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ABSTRACT Soil microbial communities play crucial roles in the earth’s biogeochemi-
cal cycles. Yet, their genomic potential for nutrient cycling in association with tree
mycorrhizal type and tree-tree interactions remained unclear, especially in diverse tree
communities. Here, we studied the genomic potential of soil fungi and bacteria with
arbuscular (AM) and ectomycorrhizal (EcM) conspecific tree species pairs (TSPs) at
three tree diversity levels in a subtropical tree diversity experiment (BEF-China). The
soil fungi and bacteria of the TSPs’ interaction zone were characterized by amplicon
sequencing, and their subcommunities were determined using a microbial interking-
dom co-occurrence network approach. Their potential genomic functions were pre-
dicted with regard to the three major nutrients carbon (C), nitrogen (N), and phospho-
rus (P) and their combinations. We found the microbial subcommunities that were
significantly responding to different soil characteristics. The tree mycorrhizal type sig-
nificantly influenced the functional composition of these co-occurring subcommunities
in monospecific stands and two-tree-species mixtures but not in mixtures with more
than three tree species (here multi-tree-species mixtures). Differentiation of subcom-
munities was driven by differentially abundant taxa producing different sets of
nutrient cycling enzymes across the tree diversity levels, predominantly enzymes of
the P (n = 11 and 16) cycles, followed by the N (n = 9) and C (n = 9) cycles, in
monospecific stands and two-tree-species mixtures, respectively. Fungi of the
Agaricomycetes, Sordariomycetes, Eurotiomycetes, and Leotiomycetes and bacteria
of the Verrucomicrobia, Acidobacteria, Alphaproteobacteria, and Actinobacteria were
the major differential contributors (48% to 62%) to the nutrient cycling functional
abundances of soil microbial communities across tree diversity levels. Our study
demonstrated the versatility and significance of microbial subcommunities in differ-
ent soil nutrient cycling processes of forest ecosystems.

IMPORTANCE Loss of multifunctional microbial communities can negatively affect eco-
system services, especially forest soil nutrient cycling. Therefore, exploration of the genom-
ic potential of soil microbial communities, particularly their constituting subcommunities
and taxa for nutrient cycling, is vital to get an in-depth mechanistic understanding for
better management of forest soil ecosystems. This study revealed soil microbes with rich
nutrient cycling potential, organized in subcommunities that are functionally resilient and
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abundant. Such microbial communities mainly found in multi-tree-species mixtures associ-
ated with different mycorrhizal partners can foster soil microbiome stability. A stable and
functionally rich soil microbiome is involved in the cycling of nutrients, such as carbon,
nitrogen, and phosphorus, and their combinations could have positive effects on ecosys-
tem functioning, including increased forest productivity. The new findings could be highly
relevant for afforestation and reforestation regimes, notably in the face of growing defor-
estation and global warming scenarios.

KEYWORDS co-occurrence network, microbial subcommunities, nutrient cycling,
functional potential, tree mycorrhizal type, tree diversity

Microorganisms, especially bacteria and fungi, contribute enormously to terrestrial
ecosystem services: for example, by playing a vital role in soil nutrient cycling

(1–4). Particularly, the contribution of plant symbiotic microbes in soil nutrient cycling
has been well reported. For example, mycorrhizal fungi form symbiotic associations with
around 90% of terrestrial plant species and take part in nutrient cycling by mobilizing nitro-
gen (N) and phosphorus (P) in soils (5, 6). Similarly, plant-symbiotic bacteria belonging to
Rhizobium and Frankia can fix nitrogen and thus essentially participate in N cycling (7).
Moreover, at the community level, it is also important to consider the extensive contribu-
tion of free-living soil bacteria and fungi to soil nutrient cycling as they constitute a major
part of soil microbiota (8). A few examples include carbon-fixing Actinobacteria (9, 10),
nitrogen-fixing Azotobacter (9, 10), and phosphate-solubilizing Acidobacteria (11, 12).
Likewise, Penicillium, Aspergillus, and Trichoderma are free-living fungi and known for being
actively involved in the decomposition of soil organic compounds (C cycle), nitrification (N
cycle), and P solubilization (P cycle), respectively (13–15).

Soil stoichiometry of nutrients like C/N/P ratios is known to affect the soil microbial com-
munities, depending upon their constituting members’ organismal nutrient stoichiometric
ratios (16, 17). For example, it was reported that high N and P abundances in soil favor the
abundance of fast-growing bacteria (i.e., copiotrophic, r-strategists) like Actinobacteria and
Alphaproteobacteria while discriminating against slow-growing bacteria (i.e., oligotrophic, K-
strategists) like Acidobacteria (18, 19). Also, previous research suggests that ectomycorrhizal
fungi (EMF) preferentially associate with soils of high-C/N substrates, whereas saprotrophic
fungi prevail in soils with low C/N ratios (20–22). There has been a surge in recent studies
showing the link between microbial diversity, community composition, and soil ecosystem
multifunctionality (23–27). However, there is still a knowledge gap about how the soil micro-
bial communities vary in the stoichiometry of their nutrient cycling genomic potential, which
can be the relative combinations of genes coding for different nutrient cycling enzymes. In a
study taking a genomic perspective on soil carbon cycling, Hartman et al. (28) reported links
between microbial community composition, the microbe’s C, N, and P substrate utilization
potential, and C turnover. This highlights the importance of studying the genomic potential
of microbial communities to better understand soil nutrient cycling.

Given the fact that soil C, N, and P cycles are linked, it is essential to study the co-occur-
ring bacterial and fungal communities together for their genomic potential in the cycling
of different major nutrients and their combinations (viz. C, N, P, CN, CP, NP, and CNP). For
instance, the ability to decompose soil organic matter (SOM) with various nutrient ratios
depends on the composition of soil microbial communities (29). Subsequently, the decom-
posed SOM would be available for bacteria and fungi conditioned on their abilities to con-
tinue with either N fixation or denitrification (30, 31) and/or concurrently also be available
for P mineralization or solubilization (32, 33). This linkage between different soil nutrient cy-
cling processes and the different microbes involved can be viewed from a “microbial syn-
trophy” (microbial metabolic interrelationships) perspective (34), which is affected by many
factors (for example, available nutrient ratios, etc.) but essentially depends on the genomic
potential of the members of the microbial communities.

