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Machine learning guided high-throughput search of non-oxide
garnets
Jonathan Schmidt 1, Hai-Chen Wang1, Georg Schmidt1 and Miguel A. L. Marques 1✉

Garnets have found important applications in modern technologies including magnetorestriction, spintronics, lithium batteries, etc.
The overwhelming majority of experimentally known garnets are oxides, while explorations (experimental or theoretical) for the
rest of the chemical space have been limited in scope. A key issue is that the garnet structure has a large primitive unit cell,
requiring a substantial amount of computational resources. To perform a comprehensive search of the complete chemical space for
new garnets, we combine recent progress in graph neural networks with high-throughput calculations. We apply the machine
learning model to identify the potentially (meta-)stable garnet systems before performing systematic density-functional
calculations to validate the predictions. We discover more than 600 ternary garnets with distances to the convex hull below
100meV ⋅ atom−1. This includes sulfide, nitride, and halide garnets. We analyze their electronic structure and discuss the connection
between the value of the electronic band gap and charge balance.
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INTRODUCTION
Garnets can be found throughout the world in diverse geological
environments, and have been known since prehistory mainly due
to their use in jewelry as gemstones. They are also relatively hard
minerals, a property that makes them useful for a series of
industrial applications, such as in waterjet cutting or as abrasives.
Generally, the garnets crystallize in a cubic structure (space

group Ia3d) with chemical composition A3B2(B’C4)3, where the A
atoms are located in the 24c dodecahedral sites, the B atoms are
in the 16a octahedral, and B’ atoms occupy the 24d tetrahedral
sites. In ternary garnets, B and B’ sites are occupied by the same
chemical element. Around 19501–3 some rare-earth garnets,
especially yttrium-based materials, started to attract attention.
Those garnets have a general formula of RE3B2(BO4)3 where RE
stands for rare-earth and B is a 3d magnetic transition metal
(usually iron) or a group IIIA element. Among these, one of the
most used ones is yttrium aluminum garnet (YAG), Y3Al2(AlO4)3,
used as a synthetic simulant to diamond due to its high refractive
index (> 1.8)4. Doped YAGs with other rare-earth elements have
found numerous applications as lasing media in modern medical
laser devices5 or in tunable optical devices6–9.
Other important compounds, with interesting ferrimagnetic

properties, are the rare-earth iron garnets (RE3Fe2(FeO4)3, RIG). In
the RIG structure, five Fe atoms occupy two different sublattices,
and the antiferromagnetic coupling between sublattices and
ferromagnetic coupling within the sublattice leads to a ferrimag-
netic configuration. RIGs can display a rather high Curie
temperature (around 560 K10), and some systems exhibit giant
magnetorestriction11. Moreover, RIGs materials have a band gap
with values around 2.6 to 2.9 eV12,13. Among these materials
yttrium iron garnet (YIG) stands out because it has an
exceptionally low Gilbert damping. YIG has first been used as
bulk material in optical insulators, circulators, and Faraday rotators.
Since the last two decades, YIG is also more and more frequently
used as thin film material for spintronic applications14 because it
allows the transmission of spin currents although being an
insulator by itself. In recent years we have witnessed the attempt

to replace yttrium with lanthanides to increase the spin-orbit
coupling and introduce even Dzyaloshinskii-Moriya interactions in
hybrid systems.
Another interesting group of quaternary garnets is the lithium

garnets LN3M2(LiO4)3, where LN is a lanthanide and M is either Te,
Ta, or Nb. With partial Li-filling of the invasive positions of
tetrahedral and distorted octahedral sites, the stuffed lithium
garnets (LN3M2Li2(LiO4)3) have a promising lithium-ion conductiv-
ity and chemical stability, showing potential as solid electrolytes in
Li-batteries15,16.
The many applications of garnets, and of YIG in particular, has

increased the need for garnets with different properties.
Unfortunately, the deposition of garnet thin films with high
quality is only possible on garnet substrates due to the special
crystal structure17–19. Moreover, for spintronics applications, it
would be a huge step forward to be able to pair, for example, thin
YIG films in hybrid structures with other conducting films being
either metallic or having such a low band gap that reasonable
electron conductivity is achievable at room temperature17–19.
Again to achieve a perfect interface in these structures one would
need to create an all-garnet hybrid which is currently prevented
by the obvious lack of room-temperature conducting or metallic
garnets. Such a material class would dramatically extend the
applicability of garnet thin films.
However, despite these diverse applications and the technolo-

