3M and FPRRC. 53
5.9 Creation of trivial solution for the Basic RMP. 60

6.1 Analysis of HP-Labs benchmark instances. 68
6.2 Range of roles for evaluation for HP-Labs benchmark instances. 69
6.3 The PLAIN_x benchmark instances. 71
6.4 The PLAIN_x benchmark instances after pre-processing. 71
6.5 The COMP_x benchmark instances. 73
6.6 The COMP_x benchmark instances after pre-processing. 73
6.7 The RW_x benchmark instances. 74
6.8 Parameter values for the addRole-EA. 92
6.9 Evaluation of addRole-EA. 93
6.10 Computation time of addRole-EA, EC and LP. 94
6.11 Comparison of initialization methods on HP-Labs. 95
6.12 Comparison of initialization methods on PLAIN_small_x. 95
6.13 Comparison of advanced and original addRole-EA. 105

7.1 Key figures of the 2LEVEL_x-benchmark instances of RMPlib. 111
7.2 Creation of trivial solution for two-level role mining problems. 111
7.3 The 2LEVEL_x-benchmark instances after pre-processing 112
7.4 Occupancy rates of matrix rows on 2LEVEL_x instances. 115
7.5 Occupancy rates of matrix rows on PLAIN_x instances. 115
7.6 Comparison of two-level role mining approaches. 134

8.1 Structural change. 141
8.2 Manual modification of individuals. 142
8.3 Adapting parameters. 142
8.4 Adjusting the optimization focus. 143

xviii

8.5 Using a role concept repository. 143
8.6 Parameter values for the evaluation of role-assignment methods. . . . 155
8.7 Impact of event S01. 156
8.8 Mean values and standard deviations of ranks. 156
8.9 Parameter values for the evaluation of all events (S01-04). 158
8.10 Resulting number of roles and impact for event S01. 159
8.11 Resulting number of roles and impact for event S02. 161
8.12 Resulting number of roles and impact for event S03. 162
8.13 Resulting number of roles and impact for event S04. 163
8.14 Parameter values for the evaluation of event I01. 165
8.15 Evaluation of the addition of |E| good roles. 166
8.16 Event I01: Iterations and computation time on PS_02. 168
8.17 Event I01: Iterations and computation time on PS_05. 168
8.18 Event I01: Iterations and computation time on PM_01. 168
8.19 Parameter values for the evaluation of event I02. 169
8.20 Evaluation of the deletion of |E| bad roles. 170
8.21 Event I02: Iterations and computation time on PS_02. 171
8.22 Event I02: Iterations and computation time on PS_05. 171
8.23 Event I02: Iterations and computation time on PS_05. 171
8.24 Incubator Protection: Roles and computation times. 175
8.25 Incubator Protection: Iterations needed to obtain k roles. 175
8.26 Incubator Protection: Time needed to obtain k roles. 176
8.27 Population Split Protection: Roles and computation times. 180
8.28 Split Population Protection: Iterations needed to obtain k roles. 180
8.29 Split Population Protection: Time needed to obtain k roles. 181
8.30 Fitness Protection: Roles and computation times. 183
8.31 Fitness Protection: Iterations needed to obtain k roles. 183
8.32 Fitness Protection: Time needed to obtain k roles. 184
8.33 Comparison of survival strategies: Iterations. 185
8.34 Comparison of survival strategies: Computation time. 186

9.1 Severity classes of in SoD-conflict library of SIVIS GmbH. 193
9.2 Delayed admittance of deviations for d+max = 0.5 on PS_02 (4D). 203
9.3 Delayed admittance of deviations for d+max = 0.5 on PS_05 (4D). 203
9.4 Comparison of (4D) and (3D) approach on PS_02. 204
9.5 Comparison of (4D) and (3D) approach on PS_05. 205

10.1 Project overview AutoBer. 208

xix

List of Abbreviations

EA Evolutionary Algorithm
ERP Enterprise Resource Planning
NIST American National Institute of Standards
PS_02 PLAIN_small_02
PS_05 PLAIN_small_05
PM_01 PLAIN_medium_01
RBAC Role Based Access Control
RMP Role Mining Poblem
B2L-RMP Basic Two-level Role Mining Poblem
C2L-RMP Constrained Two-level Role Mining Poblem
Dyn-RMP Dynamic Role Mining Poblem
MO-RMP Multi-objective Role Mining Poblem

xxi

List of Symbols

Sets and Graphs
|S| cardinality of a set S
S1 ∪ S2 union of sets S1 and S2
S1 ∩ S2 intersection of sets S1 and S2
P(S) power set of a set S
~G = 〈V, E〉 graph with vertices V and edges E
t(~G) transitive closure of graph ~G

Vectors and Matrices
A ∈ Rm×n (m× n)-dimensional matrix containing element from R

Ai,j element of A positioned at the i-th row and j-th column
AT transpose of a matrix A
Ai i-th column of a matrix A
(AT)i i-th row of a matrix A
‖A‖ sum of absolute values of elements of A: ‖A‖ := ∑m

i=1 ∑n
j=1 |Ai,j|

d(A, B) distance between matrices A and B: d(A, B) := ‖A− B‖
〈u, v〉 dot product of two vectors u and v
In (n× n)-dimensional identity matrix
en n-th standard unit vector (e.g. e1 := (1, 0, ..., 0)T)
0n n-dimensional vector containing only 0-elements (e.g. 03 := (0, 0, 0)T)

Access Control
U set of users
P set of permissions
UPA targeted permission-to-user assignment matrix

Single-level Role Mining
π single-level role concept
R set of roles
UA user-to-role assignment matrix
PA permission-to-role assignment matrix
RUPA resulting permission-to-user assignment matrix
vR(ri) vector representation of role ri
vP(pi) vector representation of permission pi
vU(ui) vector representation of user ui
R(ui) set of roles assigned to user ui
Pi permission class i
Ui user class i
v̂P(Pi) vector representation of permission class Pi
v̂U(Ui) vector representation of user class Ui

xxii

Two-level Role Mining
SR set of single roles
CR set of composite roles
UCA composite-role-to-user assignment matrix
USA single-role-to-user assignment matrix
CSA single-role-to-composite-role-assignment matrix
CPA permission-to-composite-role assignment matrix
SPA permission-to-single-role assignment matrix
RUPA2L resulting permission-to-user assignment matrix
ϕ two-level role concept

Evolutionary Algorithms
I ∈N individual I
π(I) chromosome of individual I in single-level approaches
ϕ(I) chromosome of individual I in two-level approaches
Pop population
PS population size
CrR crossover rate
MR mutation rate
ER elitism rate

Miscellaneous
p(E) probability of an event E
Im(E) impact of an event E

1

Chapter 1

Introduction

This introductory chapter is used to describe the motivation behind this work and
the relevance of its research contributions. For this purpose, the examined research
problem is discussed and the resulting objectives, which are addressed within the
scope of this thesis are presented. The chapter concludes with an overview of the
structure of this thesis.

1.1 Motivation

In our increasingly digitized world, cyber security plays an important role to protect
sensible data in information systems. Even though external attacks such as hacking
or malware are the first thing that comes to mind when thinking about potential
security risks, studies have shown that, especially in a business context, erroneous
or fraudulent behavior of internal actors can lead to substantial financial damage
as well. Verizon’s 2022 Data Breach Investigation Report reveals that almost 20% of all
data breaches are caused by internal actors [110]. This includes, in particular, cases of
fraud carried out by internal actors and is referred to as occupational fraud. According
to the Report to the Nations 2022, which is a study conducted by the Association of
Certified Fraud Examiners (ACFE) in which around 2,100 cases of occupational fraud
were investigated, the average loss amounts to more than 1.7 million US dollars
per case [21]. It is therefore of highest importance to develop adequate methods to
prevent internal actors from committing fraud.

In order to address this, the access of users of information systems to sensitive data
is limited. For this purpose, access control mechanisms are implemented to manage
permissions, such that critical data is only accessible by a restricted set of selected
users. These permissions specify the operations a user is allowed to perform on
a given data or business object. Based on this, it is possible to verify whether a
user is assigned the necessary permission before each data access. In case the user
is assigned the required permission, access is granted. If the user is not assigned
the required permission, access is denied. Originally, permissions were directly
assigned to users. However, in particular in companies and organizations with a
large number of users and permissions, this approach may grow very complex and
yields excessive administrative costs. In order to facilitate the administration of ac-
cess control, Role Based Access Control (RBAC) was introduced. At this, permissions
are grouped into roles, which are then assigned to users. RBAC has been declared a

2 Chapter 1. Introduction

standard for access control by the American National Institute of Standards in 2000
and has become one of the widest-spread access control models [40].

One area in which RBAC is frequently used is Enterprise Resource Planning (ERP)
systems. ERP systems support the business processes of a company or any other or-
ganization. Typically, they exhibit a modular structure consisting of multiple compo-
nents e.g. accounting, sales and distribution, controlling etc. Modern state-of-the-art
systems are to provide support for the business activities along the entire supply and
value chain. Furthermore, they can be used to streamline support processes and to
assist management activities. They are spread across a large number of companies in
a wide variety of business sectors and have a considerable influence on the prevail-
ing working methods. Since ERP systems accompany almost all business processes,
it is evident that many employees collaborate through a company’s ERP system and
suitable access control mechanisms become indispensable in this context. For this
purpose, RBAC is used in most cases [75].

1.2 Problem Description

The task of defining roles in the context of RBAC is called role engineering and can be
performed either in a top-down or bottom-up fashion. The top-down approach re-
quires thorough (mostly human) analysis of organizational structures and business
processes, which is a very time consuming and hardly scalable task. The bottom-up
approach is based on using data mining techniques in order to mine roles. The corre-
sponding optimization problem is called the Role Mining Problem (RMP) and aims at
finding a minimal set of roles based on a given assignment of permissions to users.
The decision version of the RMP was shown to be NP-complete [106]. In indus-
trial practice it is often not sufficient to exclusively focus on minimizing the number
of roles. In particular in the context of ERP systems, additional real-world require-
ments arise, which have not yet been considered in literature. Some ERP systems
support a two-level role concept. Further requirements emerge from security aspects
and the consideration of the license costs associated with role concepts. Moreover,
dynamically changing business environments, for instance caused by the arrival of
new employees or their departure must be taken into account when mining roles,
resulting in a dynamic variant of the Role Mining Problem. In order to enable users
of role mining software to include expert knowledge into the role mining process,
e.g. by editing proposed role concepts, interaction possibilities must be included
resulting in a consideration of dynamic user interaction within the RMP. Another
important requirement is the integration of further criteria to assess the quality of a
role concept e.g. its adherence to compliance rules or the associated license costs.

1.3 Objectives and Contributions

This dissertation describes the requirements and challenges of classical bottom-up
role mining in industrial practice and presents possible approaches and solution
strategies. In particular, role mining in the context of ERP systems is discussed.

1.3. Objectives and Contributions 3

Some of the methods, results and contributions which will be presented in the con-
text of this thesis are based on different publications by the author in the previous
years [3, 4, 5, 8, 9]. If applicable, this will be highlighted in the corresponding chap-
ters. The research goals and contributions of this thesis can be summarized along
the following objectives:

Objective 1:
Introduction to ERP Systems and Access Control
Today, ERP systems are wide-spread across many companies and other organiza-
tions worldwide. Typically, ERP systems are prone to human errors and deliberate
fraud and thus require access control management. In order to lay the foundations
for a detailed consideration of access control in the context of ERP systems, one
objective of this thesis consists in introducing to ERP systems and the associated
mechanisms of access control. A very well-known ERP system, which will serve
as a sample and testbed throughout this thesis, is SAP ERP from SAP SE, which
is reported to be the world-leading vendor of enterprise software.. Therefore, the
characteristics of this system, especially with regard to the implementation of access
control, will be discussed.

In order to introduce to ERP systems and access control, in particular the following
research questions will be answered within the scope of Objective 1:

• What role do ERP systems play in the day-to-day business of a company?

• How are ERP systems designed from computer science perspective?

• How is access control implemented in ERP systems?

• How is access control implemented in SAP ERP?

Objective 2:
Examination of Requirements for Role Mining in Real-world Use Cases and Anal-
ysis of the State-of-the-Art
Role mining describes the process of finding an optimal set of roles and an assign-
ment of those roles to users, reflecting the prevailing access control mechanism in
industrial practice. As mentioned above, the mere optimization of the number of
roles is not sufficient to meet the requirements of role concepts in real-world scenar-
ios. In addition, certain technical requirements result from the given access control
model of the ERP system under consideration.

In order to derive the requirements necessary to perform role mining in the context
of ERP systems in real-world use case scenarios, the following research questions
will be answered within the scope of Objective 2:

• Which requirements arise from real-world use cases?

• Which variants of role mining have yet been defined and which solution meth-
ods have been developed in role mining research?

• To what extend does existing research in role mining meet the requirements of
real-world scenarios?

4 Chapter 1. Introduction

Objective 3:
Development of a Formal Model
Previous role mining literature uses very heterogeneous notations to define the RMP
and to describe the methods or algorithms used. For instance, some publications
use graph-based representations. Other publications employ a set-theoretic nota-
tion. Another possibility consists in considering the RMP as a matrix decomposition
problem. Therefore, one further objective of this thesis is therefore to develop a con-
sistent model for the RMP, which can be used in particular to formally describe the
various extensions of the RMP, which will become necessary in the course of this
thesis to address the practical requirements.

In order to provide a formal model for the RMP, the following research questions
will be answered within the scope of Objective 3:

• How can an adequate and consistent formal model be created that is capable
of expressing all relevant elements needed to define the RMP and to describe
the corresponding optimization approaches?

• How can the formal model be extended to the different practice-driven ver-
sions of the RMP?

Objective 4:
Evaluation of Data Management in the Context of Access Control
Every definition of an RMP instance includes a definition of a permission-to-user as-
signment. In theory, this assignment is simply considered pre-defined in most cases.
In practice, especially in the context of an ERP launch project, is a major challenge. It
is therefore investigated which data can be used to support this initial elicitation of
a useful permission-to-user assignment. In addition, methods are developed to im-
prove and simplify the resulting assignment. For this purpose, it was possible to use
real-world data provided by the research project called AutoBer funded by German
Federal Ministry of Education and Research. Since one of the project partners, SIVIS
GmbH, is highly-specialized in compliance, authorization management and RBAC,
access control data obtained from the SAP ERP systems of SIVIS customers could be
analyzed and used to evaluate the developed procedures. The resulting permission-
to-user assignments then serve as basis for role mining. Since these usually include
several thousand users and permissions, it is necessary to identify methods to re-
duce their complexity, if possible without loss of information.

In order to address data management aspects, the following research questions will
be answered within the scope of Objective 4:

• What data sources can be used to create initial permission-to-user assignments?

• What data sources and methods can be used to increase the quality of permis-
sion-to-user assignments?

• What methods can be used to simplify permission-to-user assignments?

1.4. Structure 5

Objective 5:
Investigation of Algorithmic Challenges of Real-world Role Mining
Since the RMP was shown to be NP-complete, approximate algorithms and heuris-
tics are well-established methods to search for good solutions in affordable comput-
ing time. In recent years, several different optimization approaches for the RMP
have been developed. However, these approaches usually cover partial aspects of
industrial role mining only. Furthermore, they are evaluated either on non-publicly
accessible data or on some rare and rather inconclusive benchmarks for role min-
ing. Hence, it is difficult to assess in how far these approaches can be transferred to
role mining problems under real-world conditions and standardized and accessible
benchmarks need to be created for role mining.

Many of the practical requirements for role mining have a direct impact on the role
mining algorithm used. State-of-the-art role mining algorithms are not capable of
adequately addressing the consideration of two-level role structures as well as the
inclusion of dynamic events and further optimization objectives, resulting in a multi-
objective optimization problem. Therefore, one important objective of this work is to
develop an evolutionary algorithm for role mining and to investigate the adaptions
necessary to meet the requirements of real-world use cases.

In order to assess the algorithmic challenges of real-world role mining, the following
research questions will be answered within the scope of Objective 5:

• How can role mining algorithms be evaluated and compared?

• How can evolutionary algorithms be adapted to the requirements of the RMP?

• How can evolutionary algorithms be adapted to the requirements resulting
from role mining practice in ERP systems?

1.4 Structure

This dissertation thesis is structured as follows:

Chapter 2 introduces to enterprise resource systems. At first, an overview of general
features and functionalities as well as the historical development of ERP Systems is
provided. Secondly, the architecture of ERP systems is described. Eventually, the
ERP system of SAP is introduced as this serves as target system for the developed
methods and algorithms throughout this thesis.

Since in the course of this thesis, evolutionary algorithms are developed and adapted
to address the various challenges of real-world role mining, the underlying concept,
their biological origin as well as possible application areas of EAs are explained in
Chapter 3.

Chapter 4 deals with Role Based Access Control. Different approaches in access
control are presented and the development towards Role Based Access Control is
described. Additionally, the formal framework of the Role Mining Problem is pre-
sented. At last, the gained insights are transferred into the context of ERP systems
and the requirements for role mining in SAP ERP are derived.

6 Chapter 1. Introduction

Chapter 5 describes data management aspects of role mining. First, it is demon-
strated how access control data obtained from ERP systems can be used to create an
initial assignment of permissions to users. Subsequently, methods are presented to
enhance the quality of the permission-to-user assignment.

Chapters 6, 7, 8, and 9 cover the algorithmic aspects of real-world role mining. In
Chapter 6, previous work is reviewed to provide an overview of algorithms for the
RMP. Furthermore, a new evolutionary algorithm, the addRole-EA, is introduced to
tackle the RMP. In Chapter 7, two-level role mining is introduced to address the
structure of role concepts in SAP ERP. The differences between sequential optimiza-
tion of single and composite roles and simultaneous optimization of the two role lev-
els are evaluated as an advancement to the addRole-EA. Chapter 8 deals with the in-
clusion of dynamically occurring events, emerging either from dynamic changes in
the organizational environment of a company or from users interacting with the soft-
ware running the optimization algorithm. Chapter 9 presents and defines industry-
relevant optimization objectives in role mining. Based on that, the addRole-EA is
enhanced to become applicable for multi-objective optimization problems.

In Chapter 10, the methods developed in this thesis, e.g. the addRole-EA or the
creation and enhancement of initial permission-to-user assignments, are placed in
the context of the research project AutoBer and a piloted research-driven tool, the
Authorization Robot, is described.

Chapter 11 concludes this thesis and presents paths for future research.

7

Chapter 2

Enterprise Resource Planning

Enterprise Resource Planning (ERP) systems are IT systems that can support a wide
range of business processes within a company. They are used to plan, control and co-
ordinate operational resources in various business areas. Such resources can be, for
example, materials, assets, business partners, but also personnel. ERP systems are
typically structured into modules along the various functional areas of a company
including production, sales, finance and accounting, to name only a few. These are
integrated by sharing data maintained in a central database which is accessed by
the ERP system. Thus, they enable the standardization of data as well as business
processes across organizational boundaries. It is evident that the larger a company
becomes, the more data has to be managed. This induces more and more companies
to adopt ERP systems [51]. On the one hand, ERP systems are collaborative sys-
tems in which, in many cases, several thousand users work together. On the other
hand, ERP systems also contain sensitive and confidential company data. This, of
course, constitutes a potential risk. Employees can view data, share it with unautho-
rized parties, and even modify it. Regardless of whether unintentionally or driven
by the expectancy of personal benefit, such actions need to be prevented. This is
why, data security is a main requirement for ERP systems. In order to ensure that
users only access the data needed for their work, access control mechanisms are im-
plemented [75]. This thesis examines access control in the context of ERP. Hence
this chapter introduces to Enterprise Resource Planning, covering ERP systems in
general and the product SAP ERP in particular.

2.1 Definition and Tasks of ERP Systems

According to Gronau, an ERP system comprises the management of all information
necessary for the execution of business processes concerning the resources material,
personnel, capacities (machines, manual workplaces, etc.) and finances. To differ-
entiate ERP systems from specialized application systems, such as for manufactur-
ing, warehousing, accounting, personnel administration, Gronau demands that an
ERP system includes the management of at least three of the above-mentioned re-
sources [50]. A detailed definition of ERP systems is provided by Bradford [18], p.2:

Enterprise resource planning (ERP) systems are business systems that integrate
and streamline data across the company into one complete system that supports

8 Chapter 2. Enterprise Resource Planning

the needs of the entire enterprise. ERP Systems are designed to enhance all as-
pects of key operations, such as purchasing, accounting, manufacturing, and
sales, by taking processes and functions that were previously disjointed and
supported by various legacy systems, or older, standalone, disparate business
systems, and seamlessly integrating and coordinating them. The foundation of
an ERP system is a well-structured database that serves the operational and
decision-making needs of the entire enterprise. By supporting the information
requirements of more than one functional area, ERP systems are considered
cross-functional in nature. ERP systems are also considered process-centered;
that is, the application enables a clear, complete, logical, and precise view of the
organization’s business processes, or how it does its vital work.

An important feature of ERP systems, which both authors emphasize, is that they
support business processes in multiple areas of a company, in particular by the pro-
vision of required information (administration), the automation of routine work (au-
tomation), the calculation of key performance indicators (information) and the anal-
ysis of data (analysis) [50]. The potential advantages and disadvantages related to
an implementation of an ERP system are discussed in the next section.

2.2 Strengths and Weaknesses of ERP Systems

One of the main advantages of ERP systems is data integration. The central man-
agement of data in a single database prevents redundancies and inaccuracies in
data [87]. In addition ERP systems bear the potential to reduce operational costs
and increase potential business benefits. This can be achieved, for example, by en-
abling enterprise-wide analysis of organizational decisions or by increasing efficien-
cies in business processes [18, 87]. The implementation of an ERP system implies
the automation of procedures and the standardization of processes, which can be
seen as an advantage as well as a disadvantage [50]. On the one hand, the specifica-
tions of the ERP system can lead to more efficient processes. On the other hand, it
is possible that companies lose competitive advantages if their processes cannot be
mapped one-to-one in the ERP system [18]. Another disadvantage of ERP systems
is the associated costs. Especially for large companies, it can take several years to
implement an ERP system. In addition, after implementation, license and mainte-
nance costs continue to be incurred. Implementing an ERP system is possibly the
most expensive investment a company can make, so the decision to do so needs to
be well considered [18]. A more detailed discussion on different advantages and
disadvantages of ERP systems can be found, for example, in [18, 50, 87].

2.3 Evolution of ERP Systems

In order to support the planning of manufacturing, Material Requirements Planning
(MRP) systems were introduced at around 1960. They comprised fast methods for
exploding bills of materials considering stock quantities. From this, period-specific
calculations of net requirements and the corresponding allocation to production fa-
cilities could be derived. These systems were extended to Manufacturing Resource

2.3. Evolution of ERP Systems 9

Planning I (MRP I) systems by the integration of production program planning, ca-
pacity scheduling and shop-floor control. In the 1980s, tools for business and sales
planning were integrated resulting in Manufacturing Resource Planning II (MRP II)
systems [50]. In parallel, similar systems were developed for other business areas,
such as finance and human resources. To a certain extent, the different systems oper-
ated on the same data kept separately, which caused for data redundancies as well as
information inconsistencies. This created the need for an integration of the systems
developed for manufacturing resource planning, human resource planning and fi-
nance into one overall system, which led to the development of ERP systems [53].
In the late 1990s and early 2000s further software applications for enterprises, such
as advanced planning and scheduling (APS), supplier and customer relationship
management (SRM, CRM) and supply chain management (SCM), were developed.
While in reality these are often independent software systems connected via inter-
faces, there is a tendency to integrate these previously separate systems more and
more via a common database (single source of truth). Such holistic software systems
are referred to as extended ERP [18, 87], see Figure 2.1.

Database Management System (DBMS)

Database

Enterprise

Resource
Planning

(ERP)

Supplier

Rela�onship
Management

(SRM)

Customer

Rela�onship
Management

(CRM)

Supply

Chain
Management

(SCM)

Advanced

Planning and
Scheduling

(APS)

Product

Lifecycle
Management

(PLM)

Manufacturing Execu�on System,

Technical Applica�on Systems,
Others…

Extended ERP

FIGURE 2.1: Software landscape of an industrial company in the
context of an extended ERP system, based on [73].

Traditionally, ERP systems have been provided as on-premise solutions. With the
rise of cloud technology, many ERP systems have also evolved into cloud or hybrid
solutions, which enable access to data and services via the cloud, while critical data
can remain on internal systems. Figure 2.2 provides an overview of the evolution of
ERP systems.

1960s

(MRP)
1970s 1980s

(MRP II)
1990s

(ERP)
2000s

(Cloud)

Material Requirement Planning

Manufacturing Resource Planning

Enterprise Resource Planning

Cloud Solu�ons & Extended ERP

FIGURE 2.2: Evolution of ERP systems, based on [87] and [18].

10 Chapter 2. Enterprise Resource Planning

2.4 Architecture of ERP Systems

Since ERP systems cover the management of information across many different ar-
eas of a company, so that several users must be able to work on the system at the
same time, most ERP systems are designed as client-server systems consisting of
multiple tiers. Typically a three-tier architecture is used comprising a presentation
layer, an application layer and a database layer. Figure 2.3 shows the typical system
architecture of most modern ERP systems.

T

Client Client Client Client

Applica�on Server

Database Management System (DBMS)

Database

Tier 1: Presenta�on Layer

Tier 2: Applica�on Layer

Tier 3: Database Layer

FIGURE 2.3: Three-tier architecture, based on [34].

Typically, ERP systems use a central database accessed through a database manage-
ment system (DBMS). The DMBS takes care of transactional consistency in case of
concurrent access by several users. Access to the database is controlled through
transactions, which correspond to a sequence of read and write operations on a
database. If a transaction is executed, transaction management ensures that the
database is transferred from a consistent state before the transaction to a consistent
state after the transaction [34].

In the application layer, the business logic, i.e. the software-supported (parts of)
business processes, is executed. Hence, data is being processed, used for calcula-
tions and prepared for the presentation to the user. In most ERP systems, the appli-
cation layer includes a development environment in order to develop and include
individual applications [50].

The presentation layer of the ERP system corresponds to the user interface. It re-
ceives user input and passes it on to the application layer. In the other direction, the
presentation layer is used to present the results calculated by the application server
to the users [34]. The user interface may come as client-side software provided by
the ERP vendor, or as a web application running in a web browser or in a mobile
app [50].

An important advantage of this architecture is that, in case of malfunction or fail-
ure of clients or instances of the application server, the overall system remains func-
tional. A disadvantage is the dependence on the database and the need for a constant
stable network connection [34].

2.5. SAP ERP 11

2.5 SAP ERP

SAP has been offering software for companies since 1973. While the first product fo-
cused exclusively on financial accounting and had single-tier architecture, the soft-
ware has since evolved into a full-fledged ERP system with the three-tier architec-
ture described in the previous section. Since 2009, the ERP system of SAP has been
marketed under the name SAP ERP as part of the SAP Business Suite. In 2010, SAP’s
in-memory database SAP HANA was introduced. In 2015 the company released SAP
Business Suite 4 SAP HANA, SAP S/4HANA for short, which is considered the latest
generation of SAP’s core solution. Various functions of the SAP Business Suite appli-
cation as well as the best practices of many industries have been integrated along the
lines of the extended ERP approach mentioned above. SAP S/4HANA has been specif-
ically designed to work with their new database. Even though this thesis focuses on
the study of access control in SAP ERP, all methods developed within this thesis can
also be applied in the context of SAP S/4HANA. This is discussed in more detail in
Chapter 4, where the access control model of SAP ERP is described. For a detailed
overview of the product portfolio of SAP as well as the historical development and
the various predecessor products of SAP ERP, it is referred to [46].

According to [98], the size of the global market for ERP systems was 53 billion euros
in 2019. Furthermore, SAP is stated to be the market leader with a marked share of
10.8%. In Germany, the Center for Enterprise Research of the University of Potsdam
documents published ERP projects since 2007. Again, SAP has the largest share with
over 20%, which is another indication of SAP’s special position, particularly in the
German-speaking market [50]. Figure 2.4 shows the distribution of market shares
in the German-speaking countries based on the data provided by the University
of Potsdam. ERP vendors with a market share of less than 2.5% were grouped as
Others.

FIGURE 2.4: Market shares in German-speaking countries on the basis of published
ERP projects, based on [50].

2.5.1 Structure of SAP ERP

SAP ERP is modularly built from components, where components are largely inde-
pendent system parts with a specific functionality that are interoperable and cooper-
ate flexibly with each other [34]. Therefore, it is possible for a company to implement
only the required components without having to purchase and implement the entire

12 Chapter 2. Enterprise Resource Planning

package [18]. The components of SAP ERP can be classified into the areas of ac-
counting, human resources and logistics. Examples of this include the components
Materials Management (MM), Production Planning and Control (PP) or Sales and Distri-
bution (SD) in logistics, Financial Accounting (FI) or Controlling (CO) in accounting or
Personnel Administration (PA) or Payroll (PY) in human resources. Table 2.1 shows an
overview of the components of logistics.

TABLE 2.1: Components of logistics, based on [34].

Component Name Component Code

Materials Management MM
Production Planning and Control PP
Sales and Distribution SD
Customer Service CS
Warehouse Management WM
Logistics Execution LE
Quality Management QM
Plant Maintenance EAM (PM)
Environment, Health & Safety EHS

Table 2.2 shows an overview of the components of accounting.

TABLE 2.2: Components of accounting, based on [34].

Component Name Component Code

Financial Accounting FI
Controlling CO
Financial Supply Chain Management FSCM
Treasury TR
Investment Management IM
Enterprise Controlling EC
Real Estate Management RE
Project System PS

Table 2.3 shows an overview of the components of human resources.

TABLE 2.3: Components of human resources, based on [34].

Component Name Component Code

Personnel Administration PA
Recruitment RC
Personnel Development PD
Payroll PY
Training and Event management PE
Time Management PT
Organizational Management OM
Travel Management TM

Furthermore, there are several technical components, e.g. Business Intelligence (BI)
and SAP’s proprietary programming language Advanced Business Application Pro-
gramming (ABAP). The mechanisms of access control, for example, can be found
in the component Basis (BC), which is also part of the technical components of SAP
ERP. In total, SAP ERP comprises around 25 components [34]. The component struc-
ture of SAP will be used in Chapter 5 to analyze similarities in the behavior of users
of the ERP system.

2.5. SAP ERP 13

2.5.2 Data Types in SAP ERP

SAP ERP comprises three different types of data: organizational data, master data
and transactional data. Organizational data is used to represent the organizational
structure of a company, ranging from client, which represents a corporate group, to
company code, which is the smallest organizational unit for external accounting. It is
usually defined within the parametrization of the ERP system and can usually not
be changed by normal users of the system. In contrast to organizational data, master
data is not created during customizing, but is created, changed, read or deleted by
users when executing business processes and can be dependent on the underlying
organizational data. Examples include data on customers, suppliers, products, but
also machines and employees. Moreover, master data comprises user profiles in-
cluding the assignment of roles and permissions. Transactional data is used to docu-
ment business process and is therefore created, changed, read or deleted during the
execution of business processes. It comprises for example data on sales, purchase
and production orders and can thus be dependent on the underlying organizational
and master data [34].

A detailed description of the data structure of SAP ERP as well as an introduction
to how SAP ERP is implemented in a company and to how the employees use it in
their daily work based on the SAP model company Global Bike is provided in [34]. In
the further course of the thesis, various aspects of access control in SAP ERP that are
relevant from a business perspective are examined. For this purpose, in Chapter 4,
access control and corresponding key elements and concepts are introduced in gen-
eral. Subsequently, the access control model used by SAP is discussed and the main
elements of access control in SAP ERP are introduced.

15

Chapter 3

Evolutionary Algorithms

Since throughout this thesis, evolutionary algorithms (EAs) are used in order to mine
roles in the context of authorizations management for SAP ERP, this chapter aims at
giving a brief introduction to EAs, their origin in nature, their general functionality,
their components and methods and some exemplary applications.

3.1 Biological Origins

Evolutionary algorithms (EAs) are based on the theory of evolution as it was estab-
lished by Charles Darwin and his groundbreaking book On the Origin of Species [26]
in the year 1859. Evolution describes the change in the heritable characteristics of a
population, considering multiple generations. At this, a population refers to a set of
individuals. The genetic material of individuals is carried in chromosomes, which
are are located in the nuclei of cells. Different mechanisms are responsible for the
change in the genetic material of individuals. On the one hand, random mutations
alter the genetic material of individuals. On the other hand, genetic material is trans-
ferred to the offspring through reproduction. Since reproduction usually involves a
pair of parental individuals, the offspring receives a combination of the genes of the
parent individuals This is also referred to as recombination or crossover. The result-
ing changes in the genetic material of the offspring individuals due to mutation and
crossover can cause both advantages and disadvantages for the resulting offspring
individuals. Evolution theory states that individuals that are well adapted to their
environment have a higher chance to survive. This effect is also known as survival of
the fittest. Individuals that are less adapted to their environment have a lower chance
of survival. This effect is also referred to as natural selection. Based on these princi-
ples, a population tends to adapt increasingly well to its environment considering
many generations [84].

3.2 Algorithm Overview

Evolutionary algorithms attempt to mimic the principles of evolution. Therefore,
random changes in and different combinations of solution candidates are used in the
attempt to improve the quality of solutions for a given problem. EAs make use of
language borrowed from evolution theory. A solution candidate of a given problem
is called an individual. A set of individuals is referred to as population. The solution

16 Chapter 3. Evolutionary Algorithms

quality of an individual with respect to the considered problem is called the fitness of
the individual. The set of all possible solution candidates of the considered problem
is called search space [112]. Of essential importance for the success of an EA is the
problem-adequate coordination between exploration and exploitation. Exploration in
this context refers to the generation of solutions in previously unexplored regions of
the search space. Exploitation, on the other hand, is the term used to focus the search
in the immediate vicinity of already known solutions of high fitness. Too much
emphasis on exploratory aspects often results in an orderless, random-like search,
whereas too much emphasis on exploitation can lead to premature convergence of
the population in sub-optimal areas of the search space. The degree of exploration
and exploitation depends on the algorithmic procedures used and their parameter
settings. Ideally, a good balance of exploration and exploitation should be achieved.
However, this is highly dependent of the problem considered and the specifications
of the EA in use and therefore still a subject of current research. An important aspect
in this context is diversity. If the individuals of a population are too similar, there is
a danger of getting stuck in a local optimum [37]. In literature, many concepts has
been established to determine the diversity of a population. A well-known method
for this purpose is the so-called Crowding Distance, which will be used in Chapter 9
in the context of multi-objective role mining.

A typical flowchart of the steps of an EA is illustrated in Figure 3.1. These steps
include: initialization, evaluation, selection, crossover, mutation, and replacement.
At first, an initial population of solution instances (individuals) is created for the
given problem. Each individual is evaluated according to a fitness function that cor-
responds to the solution quality of the candidate solution that is represented by that
individual with respect to the given problem. The individuals of the initial popula-
tion are then selected (selection) to be modified by the genetic operators (crossover
and mutation). Subsequently, the individuals resulting from crossover and muta-
tion are evaluated. Based on that, it is decided which individuals of the existing
population are replaced by the offspring individuals to obtain the next generation’s
population (replacement). This procedure is repeated iteratively until a certain stop-
ping condition is fulfilled that terminates the algorithm [49].

FIGURE 3.1: Top-level description of an evolutionary algorithm.

3.3 Previous Work and Application Areas

Already in 1948, Alan Turing suggested to include principles of natural evolution
into computation [24]. In the 1960s, implementations based on these ideas were

3.4. Algorithm Steps 17

developed for the first time. This resulted in the development of evolutionary algo-
rithms. At this, the term evolutionary algorithm comprises four related approaches [15]:
Fogel introduced Evolutionary Programming [41] in the 1960s. In the 1970s, Genetic Al-
gorithms were proposed by Holland [54]. At the same time, Rechenberg and Schwe-
fel presented the concept of Evolution Strategies [88, 101]. In the 1990s Genetic Pro-
gramming was proposed by Koza [70]. A detailed introduction to evolutionary al-
gorithms is provided, for example, by Goldberg in [49]. A common feature of all the
approaches in the field of evolutionary algorithms consists in the exploitation of the
concept of evolution, which attempts to explain the development of living entities
in nature.

EAs are often used in the context of difficult optimization problems. For some prob-
lems, exact algorithms are available that are capable of finding an optimal solution
in a time polynomially dependent on the size of the problem instance, e.g. shortest
path problems. The problem class containing such problems is referred to as P. For
other problems it is far more difficult to find a solution. Such problems include, in
particular, NP-hard problems like the well-known Traveling Salesperson Problem,
or the Knapsack Problem. A problem is in problem class NP if it can be solved by
a nondeterministic Turing machine in polynomial time. It is NP-complete, if every
other problem in NP can be transformed into it in polynomial time. Although it has
not yet been proven, it is assumed that P 6= NP. Therefore, other solution strate-
gies are required to tackle problems in NP, e.g. approximate algorithms, heuristics
or meta-heuristics. One approach in this context is the use of EAs, which are to be
classified as meta-heuristic. These try to find high-quality solutions to various opti-
mization problems in short time. However, it cannot definitely be answered whether
they find the optimal solution due to the nature of NP-hard problems [22]. Accord-
ingly, they are not particularly well suited for problems where it is important to find
an exact optimum [42]. In industry and economics, EAs are used in the context of
many real-world optimization problems which range from airfoil design to machine
scheduling and, of course, role mining.

EAs are also well suited in the context of dynamic optimization problems where
either the objective function or constraints change dynamically, e.g. [63, 83]. It is im-
portant to determine, whether events occur during the execution of the EA, which
might influence the specifications of the considered optimization problem. Due to
the iterative procedure of EAs, this can be checked for example at the beginning of
each iteration of the EA, which enables a duly reaction to such events and continu-
ation of the optimization process. Since one of the main aspects of this thesis is the
consideration of dynamic events in the context of role mining, EAs are selected as
basis to consider different variants of the RMP in the further course of this thesis.

3.4 Algorithm Steps

Over time, a wide range of different approaches has been developed for almost all
steps of an EA. Depending on the problem to be solved, numerous implementa-
tion and adaptation options are available. Due to the large number of different ap-
proaches, only the most important terms, components and steps of an EA are briefly

18 Chapter 3. Evolutionary Algorithms

introduced based on [37, 49, 102, 112]. In Chapter 6, this is used for the introduction
and detailed description of a new evolutionary algorithm adapted to be used for the
purpose of role mining for ERP systems. In order to illustrate the different elements
and steps of an EA, the Knapsack Problem is used, which will be introduced briefly
in the following, based on [37]:

Definition 3.1 (The Knapsack Problem)
Given a set I = {i1, ..., in} of n items, where each item ik is assigned a value vk and some
costs ck, find a subset of J ⊆ I, such that the sum of the values of all items in J is maximized,
while the sum of the associated costs does not exceed a given threshold Cmax:

Knapsack Problem =

{
max ∑ik∈J vk,

s.t. ∑ik∈J ck ≤ Cmax.
(3.1)

One possible interpretation of the Knapsack Problem consists in packing a suitcase
for an airplane trip. From a set of items eligible to be packed for the trip, those items
are to be selected that offer the highest benefit and, at the same time, do not exceed
a maximum weight specified, for example, by the airline. In industrial practice, the
Knapsack Problem is relevant, whenever a resource, which is required for different
purposes, is only available to a limited extent.

In the following, the different elements and steps of an EA are introduced:

Individual. An individual I represents a solution candidate of a given problem.
The representation of the solution candidate in the original context of the problem
is referred to as the phenotype of the individual. The encoding used to represent the
solution candidate in the context of the evolutionary algorithm is called genotype or
chromosome. In the context of the Knapsack problem, the phenotype simply corre-
sponds to the packed suitcase. For the genotype or chromosome, a representation
as a bit string is commonly used. A one in the k-th position of the chromosome
implies that item ik is to be packed. A zero at position k means that item ik is not
being packed. Figure 3.2 shows the representation of an exemplary individual for
the Knapsack Problem on genotype as well as on phenotype level.

FIGURE 3.2: Exemplary genotype and phenotype for the Knapsack Problem.

There are further possibilities to encode the chromosome of an individual, e.g. ar-
rays of integer or real numbers, which are also used very frequently depending on
the optimization problem at hand. For many problems, however, a problem-specific
representation of the chromosome of an individual is developed. The choice of the

3.4. Algorithm Steps 19

genotype encoding may have a significant impact on some of the algorithmic proce-
dures of the chosen EA, e.g. initialization, evaluation, recombination, and mutation,
since the methods and components of the EA must be adapted to the underlying
encoding. Other procedures like selection and replacement are mostly genotype-
independent.

Population. A population Pop := {I1, ..., IPS} corresponds to a set of individuals.
The number of individuals contained in population Pop is called population size PS.

Initialization. At the very beginning of the EA, an initial population is generated.
In most cases, the initial individuals are created randomly, which allows for a rapid
and straight forward implementation. Another initialization strategy is to already
include some domain knowledge and to apply one or more specialized heuristics to
create a pre-optimized population.

Evaluation. In this step, each individual I is assigned a fitness value f itness(I) ∈
Rn that corresponds to the solution quality of the candidate solution that is repre-
sented by that individual. The fitness value is an essential decision criterion during
selection and determines which individual are selected as parents and may produce
offspring. In addition, individuals with higher fitness values are typically preferred
during replacement and are more likely to be included in the next generation’s pop-
ulation.

Considering the Knapsack Problem, the fitness of an individual results from the
value of the items selected for packing. Assuming x(I) ∈ {0, 1}n is a binary vec-
tor representing the bitstring in the chromosome of individual I, the fitness of I is
obtained as:

f itness(I) =
n

∑
k=1

vk · x(I)k. (3.2)

Selection. The selection method of EAs is used to select the individuals which are
to be used as parent individuals to generate offspring in the subsequent crossover
method. The selection process is typically based on the fitness of the individual, such
that high-quality individuals have a higher chance to be selected. One approach is
purely deterministic selection, where, in order to select m individuals for crossover,
simply the m individuals of highest fitness are selected. In contrast, probabilistic
methods, like Tournament Selection, Roulette Wheel Selection (RWS) or Stochastic Uni-
versal Sampling (SUS), also provide individuals of lower fitness with a chance to be
selected for crossover, which can support the exploration of the search space. Since
the principles of RWS and SUS are used in Chapter 6 to develop new mutation meth-
ods for role mining, they are described in more detail at this point:

Roulette Wheel Selection (RWS) was proposed by Holland in 1975 [54]. The selection of
individuals in this approach can be illustrated by the repeated spinning of a roulette
wheel. Each individual is assigned a slot on the roulette wheel, where the slot sizes
are proportional to the fitness of the individuals after normalization. This approach
is therefore also referred to as Fitness Proportionate Selection. For individual Ik the

20 Chapter 3. Evolutionary Algorithms

corresponding slotsize of the roulette wheel is calculated as follows:

slotsize(k) :=
f itness(Ik)

∑PS
j=1 f itness(Ij)

. (3.3)

Based on that, a cumulative distribution function is calculated:

F(Ik) := ∑
l≤k

f itness(Il)

∑PS
j=1 f itness(Ij)

. (3.4)

In order to select an individual for crossover a random number r ∈ [0, 1) is drawn,
which corresponds to spinning the roulette wheel once. In case r < F(1), individual
I1 is selected. In case F(k − 1) ≤ r < F(k) individual Ik is selected. To select m
individual, this procedure is repeated m times.

Stochastic Universal Sampling (SUS) was introduced by Baker in the 1980s [12, 13].
The selection of individuals using SUS is based on the same slotsizes and cumulative
distribution function as RWS. However, in order to select m individuals, only one
random number r ∈ [0, m−1) is drawn. Based on this, individual Ik is drawn, if there
is s ∈ {0, 1, ..., (m− 1)}, such that:

r +
s
m

< F(k), k = 1,

F(k− 1) ≤ r +
s
m

< F(k), k ∈ {2, ..., m}.
(3.5)

Compared to RWS, where individuals of high fitness are preferably selected, SUS
provides individuals of lower fitness with a higher chance to be selected.

Crossover/ Recombination. In order to generate offspring individuals the previ-
ously selected parent individuals are randomly combined with each other using the
crossover method. This approach is based on the idea that offspring individuals in-
herit favorable sub-sequences of the chromosomes of the selected high-quality par-
ent individuals and that the recombination of these sub-sequences leads to an even
higher fitness of the offspring individuals (building block hypothesis). The decision
on whether the selected individuals are actually used to generate offspring is based
on a crossover rate CrR. The individuals resulting from crossover are commonly re-
ferred to as child individuals. In literature, a wealth of different crossover operators
have been proposed. Refer to [37] for an overview. Commonly, crossover operators
are genotype-dependent, i.e. the algorithm depends on the data type used to encode
the solution candidate as a chromosome.

A well-known crossover operator, which is suitable for the bit string representa-
tion of individuals used for the Knapsack Problem, is one-point crossover. At first,
the chromosomes of the parent individuals are split at a random position, which is
called the crossover point. Subsequently, the resulting parts of the chromosomes are
exchanged in order to create the child individuals. Figure 3.3 provides an example of

3.4. Algorithm Steps 21

one-point crossover applied to two parent individuals in the context of the Knapsack
Problem.

FIGURE 3.3: Example of one-point crossover for the Knapsack Problem.

It is possible that the application of crossover (or mutation) leads to infeasible so-
lution candidates. For the first child individual in the example in Figure 3.3, it can
be assumed that it is infeasible, since it represents the packing of all items. In order
to address this, infeasible individuals can, for example, be discarded immediately
and not considered for the next generation. Alternatively, the fitness of infeasible
individuals could be decreased by means of a penalty function in order to reduce
the chance of the considered individual of being selected for the next generation.

Mutation. During mutation, random changes are made to the chromosomes of in-
dividuals resulting in a new slightly modified version of the original individual. On
the one hand, since the changes to the chromosome of the individual resulting from
mutation should be relatively small, it is possible that mutation leads to an local
improvement of the considered individual. On the other hand, due to the random
nature of the changes made to the chromosome also distant regions of the search
space can be reached, which favors the exploration of the search space. As with
crossover, a mutation rate MR is used to determine whether the mutation method is
actually executed on the input individual. The input individual can either be a child
individual (output of crossover) or a selected individual of the current population.
An overview of various mutation and crossover methods in the context of different
representations of an individual is provided by Eiben in [37].

A well-known mutation operator applicable for the Knapsack Problem is bit-flip mu-
tation. Considering the bit string representation of the chromosome of an individual,
each bit is flipped based on a given probability p, which yields an expected value for
the number of changed bits of n · p. Therefore, often p = n−1 is chosen, which leads
to an expected value of 1. Figure 3.4 provides an example of one-point crossover
applied to an individual in the context of the Knapsack Problem.

FIGURE 3.4: Example of bit-flip mutation for the Knapsack Problem.

Replacement. The replacement method of EAs is used to determine the individ-
uals of the population for the next generation. At this, two different replacement
strategies are distinguished. In generational EAs, all individuals of the current pop-
ulation are replaced by offspring individuals, that typically the entire population is

22 Chapter 3. Evolutionary Algorithms

replaced by a new one. In a steady-state EA, however, only a few individuals are
replaced by the offspring. Mostly the fitness of the individuals constitutes the main
decision criterion for replacement. Replacement strategies based on the fitness are
for example Replace Worst, where the individuals of lowest fitness are replaced or
Elitism, which ensures the fittest individuals to always be transferred into the popu-
lation of the next generation. Other replacement strategies are, for example, based on
the age of individuals, which corresponds to the number of generations since their
creation, or are designed to maintain diversity in the next generation’s population,
e.g. Fitness Sharing or Crowding. An overview of different replacement strategies is
provided e.g. in [37].

Stopping Condition. Since EAs are often used in the context of NP-hard problems,
it cannot be assumed that the best solution of the problem can be found. Therefore, a
stopping condition can be used to decide on whether the execution of the algorithm
is terminated. Possible stopping criteria comprise, for example, exceeding a maxi-
mum computation time or a maximum number of iterations as well as the conver-
gence of the algorithm. Convergence, in this context, means that the global fitness,
which corresponds to the fitness of the best individual of the current population,
could not be improved for a pre-defined number of consecutive generations.

23

Chapter 4

Role Based Access Control

This chapter provides an overview of access control in general, reviews its historical
development and presents different access control models. Emphasis is on a detailed
consideration of Role Based Access Control and the corresponding Role Mining Problem,
as this sets the framework of the algorithmic considerations in the further course of
this thesis. Finally, the findings from this and the previous chapters are combined in
order to derive the requirements for access control and role mining in SAP ERP.

4.1 Introduction to Access Control

There are many factors which are relevant considering the security of IT systems. On
the one hand, they must dispose of good protection against external risks and attacks
like malware and phishing. On the other hand, especially in corporate IT systems,
another threat, that must not be underestimated, consists of internal malicious use.
Employees manipulate data and take advantage of their position in a company to en-
rich themselves personally. Such cases are referred to as occupational fraud. It has
been found, that fraudulent or erroneous behavior of employees can cause for sub-
stantial business damage [21]. According to the recent edition of the Global Economic
Crime and Fraud Survey, which is conducted by PricewaterhouseCoopers (PwC) ev-
ery second year, almost 50% of the over 1,200 participants experienced cases of fraud
within the investigated time period of 24 months. 31% of the reported fraud cases
were classified as occupational fraud and further 26% resulted from collusion of in-
ternal and external perpetrators [86]. An example of such fraudulent behavior in
an enterprise resource system may concern the redirection of payments, also known
as vendor flipflop [59]. At first, the bank account linked to a payment is changed to
a different account. Subsequently, the payment is executed and the corresponding
bank account is reset to the initial settings. In this way, it would be possible for an
employee to transfer money to him- or herself without it being noticed. Preventing
such cases is the task of access control. Based on this example, the main elements of
access control can be introduced, based on [56] and [40], as follows:

User. Generally, a user is defined as active entity in a way that it causes for infor-
mation flow or changes the states of an IT system. Generally, a user is considered
a human being, even though the definition does not explicitly exclude other alter-
natives like machines, networks or intelligent autonomous agents. Considering the

24 Chapter 4. Role Based Access Control

vendor flipflop example, the employee committing the fraud can be considered a user
of the companies’ IT system. Since the users of an ERP system correspond to the
employees of the company running the ERP system, the terms user and employee are
often used synonymously. In a business context, usually the term employee is used,
whereas user is used in the context of access control.

Object. An object is defined as entity that contains or receives information. At this,
the term object does not only refer to typical information containers such as files or
database tables but can also represent exhaustible system resources, such as printers,
keyboards, clocks etc. Considering vendor flipflop, the field in vendor master, which
contains the bank account linked to the payment, is an object of the IT system.

Operation. An operation corresponds to an interaction between user and IT sys-
tem. These interactions comprise, for instance, read or write in file systems and read,
insert, delete, append and update in database management systems. In the example,
the considered user performs read and write operations on the field containing the
bank account.

Permission. A permission corresponds to the authorization to perform an opera-
tion on an object. In the considered example, the user obviously had the permission
to edit the bank account as well as the permission to execute the payment.

In order to prevent erroneous and fraudulent behavior of users, it is advisable to
restrict their access and permissions in corporate IT systems. In addition, it can be
useful to distribute critical processes among several users. This is reflected in two
concepts, which can be considered guiding principles for access control:

Principle of Least Privilege. The more permissions a user receives in an IT sys-
tem, the more likely is he or she able to intentionally or unintentionally perform
harmful actions. Thus, the Principle of Least Privilege states, that each user of an IT
system should be assigned only permissions, which are required to execute his or
her work [95]. However, since it is difficult to determine the exact set of required
permissions for each user, the least privilege condition is sometimes difficult to im-
plement in practice [56].

Separation of Duties (SoD). In order to prevent a user from being able to perform
malicious actions, Separation of Duty proposes to distribute critical tasks and respon-
sibilities among different users (Static Separation of Duty (SSoD)) or to decide access
dynamically based on the user’s access history (Dynamic Separation of Duty (DSoD)).
A critical combination of permissions, like the execution of payments and the edit-
ing of bank accounts, is called SoD-conflict. In case of SSoD, it would have to be
ensured that, in order to complete a payment process, at least two users are needed.
The permission to execute the money transfer of the payment would be assigned to
the first person only. The permission to edit the corresponding bank account would
be assigned to the second person. In this way, the exemplary SoD-conflict could be

4.1. Introduction to Access Control 25

avoided. Considering DSoD, there might be users that are assigned both permis-
sions. However, a user would be authorized to execute the payment only, if it is
ensured that he or she has not edited the bank account at an earlier point in time. A
formal model for the description of SoD-conflicts as well as integration possibilities
into the role optimization process is presented in Chapter 9.

4.1.1 Access Control Models

One of the first access control models was Mandatory Access Control (MAC). Users
and objects are assigned different security levels. If a user has a security clearance
equivalent or higher than the classified object, he or she may access the object. Prob-
ably the most popular example of MAC is the classification within U.S. security facil-
ities where data is labeled either unclassified, confidential, secret or top-secret. However,
this concept is not suitable for companies, as it is very inflexible and cannot represent
corporate structures [61, 96].

The decentralized model of Discreationary Access Control (DAC) came into use be-
yond the application in military systems. A key feature of this access model is based
on the fact that individual users own certain objects in IT systems. Through own-
ership, they are authorized to control the access to these objects and can delegate
appropriate permissions related to these objects to other users. In this process of for-
warding authorizations, no intervention by central system administrators is needed,
which minimizes the administrative effort in this approach. However, this access
control model does not reflect the reality found in today’s business landscapes. The
actual owners of objects, functions and programs in IT systems are companies or
public institutions. The access of employees respectively users of IT systems to these
objects depends rather on their function in the organization. The question of access
to certain objects should therefore be derived from tasks, responsibilities and quali-
fications of the users [61].

Another possibility to implement Access Control is Attribute-based Access Control
(ABAC). At this, the decision whether the access of a user to a certain object is
granted is based on the attributes of the user. Attributes of a person could be, for
example, place of birth, date of birth and place of residence. Attributes of an em-
ployee can comprise information on the department, task descriptions or their po-
sition in the company. In contrast to many access control models, where an a priori
assignment of permissions to users is required, this is not mandatory for ABAC.
The attributes of a user can be compared to the attributes required for the requested
access in real time and therefore allow for dynamic and flexible access control [57].

Probably the simplest way to regulate access control are so-called Access Control Lists
(ACL), where the permissions of the considered IT system and the corresponding
assignments to users are stored in a list. However, especially in large companies with
a large number of users and permissions, this approach quickly becomes complex
and unmanageable. This is the reason why additional aggregation methods are often
used in practice. One conceivable method is aggregation at user level, where users
are grouped in clusters based on their similarity. A different approach to reduce

26 Chapter 4. Role Based Access Control

complexity is the aggregation of permissions into roles resulting in Role Based Access
Control [109].

4.1.2 Role Based Access Control

Role-based access control (RBAC) was first introduced in 1992 by Ferraiolo et al. [39]
as an alternative to the known access models at that time. In 2000, the American Na-
tional Institute of Standards & Technology (NIST) declared it a NIST standard for
access control. In 2004, it was declared an ANSI standard by the American National
Standards Institute. Since then, it has become one of the most widely used access
control models [40]. The basic idea consists of grouping permissions to roles, which
are then assigned to users based on the users’ permission needs in the company con-
sidered. This results in the addition of a new level to traditional access control and
leads to reduced complexity and thus increased comprehensibility and manageabil-
ity. A set of roles, a corresponding assignment of permissions to these roles and an
assignment of these roles to users is called a role concept.

The NIST standard for RBAC, which is introduced in [40], distinguishes three ver-
sions of RBAC that build on each other: The most basic version of RBAC is Core
RBAC, see Figure 4.1. It comprises users, permissions (objects and operations), roles,
the corresponding assignment of permissions to roles (PA) respectively roles to users
(UA) as well as sessions. A session describes the connection of a user with a system
and therefore exists only for a limited time. In each session, a user has access to a
subset of the roles which are assigned to him or her according to UA, the so-called
session roles. The set of session roles can be the same in each session or vary from ses-
sion to session. This allows for the inclusion of dynamic information into the RBAC
model.

FIGURE 4.1: Elements of Core RBAC according to NIST standard, based on [40].

Hierarchical RBAC extends Core RBAC with a role hierarchy. Role hierarchies define
an inheritance relationship between roles and allow for the inclusion of a company’s
responsibility and authority structure into a role concept. Role A inherits role B if
all permissions which are assigned to role B are also assigned to role A. A further
distinction is made between General Hierarchical RBAC, where n : m relationships be-
tween the roles on different role levels are permitted, and Limited Hierarchical RBAC,
where only 1 : n or n : 1 relationships are allowed.

Constrained RBAC includes Separation of Duty into the RBAC model, which ensures
that a user is not assigned critical combinations of permissions and roles. Again, it is
distinguished between Static Separation of Duty, where critical combinations of roles

4.2. The Role Mining Problem 27

are avoided already when creating a role concept and Dynamic Separation of Duty,
where sessions are used to prevent the usage of critical combinations of roles in the
same session.

Conventionally, the creation of a specific role concept adapted to the requirements
of a company, which is called role engineering, is carried out in a top-down manner.
For this purpose, the entire company structure must be analyzed, which requires
extensive use of human labor, especially in huge companies with a large number of
users. According to a case study by NIST, the average time needed to implement a
role concept amounts to between 12 and 15 months [48]. For this reason, a bottom-up
approach, where roles are derived more or less automatically from the assignment of
permissions to users is increasingly being used for role engineering in recent times.
The corresponding optimization problem is called the Role Mining Problem (RMP).
Its decison version was proven to be NP-complete by Vaidya et al. in [106].

4.2 The Role Mining Problem

The Role Mining Problem has been defined based on various different approaches.
A first definition was given by Vaidya et al. in 2007 as matrix decomposition prob-
lem [106]. Another possibility in defining the RMP consists of graph-based ap-
proaches [114, 115]. In this thesis, due to its high level of descriptiveness, the RMP
is firstly introduced using a graph-based approach based on [115]. From this, the
matrix decomposition representation of the RMP is derived, which serves as a basis
to introduce a formal model of the RMP. For this purpose, the elements introduced
in Section 4.1 are supplemented with the following definitions:

• U = {u1, u2, ..., uM} a set of M = |U| users,

• P = {p1, p2, ..., pN} a set of N = |P| permissions,

• R = {r1, r2, ..., rK} a set of K = |R| roles.

The assignment of permissions to users can now be modeled using a bipartite di-
graph ~GUP = 〈VUP, EUP〉, where the set of vertices VUP = U ∪ P corresponds to the
union of users and permissions, while each edge of ~GUP corresponds to an assign-
ment of a permission pj ∈ P to a user ui ∈ U:

〈
pj, ui

〉
∈ EUP ⇔ permission pj is

assigned to user ui.

An example of the graph representation ~GUP = 〈VUP, EUP〉 = 〈U ∪ P, EUP〉 of the
permission-to-user assignment is given in Figure 4.2, where U = {u1, u2, u3} and
P = {p1, p2, p3, p4}. Furthermore, user u1 is assigned permissions p2 and p4, user u2

is assigned permissions p1 and p3 and user u3 is assigned all four permissions. Thus,
EUP = {〈p1, u2〉, 〈p1, u3〉, 〈p2, u1〉, 〈p2, u3〉, 〈p3, u2〉, 〈p3, u3〉, 〈p4, u1〉, 〈p4, u3〉}.

Analogous to the creation of ~GUP based on a given assignment of permissions to
users, a tripartite graph ~GURP = 〈VURP, EURP〉 is introduced to include roles, respec-
tively the assignment of roles to users and the assignment of permissions to roles.
For this, the set of vertices VURP = U ∪ R ∪ P is extended by the inclusion of roles
compared to ~GUP. Furthermore, the edges of ~GURP correspond to the assignment of

28 Chapter 4. Role Based Access Control

FIGURE 4.2: Graph representation of permission-to-user assignment ~GUP.

permissions to roles and the assignment of roles to users. Figure 4.3 shows an exam-
ple of ~GURP corresponding to a role concept comprising two roles. Permissions p1

and p3 are assigned to role r1, which in turn is assigned to users u2 and u3. Permis-
sions p2 and p4 are assigned to role r2, which in turn is assigned to users u1 and u3.
Hence, EURP = {〈p1, r1〉, 〈p2, r2〉, 〈p3, r1〉, 〈p4, r2〉, 〈r1, u2〉, 〈r1, u3〉, 〈r2, u1〉, 〈r2, u3〉}.

FIGURE 4.3: Graph representation of role-to-user and permission-to-role assignment ~GURP.

In addition to ~GUP and ~GURP, Zhang et al. specify a 4-partite graph ~GUHRP, which
allows for hierarchical arrangement of roles. However, role concepts that include
multiple role levels are not relevant for the definition of the Role Mining Problem in
its original version and are therefore addressed separately in Chapter 7.

Although permissions are not directly assigned to users in ~GURP, it can be seen, that
the two graphs of Figure 4.2 and 4.3 coincide in the sense, that for each permission
pj ∈ P assigned to user ui ∈ U in ~GUP, there is a path in ~GURP connecting ui and pj

and for each ui and pj connected by a path in ~GURP, pj is assigned to ui in ~GUP:

〈ui, pj〉 ∈ E(~GUP) ⇔ ∃rk ∈ R : 〈ui, rk〉 ∈ E(~GURP) ∧ 〈rk, pj〉 ∈ E(~GURP). (4.1)

Formally, ~GUP and ~GURP coincide in the aforementioned sense if ~GUP = t(~GURP)−R,
where t(~GURP) denotes the transitive closure of ~GURP and t(~GURP)− R denotes its
reduction by all vertices in R and all edges at elements of R [30]. If this property
is fulfilled, it is ensured that, despite the addition of roles in ~GURP, each user has
exactly the permissions needed as specified by ~GUP.

Based on this notations, the Basic Role Mining Problem can be defined in its graph-
based version:

4.2. The Role Mining Problem 29

Definition 4.1 (The Basic Role Mining Problem, Graph-based Version)
Given a bipartite graph ~GUP = 〈U ∪ P, EUP〉, based on a set of users U and a set of permis-
sions P, find a tripartite graph ~GURP = 〈U ∪ R ∪ P〉, with a set of roles R, such that the
number of its vertices is minimized, while it coincides with the given ~GUP:

Basic RMP =

{
min |R|,
s.t. ~GUP = t(~GURP)− R.

(4.2)

Hence, the Basic Role Mining Problem consists in finding a minimum set of roles and
a corresponding role-to-user and permission-to-role assignment, such that each user
is assigned exactly the permissions needed as specified by the given permission-to-
user assignment.

As visible in the examples of Figures 4.2 and 4.3, the graph-based approach becomes
quickly incomprehensible as the number of users and permissions increase. Another
approach to the problem is therefore to consider the RMP as matrix decomposition
problem, where the assignments of permissions to users, permissions to roles and
roles to users are understood as binary matrices and are defined as follows:

• UPA ∈ {0, 1}M×N denotes the targeted permission-to-user assignment ma-
trix, where UPAi,j = 1 implies, that permission pj shall be assigned to user
ui. Hence, the i-th row of the UPA matrix (UPAT)i encodes the permissions,
which shall be assigned to user ui.

• UA ∈ {0, 1}M×K denotes a role-to-user assignment matrix, where UAi,j = 1
implies, that role rj is assigned to user ui. Hence, the i-th row of the UA matrix
(UAT)i encodes the roles assigned to user ui.

• PA ∈ {0, 1}K×N denotes a permission-to-role assignment matrix, where PAi,j =

1 implies, that permission pj is assigned to role ri. Hence, the i-th row of the
PA matrix (PAT)i encodes the permissions assigned to role ri.

• RUPA := UA ⊗ PA ∈ {0, 1}M×N denotes the resulting permission-to-user
assignment matrix, where ⊗ denotes the Boolean Matrix Multiplication:

RUPAi,j = (UA⊗ PA)i,j = maxl∈{1,...,k}
(
UAi,l · PAl,j

)
(4.3)

and RUPAi,j = 1 implies, that permission pj is assigned to user ui. Hence, the
i-th row of the RUPA matrix (RUPAT)i encodes the permissions, which are
actually assigned to user ui considering the role concept corresponding to R,
UA and PA.

The UPA matrix can directly be obtained from the adjacency matrix belonging to
~GUP. In the same way, the UA and PA matrix can be obtained from the adjacency
matrix of ~GURP. This dependency is shown in Figure 4.4, where 0m×n denotes the
(m× n)-dimensional matrix containing only 0-elements.

Based on this, a definition of the Basic Role Mining Problem in its matrix decomposi-
tion version can be provided:

30 Chapter 4. Role Based Access Control

FIGURE 4.4: Relationship between graph-based and matrix decomposition RMP.

Definition 4.2 (The Basic Role Mining Problem, Matrix Decomposition Version)
Given a set of users U, a set of permissions P and a permission-to-user assignment matrix
UPA, find a minimal set of Roles R, a corresponding role-to-user assignment matrix UA
and a permission-to-role assignment matrix PA, such that each user is assigned exactly the
set of permissions granted by UPA:

Basic RMP =

{
min |R|,
s.t. d(UPA, RUPA) = 0.

(4.4)

The distance d(A, B) between two binary matrices A, B ∈ {0, 1}m×n of equal dimen-
sions it is calculated as follows:

d(A, B) := ‖A− B‖ =
m

∑
i=1

n

∑
j=1

∣∣Ai,j − Bi,j
∣∣. (4.5)

A role concept πi := 〈R(i), UA(i), PA(i)〉, consisting of a set of roles R(i), a role-to-user
assignment UA(i) and a permission-to-role assignment PA(i), denotes a candidate
solution for a given Basic RMP. The set of all candidate solutions for the Basic RMP
is denoted Π. A candidate solution is called a feasible solution, if it satisfies the
constraint in Equation 4.4. For the Basic RMP, in particular, a feasible solution is also
denoted 0-consistent.

Since a role rk ∈ R is characterized by its assigned permissions, it can be represented
as binary vector vR(rk) ∈ {0, 1}N . Consequently, if a role rk is already part of a
role concept, its vector representation vR(rk) coincides with the corresponding row
of the permission-to-role assignment matrix PA. Thus, vR(rk) = (PAT)k and PA =

(vR(r1), vR(r2), ..., vR(rK))
T. Analogously, for a user ui ∈ U, the corresponding vec-

tor representation vU(ui) = (UPAT)i, such that UPA = (vU(u1), vU(u2), ..., vU(uM))T.
Furthermore, the vector representation vP(pj) ∈ {0, 1}M of permission pj ∈ P corre-
sponds to the users, to whom permission pj is assigned. Thus, vP(pj) = UPAj, such
that UPA = (vP(p1), vP(p2), ..., vP(pN)).

In order to compare two binary vectors a, b ∈ {0, 1}n, the partial order ≤ is intro-
duced on the set of binary vectors of dimension n as follows:

a ≤ b⇔ ai ≤ bi, ∀i ∈ {1, ..., n}. (4.6)

4.2. The Role Mining Problem 31

It is obvious that a role r can be assigned to a user u without violation of the 0-
consistency constraint only, if the set of permissions assigned to the considered role
is a subset of the permissions assigned to the user. Using the notation of the partial
order and the previously defined vector representations, this can be expressed as
follows: vR(r) ≤ vU(u).

Figure 4.5 shows the matrix representation of the example in Figures 4.2 and 4.3.
For better visualization, black cells indicate 1’s and white cells represent 0’s. This
representation technique is also used in the further course of this thesis to illustrate
binary matrices.

FIGURE 4.5: Matrix representation of Basic RMP.

In further variants of the RMP, the 0-consistency-condition is relaxed, which means,
that the definition of roles and their assignment to users may result in deviations
compared to the targeted UPA, possibly leading to less roles. This is reflected in the
resulting permission-to-user assignment RUPA = UA⊗ PA. Based on this, different
variants of the Role Mining Problem can be defined as shown in Table 4.1.

TABLE 4.1: Variants of the RMP, based on [106].

RMP-Variant Objective Constraint

Basic RMP |R| → min d(UPA, RUPA) = 0
δ-approx. RMP |R| → min d(UPA, RUPA) ≤ δ
Min. Noise RMP d(UPA, RUPA)→ min |R| = k constant
Edge RMP ‖UA‖+ ‖PA‖ → min d(UPA, RUPA) = 0

Analogous to the Basic RMP, the δ-approx. RMP aims at minimizing the number
of roles. However, up to δ ∈ N deviations between the resulting permission-to-
user assignment RUPA and the targeted permission-to-user assignment UPA are
allowed. In contrast to that, the Min. Noise RMP minimizes the number of deviations
for a given number of roles k ∈N. To reduce redundancy in the assignment of roles
to users and permissions to roles, the Edge RMP aims at minimizing the number of
assignments of roles to users ‖UA‖ and the number of assignments of permissions
to roles ‖PA‖. Similarly as for the Basic Role Mining Problem, the variants presented
in Table 4.1 have been shown to be NP-complete [106].

Especially in real-world use cases, where other, business-driven optimization objec-
tives are relevant, it is often reasonable to allow for deviations. In this way, role
concepts can be obtained, that, for example, produce less license costs or that avoid
SoD-conflicts. In case that the 0-consistency constraint must not be violated, an op-
timization of these objectives is not possible. This is discussed in more detail in

32 Chapter 4. Role Based Access Control

Chapter 9, where the RMP is considered as multi-objective optimization problem. A
broad survey on specifications and definitions of different RMP variants is provided
by Mitra et al. [79] and by Jia et al. [62].

4.3 Access Control in SAP ERP

In this section, the main elements of authorization management in SAP ERP, rel-
evant in the context of access control, are introduced. The information presented
originates primarily from [75], which provides a very detailed overview of SAP’s
access control model. The access control model of SAP ERP complies with the NIST
standard for RBAC. Hence, permissions are assigned to users via roles. However, in
contrast of the specifications of the Basic RMP, SAP ERP supports a two-level role
hierarchy. A special feature of SAP ERP is that the set of session roles of a user cor-
responds to the set of all roles assigned to the considered user and is therefore the
same in each session. Thus, the implementation of Dynamic Separation of Duty is not
possible which is why critical combinations of roles must be avoided already when
creating the role concept (Static Separation of Duty). All access control elements of
SAP ERP, which will be described below and thus constitute the basis for the de-
velopment of the methods presented in the following chapters, are also part of the
access control model of SAP S/4HANA [14]. The developed role mining approaches
can therefore be seamlessly transferred to SAP S/4HANA.

4.3.1 Users

In order to work with the SAP ERP system, a user is provided a user account with
unique user ID and password, with which he or she must first log on to the system.
The logon information as well as other user-specific information are maintained in
the user master record. These user attributes comprise, for example, a uniquely iden-
tifiable user ID, information on company assignment or job title, data on assigned
departments and cost centers as well as functional descriptions for tasks of the user.
The user ID is essential for the security and regularity of the system, since all record-
ings of system accesses (so-called traces) as well as all change documents refer to
it. In order to be able to perform actions in the system, a user requires permissions,
which are assigned to him or her via roles.

ERP systems are mainly used to support business processes including data on ma-
terial, personnel, capacities, such that typical user groups of SAP ERP are located,
for example, within departments like sales, procurement, production, controlling,
etc. However, another interesting user group of SAP ERP are system administrators,
who are responsible for the implementation and maintenance of the access control
model and thus especially the role concept. They usually do not work exclusively in
the ERP system but use other software, e.g. role mining tools, to create and edit role
concepts before they are implemented in the ERP system. To avoid confusion with
regular users, they will be referred to as decision makers (DM) throughout this thesis.

4.3. Access Control in SAP ERP 33

4.3.2 Roles

In contrast to the Role Mining Problem, where single-level role concepts are con-
sidered and optimized, SAP ERP comprises two role levels comprising single and
composite roles, see Figure 4.6. The roles are created in such a way that a set of per-
missions is assigned to each single role and a set of single roles is assigned to each
composite role. Hence, permissions are not directly assigned to composite roles, but
are inherited from the assigned single roles. A set of composite roles is assigned to
each user. At this, single roles represent rather small job functions in an organiza-
tion and are therefore usually assigned a limited number of permissions, whereas
composite roles, correspond to large job functions or business processes.

FIGURE 4.6: Exemplary two-level role concept in graph representation.

4.3.3 Permissions

As it is common in access control, a permission in SAP ERP corresponds to the autho-
rization to perform an operation on an object. However, the operations to be applied
to an object are specified in more detail in SAP ERP. To describe an operation in SAP
ERP, a two-level structure is used, which comprises fields and corresponding field
values. A permission can contain up to 10 fields, each of which can contain one or
more field values. The general structure of a permission in SAP ERP is illustrated
exemplarily in Figure 4.7.

OBJ

N1 N2 N3

V1 V2 V3

Permission

Field
Name

Field
Value

Object

FIGURE 4.7: Specification of permissions in SAP ERP [5].

The fields of an object can be divided into functional and organizational fields. Or-
ganizational fields contain, for example, information on cost centers and company

34 Chapter 4. Role Based Access Control

codes, which constitute the smallest units of a company for which complete account-
ing is possible and are used for reporting purposes, or other organization-related in-
formation. Functional fields, on the other hand, have a more operational character,
which is reflected in the corresponding field values such as add/create, change, delete,
etc. Figure 4.8 shows an exemplary permission based on the object F_BKPF_BUK,
which supports the definition of company code-related permissions in accounting
documents. It contains a functional field ACTVT (activity) and an organizational
field BUKRS (company code). The corresponding field values specify which opera-
tions can be performed.

FIGURE 4.8: Example of a permission based on F_BKPF_BUK [5].

The values of a field can either be single values, contain ranges or wildcards or a
combination of those. In particular, wildcards are a suitable means of assigning
permissions to users, whose associated field values are not known in advance. An
example of this is the object S_DATASET. It provides permissions to access specific
files and includes, among others, the fields FILENAME for the file to be opened (in-
cluding the associated filepath) and ACTVT specifying the permitted activities like
display, change or delete. Since names and paths of files are very variable, the field
FILENAME mostly contains a wildcard. Table 4.2 shows the different possibilities to
define values or value ranges.

TABLE 4.2: Different variants to define field values, based on [5].

Value Interpretation

V1 One single value: V1
[V2, V3] Range: all values between V2 and V3.
∗ Wildcard: any value.

[V4, ∗] Combination: any value greater or equal V4.

Figure 4.9 shows an example of a permission containing a range, which can be trans-
formed into discrete values. The object of the considered permission is F_BKPF_BUK
with the associated fields ACTVT, containing a range [01, 03] and BUKRS contain-
ing 1000 as its field value.

The determination of all possible discrete field values within a range can be carried
out with the help of SAP tables in the respective SAP ERP system of the company
under investigation. The transformation of a wildcard into discrete values is not

4.3. Access Control in SAP ERP 35

FIGURE 4.9: Example of transformation of range into discrete values [5].

always trivial. An example of this are the names and paths of files. This theoreti-
cally infinite set is not known in advance. Hence, an a priori resolution into discrete
permissions is not possible. Hence, a wildcard is an elegant solution to address this.

One approach, which will be revisited in Chapter 5, consists in disregarding the
values of fields in permissions. The resulting combination of an object and its fields
(without field values) will be referred to as dimension of a permission. Figure 4.10
illustrates the relationship between permission, object, and dimension.

FIGURE 4.10: Permission, object and dimension [5].

4.3.4 Transactions

Unlike transactions in the context of database management, the term transaction is
used differently in SAP ERP. In this context, transactions are based on special per-
missions which are linked to the execution of business activities. This means that
business processes can be mapped to a series of transactions within the ERP system.
Transactions are often referred to as functions of SAP ERP, which can be executed by
users. They are uniquely referenced using a transaction code (TCD) and are assigned
to the specific components of SAP ERP. The permissions associated with transactions
are characterized by the object S_TCODE with exactly one associated field TCD. The
value of the TCD field determines whether a user can call a specific transaction.

FIGURE 4.11: Permission associated with a transaction (Example) [5].

The value FB02 in the TCD field in Figure 4.11 refers to Change Document and belongs
to the Financial Accounting (FI) component. Therefore, in order to change a docu-
ment, a user requires exactly this permission. If this is not the case, the user is not
granted access to the requested function call. Transaction codes thus play a key role
in determining the range of functions available to users in SAP ERP. However, they

36 Chapter 4. Role Based Access Control

do not determine the extent to which a function can be used. This is determined
by subsequently requested permissions. Due to their relationship to SAP compo-
nents, transactions have special status in SAP ERP. This is exploited in Chapter 5 to
evaluate the similarity of users.

4.3.5 Authority Checks and Traces

To determine the legitimacy of a user to perform an operation on an object, it is
verified whether he or she is assigned the corresponding permission. In SAP ERP,
this process is called authority check. In case of verification, the user may proceed. In
case the authority check results negative, access is denied.

In case of an authority check, permissions with single values are queried. The au-
thority check thus compares two types of permissions: on the one hand, the permis-
sion assigned to the user via roles, which can contain ranges and wildcards, and on
the other hand, the permission that is to be authenticated, which contains only single
values. The authority check proceeds as follows: For a given permission requested
by a user preq, it is checked, whether the user is assigned a permission pasg contain-
ing the same object and also the same fields by the implemented role concept. If
this is the case, the field values of the individual fields are compared sequentially.
Figure 4.12, shows an example of an authority check. In this example, preq and pasg

refer to the same permission object OBJ. Furthermore, both check for the same fields
N1-N3. Thus, the values of the fields of preq and pasg can be compared sequentially.
The value V1 in the first field N1 matches on both sides. In the second field N2 of
preq, the value V2 is requested, which is included in the range contained in N2 of
pasg. Since N3 contains a wildcard in pasg, the value in N3 of preq does not matter.
The required fields and values of preq are therefore all covered by pasg, such that the
authority check is successful and access can be granted.

Field
Name

Field
Value

ObjectOBJ

N1 N2 N3

V1 V2 V3

OBJ

N1 N2 N3

V1 V2…V3 *

Field
Name

Field
Value

Object

Requested Permission ���� Assigned Permission ���g

FIGURE 4.12: Example of a successful authority check [5].

SAP ERP includes a possibility to document the authority checks performed, the so-
called trace-function. At this, a trace contains information on which user triggered
which authority check (including information on object, fields and values) at what
time. Furthermore, it contains a return code RC, which indicates if the authority
check was successful. The possible values of the return code and the corresponding
interpretations are listed in Table 4.3.

The standard trace documentation fully documents all authority checks and creates
a separate entry for each access date, which quickly leads to a need for large amounts
of storage space. The duplicate-free trace documentation on the contrary, overwrites

4.3. Access Control in SAP ERP 37

TABLE 4.3: Return codes and interpretations, based on [5].

RC Interpretation

0 The user is assigned a permission for the object including the requested field values.
4 The user is assigned a permission for the object, but not for the requested field values.
12 The user is not assigned any permissions for the object.
16 No profile is entered in user master record.
40 The user ID is invalid.

an existing trace if the same authority check (same user and same permission) was
already performed before. In this case, the date of the trace is updated with the last
access date, thus saving a considerable amount of storage space.

