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systematic exploration of a chemical space 
spanning millions of materials, searching 
for compounds with tailored properties 
for specific technological applications.[1–4] 
Currently, the most efficient approach 
to predict stoichiometric, ordered com-
pounds consists in scanning the compo-
sition space for a fixed crystal structure 
prototype.[5–7] In such approaches, the key 
material property that is used to estimate 
if a material can be experimentally syn-
thesized is the total energy, or more spe-
cifically the energy distance to the convex 
hull of thermodynamic stability.[6,8–17] Typi-
cally, given a chemical composition and a 
crystal-structure prototype (i.e., the com-
bination of a Bravais lattice and a set of 
occupied Wyckoff positions) one performs 
a geometry optimization, for example, 
using some flavor of density functional 
theory (DFT), and compares the resulting 

DFT energy with all possible decomposition channels.[18,19] 
Compounds on the convex hull (or close to it) are then selected 
for characterization and, if they possess interesting physical 
or chemical properties, proposed for experimental synthesis. 
Nonetheless, synthesis reactions are extremely complex pro-
cesses and while the distance to the convex-hull correlates with 
synthesizability, it is not enough for deciding whether or not 
a material is experimentally accessible. Several recent works 
address this problem by directly predicting optimal synthesis 
conditions or probability of synthesis.[20–25]

For binary compounds the construction of the convex hull 
of thermodynamic stability is relatively straightforward, and 
therefore the binary phase space has been comprehensively 
explored.[26] For a single ternary compound, AxByCz the number 
of different combinations of chemical elements A, B, and 
C amounts to roughly 500  000, a value still within reach of 
DFT calculations, at least for crystals with high symmetry and  
relatively few atoms in the unit cell.[9] However, there are thou-
sands of known ternary structure types, making a brute-force 
approach to the problem unrealistic. Despite the resulting huge 
number of candidate ternary compounds, it is worth observing 
that the largest computational databases only contain overall 
about 4 million materials.[2,26,27]

Machine learning methods have made it possible to accel-
erate material searches considerably. These methods are 
some of the most useful instruments added to the toolbox 
of material science and solid-state physics in the last decade. 
They have enabled the efficient prediction of a wide range of 

Crystal-graph attention neural networks have emerged recently as remark-
able tools for the prediction of thermodynamic stability. The efficacy of their 
learning capabilities and their reliability is however subject to the quantity 
and quality of the data they are fed. Previous networks exhibit strong biases 
due to the inhomogeneity of the training data. Here a high-quality dataset 
is engineered to provide a better balance across chemical and crystal-
symmetry space. Crystal-graph neural networks trained with this dataset 
show unprecedented generalization accuracy. Such networks are applied 
to perform machine-learning-assisted high-throughput searches of stable 
materials, spanning 1 billion candidates. In this way, the number of vertices 
of the global T = 0 K phase diagram is increased by 30% and find more than 
≈150 000 compounds with a distance to the convex hull of stability of less 
than 50 meV atom−1. The discovered materials are then accessed for applica-
tions, identifying compounds with extreme values of a few properties, such 
as superconductivity, superhardness, and giant gap-deformation potentials.

Research Article
﻿

1. Introduction

One of the most tantalizing possibilities of modern computa-
tional materials science is the prediction and characterization 
of experimentally unknown compounds. In fact, developments 
in theory and algorithms in the past decades allowed for the 
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material properties with near ab initio accuracy.[3,4,28] Early 
works in this direction achieved speedups by factors of about 
5–30.[9,10,15] These works were generally based on relatively 
simple machine learning models, for example, decision trees 
or kernel ridge regression, that used hand-built features of 
the composition as input and had to be retrained for different 
crystal families. Significant progress toward more general 
models was made by Ward et  al.[15] who included structural 
descriptors applicable to high-throughput searches in terms of 
Voronoi tessellations. This allowed Ward et  al. to use training 
data from all compounds, resulting in improved performance 
for high-throughput searches. Other important steps forward 
were achieved by two other classes of models that were devel-
oped simultaneously: message-passing networks for crystal 
and molecular graphs, as well as deeper composition-based 
models.[29–32] We note that compositional models can be com-
pletely independent of the crystal structure. However, they 
are inadequate for large-scale high-throughput searches, as 
they cannot differentiate between polymorphs with the same 
chemical composition. Message passing networks, on the other 
hand, enabled unprecedented performance for the prediction of 
properties with ab initio accuracy[3,33,34] from crystal structures.

Until recently all message-passing networks for crystals used 
atomic positions, in some form, as input. However, this infor-
mation is not available until calculations, for example using 
DFT structure optimization, are performed. The direct use of 
unrelaxed geometries as input features leads to significantly 
worse performance.[35,36] Recently, some of us[36] developed 
crystal-graph attention networks (CGATs) that circumvent the 
problem, replacing the precise bond distances with embed-
ding of graph distances. In a similar spirit, Goodall et  al.[37] 
proposed coarse-grained message-passing networks that use as 
input Wyckoff representations, that is, coordinate-free sets of 
symmetry-related positions in a crystal. In this work, we apply 
the former approach to explore a significantly enlarged space of 
crystalline compounds. Another very recent effort to improve 
predictions on unrelaxed structures is through data augmenta-
tion by Gibson et al.[38]

Currently, the largest issue concerning the accuracy of 
message-passing networks is no longer the topology of the 
networks, nor its complexity, but is related to the limitations 
of existing materials datasets. Some of us identified already 
in ref.  [36] large biases stemming from the lack of structural 
and chemical diversity in the available data. These biases,  
ultimately of anthropogenic nature,[39,40] lead unfortunately to 
a poor generalization error. In fact, even if the error in test sets 
is of the order of 20–30  meV  atom−1, the actual error during 
high-throughput searches can be easily one order of magnitude 
larger if the available training data is not representative of the 
actual material space.[36] A possible approach to this problem 
is active-learning based strategies, as presented in refs. [41–43], 
where a small number of calculations is used to frequently 
update the surrogate model.

