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Abstract  

Production planning is essential for any 
manufacturing company, especially when complex 
and varied processes must be considered. Accurate 
processing times play a critical role for scheduling 
production runs and allocating resources 
effectively. In practice, the respective master data 
from the ERP system is often used for this purpose. 
However, maintaining the master data is 
challenging, especially with large amounts of data 
in flexible environments. In this context, incorrect 
or outdated data quickly lead to significant 
planning inaccuracies. This paper presents a study 
that uses machine learning (ML) models to 
accurately predict the processing times of single 
operations of future production runs based on 
historical production runs. Various ML algorithms 
were trained and evaluated on a real-world 
dataset. In comparison to the master data the root 
mean squared error could be reduced by 23% 
using ML. Thus, these estimated times can be used 
for optimizing future schedules and incorporating 
such an ML model in the production planning 
process eliminates the need for master data. 

1. Introduction  
This section provides a brief overview of the 
motivation behind this study, summarizes the key 
findings and limitations of related research in the 
field and points out the contribution of the 
proposed work.  
 

1.1. Motivation 
Production planning is essential for any 
manufacturing company, especially when complex 
and varied processes must be considered [1]. 
Accurate processing times are crucial to effectively 
schedule production runs and allocate resources 
[2]. However, processing times can vary 
significantly in reality, which makes achieving 
optimal schedules difficult. Currently, simple 

estimates, such as the average time, are commonly 
used, but they can be imprecise and result in 
inefficient and suboptimal schedules, particularly 
for high mix low volume manufacturers with many 
products, resources and flexible processes [2,3]. 
Addressing the problem of varying processing 
times has been a subject of extensive research, 
with two approaches emerging: using simple 
probability distributions to describe the variation 
of processing times or using ML to predict the 
actual processing times [1]. In recent years, ML has 
become increasingly important in various fields, 
with rapid developments in algorithms and model 
architectures, decreasing costs of sensors and 
computing hardware, and an explosion in data 
volume fueling interest in ML applications in 
production [4]. ML enables computer programs to 
perform complex tasks, such as prediction, 
diagnosis, planning, and recognition, by learning 
from historical data [3].  
 

1.2. Related Work 
A considerable amount of literature has been 
published on production optimization. A great deal 
of research focuses either on developing effective 
scheduling algorithms or on the estimation of time-
related KPIs in the production environment. The 
former presupposes given operation times without 
questioning their validity, such as [5–7]. However, 
valid processing times are needed for robust 
results of the optimization procedures. The latter 
focuses on estimating the cycle time instead of the 
duration of individual operations [3], such as [8–
11]. There is a relatively small body of literature 
that is concerned with the prediction of processing 
times. Sobaszek et al. [12] provide a statistical 
approach to estimate the distribution of the 
processing times based on historical data. Both 
Mucientes et al. [13] and Ringsquandl et al. [2] 
utilized regression models to predict the actual 
processing times. A key shortcoming of these 
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studies is their reliance on expert knowledge. Since 
expert knowledge can be scarce and lacks 
scalability, there is a need for scalable and 
automated approaches to predict processing times 
in a production field. It should be noted that the 
data used in [2] was generated from simulation 
and thus, needs further validation with real-world 
data. Yamashiro and Nonaka [1] tested several ML 
models on a real-world dataset. Product ID, 
number of products, materials and material 
parameters were used as input features for the 
utilized ML models. They also suggest analyzing the 
importance of the input features for more 
scalability and generalizability. 
 

1.3. Contribution  
This paper presents a study that assesses several 
ML models, classic linear and non-linear ones, to 
accurately predict the processing times of single 
operations of future production runs based on 
historical production runs. As shown in Figure 1, 
the processing times in our dataset do not have a 
symmetrical distribution.  
 

Since linear models such as LR require a normally 
distributed target variable [14], we opted to 
predict the deviation of the actual duration of an 

operation and the planned duration. The 
distribution of the deviation is approximately 
normal, as shown in Figure 2.  
The task of predicting the deviation is treated as a 
regression problem. Based on several input 
features, which contain different information of a 
scheduled operation, the deviation is estimated as 
a continuous target variable. 
Moreover, the trained ML models were utilized to 
determine features, that highly influence the 
deviation. The insights gained from the feature 
analysis for practitioners were also evaluated. 
This article is organized as follows: In Section 2, the 
data preprocessing, the utilized ML algorithms and 
the results of the hyperparameter tuning are 
described. The results of the regression models, 
the influence of individual features, as well as 
strength and weaknesses of the model are 
analyzed in Section 3. Finally, in Section 4 the 
results are summarized, and potential future work 
is discussed. 