gical relevance of garnets, most of the research in garnets is
confined to oxides20, and only a few halides (also called
cryolithionites) are known experimentally21. This is can be easily
understood, as oxides are usually simpler to work with under
ambient experimental conditions. Furthermore, a computational
high-throughput search of new compositions for the garnet
prototype is challenging, as the garnet cubic primitive unit cell
contains 80 atoms, which is an order of magnitude larger than
most structure prototypes used in recent high-throughput
searches such as (double-)perovskites22,23, (half)-Heuslers24,
dichalcogenides25, etc.
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Fortunately, with the aid of state-of-the-art machine learning
techniques, the problem of searching through the entire
combinatorial chemical space can be significantly accelerated.
With pre-trained machine models, we can filter millions of
compositions according to the predicted stability without

performing costly density-functional theory (DFT) calculations for
all the compositions. Nevertheless, DFT validation of the stable
compounds is still necessary as a post-processing step.
In the present paper, we followed such a procedure to explore

possible (meta-)stable compounds beyond oxy-garnets. The rest
of the paper is structured as follows. In “Methods”, we explain the
machine learning model and the computational methods we
applied. In “Results and discussion”, we present the most
interesting crystal phases we uncovered in our work and discuss
the potential applications of the new proposed compounds.
Finally, we present our conclusions and an outlook.

RESULTS AND DISCUSSION
Stability and chemistry
In total, the machine-learning model predicted around 12300
compositions below 200meV ⋅ atom−1 from the convex hull of
thermodynamic stability that was not present in the Materials
Project database26 nor in the Inorganic Crystal Structure
Database27 (ICSD). All these calculations can be downloaded from
the Materials Cloud repository28. The cutoffs of 100 meV ⋅ atom−1

and 200 meV ⋅ atom−1 were chosen based on the fact that ~20%
of the experimentally realized materials, present in the materials
project database, have a distance to the convex hull larger than
100meV ⋅ atom−1. Note that this, however, does not mean that
20% of materials above 100 meV/atom can be synthesized, as this
value represents a conditional probability and not an absolute
one. As such, the probability that a material can be synthesized
decreases very rapidly with the distance to the hull, and is very
small for a compound 200meV/atom above it. Therefore, the
priority for experimental synthesis should be compounds on the
hull or very close to it. As the CGAT model has its own errors
we doubled the cutoff for the machine learning predictions. The
influence of this cutoff is also further discussed in the
Supplementary Information.
After the DFT validation calculations, we re-evaluated the

distance to the convex hull (Ehull) of these candidates using the
much more complete convex hull of ref. 29. The convex hull from
ref. 29 includes all stable compounds from the whole materials
project, a subset of AFLOW, and millions of our own calculations.
This results in 63804 compounds from the DCGAT database and
5291 compounds from AFLOW and the materials project.
Naturally, even this convex hull is not complete, therefore these
predictions are less precise for some compositions. The decom-
position channels for the materials are also denoted in the
Supplementary Information. The histogram of the values Ehull is
shown in Fig. 1a. We also separate the systems into sulfides,
selenides, tellurides, nitrides, chlorides, bromides, iodides, and
hydrides. These comprise the majority of all systems found. Most
of the candidates have an Ehull larger than 100 meV ⋅ atom−1, but
there are still more than one thousand (~9%) compositions below
this threshold. The high-throughput success rate, that we define
by the number of compounds that are within 100 meV ⋅ atom−1

from the convex hull divided by the total number of DFT
calculations, stood at 14%, with a maximum of 35% for nitrides
and a minimum of 8% for hydrides. These numbers prove the
efficiency of our machine-learning-assisted high-throughout
search. The histogram of Ehull for these categories as well as all
calculated compositions are shown in Fig. 1.
The distribution of Ehull for all systems follows the typical

skewed Gaussian with the peak located at around
200meV ⋅ atom−1 and a fat tail that extends beyond 1 eV/atom,
in agreement with the MAE errors for our machine-learning
models. Individual distributions for chalcogenides are also skewed
Gaussians peaking at around 200meV ⋅ atom−1. The amount of
(meta-)stable compounds decreases from sulfides to tellurides,
which is also expected as this is the common trend of stability for

(a)

(b)

(c)