In this work, we tackle this challenging problem using 
instead a larger scale stepwise approach. First, we perform 
a series of high-throughput searches with an extended set of 
chemical elements (including lanthanides and some actinide 
elements), applying the transfer learning approach presented in 
ref.  [36], consisting in continuing the training of a pre-trained 

general-purpose model on a specific family of compounds. 
Thanks to the additional data generated by these calculations, 
we expect to reduce the bias due to the representation of the 
chemical elements in the dataset. In a subsequent step, we 
retrain the CGAT and employ it to scan a material space of 
almost 1  billion compounds that comprises more than 2000 
crystal-structure types. We obtain in this way a dataset of DFT 
calculations with a considerably larger structural diversity, that 
we then use to retrain a network. This CGAT is then shown 
to possess a massively improved generalization error and a 
strongly reduced chemical and structural bias. Finally, we offer 
a demonstration of the usefulness of our approach and inspect 
this dataset to search for materials with extreme values of some 
interesting physical properties.

2. Construction of Datasets and Networks

2.1. Enlarging the Chemical Space

Our starting point is the dataset used by some of us for training 
in ref.  [36]. We will refer to this dataset as “DCGAT-1” and to 
the crystal-graph network of ref. [36] as “CGAT-1,” respectively.

As discussed previously, the training data in DCGAT-1 is 
biased with respect to the distribution of chemical elements 
and crystal symmetries. To circumvent the first problem we 
performed a series of high-throughput calculations for specific 
structure types. We used a larger chemical space than previous 
works, considering 84 chemical elements, including all ele-
ments up to Pu (with the exception of Po and At, for which 
we do not have pseudopotentials, Yb whose pseudopotential 
exhibits numerical problems, and rare gases). This results 
in 6972 possible permutations per binary, 571  704 permuta-
tions per ternary, and 46 308 024 permutations per quaternary 
system. For all these compositions we considered a (largely 
arbitrary) selection of crystal structures, including ternary 
garnets, Ruddlesden–Popper layered perovskites, cubic Laves 
phases, ternary and quaternary Heuslers, auricuprides, etc. In 
total, we included 11 binary, 8 ternary, and 1 quaternary com-
pound families (a complete list and more details can be found 
in the Supporting Information).

For each structure type included in the selection, we per-
formed a high-throughput study using the transfer learning 
approach of ref. [36]: i) The machine-learning model is used to 
predict the distance to the convex hull of stability for all pos-
sible chemical compositions. At the start we use the pre-trained 
CGAT-1 machine; ii) We perform DFT geometry optimizations 
to validate all compounds predicted stable, or unstable with a 
distance of less than 200  meV  atom−1, from the convex hull; 
iii)  We add these calculations to a dataset containing all DFT 
calculations for the corresponding structure type; iv)  We use 
transfer learning to train a new model on the basis of this 
dataset with a training/validation/testing split of 80%/10%/10%; 
v) The cycle is restarted one to three times until the mean abso-
lute error (MAE) of the model is smaller than 30 meV atom−1.

This procedure resulted in 397  438 additional DFT  
calculations, yielding 4382 compounds below the convex hull 
of DCGAT-1 (and therefore already increasing the size of the 
known convex hull by approximately ten percent). Moreover, 
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we added a large dataset of mixed perovskites[36] plus data con-
cerning oxynitride, oxyfluoride, and nitrofluoride perovskites 
from ref.  [44], amounting to around 381 000 DFT calculations. 
Finally, we recalculated and added 1343 compounds that were 
possibly unconverged outliers from AFLOW[26] according to  
the criteria in ref. [45]. The final dataset resulting from all these 
changes and additions contains ≈780  000 compounds more 
than DCGAT-1 and will be denoted as DCGAT-2.

In Figure 1 we plot the element distribution in both datasets 
DCGAT-1 and DCGAT-2. As expected, the original dataset is 
quite biased with a drastic undersampling of most lanthanides 
and actinides. Despite its smaller size, the new dataset includes 
between three and twenty times more compounds containing 
undersampled elements, and it, therefore, counteracts the 
unbalanced distribution of chemical elements of DCGAT-1. 
Note that, in particular, metallic elements appear in very similar 
quantities in the revised dataset, with exception of the heavier 
actinides that are still somewhat under-represented.

We used DCGAT-2 to retrain a CGAT with the same hyperpa-
rameters used in ref. [36] (the resulting network will be denoted 
as CGAT-2). The CGAT-2 network has a mean absolute test 
error of 21 meV atom−1 for the distance to the convex hull using 
a training/validation/test split of 80%/10%/10%. Although the 
test error is of the same order of magnitude as CGAT-1, we will 
see that the generalization error is drastically reduced. We also 
trained a network to predict the volume per atom of the crys-
tals, obtaining a test error of 0.25 Å3 atom−1.