The ecological processes and relationships within a microbial community can
cumulatively emerge from the constituting microbial groups/clusters (i.e., taxa that are
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more strongly associated within that group than with other groups), which are also
known as subcommunities (35, 36). Based on network theory, the study of subcom-
munities, also known as modules, can provide key insights into the overall functioning
of the microbial community, allowing us to assess the metabolic potential based on
the single microbes’ functional roles, which otherwise remains a black box. In addition,
knowledge of subcommunities also sheds light on the ecological processes that shape
and regulate community structure and organization, such as environmental filtering or
niche differentiation (37). For example, recent studies in soil microbial ecology have
taken the advantage of subcommunity-based analyses to develop a deeper under-
standing of environment-specific relationships (38, 39) and the functional roles of mi-
crobial communities (40–42).

One of the key factors influencing the soil microbial communities in forests is the
tree mycorrhizal type (43), which is also known to impact microbial functional genes
(44) and soil nutrient cycling (45). In addition, tree diversity has also been reported to
affect soil microbial communities (46–48) and soil nutrient availability (49). Despite
these efforts, there is still a great need to understand how the tree mycorrhizal type
and tree diversity affect the co-occurring soil bacterial and fungal communities at the
subcommunity level and, in consequence, their genomic functional potential for nutri-
ent cycling. Insight into these processes would provide a broader understanding of the
intrinsic characteristics of soil microbial groups operating in ecological processes and
the functional potential emerging at the community level. Such in-depth mechanistic
understanding would also be the basis for managing forest soil ecosystems to maintain
or increase forest multifunctionality.

To fill this knowledge gap, this study was conducted at the BEF-China experimental
research platform (50), using tree species of two mycorrhizal types, namely, ectomycor-
rhizal (EcM) and arbuscular mycorrhizal (AM), at different tree diversity levels (43). We
employed the fungal-bacterial interkingdom co-occurrence network approach (51) to
derive the microbial subcommunities (here, interchangeably used with “modules”) and
used PICRUSt2 (52) to predict the potential genomic functions with regard to nutrient
cycling from the amplicon sequencing data. Our main objective was to understand
how the stoichiometry in genomic functional potential of soil microbial communities
and their subcommunities with regard to the three major nutrient cycles and their
combinations (C, N, P, CN, CP, NP, and CNP) varies in EcM and AM trees at different
tree diversity levels. In particular, we asked the following research questions.

1. How do the EcM and AM tree species pair (TSP) soil bacterial and fungal community
co-occurrence network structures differ across tree diversity levels, and which soil
characteristics drive the composition of the subcommunities in these networks?

2. What are the effects of tree diversity and tree mycorrhizal type on the predicted
genomic functional potential (in terms of C, N, and P cycles and their combinations)
of the co-occurring bacterial and fungal communities?

3. How do EcM and AM TSPs soil microbial subcommunities differ in their genomic
functional abundances in the three nutrient cycles and their combinations within
the tree diversity levels, and whichmicrobial taxa drive these differences?

RESULTS
EcM and AM TSPs soil microbial interkingdom network characteristics. The dif-

ferences in the number of input bacterial taxa used for the construction of networks at
each tree diversity level were minuscule between EcM and AM trees (ranging from 796
to 798 amplicon sequence variants [ASVs]). The fungal input varied most in two-tree-
species mixtures, with 430 and 503 ASVs for EcM and AM networks, respectively (see
Table S1 in the supplemental material). Consistently we found no contrasting differen-
ces in clustering coefficient and modularity; however, there are three more modules in
the EcM than AM network in each of the monospecific stands and two-tree-species
tree diversity levels (Table S1). To assess the underlying network community organiza-
tion and also the importance of the community members, we tested the distribution
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of four important network centrality indices, namely, node degree (used to identify
community hub taxa), betweenness (a measure of a taxon’s influence in the network),
closeness (a measure of the closeness of a taxon to all other members), and eigenvec-
tor centrality (a measure of a taxon’s linkage to others accounting for how connected
the others are). We found significant differences (P , 0.05) in the distributions of these
four centrality indices between EcM and AM networks in all tree diversity levels (Fig. 1).
AM networks had higher median values of these distributions except for betweenness
centrality, wherein EcM networks had higher values, especially at the monospecific
stands and two-tree-species tree diversity levels, indicating differences in the organiza-
tion of microbial taxa in their respective communities (Fig. 1).

Subcommunities significantly responding to the soil environment.We identified
the subcommunities of all EcM and AM networks that were significantly associated with
the soil variables using the distance-based redundancy analysis (dbRDA) models (Table
S2). Overall, 21 of the 43 identified modules were found to be significantly responsive to
the soil environment. For AM, 4 (out of 5), 4 (out of 6), and 3 (out of 8) significant mod-
ules were found in the monospecific stands, two-tree-species, and multi-tree-species
(i.e., $4 tree species) mixtures, respectively, and for EcM, 3 (out of 8), 4 (out of 9), and 3
(out of 7) significant modules were found, respectively. Except for one AM module in
two-tree-species mixtures, all of the significant modules (both AM and EcM) were
strongly pH sensitive. We found one AM module in each of the tree diversity levels asso-
ciated with nitrate, while in EcM communities, all modules in two-tree-species mixtures
were associated with nitrate in addition to a module in monospecific stands. Although

FIG 1 Comparison of distribution of EcM and AM interkingdom network centrality indices along the tree diversity levels. On the y axis
are shown centrality indices, and on the x axis are shown the EcM and AM TSPs and the tree diversity levels (“Mono” for monospecific
stands, “Two” for two-tree-species mixtures, and “Multi” for multi-tree-species mixtures). (A) Node degree centrality; (B) betweenness
centrality; (C) closeness centrality; (D) eigenvector centrality. The asterisks show the P value significance level: *, P # 0.05; **, P # 0.01;
****, P # 0.0001.
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all of the significant AM modules in monospecific stands were related to P, this was only
the case for one of the EcM modules (F = 2.09; P = 0.04). Furthermore, one module of
each EcM (F = 1.51, P = 0.04) and AM (F = 1.56, P = 0.03) network in monospecific stands
was associated with C. Total N and NH4

1 were found to be significantly related to both
EcM and AM modules in two-tree-species mixtures. In multi-tree-species mixtures, AM
modules were significantly related to NO3

2 and moisture in addition to pH, which was
the only significant soil variable associated with EcM modules. Collectively, this indicated
the differential roles of different subcommunities of AM and EcM networks in different
tree diversity levels.