Fig. 1 The distribution of the distance to the convex hull (Ehull).
a All calculated compositions and various garnet groups. The panels
show histograms of the DFT distance to the convex hull. The first
panel shows all data while the latter two show, respectively,
b chalcogenides and nitrides, and c halides and hydrides. The cutoff
to filter (meta-)stable systems (100meV ⋅ atom−1) is shown as a
dashed vertical line.
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the chalcogenides. Unlike the situation for chalcogenides, the
distribution curve for nitrides has multiple peaks, and shows that
there are plenty of potentially stable nitride garnets. For halides
and hydrides the histograms are again skewed Gaussian similar to
those of chalcogenides, but there is no clear trend in what
concerns stability across the group. For hydrides, the total number
of systems is much larger, but a lower percentage of them are
(meta-)stable compared to the halides.
The total number of (quasi-)stable systems for each category is

listed in Table 1. A full list of the systems can be found in
Supplementary Table 2. We also selected a dozen of them to
analyze more closely in Table 2. Later discussions will mainly focus
on these systems.
From our calculations, we recover the majority of the oxide

garnets that are already known experimentally, but we also obtain
a wealth of different compounds not present in available
databases. Of 27 ternary garnets with the composition A3B5C12
present in the ICSD (prototypes Garnet(YAG)#Y3Al5O12 and
Garnet#Ca3Al2(SiO4)3) we recover 22. Three of those missed
contained Yb which we removed from our predictions due to
convergence issues with that chemical element. The two
remaining garnets we missed were Fe5Si3O12 and Mn5Si3O12

(although we did discover Mn3Si5O12). Many of these systems are
oxides, that have been the subject of a recent high-throughput
search20 with results similar to ours. Interestingly, we also find a
wealth of other chalcogenides, nitrides, halides, and even hydrides
as shown in Fig. 1b, c and in Table 1.
From the stable compounds, several are closely related to the

oxide garnets by the chemical substitution of oxygen by another
chalcogen. These garnets along with their counterparts are
presented in Table 3. The existence of such compounds is
expected due to the chemical similarity among chalcogens. In
those chalcogenides, the dodecahedral sites (site A in A3B5S12) are
mostly occupied by rare-earth elements, and according to the
element occupying the octahedral and tetrahedral sites (site B),
the chalcogenides can be further divided into several categories.
The numbers of (meta-)stable systems for each category decrease
in the following order: occupying B with group IIIA elements (Al,
Ga, In, Tl), group IVA elements (Ge, Sn, Pb), group VA elements (As,
Sb, Bi), and transition metals (Ag, Cu, Sc, Ti). The preference of
group IIIA elements for site B can be understood by simple charge
compensation arguments. The most common oxidation state of
the chalcogens is −2, while the rare-earth elements in sites A are
+3: the composition reaches the ‘balanced’ or ‘compensated’
state if B is in the oxidation state +3. Moreover, for balanced
AIII
3 B

III
5 C

�II
12 chalcogenide compositions, one would expect the

compounds to be semiconductors. This is indeed what we find
(see an example in “Electronic structure”). We also analyzed the

correlation between the band gap and all standard stochiometric
and ionic features of matminer30 and found that for all correlation
coefficients (Pearson, Spearman, ϕk) only the feature ‘compound
possible’ was significantly correlated with the band gap. This
feature describes if the material is likely to be charge neutral
according to the oxidation state or not. Besides the chalcogenides,
we discover 64 stable nitrides as seen in Table 1. As discussed
above, to reach a balanced oxidation state, elements with higher
oxidation state should be favored to combine with −3 oxydation
state of nitrogen. Indeed for nitride garnets A3B5N12, position A is
mostly occupied by +2 or +3 chemical elements, and for position
B the majority of meta-stable systems have elements with
oxidation state +6 (Mo and W). Although a +6 element is
required to achieve a balanced state, we also find that relatively
stable compounds are possible for +5 (Nb and Ta), and +7 (Re).
We could argue that the balanced nitrides should be semicon-
ducting. However, due to the low electronegativity of nitrogen the
gap may close (see one such example in “Electronic structure”).
We can also identify several halides and hydrides from Fig. 1c.

However, halogens (and hydrogen in hydrides) have an oxidation
state of −1, which makes it more difficult to reach a balanced
oxidation state with the A3B5C12 stoichiometry. One viable scheme
is with an A element that is +1, while the B elements in 16a and
24d Wycoff positions are respectively +3 and +1, i.e., having the
form of AI

3B
III
2 (B

IC�I
4 )3. Chemical elements exhibiting both +1 and

+3 oxidation states are quite rare. Nevertheless, we still
discovered some meta-stable semiconducting halide garnets, for
example, K3In5F12.
There are other compositions that do not belong to any of the

discussed classes, such as for example Sr12Zn3H5. Most of them are
‘inverted’-garnets, i.e., with cations instead of anions occupying
the C-sites, and have a comparatively higher Ehull than regular
garnets. Furthermore, only a few anti-garnets with the A and B
sites both occupied by the chemical elements of the nitrogen
group could potentially become oxidation state balanced.
We have to again emphasize that, in order to form (meta-)stable

or insulating/semiconducting compounds, charge compensation
is neither a necessary nor a sufficient condition, and we find many
exceptions in Supplementary Table 2. However, it gives us a
simple, intuitive argument to understand why a system is

Table 1. Number of (meta-)stable systems (Nstable) below
100meV ⋅ atom−1 from the convex hull of thermodynamic stability
and high-throughput success rate (R) for each category.