2.2. Enlarging the Structural Space

After having successfully removed the bias in our dataset in the 
distribution of chemical elements, we now tackle the lack of 
structural variety. Our strategy consists in adding calculations 
of under-represented structural types, keeping in mind that we 
are mainly interested in phases that are thermodynamically 
stable, or close to stability. We start by querying our database 
using the pymatgen[46] structure matcher to identify all distinct 
structural models present in DCGAT-1. This is performed by 
normalizing the primitive unit cell to unit volume and com-
paring lattice constants and angles, as well as atomic positions 
up to a certain threshold. This makes our practical definition 
different from the usual one of prototypes as, for example,  
different c/a ratios of a wurtzite crystal can lead to distinct 
structural models. It is nevertheless important to keep track of 
all these models in order to increase the precision of the crystal-
graph network predictions.[36] We found a total of ≈58  000 
structural models, the large majority of them appearing only 
once or twice in the dataset. We then selected all models with 
less than 21 atoms in the unit cell, a space-group number larger 
than nine and that appeared at least ten times in our dataset. 
The first two criteria are chosen to limit the run-time of the 
DFT calculations. Following these criteria, we end up with  
639 binary and 1829 ternary crystal-structure models, spanning 
a space of 1  050  101  724 possible compounds. These models 
also densely cover the composition space, as depicted in the 
generic phase diagram of Figure 2.

In Figure 3 we plot the distributions of the number of atoms 
in the unit cell (Figure  3a) and of crystal systems (Figure  3b) 

in the set of selected structural models. The distribution of the 
number of models displays a maximum at six atoms per unit 
cell, decreasing then slowly for a larger number of atoms. It is 
also clear that models with an even number of atoms are far 
more common than those with an odd number of atoms. The 
most represented crystal system is orthorhombic, followed by 
monoclinic and tetragonal, while cubic structures are rare. Note 
that the number of monoclinic structures is reduced by the 
imposed restriction on the space group number, as monoclinic 
structures have space groups between 3 and 15. Also due to this 
restriction, no triclinic structures are present in the dataset. All 
these conclusions apply to both binary and ternary crystals.

We use our CGAT-2 network to predict the distance to the 
convex hull for these structural models, after grouping them 
according to their general composition AxByCz. For every com-
position, we occupy the lattice sites of each structural model with 
all permutations of the A, B, and C chemical elements, and let 
the machine predict the ones that are at a distance of less than 
50 meV atom−1 above the convex hull. In case several geometries 
are below this threshold we just keep the one with the lowest 
energy. We also remove duplicates, and materials with Eu, Gd, 
Yb, and Lu due to converge issues with the DFT calculations. In 
total, we obtain 530 937 materials satisfying our cutoff criteria.

We note the geometries have not been optimized yet. We can 
obtain a good estimate of the unit cell volume using a CGAT 
network that we have trained for this quantity. We use this infor-
mation to build the starting point for DFT geometry optimiza-
tions, as described in Section  5. After removing unconverged 
calculations we are left with DFT calculations for 515 653 new 
compounds. Combining the new data with DCGAT-2 we arrive 
at our final dataset “DCGAT-3”. From the new data, we separate 
a test set composed of materials that correspond to eight ran-
domly chosen ternary compositions, encompassing 93 crystal 
structure models and 57 252 entries. The remaining data from 
DCGAT-3 is then used to train our last network, called CGAT-3.

By separating a test set of compositions and structures sparsely 
represented in our training sets we expect to have a proper statis-
tical estimation of the generalization error of the networks. The MA 
Eimproves from 92 meV atom−1 for CGAT-1, to 87 meV atom−1and 
57 meV atom−1, for CGAT-2 and CGAT-3, respectively. As we can 
see in Figure  1 the element coverage in the training set already 
significantly improved from CGAT-1 to CGAT-2 while the struc-
tural diversity only improved marginally. As a result, the decrease 
in MAE is rather small at 5%. On the other hand, the increase in 
structural diversity from CGAT-2 to CGAT-3 results in a major 33% 
improvement. Consequently, we can conjecture that the majority 
of future improvements with respect to data will come from the 
sampling of additional geometrical arrangements.

In Figure 4 we see the element-resolved MAEs for CGAT-1 
and CGAT-3. For CGAT-1 we observe a strong dependence of 
the MAE on the chemical element, with a significantly higher 
MAE for the first-row elements, most likely due to the first-
row anomaly that has been observed in multiple studies.[9,10,36] 
This effect is strongly reduced for CGAT-3, with an MAE that 
is much more uniform across the periodic table. Indeed, the 
maximum MAE for CGAT-1 is 258 meV atom−1 for boron, while 
this value is reduced to 181  meV  atom−1 for CGAT-3, proving 
that we could essentially eliminate the chemical element bias 
from our dataset.

Adv. Mater. 2023, 35, 2210788
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In Figure 5 we plot the distance to the convex hull for the 
DCGAT-1 dataset and the data that was added in DCGAT-2 
and DCGAT-3. We see that the 1.89M materials of the original  

dataset still exhibit a wide distribution with a median of 
420 meV atom−1 and a standard deviation of 570 meV atom−1. 
This is easy to understand as the data mostly originates from 

Adv. Mater. 2023, 35, 2210788

Figure 1.  Number of materials  in a) DCGAT-1 and b) added to DCGAT-1 to obtain DCGAT-2 containing a specific chemical element of the periodic table.
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traditional high-throughput searches. The peak close to zero 
is due to the experimentally known stable materials as well 
as to the data from some studies using machine learning 
or chemical substitution strategies.[10,47] The perovskite data 
added to DCGAT-2 has one peak at roughly 200  meV  atom−1, 
due to the compounds generated using machine learning 
with a cutoff of 200  meV  atom−1 from the convex hull using 
the neural network of ref.  [36]. The wide distribution comes 
from the random perovskites generated in the same study.[36] 
The remainder of DCGAT-2 was also generated using a similar  
approach and therefore, is centered at 200  meV  atom−1. The 
total DCGAT-2 dataset contained 2.67M materials. Finally, we 
can see that the distribution of the 515k materials we added 
to arrive at the 3.18M DCGAT-3 entries has a median of 
117 meV atom−1 with a standard deviation of 154 meV atom−1. 
Compared to the usual range of distances to the convex hull of 
a high-throughput search, this distribution is extremely narrow, 
showing the remarkable accuracy and generalization error of 
our machine-learning models.