Tree mycorrhizal type and tree diversity-level effects on the predicted func-
tional potential of co-occurring bacterial and fungal communities. In total, 57 nutri-
ent cycling-related EC numbers known to be part of the C, N, and P cycles were used
to filter the PICRUSt2 predicted gene family content for both bacterial and fungal data
sets that were used to construct the co-occurrence networks (Table S3). We found a
total of 64 (43 for bacteria and 21 for fungi) ECs, where the functional abundance ma-
trix contained 45 unique ECs comprised of 11, 16, and 18 enzymes related to C, N, and
P cycling, respectively (Table S4). Significant effects of the tree mycorrhizal type were
observed on the functional diversity of the co-occurring microbial community in all nu-
trient cycling combinations, except for C, N, and CN. In contrast, the effects of tree di-
versity and the interaction with mycorrhizal type were not significant in any of the nu-
trient cycling combinations (Table S5). Moreover, the post hoc analysis revealed that a
tree mycorrhizal type effect was only present in monospecific stands (except for C), but
was absent in two-tree-species and multi-tree-species mixtures (Fig. 2).

Permutational multivariate analysis of variance (PERMANOVA) of the effects of tree
mycorrhizal type and tree diversity level on the microbial community genomic functional
potential of nutrient cycling combinations showed a strong effect of tree mycorrhizal type
on all combinations of genomic functional compositions (R2 value range, 5.5 to 12.8%). In
addition, significant interaction effects of tree mycorrhizal type and tree diversity were
found for CP and CNP combinations (Table 1). Furthermore, post hoc analysis of the whole
community revealed that the tree mycorrhizal type effect was not significant in multi-tree-
species mixtures (Table S6). Comparative analysis of the functional compositions of the
whole community with those of the significantly soil-responsive modules showed similar
results, except for the additional significance of interaction terms for CN and NP (Table S7).
Similarly, the tree mycorrhizal type effect was also not significant in multi-tree-species mix-
tures (Table S8).

Pairwise comparison of functional abundances of EcM and AM TSPs’ soil micro-
bial subcommunities. The principal coordinate analysis (PCoA) ordination based on
the relative functional abundances showed that the significant subcommunities of
EcM and AM TSPs soil microbial networks became decreasingly distant from monospe-
cific stands to two-tree-species and multi-tree-species mixtures (Fig. 3). In addition,
envfit analysis (P , 0.01) indicated that the differentiation of these subcommunities
might be driven by the different sets of nutrient cycling enzymes across the tree diver-
sity levels, predominantly by enzymes of the P cycle (Table S9). In monospecific stands,
the significantly correlated enzymes were predominantly related to P (n = 11), followed
by N (n = 9) cycles, while in two-tree-species mixtures, they were related to P (n = 16),
followed by C (n = 9) cycles. In contrast, in multi-tree-species mixtures, fewer enzymes
were correlated with the differentiation of modules, and those were mainly related to
the C (n = 6) and P (n = 6) cycles (Table S9).

Furthermore, pairwise comparisons across the significant subcommunities of EcM
and AM TSP soil microbial networks revealed that 25 module pairs were significantly
different in terms of their genomic potential for nutrient cycling. Except for C and N, in
all nutrient cycling combinations, we found a higher number of significantly abundant
AM modules across the tree diversity levels (Fig. 4). Interestingly, no significant differ-
ences were found in N-cycling potential in multi-tree-species mixtures. Furthermore,
for C-related gene families, only EcM modules were significantly abundant in mono-
specific stands, while for C and CN combinations in multi-tree-species mixtures, AM
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FIG 2 Comparison of functional diversity of EcM and AM TSP soil microbial communities along the tree diversity levels. On the y axis is shown
the Shannon diversity index, and on the x axis are shown the EcM and AM TSPs and the tree diversity levels (“Mono” for monospecific stands,
“Two” for two-tree-species mixtures, and “Multi” for multi-tree-species mixtures). (A) Carbon; (B) nitrogen; (C) phosphorus; (D) carbon and
nitrogen; (E) carbon and phosphorus (F); nitrogen and phosphorus; (G) carbon, nitrogen, and phosphorus. The asterisks show the P value
significance level: **, P # 0.01; ***, P # 0.001.
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modules were significantly abundant (Fig. 4). In addition, the pairwise comparisons of
significant modules within tree mycorrhizal type (i.e., AM versus AM and EcM versus
EcM modules) indicated that the proportion of significant differences was higher in AM
subcommunities in all combinations, except for CNP (equal proportion), compared to
EcM subcommunities (see Fig. S1 in the supplemental material).

Differentially abundant taxa behind the observed functional abundance differ-
ences of EcM and AM TSPs’ soil microbial subcommunities. We tested the differen-
ces in relative functional abundances of taxa between each EcM and AM significantly
soil-responding module pairs within each tree diversity level and found a total of 995
unique differentially abundant ASVs. Furthermore, all the ASVs were aggregated at the
class taxonomic level, and we identified the two most differentially abundant classes in
both bacteria and fungi that strongly contributed to the functional abundances of EcM
and AM TSP soil microbial communities at each tree diversity level for all nutrient cy-
cling combinations (Fig. 5). These contributions ranged from 48% to 62% of the rela-
tive functional abundances. In monospecific stands for EcM modules, Agaricomycetes
and Sordariomycetes were the predominant fungi contributing to the functional abun-
dances of all nutrient cycling combinations. In AM modules, Sordariomycetes were the
top fungi, followed by Leotiomycetes, contributing to all nutrient cycling combinations
except for P (4.3%) and NP (5.4%) combinations, while Eurotiomycetes were the second
most important. In the case of bacteria, Acidobacteria and Alphaproteobacteria were
the predominant contributors in both EcM and AM modules, except to the C cycle,
not only in monospecific stands but also in two- and multi-tree-species mixtures.
Interestingly, Actinobacteria were the second most important contributor to the C
cycle across the tree diversity levels, except in EcM modules of two-tree-species mix-
tures, where Verrucomicrobia (10.2%) took that place. In two-tree species mixtures,
for EcM modules, Agaricomycetes were the predominant fungal contributor to all

TABLE 1 Effects of tree mycorrhizal type and tree diversity level on the nutrient cycling
functional compositional differences of co-occurring soil fungal and bacterial communities
based on PERMANOVA with 999 permutations

Nutrient cycle Factor df F R2 Padj
a

C Mycorrhizal_Type (M) 1 6.281 0.055 0.003**
Tree_Diversity (L) 2 1.097 0.019 0.488
Interaction (M� L) 2 1.553 0.027 0.209

N Mycorrhizal_Type (M) 1 15.663 0.128 0.003**
Tree_Diversity (L) 2 0.504 0.008 0.707
Interaction (M� L) 2 2.067 0.034 0.192

P Mycorrhizal_Type (M) 1 14.342 0.116 0.003**
Tree_Diversity (L) 2 1.05 0.017 0.488
Interaction (M� L) 2 2.438 0.04 0.092

