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Abstract
We present a symmetry-based systematic approach to explore the structural and compositional
richness of two-dimensional materials. We use a ‘combinatorial engine’ that constructs candidate
compounds by occupying all possible Wyckoff positions for a certain space group with
combinations of chemical elements. These combinations are restricted by imposing charge
neutrality and the Pauling test for electronegativities. The structures are then pre-optimized with a
specially crafted universal neural-network force-field, before a final step of geometry optimization
using density-functional theory is performed. In this way we unveil an unprecedented variety of
two-dimensional materials, covering the whole periodic table in more than 30 different
stoichiometries of form AnBm or AnBmCk. Among the discovered structures, we find examples that
can be built by decorating nearly all Platonic and Archimedean tessellations as well as their dual
Laves or Catalan tilings. We also obtain a rich, and unexpected, polymorphism for some specific
compounds. We further accelerate the exploration of the chemical space of two-dimensional
materials by employing machine-learning-accelerated prototype search, based on the structural
types discovered in the systematic search. In total, we obtain around 6500 compounds, not present
in previous available databases of 2D materials, with a distance to the convex hull of
thermodynamic stability smaller than 250 meV/atom.

1. Introduction

Since the synthesis of single graphene layers [1], two-
dimensional (2D) materials have attracted significant
interest from the community. Their relevance extends
to different research fields, such as catalysis, electronic
transport, optical properties, and topological prop-
erties. However, the chemical space for 2D materials
is still relatively unexplored, even though great effort
has been spent on investigating the vast chemical
space for bulk, three-dimensional (3D) compounds.
In fact, experimental synthesis efforts have focused
on a few structures, mostly obtained by exfoliation of
known 3D layered materials [2].

On the computational side, we can find a
few online databases of 2D materials, such as
Materials Cloud two-dimensional crystals database
(MC2D) [3], V2DB [4], 2DMatpedia [5], and the
Computational 2D Materials Database (C2DB) [6–
8]. These databases were built starting from 3D
databases, by exfoliating single-layers from layered,
van der Waals compounds. At the moment the vast
majority of known 2Dmaterials correspond to binar-
ies [4, 9]. An exception is the very recent addition of
materials discovered via a crystal diffusion variational
autoencoder in [8].

These 2D databases are newer, and considerably
smaller, than their three-dimensional counterparts,
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e.g. Materials Project [10], the crystallographic open
database [11], the Cambridge structural data-
base [12], the NIST crystallographic database [13],
OQMD [14], AFLOW [15], Materials Cloud [16],
and many others. All these initiatives were seeded
by experimental crystal structures stored in the inor-
ganic crystal structure database (ICSD) and other
experimental databases. In fact, the creation of the
ICSD in 1912 [17–19] paved the way to the system-
atic study of the relationship between crystal struc-
ture and materials properties. To complement exper-
imental data, many databases (both 2D and 3D) also
contain results from high-throughput studies (often
accelerated by machine learning).

High-throughput searches are responsible for a
majority of the calculations in the large theoret-
ical databases like AFLOW [15], OQMD [14] and
DCGAT [20]. Traditional high-throughput searches
rely on simple empirical rules to select candidate
materials for evaluation with density functional the-
ory (DFT). Consequently, they contain a large num-
ber of highly unstable systems. A particularly popu-
lar approach is prototype search, where newmaterials
are hypothesized by changing the chemical elements
in a known crystal structure (often stemming from
ICSD). In some cases, all combinations of chemical
elements are taken into account, while in other cases
arguments based on charge neutrality, atomic or ionic
radii, etc are used to circumvent the combinatorial
nature of the problem.

In comparison to these rule-based selections,
machine learning algorithms generally allow us to
consider all combinations of the chemical elements
due to their computational efficiency [21–24]. In
fact, recent progress has enabled us to speed up the
scanning of crystal prototypes by a factor of up to
∼2000 [22] with respect to traditional DFT high-
throughput studies. A second research direction are
generative models that do not rely on existing proto-
types. Here, generative adversarial networks [25, 26],
variational auto encoders [27, 28] and, more recently,
diffusion models [8, 29] are the most successful
approaches.While these generativemodels havemade
great progress over the last year and improved with
respect to their bias toward stable structures, the
stability of the structure still has to be evaluated
with a secondary machine learning model. No mat-
ter the generation or selection algorithm, the next
step consists in a local structural optimization of each
compound, invariantly using DFT as the workhorse
method [30, 31]. Analysis of thermodynamic stabil-
ity can then be achieved by computing the forma-
tion energy or the distance to the convex hull. In this
way, databases have grown considerably and can now
sometimes reach millions of crystal structures.