Category Nstable R (%)

Sulfides 70 14

Selenides 68 15

Tellurides 28 7

Nitrides 64 35

Fluorides 62 17

Chlorides 68 16

Bromides 72 17

Iodides 68 15

Hydrides 69 8

Total 569 14

Table 2. The calculated lattice constant (a, in Å), band gap calculated
with PBE (GapPBE) and MBJ (GapMBJ) functional (in units of eV), distance
to the convex hull (Ehull in meV ⋅ atom−1), effective electron (m�

e) and
hole (m�

h) masses (in units of m0
e), for some selected (meta-)stable

sulfide and nitride garnets, data for Y3Al5O12 is also listed for
comparison.

Formula a GapPBE GapMBJ Ehull m�
e m�

h

Y3Al5O12 12.125 4.53 6.12 0 1.3 6.8

Y3Al5S12 14.932 2.08 3.00 1 0.7 1.5

Y3Ga5S12 15.073 1.32 2.45 46 0.5 3.2

Y3In5S12 15.709 1.35 2.38 46 0.5 2.6

Y3Al5Se12 15.752 1.45 2.15 36 0.5 1.5

Y3Al5Te12 17.120 0.60 1.07 84 0.3 2.7

Y3Ge5S12 15.324 0.00 0.00 81 – –

Ca3W5N12 12.928 0.93 1.57 0 0.9 3.2

Ca3Re5N12 12.896 0.00 0.00 9 – –

La3Nb5N12 13.297 0.00 0.00 99 – –

K3In5F12 14.898 2.41 3.39 59 0.8 6.1

K3In5I12 19.977 0.00 0.00 61 – –

Mg3Rh5H12 11.008 0.00 0.00 51 – –

Y3Rh5H12 11.581 0.00 0.00 93 – –
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stabilized or has an electronic band gap. Furthermore, we have to
keep in mind that uncompensated systems might be further
stabilized through defects, such as vacancies. To simplify our
discussion, we leave such possibilities to future works and focus
the following on (meta-)stable regular garnet systems which could
have balanced charges, specifically chalcogenides (except oxides),
halides, hydrides, and nitrides.
Another important point regards the dynamic stability of the

predicted structures. To investigate this issue we calculated the
phonon frequencies at Γ for a few representative materials,
specifically Y3Al5S12, Y3Ga5S12, Y3Ge5S12, Y3Al5Se12, Y3Al5Te12,
K3In5F12, K3In5I12, Mg3Rh5H12, and Ca3Re5N12. The sulfide, the
selenide, and the telluride systems are dynamically stable,
however, the fluoride, iodide, hydride, and nitride exhibited
imaginary phonon frequencies. We rattled the initial structures,
breaking all internal symmetries, and re-optimized them. We
found overall relatively small changes in the geometry, linked to
distortions of the octahedra and the tetrahedra, leading to minute
decreases of the total energy smaller than 30meV ⋅ atom−1.

Electronic structure
We illustrate the possible electronic structures of our garnets
through a few selected examples depicted in Figs. 2–4.
Generally, the electron states around the Fermi level in garnets

can be classified into three categories: (i) from s–p, p–p, or even
d–p bonding orbitals between B and C atoms, (ii) from
corresponding anti-bonding between B and C atoms, and, (iii)
from d-electrons from A atoms if these are d-block or f-block
metals. From the simplest tight-binding model, and as expected

from k ⋅ p theory, we know that the larger the difference between
the electronegativity of B and C and the shorter B–C bond-length,
the larger the separations between states (i) and (ii). For the d (or f)
block elements occupying the A-site, the position of states (iii) can
be between (i) and (ii), overlapping with, or even above the latter.
In charge compensated situations, the bands (i) are completely
filled, while (ii) and (iii) (if applicable) bands are empty, resulting in
insulating/semiconducting systems. Otherwise, depletion of bands
(i) or filling of bands (ii) or (iii) can happen, leading to metallic
systems. Although many deviations from this simple tight-binding
picture appear, we will see how these general patterns are useful
to understand the band-structures.
For chalcogenide garnets, we chose as representative examples