CN Mycorrhizal_Type (M) 1 11.902 0.1 0.003**
Tree_Diversity (L) 2 0.617 0.01 0.707
Interaction (M� L) 2 2.184 0.037 0.103

CP Mycorrhizal_Type (M) 1 14.789 0.117 0.003**
Tree_Diversity (L) 2 0.619 0.01 0.707
Interaction (M� L) 2 3.938 0.063 0.021*

NP Mycorrhizal_Type (M) 1 15.158 0.122 0.003**
Tree_Diversity (L) 2 0.615 0.01 0.707
Interaction (M� L) 2 2.679 0.043 0.092

CNP Mycorrhizal_Type (M) 1 15.022 0.12 0.003**
Tree_Diversity (L) 2 0.544 0.009 0.707
Interaction (M� L) 2 3.353 0.054 0.042*

aAll significant adjusted P values (Padj) are highlighted in boldface followed by the significance level: *, P# 0.05;
**, P# 0.01.
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nutrient cycling combinations, followed by Leotiomycetes in C, N, CN, and CNP combina-
tions, Sordariomycetes in CP (3%) and NP (2.3%), and Eurotiomycetes (1.9%) in the P
cycle, while for AMmodules, Eurotiomycetes, followed by Leotiomycetes, were the major
contributors to most of the nutrient cycling combinations, except in C (15.1%) and
CN (12.7%), where Agaricomycetes were predominant. In multi-tree-species mixtures,
Eurotiomycetes followed by Sordariomycetes were the main fungal contributors to all
nutrient cycling combinations in EcM modules. This was also the case for AM modules,
except for the C and CN combinations, wherein Leotiomycetes and Agaricomycetes
were the second major contributors, respectively. Across the tree diversity levels, in both
EcM and AM modules, bacteria outweighed fungi as major differentially abundant con-
tributors to the P cycle. Furthermore, compared to EcM, higher fungal contribution in
AM modules was found in monospecific stands and two-tree-species mixtures (Fig. 5).

DISCUSSION
EcM and AM TSPs soil microbial interkingdom networks and their subcommun-

ities differ in their ecological properties. The network topological parameters pro-
vide key insights into the associations between taxa and the influence of some taxa on
particular modules or the whole community. In our study, the observed significant dif-
ferences between EcM and AM TSP soil microbial co-occurrence networks revealed dif-
ferences in the taxon assembly and organization in the respective communities.
Similarly, a recent greenhouse experimental study, Yuan et al. (53) reported significant

FIG 3 Principal-coordinate analysis (PCoA) of EcM and AM modules along the tree diversity levels. (A) Monospecific stands; (B) Two-tree species mixtures; (C) Multi-
tree species mixtures. The full names for the abbreviations of enzymes are as follows: PQQ, quinoprotein glucose dehydrogenase; nirB, nitrite reductase (NADH); nirK,
nitrite reductase (NO-forming); nirA, ferredoxin-nitrite reductase; HAO, hydroxylamine reductase; PhoR, histidine kinase; tagl, triacylglycerol lipase; PhoA, alkaline
phosphatase; PHO, acid phosphatase; IMPA, inositol-phosphate phosphatase; appA, 4-phytase; glpQ, glycerophosphodiester phosphodiesterase; phnP, phosphoribosyl
1,2-cyclic phosphate phosphodiesterase; AMY, a-amylase; ChiC, chitinase; bglX, b-glucosidase; pepA, leucyl aminopeptidase; pepN, membrane alanyl aminopeptidase;
amiE, amidase; URE, urease; ppa, inorganic diphosphatase; ppx, exopolyphosphatase; phnM, a-D-ribose 1-methylphosphonate 5-triphosphate diphosphatase; lccA,
laccase; PO, peroxidase; phnN, ribose 1,5-bisphosphate phosphokinase; phnI, a-D-ribose 1-methylphosphonate 5-triphosphate synthase; phym 3-phytase; phnX,
phosphonoacetaldehyde hydrolase; CELB, cellulase; NAGLU, a-N-acetylglucosaminidase; xynA, endo-1,4-b-xylanase; CBH1, cellulose 1,4-b-cellobiosidase; phnJ, a-D-
ribose 1-methylphosphonate 5-phosphate C-P-lyase.

Nutrient Cycling Potential of Soil Microbial Networks Microbiology Spectrum

March/April 2023 Volume 11 Issue 2 10.1128/spectrum.04578-22 8

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/s

pe
ct

ru
m

 o
n 

08
 J

un
e 

20
23

 b
y 

14
1.

48
.6

7.
87

.

https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.04578-22


differences in the co-occurrence network topology between arbuscular mycorrhizal
fungal (AMF)-bacterial networks and nonmycorrhizal fungal (comprising saprotrophs,
pathogens, endophytes, and unclassified)-bacterial networks. Relatively high values of
degree centrality and betweenness centrality may indicate stronger relationships
among the taxa and a powerful influence of some taxa on bridging or communicating
between different parts of the network, respectively (54). Our results show that EcM
TSPs’ soil microbial networks had relatively higher betweenness centrality than that of
AM networks, especially in monospecific stands and two-tree-species mixtures, sug-
gesting that some key taxa might exert control over other taxa members of the net-
work. A relatively higher abundance of ectomycorrhizal fungi (EMF) in EcM TSPs’ soils
which were known to regulate other microbes in the community (44, 55) might be a
possible reason for the higher betweenness centrality. In contrast, the higher degree
centrality in AM networks, especially in monospecific stands and two-tree species mix-
tures could be attributed to the relatively higher abundance of saprotrophs in AM TSP
soils (56).

Microbes belonging to a subcommunity/module may share similar ecological proc-
esses like nutrient cycling functions or be affected by the same environmental filtering
processes (37, 41). In our analysis, we identified such modules: for instance, in AM
monospecific stands, all of the modules had significant relationships with P, which is
compliant with the fact that AM trees acquire P through the arbuscular mycorrhizal
fungi (AMF), and P is a limiting nutrient for the soil microbes in the subtropical systems
with AM-dominated stands (57). Interestingly, the modules (both EcM and AM) in two-
tree-species mixtures were strongly related to N or its inorganic forms, NO3

2 and NH4
1.