While the success of using chemical
combinatorics is recognized for 3D materials, it

has been a substantial handicap for predicting new
2D materials. The number of known 2D materi-
als prototypes is unfortunately very small. Various
research groups have considered different strategies
to address this issue, often resorting tomachine learn-
ingmethods. This paper presents an entirely different
approach which is not based on motifs or chemical
substitutions. Instead, we create all possible combin-
ations of chemical elements for binary (and ternary)
systems for specific two-dimensional space groups.
Therefore, based on symmetries and chemical cri-
teria, we can arrive at a sizeable two-dimensional
crystal structure database and a diverse set of struc-
tural prototypes. The crystal shapes show a variety
of bondings and forms absent in existing databases.
As our search is systematic, crystal structures con-
tain a large number of different chemical formulae as
well as almost all possible Wyckoff positions (WPs)
allowed by the space groups. Here we focus on two-
dimensional materials but our approach is general,
and it can also be applied to three-, one-, or even
zero-dimensional structures.

This article is structured as follows. We start by
discussing in detail the systematic approach to dis-
cover 2D crystal structures and our strategies to accel-
erate the search. We then present an overview of the
materials we discover, giving a few examples of struc-
tural diversity and polymorphism. In the following,
we discuss machine-learning accelerated prototype
search based on the wealth of prototypes obtained.
In the appendix following the conclusions, we give
details on our methodology.

2. Strategy

Figures 1 and 2 summarize our approach for the
generation of materials. The first step corresponds
to a combinatorial workflow that creates hypothet-
ical compounds. The initial input parameter is the
number of desired chemical species in the particu-
lar material. We consider most elements of the peri-
odic table, fromLi to Bi, including first-row rare earth
elements. We exclude, however, radioactive elements
and rare gases, namely At, Tc, Pr, Pm, He, Ne, Ar, Kr,
Xe, and Rn. We then generate all possible combina-
tions of the different elements selected from the peri-
odic table. For example, a total of 2701 combinations
are obtained with no repeated elements for a binary
compound.

The second parameter is the two-dimensional
space group. We use the table of layer group sym-
metries, created by considering the wallpaper group
and adding reflections in the perpendicular direction.
A full description of the possible groups is given in
[32–34]. To generate the atomic positions provided
by the layer space group for all possible WPs, we used
the package PyxTal [35]. A list of the possibleWPs can
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Figure 1. Summarized flowchart for choosing potential materials using group symmetries and their Wyckoff positions.

Figure 2. Pipeline for the materials screening, from materials chosen following flowchart 1.

be found in the Bilbao Crystallographic Server. From
the 80 layered groups, we studied the 18 that have the
smallest number of different WPs and therefore the
smallest number of combinations.

The next step is the creation of all possible com-
binations of theWPs for each chemical element in the
combined list. For example, if the number of WPs is
four, we get 4! possibilities. This strategy allows differ-
ent WPs for the same species and therefore broadens
the number of possible stoichiometries (i.e. a chem-
ical species can occupy more than one WP). We then
create a product of this list associated with the num-
ber of selected species. This selection leads to the
definition of a chemical composition based on the
occupation of the different WPs for each species in
the compound. As certain WPs have free paramet-
ers, our approach is not exhaustive. For example, for
the p1 space group we only occupy the (single) pos-
ition 1 a once for each atomic species. This leads to
a single possibility for both the binary compound
AB, and the ternary compound ABC. The number of
possibilities increases, however, very rapidly with the
number of different WPs available within the space
group.

In parallel, we create a list of possible oxidation
states of the considered species. We make all possible

combinations without replacement for each element
from this list, and we create a product of the differ-
ent list elements. We used the experimentally most
common oxidation states, as they will have consid-
erably larger potential to be synthesized (the selected
oxidation states are included in the supplementary
information). Finally, a compound is created from
the provided number of species, the combination of
WPs, and the oxidation state.