Figure 4.13 (left) shows an example of trace data obtained from standard trace doc-
umentation. It shows, for example, that user u1 attempted to use permission p1 at
11:40 am. However, since RC = 12, which means that the user is not assigned this
permission, his or her attempt was unsuccessful. Since u1 attempted to use permis-
sion p1 again at 11:45 am, where again RC = 12 was returned, the first date is not
included in the corresponding trace data obtained from duplicate-free trace docu-
mentation, see Figure 4.13 (right). In the next chapter, it will be shown how an initial
permission-to-user assignment matrix can be derived from the duplicate-free trace
data.

FIGURE 4.13: Standard trace documentation and duplicate-free trace documentation.

In practice, the trace function is, for example, used by consultants, who optimize
existing role concepts according to the principle of least privilege. The analysis of
trace data reveals which permissions are actually used. Unnecessary permissions
can then be withdrawn from the users or the corresponding roles. It is natural that
users also access functions in SAP ERP that they do not need to perform their work
as long as they are assigned the corresponding permissions, which allows for erro-
neous and fraudulent behavior. In order to address this, the concept of SoD-conflicts
is introduced.

38 Chapter 4. Role Based Access Control

4.3.6 SoD-Conflicts

One main aim of real-world role mining is to provide the means for access con-
trol and to foster compliance in IT systems. Therefore, role concepts obtained from
role mining algorithms should comply with the two main principles of access con-
trol: the Principle of Least Privilege and Separation of Duties. Critical combinations of
permissions, which would allow for known patterns of erroneous or fraudulent be-
havior, are identified a priori and summarized in a set of compliance conflicts. To
address this, Li et al. [76] define Separation of Duty (SoD) conflicts as sod〈P̃, m̃〉,
where P̃ ⊆ P is the set of permissions required to perform a sensitive task, while
m̃ is the minimum number of users needed to cover all permissions contained in
P̃. Based on this definition of SoD-conflicts, Sanara et al. introduce the concept of
Statically Mutually Exclusive Roles, resulting in so-called t-m SMER constraints. A t-
m SMER constraint specifies a set of m roles, of which only less than t roles can be
assigned to the same user. In addition, approaches for the generation of such SMER-
constraints and for SoD-aware role mining are presented [97]. In typical SAP use
cases, m̃ = 2 holds, such that all SoD-conflicts can be represented as combinations of
permissions that should not be assigned to a single user. Furthermore, the concept of
roles being mutually exclusive is weakened by the introduction of so-called severe-
ness classes, which specify the severeness of SoD-conflicts by assigning a weight to
each conflict. A formal model for the inclusion of SoD-conflicts into the evaluation
of role concepts can be found in Chapter 9. Since SAP only allows for static sepa-
ration of duties, the prevention of SoD-conflicts must already be taken into account
when creating the role concepts. However, the consideration of SoD-conflicts is not
an intrinsic aspect of SAP ERP, and is usually included via software add-ons from
third-party companies. In the context of the research project AutoBer, SIVIS GmbH
provided a comprehensive library of around 1,500 SoD-conflicts for this research. It
is used by SIVIS GmbH to assess the security of their customers’ ERP systems. In
this thesis, it will be used in Chapter 5, in order to consider security aspects of role
concept while creating an initial permission-to-user assignment matrix from trace
data. Furthermore, in Chapter 9, the set of SoD-conflicts is analyzed in more detail
and used as basis to create a benchmark extension, that allows for the consideration
of SoD-conflicts when evaluating role mining algorithms.

4.3.7 Licenses

The license model used in SAP ERP is a named-user license model. This means that
an individual license must be purchased for each user of the ERP system. SAP ERP
comprises different license categories e.g. Developer, Professional, Limited Professional
and Employee and several specialized license categories e.g. for administrators or
self-service. The classification of the user into the different categories and thus the
associated license costs depend on the permissions assigned to the user. In this con-
text, permissions that allow for the creation or modification of data usually lead to a
more expensive license category than permissions that only allow for the viewing of
data. The license costs for the entire role concept then result as the sum of the license
costs of the individual users [43].

4.4. Requirements for Role Mining in SAP ERP 39

4.4 Requirements for Role Mining in SAP ERP

In order to enable role mining in the context of SAP ERP, there are a number of re-
quirements. Some of them originate directly from the architecture and authorization
model of SAP ERP. First of all, a suitable method must be developed to create a target
assignment of permissions to users (UPA), which serves as input for the subsequent
role mining process. In particular, it must be ascertained that users are assigned
the permissions needed to perform their work. For this purpose, trace data which
is available in SAP ERP will be used in the next chapter. In large companies com-
prising several thousand users and permissions, the resulting permission-to-user
assignment matrices are often of too large dimensions to be processed by a role min-
ing algorithm. Therefore, suitable methods have to be developed to reduce the size
of the matrices, ideally without loss of information. Another requirement, which
results directly from the RBAC model used in SAP ERP, is a two-level role structure
comprising single and composite roles. Single roles correspond to small functional
elements and are therefore assigned rather few permissions. These are assigned to
composite roles, which represent entire business processes.

In addition, evaluation of role concepts should not be solely based on the number of
roles, as is the case with classical role mining, but should also include other business-
relevant criteria. Since ERP systems aim at managing all information that occur in
the context of a company’s business activities, they must be able to adapt to dy-
namically changing business environments, where users join or leave a company or
change their position and responsibilities. Further requirements arise from the per-
spective of decision makers. There must be options to include their expert knowl-
edge into the role mining process. In addition, decision makers must be provided
features to compare, analyze and edit different role concepts before they are trans-
ferred to the ERP system. For this purpose, role mining algorithms must be capable
of processing dynamic events. An important aspect of access control in business
context is the decision on when to implement a new role concept proposed by a
role mining algorithm. The availability of a new role concept, which includes fewer
roles than the one currently deployed, might not be sufficient to cause for its de-
ployment. The generated role concepts must be analyzable and interpretable by a
decision maker. The associated roles must therefore be meaningful and have a com-
prehensible name [6, 64]. In particular, the generation of meaningful role names may
require complex approaches such as machine learning and is therefore not consid-
ered within the scope of this thesis.

Due to their high suitability in dynamic optimization scenarios, evolutionary algo-
rithms are used for this purpose. In order to be able to use these for role mining, a
suitable model for the representation of a role concept, including the set of roles R,
the role-to-user assignment matrix UA as well as the permission-to-role assignment
matrix PA, must be found. Subsequently, the different methods of evolutionary al-
gorithms have to be adapted to the requirements of role mining. Especially with
respect to mutation and crossover, it must be refrained from using standard opera-
tors, such as bitflip or one-point crossover, since they quickly lead to a violation of
the 0-consistency constraint and thus produce infeasible solutions.

41

Chapter 5

Data Management and
Pre-Processing

An important prerequisite for role mining is the existence of a permission-to-user
assignment matrix UPA that reflects the permission needs of the users in a best pos-
sible way. Therefore, in this chapter, it is shown how to derive an initial UPA matrix,
how to enhance it based on the information available in the context of ERP systems
and how to pre-process it in order to make it a suitable input for role mining ap-
proaches. A major part of the methods and results presented in the course of this
chapter were published in [5].

5.1 Creation of UPA Matrices from Trace Data

It is natural that the quality of role concepts obtained from the application of evo-
lutionary algorithms strongly depends on the quality of the input data, i.e. in par-
ticular on the quality of the considered UPA matrix. On the one hand, users are
usually assigned far more permissions by the role concept than needed, resulting in
so-called Type I errors (false positives; users are assigned unneeded permissions).
On the other hand, if a user is not assigned a needed permission by UPA, he or
she will not be assigned this permission by any of the role concepts after the role
mining process is completed if the Basic RMP is considered, resulting in Type II
errors (false negatives: users lack needed permissions). Figure 5.1 shows the rela-
tionship of the permissions assigned to a user by the role concept, the permissions
needed by a user and the permissions, that are actually used by a user. Evidently,
the permissions used are a subset of the permissions assigned. However, there are
also permissions used which are not needed. These can result, for example, from
different users carrying out the same tasks in a different manner.

Permissions assigned (by role concept)

Permissions needed

Permissions used

Type I Errors (false posi�ves)

Type II Errors (false nega�ves)

FIGURE 5.1: Permissions assigned, needed and used [5].

42 Chapter 5. Data Management and Pre-Processing

One approach to tackle Type I and Type II errors consists in relaxing the 0-consistency
constraint to allow for deviations between the targeted UPA matrix and the ac-
tual assignment of permissions to users obtained from a role concept. In this way,
users might be assigned permissions, which are needed but not assigned by UPA,
automatically. Solution approaches for such variants of the RMP are for exam-
ple presented in [78, 106, 107]. However, relaxing the 0-consistency constraint, it
is equally possible that users are assigned additional permissions, which are not
needed (Type I errors), whereas needed permissions remain uncovered (Type II er-
rors). Therefore, an alternative approach, which does not necessarily exclude the
tolerance of deviations, is to improve the quality of UPA prior to role mining. For
this purpose, the concept of RBAC Applicability Noise, which states that only around
80% of all assignments in UPA need to be covered by roles, whereas 20% are excep-
tions, which do not correspond to errors, but still may not be considered in the role
mining process is introduced in [82]. At this, matrix decomposition approaches are
applied to handle noisy data and improve its quality. In [44] and [45] the usage of
stochastic models as well as the inclusion of business attributes are proposed to deal
with noise in role mining. An advantage of ERP systems, which has not yet been
explored in literature, is the availability of trace data. Since trace data describes the
behavior of users in the ERP system, it seems natural to include it into the process of
improving UPA quality.

There are two ways to obtain an initial assignment of permissions to users. If there is
already a role concept implemented at the considered company, the underlying UPA
matrix can be used. If there is no role concept implemented, trace data is an impor-
tant data source. Based on this data, a permission-to-user assignment matrix, which
will be denoted UPAT+ , can be obtained in a straight forward fashion. Each user,
for whom traces were documented, corresponds to a row of UPAT+ . The columns
of UPAT+ result from all successfully checked permissions of the ERP system of the
respective company. If, within the trace documentation period, a successful author-
ity check for user ui and permission pj was performed, the corresponding matrix
element (UPAT+)ij is set to 1, else (UPAT+)ij = 0. For this purpose, users are given
all permissions for a limited period of time. In SAP ERP, this can be achieved by
temporarily assigning the SAP_ALL profile to the users. It is clear that, during this
time, it is necessary to be attentive to prevent users from misusing the additional
permissions. Under the premise that users only use permissions related to the tasks
of their work, it is possible to record meaningful traces, which serve as important
source of information to generate an initial role concept.

Figure 5.2 shows an example of how trace data obtained from duplicate-free trace
documentation can be used in order to create an initial permission-to-user assign-
ment matrix UPAT+ . It shows, for example, that user u1 successfully attempted to
use permission p2 and p4 (RC = 0). Therefore, the corresponding elements of the
initial permission-to-user assignment matrix are set to one, such that (UPAT+)1,2 =

(UPAT+)1,4 = 1. Since there was no successful attempt to use p1 or p3, the cor-
responding elements of the initial permission-to-user assignment matrix are set to
zero, such that (UPAT+)1,1 = (UPAT+)1,3 = 0. The rows of UPAT+ corresponding to
users u2 and u3 are obtained analogously.

5.1. Creation of UPA Matrices from Trace Data 43

FIGURE 5.2: Creation of UPAT+ from trace data.

Within the research project AutoBer, which will be described in more detail in Chap-
ter 10, it was possible to access and analyze access control data of two different
companies. In the following, the most important findings obtained from the analy-
sis of this company data are discussed. Subsequently, different methods to enhance
the initial permission-to-user assignment matrix UPAT+ , derived from the available
trace data, are presented. These methods are then evaluated on the basis of the avail-
able company data.

5.1.1 Analysis of Use Case Data

In the following, access control data of two companies is analyzed. Since a role
concept has already been implemented in both companies, the data provided can be
used to compare the permission-to-user assignment matrix obtained from trace data
UPAT+ with that underlying the implemented role concept UPARC.

Trace Data

In a first step, trace data of both companies is analyzed. It is important to note
that the provided data sets differ considerably in size which is due to the differ-
ence considering the duration of the trace documentation periods. For Company
A traces were documented only for a few days (2016/11/23 and 2019/12/06 un-
til 2020/01/16), whereas for Company B, traces were documented for more than 3
years (2015/08/06 until 2019/11/23). In both companies, duplicate-free trace docu-
mentation was applied. In addition, in Company A, the number of users, for which
traces were documented, was limited by 824, since trace documentation was only
activated for a few departments. In Company B, traces were documented for all
6,289 users of the company. The most important key figures of the two trace data
sets are displayed in Table 5.1. At this, traces+ is defined as the set of traces resulting
from successful authority checks with return code RC = 0.

TABLE 5.1: Key figures of trace data sets [5].

Company A Company B

Number of users 824 6,289
Number of traces 633,102 34,176,166
Number of traces+ 427,973 30,911,178
traces+ per user (avg.) 519.38 4,915.12

44 Chapter 5. Data Management and Pre-Processing

By using the time stamps in the trace data, an empirical distribution function can be
determined. Figure 5.3 shows the progression of successful authority checks over
time grouped by day for Company A. There is a longer period of time in which al-
most no traces were documented, which means that users hardly used any new per-
missions. On closer examination, it becomes evident that this period coincides with
the time between Christmas 2019 and the beginning of the new year 2020, where
normally not much work is done. The smaller periods of inactivity can be explained
by the fact that they coincide with weekends.

0

10000

20000

30000

40000

2
0
1
9
-1
2
-0
6

2
0
1
9
-1
2
-1
1

2
0
1
9
-1
2
-1
6

2
0
1
9
-1
2
-2
1

2
0
1
9
-1
2
-2
6

2
0
1
9
-1
2
-3
1

2
0
2
0
-0
1
-0
5

2
0
2
0
-0
1
-1
0

2
0
2
0
-0
1
-1
5

FIGURE 5.3: Progression of successful authority checks over time for company A [5].

Figure 5.4 shows the progression of the traces over time for Company B. Since, in this
case, the trace documentation period was considerably longer, traces are grouped
by month. Even though a user uses around 3 new permissions per day averaged
over the entire trace documentation period, Figure 3 shows that the access to new
permissions is not equally distributed.

Ja
n

2
0
1
6

Ja
n

2
0
1
7

Ja
n

2
0
1
8

Ja
n

2
0
1
9

10
6

2 ⋅ 106

0

FIGURE 5.4: Progression of successful authority checks over time for company B [5].

If the field values are disregarded and only the permission dimensions accessed by
the users are considered, this becomes even more apparent, see Figure 5.5. In partic-
ular, it can be seen that most of the new permissions respectively permission dimen-
sions were recorded within the last months of the trace documentation period. This
is due to the duplicate-free trace documentation. For example, in case a user uses a
permission each day, only the last access at the last day of the trace documentation
period would be documented in the trace data.

To gain a deeper understanding of the trace data, the distribution of traces across
different objects was examined for Company B. Table 5.2 shows the percentage of
trace data corresponding to the 10 objects that were most frequently subject to au-
thority checks. It turns out that the majority of the generated traces are allocated
to only a few objects. One explanation for this is that all of these objects include a
field containing a wildcard in the role concept, such that a new entry is created in the

5.1. Creation of UPA Matrices from Trace Data 45

Ja
n

2
0
1
6

Ja
n

2
0
1
7

Ja
n

2
0
1
8

Ja
n

2
0
1
9

10
5

0

FIGURE 5.5: Successful authority checks for company B disregarding field values [5].

trace data each time an authority check is performed including a hitherto unchecked
field value in this field. Since these objects constitute a large part of the trace data,
one approach, which will be revisited in order to improve UPA quality, is therefore
to consider these traces independently of the remaining trace data.

TABLE 5.2: Most frequent objects in trace data of company B.

Object Percentage Share Cummulative Share

K_ORDER 71.44% 71.44%
K_CCA 7.06% 78.50%
K_USER_AGR 2.88% 81.38%
K_REPO_CCA 2.73% 84.11%
K_PCA 2.13% 86.24%
K_DATASET 1.99% 88.23%
K_ORGIN 1.59% 89.83%
K_S_DEVELOP 1.03% 90.86%
K_USER_PRO 0.95% 91.81%
K_TRAVL 0.94% 92.75%

Role Concept Data

In addition to trace data, Company A and Company B also provided data on the im-
plemented role concept. In order to make information on the permission-to-user as-
signment matrix UPARC embedded in the role concept available, the underlying role
structure was dissolved. Based on that, Table 5.3 shows basic key figures of the role
concepts of both companies, where ‖UPARC‖ denotes the number of permission-to
user assignments included in UPARC.

TABLE 5.3: Key figures of role concepts [5].

Company A Company B

Number of users 4,261 6,241
‖UPARC‖ 41,434,811 162,418,710
Permissions per user (avg.) 9,724.20 26,024.47

Table 5.3 suggests that the average number of permissions per user is significantly
lower at Company A than at Company B. However, this does not necessarily mean
that an average user of Company A is actually assigned fewer permissions than a
user of Company B. This is due to the fact that the field value entries of permissions
may contain ranges or wildcards in the role concept, which cannot always be dis-
solved into discrete values. Table 5.3 therefore only provides lower bounds for the

46 Chapter 5. Data Management and Pre-Processing

number of permissions assigned to a user, but still allows for further analysis. For
this purpose, at first, the intersection UT+ ∩U of the set of users UT+ in trace data
and the set of users U in role concept data must be determined, due to the dura-
tion of the trace documentation period. Table 5.4 shows the remaining data after
intersection at user level. As the number of users is reduced, the size of trace data
also decreases. This is reflected in |traces+int|, which represents the number of traces
recorded for the users in UT+ ∩U. The same is valid for the number of permissions
assignment ‖UPARC,int‖.

TABLE 5.4: Key figures of data after intersection [5].

Company A Company B

|UT+ ∩U| 814 4,191
|traces+int| 424,150 24,589,087
|UPARC,int| 36,116,695 149,339,751

On the one hand, it is possible that users have left the company during the trace
documentation period. In this case, there is trace data associated to users, which
are no longer part of the role concept data. On the other hand, assignments of per-
missions to users in the role concept may also have changed in the course of the
trace documentation period. Therefore, in some cases, trace data may suggest that a
user has accessed objects, for which the corresponding permission was withdrawn
from the user at a later point in time. It becomes evident that users only use a frac-
tion of their permissions assigned. The number of permission-to-user assignments
obtained from the role concept is about 6 times greater than the number of success-
ful traces for Company B and more than 80 times greater for Company A. This is
again due to the shorter duration of the trace documentation period for Company
A. If it was possible to transform all permissions, which are represented with the
help of ranges and wildcards, into discrete values, a new comparison would lead to
an even higher discrepancy. This results in a large number of Type I errors, which
clearly contradicts the principle of least privilege. Thus, ideally, permissions would
only be assigned to users, if they are actually needed. On the other hand, since the
permission-to-user assignment UPA represents the starting point of role mining, it
is necessary, that the UPA completely covers the permissions needed by users, in
order to avoid Type II errors in the role concepts resulting from role mining. If the
UPA does not fully cover the permission needs of the users, the subsequently calcu-
lated role concept will not fully cover those needs either, which leads to the neces-
sity of readjusting the created roles and is associated with additional effort and thus
additional unnecessary costs. Therefore, the methods which will be introduced to
enhance the permission-to-user assignment matrix UPAT+ obtained from trace data
focus in the reduction of Type II errors.

Compliance Data

Another important source of data when creating and manipulating permission-to-
user assignment matrices is compliance data. Whenever additional permissions are

5.1. Creation of UPA Matrices from Trace Data 47

assigned to users by editing UPA to obtain a higher-quality assignment of permis-
sions to users, security risks can emerge. A user may obtain permission combina-
tions that allow him or her to intentionally or unintentionally cause harm. Such com-
binations are referred to as SoD-conflicts as introduced in Chapter 4. In the next sec-
tion, where methods to enhance the permission-to-user assignment matrix UPAT+

obtained from trace data are presented, the set of SoD-conflicts provided by SIVIS
GmbH is used as a basis to ensure that no additional SoD-conflicts are created. Each
SoD-conflict is assigned a weight representing its severity and includes up to 15 per-
missions and associated field values. In rare cases, individual objects can also cause
for an SoD-conflict. For example, if a user is assigned the S_TCODE object contain-
ing a wildcard in the TCD field, he or she can call all transactions and thus access
all functions of the ERP system. For Company B, it has been found that 346 users
have SoD-conflicts in their permissions assigned by the deployed role concept. Most
of them, however, are administrators or in high-ranking positions in finance depart-
ments, where SoD-conflicts are partly intentional and partly unavoidable. Another
37 users have permissions with SoD-conflicts, where all SoD-conflicts included are
weighted 0 and are therefore not critical. The remaining 5,895 users are assigned
permissions that contain no SoD-conflicts.

5.1.2 Trace Conversion Procedures

In order to convert trace data into useful permission-to-user assignments for role
mining, a three-step procedure is applied as shown in Figure 5.6. In step 1, trace
data is transformed into an initial permission-to-user-assignment matrix UPAT+ as
described previously. The optimal set of permissions for a user ranges between the
permissions obtained directly from trace data and the permissions assigned to the
user by the role concept (if available). Hence, apart from the permissions obtained
from UPAT+ , the user must be assigned further permissions to reduce Type II errors.
For this purpose, users with similar trace data, which indicates similar user behav-
ior and thus similar tasks and responsibilities, are grouped into clusters in step 2.
As a result, a clustered permission-to-user assignment UPAC is obtained. In step 3,
permissions are exchanged among the users of a cluster. In order to prevent the
possible emergence of new SoD-conflicts from the assignment of additional permis-
sions to users, compliance data or data based on an existing role concept, if available,
will be consulted, which can provide additional value. The final output is a suitable
permission-to-user assignment matrix UPA∗ for role concept creation.

Step 3
Exchange of
Permissions

Trace Data

Step 1
Transforma on
of Trace Data

Step 2
Clustering of

Users

���� ���� ���
∗

FIGURE 5.6: Trace conversion procedure [5].

Clustering of Users

In this section, two well-known approaches are presented to group users into clus-
ters: Agglomerative Clustering and Basic Mean Shift Clustering. An advantage of both

48 Chapter 5. Data Management and Pre-Processing

methods is that the number of clusters does not have to be known a priori, which
corresponds to the requirements of the role mining use case. While Basic Mean Shift
Clustering exploits the direct relationship between transactions and components in
SAP ERP and therefore works at transaction level only, Agglomerative Clustering
can be applied at permission and permission dimension level as well. Since its
methodology can be transferred in a straight-forward fashion, it is explained at per-
mission level only:

Agglomerative Clustering (C1). In agglomerative clustering, users are clustered
based on their distance. For this purpose, at first the similarity of two users is de-
fined based on the Jaccard-coefficient [60], which is usually used to determine the
similarity of two sets A and B:

J(A, B) =
|A ∩ B|
|A ∪ B| . (5.1)

Transferred to users and their assigned permissions, the similarity of two users sim :
U ×U → [0, 1], is defined as follows:

sim(ui, uj) :=
∑N

l=1 (UPAT+)i,l · (UPAT+)j,l

∑N
l=1 max

{
(UPAT+)i,l , (UPAT+)j,l

} , (5.2)

whereas their distance is obtained from:

d(ui, uj) := 1− sim(ui, uj). (5.3)

The distance between two clusters U1 and U2 is now defined by the as the maximum
distance between two users from the respective clusters:

d(U1, U2) := maxui∈U1,uj∈U2 d(ui, uj). (5.4)

Based on this, the clustering algorithm proceeds as follows: Initially, each user forms
a separate cluster. Now, iteratively the clusters, which have the smallest distance,
are merged. To prevent all original clusters from merging into a single cluster, an
additional threshold dmax > 0 needs to be specified. Clusters that have a distance
higher than the threshold are not merged. If there are no more pairs of clusters
whose distance is smaller or equal dmax, the algorithm terminates. A more detailed
introduction to agglomerative clustering is provided in [74].

Basic Mean-Shift Clustering (C2). As described in Chapter 4, each transaction
code can be assigned to one of the around 25 components of SAP ERP. Due to the
different structures and business areas, companies usually only use an individually
adapted subset of these components. For a company, whose SAP ERP system com-
prises n components, it is possible to calculate the distribution of activities among
the individual components for each user, such that a user can be represented by a
point in [0, 1]n, using the values of the transaction codes documented in trace data.

5.1. Creation of UPA Matrices from Trace Data 49

The coordinates of the point result from the percentage shares corresponding to the
distribution of his or her activities among the different components, as illustrated
exemplarily in Figure 5.7.

FIGURE 5.7: Examplary distribution of user activities among SAP components [5].

Based on this, users can now be clustered using Basic-Mean Shift Clustering [47]. For
this purpose, each point is initially defined as center of a circular cluster based on
a predetermined radius rmax ∈ (0, 1). If one of the initial clusters contains another
point, the corresponding clusters are replaced by a new circular cluster with the
same radius rmax, where the center of the new cluster is defined by the mean of
all points contained. If thereafter, the new cluster contains new points, this step is
repeated. If this is not the case, the cluster cannot be shifted further, which means
that the algorithm is terminated for this cluster.

Exchange of Permissions

After the users have been distributed to different clusters, this information can now
be used to assign additional permissions. It is assumed that all users in a cluster
have similar tasks and therefore need similar permissions. For the exchange of per-
missions, a distinction is made between two different cases:

No Role Concept Data available - Permission Exchange (E1). In this case, no ad-
ditional information can be obtained from a role concept. Therefore, the exchange of
permissions is based on information included in trace data and the user clusters that
were obtained from the presented clustering approaches. Another data source that
requires consideration for permission exchange is compliance data. If additional
permissions are assigned to users during permission exchange, this should not re-
sult in any additional SoD-conflicts. Based on this, the exchange in (E1) is performed
in three steps: At first, each user is assigned the permissions, which are assigned to
him or her by UPAT+ . In the second step for each cluster Ui, the union Pi of permis-
sions, which are assigned to at least one of the users of Ui, is formed. Subsequently,
for each conflict in the compliance matrix, it is checked whether it is included in Pi.
If this is the case, the corresponding permissions are removed from Pi. In the third
step, the resulting set Pi, free of SoD-conflicts, is assigned to all users of cluster Ui.
On the one hand, this ensures that each user is assigned the needed permissions
according to his or her trace data. On the other hand, removing the problematic
permissions from Pi ensures that no additional SoD-conflicts emerge.

Role Concept Data available - Transaction and Dimension Exchange (E2). In this
approach, it is assumed that a role concept is already available. The basic idea is

50 Chapter 5. Data Management and Pre-Processing

again to assign similar permissions to all users of one cluster. Due to their special
role in SAP ERP, transactions are considered first. A user is assigned each transac-
tion that is documented for at least one user of the same cluster Ui considering trace
data. Subsequently, all transactions, which are not assigned to the considered user in
the role concept, are withdrawn. In this way, the user is only assigned those transac-
tions, which are assigned to at least one of the users of Ui, but which are covered by
the role concept at the same time. This automatically prevents the user from receiv-
ing additional SoD-conflicts, which makes an SoD-validation using the compliance
matrix unnecessary. In a second step, the same procedure is now repeated for each
further permission dimension, where all dimensions, that were documented for at
least one user in Ui, are assigned to the user. Subsequently, all dimensions, which
are not assigned to the user in the role concept, are withdrawn. Finally, the field
values of the remaining dimensions are obtained from the field values of the user’s
permission-to-user assignments in the role concept. This step converts dimensions
back to permissions and provides the advantage that ranges and wildcards can also
be taken into account. Again, additional SoD-conflicts cannot emerge, due to the
consideration of the role concept data.

5.1.3 Evaluation of Trace Conversion Procedures

In this section, the presented methods are evaluated. Since the data provided by
company A only covers a very short trace documentation period, the evaluation is
performed on the trace data of company B. In Figures 5.4 and 5.5 it was shown that
most of the trace data was recorded at the end of the trace documentation period.
The idea behind the evaluation scenario is therefore to investigate if it is possible to
predict the permissions needed by each user within a year based on the trace data
obtained from a trace documentation period of three months and the application
of the trace conversion procedures. For this purpose, the existing trace data is di-
vided into two groups. Trace data recorded in the last three months (3M) of the trace
documentation period (Nov 2018 - Jan 2019) is used to derive a permission-to-user
assignment matrix UPA3M

T+ , which is used as a basis to group users applying the pre-
sented cluster algorithms (C1-2) and to exchange permissions within clusters (E1-2)
resulting in UPA∗. This is then compared with the set of trace data recorded from
Feb 2018 to Jan 2019 and the corresponding permission-to-user assignment matrix
UPA12M

T+ obtained from the consideration of 12 months (12M) to examine how many
of a user’s permissions used during this time could be covered by the methods pre-
sented. It can be assumed that a user performs a large part of his work activities
at least once a year, in particular tasks that only occur infrequently, like the annual
financial statement, such that the corresponding recorded trace data covers most of
his or her activities in SAP ERP. The creation of the matrices used for evaluation is
shown in Figure 5.8.

Of originally 6,289 users (see Table 5.1), traces were recorded for 3,006 users in the
considered last three months of the trace documentation period. Therefore, this
number serves as a reference for the number of clusters that emerge using (C1-
2) with different values for the different threshold parameters. In Agglomerative
Clustering (C1), different values for the Jaccard distance were selected. Setting the

5.1. Creation of UPA Matrices from Trace Data 51

Trace Data (3M)

Trace Data (12M)

Step 1
Transforma on
of Trace Data

Step 2+3
Clustering &

Exchange

����
12M

����+
3M

���
∗

FIGURE 5.8: Creation of matrices for evaluation [5].

threshold value dmax = 0.01, for example, means that all users of a cluster have Jac-
card similarity of at least 99%. The number of clusters created for different values of
dmax is shown in Table 5.5.

TABLE 5.5: Number of clusters for (C1) [5].

dmax 0.5 0.3 0.1 0.05 0.01

Permission 2,166 2,494 2,562 2,575 2,593
Dimension 1,237 1,826 2,387 2,428 2,434
Transaction 1,586 2,041 2,321 2,340 2,341

In Mean Shift Clustering (C2), the size of the maximum radius of a cluster rmax, was
specified. As stated, this clustering technique operates at the transaction level only.

TABLE 5.6: Number of clusters for (C2) [5].

rmax 0.2 0.15 0.1 0.05 0.01

Transaction 129 302 779 2,011 2,197

It can be observed that (C1), which operates on all three levels, forms significantly
more clusters on permission level than on the other two levels. As expected, the
number of clusters increases considerably with decreasing value of the threshold.
It is interesting to see that (C2), which operates only at transaction level, produces
fewer clusters than (C1) at this level.

In order to evaluate the different combinations of clustering methods and exchange
methods, three different cases were examined:

In Case 1, permission exchange (E1) was applied to the entire set of trace data ob-
tained from the three months (3M) under consideration.

In Case 2, the influence of traces associated to permissions that typically include
wildcards in role concepts is investigated. These permissions are removed from the
trace data before the application of permission exchange (E1). In the following, this
approach is referred to as (E1) reduced.

In Case 3, exchange method (E2) is applied to the entire set of trace data obtained
from the three months (3M). Here, reducing trace data is not needed, since (E2) op-
erates on dimension level, where wildcards are not relevant.

For each case, two key indicators are calculated. For this purpose, the structure
of the matrix UPA∗, resulting from the application of the clustering and exchange
methods, must first be examined in more detail. If permission pj is assigned to user

52 Chapter 5. Data Management and Pre-Processing

ui by UPA∗, i.e. (UPA∗)ij = 1, it is possible that ui has used pj within the 12 months
under consideration, such that (UPA12M

T+)ij = 1, but it is equally possible that pj has
not been used by ui during this period, i.e. (UPA12M

T+)ij = 0. Based on this, two
matrices can be derived:

The matrix UPA∗⊕, where (UPA∗⊕)ij := (UPA∗)ij · (UPA12M
T+)ij, represents all permis-

sions that were assigned to users by the proposed methods and that were actually
used in the considered 12 months.

The matrix UPA∗	 := UPA∗ −UPA∗⊕ thus represents all permissions that were as-
signed to users by the clustering and exchange methods but were not used.

The first key indicators to assess the quality of the resulting UPA∗, the coverage rate
CR∗, is calculated as the percentage of permissions in UPA12M

T+ that are covered by
UPA∗:

CR∗ :=
‖UPA∗⊕‖
‖UPA12M

T+ ‖
. (5.5)

The false positive rate FPR∗, which corresponds to the percentage of permissions in
UPA∗ which have not been used, serves as second key indicator:

FPR∗ :=
‖UPA∗	‖
‖UPA∗‖ . (5.6)

Table 5.7 shows the resulting values for CR∗ and FPR∗. Since the number of clus-
ters does not change much after a certain point by further decreasing the thresholds
of the different clustering methods, only results for selected threshold values are
shown. The results obtained for the other threshold values examined can be found
in Appendix A.1. The value of ∆ := CR∗ − CR3M indicates the difference of the
resulting coverage rate CR∗ and the coverage rate before the application of the pro-
posed methods CR3M.

TABLE 5.7: Evaluation of trace conversion procedures [5].

Case 1 (E1) Case 2 (E1) reduced Case 3 (E2)
CR∗ ∆ FPR∗ CR∗ ∆ FPR∗ CR∗ ∆ FPR∗

(C1) Permission 0.50 0.463 0.007 0.430 0.564 0.019 0.325 0.822 0.036 0.132
(C1) Permission 0.30 0.459 0.003 0.424 0.555 0.010 0.264 0.811 0.024 0.103
(C1) Permission 0.10 0.460 0.003 0.419 0.555 0.009 0.253 0.809 0.023 0.099

(C1) Dimension 0.50 0.469 0.013 0.553 0.598 0.053 0.532 0.866 0.079 0.266
(C1) Dimension 0.30 0.462 0.006 0.445 0.571 0.025 0.367 0.834 0.047 0.165
(C1) Dimension 0.10 0.465 0.009 0.399 0.555 0.010 0.274 0.812 0.025 0.107

(C1) Transaction 0.50 0.469 0.012 0.460 0.579 0.034 0.417 0.850 0.063 0.194
(C1) Transaction 0.30 0.461 0.004 0.448 0.562 0.017 0.321 0.824 0.038 0.135
(C1) Transaction 0.10 0.460 0.004 0.423 0.555 0.010 0.274 0.813 0.027 0.112

(C2) Transaction 0.20 0.726 0.270 0.977 0.861 0.316 0.954 0.973 0.186 0.606
(C2) Transaction 0.15 0.661 0.205 0.958 0.805 0.260 0.927 0.955 0.168 0.541
(C2) Transaction 0.10 0.507 0.050 0.845 0.680 0.135 0.788 0.905 0.118 0.367
(C2) Transaction 0.05 0.462 0.006 0.667 0.565 0.020 0.463 0.818 0.031 0.140

5.1. Creation of UPA Matrices from Trace Data 53

As discussed previously, the implemented role concept of Company B assigns sig-
nificantly more permissions to users than actually needed, such that a false positive
rate FPRRC can be calculated for the role concept of Company B and used as a addi-
tional reference value. Since the role concept contains wildcards, only a lower bound
for FPRRC can be calculated in Case 1 and Case 2. On permission dimension level
(Case 3), an exact calculation of FPRRC is possible. Although the values for CR3M

and FPRRC are independent of the selected clustering and exchange methods in the
three cases, they differ due to the different data sets used, where trace data was re-
duced in Case 2 and permission dimensions are considered in Case 3. The different
values for CR3M and (the lower bounds of) FPRRC are shown in Table 5.8:

TABLE 5.8: Reference values CR3M and FPRRC [5].

Case 1 Case 2 Case 3

CR3M 0.456 0.545 0.787
FPRRC 0.912 0.980 0.709

It turns out that the exchange of permissions in Case 1 hardly leads to better re-
sults using (C1), whereas the coverage rate could be improved significantly using
exchange method (E1) in combination with Mean Shift Clustering (C2). However,
this results in a large number of permissions, which are assigned to users, but have
not been used in the 12 months under consideration, reflected in large values of FPR.
Deleting permissions from trace data, which typically contain wildcards, before the
application of clustering and permission exchange (Case 2), improves the values for
both CR and FPR in almost all test setups. In Case 3, where permission dimen-
sions are considered, it is shown that using (C2) coverage rates of over 95% can be
achieved while the false positive rate is significantly reduced compared to the FPRRC

of the role concept. These methods could therefore be used, for example, by consul-
tants when optimizing existing role concepts and permission-to-user assignments.
A promising approach to improve the quality of the presented methods could be
the integration of user attributes into the clustering procedures. In order to create
a permission-to-user assignment based on this data, it could be assumed that users
with similar values considering the different attributes, in particular with regard to
similar task descriptions, require similar permissions. However, experience shows
that attributes are poorly maintained in SAP ERP, as evidenced by the use of dif-
ferent languages, different names for the same entities (names of departments, task
descriptions etc.) or by a large number of blank attribute fields in general. Hence,
this approach is not investigated in more detail in this thesis.

54 Chapter 5. Data Management and Pre-Processing

5.2 Pre-Processing of UPA Matrices

After a suitable permission-to-user matrix UPA∗ has been found using the methods
presented in the previous section, it can be further processed before it serves as input
for a role mining algorithm. On the one hand, it is possible that UPA∗ contains
redundant information. If this is the case, the problem size can be reduced without
loss of information. On the other hand, resulting permission-to-user assignment
matrices in practice are often of too high dimension to be processed at once. In this
case, the use of clustering methods is recommended.

5.2.1 Reduction of UPA Matrices

Considering the computational complexity of the Role Mining Problem, being able
to reduce the dimension of the associated permission-to-user assignment matrix
UPA∗ and using such compressed matrices as input to a role mining algorithm may
help to save computing time. For this purpose, a pre-processing procedure is pre-
sented, which reduces the dimension of UPA∗ without loss of information. It con-
sists of four pre-processing steps (PP1-4), which are based on [58]. The goal is to ob-
tain a permission mapping µP : P∗ → P(P∗), that aggregates permissions into per-
mission classes, as well as a user mapping µU : U∗ → P(U∗), that aggregates users
into user classes. The set of permissions classes resulting from the application of
(PP1-4) is denoted PC. The set of resulting user classes is denoted UC. Analogously
to the definition of the vector representation of a permission, the vector representa-
tion v̂P(Pi) of a permission class Pi = µP(pj) is defined as v̂P(Pi) := vP(pj). The vec-
tor representation v̂U(Ui) of a user class Ui = µU(uj) is defined as v̂U(Ui) := vU(uj).

Based on that, a permission-class-to-user-class assignment matrix UCPCA can be
obtained, which is ideally of reduced dimension. It is clear that the definition of
the Basic Role Mining Problem in its original formulation in Chapter 4 is no longer
applicable to the new situation comprising permission and user classes instead of
permissions and users. Therefore, in the following, the Basic Role Mining Problem
is presented in its permission and user class version:

Definition 5.1 (The Basic RMP, Permission and User Class Version)
Given a set of user classes UC, a set of permission classes PC and a permission-class-to-user-
class assignment matrix UCPCA, find a minimal set of Roles R, a corresponding role-to-
user-class assignment matrix UCA and a permission-class-to-role assignment matrix PCA,
such that each user class is assigned exactly the set of permission classes granted by the
UCPCA matrix:

Basic RMP =

{
min |R|,
s.t. d(UCPCA, RUCPCA) = 0,

(5.7)

where RUCPCA := UCA⊗ PCA.

It is obvious that the consideration of user and permission classes considerably com-
plicates the definition of the role mining problem. Therefore, in the further course of
the thesis, where possible, a user class Ui is represented by a representative user

5.2. Pre-Processing of UPA Matrices 55

ui ∈ Ui and a permission class Pj is represented by a representative permission
pj ∈ Pj, so that the formulation of the Basic RMP in Chapter 4, where users and
permissions are considered instead of user classes and permission classes, can be
applied.

In the following, it is described how the reduced permission-class-to-user-class as-
signment matrix UCPCA can be obtained from UPA∗. For this purpose, the four
pre-processing steps are explained in detail and an example as well as a description
of the algorithmic procedure are provided in each case. Subsequently, it is shown,
how the obtained user and permission class version of the RMP can be transformed
into an equivalent instance of the RMP, in its original formulation based on users
and permissions, using a conversion procedure.

An algorithmic description of the pre-processing procedure is provided in Algo-
rithm 5.1. In Chapter 6, this is integrated into the evolutionary algorithm for role
mining, which was developed as part of this thesis, see Algorithm 6.2. In this con-
text, the variables U∗, P∗ and UPA∗, which represent the problem instance of the
Basic RMP, as well as U, P and UPA, which represent the same problem instance
after reduction, are assumed to be global variables, such that they can be called
from within a function. In order to keep the initial problem instance, encoded in
U∗, P∗ and UPA∗, unmodified during the execution of the pre-processing proce-
dure, they are copied into U, P and UPA, see Algorithm 5.1, line 1. The subsequent
pre-procseeing steps are then executed based on U, P and UPA. In the conversion
procedure, which concludes the pre-processing procedure, U, P and UPA are mod-
ified in such a way, that they eventually correspond to the reduced instance of the
RMP.

Algorithm 5.1: doPreProcessing(user mapping µU , permission mapping µP)

1 U := U∗, P := P∗ and UPA := UPA∗;

2 doPreProcessing_Step_PP1a(µP);
3 doPreProcessing_Step_PP1b(µP);
4 doPreProcessing_Step_PP2(µP);
5 doPreProcessing_Step_PP3(µU);
6 doPreProcessing_Step_PP4(µU);

7 doConversionProcedure(µP, µU);

(PP1): Deletion of empty rows and columns. Permissions that are not assigned to
a user will not be assigned to a role in the context of role mining. Likewise, users
who are not assigned any permission will also not be assigned any role. Therefore,
it is reasonable to delete the columns corresponding to such permissions and the
rows corresponding to such users from UPA resulting in a reduced matrix UPA(PP1).
For the permission mapping µP, this means that each permission p ∈ P, which is
assigned to no user, is mapped to permission class P0, such that µP(p) = P0. The
same holds for the user mapping µU where µU(u) = U0, for all users u ∈ U, which
are assigned no permission. In the example in Figure 5.9, this means that µP(p7) =

µP(p9) = P0 and µU(u3) = U0, such that P0 = {p7, p9} and U0 = {u3}.

56 Chapter 5. Data Management and Pre-Processing

FIGURE 5.9: Example of pre-processing step (PP1).

An algorithmic description of pre-processing step (PP1a), where permissions, that
are assigned to no user, are removed, is provided in Algorithm 5.2.

Algorithm 5.2: doPreProcessing_Step_PP1a(permission mapping µP)

1 P0 := { };
2 for permission pj ∈ P do
3 if ∑ui∈U UPAi,j = 0 then
4 P0 := P0 ∪ {pj};
5 µP(pj) := P0;
6 remove j-th column of UPA;
7 P := P \ {pj};
8 end
9 end

10 PC := {P0};

An algorithmic description of pre-processing step (PP1b), where users, that are as-
signed no permissions, are removed, is provided in Algorithm 5.3.

Algorithm 5.3: doPreProcessing_Step_PP1b(user mapping µU)

1 U0 := { };
2 for user ui ∈ U do
3 if ∑pi∈P UPAi,j = 0 then

4 U0 := U0 ∪ {ui};
5 µU(ui) := U0;
6 remove i-th row of UPA;
7 U := U \ {ui};
8 end
9 end

10 UC := {U0};
11 UPA(PP1) := UPA;

(PP2): Aggregation of Permissions. If permissions are assigned to exactly the same
users, it can be useful to aggregate them into a permission class. Instead of assigning
permissions to users individually, they can be assigned the corresponding permis-
sion classes. For UPA(PP2), this means that its columns correspond to permission

5.2. Pre-Processing of UPA Matrices 57

classes instead of single permissions and with that to the deletion of all columns of
UPA(PP1), which are identical copies of another column, except for one representa-
tive. In the example in Figure 5.10, this means that p1, p4, p5 and p10 are aggregated
into one class such that µP(p1) = µP(p4) = µP(p5) = µP(p10) = P1. Furthermore,
µP(p6) = µP(p8) = µP(p14) = P4 and µP(p13) = µP(p15) = P7. All other permis-
sions are the only members of their respective permission class.

FIGURE 5.10: Example of pre-processing step (PP2).

An algorithmic description of pre-processing step (PP2) is provided in Algorithm 5.4.

Algorithm 5.4: doPreProcessing_Step_PP2(permission mapping µP)

1 initialize UPA(PP2);

2 for permission pi ∈ P do

3 if ∃Pj ∈ PC : vP(pi) = v̂P(Pj) then
4 Pj := Pj ∪ {pi};
5 µP(pi) := Pj;
6 else
7 create new permission class PM = P|PC| := {pi};
8 µP(pi) := PM;

9 PC := PC ∪ {PM};
10 append vP(pi) as new column to UPA(PP2);
11 end
12 end

(PP3): Aggregation of Users I. Most companies fill a majority of their positions
at least twice. This is necessary so that employees can substitute for each other in
the event of vacation or illness. Analogous to the aggregation of permissions, it
is therefore reasonable to aggregate users, that are assigned exactly the same per-
missions, into the same user class. This results in a permission-class-to-user-class
assignment matrix UPA(PP3), obtained from the deletion of all rows from UPA(PP2),
which are identical copies of another row, except for one representative, such that
the rows of UPA(PP3) correspond to user classes instead of users. In the example
in Figure 5.11, users u1 and u5 are assigned exactly the same permissions, such
that µU(u1) = µU(u5) = U1. The same is valid for users u4, u6 and u9, such that
µU(u4) = µU(u6) = µU(u9) = U3.

58 Chapter 5. Data Management and Pre-Processing

(PP3)

��������������

	�

	�

	�

	�

	�

	�

	

	�

	��

��������������

�

�

�

�

�

�

��
���

��
���

� �3

�1 = �1,�5

�2 = �2

�3 = �4,�6,�9

�4 = �7

�5 = �8

�6 = �10

	��

� �7 = �11

FIGURE 5.11: Example of pre-processing step (PP3).

An algorithmic description of pre-processing step (PP3) is provided in Algorithm 5.5.

Algorithm 5.5: doPreProcessing_Step_PP3(user mapping µU)

1 initialize UPA(PP3);

2 for user ui ∈ U do

3 if ∃Uj ∈ UC : vU(ui) = v̂U(Uj) then
4 Uj := Uj ∪ {ui};
5 µU(ui) := Uj;
6 else
7 create new user class UM = U|UC| := {ui};
8 µU(ui) := UM;

9 UC := UC ∪ {UM};
10 append vU(ui)

T as new row to UPA(PP3);
11 end
12 end
13 UPA := UPA(PP3);

(PP4): Aggregation of Users II. In the last step of the pre-processing procedure,
the final permission-class-to-user-class matrix UCPCA = UPA(PP4) is obtained. For
this purpose, the assignment of permission classes to user classes is examined in
more detail. In case that there is a user class, which is assigned exactly the union of
permission classes assigned to some other user classes, this user class can be omitted
from the role mining process. The user class is deleted and its users are assigned to
a separate user class U∪ by the user mapping. Furthermore, the corresponding row
is deleted from UPA(PP3) in order to obtain UPA(PP4). In the example in Figure 5.12,
user class U6, containing user u10 only, is assigned all permission classes. This cor-
responds to the union of the permission classes assigned to U1 and U4. Hence, if
u10 is assigned all roles, which will be assigned to the users in U1 as well as all
roles assigned to the users in U4 after role mining, he or she is assigned all permis-
sions needed. Therefore, user class U6 is omitted from the role mining process and
µU(u10) = U∪. The permission classes assigned to user class U7 can also be obtained
as union of the permission classes assigned to other user classes, for example U2

and U3. The example further shows that there are different possibilities of assigning
roles to u11. Another option to cover the permissions needed by user u11 could be to
assign all roles to u11, which are eventually assigned to the users in U2, and all roles,

5.2. Pre-Processing of UPA Matrices 59

that are assigned to users in U5. However, this is not relevant for the subsequent role
mining process. Hence, U7 is removed and µU(u11) = U∪.

(PP4)

��������������

	�

	�

	�

	�

	�

��������������

	�

	�

	�

	�

	�

	�

	�

���

	���
 	�

���

�

�

�

�

�

�

�∪

	�

FIGURE 5.12: Example of pre-processing step (PP4).

An algorithmic description of pre-processing step (PP4) is provided in Algorithm 5.6.

Algorithm 5.6: doPreProcessing_Step_PP4(user mapping µU)

1 initialize UPA(PP4);

2 for user class Ui ∈ UC do

3 if ∃ UC(PP4) ⊆ UC \ {Ui} : v̂U(Ui) = ∑N
k=1

(
maxUj∈UC(PP4)

{
v̂U(Uj)k

}
· ek

)
then

4 for user uj ∈ Ui do
5 U∪ := U∪ ∪ {uj};
6 µU(uj) := U∪;
7 end
8 delete user class Ui;
9 end

10 end
11 UCPCA := UPA(PP4);

In order to further simplify the problem, after executing the four pre-processing
steps, a conversion procedure is executed, see Algorithm 5.7. A representative per-
mission pi is created for each permission class Pi and a representative user ui is cre-
ated for each user class ui. These are then aggregated into the sets U respectively
P. Since UPA = UCPCA, U, P and UPA eventually represent the reduced version
of the RMP instance. However, if this reduced version is used for role mining, the
role concepts obtained in this way must be adapted to the initial situation, encoded
in U∗, P∗ and UPA∗, after the role mining process is completed. For this purpose, a
suitable post-processing procedure is presented in the next chapter.

Algorithm 5.7: doConversionProcedure()

1 U := { } and P := { };
2 for permission class Pi ∈ PC do
3 vP(pi) := v̂P(Pi);
4 P := P ∪ {pi};
5 end

6 for user class Ui ∈ UC do
7 vU(ui) := v̂U(Ui);
8 U := U ∪ {ui};
9 end

60 Chapter 5. Data Management and Pre-Processing

In the example, by applying the pre-processing procedure, the 11× 15 matrix UPA∗

could be reduced to a 5 × 7 matrix UPA. This demonstrates the effectiveness of
(PP1-4). If they are used to reduce the problem size of established benchmark in-
stances for role mining, as in the next chapter, this becomes even more evident. For
the basic variants of single and two-level role mining, the four pre-processing steps
can be applied without restriction. However, if further variants of the role mining
problem are considered, e.g. the Constrained Two-level Role Mining Problem or
dynamic or multi-objective role mining variants, it may not be possible to apply all
pre-processing steps. For example, in dynamic role mining the mapping of permis-
sions to permission classes may change over time. This is explained in more detail
in the corresponding chapters.

After the four pre-processing steps have been applied, possible solutions for the
RMP can be examined. For the basic role mining problem, there is a trivial solu-
tion π0 = 〈R(0), UA(0), PA(0)〉. It is dependent on the number of users |U| and the
number of permissions |P| after the application of the pre-processing procedure, as
shown in Table 5.9.

TABLE 5.9: Creation of trivial solution for the Basic RMP.

UA(0) PA(0) |R(0)|

Case 1: |U| ≤ |P|: I|U| UPA |U|
Case 2: |U| > |P|: UPA I|U| |P|

In case |U| ≤ |P|, one role is created for each user. This role is then assigned the
permissions assigned to the considered user according to UPA. Hence, UA(0) = I|U|
and PA(0) = UPA. Since RUPA(0) = UA(0) ⊗ PA(0) = I|U| ⊗ UPA = UPA, π0 is
clearly 0-consistent and comprises |R(0)| = |U| roles.

In case |U| > |P|, one role is created for each permission. These roles are the as-
signed to users according to UPA. Hence, UA(0) = UPA and PA(0) = I|P|. Since
RUPA(0) = UA(0) ⊗ PA(0) = UPA⊗ I|P| = UPA, also in this case, π0 complies with
the 0-consistency constraint and comprises |R(0)| = |P| roles.

The trivial solution π0 is used in the next chapter to assess the quality of benchmarks
for the role mining problem. It also serves as an indicator for the quality of role
concepts obtained from the application of role mining algorithms. These should
always comprise fewer roles than π0.

5.2.2 Clustering of UPA Matrices

In order to perform role mining for large companies comprising several thousands of
users and millions of permissions, the permission-to-user assignment matrices after
pre-processing may still be of too high dimension to be used as input for role mining
algorithms. One approach to address this is the application of clustering methods.
Different clusters are to be identified within the UPA matrix, which can then be
used as input for different runs of a role mining algorithm in order to mine a role
concept for the entire company. It is noticeable that, as long as there is no strict block
structure in UPA, the repeated execution of a role mining algorithm on different

5.2. Pre-Processing of UPA Matrices 61

clusters might result in a loss of information on the relationship of permission to user
assignments, which may lead to an increased total number of roles. However, since
usually UPA matrices, corresponding to very large companies, cannot be processed
at once by current role mining algorithms, this should be tolerated.

In contrast to the first section of this chapter, where clustering was only executed on
user level, it is aimed at identifying blocks within UPA that contain a highly similar
structure considering the assignment of permissions to users. A special feature of
the application of clustering methods to matrices is that the order of its rows and
columns has no influence on the information contained in the matrix. Therefore, the
use of biclustering methods is recommended, see Figure 5.13.

Cluster 1

Cluster 3

Cluster 4

U
se

rs

Permissions

U
se

rs

Permissions

Clustering on user level Biclustering on user and permission level

Cluster 1

Cluster 2

Cluster 3
Cluster 2

FIGURE 5.13: Clustering on user level vs. biclustering, based on [105].

A broad survey on different biclustering algorithms is given by Tanay et al. in [105].
However, the suitability of the different algorithms for role mining will not be fur-
ther investigated at this point. Rather, a practical example should be provided
to show the structures contained in a real-world permissions-to-user assignment
UPA. For this purpose, a clustering algorithm, the so-called information-theoretic co-
clustering algorithm [29], was applied to the UPA matrix of a company with almost
10,000 users and over 5 million permissions.

U
s
e
r

Permission

FIGURE 5.14: Exemplary UPA matrix before clustering [8].

Figure 5.14 shows the matrix before applying the clustering algorithm. Black dots
again correspond to the assignment of permissions to users. Even if the large num-
ber of users and permissions does not enable the visualization of each individual

62 Chapter 5. Data Management and Pre-Processing

assignment, the UPA matrix before clustering already suggests the existence of cer-
tain patterns underlying its distribution. This becomes more evident in Figure 5.15,
which shows the same UPA matrix after the application of the information-theoretic
co-clustering algorithm and the corresponding reordering of the rows and columns
of UPA.

Permission

U
s
e
r

FIGURE 5.15: Exemplary UPA matrix after clustering [8].

The clustering procedure reveals a distinct block structure. Closer examination of the
nature of this block structure shows that the majority of permissions can be uniquely
assigned to functional areas of the ERP system. This complies with the methodology
of SAP, where transactions are associated with components of the SAP ERP system,
as described in Chapter 4. A noticeable feature is that the users at the bottom of the
matrix are assigned almost all permissions. These are likely to be system adminis-
trators, which have a special role in the company. One possibility would therefore
be to exclude this area from role mining process and assign the SAP_ALL profile to
these users. In addition, there are large areas within the matrix in which there is
no assignment of a permission to a user. As these areas are not relevant for the role
mining process, the problem size is further reduced.

It could be shown that both pre-processing and clustering have a great influence on
the size of the UPA matrices that are used as input for role mining. In particular,
clustering still leaves room for further research. For example, different clustering
methods could be compared and their suitability regarding computation time as
well as regarding the quality of the resulting clusters in the context of very large
UPA matrices could be investigated.

63

Chapter 6

Single-level Role Mining

In this chapter, a new algorithm for the basic role mining problem, the addRole-EA, is
presented. For this purpose, at first, common solution strategies for the RMP are re-
viewed. To this day, there are only few suitable benchmarks for the RMP. Therefore,
RMPlib, an open source library containing a set of new industry-oriented bench-
mark instances, is introduced. Based on that, the basic version of the addRole-EA is
presented, evaluated and compared to the previously discussed solution strategies.
Subsequently, selected parts of the algorithm are analyzed in more detail, which
leads to the development of additional variants of the mutation method, some of
which can further improve the performance of the algorithm.

6.1 Solution Strategies for the RMP

The Role Mining Problem and its different variants are well-studied problems. Many
solution techniques have been applied in the last years e.g. clustering techniques,
problem transformation and permission grouping. Therefore, in the next section, an
overview of solution strategies for the RMP is presented. Since, a detailed overview
of different solution strategies is provided by Mitra et al. in [79], they are described
rather briefly at this point. Thereafter, different approaches to use evolutionary al-
gorithms in the context of role mining are reviewed in more detail.

6.1.1 General Solution Strategies for the RMP

One common approach consists in mapping the RMP to other problems in data
mining. Lu et al. consider the different variants of the RMP as matrix decompo-
sition problems and use greedy algorithms to solve the corresponding binary inte-
ger programming problems [78]. Huang et al. show the equivalence of the RMP
and the Set Cover Problem and use greedy algorithms (GABasic, GAEdge, MRBasic) as
solution strategy for the latter [58]. Vaidya et al. map the RMP to the Minimum
Tiling problem and use greedy algorithms to mine tiles, which are then converted
into roles [106]. In [38], the equivalence of the Basic RMP and Minimum Biclique
Cover Problem is shown and again greedy algorithms are applied as solution strat-
egy. From this, the Edge Concentration (EC) and Lattice Postprocessing (LP) algorithms
are derived. In addition, a set of real-world datasets, the HP-Labs benchmark set, is
described, which constitutes the standard benchmark for role mining.

64 Chapter 6. Single-level Role Mining

Zhang et al. use a graph optimization approach (GO) to mine roles [114]. Iteratively,
two roles are merged depending on the assigned permissions to improve the role
concept. In [115], roles are iteratively merged, created or deleted from the under-
lying graph to reduce the cost function. Dong et al. propose the Network-Clique
Finding Model to map the Role Mining Problem onto problems of graph theory,
which enables the use of graph optimization techniques for its solution [33].

One of the first role mining tools is ORCA [100]. Roles are obtained by clustering
permissions, thus obtaining a hierarchy of permission clusters. One drawback of
this approach consists in the fact that overlapping of roles in terms of the assigned
permissions is only allowed among roles that are hierarchically related. The work
of Kuhlmann et al. in [71] is also based on a clustering approach. Kumar et al. add
an additional cardinality constraint to role mining, which limits the number of per-
missions assigned to each role to a maximum number, and propose the Constrained
Role Miner (CRM), which is also based on permission clustering [72]. Molloy et al.
propose the HierarchicalMiner (HM), which is based on formal concept analysis. A
reduced concept lattice is used as initial role hierarchy and then heuristically pruned
to obtain improved role concepts [80].

Algorithms like the Simple Role Mining Algorithm (SMA) [17], CompleteMiner (CM)
and FastMiner (FM) [108] or Pair Count (PC) [81] are based on the concept of per-
mission grouping. A set of candidate roles is obtained by grouping permissions to
roles. Mostly, a role is assigned permissions, which are assigned to the same two or
more users considering UPA. Subsequently, the roles in the candidate set are ranked
by different prioritization functions and then assigned to users. Zhang et al. use
permission utilization counts to be able to include top-down information into their
Data-Driven Role Evolution approach (DDRE) [117]. Lu et al. consider different sets of
candidate roles. One set (IT) is derived directly from the permission-to-user assign-
ment matrix UPA such that this approach corresponds to the Discrete Basis Problem.
For the other set (INT), additional candidate roles are obtained from grouping shared
permissions of two users into a role for all combinations of two users. In both cases,
greedy algorithms are applied to obtain a role concept [77].

6.1.2 Evolutionary Algorithms in Role Mining

Since the Basic Role Mining Problem was shown to be NP-complete, evolutionary
algorithms seem to be a straightforward approach to its solution. However, to this
day, not much research has been conducted in this direction.

Hu et al. apply evolutionary algorithms in the RBAC context. However, instead of
mining roles to improve role concepts, EAs are used for insider threat detection by
mining rules that connect roles to processes. Based on these mappings, discrepan-
cies in process execution can be detected, which results in a reduction of internal
fraudulent behaviors in enterprises [55].

Saenko and Kotenko are the first to apply EAs for Role Mining [91]. This approach
assumes exactly K = M = |U| roles at all times of the optimization process. This is
due to the observation that the Role Mining Problem has a trivial solution in which
each of the M users is assigned only one role. Each individual is represented by

6.1. Solution Strategies for the RMP 65

three chromosomes: the matrices Chr[X] := UA ∈ {0, 1}M×M and Chr[Y] := PA> ∈
{0, 1}M×N , and an additional vector Chr[Z] ∈ {0, 1}M. Note that the UA matrix
is quadratic and transposed, such that the columns of both matrices correspond to
roles. For an example, see Figure 6.1.

FIGURE 6.1: Representation of the individuals in [91].

The entries of Z describe which role is active in the role concept corresponding to
the individual. Crossover is done by applying one-point-crossover to Z, UA and
PA, while mutation on these elements is based on bit flip. A weighted sum of
the number of active roles ‖Chr[Z]‖ and the number of deviations between the re-
sulting permission-to-user assignment matrix RUPA = UA⊗ PA and the targeted
permission-to-user assignment matrix UPA is used as fitness function. Finally, this
approach is evaluated on synthetic data based on randomly generated binary matri-
ces.

In [90], the authors present an improved version of their EA. It is based on a new
representation of individuals and the omission of passive roles. Each individual is
assigned one chromosome Chr := 〈r1, r2, ..., rs〉, where each ri corresponds to one
role. Further, ri := 〈LX

i , LY
i 〉, where LX

i denotes the list of users, which are assigned
role ri, and LY

i the list of permissions, which are assigned to role ri. This implies
that each permission in LY

i is assigned to each user in LX
i . For crossover, the one-

point-crossover method is adapted to the new representation of the individuals, as
outlined in Figure 6.2.

FIGURE 6.2: One-point-crossover adapted to the new representation of individuals in [90].

66 Chapter 6. Single-level Role Mining

Mutation is performed by adding, deleting or changing values in LX
i and LY

i accord-
ing to the given probability of mutation. The fitness function remains as in [91].
The authors show that the new representation of the individuals and especially the
variable-length list of roles, which contains only roles that are active in the sense of
[91], result in a performance gain.

In [69], the developed EAs are applied to the problem of finding optimal access
control schemes in virtual local networks.

In [89], [93] and [94], the RBAC Scheme Reconfiguration Problem, which is based on dy-
namically changing permission-to-user assignments and will be discussed in more
detail in Chapter 8, is defined. Again, EAs are used as solution strategy for the
new optimization problem. Furthermore, a new representation of individuals is
presented, where the columns of UA and PA are interpreted as binary numbers.
An exemplary individual is shown in Figure 6.3.

FIGURE 6.3: Transformation of binary vectors into numbers to represent individuals in [89].

In [92], the authors extend their work on RBAC to other domains of access control
(VPN- and VLAN-problems) and evaluate their methods in a real-world case study
on data derived from enterprise resource planning systems.

In [32], a definition of the δ-approx Least Privilege Mining Problem is given. This is,
given a set of users U, a fixed set of roles R defined by a fixed permission-to role
assignment PA and a permission-to-user assignment UPA, to find a role-to-user as-
signment UA such that d(UPA, UA⊗ PA) ≤ δ. The authors apply an EA as solution
strategy. In this approach, analogous to [90], a role is defined by the users to whom it
is assigned to as well as the permissions assigned to the role, while the combination
of different roles constitutes the chromosome of an individual. Subsequently, a se-
ries of crossover, mutation and selection operations, which are not further specified
by the authors, are applied iteratively to improve the solution quality.

Du and Chang also use EAs to solve the Role Mining Problem [35]. At first, a set of
candidate roles RC is created based on [113], in which a role is defined by the per-
missions assigned to it and the set of users to which the role is assigned. A role can
either be activated or deactivated. The activation of a role corresponds to the assign-
ment of each permission assigned to the role to each user to whom the considered
role is assigned. In case a role is deactivated, it has no influence on the resulting role

6.2. Benchmarking for Single-level Role Mining 67

concept. Secondly, an initial population of individuals is created randomly. Each
individual I is assigned two binary vectors SI and HI , where:

SI := 〈s(1)I , s(2)I , ..., s(|RC |)
I 〉

HI := 〈h(1)I , h(2)I , ..., h(|RC |)
I 〉.

At this, s(j)
I = 1 means that role j is activated in the role concept corresponding

to individual I, while h(j)
I = 0 implies deactivation of role j in individual I in the

next generation (only if possible without creating deviations compared to the orig-
inal UPA). New individuals are created by one-point crossover and bit flip mu-
tation of the HI-vectors and the corresponding update of SI . A 2-tuple consisting
of a weighted sum to describe the structural complexity of a role concept and an
interpretability-measure to describe the meaningfulness of the contained roles [113]
constitutes the fitness function.

One main drawback of most of the presented algorithms is the violation of the 0-
consistency property as the proposed mutation and crossover methods are designed
in a way that causes deviations between the resulting permission-to-user assignment
RUPA and the targeted permission-to-user assignment UPA. This is not valid for the
approach of Du and Chang, where the 0-consistency is fulfilled. In their approach,
however, the search space of the original Basic Role Mining Problem is limited un-
necessarily by only considering a limited set of candidate roles. Furthermore, in all
approaches, random matrices are used for evaluation, instead of the commonly used
HP-Labs benchmark set, which complicates performance comparison.

6.2 Benchmarking for Single-level Role Mining

In literature, there are mainly two different ways in which performance evaluation
of role mining algorithms can be conducted. On the one hand, role mining algo-
rithms can be evaluated based on data taken from real-world use cases and industry
studies. On the other hand, performance evaluation can be carried out using syn-
thetically created data sets. The results as well as the benchmark instances presented
in this section are based on the publication of RMPlib in [8].

Industry Studies
As the Role Mining Problem is of high relevance in industry practice, it is logical
to evaluate the developed role mining algorithms on data captured from industrial
IT systems. Zhang et al. used permission-to-user assignment matrices obtained
from the University of Melbourne to evaluate their graph optimization approach
GO [114]. Kuhlmann et al. evaluated their SAM Role Mining tool in two case stud-
ies based on data of two different companies [71]. Saenko and Kotenko used data
from an ERP system of a company with around 200 users to evaluate their evolu-
tionary approach for the RMP [92]. One common drawback when attempting in-
dustrial studies is that data used for evaluation is usually subject to confidentiality

68 Chapter 6. Single-level Role Mining

agreements and is therefore rarely accessible to the public. In 2008, Ene et al. pub-
lished the so-called HP-Labs benchmark instances [38]. Ever since, these benchmark
instances have been used in various performance evaluations for role mining algo-
rithms.

Synthetic Data
Another approach to evaluate role mining algorithms is the creation of synthetic
data. Xu and Stoller extended the HP-Labs benchmark instances by randomly gen-
erated user attribute data to examine the interpretability of roles [113]. Several other
authors, like Vaidya et. al [108] or Saenko and Kotenko [91, 94], developed random
data generators to create pairs of UA and PA matrices, based on the desired number
of users, roles and permissions and the desired densities (number of one-elements
divided by number of all matrix entries) of the resulting UA and PA matrices . Sub-
sequently, the UPA matrix, which eventually constitutes the benchmark instance, is
obtained by Boolean matrix multiplication of the generated UA and PA matrices. Lu
et al. further added a noise function to the resulting UPA matrices to reflect real data
sets [77]. However, although data is randomly generated and therefore not subject
to confidentiality agreements, the generated benchmark instances are not publicly
accessible and can thus not be used for performance comparison.

6.2.1 Analysis of HP-Labs Benchmark Instances

The HP-Labs benchmark [38] is composed of benchmark instances taken from var-
ious real-world use cases such as the Cisco firewalls of the Hewlett Packard net-
works or the US Veteran’s Administration and ranges from comparatively small (46
users/ 46 permissions - Healthcare) to large instances (3,485 users/ 10,127 permis-
sions - America Large). In order to analyze the structure and complexity of the bench-
mark instances of HP-Labs, the four pre-processing steps (PP1-4) were applied, see
Table 6.1. Again, U∗, P∗, UPA∗ denote the number of users and permissions respec-
tively the permission -to-user-assignment matrix before and U, P, UPA denote the
same variables after the application of the pre-processing procedure. Furthermore,
ρUPA∗ and ρUPA denote the densities of UPA∗ respectively UPA.

TABLE 6.1: Analysis of HP-Labs benchmark instances, based on [8].

America America Health- Firewall Firewall
Large Small APJ EMEA care Domino 1 2

|U∗| 3,485 3,477 2,044 35 46 79 365 325
|U| 430 255 475 34 16 20 71 10

|P∗| 10,127 1,587 1,164 3,046 46 231 709 590
|P| 1,354 349 578 263 19 38 86 11

‖UPA∗‖ 185,294 105,205 6,841 7,220 1,486 730 31,951 36,428
‖UPA‖ 18,719 5,011 1,588 1,278 98 146 616 51

ρUPA∗ 0.005 0.019 0.003 0.068 0.702 0.040 0.124 0.190
ρUPA 0.032 0.064 0.006 0.143 0.322 0.192 0.101 0.464

It is clearly visible that the original number of users as well as the number of permis-
sions are reduced significantly. Even the largest benchmark instances have less than

6.2. Benchmarking for Single-level Role Mining 69

500 users. Permissions are also reduced from over 10,000 to less than 2,000 consider-
ing the largest instances. These values can be used to determine the number of roles
|R(0)| of the trivial solution π0. As, after compression, the number of permissions
exceeds the number of users for all instances, the number of roles of π0 corresponds
to the number of users after pre-processing, such that |R(0)| = |U|.

Ene et al. provide a lower bound RL on the number of roles for each of the bench-
mark instances [38]. Since a good role mining algorithm should always obtain role
concepts comprising less roles than |R(0)|, these two values can be compared to
determine the range of roles for evaluation available in each benchmark instance.
The values for |R(0)|, the role lower bound as well as their difference ∆HP-Labs :=
|R(0)| − RL are shown in Table 6.2.

TABLE 6.2: Range of roles for evaluation for HP-Labs benchmark instances, based on [8]

America America Health- Firewall Firewall
Large Small APJ EMEA care Domino 1 2

|R(0)| 430 225 475 34 16 20 71 10
RL 390 172 453 34 14 20 64 10

∆HP-Labs 40 53 22 0 2 0 7 0

It is evident that for some of the benchmark instances (EMEA, Domino and Fire-
wall 2) the optimum number of roles can already be attained by applying the pre-
processing procedure. Considering the other benchmark instances, there is little
room for proper evaluation of role mining algorithms, since the number of roles of
the trivial solution is very close to the Role Lower Bound. Also, the remaining num-
ber of users and permissions after compression drops far below typical magnitudes
for industrial-strength enterprise systems. Thus, new role mining benchmarks are
introduced in the next section.

6.2.2 RMPlib - New Benchmarks for the RMP

To overcome the disadvantages of the HP-Labs benchmark, RMPlib, a new set of
three different benchmarks for the RMP, is presented. The PLAIN_x benchmark
contains synthetically generated benchmark instances based on the data generation
process using random data generators [108, 91, 94]. To reflect typical component
structures found in the ERP systems of most enterprises, a second benchmark, the
COMP_x benchmark, was created. The RW_x benchmark contains benchmark in-
stances based on real-world scenarios.

The PLAIN_x Benchmark: General Role Mining

The creation of benchmark instances for the PLAIN_x benchmark is based on the
same method, that has already been applied to create synthetic data for the RMP.
At first, a role-to-user assignment matrix UA and a permission-to-role assignment
matrix PA are created randomly. In a second step, the corresponding UPA∗ matrix
is obtained from Boolean matrix multiplication of UA and PA and can then serve as
basis for the evaluation of role mining algorithms, see Algorithm 6.1.

70 Chapter 6. Single-level Role Mining

Algorithm 6.1: Benchmark Creation for PLAIN_x-benchmark

Input: |U∗|, |P∗|, |R|, ρ̃UA, ρ̃PA
Output: permission-to-user assignment matrix UPA∗

1 create random binary matrix UA based on |U∗|, |R| and ρ̃UA;
2 create random binary matrix PA based on |P∗|, |R| and ρ̃PA;
3 UPA∗ := UA⊗ PA;

To create the PLAIN_x benchmark instances for RMPlib, in a first step, real-world
permission-to-user assignment data, derived from various different companies was
analyzed within the context of the research project AutoBer. It could be found that
users tend to have a rather small set of roles, with only a few exceptions like man-
agers and administrators. The same is valid for the number of permissions assigned
to a role. This is reflected in the chosen values of the desired densities ρ̃UA of the role-
to-user assignment matrix UA and ρ̃PA of the permission-to-role assignment matrix
PA, which are used as probability parameter for a random binary matrix generator
based on Bernoulli distribution in order to generate these matrices. Based on that,
the expected number of roles per user of the resulting user-role-assignment UA can
easily be obtained by K · ρ̃UA, where K = |R| equals the number of roles, and ranges
between 2.5 and 10 roles per user on average for the PLAIN_x benchmark. The ex-
pected number of permissions per role in the PA matrix is obtained from N · ρ̃PA,
where N = |P| is the number of permissions, and ranges from 5 to 20. The expected
density ρ̃UPA∗ of the created UPA∗ matrix can then be obtained from ˜ρUA, ρ̃PA and K
as follows:

ρ̃UPA∗ = p(UPA∗i,j = 1) = 1− p(UPA∗i,j = 0)

= 1− p(UAi,l = 0∨ PAl,j = 0, ∀l ∈ {1, ..., k})
= 1−ΠK

l=1 p(UAi,l = 0∨ PAl,j = 0)

= 1−ΠK
l=1(1− ρ̃UA · ρ̃PA)

= 1− (1− ρ̃UA · ρ̃PA)
K.

From that, twenty new benchmark instances of different sizes and densities were
created. They are grouped in three categories: PLAIN_small, PLAIN_medium and
PLAIN_large, based on the number of users. The new benchmark instances and the
relevant parameter values used for benchmark creation as well as the resulting den-
sity ρUPA∗ of the user-permission assignment matrix UPA∗ are presented in Table 6.3.

Table 6.4 shows the number of users |U|, the number of permissions |P| and the
densities ρUPA after application of the four pre-processing steps. The reduction in
the number of roles and permissions is significantly lower compared to the results
obtained for the HP-Labs benchmark instances. Since no lower bounds are known
for the benchmark instances of RMPlib, another key figure of the created instances
must be used to estimate the range of roles for evaluation. For this purpose, the
number of roles |R| used to create the respective benchmark instance is a suitable
candidate. Although it is not guaranteed that it corresponds to the minimum num-
ber of roles, it serves as an upper bound for that number. For PLAIN_small_01, it will

6.2. Benchmarking for Single-level Role Mining 71

TABLE 6.3: The PLAIN_x benchmark instances, based on [8].

|U∗| |P∗| |R| ρ̃UA ρ̃PA ρUPA∗

PLAIN_small_01 50 50 25 0.1 0.1 0.240
PLAIN_small_02 50 50 25 0.2 0.1 0.433
PLAIN_small_03 50 100 25 0.1 0.1 0.274
PLAIN_small_04 50 100 25 0.2 0.1 0.386
PLAIN_small_05 100 100 50 0.05 0.05 0.137
PLAIN_small_06 100 100 50 0.1 0.05 0.216
PLAIN_small_07 100 200 30 0.3 0.1 0.469
PLAIN_small_08 100 200 50 0.1 0.05 0.221

PLAIN_medium_01 500 500 150 0.02 0.02 0.062
PLAIN_medium_02 500 500 150 0.05 0.02 0.136
PLAIN_medium_03 500 500 200 0.05 0.01 0.009
PLAIN_medium_04 500 1,000 200 0.025 0.01 0.048
PLAIN_medium_05 500 1,000 200 0.025 0.02 0.095
PLAIN_medium_06 500 1,000 250 0.04 0.01 0.096

PLAIN_large_01 1,000 1,000 250 0.025 0.01 0.060
PLAIN_large_02 1,000 1,000 500 0.01 0.01 0.050
PLAIN_large_03 1,000 1,000 500 0.01 0.005 0.024
PLAIN_large_04 1,000 5,000 400 0.0125 0.003 0.015
PLAIN_large_05 1,000 5,000 400 0.025 0.003 0.030
PLAIN_large_06 1,000 5,000 500 0.01 0.0025 0.013

be shown in the following sections that the minimum number of roles is at most 24,
whereas the number of roles used for the creation of this instance was 25. Therefore,
∆RMPlib := |R(0)| − |R| serves as a lower bound for the range of roles for evalua-
tion. Table 6.4 shows that this value is comparatively high for the instances of the
PLAIN_x benchmark, which underlines the good suitability for the evaluation of role
mining algorithms.

TABLE 6.4: The PLAIN_x benchmark instances after pre-processing, based on [8].

|U| |P| ρUPA |R| ∆RMPlib

PLAIN_small_01 46 41 0.282 25 16
PLAIN_small_02 50 47 0.458 25 22
PLAIN_small_03 45 89 0.310 25 20
PLAIN_small_04 50 85 0.457 25 24
PLAIN_small_05 95 90 0.153 50 40
PLAIN_small_06 100 88 0.241 50 38
PLAIN_small_07 99 177 0.512 30 69
PLAIN_small_08 100 173 0.249 50 50

PLAIN_medium_01 467 460 0.068 150 310
PLAIN_medium_02 500 453 0.148 150 303
PLAIN_medium_03 500 388 0.114 200 188
PLAIN_medium_04 498 744 0.060 200 298
PLAIN_medium_05 497 965 0.099 200 297
PLAIN_medium_06 500 861 0.109 250 250

PLAIN_large_01 999 843 0.070 250 593
PLAIN_large_02 998 993 0.050 500 493
PLAIN_large_03 999 865 0.027 500 365
PLAIN_large_04 999 2,029 0.028 400 599
PLAIN_large_05 1,000 2,108 0.053 400 600
PLAIN_large_06 999 2,229 0.022 500 499

72 Chapter 6. Single-level Role Mining

The COMP_x Benchmark: Role Mining considering Enterprise Structures

The analysis of the permission data provided by SAP ERP customers showed that
certain block patterns can be identified in industrial permission-to-user assignment
matrices, which suggests the application of clustering algorithms before role mining.
To address this, RMPlib provides a further set of instances, the COMP_x benchmark,
which allows for mining roles in component-dependent permissions. For this, each
permission is assigned to a component. On this basis, roles can be created in such
a way that the all permissions assigned to a role are assigned to the same compo-
nent. Hence, the resulting role can also be assigned to this component. Now, if
each user is assigned roles from one component only, the resulting permission-to-
user-assignment matrix has strict block structure. Since in practice there are users
like administrators and managers, who are assigned permissions that belong to dif-
ferent areas of the organization, users can be assigned roles belonging to different
components. Therefore, two parameters σUA, σPA ∈ [0, 1] are integrated into the
benchmark creation process to allow for noise in PA and UA. Based on that, there
are four variants of each instance of the COMP_x benchmark: In the first variant,
the UPA∗ matrix has strict block structure. In the other cases, the block structure of
UPA∗ is distorted by noise in either UA or PA, or in both.

Creation of PA. In a first step, in order to generate the PA matrix, roles are created
randomly with consideration of the desired PA density ρ̃PA and the given compo-
nent assignments. This results in roles, that are either assigned only permissions
belonging to the same component (σPA = 0) or that are assigned permissions cen-
tered in one component with a small number of outlier permissions belonging to
other components (σPA > 0). In both cases, each of the resulting roles, is assigned to
the component, that, in comparison, contains the most of its permissions. As usual,
the PA matrix is then constituted by the vector representations of the different roles.