Y3Al5S12, Y3Ge5S12, and Y3Ga5S12, while more examples can be
found in the Supplementary Information. The band structures of
these compounds are shown in Fig. 2, together with Y3Al5O12 for
comparison. The oxidation state balanced Y3Al5CH12 (CH = S, Se,
Te) garnets are semiconductors as expected. For Y3Al5S12 the band
structure is shown in Fig. 2b. Similar to its oxide counterpart in
Fig. 2a, the Y–d states dominate the conduction bands (CB) slightly
hybridizing with Al(p) and S(p)-states. These bands are from the
type (iii) states as discussed above. The valence bands (VB) around
Fermi level are mainly composed of the localized anionic p–states
of type (i), also representing the typical situation described above.
From Y3Al5O12 to Y3Al5Te12 (see Supplementary Fig. 2), following
the decreasing trend of electronegativity for chalcogens, the band
gap shrinks and the band edges become more dispersed.
The elements occupying the B position in charge compensated

chalcogenides also have a crucial effect on the electronic structure.
For example, Y3B5S12 (B = Al, Ga, In, Tl, see Supplementary Fig. 2)

Table 3. The experimentally known oxy-garnets (not including 3d metals in the B sites), their ICSD ID, Materials Project ID, and predicted meta-stable
counterparts with different C anions.

Formula ICSD ID MP ID Counterparts

Y3Al5O12 20090, 41144, 41145, 67102, 67103, 93634, 93635, 170157, 170158, 236589,
280104, 17687, 17688, 17689, 17690, 74607, 31496

mp-3050 Y3Al5S12(1); Y3Al5Se12(36); Y3Al5Te12(84)

La3Al5O12 mp-780432 La3Al5S12(0); La3Al5Se12(18);
La3Al5Te12(49)

Eu3Al5O12 245326 mp-21757 Eu3Al5S12(58); Eu3Al5Se12(88)

Tb3Al5O12 33602 mp-14387 Tb3Al5S12(0); Tb3Al5Se12(29);
Tb3Al5Te12(80)

Er3Al5O12 170147, 280606, 170146, 62615 mp-3384 Er3Al5S12(8); Er3Al5Se12(50);
Er3Al5Te12(98)

Gd3Al5O12 192184 mp-14133 Gd3Al5S12(0); Gd3Al5Se12(21);
Gd3Al5Te12(63)

Ho3Al5O12 409390, 33603 mp-14388 Ho3Al5S12(5); Ho3Al5Se12(44);
Ho3Al5Te12(92)

Lu3Al5O12 259144, 17789, 182354 mp-14132 Lu3Al5S12(27); Lu3Al5Se12(70)

Y3Ga5O12 80148, 14343, 185862, 23852 mp-5444 Y3Ga5S12(46); Y3Ga5Se12(81)

La3Ga5O12 mp-780561 La3Ga5S12(36); La3Ga5Se12(54)

Tb3Ga5O12 20831, 84875, 184934 mp-5965 Tb3Ga5S12(45); Tb3Ga5Se12(74)

Sm3Ga5O12 9236, 84873, 291192 mp-5800 Sm3Ga5S12(37); Sm3Ga5Se12(63);
Sm3Ga5Te12(98)

Nd3Ga5O12 84872 mp-15239 Nd3Ga5S12(33); Nd3Ga5Se12(56);
Nd3Ga5Te12(98)

Gd3Ga5O12 9237, 37145, 192181, 84874, 184931 mp-2921 Gd3Ga5S12(32); Gd3Ga5Se12(66);
Gd3Ga5Te12(93)

Lu3Ga5O12 23850 mp-14134 Lu3Ga5S12(73)

Dy3Ga5O12 409391 mp-15576 Dy3Ga5S12(48); Dy3Ga5Se12(80)

Er3Ga5O12 9238 mp-12236 Er3Ga5S12(54); Er3Ga5Se12(94)

Ho3Ga5O12 409390 mp-15575 Ho3Ga5S12(51); Gd3Ga5Se12(88)