We have not imposed any explicit limit on the
number of atoms in the unit cell. However, the pro-
cedure we use to generate the compounds does lead
to an implicit constraint which, however, depends on
the number andmultiplicity of theWPs for each space
group. For the space groups studied here, the max-
imumnumber of atoms in the unit cell is 32, although
themajority of the compounds has less than 16 atoms
in the unit cell.

After the material is obtained from the previ-
ous step, and before we perform a complete elec-
tronic structure calculation, we conduct a screen-
ing, which allows us to reduce the number of com-
pounds to be fully considered. For the screening, we
used rules implemented in the open-source material-
screening Python package SMACT [36]. In this pack-
age, decisions are made based on stoichiometry. The
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Table 1. Crystallographic summary of the layer groups considered in this work: the space group symbol (and number in parenthesis),

the Wyckoff positions (and site symmetries in parenthesis). We also show the number of binary (N
(2)
tot ) and ternary systems (N

(3)
tot )

generated by our combinatorial engine and the number of entries that were found below 250 meV/atom from the convex hull of stability

(N
(2)
<0.25 and N

(3)
<0.25).

Space group Wyckoff positions N(2)
tot N(2)

<0.25 N(3)
tot N(3)

<0.25

p1 (01) 1a (1) 225 5
p11 m (04) 2b (1), 1a (..m) 1321 339
p11a (05) 2a (1) 225 47 1944 307
p211 (08) 2c(1), 1b(2..), 1a(2..) 6645 623
p2111 (09) 2a (1) 225 40 1944 273
c211 (10) 4b (1), 2a (2..) 1321 153
pb11 (12) 2a (1) 225 15 1944 448
cm11 (13) 4b (1), 2a (m..) 1321 268
p21/b11 (17) 4c (1), 2b (−1), 2a (−1) 3129 220
p21212 (21) 4c(1), 2b(..2),2a(..2) 6645 398
pb21m (29) 4b (1), 2a (..m) 1321 140
pb2b (30) 4c (1), 2b (.2.), 2a (.2.) 6645 228
pm2a (31) 4c (1), 2b (m..), 2a (.2.) 6645 478
pm21n (32) 4b (1), 2a (m..) 1321 148
pb21a (33) 4a (1) 225 19 1944 139
pb2n (34) 4b (1), 2a (.2.) 1321 74
cm2e (36) 8c (1), 4b (m..), 4a (.2.) 6645 383
p31m (70) 6d (1), 3c (..m), 2b (3..) 1a (3.m) 15 728 783

first rule is to have only charge neutral compounds,
which can be easily computed from the stoichiometry
and the oxidation states. The second rule is the so-
called Pauling test for materials which requires that
positive ions have lower electronegativity than negat-
ive ions.

After screening, we use the main properties of
a given material, such as oxidation states, stoi-
chiometry, and WPs to generate the potential struc-
tures. In this step, we use the PyxTal utility [35] to
create a 2D unit cell with the given number of spe-
cies. When WPs have internal degrees of freedom,
PyxTal tries to create a unit cell with the provided
symmetry constraints. First, the cell directions are
selected according to the space group. Then, the WPs
are generated from the symmetry operations, and, if
there are internal degrees of freedom, they are set ran-
domly. Next, the cell parameters and the volume are
determined, assuming that each atom has a radius
equal to its covalent bond radius. Finally, a density
is obtained from the cell volume and atomic masses,
which is compared with a threshold density. If the cell
density is smaller than 0.75 (in scaled units), the pack-
age attempts first to re-define the atomic positions
randomly (setting the number of attempts to 40), and,
in case this fails, it tries to change the cell paramet-
ers (up to ten times) and repeat the generation of
the cell. If a cell cannot be defined in this way, the
structure generation is considered unsuccessful, and
the next candidate is considered. A summary of the
pipeline is represented in figure 2. We generate sys-
tematically two dimensional structures for the space
groups shown in table 1. In this table we also include
the corresponding WPs, the site symmetry and the

number of different compounds generated for each
space group.