It is well known that N is a vital limiting nutrient for both plants and microbes (58) and
that the EcM and AM tree-dominated systems have contrasting N acquisition and alloca-
tion strategies, where organic N is preferred in EcM systems, while this is the case for

FIG 4 Heat map of pairwise comparisons of EcM and AM modules along the tree diversity levels (“Mono”
for monospecific stands, “Two” for two-tree-species mixtures, and “Multi” for multi-tree-species mixtures).
The asterisks show the P value significance level: **, P # 0.01; ***, P # 0.001.
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FIG 5 Sankey plots showing the top differentially abundant taxa from each of the EcM and AM networks along the tree diversity levels and their
proportional contributions to the functional abundances. (A to C) EcM networks; (D to F) AM networks. Connections (edges) represent the

(Continued on next page)
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inorganic N in AM systems (59). One possible reason for the observed association of
modules with N or the inorganic N compounds in two-tree-species mixtures could be
the coexistence of different mycorrhizal type trees in a plot (i.e., AM tree species with
EcM trees and vice versa). This proportional addition of contrasting N-acquisitioning tree
individuals in one plot would have triggered the mechanisms that may limit the pre-
ferred source of N for the associated soil microbial subcommunities. In multi-tree-species
mixtures, all EcM and AM modules were significantly associated with pH, which is known
to affect both bacterial and fungal communities (60, 61) and has a subtle relationship
with soil nutrients. For example, low pH was reported to impede N mineralization and ni-
trification (5, 62, 63), while P availability was suggested to be high at near-neutral pH:
i.e., pH 6.5 to 7 (64 [but see reference 65]). Consequently, the microbial subcommunities
in multi-tree-species mixtures might have dynamic functional roles in nutrient cycling.

Functional potentials of EcM and AM TSP soil co-occurring bacterial and fungal
communities were strongly impacted by tree mycorrhizal type. As expected, we
found a significant tree mycorrhizal type effect on the functional compositions of the
co-occurring microbial communities. Our results are in line with a study from boreal
and temperate regional sites by Bahram et al. (44), who reported significant differences
in the composition of microbial functional genes between sites dominated by EcM and
AM mycorrhizal type plants. Through their specific mycorrhizal partners, trees can
select the associated microbial communities with the required functional abilities (66–
68). For example, given the genomic potential to release oxidative and hydrolytic
extracellular enzymes to directly break down the soil organic matter (6, 59), EMF have
been reported to outcompete and limit the saprotrophs in microbial communities of
EcM tree-dominated systems (69). In contrast, AMF are known to have very little ge-
nomic repertoire for enzymatic degradation of soil organic matter. In consequence,
they rely upon and enrich saprotrophic fungi and bacteria in soils under AM trees (22,
70). Furthermore, we found significant interactive effects of tree diversity and tree
mycorrhizal type in some nutrient cycling combinations (CP and CNP for whole com-
munities and CN, NP, CP, CNP for significant modules), wherein multi-tree-species mix-
tures neutralize the tree mycorrhizal type effect on the functional compositions of soil
microbial communities. More co-occurring tree species and including different mycor-
rhizal type trees in multi-tree-species mixtures could be the potential explanation for
the observed absence of significant differences in the functional compositions of soil
microbial communities (43).

Similar to the functional composition analysis, we found a significant tree mycorrhi-
zal type effect on the functional diversity of soil microbial communities. Nonetheless,
this effect was relatively weak and found only in monospecific stands. The results are
in line with the significant effect of tree mycorrhizal type on the functional gene ortho-
log (GO) richness of fungi and bacteria as reported by Bahram et al. (44). We did not
encounter any significant tree diversity effect on the functional diversity of soil micro-
bial co-occurring communities, which was contrary to previous findings of the positive
effects of plant diversity on microbial community functions and activities (71–73).
Although this effect was not significant, we observed the tendency of increased micro-
bial functional diversity under EcM trees in multi-tree-species mixtures. One might
expect that the positive effect of tree diversity on the functional diversity of microbial
communities might become significant in the long term (74, 75).

Moreover, our findings revealed that high tree diversity that includes both AM and
EcM mycorrhizal type trees can harbor rich and converging functional genomic poten-
tial, which in turn, can have a positive effect on the studied ecosystem. This conforms
to the previous findings of our study site of higher stand-level productivity in multi-

FIG 5 Legend (Continued)
proportion of relative functional abundances of each top two bacterial and fungal taxa and their distribution in each of the soil-responsive
subcommunities of the EcM and AM networks. The text beside the C, N, P, CN, CP, NP, and CNP nodes denotes the top two bacterial and fungal
taxa per network contributing to the respective nutrient combinations. Aci, Acidobacteria; Sor, Sordariomycetes; Ver, Verrucomicrobia; Alp,
Alphaproteobacteria; Agr, Agaricomycetes; Eur, Eurotiomycetes; Leo, Leotiomycetes; Act, Actinobacteria.
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tree-species mixtures compared to monospecific stands (76). Hence, our study war-
rants further research on the detailed mechanisms of how soil microbial communities
contribute to the increased above-ground productivity in more-species-rich stands.

Insights into the functional abundance differences of EcM and AM TSP soil co-
occurring microbial subcommunities. Furthermore, we investigated how EcM and AM
TSP soil microbial subcommunities at each tree diversity level differ in their genomic
functional abundances. The ordination coupled with the fitting of the significantly con-
tributing enzymes showed for monospecific stands that all of the C-cycling and most of
the P-cycling enzymes were diverging in opposite directions of the ordination. These C-
cycling enzymes along with amidase and chitinase (N-cycling enzymes) might have simi-
lar functional roles in the community, which in this case could be the decomposition of
complex carbohydrates for microbial utilization (77–79). In the other direction, the P-cy-
cling enzymes were broadly involved in inorganic P solubilization and organic P minerali-
zation, along with a set of N-cycling enzymes that take part in nitrification (e.g., hydroxyl-
amine reductase) and nitrate reduction (e.g., ferredoxin-nitrite reductase). These findings
indicate that these subcommunities might have major functional roles in producing
plant- and microbe-available forms of N and P (79–81). This view was corroborated by
the response of these modules to the soil chemistry as seen from dbRDA analysis. In con-
trast, in two-tree-species mixtures, a higher number of nutrient cycling enzymes did not
show any distinct pattern, and this might indicate that the module differentiation was
possibly driven by multiple functional differences. In multi-tree-species mixtures, fewer
correlated enzymes were found, and this might reflect that the module differentiation
was driven by fewer functional differences. Expectedly, P-cycle enzymes were predomi-
nantly correlated with the module differentiation at all tree diversity levels, and together
with their relationship to soil nutrients in monospecific stands, suggests that the soil mi-
crobial subcommunities at our study site are shaped by the P limitation, which is in line
with previous reports (57, 82, 83). Intriguingly, our subcommunity-level functional analy-
sis pointed out the natural selection of microbes with required functional potential suita-
ble to the habitat at community and subcommunity levels.