Creation of UA. In a second step, to generate the UA matrix, the same methodol-
ogy is applied at user level. Each user is assigned random roles based on the desired
UA density ρ̃UA. Again, a user is either assigned only roles, which strictly belong
to one component (σUA = 0) or a small number of roles from other components are
admitted (σUA > 0) to include noise.

Creation of UPA∗. The creation of benchmark instances is again conducted by
Boolean matrix multiplication. Depending on the values of the two noise param-
eters, the obtained benchmark instances can vary from dispersed matrices (σUA >

0 ∧ σPA > 0) to partitionable matrices (σUA = 0 ∧ σPA = 0) having strict block struc-
ture. Especially the latter case motivates the use of clustering algorithms before role
mining, as the UPA∗ matrix can be partitioned into independent sub-problems.

Again, a set of new benchmark instances, the COMP_x benchmark, reflecting the
functional structures of ERP systems, was created. In a first step, four benchmark in-
stances (COMP_01.1, COMP_02.1, COMP_03.1 and COMP_04.1) were created based
on strict component assignments (σUA = 0 ∧ σPA = 0) with increasing numbers of
users, permissions, roles and components. From this, applying different values of

6.2. Benchmarking for Single-level Role Mining 73

the two noise parameters σUA and σPA further, more complicated variants of those
benchmarks could be derived. Table 6.5 shows the new benchmark instances of the
COMP_x benchmark, the corresponding noise variations and the number of users,
permissions, roles and components used when creating these instances. Further,
the densities ρUPA∗ of the resulting permission-to-user assignment matrices are in-
cluded. At this, the number of components is denoted |C|.

TABLE 6.5: The COMP_x benchmark instances, based on [8].

|U∗| |P∗| |R| |C| ρ̃UA ρ̃PA ρUPA∗

COMP_01.1 1,000 1,000 400 5 0 0 0.025
COMP_01.2 1,000 1,000 400 5 0.005 0 0.030
COMP_01.3 1,000 1,000 400 5 0 0.001 0.029
COMP_01.4 1,000 1,000 400 5 0.005 0.001 0.035

COMP_02.1 5,000 10,000 2,000 7 0 0 0.006
COMP_02.2 5,000 10,000 2,000 7 0.001 0 0.007
COMP_02.3 5,000 10,000 2,000 7 0 0.0005 0.008
COMP_02.4 5,000 10,000 2,000 7 0.001 0.0005 0.010

COMP_03.1 10,000 10,000 3,000 10 0 0 0.007
COMP_03.2 10,000 10,000 3,000 10 0.001 0 0.008
COMP_03.3 10,000 10,000 3,000 10 0 0.0005 0.011
COMP_03.4 10,000 10,000 3,000 10 0.001 0.0005 0.013

COMP_04.1 10,000 20,000 3,500 10 0 0 0.003
COMP_04.2 10,000 20,000 3,500 10 0.0005 0 0.003
COMP_04.3 10,000 20,000 3,500 10 0 0.0001 0.004
COMP_04.4 10,000 20,000 3,500 10 0.0005 0.0001 0.004

Table 6.6 shows the number of users U, the number of permissions P, the densities
ρUPA and the values of ∆RMPlib after the four pre-processing steps. Again, it can
be noted that the values of ∆RMPlib are very high for the instances of the COMP_x
benchmark, such that there is a broad range of roles for the evaluation of role mining
algorithms.

TABLE 6.6: The COMP_x benchmark instances after pre-processing, based on [8].

|U| |P| ρUPA |R| ∆RMPlib

COMP_01.1 991 1,353 0,033 400 591
COMP_01.1 999 1,353 0,041 400 599
COMP_01.1 991 1,491 0,036 400 591
COMP_01.1 991 1,491 0,044 400 599

COMP_02.1 4,957 5,804 0,008 2,000 2,957
COMP_02.2 4,997 5,804 0,010 2,000 2,997
COMP_02.3 4,961 7,801 0,010 2,000 2,961
COMP_02.4 4,997 7,801 0,012 2,000 2,997

COMP_03.1 9,935 6,827 0,009 3,000 3,827
COMP_03.2 9,998 6,827 0,011 3,000 3,827
COMP_03.3 9,940 9,110 0,012 3,000 6,110
COMP_03.4 9,998 9,110 0,014 3,000 6,110

COMP_04.1 9,969 8,790 0,005 3,500 5,290
COMP_04.2 9,997 8,790 0,006 3,500 5,290
COMP_04.3 9,971 10,844 0,006 3,500 6,471
COMP_04.4 9,997 10,844 0,007 3,500 6,497

74 Chapter 6. Single-level Role Mining

The RW_x Benchmark: Role Mining on Real-World Use Case Data

Since RMPlib is focused on industry-relevant aspects of role mining, further bench-
mark instances are provided. These allow for the examination of problems and fea-
tures, which arise in the application of role mining algorithms in real-world scenar-
ios. The RW_x benchmark offers new industry-relevant options for assessing the
characteristics of role mining algorithms that go beyond the capabilities of the syn-
thetically created benchmark instances. The current version of RMPlib comprises
two benchmark instances, each containing the actual user-permission assignment of
a company using an ERP system provided by SAP. The first instance RW_1 includes
around 700 users and over 120,000 permissions, while the second benchmark in-
stance of the RW_x benchmark RW_2 covers almost 10,000 users and over 4 million
permissions and thus possibly requires a combination of clustering and optimiza-
tion techniques, see Table 6.7. As enterprise data is usually subject to confidentiality
agreements, the RW_x benchmark instances can only be published anonymously
with no further information on the corresponding companies. For the same reason,
no further real-world benchmarks can be provided at this time. However, it is aimed
to expand the number of instances in the RW_x benchmark of RMPlib continuously.

TABLE 6.7: The RW_x benchmark instances, based on [8].

|U∗| |P∗| ‖UPA∗‖ ρUPA∗

RW_01 733 121,935 383,216 0.004
RW_02 9,634 4,028,813 32,246,643 0.008

File Format, Access and Contribution

The aim of this section is to describe how to interact with RMPlib. At first, the file
format of .rmp files, which are used to provide the benchmark instances of RMPlib,
is described. In a second step, access and contribution possibilities are presented.

File Format. All files contained in RMPlib are divided into two sections: the meta-
section and the data-section. The meta-section, which is introduced by a # as first
character in each line, includes the name of the benchmark instance, copyright terms,
a short description of the syntax of the data-section as well as the number of users,
permissions and the underlying number of roles used for the creation of the bench-
mark instance. The data-section contains the explicit benchmark instance data and
thus the corresponding permission-to-user assignment matrix UPA∗. Each line of
the data-section represents one user followed by the permissions assigned to this
user. An example of the structure of .rmp files is given in Figure 6.4.

Access to RMPlib. To access the current version of RMPlib, a repository, including
all benchmark instances and file descriptions, can be cloned from: https://github.
com/RMPlib/RMPlib. In addition, a wiki is provided containing further information
on the benchmark instances, e.g. the current best solutions considering the Basic
RMP as well as an FAQ-section.

https://github.com/RMPlib/RMPlib
https://github.com/RMPlib/RMPlib

6.3. The addRole-EA 75

FIGURE 6.4: Format of .rmp files (example), based on [8].

Contribution to RMPlib. As RMPlib is designed as open access library, contribu-
tions containing new best solutions for the benchmark instances of RMPlib or con-
tributions containing new benchmark instances, preferably taken from real-world
use cases or extensions and instances applicable for other variants of the RMP are
strongly encouraged. Scientists and practitioners, who want to contribute to RMPlib,
are invited to review the possibilities of participation and contribution specified in
the GitHub wiki.

6.3 The addRole-EA

In this section, the addRole-EA is presented. This serves as basic algorithm to ad-
dress the RMP and will be adapted and further developed according to the spe-
cific requirements of the different use cases considered and the resulting variants of
the RMP in the course of the thesis. The design of the addRole-EA is based on the
general structure of an evolutionary algorithm as described in Chapter 3. Its main
method, the so called addRole-method, provides a new technique for the addition of
new roles to and the consequential deletion of existing roles from a role concept and
is mainly used for crossover and mutation. A special feature of the addRole-EA is
that new roles, which are created during the role optimization process, can always be
assigned to at least one user without violation of the 0-consistency constraint. This
and the way how roles are added and deleted based on the addRole-method ensures
that only feasible solutions are created at all times. The addRole-EA as well as the
corresponding evaluation results were initially published in [4].

6.3.1 Components and Methods of the addRole-EA

In the following, the different components and methods of the addRole-EA are intro-
duced. First, the pre-processing procedure, which was introduced in the last chapter,
is applied to simplify input data and reduce the problem size. Subsequently, an ini-
tial population of individuals, each representing one possible role concept, is created
and optimized until a certain stopping criterion is met. Finally, the post-processing

76 Chapter 6. Single-level Role Mining

procedure ensures the compatibility of the obtained solutions to the considered ini-
tial problem instance. Figure 6.5 provides a top-level description of the addRole-EA.
It becomes apparent that the operational flow of the addRole-EA (except for pre-
and post-processing) is similar to that of an evolutionary algorithm as presented in
Chapter 3. However, the individual components are adapted to the requirements of
the Basic RMP.

FIGURE 6.5: Top-level description of addRole-EA.

In order to better understand the different methods of the addRole-EA, they will
be illustrated in pseudo code in the course of this chapter. A representation of the
addRole-EA in pseudo code is given in Algorithm 6.2. The variables U∗, P∗ and
UPA∗, which represent the problem instance of the Basic RMP, as well as U, P and
UPA, which represent the reduced problem instance after pre-processing, are as-
sumed to be global variables, such that they can be called from within a function.
The same holds for the output variable π∗ = 〈R∗, UA∗, PA∗〉, which represents the
best role concept found.

Algorithm 6.2: The addRole-EA
Input: users U∗, permissions P∗, permission-to-user assignment UPA∗

Output: role concept π∗ = 〈R∗, UA∗, PA∗〉
Global Variables: users U∗, permissions P∗, permission-to-user assignment UPA∗,

users U, permissions P, permission-to-user assignment UPA,
role concept π∗ = 〈R∗, UA∗, PA∗〉

1 read U∗, P∗, UPA∗;
2 initialize µU and µP;

3 doPreProcessing(µU , µP);

4 Pop := { };
5 doInitialization(Pop);
6 doEvaluation(Pop);

7 while stopping condition not met do
8 doSelectionCrossoverAndMutation(Pop);
9 doEvaluation(Pop);

10 doReplacement(Pop);
11 end

12 I∗ := argmin{ f itness(I) : I ∈ Pop};
13 doPostProcessing(I∗, µU , µP);

14 return π∗ = 〈R∗, UA∗, PA∗〉;

6.3. The addRole-EA 77

Pre-Processing

To reduce the size of the UPA∗ and thus the size of the optimization problem, the
four steps of the pre-processing procedure (PP1-4) introduced in Chapter 5 have
proven to be a powerful tool, in particular using the benchmark instances of HP-
Labs. Therefore, this pre-processing procedure is applied as first step of the addRole-
EA before the actual role mining process. The set of users U, the set of permissions
P as well as the permission-to-user assignment matrix UPA resulting from the ap-
plication of the pre-processing procedure are then used as basis for role mining. The
information on user and permission classes is stored in the user mapping µU respec-
tively the permission mapping µP, such that the selected role concept obtained from
role mining can be adapted to the original situation, encoded in U∗, P∗ and UPA∗ in
a post-processing step.

Chromosome Encoding and Initialization

Since the addRole-EA is an evolutionary algorithm specifically designed for the
RMP, each individual I of the addRole-EA represents a possible role concept. The
chromosome π(I) of individual I is therefore defined analogous to the definition of
role concepts in Chapter 4:

π(I) :=
〈

R(I), UA(I), PA(I)
〉

. (6.1)

It comprises a set of roles R(I) as well as a role-to-user assignment matrix UA(I)

and a permission-to-role assignment matrix PA(I). The current population of the
addRole-EA is denoted by Pop := {I1, ..., IPS}, where PS corresponds to the desired
population size.

Real-world use cases usually comprise a large number of users and permissions,
whereas the number of permissions per user is quite low. The same is valid for
the number of roles assigned to each user and the number of permissions assigned
to each role considering role concepts in practice. Thus, UPA, UA and PA are of
high dimension, but rather sparsely populated, which leads to a disproportionally
high occupation of storage space, if the classical representation as binary matrices is
used. A good and effective way to address this is the use of binary sparse matrices to
represent the pre-processed UPA as well as the UA and PA matrices in the chromo-
somes of the individuals of the addRole-EA. Unlike ordinary binary matrices, binary
sparse matrices only store the position of the one-elements in each row. Thus, the
zero-elements, which constitute the majority of the matrices’ elements, are omitted,
resulting in savings of storage space.

To create an initial population of individuals for the addRole-EA, a two-step proce-
dure is conducted. In the first step, a seed individual, individual I0, is created based
on the trivial solution of the Basic RMP in case |U| > |P|, where one role is created
from each permission. Hence, PAI0 = IN and with that R(I0) = {r(I0)

1 , ..., r(I0)
N }. The

roles are then assigned to users according to UPA, i.e. UA(I0) = UPA. In Chapter 4,
it was shown that it fulfills the 0-consistency and can thus be considered a feasible
solution of the Basic RMP. In a second step, an initial population Pop is generated

78 Chapter 6. Single-level Role Mining

according to the desired population size PS. In order to ensure diversity among the
population, the individuals are obtained from the application of a random sequence
of maximum N mutations to the seed individual, see Algorithm 6.3.

Algorithm 6.3: doInitialization(population Pop)

1 π(I0) = 〈R(I0), UA(I0), PA(I0)〉 := 〈{r(I0)
1 , ..., r(I0)

N }, UPA, IN〉;
2 for i ∈ {1, ..., PS} do
3 π(Ii) := π(I0);
4 draw random number x ∈ {0, 1, ..., N};
5 for j ∈ {1, ..., x} do
6 doMutation(Ii);
7 end
8 Pop = Pop ∪ {Ii};
9 end

The chromosome π(I0) of the seed individual I0 and the chromosome π(I1) of an ex-
emplary individual I1, which corresponds to one possible outcome of the alteration
resulting from the application of mutation, as well as the transformation of binary
matrices into binary sparse matrices is illustrated in Figure 6.6.

FIGURE 6.6: Creation of initial individuals incl. sparse representation.

There is also another straight-forward possibility to create a feasible seed individual
based on the trivial solution of the Basic RMP in case |U| ≤ |P|. This initialization
method is analyzed and compared to the implemented method in Chapter 6.4.

6.3. The addRole-EA 79

Evaluation/ Fitness Function

The addRole-EA is a single-objective evolutionary algorithm designed for the Basic
RMP. Thus, the fitness of an individual I equals the number of its roles:

f itness(I) := |R(I)|. (6.2)

For individual I1, which was obtained from applying a series of mutations to the
seed individual in Figure 6.6, where R(I1) = {r(I1)

1 , r(I1)
2 , r(I1)

3 , r(I1)
4 , r(I1)

5 , r(I1)
6 }, the fit-

ness value is obtained as f itness(I1) = |R(I1)| = 6. Based on this, the doEvaluation-
method of the addRole-EA simply assigns an individual of the current population
its fitness value, see Algorithm 6.4.

Algorithm 6.4: doEvaluation(population Pop)

1 for individual I ∈ Pop do

2 f itness(I) := |R(I)|;
3 end

The addRole-Method

The addRole-method, see Algorithm 6.5, constitutes the main method of the addRole-
EA and is used for mutation as well as crossover. It aims at adding a new role to the
chromosome of an individual. This may lead to some of the existing roles being
no longer needed, which ideally results in a decrease of the total number of roles.
A new role is assigned to a user only, if all of the permissions assigned to the new
role are also assigned to the considered user. Furthermore, old roles are deleted
from an individual only, if it can be assured that, after deletion, all users are still
assigned the needed permissions considering UPA. This ensures the compliance of
the individuals with the 0-consistency constraint at all times of the addRole-EA.

Algorithm 6.5: addRole(individual I, role rnew)

1 R(I) := R(I) ∪ {rnew};
2 append v(rnew)T as new row to PA(I);

3 assignNewRoleToUsers(I, rnew);
4 withdrawRolesFromUsers(I, rnew);
5 removeObsoleteRoles(I);

In the first step of the addRole-method, a new role rnew is added to the chromosome
π(I) of individual I. For this purpose, rnew is added to R(I) and its vector repre-
sentation vR(rnew)T is appended as new row to PA(I). Subsequently, the new role
is assigned to users using the assignNewRoleToUsers-Method, see Algorithm 6.6. For
this, 0M is appended as new column to UA(I). In case that vR(rnew) ≤ (UPAT)i,
i.e. all permissions assigned to rnew are also assigned to a user ui, the new role is
assigned to ui. This means that the entry in the i-th row of the appended column in
UA(I) is set to 1.

80 Chapter 6. Single-level Role Mining

Algorithm 6.6: assignNewRoleToUsers(individual I, role rnew)

1 append 0M = (0, ..., 0)T as new column to UA(I);

2 for user ui ∈ U do

3 if vR(rnew) ≤ (UPAT)i then

4 UA(I)
i,|R(I) | := 1 ;

5 end
6 end

In a second step, the withdrawRolesFromUsers-method is executed, see Algorithm 6.7.
Due to the addition of rnew, it is possible that some of the assignments of the existing
roles in R(I) \ {rnew} to users can be withdrawn without affecting the 0-consistency
constraint. If this is the case, the corresponding element in UA(I) is set to 0. This
is only possible for roles that are assigned at least one of the permissions assigned
to rnew, i.e. ∑N

j=1 vR(rk)j · vR(rnew)j > 0. Therefore, these roles are identified first
(Algorithm 6.7, line 2) in order to reduce computation time.

Algorithm 6.7: withdrawRolesFromUsers(individual I, role rnew)

1 for role rk ∈ R(I) \ {rnew} do

2 if ∑N
j=1 vR(rk)j · vR(rnew)j > 0 then

3 for user ui ∈ U : UA(I)
i,k = 1 do

4 UA(I)
i,k := 0;

5 if UA(I) ⊗ PA(I) 6= UPA then

6 UA(I)
i,k := 1;

7 end
8 end
9 end

10 end

In the last step, it is validated, whether some of the roles have become obsolete using
the removeObsoleteRoles-method, see Algorithm 6.8. For this purpose, it is checked,
if there are roles in R(I), which are no longer assigned to any user or, equivalently,
the corresponding columns in UA(I) contain zero-elements only. If this is the case,
the corresponding columns are deleted from UA(I) and the corresponding rows are
deleted from PA(I).

Algorithm 6.8: removeObsoleteRoles(individual I)

1 for role rk ∈ R(I) do

2 if ∑M
i=1 UA(I)

i,k = 0 then

3 R(I) := R(I) \ {rk};
4 remove corresponding column from UA(I);
5 remove corresponding row from PA(I);
6 end
7 end

6.3. The addRole-EA 81

In the following, the operating principle of the addRole-method is explained by means
of a tangible example.

Example 6.1 (The addRole-Method)
In this example, a new role rnew with vR(rnew) = (0, 0, 1, 0, 0, 0, 1) is added to the chro-
mosome individual I1, which resulted from the application of the mutation meth-
ods in Figure 6.6. The corresponding initial situation before applying the addRole-
method is shown in Figure 6.7.

FIGURE 6.7: Example 6.1: Starting point.

At first, rnew is added to R(I1) and vR(rnew)T is appended as a new row to PA(I1).
Subsequently, the assignNewRoleToUsers-method is executed: a new column is ap-
pended to UA(I1) and all users to whom the new role can be assigned without vi-
olating the 0-consistency constraint are identified. In this case, these are users u2,
u3 and u4, as they are assigned permissions p3 and p7 according to UPA, which are
exactly the permissions assigned to rnew. These users are then assigned the new
role by adjusting the corresponding elements of the role-to-user assignment matrix:
UA(I1)

2,7 = UA(I1)
3,7 = UA(I1)

4,7 = 1. Since rnew cannot be assigned to users u1 and u5

without violation of the 0-consistency constraint (user u1 is not assigned p7, u5 is not
assigned p3), UA(I1)

1,7 = UA(I1)
5,7 = 0, see Figure 6.8.

FIGURE 6.8: Example 6.1: Assignment of new role to users.

In order to determine which roles might be withdrawn from users without violating
the 0-consistency constraint, all roles are identified, that are assigned at least one of
the permissions assigned to rnew, using the withdrawRolesFromUsers-method. In the
example, these are all roles except for r(I1)

1 . Role r(I1)
2 is assigned to users u4 and u5. If

this role was withdrawn from these users, they would no longer be assigned p5 and
p6 which would contradict the 0-consistency constraint. Therefore, this role cannot
be withdrawn from any user. In the same way, this can be shown for roles r(I1)

4 and
r(I1)

5 . Role r(I1)
3 , which is assigned permission p7, is assigned to users u2, u3 and u4.

82 Chapter 6. Single-level Role Mining

However, the new role rnew is assigned to these users as well, such that the assign-
ment of p7 to this users can be covered by rnew. Hence, r(I1)

3 can be withdrawn from
these users and UA(I1)

2,3 = UA(I1)
3,3 = UA(I1)

4,3 = 0. For role r(I1)
6 , and the corresponding

assignments to users u2, u3 and u4, the situation is the same. Furthermore, r(I1)
6 can

be withdrawn from user u1, since the user’s needed permissions are already covered
by roles r(I1)

1 and r(I1)
5 . Hence, UA(I1)

1,6 = UA(I1)
2,6 = UA(I1)

3,6 = UA(I1)
4,6 = 0, see Figure

6.9.

FIGURE 6.9: Example 6.1: Withdrawal of roles from users.

In the last step of the addRole-method, obsolete roles are removed from the individual
using the removeObsoleteRoles-method. Since the third and the sixth column of UA(I1)

only contain 0-elements after the withdrawal of roles in the previous step, these
columns can be removed. Consequently, the corresponding rows of PA(I1) and the
corresponding roles r(I1)

3 and r(I1)
6 ∈ R(I1) can be removed, see Figure 6.10.

FIGURE 6.10: Example 6.1: Removal of obsolete roles.

It can be noted that, even if a new role was added to the chromosome if the individ-
ual, the resulting number of roles, which corresponds to the fitness of individual I1,
could be improved by one, such that f itness(I1) = 5.

One advantage of the addRole-method consists in the fact that each role can be ex-
amined before its actual addition to the chromosome of an individual. Thus, it is
possible to include user-specific preferences or further requirements, e.g. the con-
sideration of a cardinality constraint on the number of permissions assigned to a
role, at this point, see Chapter 7. Roles that do not comply with the desired charac-
teristics can already be rejected before the addRole-method is carried out. In Chapter
9, where the 0-consistency constraint is relaxed, the addRole-method is slightly mod-
ified to allow for deviations between the targeted permission-to-user assignment
matrix UPA and the permission-to-user assignment matrix RUPA(I) resulting from
UA(I) and PA(I) of individual I.

6.3. The addRole-EA 83

Selection

Algorithm 6.9 shows the framework in which selection, crossover and mutation are
applied. The functionality of the crossover and mutation method will be explained
thereafter.

Algorithm 6.9: doSelectionCrossoverAndMutation(population Pop)

1 updatePopulation_Crossover (Pop);
2 updatePopulation_Mutation (Pop);

The addRole-EA is based on random selection. First, depending on the crossover
rate CrR, for each individual IP1 , P1 ∈ {1, ..., PS}, it is decided whether it serves as
parent individual for crossover. If this is the case, a second parent individual IP2 ,
P2 ∈ {1, ..., PS} \ {P1} is selected randomly from the remaining individuals based
on uniform distribution. The chromosomes of the resulting child individuals are
then included into the current population, see Algorithm 6.10.

Algorithm 6.10: updatePopulation_Crossover(population Pop)

1 Poptemp := { };
2 for individual IP1 ∈ Pop do
3 draw random number x in [0, 1);
4 if x < CrR then
5 draw random number P2 ∈ {1, ..., PS} \ {P1};
6 π(IC1) := π(IP1), where C1 := (PS + 2(P1 − 1) + 1);
7 π(IC2) := π(IP1), where C2 := (PS + 2P1);
8 doCrossover(IP1 , IP2 , IC1 , IC2);
9 Poptemp := Poptemp ∪ {IC1 , IC2};

10 end
11 end

12 Pop := Pop ∪ Poptemp;

Subsequently, individuals are mutated based on a given mutation rate MR. The
chromosome of the individual resulting from mutation is then included into the cur-
rent population, see Algorithm 6.11

Algorithm 6.11: updatePopulation_Mutation(population Pop)

1 Poptemp := { };
2 for individual Ii ∈ Pop do
3 draw random number x in [0, 1);
4 if x < MR then
5 π(Ij) = π(Ii), where j := (|Pop|+ i);
6 doMutation(J);
7 Poptemp := Poptemp ∪ {Ij};
8 end
9 end

10 Pop := Pop ∪ Poptemp;

84 Chapter 6. Single-level Role Mining

The application of mutation and crossover operators, which are commonly used in
EAs for other optimization problems, can be problematic if applied in the context of
the Basic RMP. For example, the application of the bitflip-mutation operator to the
genome of an individual can easily result in changes of elements in UA(I) and/or
PA(I), such that UA(I) ⊗ PA(I) = UPA can no longer be granted and resulting indi-
viduals could become infeasible. Therefore, mutation and crossover of the addRole-
EA are based on a different, role-centered approach.

Crossover

The crossover method of the addRole-EA consists of reciprocal exchange of roles be-
tween individuals. Based on the selected parent individuals IP1 and IP2 , two child
individuals IC1 and IC2 are derived as copies of the corresponding parent. For indi-
vidual C1, a set of roles for exchange R̂1 ⊆ R(IP2) is selected by one of the following
role-selection methods. For individual IC2 , the set R̂2 is selected from the roles in
R(IP1). The selected roles are then added to the chromosomesof the individuals using
the addRole-method. As a consequence, roles are not only exchanged, but old roles
that became obsolete are deleted from the chromosomes of the child individuals. A
description of the functionality of the crossover method is given in Algorithm 6.12.

Algorithm 6.12: doCrossover(individuals IP1 , IP2 , IC1 , IC2)

1 R̂1 := { } ∧ R̂2 := { };
2 draw random number x ∈ {1, 2, 3};
3 doRoleSelection_x(R̂1, R̂2, IP1 , IP2);

4 for r ∈ R̂1 do
5 addRole(IC1 , r);
6 end

7 for r ∈ R̂2 do
8 addRole(IC2 , r);
9 end

The addRole-EA comprises three different methods for crossover role selection:

(RS1): Selection of Random Roles. The roles which are to be exchanged are se-
lected randomly. The roles in R̂1 are selected from the roles of parent individual IP2

based on uniform distribution. The roles in R̂2 are selected from the roles of parent
individual IP1 , see Algorithm 6.13.

(RS2): Selection of Roles of Random User. Instead of choosing random roles,
(RS2) selects one user randomly. The roles for exchange are then determined by the
roles assigned to this user in the respective parent individual, see Algorithm 6.14.
The set of roles R(I)(ui) assigned to user ui for individual I is defined as:

R(I)(ui) :=
{

r(I) ∈ R(I) : UA(I)
i,k = 1

}
.

6.3. The addRole-EA 85

Algorithm 6.13: doRoleSelection_1(sets of roles R̂1, R̂2, individuals IP1 , IP2)

1 draw random number k1 from {1, 2, ..., |R(IP1)|};
2 draw random number k2 from {1, 2, ..., |R(IP2)|};
3 for i = 1 to k2 do
4 select random role r from R(IP2) \ R̂1;
5 R̂1 := R̂1 ∪ {r};
6 end

7 for i = 1 to k1 do
8 select random role r from R(IP1) \ R̂2;
9 R̂2 := R̂2 ∪ {r};

10 end

Algorithm 6.14: doRoleSelection_2(sets of roles R̂1, R̂2, individuals IP1 , IP2)

1 draw random user ui ∈ U;

2 R̂1 := R(IP2)(ui);
3 R̂2 := R(IP1)(ui);

(RS3): Selection of Roles of User with Maximum Role Difference. This method
operates similar to (S2), except that the user, whose roles are to be exchanged, is not
selected randomly. It is desirable to obtain role concepts comprising as few roles as
possible at the end of the role mining process. The roles of a user to whom only a few
roles are assigned can therefore be suitable to achieve this goal. However, the roles of
such a user might be hardly reusable as it is possible that they are of such complex
structure that they cannot be assigned to other users, e.g. administrator roles. In
contrast, it is possible that the roles of a user, who is assigned many roles, can also be
assigned to many other users to cover their permission needs, thus resulting in fewer
roles in total. Therefore, (RS3) selects the user, which has the highest difference in the
number of assigned roles considering the two parent individuals, for role exchange,
as outlined in Algorithm 6.15.

Algorithm 6.15: doRoleSelection_3(sets of roles R̂1, R̂2, individuals IP1 , IP2)

1 find u∗ ∈ U:
∣∣∣|R(IP1)(u∗)| − |R(IP2)(u∗)|

∣∣∣ ≥ ∣∣∣|R(IP1)(u)| − |R(IP2)(u)|
∣∣∣ , ∀u ∈ U;

2 R̂1 := R(IP2)(u∗);
3 R̂2 := R(IP1)(u∗);

Mutation

The mutation method of the addRole-EA consists of the creation of new roles and
their addition to individuals using the addRole-method. For this purpose, there are
five different role-creation methods, which will be presented in the following. A
special feature in the way new roles are created is that each new role resulting from
one of the role-creation methods can always be assigned to at least one user without

86 Chapter 6. Single-level Role Mining

violation of the 0-consistency constraint. An overview of the general functionality
of the mutation method is given in Algorithm 6.16.

Algorithm 6.16: doMutation(Individual I)

1 initialize rnew;
2 draw random number x ∈ {1, ..., 5};
3 doRoleCreation_x(I, rnew);
4 addRole(I, rnew);

(RC1): Role-Creation from shared Permissions. One way to create a role that can
definitively be assigned to multiple users is to assign all permissions to the new role,
which are assigned to these users considering UPA. For this purpose, (RC1) selects
a subset of all users Û ⊆ U randomly. From this, the new role is created as described
in Algorithm 6.17. However, if too different users (with respect to their assigned
permissions) or too many users are selected, it is possible that the selected users do
not share any permission. In this case, the new role, which is created by (RC1), is
assigned no permission. This can be addressed by introducing an upper limit ûmax

on the number of users to be selected. From the creation of rnew, it is clear that it can
be assigned to at least all users in Û.

Algorithm 6.17: doRoleCreation_1(Individual I, role rnew)

1 draw random number m ∈ {1, 2, ..., ûmax};
2 Û := { };

3 while |Û| < m do
4 select random user u from U \ Û;
5 Û := Û ∪ {u};
6 end

7 vR(rnew) := ∑N
j=1

(
∏ui∈Û UPAi,j

)
· ej;

Figure 6.11 shows an example of role-creation method (RC1). It is based on individ-
ual I1 obtained from the application of the addRole-method, see Figure 6.10. In this
case, Û = {u2, u4} is selected, such that the new role rnew is assigned permissions
p3, p5 and p7, since these are the only permissions assigned to user u2 as well as u4.
Hence vR(rnew) = (0, 0, 1, 0, 1, 0, 1)T.

FIGURE 6.11: Role-creation method (RC1).

(RC2): Role-Creation from Merging of Roles. Creating one new role from two
existing roles may directly decrease the total role number and thus improve the fit-
ness of an individual. For this purpose, at first, a user u ∈ U is selected randomly.
Subsequently, two of the user’s current roles rv and rw are selected from R(I)(u).
From that, a new role is created being assigned all permissions, which are assigned

6.3. The addRole-EA 87

to at least one of the two selected roles. Since rv and rw are both assigned to u in
π(I), the new role obtained from (RC2) can also be assigned to u without violation
of the 0-consistency constraint. The operation principle of (RC2) is described in Al-
gorithm 6.18.

Algorithm 6.18: doRoleCreation_2(Individual I, role rnew)

1 draw random user u ∈ U;
2 draw random roles rv and rw (rv 6= rw) from R(I)(u);

3 vR(rnew) := ∑N
j=1 max

(
PA(I)

v,j , PA(I)
w,j

)
· ej;

Figure 6.12 illustrates role-creation method (RC2), where user u2 is selected with
R(I1)(u2) = {r(I1)

3 , r(I1)
5 }. Hence, the two roles selected are rv = r(I1)

3 and rw = r(I1)
5 .

Since the new role rnew is assigned all permissions assigned to r(I1)
3 and r(I1)

5 , it is
assigned permissions p2, p3, p4, p5 and p7 such that vR(rnew) = (0, 1, 1, 1, 1, 0, 1)T.

FIGURE 6.12: Role-creation method (RC2).

(RC3): Role-Creation from Splitting of Roles. Reducing the number of permis-
sions assigned to a role increases the probability that this role can be assigned to
more users. Furthermore, it can be desirable for roles not to be assigned the same
permissions in order to reduce the overall number of assignments of permissions to
roles. Therefore, again a user u ∈ U and two of the user’s roles rv, rw ∈ R(I)(u) are
selected randomly. The new role is then assigned all permissions, which are assigned
to rv but not to rw and can thus be assigned to u without violating the 0-consistency
constraint. The operation principle of (RC3) is described in Algorithm 6.19.

Algorithm 6.19: doRoleCreation_3(Individual I, role rnew)

1 draw random user u ∈ U;
2 draw random roles rv and rw (rv 6= rw) from R(I)(u);

3 vR(rnew) := ∑N
j=1 max

(
0,
(

PA(I)
v,j − PA(I)

w,j

))
· ej;

Figure 6.13 shows an example of role-creation method (RC3). Here, again rv = r(I1)
3

and rw = r(I1)
5 are selected from R(I1)(u2). Hence, rnew is assigned all permissions

assigned to r(I1)
3 except for p3, as this permission is also assigned to r(I1)

5 . This leads
to vR(rnew) = (0, 1, 0, 1, 1, 0, 0)T.

FIGURE 6.13: Role-creation method (RC3).

88 Chapter 6. Single-level Role Mining

(RC4): Role-Creation from Aggregating a User’s Permissions. It is possible that
there are users who are assigned a unique set of permissions or share only a small
set of permissions with other users. In this case, it can be reasonable to create a new
role which is assigned all of the user’s permissions. For this, a user u ∈ U is selected
randomly. Subsequently, the new role is obtained from assigning all permissions to
the new role which are assigned to u regarding UPA. It is evident that the new role
can again be assigned to user u without violation of the 0-consistency constraint.
The operation principle of (RC4) is described in Algorithm 6.20.

Algorithm 6.20: doRoleCreation_4(Individual I, role rnew)

1 draw random user ui from U;

2 v(rnew) := vU(ui) = ∑N
j=1 UPAi,j · ej;

An example of role-creation method (RC4) is given in Figure 6.14. In this case, the
new role rnew is created from all permissions assigned to u4. Hence p2, p4, p5, p6 and
p7 are assigned to rnew and vR(rnew) = vU(u4) = (0, 1, 0, 1, 1, 1, 1)T.

FIGURE 6.14: Role-creation method (RC4).

(RC5): Role-Creation from a User’s leftover Permissions. In some cases, the per-
missions assigned to a user have a special structure. For example, there are permis-
sions that are assigned to only one user according to UPA e.g. managers admin-
istrators, or users who may have specific tasks and functions in the company. To
address this, (RC5) aims at gathering such permissions, which are usually not cov-
ered by regular roles (roles obtained from (RC1-4)), in a new role. For this purpose,
a user u ∈ U and some of the user’s current roles are selected randomly. The new
role is then obtained from all permissions assigned to the selected user, which are
not assigned to at least one of the selected roles and can be assigned to u without
violating the 0-consistency constraint. The operation principle of (RC5) is described
in Algorithm 6.21.

Algorithm 6.21: doRoleCreation_5(Individual I, role rnew)

1 R̂ := { };
2 draw random user ui ∈ U;
3 draw random number k from

{
1, 2, ..., (|R(I)(ui)| − 1)

}
;

4 while |R̂| < k do
5 select random role r from R(I)(ui) \ R̂;
6 R̂ := R̂ ∪ {r};
7 end

8 vR(rnew) := ∑N
j=1 max

(
0,
(

UPAi,j −maxrk∈R̂ PA(I)
k,j

))
· ej;

Figure 6.15 shows an example of role-creation method (RC5). Here, user u2 and
R̂ = {r(I1)

3 } are selected. Since user u2 is assigned two roles, R̂ can only contain one
role to avoid the creation of a role that is assigned no permission. The new role rnew

6.3. The addRole-EA 89

is then assigned all permissions which are assigned to u2 but to no role in R̂. Hence,
only p7 is assigned to rnew and vR(rnew) = (0, 0, 0, 0, 0, 0, 1)T.

FIGURE 6.15: Role-creation method (RC5).

It can be seen that in each case, a different new role was created. This justifies the
inclusion of all role-creation methods into the mutation method of the addRole-EA.
The contribution of the different methods to improving individuals is examined in
more detail in Chapter 6.4. Furthermore, for some of these methods, new variants
will be presented and evaluated.

Replacement

For replacement, an elitist selection scheme is applied. This means that, based on
their fitness values, iteratively, the next best individual of the current population is
selected for the next generation until the number of selected individuals in relation to
the desired population size PS exceeds the elitism rate ER. To maintain diversity, the
remaining individuals to complete the next generation’s population are then selected
randomly from the leftover individuals of the current population.

Algorithm 6.22: doReplacement(population Pop)

1 Poptemp := { };
2 while |Poptemp| < ER · PS do
3 find best individual I∗ ∈ Pop \ Poptemp;
4 Poptemp := Poptemp ∪ {I∗};
5 end

6 while |Poptemp| < PS do
7 select random individual I ∈ Pop \ Poptemp;
8 Poptemp := Poptemp ∪ {I};
9 end

10 Pop := Poptemp;

Stopping Condition

The addRole-EA comprises two different stopping conditions: either a total number
of iterations is determined a-priori (SC1) or the optimization process is stopped, if
the fitness of the best individual is not improved for a specified number of itera-
tions (SC2).

Post-Processing

Once the addRole-EA is stopped by one of the stopping conditions, the role con-
cept encoded in the chromosome π(I∗) = 〈R(I∗), UA(I∗), PA(I∗)〉 of the best indi-
vidual I∗ in terms of its fitness, must be adapted to obtain the role concept π∗ =

90 Chapter 6. Single-level Role Mining

〈R∗, UA∗, PA∗〉 for the original problem instance of the RMP. The set of roles of π∗

can simply be copied from the set of roles of the chromosome of the individual, such
that R∗ = R(I∗). In order to obtain the assignments PA∗ of the original permissions
in P∗ to the roles in R∗ and the assignments UA∗ of these roles to the original users
in U∗, a post-processing procedure is needed, see Algorithm 6.23.

Algorithm 6.23: doPostProcessing(individual I∗, user mapping µU , permission mapping
µP)

1 R∗ := R(I∗);

2 for role rk ∈ R(I∗) do
3 postProcessPermissions(I∗, µP);
4 postProcessUsers(I∗, µU);
5 end

At first, the representative permissions in P must be re-interpreted as permission
classes. Subsequently, the permission mapping µP can be used to obtain the as-
signment of permissions to roles in PA∗ from the assignment of the representative
permissions to roles in PA(I∗), see Algorithm 6.24.

Algorithm 6.24: postProcessPermissions(individual I∗, permission mapping µP)

1 append 0T
|P∗ | = (0, 0, ..., 0) as new row to PA∗;

2 for permission p∗j ∈ P∗ do

3 select l ∈N: µP(p∗j) = Pl ;

4 if PA(I∗)
k,l = 1 then

5 PA∗k,j := 1;
6 end
7 end

Analogous to the post-processing on permission level, the representative users in U
must be re-interpreted as user classes. Subsequently, the assignments of the roles in
R∗ to the users of the original problem instance in U∗ can be obtained from UA(I∗)

using the user mapping µU . A user ui that is contained in user class U∪ is assigned
all roles of all users uj 6= ui, that fulfill vU(uj) ≤ vU(ui), see Algorithm 6.25. In
order to cover the permissions of a user ui for which µU(ui) = U∪, it might not be
necessary that he or she is assigned all of these roles. Considering u10 ∈ U∪ of the
example used to illustrate the four pre-processing steps in the last chapter, it would
be sufficient to assign the roles of user u1 ∈ U1 and u7 ∈ U4 to him or her. For the role
concept corresponding to the chromosome of the exemplary individual I1 obtained
from the application of the addRole-method in Figure 6.10, this would be role r(I1)

1 ,
r(I1)

2 and r(I1)
4 . Using the current version of the post-processing procedure, u10 would

additionally be assigned roles r(I1)
3 and r(I1)

5 , which are not necessary to cover his or
her needed permissions. In Chapter 8, the entry of a new user into a company is
investigated. At this, the roles available in the currently implemented role concept
of the considered company can also be assigned in various ways to the new user. In
this context, different role assignment methods are presented and examined.

6.3. The addRole-EA 91

Algorithm 6.25: postProcessUsers(individual I∗, user mapping µU)

1 append 0|U∗ | = (0, 0, ..., 0)T as new column to UA∗;

2 for user u∗i ∈ U∗ do

3 if µU(u∗i) 6= U∪ then
4 select l ∈N: µU(u∗i) = Ul ;

5 if UA(I∗)
l,k = 1 then

6 UA∗i,k := 1;
7 end
8 else
9 for user u∗j ∈ U∗ \ {u∗i } do

10 if vU(u∗j) ≤ vU(u∗i) then

11 select l ∈N: µU(u∗j) = Ul ;

12 if UA(I∗)
l,k = 1 then

13 UA∗i,k := 1;
14 end
15 end
16 end
17 end
18 end

6.3.2 Performance Evaluation and Comparison

As shown in Chapter 6.1, there are already many different solution strategies for the
RMP. In the following, the performance of the addRole-EA is evaluated and com-
pared to these approaches. Since evaluation results are only available for the bench-
mark instances of the HP-Labs benchmark, these instances are used, despite the dis-
advantages shown in Chapter 5, to establish comparability to the other role mining
approaches. Until now, there is no data on the performance of other role mining
approaches on instances of RMPlib, such that they are not considered at this point.
In the further course of the thesis, however, they represent an important source for
the evaluation of the different extensions and modifications of the addRole-EA. The
results of the addRole EA on these instances can be obtained directly from RMPlib.

The values of the relevant parameters for evaluation on the instances of HP-Labs
were determined by parameter performance tests based on different parameter value
sets. These tests were performed on one medium-sized instance Firewall 1 as well as
on the largest instance America Large of the HP-Labs benchmark. As the derived
parameters also showed good performance on the other benchmark instances they
were adopted for the final test setup as shown in Table 6.8. At this, ûmax denotes the
maximum number of users considered for role-creation method (RC1), while SC1max

and SC2max determine the parameter values for the respective stopping condition.
The addRole-EA and all of its variants, which will be presented in the following
chapters, were implemented in Java. The tests for each evaluation scenario through-
out this thesis were repeated 20 times with different random seeds and run on a
computer with the following specifications: processor Intel Core i5-4570S, 2.90 GHz,
16 GB RAM.

92 Chapter 6. Single-level Role Mining

TABLE 6.8: Parameter values for the addRole-EA [4].

Parameter Value

Population Size PS 20
Crossover Rate CrR 0.10
Mutation Rate MR 1.00
Elitism Rate ER 0.70
ûmax 5
SC1max 100,000
SC2max 10,000

Figure 6.16 shows the average number of roles against iterations as well as the aver-
age time per iteration against iterations on America small. This corresponds to the
typical course of these curves and can be observed in a similar way on the other in-
stances of the HP-Labs benchmark. It can be seen that both, the number of roles and
the time per iteration, decrease very quickly at the beginning. It is particularly inter-
esting that the time per iteration seems to depend on the number of roles. This can
be explained by the fact that the withdrawRolesFromUsers-method is comparatively
time-consuming. At the beginning, where PA = IN , such that there are many small
roles, many role-to-user assignments need to be checked. As the number of roles
decreases during optimization, the number of roles, that are eligible for withdrawal
and need to be checked, also decreases, resulting in shorter iteration times.

FIGURE 6.16: Average number of roles and average time per iteration
against iterations on America small.

Table 6.9 shows the results of the conducted tests in terms of the resulting number of
proposed roles. For each benchmark instance, addRolebest denotes the overall best
fitness value obtained by one of the individuals, addRoleavg. represents the aver-
age fitness value of the best individual after convergence over the 20 evaluation test
runs and addRoleSD denotes the corresponding standard deviation. Furthermore,
the deviation Devavg. between the average results obtained from the application of
the addRole-EA and the best solution found by the other role-mining algorithms is
shown in each case. In addition, for all role mining approaches presented in Chap-
ter 6.1, that were evaluated using instances of the HP-Labs benchmark, the corre-
sponding results are included in the table.

6.3. The addRole-EA 93

TABLE 6.9: Evaluation of addRole-EA in comparison with other approaches [4].

America America Health- Firewall Firewall
Algorithm large small APJ EMEA care Domino 1 2

RM 422 206 455 34 14 20 65 10
EC 928 258 471 104 15 27 75 10
LP 400 193 454 34 14 20 66 10
HM — 428 542 106 17 27 91 10
GO — 225 475 34 16 20 71 10
GABasic 495 193 461 34 15 20 66 10
GAEdge 907 275 479 115 16 28 79 10
MRBasic 412 196 454 34 14 20 66 10
CM — 2,672 764 674 31 62 278 21
CRM — 199 453 34 14 20 66 10
PC — 1,778 779 242 24 64 248 14
ORCA — 1,587 1,164 3,046 46 231 709 590
IT — — — 34 16 20 71 10
INT — — — 43 14 21 65 10

addRolebest 400 184 453 34 14 20 64 10

addRoleavg. 401.85 187.15 453.10 34 14 20 64.95 10
addRoleSD 0.93 1.71 0.30 0.00 0.00 0.00 0.22 0.00
Devavg. +0.46% −3.03% +0.02% 0.00% 0.00% 0.00% −1.54% 0.00%

It can be noted that, for each instance of the HP-Labs benchmark, there is at least
one run of the addRole-EA, where the best number of roles achieved was smaller
or equal than the best number of roles achieved by any of the other role mining
algorithms. In two of the instances (America small and Firewall 1), the best solu-
tion could even be improved. Furthermore, the attained average results range from
−3.03% to +0.46% compared to the best results obtained from the other approaches.
This emphasizes the high performance of the addRole-EA considering the HP-Labs
benchmark.

In a next step, the computation time of the addRole-EA and the other solution strate-
gies need to be compared. It is apparent that this is only possible to a limited extent,
since different computers with different specifications were used for the evaluation
of the different approaches. Beyond that, however, data on the computation time of
the different solution strategies is hardly available. Ene et al. are the only authors
who provide information on computation times for their EC and LP algorithms on all
instances of the HP-Labs benchmark. The algorithms were implemented in Matlab
and run on a computer with a 3 GHz Xeon processor with 2GB or DRAM. EC re-
quires between 0.16 seconds (Firewall 2) and 177.0 seconds (America Large), whereas
LP requires between 0.03 seconds (EMEA) and 50.0 seconds (America Large) [38], see
Table 6.10. In [58], Huang et al. generate synthetic data for evaluation. It is shown
that GABasic requires between around one second and 20 seconds for scenarios com-
prising between 200 and 1,000 users and between 20 and 250 permissions, whereas
MRBasic requires less than one second in all cases. Both role mining algorithms were
implemented in C++ and ran it on a computer with Dual-Core, 3.2GHz, 2GB RAM.
Vaidya et al. also use synthetically generated data to evaluate their CM approach,
which requires around 23 minutes in scenarios with 5,000 users and 1,500 permis-
sions. However, no information on the test environment was provided [108].

94 Chapter 6. Single-level Role Mining

This can be compared to the computation times of the addRole-EA. It requires be-
tween less than one second (Firewall 2) and around 30 minutes (America Large).
The exact computation times of the addRole-EA on each instance of the HP-Labs
benchmark averaged over the 20 test runs are shown in Table 6.10.

TABLE 6.10: Computation time in seconds (s) of addRole-EA, EC and LP.

America America Health- Firewall Firewall
Algorithm large small APJ EMEA care Domino 1 2

EC 177.00 13.10 12.00 0.74 0.05 0.05 1.02 0.16
LP 50.00 12.00 10.90 0.03 0.08 0.05 0.94 0.04

addRoleavg. 1,968.95 510.40 390.25 37.70 9.15 9.05 32.00 6.20

Even if only very few information about the computation time of other methods
is available, it becomes apparent that the addRole-EA is not among the fastest role
mining approaches. In practice, however, where role concepts are usually developed
and implemented in elaborate consultant projects in a top-down process, it is rather
important that the applied role mining approach provides the best results possi-
ble. This is of particular importance when considering dynamic company structures
and interactions of a decision maker with role mining software, so that the resulting
events can be processed close to real time. Due to its design as evolutionary algo-
rithm, the addRole-EA is very suitable for this purpose. The most relevant events in
this context as well as their integration into the addRole-EA using specified event-
handling methods are presented in Chapter 8. One approach consists in continu-
ous role concept optimization, which is intensified, whenever computing capacity is
available, possibly resulting in gradually improved role concepts.

6.4 Evaluation, Analysis and Improvements

In this chapter, several aspects of the addRole-EA are examined more closely. At
first, the alternative initialization method, which was introduced in Chapter 6.3,
is evaluated. Subsequently, the contribution of mutation and the associated role-
creation methods as well as the contribution of crossover and the associated role-
selection methods are discussed. For some of the role creation methods, new vari-
ants will be derived. However, although it will be shown that they bear the potential
to improve the performance of the addRole EA significantly, these new variants will
not be considered in the rest of the thesis, since they were developed, implemented
and examined after the release of the addRole-EA and its extensions and modifica-
tions, which are to be presented in the following chapters. Therefore, in order to
examine two-level role mining, dynamic role mining and multi-objective role min-
ing, the basis version of the addRole-EA is used.

6.4.1 An alternative Variant for Initialization

An alternative method to generate the seed individual I0, necessary for the initializa-
tion method of the addRole-EA, and its chromosome π(I0) = 〈R(I0), UA(I0), PA(I0)〉
corresponds to the trivial solution of the Basic RMP, in case that the number of users

6.4. Evaluation, Analysis and Improvements 95

is less or equal than the number of permissions |U| ≤ |P|. This results in choos-
ing UA(I0) = UPA and PA(I0) = IN . As shown in Chapter 6.3, also the seed indi-
vidual obtained from this alternative initialization method fulfills the 0-consistency
constraint. Since, especially considering the instances of the HP-Labs benchmark, the
number of users is usually much smaller than the number of permissions, this initial-
ization variant seems very reasonable. In most cases, the seed individual has a better
fitness using this initialization method compared to the seed individuals obtained
from the original initialization method. To investigate whether this leads to better
optimization results, the alternative initialization method was evaluated on the in-
stances of the HP-Labs benchmark as well as the PLAIN_small_x-benchmark of RM-
Plib. All other components and parameters of the addRole-EA were adopted with
no changes. The results regarding the obtained number of roles of the best solution
found using the alternative initialization method in comparison to the results ob-
tained using the original initialization method can be found in Tables 6.11 and 6.12.

TABLE 6.11: Comparison of initialization methods on HP-Labs.

America America Health- Firewall Firewall
large small APJ EMEA care Domino 1 2

Original 401.85 187.15 453.10 34.00 14.00 20.00 64.95 10.00
Alternative 422.40 202.40 455.25 34.00 14.00 20.00 64.80 10.00

It can be seen that the alternative initialization method leads to slightly better results
on Firewall 1. In addition, it attains the same results as the original version on Firewall
2, Domino, Healthcare and EMEA. This was to be expected, since these are already
(almost) optimally solved after pre-processing. Considering the bigger instances of
the HP-Labs benchmark, the alternative version of initialization performed worse
than the original version. This is also found on the instances of PLAIN_small_x, see
Table 6.12. Here, in each case, the original initialization method outperforms the
alternative version significantly. Therefore, the alternative initialization method is
not integrated into the addRole-EA.

TABLE 6.12: Comparison of initialization methods on PLAIN_small_x.

PS_01 PS_02 PS_03 PS_04 PS_05 PS_06 PS_07 PS_08

Original 24.65 30.05 29.80 32.80 49.80 50.25 39.20 52.50
Alternative 36.75 49.90 41.90 49.00 90.25 99.00 99.00 100.00

6.4.2 Analysis of Crossover and Mutation

In the following, it is investigated how the different role-selection methods used
for crossover as well as the different role-creation methods used for mutation con-
tribute to the improvement of the global best solution. For this purpose, the cases
are counted in which the number of roles of an individual obtained from the appli-
cation of one of the role-selection respectively role-creation methods falls below the
number of roles of the currently global best solution. The corresponding percent-
age distribution of global improvements among the different role-selection respec-
tively role-creation methods is shown in Figure 6.17 respectively Figure 6.18. The

96 Chapter 6. Single-level Role Mining

corresponding total values of the number of global improvements are provided in
Table B.5 respectively Table B.6 in Appendix B.3.

FIGURE 6.17: Percentage distribution of global improvements attained by role-creation
resp. role-selection methods on HP-Labs benchmark [7].

On the instances of the HP-Labs benchmark, it is noticeable that role-creation method
(RC4), which corresponds to the aggregation of all permissions assigned to a user
into one role, leads to global improvements in an above-average number of cases.
This corresponds to the observation in Chapter 5, which states that the number of
users after pre-processing and the optimal solution of the benchmark instances are
very close, such that possibly one role is created for one user in many cases. In addi-
tion, it can be seen that role-creation method (RC3), which corresponds to the split-
ting of roles, leads to rare global improvements. Considering role-selection, it can be
seen that (RS3), which corresponds to the selection of all roles of the user, which has
the highest difference in the number of assigned roles, causes many cases of global
improvement compared to the other methods, whereas (RS1) hardly contributes to
the improvement of the global best solution.

FIGURE 6.18: Percentage distribution of global improvements attained by role-creation
resp. role-selection methods on PLAIN_small_x benchmark [7].

6.4. Evaluation, Analysis and Improvements 97

The instances of the PLAIN_small_x benchmark, however, reveal a different pattern.
Role-creation method (RC1), which creates a new role from the shared permissions
of different users, (RC2), which corresponds to the merging of two roles and (RC5),
which derives a role from a user’s leftover permissions, perform particularly strong,
while (RC3) and (RC4) perform below average. The low performance of (RC4) com-
pared to its above-average performance on the instances of HP-Labs seems surpris-
ing at first sight, but can be explained by the fact that the optimum number of roles
and the number of roles obtained from the trivial solution are further apart for the
instances of RMPlib, such that it seems not reasonable to create one role per user
only. With regard to the role-selection methods for crossover, the results are similar
to that on the instances of HP-Labs. (RC3) contributes the most to the improvement
of the global best solution, whereas (RS1) only contributes little.

6.4.3 Analysis of Role-Creation

The results obtained from analysis of the different role-creation methods suggest to
focus on the further development and investigation of (RC1), (RC2) and (RC5). Since
these methods are based strongly on random decisions in their original version, new
variants are presented, which partly include additional information encoded in ei-
ther UPA or the chromosome of the considered individual. In addition, the question
arises as to whether omitting (RC3) or (RC4) might improve, respectively accelerate
the optimization process as these methods hardly contribute to the global improve-
ment of the solutions of the addRole-EA on the benchmark instances of RMPlib. The
developed role-creation methods and the corresponding evaluation results are de-
scribed in [7].

(RC1): Role-Creation from shared Permissions.

One way to create new roles is to group permissions, which are shared by differ-
ent users, into a role. These users are selected randomly in the original version of
the addRole-EA. However, this might repeatedly lead to the creation of roles being
assigned no permission due to the fact that users might be selected, that share no
permission. In contrast, it can be assumed that similar users share many permis-
sions and can thus be assigned similar roles. Hence, the new variants of (RC1) differ
from the original version in the way that users are selected in order to create the new
role. In all variants, the selection is based on the users’ reciprocal similarity. Anal-
ogous to the definition in Equation 5.2, the similarity of user ui and uj is obtained
from:

sim(ui, uj) =
∑N

l=1 UPAi,l ·UPAj,l

∑N
l=1 max

{
UPAi,l , UPAj,l

} . (6.3)

In order to determine the number of users which are to be selected, in all new vari-
ants of (RC1), a random number m is drawn. As in the original version of (RC1), this
number is limited by ûmax. Subsequently, the first user uinit is selected randomly,
while the remaining (m − 1) users are selected based on the similarity to uinit de-
pending on the chosen variant.

98 Chapter 6. Single-level Role Mining

(RC1v1): Deterministic Selection of most similar Users. It is straightforward from
the definition of user similarity that similar users share many permissions. It is there-
fore very likely that these can also be assigned similar roles. To obtain these roles, in
this variant of (RC1), the (m− 1) users are selected, that have highest similarity to
the initial user uinit.

(RC1v2): User Selection based on Roulette Wheel Selection. The deterministic
selection of the most similar users is prone to result in the repeated selection of the
same users and thus in the repeated creation of the same roles. Moreover, this ap-
proach hampers the creation of roles shared by users that have rather low similarity,
which can nevertheless be important in the optimization process. It can therefore
be reasonable to include a random component in the selection process. This ap-
proach is based on the well-known Roulette Wheel Selection (RWS) [54], which was
described in Chapter 3. In this approach it is applied to the remaining set of users
UR := U \ {uinit} = {uR

1 , ..., uR
|U|−1} to select (m− 1) users.

For this purpose, in a first step, the slotsizes are calculated for each of the remaining
users in UR:

slotsize(uR
i) :=

sim(uR
i , uinit)

∑|U
R|

j=1 sim(uR
j , uinit)

. (6.4)

In a second step, the corresponding distribution function is calculated:

F(uR
i) := ∑

j≤i
slotsize(uR

j). (6.5)

In order to select a user for Û, a random number rRWS ∈ [0, 1) is drawn. At this, user
uR

i , is selected if:

rRWS < F(uR
i), i = 1,

F(uR
i−1) ≤ rRWS < F(uR

i), i ∈ {2, ..., |Û|}.
(6.6)

To conclude the selection process, this is repeated (m− 1) times.

(RC1v3): User Selection based on Stochastic Universal Sampling. Another pos-
sibility to add a random component to the selection process is Stochastic Universal
Sampling (SUS) [13, 12], see Chapter 3. In order to select the users from UR, the same
slotsizes and distribution function are used as for RWS (see Equations 6.4 and 6.5),
whereas a different selection methodology is applied. For this purpose, using SUS,
a random number rSUS ∈

[
0, (m− 1)−1) is drawn. Based on this, user uR

i is selected
if there is s ∈ {0, 1, ..., (m− 2)}, such that:

rSUS +
s

m− 1
< F(uR

i), i = 1,

F(uR
i−1) ≤ rSUS +

s
m− 1

< F(uR
i), i ∈ {2, ..., |Û|}.

(6.7)

6.4. Evaluation, Analysis and Improvements 99

This selection condition provides users with lower similarity values a fair chance
to be selected, while RWS may repeatedly prefer users with high similarity values
compared to uinit.

Comparison of (RC1) variants. In order to evaluate the different variants of (RC1),
they are compared with each other as well as with the original version of (RC1).
For this purpose, the following instances of RMPlib are used: The benchmark in-
stance PLAIN_small_02 (PS_02) is a rather small data set, which has a comparatively
high density. The benchmark instance PLAIN_small_05 (PS_05) is slightly larger,
but less densely populated. The benchmark instance PLAIN_medium_01 (PM_01)
is a medium-size, low-density data set. Since for larger instances, the application
of clustering procedures is recommended, which is not to be considered in detail in
this thesis, it was refrained from an evaluation based on larger benchmark instances.
From now on, the three benchmark instances will be used for evaluation purposes
considering the different extensions and modifications of the addRole-EA, that will
be introduced in the subsequent chapters. Due to their structure, the instances of the
HP-Labs benchmark will no longer be considered.

To focus on the performance of the different variants of (RC1), all other role-creation
methods as well as the crossover method were deactivated except for the considered
variant of (RC1). These tests were performed 20 times for each of the three variants
as well as the original version of (RC1). The values of the parameters of the addRole-
EA were adopted from Table 6.8. Figure 6.19 shows the course of the average best
number of roles from all 20 test runs against iterations. Since the results obtained on
PM_01 are similar to those on PS_05 considering the evaluation of all role-creation
methods throughout this section, they are omitted. The results obtained on PM_01
can be found in Appendix B.4.1.

FIGURE 6.19: Comparison of the different variants of (RC1) [7].

Figure 6.19 first indicates that (RC1v1) performs quite poorly on all three benchmark
instances, since hardly any roles can be reduced. This is probably due to the fact that
the same users are selected repeatedly by deterministic selection and therefore only
a limited number of different roles is created. (RC1v2) and (RC1v3) perform equally
well on PS_05 and PM_01 and clearly better than the standard selection (RC1). On
PS_02, however, the situation is different: At the beginning of the optimization pro-
cess, (RC1v2) still reduces the number of roles the fastest, but is eventually surpassed

100 Chapter 6. Single-level Role Mining

by the standard mutation method (RC1). (R1v3) performs significantly worse in this
case compared to the other two benchmark instances.

(RC2): Role-Creation from Merging of Roles.

As shown in Table 6.18, role-creation method (RC2) yielded the highest number of
global improvements on the examined instances of the PLAIN_x benchmark of RMP-
lib. Also on the instances of the HP-Labs benchmark, (RC2) belonged to the rather
successful methods considering global improvement. It may therefore be beneficial
to investigate whether this method can be further improved. For this purpose, three
different variants of (RC2) are derived by changing the selection process of the two
roles which are to be merged.

(RC2v1): Merging of smallest Roles. It is clear that maintaining many small roles,
in terms of the number of permissions assigned, typically involves a large total num-
ber of roles. While large roles, covering multiple permissions of several users, rather
contribute to a small total number or roles. Hence, this variant of (RC2) merges the
two smallest roles of a randomly selected user. For this purpose the size of a role
size(r(I)

i) is defined by the number its assigned permissions:

size(r(I)
i) :=

N

∑
j=1

vR(r
(I)
i)j =

N

∑
j=1

PA(I)
i,j . (6.8)

(RC2v2): Merging of Roles with highest Number of shared Permissions. When-
ever two roles are very similar, they may be assigned to the same users. If that is
the case, also the union of the permissions assigned to both roles can be assigned to
those users. In order to reflect this, again, two roles of one randomly chosen user
are selected and merged. The first role rv is selected randomly, while the second role
rw is chosen in such a way that the two selected roles share the highest number of
permissions:

N

∑
j=1

PA(I)
v,j · PA(I)

w,j ≥
N

∑
j=1

PA(I)
v,j · PA(I)

i,j ∀ri ∈ R(I)(u) \ {rv}. (6.9)

(RC2v3): Merging of Roles with highest joint Popularity. Another approach to
select the two roles, which are to be merged, is to consider their joint popularity as
selection criterion. It corresponds to the number of users to which both roles are
assigned in the considered individual, such that the joint popularity of two roles r(I)

j

and r(I)
l is defined as:

pop : (R× R)→N, pop(r(I)
j , r(I)

l) :=
m

∑
i=1

UA(I)
i,j ·UA(I)

i,l . (6.10)

To create the new role using (RC2v3), a user and one of its roles are chosen randomly.
The second role is then selected from the remaining roles of the considered user in

6.4. Evaluation, Analysis and Improvements 101

such a way that the joint popularity is maximized:

pop(r(I)
v , r(I)

w) ≥ pop(r(I)
v , r(I)

i) ∀ri ∈ R(I)(u) \ {r(I)
v }. (6.11)

Comparison of (RC2) variants. Evaluation of the different variants of (RC2) was
again conducted on the three benchmark instances selected from RMPlib with (RC2)
activated as only role-creation method activated. Furthermore, CrR = 0, such that
the crossover method was not executed. Figure 6.20 shows the course of the average
best number of roles from all 20 test runs against iterations on PS_02 and PS_05. The
results obtained on PM_01 can be found in Appendix B.4.2.

FIGURE 6.20: Comparison of the different variants of (RC2) [7].

The evaluation of the different variants of (RC2) leads to similar results on each of
the three selected benchmark instances. It can be clearly shown that variant (RC2v1)
hardly helps to reduce the total number of roles. This can be explained by the fact
that, even if the two smallest roles are merged, this does not imply that they become
obsolete and can be deleted from the role concept. It is therefore possible that the
same roles are repeatedly selected for merging. Also (RC2v2) performs worse than
the pure random selection of the original version of mutation method (RC2). Hence,
it does not seem to be a good approach to combine similar roles considering the
permissions assigned. Of all presented variants of (RC2), variant (RC2v3) clearly
performs best, as it produces similar or even better results in significantly fewer
iterations.

(RC3): Role-Creation from Splitting of Roles.

It was shown that mutation based on role-creation method (RC3) hardly contributes
to the role mining process of the addRole-EA. Therefore, instead of studying possi-
ble variants of (RC3), the effects of omitting (RC3) on the performance of the opti-
mization process are investigated at this point. For this purpose, the performance
of the addRole-EA was evaluated on the same benchmark instances of RMPlib, once
having (RC3) activated and once having (RC3) deactivated. Figure 6.21 shows the
course of the average best number of roles from all 20 test runs against iterations on
PS_02 and PS_05. The results obtained on PM_01 can be found in Appendix B.4.3.

102 Chapter 6. Single-level Role Mining

FIGURE 6.21: Comparison of addRole-EA with (RC3) being activated/deactivated [7].

Figure 6.21 shows that the addRole-EA with (RC3) deactivated leads to good results
more rapidly. As, in addition, omitting (RC3) provides similar or even better results
on each of the three benchmark instances, it might be worthwhile to consider exclud-
ing (RC3) completely from the addRole-EA. However, if the obtained role concepts
are to consist mainly of roles that share no permissions, this method may be a tool
to achieve this objective.

(RC4): Role-Creation from Aggregating a User’s Permissions. Similar to (RC3),
the performance analysis of the different methods revealed that (RC4) hardly con-
tributes to the reduction of roles on the instances of RMPlib. Therefore, it is rea-
sonable to examine the effect of omitting (RC4) on the optimization process. For
this purpose, the standard version of the addRole-EA as well as a variant, in which
(RC4) is deactivated, were tested on each of the considered benchmark instances.
Figure 6.22 shows the course of the average best number of roles from all 20 test
runs against iterations on PS_02 and PS_05. The results obtained on PM_01 can be
found in Appendix B.4.4.

FIGURE 6.22: Comparison of addRole-EA with (RC4) being activated/deactivated [7].

In contrast to (RC3), where the deactivation of the mutation method accelerated the
optimization process, omitting (RC4), although having little contribution in terms of
global improvements, resulted in slower convergence on PS_05 and PM_01. How-
ever, on PS_02, better results could be obtained by the deactivation of (RC4).

6.4. Evaluation, Analysis and Improvements 103

(RC5): Role-Creation from a User’s leftover Permissions.

In the original version of role-creation method (RC5), a user and some of the user’s
assigned roles are selected randomly to determine the leftover permissions which are
to be assigned to the new role. Based on that, two new variants of this method can be
derived. Similar to the original version, in both new variants, a user is selected ran-
domly and a random number k ∈ {1, 2, ...,

(
|R(I)(u)| − 1

)
} is drawn for the number

of roles, which are to be selected. Subsequently, in contrast to (RC5), the k roles are
not selected randomly, but based on their size or popularity.

(RC5v1): Role Selection based on Size In this variant of (RC5), the k currently
largest roles of a user, in terms of the number of permissions assigned, are selected.
For the definition of the size of a role, see Equations 6.8.

(RC5v2): Role Selection based on Popularity. In (RC5v2), it is not a role’s size,
but the popularity of a role, which is used as selection criterion for the k roles. The
popularity of a role in an individual pop(r(I)

j), similar to the definition of the joint
popularity in Equation 6.11, refers to the number of users who are assigned a given
role r(I)

j :

pop(r(I)
j) : R→N, pop(r(I)

j) :=
m

∑
i=1

UA(I)
i,j . (6.12)

Hence, to create the new role, rather those permissions are used, that are not part of
a role assigned to many users, which can thus be considered a potentially good role
regarding the optimization process.

Comparison of (RC5) variants. To compare the different variants of (RC5), the
addRole-EA was evaluated on the three benchmark instances of RMPlib, with (RC5)
respectively one of its variants activated as only role-creation method and crossover
deactivated. Figure 6.23 shows the course of the average best number of roles from
all 20 test runs against iterations on PS_02 and PS_05. The results obtained on PM_01
can be found in Appendix B.4.5.

FIGURE 6.23: Comparison of the different variants of (RC5) [7].

104 Chapter 6. Single-level Role Mining

It can be seen that both new variants perform significantly worse than the standard
operator (RC5) on all three benchmark instances. This leads to the conclusion that
prioritized selection may hamper the optimization process compared to the pure
random selection of the original version of (RC5). Nevertheless, it can be observed
that (RC5v2) performs above average, in some first few iterations, which shows the
general strength of the popularity approach. After some iterations, however, this
variant is overtaken by the original version of (RC5), which is probably due to the
fact that (RC5v2) repeatedly creates the same roles.

An advanced Version of the addRole-EA

In order to provide a final evaluation, the addRole-EA is executed using the best
performing variants of the role-creation methods. In concrete terms this means re-
placing (RC1) by (RC1v2) using Roulette Wheel Selection. Considering role-creation
methods (RC2), it was shown that for merging two roles, it is worthwhile to an-
alyze, which roles are assigned to the same users based on their joint popularity.
Therefore, the original version of (RC2) is replaced by (RC2v3). Mutation method
(RC3) is completely omitted in the course of the algorithm, whereas (RC4) is kept
unchanged, since this method can play an important role on benchmark instances
of different structure, e.g. the HP-Labs benchmark instances. Furthermore, (RC5)
is maintained in its original version, since it could not be outperformed by of the
presented variants.

The performance of the advanced addRole-EA was evaluated on PS_02, PS_05 and
PM_01 and compared to the performance of the original version of the addRole-
EA. Figure 6.24 shows the development of the average best number of roles against
iterations for the advanced and original version of the addRole-EA on PS_02 and
PS_05. The results obtained on PM_01 can be found in Appendix B.4.6.

FIGURE 6.24: Performance comparison of advanced addRole-EA and original version [7].

Figure 6.24 already shows that the advanced version of the addRole-EA requires
significantly fewer iterations to attain similarly good results as the original version.
This becomes even more apparent in Table 6.13. It can be seen that the advanced
and the original version of the addRole-EA provide very similar results in terms
of the number of roles. On PS_02, the advanced version performs slightly better,
whereas on PM_01, the original version leads to a slightly better result considering

6.4. Evaluation, Analysis and Improvements 105

the number of roles obtained. Considering the number of iterations until the global
fitness was improved for the last time as well as the time per iteration, it can be seen
that the advanced version of the addRole-EA significantly accelerates the optimiza-
tion process. Especially on the comparatively larger benchmark instance PM_01, the
number of iterations needed by the advanced version is reduced to substantially less
than 50% compared to the number of iterations needed by the original version of the
addRole-EA.

TABLE 6.13: Performance comparison of advanced addRole-EA and original version [7].

PS_02 PS_02 PS_05 PS_05 PM_01 PM_01
(orig.) (adv.) (orig.) (adv.) (orig.) (adv.)

Number of roles 30.05 29.30 49.80 49.80 150.40 151.50
Time (ms) per iteration 17.31 14.18 7.81 7.70 110.38 94.43
Number of iterations 12,605.20 9,920.65 4,132.05 3,414.75 12,504.80 5,922.85

6.4.4 Analysis of Role Selection

In addition to the investigation of the different role creation methods for muta-
tion, also the activation respectively deactivation of the different role-selection meth-
ods was examined. In particular, since role-selection method (RS3) accounted for
the largest share of global improvements amongst all role-selection methods, while
(RS1) hardly contributed to global improvements, see Figures 6.17 and 6.18, the vari-
ants of the advanced version of the addRole-EA, in which (RS1) was deactivated and
either (RS2) and (RS3) were used for role selection or (RS3) was used as sole role se-
lection method, seemed to be promising. However, none of the variants obtained
from different combinations of role selection methods obtained significantly better
results than the advanced addRole-EA. The corresponding results obtained from the
different experiments are provided in Appendix B.5.

Since none of the combinations of the different role-selection methods could pro-
vide better results, it appears logical that possible next steps include the develop-
ment and research of further role-selection and role-creation methods. Likewise,
other, less randomly driven methods for initialization or a more detailed analysis of
the impact of different parameter setups also including the benchmark instances of
RMPlib could possibly improve the results. However, it could be shown that both
the original version and the advanced version of the addRole-EA perform very well
compared to other role mining approaches. The next chapter therefore examines
how this algorithm can be applied to the requirements of SAP ERP, where an opti-
mal role concept is to be found that includes two role levels.

107

Chapter 7

Two-level Role Mining

In contrast to the role mining scenarios considered in the previous chapters, SAP
ERP does not use single-level role concepts, but role concepts that comprise two role
levels including single and composite roles, as described in Chapter 4. This results
in the need to formally define and examine corresponding two-level role mining
problems. One possible solution strategy for the resulting two-level role mining
problems is to adapt and modify known approaches for the single-level problem.
This is carried out in this chapter using the addRole-EA, resulting in three differ-
ent approaches for two-level role mining. Since there are no existing benchmarks
to evaluate algorithms for the Two-level Role Mining Problem, such that either syn-
thetic data or benchmark instances created for single-level role mining must be used,
a new set of two-level benchmark instances was created and integrated into RMPlib.
The results and methods presented throughout this chapter were published in [9].
The benchmark extensions for the Two-level Role Mining Problem are described
in [10].

7.1 Two-level Role Mining Problems

In the following, two new variants of the role mining problem are introduced: The
Basic Two-level Role Mining Problem corresponds to the Basic Role Mining Problem
and aims at minimizing the total number of single and composite roles. The Con-
strained Role Mining Problem is more practice-oriented and limits the number of per-
missions in a single role while also minimizing the total number of single and com-
posite roles. However, before defining the new two-level variants of the RMP, the
following elements must be defined, in addition to the elements already introduced
in the previous chapters:

• SR = {sr1, sr2, ..., srKs} a set of Ks = |SR| single roles,

• CR = {cr1, cr2, ..., crKc} a set of Kc = |CR| composite roles,

• UCA ∈ {0, 1}M×Kc a composite-role-to-user assignment matrix,

• CSA ∈ {0, 1}Kc×Ks a single-role-to-composite-role-assignment matrix,

• SPA ∈ {0, 1}Ks×N a permission-to-single-role assignment matrix,

108 Chapter 7. Two-level Role Mining

• USA := UCA ⊗ CSA ∈ {0, 1}M×Ks the corresponding single-role-to-user as-
signment matrix,

• CPA := CSA⊗ SPA ∈ {0, 1}Kc×N the corresponding permission-to-composite-
role assignment matrix,

• RUPA2L := UCA ⊗ CSA ⊗ SPA ∈ {0, 1}M×N the corresponding resulting
permission-to-user assignment matrix.

A two-level role concept is defined as ϕi = 〈CR(i), SR(i), UCA(i), CSA(i), SPA(i)〉.
The set of all two-level role concepts is denoted Φ. The single-role-to-user assign-
ment matrix USA(i) and the permission-to-composite-role assignment matrix CPA(i)

as well as the resulting permission-to-user assignment matrix RUPA(i)
2L can be ob-

tained from UCA(i), CSA(i) and SPA(i) using Boolean matrix multiplication, such
that there is no necessity to include them into the definition of a role concept. If
RUPA(i)

2L = UPA holds for role concept ϕi, it is said to be 0-consistent. The set of all 0-
consistent role concepts is denoted by Φ0. Figure 7.1 shows the schematic represen-
tation of the different matrices and their interdependencies based on the exemplary
two-level role concept ϕ1 of Figure 4.6.

FIGURE 7.1: Exemplary two-level role concept ϕ1 in matrix representation, based on [9].

Based on these definitions, the Basic Two-level Role Mining Problem can be defined
analogous to the Basic RMP for single level role mining:

Definition 7.1 (The Basic Two-level Role Mining Problem (B2L-RMP))
Given a set of users U, a set of permissions P and a targeted permission-to-user assignment
matrix UPA, find a 0-consistent role concept ϕ = 〈CR, SR, UCA, CSA, SPA〉, such that
the total number of composite and single roles |CR|+ |SR| is minimal.

B2L-RMP =

{
min |CR|+ |SR|
s.t., d(UPA, RUPA2L) = 0,

Theorem 7.1 shows the relationship between the Basic Two-level Role Mining Prob-
lem and the Basic Role Mining Problem:

7.1. Two-level Role Mining Problems 109

Theorem 7.1 Let r∗ be the optimum number of roles of the Basic Role Mining Problem
based on a set of users U, a set of permissions P and a permission-to-user assignment matrix
UPA. Then for the Basic Two-level RMP, based on the same U, P and UPA, the following
holds: minϕi∈Φ0(|C(i)|+ |S(i)|) = 2r∗.

Proof.

(1) Show that minϕi∈Φ0

(
|CR(i)|+ |SR(i)|

)
≥ 2r∗:

(a) Suppose there is a solution ϕ1 = 〈CR(1), SR(1), UCA(1), CSA(1), SPA(1)〉 of
the Basic Two-level RMP with |CR(1)| < r∗.
Hence, π1 := 〈CR(1), UCA(1), (CSA(1) ⊗ SPA(1))〉 is a valid solution for
the Basic RMP with |R(1)| = |CR(1)| < r∗ roles, which contradicts r∗ being
the minimum number of roles for the Basic RMP.

(b) Suppose there is a solution ϕ2 = 〈CR(2), SR(2), UCA(2), CSA(2), SPA(2)〉 of
the Basic Two-level RMP with |SR(2)| < r∗.
Hence, π2 := 〈SR(2), (UCA(2) ⊗ CSA(2)), SPA(2)〉 is a valid solution for
the Basic RMP with |R(2)| = |SR(2)| < r∗ roles. This again contradicts r∗

being the minimum number of roles for the Basic RMP.

From (a) and (b), it follows directly that |CR(i)|+ |SR(i)| ≥ 2r∗ for all possible
solutions ϕi ∈ Φ0 of the Basic Two-level Role Mining Problem.

(2) Now, show that ∃ϕ∗ ∈ Φ0 such that |CR∗|+ |SR∗| = 2r∗:
Suppose that π∗ := 〈R∗, UA∗, PA∗〉 is an optimum solution of the Basic RMP
such that |R∗| = r∗. Then, ϕ∗ := 〈CR∗, SR∗, UA∗, Ir∗ , PA∗〉 is a possible solu-
tion of the Basic Two-level RMP, where the set of single roles SR∗ corresponds
to the set of roles R∗. Hence, |SR∗| = |R∗| = r∗. Furthermore, the i-th single
role is assigned to exactly the i-th composite role only. Thus, the single-role-to-
composite-role assignment matrix corresponds to the r∗-dimensional identity
matrix CSA∗ = Ir∗ and with that |CR∗| = |R∗| = r∗. Consequently, the total
number of composite and single roles of ϕ∗ is |CR∗|+ |SR∗| = 2r∗.