The next step is the geometry optimization.
Unfortunately, the initial structures are usually very
far away from equilibrium, making structural optim-
ization with DFT cumbersome. To increase the effi-
ciency of our workflow we perform an intermediate
geometry optimization step using a universal neural-
network force-field [23]. In contrast to standard force
fields that are usually trained to reproduce the poten-
tial energy surface of a specific system, universal
neural network force fields describe all possible com-
pounds. Of course, the objective of the latter is not to
replace the former, that will be more precise but with
a more limited applicability. Instead, they provide a
reasonable description for all geometrical arrange-
ments and chemical elements. Our model, trained
using a transfer learning approach, has a median
absolute error of 96meV/atom for geometry optimiz-
ations. This is already a competitive value, suitable for
describing 2Dmaterials in this intermediate screening
step.

At this point we remove from our dataset the
materials that are too thick (using a threshold of
7.5 Å) or that are predicted to be too unstable by the
machine learning model (more than 600 meV/atom
from the hull, corresponding approximately to twice
the mean absolute error (MAE) of the original
model). We also remove structures that were already
included in C2DB [7] (excluding the very recent
structures of [8]).

The use of machine learning force fields resolves
several technical problems: the pre-converged geo-
metries are, in most cases, already quite good, only
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requiring a few steps of geometry optimization using
DFT. They also allow us to discardmany repeated and
very high-energy structures. After the DFT geometry
optimization we evaluate the distance to the convex
hull of stability.We use the convex hull of [20, 22] that
is considerably larger than the one of the Materials
Project [10], in particular in what concerns the tern-
ary (and quaternary) sector. Consequently, our dis-
tances to the hull are sometimes larger than in other
2D databases.

Note that besides thermodynamic stability, the
issue of dynamical stability is a crucial factor for 2D
materials, and should always be verified before a spe-
cific material is proposed for synthesis. A material
is dynamically stable when it exhibits no imaginary
phonon frequencies across the Brillouin zone. Unfor-
tunately, the calculation of the phonon dispersion is
extremely time-consuming, and even more so for 2D
systems due to issues related to the vacuum required
to treat the long-range part of the Coulomb interac-
tion. [37] We also note that imaginary phonon fre-
quencies could be an indication of a charge-density
wave phase (at even lower formation energy) which
we might be overlooking due to the use of unit cells
with a limited number of atoms.

3. 2Dmaterials

It turns out that our workflow was able to arrive
at the large majority of systems already present in
C2DB. This is particularly true for binary systems, as
these were more extensively investigated than ternar-
ies (see table 1). This, in our opinion, fully validates
our workflow.

Figure 3 presents a comparison of the binary
materials present in our database (excluding the ones
found in C2DB) compared to C2DB. For the discus-
sion, we only took into account the materials that are
within a distance of 250 meV/atom from the convex
hull of stability, that corresponds loosely to the defin-
ition of ‘high-stability’ in C2DB [7]. Note that for
consistency we have reoptimized the C2DB structures
using our convergence criteria and our selected set of
pseudopotentials.

We find 2D compounds across the whole peri-
odic table, including some with lanthanides that have
been up to now excluded from previous works. Not
surprisingly, the majority of compounds includes a
non-metal element (due to the requirement of charge
neutrality), leading to the pronounced peaks for O,
S, Se, Te, F, Cl, Br, I, etc. The figure also reveals
some differences in the prevalence of certain elements
between our dataset and C2DB. For example, we find
considerably more compounds with F than with O,
while in C2DB we observe the opposite behavior. As
our approach is to a large extent systematic in what
concerns chemical compositions and geometries, we

believe that the differences are explained by a bias
already present in ICSD and other databases that were
used to seed the 2D databases. For example, it is well
known that oxides are over-represented in experi-
mental works as they can be more easily synthesized
and are often stable in air.

Other conclusions can be drawn from figure 3.
For example, it can be seen clearly that the non-metals
in the second row have more difficulty in forming
low-energy compounds than other non-metals in the
same group. This is a consequence of the Singular-
ity Principle [38], i.e. that the chemistry of the these
elements is often different to the later members of
their respective groups. Furthermore, elements like
N, O, C, and F form very strong directional cova-
lent bonds that leave comparatively little room for
distortions that would be required to form different
structures. As for metallic elements, it is in particular
the transition elements in the fourth row from Ti to
Cu (and in particularly this last one), together with
late group III-A (In and Tl) seem to form easily 2D
compounds.