Furthermore, we encountered differences in functional abundances of nutrient cy-
cling combinations at the module level among the EcM and AM TSP soil microbial com-
munities. Overall, AM modules had a higher number of significantly abundant modules,
except for C and N cycles. In particular, significantly abundant EcM modules for the C
cycle were encountered more often in monospecific stands, while not a single signifi-
cantly abundant EcM module was found in multi-tree-species mixtures. The higher abun-
dance pattern in monospecific stands of such modules can be explained by the fact that
ectomycorrhizal fungi can efficiently sequester carbon from plants (6, 84), influence the
recruitment of co-occurring microbes, including bacteria (85, 86), and then can allocate
the C to them (87–89). In support of this interpretation, we observed a major contribu-
tion of bacteria compared to fungi to the nutrient cycling potential in EcM modules in
monospecific stands. In monospecific stands, for the N cycle, we found three significantly
abundant EcM modules and one significantly abundant AM module. A recent soil meta-
genomics-based study from temperate forests (90) reported a larger estimated amount
of N-cycling genes in AM than in EcM tree-dominated soils. In our study, we focused on
those subcommunities that fulfill specific functional roles, which would explain the
aforementioned observation. Nevertheless, in concordance, we found a relatively higher
number of significantly abundant AM modules in two-tree-species mixtures. It is known
that soils under AM trees have more open and faster nutrient cycling rates than EcM sys-
tems (6, 59), which is facilitated by the specifically associated fast-cycling versus slow-cy-
cling microbes (91–93). In agreement with this assumption, we found an overall higher
number of significantly abundant AM modules under the remaining nutrient cycling
combinations (P, CN, CP, NP, and CNP).

Moreover, the number of modules that differed between EcM and AM was fewer in
multi-tree-species stands compared to monospecific stands and two-tree-species mix-
tures. Taken together, these findings suggest converging genomic functional potential
of EcM and AM soil microbiota at the subcommunity level with increasing tree species
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richness. Additionally, pairwise module analysis within tree mycorrhizal type resulted in a
higher proportion of significant differences within AM subcommunities than that of EcM
subcommunities in all nutrient cycling combinations, except for CNP, where equal propor-
tions were observed. This might point to a higher functional equivalence in EcM subcom-
munities, which is probably facilitated by the slow-cycling members, such as ectomycorrhizal
fungi, as reflected by members of the Agaricomycetes, which were the predominant differ-
entially abundant fungal contributors to the nutrient cycling in monospecific stands and
two-tree-species mixtures. In contrast, a higher number of specialized functional units in the
AM subcommunities might be promoted by fast-cycling microbes, such as saprotrophs,
which is reflected in their higher functional abundances in most of the nutrient cycling com-
binations and also by their differentially abundant taxa. Higher functional abundance in their
subcommunities might confer resilience to the AM TSPs’ soil microbial communities. This
expected functional resilience in AM and the functional equivalence in EcM TSP soil micro-
bial communities can foster soil microbiome stability, which would be most pronounced in
multi-tree-species mixtures (94).

Differentially abundant taxa and the top contributors to the functional abun-
dance and nutrient cycling combinations. Finally, differential abundance analysis
revealed the taxa behind the differences between each EcM and AM significantly soil-
responsive module pairs within each tree diversity level. Agaricomycetes are a phylo-
genetically diverse group of fungi containing both biotrophs, such as ectomycorrhizal
fungi and saprotrophs (95, 96), which explains their predominant contributions to the
nutrient cycling combinations. Sordariomycetes were one of the major contributors to
the nutrient cycling combinations in AM monospecific stands and also for both EcM
and AM in multi-tree-species mixtures. Sordariomycetes are known to contain decom-
posers of wood and leaf litter (97, 98). A recent study identified some Sordariomycetes
taxa to function as connector hubs in soil microbial networks and were positively cor-
related with the abundance of functional genes involved in C, N, and P cycling (99).
Eurotiomycetes and Leotiomycetes, which contributed to various nutrient cycling com-
binations in our study, were also shown to have a significant link to the production of
C-cycling enzymes (100). In addition, Eurotiomycetes were also found to be involved in
denitrification (101). Acidobacteria and Alphaproteobacteria were the predominant con-
tributors in all nutrient cycling combinations. Together with the Actinobacteria, which
showed the second highest association with C in our study, all of these groups are
known from the literature to be involved in the C cycle (100, 102), N cycle (90), and P
cycle (12, 15). We have also shown the functional potential of these groups for other
nutrient combinations, including CN, CP, NP, and CNP. This information can be helpful
in future studies on the relationship between microbial taxa and nutrient cycling.
Although these top differentially abundant classes were common in both EcM and AM
modules, it is worth noting that they differ in their role at the lower taxon levels, such
as ASVs. Moreover, the top two contributing fungal and bacterial classes differed
between EcM and AM modules in the different tree diversity levels, especially in two-
tree-species mixtures. This indicates that the subcommunities recruit groups of differ-
ent taxa depending on their functional roles and niche requirements.

Conclusions. Taken together, our study highlights the importance of interkingdom
soil microbial co-occurrence networks and their subcommunities to understand the
factors that shape their community composition and functional roles. We comprehen-
sively characterized the predicted genomic functional potential of co-occurring EcM
and AM TSPs soil microbial subcommunities. Our analysis indicated that the nutrient
cycling potential of the soil microbiota at the community level was a cumulative effect
of their subcommunities. More importantly, functional potential differences, driven by
differentially enriched taxa, were revealed among subcommunities that were not
obvious at the community level. Our results highlight the key role of the tree mycorrhi-
zal type in the recruitment and organization of these networks. Furthermore, higher
tree diversity levels of coexisting AM and EcM mycorrhizal trees were found to foster
microbial communities with rich and converging functional genomic potential, thereby
promoting stable and better functioning of the forest soil ecosystem. These findings
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underline the versatility and significance of microbial subcommunities in different soil
nutrient cycling processes, which contribute to maintaining multifunctionality and
modulating tree-tree interactions in diverse forest ecosystems.