From (1) and (2), it follows that minϕi∈Φ0

(
|C(i)|+ |S(i)|

)
= 2r∗.

�

Theorem 7.1 does not only make statements about the number of composite and
single roles of an optimum solution of the B2L-RMP. It also describes a possibility
to create an optimum solution ϕ∗ for the B2L-RMP from an optimum solution π∗

for the Basic RMP using trivial composite roles containing only one single role each,
while the assignment of permissions to single roles in ϕ∗ corresponds to the assign-
ment of permissions to roles in π∗ and the assignment of composite roles to users
in ϕ∗ corresponds to the assignment of roles to users in π∗. It is obvious that this
solution does not meet the requirements of ERP systems. For this reason, the Basic
Two-level RMP is extended. In order to reflect the fact that single roles correspond
to rather small job functions, an upper bound smax ∈ N on the number of permis-
sions contained in a single role is introduced. Based on the previous notations, the
Constrained Two-level RMP is defined as follows:

110 Chapter 7. Two-level Role Mining

Definition 7.2 (The Constrained Two-level Role Mining Problem (C2L-RMP))
Given a set of users U, a set of permissions P and a targeted permission-to-user assignment
matrix UPA, find a 0-consistent role concept ϕ = 〈CR, SR, UCA, CSA, SPA〉, such that
the total number of composite and single roles |CR|+ |SR| is minimal, while the number of
permissions in a each single role is limited by smax.

C2L-RMP =

min |CR|+ |SR|
s.t., d(UPA, RUPA2L) = 0,

∑n
j=1 SPAij ≤ smax, i ∈ {1, ..., Ks} .

7.2 Benchmarking for Two-level Role Mining

Besides the benchmarks of HP-Labs and RMPlib, there are no other publicly available
benchmarks for role mining. In particular, there are no instances, which explicitly
include a two-level role structure. Therefore, the creation and analysis of a new set
of two-level benchmark instances, which is integrated into RMPlib as 2LEVEL_x-
benchmark, is described in the following.

The benchmark generation procedure for two-level role mining is inspired by the
creation of the single-level benchmark instances of RMPlib and aims at providing
different instances that can be used to analyze algorithms for the B2L-RMP or the
C2L-RMP. In contrast to the existing benchmarks in RMPlib, the permission-to-user
assignment matrices of the new instances are created with an underlying two-level
role structure. This is achieved by creating three binary matrices UCA, CSA and SPA
randomly. Afterwards, these matrices are multiplied using Boolean matrix multipli-
cation resulting in a permission-to-user assignment matrix UPA∗, which constitutes
the two-level benchmark instance, see Algorithm 7.1. At this, |U∗| denotes the num-
ber of users, |P∗| the number of permissions and |CR| respectively |SR| denote the
number of composite respectively single roles used for the creation of the bench-
mark instances. Furthermore, ρ̃UCA (resp. ρ̃CSA, ρ̃SPA) denotes the desired density
of a matrix UCA (resp. CSA, SPA). Since the matrices are created randomly, the
desired densities ρ̃ may differ slightly from the actual densities ρ after the bench-
mark instances have been created. In order to create benchmarks suitable for the
C2L-RMP, an additional threshold pmax was included into the generation process of
the SPA-matrices as upper limit on the number of permissions per single role.

Algorithm 7.1: Two-level Benchmark Creation

Input: |U∗|, |P∗|, |CR|, |SR|, ρ̃UCA, ρ̃CSA, ρ̃SPA, pmax
Output: permission-to-user assignment matrix UPA∗

1 create random binary matrix UCA based on |U∗|, |CR| and ρ̃UCA;
2 create random binary matrix CSA based on |CR|, |SR| and ρ̃CSA;
3 create random binary matrix SPA based on |SR|, |P∗|, ρ̃SPA and pmax;
4 UPA∗ := UCA⊗ CSA⊗ SPA;

7.2. Benchmarking for Two-level Role Mining 111

In addition to the two benchmark instances TL01 and TL02, which were used for
evaluation purposes in [9] and were included into the 2LEVEL_x-benchmark of RM-
Plib as 2LEVEL_05 and 2LEVEL_06, eight new benchmark instances were created.
Table 7.1 shows all new instances of the 2LEVEL_x-benchmark and corresponding
key figures. The instances of the 2LEVEL_x-benchmark range from 50 users and 50
permissions up to 100 users and 200 permissions. Furthermore, the average number
of permissions per user varies between 30 and 60, the average number of compos-
ite roles per user varies between 2 and 5, the average number of single roles per
composite role varies between 3 and 5 and the average number of permissions per
single role varies between 3 and 10. This is reflected in the density values of the
corresponding matrices.

TABLE 7.1: Key figures of the 2LEVEL_x-benchmark instances of RMPlib [10].

|U∗| |P∗| |CR| |SR| pmax ρ̃UCA ρ̃CSA ρ̃SPA ρUPA

2LEVEL_01 50 50 15 25 5 0.315 0.136 0.091 0.745
2LEVEL_02 50 50 15 25 10 0.184 0.123 0.185 0.756
2LEVEL_03 50 100 25 50 5 0.123 0.066 0.044 0.349
2LEVEL_04 50 100 25 50 10 0.083 0.073 0.090 0.466
2LEVEL_05 100 100 25 53 5 0.160 0.078 0.035 0.428
2LEVEL_06 100 100 25 51 5 0.160 0.070 0.034 0.433
2LEVEL_07 100 100 25 50 5 0.204 0.101 0.046 0.617
2LEVEL_08 100 100 25 50 10 0.116 0.066 0.088 0.527
2LEVEL_09 100 200 50 100 5 0.041 0.035 0.024 0.154
2LEVEL_10 100 200 50 100 10 0.062 0.049 0.028 0.311

To perform a first analysis of the created benchmark instances, the same pre-proces-
sing procedure, that was used for the analysis of the single-level instances in the last
chapter, is applied. The resulting numbers of users |U| and permissions |P| after the
application of the four pre-processing steps (PP1-4) are shown in Table 7.3. A natural
upper bound on the number of composite roles is given by the number of composite
roles used for the creation of the benchmark. This can be compared to the number
of composite roles of the trivial solution ϕ0 of the Two-level RMP. Naturally, the
same is valid for the number of single roles. Table 7.2 shows how the trivial solution
can be obtained. Since the UPA matrix does usually not satisfy the constraint of the
C2L RMP, a trivial solution, different from the trivial solution for the B2L-RMP, is
obtained for the C2L-RMP in the second case.

TABLE 7.2: Creation of trivial solution for two-level role mining problems [10].

UCA(0) CSA(0) SPA(0) |CR(0)| |SR(0)|

Case 1: |U| ≥ |P| B2L-RMP UPA Id|P| Id|P| |P| |P|
C2L-RMP UPA Id|P| Id|P| |P| |P|

Case 2: |U| < |P| B2L-RMP Id|U| Id|U| UPA |U| |U|
C2L-RMP Id|U| UPA Id|P| |U| |P|

In order to give a first estimation of the potential of the different instances of the
2LEVEL_x-benchmark, for each instance, two key figures are calculated: ∆CR :=
|CR(0)| − |CR| is defined as the difference between the number of composite roles

112 Chapter 7. Two-level Role Mining

that can be obtained from the trivial solution and the number of composite roles
that was used to create the benchmark instance. ∆SR := |SR(0)| − |SR| is defined
similarly for single roles. The values of ∆CR and ∆SR for the 2LEVEL_x-benchmark
instances are shown in Table 7.3. Here, the trivial solution of the C2L-RMP was used
in all cases.

TABLE 7.3: The 2LEVEL_x-benchmark instances after pre-processing [10].

|U| |P| |CR| |SR| ∆CR ∆SR

2LEVEL_01 45 43 15 25 28 18
2LEVEL_02 40 47 15 25 25 22
2LEVEL_03 48 91 25 50 23 41
2LEVEL_04 42 98 25 50 17 48
2LEVEL_05 99 92 25 53 67 39
2LEVEL_06 99 91 25 51 66 40
2LEVEL_07 100 92 25 50 67 42
2LEVEL_08 89 100 25 50 64 50
2LEVEL_09 82 182 50 100 32 82
2LEVEL_10 96 192 50 100 46 92

As shown in Table 7.3, the values for ∆CR, which range from 17 to 67, and the values
for ∆SR, which range from 18 to 92, are comparatively high. This indicates a good
suitability of the instances for the evaluation of two-level role mining algorithms.

7.3 Solution Strategies for Two-level Role Mining

Since two-level role mining was defined for the first time in the context of this re-
search, there are no approaches in literature that can be directly applied as solution
strategy for the associated optimization problems. One approach, that has often
been used as solution strategy for the Basic RMP, is to search for entire role hier-
archies, which can also be interpreted as multi-level role concepts. Schlegelmilch
and Steffens were the first to apply clustering techniques to derive multi-level role
concepts [100]. However, no overlap was allowed between roles in terms of shared
permissions, leading to the creation of many hierarchy levels. Zhang et al. provide
a graph-based approach [114]. Roles are compared in pairs and arranged in a hi-
erarchy. Permissions can be directly assigned to roles at all hierarchy levels. This
approach is extended in such a way that the deletion of obsolete roles becomes pos-
sible [115]. Guo et al. present a similar approach, where existing roles are iteratively
included into a role hierarchy [52]. Molloy et al. as well as Takabi et al. use formal
concept analysis [80, 104]. In general, however, the presented approaches are more
about finding an optimum role hierarchy with an unrestricted number of role levels
rather than an optimum two-level arrangement of composite and single roles, such
that they are not suitable as solution strategies for the B2L-RMP or the C2L-RMP. In
the following, therefore, three different approaches to solve the new two-level vari-
ants of the RMP are presented in which the addRole-EA is applied to single-level
sub-problems either consecutively or alternatingly or is modified in a way that it
can handle and optimize both role levels simultaneously. A special feature of the
C2L-RMP is that, in contrast to the Basic RMP and the B2L-RMP, the cardinalities

7.3. Solution Strategies for Two-level Role Mining 113

of the permission classes after pre-processing play an important role. In particular,
permissions that belong to permission classes containing more than smax elements
cannot be assigned to a single role. One approach to address this consists in the
deactivation of the second pre-processing step (PP2), such that permissions are not
aggregated into permission classes.

7.3.1 Consecutive Optimization of Single and Composite Roles
A straightforward way to obtain two-level role concepts is to divide the Two-level
RMP into two one-level sub-problems. For this purpose, the given permission-to-
user assignment matrix UPA∗ as well as the associated sets of users U∗ and per-
missions P∗ are used as input for single-level role mining. The addRole-EA can be
applied as described in Chapter 6 and returns a set of roles, which can be interpreted
either as single or composite roles, in a first run. In a second run of the addRole-EA,
the missing role level is calculated. Depending on whether the roles obtained in the
first run are understood as single or composite roles, two different variants of the
consecutive approach can be distinguished:

Variant 1: Single Roles First (SRF).

In this variant, the addRole-EA is used to compute single roles from the given UPA∗

matrix in a first run. The best individual of this run provides a set of single roles
SR∗, a single-role-to-user assignment matrix USA∗ and a permission-to-single-role
assignment matrix SPA∗. Subsequently, in a second run, the addRole-EA is used
to compute composite roles from the USA∗ matrix, which was obtained in the first
run. The best individual of the second run then provides a set of composite roles
CR∗, a single-role-to-composite-role assignment matrix CSA∗ and a composite-role-
to-users assignment matrix UCA∗. Hence, after completion of the two runs, a com-
plete two-level role concept ϕ∗ = 〈CR∗, SR∗, UCA∗, CSA∗, SPA∗〉 has been created,
as illustrated Figure 7.2.

UPA* UCA* CSA* SPA*

(SRF) Run 1:

(SRF) Run 2: USA*

UPA*

UCA*

USA* SPA*

CSA*

⊗

⊗

⊗⊗=

=

=

C
o

n
se

cu
v
e

R
M

 (
S

R
F

)

FIGURE 7.2: Consecutive two-level role mining (Single Roles First) [9].

Variant 2: Composite Roles First (CRF).

Analogous to the first variant, the given UPA∗ matrix is used to mine roles in a first
run. However, in this variant, the obtained roles are understood as composite roles,
such that the best individual of the first run provides a set of composite roles CR∗,
a composite-role-to-user assignment matrix UCA∗ and a permission-to-composite-
role assignment matrix CPA∗. In a second run of the addRole-EA, single roles are
obtained based on CPA∗, such that the corresponding best individual provides a set
of single roles SR∗, a single-role-to-composite-role assignment matrix CSA∗ and a
permission-to-single-role assignment matrix SPA∗. Again, this leads to the creation
of a complete two-level role concept, see Figure 7.3.

114 Chapter 7. Two-level Role Mining

C
o

n
se

cu
v
e

R
M

 (
C

R
F

)

UPA* UCA* CSA* SPA*

(CRF)Run 1:

(CRF)Run 2: CPA*

UPA*

CSA*

UCA* CPA*

SPA*

⊗

⊗

⊗⊗=

=

=

FIGURE 7.3: Consecutive two-level role mining (Composite Roles First) [9].

If the consecutive approach is used for the C2L-RMP, it is necessary to ensure that no
more than smax permissions are assigned to a single role. Hence, during optimizing
on single role level, this needs to be checked before the execution of the addRole-
method. If a single role does not comply with this constraint, the addRole-method is
not executed and the single role is not added to the chromosome of the individual of
the addRole-EA. Furthermore, pre-processing step (PP2) is deactivated in the basic
version of the addRole-EA.

Evaluation of Consecutive Two-level Role Mining

In the following, it is examined which of the two variants of consecutive role min-
ing provides better results. Since, according to Theorem 7.1, the B2L-RMP is sim-
ilar to the single-level Basic RMP, the C2L-RMP is considered at this point. Ad-
ditionally, the influence of smax on the solutions of the C2L-RMP is analyzed. For
this purpose, three different values of smax were examined, once using SRF and
once using CRF. Evaluation was conducted on the single-level benchmark instances
of the PLAIN_x benchmark PS_02, PS_05 and PM_01 as well as the two-level in-
stances 2LEVEL_05 and 2LEVEL_06 of the 2LEVEL_x benchmark of RMPlib. On
2LEVEL_05 and 2LEVEL_06, the maximum number of permissions assigned to a
single role was limited by 5, when creating these benchmark instances. Based on
that, smax ∈ {3, 5, 10} in order to investigate the effects of smax being smaller, equal
or exceeding this threshold. On PS_02 and PS_05, the average number of permis-
sions assigned to the roles used for benchmark creation amounts to 5.0, such that
also smax ∈ {3, 5, 10} is selected. Since for the creation of PM_01, a role was assigned
10 permissions on average, smax ∈ {5, 10, 20} in this case. The parameters of the
addRole-EA were adopted from Chapter 6. Figure 7.4 shows the progression of the
total number of roles |CR∗|+ |SR∗| of the best role concept of each iteration for the
different values of smax on 2LEVEL_05.

FIGURE 7.4: Comparing solution qualities of CRF and SRF on 2LEVEL_05 [10].

7.3. Solution Strategies for Two-level Role Mining 115

Figure 7.5 shows the progression of the total number of roles |CR∗| + |SR∗| of the
best role concept of each iteration for the different values of smax on PS_02.

FIGURE 7.5: Comparing solution qualities of CRF and SRF on PS_02 [10].

It can be seen that CRF outperforms SRF, in particular for small values of smax. Solely
on PS_02, where smax = 10, SRF resulted in fewer roles compared to CRF. These
findings are also supported by the results obtained on 2LEVEL_06, PS05 and PM_01,
which can be found in Appendix C.1.3.

Tables 7.4 and 7.5 show the average occupancy rates of the matrix rows in UCA∗,
CSA∗ and SPA∗ for CRF. It is noticeable that, although the number of permissions
per single role was limited by 5, creating 2LEVEL_05 and 2LEVEL_06, ‖SPA∗‖/|SR|
exceeds this value for smax = 10. Theorem 7.1 shows that, if the value of smax is
chosen sufficiently large, the C2L-RMP coincides with the B2L-RMP, such that an
optimum solution can be obtained, in which only one single role is assigned to each
composite role such that ‖CSA∗‖/|CR| = 1 and CSA∗ equals the identity matrix.
This is reflected in the results obtained for smax = 10 on 2LEVEL_05, 2LEVEL_06,
PS_02 and PS_05 as well as for smax = 20 on PM_01, where ‖CSA∗‖/|CR| ranges
from 1.05 to 1.77. The same effect is also visible in the results obtained for SRF,
which can be found in Appendix C.1.1.

TABLE 7.4: Occupancy rates of matrix rows considering CRF on 2LEVEL_x instances [10].

2LEVEL_05 2LEVEL_06
smax 3 5 10 3 5 10

‖UCA∗‖/|U| 6.43 13.11 6.07 6.89 6.83 6.91
‖CSA∗‖/|CR| 5.23 3.05 1.68 5.95 3.28 1.77
‖SPA∗‖/|SR| 2.26 3.67 6.78 2.07 3.57 6.57

TABLE 7.5: Occupancy rates of matrix rows considering CRF on PLAIN_x instances [10].

PLAIN_small_02 PLAIN_small_05 PLAIN_medium_01
smax 3 5 10 3 5 10 3 5 10

‖UCA∗‖/|U| 5.55 6.83 6.09 2.98 2.98 5.75 3.51 3.51 3.50
‖CSA∗‖/|CR| 5.34 2.52 1.60 3.94 1.82 1.14 7.23 1.64 1.05
‖SPA∗‖/|SR| 1.84 3.29 4.99 1.85 3.58 4.91 2.35 7.17 9.82

116 Chapter 7. Two-level Role Mining

7.3.2 Alternating Optimization of Single and Composite Roles

The concept of alternating two-level role mining is based on the consecutive role
mining approach. The two-level RMP is again divided into the same single-level
sub-problems. The main difference compared to consecutive two-level role mining
is that it alternates between the optimization of single and composite roles, as it
might be reasonable to re-optimize composite roles after the optimization of single
roles and vice versa.

For this purpose, the addRole-EA is applied alternatingly to the two sub-problems
for a certain number of iterations p ∈ N. Since the (CRF)-variant of the consec-
utive case has proven to be the more effective variant, composite roles are opti-
mized using the addRole-EA in a first run. In the second run, single roles are op-
timized. Analogous to consecutive role mining, a complete two-level role concept
ϕ∗ = 〈CR∗, SR∗, UCA∗, CSA∗, SPA∗〉 has been created after the completion of the
two runs.

In the third run, composite roles are re-optimized using the single-role-to-user as-
signment matrix USA∗ = UCA∗ ⊗ CSA∗ as input of the addRole-EA. In order to
make use of the results of the previous runs, a new, memory-based initialization
method is used for this and the following runs of the addRole-EA. At this, the seed
individual is no longer created from UPA and IN , but from UCA∗ and CSA∗. Since
UCA∗⊗CSA∗ = USA∗, the new seed individual fulfills the 0-consistency constraint
as required. As a result of the third run, a new set of composite roles CR∗∗, a corre-
sponding composite-role-to-user assignment matrix UCA∗∗ and a new single-role-
to-composite-role assignment matrix CSA∗∗ are obtained. The set of single roles
SR∗ and the permission-to-single-role assignment matrix SPA∗ remain unchanged.
Hence, SR∗∗ := SR∗ and SPA∗∗ := SPA∗.

In the fourth run of the addRole-EA, the resulting permission-to-composite-role as-
signment matrix CPA∗∗ = CSA∗∗⊗ SPA∗∗ is used to re-optimize single roles. At this
stage, the seed individual is initialized using CSA∗∗ and SPA∗∗.

This procedure is continued iteratively, as illustrated in Figure 7.6, until there is no
more improvement at composite and single role level.

A
lt

e
rn

a
n

g
R

o
le

 M
in

in
g

Run 2: CPA* CSA* SPA*⊗

Run 1: UPA* UCA* CPA*⊗

Run 3: USA* UCA** CSA**⊗

Run 4: CPA** CSA*** SPA***⊗

⋮

USA* SPA* UPA*

UCA** CPA** UPA*

USA*** SPA*** UPA*

UCA* CSA*⊗ SPA*⊗

UCA** CSA**⊗ SPA**⊗

UCA*** CSA***⊗ SPA***⊗

⊗

⊗

⊗

⋮ ⋮

FIGURE 7.6: Alternating two-level role mining [9].

In order to apply the alternating approach to the C2L-RMP, it is again necessary
to ensure that no more than smax permissions are assigned to a single role. This is
achieved in the same way as with the consecutive role mining approach, such that,
during all optimization periods on single role level, the addRole-method is executed

7.3. Solution Strategies for Two-level Role Mining 117

only, if the proposed single role fulfills the constraint of the C2L-RMP. Again, pre-
processing step (PP2) is deactivated in order to being able to properly consider the
number of permissions assigned to each single role.

Evaluation of Alternating Two-level Role Mining There is one essential param-
eter considering the alternating two-level role mining approach namely the num-
ber of iterations p ∈ N for the optimization on each role level before changing
to the other role level. To examine its influence in more detail, different values
of p ∈ {1000, 10000, 20000, 50000} are considered on each of the previously used
benchmark instances with smax = 5.

Figure 7.7 shows the progression of the total number of roles |CR∗| + |SR∗| of the
best role concept of each iteration for the different values of p on 2LEVEL_05 and
2LEVEL_06.

FIGURE 7.7: Solution qualities for different values of p on 2LEVEL_x instances [10].

Figure 7.8 shows the progression of the total number of roles |CR∗|+ |SR∗| for the
different values of p on PS_02 and PS_05. The results obtained on PM_01 can be
found in Appendix C.2.

FIGURE 7.8: Solution qualities for different values of p on PLAIN_small_x instances [10].

It can be seen that higher values of p lead to better results in the long run in almost all
cases. However, high values of p seem to delay the optimization of roles especially
at the beginning of the optimization process, due to the high number of iterations
spent on each role level. This becomes particularly evident for p = 50, 000. Hence, a

118 Chapter 7. Two-level Role Mining

possible alternative could be to choose the values of p dynamically and to increase
them in the course of the optimization process.

In order to show the advantages of the memory-based initialization method, it was
compared to the results obtained from executing the original version of the initial-
ization method as used in the basic version addRole-EA. Figure 7.9 shows the pro-
gression of the total number of roles |CR∗| + |SR∗| for p ∈ {1000, 5000, 10000} on
PS_05. It can bee seen that, in particular for small values of p, the original ver-
sion of the addRole-EA performs significantly worse than the addRole-EA using
memory-based initialization. This is due to the fact that, using the original initial-
ization method, PA = IN is used to create the seed individual. In alternating role
mining, this leads to the creation of N single roles, each time optimization on single
role level is started and explains the peaks of the corresponding curves. If p is cho-
sen too small, there is not enough time at single-role level to reduce the single roles
of the trivial solution adequately.

FIGURE 7.9: Memory-based initialization compared to original version.

7.3.3 Simultaneous Optimization of Single and Composite Roles

In consecutive and alternating two-level role mining, only one level of the given
Two-level RMP is optimized at a time, while the other level is deliberately excluded
from the optimization process during this time. The idea driving the simultaneous
approach is therefore, to mine composite and single roles at the same time and to in-
vestigate whether this leads to better results. It is apparent that the addRole-EA in its
original form is not suitable for this purpose, since it is designed for single-level role
mining only. For this reason, in the following, a modified version of the algorithm
suitable for simultaneous two-level role mining is introduced: the two-level-addRole-
EA. The general scheme, see Figure 7.10, and typical parameters of the two-level-
addRole-EA, like population size or crossover and mutation rate, are adopted from
the single-level approach, but some of its components and methods are adapted.
This mainly involves the encoding, the evaluation of the fitness of an individual
as well as the two-level-addRole-method, which constitutes the main method of the
two-level-addRole-EA and is used to add single and composite roles to the chromo-
some of an individual during crossover and mutation. In the following, the main
modifications are presented, including a detailed description of the new two-level-
addRole-method.

7.3. Solution Strategies for Two-level Role Mining 119

Terminate?
Ini�aliza�on
+ Evalua�on

Pre-
Processing

Post-
Processing

Selec�on Crossover*

Muta�on*

Replacement Evalua�on

Yes

No Popula�on Size: 20

Muta�on Rate: 1.0

Crossover Rate: 0.1

Eli�sm Rate: 0.7

START

END

*based on two-level-addRole-method

FIGURE 7.10: Top-level description of two-level-addRole-EA incl. parameter values.

Pre-Processing

Considering the B2L-RMP, the four steps of pre-processing (PP1-4), which are used
in the original version of the addRole-EA, can be adopted without modification, as
these have impact on the set of users U∗, the set of permissions P∗ as well as the
permission-to-user assignment matrix UPA∗ only. Since the number of permissions
per single role is limited, considering the C2L-RMP, pre-processing step (PP2) is de-
activated in this case. A reduced set of users U, a set of permissions P and a reduced
permission-to-user assignment matrix UPA are obtained which are then used for
role mining.

Chromosome Encoding and Initialization

Each individual of the two-level-addRole-EA represents a possible two-level role
concept for either the B2L-RMP or the C2L-RMP. Therefore, the chromosome ϕ(I) of
an individual I is defined analogous to the definition of two-level role concepts:

ϕ(I) =
〈

CR(I), SR(I), UCA(I), CSA(I), SPA(I)
〉

. (7.1)

It comprises a set of composite roles CR(I), a set of single roles SR(I) as well as a
composite-role-to-user assignment matrix UCA(I), a single-role-to-composite-role
assignment matrix CSA(I) and a permission-to-single-role assignment matrix SPA(I).

Similar to the definition of the seed individual for single-level role mining, the chro-
mosome ϕ(I0) of the seed individual I0 for the two-level-addRole-EA is obtained
from the trivial solution of the Two-level RMP, such that UCA(I0) = UPA, CSA(I0) =

IN , SPA(I0) = IN , CR(I0) = {cr(I0)
1 , ..., cr(I0)

N } and SR(I0) = {sr(I0)
1 , ..., sr(I0)

N }. Since
RUPA(I0)

2L = UCA(I0) ⊗ CSA(I0) ⊗ SPA(I0) = UPA⊗ IN ⊗ IN = UPA, it clearly com-
plies with the 0-consistency constraint. To ensure diversity among the initial pop-
ulation, it is created by applying a random sequence of mutation operators to the
seed individual. All matrices are again encoded using the sparse representation for
binary matrices.

Evaluation/ Fitness Function

The B2L-RMP as well as the C2L-RMP aim at minimizing the number of composite
and single roles. Hence, the fitness of an individual I corresponds to the sum of the

120 Chapter 7. Two-level Role Mining

number of composite and the number of single roles:

f itness2L(I) := |CR(I)|+ |SR(I)|. (7.2)

For individual I1 corresponding to the two-level role concept of Figure 4.6 and Fig-
ure 7.1, which will be used as starting point to illustrate the two-level-addRole-method
in the following, the fitness is f itness2L(I1) = |CR(I1)|+ |SR(I1)| = 6 + 7 = 13.

The Two-level-addRole-Method

As in the original addRole-EA, the two-level-addRole-method is used to add a new
role rnew to the chromosome ϕ(I) of an individual I. However, one difficulty of the
two-level approach is to decide whether the new role is added to ϕ(I) as a composite
role or a single role. Therefore, at first, a classification step is required. Subsequently,
rnew is either added as single role using the addSingleRole-method or as composite
role using the addCompositeRole-method, see Algorithm 7.2. This and the following
algorithms used to introduce and explain the different steps of the addRole-method
are described in [10].

Classification. Before the new role rnew can be added to the chromosome of an
individual, it needs to be classified. In case the C2L-RMP is considered, a straight-
forward way to classify a role is obtained from the associated constraint. If the new
role is assigned a number of permissions less or equal than smax, i.e. ∑N

i=0 vR(rnew)i ≤
smax, a new single role srnew is created from rnew and assigned the same permissions,
such that vR(srnew) = vR(rnew). Subsequently, the new single role is added to the
chromosome of the inidvidual using the addSingleRole-method. If this is not the case,
a new composite role crnew is created from rnew, such that vR(crnew) = vR(rnew) and
added to ϕ(I) using the addCompositeRole-method. In case the B2L-RMP is consid-
ered, there are evidently further possibilities to classify roles. One approach for this
could be based on random decisions. However, this is not subject to further investi-
gation within the scope of this work.

Algorithm 7.2: two-level-addRole(individual I, role rnew)

1 if ∑N
i=1 vR(rnew)i ≤ smax then

2 create new single role srnew with vR(srnew) := vR(rnew);
3 addSingleRole(I, srnew);
4 else
5 create new composite role crnew with vR(crnew) := vR(rnew);
6 addCompositeRole(I, crnew);
7 end

The addSingleRole-Method. In case rnew is classified as single role, the addSingle-
Role-method is executed to add the new role to the chromosome ϕ(I) of individual I,
see Algorithm 7.3.

7.3. Solution Strategies for Two-level Role Mining 121

Algorithm 7.3: addSingleRole(individual I, single role srnew)

1 SR(I) := SR(I) ∪ {srnew};
2 append vR(srnew)T as new row to SPA(I);
3 assignNewSingleRoleToCompositeRoles(I, srnew);

4 if ∑
|CR(I) |
i=1 CSA(I)

i,|SR(I) | > 0 then

5 withdrawSingleFromCompositeRoles(I, srnew);
6 removeObsoleteSingleRoles(I);
7 else
8 create new composite role crnew with vR(crnew) := vR(srnew);
9 CR(I) := CR(I) ∪ {crnew};

10 append eT
|CR(I) | = (0, ..., 0, 1) as new row to CSA(I);

11 assignNewCompositeRoleToUsers(I, crnew);
12 withdrawCompositeRolesFromUsers(I, crnew);
13 removeObsoleteCompositeRoles(I);
14 removeObsoleteSingleRoles(I);
15 end

The new single role is added to the set of single roles SR(I) of the considered indi-
vidual I and vR(srnew)T is appended as new row to the corresponding permission-
to-single-role assignment matrix SPA(I). Subsequently, it is attempted to assign the
new single role to already existing composite roles using the assignNewSingleRoleTo-
CompositeRoles-method, see Algorithm 7.4. At this, srnew is assigned to a composite
role only, if the composite role already inherits all permissions assigned to srnew,
before the assignment is actually being made.

Algorithm 7.4: assignNewSingleRoleToCompositeRoles(individual I, single role srnew)

1 append 0|CR(I) | = (0, ..., 0)T as new column to CSA(I);

2 for composite role cr(I)
i ∈ CR(I) do

3 if vR(srnew) ≤
(

CPA(I)T)
i

then

4 CSA(I)
i,|SR(I) | := 1 ;

5 end
6 end

If this is successful, which means that there is at least one composite role to which
srnew can be assigned (Algorithm 7.3, line 4), all assignments of single roles to com-
posite roles which are no longer needed due to the addition of srnew are withdrawn
using the withdrawSingleRolesFromCompositeRoles-method, see Algorithm 7.5. At this,
a single role sr(I)

k ∈ SR(I) \ {srnew} is considered a candidate for withdrawal only,
if it is assigned at least one permission that is also assigned to srnew, such that

∑N
j=1 vR(sr(I)

k)j · vR(srnew)j > 0.

If a single role becomes obsolete, which means that it is no longer assigned to a
composite role or, equivalently, the corresponding column in CSA(I) contains zero-
elements only, the role is removed from the individual using the removeObsolete-
SingleRoles-method, see Algorithm 7.6.

122 Chapter 7. Two-level Role Mining

Algorithm 7.5: withdrawSingleFromCompositeRoles(individual I, single role srnew)

1 for single role sr(I)
k ∈ SR(I) \ {srnew} do

2 if ∑N
j=1 vR(sr(I)

k)j · vR(srnew)j > 0 then

3 for composite role cr(I)
i ∈ CR(I) : CSA(I)

i,k = 1 do

4 CSA(I)
i,k := 0;

5 if UCA(I) ⊗ CSA(I) ⊗ SPA(I) 6= UPA then

6 CSA(I)
i,k := 1;

7 end
8 end
9 end

10 end

Algorithm 7.6: removeObsoleteSingleRoles(individual I)

1 for single role sr(I)
k ∈ SR(I) do

2 if ∑
|CR(I) |
i=1 CSA(I)

i,k = 0 then

3 SR(I) := SR(I) \ {sr(I)
k };

4 remove corresponding column from CSA(I);
5 remove corresponding row from SPA(I);
6 end
7 end

In case it is not possible to assign the new single role to at least one of the existing
composite roles, in order to be able to still include srnew into ϕ(I), it is necessary to
create a new composite role crnew from srnew, such that vR(crnew) = vR(srnew). The
new composite role is then added to the set of composite roles CR(I) and the |CR(I)|-
th standard unit vector is appended to CSA(I) as new row, i.e. srnew is assigned to
crnew, but no other single role (Algorithm 7.3, lines 8 to 10). Subsequently, crnew is as-
signed to all users using the assignNewCompositeRoleToUsers-method, see Algorithm
7.7. Similar to the addRole-EA for single-level role mining, the single and composite
roles of the two-level addRole-EA are created in such a way that they can always be
assigned to at least one user.

Algorithm 7.7: assignNewCompositeRoleToUsers(individual I, composite role crnew)

1 append 0M = (0, ..., 0)T as new column to UCA(I);

2 for user ui ∈ U do
3 if vR(crnew) ≤ (UPAT)i then

4 UCA(I)
i,|CR(I) | := 1 ;

5 end
6 end

After the new composite role crnew had been assigned to users, it might be possible
that some of the other composite roles can be withdrawn from users. For this pur-
pose, the withdrawCompositeRolesFromUsers-method, see Algorithm 7.8, is executed.

7.3. Solution Strategies for Two-level Role Mining 123

Analogous to Algorithm 7.5, where single roles are withdrawn from composite roles,
a composite role crk ∈ CR(I) \ {crnew} is only considered for withdrawal from a user,
if ∑N

j=1 vR(crk)j · vR(crnew)j > 0.

Algorithm 7.8: withdrawCompositeRolesFromUsers(individual I, composite role crnew)

1 for composite role cr(I)
k ∈ CR(I) \ {crnew} do

2 if ∑N
j=1 vR(cr(I)

k)j · vR(crnew)j > 0 then

3 for user ui ∈ U : UCA(I)
i,k = 1 do

4 UCA(I)
i,k := 0;

5 if UCA(I) ⊗ CPA(I) 6= UPA then

6 UCA(I)
i,k := 1;

7 end
8 end
9 end

10 end

If a composite role becomes obsolete, which means that it is no longer assigned to at
least one user or, equivalently, the corresponding column in UCA(I) contains zero-
elements only, the role is removed from the individual using the removeObsolete-
CompositeRoles-method, see Algorithm 7.9. It is possible that by removing com-
posite roles also single roles become obsolete. For this reason, the removeObsolete-
SingleRoles-method must eventually be executed.

Algorithm 7.9: removeObsoleteCompositeRoles(individual I)

1 for composite role cr(I)
k ∈ CR(I) do

2 if ∑M
i=1 UCA(I)

i,k = 0 then

3 CR(I) := CR(I) \ {cr(I)
k };

4 remove corresponding column from UCA(I);
5 remove corresponding row from CSA(I);
6 end
7 end

In order to better understand the functionality of the addSingleRole-method, it is il-
lustrated providing two examples. For this purpose, two roles are added to the
chromosome ϕ(I1) of individual I1, which corresponds to the role concept ϕ1 of
Figure 7.1. The roles are chosen in such a way that, assuming smax = 3, they are
classified as single roles.

Example 7.1 (addSingleRole-Method (without creation of new composite role))
Consider rnew1 with vR(rnew1) = (1, 1, 0, 0, 0, 0, 0)T. Since rnew1 is assigned only two
permissions p1 and p2, it is classified as single role, such that a new single role srnew1

is created with vR(srnew1) = vR(rnew1). Figure 7.11 shows the individual before the
addSingleRole-method is executed. Although, UPA and CPA(I1) are not part of the
chromosome of the individual, they are included in the figures throughout the ex-
amples to increase comprehensibility.

124 Chapter 7. Two-level Role Mining

FIGURE 7.11: Example 7.1: Starting point.

In the first step, the new single role srnew1 is added to the individual’s set of sin-
gle roles SR(I1) and vR(srnew1)

T is appended as new row to SPA(I1). Subsequently,
the assignNewSingleRoleToCompositeRoles-method is executed, such that srnew1 is as-
signed to composite role cr(I1)

1 as it inherits p1 and p2 from the already existing single
roles, see CPA(I1). Hence CSA(I1)

1,8 = 1, see Figure 7.12.

FIGURE 7.12: Example 7.1: Assignment of new single role to composite roles.

After assigning the new single role to cr(I1)
1 , it is checked whether some of the sin-

gle roles in SR(I1) \ {srnew1} can be withdrawn from some of the composite roles
in CR(I1) using the withdrawSingleRolesFromCompositeRoles-method. A single role is
considered for withdrawal only, if it is assigned p1 or p2, since these are exactly the
permissions assigned to srnew1 . Therefore, only sr(I1)

3 an sr(I1)
4 need further investiga-

tion. Both roles are assigned to composite role cr(I1)
1 only, which is assigned p1 and

p2 also by srnew1 . Hence, the assignments of sr(I1)
3 and sr(I1)

4 can be withdrawn from
cr(I1)

1 and CSA(I1)
1,3 = CSA(I1)

1,4 = 0. The resulting individual after the withdrawal
process is shown in Figure 7.13.

FIGURE 7.13: Example 7.1: Withdrawal of single roles from composite roles.

In the last step, it is checked, whether some of the single roles are now obsolete. For
this purpose, it is checked, if there are single roles, which are no longer assigned

7.3. Solution Strategies for Two-level Role Mining 125

to any composite role. In this example, this is the case for sr(I1)
3 and sr(I1)

4 such that
they are removed from individual I1 using the removeObsoleteSingleRoles-method, see
Figure 7.14.

FIGURE 7.14: Example 7.1: Removal of obsolete single roles.

In conclusion, in this example, two of the existing single roles could be eliminated by
adding one new single role. Hence, the fitness of the individual could be improved
by one and f itness2L(I1) = 6 + 6 = 12.

Example 7.2 (addSingleRole-Method (with creation of new composite role))
This example builds on individual I1 resulting from the addition of a first single role
srnew1 in Example 7.1. However, for better readability, the single roles of the previous
example are renamed in such a way that SR(I1) = {sr(I1)

1 , sr(I1)
2 , sr(I1)

3 , sr(I1)
4 , sr(I1)

5 , sr(I1)
6 }.

Consider a new role rnew2 with vR(rnew2) = (0, 0, 0, 0, 1, 1, 1)T. Since rnew2 is assigned
three permissions p5, p6 and p7, it is also classified as single role. Hence, a new single
role srnew2 is created with vR(srnew2) = vR(rnew2), see Figure 7.15.

FIGURE 7.15: Example 7.2: Starting point.

In the first step, srnew2 is added to SR(I1) and vR(srnew2)
T is appended as new row to

SPA(I1). Subsequently, the assignNewSingleRoleToCompositeRoles-method is executed.
However, comparing vR(srnew2) to the rows of CPA(I1), it becomes evident that, in
this example, it is not possible to assign srnew2 to any of the existing composite roles.
Thus, a new composite role crnew with vR(crnew) := vR(srnew2) needs to be created
and added to CR(I1). Subsequently, srnew2 is assigned to crnew, which corresponds to
appending eT

7 as new row to CSA(I1) and thus, since CPA(I1) = CSA(I1) ⊗ SPA(I1),
to appending vR(crnew)T as new row to CPA(I1), see Figure 7.16. Since vR(crnew) =

vR(srnew2), the new compoiste role crnew inherits only three permissions. This ex-
plains the existence of composite roles, whose number of inherited permissions is
less or equal than smax, which, evidently, does not contradict the specifications of the
C2L-RMP.

126 Chapter 7. Two-level Role Mining

FIGURE 7.16: Example 7.2: Creation of new composite role.

Now, the new composite role, which was created in the last step, needs to be as-
signed to users. For this purpose, the assignNewCompositeRoleToUsers-method is ex-
ecuted. Since u3, u4 and u5 are the only users, who are assigned p5, p6 and p7, the
new composite role crnew is assigned to these users, such that UCA(I1)

3,7 = UCA(I1)
4,7 =

UCA(I1)
5,7 = 1, see Figure 7.17.

FIGURE 7.17: Example 7.2: Assignment of new composite role to users.

Subsequently, analogous to the procedure on single role level in Example 7.1, it is
checked, whether there are redundancies among the assignments of composite roles
to users in UCA(I1), using the withdrawCompositeRolesFromUsers-method. As can be
easily verified, composite roles cr(I1)

3 can be withdrawn from users u4 an u5, whereas
cr(I1)

6 can be withdrawn from users u3, u4 and u5. Hence, UCA(I1)
4,3 = UCA(I1)

5,3 =

UCA(I1)
3,6 = UCA(I1)

4,6 = UCA(I1)
5,6 = 0, see Figure 7.18.

FIGURE 7.18: Example 7.2: Withdrawal of composite roles from users.

It is now checked, whether some of the composite roles are obsolete. After with-
drawal, cr(I1)

6 is no longer assigned to any user, such that it can be removed from the
individual using the removeObsoleteCompositeRoles-method, see Figure 7.19. Even if

7.3. Solution Strategies for Two-level Role Mining 127

cr(I1)
3 was withdrawn from users u4 and u5, it did not become obsolete, since it is still

assigned to user u2, and, thus, is not removed from the individual.

FIGURE 7.19: Example 7.2: Removal of obsolete composite roles.

By removing composite roles, it is possible that single roles also become obsolete.
This is checked in the last step. In this example, it can be seen that single role sr(I1)

5
is no longer assigned to any of the remaining composite roles, such that it can be
removed from the individual using the removeObsoleteSingleRoles-method, see Fig-
ure 7.20.

FIGURE 7.20: Example 7.2: Removal of obsolete single roles.

In order for the new single role to be added to the chromosome of individual I1,
an additional new composite role had to be created in this example. Hence, two
new roles were added in total. This resulted in the elimination of another composite
and single role. Hence, the fitness of individual I1 remains unchanged, such that
f itness2L(I1) = 6 + 6 = 12.

The addCompositeRole-Method. If the new role rnew is assigned more than smax

permissions it is classified as composite role. However, since permissions are not
assigned to composite roles directly, the new composite role needs to be integrated
into the considered role concept in such a way that it inherits the desired permissions
by assigning suitable single roles. For this purpose, the addCompositeRole-Method is
executed, which adds a new composite role to the chromosome ϕ(I) of an individual
I, see Algorithm 7.10. It consists mainly of the methods that were already used for
the addSingleRole-method, except for one new method to assign existing single roles
to the new composite role.

128 Chapter 7. Two-level Role Mining

Algorithm 7.10: addCompositeRole(individual I, composite role crnew)

1 CR(I) := CR(I) ∪ {crnew};
2 assignSingleRolesToNewCompositeRole(I, crnew);

3 if ∃j ∈ {1, ..., N} : CPA(I)
|CR(I) |,j 6= v(crnew)j then

4 create new single role srnew with vR(srnew) := vR(rnew)−
(

CPA(I)T)
|CR(I) |

;

5 SR(I) := SR(I) ∪ {srnew};
6 append vR(srnew)T as new row to SPA(I);
7 append e|CR(I) | = (0, ..., 0, 1)T as new column to CSA(I);
8 end
9 assignNewCompositeRoleToUsers(I, crnew);

10 withdrawCompositeRolesFromUsers(I, crnew);
11 removeObsoleteCompositeRoles(I);
12 removeObsoleteSingleRoles(I);

A new composite role crnew is created from rnew such that vR(crnew) = vR(rnew). The
new composite role is then added to the set of composite roles CR(I) of the consid-
ered individual I. Subsequently, it is attempted to assign some of the existing sin-
gle roles to the new composite role using the assignSingleRolesToNewCompositeRole-
method, see Algorithm 7.11.

Algorithm 7.11: assignSingleRolesToCompositeRole(individual I, composite role crnew)

1 append 0T
|SR(I) | = (0, ..., 0) as new row to CSA(I);

2 for single role sr(I)
i ∈ SR(I) do

3 if vR(sr(I)
i) ≤ vR(crnew) then

4 CSA(I)
|CR(I) |,i := 1 ;

5 end
6 end

It is now checked, whether the permissions inherited by crnew after the execution of
the assignSingleRolesToNewCompositeRole-method correspond exactly to the permis-
sions assigned to rnew. If this is not the case, a new single role srnew is created and
assigned all remianing uncovered permissions. The new single role is then added to
the set of single roles SR(I) and assigned to crnew, which corresponds to appending
vR(srnew)T as new row to SPA(I) and appending the |CR(I)|-th standard unit vector
as new column to CSA(I) (Algorithm 7.10, lines 3 to 8). This ensures that the new
composite role inherits exactly those permissions that were specified by rnew. In case
that the number of remaining uncovered permissions exceeds smax, two or more new
single roles are created.

Independent of whether the creation of a new single role was necessary, the new
composite role is assigned to suitable users using the assignNewCompositeRoleToUsers-
method (Algorithm 7.7). Subsequently, redundant assignments of composite roles

7.3. Solution Strategies for Two-level Role Mining 129

to users are withdrawn using the withdrawCompositeRolesFromUsers-method (Algo-
rithm 7.8). Eventually, obsolete composite and single roles are removed from the in-
dividual using the removeObsoleteCompositeRoles-method (Algorithm 7.9) and remove-
ObsoleteSingleRoles-method (Algorithm 7.6).

The functionality of the addCompositeRole-method is illustrated providing two ex-
amples. For this purpose, two roles are added to the chromosome of individual I1.
The roles are chosen in such a way that, assuming smax = 3, they are classified as
composite roles.

Example 7.3 (addCompositeRole-Method (without creation of new single role))
In this example, a new composite role is added to the chromosome of individual
I1 resulting from Example 7.2. The single roles and composite roles are again re-
named, such that CR(I1) = {cr(I1)

1 , cr(I1)
2 , ..., cr(I1)

6 }, SR(I1) = {sr(I1)
1 , sr(I1)

2 , ..., sr(I1)
6 }

and f itness2L(I1) = 6 + 6 = 12.

Now, consider rnew3 with vR(rnew3) = (0, 1, 1, 1, 1, 0, 0)T. Since rnew3 is assigned four
permissions p2, p3, p4 and p5, it is classified as composite role, such that a new com-
posite role crnew1 is created with vR(crnew1) = vR(rnew3), see Figure 7.21.

FIGURE 7.21: Example 7.3: Starting point.

At first, the new composite role is added to the individual’s set of composite roles
CR(I1) and vR(crnew1)

T is appended as new row to CPA(I1). Now, for each of the
existing single roles, it is checked, whether it can be assigned to crnew1 using the
assignSingleRolesToNewCompositeRole-method. For single role sr(I1)

1 , this is clearly the
case, as it is assigned p5 only, which corresponds to one of the permissions that shall
be inherited by crnew1 . Similarly, sr(I1)

3 is assigned to crnew1 , such that CSA(I1)
7,1 =

CSA(I1)
7,3 = 1. All other single roles are assigned at least one permission that shall not

be inherited by the new composite role, such that these cannot be assigned to crnew1 .
Figure 7.22 shows the resulting individual after the assignment of single roles.

FIGURE 7.22: Example 7.3: Assignment of single roles to new composite role.

130 Chapter 7. Two-level Role Mining

Since, after the assignment of single roles to crnew1 , the new composite role inher-
its all permissions specified by vR(rnew3), the methods already known from Exam-
ple 7.1 and Example 7.2 are applied, such that they are described rather briefly at
this point. First, the new composite role is assigned to users u1 and u2, using the
assignNewCompositeRoleToUsers-method. Hence, UCA(I1)

1,7 = UCA(I1)
2,7 = 1, see Fig-

ure 7.23.

FIGURE 7.23: Example 7.3: Assignment of new composite role to users.

Thereafter, redundant assignments of composite roles to users are withdrawn, using
the withdrawCompositeRolesFromUsers-method. In this case, UCA(I1)

1,4 = UCA(I1)
2,3 =

UCA(I1)
2,4 = UCA(I1)

3,6 = 0. Since composite roles cr(I1)
3 and cr(I1)

4 are no longer assigned
to any user, they are removed using the removeObsoleteCompositeRoles-method. Fi-
nally, the removeObsoleteSingleRoles-method is executed. However, no single role can
be removed in this case, since each single role is still assigned to at least one com-
posite role after the removal of composite roles, see Figure 7.24.

FIGURE 7.24: Example 7.3: Resulting individual after withdrawal and removal of roles.

In conclusion, a new composite role was added to the chromosome of individual I1,
which resulted in the elimination of two composite roles and no single role. Thus,
the fitness of the individual could again be improved by one. Hence, f itness2L(I1) =

5 + 6 = 11.

Example 7.4 (addCompositeRole-Method (with creation of new single role))
In this final example, another new composite role is added to the chromosome of
individual I1. Single roles and composite roles are renamed.

Consider rnew4 with vR(rnew4) = (0, 0, 1, 1, 1, 1, 0)T, which is again classified as com-
posite role. Hence, a new composite role crnew2 is created with vR(crnew2) = vR(rnew4),
see Figure 7.25.

7.3. Solution Strategies for Two-level Role Mining 131

FIGURE 7.25: Example 7.4: Starting point.

In the next step, crnew2 is added to CR(I1). Subsequently, it is checked, which of
the existing single roles can be assigned to crnew2 , using the assignSingleRolesToNew-
CompositeRole-method. In this case, these are single roles sr(I1)

1 and sr(I1)
4 . This results

in permission p3, which is assigned to rnew4 , being not inherited by crnew2 , see Fig-
ure 7.26.

FIGURE 7.26: Example 7.4: Assignment of single roles to new composite role.

To address this, a new single role srnew is created that is assigned exactly the remain-
ing permission p3. It is then added to SR(I1) and assigned to crnew1 . Additionally,
vR(srnew)T is appended as new row to SPA(I1), see Figure 7.27.

FIGURE 7.27: Example 7.4: Creation of new single role.

Subsequently, analogous to the previous examples, the new composite role is as-
signed to users, using the assignNewCompositeRoleToUsers-method, redundant as-
signments of composite roles to users are withdrawn in UCA(I1), using the withdraw-
CompositeRolesFromUsers-methods and finally obsolete composite and single roles
are removed from ϕ(I1), using first the removeObsoleteCompositeRoles- and then the
removeObsoleteSingleRoles-method. The individual resulting from the application of
these methods is shown in Figure 7.28.

As a consequence, in this example, a new composite role was added to the chromo-
some of individual I1 which led to the creation of an additional single role. Hence,

132 Chapter 7. Two-level Role Mining

FIGURE 7.28: Example 7.4: Resulting individual after withdrawal and removal of roles.

two roles were added in total, whereas only one composite role could be eliminated,
resulting in an increase of the fitness of the individual, f itness2L(I1) = 5 + 7 = 12.
This emphasizes the fact that the application of the two-level-addRole-method does
not automatically result in improved fitness values, but is dependent on the new
role and therefore determined by mutation or crossover.

Selection

Analogous to the addRole-EA for single-level role mining, the two-level version is
based on random selection. First, depending on the crossover rate CrR, individuals
are selected for crossover. For each of the selected individuals, a mating partner is
randomly chosen from the other individuals of the population based on uniform
distribution. Subsequently, individuals are mutated based on the mutation rate MR.

Crossover

The crossover method of the two-level-addRole-EA coincides with the crossover
method of the addRole-EA for single level role mining, such that in each iteration,
roles are exchanged between individuals. At this, the same role selection methods
are applied. Hence, either random roles are exchanged (RS1) or all roles of either a
randomly selected user (RS2) or all roles of the user, which has the largest difference
in the numbers of assigned roles considering the two parent individuals (RS3), are
selected for exchange. In order to address the two-level role structure, it is necessary
to specify whether single or composite roles are to be exchanged. This is decided
randomly before each execution of the crossover method.

Mutation

The mutation method of the two-level-addRole-EA is also adopted from the single-
level addRole-EA including the associated role creation methods. Hence, new roles
are created from permissions shared by different users (RS1) or from merging or
splitting of existing roles (RS2-3). Furthermore, new roles are created from all per-
missions of one user (RS4) or from a user’s leftover permissions, which are not prop-
erly covered by the existing set of roles (RS5). Since this depends only on UPA and
the vector representations of the roles, which are used to create a new role, all role
creation methods are independent of whether single or composite roles are used for
the creation of a new role and can thus be included into the two-level-addRole-EA
without modification. The only significant difference compared to single-level role

7.4. Comparison of Two-level Role Mining Approaches 133

creation lies in the fact that a new role created from one of these methods can be
either a single or a composite role. This is decided in the classification part of the
two-level-addRole-method.

Replacement

As replacement is independent of whether single- or two-level role concepts are
considered, the replacement method of the addRole-EA is adopted without modi-
fication, see Algorithm 6.22.

Stopping Condition

Also the stopping criteria (SC1) and (SC2) are adopted from addRole-EA without
modification.

Post-Processing

As in the post-processing step of single-level role mining, the obtained role concepts
are readjusted to the original problem size. This means that representative users
must be re-interpreted as user classes and, if the B2L-RMP was considered and (PP2)
activated, representative permissions must be re-interpreted as permission classes in
order to adapt the information contained in UCA∗, CSA∗ and SPA∗ of the selected
role concept ϕ∗.

7.4 Comparison of Two-level Role Mining Approaches

In a final evaluation scenario, the three approaches for two-level role mining, which
were presented in the previous sections, are compared to each other. For this pur-
pose, the CRF-approach of consecutive role mining, the alternating approach with
p = 20, 000 and the simultaneous role mining approach were each run 20 times
with different random seeds on each of the considered benchmark instances, us-
ing smax = 5. To ensure comparability, for the consecutive approach, each of the
two runs of the addRole-EA was terminated either after the execution of 100,000
iterations based on stopping condition (SC1) or after 10,000 iterations without im-
provement based on stopping condition (SC2) of the original addRole-EA. Consid-
ering the alternating approach each role level was optimized five times and for the
simultaneous approach a maximum number of 200,000 iterations was selected. Ta-
ble 7.6 shows the resulting values of the fitness of the best individual as well as
the corresponding number of composite and single roles. Since the consecutive ap-
proach includes the stopping condition of the addRole-EA, whereas the alternating
and simultaneous approach was executed for 200,000 iterations, in order to compare
computation time, the time per iteration is considered.

In contrast to the first two evaluation scenarios, there is a noticeable difference be-
tween the two-level benchmark instances and the single-level instances of RMPlib.
It turns out that the simultaneous approach provides the worst results in terms of
the fitness on the instances of the PLAIN_x benchmark, while it provides the best re-
sults on 2LEVEL_05 and 2LEVEL_06. This suggests that the simultaneous approach

134 Chapter 7. Two-level Role Mining

TABLE 7.6: Comparison of two-level role mining approaches [10].

Time per
f itness2L(I∗) |CR(I∗)| |SR(I∗)| iteration (ms)

PS_02 Consecutive 69.55 32.35 37.20 20.66
Alternating 67.40 31.70 35.70 11.16
Simultaneous 71.80 35.35 36.45 69.91

PS_05 Consecutive 112.95 49.35 63.60 12.78
Alternating 111.40 49.05 62.35 6.08
Simultaneous 112.90 50.15 62.75 53.26

PM_01 Consecutive 520.00 151.50 368.50 69.07
Alternating 518.15 150.35 367.80 88.90
Simultaneous 536.60 250.70 385.90 1,265.20

2L_05 Consecutive 83.30 29.40 53.90 78.37
Alternating 76.80 25.70 51.10 28.95
Simultaneous 73.90 25.20 48.70 187.36

2L_06 Consecutive 84.65 29.70 54.95 91.94
Alternating 77.15 25.40 51.75 79.27
Simultaneous 75.80 25.35 50.45 204.63

is particularly strong on data based on a two-level structure. However, it can be seen
that the simultaneous approach requires significantly more computation time than
the alternating and consecutive approach independent of considering benchmark
instances with single- or two-level structure. Furthermore, the alternating approach
outperformed the consecutive approach on each benchmark instance considering
the obtained fitness values of the best individual. Considering computation time, it
can be seen that on each benchmark instance except for PM_01, the alternating ap-
proach was superior than the consecutive approach, so that the alternating approach
is to be preferred in comparison to the consecutive approach. Figure 7.29 shows the
progression of the fitness of the best individual over iterations on 2LEVEL_05 and
2LEVEL_06.

FIGURE 7.29: Comparison of two-level approaches on 2LEVEL_x instances [10].

Figure 7.30 shows the progression of the fitness of the best individual over iterations
on PS_02 and PS_05. The results obtained on PM_01 can be found in Appendix C.3.

7.4. Comparison of Two-level Role Mining Approaches 135

FIGURE 7.30: Comparison of two-level approaches on PLAIN_small_x instances [10].

It can be seen that the alternating and the consecutive approach reduce the num-
ber of roles much faster at the beginning of the optimization process compared to
the simultaneous approach. Since the simultaneous approach leads to better results,
at least considering the benchmark instances with two-level structure, a hybrid ap-
proach, in which optimization is first performed alternatingly, before switching to
the simultaneous approach, could be conceivable in order to increase efficiency.

137

Chapter 8

Role Mining in Dynamic
Environments
In current research as well as in the previous course of this thesis, role mining is con-
sidered a static optimization problem. At this, the set of users, the set of permissions
as well as the assignment of permissions to users, which serve as input for single-
level as well as for two-level role mining, were assumed to be invariant. In reality,
however, this is not the case. Employees join or leave a company, change positions
within a company, or request additional permissions. Moreover, in order to use the
presented solution strategies for the RMP in real practice scenarios, the user of role
mining software, the so-called decision maker (DM), should be given the possibil-
ity to interact with the role mining software. The DM should be able to edit role
concepts obtained from role mining software manually, which, at best, can lead to
further improvement of the role concept. In addition, he or she should be given
the opportunity to integrate existing practical knowledge directly into the optimiza-
tion process in order to obtain better results in less computation time. Therefore, in
this chapter role mining is considered as dynamic optimization problem. For this
purpose, the Dynamic Role Mining Problem (DynRMP) is defined. Based on this,
events which emerge from structural change in a company as well as events that
emerge from the interaction of a DM with role mining software are analyzed. Sub-
sequently, event-handling methods to integrate the different types of dynamically
occurring events into the optimization process in almost real time are presented.
Eventually, these are evaluated in a range of experiments. In addition, it is shown,
how the benchmark instances of RMPlib can be modified in order to make them ap-
plicable for dynamic role mining. To ensure better understandability, the dynamic
events and the associated event handling methods are discussed in the context of
single-level role mining in this chapter. However, they can be adapted to two-level
role mining in a similar way. The different methods and results that are presented
throughout this chapter, in particular in the context of handling structural events,
were initially published in [3] and are described in more detail in [2].

8.1 The Dynamic Role Mininig Problem

Dynamic optimization problems are characterized by objective functions or restric-
tions that change with time. These changes are triggered by dynamically occur-
ring events with direct or indirect influence on the specifications of the optimization
problem or the associated optimization process.

138 Chapter 8. Role Mining in Dynamic Environments

Many real-life optimization problems involve aspects of uncertainty and are subject
to constraints or objective functions that change over time due to events triggered
by external factors. A good example of this are tour and route planning problems.
If the corresponding Vehicle Routing Problem is not adapted properly to dynamically
occurring delivery requests or cancellations and changing travel times between des-
tinations due to uncertain and varying traffic conditions, significantly worse or even
infeasible optimization results are obtained [1]. In machine scheduling problems, it
is crucial to react to unforeseen events like unexpected machine failures, staff short-
ages, delayed material deliveries or urgent changes in customer orders [11, 85].

Another source of dynamics consists in the interaction of a DM with optimization
software. To classify events triggered by the interaction of a DM with optimization
software, König and Schneider distinguish between direct and indirect manipula-
tions [68]. Direct manipulations imply the modification of solution candidates, while
indirect manipulations comprise changes of optimization objectives or constraints as
well as the adaption of parameters of the applied optimization algorithm. At this,
current research mainly focuses on indirect interactions of a DM with optimization
software. In particular, the inclusion of dynamically changing preferences of a DM in
the case of multi-dimensional optimization is examined e.g. [19]. In some research,
however, also direct interactions have been implemented and analyzed. Schneider
et al. have developed an EA for the automatic generation of layouts comprising var-
ious direct interaction options including the moving, scaling, adding and removing
of elements. Nascimento also considered direct interaction possibilities with evo-
lutionary algorithms considering different optimization problems. For the Graph
Clustering Problem, the DM was given the option to either destroy clusters or merge
two clusters. Considering the Graph Drawing Problem, the DM was provided the pos-
sibility to move vertices. For the Map Labeling Problem, the DM was given the option
to exchange two vertices. In addition to direct and indirect manipulations, it is al-
lowed for dynamic focusing of the optimization on manually chosen sub-problems.
Furthermore, interaction possibilities aiming at the specifications of evolutionary al-
gorithms, like deliberate inclusion of certain individuals into the population of an
evolutionary algorithm are presented [31]. The transferability of these terms and
procedures is explored in more detail in Chapter 8.2 and used to classify the events
relevant in the context of role mining. Research has shown that users have greater
confidence in the correctness of a solution when they actively participated in the
solution finding process [19]. Furthermore, it was shown that algorithms including
possibilities for user interaction lead to results, that are considered satisfying by the
DM, in less time than algorithms without interaction possibilities [31]. Therefore,
the integration of interaction events into the role mining process seems promising.

A survey on optimization in dynamic environments is provided by Cruz [25] offer-
ing the following formal definition of a dynamic optimization problem in its most
general form:

DOP =

{
optimize f (x, t)

s.t., x ∈ F(t) ⊆ S, t ∈ T.

8.1. The Dynamic Role Mininig Problem 139

where:

• S ⊆ Rn, S is the search space,

• t ∈ T is the time,

• f : S× T → R is the objective function, that assigns a numerical value f (x, t)
to each possible solution x ∈ S at time t,

• F(t) is the set of feasible solutions x ∈ F(t) ⊆ S at time t.

It can be seen that in this definition both the objective function and the constraints
are time-dependent. This concept will now be applied to role mining introducing
the Dynamic Role Mining Problem.

Although it would seem natural due to the dynamic nature of role mining use cases,
there is little research on dynamic role mining. Suganthy and Chithralekha exam-
ine the structural change in organizations including employees changing their com-
partment, new employees joining or existing employees leaving the organization
[103]. From this, they derive theoretical methods for role evolution to adapt the
outdated role concepts to the new organization structure, comprising the creation
of new roles, deletion of existing roles, merging and splitting of roles and delega-
tion/withdrawal of permissions. However, the concepts presented were not imple-
mented algorithmically. Bertino et al. consider the Temporal Role Based Access Control
model, where roles are assigned to users periodically. This access control model is
used, for example, in hospitals, where the same staff performs different tasks in day
and night shifts [16]. Kiwan et al. investigate the case in which new employees are
joining a company in the context of User-Oriented RBAC in which the assignments of
roles to users are included as additional optimization objective [66]. The proposed
methods offer great insight for the consideration of events emerging from structural
change in business environments in the following chapters. Another approach that
comes close to dynamic role mining was presented by Saenko and Kotenko [94].
Changes concerning the assignment of permissions to users are aggregated into a
new permission-to-user assignment matrix UPAnew. After a certain period of time,
this is compared to the original permission-to-user assignment matrix UPAold and
the corresponding role concept π0 = 〈R(0), UA(0), PA(0)〉, which is currently imple-
mented at the considered company. Based on that, the so-called RBAC Scheme Recon-
figuration Problem is defined, which consists of finding a new, 0-consistent role con-
cept π1 = 〈R(1), UA(1), PA(1)〉, where UA(1) = UA(0) + ∆UA, PA(1) = PA(0) + ∆PA
and RUPA(1) = UA(1) ⊗ PA(1) such that:

RBAC Scheme Reconfiguration Problem =

{
min ‖∆UA‖+ ‖∆PA‖ ,

s.t. d(UPAnew, RUPA(1)) = 0.

Hence, the RBAC Scheme Reconfiguration Problem is about finding a new role con-
cept π1 which fulfills the conditions defined by UPAnew and contains as few changes
as possible compared to the old role concept π0. However, only permission changes
of already existing employees are considered. New employees or employees leaving

140 Chapter 8. Role Mining in Dynamic Environments

the company are not taken into account in this approach. Another disadvantage is
the aggregation of changes over a certain period of time. Events such as the arrival
of new employees or events triggered by user interaction, however, require integra-
tion into the optimization process, if possible in real time.A general definition of the
Dynamic Role Mining Problem, which allows for the consideration of dynamically
occurring events, can be provided as follows:

Definition 8.1 (The Dynamic Role Mining Problem)
Given a set of users U(t), a set of permissions P(t) and a targeted permission-to-user as-
signment matrix UPA(t), find a 0-consistent role concept π = 〈R, UA, PA〉 ∈ Π(t) such
that the number of roles |R| is minimal:

DynRMP =

{
min |R|,
s.t. π ∈ ΠF(t), t ∈ T.

The set of all role concepts Π(t), corresponds to the search space at time t ∈ T and
ΠF(t) ⊆ Π(t) denotes the set of feasible solutions at time t ∈ T. It is possible that
the integration of dynamic events creates the need to integrate further constraints
besides 0-consistency. For example, a DM may decide to assign certain roles to cer-
tain users. This must then be transferred to all individuals of the current population.
Subsequently, only individuals are considered feasible in which this predetermined
assignment of roles to users is incorporated. This is analyzed in more detail in the
next section.

8.2 Dynamic Events in Role Mininig

This section provides an overview of dynamic events in the context of role mining.
At first events resulting from structural change in a company are discussed. Subse-
quently, events, that emerge from the interaction of a DM with role mining software
are presented. Furthermore, it is shown how information on dynamic events can be
integrated into the addRole-EA. In the following sections, event-handling methods
are introduced and evaluated for a selection of the presented events.

8.2.1 Events emerging from Structural Change

An obvious source of dynamic events in the context of role mining are changes con-
cerning the structure of staffing of a company as employees change positions and
responsibilities, or as they join or leave the company. An overview of such struc-
tural events (S01 to S04) is shown in Table 8.1. The effects of structural events on the
optimization process as well as suitable event-handling methods for their integra-
tion into the addRole-EA are described in more detail in Chapter 8.3.

8.2. Dynamic Events in Role Mininig 141

TABLE 8.1: Structural change.

ID Event

S01 Employee joins company.
S02 Employee leaves company.
S03 Employee changes job position.
S04 Employee requests permission.

8.2.2 Events emerging from User Interaction

Another source of dynamic events results from the interaction of a DM with role
mining software. The corresponding interaction events can be classified into the cat-
egories defined by König and Schneider or Nascimento as described in the previous
section.

The first category contains events which lead to a direct manipulation of the indi-
viduals in the current population, see Table 8.2. In general, this is mainly about
editing, adding or removing roles or the corresponding assignments to users. For
these events a distinction must be made between irrevocable and revocable interac-
tions. For example, it is possible that a DM wants some specific roles to be definitely
included in the final role concept. This can be the case, if the company has already
had a role concept implemented in the past. Some departments may then want to
continue using the roles that they are already used to. Furthermore, a DM may re-
move certain permissions from a role in order to avoid possible security risks. Such
manual modifications should be preserved in the further course of optimization (ir-
revocable interactions), such that a modification of the optimization constraints is
required and the set of feasible solution ΠF(t) is changed. According to the cate-
gorization of König and Schneider, these direct manipulations of individuals also
imply indirect manipulations considering optimization constraints. In contrast to
irrevocable interactions, there are interactions which can be rather understood as
propositions. A DM can try to include his or her expert knowledge into the op-
timization process, for example by adding roles that have proven to be particularly
good in the past. However, it is not guaranteed that these roles also prove to be well-
suited in the current context. Therefore, the optimization process should be given
the possibility to automatically remove them from the individuals, if the expected
improvement is not obtained. Since, in general, the addition of new roles results
in a worsening of an individual’s fitness, it is very possible that the considered in-
dividual will not be transferred to the next population. For this purpose, suitable
survival strategies need to be developed, to ensure that individuals resulting from
the occurrence of an interaction event survive long enough to possibly improve the
optimization process. If this is not the case, it can be removed from the population
after a certain number of iterations. This is explored in more detail in Chapter 8.4.
Certainly, the DM is also provided the possibility to add new users, remove users or
change the assignments of permissions to users. However, even if triggered by the
DM, these events correspond to events S01-04 listed in Table 8.1.

Another possibility of a DM to interact with role mining software is to adjust the pa-
rameters of the role mining algorithm used. Since these indirect interactions strongly

142 Chapter 8. Role Mining in Dynamic Environments

TABLE 8.2: Manual modification of individuals.

ID Event

I01 Adding a new role.
Add a role currently not included in R(I) to the chromosome of an individual I.

I02 Deleting an existing role.
Remove a role from the chromosome of an individual I.

I03 Merging roles.
Create a new role from all permissions assigned to two roles in R(I).

I04 Splitting roles.
Create two new roles from the permissions assigned to one role in R(I).

I05 Editing permission-to-role assignments.
Modify permissions assigned to a role whilst preserving the 0-consistency.

I06 Editing role-to-user assignments.
Modify roles assigned to a user whilst preserving the 0-consistency.

depend on the role mining approach used, Table 8.3 provides some examples only,
based on the parameters of the addRole-EA.

TABLE 8.3: Adapting parameters.

ID Event

I07 Adapting the mutation rate.
I08 Adapting the crossover rate.
I09 Adapting the population size.
I10 Adapting the replacement parameters.
I11 Adapting the stopping condition.

If, at a certain point of the optimization process, a DM is already satisfied with the
optimization results achieved for certain areas, like the users of certain departments
of the company, or if a DM would like to enforce optimization in other areas, the
focus of the optimization process can be adjusted, see Table 8.4. For this purpose,
the optimization focus could be set on a certain set of users (I12). In Chapter 6, it
was shown how it is ensured that new roles, created within the mutation method of
the addRole-EA, can always be assigned to at least one user. One possibility would
therefore be to modify the role-creation methods used for mutation such that they
create roles that can be assigned in particular to the selected users. Another possibil-
ity to improve the results for a specific set of users could be to adapt the role selection
methods used for crossover in such a way that the roles of the considered users are
selected more frequently. Furthermore, in order to reduce the problem size, a DM
can decide to exclude users and the corresponding roles from further optimization
(I13). Since this means that the roles assigned to the excluded users can no longer
be modified, which in turn implicitly affects the further optimization process, this
interaction possibility should be treated with great foresight and caution.

Evolutionary algorithms bear the risk of getting stuck in local optima. For this rea-
son, it might be interesting to store individuals obtained in previous iterations. This
way, it is possible to re-integrate the stored individuals into the current population,
whenever necessary, thereby avoiding the necessity of a complete restart of the op-
timization process. In particular, in dynamic optimization, the fitness landscape is

8.2. Dynamic Events in Role Mininig 143

TABLE 8.4: Adjusting the optimization focus.

ID Event

I12 Focusing on selected users.
Set optimization focus on selected set of users and corresponding role assignments,
e.g. selection of specific mutation or crossover operators.

I13 Excluding selected users.
Exclude selected set of users (and corresponding role assignments) from the
optimization process.

subject to change over time. Hence, it is possible that some of the stored individ-
uals may have better fitness values than the individuals of the current population.
Therefore, injecting such stored individuals into the current population appears to
be a promising approach, which is also referred to as memory-based evolutionary
algorithms and has been covered in previous publications. A survey on memory-
based evolutionary algorithms is provided by Branke [20].

Here it is proposed to adopt the concept of memory-based evolutionary algorithms
to the domain of role mining with user interaction. In this scenario, the DM can store
interesting role concepts into a so-called role concept repository. Hence, the DM is able
to analyze and possibly deploy these role concepts later. However, it should be noted
that the role concepts contained in the role concept repository may not be feasible
after a certain time, for example in case a new users joins the company, so that these
must either be adjusted or discarded. The resulting interaction possibilities are listed
in Table 8.5. If multi-objective role mining, in which the 0-consistency constraint is
relaxed or business-driven objectives like license costs [8] or administrative costs [23]
are included, is considered, further interaction events can arise like the weighting
or ranking of the different optimization objectives or setting thresholds for certain
objectives.

TABLE 8.5: Using a role concept repository.

ID Event

I14 Storing a role concept.
Transfer individual I from the current population into the role concept repository.

I15 Inserting a role concept into the population.
Insert an individual I of the role concept repository into the current population.

8.2.3 Inclusion of Events into addRole-EA

One goal of dynamic optimization is to be able to react to changes as quickly as
possible. In order to process dynamic events close to real time, it is important to
forward them to the optimization process immediately after occurrence. For this
purpose, the iterative course of evolutionary algorithms is of great advantage, as, at
the beginning of each iteration, it can be checked whether one or more events are
currently pending. If this is the case, the corresponding event-handling methods
can be executed to adapt the individuals of the current population of the EA to the
new conditions of the business environment. Since the event-handling methods are
independent of the other methods of the evolutionary algorithm, they can easily be

144 Chapter 8. Role Mining in Dynamic Environments

included in other evolutionary role mining algorithms, that share the same encod-
ing of individuals. Figure 8.1 shows the alteration of the sequential process of the
addRole-EA for the integration of the event-handling methods.

Terminate?
Ini�aliza�on
+ Evalua�on

Pre-
Processing

Post-
Processing

Selec�on Crossover

Muta�on

Replacement Evalua�on

Yes

START

END

No

No

Yes Event
Handling

Event
occurred?

FIGURE 8.1: Integration of the event-handling methods into addRole-EA.

8.3 Handling of Structural Events

To include structural events into the role mining process, the consideration of one
representative user of each user class instead of the user classes themselves, as car-
ried out in the previous chapters, must be dropped. For example, if a new user joins
the company, he or she can either be added to an existing user class or a new user
class must be created. The rows of the UPA(t) matrix therefore no longer correspond
to the representative users but to user classes. Furthermore, the aggregation of users,
that are assigned the union of permissions assigned to some other users u ∈ Û into
a separate user class U∪, as carried out in pre-processing step (PP4), is no longer
possible. In the static case, such users could simply be assigned the union of roles
assigned to at least one of the users in Û after role mining. In the dynamic case, it is
not guaranteed that all users remain in the company under consideration, such that
it is possible that the permission needs of the users, that would have been aggregated
into U∪, cannot be covered by roles of other users at all times. Also the consideration
of permission classes needs to be dropped in order to enable an adequate handling
of structural events. If, as in the pre-processing example in Chapter 5, permissions
p13 and p15 are contained in the same permission class P7, it is not possible to repre-
sent a new user, who is joining the company and should only be assigned p13 but not
p15, by means of of the permission classes obtained from pre-processing step (PP2).

In order to provide comprehensible examples for the different event-handling meth-
ods in the following, again, the single-level role concept corresponding to individ-
ual I1, that was obtained from the application of the addRole-method method in
Chapter 6, is used. However, permission classes and the users that were originally
aggregated into U∪ are disregarded at this point. This corresponds to considering
another company, which comprises eight users and five user classes as well as seven
permissions only. The chromosome of individual I1, which serves as starting point
for the following examples is illustrated in Figure 8.2. The set of roles R(I1) of the
considered individual will not be displayed throughout the examples.

8.3. Handling of Structural Events 145

FIGURE 8.2: Starting point for the handling of structural events incl. Utemp(t).

Figure 8.2 contains an additional element that has not yet been introduced: the tem-
porary users list Utemp(t). It can be considered a technical auxiliary tool to ensure
that users, who are known to be leaving the company, in this case user u8, can still be
provided with permissions for a certain period of time, independent of the ongoing
role optimization process. The set of permissions of a user results from the permis-
sions which he or she is assigned by the currently implemented role concept as well
as from the permissions assigned to him or her by Utemp(t). In this way, a user, that
is known to be leaving the company can continue to do his or her work until the day
of departure, without affecting the further role optimization process, from which the
user can be excluded as soon as the information about the imminent company exit
becomes known.

In the following, it is described, how the benchmark instances of RMPlib for single-
level role mining can be adopted to obtain suitable benchmark instances for the
consideration of dynamic role mining. Subsequently, the different event handling
methods corresponding to the events S01-04 are presented and evaluated.

8.3.1 Simulation of Events and Preparation of Benchmarks

In order to simulate structural events, the benchmark instances of RMPlib need to
be modified. In particular, the simulation of event S01, where a new user joins the
company, requires a set of users, that are not part of the initial problem setting and
can thus be added dynamically during the optimization process. For this purpose,
before each experiment, a set of users Udyn is selected randomly based on uniform
distribution. The remaining set of users Uinit and their assigned permissions as spec-
ified by the benchmark instance considered, result in a reduced permission-to-user
assignment matrix UPA, which is used as input for the addRole-EA. The simula-
tion of event S02, where a user leaves the company requires no adaption of the
benchmark instances. In order to simulate event S03, where a user changes his of
her position in the company, the users in Udyn can also be used. It is assumed that
the permissions assigned to one of the users in Udyn correspond to the permissions
needed to execute the tasks of the new job position. Considering the permission re-
quest event S04, a user requests some of the permissions, which are not assigned to
him or her at the time of the event occurrence.

8.3.2 User joins Company (S01)

The knowledge that a new employee will join a company triggers event S01 and the
associated event handling method. Since it is usually known in advance that a new
user will be joining a company, a distinction is made between the occurrence of the

146 Chapter 8. Role Mining in Dynamic Environments

information and the actual entry of the user. To make the best use of this lead time,
the event can be further segmented, such that the information on the future arrival of
the new user is included into the optimization process as soon as it occurs, whereas
the role concept is adapted when the new user joins the company, see Figure 8.3.

FIGURE 8.3: Sequential handling of S01 [3].

In contrast to event S01b, where simply the currently best role concept is imple-
mented, the handling of event S01a requires more work. A description of the func-
tionality of the corresponding event-handling method is given in Algorithm 8.1,
where M denotes the number of user classes. It is explained in the following by
means of an example.

Algorithm 8.1: handleUserJoinsCompanyEvent_S01a(population Pop, user u)

1 if ∃i ∈ {1, ..., M} : vU(ui) = vU(u) then
2 Uj(t) = µu(ui) := Uj(t) ∪ {u};
3 else
4 M = M + 1;
5 UM(t) := {u};
6 append vU(u)T as new row to UPA(t);

7 for Individual I ∈ Pop do
8 updateIndividual_S01a(I, u, M);
9 end

10 end

Case 1: New user belongs to existing user class.

In case the new user is assigned exactly the same permissions as at least one of the
already existing users, the processing of event S01a is straight-forward, as there is
already a user class corresponding to the new user. Therefore, the new user must
only be added to this user class, while UPA(t), UA(I) and PA(I) remain unchanged,
see Algorithm 8.1, line 2.

An example for the handling of this case of S01a can be found in Figure 8.4. In this
case, a new user u9, that is assigned permissions p1, p2, p3, p4, p5 and p6, joins the
company. As the users in user class U1 are assigned exactly the same permissions,
the new user is simply added to U1.

8.3. Handling of Structural Events 147

FIGURE 8.4: Exemplary handling of S01a Case 1.

Case 2: New user does not belong to existing user class.