The distance to the hull calculated with DFT is in parentheses (in meV ⋅ atom−1).
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all have a direct gap at Γ with the sole exception of Y3Al5S12 which
has an indirect H–Γ gap. Moreover, going from Al to Tl the gap
decreases, while the contibution of the s-states from the B atoms
to the bottom of the conduction bands increases, leading to more
extended bands and lower effective electron masses. Furthermore,
for Y3Tl5S12 we can see that the Y(d) bands are above the Tl(s)-S(s)
displaying more disperse anti-bonding mixing, an resulting in very
low electron effective masses (m�

e ¼ 0:19).
For chalcogenides with unbalanced oxidation states, such as

Y3Ge5S12, similar features can also be observed (see Fig. 2c). Between
the empty Y(d)-S(p) hybridization states of type (iii) and the full S(p)
dominated type (i) bands are the states from Ge(s) and S(p) anti-
bonding of type (ii). As discussed above they are partially occupied,
so the system is metallic. It is possible that the system might re-

Fig. 2 Calculated mBJ electronic band structures for selected
chalgogenide garnets. The Fermi level is set at zero. a The mBJ
electronic band structure of Y3Al5O12, b Y3Al5S12, c Y3Ge5S12,
d Y3Ga5S12.

Fig. 3 Calculated mBJ electronic band structures for selected
nitride garnets. The Fermi level is set at zero. a The mBJ electronic
band structure of Ca3W5N12, and b Ca3Re5N12.

J. Schmidt et al.
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establish a balanced oxidation state by creating Ge vacancies thus
becoming semiconducting, though a detailed investigation of such a
possibility is beyond the scope of the present paper.
Some representatives of the band structures for nitrides garnets

are shown in Fig. 3. The oxidation state compensated Ca3W5N12 is
semiconducting. The anti-bonding p−d bands forming the CB also
separate into two manifolds: the lower part is mainly constructed
from the tungsten on the tetrahedral sites, and the upper part is
mainly from the octahedral W. The VB are, as usual, mostly
composed of N(p) states. For charge-unbalanced nitrides (such as
Ca3Re5N12) that have more valence electrons from Re compared
to W, the Fermi level passes through the partially occupied p−d
anti-bonding bands and the system becomes metallic. However,
the separation between p−d bonding and anti-bonding bands
can still be seen as well as the double manifolds of p−d anti-
bonding states. When a chemical element with less valence
electrons replaces W, for example, in La3Nb5N12 (see Supplemen-
tary Fig. 2), the minority spin channel of p−d bonding states is
partially empty, and the system actually becomes a half-metal.
For halides, we show the band structure of K3In5F12 and K3In5I12 as

examples. Apparently, the former compound has unbalance
oxidation states, however, it is semiconducting. The Bader net
charges of the In at octahedral and tetrahedral sites are +1 and
+2.4, respectively. The In in the B-site is therefore in the +1 and +3
oxidation states, reaching charge compensation as discussed above.
The top of the valence bands are mainly composed of In(s)-F(p) anti-
bonding states, which separate from the lower valance bands,
formed by localized F(p)-In(p) bonding states, by around 4 eV. Unlike
in most sulfides and nitrides, where d-states from A atoms dominate
the bottom of the conduction bands, in K3In5F12 the bottom of the
CB is mainly formed by In(p)-F(p) anti-bonding hybridized states.
This is because the K(s)-F(p) anti-bonding states have much higher
energy than d-p anti-bonding states in those sulfides and nitrides.
When replacing F with I, the Bader net charges for the In atoms in
octahedral and tetrahedral sites are respectively +0.7 and +1.0,
showing that the +1/+3 oxidation states are not possible in K3In5I12,
and the system becomes metallic. The top valence band formed by
In(p)-I(s) anti-bonding states separates in two manifolds. The upper
part comes from the In atoms in tetrahedral sites and the lower
belongs to the octahedral ones. This can be partially explained by
the fact that the In–I bond-length is larger in the latter.
In Fig. 4, we show the band structure of selected examples of

hydride garnets. For both Mg3Rh5H12 and Y3Rh5H12 the separation
between H(s)-Rh(d) mixed bands and cation Rh(d) dominated
bands are still present, similar to the situations in other
uncompensated garnets. These two systems are also both charge
uncompensated, the ‘extra’ electrons partially filling the Rh(d)
dominated bands, leading to metallic systems. Another way to re-
establish compensation might be to force more H atoms to
occupy the interstitial sites, but again, we leave the exploration of
this possibility to future investigations.
In summary, we performed a machine-learning-assisted high-