The flowchart shown in Figure S1, Supporting Information, 
summarizes how the final model has been generated. We can 
observe that the dataset increases from 2.1M to 2.8M and finally 
to 3.1M calculations going from DCGAT-1 to DCGAT-2 and 
then DCGAT-3. We chose to increase substantially the dataset, 
performing a large amount of DFT calculations between two 
successive training steps, because training our complex neural 
network is particularly expensive and we wanted to be sure 
that the added data would have the potential to decrease the 
prediction error.

3. Material Properties

In the process of constructing our unbiased datasets, we 
have discovered 19  512 compounds on the convex hull, 
168  340 unstable compounds with a distance of less than 

50 meV atom−1  from the hull, and 326  433 compounds above 
the hull, at a distance of less than 100  meV  atom−1. These 
crystalline materials are, to our knowledge, not yet included in 
available databases. An overview of the chemical nature of the 
new compounds on the convex hull is summarized in Figure 6, 
where we plot the number of newly discovered stable com-
pounds containing each chemical element. We see that these 
materials cover the entire periodic table, but with a maximum 
for compounds including Li, Mg, transition metals around Pd 
and Ga, and lanthanides and actinides. Concerning the latter, 
we see that compounds including Eu, Gd, U, and Np are rela-
tively under represented. This is not due to a lesser ability of 
these chemical elements to form stable compounds, but to 
a technical reason: the available pseudopotentials for these 
elements often lead to numerical problems making calculations 
hard to converge.

In the following, we want to analyze these materials in more 
detail. To this end, we perform machine-learning-assisted 
data-mining of several non-trivial physical properties to reveal 

Adv. Mater. 2023, 35, 2210788

Figure 2.  Ternary phase diagram showing the stoichiometries covered 
in this work.

Figure 3.  The histograms show the distribution of a)  the number of 
atoms per unit cell and b) crystal systems in the set of structural models 
scanned in the high-throughput search. The counts for the binary and 
ternary models are stacked on top of each other in orange and blue, 
respectively.
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compounds with extreme behavior. We decided to restrict 
our search to (quasi-)stable materials, defining a threshold of 

50  meV  atom−1 above the convex hull of stability. For these 
systems, we evaluate elastic constants, superconductivity, and 

Adv. Mater. 2023, 35, 2210788

Figure 4.  MAE in the test set separated from DCGAT-3 for compounds containing each element of the periodic table, when the predictions are obtained 
with a) CGAT-1 and b) CGAT-3.
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gap deformation potentials. The strategy in the three cases is 
similar: we train machine learning models based on crystal 
graph convolutional networks (CGCNN) [48] to provide an effi-
cient prediction of the specific property. Promising materials 
are then investigated in more detail using DFT or density-
functional perturbation theory to validate machine learning 
predictions and to provide further insights into the physics and 
the mechanism behind the extreme values of a certain property.

3.1. Ultra-Hard and Incompressible Materials

Describing the elastic response of a material requires knowl-
edge of its stiffness tensor, composed of (at most) 21 inde-
pendent elastic constants. Direct analysis of the whole tensor 
is rather cumbersome, so most studies concentrate on two 
derived properties: the Voigt–Reuss–Hill averaged[49] bulk and 
shear moduli GVRH and KVRH, respectively, that describe the 
compressibility of the material. Besides considering the average 
elastic response of the material, we can use GVRH and KVRH to 
estimate the Vicker’s hardness[50,51] HV and use this quantity to 
identify ultra-hard materials.

A recent example of this approach is ref.  [52], where the 
authors used Bayesian optimization with symmetry relaxation 
to obtain optimized structures, followed by materials graph 
network[53] models to predict formation energies as well as 
GVRH and KVRH. This methodology was applied to search for 
ultra-hard transition metal borides and carbides, exploring a 
comparatively small space of circa 400 000 compounds.

In this work we perform a screening of the values of GVRH, 
KVRH, and HV on our much larger dataset. We predict the 
values of the first two quantities using CGCNN models trained 
on the dataset of Matbench,[33] and use these predicted values 
to estimate the Vicker’s hardness for each material using the 
model of ref. [51]. Details of the training can be found in the Sup-
porting Information. The compounds within 50  meV  atom−1 

Adv. Mater. 2023, 35, 2210788

Figure 5.  Distance to the convex hull for DCGAT-1 and for the added data 
contained in DCGAT-2 and DCGAT-3. The mixed perovskites studied in 
ref. [36] are separated from DCGAT-2 and the rest of the data. In the inset 
plot, we zoom into the range of stable compounds.

Figure 6.  Number of stable compounds containing each chemical element discovered in this work.
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from the convex hull and with the 25 highest GVRH and KVRH 
were selected for subsequent analysis, that is, their stiffness 
tensors were calculated using DFT, as described in Section  5. 
The top-five materials for each quantity are presented in Table 1 
(while a complete list is given in the Supporting Information).

Not surprisingly, the materials with the highest HV are 
mostly metal borides. These materials are known to emulate the 
hardness of diamond thanks to a mixture of high valence (pro-
vided by the metal) and short bonds (provided by boron).[56–58]  
Most of the borides seen here belong to the same prototype, 
with the anonymous formula MNB3, with M and N a metal, 
and space group 63. This crystal structure, depicted in Figure 7, 
consists of hexagonal boron nanoribbons intercalated with 
layers of transition metals. Overall, this arrangement of atoms 
is reminiscent of other ultra-hard materials such as WB, WB2, 
and TiB2. We remark on the prediction of the superhard ternary 
compound TiVB3 with a hardness of 42 GPa.