If there is no user class in the current company structure, to which the new user
can be added, a new user class must be created and thus, a new row is appended
to UPA(t), which corresponds to the permissions assigned to the new user. In con-
trast to case 1, where an update of the individuals of the current population of the
addRole-EA was not necessary, in this case also the chromosomes of the individuals
must be altered, see Algorithm 8.2.

Algorithm 8.2: updateIndividual_S01a(individual I, user u, int M)

1 append 0T
|R(I) | = (0, ..., 0) as new row to UA(I);

2 for role rk ∈ R(I) do
3 if vR(rk) ≤ vU(u) then
4 UAM,k := 1;
5 end
6 end

7 if vU(u) 6=
(

RUPA(I)T)
M

then

8 create new role rnew such that v(rnew) := vU(u)−
(

RUPA(I)T)
M

;
9 append v(rnew)T as new row to PA;

10 append eM as new column to UA;
11 end

In a first step, a new row is appended to UA(I), which corresponds to the roles which
will be assigned to the new user under consideration of the 0-consistency constraint.
Subsequently, two cases must be distinguished:

Case 2.1: Permission needs of new user can be covered by existing roles. In this
case, existing roles are assigned to the new user in order to provide him or her
with the required permissions. At this, under consideration of the 0-consistency
constraint, all roles possible can be assigned to the new user, see Algorithm 8.2,
lines 2 to 6. However, this may result in the user being assigned some permissions
multiple times across different roles. Thus, it might be worthwhile to assign only a

148 Chapter 8. Role Mining in Dynamic Environments

subset of these roles to the new user. To address this, different strategies to assign
roles to new users are presented and investigated in the next section.

Figure 8.5 shows an example of this case, where a new user u10, being assigned p1,
p2, p3, p5, p6 and p7, joins the company. Since there is no other user being assigned
the same permissions, a new user class U6 is created for the new user. In addition,
by assigning roles r(I1)

1 , r(I1)
2 and r(I1)

5 , all permissions required for u10 can be covered.

FIGURE 8.5: Exemplary handling of S01a Case 2.1.

Case 2.2: Permission needs of new user cannot be covered by existing roles. It is
possible that, even after assigning all roles to the new user, which can be assigned to
him or her without violation of the 0-consistency constraint, permissions of the new
user still remain uncovered. In this case, a new role must be created for the new user,
which is assigned the user’s remaining uncovered permissions, see Algorithm 8.2,
lines 7 to 11.

FIGURE 8.6: Exemplary handling of S01a Case 2.2.

Figure 8.6 shows an example of a new user u11, being assigned permissions p1, p2,
p4, p5, p6 and p7. There is no other user, that is assigned the same set of permissions,
such that a new user class U7 is created for the new user. As roles r(I1)

1 and r(I1)
2 are the

only roles that can be assigned to the new user without violation of the 0-consistency

8.3. Handling of Structural Events 149

constraint, u11 still requires permission p4. Hence, a new role r(I1)
6 is created, that is

assigned p4 only, and then assigned to the new user u11.

8.3.3 User leaves Company (S02)

Analogous to the first event type, in order to handle event S02, where a user leaves
the company under consideration, it is also distinguished between the occurrence of
the event information and the actual exit of the employee, see Figure 8.7.

FIGURE 8.7: Sequential handling of S02 [3].

As soon as the information about the imminent departure of a user is transmit-
ted, this information is included into the optimization process using the handleUser-
LeavesCompanyEvent_S02a-method, see Algorithm 8.3, where Uj(t) = µu(u) denotes
the user class of the leaving user u and M denotes the number of user classes. It is
important to note that the leaving user u is moved to Utemp(t). In this way, the user is
no longer included into the optimization process but still assigned the permissions
needed to execute the tasks of his or her work. As soon as the user leaves the com-
pany (S02b), he or she is removed from Utemp(t) and again the currently best role
concept is implemented.

Algorithm 8.3: handleUserLeavesCompanyEvent_S02a(population Pop, user u)

1 Utemp(t) := Utemp(t) ∪ {u};
2 if |Uj| > 1 then
3 Uj(t) := Uj(t) \ {u};
4 else
5 for Individual I ∈ Pop do
6 updateIndividual_S02a(I, u, j);
7 end
8 remove j-th row from UPA(t);
9 delete Uj(t);

10 end

Again, two cases must be distinguished for the handling of S02a:

Case 1: Leaving user belongs to user class containing more than one user.

In this case, other users remain in the user class of the leaving user after his or her
departure. Therefore, the handling of this case is similar to the handling of case 1

150 Chapter 8. Role Mining in Dynamic Environments

of S01a. UPA(t), UA(I) and PA(I) remain unchanged. The leaving user is removed
from its user class and moved to Utemp(t).

Figure 8.8 shows the exemplary departure of user u1, belonging to user class U1.
Since there are other users in U1, user u1 is removed from U1 and moved to Utemp(t).

FIGURE 8.8: Exemplary handling of S02a Case 1.

Case 2: Leaving user belongs to user class containing one user only.

The case in which the leaving user is the only member of the corresponding user
class requires more detailed examination, including an update of the individuals of
the population, see Algorithm 8.4.

Algorithm 8.4: updateIndividual_S02a(individual I, user u, int j)

1 for role rk ∈ R(I) : UA(I)
j,k = 1 do

2 if ∑M
i=1 UA(I)

i,k = 1 then

3 R(I) := R(I) \ {rk};
4 remove corresponding column from UA(I);
5 remove corresponding row from PA(I);
6 end
7 end
8 remove j-th row from UA(I);

At first, it must be checked, whether there are roles uniquely assigned to the leaving
user. If this is the case, the corresponding rows of PA(I) as well as the corresponding
columns of UA(I) are removed, see Algorithm 8.4, lines 1 to 7. Subsequently, UA(I) is
updated by removing its j-th row, as this corresponds to the user class of the leaving
user. In addition, also UPA(t) is updated by removing its j-th row. Finally, the user
class Uj(t) can be deleted, see Algorithm 8.3, lines 8 and 9.

Figure 8.9 shows the departure of u11. Since u11 is the only member of user class U7,
the corresponding row is removed from UPA(t) and UA(I1), while u11 is moved to

8.3. Handling of Structural Events 151

Utemp(t). In addition, since role r(I1)
6 is uniquely assigned to u11, the corresponding

column is removed from UA(I1) and the corresponding row is removed from PA(I1).

FIGURE 8.9: Exemplary handling of S02a Case 2.

8.3.4 Change of Job Position (S03)

Another change in the structure of a company results from position changes of users,
which usually take place within the context of relocations and promotions. In order
for a user to be able to continue to do his or her previous work for a certain transition
period, the permissions of the old job position must not be withdrawn immediately.
At the same time, the user must already be assigned the permissions of the new job
position to be able to perform the new tasks. This can lead to a state in which a user
is assigned permissions, that may not normally be assigned to the same person. In
order to mitigate potential compliance conflicts, it is of highest importance to ensure
that the permissions of the old job position are withdrawn after the transition period
has expired. The sequential handling of S03 is illustrated in Figure 8.10. At this,
v ∈ {0, 1}N denotes the vector that represents the permissions associated with the
new job position.

FIGURE 8.10: Sequential handling of S03 [3].

152 Chapter 8. Role Mining in Dynamic Environments

As soon as the information about the impending change of position becomes known,
the handleChangeOfPositionEvent_S03a-method is executed, see Algorithm 8.5, which
uses the mechanisms of S01a and S02b. At first, the user concerned is excluded from
the role mining process, using the handleUserLeavesCompanyEvent_S02a-method. In
particular, the user is moved to Utemp(t). In this way, the user is still assigned the
permissions needed to execute the tasks of his or her old job position. Subsequently,
the vector representation of the considered user is updated such that it corresponds
to the permissions needed for new job position, see Algorithm 8.5, line 2. Finally,
the user, including the updated permission assignments, is re-introduced into the
optimization process, using the handleUserJoinsCompanyEvent_S01a-method. At the
beginning of the transition period, the currently best role concept π∗ is implemented.
In this way, the permissions of the new job position are assigned to the user by π∗.
Additionally, the user is assigned the permissions associated with the old job po-
sition via Utemp(t). At the end of the transition period, the user is removed from
Utemp(t), such that he or she is assigned the permissions of the new job position
only. Since the event-handling method for S03a method is composed of the event-
handling methods for the previously presented events, there will be no detailed ex-
ample at this point.

Algorithm 8.5: handleChangeOfPositionEvent_S03a(population Pop, user u, vector v)

1 handleUserLeavesCompanyEvent_S02a(Pop, u);
2 vU(u) := v;
3 handleUserJoinsCompanyEvent_S01a(Pop, u);

8.3.5 Permission Request (S04)

In the day-to-day business of companies, it is possible that users lack certain per-
missions to perform the tasks given. If this is the case, a permission request can be
submitted to report which permissions are required additionally. This is then re-
viewed by a supervisor and either approved or rejected. Even if this event provides
far less lead time compared to S01-03, it can be worthwhile to include the event into
the optimization process as soon as the permission request is submitted, see Figure
8.11, where v ∈ {0, 1}N represents the permissions assigned to the considered user
in case the permissions request is granted.

Since it is uncertain, whether the permission request is approved, the concept of
creating a role concept repository, which was introduced in the last section, can be
used. A copy of the current population is stored in the role concept repository. Sub-
sequently, the same procedure is executed as in the event-handling method for S03a,
see Algorithm 8.6. The user is removed from the individuals and reintegrated based
on his or her new permissions. In this way, the user is assigned the same permis-
sions as before the permission request via Utemp(t). In case the permission request
is approved, the user is removed from Utemp(t) and the currently best role concept
π∗ is implemented. In case the permission request is rejected, the situation of before
the permission request can be restored by going back to the population stored in the
role concept repository.

8.3. Handling of Structural Events 153

FIGURE 8.11: Sequential handling of S04 [3].

Algorithm 8.6: handlePermissionRequestEvent_S04a(population Pop, user u, vector v)

1 store current population Pop in role concept repository;

2 handleUserLeavesCompanyEvent_S02a(Pop, u);
3 vU(u) := v;
4 handleUserJoinsCompanyEvent_S01a(Pop, u);

8.3.6 Role Assignment

As indicated in the last section, there are different ways in which roles can be as-
signed to a new user in case of S01. In case the new user can be included into one
of the existing user classes, he or she is assigned the roles which are assigned to the
other users of this user class. If the new user is assigned a unique set of permission,
i.e. there is no user that is assigned the same permissions, the needed permissions
must be assigned to the new user either using the already existing roles or by creat-
ing a new role, or sometimes by a combination of the two. For this purpose, different
role assignment methods were created, which are introduced in the following:

ORFA - One Role for All. This represents the simplest method to provide a new
user unew with permissions needed. A new role rnew is created, which is assigned all
permissions needed by the new user, such that vR(rnew) = vU(unew). Subsequently,
rnew is included into the individual by appending vR(rnew)T as new row to PA(I) and
e|R(I)|+1 as new column to UA(I), such that unew is assigned the new role. This method
is based on the assumption that during the further execution of the addRole-EA, the
created additional ORFA-roles will be optimized automatically.

AAR - Assign All Roles. Since it is possible that the needed permissions of the new
user can completely be covered by existing roles (S01 Case 2.1), it can be reasonable
to provide the user with these roles and thereby prevent the unnecessary creation
of a new role. For this purpose, AAR is a straight forward method, as it assigns all
roles r(I) ∈ R(I) to the new user, for which vR(r(I)) ≤ vU(unew), i.e. all roles that
can be assigned to unew without violation of the 0-consistency constraint. In the case
that not all permission can be covered by existing roles (S01 Case 2.2), a new role is
created, that is assigned the remaining uncovered permissions of unew.

154 Chapter 8. Role Mining in Dynamic Environments

ARR - Assign Random Roles. It may be useful not to assign all roles r(I) ∈ R(I)

that fulfill vR(r(I)) ≤ vU(unew) to the new user, as it is possible that the required per-
missions can already be covered with fewer roles. For this purpose, the contribution
contr(r(I), ui) : R(I) × U → N of a role r(I) to covering the remaining uncovered
permissions of a user ui ∈ U is defined as follows:

contr(r(I), ui) :=
N

∑
j=1

max
(
(vU(ui)j − RUPA(I)

i,j), 0
)
· r(I)

j (8.1)

Now, iteratively a random role r(I) ∈ R(I) is selected. However, this role is only
assigned to the new user if vR(r(I)) ≤ vU(unew) and contr(r(I), unew) > 0, i.e. the
selected role can be assigned to unew without violation of the 0-consistency constraint
and covers at least one of the user’s remaining uncovered permissions. In case there
is no role left that has positive contribution, the role assignment procedure is stopped
and, if necessary, a new role is created, that is assigned the remaining uncovered
permissions of unew.

GREEDY - Greedy Selection. Sometimes it is desirable to assign as few roles as
possible to the new user. Therefore a GREEDY approach is applied. It follows basi-
cally the same procedure as the method above. Again, roles are assigned iteratively
to the new user. However, the roles are not selected randomly, but instead, in each
step, of all roles that can be assigned to the new user without violation of the 0-
consistency constraint, the role is assigned to unew that provides the greatest contri-
bution to covering remaining uncovered permissions. If there is no role left that has
positive contribution, the role assignment procedure is stopped and, if necessary, a
new role is created, that is assigned the remaining uncovered permissions of unew.

ABP - Assign by Popularity. The ABP method is based on the assumption that
popular roles are good roles in terms of minimizing the total number of roles. The
less often a role is assigned to a user, the more likely it is to be dropped during the
further optimization process. Therefore, iteratively, of all remaining roles that can be
assigned to the new user without violation of the 0-consistency constraint, the role
is assigned to the new user, which has the highest popularity. At this, the popularity
of a role is obtained as defined in Equation 6.12. As for the other methods, if there is
no role left that has positive contribution, the role assignment procedure is stopped
and, if necessary, a new role is created, that is assigned the remaining uncovered
permissions of unew.

ABS - Assign by Similarity. It can be assumed that the permissions assigned to a
new user have great similarity to the permissions assigned to users of the same area
or division of the company. Thus, ABS is a role assignment method based on the
similarity between unew and existing users. The similarity of two users is obtained as
described in Equation 5.2. Based on this, the new user is iteratively assigned all roles
of the next most similar user, that can be assigned to unew without violation of the 0-
consistency constraint. The role assignment procedure is stopped and, if necessary,

8.3. Handling of Structural Events 155

a new role is created, that is assigned the remaining uncovered permissions of unew,
in case there is no role left that has positive contribution.

Evaluation of Role-Assignment Methods

In order to evaluate the different role-assignment methods, the three benchmark in-
stances of RMPlib, PS_02, PS_05 and PM_01 are modified according to Section 8.3.1.
In each experiment, the users in Udyn are selected randomly and the remaining users
in Uinit and the corresponding assignment of permissions constitute the starting
point for role mining using the addRole-EA. The number of users in Udyn and Uinit

can be found in Table 8.6.

In each benchmark, different numbers of new users from Udyn are added at the be-
ginning (position 1), around the middle (position 2), or towards the end (position 3)
of the role optimization process, in order to investigate the influence of the role as-
signment methods at different states of the optimization process. Since event S01b,
where the currently best role concept is implemented, has no algorithmic conse-
quences, only the event-handling method for S01a is considered to include the new
users. The parameters of the different test setups are shown in Table 8.6

TABLE 8.6: Parameter values for the evaluation of role-assignment methods [3].

PS_02 PS_05 PM_01

Number of users (original) |U| 50 100 500
Number of users (reduced) |Uinit| 40 75 350
Number of users in Udyn 10 25 150
Number of users added 5, 10 5, 10, 20 10, 20, 50

Users added at iteration (position 1) 2,500 2,500 5,000
Users added at iteration (position 2) 12,500 10,000 10,000
Users added at iteration (position 3) 25,000 20,000 20,000

An interesting indicator to assess the effect of an instance of S01 is the average num-
ber of new roles that need to be created in case a new user joins a company. More
general, for a set of Events E, its impact Im(E) is defined by the difference in the
number of roles of the best individual at the time directly before event occurrence t
and immediately after application of the corresponding event-handling method t+:

Im(E) :=
r(I∗, t+)− r(I∗, t)

|E| (8.2)

It clearly ranges between 0 (S01 Case 1 and Case 2.1) and 1 (S01 Case 2.2), if only
instances of event S01 are considered. In case that event S02, where a user leaves the
company, is considered as well, it is possible that some of roles of the current role
concept are no longer needed. Therefore, in this case, the impact may also attain
negative values.

Table 8.7 shows the impact of event S01. The position specifications refer to the
various times at which new users were added as specified in Table 8.6. It becomes
apparent that hardly any new roles need to be created in the case of PM_01 at all
three positions. In the other benchmark instances, the existing set of roles can also

156 Chapter 8. Role Mining in Dynamic Environments

be used in a considerable number of cases to completely cover the permissions of a
new user in case of S01. Furthermore, it is evident that the more advanced the opti-
mization process, the greater the impact of the event. This means, the later the new
users join the company, the more roles need to be created. This can be explained by
the fact that at the beginning of the optimization process, there are rather small roles,
which can be assigned to multiple users. This is due to the initialization method of
the addRole-EA, where only one permission is assigned to each role, PA(I) = IN .
During the optimization process, roles are adapted to the permission requirements
of the users considered and thus become more complex.

TABLE 8.7: Impact of event S01.

|E| position 1 position 2 position 3

PS_02 5 0.28 0.68 0.78
10 0.33 0.73 0.77

PS_05 5 0.27 0.46 0.45
10 0.13 0.38 0.42
20 0.11 0.26 0.33

PM_01 10 0.00 0.01 0.01
20 0.01 0.02 0.03
50 0.01 0.01 0.02

In order to compare the different role-assignment methods, the speed of the op-
timization process subsequent to the addition of the new users depending on the
choice of the role-assignment method is assessed. For this purpose, the integral over
four fixed iteration intervals k ∈ {500, 1000, 5000, 10000}, each starting at the itera-
tion of the event occurrence (positions 1-3), was calculated:

∫ positioni+k

positioni

r(I∗, t)dt,

where r(I∗, t) denotes the number of roles of the best individual I∗ at iteration t. Sub-
sequently, the different role-assignment methods were ranked based on the average
integral values over all runs of each test case. The average rank of each role assign-
ment method and the corresponding standard deviations SD are shown in Table 8.8.
The values of the integral for each test case can be found in Appendix D.1.1.

TABLE 8.8: Mean values and standard deviations of ranks across all test cases [3].

ORFA AAR ARR GREEDY ABP ABS

Rank (avg.) 6.00 2.75 3.52 3.21 3.00 2.51
SD 0.00 1.32 1.40 1.38 1.37 1.39

This shows the poor performance of the ORFA method, which was ranked rank 6
of 6 in all test cases. The assumption that the creation of an additional role can be
handled by the addRole-EA in such a way that it does not hamper the further op-
timization process, has therefore proven to be incorrect. For the more sophisticated
role-assignment methods (GREEDY, ABP and ABS), it could not be shown that one
of them performs significantly better than the two straight-forward methods (AAR

8.3. Handling of Structural Events 157

and ARR). This shows that, while it is important to consider the existing roles in
handling event S01, at least within the framework of the selected test scenarios, the
choice of the role assignment method, except for ORFA, is not a critical factor. For a
more detailed analysis of the different role assignment methods, refer to [3].

8.3.7 Comparison of Dynamic and Static Role Mining

In this section, the advantages of dynamic role mining compared to the static ap-
proach are investigated in more detail. In practice, once a good role concept has
been found and implemented, the corresponding roles usually remain unchanged
over time. In many cases, this leads to a large number of unnecessary roles, which
contradicts the minimization objective of role mining. In dynamic role mining, how-
ever, dynamically occurring events can be integrated into the optimization process,
such that roles can be adapted to the new circumstances. In the following, this is ex-
amined for the four events triggered by structural change (S01-04) and the associated
event-handling methods presented in the previous sections.

To represent the static role mining process, at a certain point in time ti, the currently
best role concept π∗static = 〈R∗static, UA∗static, PA∗static〉 is assumed to be implemented
and thus fixed. All events that take place thereafter have no influence on the roles
in R∗static and the corresponding assignment of permissions to roles in PA∗static. This
corresponds to the practice found in real-world use cases, where roles are usually
not changed once a role concept is implemented. In case, a user joins the company,
changes position or requests new permissions, the existing roles are assigned to the
user according to the 0-consistency-constraint. A new role is created only, if, after
the assignment of existing roles, the considered user still has remaining uncovered
permissions. In case a user leaves the company, the set of roles R∗static remains un-
changed.

S01: User joins Company

It is probable that the point in time ti, at which the static role concept is implemented,
impacts the evaluation results. If π∗static is fixed too early, the static role concept
may contain many roles. If the role mining process is given more time, better role
concepts comprising less roles might be obtained. Therefore, in order to provide a
suitable framework for the evaluation of structural events, four different values for
ti ∈ {10000, 25000, 50000, 100000} have been selected. After the static role concept
has been implemented, different numbers |E| of instances of event S01 are simulated
every 5, 000 iterations resulting in new users joining the company. This procedure is
repeated 5 times, i.e. for a period of 25,000 iterations. Subsequently, 10,000 iterations
are provided to process the events in the dynamic case. The instances of event S01
are handled using the corresponding event-handling method for S01a as described
in Algorithm 8.1. Since non of the described role-assignment methods have proven
to be superior compared to the other methods, random role selection ARR is chosen
at this point in order to assign roles to new users. The parameters underlying the
different test cases are shown in Table 8.9.

158 Chapter 8. Role Mining in Dynamic Environments

TABLE 8.9: Parameter values for the evaluation of all events (S01-04) [2].

PS_02 PS_05 PM_01

Number of users (original) |U| 50 100 500
Number of users (reduced) |Uinit| 40 75 350
Number of events |E| 1; 2 2; 4 5; 10

π∗static fixed at iteration: t1 = 10, 000; t2 = 25, 000; t3 = 50, 000; t4 = 100, 000
Frequency of events 5,000 iterations

Figure 8.12 shows the typical progression of the number of roles of the best individ-
ual r(I∗, t) for event S01 on PS_02 and t1 = 10, 000 (left) as well as t4 = 100, 000
(right). Moreover, |E| = 2 events were simulated with 5 repetitions, so that 10 new
users joined the company in total. Since the results for the remaining points in time
t2 = 25, 000 and t3 = 50, 000 as well as the results obtained from the simulation
of event S01 on PS_05 and PM_01 show the same effects, they can be found in Ap-
pendix D.1.2. For the figures resulting from the evaluation of events S02-S04, this is
handled in the same way.

FIGURE 8.12: Number of roles over iterations for S01 on PS_02 [2].

In static as well as in dynamic role mining, a sudden increase in the number of roles
can be observed whenever an event occurs. This shows that the existing roles at the
time of event occurrence are usually not sufficient to provide the new users with the
needed permissions. New roles are therefore created as described. In the static case,
these are integrated into the set of roles R∗static of the implemented role concept π∗static
and cannot be processed any further, which explains the emergence of the staircase-
shaped curve. In the dynamic case, the created roles are included into the ongoing
optimization process resulting in a further reduction of the number of roles. The
implementation of the static role concept at t1 = 10, 000 in Figure 8.12 (left) shows
an additional disadvantage of static role mining. It is possible that the optimization
process is aborted at a too early stage and optimization potential is wasted. Figure
8.12 (right), where the static role concept is fixed at a later point in time, shows that,
even in case of dynamic role mining, the number of roles is hardly improved over
a long period of time. Only with the occurrence of the events from iteration t4 =

100, 000 onwards improvements can be achieved compared to the static approach.
This is also reflected in Table 8.10, where the resulting number of roles r(I∗, t̂) of the
best individual at t̂ := ti + 35, 000 is shown. This is obtained from 25,000 iterations,

8.3. Handling of Structural Events 159

in which instances of S01 are simulated, and subsequent 10,000 iterations, which
are provided to process the events in the dynamic case. Furthermore, the average
impact values Im(E) of S01 for the different test cases are shown.

TABLE 8.10: Resulting number of roles and impact for event S01 [2].

Number of Roles r(I∗, t̂) Impact Im(E)
|E| t1 t2 t3 t4 t1 t2 t3 t4

PS_02 (dyn.) 1 35.75 36.45 35.45 36.80 0.77 0.81 0.82 0.81
PS_02 (stat.) 1 41.90 38.20 36.90 37.35 0.61 0.79 0.80 0.78

PS_02 (dyn.) 2 38.70 40.45 39.10 40.90 0.76 0.84 0.80 0.85
PS_02 (stat.) 2 45.55 42.20 40.95 42.20 0.69 0.82 0.75 0.82

PS_05 (dyn.) 2 55.50 54.25 53.70 54.40 0.36 0.34 0.30 0.30
PS_05 (stat.) 2 67.75 56.10 54.90 55.20 0.33 0.32 0.30 0.28

PS_05 (dyn.) 4 55.15 55.45 55.50 55.85 0.29 0.32 0.31 0.31
PS_05 (stat.) 4 71.75 58.95 57.80 58.85 0.27 0.31 0.27 0.30

PM_01 (dyn.) 5 176.10 164.40 156.75 155.35 0.01 0.03 0.03 0.03
PM_01 (stat.) 5 432.95 315.40 165.90 156.50 0.01 0.02 0.03 0.03

PM_01 (dyn.) 10 175.85 161.00 160.40 156.65 0.01 0.03 0.05 0.05
PM_01 (stat.) 10 439.20 275.55 177.15 158.10 0.01 0.03 0.05 0.04

At first, it is evident that the dynamic approach leads to better results in all test cases.
For the static approach, it can be observed that, by increasing the values of ti, which
coincides to the static role concept π∗static being implemented later in time, the differ-
ence in the resulting number of roles for static and dynamic role mining decreases.
This becomes particularly apparent on PM_01. While the difference amounts to
more than 250 roles for t1 = 10, 000, it is reduced to approximately 1.5 roles con-
sidering t4 = 100, 000. This again shows that it is disadvantageous to implement the
static role concept at a too early point in time, since considerable optimization poten-
tial may be lost. Considering the impact of S01, on PS_02, the values vary between
0.61 and 0.85, which means that, on average, in between 61% and 85% of all cases, it
was necessary to create a new role for a new user joining the company. This is prob-
ably due to the role structure of the benchmark instances, where one role is often
assigned to multiple users, such that there is a certain probability that all necessary
roles to provide a new user with the required permissions are already available in
R∗static respectively the corresponding set of roles provided by the individuals of the
dynamic optimization process at time of the event occurrence. On PS_05 and espe-
cially PM_01 the impact values are considerably smaller. This may be explained by
the fact that in order to create the benchmark instances, a user in PS_02 was assigned
5 roles on average, whereas a user was assigned only 2.5 respectively 3 roles on av-
erage for the creation of PS_05 respectively PM_01, see Chapter 6. In addition, the
number of users in the modified benchmark instances PS_05 and especially PM_01
is significantly higher compared to the reduced version of PS_02, which increases
the probability that roles, which are suitable for the new users added due to the
occurrence of event S01, are already included in the role concept at the time of the
occurrence of S01.

160 Chapter 8. Role Mining in Dynamic Environments

S02: User leaves Company

The event S02, in which users leave the company, is evaluated in a similar way. In
the static case, a role concept π∗static is fixed at specific points in time. Subsequently,
instances of S02 are simulated. For this purpose users, that are to be leaving the com-
pany, are randomly selected from the set of all current users of the company based
on uniform distribution. In dynamic role mining, the occurrence of events is man-
aged by the event-handling method for S02a, see Algorithm 8.3. The parameters for
the different experiments are shown in Table 8.9. Figure 8.13 shows the progression
of the number of roles over iterations for event S02 on benchmark instance PS_02 for
t1 = 10, 000 and t4 = 100, 000. All further results can be found in Appendix D.1.3.

FIGURE 8.13: Number of roles over iterations for S02 on PS_02 [2].

Also in this case, it becomes clear that fixing π∗static at a too early stage leads to poor
results in the static case. While, in the dynamic case, the number of roles is reduced
significantly independent of the occurrence of new events in Figure 8.13 (left), where
π∗static is already implemented at t1 = 10, 000, in Figure 8.13 (right), where π∗static is
implemented at t4 = 100, 000, it can only be further reduced by the occurrence of
new events after a certain point in time.

Table 8.11 shows the resulting number of roles of the best individual at t̂ for the
simulation of S02 as well as the impact values.

Similar to the observation for event S01, the difference between the results obtained
from static and dynamic role mining decreases for larger values of ti. Furthermore,
the dynamic approach yields better results in all test cases, analogous to the simu-
lation of S01. As visible in Figure 8.13, the role concept π∗static(ti) does not change
when a user leaves the company in the static case, such that the number of roles
r(I∗, t), t > ti remains unchanged by the occurring events. The values for I(E), are
therefore all zero in that case. The absolute values of the impact of event S02 in the
dynamic case, which range between 0.04 and 0.26, are rather small compared to the
values obtained for S01. This can be explained by the fact that roles in a well de-
signed role concept are assigned to multiple users, so that they are still needed even
if a user leaves the company.

8.3. Handling of Structural Events 161

TABLE 8.11: Resulting number of roles and impact for event S02 [2].

Number of Roles r(I∗, t̂) Impact Im(E)
|E| t1 t2 t3 t4 t1 t2 t3 t4

PS_02 (dyn.) 1 33.20 32.85 32.55 32.30 -0.10 -0.08 -0.11 -0.23
PS_02 (stat.) 1 40.30 35.30 33.90 33.85 0.00 0.00 0.00 0.00

PS_02 (dyn.) 2 30.25 30.15 29.70 29.15 -0.21 -0.15 -0.26 -0.20
PS_02 (stat.) 2 39.95 34.00 33.45 32.35 0.00 0.00 0.00 0.00

PS_05 (dyn.) 2 52.40 51.45 51.65 51.05 -0.12 -0.08 -0.10 -0.14
PS_05 (stat.) 2 65.95 53.00 52.70 52.45 0.00 0.00 0.00 0.00

PS_05 (dyn.) 4 50.00 49.80 49.55 49.75 -0.13 -0.12 -0.13 -0.15
PS_05 (stat.) 4 67.45 53.00 52.60 52.90 0.00 0.00 0.00 0.00

PM_01 (dyn.) 5 178.35 165.50 156.90 154.85 -0.04 -0.03 -0.02 -0.02
PM_01 (stat.) 5 436.65 306.45 166.25 156.65 0.00 0.00 0.00 0.00

PM_01 (dyn.) 10 195.40 160.95 156.70 154.50 -0.02 -0.03 -0.03 -0.02
PM_01 (stat.) 10 436.50 279.15 183.50 156.05 0.00 0.00 0.00 0.00

S03: Change of Job Position

The evaluation for S03, where users change their job position in a company, is per-
formed in the same way as for the two previous events. In order to handle event S03,
the corresponding event-handling method for S03a, which is a combination of the
event-handling methods for S01a and S02a, is executed, see Algorithm 8.5. Again
random selection ARR is used for role assignment. The parameters for the different
experiments are shown in Table 8.9. Figure 8.14 shows the progression of the number
of roles over iterations for event S03 on benchmark instance PS_02 for t1 = 10, 000
and t4 = 100, 000. All further results can be found in Appendix D.1.4.

FIGURE 8.14: Number of roles over iterations for S03 on PS_02 [2].

It can be seen that the progression of the number of roles in both figures resembles
the role number progressions for event S01 in Figure 8.12. This is also confirmed by
the values for r(I∗, t̂), which are close to the values obtained for S01. This can be ex-
plained by the fact that a change of job position can be represented as a combination
of the events S01 and S02. At this, the impact values of S01 are significantly higher
than the absolute values of the impact of S02, which causes the similarity of S03 and
S01. Again, the advantages of dynamic role mining become apparent, as it leads to
better results than the static approach in all considered test cases, see Table 8.12.

162 Chapter 8. Role Mining in Dynamic Environments

TABLE 8.12: Resulting number of roles and impact for event S03 [2].

Number of Roles r(I∗, t̂) Impact Im(E)
|E| t1 t2 t3 t4 t1 t2 t3 t4

PS_02 (dyn.) 1 36.65 35.90 35.50 36.50 0.73 0.66 0.59 0.73
PS_02 (stat.) 1 44.35 39.45 37.35 37.60 0.69 0.83 0.77 0.81

PS_02 (dyn.) 2 37.15 37.05 36.70 37.15 0.66 0.64 0.64 0.63
PS_02 (stat.) 2 46.35 41.45 40.90 40.90 0.65 0.72 0.78 0.80

PS_05 (dyn.) 2 54.35 54.00 54.30 53.75 0.22 0.28 0.21 0.24
PS_05 (stat.) 2 68.00 56.75 57.00 55.15 0.28 0.32 0.34 0.28

PS_05 (dyn.) 4 55.35 55.75 54.45 54.40 0.26 0.26 0.20 0.24
PS_05 (stat.) 4 68.35 58.55 59.00 57.60 0.26 0.29 0.29 0.26

PM_01 (dyn.) 5 198.50 163.40 157.85 155.70 0.01 0.01 0.03 0.04
PM_01 (stat.) 5 435.05 295.10 169.70 157.00 0.03 0.03 0.05 0.04

PM_01 (dyn.) 10 184.25 163.25 157.60 155.80 0.02 0.02 0.03 0.04
PM_01 (stat.) 10 439.75 310.30 173.20 157.65 0.01 0.03 0.04 0.04

It is interesting to see that, especially on PS_02 and PS_05, regarding the impact of
event S03, the values obtained from dynamic role mining are slightly smaller than
the corresponding values for event S01. This is again due to the fact that event S03 is
represented by a combination of S01 and S02. The event-handling method belonging
to S01a increases the number of roles, while handling event S02a slightly reduces the
role number as reflected in the corresponding impact values for S01 (see Table 8.10)
and S02 (see Table 8.11). In the static case, however, there is no major difference
considering the impact values of S03 and S01.

S04: Permission Request

In order to simulate event S04, at first, a user that is to be requesting additional per-
missions is selected randomly. Subsequently, depending on the current number of
this user’s permissions, up to 20% additional permissions are drawn from the set of
permissions, which are currently not assigned to him or her. Selection of permis-
sions is performed randomly based on uniform distribution. The resulting event
instance of S04 is then handled using the corresponding event-handling method, see
Algorithm 8.6. The parameters for the different experiments are shown in Table 8.9.
Figure 8.15 shows the progression of the number of roles over iterations for event
S04 on benchmark instance PS_02 for t1 = 10, 000 and t4 = 100, 000. All further
results can be found in Appendix D.1.5.

There is a great similarity to the curves obtained for event S01 and event S03. Anal-
ogous to the other events, the dynamic approach was outperforming static role min-
ing in all test cases. However, if the values obtained for the resulting number of
roles r(I∗, t̂) are considered, which are shown in Table 8.13, it becomes evident that
in almost all cases worse results were obtained compared to the results for S01 and
S03. This is also reflected in the impact of event S04. In all cases, the associated im-
pact values are close to 1.00, such that almost every time a user submits a permission
request, a new role needed to be created. This may be due to the way a permission

8.3. Handling of Structural Events 163

FIGURE 8.15: Number of roles over iterations for S04 on PS_02 [2].

request is simulated. The random selection of permissions can result in the user be-
ing assigned a set of permissions which no longer corresponds to the role structure
underlying the benchmark instance. Therefore, it may not be possible to create a role
that meets the requirements of the permission request and at the same time can be
assigned to other users without violation of the 0-consistency constraint.

TABLE 8.13: Resulting number of roles and impact for event S04 [2].

Number of Roles r(I∗, t̂) Impact Im(E)
|E| t1 t2 t3 t4 t1 t2 t3 t4

PS_02 (dyn.) 1 37.15 37.05 37.35 36.50 0.96 0.98 0.96 0.93
PS_02 (stat.) 1 43.95 39.35 38.95 37.85 0.98 0.99 0.99 1.00

PS_02 (dyn.) 2 41.05 40.05 39.45 39.65 0.95 0.96 0.97 0.97
PS_02 (stat.) 2 49.25 44.80 42.80 42.65 0.91 0.98 0.98 1.00

PS_05 (dyn.) 2 61.65 61.25 61.50 61.65 0.98 0.99 0.99 0.98
PS_05 (stat.) 2 71.70 63.50 62.65 62.75 0.98 1.00 1.00 1.00

PS_05 (dyn.) 4 70.80 70.05 69.80 69.65 0.98 0.99 0.98 0.99
PS_05 (stat.) 4 84.70 73.45 72.45 72.05 0.92 1.00 1.00 1.00

PM_01 (dyn.) 5 211.35 193.05 181.80 179.70 0.93 0.98 1.00 1.00
PM_01 (stat.) 5 461.10 321.00 190.95 181.00 0 83 0.98 1.00 1.00

PM_01 (dyn.) 10 236.65 212.30 207.45 203.85 0.93 0.99 0 99 0.99
PM_01 (stat.) 10 464.25 321.90 216.60 205.70 0.83 0.99 1.00 1.00

It can been seen that it is worthwhile to consider role mining as a dynamic optimiza-
tion problem. On the one hand, this can prevent a role concept from being imple-
mented at a too early point in time, such that vast optimization potential might be
wasted. On the other hand, dynamically changing business structures can be taken
into account. A disadvantage of the dynamic approach is, that in theory, role mining
has to be carried out continuously, which might cause for the occupation of com-
puting capacities that would be needed for other areas of a company. One approach
to address this could consist in the reduction of computing capacity for role mining
to a minimum, once a suitable role concept has been found and implemented, and
to increase it only, if either free computing capacity is available or, if it is required
in order to react to dynamically occurring events by including the corresponding
information into the role mining process as described throughout this section.

164 Chapter 8. Role Mining in Dynamic Environments

8.4 Handling of Interaction Events

Besides events that are caused by structural change in the business environment of a
company, events that emerge from the interaction of a DM with role mining software
constitute an important source of dynamics relevant in the context of role mining. In
this section, in particular, event I01, where a DM includes good roles into, and I02,
where a DM deletes bad roles from the optimization process are investigated. At
first, it is shown, how good and bad roles can be obtained for the benchmark instances
of RMPlib. Subsequently, the impact of I01 and I02 on the optimization process is
investigated using the basic version of the addRole-EA. Since it is not guaranteed
that the addition or deletion of roles results in an improvement of the optimization
process, the corresponding events are understood as propositions in this context (re-
vocable interactions). Since a role, which is usually considered a good role, may be
rather obstructive in the current company context or another role, which experience
has shown to be a rather bad role, may be of great importance from an optimization
perspective, it is also possible that the addition of good roles or the deletion of bad
roles retard the optimization process or lead to worse results. Hence, individuals
resulting from interaction events as well as the original individuals of the popula-
tion at the time of event occurrence, should coexist at least for some iterations to
determine, whether the changes made by the DM rather improve or worsen the fur-
ther optimization process. Eventually, in order to ensure that individuals resulting
from interaction events are maintained in the population long enough to possibly
assess their potential for improvement, different survival strategies are introduced
and evaluated.

8.4.1 Simulation of Events and Preparation of Benchmarks

In practice, the knowledge on good and bad roles results from the expert knowledge
and experience of the DM, which is obtained, for example, from the creation and
implementation process of role concepts, which are already in use, or from other
projects in the context of access control. It is evident that it is not possible to transfer
this knowledge onto the synthetic evaluation scenarios corresponding to the bench-
mark instances of RMPlib. Therefore, other methods must be developed in order
to simulate good and bad roles. For this purpose, the benchmark instances PS_02,
PS_05 and PM_01, which are again used for evaluation purposes in the context of
interaction events, were analyzed in more detail. In order to identify good roles, the
addRole-EA was run 200 times on each benchmark instance. Subsequently, the 20
best role concepts obtained for each instance were selected. Based on this, a role was
classified a good role, if it was included in each of the 20 role concepts selected. From
this, a set of 10 good roles, which are assigned between 3 and 8 permissions, was
obtained for PS_02. For PS_05, this set comprises 46 good roles, which are assigned
between 2 and 11 permissions. For PM_01, 144 good roles were obtained, ranging
from 3 to 22 permissions each. A role was classified a bad role, if it was not included
in at least one of the 20 role concepts. The sets of good roles as well as the sets of all
roles included in at least one of the 20 roles concepts were integrated into the section
on dynamic role mining of RMPlib, in order to make them publicly accessible.

8.4. Handling of Interaction Events 165

8.4.2 Addition of good Roles (I01)

It is possible that a DM can assess, whether a role has the potential to lead to better
results or to accelerate the role mining process. Therefore, he or she should be given
the opportunity to transfer good roles into the optimization process. In the follow-
ing, it is examined whether this approach can actually lead to better results. For this
purpose, a subset of the set of good roles, which was obtained for each of the con-
sidered benchmark instances in the last section, was transferred into the optimiza-
tion process. These roles were then added to the chromosomes of all individuals of
the current population using the addRole-method of the addRole-EA. To investigate
the effects of the addition of good roles at different points in time, t1 = 5, 000 and
t2 = 10, 000 are investigated. The number of good roles, which are transferred into
the optimization process, was based on the benchmark instance used. In each case,
up to 20% of the number of roles used to create the benchmark instance were se-
lected randomly from the set of good roles. Table 8.14 shows the parameter values
used for the different evaluation scenarios. For this purpose, in each scenario, the
addRole-EA is first applied in the regular way. At the moment of event occurrence,
the good roles corresponding to the instances of I01 are added to the chromosomes
of all individuals of the current population Pop of the addRole-EA. Based on this,
an additional population PopI01 is created from the resulting, modified individuals.
The original, unmodified individuals remain in the original population Pop of the
addRole-EA and serve as reference in order to assess the effect of the interaction
events. At this, I∗I01 denotes the currently best individual of population PopI01 and
I∗ denotes the currently best individual of Pop.

TABLE 8.14: Parameter values for the evaluation of the addition of good roles.

PS_02 PS_05 PM_01

Number of good Roles added 3; 5 5; 10 20; 30

Roles added at iteration t1 = 5, 000; t2 = 10, 000;

Figure 8.16 shows the progression of the number of roles over iterations r(I∗I01, t) for
individual I∗I01 compared to r(I∗, t) for individual I∗ on benchmark instance PS_02,
where 5 good roles were added at t1 = 5, 000 (left) as well as at t2 = 10, 000 (right).

FIGURE 8.16: Number of roles over iterations (Addition of 5 good roles on PS_02).

166 Chapter 8. Role Mining in Dynamic Environments

The results for obtained for |E| = 3 as well as the results obtained on PS_05 and
PM_01 can be found in Appendix D.2.1. In both cases, it is evident that the inclu-
sion of good roles leads to better results in the long term. However, the peaks in the
curves corresponding to PopI01, in which the new roles were included, show that
the addition of roles leads to an initial worsening of the fitness compared to the case,
in which interaction event I01 was disregarded. However, the additional number of
roles is usually quickly reduced to its original level respectively the current number
of roles of the best individual I∗ of population Pop in which interactions were dis-
regarded. An interesting key figure is therefore the number of iterations tint needed
until the number of roles of individual I∗I01 equals the number of roles of I∗ for the
first time after event occurrence. This corresponds to the first intersection of both
curves after event occurrence, see Figure 8.16, and is obtained as follows:

tint(E) =

{
0, Im(E) ≤ 0

min {t− ti : r(I∗I01, t) = r(I∗, t)} , Im(E) > 0.
(8.3)

where ti corresponds to the iteration, in which the good roles were added to the
chromosomes of the individuals of PopI01. Table 8.15 shows the values obtained
for tint, the impact of the instances of I01 as well as the number of roles r(I∗I01, t̂)
repsectively r(I∗, t̂) of the best individuals of both populations after executing t̂ =

100, 000 iterations of the addRole-EA.

TABLE 8.15: Evaluation of the addition of |E| good roles.

r(I∗, t̂) r(I∗I01, t̂) Im(E) tint

PS_02 t1 = 5, 000 |E| = 3 31.30 30.95 0.58 330
|E| = 5 33.55 32.05 0.47 280

PS_02 t2 = 10, 000 |E| = 3 30.85 31.65 0.27 250
|E| = 5 30.85 30.40 0.30 150

PS_05 t1 = 5, 000 |E| = 5 50.15 50.45 0.22 90
|E| = 10 50.80 50.15 0.21 100

PS_05 t2 = 10, 000 |E| = 5 50.30 50.10 0.04 50
|E| = 10 49.95 50.30 0.03 20

PM_01 t1 = 5, 000 |E| = 20 153.25 153.00 -0.02 -
|E| = 30 152.70 152.55 -0.10 -

PM_01 t2 = 10, 000 |E| = 20 153.00 152.70 -0.33 -
|E| = 30 152.45 152.25 -0.38 -

First of all, it is noticeable that the impact attains values considerably smaller than 1
in all cases. This contradicts the seemingly logical assumption that adding one role
to the chromosome of an individual worsens its fitness by one and is caused by the
operation principle of the addRole-method. As shown in Chapter 6, adding a new
role by means of the addRole-method includes the deletion of existing roles that have
become obsolete. Since in this test case, good roles were added, it can be assumed that
existing roles became obsolete in a relatively large number of cases. On PM_01, this
even caused for negative impact values, which corresponds to an immediate fitness
improvement at the time of event occurrence. On PS_02 and PS_05, the impact of

8.4. Handling of Interaction Events 167

the simulated instances of I01 ranges from 0.02 to 0.58, which corresponds to a wors-
ening of the individuals fitness at the moment of event occurrence. Since the events
under study are understood as revocable interactions, it is desirable that unmodified
individuals as well as individuals that were modified due to the interaction events
survive at least a few populations. If the interactions carried out by the DM do not
lead to an improvement of the optimization process, the original, unmodified indi-
viduals prevail. In case the interactions lead to a performance gain, it is important
that the corresponding individuals survive long enough to develop their positive ef-
fect. However, due to the elitist replacement scheme of the addRole-EA, individuals
resulting from events with positive impact would probably not be selected for the
next generation’s population in case that unmodified and modified individuals were
in the same population. Therefore, in the following, suitable survival strategies are
presented which aim at preventing the addRole-EA from automatically eliminating
the modified individuals in case of positive impact. The values of tint, which ranges
from 20 to 330 iterations in these cases, serve as reference for the minimum on the
number of iterations that the modified individuals should survive. Also, in cases
of negative impact, survival strategies can be of importance to protect the original,
unmodified individuals. However, this case will not be examined in more detail at
this point.

It is obvious that the development of survival strategies is only needed, if it can be
shown that the addition of good roles enhances the optimization process. For this
purpose, the numbers of roles r(I∗, t̂) and r(I∗I01, t̂) resulting from the execution of
100, 000 iterations can be used as first indicator. It can be seen that in nine out of
twelve cases a better result was obtained if the simulated interaction events were
included into the optimization process. In three of twelve cases, the population,
in which the occurrence of interaction events was disregarded, obtained a smaller
number of roles. However, if the short-term effect of the event inclusion is consid-
ered, the potential of event I01 becomes more apparent. For this purpose, different
role levels were specified for each benchmark instance, which will serve as refer-
ence values to evaluate the short-term performance considering interaction event
I01, but will also be used to investigate the effects of I02 and to assess the quality of
the different survival strategies, which will be presented in the subsequent sections.
Tables 8.16 - 8.18 show the number of iterations and the computation time needed to
attain the respective role level, starting from the occurrence of the interaction events
at t1 = 5, 000. As usual, |E| denotes the number of instances of event I01, and thus
corresponds to the number of good roles added.

Corresponding to the findings in Figure 8.16, it can be seen that the specified role
levels were reached after considerably fewer iterations, in all cases in which good
roles were included into the optimization process. Also in terms of computation
time, the specified role levels were reached at an earlier point in time in almost all
of these cases. Furthermore, it seems that the more good roles are added, the less
iterations and computation time is needed. This clearly justifies the development
and examination of different survival strategies in the following. However, prior to
this, the effects of I02, where bad roles are deleted from the optimization process, are
examined.

168 Chapter 8. Role Mining in Dynamic Environments

TABLE 8.16: Number of iterations and computation time (s) needed to
obtain k roles considering event I01, t1 = 5, 000 on PS_02.

Number of iterations needed Computation time (s) needed

Roles k |E| = 0 |E| = 3 |E| = 5 |E| = 0 |E| = 3 |E| = 5

40 7,370 3,190 2,700 154.62 63.91 53.14
38 10,375 5,270 4,390 204.94 99.68 82.37
36 13,645 8,140 7,920 252.76 143.69 136.23
34 20,700 10,850 12,580 344.45 180.15 198.24
32 - 20,340 - - 291.11 -

TABLE 8.17: Number of iterations and computation time (s) needed to
obtain k roles considering event I01, t1 = 5, 000 on PS_05.

Number of iterations needed Computation time (s) needed

Roles k |E| = 0 |E| = 5 |E| = 10 |E| = 0 |E| = 5 |E| = 10

75 1,350 430 260 15.78 3.21 4.35
70 3,180 1,470 790 35.48 13.88 9.88
65 4,995 2,690 1,580 53.41 25.33 17.55
60 6,630 4,450 3,300 67.82 40.44 33.18
55 9,860 7,150 5,960 93.98 61.65 54.71

TABLE 8.18: Number of iterations and computation time (s) needed to
obtain k roles considering event I01, t1 = 5, 000 on PM_01.

Number of iterations needed Computation time (s) needed

Roles k |E| = 0 |E| = 20 |E| = 30 |E| = 0 |E| = 20 |E| = 30

420 1,750 350 300 327,32 52,41 54,80
400 3,045 1,020 770 548,52 156,03 126,99
380 4,155 1,640 1,180 722,81 244,01 184,51
360 5,145 2,160 1,590 863,79 313,47 237,29
340 5,970 2,680 2,020 973,36 378,06 289,43

8.4.3 Deletion of bad Roles (I02)

Analogous to the addition of good roles, the deletion of bad roles could also lead to
better results or accelerate the optimization process. Therefore, the DM should be
given the possibility to investigate the individuals of the population of the addRole-
EA in order to identify bad roles according to his or her expert knowledge. These
roles can then be removed from the individuals of the current population. In contrast
to the addition of roles, for which a corresponding method is already available in the
addRole-EA, the deletion of roles is more complex. It is obvious that bad roles cannot
be deleted without further action, as this would probably lead to a violation of the
0-consistency constraint in most cases. Therefore, suitable repair methods must be
developed in order to ensure compliance with the 0-consistency constraint after the
deletion of bad roles was executed. For this purpose, at first, users are identified
that lack permissions after bad roles were deleted. Subsequently, one of the two
repair methods, which are introduced in the following, can be executed to assign the
required permissions to the users concerned:

8.4. Handling of Interaction Events 169

R1: Assign all Roles + Unique Roles. First, the Assign All Roles method (AAR),
which was introduced in the context of role assignment in Chapter 8.3.6, is used to
assign existing roles to users. If, thereafter, a user is still lacking permissions, a new
role is created for each of the remaining uncovered permissions. This corresponds
to the idea of the initialization methods of the addRole-EA. An advantage of this
method is that the algorithm gains the possibility to create new roles from scratch.
However, many additional roles are required to compensate for the deletion of bad
roles using this approach.

R2: Assign all Roles + One Role + Unique Roles. In order to avoid the creation
of many new roles, repair method R2 aims at grouping the remaining uncovered
permissions of a user into one role. Again, the AAR method is executed first to
make use of the remaining roles after the deletion of bad roles. Subsequently, for
each user still lacking permissions, a new role is created from his or her remaining
uncovered permissions. If this role was not included in the set of bad roles, which
was deleted from the chromosome of the individual in the first place, it is assigned
to the considered user. If this role corresponds to one of the bad roles, similar to R1, a
new role is created for each of the remaining uncovered permissions. An advantage
of this method is that the creation of many new roles can be avoided. However, the
resulting roles may be very similar to the bad roles which were deleted, which may
hamper the further optimization process.

Evaluation. In order to evaluate the impact of event I02 onto the optimization pro-
cess, different instances of I02 are simulated at different points in time. The number
of bad roles, which were deleted from the chromosome of each individual, as well as
the iteration, at which the instances of I02 were simulated, are shown in Table 8.19.

TABLE 8.19: Parameter values for the evaluation of the deletion of bad roles.

PS_02 PS_05 PM_01

Number of bad Roles deleted 3; 5 5; 10 20; 30

Roles deleted at iteration t1 = 5, 000; t2 = 10, 000;

Analogous to the evaluation of interaction event I01, in each test scenario, the add-
Role-EA is first applied in the regular way. At the moment of event occurrence, for
each individual of the population, each role is examined individually and are deleted
if it is classified a bad role. This is repeated until either all roles of the individual are
examined or the maximum number of roles to be deleted from an individual, as
specified by |E|, is attained. Subsequently, the compliance of the individuals with
the 0-consistency constrain is restored once using repair method R1 and once using
R2. Based on this, two additional populations PopR1, resulting from the individuals
modified by R1, and PopR2, resulting from the individuals modified by R2, are cre-
ated. The original, unmodified individuals remain in the original population Pop of
the addRole-EA and serve as reference in order to assess the effects of the interaction
events. At this, individual I∗R1 denotes the currently best individual of population
PopR1, individual I∗R2 denotes the currently best individual of population PopR2 and
individual I∗ denotes the currently best individual of Pop.

170 Chapter 8. Role Mining in Dynamic Environments

Figure 8.17 shows the progression of the number of roles of the best individual in
each case on PS_02, where 5 bad roles were deleted at t1 = 5.000 (left) as well as
t2 = 10, 000 (right). The results for obtained for |E| = 3 as well as the results obtained
on PS_05 and PM_01 can be found in Appendix D.2.2.

FIGURE 8.17: Number of roles over iterations (deletion of 5 bad roles on PS_02).

Considering t2 = 10, 000 (right), analogously to event I01, the deletion of bad roles
leads to an initial worsening of the fitness of the individuals of population PopR1 and
PopR2, but eventually results in less roles after some iterations. However, consider-
ing t1 = 5, 000 (left), the deletion has no significant effect on the further optimiza-
tion process. In order to investigate the effect of interaction event I02 in more detail,
Table 8.20 shows the number of roles at t̂ = 100, 000 for each evaluation scenario
considered. Furthermore, the impact values Im(ER1) resulting from the application
of repair method R1 respectively Im(ER2) resulting from R2 are shown.

TABLE 8.20: Evaluation of the deletion of |E| bad roles.

r(I∗, t̂) r(I∗R1, t̂) r(I∗R2, t̂) Im(ER1) Im(ER2)

PS_02 t1 = 5, 000 |E| = 3 30.35 30.40 29.60 -0.02 -0.03
|E| = 5 30.65 29.55 30.60 0.04 0.03

PS_02 t2 = 10, 000 |E| = 3 29.50 29.90 29.90 0.03 0.07
|E| = 5 30.60 30.60 30.30 0.13 0.16

PS_05 t1 = 5, 000 |E| = 5 50.25 50.15 49.90 0.00 0.00
|E| = 10 50.15 50.10 50.45 0.02 0.03

PS_05 t2 = 10, 000 |E| = 5 49.80 50.35 49.85 0.17 0.24
|E| = 10 50.05 50.30 50.05 0.36 0.46

PM_01 t1 = 5, 000 |E| = 20 151.85 151.25 151.55 0.00 0.00
|E| = 30 151.55 151.90 151.95 0.00 0.00

PM_01 t2 = 10, 000 |E| = 20 151.35 152.10 151.10 0.03 0.07
|E| = 30 151.30 151.15 151.60 0.05 0.13

Compared to the results obtained from the evaluation of interaction event I01, the
impact values obtained for I02 are rather small, although additional roles are created
by the repair methods. However, it is shown that the impact of interaction event I02
using repair method R2 is greater than the impact of I02 using repair method R1 in
most cases. This corresponds to the fact that, considering R2, a new role is created
for each remaining uncovered permission of a user after the deletion of bad roles

8.4. Handling of Interaction Events 171

and the subsequent assignment of existing roles using AAR, whereas R1 attempts
at grouping these permissions into one role, whenever possible. Furthermore, it is
shown that neither the application of repair method R1 nor the application of R2 pro-
vides superior results in a majority of the scenarios considering the resulting num-
ber of roles at t̂ compared to the case, where interaction events were disregarded.
Therefore, it seems that deleting bad roles does not have significant long-term effects
considering the further role optimization. In order to investigate the existence of
short-term effects, analogous to the evaluation of I01, the number of iterations and
the computation time needed to attain a given number of roles, starting from the
occurrence of the interaction events at t1 = 5, 000 is shown in Tables 8.21 - 8.23 for
the different benchmark instances.

TABLE 8.21: Number of iterations and computation time (s) needed to
obtain k roles considering event I02, t1 = 5, 000 and PS_02.

Number of iterations needed Computation time (s) needed

Roles |E| = 3 |E| = 5 |E| = 3 |E| = 5
k |E| = 0 R1 R2 R1 R2 |E| = 0 R1 R2 R1 R2

40 6,270 7,940 6,010 5,250 6,070 127.78 161.88 127.07 107.66 123.93
38 8,940 10,540 8,490 8,550 10,600 171.96 203.58 168.96 163.60 199.08
36 12,470 14,100 11,560 11,990 12,420 223.52 254.59 214.58 215.37 224.42
34 17,525 18,940 14,970 17,630 16,180 288.22 316.72 259.36 288.49 271.84
32 30,185 29,840 25,970 27,550 31,030 427.64 438.55 386.87 399.92 434.22

TABLE 8.22: Number of iterations and computation time (s) needed to
obtain k roles considering event I02, t1 = 5, 000 and PS_05.

Number of iterations needed Computation time (s) needed

Roles |E| = 5 |E| = 10 |E| = 5 |E| = 10
k |E| = 0 R1 R2 R1 R2 |E| = 0 R1 R2 R1 R2

75 1,530 1,660 1,650 1,040 910 18.33 20.00 19.86 12.65 11.01
70 3,220 3,210 3,110 2,500 2,120 36.83 37.01 35.95 28.77 24.16
65 4,725 5,140 4,500 3,870 3,840 51.65 56.27 49.75 42.33 41.09
60 6,360 7,040 6,190 5,300 5,980 66.35 73.45 65.18 55.21 60.08
55 9,005 9,370 9,320 8,320 8,420 87.81 92.12 91.16 79.59 79.65

TABLE 8.23: Number of iterations and computation time (s) needed to
obtain k roles considering event I02, t1 = 5, 000 and PM_01.

Number of iterations needed Computation time (s) needed

Roles |E| = 20 |E| = 30 |E| = 20 |E| = 30
k |E| = 0 R1 R2 R1 R2 |E| = 0 R1 R2 R1 R2

420 2,195 2,250 2,280 2,260 2,380 428.49 454.45 468.09 425.99 452.54
400 3,610 3,620 3,770 3,640 3,760 674.78 696.37 728.77 663.06 693.21
380 4,735 4,740 4,830 4,790 4,880 850.09 877.61 899.92 841.58 868.47
360 5,605 5,670 5,720 5,670 5,830 975.56 1,015.71 1,029.45 967.01 1,006.12
340 6,410 6,460 6,620 6,510 6,690 1,083.95 1,124.23 1,150.32 1,078.29 1,119.26

Also for the short-term effects, the results are rather heterogeneous. On PS_05 and
|E|= 5, the specified role levels were attained after fewer iterations and in shorter
time compared to the case were interaction events were disregarded, independent
of whether R1 or R2 was used. For |E|= 3, the specified role levels were attained
after more iterations and later in time in most cases. Considering PM_01, the dele-
tion of bad roles rather hampered the optimization process considering the number
of iterations needed to attain the specified role levels. Only in case |E|= 20, the

172 Chapter 8. Role Mining in Dynamic Environments

application of repair method R1 led to shorter computation times. For benchmark
instance PS_02, no general statement can be made. In summary, it can be concluded
that, especially in comparison with interaction event I01, the deletion of bad roles
does not have a major impact on the optimization process.

8.4.4 Survival Strategies

In the previous sections, in order to address interaction event I01 and I02, individ-
uals were modified, either by the addition of good roles or by the deletion of bad
roles. Subsequently, the modified and unmodified individuals were considered sep-
arately to evaluate the proposed methods. For both events, it was shown that the
corresponding modifications of individuals caused for worsened fitness values in
most cases. Therefore, due to the elitist replacement strategy of the addRole-EA,
the unmodified individuals are preferably selected for the next generation, whereas
the modified individuals promptly become extinct, in case they are included in the
same population. Hence, the information that was transferred from the DM to the
optimization process would be lost independent of its potential to improve the opti-
mization process. However, since the addition and deletion of roles has proposition
character, the original individuals as well as the new individuals resulting from the
interaction events should coexist at least for some iterations, in order to determine,
whether the interaction events bear the potential to improve the optimization pro-
cess. In the following, different survival strategies are presented to ensure that both
original and modified individuals can coexist simultaneously.

Survival Strategies in Literature

The survival of individuals, which were modified as a consequence of interaction
events triggered by a DM, in the context of evolutionary algorithms is not particu-
larly well studied. Nascimento as well as Schneider and König implemented direct
interactions in their works, but did not address the problem of the survival of the
corresponding individuals [31, 68]. Only Knecht addresses this issue in his work
in the context of multi-objective optimization. In case the fitness of an individual
is worsened with respect to one or more optimization objectives, it is possible that
it is no longer part of the Pareto front and thus possibly eliminated from the fu-
ture populations [67]. This corresponds to the findings in the context of role mining
presented in the previous sections. Since there are no suitable survival strategies
in literature, different survival strategies, which were developed in order to handle
event I01 and I02 are introduced. The different approaches, which served as basis
for the development of these strategies, are briefly presented in the following.

In their paper on Particle Swarm Optimization, Karimi et al. vary the population
size of their swarm dynamically. In case individuals become too old, they are re-
moved from the population. This causes the population size to gradually decrease
unless better solutions are found. However, if better solutions are found after the
occurrence of dynamic events, the population size increases [65].

Zhao et al. introduce the Multiobjective Cooperative Coevolutionary Algorithm. Several
populations are developed separately from each other. At regular intervals, the best

8.4. Handling of Interaction Events 173

individual of each population as well as some random individuals are combined
using crossover operators. Besides the information exchange between populations
resulting from crossover, the best individuals in terms of a crowding measure are
copied into the different populations to enable further information exchange [118].

Schaffer introduces the Vector Evaluated Genetic Algorithm for multi-objective opti-
mization problems. The individual optimization objectives are optimized simulta-
neously in separate populations. Subsequently, the individuals are mixed to obtain
the Pareto front [99].

Wang et al. developed the Estimation of Evolvability Genetic Algorithm. In addition to
the fitness of an individual, also its evolvability, which corresponds to the ability to
generate offspring of high fitness, is considered. At the beginning of each iteration,
the individuals are grouped into different sub-populations according to their fitness
or evolvability. Then crossover and mutation is executed separately in each sub-
population. Finally, in the last step of each iteration, the resulting individuals are
reunited in a common population [111].

Zhang et al. also use different populations. An explorer population searches for
promising regions in the solution space and stores corresponding solutions in an
archive. An exploiter population uses the stored solutions and searches for better
solutions in their local environment [116].

Survival Strategy 1: Incubator Protection

The basic idea of survival strategy Incubator Protection is based on the usage of dif-
ferent populations for different purposes as suggested, e.g. in [99, 111, 116, 118].
Whenever an interaction event has occurred, a new population Popinc of individ-
uals, that were modified due to the occurrence of the interaction event, is created.
Based on the desired population size PSinc ∈ N of this incubator population, the
best PSinc of the modified individuals are copied into the incubator population. In
case that there is more than one event at the same time, it is sufficient to create one
additional incubator population. If there are other interaction events at a later point
in time, further incubator populations are created. However, in the following, the
case in which there is only one incubator population is considered.

The creation of an additional population affects the procedure of the evolution of the
addRole-EA. Considering Incubator Protection, crossover and mutation operators are
executed separately on the individuals of the regular as well as the individuals of the
incubator population. The exchange of information between individuals of different
populations due to crossover is therefore not possible. Subsequently, the original
replacement method of the addRole-EA is used to select the individuals of the next
generation’s population considering the incubator population. At this, the individ-
uals are selected from the incubator population only. Since the incubator population
contains exclusively individuals which were modified due to the occurrence of the
interaction event, this ensures their survival, even if they are of worse fitness com-
pared to the individuals of the regular population. Before the replacement method is
used a second time in order to select the individuals of the next generation’s popula-
tion considering the regular population, the individuals of the incubator population

174 Chapter 8. Role Mining in Dynamic Environments

are copied into the regular population. If the modifications resulting from the in-
teraction events have positive effects on the optimization process, the individuals
of the incubator population will eventually also establish themselves in the regular
population. A description of the algorithmic procedure of the modified evolution of
the addRole-EA, which replaces the corresponding lines 8 and 10 in Algorithm 6.2,
is provided in Algorithm 8.7.

Algorithm 8.7: evolvePopulation_IncubatorProtection(populations Pop, Popinc)

1 doSelectionCrossoverAndMutation(Popinc);
2 doSelectionCrossoverAndMutation(Pop);
3 doReplacement(Popinc);
4 Pop := Pop ∪ Popinc;
5 doReplacement(Pop);

Evaluation. In the following, the survival strategy Incubator Protection is evaluated.
In particular, the population size PSinc of the incubator population is examined in
more detail. For this purpose, different values of PSinc ∈ {2, 5, 10, 20} are consid-
ered. Since it could be shown that the deletion of bad roles hardly enhances the
optimization process, whereas the addition of good roles leads to significantly better
optimization results, interaction event I01 is considered for this purpose. Further-
more, it could be shown that similar results were obtained for simulating instances
of I01 at t1 respectively t2. Therefore, again, 20% of the number of roles used to cre-
ate the benchmark instance were selected randomly from the set of good roles and
added to the optimization process at iteration t1 = 5, 000. Considering the test setup
of the evaluation of events I01 and I02 in the previous sections, the modified indi-
viduals resulting from the inclusion of the interaction events were separated form
the unmodified individuals in order to assess the effects of the respective interaction
event. In this test setup, in order to evaluate survival strategy Incubator Protection,
modified and unmodified individuals are contained in the regular population Pop.

FIGURE 8.18: Number of roles over iterations for the addition of 5 good roles on PS_02
considering survival strategy Incubator Protection.

8.4. Handling of Interaction Events 175

Figure 8.18 shows the progression of the number of roles over iterations considering
the different values of PSinc compared to the case in which no survival strategy was
used. In this case |E| = 5 good roles were added at t1 = 5, 000 on PS_02. The corre-
sponding results obtained on PS_05 and PM_01 can be found in Appendix D.2.3. It
appears that, by increasing the size of the incubator population, better results were
obtained. This is also reflected in Table 8.24, where the number of roles r(I∗, t̂) of the
best individual after the execution of t̂ = 100, 000 iterations is presented. This is sup-
plemented with the computation times needed to complete the 100, 000 iterations.

TABLE 8.24: Incubator Protection: resulting number of roles and computation times.

No Population Size Incubator Population PSinc
Strategy 2 5 10 20

PS_02 r(I∗, t̂) 30.25 29.75 29.25 29.05 28.95
time (s) 1,248.04 1,312.55 1,464.87 1,725.27 2,266.32

PS_05 r(I∗, t̂) 50.20 49.90 49.65 49.85 49.65
time (s) 785.60 850.09 950.54 1,131.12 1,506.01

PM_01 r(I∗, t̂) 151.35 151.70 151.00 151.85 151.50
time (s) 8,064.62 8,724.33 9,686.01 11,278.81 14,572.09

As expected, increasing the number of individuals in the incubator population in-
creases the computation time. Nonetheless, this does not lead to better results in
all cases with regard to the number of roles attained after t̂ = 100, 000 iterations. It
is therefore valuable to also consider the short-term effects of the survival strategy.
For this purpose, again the number of iterations needed to attain the specified role
levels, starting from the occurrence of the interaction events at t1 = 5, 000 is shown
in Table 8.25. The corresponding computation times needed are shown in Table 8.26.

TABLE 8.25: Incubator Protection: Number of iterations needed to obtain k roles.

Roles No Population Size Incubator Population PSinc
k Strategy 2 5 10 20

PS_02 40 7,480 6,820 5,700 5,640 5,410
38 10,480 8,930 8,400 6,890 6,530
36 13,890 10,820 9,950 8,850 8,230
34 20,540 13,080 11,580 12,030 10,240
32 27,040 16,910 15,130 14,550 12,540

PS_05 75 5,440 5,260 5,210 5,140 5,100
70 7,020 5,960 5,670 5,600 5,440
65 8,440 6,650 6,170 6,290 5,890
60 6,330 5,610 5,440 5,420 5,300
55 8,010 6,390 5,920 5,990 5,700

PM_01 420 5,610 5,440 5,390 5,310 5,260
400 6,450 6,030 5,890 5,830 5,690
380 7,160 6,530 6,360 6,250 6,100
360 7,900 6,960 6,830 6,620 6,470
340 8,690 7,460 7,270 7,050 6,870

The findings of Figure 8.18, where the results obtained on PS_02 were shown, can
be confirmed for the other benchmark instances as well: increasing the number of
individuals in the incubator population results in less iterations needed to reach the
specified role levels. In contrast to the long-term consideration, where an increase

176 Chapter 8. Role Mining in Dynamic Environments

in the size of the incubator population led to significantly longer computation times,
the short-term consideration shows that the existence of an incubator population
even reduces the computation times needed to attain the specified role levels in all
cases. This is due to the correlation of the number of roles and the iteration times,
which was shown in Figure 6.16 in Chapter 6. The accelerated reduction of roles
due to the existence of an incubator population reduces the iteration times of the
addRole-EA to such an extent that it at least compensates for the additional time
required by the additional individuals of the incubator population. One possibility
to address the extended computation time resulting from the introduction of an in-
cubator population in the long-term consideration, would therefore be to limit the
existence of an incubator population by a maximum number of iterations. This is
supported by the finding from examining interaction event I01, where it was shown
that modified individuals need only a few iterations to prevail, if they have the po-
tential to enhance the optimization process.

TABLE 8.26: Incubator Protection: Computation time (s) needed to obtain k roles.

Roles No Population Size Incubator Population PSinc
k Strategy 2 5 10 20

PS_02 40 192.87 179.70 155.25 156.53 153.43
38 254.45 224.42 222.28 194.09 198.46
36 313.96 259.32 255.84 246.97 260.02
34 414.93 297.30 287.72 322.16 324.68
32 499.16 354.92 350.08 373.56 389.07

PS_05 75 77.57 75.66 75.26 74.73 74.65
70 95.64 84.12 81.68 82.34 82.14
65 110.88 91.79 88.03 93.06 91.49
60 88.04 79.95 78.57 79.41 79.08
55 106.43 88.99 84.86 88.53 87.68

PM_01 420 1.276.10 1.250.77 1.252.94 1.245.99 1.257.79
400 1,417.34 1,352.52 1,353.36 1,366.73 1,391.98
380 1,528.86 1,433.62 1,441.70 1,460.35 1,511.46
360 1,636.45 1,500.47 1,524.39 1,537.74 1,613.76
340 1,746.43 1,573.24 1,597.88 1,623.59 1,717.37

The objective of survival strategy Incubator Population consists in protecting individ-
uals that were modified by the occurrence of interaction events by introducing an
incubator population. However, the modifications in the chromosomes of the in-
dividuals are not protected. This means that, in case good roles were added, these
could be removed from the chromosomes of the individuals in the further optimiza-
tion process. In case bad roles were deleted, these could be re-integrated into the
chromosomes of an individual. To investigate this in more detail, an additional key
figure mod(I) is introduced for an individual I and k interaction events:

mod(I) :=
mod1(I) + ... + modk(I)

k
∈ [0, 1] . (8.4)

At this, modi(I) ∈ {0, 1} specifies whether the modification resulting from interac-
tion event i is included in the chromosome of individual I. If modi(I) = 1, this means
that, in case role rj was added to the optimization process in an instance of interac-
tion event I01, role rj ∈ R(I), or in case role rj was deleted from the optimization

8.4. Handling of Interaction Events 177

process in an instance of interaction event I02, that role rj /∈ R(I). If modi(I) = 0, this
means that, in case role rj was added, role rj /∈ R(I), or in case role rj was deleted,
that role rj ∈ R(I). Therefore, the definition of mod(I) allows for the consideration
of instances of I01 and I02 at the same time and corresponds to the percentage of
the modifications resulting from the considered interaction events included in the
chromosomes of the individual.

Figure 8.19 (left) shows the average value of mod(I) over all individuals of the regu-
lar population, starting from the iteration of event occurrence t1 = 5, 000 on PS_02.
Figure 8.19 (right) shows the average value of mod(I) over all individuals of the in-
cubator population. The corresponding results obtained on PS_05 and PM_01 can
be found in Appendix D.2.3.

FIGURE 8.19: Progression of mod(I) in regular and incubator population for the addi-
tion of 5 good roles on PS_02 considering survival strategy Incubator Protection.

It is evident that, the larger the size of the incubator population, the faster good roles
are included into the chromosomes of the individuals of the regular population. Fur-
thermore, it can be seen that mod(I) ≈ 1 for all individuals in the regular populations
at t = 50, 000, which means that almost all good roles are included in the chromo-
somes of almost all individuals at that time. This is also evident for the individuals
of the incubator population, where again mod(I) ≈ 1 at t = 50, 000. It is obvious
from the design of the evaluation scenario and the functionality of Incubator Protec-
tion that after event occurrence all individuals of the incubator population comprise
all of the good roles added (mod(I) = 1 at t1 = 5, 000). In the further course, how-
ever, these are removed from the chromosomes of some individuals (mod(I) < 1).
This is due to the operation principle of the addRole-method, in which obsolete roles
are deleted, which of course also applies to the good roles added, in case they are not
actually needed. In the later course, however, they are re-included into the chromo-
somes of the individuals which is probably due to crossover and then apparently
remain in R(I).

Survival Strategy 2: Population Split Protection

In contrast to the preceding survival strategy, in which the modified individuals
were protected, survival strategy Population Split Protection aims at protecting the

178 Chapter 8. Role Mining in Dynamic Environments

modifications resulting from interaction events. For this purpose, again, the con-
cept of creating an additional population is applied resulting in changes considering
the evolution of the addRole-EA, see Algorithm 8.8, which again replaces the corre-
sponding lines 8 and 10 in Algorithm 6.2

Algorithm 8.8: evolvePopulation_PopulationSplitProtection(population Pop)

1 Popreg := { };
2 Popadd := { };
3 evolveRegularPopulation(Pop, Popreg);
4 evolveAdditionalPopulation(Pop, Popadd);

5 Pop := Popreg ∪ Popmod;

At the beginning of each iteration, all individuals are included in one population
Pop. From this, two temporary populations are created. The regular population
Popreg is created from the best individuals of population Pop, in terms of their fit-
ness. The additional population Popadd is created from the best individuals of pop-
ulation Pop for which, additionally, all modifications resulting from the interaction
events are included in their chromosome, i.e. mod(I) = 1. It is noticeable that this
procedure allows the same individual to be selected into both the regular and the
additional population. For both populations, the selection, crossover, mutation and
replacement methods of the addRole-EA are executed separately. A description of
the algorithmic procedure of the selection process and the update of the regular pop-
ulation is provided in Algorithm 8.9.

Algorithm 8.9: evolveRegularPopulation(populations Pop, Popreg)

1 for i ∈ {1, 2, ..., PS} do
2 find best individual I∗ ∈ Pop \ Popreg;
3 Popreg := Popreg ∪ {I∗};
4 end

5 doSelectionCrossoverAndMutation(Popreg);
6 doReplacement(Popreg);

In case that some of the individuals resulting from crossover and mutation in the ad-
ditional population no longer fulfill mod(I, t) = 1, these are deleted from Popadd, see
Algorithm 8.10. The number of individuals in population Popadd is denoted PSadd.

Algorithm 8.10: evolveAdditionalPopulation(populations Pop, Popadd)

1 for i ∈ {1, 2, ..., PSadd} do
2 find best individual I∗ in Pop \ Popadd for which mod(I∗) = 1;
3 Popadd := Popadd ∪ {I∗};
4 end

5 doSelectionCrossoverAndMutation(Popadd);
6 doReplacement(Popadd);

7 for individual I ∈ Popadd: mod(I) < 1 do
8 Popadd := Popadd \ {I};
9 end

8.4. Handling of Interaction Events 179

Eventually, the original population is replaced by the individuals of the regular pop-
ulation as well as the remaining individuals of the additional population. Since the
replacement method is executed on both populations separately, it is ensured that
there are sufficient individuals in Pop that fulfill mod(I) = 1 in order to create the
additional population in the next iteration.

Evaluation. The evaluation of survival strategy Population Split Protection is per-
formed in the same way as for survival strategy Incubator Protection. Here, the in-
fluence of population size PSadd ∈ {2, 5, 10, 20} is investigated. Again, 20% of the
number of roles used to create the benchmark instance were selected randomly from
the set of good roles and added to the optimization process at iteration t1 = 5, 000.
Figure 8.20 shows the progression of the number of roles over iterations considering
the different values of PSadd compared to the case in which no survival strategy was
used, where |E| = 5 good roles were added at t1 = 5, 000 on PS_02. The correspond-
ing results obtained on PS_05 and PM_01 can be found in Appendix D.2.4.

FIGURE 8.20: Number of roles over iterations for the addition of 5 good
roles on PS_02 considering survival strategy Population Split Protection.

It is shown that the introduction of an additional population leads to significantly
better results, especially in short-term consideration. However, different from sur-
vival strategy 1, increasing the size of the additional population Popadd does not
automatically lead to better results. In particular, choosing PSadd = 20 seems to be
rather inefficient compared to the other evaluation scenarios in which an additional
population was created. Also in long-term consideration, this leads to rather poor
results, see Table 8.27. In all evaluation scenarios, the worst results are achieved in
terms of of the number of roles at t̂ = 100, 000 as well as in terms of the computation
time needed to execute 100,000 iterations of the addRole-EA, when PSadd = 20.

It is evident that the larger the additional population, the more computation time is
required. Furthermore, it can bee seen that creating an additional population does
not always cause for an improvement regarding the number of roles r(I∗, t̂) at t̂.

180 Chapter 8. Role Mining in Dynamic Environments

TABLE 8.27: Population Split Protection: resulting number of roles and computation times.

No Population Size Additional Population PSadd
Strategy 2 5 10 20

PS_02 r(I∗, t̂) 30.35 30.15 30.10 29.45 30.85
time (s) 1,171.74 1,999.71 2,294.04 2,776.14 3,819.03

PS_05 r(I∗, t̂) 50.00 50.25 49.95 50.10 50.35
time (s) 737.62 2,304.55 2,753.91 3,514.70 5,105.39

PM_01 r(I∗, t̂) 152.15 152.20 152.55 152.75 152.85
time (s) 8,311.63 36,465.98 45,184.69 59,298.66 88,342.38

It is valuable to consider the short-term effects of the survival strategy, which are
displayed in Tables 8.28 and 8.29.

TABLE 8.28: Split Population Protection: Number of iterations needed to obtain k roles.