2. Methods or experimental part  
In this section, the dataset, the utilized ML models 
and the employed experimental design are 
described. 
 

2.1. Dataset  
The dataset to train and evaluate the ML models is 
provided by one of our industrial research 
partners. It is a medium-sized supplier company in 
the mechanical engineering sector, characterized 
by discontinuous high mix low volume production. 
The dataset consists of booking data from 
historical work processes from the flexible shop 
floor with machine tools, assembly stations, 
various qualified employees, external 
workbenches, and complex bill of materials. It 
contains about 52,000 operations from the last 
seven years and includes the following features: 
Actual start and end time, planned processing 
time, product, quantity, machine, assigned 
employee and job due date. Personal data has 
been anonymized so that no conclusions can be 
drawn about specific employees. 
 

2.2. Data pre-processing and feature 
engineering 

To ensure the quality of the data, we 
systematically cleaned it, removing errors and 
outliers. Due to the great variety of products, we 
used k-Means clustering to group the products 
based on weight, number of subparts, frequency of 
production and value. The results of the clustering 
were verified with a domain expert of the 
company. To improve the accuracy of the 
prediction, several features were engineered. The 
timestamps were used to create time-related 
categorical features such as day of week and 

Figure 1: Histogram of all actual processing times 
of the real-world dataset 

Figure 2: Histogram of all deviations of the actual 
duration from the planned duration 
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month as additional input features and the 
deviation of processing time, as target feature. In 
addition, features to describe operation 
predecessors, employee utilization and machine 
breakdowns were modeled. The data was then 
standardized, and a univariate feature selection 
was performed to select the best 20 features. A 
more detailed analysis of the most influential 
features and their impact on the production 
planning processes can be found in Section 3.2.  
 

2.3. Machine Learning  
Several ML algorithms, specifically linear 
regression (LR), support vector regression (SVR), 
decision tree (DT) regressor, random forest (RF) 
regressor and multi-layer perceptron (MLP), were 
employed using scikit-learn [15] to predict the 
deviation of the processing time of an operation. 
To evaluate the performance of these models, we 
split the dataset into a training and a test set. For 
each algorithm, except for linear regression, which 
has no hyperparameters, hyperparameter tuning 
was performed on the training set using grid 
search with 5-fold cross-validation.  
 
2.3.1. Linear Regression  
Linear regression is a statistical regression method. 
Let us assume that Y denotes the target variable 
and x1, …, xn are the input variables. The objective 
is to find the parameters β0, …, βn for a prediction 
Y’ with  
 
Y’ = β0 +  β1x1 + … + βnxn   (1) 
 
so that the sum of squared errors of prediction and 
target variable is minimized [16]. Since this 
algorithm has no hyperparameters, no 
hyperparameter tuning was performed.  
 
2.3.2. Support Vector Regression 
SVM is a ML algorithm initially developed for 
classification problems. The objective is to find the 
hyperplane that separates two classes of data 
points with the maximal margin. The width of the 
margin is determined by the smallest distance to 
one of the data points. SVMs can also be adapted 
for regression problems. The idea of margin is still 
present, but instead of classifying data points into 
two separate classes, the data points are now 
supposed within a margin around the regression 
line. Slack variables are associated with outliers 
that lie outside the margin, and the algorithm tries 
to minimize the sum of these slack variables. The 
support vectors, namely margin vectors and outlier 
vectors, determine the regression curve [17].  
During the hyperparameter tuning, two essential 
hyperparameters were examined: the kernel 
function and the regularization parameter C. The 
kernel defines a mapping of the input data to a 

higher-dimensional space, which enables non-
linear regression [17]. The regularization 
parameter controls the weights of the slack 
variables.  
 
Table 1: Hyperparameter Tuning SVR. The best 
parameter value is marked 

 
2.3.3. Decision Tree Regressor 
DTs are a commonly used ML algorithm for 
complex relationships between input variables and 
output variables. The algorithm works by 
constructing a tree-like model, where at each 
internal node in the tree a binary test is applied to 
one of the input variables to split the samples into 
smaller subsets [18]. Each split aims to minimize 
the residual sum of squares between the average 
value and actual values of the target variable of all 
data points belonging to the corresponding subset 
[17]. This process is repeated until a termination 
criterion is met. All data points are summarized in 
a leaf node, where the actual prediction is made. 
The predicted value is typically the average target 
value of all data points belonging to that leaf [18]. 
Since overfitting is quite common [17], we tested 
several stopping criteria: the maximal depth of the 
tree, the minimum number of samples required in 
the child node after splitting and the minimum 
number of samples required for a leave. 
 