For what concerns incompressible materials, the presence 
of osmium compounds (Ir3Os5 and Os2Ru, etc.) is also not too 
surprising, as osmium and osmium compounds are known 
to have extremely large bulk modulus, although they are not  
necessarily hard, due to the metallic nature of their bonds.[60]

3.2. Superconductors

Searching for new conventional superconductors with a high 
critical temperature (Tc) is always a tempting application for 
large material datasets. This turns out to be a complex task 
due to the interplay between the different ingredients that 
determine Tc, as well as the lack of reliable simple indicators 
of superconductivity.[61] McMillan’s formula[62] suggests to use 

Debye’s temperature (ΘD) and the density of states at the Fermi 
level (DOS(EF)) as estimators for high-Tc, a connection that has 
recently been used with some success.[63] Within the context of 
the present work, we can easily estimate ΘD from the bulk and 
shear moduli[64] obtained in the previous section.

Following this line of thought, we selected non-magnetic 
materials with a predicted Debye’s temperature above 300  K 
and with a DOS(EF) larger than 0.5 states per eV. Furthermore, 
we restricted our search to space-group numbers greater or 
equal to 160 (highly symmetric compounds), and to cells with a 
maximum of eight atoms. We ordered the resulting 2717 mate-
rials by ΘD, and performed electron–phonon calculations for 
the first 50. The large majority of these are dynamically stable 
(two were found to have imaginary frequencies), and we found 
19 systems with Tc above 1  K, as calculated using McMillan’s 
formula. For the compounds with the largest calculated Tc, 
we performed better converged electron–phonon calculations 
by increasing the density of the q- and k-grids. The calculated 
superconducting properties for these compounds can be seen 
in Table 2, while a complete table for the 50 screened materials 
is available in the Supporting Information.

The compound with the highest transition temperature in 
Table 2 is ScMoC2, with a Tc = 15.97 K. This is a very interesting 
material with a rhombohedral lattice exhibiting alternating 
layers of Sc−C−Mo−C  . In Figure 8 we see that the lowest  
frequency phonon modes have Mo-character, while the optical 
phonon modes until around 400 cm−1 have mostly Sc-character. 
These are separated by a gap from a manifold of optical modes 

Adv. Mater. 2023, 35, 2210788

Table 2.  Formula, distance to the convex hull (Ehull), space group (Spg.), 
and calculated superconducting properties for the screened materials.

Formula Ehull Spg. λ ωlog [K] Tc [K]

ScMoC2 49 166 0.86 287.94 15.66

NbRhBe4 47 216 0.70 311.69 10.91

YZr3N4 35 221 0.54 398.16 6.56

Sc4NO3 8 221 0.50 428.04 5.12

Zr4CN3 0 221 0.50 419.02 5.05

ScZr3N4 0 221 0.48 440.18 4.50

Table 1.  Chemical formula, distance to the convex hull (Ehull), space 
group number (Spg.), bulk modulus (KVRH in GPa), shear modulus 
(GVRH in GPa), and Vicker's hardness (HV in GPa) for the materials with 
the highest calculated HV (top section), KVRH (middle section), and GVRH 
(bottom section). All indicated materials satisfy the Born–Huang elastic 
stability criteria.[54,55]

Formula Ehull Spg. N KVRH GVRH HV

TiVB3 16 63 10 262 245 42

TaTiB3 14 63 10 268 230 36

Ta2BeB3 0 69 12 272 232 36

BeNb2B3 0 69 12 255 222 35

TiB3W 0 63 10 293 235 33

Ir3Os5 28 25 8 378 196 25

Os2Ru 14 15 6 369 233 27

Os5Ru3 18 25 8 365 236 27

MoOs4Ru 21 13 12 357 220 25

Os2RuW 49 51 8 350 189 23

TiVB3 16 63 10 262 245 42

Os5Ru3 18 25 8 365 236 27

TiB3W 0 63 10 293 235 33

Os2Ru 14 15 6 369 233 27

Ta2BeB3 0 69 12 272 232 36

Figure 7.  Crystal structure of TiTaB3. The blue atoms represent Ti, the 
gold Ta, and the green B. We also depict the primitive unit cell. Picture 
produced with vesta.[59]
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exclusively due to the C-atoms. A large part of the electron–
phonon coupling constant λ comes from a softening of an 
acoustic branch in the Γ  →X direction, and that is ultimately 
responsible for the large value of Tc.

The only intermetallic compound in the top five list is 
NbRhBe4. This is actually a ternary generalization of the cubic 
Laves (C15) phase.[65] Interestingly, both NbBe2 and RhBe2 
have been synthesized,[66] and are superconducting with Tc of  
2.14 and 1.37  K, respectively. Our prediction of 11.61  K is  
considerably higher than for each of the individual binaries 
but in line with the related A15 compound Nb3Be that has  
Tc = 10 K.[67]

Interestingly, the list in Table 2 also includes several nitrides. 
As an example, we take a closer look at ScZr3N4 (that is iso-
structural to YZr3N4 also on the list). This material has a simple 
cubic structure (space group Pm3m #221) that can be derived 
from the NaCl-type structure, with N occupying one site 
(Wyckoff positions 1b and 3d), and the cations occupying the 
other site (Sc in the 1a and Zr in the 3c Wyckoff positions). 
The phonon dispersion and the density of states, and the elec-
tron–phonon coupling α2F(ω) of ScZr3N4 can be found in the 
Supporting Information. Consistently with the difference in 
atomic masses of the composing atoms, the acoustic and lower 
optical branches have Zr character, the following manifold just 
below 300 cm−1 has mostly Sc character and the highest mani-
fold at around 400–500 cm−1 is related to N. Finally, all modes 
contribute to the coupling constant λ that reaches a value of 
around 0.8.