Roles No Population Size Additional Population PSadd
k Strategy 2 5 10 20

PS02 42 8,950 5,830 5,970 5,630 5,600
40 12,040 7,180 7,280 7,090 6,810
38 14,520 9,130 9,000 9,050 8,880
36 17,110 11,560 11,160 10,940 11,390
34 23,640 16,160 15,730 13,550 15,670

PS05 75 6,270 5,420 5,390 5,380 5,360
70 7,930 6,050 5,950 5,950 5,960
65 9,530 6,820 6,930 6,920 6,780
60 11,510 8,190 8,480 8,190 7,940
55 13,840 10,820 11,130 10,510 10,180

PM01 420 5,590 5,360 5,420 5,400 5,380
400 6,350 5,860 5,880 5,890 5,870
380 7,050 6,290 6,330 6,320 6,330
360 7,750 6,690 6,770 6,720 6,760
340 8,360 7,130 7,250 7,120 7,200

Analogous to survival strategy 1, it can be found that creating an additional popu-
lation results in reaching the specified role levels after fewer iterations in all cases.
Similar to the long-term consideration, an increased size of Popadd does not always
lead to fewer iterations being required. However, it can be seen that an increase of
PSadd results in an increase of the computation time needed to reach the different
role levels, especially compared to the case in which no survival strategy was used.
For survival strategy 1, it could be shown that the introduction of an incubator pop-
ulation always led to the role levels being reached in less computation time.

In order to investigate the inclusion of the added good roles into the chromosomes
of the individuals of the joint population Pop, Figure 8.21 shows the average value
of mod(I) over all individuals of Pop, starting from the iteration of event occurrence
t1 = 5, 000 on PS_02. Due to its design, this value always equals one for the indi-
viduals in Popadd, such that this population is not included in Figure 8.21. The cor-
responding results obtained on PS_05 and PM_01 can be found in Appendix D.2.4.
It can bee seen that the values of mod(I) are higher in each case where an additional
population was created by the application of survival strategy 2 compared to the
case where no strategy was applied. In contrast to survival strategy 1, however, there

8.4. Handling of Interaction Events 181

TABLE 8.29: Split Population Protection: Computation time (s) needed to obtain k roles.

Roles No Population Size Additional Population PSadd
k Strategy 2 5 10 20

PS02 42 206.98 151.50 160.00 153.21 161.17
40 262.56 190.03 203.17 212.07 226.98
38 302.42 242.11 255.60 284.05 330.80
36 339.32 301.82 316.70 348.61 446.28
34 419.76 404.98 434.50 432.08 629.27

PS05 75 80.77 79.01 80.36 84.04 90.44
70 98.11 97.21 99.69 109.19 128.35
65 113.16 118.51 132.26 149.92 177.89
60 130.11 154.47 181.19 200.90 244.51
55 148.28 219.70 260.45 288.79 367.35

PM01 420 1,210.99 1,332.93 1,434.91 1,518.47 1,688.81
400 1,344.09 1,630.36 1,777.20 2,002.31 2,403.86
380 1,459.30 1,880.46 2,100.54 2,413.05 3,051.73
360 1,563.81 2,103.78 2,408.91 2,780.42 3,635.76
340 1,649.06 2,341.61 2,732.89 3,139.55 4,211.26

is no clear correlation between the values of mod(I) and the size of the additional
population. Again, mod(I) ≈ 1 for all individuals in all scenarios at t = 50, 000,
which means that almost all good roles are included in the chromosomes of almost
all individuals at this point in time.

FIGURE 8.21: Progression of average of mod(I) for the addition of 5 good roles on PS_02
considering survival strategy Population Split Protection.

Survival Strategy 3: Fitness Protection

The survival strategy Fitness Protection is based on an adaption of the fitness function
of the addRole-EA. In order to assess the number of modifications resulting from k
interaction events of type I01 or I02, which are included in the chromosome of an
individual I, the previously defined mod(I) is included into the determination of
the fitness of an individual. Hence, in case of the occurrence of interaction events,

182 Chapter 8. Role Mining in Dynamic Environments

the fitness function of the addRole-EA, which was defined as the number of roles of
an individual in Chapter 6, is replaced by the adapted fitness function of survival
strategy Fitness Protection:

f itnessFP(I) := |R(I)|+ α · k · (1−mod(I)) . (8.5)

Hence, individuals that include many modifications tend to have a better fitness. In
this way, modified individuals can be kept alive at least for some iterations. Besides
the adaption of the fitness function, the addRole-EA is maintained in its original ver-
sion. Therefore, in case that the interaction events do not have the potential to im-
prove the optimization process, the corresponding individuals will be disregarded
by the elitist replacement method of the addRole-EA, as soon as the unmodified
individuals attain a certain fitness quality.

Evaluation. In order to evaluate survival strategy Fitness Protection, the influence of
weight parameter α ∈ {0.25, 0.5, 1.0, 2.0} is investigated. Again, 20% of the number
of roles used to create the benchmark instance were selected randomly from the set
of good roles and added to the optimization process at iteration t1 = 5, 000. Figure
8.22 shows the progression of the number of roles over iterations considering the
different values of α, where |E| = 5 good roles were added at t1 = 5, 000 on PS_02.
The results obtained on PS_05 and PM_01 can be found in Appendix D.2.5. This is
compared to the case in which no survival strategy was used, which corresponds to
the application of the original fitness function of the addRole-EA.

FIGURE 8.22: Number of roles over iterations for the addition of 5 good
roles on PS_02 considering survival strategy FitnessProtection.

The application of the survival strategy leads to better results, especially in short-
term consideration. Table 8.30 shows the number of roles of the best individual after
executing t̂ = 100, 000 iterations of the addRole-EA as well as the computation times
needed. It can be seen that the inclusion of the interaction events has a rather small

8.4. Handling of Interaction Events 183

effect in terms of the obtained number of roles in long-term consideration. However,
the computation time increases in case the survival strategy is used. This is due to
the fact that, whereas the number of roles can easily be obtained from an individual,
the calculation of the fitness of an individual using FitnessProtection requires more
work, since mod(I) must be calculated for each individual.

TABLE 8.30: Fitness Protection: resulting number of roles and computation times.

No Weight parameter α
Strategy 0.25 0.5 1.0 2.0

PS_02 r(I∗, t̂) 30.40 30.10 30.35 30.10 29.35
time (s) 1,228.52 1,554.05 1,542.17 1,531.27 1,532.10

PS_05 r(I∗, t̂) 49.95 50.4 49.9 49.75 50.45
time (s) 734.07 1,816.49 1,776.59 1,767.80 1,807.09

PM_01 r(I∗, t̂) 151.75 151.80 152.20 152.35 152.40
time (s) 7,675.50 33,052.86 33,329.31 33,428.79 33,596.29

Tables 8.31 and 8.32 show the short term effects of survival strategy Fitness Protection.
It can again be seen that the number of iterations needed to obtain the specified
role levels can be reduced by the introduction of the survival strategy. However,
the values of weight parameter α do not seem to have a major influence, since the
iterations needed to obtain the specified role levels are very similar in the cases, in
which Fitness Protection is used.

TABLE 8.31: Fitness Protection: Number of iterations needed to obtain k roles.

Roles No Weight parameter α
k Strategy 0.25 0.5 1.0 2.0

PS_02 40 8,470 6,770 6,530 6,450 6,050
38 12,010 9,190 9,070 7,590 7,320
36 15,210 11,090 10,140 8,930 9,360
34 17,840 13,790 12,570 10,890 12,130
32 23,450 16,410 17,350 16,160 15,880

PS_05 75 6,040 5,500 5,330 5,350 5,290
70 7,970 6,500 5,820 5,890 5,690
65 9,620 7,520 6,600 6,820 6,390
60 11,020 8,920 7,740 7,990 7,500
55 13,310 10,760 9,780 10,690 9,600

PM_01 420 5,300 5,270 5,270 5,260 5,270
400 5,830 5,730 5,720 5,720 5,770
380 6,400 6,160 6,170 6,180 6,230
360 6,970 6,580 6,640 6,610 6,640
340 7,480 7,000 7,040 7,050 7,040

In could be shown that the inclusion of mod(I) into the fitness of an individual re-
sults in additional computation time in long-term consideration. This can also be
found in short-term consideration on PM_01, where the computation time needed
to attain the specified role levels, in case Fitness Protection is used, exceeds the com-
putation time required, when no survival strategy is applied. However, on PS_02
and PS_05, the application of Fitness Protection seems to accelerate the optimization
process in short-term consideration.

184 Chapter 8. Role Mining in Dynamic Environments

TABLE 8.32: Fitness Protection: Computation time (s) needed to obtain k roles.

Roles No Weight parameter α
k Strategy 0.25 0.5 1.0 2.0

PS_02 40 210.46 180.16 172.75 169.18 159.81
38 276.90 234.32 230.18 193.73 187.80
36 327.97 272.60 252.02 220.33 229.13
34 365.46 322.43 297.06 256.07 279.95
32 437.58 366.46 377.46 343.07 342.85

PS_05 75 80.30 80.75 76.42 77.00 75.40
70 100.80 103.93 87.75 89.54 84.65
65 116.83 126.55 104.86 110.06 99.91
60 129.10 155.33 128.24 134.34 122.74
55 147.29 191.17 167.67 186.96 163.58

PM_01 420 1,161.90 1,277.42 1,277.18 1,270.65 1,277.01
400 1,246.02 1,539.37 1,533.93 1,533.74 1,561.21
380 1,327.52 1,775.41 1,781.32 1,787.43 1,813.66
360 1,405.70 1,998.23 2,029.65 2,018.28 2,031.16
340 1,473.38 2,212.31 2,236.78 2,245.30 2,236.49

Eventually, again the inclusion of the added good roles into the chromosomes of the
individuals is investigated. For this purpose, Figure 8.23 shows the average value
of mod(I) over all individuals of the population, starting from the iteration of event
occurrence t1 = 5, 000 on PS_02. The corresponding results obtained on PS_05 and
PM_01 can be found in Appendix D.2.5.

FIGURE 8.23: Progression of average of mod(I) for the addition of 5 good roles on PS_02
considering survival strategy Fitness Protection.

It can be seen that the value of α has a major impact on the progression of mod(I). For
α = 1.0 and α = 2.0, all of the added good roles are immediately included into all in-
dividuals of the population. Therefore, in case the good roles added by the DM turn
out to have rather negative effect on the optimization process, there are no more of
the original, unmodified individuals to which the algorithm might return. The sur-
vival strategy Fitness Protection, which aims at supporting modified individuals to

8.4. Handling of Interaction Events 185

survive, thus, corresponds to an extinction strategy for the unmodified individuals.
This contradicts the idea that modified and unmodified individuals should coexist
at least for a short period of iterations. For α = 0.25 and α = 0.5, this is clearly the
case. Here, in both cases, it takes about 10,000 iterations until all added roles are
contained in the chromosomes of almost all individuals, such that mod(I) ≈ 1 for all
individuals at t = 15, 000.

Comparison of Survival Strategies

After the three different survival strategies have been introduced and evaluated in
the previous sections, this section examines whether one of them stands out as par-
ticularly powerful. For this purpose, the results obtained are compared and the ad-
vantages and disadvantages of the strategies are discussed. Since it could be shown
that the results obtained at t̂ = 100, 000 are not suitable to asses the quality, again
the short-term consideration is used. For this purpose, for each of the benchmark
instances considers for evaluation and the corresponding specified role levels, the
different survival strategies were ranked based on the number of roles respectively
the computation time needed to attain the role levels. At this, for the population
size PSinc of the incubator population considering survival strategy Incubator Pro-
tection and the size PSadd of the additional population considering Population Split
Protection all parameter values were included into the ranking. For survival strat-
egy Fitness Protection, only α = 0.25 and α = 0.5 were considered, since α = 1.0
and α = 2.0 caused for an immediate extinction of the unmodified individuals. The
mean values for the ranks and the corresponding standard deviations SD consider-
ing the number of roles needed to attain the specified role levels for each benchmark
instance are provided in Table 8.33.

TABLE 8.33: Comparison of survival strategies: Number of iterations needed (Ranks).

Incubator Population Split Fitness
Population Size PSinc Population Size PSadd Weight α

2 5 10 20 2 5 10 20 0.25 0.5

PS_02 Rank (avg.) 9,00 5,80 3,80 1,00 5,80 5,20 3,20 3,20 9,40 8,60
SD 0,63 1,17 1,72 0,00 0,75 1,47 1,17 1,17 0,80 0,80

PS_05 Rank (avg.) 4,80 2,60 2,40 1,00 8,20 8,20 6,80 6,20 9,60 4,60
SD 1,17 0,49 0,49 0,00 0,98 1,72 0,98 0,40 0,80 0,49

PM_01 Rank (avg.) 10,00 8,40 3,80 1,00 5,20 7,80 6,60 6,60 2,20 2,80
SD 0,00 0,80 0,40 0,00 0,40 0,75 1,20 0,49 0,40 0,75

Table 8.34 shows mean values for the ranks and the corresponding standard devia-
tions SD considering the computation times needed to attain the specified role levels
for each benchmark instance.

At first, it can bee seen that the survival strategies Population Split Population and
Fitness Protection, which require the calculation of mod(I), attain rather worse ranks
considering the required computation time, whereas survival strategy Incubator Pop-
ulation, which requires no calculation of mod(I) obtains comparatively good ranks
in almost all cases. Similar results are obtained for the number of iterations needed
to attain the specified role levels. In each single case Incubator Population, where

186 Chapter 8. Role Mining in Dynamic Environments

TABLE 8.34: Comparison of survival strategies: Computation time needed (Ranks).

Incubator Population Split Fitness
Population Size PSinc Population Size PSadd Weight α

2 5 10 20 2 5 10 20 0.25 0.5

PS_02 Rank (avg.) 5,40 3,40 3,80 5,40 2,80 5,60 6,60 9,00 7,60 5,40
SD 2,58 2,06 1,60 2,06 2,40 1,85 2,73 1,26 2,58 2,73

PS_05 Rank (avg.) 3,80 1,40 3,00 1,80 6,20 7,60 9,00 10,00 7,20 5,00
SD 0,40 0,80 0,63 0,40 0,40 0,49 0,00 0,00 0,75 0,00

PM_01 Rank (avg.) 1,20 2,20 2,60 4,00 7,00 8,00 9,00 10,00 5,40 5,60
SD 0,40 0,40 0,80 0,00 0,00 0,00 0,00 0,00 0,49 0,49

PSinc = 20, obtained rank 1. Also, for PSinc = 10 good results were obtained in an
above average number of cases. In the previous chapters, it could be shown that the
selection of the survival strategy and the corresponding parameters strongly influ-
ence the survival of the modified as well as the unmodified individuals. In addition,
it has been shown that a survival strategy may only be needed for a short time. It
would therefore be reasonable to introduce further parameters that limit the applica-
tion time of the different survival strategies. However, this will not be investigated
further at this point. Therefore, even though Incubator Protection achieved the best
ranks among all survival strategies in the final comparison, when high values of
PSinc were selected, the question on which of the survival strategies is the best fit in
all possible role mining scenarios cannot yet be definitively answered, so that further
investigations may be necessary.

187

Chapter 9

Role Mining as Multi-objective
Optimization Problem

In business practice, besides the total number of roles, also other key figures play
an important role in evaluating role concepts. This chapter, therefore, aims at the
consideration of additional optimization objectives and their integration into the
RMP. For this purpose, existing approaches and additional optimization objectives
already studied in literature are presented. Additionally, two new key figures are
introduced, which are relevant in the context of ERP systems: the so-called compli-
ance score, which assesses the adherence of role concepts to compliance rules, and
the license costs of a role concept, which may vary due to different license costs
for different permissions. In order to address the new optimization objectives ade-
quately, role concepts including deviations between the targeted and the resulting
permission-to-user assignment need to be considered. For example, it may be rea-
sonable to withdraw a permission from a user, if this resolves a security conflict,
thus leading to a more secure role concept. Furthermore, assigning permissions with
comparatively expensive license costs to only a small number of users might reduce
the overall license costs of a role concept. Since compliance score and license costs
both depend directly on the assignment of permissions to users, they are constant
in case deviations are not permitted. This becomes clearer in Section 9.2, where a
formal model is presented for both objectives.

In order to include compliance score as well license costs into role optimization, suit-
able extension files are provided for the benchmark instances of of RMPlib. Further-
more, the basic version of the addRole-EA needs to be adapted to the requirements of
considering the Role Mining Problem as multi-objective optimization problem. For
this purpose, the addRole-method, which previously ensured compliance with the 0-
consistency constraint, is modified in a way that the addition or removal of roles can
lead to deviations. In addition, the elitist replacement method of the addRole-EA,
which is not suitable for multi-objective optimization, is replaced by NSGA-II [27].
The resulting multi-objective version of the addRole-EA as well as the benchmark
extensions of RMPlib are then used to provide some interesting results and special
features of multi-objective role mining. In order to be able to analyze the effects of
including multiple optimization objectives into role mining, the simulation of dy-
namic events is omitted in this chapter and an adapted version of the addRole-EA is
used for evaluation purposes.

188 Chapter 9. Role Mining as Multi-objective Optimization Problem

9.1 Multi-objective Role Mining Problems

In order to derive a definition of the Multi-objective Role Mining Problem, first
multi-objective optimization problems are shortly introduced in general. A multi-
objective optimization problem (MOP) involves the consideration of several opti-
mization objectives and the corresponding fitness functions, which needs to be max-
imized or minimized. For a vector x ∈ Rn of n decision variables, a multi-objective
minimization problem in its general form can be defined as follows [27]:

MOP =

{
min f j(x), j = 1, 2, ..., J

s.t. x ∈ S,

where S ⊆ Rn denotes the search space. Each vector x ∈ S is assigned a vector
f (x) = (f1(x), ..., f J(x))T in the J-dimensional solution space. The purpose of multi-
objective optimization is to find a solution x ∈ S for which the objective function
f (x) attains its minimum value. However, since the component-wise comparison of
two vectors a, b ∈ RJ , where a ≤ b⇔ ai ≤ bi ∀i ∈ {1, ..., J} is only a partial order on
RJ , a ranking of x ∈ S and y ∈ S based on the objective function is not necessarily
possible.

In the following, the resulting problems and corresponding solution concepts are
illustrated using an example in the context of role mining. Therefore, instead of
x ∈ Rn, role concepts π ∈ Π are considered, where Π denotes the set of all role
concepts. However, since not all role concepts may constitute feasible solutions in
context of the considered role mining scenario, e.g. in case the 0-consistency con-
straint is considered, this set is further restricted such that, analogous to Chapter 8,
ΠF ⊆ Π defines the set of feasible solutions. Similar to general multi-objective opti-
mization problems, multi-objective role mining aims at minimizing a corresponding
objective function f : ΠF → RJ , f (π) = (f1(π), ..., f J(π))T.

One way to improve role concepts with regard to the number of roles is to allow
for deviations between the targeted permission-to-user assignment matrix UPA and
the resulting permission-to-user assignment matrix RUPA. For example, on bench-
mark instance PS_02, in all runs of the addRole-EA, which were executed for eval-
uation purposes in the context of this thesis, the best role concept found, which is
denoted πE1 throughout this example, comprised 27 roles. However, relaxing the 0-
consistency constraint, it was possible to further reduce the number of roles to 22, if
227 deviations between UPA and RUPA are accepted in exchange. The correspond-
ing role concept will be denoted πE2. Another possible role concept πE3, which was
found in this way and is included in this example for illustration purposes, com-
prised 27 roles and 284 deviations. Of course, it is desirable to find role concepts
that include as few roles as possible and, at the same time, as few deviations as pos-
sible. Therefore, an objective function suitable in this context could be defined as
follows:

f : ΠF → R2, f (π) =

(
|R|

‖UPA− RUPA‖

)
. (9.1)

9.1. Multi-objective Role Mining Problems 189

Thus, f (πE1) = (27, 0)T, f (πE2) = (22, 227)T and f (πE3) = (27, 384)T. This example
shows that, for two role concepts, it is not necessarily possible to determine which
is the better one based on the two-dimensional objective function. Role concept
πE1 comprises 27 roles and no deviations. Role concept πE2 comprises 5 roles less,
but 227 additional deviations. Without further knowledge, for example about the
preferences of a decision maker, it is therefore not possible to select one of the two
role concepts as the better one.

In order to assess solutions of multi-criteria optimization problems, the so-called
Pareto criterion is used. It is named after Vilfredo Pareto, who proposed the idea
that the economic satisfaction in a collective of individuals is maximal, if it is not
possible to improve the individual satisfaction of one individual without worsening
the satisfaction of at least one other individual [36]. Based on this, the following
terms are introduced, already adapted to the context of role mining. For a definition
in the context of general multi-objective role-mining, see for example [36].

• Pareto Dominance: Consider a set of role concepts Π̃ ⊆ ΠF and π1, π2 ∈ Π̃.
π1 dominates π2 (π1 4 π2) ⇔ f (π1) ≤ f (π2)∧∃i ∈ {1, ..., J}: fi(π1) < fi(π2).

• Pareto Optimality: A role concept π∗ ∈ Π̃, is called Pareto optimal, if there is no
other π ∈ Π̃, such that π 4 π∗. In this case, π∗ is denoted non-dominated.

• Pareto Optimal Set: The set including all non-dominated role concepts P∗(Π̃) :=
{π∗ ∈ Π̃ : @π ∈ Π̃, s.t. π 4 π∗} is called the Pareto optimal set.

• Pareto Front: The set PF∗(Π̃) := {v ∈ RJ : ∃π ∈ P∗(Π̃), s.t. v = f (π)} is
called Pareto Front.

Figure 9.1 shows an exemplary Pareto front on benchmark instance PS_02. It is clear
that this type of visualization is only suitable for two-dimensional objective func-
tions. However, the underlying Pareto principle can also be applied to multiple
dimensions.

FIGURE 9.1: Exemplary Pareto front for PLAIN_small_02.

For the role exemplary concepts πE1, πE2 and πE3, it can be observed that πE1 4 πE3

and πE2 4 πE3. Furthermore, role concepts πE1 and πE2 are non-dominated such
that πE1, πE2 ∈ P∗(Π̃).

190 Chapter 9. Role Mining as Multi-objective Optimization Problem

Eventually, the Multi-objective Role Mining Problem can be defined as follows:

Definition 9.1 (The Multi-objective Role Mining Problem)
Given a set of users U, a set of permissions P and a targeted permission-to-user assignment
matrix UPA, find a role concept π = 〈R, UA, PA〉 ∈ ΠF such that the objectives encoded
by f : ΠF → RJ are minimized:

MO-RMP =

{
min f j(π), j = 1, 2, ..., J,

s.t. π ∈ ΠF.

From this generalized definition of the Multi-objective Role Mining Problem, many
variants can be derived, depending on the choice of objectives and the associated
objective function f as well as on the choice of possible constraints on the role con-
cepts, e.g. 0-consistency, reflected in ΠF. In the course of this chapter, in a first
experimentation scenario, a variant of the MO-RMP, in which only the number of
roles and the number of deviations are included as optimization objectives, is con-
sidered, resulting in a two-dimensional RMP. In order to also include the adherence
to compliance rules and license costs of role concepts into the role mining process, a
four-dimensional problem is considered in a second experimentation scenario. For
this purpose suitable key figures are defined within the next section.

9.2 Objectives relevant for Role Mining in ERP Systems

In this section, the different optimization objectives, which will be considered in
the further course of this chapter, are presented. At first, deviations between the
targeted permission-to-user assignment matrix UPA and the resulting permission-
to-user assignment matrix RUPA are discussed. Then, the compliance score and
license costs are introduced as two new concepts to evaluate role concepts. Finally,
an overview of several other possible optimization objectives that have been used
in the literature to assess the quality of role concepts is given. Compliance score
and license costs were initially introduced as additional optimization objective in
the context of the publication of RMPlib in [8].

9.2.1 Deviations

It was already indicated in the last section that allowing for deviations between the
targeted permission-to-user assignment matrix UPA and the resulting permission-
to-user assignment matrix RUPA can further reduce the number of roles, which will
be illustrated by means of an example at this point. For this purpose, again, individ-
ual I1 is considered, see Figure 9.2.

An obvious option to reduce roles would be to simply remove a role from the role
concept. Since role r3 is solely assigned to user u2 respectively user class U3 consider-
ing individual I1, this seems to be a suitable candidate. Figure 9.2 shows individual
I1 after the removal of r3. Although the number of roles could be reduced by one, it
can bee seen, that user u2 lacks three permissions possibly resulting in Type II errors,

9.2. Objectives relevant for Role Mining in ERP Systems 191

FIGURE 9.2: Individual I1 (0-consistent).

such that the user is not capable to perform all tasks of his or her work. Such negative
deviations should therefore be treated with caution and preferably be avoided.

FIGURE 9.3: Individual I1 after removal of r3 (not 0-consistent).

Considering the original individual before the removal of role r3 in Figure 9.2, it can
be seen that roles r3 and r4 are very similar. Thus, another option to reduce the num-
ber of roles would be to create a new role rnew from the permissions assigned to r3

and r4. The new role could then be assigned to all users, that were assigned role r3

or r4 previously. While this has no effect on user class U1, the users in user classes
U2 and U3 are assigned an additional permission, see Figure 9.4. As user class U3

contains two users, this causes for three positive deviations in total. If further permis-
sions were grouped to permission classes in the pre-processing, the cardinalities of
the permission classes would need to be included into the calculation of the total
number of deviations. As will be discussed in the following sections, the associated
pre-processing step (PP2) is not compatible with the inclusion of compliance score
respectively license costs. Therefore, the consideration of permission classes will be
omitted in the remainder of this chapter.

Assuming that the permission-to-user assignment matrix UPA covers all permis-
sions needed of all users, also positive deviations are rather not desirable, since they
possibly cause for Type I errors. However, in Chapter 5 is was shown that UPA ma-
trices obtained from trace data usually do not cover all permission needs such that
the inclusion of positive deviations might help to reduce Type II errors.

It is possible that the inclusion of positive deviations affect either the security or the
license costs of a role concept. In the context of the example, it could be possible that
p2 is a particularly expensive permission in terms of the associated license costs. It
may therefore be reasonable not to assign this permission to user u3 by creating the
new role, if it is not actually needed. Moreover, it could be possible that, for example,
the combination of p2, p4, p6, and p7 is critical considering the security of the role
concept. In this case, it should be avoided to assign this combination of permissions

192 Chapter 9. Role Mining as Multi-objective Optimization Problem

FIGURE 9.4: Individual I1 after addition of rnew (not 0-consistent).

to users. This is granted for the original version of I1. In the version created by
including positive deviations, this combination of permissions would be assigned
to both u2 and u3 resulting in a worsened security. Hence, it is evident to consider
deviations in the context of further optimization objectives, which are presented in
the next sections.

9.2.2 Compliance Score

As discussed in Chapter 4, there are combinations of permissions that should not be
assigned to a single user, so-called SoD-conflicts. In order to include the considera-
tion of SoD-conflicts into role mining, an SoD-conflict matrix C ∈ {0, 1}L×N can be
introduced. At this, L equals the total amount of SoD-conflicts and each row in C
represents one SoD-conflict. Analogous to the permission-to-user assignment matrix
UPA, each column corresponds to a permission. The permissions are to be arranged
in the same order as in UPA, such that Cl,j = 1 implies that the l-th SoD-conflict in-
cludes permission pj. To further differentiate the level of severeness of SoD-conflicts,
an additional weight vector w ∈ IRL is introduced. An example of a conflict matrix C
and a weight vector w is given in Equation (9.2):

C :=

0 1 0 1 0 1 1
1 1 0 0 0 0 0
0 0 0 0 0 1 1
0 1 0 1 0 0 0
1 1 1 1 1 1 1

 , w :=

8
1
0
4
20

 . (9.2)

In this example, the first SoD-conflict encoded by (CT)1 corresponds to the exem-
plary SoD-conflict of the previous section as it includes permission p2, p4, p6 and p7

and is assigned a weight value of w1 = 8.

It is noticeable, that the pre-processing steps, presented in Chapter 5, have to be
modified to comply with the compliance extensions. While (PP1) can still be exe-
cuted without restrictions, the execution of (PP2-PP4) can falsify the optimization
result. In (PP2) permissions are aggregated into permission classes, whenever they
are assigned to the same set of users. Including SoD-conflicts, (PP2) could be modi-
fied in a way, that only those permissions are aggregated, which are assigned to the
same set of users in the permission-to-user assignment matrix UPA and which, in
addition, are included in the same SoD-conflicts considering the conflict matrix C.

9.2. Objectives relevant for Role Mining in ERP Systems 193

The aggregation of users into user classes (PP3-PP4) can still be conducted in the way
described in Chapter 5, if the cardinalities of the user classes are taken into account.

For a role concept π, it can easily be verified whether the permissions assigned to
a user class contain a given SoD-conflict, simply by comparing the permissions as-
signed to the user class and the permissions included in the considered SoD-conflict.
From this, the matrix δ(π) ∈ {0, 1}|UC|×L, representing the conflicts of each user class
encoded in π, is defined as:

δi,l(π) :=

{
1, if ∑N

j=1 RUPAi,j · Cl,j = ∑N
j=1 Cl,j

0, else.
(9.3)

Based on this, the so-called compliance score CS(π), which is a measure for the secu-
rity of role concept π, is defined as:

CS(π) := ∑
Ui∈UC

|Ui| · (δ(π) · w)i. (9.4)

As can be easily verified, this results in a compliance score of 10 for the role concept
encoded by the original version of individual I1 in Figure 9.2. For the individual
in Figure 9.3 including negative deviations, the compliance score is reduced to 6.
For the individual in Figure 9.4 including positive deviations, the compliance score
is 30. This shows the dependence of the compliance score on the consideration of
deviations. If no deviations are permitted, the compliance score is constant and the
same for all role concepts encoded by the different individuals of a population.

Benchmark Extension: Inclusion of Compliance Score into RMPlib

In order to enable the inclusion of the compliance score into the evaluation of role
mining algorithms, the PLAIN_x- and COMP_x-benchmark of RMPlib were extended
by a set of compliance score extension files (.cmpl files). For the realistic creation of
these compliance extensions, the entirety of around 1,500 SoD-conflicts, contained
in the SoD-conflict library of SIVIS GmbH, has been analyzed. The SoD-conflicts are
assigned to different classes representing their severeness. They range from non-
critical to very severe. This is reflected in the weights corresponding to each severity
class. The different severity classes, the number of corresponding SoD-conflicts and
weight values are shown in Table 9.1.

TABLE 9.1: Severity classes of in SoD-conflict library of SIVIS GmbH.

Non Very
Critical Low Medium Severe Severe

Number of SoD-conflicts 49 223 400 616 149
Weight 0.0 1.0 4.0 8.0 20.0

It is obvious, that an SoD-conflict including all permissions of another conflict has to
be assigned to at least the same severeness class or higher, as the increase of permis-
sions possibly extends all possible malicious actions that can be performed based on
the included permissions.

194 Chapter 9. Role Mining as Multi-objective Optimization Problem

Analogous to the size of a role, the size of an SoD-conflict is defined by the number
of permissions included in the SoD-conflict. The overall distribution of the sizes of
the examined SoD-conflicts is presented in Figure 9.5. It can be seen, that each SoD-
conflict includes between 1 and 15 permissions. However, the majority includes
between 5 and 7 permissions. As described in Chapter 5, there are also cases in
which an SoD-conflict includes only one permission. A similar distribution of the
sizes of SoD-conflicts can also be seen within the individual severity classes, see [8].

FIGURE 9.5: Distribution of SoD-conflict sizes in conflict library of SIVIS GmbH [8].

Based on that, different sets of SoD-conflicts were created that are compatible with
the instances of the PLAIN_x- and COMP_x-benchmark of RMPlib based on the
number of permissions. For each number of permissions two different sets of SoD-
conflicts were created. The _1.cmpl-extensions are based on the distributions derived
from the analysis of the SoD-conflict library of SIVIS GmbH, whereas the _2.cmpl-
extensions are based on uniform distribution. A detailed analysis, including the
compliance scores of the original UPA matrices of all PLAIN_x and COMP_x bench-
mark instances, is provided on the wiki page1 in the GitHub repository.

The .cmpl File Format
.cmpl files extend the user-permission assignments obtained from .rmp files by a set
of SoD-conflicts. At this, .rmp and .cmpl files can be combined if they coincide con-
sidering the number of permissions. An example of a .cmpl. file, which corresponds
to the conflict matrix C and the weight vector w introduced in Equation 9.2, is given
in Figure 9.6.

As for the .rmp-files, the meta-section of the .cmpl-files informs about the name of the
compliance file and copyright terms and gives a short description of the syntax of the
data-section as well as the number of permissions and the number of SoD-conflicts
and severeness classes. The data-section first assigns weights to each severeness
class SC. In this way, weights are defined centrally and can easily be modified, if
needed. Subsequently, the SoD-conflicts are listed. Each line represents one SoD-
conflict, the corresponding severeness class and the concerned permissions.

1https://github.com/RMPlib/RMPlib/wiki/Compliance_Extensions

https://github.com/RMPlib/RMPlib/wiki/Compliance_Extensions

9.2. Objectives relevant for Role Mining in ERP Systems 195

FIGURE 9.6: Format of .cmpl files (example), based on [8].

9.2.3 License Costs

In order to reflect the SAP license costs model, where the license costs of a user are
based on the permissions assigned to him or her, see Chapter 4, each permission is
assigned to a license category. The license costs of a user are then determined by the
user’s most expensive permission. Hence, the license costs LC(π) of a role concept
π can be calculated as follows:

LC(π) := ∑
Ui∈UC

|Ui| · cπ(ui), (9.5)

where cπ : UC → [0, ∞) maps each user class to the costs of the license category
containing the most expensive permission assigned to the users in the considered
user class.

Pre-processing steps (PP1) and (PP3-PP4) can be executed in the original way, since
the cardinalities of the different user classes are considered in determining the li-
cense costs. Considering (PP2), only those permissions could be aggregated into
permission classes, which belong to the same set of users and, in addition, are con-
tained in the same license category.

Considering the exemplary individuals in Figures 9.2 to 9.4 and assuming permis-
sion p2 to be categorized a Developer-permission associated with license costs of
6,000$, permissions p1 and p4 to be categorized Professional-permissions associated
with license costs of 3,200$ and the remaining permissions to be categorized Em-
ployee-permissions associated with license costs of 0$, the license costs of individual
I1 in Figure 9.3 amount to 21,200$. For the individual in Figure 9.3 including negative
deviations, the license costs are reduced to 15,200$. For the individual in Figure 9.4

196 Chapter 9. Role Mining as Multi-objective Optimization Problem

including positive deviations, the license costs are 24,000$. This shows the depen-
dence of the license costs on the consideration of deviations. If no deviations are
permitted, license costs are constant and the same for all role concepts encoded by
the different individuals of a population.

Benchmark Extension: Inclusion of License Costs into RMPlib

In order to create license costs extensions for the instances of the PLAIN_x- and
COMP_x-benchmark, permissions are assigned to different license categories LC0-
LC4 and are associated with different prices ranging from 0$ to 6,000$. As for the
compliance extensions, for each number of permissions, two different license costs
extensions are provided to reflect the variation in the allocations of permissions to
license categories over different types of enterprises. A detailed analysis, includ-
ing the license costs of the original UPA matrices of all compatible PLAIN_x and
COMP_x benchmark instances as well as the underlying prices and the distribution
of users to license categories, can be found on the corresponding wiki page2 in the
GitHub repository.

The .lic File Format
.lic files extend the user-permission assignments obtained from .rmp files by license
costs. Again, .rmp and .lic files can be combined if they coincide considering the
number of permissions. An example of a .lic file is given in Figure 9.7.

FIGURE 9.7: Format of .lic files (example), based on [8].

The meta-section of .lic-files contains the name of the license costs file, copyright
terms, a short description of the syntax of the data-section as well as the number
of permissions and the number of different license categories. The data-section first
assigns different prices to each license category. Subsequently, each permission is
assigned to one license category.

2https://github.com/RMPlib/RMPlib/wiki/LicenseCosts_Extensions

https://github.com/RMPlib/RMPlib/wiki/LicenseCosts_Extensions

9.3. Adaption of addRole-EA and Evaluation 197

9.2.4 Further Optimization Objectives

There is a variety of other optimization objectives that can be relevant in different
role mining scenarios. Xu and Stoller, for example, present an approach to include
user attributes into the role mining process in order to mine meaningful roles [113].
For this purpose, so-called attribute expressions are created from different values of
the attributes, which are supposed to describe the semantic scope of a role. If a
highly matching attribute expression is found for a role, this role is considered to be
meaningful. Molloy et al. also investigate the meaningfulness of roles, using formal
concept analysis and user attributes [80]. Colantonio et al. propose the inclusion of
administrative costs to evaluate role concepts and consider the following weighted
sum as the new objective function for the RMP:

f : ΠF → R, f (π) = α‖UA‖+ β‖PA‖+ γ|R|+ δ ∑
r∈R

c(r), (9.6)

where α, β, γ, δ ≥ 0. At this, the administrative costs consist of the number of as-
signments of roles to users ‖UA‖ and of permissions to roles ‖PA‖ as well as the
number of roles |R|. Furthermore, for each role r additional costs c(r) related to
other business information based, for example, on user attributes, are included [23].
Depending on the values of α, β, γ and δ, different other variants, such as the User-
Oriented RMP, in which the assignments of roles to users are included as additional
optimization objective, originate from Equation 9.6. Another optimization objective
consists in the consideration of the number of differences between a new role con-
cept and the role concept currently deployed in a company. This can be particularly
helpful when deciding whether a new role concept should be deployed in the com-
pany [94].

9.3 Adaption of addRole-EA and Evaluation

In order to be able to include more than one optimization objective into the role
mining process based on the addRole-EA, some methods need to be modified. The
resulting version of the addRole-EA is then used in the context of two different role
mining scenarios in order to investigate multi-objective role mining.

9.3.1 Adaption of addRole-EA to Multi-objective Role Mining

In the following it is described how the addRole-EA can be adapted in order to
become applicable for multi-objective role mining. The required modifications in-
volve an adaption of the fitness function, the pre-processing procedure, the addRole-
method and the method used for replacement. The other components and methods
of the addRole-EA can be used in their original version.

Adaption of Fitness Function

It is obvious that the sole consideration of the number of roles is no longer suffi-
cient in the context of multi-objective role mining, so that the fitness function of
the addRole-EA must be adapted. The definition of the fitness function depends

198 Chapter 9. Role Mining as Multi-objective Optimization Problem

strongly on the role mining scenario considered and on the inherent selection of
optimization objectives. In order to investigate the effects of multi-objective role
mining in the next section, two different scenarios are considered. In the first sce-
nario, in addition to the number of roles, the number of deviations is considered as
optimization objective resulting in the fitness function of Equation 9.1. In a second
evaluation scenario, first compliance score and license costs are considered as fur-
ther optimization objectives, which causes for a four-dimensional fitness function.
Subsequently, the consideration of deviations as optimization objective is dropped
resulting in a three-dimensional fitness function. In order to prevent the emergence
of Type II errors, negative deviations are not permitted in both evaluation scenarios,
such that only positive deviations are included.

Adaption of Pre-Processing

As described in the previous sections, pre-processing steps (PP1) and (PP3-4) can
remain included in the pre-processing procedure of the addRole-EA, if the cardi-
nalities of the user classes are considered in determining the number of deviations,
the compliance score and the license costs of a role concept. However, since the
aggregation of permissions into permission classes is constrained by considering
compliance score and license costs as described in the corresponding sections of this
chapter, pre-processing step (PP2) is omitted.

Adaption of addRole-Method

The addRole-method of the addRole-EA is responsible for ensuring compliance with
the 0-consistency constraint. Roles are assigned to users only, if they do not cause for
positive deviations, which is reflected in line 3 of the assignNewRoleToUsers-method,
see Algorithm 6.6. In order to allow for positive deviations, a new condition must
be found at this point to decide if a role should be assigned to a user. An evident ap-
proach for this is to assign a role r to a user ui only if it covers at least one of the user’s
permissions, i.e. vR(r) · vU(ui) > 0. In addition, a parameter d+max is introduced to
limit the number of positive deviations dependent of the number of permissions of
the user according to the targeted permission-to-user assignment matrix UPA. Role
r is therefore assigned to user ui only, if, after the assignment of r to ui, the following
still holds:

N

∑
j=1

RUPA(I)
i,j ≤ (1 + d+max) ·

N

∑
j=1

UPAi,j. (9.7)

This results in a new variant of the assignNewRoleToUsers-method, see Algorithm 9.1.

A similar approach would be conceivable within the withdrawRolesFromUsers-method
to allow for negative deviations. However, since negative deviations are not consid-
ered in both evaluation scenarios, this will not be further investigated at this point.

Adaption of Replacement

Since a comparison of the fitness of individuals is no longer possible in more than
one dimension, the elitism approach used in the original version of the addRole-EA

9.3. Adaption of addRole-EA and Evaluation 199

Algorithm 9.1: assignNewRoleToUsers_MO(individual I, role rnew)

1 append 0M = (0, ..., 0)T as new column to UA(I);

2 for user ui ∈ U do

3 if vR(rnew) · vU(ui) > 0 then

4 UA(I)
i,|R(I) | := 1 ;

5 end

6 if ∑N
j=1 RUPA(I)

i,j > (1 + d+max) ·∑N
j=1 UPAi,j then

7 UA(I)
i,|R(I) | := 0 ;

8 end
9 end

must be replaced. For this purpose the well-known Non-Dominated Sorting Genetic
Algorithm (NSGA-II), which was introduced by Deb et al. in 2000, is used for replace-
ment. In this approach, non-dominated individuals are preferentially transferred to
the next generation’s population. If there are more non-dominant individuals than
needed to complete the next generation’s population, they are selected based on
their Crowding Distance. If this is not the case, all non-dominated individuals are
transferred to the next generation and the procedure is repeated with the remaining
individuals [28].

9.3.2 Experiments and Evaluation

In the following, different aspects of multi-objective role mining are examined in
two evaluation scenarios. However, focus is not on detailed performance testing
but rather on showing selected effects which seem relevant for the adaptation of the
addRole-EA to multi-objective role mining or for the real-world application context.

Scenario 1: Roles and Deviations

In the first evaluation scenario, only the number of roles and the number of devia-
tions of an individual are considered, resulting in a two-dimensional problem. One
advantage of this is that the resulting Pareto sets can be represented graphically and
initial findings can thus be visualized. This approach resembles variants of the RMP,
like δ-approx RMP, Min. Noise RMP or Edge RMP, which also allow for deviations,
see Chapter 4. In contrast to these variants, in which only one objective is con-
sidered, in the multi-objective variant, both optimization objectives are considered
equally important and are both to be minimized. The fitness function, therefore, cor-
responds to the function defined in Equation 9.1. Since only positive deviations are
permitted, the set of feasible solutions is obtained as follows:

ΠF = Π+ :=
{

π ∈ Π : (RUPA−UPA)i,j ≥ 0, i = 1, ..., M, j = 1, ..., N
}

. (9.8)

In this scenario, first, the influence of the parameter d+max is examined. For this pur-
pose, the multi-objective version of the addRole-EA was run 20 times on PS_02 and
PS_05 and d+max ∈ {0.5, 1.0, ∞}. In case d+max = 0.5, a user can be assigned up to 50%

200 Chapter 9. Role Mining as Multi-objective Optimization Problem

additional permissions compared to the number of permissions the user is assigned
according to UPA. In case d+max = ∞, the number of positive deviations is not re-
stricted. Figure 9.8 shows the non dominated individuals obtained from all runs of
the addRole-EA for the different values of d+max after t = 100, 000 iterations on PS_02.
The values of the remaining parameters of the addRole-EA are again adopted from
Chapter 6. The figure corresponding to the results obtained on PS_05 can be found
in Appendix E.1.

FIGURE 9.8: Non-dominant individuals for different values of d+max on PS_02.

First of all, it can be stated that in the case of unrestricted positive deviations d+max =

∞, a role concept has been found which involves only one role which is assigned all
permissions and which is assigned to all users, therefore causing more than 1,300
positive deviations. It is clear that such solutions are mathematically possible, but
unsuitable for the application in real-world role mining scenarios, which justifies
the existence of d+max. Furthermore, the non-dominant individuals resulting from
a smaller values of d+max seem to dominate the non-dominant individuals resulting
from larger values of d+max, at least considering the area of the allowed deviations. It
is known from previous chapters that on PS_02, it is possible to obtain 0-consistent
role concepts that comprise less than 30 roles. Considering multi-objective role min-
ing, where positive deviations are allowed, it can be seen that, independent of d+max
the best 0-consistent role concepts comprise more than 40 roles. In order to analyze
this in more detail, Figure 9.9 shows the progression of the average number of roles
(left) as well as the progression of the average number of positive deviations (right)
among all individuals on PS_02. The figure corresponding to the results obtained on
PS_05 can be found in Appendix E.1.

Due to the initialization method used within the addRole-EA, the initial role con-
cepts do not include deviations. However, it can be seen that the number of devi-
ations increases to its maximum level determined by d+max within a few iterations.
It also shows that this level cannot be decreased again in the further course of opti-
mization. A possible approach to address this would therefore be to first consider

9.3. Adaption of addRole-EA and Evaluation 201

FIGURE 9.9: Average number of roles and deviations on PS_02.

the deviation-free Basic RMP for some first iterations before deviations are permitted
and included as second optimization objective. Figure 9.10 shows the correspond-
ing results for d+max = 0.5 and d+max = 1.0, where permissions were permitted either
from the beginning at t1 = 0 or from a later point in time at iteration t2 = 25, 000 on
PS_02. The figure corresponding to the results obtained on PS_05 can be found in
Appendix E.1.

FIGURE 9.10: Delayed admittance of deviations on PS_02.

It can bee seen that, in particular in the area where the number of deviations is rather
small, the role concepts obtained from the delayed admittance of deviations domi-
nate the role concepts obtained from the application of the addRole-EA, where de-
viations were permitted from the beginning of the optimization process, for both
values of d+max. This is probably due to the fact that, in the case of delayed admit-
tance of permissions, the addRole-EA is provided time to focus on the optimization
of the number of roles by examining the structure of UPA and finding roles that can
be assigned to multiple users without deviations. If deviations are allowed from the
beginning, the reduction of the roles is mainly achieved by including more devia-
tions. The same effects can be seen, when considering the progression of the aver-
age number of roles as well as the progression of the average number of deviations,
see Figure 9.11. Based on this, another option to possibly improve the quality of the
obtained role concepts could be to increase the value of d+max step by step and thus
gradually allow for more deviations.

202 Chapter 9. Role Mining as Multi-objective Optimization Problem

FIGURE 9.11: Roles and deviations for the delayed admittance of deviations on PS_02.

Scenario 2: Roles, Deviations, Compliance Score and License Costs

In a second scenario, the inclusion of all four optimization objectives is examined re-
sulting in a four-dimensional optimization problem (4D-approach). For this purpose,
the fitness function of the addRole-EA is changed to:

f itnessMO
4 (πi) =

(
|R(i)|, ‖UPA− RUPA(i)‖, CS(πi), LC(πi)

)T
. (9.9)

Furthermore, since only positive deviations are permitted, ΠF = Π+. Analogous
to the two dimensional evaluation setup, at first, the influence of a delayed admit-
tance of deviations is investigated. For this purpose, 20 runs of the multi-objective
addRole-EA with d+max ∈ {0.5, 1.0, ∞} were performed for each case and the non-
dominated individuals were selected from all individuals obtained from the execu-
tion of 100,000 iterations. The parameters of the multi-objective addRole-EA were
adopted from its original version. Figure 9.12 shows the corresponding results for
d+max = 0.5 on PS_02, where permissions were permitted either from iteration t1 = 0
or from iteration t2 = 25, 000. Since it is no longer possible to represent individu-
als of in a two-dimensional Cartesian coordinate system, they are represented using
parallel coordinates.

FIGURE 9.12: Delayed admittance of deviations on PS_02 (4D-pproach).

9.3. Adaption of addRole-EA and Evaluation 203

At this, PS_02 is used together with compliance extension CMPL_50_1.cmpl and li-
cense costs extension LIC_50_1.lic. PS_05 is used in combination with CMPL_100_1.cmpl
and LIC_100_1.lic. Figure 9.13 shows the results for d+max = 0.5 on PS_05. The figures
corresponding to the other values of d+max can be found in Appendix E.2.

FIGURE 9.13: Delayed admittance of deviations on PS_05 (4D-pproach).

In both cases, it can be seen that significantly fewer roles are obtained in case per-
missions are permitted from t2 = 25, 000, while the number of deviations, the com-
pliance score and the license costs are not increased. This finding is supported by
Tables 9.2 and 9.3, which provide the number of roles, the number of deviations as
well as the values of the compliance score and the license costs after optimization
at t = 100, 000. The same results were obtained for the other values of d+max, see
Appendix E.2.

TABLE 9.2: Delayed admittance of deviations for d+max = 0.5 on PS_02 (4D).

Roles Deviations Compliance Score License Costs
t1 t2 t1 t2 t1 t2 t1 t2

Avg. 32.91 22.00 166.91 175.71 2,430.18 2,505.43 253,036.36 245,200.00
Min. 19 16 0 0 1,876 1,876 225,800 225,800
Max. 44 27 308 262 3,119 2,955 297,200 260,800
SD 8.04 3.46 91.22 80.92 372.78 340.64 19,576.02 12,620.62

TABLE 9.3: Delayed admittance of deviations for d+max = 0.5 on PS_05 (4D).

Roles Deviations Compliance Score License Costs
t1 t2 t1 t2 t1 t2 t1 t2

Avg. 74.45 46.00 169.09 105.00 500.64 478.00 340,436.36 313,200.00
Min. 59 42 0 0 469 469 311,800 311,800
Max. 84 50 283 263 566 512 379,400 316,000
SD 7.34 2.58 84.70 88.60 28.48 13.51 21,742.09 1,746.11

It is evident that positive deviations tend to increase the compliance score or license
costs. However, it is possible that a positive deviation has no influence on the two
optimization objectives. In this case, the deviation is not critical from an economic
as well as a safety point of view and thus could be accepted, if it has positive impact

204 Chapter 9. Role Mining as Multi-objective Optimization Problem

on the reduction of the number of roles. One approach resulting from this idea
is not to consider the number of deviations as separate optimization objective, but
to implicitly include it via the consideration of compliance score and license costs.
This results in a three-dimensional optimization problem (3D-approach) including
the following objective function:

f itnessMO
3 (πi) =

(
|R(i)|, CS(πi), LC(πi)

)T
. (9.10)

In the following, the 4D- and the 3D-approach are evaluated and compared with
each other. For this purpose, 20 runs of the multi-objective addRole-EA adapted
to either the 3D- or 4D-scenario, with d+max ∈ {0.5, 1.0, ∞} were performed for each
case and the non-dominated individuals were selected from all individuals obtained
from the execution of 100,000 iterations. Figure 9.14 shows the results obtained for
t1 = 0 and d+max = 0.5 on PS_02 (left) as well as PS_05 (right).

FIGURE 9.14: Comparison of (4D) and (3D) approach on PS_02 and PS_05.

On PS_02, it can be seen that the inclusion or omission of deviations as a optimiza-
tion objective lead to similar results. On PS_05, however, the omission of deviations
tends to decrease the number of roles, as well as the compliance score and the li-
cense costs of the resulting individuals, while increasing the associated number of
deviations. This corresponds to the results in Tables 9.4 and 9.5, which provide the
number of roles, the number of deviations as well as the values of the compliance
score and the license costs at t = 100, 000. The same results were obtained for the
other values of d+max, see Appendix E.2.

TABLE 9.4: Comparison of (4D) and (3D) approach for t1 = 0 and d+max = 0.5 on PS_02.

Roles Deviations Compliance Score License Costs
(4D) (3D) (4D) (3D) (4D) (3D) (4D) (3D)

Avg. 32.91 34.24 166.91 155.82 2,430.18 2,175.06 253,036.36 238,647.06
Min. 19 19 0 3 1,876 1,876 225,800 225,800
Max. 44 43 308 284 3,119 3,061 297,200 274,800
SD 8.04 6.27 91.22 91.49 372.78 379.58 19,576.02 15,034.32

The same experiments were also performed for the admittance of deviations from
t2 = 25, 000. In this case, the 4D-approach and the 3D-approach lead to similar
results for all values of d+max = on PS_02 as well as on PS_05. The corresponding
figures and tables can be found in Appendix E.2.

9.3. Adaption of addRole-EA and Evaluation 205

TABLE 9.5: Comparison of (4D) and (3D) approach for t1 = 0 and d+max = 0.5 on PS_05.

Roles Deviations Compliance Score License Costs
(4D) (3D) (4D) (3D) (4D) (3D) (4D) (3D)

Avg. 74.45 58.40 169.09 296.20 500.64 470.60 340,436.36 314,600.00
Min. 59 55 0 222 469 469 311,800 311,800
Max. 84 63 283 392 566 473 379,400 325,800
SD 7.34 3.07 84.70 57.26 28.48 1.96 21,742.09 5,600.00

It can be seen that both the omission of deviations as optimization objective as well
as the initial consideration of the Basic RMP could improve the obtained results in
some of the evaluation scenarios. Especially in practice scenarios where further ob-
jectives may be involved, resulting in an even higher dimensional fitness function,
the omission of deviations as optimization objective can be a possibility to reduce the
dimension of the fitness function. If special focus is set on finding a minimal num-
ber of roles, it is advisable to first consider the Basic RMP for some initial iterations
before proceeding to multi-objective role mining.

207

Chapter 10

Role Mining in Real-world Use
Cases

Due to the high practical relevance, it is valuable not to only consider the RMP in
an academic context, but also in the context of real business applications. Therefore,
two use cases are presented in the following, which both partially incorporate the
results of this work: the research project AutoBer and Authorization Robot, which
consolidates the findings from AutoBer in a software product.

10.1 AutoBer - A Research Project in Role Mining

The design and maintenance of ERP role concepts is a very complex challenge and is
usually accomplished in cost- and time-intensive consulting projects. A role concept
must ensure that each user can perform the tasks of his or her work. However, legal
requirements regarding data protection and IT security must be respected, such as
the European General Data Protection Regulation and further national regulations.
Therefore, the roles of a role concept which is implemented in company must be se-
mantically meaningful and may contain at most a limited number of SoD-conflicts.
In addition, well-designed role concepts have the potential to reduce license costs,
since these are dependent on the assignment of permissions to users. In order to ade-
quately address all of these aspects, companies need highly specialized consultants.
A cost-intensive, multi-year training in SAP ERP as well as business processes and
computer science is needed to acquire the necessary expertise. As a result, there is
an acute shortage of consultants, which further increases the already high consulting
costs.

The overall goal of the research project AutoBer, which is short for Automatisierter
Aufbau von sicheren und verständlichen Berechtigungskonzepten für Ressourcenplanungs-
systeme1, was therefore to create a software for the automatization of large parts of
consultant activities necessary for role concept creation. It was carried out as coop-
eration between SIVIS GmbH and the Karlsruhe University of Applied Sciences and
funded by the German Federal Ministry of Education and Research. SIVIS GmbH,
founded in 1999 and located in Karlsruhe, Germany, is one of the leading companies
in the D-A-CH region for add-on solutions in the SAP environment in the areas of

1In English: Automated creation of secure and understandable authorization concepts for enter-
prise resource planning systems.

208 Chapter 10. Role Mining in Real-world Use Cases

identity management, authorizations, compliance and risk management. Its main
product is SIVIS suite, which includes software tools for managing and editing role
concepts. However, the initial creation of role concepts is done by SIVIS consultants.
Hence, an automated solution would be a great asset, especially with regard to the
current shortage of consultants. The Karlsruhe University of Applied Sciences, with
its expertise in the area of (SAP) ERP as well as algorithms, was a suitable academic
partner to to carry out the AutoBer project. A brief overview of the research project
in provided in Table 10.1

TABLE 10.1: Project overview AutoBer.

Research Project AutoBer

Partners SIVIS GmbH
Karlsruhe University of Applied Sciences

Duration 2019/05/01 - 2022/02/28
Funded by German Federal Ministry of Education and Research
Grant Number 16KIS0999K; 16KIS1000

For a better understanding of the project and the developed software, the underlying
system architecture is described in the following. In general, the project is divided
into its front-end and back-end components. The front-end, which is described in
more detail considering Authorization Robot in the next section, represents the inter-
face between potential users (decision makers) of the software and its back-end. For
example, a DM should be able to select the relevant data sources as well as coor-
dinate the parameters of the algorithm. The Optimization Cockpit provides the DM
with relevant information during optimization. Based on this information, the DM
can interact with the optimization process, if necessary, as described in Chapter 8.
The back-end includes data extraction, data pre-processing as well as the actual role
mining algorithm. The different components of the AutoBer software system and
their interdependencies are shown in Figure 10.1.

FIGURE 10.1: System architecture of the AutoBer software system [6, 64].

10.1. AutoBer - A Research Project in Role Mining 209

Data Manager. In the Data Manager, required data is imported from the ERP sys-
tems of customers. In particular, documented trace data is made available. Based on
this, the trace conversion procedures presented in Chapter 5 can be used to obtain an
initial permission-to-user assignment matrix UPAT+ and its enhancement UPA∗. It
is evident that the abstraction of trace data used in the thesis, see Figures 4.13 and 5.2,
is very simplistic and therefore further practice-driven data pre-processing steps e.g.
data cleansing and data homogenization are necessary. In order to being able to han-
dle use cases comprising many users and a large number of permissions, different
clustering methods were investigated in the course of the research project, which
were not discussed in this thesis.

Single Role and Composite Role Manager. The Single Role Manager and the Com-
posite Role Manager provide the framework for the procedures and algorithms, which
were introduced and investigated in this thesis. They aim at the creation of sin-
gle and composite roles which are suitable for real-word uses cases. This can be
achieved by using either consecutive or alternating role mining. Alternatively, the
two-level-addRole-EA can be used, which operates simultaneously on both role lev-
els and was introduced in Chapter 7. The Interaction Processor is provided with an
interface to the front-end to gather dynamically occurring events resulting from the
interaction of a DM with the AutoBer system and to integrate them into the role min-
ing process, see Chapter 8. If the software is to be used for other ERP systems in
the future, which require a single-level role structure, the addRole-EA, which was
developed for this purpose (see Chapter 6), can be used as role mining algorithm at
this point.

Knowledge Manager. An important feature of practice-oriented role concepts are
comprehensive roles. On the one hand, this means that the permissions are grouped
into roles in a semantically meaningful way. On the other hand, suitable, compre-
hensive role names must be found for roles which were crated by the application
of a role mining algorithm. The idea behind the Knowledge Manager is therefore to
integrate domain knowledge into the Role Mining process e.g. user attributes or
meta-information on SAP objects. In order to assess the comprehensibility of role
concepts, the research project explored different approaches, which are located in
the Semantic Processor. One of these is based on the work of Xu and Stoller, which
was briefly presented in Chapter 9. However, this was not particularly successful,
as only little user attribute data was available in the context of AutoBer, which in
addition was rather poorly maintained. An alternative approach was to train neural
networks to evaluate the comprehensibility of roles. This approach led to better re-
sults but required considerable computational time, so that more research is needed
in this area. In the Name Generator, role names are generated for the roles suggested
by the Single Role Manager and the Composite Role Manager based on different meth-
ods from machine learning and data analysis.

Front-End. The front-end is used to control the entire role mining process. Data
can be selected for import, parameter values can be adjusted and role optimization
can be started. During role optimization it can be used to monitor the optimization

210 Chapter 10. Role Mining in Real-world Use Cases

process and analyze the role concepts encoded by the individuals of the current pop-
ulation. Furthermore, it serves as interface for user interaction. Potential user groups
of the AutoBer system, their way of working with the front-end and corresponding
interaction possibilities will be discussed in more detail in the next section.

Considering the structure of the AutoBer system, it becomes clear that the results
of this thesis had great impact, in particular on the development of the Single Role
Manager and the Composite Role Manager, which comprise the different versions of
the addRole-EA, as well as the Data Manager, which includes the trace conversion
procedures. The results obtained in the other research areas of AutoBer as well as a
more detailed description of the project and its outcome can be found in [6, 64].

10.2 Authorization Robot - Integration into SIVIS Suite

After the completion of the AutoBer project in the beginning of 2022, the gained in-
sights are currently exploited by SIVIS GmbH to develop a software product for
the automated creation of role concepts. It is given the working title Authorization
Robot and will be briefly presented in the following. For this purpose, at first, poten-
tial user groups, which correspond to different types of decision makers, and their
mode of operation are described. Subsequently, the features of Autorization Robot
are described with the help of some examples in the context of the AutoBer system
architecture, which also serves as basis for the Autorization Robot. In particular, the
connections between the selected exemplary features of Autorization Robot and the
procedures developed in context of this thesis will be discussed.

10.2.1 Potential User Groups of Authorization Robot

Within the scope of a user group analysis, three main user groups could be identified
for the Authorization Robot. These include role experts, algorithm experts as well as
auditors. These user groups, their respective tasks in the context of Authorization
Robot and resulting requirements for the software system are briefly presented at
this point:

Role Experts. Role experts represent the most important user group as they will be
using the software in their daily work. They are employed by the customers of SIVIS
GmbH and monitor the adherence to the company’s internal and legal compliance
requirements within the implemented ERP system. They are characterized by very
good knowledge in data protection and risk management as well as in-depth knowl-
edge in handling SAP ERP and are responsible for the creation and update of role
concepts. In addition to selecting the relevant data in the ERP system and starting
the role mining process, their main task is to analyze the role concepts encoded by
the individuals of the addRole-EA and to evaluate these role concepts in terms of
their suitability considering a potential deployment in the company. Due to their
expertise in the field of access control, they should be able to integrate their expert
knowledge into the optimization process e.g. by the addition of good and the deletion
of bad roles as well as by the modification of selected role concepts. This means that
interfaces for user interaction must be created. Since the analysis and comparison

10.2. Authorization Robot - Integration into SIVIS Suite 211

of different role concepts can be very challenging, especially with regard to several
optimization objectives, they can be supported by consultants.

Algorithm Experts. Algorithm experts possess expert knowledge in (evolutionary)
algorithms and are familiar with the RMP. Their main task consists in monitoring the
functionality of the applied optimization algorithm. For instance, in case of prema-
ture convergence, they can adjust the parameters of the EA, reinsert individuals from
earlier populations or even restart the optimization process. Therefore, they require
a suitable overview of the optimization progress and certain metrics of the addRole-
EA, such as the evolution of the different optimization objectives or the diversity of
the population.

Auditors Depending on the type of company, regular audit controls are carried out
to ensure that the processes within the company comply with legal requirements.
At this, the implemented role concept is checked for audit violations. For example,
it is checked whether there are still user accounts that are no longer used or why
users are assigned administrator roles. Since role concepts are created and managed
within Authorization Robot, it is logical that auditors also use this tool to audit the
implemented role concept. Therefore, in-depth analysis options must also be avail-
able. For auditors, however, it is sufficient to be able to analyze the role concept
implemented in the company under consideration. An overview of the individuals
of the current population of the addRole-EA and the associated further role concepts
is therefore not necessary.

Naturally, there are further user groups that will use Autorization Robot in the con-
text of their work to some extend. Department heads, for example, want an intuitive
overview of which employees of their department are assigned which roles and per-
missions. In addition, they can use Autorization Robot to approve or deny a permis-
sion request submitted by one of the employees of their department. The CEO or
the supervisory board of a company may also want to be able to monitor the most
important key figures of the currently implemented role concept.

10.2.2 Features of Authorization Robot in the Context of this Work

In the following, some features of the future software product are described based
on screenshots derived from the current state of the front-end of Autorization Robot.
It should be noted that it is still in the development phase, such that the presented
contents do not necessarily correspond to their final state. Nonetheless, some inter-
esting aspects can already be identified at this point. The figures shown are assigned
to the area of responsibility of either the Role Expert or the Algorithm Expert and are
based on a customer of SIVIS GmbH with 216 users and 1,007 permissions.

At first, Figure 10.2 shows the permission-to-user assignment matrix UPA of the
company under consideration, which was derived from trace data as described in
Chapter 5. In addition, a clustering procedure was applied, which explains the pre-
vailing block structure. Since this changed the original order of users and permis-
sions, the labeling of the axes is negligible at this point. The different blocks of UPA
are then transferred separately to the addRole-EA.

212 Chapter 10. Role Mining in Real-world Use Cases

FIGURE 10.2: Customer UPA matrix obtained from trace conversion and clustering.

In order to compare the role concepts corresponding to the individuals of the current
population of the role mining process, Figure 10.3 provides a suitable starting point.
The role concepts and the corresponding values of the considered optimization ob-
jectives are displayed in tabular form. Additionally, role concepts can be selected for
simplified comparison in a radar chart.

FIGURE 10.3: Comparison of role concepts.

10.2. Authorization Robot - Integration into SIVIS Suite 213

Similar to the Edge RMP, the current version of Authorization Robot includes the num-
ber of permissions assigned to single roles ‖SPA‖, the number of single roles as-
signed to composite roles ‖CSA‖ as well as the number of composite roles assigned
to users ‖UCA‖ as optimization objectives. Compliance score and license costs are
not yet included in the current version of the Authorization Robot. Moreover, similar
as for the consideration of multi-objective role mining in Chapter 9, only positive
deviations (Type I errors) are permitted. Possible Type II errors are discarded as part
of the addRole-method. The radar chart of Figure 10.3 shows the comparison of two
role concepts. The first one is characterized by a minimal number of positive devi-
ations compared to the other role concepts. The second role concept comprises the
lowest number of assignments of composite roles to users among all role concepts.

Figure 10.4 shows the graph visualization of a two-level role concept. At this, blue
dots represent permissions, green dots represent single roles, yellow dots represent
composite roles and red dots represent users. Although the graph representation
of the entire role concept may seem very complex at first glance, some insights can
already be gained at this point. The clusters of blue points at the periphery of the
graph, such as the one close to (1), represent single roles whose assigned permissions
are assigned to only one or a few further single roles. The permissions in the center
of the graph, on the other hand, are usually assigned to multiple single roles. The
emergence of clusters can also be observed considering composite roles and users.
For example, the user cluster near (2) shows a set of users that is assigned different
combinations of the five composite roles (yellow dots) in their proximity.

FIGURE 10.4: Graph representation of role concept.

If, for instance, the Role Expert wants to analyze a composite role in more detail, it is
possible to select it in the graph representation of the role concept. The single roles
assigned to the selected composite role and the users to whom the composite role

214 Chapter 10. Role Mining in Real-world Use Cases

is assigned are then highlighted. The permissions, as well as the remaining single
roles and users remain faintly visible in order to be able to still perceive the overall
context. Figure 10.5 shows this representation, where composite role JRole6835 is
selected. It can bee seen that it is assigned many single roles but assigned to only
a small set of users. In addition to the analysis of role concepts, this graph repre-
sentation can be used to modify the assignments of permissions to single roles, the
assignments of single roles to composite roles and assignments of composite roles to
users (interaction events I05 and I06). This can be easily implemented by adding or
deleting edges in the graph, but is not yet included in Authorization Robot.

FIGURE 10.5: Composite role JRole6835 in graph representation.

If the Role Expert continues with the analysis of a role concept, there is the possibility
to display the different interdependencies in tabular form. Figure 10.6, for example,
shows an overview of the single roles of the selected role concept. For the generation
of the role names, currently, a first version of a role name generator is used, which
was developed in the context of AutoBer. In the current version, the role names com-
prise an SAP component, the role function and the function type. The corresponding
values are proposed by a neural network. Single role 141, for example, was named
SD_BILLING_EDT. Hence, the SAP component is SD - Sales and Distribution, the role
function is billing and the function type of single role 141 is EDT. In the detail view,
which can be opened by clicking the Details-button on the right, additional informa-
tion can be displayed for each single role, such as a list of the composite role to which
the selected single role is assigned or a list of the permissions that are assigned to the
selected single role. Again, interaction options can be added at this point. The Role
Expert can be enabled to create a new single role (interaction event I01) and add it to
the optimization process. Likewise, he or she can delete a bad single role (interaction
event I02), which is then handled as described in Chapter 8.

10.2. Authorization Robot - Integration into SIVIS Suite 215

FIGURE 10.6: Tabular overview of composite roles.

Finally, two views for the Algorithm Expert are shown. Figure 10.7 shows an interface
for the parameters of the (two-level)-addRole EA. These must be defined before the
start of role concept optimization. In addition, there are interaction options for the
Algorithm Expert. For example, he or she can dynamically adjust the parameters
of the addRole-EA during optimization (interaction events I07-I11) which could be
implemented using a similar interface.

FIGURE 10.7: Interface to specify the values of the parameters of the addRole-EA.

Figure 10.8 shows the Optimization Cockpit, which includes an overview of the evo-
lution of the different optimization objectives. In this view, the best value (orange)
and the worst value (red) of all current role concepts are shown for each optimiza-
tion objective. The values of the optimization objectives of the other role concepts are
therefore in the marked area in between. The Algorithm Expert can use these graphs

216 Chapter 10. Role Mining in Real-world Use Cases

to monitor the progress of the role mining process. In particular considering single
and composite roles, it can be seen that these are continuously reduced during the
optimization process.

FIGURE 10.8: Optimization cockpit.

Currently, Authorization Robot is being tested on various customer data sets, ranging
from small (20 users, 100 permissions) to very large data sets (1,000 users, 700,000
permissions), in order to evaluate the quality of the obtained role concepts in coop-
eration with SIVIS consultants and customers. One task, which has to be completed
before the product launch of Authorization Robot consists in the integration of compli-
ance score and license costs as additional optimization objectives. In particular, the
compliance score plays an important role to prevent the obtained role concepts from
including many additional SoD-conflicts. The coding for the optimization objectives
compliance score and license costs, which will also be included in the optimization
cockpit, has been completed at prototypical level. However, their integration into
Authorization Robot is work in progress. Another important task is to implement the
planned interaction possibilities for the Algorithm Expert and the Role Expert, which
were presented in Chapter 8.

217

Chapter 11

Conclusion and Future Work

This dissertation examined role mining for the application of Role Based Access Con-
trol in Enterprise Resource Planning systems using evolutionary algorithms. For this
purpose, Chapters 2 and 3 introduced to ERP systems and evolutionary algorithms.
In Chapter 4, the theoretical basics of access control were presented. A formal model
for role mining was developed. In addition, the different elements and mechanisms
of access control in SAP ERP were described. Within Chapter 5, a new procedure
to convert access control data into suitable input for role mining algorithms was de-
veloped. Chapters 6-9 presented new methods for role mining. At first, the addRole-
EA, a new, powerful evolutionary algorithm for single-level role mining, was intro-
duced. This was then further developed to meet the various practical requirements
resulting from two-level, dynamic and multi-objective role mining. Since these have
been examined, if at all, rather poorly in previous literature, the methods developed
represent an important research contribution. In Chapter 10, two real-world appli-
cation scenarios were described to highlight the practical relevance of the methods
developed in this thesis.

Research Objectives

In the following, the findings from this thesis are presented in the context of the
research objectives defined in Chapter 1:

Objective 1:
Introduction to ERP Systems and Access Control
To lay the foundation for the development of an algorithm for role mining, ERP
systems were introduced in Chapter 2. In particular, the evolution of ERP systems
and the architecture of ERP systems were discussed. Since the ERP system of SAP
served as a sample and testbed throughout this thesis, some special features of SAP
ERP were highlighted. Additionally, in Chapter 4, different access control models
were described. An access control model that is used in many ERP systems is Role
Based Access Control. This and the corresponding NP-complete RMP were therefore
introduced in detail. Subsequently, a detailed description of the various elements of
Access Control in SAP ERP was provided.

218 Chapter 11. Conclusion and Future Work

Objective 2:
Examination of Requirements for Role Mining in Real-world Use Cases and Anal-
ysis of the State-of-the-Art
Based on the general description of ERP systems and the associated access control
models, four important requirements for role mining in real-world use cases were
addressed in this thesis:

• Conversion of access control data available in ERP systems into suitable input
for role mining algorithms.

• Adaption to the two-level role structure supported by SAP ERP comprising
single and composite roles.

• Definition and inclusion of dynamically occurring events.

• Definition and inclusion of practice-relevant optimization objectives.

It could be shown that the different real-world requirements have only been scarcely
covered in literature, which emphasizes the importance of the developments and
contributions of this thesis.

Objective 3:
Development of a Formal Model
Since previous role mining literature used very heterogeneous notations to define
the RMP and to describe the methods or algorithms used, a formal model of the
RMP was provided in Chapter 4. For this purpose, at first, the RMP was introduced
using a graph-based approach. From that, the matrix decomposition representation
of the RMP was derived and is used as framework to formally describe the different
methods and algorithms developed throughout this thesis.

Objective 4:
Evaluation of Data Management in the Context of Access Control
An important prerequisite for role mining is the existence of an assignment of per-
missions to users. In literature, this is usually assumed to be available without dis-
cussing the method by which it was generated. However, especially when intro-
ducing an ERP system in a company, this is not available, so that a method had to
be found to create an assignment of permissions to users from access control data
available in ERP systems. For this purpose, in Chapter 5, trace and role concept
data derived from real-world use cases was examined. It could be shown that this
data is a suitable source for deriving an initial assignment of permissions to users.
In order to further improve the quality of the initial assignment of permissions to
users, trace conversion procedures were developed which are essentially based on
the clustering of users and the subsequent exchange of permissions within the users
of the resulting clusters. A special feature of these procedures is that, even though
additional permissions are assigned to users, the emergence of SoD-conflicts can be
avoided. In addition, it was shown that exploiting the knowledge about the relation-
ship between transactions and the components of SAP ERP, significantly improved
the results of the trace conversion procedures. Since the permission-to-user assign-
ment matrices resulting from the application of the presented methods are usually

Chapter 11. Conclusion and Future Work 219

of very high dimension, additional pre-processing steps were described to reduce
the matrices without loss of information.

Objective 5:
Investigation of Algorithmic Challenges of Real-world Role Mining
As a basis for examining the different challenges arising from role mining in practice,
a new evolutionary algorithm, the addRole-EA, was developed for the Basic RMP
and presented in Chapter 6. It is characterized by a new method of addition and
consequential deletion of roles from role concepts. A special feature of the addRole-
EA consists in the fact that the proposed roles can always be assigned to at least one
user without causing for deviations. As a result, the individuals of the addRole-EA
comply with the 0-consistency constraint at all times. Evaluation shows that the pro-
posed algorithm can compete with current state-of-the-art algorithms in terms of the
number of generated roles on the common benchmarks for role mining. However,
since it has been shown that these are not very conclusive for the evaluation of the
quality of role mining algorithms, new benchmarks for the RMP have been created
and published in a publicly accessible library RMPlib.

Based on the addRole-EA, three different approaches for two-level role mining were
presented in Chapter 7. One approach was to divide the Two-level RMP into sep-
arate single-level sub-problems, which are optimized individually either consecu-
tively or alternatingly. In the third approach, optimization is performed on both role
levels simultaneously. It could be shown that simultaneous role mining provides the
best results considering the number of single and composite roles on benchmark in-
stances with two-level role structure. Since there were no benchmarks available that
include a two-level structure, new benchmark instances were created and added to
RMPlib.

Chapter 8 addressed dynamics resulting from structural change in business environ-
ments as well as the interaction of decision makers with role mining software. For
this purpose, dynamic events relevant in the context of role mining were described
and classified. Suitable event handling methods were developed for a number of
dynamic events in order to integrate them into the addRole-EA. The various experi-
ments performed demonstrated the advantages of the dynamic approach compared
to static role mining. In addition, it could be shown that the inclusion of expert
knowledge, in particular by adding good roles could enhance the optimization pro-
cess with respect to the number of roles as well as the computation time. To ensure
that the individuals, which contain the proposed roles, survive long enough, differ-
ent strategies were presented and evaluated.

The inclusion of other practice-relevant objectives in addition to the number of roles
was explored in Chapter 9. For this purpose, two new target criteria, compliance score
and license costs, were defined to assess the security of and the costs associated with
role concepts. In order to be able to include the new optimization objectives into the
evaluation of role mining algorithms, extension files were created for the benchmark
instances of RMPlib. Furthermore, the addRole-EA was adapted to the requirements
of considering role mining as multi-objective optimization problem and evaluated
based on the benchmark instances and extension files of RMPlib. It could be shown

220 Chapter 11. Conclusion and Future Work

that it can be worthwhile to consider the RMP first as a single-objective problem
before switching to the inclusion of further optimization objectives.

Future Work

Although the procedures developed in this thesis provide a solid foundation for the
application of role mining in practice, the exploration of role mining in ERP systems
is still at its beginning. Choosing an evolutionary approach for solving the RMP
has many advantages. Its scalability allows for easy application in enterprise-driven
use cases. An important step towards the application of the developed methods in
practice scenarios consists in the integration of the different aspects of role mining,
which have been investigated separately in this thesis in order to exclude side effects,
into a holistic solution for role mining in ERP systems.

As previously discussed, further requirements arise when aiming to mine roles for
ERP systems: Mechanisms have to be found which determine when to deploy a new
role concept proposed by the role mining algorithm. Furthermore, the generated role
concepts must be analyzable and interpretable by a decision maker. The associated
roles must therefore be meaningful and have a comprehensible name. Even if some
experimentation has been made employing machine learning techniques in the con-
text of Authorization Robot, the corresponding challenges offer a rich field for further
research. In order to reflect future developments in this areas at benchmark level, it
would be desirable to supplement RMPlib by further benchmarks instances prefer-
ably based on real-world data or addressing new variants of the RMP resulting from
the consideration of industry requirements.

A promising approach, which could improve the quality of the presented methods,
could be the integration of further data sources such as user attributes. These could,
for example, help to find suitable user clusters as part of the trace conversion proce-
dures and thus improve the subsequent exchange of permissions and the resulting
permission-to-user assignment matrices. Also in the context of evaluating the mean-
ingfulness of roles and role concepts, user attributes may play a major role, as they
extend the classical RMP by semantic information.

Another topic of interest consists in the transferability to other ERP systems. Es-
pecially the definition of the compliance score and the license costs are tailored to
the access control model used in SAP ERP and might therefore need to be adapted.
Moreover, the trace conversion procedures used to convert trace data into an as-
signment of permissions to users are dependent on the access control model and
the associated data types of within SAP ERP. It could be shown that the presented
methods can also be applied in SAP S/4HANA. However, for ERP systems of other
vendors, where trace data or information on the relationship between transactions
and components is not necessarily available, alternative methods must be found to
create an initial assignment of permissions to users. Once such an assignment of per-
missions to users has become available, the presented variants of the addRole-EA
can be applied for single-level, two-level, dynamic or multi-objective role mining,
independent of the ERP system.

221

Bibliography

[1] Simon Anderer, Max Halbich, Bernd Scheuermann, and Sanaz Mostaghim.
“Towards Real-Time Fleet-Event-Handling for the Dynamic Vehicle Routing
Problem”. In: Proceedings of the 9th International Joint Conference on Computa-
tional Intelligence, IJCCI 2017, Funchal, Madeira, Portugal, November 1-3, 2017.
Ed. by Christophe Sabourin, Juan Julián Merelo Guervós, Una-May O’Reilly,
Kurosh Madani, and Kevin Warwick. SciTePress, 2017, pp. 35–44.

[2] Simon Anderer, Tobias Kempter, Bernd Scheuermann, and Sanaz Mostaghim.
“Dynamic Optimization of Role Concepts for Role Based Access Control us-
ing Evolutionary Algorithms”. In: Studies in Computational Intelligence. Sprin-
ger, submitted in 2022.