throughput investigation of ternary garnets. We concentrated in
non-oxides (that have been studied previously) and in ferromag-
netic or paramagnetic compounds. We find a wealth of systems
on the convex hull (i.e., thermodynamically stable) or close to it.
This includes chalcogenides (with the stability decreasing from S
to Te), nitrides, halides, hydrides, etc. We also found other
possibilities, such as ‘inverted’ garnets, but these were slighlty less
stable than the conventional phase. The materials tend to be
semiconducting/insulating when the composition is charge
compensated, otherwise we obtain metallic ground-states. The
latter ones could be especially relevant as, to out knowledge, no
garnets conducting at room temperature are known. Some of the
metallic garnets even have lattice constants that are suitable to
create hetero-structures with YIG.
A few chalcogenide garnets, in particular the sulfides, are

thermodynamic stable, and are straightforward generalizations of

Fig. 4 Calculated mBJ electronic band structures for selected
halide and hydride garnets. The Fermi level is set at zero. a The mBJ
electronic band structure of K3In5F12, b K3In5I12, c Mg3Rh5H12, and
d Y3Rh5H12.
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common oxide garnets. Band gaps are as expected considerably
smaller for the sulfides, and decrease further across the periodic
group. This opens up the possibility to engineer the band gap of
garnets by anionic alloying, from the extreme ultaviolet of the
oxide phase to UV-A regime or even into the visible. We predict
several nitride systems that have interesting electronic properties
due to the presence of transition metals in very high charge states.
In view of the recent synthesis of two exotic nitride perovs-
kites31,32 that were predicted33,34 with a method similar to the one
used in this paper, we are confident that also nitride garnets are
accessible experimentally. Finally, we find a few semiconducting
halides where the chemical element occupying the octahedral
and the dodecahedral site are in two different charge states.
Above all, we believe that our work proves that an exhaustive

survey of the ternary, and perhaps also of the quaternary, space of
materials is now accessible to high-throughput studies, even for
large and complex unit cells. This is made possible by machine
learning methods, that already achieved outstanding maturity in
the short time since their first appearance, and that is reaching
unprecedented accuracy. We expect these methods to further
accelerate the discovery of materials with exceptional properties.

METHODS
Machine-learning model
In this work, we applied crystal graph attention networks, developed
and pre-trained in ref. 22, to predict thermodynamically stable
materials. The networks use an attention-based message-passing
approach based on the crystal graph representation of the crystal
structure. Replacing the normal distance information that is typically
used as edge-representation in crystal graph networks with solely
the graph distance of the atoms to their neighbors allows for precise
predictions of unrelaxed structures. As garnets crystallize in a cubic
structure the list of neighbors and consequently the graph distances
are mostly constant throughout the geometry relaxation. This
removes the need to perform predictions with multiple cell constant
ratios. In the following, we give a short description of CGATs
following the notation in ref. 22. The ith node, i.e., atom, at timestep t
of the message passing process will be denoted as hti and the
corresponding edge to the atom j as etij . In general, we can
summarize the message passing and update equation as follows:

htþ1
i ¼ U ht

i ; ht
j ; e

t
ji

n o
; j 2 NðiÞ

� �
: (1)

The neighborhood NðiÞ of the ith node is determined through a
cutoff radius and a maximum number of neighbors within that cutoff
radius. The closest neighbors are prioritized when the maximum
number of neighbors is reached. We input a concatenation of the
previous node and edge embeddings into two fully connected
networks that respectively determine the attention vectors atnij and
the messages mtn

ij . N networks for messages and attention
coefficients, i.e. attention heads, are used in parallel. FCNNNt;n

a will
be the label of the network of the nth attention head at timestep t.

st;nij ¼ FCNNNt;n
a ðht

i jjht
j jjeijÞ (2)
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We combine the messages weighted by the attention coefficients
through a sum and then average the attention heads in eq. (5). We

enter the resulting vector into a network computed by a
hypernetwork. The input to the hypernetwork is the difference
between the starting node representation and the node
representation at timestep t. To update the edges we use
analogous equations:

se;nij ¼ FCNNNn
a ht

i jjht
j jjetij

� �
(6)

ae;nij ¼ expðsijÞP
n expðsni Þ

(7)

me;n
ij ¼ FCNNNn ht

i jjht
j jjetij

� �
(8)

etþ1
ij ¼ etij þ FCNNn;t

θtg
jj
n
ae;nij me;n

ij :

� �
(9)