Table 2: Hyperparameter Tuning Decision Tree 
Regressor. The best parameter value is marked 

 Assessed parameter values 

Maximal 
depth 

4, 6, 8, 10, 12, 14, 16, 18, 20 

Minimum 
samples split 

10, 20, 30 

Minimum 
samples leave 

5, 10, 15  

 
2.3.4. Random Forest Regressor  
A RF is an ensemble learning technique that 
consists of several DTs. Each tree is trained 
separately, and each node is split using a randomly 
selected subset of features. The final prediction is 
the average prediction of all trees [17]. In general, 
this technique is more robust to noisy data than a 
single DT [19].  
The hyperparameter tuning covers the same 
hyperparameters as the hyperparameter tuning for 
the decision tree regressor and additionally 
includes the number of decision trees used for the 
ensemble learner. 
 

 Assessed parameter values 

Kernel Linear, Polynomial, Radial 
basis function, Sigmoid 

C 0.1, 1, 10 
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Table 3: Hyperparameter Tuning Random Forest 
Regressor. The best parameter value is marked 

 Assessed parameter values 

Maximal 
depth 

4, 6, 8, 10, 12, 14, 16, 18, 20 

Minimum 
samples split 

10, 20, 30 

Minimum 
samples leave 

5, 10, 15  

Number of 
estimators 

100, 1000 

 
2.3.5. Multi-Layer Perceptron  
MLPs also known as neural networks, consists of 
several neurons, which are arranged in layers. The 
inputs of the MLP are weighted and propagated to 
the first layer of neurons, where each neuron 
passes the weighted sum of inputs through an 
activation function, typically the ReLu function. The 
outputs are passed as inputs to the next layer [17]. 
In the last layer, the so-called output layer, all 
inputs are combined for the actual prediction. This 
structure enables learning complex non-linear 
relationships between input and output variables. 
During the hyperparameter tuning, different 
structures and sizes of the hidden layers were 
tested, along with different initial learning rates 
and learning rate changes. 
 
Table 4: Hyperparameter Tuning MLP. The best 
parameter value is marked 

 Assessed parameter values 

Hidden layer 
size 

(300,200,100), (200,100,50), 
(50,50,50), (100,100,100), 

(50,50), (100,100), (200,200), 
(200,100,50) 

Initial 
learning rate 

0.0001, 0.001, 0.01 

Learning rate Constant, adaptive, invscaling 

 

3. Results and Discussion 
The performance of the ML models and their 
applicability for the regression task and the 
importance of the input features are analyzed in 
this section. Additionally, the tree-based models 
are examined in more detail.  
 

3.1. Regression analysis 
All models were evaluated on a separate test 
dataset using the rooted mean squared error 
(RMSE) as evaluation metric. RMSE is a commonly 
used metric for evaluating the predictive errors of 
regression models. A smaller RMSE value indicates 
a higher model performance. The planned 
durations from the ERP system’s master data were 
used as benchmarks. RMSE values for the deviation 

of the master data and all ML models are shown in 
Figure 3.  

The results show that all models exhibit a similar 
performance, which is significantly better 
compared to the master data. It indicates a great 
potential for the general use of ML models to 
predict the deviation of the processing time. In 
practice, the choice of model seems to be a 
secondary concern. However, the Random Forest 
Regressor generated the most accurate predictions 
on our test dataset. In comparison to the master 
data, the root mean squared error (RMSE) could be 
decreased by 23 % using the predictions of the RF. 
Furthermore, the standard deviation of the error 
could be decreased by 22%. It implies, that the 
model is capable of providing a more precise 
representation of the data and a more accurate 
prediction of the deviation.  
 

3.2. Feature analysis  
Further analysis of the influence of the input 
features on the deviation was conducted. Since the 
RF showed the best results, this model was utilized 
for the analysis. Scikit’s RF has an in-build feature 
called feature importance. Every time a feature is 
chosen in a splitting node, it reduces the impurity. 
The normalized total reduction is equal to the 
feature importance [15]. The table below shows 
the five most important features according to the 
RF’s feature importance. 
  

Figure 3: RMSE for predicted and actual 
deviation on the test set 
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Table 5: Five most frequently chosen features 
chosen by RF  

Feature Feature importance 

Planned duration 0.747 

Weekly workload 0.105 

Lot size 0.0702 

Operation thirteen 0.0202 

Machine twenty-five 0.0170 

 
All the features, except weekly workload, have a 
negative correlation with the predicted deviation. 
This means, that high values of the features lead to 
larger negative deviations. The planned duration 
exhibits the strongest negative correlation with the 
deviation with a correlation coefficient of -0.836. 
Thus, it can be concluded that in this practical use 
case especially long processing times were 
overestimated in the planning stage. Interestingly, 
only the feature weekly workload shows a positive 
correlation with the predicted deviation. In this 
case, the weekly workload describes the amount of 
work in hours that is already scheduled for the 
employee that is executing this operation. The 
findings indicate the necessity of conducting a 
comprehensive examination by practitioners to 
explore the underlying causes of the observed 
correlation. One possible approach to mitigate the 
effect could involve the implementation of an 
equitable workload distribution strategy among 
employees.  
 