3.3. Deformation Potentials

Finally, we take a look at the hydrostatic deformation poten-
tials Ξ, which measure the variation of the band gap (Eg) with 
respect to hydrostatic variations of the structure. This quantity 
is defined as

d
dln( )

ln( ) ln( )

g

g g∑

Ξ =

=
∂

∂ +
∂
∂

∂
∂

E
V

E
V

E
u

u
V

i i

i

	
(1)

where the second term of the last equation  comes from the 
dependency on the internal parameters (i.e., atomic positions 
and cell vectors). For large scale studies, the use of the com-
plete Equation  (1) is rather cumbersome, and it is preferable 
to resort to the fixed shape hydrostatic deformation potential, 

ln( )
gΞ ≡

∂
∂

E
V

� ) to detect large deformation potentials. Using the 

dataset published by some of us in ref.  [68], which provides 
Ξ�  (calculated by scaling the unit cell volumes, that is, without 
optimizing the internal coordinates) for a series of semicon-
ductors, we trained a CGCNN model to predict this quantity 
(which we define by predΞ� ) for the materials in the present 
dataset. We considered compounds within 50 meV atom−1 from 
the hull, with a maximum of ten atoms in the unit cell and  
electronic band gaps larger than 0.1  eV. From the predicted 
values of Ξ� , we identified a set of 338 extreme materials 
for which we calculated the full deformation potential Ξ� . 
A summary of the system with the largest absolute values of 
the deformation potentials can be found in Table 3.

Materials with extreme negative gap deformation potentials 
are very diverse, both in terms of their chemistry and the size 
of their band gap. In fact, we find oxides, fluorides, nitrides, 
etc., with band gaps ranging from 2.0 eV to more than 7.5 eV. 
We also note the appearance of alloyed systems, with two 
closely related cations, such as InGaO3 or NaLi4F5. The latter 
material is a very interesting example: NaLi4F5 and NaLi3F4 are 
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Figure 8.  Phonon dispersion, the density of states, and the electron–
phonon coupling α2F(ω) of ScMoC2.

Table 3.  Materials with the largest (in absolute value) hydrostatic  
deformation potentials. Shown here are the chemical formula, distance 
to the hull (Ehull in meV atom−1), space group number (Spg.), band gap 
(Eg in eV), deformation potential (Ξ in eV), and predicted deformation 
potential ( predΞ� , in eV).

Material Ehull Spg. Eg Ξ
predΞ�

InGaO3 49 148 1.48 −7.76 −8.02

NaLi4F5 42 139 7.64 −7.30 −7.40

AcAlF6 0 166 7.31 −7.22 −7.30

NaLi3F4 43 65 7.64 −6.88 −7.03

Na2SiN2 14 72 2.13 −6.30 −8.53

PaIO6 0 148 2.01 −5.95 −8.31

Li3ClF2 27 71 6.35 −5.82 −6.92

KNdF4 9 123 6.56 −5.75 −6.28

AcGaF6 0 166 5.83 −5.68 −7.77

LiTlSe 30 11 1.01 −5.38 3.64

Pb5SeS4 7 139 0.42 3.20 3.35

TlIn4Cl5 23 87 1.69 4.04 4.14

TlIn4Br5 11 87 1.49 4.08 3.61

In4GaBr5 31 79 1.43 4.08 3.21

LiTl4I5 30 166 1.94 4.12 3.18

In5Br4Cl 18 166 1.39 4.23 3.45

In3Br2Cl 22 44 1.43 4.61 3.63

InHg2F 36 11 0.82 5.26 4.58

LiGeF3 0 148 4.14 5.80 3.24

TlHg2F 17 59 1.23 6.81 3.82
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ordered alloys of NaF and LiF. Their end components are wide 
gap materials (6.1 eV for NaF and 8.7 eV for LiF) with suitable 
refractive indices to be used in ultraviolet optics and Cherenkov 
radiators,[69] but are perhaps best known for their use in molten 
salt reactors.[70] Owing to the isoelectronic substitution of Na 
by Li, the electronic structure of these ordered alloys is quali-
tatively similar to that of NaF and LiF: F’s p-orbitals contribute 
heavily to the valence band while the conduction band shows 
primarily s-orbitals with contributions from all elements. As 
expected, their band gap also lies in between that of NaF and 
LiF, at 7.6  eV for both entries. The values of the deformation 
potentials are also very similar between the two, −7.30  eV for 
NaLi4F5 and −6.88 eV NaLi3F4.

Similar reasoning follows for InGaO3, which crystalizes 
in the ilmenite structure (space group 3R ), a derivative of 
the corundum structure family. This material is essentially 
an ordered alloy of Ga2O3 and In2O3, and along with Al2O3, it 
forms an isoelectronic set of corundum phases. These mate-
rials have already been observed to possess high deformation 
potentials, with aluminum corundum being commercially 
used to measure the pressure inside diamond anvil cells. As Ga 
and In are neighbors in the periodic table, alloying Ga and In 
in this structure leads to a band structure that is qualitatively 
very similar to that of the end components. The valence band 
is dominated by contributions of oxygen’s p-orbitals, making it 
very “‘flat,” while the almost parabolic conduction band is more 
complex, showing an admixture of s-orbitals from In, O, and 
Ga, as well as p-orbitals from O. If we consider the isoelectronic 
sequence {Al, Ga, In}2O3, we observe a decrease of the band gap 
with increasing atomic number (5.85, 2.40 and 0.96 eV,[2] respec-
tively) and a decrease of the absolute deformation potential (−12 
−10 and −8 eV,[68] respectively). The band gap and deformation 
potential of InGaO3 lies in the middle of the range of values.

These encouraging results point to the possibility of  
engineering the band gap deformation potentials of (Li,Na)F 
or (In,Ga)O3 alloys by controlling the ratio Li/Na or In/Ga in 
the aforementioned phases. Mixing these compounds is not 
energetically favorable and therefore we expect the formation of 
random alloys at adequate temperatures. A detailed study of the 
thermodynamics of these alloys would be necessary to make 
quantitative predictions.