MATERIALS ANDMETHODS
For detailed descriptions of the study site and design, sampling procedures, laboratory analyses and

data generation, please refer to the 2021 study by Singavarapu et al. (43).
Study site, experimental design, and sampling. The BEF-China tree diversity experimental study

site (site A) contains native subtropical tree species with a diversity gradient ranging from monospecific
stands to 24-species mixtures (50). The experimental site was planted in 2009 in the Chinese subtropics
(Xingangshan, Jiangxi Province, Southeast China [29.08 to 29.11°N, 117.90 to 117.93°E]) on a total area
of 18.4 ha. The plots have a size of 25.8 m by 25.8 m, with 400 trees each spaced on a regular grid at
1.29 m. In our study design, two adjacent target trees were considered a tree-species pair (TSP) (103),
and we focused on the conspecific TSPs, including six EcM and six AM type TSPs for this study. TSPs
were randomly selected across 55 plots, with three replicates in each of the monospecific stands
(denoted as “Mono”), two-tree-species mixtures (denoted as “Two”), and multi-tree-species mixtures
(denoted as “Multi”), which comprised plots with a tree species richness of $4. This resulted in a total of
108 TSPs with the following six combinations: EcMjMono (n = 18), EcMjTwo (n = 18), EcMjMulti (n = 18),
AMjMono (n = 18), AMjTwo (n = 18), and AMjMulti (n = 18). For more details on the study site, design
and sampling, please refer to the 2021 study by Singavarapu et al. (43) (see Table S1 and Fig. S1 in the
reference 43). Four soil cores (diameter of 5 cm and depth of 10 cm) were collected from the tree-tree
interaction zone (i.e., the horizontal axis between the two partner trees of a TSP) at distances of 5 cm
from the center of a TSP (first two cores) and a further 20 cm away (other two cores). A composite soil
sample was made from the four soil cores after pooling, mixing, and removal of root fragments by siev-
ing the mixed soil through a 2-mm-pore mesh-size sieve. Soil samples for microbiota analyses (30 g)
were freeze-dried (104) and stored at 280°C until further analyses.

Soil characteristics. Soil samples were divided into two parts for the measurement of soil moisture
and other soil variables. Soil moisture was measured by drying the soil at 105°C for 24 h. Soil pH was meas-
ured in a 1:2.5 soil-water solution with a Thermo Scientific Orion Star A221 pH meter after air drying of the
soil at 40°C for 2 days. Soil total organic carbon (TOC) was measured using a TOC analyzer (Liqui TOC II;
Elementar Analysensysteme GmbH, Hanau, Germany). Soil total nitrogen (TN) was measured using an
autoanalyzer (SEAL Analytical GmbH, Norderstedt, Germany) by the Kjeldahl method (105). Soil total phos-
phorus (TP) was measured following wet digestion with H2SO4 and HClO4 using a UV-visible (UV-Vis) spec-
trophotometer (UV2700; Shimadzu, Japan). NH4

1 and NO3
2 were measured using the colorimetric method

with a Smart Chem 200 Discrete auto analyzer (AMS, Italy) after extraction with 2 M KCl (106).
Sequencing of microbial communities. Briefly, soil microbial genomic DNA was extracted using

PowerSoil DNA isolation kit (Mo Bio Laboratories, Inc., Carlsbad, CA, USA), followed by quantification using
a NanoDrop spectrophotometer (Thermo Fisher Scientific, Dreieich, Germany). The bacterial amplicon
libraries were prepared by the amplification of the V4 region of the bacterial 16S rRNA gene using the uni-
versal primer pair 515f and 806r (107) with Illumina adapter sequence overhangs. Fungal amplicon libraries
were prepared by seminested PCR, first to amplify the internal transcribed spacer 2 (ITS2) ribosomal DNA
(rDNA) region using the ITS1F (108) and ITS4 (109) primers, followed by a second amplification round with
the primer pair fITS7 (110) and ITS4 containing the Illumina adapter sequences. Both amplicon libraries
were purified with AMPure XP beads (Beckman Coulter, Krefeld, Germany), and then Illumina Nextera XT
indices were added to those libraries using the indexing PCR, followed by another round of purification
with AMPure XP beads. The indexed amplicon libraries were quantified by PicoGreen assay and then
pooled equimolarly to a final concentration of 4 nM each for fungi and bacteria. Furthermore, the final
library with the pool of fungal and bacterial libraries was sequenced (paired-end sequencing of 2 � 300
bp with MiSeq reagent kit v.3) on an Illumina MiSeq platform (Illumina, Inc., San Diego, CA, USA) at the
Department of Environmental Microbiology, UFZ, Leipzig, Germany.

Bioinformatics analysis. Bioinformatics analysis was performed using the Quantitative Insights into
Microbial Ecology (QIIME 2 2020.2) (111) software. Raw reads were demultiplexed, and primer sequences
were trimmed, followed by sequence denoising and grouping into amplicon sequence variants (ASVs)
using cut-adapt (112) (q2-cutadapt) and DADA2 (113) (q2-dada2), respectively. Taxonomy assignment
was made using the q2-feature-classifier (114) with a classify-sklearn naive Bayes taxonomy classifier
against the silva-132-99-515-806-nb-classifier and unite-ver8-99-classifier-04.02.2020 for bacteria and
fungi, respectively. The resulting fungal and bacterial ASV matrices, taxonomic tables, and representative
sequences were transferred to R software (v.4.0.2) using the phyloseq package (115). The ASV matrices
were rarefied to 16,542 and 28,897 reads per sample, for fungi and bacteria, respectively, to control for
differential sequencing depths. To identify the microbial taxa that are faithfully represented in each of
the tree mycorrhizal type and tree diversity combinations (viz., EcMjMono, EcMjTwo, EcMjMulti,
AMjMono, AMjTwo, and AMjMulti), stringent filtering steps were applied to fungal and bacterial data
sets prior to further data analyses. First, all taxa with an abundance of.3% mean total sequencing reads
were filtered, resulting in 798 bacterial and 728 fungal taxa. Next, in each of the tree mycorrhizal type
and tree diversity combinations, the taxa were further filtered with a frequency of presence in at least 2/
3 of the samples ($33%) in their respective data sets. These filtered data sets from each combination
were merged into one bacterial and one fungal data set each and were used as input into PICRUSt2
(Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) software for the
prediction of metagenome functional abundances (52).
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In PICRUSt2, briefly, first, the ASV representative sequences of bacteria and fungi were multiple aligned
with the 16S and ITS reference genome database files using hidden Markov models (HMMER tool). For bacte-
ria, we used default settings, and for fungi, we used the minimum-alignment option of 0.5 (default 0.8) to
include all of the taxa that were classified until the genus level in the output. Then these aligned sequences
were placed into the reference phylogenetic tree constructed by the maximum likelihood phylogenetic
placement method using EPA-ng (116) and Gappa tools (117). Next, gene family content was predicted for
both bacterial and fungal ASVs based on EC (Enzyme Commission/Classification) numbers (118) using the
castor package (119). Here, we filtered the predicted EC content tables of bacteria and fungi for the carbon,
nitrogen, and phosphorus nutrient cycling-related EC numbers (enzymes) based on previously available liter-
ature (Table S3). Finally, these filtered EC content tables were used to determine the gene family abundances
per sample with respect to nutrient cycling for both bacterial and fungal data sets. Here, one ASV in each
bacterial and fungal data set was removed as they were above the default NSTI (nearest-sequenced-taxon
index) values, the metric that identifies the ASVs that are far from all the reference sequences, thus allowing
us to exclude less reliable predictions.