3.3. Detailed model analysis  
Tree-based models are a popular choice in ML due 
to their high level of transparency. Thus, the 
decisions of the DT model and the strength and 
weaknesses of the RF model are examined in more 
detail.  
 

3.3.1. Decision analysis  
The DT model, which demonstrated a comparable 
performance on the test set, is highly interpretable 
and transparent. The tree structure enables easy 
visualizations of the decision-making process, as 
the paths from the root node to the leaf nodes 
represent a sequence of decisions that lead to the 
final prediction. Figure 4 depicts such a graphical 
representation of the first three tiers of the DT 
model. The representation was automatically 
generated by utilizing the open-source graph 
visualization software graphviz [20]. The 
representation reaffirms the importance of the 
planned duration as a feature in predicting the 
deviation. In the first two tiers the DT splits the 
samples into groups purely based on their planned 
duration. The largest group, comprising 95.2% of 
all samples, also contains the samples with the 
lowest planned duration. The samples in the other 
groups have a higher planned duration, indicating 
operations with a higher lot size or more complex 
operations. Interestingly, in the third tier the DT 
not only uses the planned duration but also the 
binary feature Operation thirteen for splitting. As 
can be seen, the tree is very complex and cannot 
be fully examined in this paper. Nonetheless, it is 
evident that the tree serves as a critical launching 
point for domain experts' discussions. 
 
3.3.2. Performance analysis 
Returning to the RF, we conducted a thorough 
analysis of the strength and limitations of the 
incorporated model. On the one hand, it 
demonstrated an outstanding performance for 
operations with a moderate lot size and planned 
duration. A moderate planned duration might 
indicate a decreased probability of interruptions, 
which unpredictably influence the processing time. 
Moreover, a moderate Lot size of products 
suggests that the products are usually not unique 

Figure 4: The first three tiers of the DT model, automatically generated using graphviz  
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items. As such, unique products are often 
characterized by their complexity and distinctive 
nature, making them difficult to compare with 
other known products. 
On the other hand, the RF did not perform well in 
predicting outcomes for products belonging to 
cluster 20. This cluster is known for containing 
products that require significant amount of manual 
work and consists of multiple subparts. Thus, these 
products are exceptionally complex, and the model 
might need additional features to improve the 
accuracy of the predictions. We assume that this is 
a challenging problem, as even experts such as 
technicians, designers and production planners 
apparently struggle with estimating the time for 
complex custom parts. Nevertheless, we consider 
this to be an interesting and relevant research 
need for the future, as custom manufacturing and 
small lot sizes play an important role in the 
German industrial landscape [21]. 

4. Limitations and Conclusion  
This study presents a novel approach for 
estimating processing times using ML. To the best 
of our knowledge, this is the first study in the field 
of processing time prediction that utilizes 
clustering to deal with the high variety of products. 
Thus, this approach is in practice particularly 
interesting for high mix low volume manufacturers. 
Additionally, this study is the only one so far that 
uses self-generated time-related features and 
information about machines and workers for the 
regression model in addition to product-related 
features. The results have shown that all models 
performed significantly better than the master 
data manually maintained in the ERP system. The 
RF performed slightly better than the other 
models, reducing the RMSE by 23% in comparison 
to the master data. Additionally, the standard 
deviation of the error could be reduced by 22%, 
which highlights the robustness of the proposed 
approach.  
Since the regression model does not require expert 
knowledge, it enables a highly automated 
prediction process that can be used for optimizing 
future schedules online. Incorporating such an ML 
model in the production planning process leads to 
more efficient and effective use of resources and 
eliminates the extensive master data maintenance.  
Moreover, the additional feature analysis offers 
valuable insights for practitioners. Although these 
insights might not be directly transferable to other 
companies, the process is again completely 
automated and therefore transferable.  
However, the study also highlights the importance 
of appropriate training data. The provided data is 
somewhat limited and noisy, underscoring the 
need for more comprehensive and reliable data in 
future studies to enhance the accuracy of the ML 

models [3]. Furthermore, with more available data, 
it would be possible to directly predict the 
processing time instead of the deviation. It would 
also be interesting to evaluate the influence on 
production schedules, that incorporate ML to 
predict the processing time.  
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