The diversity of stoichiometries is illustrated in
figure 4. As our emphasis has been on binary com-
pounds, it is not surprising that most represented
stoichiometries are binary. Among these, the simple
AB2, AB3, A2B3, etc dominate the low-energy struc-
tures. This fact can be easily understood by the
requirement of charge neutrality and the fact that
most non-metals have oxidation states of -I, -II, or -
III. As such, the same situation can be found for bulk,
3D semiconductors and insulators. However, we do
find a long list of other stoichiometries (more than
30), and these often reveal very interesting and unex-
pected structures.

In figure 5 we give a glimpse of the diversity of
structural motifs found by our method. Note that
this is far from a complete list of all 2D structures
found.We concentrate on unusual arrangements that
go beyond the most common square and hexagonal
lattices. We emphasize that these motifs appeared
naturally in our workflow and were not construc-
ted by hand. Interestingly, we easily found examples
that can be derived from the majority of the dif-
ferent Euclidean uniform tilings, both Platonic and
Archimedean as well as their dual Laves or Catalan
tilings. Moreover, many of these tilings seem to be
unique to the two-dimensional world, as no layered
3D material is known to possess them.

The first two structures can be derived from a
truncated square and a rhombic tiling. In the first
case, Cs2Br2 squares are connected, forming regu-
lar empty octahedra, leading to a rather open lattice.
In the second, Se3O3 rectangular units form bonds
along the corners, leading to flattened octahedra. We
then present an example of a Pythagorean tiling,
a motif that is composed of two different squares

5
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Figure 3. Periodic tables showing the frequency of the chemical elements in binary compounds below 250 meV/atom in (a) our
work and (b) C2DB. We emphasize that our entries do not include, by construction, any of the compounds of C2DB.

Figure 4. Pie chart of the frequency of different general chemical formula for compounds with distances to the convex hull
smaller than 250 meV/atom in our database. The category other includes 29 general formulas.

that share one side, and can be found all over the
world in kitchen or garage floors. Interestingly, it was
proposed recently that elementary, two-dimensional
Cl, Br, and I might be able to adopt this arrange-
ment [39]. We also find a series of Cairo pentagonal
tilings. In this example, AgS2 forms two overlaying
tessellations of the plane by irregular hexagons, where
each of the hexagons is formed by four identical
pentagons. At the center of the hexagons we find a Se–
Se bond. Note that this is the same Cairo pentagonal

tiling that was found for PdSe2 [40–42]. One of
the possible structures of Cu3S2 consists on a tri-
hexagonal tiling (that is often called the Kagome
lattice due to its use in traditional Japanese bas-
ketry) of the plane by Cu atoms, decorated by a S
atom in the middle of the triangles. Triakis triangu-
lar lattices appear quite commonly in our data. The
example in figure 5 can be seen as composed of Ce
equilateral triangles decorated with a Se atom at its
center.

6
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Figure 5. Diversity of structures obtained by our procedure. We label in bold the convex tiling from which the structure can be
derived. Next to the chemical formula, in parenthesis, is the distance to the convex hull (in meV/atom) of the specific compound.
Note that the structure depicted is not necessarily the lowest 2D phase for the composition we found in our search.

The following three examples are derived from
snub-square lattices. In the first two, the metal forms
this interesting square-triangle lattice and the non-
metal decorates the squares. In the case of CoTe, Te-
atoms can be found above and below the plane of the
Co atoms, while in Cu2Se, Se-atoms alternate above
and below the plane of the Cu-atoms. We note that

this specific lattice was recently proposed for some
noble metal chalcogenide monolayers [43] and for
certain Ba and Ti oxides [44]. The third example is
more complex, as both In and Tl form a distorted
version of the snub-square lattice, with further Tl-
atoms alternating above and below the plane. Note,
however, that this curious structure is almost at the

7
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Figure 6. Polymorphism in CuI. The vertical axis denotes increasing energy distance to the convex hull of stability in meV/atom.
Copper atoms are depicted in gold, while iodine is in violet. For each structure we show a top and a side view.