Statistical analysis. All of the statistical analyses were done in R (version 4.0.2) software. EcM and AM
TSPs’ soil bacterial and fungal interkingdom co-occurrence networks were constructed at each tree diver-
sity level (viz., EcMjMono, EcMjTwo, EcMjMulti, AMjMono, AMjTwo, and AMjMulti) using the filtered data
sets (i.e., [i] an abundance of .3% mean total sequencing reads and [ii] present in at least 2/3 of the sam-
ples) mentioned in the bioinformatics analysis. Networks were constructed using the R package SpiecEasi
(120). SpiecEasi controls the spurious co-occurrences by controlling for the lack of independence in nor-
malized count data, which accounts for the high number of edges in the network-based analysis of ampli-
con data sets. Networks were estimated by the Meinshausen and Bühlmann graph inference method. The
minimum l ratio was 1023, and network assessment was done over 100 values of l for every 50 cross-vali-
dations. Network structural and topological properties, including edges, centrality indices, modularity, etc.,
were calculated using the igraph package (121). Modules that are considered to be subcommunities in
each network were determined based on a hierarchical agglomeration algorithm with modularity optimi-
zation using the “cluster_fast_greedy” function. Differences in the distribution of four network centrality
measures (degree, betweenness, closeness, and eigen centralities) between EcM and AM TSPs’ soil micro-
bial networks were tested by bootstrapping with 10,000 iterations, followed by a two-sample
Kolmogorov-Smirnov test using the ‘ks.test’ function in R. Furthermore, these distributions were visualized
with sinaplots using the ggforce and ggplot2 packages. Network modules that were significantly associ-
ated with soil chemical properties were determined using dbRDA (distance-based redundancy analysis)
models based on the Bray-Curtis distance using the “capscale” function in the vegan package (122), and
for this, modules with a size of$40 were considered. Soil variables (C, N, P, C/N, C/P, N/P, TOC, SOM, NH4

1,
NO3

2, pH, and moisture) were standardized to a mean of zero and standard deviation of 1 (“decostand”
function in vegan). Multicolinearity was checked using the “vifstep” function in the usdm package (123).
Furthermore, important soil variables were selected using stepwise model selection (the “ordistep” func-
tion in vegan), and the variables selected were included in the final model for each subcommunity.
Variables that were significant in the final model were considered the significant soil characteristics, and
the subcommunities that were associated with at least one of these significant soil variables were treated
as soil-responsive subcommunities, in the following called “significant”modules.

The predicted gene family abundance matrices from PICRUSt2 output were merged per EC number to
yield the co-occurring community enzyme/gene family abundance (functional abundance) matrices. These
functional compositions were categorized into nutrient cycling combinations (C, N, P, CN, CP, NP, and CNP)
based on the constituent EC numbers. Shannon diversity of these functional abundance matrices was calcu-
lated as a measure for functional diversity and tested for the effects of tree diversity and tree mycorrhizal
type using two-way analysis of variance (ANOVA) with the “aov” function in R. Furthermore, within each tree
diversity level, pairwise comparison of tree mycorrhizal type was done with t tests followed by Benjamini-
Hochberg (BH) multiple testing correction. The effects of the tree diversity and tree mycorrhizal type on the
functional compositions were tested with Bray-Curtis distance-based permutational multivariate analysis of
variance (PERMANOVA) using the vegan package. Moreover, the functional composition of the whole com-
munity was compared with those of the soil-responsive modules, and consequently, all the analyses based
on subcommunities were rerun using only the soil-responsive subcommunities.

To derive subcommunity relative functional abundances, first, mean taxon relative abundances of
subcommunities in each network were calculated using the normalized bacterial and fungal ASV abun-
dances from the PICRUSt2 output. Next, matrix multiplication was applied using the mean taxon relative
abundances of subcommunities and the predicted EC content (gene family numbers) matrix of the taxa
as shown in the exemplary formula shown in equation 1. In equation 1, the matrix on the left-hand side
is a matrix of module (mod1, mod2) by taxon (t1, t2, t3) with the taxon’s mean relative abundances in
the modules, and the one on the right-hand side is a matrix of taxon (t1, t2, t3) by enzyme (e1, e2), with
the number of enzyme gene families per taxon. The result is a matrix with gene family abundances of
enzymes (i.e., functional abundances) in each module (mod1, mod2).

mod1
mod2

0:10 0:19 0:07
0:02 0:03 0:06

� �t1 t2 t3

�
t1
t2
t3

1 7
2 1
4 3

2
4

3
5

e1 e2

¼ mod1
mod2

0:76 1:10
0:32 0:35

� �e1 e2

(1)

The obtained subcommunity functional abundances across tree diversity levels were visualized by
ordination with PCoA, using the ape package (124). Moreover, enzymes related to C, N, and P cycling
were fitted to the ordination using “envfit” function in Vegan. Those enzymes with a P value of ,0.01

Nutrient Cycling Potential of Soil Microbial Networks Microbiology Spectrum

March/April 2023 Volume 11 Issue 2 10.1128/spectrum.04578-22 15

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/s

pe
ct

ru
m

 o
n 

08
 J

un
e 

20
23

 b
y 

14
1.

48
.6

7.
87

.

https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.04578-22


were considered significantly associated with the differentiation of modules. Furthermore, pairwise com-
parisons of subcommunity functional abundances at each tree diversity level were done with Wilcoxon
signed-rank tests followed by BH multiple-testing correction with a significance threshold of P , 0.01
using the rstatix package, and the results are presented as a heat map using ComplexHeatmap package
(125). In addition, taxon differential abundance tests were performed for all EcM and AM modules that
were significantly different on the overall CNP relative functional abundance of each ASV per subcom-
munity. The latter was obtained by multiplying the relative abundance of that ASV by its predicted EC
content. Pairwise Wilcoxon rank sum tests (BH multiple-testing correction with a significance threshold
of P , 0.01) were used to determine the differentially abundant ASVs between subcommunity pairs and
aggregated these significant ASVs at the class taxonomic level. The relative functional abundance pro-
portions of the top two of each of the fungal and bacterial classes per tree diversity level in subcommun-
ities of each of the EcM and AM TSPs’ soil microbial networks were visualized as Sankey diagrams using
the networkD3 package (126).

Data availability. The data sets generated for this study can be found in the National Center for
Biotechnology Information (NCBI) Sequence Read Archive (SRA) under BioProject no. PRJNA702024.
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