We concatenate each of the final atomic representations with a
global context vector computed by a ROOST35 model and then
combine them through a last attention layer. Finally, a residual
network computes the target quantity. The following hyperpara-
meters were used by the networks: optimizer: AdamW; learning
rate: 0.000125 (1.5e-05 for transfer learning); starting embedding:
matscholar-embedding; nbr-embedding-size: 512; msg-heads: 6;
batch-size: 512 (64 transfer learning); max-nbr: 24; epochs: 390;
loss: L1-loss; momentum: 0.9; weight-decay: 1e-06; atom-fea-len:
128; message passing steps: 5; roost message passing steps: 3;
other roost parameters: default; vector-attention: True; edges:
updated; learning rate: cyclical; learning rate schedule: (0.1, 0.05);
learning rate period: 130; hypernetwork: 3 hidden layers, size 128;
hypernetwork activ. funct.: tanh; FCNN: 1 hidden layer, size 512;
FCNN activ. funct.: leaky RELU36.
Concerning transfer learning, we continue to train all weights of

the original model using this dataset with a training/validation/
testing split of 80%/10%/10% and a learning rate of 0.000015. The
checkpoint with the best validation error from 390 epochs of
training is chosen.
In total we repeated the cycle three times. In the first, we

performed DFT calculations for 3320 compounds. The mean
absolute error (MAE) of the initial pre-trained machine was
0.497 eV/atom. This is a very high value, that was expected as
there were very few garnets in the dataset used in ref. 22, and they
spanned a very small chemical space. In the second cycle, we
validated 7336 compounds, and the transfer-learning model
performed much better, with an MAE of 0.064 eV/atom. Finally,
in the third cycle, we computed 3844 materials with DFT. The final
model had an MAE of 0.058 eV/atom, showing that the transfer-
learning workflow is meaningful and converges quickly.

DFT calculations
We perform DFT calculations using the package VASP with PAW37

datasets of version 5.2., as recommended by the materials project,
and with the Perdew-Burke-Ernzerhof38 (PBE) exchange-
correlation functional. Following the Materials Project26 recom-
mendations, we use extra on-site corrections for oxides, fluorides
containing Co, Cr, Fe, Mn, Mo, Ni, V, and W. The on-site corrections
are repulsive and correct the d-states by respectively 3.32, 3.7, 5.3,
3.9, 4.38, 6.2, 3.25, and 6.2 eV. A cutoff of 520 eV is applied to the
planewaves, and Γ-centered k-point grids with a uniform density
of 1000 k-points per reciprocal atom are used to sample the
Brillouin zone. We start from the cubic garnet structures of space
group #230, and all forces are converged to less than 0.005 eV/Å.
All calculations are performed with spin-polarization, starting

from a ferromagnetic ground state as is customary in high-
throughput searches. Unfortunately, this means that, in most
cases, antiferromagnetic or ferrimagnetic systems will converge to
an incorrect ferromagnetic ground state. This is important, in our
context, particularly for ferrimagnetic garnets having a 3d
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transition metal such as Fe, Ni, Co, Cr, Mn, or V in the B position.
We note that not only the spin-state of these garnets but also of
anti- and ferrimagnetic systems on the convex hull are treated
incorrectly. Consequently, the estimation of Ehull for ferrimagnetic
garnets is far less accurate than for non-magnetic ones. For
example, the experimentally known Gd3Fe5O12 is predicted to be
>1 eV above the hull according to the Materials Project
database26, a value that is certainly grossly overestimated.
To properly estimate Ehull for the ferrimagnetic garnets would

require obtaining the correct magnetic ordering for a portion of the
convex hull as well as for the garnets. This is a complex and
computationally expensive task, that is well beyond the scope of this
work. Therefore, we made the choice to restrict our discussion to
systems not containing the 3d metals mentioned above in the B-site.
It is well-known that the electronic band gaps calculated with

the PBE functional are severely underestimated39. Therefore, to
obtain a more reliable estimation of this important physical
property we performed calculations with the modified Becke-
Johnson (mBJ) approximation40, as this is by now recognized as
one of the most accurate functional for this task41.
To calculate the averaged carrier effective masses from the

interpolated eigenvalues we follow the approach of ref. 42.
Considering a temperature of 300 K, we deduce the chemical
potential required to reach a reference carrier concentration
(1018 cm−3) by using BOLTZTRAP243,44. We use a k-point mesh
with a regular density of 2000 k-points per reciprocal atom and
interpolated the calculated eigenvalues using BOLTZTRAP243,44.
The calculated averaged carrier effective masses can be seen as
the intrinsic tendency for creating mobile charge carriers in
materials42.

DATA AVAILABILITY
The dataset is available through materials cloud archive materialscloud:2022.107.
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The code for CGATs is freely available at https://github.com/hyllios/CGAT.
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