limit of our energy threshold. Finally, we present six
examples of rhombitrihexagonal lattices, where the
metal atoms form the triangle-square-hexagon lattice
that is then decorated (mostly) by the non-metals.We
found a very diverse number of different decorations,
allowing for many different stoichiometries, ranging
from the simple AB and AB2 to the more uncon-
ventional A2B5 and A2B7. A very interesting possib-
ility raised by the finding of all these snub-square
and rhombitrihexagonal structures is that these can
be easily inflated by a recursive approach to gener-
ate quasi-crystalline systems [45, 46]. This is, how-
ever, only possible for structures not including out-
of-plane alternating atoms, as this induces frustration
in the system reducing its stability [44].

We have given several examples of the different
stoichiometries in our dataset and of the structural
variety stemming from them. Now, we look at the
issue of polymorphism, i.e. the different phases pos-
sible for a specific chemical composition. Not sur-
prisingly, polymorphism depends strongly on the

chemical elements present in the compound. For
example, for BN we found a single structure below
250 meV/atom, the well-known honeycomb lattice,
while for other compounds we have an extraordinary
variety in the same energy range.

As an example, we show in figure 6(a) selec-
tion of the crystal structures that we found for CuI.
We recall that zincblende CuI is at the moment
the most promising p-type transparent conduct-
ing semiconductor [47]. However, CuI has a num-
ber of polymorphs, including a couple of trigonal
phases [48–51] that are layered, with a bonding pat-
tern rather different from the γ-phase. Figure 6 shows
that also in the 2D case, we find a large variety of
structures and of bonding patterns.

As the lowest-energy 2D layer we find a cova-
lently bound hexagonal double-layer (i) that is essen-
tially on the convex hull of thermodynamic stability.
The (buckled) single layer (x) and the van-der-Waals
bound double flat-layer also appear in the energy
spectrum but considerably higher, at more than

8
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70 meV/atom. The second most stable structure is,
surprisingly, a rectangular lattice of Cu–I (ii), with
the I-atoms alternating above and below the plane
of the Cu-atoms. A related lattice (iv) appears just a
few meV/atom above. Structure (iii), which is only
6 meV/atom above the hull, and structure (ix) are
arrangements of one-dimensional objects. The first
exhibits nanowires with a triangular section arranged
in an alternating fashion as depicted in figure 6. The
latter (ix) is a periodic arrangements of nanostripes.
(Incidentally, higher in energy, at 161 meV/atom,
we even find a molecular crystal of Cu4I4 pyram-
idal clusters.) All these systems turn out to be semi-
conducting, with calculated (PBE) band gaps ranging
from around 0.5 eV to more than 2.1 eV.

4. Prototype search

The biggest advantage of the workflow presented
above is that it is (i) systematic and (ii) unbiased in
what concerns the structural variety. Unfortunately,
the price to pay for these advantages is efficiency, in
the sense that it is computationally expensive to go
through all possible compositions and space groups
and thatmany of the possibilities turn out to be highly
unstable or lead to thick slabs. It is, however, possible
to accelerate considerably the exploration of the 2D
material space by using the structural prototypes dis-
covered by our approach, and combining them with
a machine-learning model appropriate for prototype
search [52, 53]. Of course, in this way we will not dis-
cover new structural motifs, but we can explore the
whole compositional space very efficiently.

Our approach follows the same basic principles
as V2DB [4], but goes beyond it in a number of dif-
ferent directions. First, we perform transfer learning
from a 3Dmachine, which allows to transfer many of
the chemical principles that govern atomic bonding.
Second, we use a much larger training set, increas-
ing the accuracy of the machine. Third, we lift sev-
eral constrains (like charge neutrality or electroneg-
ativity rules) used in V2DB and in our systematic
search, and we expand the possible chemical elements
to the whole periodic table. This allows us to discover
a variety of intermetallics and compounds combining
elements with unusual oxidation states. We further-
more perform machine-learning predictions for all
two-dimensional prototypes, either already present
in C2DB or stemming from our systematic search.
Finally, we perform validation DFT calculations for
some of the predictions, specifically for the binary
stoichiometries A2B5, A2B7, and the ternary ABC2,
ABC3, AB2C2, A2B2C3.