Finally, we note the presence of a false positive, LiTlSe, 
on the list in Table  3. In this compound the relaxation of the 
internal coordinates leads to an enormous correction of the 
fixed shape deformation potential, even leading to a change 
of sign. In general, our approach leads to systematically larger 
errors in materials where the modification of the band gap with 
pressure is strongly dependent on the variation of the internal 
atomic coordinates.

LiTlSe belongs to the matlockite family (e.g., refs.  [71, 72]) 
and this crystal is almost layered. The structure is comprised 
of sheets of LiSe, where the Li atoms are the center of flat  
tetrahedra with Se at the vertices. These are arranged in a 
square lattice, such that both vertices and edges are shared 
between adjacent tetrahedra. The Tl atoms are placed in the 
concavities of the tetrahedra, thus separating the LiSe layers. 
The valence band shows a predominance of Se-p-orbitals  
followed by Tl-s-orbitals, while the conduction is primarily 
owed to Tl- and Se-p-orbitals.

Also, the compounds with the highest positive gap deforma-
tion potentials display a large variety of chemistry and band 
gaps. The latter range from 0.4  eV to more than 4  eV. The  
material with the largest values of Ξ is TlHg2F.

4. Conclusions

We propose a universal crystal-graph attention neural network 
that predicts the phase diagram at zero temperature of the 
whole materials space with unprecedented accuracy, from the 
sole knowledge of chemical composition and prototype crystal 
structures. To obtain this result, we removed biases originating 
from under-represented chemical elements and structural 
arrangements in the training dataset of materials calculations.

Applying our neural network we scrutinized nearly a  
billion materials and were able to expand the known theoretical  
convex hull by roughly 30%, revealing tens of thousands of 
realistic targets for experimental synthesis. To exemplify how 
to take advantage of the uncovered opportunities for materials 
discovery, we further predicted a selection of material proper-
ties using a combination of machine learning and standard 
approaches. In this way, we discovered a number of ultra-
hard and superconducting materials, as well as materials 
with extreme gap-deformation potentials. We suggest with the 
highest priority as interesting synthesis targets, for example, 
ultra-hard TiVB3 or superconducting ScMoC2 with a predicted 
critical temperature of 16 K.

Our results point to the importance of the quality of the 
training data and demonstrate that creating additional and 
diverse data is the key to improve large-scale machine learning 
models in material science so that they perform with a con-
sistently small error across the structure and composition 
space. As an extension of this work, we are currently looking 
over quaternary systems and these new calculations will soon 
further enlarge and diversify our materials dataset. As a per-
spective, with our data-driven approach, we aspire in the near 
future to reduce the false negative rate to such an extent that 
machine learning predictions will largely replace DFT-based 
high-throughput searches.

5. Experimental Section
Geometry Relaxations: All geometry optimizations and total energy 

calculations were performed with the code VASP.[73,74] All parameters for 
the calculations were chosen to be compatible with the materials project 
database.[2] The Brillouin zones were sampled by uniform Γ-centered 
k-point grids with a density of 1000 k-points per reciprocal atom. The 
projector augmented wave parameters[75,76] of VASP version 5.2 with 
a cutoff of 520 eV were applied. The calculations were converged to 
forces smaller than 0.005 eV  Å−1. As exchange-correlation functional 
the Perdew–Burke–Ernzerhof[77] functional with on-site corrections 
for oxides, fluorides containing Co, Cr, Fe, Mn, Mo, Ni, V, and W was 
used. The repulsive on-site corrections to the d-states were respectively 
3.32, 3.7, 5.3, 3.9, 4.38, 6.2, 3.25, and 6.2 eV. The authors encountered 
convergence issues with heavy elements, like Pu for which the 
calculations often did not converge within their time limits, and several 
Lanthanides, for example, Gd and Eu for which the self-consistent 
cycles sometimes did not converge. Furthermore, Cs has a problematic 
pseudopotential which leads to additional unconverged calculations. 
Unconverged calculations were eliminated from the datasets.

Adv. Mater. 2023, 35, 2210788
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Elastic Constants: Calculation of the stiffness tensors was performed 
using DFT with VASP[73,74] via atomate[78] workflows, using the 
corresponding default input parameters. In a nutshell,[79] the calculation 
was done by straining the cell with six deformation gradients, in four 
different magnitudes, for a total of 24 distorted cells. From the results 
of these calculations, the components of the stiffness tensor were 
fitted and suitably symmetrized. Once the stiffness tensor is known, all 
derived quantities (KVRH, GVRH, HV) could be trivially obtained.[49,51]

Electron–Phonon Coupling: Electron–phonon calculations were 
performed using version 7.0 of quantum espresso[80] with the Perdew-
Burke-Ernzerhof  functional for solids (PBEsol)[81] generalized gradient 
approximation. Pseudopotentials from the pseudodojo project,[82] 
specifically the PBEsol stringent norm-conserving set were used. This 
pseudopotential table had been systematically constructed and validated 
in a series of seven tests in crystalline environments, specifically the 
Δ-Gauge,[83]  Δ′-Gauge,[84] GBRV-FCC, GBRV-BCC, GBRV-compound,[85] 
ghost-state detection, and phonons at the Γ-point.