[3] Simon Anderer, Tobias Kempter, Bernd Scheuermann, and Sanaz Mostaghim.
“The Dynamic Role Mining Problem: Role Mining in Dynamically Changing
Business Environments”. In: Proceedings of the 13th International Joint Confer-
ence on Computational Intelligence, IJCCI 2021, Online Streaming, October 25-27,
2021. Ed. by Thomas Bäck, Christian Wagner, Jonathan M. Garibaldi, H. K.
Lam, Marie Cottrell, Juan Julián Merelo, and Kevin Warwick. SCITEPRESS,
2021, pp. 37–48.

[4] Simon Anderer, Daniel Kreppein, Bernd Scheuermann, and Sanaz Mostaghim.
“The addRole-EA: A New Evolutionary Algorithm for the Role Mining Prob-
lem”. In: Proceedings of the 12th International Joint Conference on Computational
Intelligence, IJCCI 2020, Budapest, Hungary, November 2-4, 2020. Ed. by Juan
Julián Merelo Guervós, Jonathan M. Garibaldi, Christian Wagner, Thomas
Bäck, Kurosh Madani, and Kevin Warwick. SCITEPRESS, 2020, pp. 155–166.

[5] Simon Anderer, Alpay Sahin, Bernd Scheuermann, and Sanaz Mostaghim.
“On using Authorization Traces to Support Role Mining with Evolutionary
Algorithms”. In: Proceedings of the 14th International Joint Conference on Com-
putational Intelligence, IJCCI 2022, Valletta, Malta, October 24-26, 2022. Ed. by
Thomas Bäck, Bas van Stein, Christian Wagner, Jonathan M. Garibaldi, H.
K. Lam, Marie Cottrell, Faiyaz Doctor, Joaquim Filipe, Kevin Warwick, and
Janusz Kacprzyk. SCITEPRESS, 2022, pp. 121–132.

[6] Simon Anderer and Bernd Scheuermann. AutoBer - Automatisierter Aufbau von
sicheren und verständlichen Berechtigungskonzepten für Ressourcenplanungssys-
teme : Forschungsprojekt AutoBer : Sachbericht Teil I : Laufzeit des Vorhabens:
01.05.2019-28.02.2022. Karlsruhe: Karlsruhe University of Applied Sciences,
2022, 2022.

[7] Simon Anderer, Bernd Scheuermann, and Sanaz Mostaghim. “Evolutionary
Optimization of Roles for Access Control in Enterprise Resource Planning
Systems”. In: Studies in Computational Intelligence. Springer, submitted in 2021.

[8] Simon Anderer, Bernd Scheuermann, Sanaz Mostaghim, Patrick Bauerle, and
Matthias Beil. “RMPlib: A Library of Benchmarks for the Role Mining Prob-
lem”. In: SACMAT ’21: Proceedings of the 26th ACM Symposium on Access Con-
trol Models and Technologies, Virtual Event, Spain, June 16-18, 2021. Ed. by Jorge

222 Bibliography

Lobo, Roberto Di Pietro, Omar Chowdhury, and Hongxin Hu. ACM, 2021,
pp. 3–13.

[9] Simon Anderer, Falk Schrader, Bernd Scheuermann, and Sanaz Mostaghim.
“Evolutionary Algorithms for the Constrained Two-Level Role Mining Prob-
lem”. In: Evolutionary Computation in Combinatorial Optimization - 22nd Eu-
ropean Conference, EvoCOP 2022, Held as Part of EvoStar 2022, Madrid, Spain,
April 20-22, 2022, Proceedings. Ed. by Leslie Pérez Cáceres and Sébastien Vérel.
Vol. 13222. Lecture Notes in Computer Science. Springer, 2022, pp. 79–94.

[10] Simon Anderer, Falk Schrader, Bernd Scheuermann, and Sanaz Mostaghim.
“Mining Two-level Role Concepts Using Evolutionary Algorithms”. In: SN
Computer Science: Evolutionary Computation and Applications. Springer, submit-
ted in 2022.

[11] Simon Anderer, Thanh-Ha Vu, Bernd Scheuermann, and Sanaz Mostaghim.
“Meta Heuristics for Dynamic Machine Scheduling: A Review of Research
Efforts and Industrial Requirements”. In: Proceedings of the 10th International
Joint Conference on Computational Intelligence, IJCCI 2018, Seville, Spain, Septem-
ber 18-20, 2018. Ed. by Christophe Sabourin, Juan Julián Merelo Guervós, Ale-
jandro Linares-Barranco, Kurosh Madani, and Kevin Warwick. SciTePress,
2018, pp. 192–203.

[12] James E. Baker. “Adaptive Selection Methods for Genetic Algorithms”. In:
Proceedings of the 2nd International Conference on Genetic Algorithms and their
Applications, ICGA 1985. Ed. by John J. Grefenstette. Vol. 1. Hillsdale, New
Jersey: L. Erlbaum Associates, 1985, pp. 101–111.

[13] James E. Baker. “Reducing Bias and Inefficiency in the Selection Algorithm”.
In: Proceedings of the 2nd International Conference on Genetic Algorithms and their
Applications, ICGA 1987. Ed. by John J. Grefenstette. Vol. 206. Hillsdale, New
Jersey: L. Erlbaum Associates, 1987, pp. 14–21.

[14] Alessandro Banzer and Alexander Sambill. Authorizations in SAP S/4HANA
and SAP Fiori. Boston, Massachusetts: Rheinwerk Publishing, 2022.

[15] Thomas Bartz-Beielstein, Jürgen Branke, Jörn Mehnen, and Olaf Mersmann.
“Evolutionary Algorithms”. In: Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery. Vol. 4. 3. Wiley Online Library, 2014, pp. 178–195.

[16] Elisa Bertino, Piero A. Bonatti, and Elena Ferrari. “TRBAC: A Temporal Role-
based Access Control Model”. In: Proceedings of the 5th ACM Workshop on
Role-Based Access Control, RBAC 2000, Berlin, Germany, July 26-27, 2000. Ed.
by Klaus Rebensburg, Charles E. Youman, and Vijay Atluri. New York, New
York: ACM, 2000, pp. 21–30.

[17] Carlo Blundo and Stelvio Cimato. “A Simple Role Mining Algorithm”. In:
Proceedings of the 2010 ACM Symposium on Applied Computing (SAC), Sierre,
Switzerland, March 22-26, 2010. Ed. by Sung Y. Shin, Sascha Ossowski, Michael
Schumacher, Mathew J. Palakal, and Chih-Cheng Hung. New York, New
York: ACM, 2010, pp. 1958–1962.

[18] Marianne Bradford. Modern ERP: Select, Implement, and Use Today’s Advanced
Business Systems. Morrisville, North Carolina: Lulu, 2016.

[19] Juergen Branke, Kalyanmoy Deb, Kaisa Miettinen, and Roman Slowinski.
Multiobjective Optimization, Interactive and Evolutionary Approaches. Vol. 5252.
Berlin, Heidelberg: Springer, 2008.

[20] Jürgen Branke. “Memory Enhanced Evolutionary Algorithms for Changing
Optimization Problems”. In: Proceedings of the 1999 Congress on Evolutionary
Computation, CEC 1999, Washington, DC, USA July 6-9, 1999. Vol. 3. IEEE, 1999,
pp. 1875–1882.

Bibliography 223

[21] Association of Certified Fraud Examiners. Occupational Fraud 2022: A report
to the nations. 2022.

[22] Bastien Chopard and Marco Tomassini. An Introduction to Metaheuristics for
Optimization. Cham: Springer, 2018.

[23] Alessandro Colantonio, Roberto Di Pietro, and Alberto Ocello. “A Cost-driven
Approach to Role Engineering”. In: Proceedings of the 2008 ACM Symposium
on Applied Computing (SAC), Fortaleza, Ceara, Brazil, March 16-20, 2008. ACM,
2008, pp. 2129–2136.

[24] B. Jack Copeland. The essential turing. Oxford: Clarendon Press, 2004.
[25] Carlos Cruz, Juan R. González, and David A. Pelta. “Optimization in dy-

namic environments: a survey on problems, methods and measures”. In: Soft
Computing. Vol. 15. 7. Berlin, Heidelberg: Springer, 2011, pp. 1427–1448.

[26] Charles Darwin. On the origin of species, 1859. Oxfordshire: Routledge, 2004.
[27] Kalyanmoy Deb. “Multi-objective Optimisation Using Evolutionary Algo-

rithms: An Introduction”. In: Multi-objective Evolutionary Optimisation for Prod-
uct Design and Manufacturing. Ed. by Lihui Wang, Amos H. C. Ng, and Kalyan-
moy Deb. London: Springer, 2011, pp. 3–34.

[28] Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and Tanaka Meyarivan. “A
Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective
Optimization: NSGA-II”. In: Proceedings of the 6th International Conference on
Parallel Problem Solving from Nature-PPSN VI, Paris, France, September 18-20,
2000. Springer. Berlin, Heidelberg, 2000, pp. 849–858.

[29] Inderjit S. Dhillon, Subramanyam Mallela, and Dharmendra S. Modha. “Infor-
mation-theoretic Co-clustering”. In: Proceedings of the 9th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, Washington,
DC, USA, August 24 - 27, 2003. Ed. by Lise Getoor, Ted E. Senator, Pedro M.
Domingos, and Christos Faloutsos. ACM, 2003, pp. 89–98.

[30] Reinhard Diestel. Graph Theory. Vol. 173. Berlin, Heidelberg: Springer, 2017.
[31] Hugo A. D. Do Nascimento. “User Hints for Optimisation Processes”. PhD

thesis. University of Sydney. Information Technologies, 2003.
[32] Lijun Dong, Maocai Wang, and Xiaojun Kang. “Mining Least Privilege Roles

by Genetic Algorithm”. In: Applied Mechanics and Materials. Vol. 121-126. Trans
Tech Publications, 2012, pp. 4508–4512.

[33] Lijun Dong, Jinxia Wu, Cheng Gong, and Benjie Pi. “A Network-Cliques
Based Role Mining Model”. In: Journal of Networks. Vol. 9. 8. 2014, pp. 2079–
2088.

[34] Christian Drumm, Marlene Knigge, Bernd Scheuermann, and Stefan Weid-
ner. Einstieg in SAP ERP. Bonn: Rheinwerk, 2019.

[35] Xuanni Du and Xiaolin Chang. “Performance of AI Algorithms for Mining
Meaningful Roles”. In: Proceedings of the IEEE Congress on Evolutionary Com-
putation, CEC 2014, Beijing, China, July 6-11, 2014. IEEE, 2014, pp. 2070–2076.

[36] Matthias Ehrgott. Multicriteria Optimization (2. ed.) Vol. 491. Berlin, Heidel-
berg: Springer, 2005.

[37] Agoston E. Eiben and James E. Smith. Introduction to Evolutionary Computing.
Vol. 53. Berlin, Heidelberg: Springer, 2003.

[38] Alina Ene, William G. Horne, Nikola Milosavljevic, Prasad Rao, Robert Schrei-
ber, and Robert E. Tarjan. “Fast Exact and Heuristic Methods for Role Mini-
mization Problems”. In: Proceedings of the 13th ACM Symposium on Access Con-
trol Models and Technologies, SACMAT 2008, Estes Park, CO, USA, June 11-13,
2008, address = New York, New York, publisher = ACM. Ed. by Indrakshi Ray
and Ninghui Li. ACM, pp. 1–10.

224 Bibliography

[39] David F. Ferraiolo and D. Richard Kuhn. “Role-based Access Controls”. In:
Proceedings of the 15th National Computer Security Conference NCSC, Baltimore,
Maryland, USA, October 13-16, 1992. Baltimore, 1992, pp. 554 –563.

[40] David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kuhn, and Ra-
maswamy Chandramouli. “Proposed NIST Standard for Role-based Access
Control”. In: ACM Transactions on Information and System Security (TISSEC).
Vol. 4. 3. New York, New York: ACM, 2001, pp. 224–274.

[41] Lawrence J. Fogel. “Artificial Intelligence Through a Simulation of Evolu-
tion”. In: Proceedings of the 2nd Cybernetics Science Symposium, 1965. 1965.

[42] Stephanie Forrest. “Genetic Algorithms”. In: ACM Computing Surveys (CSUR).
Vol. 28. 1. New York, New York: ACM, 1996, pp. 77–80.

[43] Egmont Foth. Exzellente Geschäftsprozesse mit SAP: Praxis des Einsatzes in Un-
ternehmensgruppen. Berlin, Heidelberg: Springer, 2010.

[44] Mario Frank, David A. Basin, and Joachim M. Buhmann. “A Class of Proba-
bilistic Models for Role Engineering”. In: Proceedings of the 2008 ACM Confer-
ence on Computer and Communications Security, CCS 2008, Alexandria, Virginia,
USA, October 27-31, 2008. Ed. by Peng Ning, Paul F. Syverson, and Somesh
Jha. New York, New York: ACM, 2008, pp. 299–310.

[45] Mario Frank, Andreas P. Streich, David Basin, and Joachim M. Buhmann. “A
Probabilistic Approach to Hybrid Role Mining”. In: Proceedings of the 2009
ACM Conference on Computer and Communications Security, CCS 2009, Chicago,
Illinois, USA, November 9-13, 2009. Ed. by Ehab Al-Shaer, Somesh Jha, and
Angelos D. Keromytis. New York, New York: ACM, 2009, pp. 101–111.

[46] Gunther Friedl, Christian Hilz, and Burkhard Pedell. Controlling mit SAP®:
Eine praxisorientierte Einführung - Umfassende Fallstudie - Beispielhafte Anwen-
dungen. Wiesbaden: Springer Fachmedien, 2012.

[47] Keinosuke Fukunaga and Larry D. Hostetler. “The Estimation of the Gradient
of a Density Function, With Applications in Pattern Recognition”. In: IEEE
Transactions on Information Theory. Vol. 21. 1. New York, New York: IEEE, 1975,
pp. 32–40.

[48] Michael P. Gallaher, Alan C. O’Connor, Brian Kropp, and Gregory Tassey.
The Economic Impact of Role-based Access Control. Gaithersburg, Maryland: US
Department of Commerce, National Institute of Standards and Technology,
2002.

[49] David E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine
Learning. Boston, Massachusetts: Addison Wesley, 1989.

[50] Norbert Gronau. ERP-Systeme: Architektur, Management und Funktionen des
Enterprise Resource Planning. Berlin, Boston: De Gruyter Oldenbourg, 2021.

[51] Klaus-Dieter Gronwald. Integrierte Business-Informationssysteme: ERP, SCM,
CRM, BI, Big Data Analytics–Prozesssimulation, Rollenspiel, Serious Gaming. Ber-
lin, Heidelberg: Springer, 2015.

[52] Qi Guo, Jaideep Vaidya, and Vijayalakshmi Atluri. “The Role Hierarchy Min-
ing Problem: Discovery of Optimal Role Hierarchies”. In: 24th Annual Com-
puter Security Applications Conference, ACSAC 2008, Anaheim, California, USA,
8-12 December 2008. IEEE. New York, New York, 2008, pp. 237–246.

[53] Mahesh Gupta and Amarpreet Kohli. “Enterprise Resource Planning Systems
and its Implications for Operations Function”. In: Technovation. Vol. 26. 5-6.
Amsterdam: Elsevier, 2006, pp. 687–696.

[54] John H. Holland. Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence. Cam-
bridge, Massachusetts: MIT Press, 1992.

Bibliography 225

[55] Ning Hu, Phillip G. Bradford, and Jun Liu. “Applying Role Based Access
Control and Genetic Algorithms to Insider Threat Detection”. In: Proceedings
of the 44st Annual Southeast Regional Conference, 2006, Melbourne, Florida, USA,
March 10-12, 2006. Ed. by Ronaldo Menezes. New York, New York: ACM,
2006, pp. 790–791. ISBN: 1595933158.

[56] Vincent C. Hu, David Ferraiolo, and D. Richard Kuhn. Assessment of Access
Control Systems. Gaithersburg, Maryland: US Department of Commerce, Na-
tional Institute of Standards and Technology, 2006.

[57] Vincent C. Hu, David Ferraiolo, Rick Kuhn, Arthur R. Friedman, Alan J.
Lang, Margaret M. Cogdell, Adam Schnitzer, Kenneth Sandlin, Robert Miller,
and Karen Scarfone. “Guide to Attribute Based Access Control (ABAC) Defi-
nition and Considerations”. In: NIST special publication. Vol. 800. 162. Gaithers-
burg, Maryland: US Department of Commerce, National Institute of Stan-
dards and Technology, 2013, pp. 1–54.

[58] Hejiao Huang, Feng Shang, Jinling Liu, and Hongwei Du. “Handling Least
Privilege Problem and Role Mining in RBAC”. In: Journal of Combinatorial Op-
timization. Vol. 30. 1. 2015, pp. 63–86.

[59] Asadul K. Islam, Malcom Corney, George Mohay, Andrew Clark, Shane Bra-
cher, Tobias Raub, and Ulrich Flegel. “Fraud Detection in ERP Systems Us-
ing Scenario Matching”. In: Security and Privacy - Silver Linings in the Cloud -
Proceedings of the 25th IFIP TC-11 International Information Security Conference,
SEC 2010, Held as Part of WCC 2010, Brisbane, Australia, September 20-23, 2010.
Ed. by Kai Rannenberg, Vijay Varadharajan, and Christian Weber. Vol. 330.
Springer. Berlin, Heidelberg, 2010, pp. 112–123.

[60] Paul Jaccard. “Étude comparative de la distribution florale dans une portion
des Alpes et des Jura”. In: Bull Soc Vaudoise Sci Nat. Vol. 37. 1901, pp. 547–579.

[61] Lech Janczewski and Andrew Colarik. Cyber Warfare and Cyber Terrorism. Her-
shey, Pennsylvania: IGI Global, 2007.

[62] Jinsuo Jia, Jianfeng Guan, and Lili Wang. “Role Mining: Survey and Sugges-
tion on Role Mining in Access Control”. In: Mobile Internet Security. MobiSec
2019. Communications in Computer and Information Science. Ed. by Ilsun You,
Hsing-Chung Chen, Fang-Yie Leu, and Igor Kotenko. Vol. 1121. Singapore:
Springer, 2020, pp. 34–50.

[63] Yaochu Jin and Jürgen Branke. “Evolutionary Optimization in Uncertain Envi-
ronments- A Survey”. In: IEEE Transactions on evolutionary computation. Vol. 9.
3. New York, New York: IEEE, 2005, pp. 303–317.

[64] Nicolas Justen, Falk Schrader, and Simon Anderer. AutoBer - Automatisierter
Aufbau von sicheren und verständlichen Berechtigungskonzepten für Ressourcenpla-
nungssysteme : Forschungsprojekt AutoBer : Sachbericht Teil I : Laufzeit des Vorhab-
ens: 01.05.2019-28.02.2022. Karlsruhe: SIVIS GmbH; 2022.

[65] Jamal Karimi, Hadi Nobahari, and Seid H. Pourtakdoust. “A New Hybrid
Approach for Dynamic Continuous Optimization Problems”. In: Applied Soft
Computing. Vol. 12. 3. Amsterdam: Elsevier, 2012, pp. 1158–1167.

[66] Hazem Kiwan and Rashid Jayousi. “Dynamic User-Oriented Role Based Ac-
cess Control Model (DUO-RBAC)”. In: Business Intelligence & Big Data, 14ème
Edition de la conference EDA, Tanger, Maroc, 4-6 octobre 2018. Ed. by Hassan
Badir, Fadila Bentayeb, and Omar Boussaïd. Vol. B-14. RNTI. Éditions RNTI,
2018, pp. 281–290.

[67] Katja Knecht. “Grundriss-Generierung mit K-Dimensionalen Baumstruktur-
en”. In: Arbeitspapiere Nr. 9 Informatik in der Architektur. Ed. by Dirk Donath

226 Bibliography

and Reinhard König. Weimar: Bauhaus-Universität Weimar, Professur Infor-
matik in der Architektur, 2011.

[68] Reinhard König and Sven Schneider. “Nutzerinteraktion bei der comput-
ergestützten Generierung von Layouts”. In: Arbeitspapiere Nr. 8 Informatik in
der Architektur. Ed. by Dirk Donath and Reinhard König. Weimar: Bauhaus-
Universität Weimar, Professur Informatik in der Architektur, 2011.

[69] Igor Kotenko and Igor Saenko. “Improved Genetic Algorithms for Solving
the Optimisation Tasks for Design of Access Control Schemes in Computer
Networks”. In: International Journal of Bio-Inspired Computation. Vol. 7. 2. Gene-
va: Inderscience Publishers, 2015, pp. 98–110.

[70] John R. Koza. “Genetic Programming as a Means for Programming Com-
puters by Natural Selection”. In: Statistics and Computing. Vol. 4. 2. Berlin,
Heidelberg: Springer, 1994, pp. 87–112.

[71] Martin Kuhlmann, Dalia Shohat, and Gerhard Schimpf. “Role Mining - Re-
vealing Business Roles for Security Administration Using Data Mining Tech-
nology”. In: Proceedings of the 8th ACM Symposium on Access Control Models
and Technologies, SACMAT 2003, Villa Gallia, Como, Italy, June 2-3, 2003. Ed.
by Elena Ferrari and David Ferraiolo. New York, New York: ACM, 2003,
pp. 179–186.

[72] Ravi Kumar, Shamik Sural, and Arobinda Gupta. “Mining RBAC Roles un-
der Cardinality Constraint”. In: Information Systems Security - Proceedings of
the 6th International Conference, ICISS 2010, Gandhinagar, India, December 17-
19, 2010. Ed. by Somesh Jha and Anish Mathuria. Vol. 6503. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 2010, pp. 171–185.

[73] Karl Kurbel. ERP und SCM: Enterprise Resource Planning und Supply Chain
Management in der Industrie. De Gruyter Oldenbourg, 2021.

[74] Sabine Landau, Morven Leese, Daniel Stahl, and Brian S. Everitt. Cluster Anal-
ysis. Hoboken, New Jersey: John Wiley & Sons, 2011.

[75] Volker Lehnert, Katharina Stelzner, Peter John, and Anna Otto. SAP-Berechti-
gungswesen: Konzeption und Realisierung. Bonn: Rheinwerk, 2016.

[76] Ninghui Li, Mahesh V. Tripunitara, and Ziad Bizri. “On Mutually Exclusive
Roles and Separation-of-duty”. In: ACM Transactions on Information and Sys-
tem Security (TISSEC). Vol. 10. 2. New York, New York: ACM, 2007, 5–es.

[77] Haibing Lu, Jaideep Vaidya, and Vijayalakshmi Atluri. “An Optimization
Framework for Role Mining”. In: Journal of Computer Security. Vol. 22. 1. Am-
sterdam: IOS Press, 2014, pp. 1–31.

[78] Haibing Lu, Jaideep Vaidya, and Vijayalakshmi Atluri. “Optimal Boolean
Matrix Decomposition: Application to Role Engineering”. In: Proceedings of
the 24th International Conference on Data Engineering, ICDE 2008, April 7-12,
2008, Cancún, Mexico. Ed. by Gustavo Alonso, José A. Blakeley, and Arbee L.
P. Chen. New York, New York: IEEE, 2008, pp. 297–306.

[79] Barsha Mitra, Shamik Sural, Jaideep Vaidya, and Vijayalakshmi Atluri. “A
Survey of Role Mining”. In: ACM Computing Surveys. Vol. 48. 4. New York,
New York: ACM, 2016, pp. 1–37.

[80] Ian M. Molloy, Hong Chen, Tiancheng Li, Qihua Wang, Ninghui Li, Elisa
Bertino, Seraphin B. Calo, and Jorge Lobo. “Mining Roles With Semantic
Meanings”. In: Proceedings of the 13th ACM Symposium on Access Control Mod-
els and Technologies, SACMAT 2008, Estes Park, CO, USA, June 11-13, 2008, ed.
by Indrakshi Ray and Ninghui Li. New York, New York, ACM, 2008, pp. 21–
30.

Bibliography 227

[81] Ian M. Molloy, Ninghui Li, Tiancheng Li, Ziqing Mao, Qihua Wang, and Jorge
Lobo. “Evaluating Role Mining Algorithms”. In: 14th ACM Symposium on Ac-
cess Control Models and Technologies, SACMAT 2009, Stresa, Italy, June 3-5, 2009,
Proceedings. Ed. by Barbara Carminati and James B. D. Joshi. New York, New
York: ACM, 2009, pp. 95–104.

[82] Ian M. Molloy, Ninghui Li, Yuan Qi, Jorge Lobo, and Luke Dickens. “Mining
Roles With Noisy Data”. In: 15th ACM Symposium on Access Control Models and
Technologies, SACMAT 2010, Pittsburgh, Pennsylvania, USA, June 9-11, 2010, ed.
by James B. D. Joshi and Barbara Carminati. New York, New York: ACM,
2010, pp. 45–54.

[83] Trung Thanh Nguyen, Shengxiang Yang, and Jürgen Branke. “Evolutionary
Dynamic Optimization: A Survey of the State of the Art”. In: Swarm and Evo-
lutionary Computation. Vol. 6. Amsterdam: Elsevier, 2012, pp. 1–24.

[84] Volker Nissen. Einführung in evolutionäre Algorithmen: Optimierung nach dem
Vorbild der Evolution. Wiesbaden: Springer Fachmedien, 2013.

[85] Djamila Ouelhadj and Sanja Petrovic. “A Survey of Dynamic Scheduling in
Manufacturing Systems”. In: Journal of Scheduling. Vol. 12. 4. Berlin, Heidel-
berg: Springer, 2009, pp. 417–431.

[86] PwC. PwC’s Global Economic Crime and Fraud Survey 2022. Pricewaterhouse-
Coopers, 2022.

[87] Mohammad A. Rashid, Liaquat Hossain, and Jon D. Patrick. “The Evolution
of ERP systems: A Historical Perspective”. In: Enterprise Resource Planning:
Solutions and Management. Hershey, Pennsylvania: IGI Global, 2002, pp. 35–
50.

[88] Ingo Rechenberg. “Evolutionsstrategie: Optimierung technischer Systeme na-
ch Prinzipien der biologischen Evolution”. PhD thesis. Technical University
of Berlin, Department of Process Engineering, 1971.

[89] Igor Saenko and Igor Kotenko. “Administrating Role-based Access Control
by Genetic Algorithms”. In: Proceedings of the Genetic and Evolutionary Compu-
tation Conference Companion on - GECCO ’17, Berlin, Germany, July 15-19, 2017.
Ed. by Peter A. N. Bosman. New York, New York: ACM, 2017, pp. 1463–1470.

[90] Igor Saenko and Igor Kotenko. “Design and Performance Evaluation of Im-
proved Genetic Algorithm for Role Mining Problem”. In: Proceedings of the
20th Euromicro International Conference on Parallel, Distributed and Network-
Based Processing, PDP 2012, Munich, Germany, February 15-17, 2012. Ed. by
Rainer Stotzka, Michael Schiffers, and Yannis Cotronis. New York, New York:
IEEE, 2012, pp. 269–274.

[91] Igor Saenko and Igor Kotenko. “Genetic Algorithms for Role Mining Prob-
lem”. In: Proceedings of the 19th International Euromicro Conference on Parallel,
Distributed and Network-based Processing, PDP 2011, Ayia Napa, Cyprus, 9-11
February 2011. Ed. by Yiannis Cotronis, Marco Danelutto, and George Ange-
los Papadopoulos. New York, New York: IEEE, 2011, pp. 646–650.

[92] Igor Saenko and Igor Kotenko. “Genetic Algorithms for Solving Problems
of Access Control Design and Reconfiguration in Computer Networks”. In:
ACM Transactions on Internet Technology. Vol. 18. 3. New York, New York:
ACM, 2018, pp. 1–21.

[93] Igor Saenko and Igor Kotenko. “Reconfiguration of RBAC Schemes by Ge-
netic Algorithms”. In: Intelligent Distributed Computing X - Proceedings of the
10th International Symposium on Intelligent Distributed Computing - IDC 2016,
Paris, France, October 10-12 2016. Ed. by Costin Badica, Amal El Fallah Segh-
rouchni, Aurélie Beynier, David Camacho, Cédric Herpson, Koen Hindriks,

228 Bibliography

and Paulo Novais. Vol. 678. Studies in Computational Intelligence. Cham:
Springer, 2016, pp. 89–98.

[94] Igor Saenko and Igor Kotenko. “Using Genetic Algorithms for Design and
Reconfiguration of RBAC Schemes”. In: Proceedings of the 1st International
Workshop on AI for Privacy and Security, PrAISe@ECAI 2016, The Hague, Nether-
lands, August 29-30, 2016. New York, New York: ACM, 2016, pp. 1–9.

[95] Ravi Sandhu, David Ferraiolo, and D. Richard Kuhn. “The NIST Model for
Role-based Access Control: Towards a Unified Standard”. In: Proceedings of
the 5th ACM Workshop on Role-Based Access Control, RBAC 2000, Berlin, Ger-
many, July 26-27, 2000. Ed. by Klaus Rebensburg, Charles E. Youman, and
Vijay Atluri. New York, New York: ACM, 2000, pp. 47–63.

[96] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman.
“Role-based Access Control Models”. In: Computer. Vol. 29. 2. New York, New
York: IEEE, 1996, pp. 38–47.

[97] Prasuna Sarana, Arindam Roy, Shamik Sural, Jaideep Vaidya, and Vijayalak-
shmi Atluri. “Role Mining in the Presence of Separation of Duty Constraints”.
In: Information Systems Security - Proceedings of the 11th International Conference,
ICISS 2015, Kolkata, India, December 16-20, 2015. Vol. 9478. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 2015, pp. 98–117.

[98] Siar Sarferaz. Compendium on Enterprise Resource Planning: Market, Functional
and Conceptual View based on SAP S/4HANA. Berlin, Heidelberg: Springer,
2022.

[99] J. David Schaffer. “Multiple Objective Optimization with Vector Evaluated
Genetic Algorithms”. In: Proceedings of the 1st International Conference on Ge-
netic Algorithms, Pittsburgh, PA, USA, July 1985. Ed. by John J. Grefenstette.
Hillsdale, New Jersey: L. Erlbaum Associates, 1985, pp. 93–100.

[100] Jürgen Schlegelmilch and Ulrike Steffens. “Role Mining with ORCA”. In: Pro-
ceedings of the 10th ACM Symposium on Access Control Models and Technologies,
SACMAT 2005, Stockholm, Sweden, June 1-3, 2005. Ed. by Elena Ferrari and
Gail-Joon Ahn. New York, New York: ACM, 2005, pp. 168–176.

[101] Hans-Paul Schwefel. Evolutionsstrategien für die numerische Optimierung. Berlin,
Heiderlberg: Springer, 1977.

[102] Dan Simon. Evolutionary Optimization Algorithms: Biologically Inspired and Pop-
ulation-Based Approaches to Computer Intelligence. Hoboken, New Jersey: John
Wiley & Sons, 2013.

[103] A. Suganthy and T. Chithralekha. “Role-Evolution in Role-based Access Con-
trol System”. In: International Journal of Emerging Research in Management and
Technology. Vol. 6. 7. 2018, pp. 223–227.

[104] Hassan Takabi and James B. D. Joshi. “StateMiner: An Efficient Similarity-
based Approach For Optimal Mining of Role Hierarchy”. In: Proceedings of the
15th 15th ACM Symposium on Access Control Models and Technologies, SACMAT
2010, Pittsburgh, Pennsylvania, USA, June 9-11, 2010, ed. by James B. D. Joshi
and Barbara Carminati. New York, New York: ACM, 2010, pp. 55–64.

[105] Amos Tanay, Roded Sharan, and Ron Shamir. “Biclustering Algorithms: A
survey”. In: Handbook of computational molecular biology. Vol. 9. 1-20. Boca Ra-
ton, Florida: Chapman and Hall/CRC, 2005, pp. 122–124.

[106] Jaideep Vaidya, Vijayalakshmi Atluri, and Qi Guo. “The Role Mining Prob-
lem”. In: Proceedings of the 12th ACM Symposium on Access Control Models
and Technologies, SACMAT 2007, Sophia Antipolis, France, June 20-22, 2007. Ed.
by Volkmar Lotz and Bhavani Thuraisingham. New York, New York: ACM,
2007, pp. 175–184.

Bibliography 229

[107] Jaideep Vaidya, Vijayalakshmi Atluri, Qi Guo, and Haibing Lu. “Role Mining
in the Presence of Noise”. In: Data and Applications Security and Privacy XXIV
- Proceedings of the 24th Annual IFIP WG 11.3 Working Conference, Rome, Italy,
June 21-23, 2010. Ed. by Sara Foresti and Sushil Jajodia. Vol. 6166. Lecture
Notes in Computer Science. Springer. Berlin, Heidelberg, 2010, pp. 97–112.

[108] Jaideep Vaidya, Vijayalakshmi Atluri, Janice Warner, and Qi Guo. “Role En-
gineering via Prioritized Subset Enumeration”. In: IEEE Transactions on De-
pendable and Secure Computing. Vol. 7. 3. 2010, pp. 300–314.

[109] Henk C.A. Van Tilborg and Sushil Jajodia. Encyclopedia of Cryptography and
Security. Berlin, Heidelberg: Springer, 2014.

[110] Verizon. 2022 Data Breach Investigations Report. Ashburn, Virginia: Verizon En-
terprise, 2022.

[111] Yao Wang and Mark Wineberg. “Estimation of Evolvability Genetic Algo-
rithm and Dynamic Environments”. In: Genetic Programming and Evolvable
Machines. Vol. 7. 4. Berlin, Heidelberg: Springer, 2006, pp. 355–382.

[112] Karsten Weicker. Evolutionäre Algorithmen. Wiesbaden: Springer Fachmedien,
2015.

[113] Zhongyuan Xu and Scott D. Stoller. “Algorithms for Mining Meaningful Ro-
les”. In: Proceedings of the 17th ACM Symposium on Access Control Models and
Technologies, SACMAT 2012, Newark, NJ, USA - June 20 - 22, 2012. Ed. by Vijay
Atluri, Jaideep Vaidya, Axel Kern, and Murat Kantarcioglu. New York, New
York: ACM, 2012, pp. 57–66.

[114] Dana Zhang, Kotagiri Ramamohanarao, and Tim Ebringer. “Role Engineer-
ing Using Graph Optimisation”. In: Proceedings of the 12th ACM Symposium on
Access Control Models and Technologies, SACMAT 2007, Sophia Antipolis, France,
June 20-22, 2007. Ed. by Volkmar Lotz and Bhavani Thuraisingham. New
York, New York: ACM, 2007, pp. 139–144.

[115] Dana Zhang, Kotagiri Ramamohanarao, Steven Versteeg, and Rui Zhang.
“Graph Based Strategies to Role Engineering”. In: Proceedings of the 6th Cy-
ber Security and Information Intelligence Research Workshop, CSIIRW 2010, Oak
Ridge, TN, USA, April 21-23, 2010. Ed. by Frederick T. Sheldon, Stacy Prowell,
Robert K. Abercrombie, and Axel Krings. New York, New York: ACM, 2010,
pp. 1–4.

[116] Weiwei Zhang, Menghua Zhang, Weizheng Zhang, Yinghui Meng, and Huai-
guang Wu. “Innate-adaptive Response and Memory Based Artificial Immune
System for Dynamic Optimization”. In: International Journal of Performability
Engineering. Vol. 14. 9. 2018, pp. 2048–2055.

[117] Wen Zhang, You Chen, Carl Gunter, David Liebovitz, and Bradley Malin.
“Evolving Role Definitions Through Permission Invocation Patterns”. In: Pro-
ceedings of the 18th ACM Symposium on Access Control Models and Technologies,
SACMAT 2013, Amsterdam, The Netherlands, June 12-14, 2013. Ed. by Mauro
Conti, Jaideep Vaidya, and Andreas Schaad. New York, New York: ACM,
2013, pp. 37–48.

[118] Wenjing Zhao, Sameer Alam, and Hussein A Abbass. “MOCCA-II: A Multi-
objective Co-operative Co-evolutionary Algorithm”. In: Applied Soft Comput-
ing. Vol. 23. Amsterdam: Elsevier, 2014, pp. 407–416.

231

Appendix A

Evaluation of Data Management

In Appendix A, the results of the experiments evaluating the different methods,
which were presented in Chapter 5, are listed.

A.1 Evaluation of Trace Conversion Procedures

Table A.1 shows the results for the evaluation of the trace conversion procedures
including all values of the threshold parameters dmax and rmax that were investigated
according to the evaluation setup described in Chapter 5.1.3. At this, |C| denotes the
numbers of user clusters.

TABLE A.1: Evaluation of trace conversion procedures.

Case 1 (E1) Case 2 (E1) reduced Case 3 (E2)

|C| CR∗ ∆ FPR∗ |C| CR∗ ∆ FPR∗ |C| CR∗ ∆ FPR∗

(C1) Perm. 0.5 2,166 0.463 0.007 0.430 2,021 0.564 0.019 0.325 2,166 0.822 0.036 0.132
(C1) Perm. 0.3 2,494 0.459 0.003 0.425 2,380 0.555 0.010 0.264 2,494 0.811 0.024 0.103
(C1) Perm. 0.1 2,562 0.460 0.003 0.419 2,483 0.555 0.009 0.253 2,562 0.809 0.023 0.098
(C1) Perm. 0.05 2,575 0.460 0.003 0.419 2,502 0.555 0.009 0.253 2,575 0.809 0.022 0.098
(C1) Perm. 0.01 2,593 0.460 0.003 0.419 2,520 0.554 0.009 0.253 2,593 0.809 0.022 0.098

(C1) Dim. 0.5 1,237 0.469 0.013 0.553 1,207 0.598 0.053 0.531 1,237 0.866 0.079 0.266
(C1) Dim. 0.3 1,826 0.462 0.006 0.445 1,788 0.571 0.025 0.367 1,826 0.834 0.047 0.165
(C1) Dim. 0.1 2,387 0.465 0.009 0.399 2,368 0.555 0.010 0.274 2,387 0.812 0.025 0.107
(C1) Dim. 0.05 2,428 0.465 0.009 0.398 2,403 0.555 0.010 0.272 2,428 0.810 0.023 0.103
(C1) Dim. 0.01 2,434 0.465 0.009 0.398 2,410 0.555 0.010 0.271 2,434 0.810 0.023 0.102

(C1) Trans. 0.5 1,586 0.469 0.012 0.460 1,576 0.579 0.034 0.417 1,586 0.850 0.063 0.194
(C1) Trans. 0.3 2,041 0.461 0.004 0.448 2,041 0.562 0.017 0.321 2,041 0.824 0.038 0.135
(C1) Trans. 0.1 2,321 0.460 0.004 0.423 2,312 0.555 0.010 0.282 2,321 0.813 0.027 0.112
(C1) Trans. 0.05 2,340 0.460 0.004 0.423 2,330 0.555 0.010 0.280 2,340 0.812 0.026 0.110
(C1) Trans. 0.01 2,341 0.460 0.004 0.423 2,331 0.555 0.010 0.280 2,341 0.812 0.026 0.110

(C2) Trans. 0.2 129 0.726 0.270 0.977 129 0.861 0.316 0.954 129 0.973 0.186 0.606
(C2) Trans. 0.175 205 0.700 0.243 0.971 205 0.826 0.280 0.941 205 0.965 0.178 0.587
(C2) Trans. 0.15 302 0.661 0.205 0.958 302 0.805 0.260 0.927 302 0.955 0.168 0.541
(C2) Trans. 0.125 461 0.607 0.151 0.923 461 0.748 0.202 0.882 461 0.933 0.146 0.464
(C2) Trans. 0.1 779 0.506 0.050 0.845 779 0.680 0.135 0.788 779 0.905 0.118 0.367
(C2) Trans. 0.05 2,011 0.462 0.006 0.667 2,011 0.565 0.020 0.462 2,011 0.818 0.031 0.140
(C2) Trans. 0.01 2,197 0.459 0.003 0.663 2,197 0.553 0.008 0.424 2,197 0.811 0.024 0.122

233

Appendix B

Evaluation of Single-level Role
Mining

In Appendix B, the results of the experiments evaluating the different aspects of the
addRole-EA, which were presented in Chapter 6, are listed.

B.1 Performance Evaluation of addRole-EA

Tables B.1 and B.2 show the evaluation results of the original version of the addRole-
EA on the instances of the HP-Labs benchmark as well as the PLAIN_small_x bench-
mark of RMPlib. For details on the test setup refer to Chapter 6.3.2.

TABLE B.1: Evaluation of addRole-EA on HP-Labs benchmark instances.

America America Health- Firewall Firewall
large small APJ EMEA care Domino 1 2

Roles (avg.) 401.85 187.15 453.10 34 14 20 64.95 10
Roles (min.) 400 184 453 34 14 20 64 10
Roles (max.) 403 191 454 34 14 20 65 10

Iterations (avg.) 31,316 23,253 18,777 11,755 10,031 10,048 10,883 10,009
Iterations (min.) 24,200 16,409 22,743 10,201 10,017 10,025 10,301 10,004
Iterations (max.) 52,351 30,739 20,459 16,890 10,087 10,062 10,376 10,017

Time (s) (avg.) 1,967.95 510.40 390.25 37.70 9.15 9.05 32.00 6.20
Time (s) (min.) 1,501.00 174.00 324.00 32.00 9.00 9.00 30.00 6.00
Time (s) (max.) 3,103.00 677.00 485.00 58.00 10.00 10.00 44.00 7.00

TABLE B.2: Evaluation of addRole-EA on PLAIN_small_x benchmark instances of RMPlib.

PS_01 PS_02 PS_03 PS_04 PS_05 PS_06 PS_07 PS_08

Roles (avg.) 24.65 30.05 29.80 32.80 49.80 50.25 39.20 52.50
Roles (min.) 24 27 27 28 49 50 33 50
Roles (max.) 25 33 32 38 53 51 45 56

Iterations (avg.) 13,484 22,605 13,157 23,933 14,132 26,669 67,385 31,584
Iterations (min.) 11,665 17,433 11,684 18,467 12,920 21,637 54,680 26,127
Iterations (max.) 16,314 38,599 18,343 36,541 15,826 34,562 84,165 41,581

Time (s) (avg.) 50.35 391.30 126.65 743.30 110.40 627.00 37,395.15 2,488.50
Time (s) (min.) 40.00 278.00 104.00 535.00 100.00 488.00 30,171.00 2,046.00
Time (s) (max.) 61.00 614.00 187.00 1,028.00 129.00 800.00 44,545.00 2,959.00

234 Appendix B. Evaluation of Single-level Role Mining

B.2 Evaluation of Initialization

Tables B.3 and B.4 provide an overview of the results obtained from the evaluation
of the alternative variant of the initialization method as described in Chapter 6.4.1.
The results for the original version of the initialization method, which can be used for
comparison, correspond to the results obtained from the evaluation of the addRole-
EA in Tables B.1 and B.2.

TABLE B.3: Evaluation of alternative initialization method on HP-Labs benchmark instances.

America America Health- Firewall Firewall
large small APJ EMEA care Domino 1 2

Roles (avg.) 422.40 202.40 455.25 34.00 14.00 20.00 64.80 10.00
Roles (min.) 404 195 453 34 14 20 64 10
Roles (max.) 430 215 461 34 14 20 65 10

Iterations (avg.) 22,863 44,108 26,621 10,000 10,026 10,000 16,181 10,000
Iterations (min.) 10,000 12,946 15,807 10,000 10,008 10,000 11,366 10,000
Iterations (max.) 40,577 73,928 43,584 10,000 10,070 10,000 24,517 10,000

Time (s) (avg.) 1,256.50 877.80 605.75 38.70 13.65 13.45 66.60 8.85
Time (s) (min.) 542.00 221.00 357.00 38.00 12.00 11.00 45.00 6.00
Time (s) (max.) 2,212.00 1,382.00 969.00 40.00 17.00 18.00 125.00 12.00

TABLE B.4: Evaluation of alternative initialization method on PLAIN_small_x instances.

PS_01 PS_02 PS_03 PS_04 PS_05 PS_06 PS_07 PS_08

Roles (avg.) 36.75 49.90 41.90 49.00 90.25 99.00 99.00 100.00
Roles (min.) 32 49 41 49 88 99 99 100
Roles (max.) 45 50 42 49 91 99 99 100

Iterations (avg.) 29,370 10,518 16,627 10,000 15,617 10,000 10,000 10,000
Iterations (min.) 12,057 10,000 10,985 10,000 12,403 10,000 10,000 10,000
Iterations (max.) 44,362 18,877 28,876 10,000 20,976 10,000 10,000 10,000

Time (s) (avg.) 70.10 41.15 60.85 39.80 83.60 95.75 224.20 123.45
Time (s) (min.) 30.00 38.00 43.00 39.00 64.00 81.00 221.00 107.00
Time (s) (max.) 107.00 74.00 104.00 41.00 111.00 145.00 227.00 134.00

B.3. Evaluation of Mutation and Crossover 235

B.3 Evaluation of Mutation and Crossover

Tables B.5 and B.6 show the total number of global improvements caused by the
different role-creation respectively role-selection methods summarized over the 20
test runs corresponding to the distributions shown in Figures 6.17 and 6.18 in Chap-
ter 6.4.2.

TABLE B.5: Number of global improvements on HP-Labs benchmark instances.

America America Health- Firewall Firewall
large small APJ EMEA care Domino 1 2

(RC1) 758 164 11 137 13 11 19 4
(RC2) 3,338 881 718 164 19 13 126 4
(RC3) 53 17 4 1 0 0 0 0
(RC4) 4,410 865 1,249 735 47 138 162 12
(RC5) 2,448 700 238 354 22 55 75 1

(RS1) 45 17 10 9 0 1 3 0
(RS2) 227 54 10 33 6 9 8 0
(RS3) 1,288 313 231 238 9 33 41 1

TABLE B.6: Number of global improvements on PLAIN_small_x instances of RMPlib.

PS_01 PS_02 PS_03 PS_04 PS_05 PS_06 PS_07 PS_08

(RC1) 53 42 94 88 83 103 39 184
(RC2) 135 145 636 598 443 511 2,224 1,721
(RC3) 10 0 15 21 0 7 56 15
(RC4) 21 5 79 7 29 4 2 8
(RC5) 65 37 215 67 160 117 78 306

(RS1) 12 9 11 21 6 0 26 7
(RS2) 12 46 46 38 25 0 200 71
(RS3) 20 59 95 65 67 0 150 105

236 Appendix B. Evaluation of Single-level Role Mining

B.4 Evaluation of Role Creation

B.4.1 Evaluation of (RC1)

Tables B.7 and B.8 provide an overview of results on PS_02, PS_05 and PM_01 ac-
cording to the evaluation scenario for the analysis of the different variants of role-
creation method (RC1) described in Chapter 6.4.3. Figure B.1 shows the associated
progression of roles over iteration for PM_01.

TABLE B.7: Analysis of (RC1) on PS_02 and PS_05.

PLAIN_small_02 PLAIN_small_05
(RC1) (RC1v1) (RC1v2) (RC1v3) (RC1) (RC1v1) (RC1v2) (RC1v3)

Roles (avg.) 40.45 47.00 40.90 43.70 50.55 78.50 49.65 50.05
Roles (min.) 33 47 30 39 49 78 49 50
Roles (max.) 45 47 45 45 52 80 51 51

Iterations (avg.) 24,964 10,000 19,599 14,794 25,503 10,369 15,906 13,531
Iterations (min.) 10,418 10,000 10,310 10,111 16,594 10,216 13,200 11,758
Iterations (max.) 59,411 10,000 55,963 28,255 39,634 10,944 22,161 16,681

Time (s) (avg.) 346.95 315.45 307.10 258.65 58.50 67.05 56.05 47.55
Time (s) (min.) 184.00 301.00 188.00 174.00 38.00 64.00 47.00 41.00
Time (s) (max.) 700.00 323.00 673.00 379.00 85.00 71.00 72.00 59.00

TABLE B.8: Analysis of (RC1) on PM_01

PLAIN_medium_01
(RC1) (RC1v1) (RC1v2) (RC1v3)

Roles (avg.) 156.90 361.35 151.15 154.20
Roles (min.) 150 360 150 152
Roles (max.) 168 364 155 156

Iterations (avg.) 42,387 10,789 20,055 21,588
Iterations (min.) 33,991 10,487 15,657 15,917
Iterations (max.) 52,871 11,500 25,278 31,815

Time (s) (avg.) 579.35 630.65 384.10 412.75
Time (s) (min.) 481.00 591.00 309.00 323.00
Time (s) (max.) 711.00 679.00 488.00 568.00

FIGURE B.1: Comparison of variants of (RC1) on PM_01.

B.4. Evaluation of Role Creation 237

B.4.2 Evaluation of (RC2)

Tables B.9 and B.10 provide an overview of results on PS_02, PS_05 and PM_01 ac-
cording to the evaluation scenario for the analysis of the different variants of role-
creation method (RC2) described in Chapter 6.4.3. Figure B.2 shows the associated
progression of roles over iteration for PM_01.

TABLE B.9: Analysis of (RC2) on PS_02 and PS_05.

PLAIN_small_02 PLAIN_small_05
(RC2) (RC2v1) (RC2v2) (RC2v3) (RC2) (RC2v1) (RC2v2) (RC2v3)

Roles (avg.) 35.35 46.20 36.95 34.05 52.85 87.80 54.10 52.80
Roles (min.) 32 45 33 31 50 86 50 49
Roles (max.) 38 47 41 38 56 89 57 58

Iterations (avg.) 12,984 10,970 13,638 11,606 12,203 10,626 12,460 11,617
Iterations (min.) 11,784 10,000 12,064 10,854 11,751 10,149 11,967 11,157
Iterations (max.) 15,177 19,987 17,335 12,490 12,913 11,681 13,087 13,947

Time (s) (avg.) 125.00 73.25 132.85 114.70 63.50 57.80 64.10 61.55
Time (s) (min.) 102.00 66.00 105.00 104.00 61.00 54.00 60.00 57.00
Time (s) (max.) 159.00 133.00 169.00 132.00 69.00 64.00 70.00 74.00

TABLE B.10: Analysis of (RC2) on PM_01

PLAIN_medium_01
(RC2) (RC2v1) (RC2v2) (RC2v3)

Roles (avg.) 172.35 458.35 174.90 164.90
Roles (min.) 167 456 167 159
Roles (max.) 176 460 182 170

Iterations (avg.) 26,186 13,295 26,542 20,566
Iterations (min.) 25,113 10,000 25,180 19,527
Iterations (max.) 28,387 21,957 28,033 21,753

Time (s) (avg.) 1,171.15 586.05 1,140.85 942.50
Time (s) (min.) 1,096.00 427.00 1,087.00 877.00
Time (s) (max.) 1,277.00 957.00 1,221.00 1,001.00

FIGURE B.2: Comparison of variants of (RC2) on PM_01.

238 Appendix B. Evaluation of Single-level Role Mining

B.4.3 Evaluation of (RC3)

Table B.11 provides an overview of results on PS_02, PS_05 and PM_01 according
to the evaluation scenario for role-creation method (RC3) either being activated or
deactivated described in Chapter 6.4.3. Figure B.3 shows the associated progression
of roles over iteration for PM_01.

TABLE B.11: Analysis of (RC3) on PS_02, PS_05 and PM_01

PLAIN_small_02 PLAIN_small_05 PLAIN_medium_01
(RC3) (RC3) (RC3) (RC3) (RC3) (RC3)
X x X x X x

Roles (avg.) 31.20 30.10 49.30 49.40 150.25 150.30
Roles (min.) 27 25 49 49 150 150
Roles (max.) 39 34 50 52 152 151

Iterations (avg.) 24,222 25,232 17,229 14,507 28,741 22,924
Iterations (min.) 16,505 17,502 14,691 13,054 24,129 19,403
Iterations (max.) 36,270 35,242 26,693 19,481 38,153 26,655

Time (s) (avg.) 398.50 432.65 139.15 115.65 3,302.95 2,584.20
Time (s) (min.) 272.00 310.00 118.00 102.00 2,745.00 2,147.00
Time (s) (max.) 619.00 608.00 202.00 147.00 3,893.00 2,916.00

FIGURE B.3: Analysis of (RC3) on PM_01.

B.4. Evaluation of Role Creation 239

B.4.4 Evaluation of (RC4)

Table B.12 provides an overview of results on PS_02, PS_05 and PM_01 according
to the evaluation scenario for role-creation method (RC4) either being activated or
deactivated described in Chapter 6.4.3. Figure B.4 shows the associated progression
of roles over iteration for PM_01.

TABLE B.12: Analysis of (RC4) on PS_02, PS_05 and PM_01

PLAIN_small_02 PLAIN_small_05 PLAIN_medium_01
(RC4) (RC4) (RC4) (RC4) (RC4) (RC4)
X x X x X x

Roles (avg.) 31.20 29.80 49.30 49.25 150.25 150.05
Roles (min.) 27 26 49 49 150 150
Roles (max.) 39 39 50 50 152 151

Iterations (avg.) 24,222 27,610 17,229 17,097 28,741 34,325
Iterations (min.) 16,505 19,604 14,691 15,095 24,129 31,132
Iterations (max.) 36,270 37,537 26,693 20,478 38,153 40,580

Time (s) (avg.) 398.50 385.60 139.15 128.20 3,302.95 4,322.15
Time (s) (min.) 272.00 279.00 118.00 109.00 2,745.00 3,693.00
Time (s) (max.) 619.00 489.00 202.00 153.00 3,893.00 4,872.00

FIGURE B.4: Analysis of (RC4) on PM_01.

240 Appendix B. Evaluation of Single-level Role Mining

B.4.5 Evaluation of (RC5)

Tables B.13 and B.14 provide an overview of results on PS_02, PS_05 and PM_01
according to the evaluation scenario for the analysis of the different variants of role-
creation method (RC5) described in Chapter 6.4.3. Figure B.5 shows the associated
progression of roles over iteration for PM_01.

TABLE B.13: Analysis of (RC5) on PS_02 and PS_05.

PLAIN_small_02 PLAIN_small_05
(RC5) (RC5v1) (RC5v2) (RC5) (RC5v1) (RC5v2)

Roles (avg.) 42.95 46.00 44.00 52.55 73.05 79.75
Roles (min.) 34 45 44 50 59 79
Roles (max.) 45 47 44 54 89 81

Iterations (avg.) 17,193 10,910 10,468 25,276 17,957 14,903
Iterations (min.) 13,008 10,000 10,137 17,375 10,820 11,213
Iterations (max.) 28,448 13,409 11,274 40,145 32,184 23,758

Time (s) (avg.) 360.75 251.55 241.50 150.25 129.70 147.15
Time (s) (min.) 288.00 220.00 234.00 108.00 66.00 112.00
Time (s) (max.) 548.00 319.00 260.00 213.00 199.00 235.00

TABLE B.14: Analysis of (RC5) on PM_01

PLAIN_medium_01
(RC5) (RC5v1) (RC5v2)

Roles (avg.) 154.85 177.85 353.60
Roles (min.) 152 169 344
Roles (max.) 158 189 364

Iterations (avg.) 46,616 30,816 49,817
Iterations (min.) 31,065 23,091 22,313
Iterations (max.) 65,631 40,412 75,980

Time (s) (avg.) 2,926.90 2,217.30 5,894.75
Time (s) (min.) 2,148.00 1,434.00 2,695.00
Time (s) (max.) 3,879.00 2,999.00 8,953.00

FIGURE B.5: Comparison of variants of (RC5) on PM_01.

B.4. Evaluation of Role Creation 241

B.4.6 Comparison of original and advanced addRole-EA

Table B.15 provides an overview of results on PS_02, PS_05 and PM_01 according
to the evaluation scenario for the comparison of the original and the advanced ver-
sion of the addRole-EA described in Chapter 6.4.3. Figure B.6 shows the associated
progression of roles over iteration for PM_01.

TABLE B.15: Comparison of original and advanced addRole-EA.

PLAIN_small_02 PLAIN_small_05 PLAIN_medium_01
original advanced original advanced original advanced

Roles (avg.) 30.05 29.30 49.80 49.80 150.40 151.50
Roles (min.) 27 26 49 49 150 150
Roles (max.) 33 33 53 52 153 154

Iterations (avg.) 22,605 19,921 14,132 13,415 22,505 15,923
Iterations (min.) 17,433 12,054 12,920 11,802 19,719 13,803
Iterations (max.) 38,599 45,130 15,826 22,018 32,638 25,364

Time (s) (avg.) 391.30 288.45 110.40 103.35 2,484.15 1,503.70
Time (s) (min.) 278.00 177.00 100.00 90.00 2,208.00 1,343.00
Time (s) (max.) 614.00 602.00 129.00 161.00 3,256.00 2,072.00

FIGURE B.6: Comparison of original and advanced addRole-EA on PM_01.

242 Appendix B. Evaluation of Single-level Role Mining

B.5 Evaluation of Role Selection

Tables B.16 - B.18 show the results for the investigation of different combinations
of the role-selection methods (RS1-3) on PS_02, PS_05 and PM_01 as described in
Chapter 6.4.4.

TABLE B.16: Analysis of role-selection methods on PS_02.

(RS1) (RS2) (RS3) (RS1+2) (RS1+3) (RS2+3) (RS1-3)

Roles (avg.) 31.10 30.75 30.10 30.15 30.55 29.65 29.30
Roles (min.) 28 28 27 28 26 28 26
Roles (max.) 36 35 34 33 36 32 33

Iterations (avg.) 17,025 16,112 17,449 18,889 17,464 18,132 19,921
Iterations (min.) 12,837 13,549 13,070 13,283 12,820 13,068 12,054
Iterations (max.) 28,878 23,396 26,683 33,987 27,789 25,263 45,130

Time (s) (avg.) 207.45 256.20 280.15 262.40 249.80 276.15 288.45
Time (s) (min.) 148.00 208.00 201.00 175.00 171.00 196.00 177.00
Time (s) (max.) 355.00 353.00 386.00 465.00 427.00 351.00 602.00

TABLE B.17: Analysis of role-selection methods on PS_05.

(RS1) (RS2) (RS3) (RS1+2) (RS1+3) (RS2+3) (RS1-3)

Roles (avg.) 49.60 50.00 49.60 49.65 49.30 49.70 49.80
Roles (min.) 49 49 49 49 49 49 49
Roles (max.) 51 54 51 51 50 51 52

Iterations (avg.) 13,067 12,854 12,155 13,350 12,753 12,988 13,415
Iterations (min.) 11,450 11,794 11,256 11,601 11,739 11,590 11,802
Iterations (max.) 22,230 15,775 12,948 21,432 19,257 21,130 22,018

Time (s) (avg.) 90.20 103.45 100.20 96.95 97.00 104.10 103.35
Time (s) (min.) 78.00 95.00 87.00 81.00 88.00 92.00 90.00
Time (s) (max.) 150.00 120.00 112.00 150.00 142.00 154.00 161.00

TABLE B.18: Analysis of role-selection methods on PM_01.

(RS1) (RS2) (RS3) (RS1+2) (RS1+3) (RS2+3) (RS1-3)

Roles (avg.) 153.35 153.90 150.75 153.65 150.90 151.15 151.50
Roles (min.) 151 151 150 150 150 150 150
Roles (max.) 156 158 153 157 153 154 154

Iterations (avg.) 18,947 20,183 14,812 19,490 17,315 15,441 15,923
Iterations (min.) 14,207 14,496 13,752 14,013 14,072 13,761 13,803
Iterations (max.) 28,949 37,409 15,970 29,844 24,065 21,421 25,364

Time (s) (avg.) 1,239.35 1,972.05 1,608.95 1,535.65 1,515.30 1,736.65 1,503.70
Time (s) (min.) 948.00 1,531.00 1,428.00 1,185.00 1,269.00 1,443.00 1,343.00
Time (s) (max.) 1,753.00 2,993.00 1,730.00 2,115.00 1,888.00 2,473.00 2,072.00

243

Appendix C

Evaluation of Two-level Role
Mining

In Appendix C, the results of the experiments evaluating the different approaches
for two-level role mining presented in Chapter 7 are listed.

C.1 Evaluation of Consecutive Role Mining

At first, the results of the experiments evaluating the consecutive role mining ap-
prach are presented.

C.1.1 Evaluation of Single Roles First

Tables C.1 - C.3 show the results for the evaluation of the Single Roles First (SRF)
variant of consecutive role mining according to the evaluation setup described in
Chapter 7.3.1.

TABLE C.1: Evaluation of consecutive role mining (SRF) on 2L_05 and 2L_06.

2LEVEL_05 2LEVEL_06
smax 3 5 10 3 5 10

Roles (avg.) 117.50 94.80 75.70 116.65 95.60 77.10
Roles (min.) 106 85 69 107 87 73
Roles (max.) 134 106 81 126 110 86

Iterations (avg.) 70,235 67,420 54,380 76,745 74,495 59,125
Iterations (min.) 57,300 49,200 42,500 53,400 53,900 43,700
Iterations (max.) 97,700 88,600 70,300 98,100 103,300 73,300

Time (s) (avg.) 11,729.15 10,148.17 6,349.21 13,985.85 11,289.13 7,560.72
Time (s) (min.) 8,761.80 6,695.22 5,022.56 10,119.28 8,349.38 5,718.17
Time (s) (max.) 15,540.30 12,751.08 8,090.91 18,184.11 15,244.30 10,039.84

|CR| (avg.) 46.35 40.75 34.20 46.55 40.75 34.30
|SR| (avg.) 71.15 54.05 41.50 70.10 54.85 42.80
‖UCA∗‖/|U| (avg.) 7.89 6.44 5.24 8.27 6.88 5.96
‖CSA∗‖/|CR| (avg.) 6.72 4.07 2.61 7.06 4.67 2.69
‖SPA∗‖/|SR| (avg.) 2.10 3.58 6.53 2.09 3.47 6.28

244 Appendix C. Evaluation of Two-level Role Mining

TABLE C.2: Evaluation of consecutive role mining (SRF) on PS_02 and PS_05.

PLAIN_small_02 PLAIN_small_05
smax 3 5 10 3 5 10

Roles (avg.) 84.75 74.20 58.00 140.65 120.20 99.65
Roles (min.) 79 67 52 134 114 99
Roles (max.) 90 86 68 146 142 100

Iterations (avg.) 36,690 44,120 42,365 43,000 51,905 30,350
Iterations (min.) 20,700 23,400 30,500 32,500 27,400 25,900
Iterations (max.) 56,300 68,800 59,500 58,100 74,300 39,100

Time (s) (avg.) 1,931.92 1,505.94 1,207.13 1,048.11 1,188.33 439.05
Time (s) (min.) 1,035.98 904.64 819.08 796.52 630.17 353.73
Time (s) (max.) 7,126.36 2,466.99 1,718.47 1,449.30 1,697.19 603.03

|CR| (avg.) 41.50 36.50 29.00 57.50 54.40 49.65
|SR| (avg.) 43.25 37.70 29.00 83.15 65.80 50.00
‖UCA∗‖/|U| (avg.) 13.33 8.45 5.46 3.21 3.48 3.00
‖CSA∗‖/|CR| (avg.) 2.27 1.77 1.24 5.13 2.44 1.07
‖SPA∗‖/|SR| (avg.) 1.68 3.18 5.54 1.59 3.17 4.98

TABLE C.3: Evaluation of consecutive role mining (SRF) on PM_01.

PLAIN_medium_01
smax 3 5 10

Roles (avg.) 583.20 431.55 303.25
Roles (min.) 563 444 301
Roles (max.) 608 411 307

Iterations (avg.) 134,035 135,225 110,480
Iterations (min.) 122,200 146,500 110,000
Iterations (max.) 150,200 121,900 114,100

Time (s) (avg.) 49,750.56 41,813.43 6,932.77
Time (s) (min.) 31,717.06 43,924.91 5,036.54
Time (s) (max.) 60,874.18 39,054.74 9,961.49

|CR| (avg.) 171.80 176.30 150.90
|SR| (avg.) 411.40 255.25 152.35
‖UCA∗‖/|U| (avg.) 3.78 4.11 3.45
‖CSA∗‖/|CR| (avg.) 10.74 4.43 1.03
‖SPA∗‖/|SR| (avg.) 1.67 4.89 9.81

C.1. Evaluation of Consecutive Role Mining 245

C.1.2 Evaluation of Composite Roles First

Tables C.4 - C.6 show the results for the evaluation of the Composite Roles First
(CRF) variant of consecutive role mining according to the evaluation setup described
in Chapter 7.3.1.

TABLE C.4: Evaluation of consecutive role mining (CRF) on 2L_05 and 2L_06.

2LEVEL_05 2LEVEL_06
smax 3 5 10 3 5 10

Roles (avg.) 97.30 83.30 68.50 98.65 84.65 71.15
Roles (min.) 94 79 65 93 81 66
Roles (max.) 100 87 72 104 89 81

Iterations (avg.) 64,470 56,085 50,115 64,265 58,390 48,050
Iterations (min.) 46,800 41,200 40,200 46,800 44,700 35,400
Iterations (max.) 76,100 76,800 65,200 92,800 83,300 65,900

Time (s) (avg.) 4,576.00 4,395.21 5,146.28 5,499.98 5,356.41 5,396.38
Time (s) (min.) 3,803.87 3,600.48 3,646.42 3,936.38 4,085.62 3,571.50
Time (s) (max.) 5,815.68 5,685.78 6,649.13 7,837.21 6,940.89 7,227.57

|CR| (avg.) 29.15 29.40 28.45 29.50 29.70 29.60
|SR| (avg.) 68.15 53.90 40.05 69.15 54.95 41.55
‖UCA∗‖/|U| (avg.) 6.43 13.11 6.07 6.89 6.83 6.91
‖CSA∗‖/|CR| (avg.) 5.23 3.06 1.68 5.95 3.28 1.77
‖SPA∗‖/|SR| (avg.) 2.26 3.66 6.78 2.07 3.57 6.57

TABLE C.5: Evaluation of consecutive role mining (CRF) on PS_02 and PS_05.

PLAIN_small_02 PLAIN_small_05
smax 3 5 10 3 5 10

Roles (avg.) 73.00 69.55 60.80 129.95 112.95 99.95
Roles (min.) 69 63 54 128 110 99
Roles (max.) 77 86 88 133 116 102

Iterations (avg.) 55,470 46,750 48,490 48,060 39,120 34,800
Iterations (min.) 40,000 67,300 21,100 36,500 29,200 26,900
Iterations (max.) 85,900 22,100 71,300 69,600 48,300 43,400

Time (s) (avg.) 1,155.63 965.96 1,036.90 538.35 499.97 486.26
Time (s) (min.) 746.57 487.74 464.84 411.52 349.85 353.67
Time (s) (max.) 1,817.95 1,357.95 1,552.36 733.96 639.51 629.53

|CR| (avg.) 30.40 32.35 30.25 49.65 49.35 49.60
|SR| (avg.) 42.60 37.20 30.55 80.30 63.60 50.35
‖UCA∗‖/|U| (avg.) 5.55 6.83 6.09 2.98 2.98 5.75
‖CSA∗‖/|CR| (avg.) 5.34 2.52 1.60 3.94 1.82 1.14
‖SPA∗‖/|SR| (avg.) 1.84 3.29 4.99 1.85 3.58 4.91

246 Appendix C. Evaluation of Two-level Role Mining

TABLE C.6: Evaluation of consecutive role mining (CRF) on PM_01.

PLAIN_medium_01
smax 3 5 10

Roles (avg.) 520.00 357.40 304.10
Roles (min.) 513 353 301
Roles (max.) 533 361 309

Iterations (avg.) 129,265 58,820 59,420
Iterations (min.) 118,800 46,800 36,300
Iterations (max.) 138,500 73,800 99,900

Time (s) (avg.) 8,928.40 6,925.44 6,882.92
Time (s) (min.) 6,819.11 5,368.30 5,002.67
Time (s) (max.) 12,233.07 9,190.73 10,938.89

|CR| (avg.) 151.50 151.90 151.95
|SR| (avg.) 368.50 205.50 152.15
‖UCA∗‖/|U| (avg.) 3.51 3.51 3.50
‖CSA∗‖/|CR| (avg.) 7.23 1.64 1.05
‖SPA∗‖/|SR| (avg.) 2.35 7.17 9.82

C.1. Evaluation of Consecutive Role Mining 247

C.1.3 Comparison of CRF and SRF

Figure C.1 shows the progression of roles for the comparison of the Single Roles
First (SRF) and the Composite Roles First (CRF) variant of consecutive role mining
for smax ∈ {3, 5, 10} on 2LEVEL_06 according to the evaluation setup described in
Chapter 7.3.1.

FIGURE C.1: Comparison of CRF and SRF on 2L_06.

Figure C.2 shows the progression of roles for the comparison of SRF and CRF for
smax ∈ {3, 5, 10} on PS_05 according to the evaluation setup described in Chap-
ter 7.3.1.

FIGURE C.2: Comparison of CRF and SRF on PS_05.

Figure C.3 shows the progression of roles for the comparison of SRF and CRF for
smax ∈ {5, 10, 20} on PM_01 according to the evaluation setup described in Chap-
ter 7.3.1.

FIGURE C.3: Comparison of CRF and SRF on PM_01.

248 Appendix C. Evaluation of Two-level Role Mining

C.2 Evaluation of Alternating Role Mining

Tables C.7 - C.9 show the results for the evaluation of the alternating role mining
approach for p ∈ {1000, 10000, 20000, 50000} according to the evaluation setup de-
scribed in Chapter 7.3.2.

TABLE C.7: Evaluation of alternating role mining on 2L_05 and 2L_06.

2LEVEL_05 2LEVEL_06
p 1,000 10,000 20,000 50,000 1,000 10,000 20,000 50,000

Roles (avg.) 82.65 79.55 76.80 76.00 85.15 79.60 77.15 77.40
Roles (min.) 77 75 74 73 78 74 74 75
Roles (max.) 90 87 80 81 97 86 80 80

Iterations 200,000 200,000 200,000 200,000 200,000 200,000 200,000 200,000

Time (s) (avg.) 4,901.89 5,131.88 5,791.89 7,130.14 6,381.05 5,777.12 15,853.85 8,495.16
Time (s) (min.) 3,851.82 4,253.55 5,211.38 6,662.39 5,012.61 4,791.70 5,198.21 7,471.71
Time (s) (max.) 6,692.72 5,920.45 6,721.23 7,776.41 8,058.39 6,831.64 202,738.49 9,643.75

|CR| (avg.) 30.65 27.80 25.70 25.55 30.95 27.55 25.40 25.30
|SR| (avg.) 52.00 51.75 51.10 50.45 54.20 52.05 51.75 52.10
‖UCA∗‖/|U| (avg.) 5.43 4.80 4.35 4.21 5.74 4.78 4.12 4.19
‖CSA∗‖/|CR| (avg.) 2.84 3.26 3.29 3.39 3.20 3.46 3.53 3.78
‖SPA∗‖/|SR| (avg.) 3.99 4.03 4.04 4.04 3.87 4.05 4.10 3.98

TABLE C.8: Evaluation of alternating role mining on PS_02 and PS_05.

PLAIN_small_02 PLAIN_small_05
p 1,000 10,000 20,000 50,000 1,000 10,000 20,000 50,000

Roles (avg.) 74.10 73.55 67.40 64.65 111.55 111.30 111.40 111.55
Roles (min.) 68 68 60 61 110 109 110 110
Roles (max.) 80 79 78 71 113 113 113 113

Iterations 200,000 200,000 200,000 200,000 200,000 200,000 200,000 200,000

Time (s) (avg.) 2,588.29 2,480.07 2,233.08 2,677.08 1,150.75 1,120.02 1,215.87 1,561.68
Time (s) (min.) 2,020.72 1,843.79 1,686.54 2,378.41 1,078.76 1,035.98 1,169.06 1,511.08
Time (s) (max.) 3,115.34 3,092.10 3,019.56 2,921.04 1,218.79 1,265.01 1,266.76 1,620.30

|CR| (avg.) 35.75 35.20 31.70 29.65 49.30 49.05 49.05 49.05
|SR| (avg.) 38.35 38.35 35.70 35.00 62.25 62.25 62.35 62.50
‖UCA∗‖/|U| (avg.) 8.53 7.10 5.62 5.22 2.95 2.90 2.91 2.90
‖CSA∗‖/|CR| (avg.) 1.99 2.36 2.85 2.67 1.65 1.70 1.69 1.68
‖SPA∗‖/|SR| (avg.) 3.07 3.19 3.52 3.60 3.71 3.69 3.69 3.69

C.2. Evaluation of Alternating Role Mining 249

TABLE C.9: Evaluation of alternating role mining on PM_01.

PLAIN_medium_01
p 1,000 10,000 20,000 50,000

Roles (avg.) 519.20 519.20 518.15 518.45
Roles (min.) 512 511 508 507
Roles (max.) 527 529 532 524

Iterations 200,000 200,000 200,000 200,000

Time (s) (avg.) 17,427.90 17,187.30 17,779.22 18,599.76
Time (s) (min.) 16,835.77 16,590.80 17,228.30 18,066.12
Time (s) (max.) 17,885.78 17,890.56 18,762.29 19,313.25

|CR| (avg.) 150.75 150.65 150.35 150.75
|SR| (avg.) 368.45 368.55 367.80 367.70
‖UCA∗‖/|U| (avg.) 3.25 3.25 3.25 3.25
‖CSA∗‖/|CR| (avg.) 7.31 7.28 7.22 7.30
‖SPA∗‖/|SR| (avg.) 2.33 2.36 2.37 2.35

Figure C.4 shows the progression of roles for the evaluation of alternating role min-
ing for p ∈ {1000, 10000, 20000, 50000} on PM_01 according to the evaluation setup
described in Chapter 7.3.2.

0 50,000 Itera�ons
500

600

R
o
le
s

700

PLAIN_medium_01

100,000 150,000

� = 1,000 � = 10,000 � = 20,000 � = 50,000

800

FIGURE C.4: Evaluation of alternating role mining on PM_01.

250 Appendix C. Evaluation of Two-level Role Mining

C.3 Evaluation of Simultaneous Role Mining

Table C.10 shows the results for the evaluation of the simultaneous role mining ap-
proach according to the evaluation setup described in Chapter 7.3.3.

TABLE C.10: Evaluation of simultaneous role mining.

PS_02 PS_05 PM_01 2L_05 2L_06

Roles (avg.) 71.80 112.90 536.60 73.90 75.8
Roles (min.) 64 111 526 72 72
Roles (max.) 85 116 545 77 79

Iterations 200,000 200,000 200,000 200,000 200000

Time (s) (avg.) 13,981.32 10,652.11 253,041.49 37,472.76 40,926.80
Time (s) (min.) 12,092.49 10,269.18 233,605.94 33,976.27 36,844.62
Time (s) (max.) 18,239.85 11,413.13 278,007.75 40,849.86 49,204.67

|CR| (avg.) 35.35 50.15 150.70 25.20 25.35
|SR| (avg.) 36.45 62.75 385.90 48.70 50.45
‖UCA∗‖/|U| (avg.) 5.38 5.31 3.25 3.99 3.99
‖CSA∗‖/|CR| (avg.) 3.94 2.00 8.28 3.86 4.71
‖SPA∗‖/|SR| (avg.) 3.05 3.63 1.97 3.78 3.53

Figure C.5 shows the progression of roles for the comparison of consecutive role
mining (CRF), alternating role mining (p = 20, 000) and simultaneous role mining
according to the evaluation setup described in Chapter 7.3.3.

0 50,000 Itera�ons
500

600

R
o
le
s

700

PLAIN_medium_01

100,000 150,000

Consecu�ve Alterna�ng Simultaneous

800

FIGURE C.5: Comparison of two-level role mining approaches on PM_01.

251

Appendix D

Evaluation of Dynamic Role
Mining

In Appendix D, the results of the experiments evaluating the different aspects of
dynamic role mining, which were presented in Chapter 6, are listed.

D.1 Evaluation of Structural Events

At first, the results of the experiments evaluating the different event-handling meth-
ods for the structural events S01-04 are presented.

D.1.1 Evaluation of Role Assignment Methods

Table D.1 shows the integral values obtained for the evaluation scenario described
in Chapter 8.3.6 for k ∈ {500, 1000, 5000, 10000}, |E| ∈ {5, 10} and pos1 = 2, 500,
pos2 = 12, 500 and pos3 = 25, 000 on PS_02.

TABLE D.1: Evaluation of role assigment methods on PS_02.

ORFA AAR ARR GREEDY ABP ABS

k = 500 |E| = 5 pos1 2,524.85 2,342.05 2,342.90 2,346.20 2,336.60 2,339.00
pos2 2,233.50 2,128.70 2,136.35 2,126.25 2,131.40 2,131.05
pos3 2,027.71 1,951.53 1,951.76 1,949.35 1,943.94 1,945.00

|E| = 10 pos1 2,778.10 2,394.70 2,377.35 2,401.00 2,394.60 2,399.65
pos2 2,440.00 2,220.90 2,242.45 2,242.85 2,236.55 2,223.25
pos3 2,176.45 2,042.35 2,040.85 2,048.35 2,033.20 2,031.60

k = 1, 000 |E| = 5 pos1 4,952.35 4,611.60 4,610.00 4,620.70 4,603.45 4,602.55
pos2 4,412.75 4,198.55 4,207.55 4,180.75 4,201.35 4,197.45
pos3 4,007.24 3,856.65 3,860.53 3,843.59 3,840.06 3,836.76

|E| = 10 pos1 5,477.45 4,715.45 4,682.70 4,719.40 4,709.10 4,718.70
pos2 4,816.70 4,340.70 4,393.70 4,398.70 4,397.60 4,342.55
pos3 4,302.15 4,009.55 4,025.25 4,022.10 3,999.20 3,993.85

k = 5, 000 |E| = 5 pos1 23,729.00 22,142.35 22,129.65 22,255.00 22,258.15 22,090.55
pos2 21,280.00 20,382.70 20,309.10 20,139.40 20,148.50 20,210.10
pos3 19,643.35 18,918.94 18,932.06 18,897.18 18,818.47 18,891.00

|E| = 10 pos1 26,487.05 22,800.50 22,779.75 22,698.35 22,771.10 22,659.60
pos2 23,215.50 20,862.95 21,007.80 21,173.10 21,100.50 20,829.65
pos3 21,058.75 19,578.30 19,655.40 19,599.80 19,513.20 19,426.55

k = 10, 000 |E| = 5 pos1 45,461.80 42,556.35 42,567.35 42,742.10 42,750.70 42,628.05
pos2 41,372.50 39,675.25 39,199.45 39,069.50 39,134.10 39,301.10
pos3 38,958.65 37,388.29 37,518.24 37,519.18 37,204.94 37,530.53

|E| = 10 pos1 50,753.35 43,877.30 44,068.65 43,686.40 44,052.75 43,682.70
pos2 45,158.90 40,617.20 40,676.35 41,350.60 41,126.05 40,457.25
pos3 41,694.00 38,830.30 38,960.15 38,755.70 38,654.65 38,515.40

252 Appendix D. Evaluation of Dynamic Role Mining

Table D.2 shows the integral values obtained for the evaluation scenario described
in Chapter 8.3.6 for k ∈ {500, 1000, 5000, 10000}, |E| ∈ {5, 10, 20} and pos1 = 2, 500,
pos2 = 10, 000 and pos3 = 20, 000 on PS_05.

TABLE D.2: Evaluation of role assigment methods on PS_05.