Note that, in contrast to the systematic genera-
tion of structures based on the space groups, in the
machine-learning assisted prototype search, we do
not impose any constraint on the possible oxidation
states. As such, the machine can, and does, propose

2D systems including chemical elements in other, less
common oxidation states.

To keep the number of structures manageable,
we asked the machine to output all structures that
it found below 200 meV/atom for the binaries and
50 meV/atom for the ternaries. In total, we obtained
1023 candidates that were pre-optimized with our
neural-network force-field and then optimized with
DFT. From these 638 were found to be below
250 meV/atom from the hull, yielding an exceptional
success rate of around 62%. The lowest success rate,
of only 9%, was found for the A2B7 stoichiometry: as
these compounds were sparsely present in the train-
ing set, the machine could not learn the specificity
of those structures. The problem can, of course, be
solved by adding further samples to the dataset, in
order to remove the structural (and compositional)
bias, as previously shown for bulk systems in [22].
We are currently performing DFT calculations for
∼ 40000 more materials, resulting from 238 million
machine-learning predictions, that will be available in
the next release of our dataset.

5. Conclusions

We have presented a systematic approach to explore
the structural and compositional diversity that is pos-
sible in the chemical space of 2D materials. The main
advantage of this approach is that it is not based on a
specific number of structural prototypes. This is par-
ticularly important for 2D materials, as the space of
possible structures is still rather unexplored and only
few prototype structures, mainly from exfoliation of
layered 3D materials, are known so far. In this way,
we have discovered thousands of unexpected phases
that have no counterpart in theworld of layered three-
dimensional materials. We expect that such unusual
bonding and geometrical patterns will also lead to
unique mechanical, electronic, optical, and magnetic
properties.

Our method relies heavily on the use of machine
learning. The extensive use of neural networks in
several parts of our workflow is self-accelerating.
In fact, the faster we generate more data for two-
dimensional systems, the larger will be our training
sets, resulting in even more accurate machine learn-
ing models. This leads to a virtuous cycle that, in
our opinion, will pave the way for a rather complete
exploration of the binary, ternary, and eventually also
the quaternary two-dimensional phases in the near
future.

Finally, an important question is howmany of the
phases in our dataset can be synthesized. We chose to
filter our results to include only compounds with an
energy less than 250meV/atom above the convex hull,
as these have higher stability and therefore higher
probability to be synthesized. (For comparison, sili-
cene, that has been experimentally synthesized [54],
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is more than 600 meV/atom above the hull in its free-
standing form.) However, besides these thermody-
namic arguments, a key factor will be the choice of
suitable substrates that stabilize the two-dimensional
layers, and, of course, the ingenuity of experimental
physicists and chemists to design targeted synthesis
strategies.
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Appendix. Methods

DFT calculations
We performed all geometry optimizations and total
energy calculations with the code VASP [55, 56].
The 2D Brillouin zones were sampled by uniform
Γ-centered k-point grids with a density of 6 k-
points Å−2. We performed spin-polarized calcula-
tions starting froma ferromagnetic state, and used the
projector augmented wave setups [57, 58] of VASP ver-
sion 5.2 with a cutoff of 520 eV. We converged the
calculations to forces smaller than 0.005 eVÅ−1. As
exchange-correlation functional we used the Perdew–
Burke–Ernzerhof [59] functional with on-site cor-
rections for oxides and fluorides containing Co, Cr,
Fe, Mn, Mo, Ni, V, or W. The repulsive on-site cor-
rections to the d-states were 3.32, 3.7, 5.3, 3.9, 4.38,
6.2, 3.25, and 6.2 eV, respectively. These paramet-
ers were chosen to be compatible with the Mater-
ials Project database [10]. We imposed a vacuum
region of 15 Å, and systems that resulted in struc-
tures with a thickness greater than 7.5 Å were auto-
matically discarded. Finally, as it is common in this
kind of approaches, some of the calculations did not
converge due to a multitude of reasons. The corres-
ponding phases were then simply eliminated from the
dataset.

Distances to the convex hull were evaluated using
PYMATGEN [60] using the large complex hull of [22]
corresponding to the dataset available in theMaterials
Cloud repository [20].