The workflow consisted of the following steps: i)  The energy cutoff 
was set to the maximum of pseudodojo's high precision hint of the 
elements in a given material. ii)  The lattice constant was optimized 
using uniform Γ-centered k-point grids with a density of 1500 k-points 
per reciprocal atom. If this resulted in an odd number of k-points in a 
given direction, the next even number was used instead. Convergence 
thresholds for energies, forces, and stresses were set to 1 × 10−8  a.u., 
1 × 10−6  a.u., and 5 × 10−2  kbar, respectively. For the electron–phonon 
coupling a double grid technique, with the same k-grid used in the lattice 
optimization as the coarse grid, and a k-grid quadrupled in each direction 
as the fine grid was used. iv) For the q-sampling of the phonons half of 
the k-point grid described above was used. v) The double δ-integration 
to obtain the Eliashberg function was performed with a Methfessel–
Paxton smearing of 0.03  Ry. vi)  The values of λ and ωlog were then 
used to calculate the superconducting transition temperature using the  
Allen–Dynes modification[86] to the McMillan formula[62]

1.20
exp 1.04 1

(1 0.62 )c
log λ

λ µ λ
= − +

− +




∗T

w 	 (2)

The value of μ*wasarbitrarilytaken as, μ* = 0.10 for all materials studied. 
For the higher accuracy calculations, the previous steps were repeated 
by changing: i) the initial k-point grid density used for the geometry 
optimization was set to 3000 k-points per reciprocal atom; ii) the k-grid 
used as the coarse grid was set to the double of the k-grid used for the 
geometry optimization.

Deformation Potentials: The calculation of the deformation potentials 
was done within DFT with VASP[73,74] and the PBE approximation[77] as 
the exchange-correlation functional. Geometry optimizations were 
performed using Γ-centered grids with 1500  k-points per reciprocal 
atom until the forces were smaller than 5  meVÅ−1. Densities of states 
were calculated using grids with 2000 k-points per reciprocal atom and 
band-structure using a line density along the high-symmetry path of  
60 × 2π  Å−1. The non-spherical contributions from the gradient 
corrections inside the augmentation spheres were included as well. 
Apart from this, the remaining inputs (e.g., pseudopotential choice and 
Hubbard parameters) were chosen to be the same as recommended by 
the Materials Project. For the band structures the notation of ref.  [87] 
was used to build the paths in reciprocal space, with the conversion to 
the standard representation being handled by the pymatgen package.[46] 
The deformation potentials were computed from the band structures 
calculated at three different optimized cell volumes: the optimized 
volume, a volume compressed by 3%, and a volume expanded by 3%. 
For the distorted cells, a geometry optimization at a fixed volume was 
performed. Finally, the deformation potentials were obtained by fitting a 
first-order polynomial to reproduce the resulting Eg and ln (V) data.

Machine Learning: CGATs were used for the prediction of the 
distance to the convex hull and the volume of the crystal structures. 
CGATs are message-passing networks on crystal graphs relying on the 
attention mechanism[88] to construct the messages and updates. The 
vector representing the ith node, that is atom, at time step t of the 
message-passing process was denoted as hi

t  and the corresponding 

edge to the atom j as eij
t . In general, the message passing and update 

equation could be summarized as
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where ( )iN  is the neighborhood of the ith node determined by a 
cutoff radius and a maximum number of neighbors within that cutoff 
radius. The messages ij

tnmm  and attention vectors ij
tnaa  were calculated 

by a fully connected network from a concatenation of the previous 
node and edge embeddings. n networks were run for messages and 
attention coefficients in parallel, each representing one so-called 
attention head. Here, FCNNN ,

a
t n  is the network of the nth attention 

head at timestep t.
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In Equation  (7) the messages weighted by the attention coefficients 
through a sum were combined and then the attention heads were 
averaged. The resulting vector entered a hyper-network that was 
calculated from the difference between the starting node representation 
and the node representation at timestep t. The edges were updated in a 
similar manner
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After the last message passing step, the atomic representations 
were concatenated with a global context vector calculated with a 
ROOST[30] model and then combined through another attention 
layer. Finally, the target quantity was calculated with a residual 
neural network.

The networks CGAT-2 and CGAT-3 trained for this publication both 
used the same hyperparameters, specifically, optimizer, AdamW; 
learningrate, 0.000125; starting embedding, matscholar-embedding; 
nbr-embedding-size, 512; msg-heads, 6; batch-size, 512; max-nbr, 24; 
epochs, 390; loss, L1-loss; momentum, 0.9; weight-decay, 1× 10−6; atom-
fea-len, 128; message passing steps, 5; roost message passing steps, 3; 
other roost parameters, default; vector-attention, True; edges, updated; 
learning rate, cyclical; learning rate schedule, (0.1, 0.05); learning rate 
period, 130; hyper network, three hidden layers, size 128; hyper network 
activ. funct., tanh ; FCNN, one hidden layer, size 512; FCNN activ. funct., 
leaky RELU.[89]
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Due to the size of DCGAT-3 it was decided to only use validation 
and test set sizes of 5% which still encompassed 156 483 materials. The 
training of each network cost ≈7 days on 8 NVIDIA V100 GPUs, that is, 
≈1000 GPU hours.

Transfer Learning: The high-throughput searches with transfer 
learning were started with the CGAT-1 network and one round of 
predictions was performed for the selected crystal structures. Using 
a cutoff of 200  meV  atom−1 validation calculations were performed 
with DFT and the resulting data was used to transfer learn a separate 
network for each prototype. Here the learning rate was reduced by a 
factor of ten and the batch-size by a  factor of 8 in comparison to the 
normal training and the network was optimized until the validation 
error converged.

Depending on the number of stable compounds that were found 
during the next cycle of predictions and the error of the network up 
to three cycles of transfer learning were performed. As can be seen in 
Table S1, Supporting Information, for all except two prototypes, the MAE 
was already sufficiently small after one round of transfer learning. Only 
the garnets and the Ruddlesden–Popper layered perovskites required 
a second round of data accumulation and training to reach such a 
small MAE.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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