ORFA AAR ARR GREEDY ABP ABS

k = 500 |E| = 5 pos1 4,469.60 4,334.70 4,333.05 4,335.60 4,330.70 4,328.25
pos2 3,335.65 3,218.70 3,238.20 3,237.60 3,236.65 3,240.50
pos3 2,997.60 2,925.45 2,920.55 2,923.70 2,924.30 2,917.35

|E| = 10 pos1 4,730.90 4,347.60 4,346.90 4,334.35 4,344.45 4,341.65
pos2 3,706.30 3,468.20 3,476.70 3,471.25 3,475.75 3,463.15
pos3 3,129.85 2,922.75 2,927.60 2,920.05 2,921.20 2,917.60

|E| = 20 pos1 5,090.50 4,316.55 4,326.60 4,324.70 4,309.55 4,329.10
pos2 4,120.30 3,581.80 3,563.80 3,569.25 3,586.95 3,565.85
pos3 3,446.80 3,027.10 3,008.00 3,025.65 3,017.05 3,012.30

k = 1, 000 |E| = 5 pos1 8,738.20 8,499.60 8,515.40 8,504.00 8,495.05 8,502.35
pos2 6,531.55 6,306.75 6,365.10 6,347.25 6,339.30 6,367.15
pos3 5,902.30 5,774.10 5,767.35 5,766.75 5,775.05 5,769.70

|E| = 10 pos1 9,248.10 8,541.80 8,543.30 8,508.25 8,533.90 8,504.20
pos2 7,210.00 6,796.25 6,803.20 6,786.70 6,812.60 6,776.40
pos3 6,119.30 5,755.00 5,774.30 5,765.65 5,762.05 5,753.50

|E| = 20 pos1 9,879.10 8,437.25 8,491.30 8,480.85 8,453.65 8,491.60
pos2 7,927.95 6,971.00 6,944.00 6,967.90 7,015.20 6,986.40
pos3 6,656.60 5,948.50 5,912.10 5,951.25 5,934.85 5,914.60

k = 5, 000 |E| = 5 pos1 40,236.10 39,223.10 39,581.90 39,125.60 39,182.30 39,464.55
pos2 30,657.50 29,964.15 30,027.90 29,849.25 30,051.05 30,024.30
pos3 28,780.55 28,278.65 28,199.40 28,137.25 28,309.25 28,300.10

|E| = 10 pos1 42,183.45 39,490.70 39,764.00 39,226.30 39,446.15 39,489.50
pos2 33,003.00 31,739.45 31,589.60 31,840.60 31,604.95 31,583.70
pos3 29,643.60 28,229.15 28,301.50 28,349.95 28,377.30 28,295.15

|E| = 20 pos1 42,463.85 38,735.70 38,913.75 38,947.70 38,995.95 38,773.95
pos2 35,011.75 31,930.55 32,226.15 32,499.40 32,408.30 32,410.30
pos3 30,999.45 28,802.30 28,779.95 28,826.65 28,775.15 28,611.80

k = 10, 000 |E| = 5 pos1 72,895.95 71,571.70 71,601.15 70,885.50 71,445.25 71,750.10
pos2 59,325.50 58,191.95 58,100.65 57,992.35 58,319.10 58,097.45
pos3 56,877.10 56,139.55 55,879.70 55,802.75 55,954.40 55,927.35

|E| = 10 pos1 75,740.55 72,218.00 72,872.35 71,570.95 72,649.15 72,910.15
pos2 62,927.20 60,785.45 60,378.50 60,852.65 60,426.50 60,515.05
pos3 58,537.20 56,148.60 56,271.55 56,447.70 56,465.75 56,291.75

|E| = 20 pos1 74,031.25 70,241.60 70,746.50 71,107.25 70,713.70 70,407.65
pos2 65,723.30 60,716.15 61,204.25 61,433.30 61,473.00 61,330.70
pos3 60,752.15 56,980.00 56,980.25 56,973.70 56,801.65 56,545.30

D.1. Evaluation of Structural Events 253

Table D.3 shows the integral values obtained for the evaluation scenario described
in Chapter 8.3.6 for k ∈ {500, 1000, 5000, 10000}, |E| ∈ {10, 20, 50} and pos1 = 5, 000,
pos2 = 10, 000 and pos3 = 20, 000 on PM_01.

TABLE D.3: Evaluation of role assigment methods on PM_01.

ORFA AAR ARR GREEDY ABP ABS

k = 500 |E| = 10 pos1 23,853.70 23,360.20 23,395.90 23,378.25 23,388.90 23,376.70
pos2 21,680.70 21,222.40 21,255.10 21,234.85 21,237.40 21,241.00
pos3 15,751.05 15,320.25 15,297.80 15,318.40 15,297.80 15,298.40

|E| = 20 pos1 24,514.85 23,599.45 23,620.55 23,602.75 23,613.60 23,613.75
pos2 22,608.15 21,740.10 21,747.75 21,756.65 21,762.15 21,749.60
pos3 14,884.60 14,043.65 14,041.70 14,060.95 14,013.35 14,052.55

|E| = 50 pos1 25,641.95 23,357.75 23,364.05 23,368.45 23,371.15 23,354.40
pos2 23,594.80 21,427.40 21,440.90 21,419.15 21,413.40 21,416.55
pos3 17,445.10 15,290.75 15,273.50 15,314.10 15,244.10 15,265.55

k = 1, 000 |E| = 10 pos1 47,034.95 46,106.25 46,154.55 46,124.05 46,126.85 46,099.10
pos2 42,615.90 41,736.80 41,814.80 41,757.05 41,810.65 41,752.85
pos3 30,840.65 30,054.10 29,991.55 30,042.40 30,008.55 29,962.50

|E| = 20 pos1 48,314.10 46,550.45 46,622.75 46,585.30 46,608.10 46,603.25
pos2 44,432.30 42,792.90 42,809.50 42,847.05 42,793.50 42,792.35
pos3 28,991.70 27,501.80 27,437.60 27,497.60 27,378.50 27,507.10

|E| = 50 pos1 50,410.85 46,023.40 46,068.20 46,066.75 46,074.90 46,016.15
pos2 46,232.05 42,103.25 42,149.60 42,131.55 42,040.05 42,093.25
pos3 34,020.50 29,872.75 29,798.95 29,975.75 29,758.05 29,809.05

k = 5, 000 |E| = 10 pos1 223,936.45 219,598.55 220,577.55 219,790.45 220,279.55 220,393.95
pos2 196,633.30 193,214.10 195,156.95 193,390.75 195,055.95 193,303.70
pos3 139,324.40 137,484.10 137,440.40 137,294.35 137,693.80 136,724.70

|E| = 20 pos1 230,235.40 223,517.85 223,703.75 223,803.55 224,319.55 223,295.10
pos2 206,422.80 199,903.10 201,378.45 201,345.50 200,862.20 200,913.35
pos3 129,350.60 123,909.90 122,626.85 123,971.15 123,527.55 124,054.70

|E| = 50 pos1 235,917.60 218,269.00 219,370.00 218,808.00 217,739.20 217,107.50
pos2 211,004.30 193,071.45 194,272.55 193,942.75 193,112.70 192,958.40
pos3 151,150.60 133,832.30 133,941.15 133,740.30 133,307.35 134,089.15

k = 10, 000 |E| = 10 pos1 412,307.50 406,560.20 408,188.85 406,061.25 409,701.25 409,983.10
pos2 355,217.35 349,005.00 354,051.35 349,880.70 353,961.80 351,854.40
pos3 252,164.40 250,388.45 251,224.30 248,931.20 250,765.15 249,061.75

|E| = 20 pos1 426,058.10 419,263.45 418,459.05 422,869.35 425,072.75 419,454.90
pos2 368,891.70 363,211.95 368,050.90 365,173.30 367,189.25 365,738.05
pos3 232,302.20 225,330.10 223,389.00 225,002.40 224,542.30 226,119.30

|E| = 50 pos1 421,460.35 402,137.65 402,617.35 402,359.75 394,844.60 395,897.85
pos2 370,545.45 343,658.65 346,129.80 346,997.25 343,017.40 341,451.10
pos3 268,014.05 240,017.05 240,823.90 238,600.45 240,274.10 242,127.05

254 Appendix D. Evaluation of Dynamic Role Mining

D.1.2 Evaluation of Event (S01)

Tables D.4 and D.5 show the results of the evaluation of event S01, where a new user
joins the company, for ti ∈ {10000, 25000, 75000, 100000} and |E| ∈ {1, 2} on PS_02
according to the evaluation setup described in Chapter 8.3.7.

TABLE D.4: Evaluation of event S01 on PS_02 with |E| = 1.

Dynamic Role Mining Static Role Mining
ti 10,000 25,000 50,000 100,000 10,000 25,000 50,000 100,000

Roles (avg.) 35.75 36.45 35.45 36.80 41.90 38.20 36.90 37.35
Roles (min.) 30 29 29 31 34 29 31 32
Roles (max.) 46 40 42 43 47 42 43 43

Iterations 40,000 55,000 80,000 130,000 10,000 25,000 50,000 100,000

Time (s) (avg.) 482.35 621.05 759.20 1,114.85 178.48 350.97 519.78 875.99
Time (s) (min.) 391.00 509.00 622.00 1,009.00 138.97 273.63 409.27 795.81
Time (s) (max.) 567.00 726.00 951.00 1,257.00 216.65 429.90 660.29 1,000.47

Impact (avg.) 0.77 0.81 0.82 0.81 0.61 0.79 0.80 0.78

TABLE D.5: Evaluation of event S01 on PS_02 with |E| = 2.

Dynamic Role Mining Static Role Mining
ti 10,000 25,000 50,000 100,000 10,000 25,000 50,000 100,000

Roles (avg.) 38.70 40.45 39.10 40.90 45.55 42.20 40.95 42.20
Roles (min.) 32 34 29 34 41 34 30 35
Roles (max.) 44 48 46 46 50 47 48 46

Iterations 40,000 55,000 80,000 130,000 10,000 25,000 50,000 100,000

Time (s) (avg.) 501.05 579.85 814.85 1,096.35 182.82 319.00 550.59 862.30
Time (s) (min.) 434.00 465.00 658.00 788.00 151.73 229.21 419.77 600.17
Time (s) (max.) 622.00 741.00 930.00 1,322.00 215.64 388.52 625.20 1,063.45

Impact (avg.) 0.76 0.84 0.80 0.85 0.69 0.82 0.75 0.82

Figure D.1 shows the corresponding progression of roles for the comparison of static
and dynamic role mining for ti ∈ {10000, 25000, 75000, 100000} and |E| ∈ {1, 2} on
PS_02 according to the evaluation setup described in Chapter 8.3.7.

FIGURE D.1: Comparison of static and dynamic role mining for S01 on PS_02.

D.1. Evaluation of Structural Events 255

Tables D.6 and D.7 show the results of the evaluation of event S01, where a new user
joins the company, for ti ∈ {10000, 25000, 75000, 100000} and |E| ∈ {2, 4} on PS_05
according to the evaluation setup described in Chapter 8.3.7.

TABLE D.6: Evaluation of event S01 on PS_05 with |E| = 2.

Dynamic Role Mining Static Role Mining
ti 10,000 25,000 50,000 100,000 10,000 25,000 50,000 100,000

Roles (avg.) 55.50 54.25 53.70 54.40 67.75 56.10 54.90 55.20
Roles (min.) 51 50 50 50 55 52 51 51
Roles (max.) 62 61 59 60 78 62 60 61

Iterations 40,000 55,000 80,000 130,000 10,000 25,000 50,000 100,000

Time (s) (avg.) 322.20 413.50 574.10 866.65 100.81 197.40 359.04 654.87
Time (s) (min.) 286.00 364.00 523.00 778.00 87.41 167.15 316.88 576.44
Time (s) (max.) 345.00 457.00 631.00 978.00 117.76 238.51 405.71 747.08

Impact (avg.) 0.36 0.34 0.30 0.30 0.33 0.32 0.30 0.28

TABLE D.7: Evaluation of event S01 on PS_05 with |E| = 4.

Dynamic Role Mining Static Role Mining
ti 10,000 25,000 50,000 100,000 10,000 25,000 50,000 100,000

Roles (avg.) 55.15 55.45 55.50 55.85 71.75 58.95 57.80 58.85
Roles (min.) 49 51 50 51 60 54 54 52
Roles (max.) 63 63 60 64 88 69 64 66

Iterations 40,000 55,000 80,000 130,000 10,000 25,000 50,000 100,000

Time (s) (avg.) 342.55 422.50 584.90 872.55 106.89 196.30 359.41 650.06
Time (s) (min.) 308.00 387.00 538.00 818.00 82.62 169.15 316.13 598.88
Time (s) (max.) 388.00 465.00 659.00 985.00 130.79 232.37 424.60 751.55

Impact (avg.) 0.29 0.32 0.31 0.31 0.27 0.31 0.27 0.30

Figure D.2 shows the corresponding progression of roles for the comparison of static
and dynamic role mining for ti ∈ {10000, 25000, 75000, 100000} and |E| ∈ {2, 4} on
PS_05 according to the evaluation setup described in Chapter 8.3.7.

FIGURE D.2: Comparison of static and dynamic role mining for S01 on PS_05.

256 Appendix D. Evaluation of Dynamic Role Mining

Tables D.8 and D.9 show the results of the evaluation of event S01, where a new user
joins the company, for ti ∈ {10000, 25000, 75000, 100000} and |E| ∈ {5, 10} on PM_01
according to the evaluation setup described in Chapter 8.3.7.

TABLE D.8: Evaluation of event S01 on PM_01 with |E| = 5.

Dynamic Role Mining Static Role Mining
ti 10,000 25,000 50,000 100,000 10,000 25,000 50,000 100,000

Roles (avg.) 176.10 164.40 156.75 155.35 432.95 315.40 165.90 156.50
Roles (min.) 155 152 151 151 378 191 156 151
Roles (max.) 232 205 162 162 458 425 189 161

Iterations 40,000 55,000 80,000 130,000 10,000 25,000 50,000 100,000

Time (s) (avg.) 4,380.20 5,576.75 6,287.50 8,885.90 1,552.70 3,346.10 4,539.35 7,173.66
Time (s) (min.) 3,575.00 4,691.00 5,316.00 7,658.00 1,349.38 2,816.35 3,648.82 6,073.40
Time (s) (max.) 5,220.00 7,780.00 7,097.00 9,503.00 1,690.83 4,061.84 5,301.80 7,752.30

Impact (avg.) 0.01 0.03 0.03 0.03 0.01 0.02 0.03 0.03

TABLE D.9: Evaluation of event S01 on PM_01 with |E| = 10.

Dynamic Role Mining Static Role Mining
ti 10,000 25,000 50,000 100,000 10,000 25,000 50,000 100,000

Roles (avg.) 175.85 161.00 160.40 156.65 439.20 275.55 177.15 158.10
Roles (min.) 156 153 153 152 399 173 158 152
Roles (max.) 225 181 167 163 464 395 294 166

Iterations 40,000 55,000 80,000 130,000 10,000 25,000 50,000 100,000

Time (s) (avg.) 4,814.60 5,406.15 6,682.15 9,302.30 1,591.02 3,155.13 4,731.33 7,428.46
Time (s) (min.) 3,779.00 4,244.00 5,140.00 8,169.00 1,455.69 2,329.85 3,308.88 6,361.75
Time (s) (max.) 5,984.00 6,804.00 9,114.00 10,319.00 1,716.27 3,763.16 6,832.59 8,418.54

Impact (avg.) 0.01 0.03 0.05 0.05 0.01 0.03 0.05 0.04

Figure D.3 shows the corresponding progression of roles for the comparison of static
and dynamic role mining for ti ∈ {10000, 25000, 75000, 100000} and |E| ∈ {5, 10} on
PM_01 according to the evaluation setup described in Chapter 8.3.7.

FIGURE D.3: Comparison of static and dynamic role mining for S01 on PM_01.

D.1. Evaluation of Structural Events 257

D.1.3 Evaluation of Event (S02)

Tables D.10 and D.11 show the results of the evaluation of event S02, where a user
leaves the company, for ti ∈ {10000, 25000, 75000, 100000} and |E| ∈ {1, 2} on
PS_02 according to the evaluation setup described in Chapter 8.3.7.

TABLE D.10: Evaluation of event S02 on PS_02 with |E| = 1.

Dynamic Role Mining Static Role Mining
ti 10,000 25,000 50,000 100,000 10,000 25,000 50,000 100,000

Roles (avg.) 33.20 32.85 32.55 32.30 40.30 35.30 33.90 33.85
Roles (min.) 28 29 28 27 34 29 30 29
Roles (max.) 37 36 36 38 45 40 37 40

Iterations 40,000 55,000 80,000 130,000 10,000 25,000 50,000 100,000

Time (s) (avg.) 470.75 574.20 779.50 1,149.95 186.76 343.07 562.92 939.33
Time (s) (min.) 387.00 504.00 588.00 872.00 148.32 279.37 463.56 709.62
Time (s) (max.) 591.00 740.00 989.00 1,684.00 223.49 482.74 697.14 1,406.47

Impact (avg.) -0.10 -0.08 -0.11 -0.23 0.00 0.00 0.00 0.00

TABLE D.11: Evaluation of event S02 on PS_02 with |E| = 2.

Dynamic Role Mining Static Role Mining
ti 10,000 25,000 50,000 100,000 10,000 25,000 50,000 100,000

Roles (avg.) 30.25 30.15 29.70 29.15 39.95 34.00 33.45 32.35
Roles (min.) 27 27 25 27 34 27 29 27
Roles (max.) 33 32 32 31 43 38 37 39

Iterations 40,000 55,000 80,000 130,000 10,000 25,000 50,000 100,000

Time (s) (avg.) 406.95 557.00 714.70 1,127.50 182.66 348.38 516.60 927.43
Time (s) (min.) 323.00 439.00 573.00 862.00 151.65 277.22 418.24 729.18
Time (s) (max.) 518.00 754.00 807.00 1,363.00 225.75 482.38 577.58 1,119.36

Impact (avg.) -0.21 -0.15 -0.26 -0.20 0.00 0.00 0.00 0.00

Figure D.4 shows the corresponding progression of roles for the comparison of static
and dynamic role mining for ti ∈ {10000, 25000, 75000, 100000} and |E| ∈ {1, 2} on
PS_02 according to the evaluation setup described in Chapter 8.3.7.

FIGURE D.4: Comparison of static and dynamic role mining for S02 on PS_02.

258 Appendix D. Evaluation of Dynamic Role Mining

Tables D.12 and D.13 show the results of the evaluation of event S02, where a user
leaves the company, for ti ∈ {10000, 25000, 75000, 100000} and |E| ∈ {2, 4} on
PS_05 according to the evaluation setup described in Chapter 8.3.7.

TABLE D.12: Evaluation of event S02 on PS_05 with |E| = 2.

Dynamic Role Mining Static Role Mining
ti 10,000 25,000 50,000 100,000 10,000 25,000 50,000 100,000

Roles (avg.) 52.40 51.45 51.65 51.05 65.95 53.00 52.70 52.45
Roles (min.) 49 49 50 49 55 50 50 49
Roles (max.) 55 57 53 55 78 59 57 58

Iterations 40,000 55,000 80,000 130,000 10,000 25,000 50,000 100,000

Time (s) (avg.) 306.35 399.45 556.00 839.10 104.78 202.72 363.27 643.78
Time (s) (min.) 281.00 369.00 504.00 750.00 86.75 177.48 322.47 574.25
Time (s) (max.) 341.00 454.00 669.00 920.00 121.08 248.07 460.77 711.54

Impact (avg.) -0.12 -0.08 -0.10 -0.14 0.00 0.00 0.00 0.00

TABLE D.13: Evaluation of event S02 on PS_05 with |E| = 4.

Dynamic Role Mining Static Role Mining
ti 10,000 25,000 50,000 100,000 10,000 25,000 50,000 100,000

Roles (avg.) 50.00 49.80 49.55 49.75 67.45 53.00 52.60 52.90
Roles (min.) 47 46 45 47 59 49 50 49
Roles (max.) 52 53 55 53 80 58 60 57

Iterations 40,000 55,000 80,000 130,000 10,000 25,000 50,000 100,000

Time (s) (avg.) 297.90 395.65 535.05 835.00 104.71 208.47 350.40 652.73
Time (s) (min.) 258.00 353.00 488.00 768.00 90.06 186.27 313.72 599.02
Time (s) (max.) 351.00 439.00 602.00 928.00 133.40 246.82 408.85 737.58

Impact (avg.) -0.13 -0.12 -0.13 -0.15 0.00 0.00 0.00 0.00

Figure D.5 shows the corresponding progression of roles for the comparison of static
and dynamic role mining for ti ∈ {10000, 25000, 75000, 100000} and |E| ∈ {2, 4} on
PS_05 according to the evaluation setup described in Chapter 8.3.7.

FIGURE D.5: Comparison of static and dynamic role mining for S02 on PS_05.

D.1. Evaluation of Structural Events 259

Tables D.14 and D.15 show the results of the evaluation of event S02, where a user
leaves the company, for ti ∈ {10000, 25000, 75000, 100000} and |E| ∈ {5, 10} on
PM_01 according to the evaluation setup described in Chapter 8.3.7.

TABLE D.14: Evaluation of event S02 on PM_01 with |E| = 5.

Dynamic Role Mining Static Role Mining
ti 10,000 25,000 50,000 100,000 10,000 25,000 50,000 100,000

Roles (avg.) 178.35 165.50 156.90 154.85 436.65 306.45 166.25 156.65
Roles (min.) 160 156 153 150 400 207 154 150
Roles (max.) 217 187 161 161 455 429 188 167

Iterations 40,000 55,000 80,000 130,000 10,000 25,000 50,000 100,000

Time (s) (avg.) 4,143.90 5,189.00 6,166.40 9,329.40 1,529.94 3,201.30 4,534.60 7,610.53
Time (s) (min.) 3,433.00 4,207.00 5,374.00 8,067.00 1,351.03 2,518.53 3,815.67 6,460.49
Time (s) (max.) 4,944.00 6,596.00 7,326.00 11,215.00 1,653.76 3,851.07 5,543.58 9,491.67

Impact (avg.) -0.04 -0.03 -0.02 -0.02 0.00 0.00 0.00 0.00

TABLE D.15: Evaluation of event S02 on PM_01 with |E| = 10.

Dynamic Role Mining Static Role Mining
ti 10,000 25,000 50,000 100,000 10,000 25,000 50,000 100,000

Roles (avg.) 195.40 160.95 156.70 154.50 436.50 279.15 183.50 156.05
Roles (min.) 160 154 152 151 379 191 157 152
Roles (max.) 395 179 165 158 464 389 294 160

Iterations 40,000 55,000 80,000 130,000 10,000 25,000 50,000 100,000

Time (s) (avg.) 4,403.15 5,078.20 6,703.65 8,908.60 1,536.56 3,122.14 4,976.91 7,198.87
Time (s) (min.) 3,476.00 4,147.00 5,418.00 8,015.00 1,345.56 2,470.43 3,790.24 6,434.67
Time (s) (max.) 6,328.00 6,562.00 8,560.00 10,762.00 1,737.64 3,820.00 6,558.62 9,012.91

Impact (avg.) -0.02 -0.03 -0.03 -0.02 0.00 0.00 0.00 0.0

Figure D.6 shows the corresponding progression of roles for the comparison of static
and dynamic role mining for ti ∈ {10000, 25000, 75000, 100000} and |E| ∈ {5, 10} on
PM_01 according to the evaluation setup described in Chapter 8.3.7.

FIGURE D.6: Comparison of static and dynamic role mining for S02 on PM_01.

260 Appendix D. Evaluation of Dynamic Role Mining

D.1.4 Evaluation of Event (S03)

Tables D.16 and D.17 show the results of the evaluation of event S03, where a user
changes his or her position within the company, for ti ∈ {10000, 25000, 75000, 100000}
and |E| ∈ {1, 2} on PS_02 according to the evaluation setup described in Chap-
ter 8.3.7.

TABLE D.16: Evaluation of event S03 on PS_02 with |E| = 1.

Dynamic Role Mining Static Role Mining
ti 10,000 25,000 50,000 100,000 10,000 25,000 50,000 100,000

Roles (avg.) 36.65 35.90 35.50 36.50 44.35 39.45 37.35 37.60
Roles (min.) 31 32 31 30 40 34 34 30
Roles (max.) 41 40 40 41 51 42 41 43

Iterations 40,000 55,000 80,000 130,000 10,000 25,000 50,000 100,000

Time (s) (avg.) 506.35 574.15 772.80 1,082.65 191.25 333.00 548.03 866.65
Time (s) (min.) 365.00 437.00 633.00 848.00 142.20 263.16 435.55 686.58
Time (s) (max.) 683.00 711.00 879.00 1,223.00 224.54 421.29 646.44 1,004.29

Impact (avg.) 0.73 0.66 0.59 0.7 0.69 0.83 0.77 0.81

TABLE D.17: Evaluation of event S03 on PS_02 with |E| = 2.

Dynamic Role Mining Static Role Mining
ti 10,000 25,000 50,000 100,000 10,000 25,000 50,000 100,000

Roles (avg.) 37.15 37.05 36.70 37.15 46.35 41.45 40.90 40.90
Roles (min.) 34 31 30 28 42 35 32 32
Roles (max.) 42 41 40 43 51 49 46 46

Iterations 40,000 55,000 80,000 130,000 10,000 25,000 50,000 100,000

Time (s) (avg.) 446.45 572.25 765.30 1,141.85 184.36 341.81 543.79 930.03
Time (s) (min.) 379.00 487.00 577.00 863.00 144.45 274.23 416.93 697.65
Time (s) (max.) 526.00 680.00 911.00 1,361.00 211.99 406.15 695.87 1,140.82

Impact (avg.) 0.66 0.64 0.64 0.63 0.65 0.72 0.78 0.80

Figure D.7 shows the corresponding progression of roles for the comparison of static
and dynamic role mining for ti ∈ {10000, 25000, 75000, 100000} and |E| ∈ {1, 2} on
PS_02 according to the evaluation setup described in Chapter 8.3.7.

FIGURE D.7: Comparison of static and dynamic role mining for S03 on PS_02.

D.1. Evaluation of Structural Events 261

Tables D.18 and D.19 show the results of the evaluation of event S03, where a user
changes his or her position within the company, for ti ∈ {10000, 25000, 75000, 100000}
and |E| ∈ {2, 4} on PS_05 according to the evaluation setup described in Chap-
ter 8.3.7.

TABLE D.18: Evaluation of event S03 on PS_05 with |E| = 2.

Dynamic Role Mining Static Role Mining
ti 10,000 25,000 50,000 100,000 10,000 25,000 50,000 100,000

Roles (avg.) 54.35 54.00 54.30 53.75 68.00 56.75 57.00 55.15
Roles (min.) 50 50 50 50 58 52 52 50
Roles (max.) 61 59 58 58 85 63 64 63

Iterations 40,000 55,000 80,000 130,000 10,000 25,000 50,000 100,000

Time (s) (avg.) 323.7 417.25 557.25 869.35 107.03 212.38 354.18 660.39
Time (s) (min.) 269.00 356.00 490.00 816.00 86.16 164.15 296.47 616.93
Time (s) (max.) 402.00 459.00 635.00 927.00 130.26 241.81 426.51 707.03

Impact (avg.) 0.22 0.28 0.21 0.24 0.28 0.32 0.34 0.28

TABLE D.19: Evaluation of event S03 on PS_05 with |E| = 4.

Dynamic Role Mining Static Role Mining
ti 10,000 25,000 50,000 100,000 10,000 25,000 50,000 100,000

Roles (avg.) 55.35 55.75 54.45 54.40 68.35 58.55 59.00 57.60
Roles (min.) 51 52 51 50 59 54 54 52
Roles (max.) 61 60 59 60 83 64 68 64

Iterations 40,000 55,000 80,000 130,000 10,000 25,000 50,000 100,000

Time (s) (avg.) 317.05 416.35 559.35 862.85 103.24 207.51 356.27 655.27
Time (s) (min.) 280.00 361.00 512.00 758.00 75.20 167.12 306.99 562.97
Time (s) (max.) 372.00 452.00 638.00 932.00 132.15 243.39 432.62 713.20

Impact (avg.) 0.26 0.26 0.20 0.24 0.26 0.29 0.29 0.26

Figure D.8 shows the corresponding progression of roles for the comparison of static
and dynamic role mining for ti ∈ {10000, 25000, 75000, 100000} and |E| ∈ {2, 4} on
PS_05 according to the evaluation setup described in Chapter 8.3.7.

FIGURE D.8: Comparison of static and dynamic role mining for S03 on PS_05.

262 Appendix D. Evaluation of Dynamic Role Mining

Tables D.20 and D.21 show the results of the evaluation of event S03, where a user
changes his or her position within the company, for ti ∈ {10000, 25000, 75000, 100000}
and |E| ∈ {5, 10} on PM_01 according to the evaluation setup described in Chap-
ter 8.3.7.

TABLE D.20: Evaluation of event S03 on PM_01 with |E| = 5.

Dynamic Role Mining Static Role Mining
ti 10,000 25,000 50,000 100,000 10,000 25,000 50,000 100,000

Roles (avg.) 198.50 163.40 157.85 155.70 435.05 295.10 169.70 157.00
Roles (min.) 159 155 152 150 372 161 158 153
Roles (max.) 312 195 164 166 457 433 190 168

Iterations 40,000 55,000 80,000 130,000 10,000 25,000 50,000 100,000

Time (s) (avg.) 4,538.30 5,343.25 6,621.85 9,006.60 1,519.77 3,179.77 4,849.39 7,228.76
Time (s) (min.) 3,424.00 3,901.00 5,634.00 8,003.00 1,319.78 2,203.84 3,884.55 6,264.29
Time (s) (max.) 5,754.00 7,319.00 7,935.00 10,229.00 1,597.86 4,064.75 5,988.10 8,326.37

Impact (avg.) 0.01 0.01 0.03 0.04 0.03 0.03 0.05 0.04

TABLE D.21: Evaluation of event S03 on PM_01 with |E| = 10.

Dynamic Role Mining Static Role Mining
ti 10,000 25,000 50,000 100,000 10,000 25,000 50,000 100,000

Roles (avg.) 184.25 163.25 157.60 155.80 439.75 310.30 173.20 157.65
Roles (min.) 160 154 152 151 399 225 156 152
Roles (max.) 272 171 162 165 462 379 210 168

Iterations 40,000 55,000 80,000 130,000 10,000 25,000 50,000 100,000

Time (s) (avg.) 5,056.80 5,630.10 6,692.80 8,918.60 1,565.36 3,245.37 4,737.44 7,023.12
Time (s) (min.) 3,994.00 4,879.00 5,683.00 7,364.00 1,419.88 2,753.66 3,723.66 5,661.00
Time (s) (max.) 6,625.00 6,380.00 8,016.00 10,872.00 1,751.47 3,689.42 5,853.04 8,854.06

Impact (avg.) 0.02 0.02 0.03 0.04 0.01 0.03 0.04 0.04

Figure D.9 shows the corresponding progression of roles for the comparison of static
and dynamic role mining for ti ∈ {10000, 25000, 75000, 100000} and |E| ∈ {5, 10} on
PM_01 according to the evaluation setup described in Chapter 8.3.7.

FIGURE D.9: Comparison of static and dynamic role mining for S03 on PM_01.

D.1. Evaluation of Structural Events 263

D.1.5 Evaluation of Event (S04)

Tables D.22 and D.23 show the results of the evaluation of event S04, where a user
requests additional permissions, for ti ∈ {10000, 25000, 75000, 100000} and |E| ∈
{1, 2} on PS_02 according to the evaluation setup described in Chapter 8.3.7.

TABLE D.22: Evaluation of event S04 on PS_02 with |E| = 1.

Dynamic Role Mining Static Role Mining
ti 10,000 25,000 50,000 100,000 10,000 25,000 50,000 100,000

Roles (avg.) 37.15 37.05 37.35 36.50 43.95 39.35 38.95 37.85
Roles (min.) 34 33 33 35 38 34 33 35
Roles (max.) 42 41 42 39 49 46 44 43

Iterations 40,000 55,000 80,000 130,000 10,000 25,000 50,000 100,000

Time (s) (avg.) 453.00 707.15 945.05 1,135.75 179.05 412.33 667.59 913.19
Time (s) (min.) 359.00 567.00 732.00 803.00 127.81 304.26 499.52 656.23
Time (s) (max.) 569.00 879.00 1,168.00 1,515.00 225.16 527.22 853.24 1,228.96

Impact (avg.) 0.96 0.98 0.96 0.93 0.98 0.99 0.99 1.00

TABLE D.23: Evaluation of event S04 on PS_02 with |E| = 2.

Dynamic Role Mining Static Role Mining
ti 10,000 25,000 50,000 100,000 10,000 25,000 50,000 100,000

Roles (avg.) 41.05 40.05 39.45 39.65 49.25 44.80 42.80 42.65
Roles (min.) 37 38 37 37 45 41 40 37
Roles (max.) 45 42 42 42 52 50 47 46

Iterations 40,000 55,000 80,000 130,000 10,000 25,000 50,000 100,000

Time (s) (avg.) 468.10 696.00 865.25 1,056.75 194.01 417.59 609.98 850.45
Time (s) (min.) 387.00 528.00 711.00 806.00 156.03 316.65 526.57 657.16
Time (s) (max.) 688.00 859.00 1,064.00 1,270.00 286.51 541.55 736.72 1,033.24

Impact (avg.) 0.95 0.96 0.97 0.97 0.91 0.98 0.98 1.00

Figure D.10 shows the corresponding progression of roles for the comparison of
static and dynamic role mining for ti ∈ {10000, 25000, 75000, 100000} and |E| ∈
{1, 2} on PS_02 according to the evaluation setup described in
Chapter 8.3.7.

FIGURE D.10: Comparison of static and dynamic role mining for S04 on PS_02.

264 Appendix D. Evaluation of Dynamic Role Mining

Tables D.24 and D.25 show the results of the evaluation of event S04, where a user
requests additional permissions, for ti ∈ {10000, 25000, 75000, 100000} and |E| ∈
{2, 4} on PS_05 according to the evaluation setup described in Chapter 8.3.7.

TABLE D.24: Evaluation of event S04 on PS_05 with |E| = 2.

Dynamic Role Mining Static Role Mining
ti 10,000 25,000 50,000 100,000 10,000 25,000 50,000 100,000

Roles (avg.) 61.65 61.25 61.50 61.65 71.7 63.50 62.65 62.75
Roles (min.) 59 59 59 58 64 59 60 59
Roles (max.) 66 65 64 66 88 68 65 68

Iterations 40,000 55,000 80,000 130,000 10,000 25,000 50,000 100,000

Time (s) (avg.) 314.4 420.55 563.00 862.60 101.73 211.63 356.98 651.74
Time (s) (min.) 286.00 370.00 501.00 755.00 84.12 167.06 308.84 559.95
Time (s) (max.) 365.00 479.00 628.00 944.00 124.97 250.02 412.06 718.57

Impact (avg.) 0.98 0.99 0.99 0.98 0.98 1.00 1.00 1.00

TABLE D.25: Evaluation of event S04 on PS_05 with |E| = 4.

Dynamic Role Mining Static Role Mining
ti 10,000 25,000 50,000 100,000 10,000 25,000 50,000 100,000

Roles (avg.) 70.80 70.05 69.80 69.65 84.70 73.45 72.45 72.05
Roles (min.) 68 68 67 67 75 71 69 70
Roles (max.) 75 73 73 72 96 76 78 75

Iterations 40,000 55,000 80,000 130,000 10,000 25,000 50,000 100,000

Time (s) (avg.) 321.60 423.20 575.10 868.05 103.92 211.02 362.56 658.00
Time (s) (min.) 276.00 361.00 520.00 787.00 80.80 166.52 321.53 593.16
Time (s) (max.) 364.00 500.00 626.00 959.00 124.69 270.34 402.97 734.02

Impact (avg.) 0.98 0.99 0.98 0.99 0.92 1.00 1.00 1.00

Figure D.11 shows the corresponding progression of roles for the comparison of
static and dynamic role mining for ti ∈ {10000, 25000, 75000, 100000} and |E| ∈
{2, 4} on PS_05 according to the evaluation setup described in
Chapter 8.3.7.

FIGURE D.11: Comparison of static and dynamic role mining for S04 on PS_05.

D.1. Evaluation of Structural Events 265

Tables D.26 and D.27 show the results of the evaluation of event S04, where a user
requests additional permissions, for ti ∈ {10000, 25000, 75000, 100000} and |E| ∈
{5, 10} on PM_01 according to the evaluation setup described in Chapter8.3.7.

TABLE D.26: Evaluation of event S04 on PM_01 with |E| = 5.

Dynamic Role Mining Static Role Mining
ti 10,000 25,000 50,000 100,000 10,000 25,000 50,000 100,000

Roles (avg.) 211.35 193.05 181.80 179.70 461.10 321.00 190.95 181.00
Roles (min.) 183 178 176 177 445 211 181 177
Roles (max.) 260 261 189 189 477 439 209 190

Iterations 40,000 55,000 80,000 130,000 10,000 25,000 50,000 100,000

Time (s) (avg.) 4,677.55 5,423.70 6,416.70 8,541.05 1,541.14 3,151.63 4,553.21 1,477.73
Time (s) (min.) 3,833.00 4,261.00 5,686.00 7,271.00 1,399.57 2,393.19 3,887.47 1,186.28
Time (s) (max.) 5,969.00 6,727.00 7,519.00 9,831.00 1,649.19 3,763.84 5,580.47 1,680.73

Impact (avg.) 0.93 0.98 1.00 1.00 0 83 0.98 1.00 1.00

TABLE D.27: Evaluation of event S04 on PM_01 with |E| = 10.

Dynamic Role Mining Static Role Mining
ti 10,000 25,000 50,000 100,000 10,000 25,000 50,000 100,000

Roles (avg.) 236.65 212.30 207.45 203.85 464.25 321.90 216.60 205.70
Roles (min.) 207 205 203 201 387 214 207 202
Roles (max.) 348 231 211 208 495 439 236 211

Iterations 40,000 55,000 80,000 130,000 10,000 25,000 50,000 100,000

Time (s) (avg.) 4,889.30 5,465.90 6,686.60 8,643.05 1,480.69 2,986.32 4,501.81 6,679.14
Time (s) (min.) 3,685.00 4,273.00 5,928.00 7,830.00 1,248.39 2,138.39 3,942.45 5,868.51
Time (s) (max.) 6,316.00 6,727.00 7,710.00 9,845.00 1,639.19 3,634.73 5,487.97 7,794.29

Impact (avg.) 0.93 0.99 0 99 0.99 0.83 0.99 1.00 1.00

Figure D.12 shows the corresponding progression of roles for the comparison of
static and dynamic role mining for ti ∈ {10000, 25000, 75000, 100000} and |E| ∈
{5, 10} on PM_01 according to the evaluation setup described in
Chapter 8.3.7.

FIGURE D.12: Comparison of static and dynamic role mining for S04 on PM_01.

266 Appendix D. Evaluation of Dynamic Role Mining

D.2 Evaluation of Interaction Events

In the following, the results of the experiments evaluating the dynamic events I01
and I02 as well as the developed survival strategies are presented.

D.2.1 Evaluation of Event (I01)

Tables D.28 and D.29 show the results of the evaluation of interaction event I01,
where good roles are added to the optimization process, for ti ∈ {5000, 10000} and
|E| ∈ {3, 5} on PS_02 according to the evaluation setup described in Chapter 8.4.2.

TABLE D.28: Evaluation of interaction event I01 for t1 = 5, 000 on PS_02.

|E| = 0 |E| = 3 |E| = 0 |E| = 5

Roles (avg.) 31.30 30.95 33.55 32.05
Roles (min.) 28 27 26 27
Roles (max.) 42 36 44 43

Iterations (avg.) 35,612.50 35,612.50 31,105.00 31,105.00
Iterations (min.) 18,760 18,760 13,340 13,340
Iterations (max.) 50,290 50,290 46,730 46,730

Time (s) (avg.) 582.51 530.36 528.08 474.58
Time (s) (min.) 408.88 358.33 327.26 306.93
Time (s) (max.) 831.28 673.39 753.10 650.07

TABLE D.29: Evaluation of interaction event I01 for t2 = 10, 000 on PS_02.

|E| = 0 |E| = 3 |E| = 0 |E| = 5

Roles (avg.) 30.85 31.65 30.85 30.40
Roles (min.) 26 28 27 28
Roles (max.) 37 34 35 33

Iterations (avg.) 38,062.00 38,062.00 35,730.50 35,730.50
Iterations (min.) 26,000 26,000 25,900 25,900
Iterations (max.) 61,000 61,000 49,130 49,130

Time (s) (avg.) 614.36 596.39 580.01 552.42
Time (s) (min.) 426.13 421.66 414.99 442.73
Time (s) (max.) 943.56 889.15 756.31 738.93

Figure D.13 and D.14 show the progression of roles for ti ∈ {5000, 10000} and |E| ∈
{3, 5} on PS_02 according to the evaluation setup described in Chapter 8.4.2.

FIGURE D.13: Evaluation of interaction event I01 for t1 = 5, 000 on PS_02.

D.2. Evaluation of Interaction Events 267

FIGURE D.14: Evaluation of interaction event I01 for t2 = 10, 000 on PS_02.

Tables D.30 and D.31 show the results of the evaluation of interaction event I01 for
ti ∈ {5000, 10000} and |E| ∈ {5, 10} on PS_05 according to the evaluation setup
described in Chapter 8.4.2.

TABLE D.30: Evaluation of interaction event I01 for t1 = 5, 000 on PS_05.

|E| = 0 |E| = 5 |E| = 0 |E| = 10

Roles (avg.) 50.15 50.45 50.80 50.15
Roles (min.) 49 49 49 49
Roles (max.) 52 54 53 52

Iterations (avg.) 31,186.50 31,186.50 31,128.00 31,128.00
Iterations (min.) 23,120 23,120 22,530 22,530
Iterations (max.) 41,330 41,330 43,610 43,610

Time (s) (avg.) 270.62 261.22 287.45 268.11
Time (s) (min.) 192.37 196.46 211.41 199.89
Time (s) (max.) 352.14 326.48 431.46 372.37

TABLE D.31: Evaluation of interaction event I01 for t2 = 10, 000 on PS_05.

|E| = 0 |E| = 5 |E| = 0 |E| = 10

Roles (avg.) 50.30 50.10 49.95 50.30
Roles (min.) 49 49 49 49
Roles (max.) 52 52 52 52

Iterations (avg.) 30,067.50 30,067.50 30,441.50 30,441.50
Iterations (min.) 24,770 24,770 20,720 20,720
Iterations (max.) 37,120 37,120 46,490 46,490

Time (s) (avg.) 269.25 270.58 274.59 269.99
Time (s) (min.) 213.96 221.62 185.50 208.97
Time (s) (max.) 329.73 330.21 417.23 394.95

268 Appendix D. Evaluation of Dynamic Role Mining

Figure D.15 and D.16 show the progression of roles for ti ∈ {5000, 10000} and |E| ∈
{5, 10} on PS_05 according to the evaluation setup described in Chapter 8.4.2.

FIGURE D.15: Evaluation of interaction event I01 for t1 = 5, 000 on PS_05.

FIGURE D.16: Evaluation of interaction event I01 for t2 = 10, 000 on PS_05.

Tables D.32 and D.33 show the results of the evaluation of interaction event I01 for
ti ∈ {5000, 10000} and |E| ∈ {20, 30} on PM_01 according to the evaluation setup
described in Chapter 8.4.2.

TABLE D.32: Evaluation of interaction event I01 for t1 = 5, 000 on PM_01.

|E| = 0 |E| = 20 |E| = 0 |E| = 30

Roles (avg.) 153.25 153.00 152.70 152.55
Roles (min.) 150 150 150 151
Roles (max.) 157 159 157 155

Iterations (avg.) 48,826.00 48,826.00 49,251.50 49,251.50
Iterations (min.) 35,370 35,370 34,980 34,980
Iterations (max.) 63,180 63,180 63,610 63,610

Time (s) (avg.) 4,817.32 4,381.69 4,884.35 4,314.16
Time (s) (min.) 3,616.48 3,419.47 3,791.06 3,328.83
Time (s) (max.) 5,839.11 5,470.72 5,949.05 5,337.59

D.2. Evaluation of Interaction Events 269

TABLE D.33: Evaluation of interaction event I01 for t2 = 10, 000 on PM_01.

|E| = 0 |E| = 20 |E| = 0 |E| = 30

Roles (avg.) 153.00 152.70 152.45 152.25
Roles (min.) 150 150 151 150
Roles (max.) 158 156 155 157

Iterations (avg.) 48,565.50 48,565.50 50,674.50 50,674.50
Iterations (min.) 36,400 36,400 32,160 32,160
Iterations (max.) 63,520 63,520 70,570 70,570

Time (s) (avg.) 4,966.74 4,803.35 4,905.11 4,749.95
Time (s) (min.) 4,134.09 3,952.95 3,667.45 3,581.17
Time (s) (max.) 6,741.74 6,168.48 6,472.82 6,272.14

Figure D.17 and D.18 show the progression of roles for ti ∈ {5000, 10000} and |E| ∈
{20, 30} on PM_01 according to the evaluation setup described in Chapter 8.4.2.

FIGURE D.17: Evaluation of interaction event I01 for t1 = 5, 000 on PM_01.

FIGURE D.18: Evaluation of interaction event I01 for t2 = 10, 000 on PM_01.

270 Appendix D. Evaluation of Dynamic Role Mining

D.2.2 Evaluation of Event (I02)

Tables D.34 and D.35 show the results of the evaluation of interaction event I02,
where bad roles are deleted from the optimization process, for ti ∈ {5000, 10000} and
|E| ∈ {3, 5} on PS_02 according to the evaluation setup described in Chapter 8.4.3.

TABLE D.34: Evaluation of interaction event I02 for t1 = 5, 000 on PS_02.

(R1) (R2) (R1) (R2)
|E| = 0 |E| = 3 |E| = 3 |E| = 0 |E| = 5 |E| = 5

Roles (avg.) 30.35 30.40 29.60 30.65 29.55 30.60
Roles (min.) 27 27 26 29 27 27
Roles (max.) 33 35 34 33 32 34

Iterations 100,000 100,000 100,000 100,000 100,000 100,000

Time (s) (avg.) 1,256.97 1,218.71 1,217.28 1,205.23 1,204.44 1,202.80
Time (s) (min.) 1,091.90 1,152.98 1,058.42 1,072.32 1,040.01 1,041.85
Time (s) (max.) 2,396.34 1,344.21 1,317.56 1,349.25 1,328.10 1,352.39

TABLE D.35: Evaluation of interaction event I02 for t2 = 10, 000 on PS_02.

(R1) (R2) (R1) (R2)
|E| = 0 |E| = 3 |E| = 3 |E| = 0 |E| = 5 |E| = 5

Roles (avg.) 29.50 29.90 29.90 30.60 30.60 30.30
Roles (min.) 26 28 27 25 27 28
Roles (max.) 33 32 34 36 34 34

Iterations 100,000 100,000 100,000 100,000 100,000 100,000

Time (s) (avg.) 1,199.96 1,178.74 1,210.07 1,254.57 1,246.42 1,261.57
Time (s) (min.) 1,092.10 1,083.43 1,058.55 1,135.95 1,092.65 1,131.09
Time (s) (max.) 1,361.94 1,250.72 1,348.72 1,381.23 1,386.60 1,367.50

Figure D.19 and D.20 show the progression of roles for ti ∈ {5000, 10000} and |E| ∈
{3, 5} on PS_02 according to the evaluation setup described in Chapter 8.4.3.

FIGURE D.19: Evaluation of interaction event I02 for t1 = 5, 000 on PS_02.

D.2. Evaluation of Interaction Events 271

FIGURE D.20: Evaluation of interaction event I02 for t2 = 10, 000 on PS_02.

Tables D.36 and D.37 show the results of the evaluation of interaction event I02 for
ti ∈ {5000, 10000} and |E| ∈ {5, 10} on PS_05 according to the evaluation setup
described in Chapter 8.4.3.

TABLE D.36: Evaluation of interaction event I02 for t1 = 5, 000 on PS_05.

(R1) (R2) (R1) (R2)
|E| = 0 |E| = 5 |E| = 5 |E| = 0 |E| = 10 |E| = 10

Roles (avg.) 50.25 50.15 49.90 50.15 50.10 50.45
Roles (min.) 49 49 49 49 49 49
Roles (max.) 53 53 52 52 53 54

Iterations 100,000 100,000 100,000 100,000 100,000 100,000

Time (s) (avg.) 761.46 796.75 761.33 762.43 764.77 759.69
Time (s) (min.) 735.37 734.42 711.30 731.15 734.61 732.22
Time (s) (max.) 801.54 1,450.56 796.41 900.40 886.76 882.34

TABLE D.37: Evaluation of interaction event I02 for t2 = 10, 000 on PS_05.

(R1) (R2) (R1) (R2)
|E| = 0 |E| = 5 |E| = 5 |E| = 0 |E| = 10 |E| = 10

Roles (avg.) 49.80 50.35 49.85 50.05 50.30 50.05
Roles (min.) 49 49 49 49 49 49
Roles (max.) 51 53 53 52 53 54

Iterations 100,000 100,000 100,000 100,000 100,000 100,000

Time (s) (avg.) 767.60 766.51 768.30 763.92 764.81 764.54
Time (s) (min.) 736.39 733.58 740.79 741.55 738.76 738.04
Time (s) (max.) 800.07 804.35 799.61 800.54 788.92 793.62

272 Appendix D. Evaluation of Dynamic Role Mining

Figure D.21 and D.22 show the progression of roles for ti ∈ {5000, 10000} and |E| ∈
{5, 10} on PS_05 according to the evaluation setup described in Chapter 8.4.3.

FIGURE D.21: Evaluation of interaction event I02 for t1 = 5, 000 on PS_05.

FIGURE D.22: Evaluation of interaction event I02 for t2 = 10, 000 on PS_05.

Tables D.38 and D.39 show the results of the evaluation of interaction event I02 for
ti ∈ {5000, 10000} and |E| ∈ {20, 30} on PM_01 according to the evaluation setup
described in Chapter 8.4.3.

TABLE D.38: Evaluation of interaction event I02 for t1 = 5, 000 on PM_01.

(R1) (R2) (R1) (R2)
|E| = 0 |E| = 20 |E| = 20 |E| = 0 |E| = 30 |E| = 30

Roles (avg.) 151.85 151.25 151.55 151.55 151.90 151.95
Roles (min.) 150 150 150 150 150 150
Roles (max.) 155 154 155 154 154 155

Iterations 100,000 100,000 100,000 100,000 100,000 100,000

Time (s) (avg.) 8,493.22 8,519.14 8,525.81 8,358.92 8,386.25 8,414.15
Time (s) (min.) 8,198.97 8,073.01 8,067.46 7,947.24 8,030.91 8,075.64
Time (s) (max.) 9,089.80 9,181.33 9,307.51 8,964.75 8,974.05 8,880.98

D.2. Evaluation of Interaction Events 273

TABLE D.39: Evaluation of interaction event I02 for t2 = 10, 000 on PM_01.

(R1) (R2) (R1) (R2)
|E| = 0 |E| = 20 |E| = 20 |E| = 0 |E| = 30 |E| = 30

Roles (avg.) 151.35 152.10 151.10 151.30 151.15 151.60
Roles (min.) 150 150 150 150 150 150
Roles (max.) 154 156 155 153 153 154

Iterations 100,000 100,000 100,000 100,000 100,000 100,000

Time (s) (avg.) 8,462.20 8,442.80 8,485.54 7,799.03 7,844.72 7,827.55
Time (s) (min.) 7,923.66 7,874.94 7,847.55 7,288.09 7,328.54 7,286.23
Time (s) (max.) 8,938.41 8,992.61 9,319.32 8,689.44 8,722.08 8,891.91

Figure D.23 and D.24 show the progression of roles for ti ∈ {5000, 10000} and |E| ∈
{20, 30} on PM_01 according to the evaluation setup described in Chapter 8.4.3.

FIGURE D.23: Evaluation of interaction event I02 for t1 = 5, 000 on PM_01.

FIGURE D.24: Evaluation of interaction event I02 for t2 = 10, 000 on PM_01.

274 Appendix D. Evaluation of Dynamic Role Mining

D.2.3 Evaluation of Survival Strategy Incubator Protection

Table D.40 shows the results of the evaluation of survival strategy Incubator Protection
for t1 = 5, 000 and |E| = 5 on PS_02 according to the evaluation setup described in
Chapter 8.4.4.

TABLE D.40: Incubator Protection: Results on PS_02.

No Population Size Incubator Population PSinc
Strategy 2 5 10 20

Roles (avg.) 30.25 29.75 29.25 29.05 28.95
Roles (min.) 26 27 27 27 26
Roles (max.) 33 34 34 33 33

Iterations 100,000 100,000 100,000 100,000 100,000

Time (s) (avg.) 1,248.04 1,312.55 1,464.87 1,725.27 2,266.32
Time (s) (min.) 1,141.57 1,199.32 1,349.24 1,631.34 2,013.57
Time (s) (max.) 1,345.05 1,448.77 1,615.00 1,947.35 2,560.18

Figure D.25 shows the corresponding progression of roles on PS_02 according to the
evaluation setup described in Chapter 8.4.4.

FIGURE D.25: Evaluation of survival strategy Incubator Population on PS_02 (roles).

Figure D.26 (left) shows the average value of mod(I) over the individuals of the
regular population (left) and over the individuals of the incubator population (right)
starting at t1 = 5, 000 on PS_02.

FIGURE D.26: Evaluation of survival strategy Incubator Population on PS_02 (mod(I)).

D.2. Evaluation of Interaction Events 275

Table D.41 shows the results of the evaluation of survival strategy Incubator Protection
for t1 = 5, 000 and |E| = 10 on PS_05 according to the evaluation setup described in
Chapter 8.4.4.

TABLE D.41: Incubator Protection: Results on PS_05.

No Population Size Incubator Population PSinc
Strategy 2 5 10 20

Roles (avg.) 50.20 49.90 49.65 49.85 49.65
Roles (min.) 49 49 49 49 49
Roles (max.) 53 52 51 51 52

Iterations 100,000 100,000 100,000 100,000 100,000

Time (s) (avg.) 785.60 850.09 950.54 1,131.12 1,506.01
Time (s) (min.) 736.68 801.45 902.02 1,067.77 1,421.45
Time (s) (max.) 1,107.65 1,189.86 1,334.02 1,596.54 2,121.40

Figure D.27 shows the corresponding progression of roles on PS_05 according to the
evaluation setup described in Chapter 8.4.4.

FIGURE D.27: Evaluation of survival strategy Incubator Population on PS_05 (roles).

Figure D.28 (left) shows the average value of mod(I) over the individuals of the
regular population (left) and over the individuals of the incubator population (right)
starting at t1 = 5, 000 on PS_05.

FIGURE D.28: Evaluation of survival strategy Incubator Population on PS_05 (mod(I)).

276 Appendix D. Evaluation of Dynamic Role Mining

Table D.42 shows the results of the evaluation of survival strategy Incubator Protection
for t1 = 5, 000 and |E| = 30 on PM_01 according to the evaluation setup described
in Chapter 8.4.4.

TABLE D.42: Incubator Protection: Results on PM_01.

No Population Size Incubator Population PSinc
Strategy 2 5 10 20

Roles (avg.) 151.35 151.70 151.00 151.85 151.50
Roles (min.) 150 150 150 150 150
Roles (max.) 153 153 154 156 154

Iterations 100,000 100,000 100,000 100,000 100,000

Time (s) (avg.) 8,064.62 8,724.33 9,686.01 11,278.81 14,572.09
Time (s) (min.) 7,390.18 8,162.18 9,107.34 10,806.59 13,834.87
Time (s) (max.) 8,897.32 9,657.85 10,752.09 12,428.94 15,653.99

Figure D.29 shows the corresponding progression of roles on PM_01 according to
the evaluation setup described in Chapter 8.4.4.

FIGURE D.29: Evaluation of survival strategy Incubator Population on PM_01 (roles).

Figure D.30 (left) shows the average value of mod(I) over the individuals of the
regular population (left) and over the individuals of the incubator population (right)
starting at t1 = 5, 000 on PM_01.

FIGURE D.30: Evaluation of survival strategy Incubator Population on PM_01 (mod(I)).

D.2. Evaluation of Interaction Events 277

D.2.4 Evaluation of Survival Strategy Population Split Protection

Table D.43 shows the results of the evaluation of survival strategy Population Split
Protection for t1 = 5, 000 and |E| = 5 on PS_02 according to the evaluation setup
described in Chapter 8.4.4.

TABLE D.43: Population Split Protection: Results on PS_02.

No Population Size Additoinal Population PSadd
Strategy 2 5 10 20

Roles (avg.) 30.35 30.15 30.10 29.45 30.85
Roles (min.) 26 27 27 27 28
Roles (max.) 35 34 33 33 34

Iterations 100,000 100,000 100,000 100,000 100,000

Time (s) (avg.) 1,171.74 1,999.71 2,294.04 2,776.14 3,819.03
Time (s) (min.) 988.91 1,872.67 2,175.03 2,629.60 3,640.58
Time (s) (max.) 1,314.28 2,104.72 2,463.35 2,992.43 4,060.31

Figure D.31 shows the corresponding progression of roles (left) as well as the aver-
age value of mod(I) over the individuals of the regular population (right) on PS_02
according to the evaluation setup described in Chapter 8.4.4.

FIGURE D.31: Evaluation of survival strategy Population Split Protection on PS_02.

Table D.44 shows the results of the evaluation of survival strategy Population Split
Protection for t1 = 5, 000 and |E| = 10 on PS_05 according to the evaluation setup
described in Chapter 8.4.4.

TABLE D.44: Population Split Protection: Results on PS_05.

No Population Size Additoinal Population PSadd
Strategy 2 5 10 20

Roles (avg.) 50.00 50.25 49.95 50.10 50.35
Roles (min.) 49 49 49 49 49
Roles (max.) 52 53 52 51 52

Iterations 100,000 100,000 100,000 100,000 100,000

Time (s) (avg.) 737.62 2,304.55 2,753.91 3,514.70 5,105.39
Time (s) (min.) 710.99 2,146.33 2,546.65 3,241.83 4,679.59
Time (s) (max.) 853.64 2,816.67 3,222.78 4,035.21 5,907.98

278 Appendix D. Evaluation of Dynamic Role Mining

Figure D.32 shows the corresponding progression of roles (left) as well as the aver-
age value of mod(I) over the individuals of the regular population (right) on PS_05
according to the evaluation setup described in Chapter 8.4.4.

FIGURE D.32: Evaluation of survival strategy Population Split Protection on PS_05.

Table D.45 shows the results of the evaluation of survival strategy Population Split
Protection for t1 = 5, 000 and |E| = 30 on PM_01 according to the evaluation setup
described in Chapter 8.4.4.

TABLE D.45: Population Split Protection: Results on PM_01.

No Population Size Additoinal Population PSadd
Strategy 2 5 10 20

Roles (avg.) 152.15 152.20 152.55 152.75 152.85
Roles (min.) 150 150 150 150 150
Roles (max.) 155 156 156 156 158

Iterations 100,000 100,000 100,000 100,000 100,000

Time (s) (avg.) 8,311.63 36,465.98 45,184.69 59,298.66 88,342.38
Time (s) (min.) 7,777.03 34,218.57 42,078.02 54,926.59 81,341.11
Time (s) (max.) 9,056.41 38,207.22 49,642.47 65,302.03 93,373.12

Figure D.33 shows the corresponding progression of roles (left) as well as the average
value of mod(I) over the individuals of the regular population (right) on PM_01
according to the evaluation setup described in Chapter 8.4.4.

FIGURE D.33: Evaluation of survival strategy Population Split Protection on PM_01.

D.2. Evaluation of Interaction Events 279

D.2.5 Evaluation of Survival Strategy Fitness Protection

Table D.46 shows the results of the evaluation of survival strategy Fitness Protection
for t1 = 5, 000 and |E| = 5 on PS_02 according to the evaluation setup described in
Chapter 8.4.4.

TABLE D.46: Fitness Protection: Results on PS_02.

No Parameter α
Strategy 0.25 0.5 1.0 2.0

Roles (avg.) 30.40 30.10 30.35 30.10 29.35
Roles (min.) 27 27 27 28 26
Roles (max.) 35 34 33 34 32

Iterations 100,000 100,000 100,000 100,000 100,000

Time (s) (avg.) 1,228.52 1,554.05 1,542.17 1,531.27 1,532.10
Time (s) (min.) 1,049.13 1,451.90 1,458.42 1,458.86 1,427.11
Time (s) (max.) 1,467.28 1,651.18 1,680.41 1,652.66 1,654.26

Figure D.34 shows the corresponding progression of roles (left) as well as the average
value of mod(I) over the individuals of the population (right) on PS_02 according to
the evaluation setup described in Chapter 8.4.4.

FIGURE D.34: Evaluation of survival strategy Fitness Protection on PS_02.

Table D.47 shows the results of the evaluation of survival strategy Fitness Protection
for t1 = 5, 000 and |E| = 10 on PS_05 according to the evaluation setup described in
Chapter 8.4.4.

TABLE D.47: Fitness Protection: Results on PS_05.

No Parameter α
Strategy 0.25 0.5 1.0 2.0

Roles (avg.) 49.95 50.40 49.90 49.75 50.45
Roles (min.) 49 49 49 49 49
Roles (max.) 52 52 52 51 54

Iterations 100,000 100,000 100,000 100,000 100,000

Time (s) (avg.) 753.00 1,954.08 1,926.01 1,889.34 1,938.35
Time (s) (min.) 0.00 0.00 0.00 0.00 0.00
Time (s) (max.) 715.22 1,702.04 1,664.78 1,684.19 1,665.95

280 Appendix D. Evaluation of Dynamic Role Mining

Figure D.35 shows the corresponding progression of roles (left) as well as the average
value of mod(I) over the individuals of the population (right) on PS_05 according to
the evaluation setup described in Chapter 8.4.4.

FIGURE D.35: Evaluation of survival strategy Fitness Protection on PS_05.

Table D.48 shows the results of the evaluation of survival strategy Fitness Protection
for t1 = 5, 000 and |E| = 30 on PM_01 according to the evaluation setup described
in Chapter 8.4.4.

TABLE D.48: Fitness Protection: Results on PM_01.

No Parameter α
Strategy 0.25 0.5 1.0 2.0

Roles (avg.) 151.75 151.80 152.20 152.35 152.40
Roles (min.) 150 150 150 150 150
Roles (max.) 154 154 154 156 157

Iterations 100,000 100,000 100,000 100,000 100,000

Time (s) (avg.) 7,675.50 33,052.86 33,329.31 33,428.79 33,596.29
Time (s) (min.) 7,388.62 29,881.18 31,106.50 30,383.94 30,055.83
Time (s) (max.) 8,580.47 36,050.65 35,188.77 35,442.07 37,649.69

Figure D.36 shows the corresponding progression of roles (left) as well as the average
value of mod(I) over the individuals of the population (right) on PM_01 according
to the evaluation setup described in Chapter 8.4.4.

FIGURE D.36: Evaluation of survival strategy Fitness Protection on PM_01.

281

Appendix E

Evaluation of Multi-objective Role
Mining

In Appendix E, the results of the experiments evaluating the different aspects of
multi-objective role mining, which were presented in Chapter 9, are listed.

E.1 Evaluation of Two-dimensional Role Mining

Figure E.1 shows the non-dominated individuals obtained from all runs of the add-
Role-EA for of d+max ∈ {0.5, 1.0, ∞} after t = 100, 000 iterations on PS_05 according
to the evaluation setup described in Chapter 9.3.2.

FIGURE E.1: Non-dominant individuals for different values of d+max on PS_05.

Figure E.2 shows the progression of the average number of roles (left) as well as the
progression of the average number of positive deviations (right) among all individ-
uals for of d+max ∈ {0.5, 1.0, ∞} after t = 100, 000 iterations on PS_05 according to the
evaluation setup described in Chapter 9.3.2.

282 Appendix E. Evaluation of Multi-objective Role Mining

FIGURE E.2: Average number of roles and deviations on PS_05.

Figure E.3 shows the evaluation of the delayed admittance of deviations for d+max =
0.5 and d+max = 1.0, where permissions were permitted either from the beginning at
t1 = 0 or from a later point in time at iteration t2 = 25, 000 on PS_05 according to the
evaluation setup described in Chapter 9.3.2.

FIGURE E.3: Delayed admittance of deviations on PS_05.

Figure E.4 shows the progression of the average number of roles (left) as well as the
progression of the average number of positive deviations (right) among all individ-
uals for the evaluation of the delayed admittance of deviations on PS_05 according
to the evaluation setup described in Chapter 9.3.2.

FIGURE E.4: Average number of roles and deviations including delayed admittance of devi-
ations on PS_05.

E.2. Evaluation of Three- and Four-dimensional Role Mining 283

E.2 Evaluation of Three- and Four-dimensional Role Mining

Tables E.1 and E.2 show the evaluation results of the delayed admittance of devia-
tions considering the (4D)-approach for t1 = 0, t2 = 25, 000 and d+max ∈ {0.5, 1.0, ∞}
on PS_02 as well as PS_05 according to the evaluation setup described in Chap-
ter 9.3.2.

TABLE E.1: Delayed admittance of deviations on PS_02 (4D).

Roles Deviations Compliance Score License Costs
t1 t2 t1 t2 t1 t2 t1 t2

d+max = 0.5 Avg. 32.91 22.00 166.91 175.71 2,430.18 2,505.43 253,036.36 245,200.00
Min. 19 16 0 0 1,876 1,876 225,800 225,800
Max. 44 27 308 262 3,119 2,955 297,200 260,800
SD 8.04 3.46 91.22 80.92 372.78 340.64 19,576.02 12,620.62

d+max = 1.0 Avg. 30.73 20.85 272.80 285.08 2,980.93 3,095.38 252,586.67 251,969.23
Min. 11 11 0 0 1,876 1,876 225,800 225,800
Max. 45 28 535 476 4,361 4,172 293,000 281,800
SD 12.37 5.46 158.72 154.27 828.34 805.10 20,871.22 18,182.47

d+max = ∞ Avg. 21.97 13.39 559.34 661.74 4,849.86 5,670.00 255,393.10 266,095.65
Min. 1 1 0 0 1,876 1,876 225,800 225,800
Max. 46 28 1,318 1,318 12,450 12,450 300,000 300,000
SD 15.02 8.30 361.94 346.03 2,922.86 2,762.24 25,284.94 21,973.49

TABLE E.2: Delayed admittance of deviations on PS_05 (4D).

Roles Deviations Compliance Score License Costs
t1 t2 t1 t2 t1 t2 t1 t2

d+max = 0.5 Avg. 74.45 46.00 169.09 105.00 500.64 478.00 340,436.36 313,200.00
Min. 59 42 0 0 469 469 311,800 311,800
Max. 84 50 283 263 566 512 379,400 316,000
SD 7.34 2.58 84.70 88.60 28.48 13.51 21,742.09 1,746.11

d+max = 1.0 Avg. 70.30 42.58 385.70 346.42 628.40 571.75 355,760.00 336,366.67
Min. 39 33 0 0 469 469 311,800 311,800
Max. 86 50 738 673 926 764 443,400 359,800
SD 16.11 5.01 194.51 232.88 164.83 105.38 40,605.79 16,420.68

d+max = ∞ Avg. 45.09 22.50 3,050.66 3,323.63 7,571.53 8,056.93 434,175.00 431,720.00
Min. 1 1 0 0 469 469 311,800 311,800
Max. 88 50 7,835 7,835 29,997 29,997 594,000 594,000
SD 31.50 15.66 2,319.68 2,410.38 8,786.71 8,124.24 74,352.67 86,181.51

Figures E.5-E.7 show the non-dominated individuals resulting from the evaluation
of the delayed admittance of deviations considering the (4D)-approach for t1 = 0,
t2 = 25, 000 and d+max ∈ {0.5, 1.0, ∞} on PS_02 as well as PS_05

FIGURE E.5: Delayed admittance of deviations for d+max = 0.5 on PS_02 and PS_05.

284 Appendix E. Evaluation of Multi-objective Role Mining

FIGURE E.6: Delayed admittance of deviations for d+max = 1.0 on PS_02 and PS_05.

FIGURE E.7: Delayed admittance of deviations for d+max = ∞ on PS_02 and PS_05.

Tables E.3 and E.4 show the comparison of the (4D)-approach and the (3D)-approach
for t1 = 0 and d+max ∈ {0.5, 1.0, ∞} on PS_02 as well as PS_05 according to the evalu-
ation setup described in Chapter 9.3.2.

TABLE E.3: Comparison of (4D) and (3D) approach for t1 = 0 on PS_02.

Roles Deviations Compliance Score License Costs
(4D) (3D) (4D) (3D) (4D) (3D) (4D) (3D)

d+max = 0.5 Avg. 32.91 34.24 166.91 155.82 2,430.18 2,175.06 253,036.36 238,647.06
Min. 19 19 0 3 1,876 1,876 225,800 225,800
Max. 44 43 308 284 3,119 3,061 297,200 274,800
SD 8.04 6.27 91.22 91.49 372.78 379.58 19,576.02 15,034.32

d+max = 1.0 Avg. 30.73 30.24 272.80 270.52 2,980.93 2,744.48 252,586.67 256,666.67
Min. 11 11 0 5 1,876 1,876 225,800 225,800
Max. 45 45 535 517 4,361 4,449 293,000 297,200
SD 12.37 11.09 158.72 158.34 828.34 795.04 20,871.22 23,670.14

d+max = ∞ Avg. 21.97 20.50 559.34 591.25 4,849.86 4,911.54 255,393.10 265,000.00
Min. 1 1 0 7 1,876 1,876 225,800 225,800
Max. 46 45 1,318 1,318 12,450 12,450 300,000 300,000
SD 15.02 15.08 361.94 386.67 2,922.86 3,144.52 25,284.94 23,209.34

E.2. Evaluation of Three- and Four-dimensional Role Mining 285

TABLE E.4: Comparison of (4D) and (3D) approach for t1 = 0 on PS_05.

Roles Deviations Compliance Score License Costs
(4D) (3D) (4D) (3D) (4D) (3D) (4D) (3D)

d+max = 0.5 Avg. 74.45 58.40 169.09 296.20 500.64 470.60 340,436.36 314,600.00
Min. 59 55 0 222 469 469 311,800 311,800
Max. 84 63 283 392 566 473 379,400 325,800
SD 7.34 3.07 84.70 57.26 28.48 1.96 21,742.09 5,600.00

d+max = 1.0 Avg. 70.30 47.54 385.70 509.38 628.40 588.62 355,760.00 324,938.46
Min. 39 38 0 263 469 470 311,800 311,800
Max. 86 61 738 706 926 794 443,400 340,600
SD 16.11 6.83 194.51 145.23 164.83 101.92 40,605.79 9,470.08

d+max = ∞ Avg. 45.09 36.06 3,050.66 3,071.47 7,571.53 6,773.22 434,175.00 415,431.25
Min. 1 1 0 225 469 469 311,800 311,800
Max. 88 73 7,835 7,835 29,997 29,997 594,000 594,000
SD 31.50 24.26 2,319.68 2,250.61 8,786.71 7,886.21 74,352.67 88,912.28

Figures E.8-E.10 show the non-dominated individuals resulting from the compari-
son of the (4D)-approach and the (3D)-approach for t1 = 0 and d+max ∈ {0.5, 1.0, ∞}
on PS_02 as well as PS_05 according to the evaluation setup described in Chap-
ter 9.3.2.

FIGURE E.8: Comparison of (4D)-approach and the (3D)-approach for t1 = 0 and
d+max = 0.5 on PS_02 and PS_05.

FIGURE E.9: Comparison of (4D)-approach and the (3D)-approach for t1 = 0 and
d+max = 1.0 on PS_02 and PS_05.

286 Appendix E. Evaluation of Multi-objective Role Mining

FIGURE E.10: Comparison of (4D)-approach and the (3D)-approach for t1 = 0 and
d+max = ∞ on PS_02 and PS_05.

Tables E.3 and E.4 show the comparison of the (4D)-approach and the (3D)-approach
for t2 = 25, 000 and d+max ∈ {0.5, 1.0, ∞} on PS_02 as well as PS_05 according to the
evaluation setup described in Chapter 9.3.2.

TABLE E.5: Comparison of (4D) and (3D) approach for t2 = 25, 000 on PS_02.

Roles Deviations Compliance Score License Costs
(4D) (3D) (4D) (3D) (4D) (3D) (4D) (3D)

d+max = 0.5 Avg. 22.00 22.55 175.71 135.82 2,505.43 2,289.73 245,200.00 227,963.64
Min. 16 17 0 0 1,876 1,876 225,800 225,800
Max. 27 28 262 297 2,955 2,961 260,800 237,000
SD 3.46 3.60 80.92 89.48 340.64 360.96 12,620.62 3,448.13

d+max = 1.0 Avg. 20.85 19.00 285.08 337.07 3,095.38 3,225.33 251,969.23 243,253.33
Min. 11 11 0 0 1,876 1,876 225,800 225,800
Max. 28 27 476 594 4,172 5,101 281,800 269,200
SD 5.46 4.89 154.27 153.19 805.10 833.66 18,182.47 12,405.26

d+max = ∞ Avg. 13.39 13.10 661.74 680.10 5,670.00 5,591.45 266,095.65 266,680.00
Min. 1 1 0 0 1,876 1,876 225,800 225,800
Max. 28 27 1,318 1,318 12,450 12,450 300,000 300,000
SD 8.30 8.31 346.03 354.58 2,762.24 2,941.63 21,973.49 18,197.85

TABLE E.6: Comparison of (4D) and (3D) approach for t2 = 25, 000 on PS_05.

Roles Deviations Compliance Score License Costs
(4D) (3D) (4D) (3D) (4D) (3D) (4D) (3D)

d+max = 0.5 Avg. 46.00 45.20 105.00 182.40 478.00 475.60 313,200.00 312,360.00
Min. 42 43 0 78 469 469 311,800 311,800
Max. 50 48 263 311 512 494 316,000 314,600
SD 2.58 1.72 88.60 81.78 13.51 9.37 1,746.11 1,120.00

d+max = 1.0 Avg. 42.58 38.82 346.42 404.55 571.75 504.45 336,366.67 322,309.09
Min. 33 33 0 151 469 469 311,800 311,800
Max. 50 47 673 646 764 679 359,800 341,600
SD 5.01 4.26 232.88 151.56 105.38 58.91 16,420.68 11,200.44

d+max = ∞ Avg. 22.50 22.00 3,323.63 3,023.21 8,056.93 6,738.08 431,720.00 419,050.00
Min. 1 1 0 191 469 469 311,800 311,800
Max. 50 45 7,835 7,835 29,997 29,997 594,000 594,000
SD 15.66 14.61 2,410.38 2,400.68 8,124.24 8,379.12 86,181.51 78,739.30

E.2. Evaluation of Three- and Four-dimensional Role Mining 287

Figures E.11-E.13 show the non-dominated individuals resulting from the compari-
son of the (4D)- and the (3D)-approach for t2 = 25, 000 and d+max ∈ {0.5, 1.0, ∞} on
PS_02 as well as PS_05 according to the evaluation setup described in Chapter 9.3.2.

FIGURE E.11: Comparison of (4D)-approach and the (3D)-approach for t2 = 25, 000
and d+max = 0.5 on PS_02 and PS_05.

FIGURE E.12: Comparison of (4D)-approach and the (3D)-approach for t2 = 25, 000
and d+max = 1.0 on PS_02 and PS_05.

FIGURE E.13: Comparison of (4D)-approach and the (3D)-approach for t2 = 25, 000
and d+max = ∞ on PS_02 and PS_05.

	Ehrenerklärung
	Abstract
	Zusammenfassung
	Introduction
	Motivation
	Problem Description
	Objectives and Contributions
	Structure

	Enterprise Resource Planning
	Definition and Tasks of ERP Systems
	Strengths and Weaknesses of ERP Systems
	Evolution of ERP Systems
	Architecture of ERP Systems
	SAP ERP
	Structure of SAP ERP
	Data Types in SAP ERP

	Evolutionary Algorithms
	Biological Origins
	Algorithm Overview
	Previous Work and Application Areas
	Algorithm Steps

	Role Based Access Control
	Introduction to Access Control
	Access Control Models
	Role Based Access Control

	The Role Mining Problem
	Access Control in SAP ERP
	Users
	Roles
	Permissions
	Transactions
	Authority Checks and Traces
	SoD-Conflicts
	Licenses

	Requirements for Role Mining in SAP ERP

	Data Management and Pre-Processing
	Creation of UPA Matrices from Trace Data
	Analysis of Use Case Data
	Trace Conversion Procedures
	Evaluation of Trace Conversion Procedures

	Pre-Processing of UPA Matrices
	Reduction of UPA Matrices
	Clustering of UPA Matrices

	Single-level Role Mining
	Solution Strategies for the RMP
	General Solution Strategies for the RMP
	Evolutionary Algorithms in Role Mining

	Benchmarking for Single-level Role Mining
	Analysis of HP-Labs Benchmark Instances
	RMPlib - New Benchmarks for the RMP

	The addRole-EA
	Components and Methods of the addRole-EA
	Performance Evaluation and Comparison

	Evaluation, Analysis and Improvements
	An alternative Variant for Initialization
	Analysis of Crossover and Mutation
	Analysis of Role-Creation
	Analysis of Role Selection

	Two-level Role Mining
	Two-level Role Mining Problems
	Benchmarking for Two-level Role Mining
	Solution Strategies for Two-level Role Mining
	Consecutive Optimization of Single and Composite Roles
	Alternating Optimization of Single and Composite Roles
	Simultaneous Optimization of Single and Composite Roles

	Comparison of Two-level Role Mining Approaches

	Role Mining in Dynamic Environments
	The Dynamic Role Mininig Problem
	Dynamic Events in Role Mininig
	Events emerging from Structural Change
	Events emerging from User Interaction
	Inclusion of Events into addRole-EA

	Handling of Structural Events
	Simulation of Events and Preparation of Benchmarks
	User joins Company (S01)
	User leaves Company (S02)
	Change of Job Position (S03)
	Permission Request (S04)
	Role Assignment
	Comparison of Dynamic and Static Role Mining

	Handling of Interaction Events
	Simulation of Events and Preparation of Benchmarks
	Addition of good Roles (I01)
	Deletion of bad Roles (I02)
	Survival Strategies

	Role Mining as Multi-objective Optimization Problem
	Multi-objective Role Mining Problems
	Objectives relevant for Role Mining in ERP Systems
	Deviations
	Compliance Score
	License Costs
	Further Optimization Objectives

	Adaption of addRole-EA and Evaluation
	Adaption of addRole-EA to Multi-objective Role Mining
	Experiments and Evaluation

	Role Mining in Real-world Use Cases
	AutoBer - A Research Project in Role Mining
	Authorization Robot - Integration into SIVIS Suite
	Potential User Groups of Authorization Robot
	Features of Authorization Robot in the Context of this Work

	Conclusion and Future Work
	Bibliography
	Evaluation of Data Management
	Evaluation of Single-level Role Mining
	Evaluation of Two-level Role Mining
	Evaluation of Dynamic Role Mining
	Evaluation of Multi-objective Role Mining