M3GNET
We employed the universal neural-network force-
field M3GNET [23] that was developed to reproduce
the energies and the forces of bulk structures with
remarkable results. As a starting point we used the
pretrained network distributed with M3GNET. We
tested this model on 1300 of our systems by meas-
uring the difference between the energy calculated
withM3GNET (at the M3GNET relaxed structure) and the
energy calculatedwithDFT (at theDFT relaxed struc-
ture). We arrived at a MAE of 320 meV/atom and a
median absolute error of 223meV/atom. These num-
bers are already rather small, especially when we con-
sider that the training set of M3GNET did not include
2D systems that can exhibit very different bonding
patterns compared to bulk structures. As soon as
enough data was available from our own simula-
tions, we used transfer learning techniques to retrain
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M3GNET for 2D materials (see appendix). Specifically,
we build a dataset comprising energies, forces, and
stresses from structures calculated during the geo-
metry optimization steps. Structures with extremely
high forces above 50 eVÅ−1 were removed from the
data as were structures with no neighboring atoms
inside the cutoff radius to avoid errors during train-
ing. To balance the training set, for systems withmore
than 4 recorded geometry optimization steps only the
first, last and Nsteps/3 step were used. The final train-
ing set for M3GNET contained 11 612 geometry relax-
ations corresponding to 34 944 energies and struc-
tures. The resulting network had a validation MAE
of 61 meV/atom for direct energy predictions after
training. The test errors for geometry optimizations
on the same dataset as the pretrained model were
198meV/atom for theMAE and 96meV/atom for the
median absolute error proving the efficiency of our
transfer learning strategy. Of course, we expect these
errors to decrease further simply by addingmore data
to the training set. The models were trained with the
base hyperparameters fromM3GNET and by setting the
loss function of the stress in the non-periodic direc-
tion to zero.

Crystal-graph attention networks
We used the crystal-graph attention neural networks
developed in [61] as they were specifically crafted
for prototype searches. In particular, they require as
input only the (unrelaxed) structural prototype and
not accurate relaxed structures. Of course, this model
was trained on bulk 3D structures, so we do not
expect it to perform accurately in our case. How-
ever, many of the bonding patterns present in our 2D
materials can already be found in the 3D world. To

take advantage of this, we performed transfer learn-
ing of the 3D model, using the 2D structures in our
dataset as training data. We used a dataset of DFT
calculations with 22 007 entries, 80% of which were
used for training 10% for validation and 10% for test-
ing. Evaluating both models on the test set, we arrive
at an MAE of 222 meV/atom for the original model
and 86meV/atom for themodel transferred to the 2D
data.

In figure 7 we present a histogram with the dis-
tances to the convex hull of stability calculated with
DFT. The C2DB data is in light green, and is highly
peaked at zero, decaying slowly for larger energies.
This is expected, as C2DB was seeded with stable 3D,
van der Waals bonded structures from ICSD. In blue
we depict the structures obtained through our sys-
tematic approach. These form a continuous distri-
bution with a peak at around 300 meV/atom, and
extending beyond 1.5 eV. Knowing that such dis-
tribution for random compounds can extend bey-
ond 4 eV, we see how the charge and electronegat-
ivity constraints lead to relatively stable compounds
(at the price of overlooking intermetallics or com-
pounds with unusual oxidation states. In light blue
we show the machine-learning binaries predicted to
be within 200 meV/atom from the hull. This shows
a peak at around that value, as expected form the
cutoff, then decaying similarly to the C2DB data.
The ternary entries, displayed in green, are shifted
to much lower energy, as expected by the smaller
cutoff of 50 meV/atom. This results are consistent
with theMAE of 86meV/atom for the 2Dmodel. The
CGAT-hyperparameters are listed in the supplement-
ary material and the code can be found at https://
github.com/hyllios/CGAT.git.

11

https://github.com/hyllios/CGAT.git
https://github.com/hyllios/CGAT.git


2D Mater. 10 (2023) 035007 H-C Wang et al

Figure 7. Distribution of the distances to the convex hull (calculated with DFT) for the compounds obtained through our
systematic approach and stemming from the machine-learning assisted prototype search compared to the entries of C2DB.
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